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SUMMARY

Advances in miniaturization of devices equipped with sensing, computing and communi-

cation capabilities have spurred significant interest in Wireless Sensor Networks (WSNs) as a

tool for distributed data gathering, field estimation, and query processing. WSNs provide the

capability of monitoring any given physical phenomena, reporting up to date information to

interested users, and reacting to the observed phenomenon using predetermined trigger mecha-

nisms. Energy efficiency has been one of the main concerns in the design and use of WSN based

applications, as replenishing power to sensor nodes is impractical or not possible, particularly

when they are deployed in harsh environments hostile terrains, or human-unfriendly locations.

The focus of this dissertation is the problem of organizing sensed information (also referred to

as data indexing) for efficient in-network query processing in context of static as well as mobile

networks.

Existing solutions for the data indexing problem can be classified from several dimensions. Some

of these solutions rely on a centralized approach, where data across the network is transmitted

to one sink node, and it is organized at that node. Subsequently, all the queries are processed

at this sink node. Such an approach suffers from its poor scalability to large networks and

inherent highly non-linear increase in its traffic towards sink node. Decentralized solutions rely

on in-network organization of the data. Data organization in these solutions is either optimized

for processing of queries related to: 1) the sensed values; or 2) the locations of the sensed

values. Therefore application that entertain both types of queries face disparity in efficiency.
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As for the maintenance of the data-indexing system is concerned, some of the existing solutions

rely on transmitting data in raw form across the network, while other solutions construct data

models, in order to decrease the amount of transmitted information. The former method gives

WSNs the capability of answering queries with same accuracy across the indexing hierarchy, at

the cost of a significant increase in the data traffic. The latter category of solutions, however,

supports approximate response to queries, providing the benefit of low maintenance cost for

the system.

In this dissertation, we present an energy and time efficient distributed data indexing system,

which supports approximate querying, relying on novel data models that represent the sensed

values and sensor nodes locations independently. The presented system is capable of answering

different query types with equal efficiency. It also requires minimal maintenance cost, as it

employs fixed size update messages across the indexing hierarchy. Our solution does not create

traffic congestion around the sink node, and hence, prolongs network life time. The presented

abstraction techniques are data structure independent, which gives the flexibility of building

the indexing system on a set of widely used binary space partitioning data structures. Our ex-

periments show the efficiency of the presented methods to capture different types of phenomena

and answer queries in a better way, compared to the existing state of the art.

The presented distributed data indexing system is capable of handling mobility of sensor nodes

within the sensed field, without incurring any significant overhead on the energy cost, or query

processing performance. It is capable of handling the majority of sensor nodes mobility within

their own localities. We also present a novel energy and time efficient methodology for man-

xvii
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aging the sensor nodes mobility, in order to redistribute resources within the sensed field in

response to occurrence of specific events.
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CHAPTER 1

INTRODUCTION

Wireless sensor networks (WSN) emerged as a useful tool in several realms (1). They can

be represented as a distributed system of sensor nodes. A sensor node is capable of sensing

a physical phenomenon, while also having extended capabilities for storage, computation, and

wireless communication. WSN are beneficial to use in various applications, especially ones for

which human access is limited, as in environmental, industrial, and military applications. A

WSN gets deployed in the desired location, which we call the sensed field. The sensor nodes

start discovering each other and connecting according to a defined procedure. They then start

sensing the field and reporting their data to a defined –one or more– node(s). The network

user can dispatch queries to the network inquiring information about the sensed phenomena. In

some scenarios, the sensor nodes are capable of moving after their initial deployment, in order

to track a target, or to have better coverage for the sensed field.

The main task of a WSN is to monitor the sensed field, and provide up-to-date information

about it. An in-network storage shall be designated for this information in a way that facilitates

answering queries received by the network. In order for the WSN to perform its task efficiently,

sensed data needs to be organized in a way that enables: 1. maintaining updated information

across the network; and 2. responding to received queries in a quick manner. Energy consump-

tion is a big challenge in the WSN field (2). The radio communication of sensor nodes is the

most energy consuming process. Hence, a desired data organization scheme for WSN is required

1
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to be energy efficient, and in the same time able to achieve time efficient query processing. Due

to the the usual deployment of the sensor motes in fields having physical imperfections, and

due to the natural error in the sensor motes, the reported values by the sensor nodes are not

considered exact values. They rather represent the sensed phenomenon within some considered

precision error.

Research in energy-aware query processing has been evolving over the past decade. Plethora

of algorithms have been presented trying to build a system that is capable of retrieving sensed

information, creating an aggregated in-network –point or distributed– storage for it, and hence,

responding to queries accordingly. With a wide variation of ideas trying to solve this prob-

lem, data indexing becomes in focus for all of them. Data indexing in WSN aims at creating

an in-network communication and storage methodology, which assists the network fulfilling its

responsibilities. As previously stated, the main challenge that any data organization/indexing

scheme faces in WSN is to perform its job with the least possible energy consumption. The

most participating factor in energy consumption is the wireless communication (2). Thus, this

two extremes problem can be phrased as: sharing as much useful information with least possible

communication.

Existing data indexing algorithms can be classified from different dimensions. Some of them

follow a centralized aggregation method, where all information are pulled towards the sink

node; which is the central node connected to the base station. The methods applied by this

first set usually suffer from load balancing issues. The other set creates an in-network logical

data structure from the sensor nodes. In the latter set, each sensor node is logically connected
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to one –or more– indexing node(s) of that data structure, and accordingly reports its sensed

information to the indexing node(s). Some data indexing algorithms perform further aggrega-

tion for the gathered information, aiming at creating hierarchical representation for the field.

The reported information can be categorized as the sensed value of the phenomenon, and the

respective location at which the values were sensed. Each of these categories has its significance

depending on the application.

The existing work in data indexing is yet incapable of creating a system that aggregates the

different sensed information types with equal efficiency, while keeping low energy cost for main-

taining the data structure up-to-date. Also, the aggregation techniques applied are either

trading-off the two information categories (sensed values and their respective locations), or de-

signed to better suit a specific data distribution of the sensed phenomenon. Most of the existing

data indexing algorithms do not put mobility of sensor nodes into consideration. However, in

many WSN applications, the sensor nodes are given the freedom of changing their locations in

the field to better achieve adaptability to dynamic behavior of the sensed phenomena, or to

track objects in the sensed field. In these scenarios, if the indexing algorithm were not to adapt

to such mobility, the network might incur significant increase in energy consumption; Or worse,

have the sensor nodes disconnected from the indexing node(s) they are –logically– connected

to.

1.1 Problem Statement

We define the data indexing and querying problem as the requirement of an in-network data

indexing and query processing system that is capable of achieving an up-to-date storage for the
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network information with low maintenance energy cost, and responding to received queries

with low latency and processing energy cost. The required solution shall be able to efficiently

handle different types of information in the network in a generic way that does not presume

configurations in different dimensions. It also has to prolong the network lifetime by lowering

the maintenance cost of the indexing structure and keeping a balanced workload between the

indexing nodes.

1.2 Contribution of this Dissertation

In this dissertation we design and implement a storage and communication efficient solution

for the in-network data indexing and query processing problem in wireless sensor network. The

solution provides a generic energy efficient methodology to handle network information. It

consists of:

• Data Abstractions: Novel abstraction techniques for both sensed values and sensor

nodes locations. The abstraction scheme equally handles both types of information, and

aggregates them in an energy efficient manner, providing a hierarchical in-network storage

that is capable of answering different queries with low latency, and further able to provide

immediate answers to approximate queries and some types of exact queries. The presented

abstraction techniques are independent from the underlying phenomenon distribution, and

hence better apply to various data distributions keeping load balancing into consideration,

as we will show. A version of this work can be found in (3; 4). The abstraction techniques

are presented in detail in Sections 3.1 and 3.2.
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• Indexing Structure: In order to prove that the abstraction techniques are generic

enough to fit a wide variety of the commonly used spatial data structures, we present the

applicability of the algorithm on two data structures:

1. A K-D Tree (5; 6) implementation, which manifests the use of any binary space

partitioning (BSP) based data structures. A version of this work can be found in

(4). Details are discussed in Section 3.3.

2. A Voronoi Treemap (7; 8), which is a hierarchical form of Voronoi diagrams (9), a

highly efficient spatial partitioning for WSN. A version of this work can be found in

(10). Details are discussed in Section 3.4.

• Query Processing: We present an energy efficient, logarithmic in time, multi-attribute

query processing algorithm that is capable of analyzing the query types and constraints,

and forwarding each query only to the appropriate indexing nodes. The query processing

algorithm supports approximate querying, where it can respond to queries within a given

error bound. It can provide immediate responses for the extreme (max, min) sensed

values. The algorithm handles queries about the sensed values and queries about the

sensor nodes locations with equal efficiency. A version of this work can be found in

(4; 10). The query processing is presented in Section 3.5.

• Mobility Management: We show how the presented algorithms can efficiently adapt

to different spatial configurations of the sensor nodes under mobility, without incurring

extra overhead out of the areas experiencing mobility. The mobility algorithm applies
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to all BSP data structures. A version of this work can be found in (11). The mobility

management is discussed in Chapter 4.

• Resource Distribution: We present efficient methodologies for scalable management of

relocation of mobile sensors in WSNs, in response to a detection of event of interest. The

presented work takes into consideration the minimum nodes count needed in each spatial

region for guaranteeing certain QoS criteria. Capitalizing on a hierarchical structure,

we present distributed protocols which improve both the response time and the energy

consumption due to communication, along with the choices of nodes to move seeking the

optimization of the traveled distance. The presented approaches are capable of handling

simultaneous detection of multiple events. A version of this work can be found in (12).

Resource distribution is presented in Chapter 5.

• Implementation and Performance Evaluation The presented methods were imple-

mented on top of the SIDnet-SWANS WSN simulator (13) based on Jist-SWANS discrete

event simulation engine (14). The data abstractions are implemented for K-D trees and

Voronoi Treemaps. Robust performance analysis is performed for the effect of each data

structure in the data indexing. Mobility is simulated with several mobility models, and

their performance is evaluated. Our experimental results show the efficiency of the pre-

sented algorithm, in terms of query latency, and maintenance cost. Experimental results

are presented in Chapter 6.
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1.3 Document Organization

This dissertation is organized as follows: In Chapter 2, we present a discussion about the

preliminary assumptions and the analysis of the different dimensions of the problem. After this

we present the data abstraction techniques and their application to different data structures,

and the query processing methodology, in Chapter 3. In Chapter 4 we present the mobility

handling algorithm. We present a set of algorithms for resource distribution in Chapter 5,

followed by the experimental results presented in Chapter 6. We discuss the related work in

Chapter 7. Chapter 8 concludes the dissertation and Chapter 9 outlines the directions of the

possible future work.



CHAPTER 2

PRELIMINARIES

In this chapter we describe the general setting of the presented system. We show the

required features in any data structure to which the presented abstraction methods can be

applied. We then present the notations that will be used to describe the queries to the indexing

system. After that, we present a discussion about the different dimensions of the data indexing

problem, in order to quest the metrics to be used for the assessment of the presented system.

We follow this with a discussion of the related work.

2.1 Data Structure Assumptions

The presented abstraction needs to work on top of a hierarchical spanning tree. The span-

ning tree is to be rooted at the sink node. The tree has to conform to any spatial data structure

that splits the given space in multiple granulation levels by creating contiguous non-overlapping

regions, and without producing holes. A widely used group that holds these features is the

Binary Space Partitioning (BSP) data structures, which recursively subdivide the space into

convex sets using hyperplanes, e.g, KD-trees, Quad-trees, Octrees (5; 6). We presume the exis-

tence of the indexing tree in a balanced form before starting the data indexing system. Figure 1

depicts an color-coded example of an orthogonal bisection based KD tree.

In the used indexing data structure, each leaf node know the borders of the spatial region it

covers. Each leaf node is considered responsible of the sensor nodes within its region. We will be

8
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Figure 1. An OBT 160 node WSN with 16 local cluster heads (Green), 4 next level cluster
heads (Blue), and one yellow sink node.

using the name local cluster head interchangeably with the indexing leaf node throughout this

document. Each sensor node will be logically connected to a local cluster head (i.e, indexing

leaf node). The local cluster heads shall be responsible for gathering information from their

cluster nodes, and applying the first phase of the data abstraction method.

2.2 Query Types

One main task of a WSN is to respond to queries of its administrator. The queries may

inquire values of the sensed phenomena, either in the whole field or in a specific region. They

may also inquire the location from which a value, or a range of values, were reported. From

an information perspective, the network administrator is likely to be interested in more precise

information about special events, as the extreme values (maximum or minimum) and their

locations. However, for the rest of network information, queries are more likely to inquire

information about the overall behavior rather than specifics. Also, the reported values of sensor
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nodes are generally not accurate due to imperfections and other physical aspects. Because of

this, approximate queries are well suiting for WSN, where the query contains a field to specify

the accuracy level accepted for the answer. This applies more to the overall queries than the

extreme values queries. To capture these properties, queries are considered as predicates with

attributes, as follows:

Q(P,T, C, A), where:

• P denotes the sensed phenomenon (e.g., Temperature, Humidity)

• T denotes a type. We will denote the sensed values with T = v and locations type with

T = l .

• C denotes the type of search bounds for the query: geometric bounds within the sensed

field (G), and/or, either value range within the sensed values (R) or an extreme (M ,

where M = min or M = max ).

• A denotes the required level of accuracy for the query response.
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An example of a physical-space query with range constraint would be:

Q(Temperature, v, [70 ◦C, 80 ◦C], {[0, 0],[30, 50]}, 80%)

Which can be straightforwardly translated to an SQL-like syntax:

SELECT TEMPRATURE VALUES T=v

BETWEEN 70 ◦C TO 80 ◦C R=[70 ◦C,80 ◦C]

INSIDE RECTANGLE [0, 0],[30, 50] G=[0, 0],[30, 50]

WITH ACCURACY = 80% A=80%

An example of a data-space query with range constraint is:

Q(Temperature, l, [70 ◦C, 80 ◦C], {[5, 7],[30, 10]}, 65%)

2.3 Data Indexing Analysis

In this subsection we present an analysis of some metrics that an indexing system has to

conform to, in order to be efficient. We shall use these metrics throughout this document to

evaluate previous contributions in solving the indexing problem as well as the presented solu-

tion.

Metric 1: WSN Information Representation

WSN information can be classified as: 1. sensed values; and 2. sensor nodes locations. Each of

these categories represent a different domain for which the network can be viewed. The sensed

values represent the readings of the sensed phenomenon across the whole spatial area of the

sensed field, or part(s) of it. The sensor nodes locations represent the locations of sensors that

are reading values of the whole possible range of values of the sensed phenomenon, or part(s)

of it. Different WSN applications have interest in both types of information. In order for a
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data indexing system to be generic enough to satisfy the various needs of WSN applications, it

should not have any correlation assumptions between the two categories. In other words, the

sensed values and sensor nodes locations have to be considered orthogonal, and hence treated

independently across the indexing system, in a way that enables it to respond to any type of

query that involves any permutation of constraints on both categories. Also, a data indexing

system should not have prior assumptions for the distribution of either the sensor nodes loca-

tions in the spatial domain, or the sensed values in the data domain. It rather should be able

to adapt to any distribution in a way that enables it to function with the same efficiency.

Metric 2: Load Balancing

In order to prolong the network lifetime, the indexing system should equally distribute the

workload over the indexing structure. This balance should be applied horizontally and verti-

cally in a hierarchical indexing structure. Horizontal load balancing means that at each level of

an indexing the amount of information shall be equally distributed among the indexing nodes,

for the spatial regions or data ranges they cover. Vertical load balancing refers to the consis-

tency in the amount of information transferred between the levels of the indexing tree. However

upper level nodes might be considered to cover a larger amount of indexing nodes, and hence

are expected to receive more information, the increase in information in this fashion creates

traffic bottlenecks towards the upper level nodes. These traffic bottlenecks along with the large

data transfer consumes the energy for the upper level nodes, and decrease the network lifetime.

A solution for the vertical load balancing problem that benefit from approximate querying

and creates a multi-resolution indexing by using modeling was first presented in (15). Data
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abstraction either through a specific model or using any similar abstraction technique enables

overcoming the vertical unbalance in the indexing tree. It also creates a hierarchical represen-

tation of the field, where the upper level indexing nodes store granular information about larger

parts of the field, while the lower level indexing nodes store more detailed information about

smaller parts of the field.

Metric 3: Maintenance Cost

An efficient indexing system should have an energy efficient maintenance strategy to update

the network information. It should preserve the locality of updates, where a sensor node is not

required to report its information to an indexing node that is spatially distant from its location.

This is because the multi-hop communication is costly in terms of scheduling and actual data

transmission. The information at each sensor node, which we call raw data, should not be

redundantly transmitted in the indexing structure. But rather, it should be reported once to

an indexing node, then abstraction shall take place to represent the raw data of multiple sensors

at different levels of the indexing structures.

Metric 4: Query Processing Time

The query processing time represents the time between the dispatching of a query to the net-

work, till the response is received. This includes the processing of the query, regardless of the

arrangement of information inside the network, or the presence/absence of an indexing struc-

ture.

The solution for the data indexing problem lies between two extremes: a centralized solution,

or a fully distributed solution. In a centralized solution the maintenance cost of the network is
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quite expensive, as all information has to be gathered to one central node. This also increases

the traffic towards this central node, which accordingly decreases the network life time due to

this unbalance. In a fully distributed solution, each sensor node is considered an indexing node

for its own information. However this eliminates the cost of updating information across the

system, it requires for any query to be answered that the query gets flooded across the whole

network. In such way a significant cost is incurred to respond to each query. Looking at this

dimension, a good solution for the problem is the one that minimizes the maintenance (i.e,

update) cost, and becomes able to direct a query to the specific node(s) capable of providing a

satisfying answer for it.



CHAPTER 3

DATA INDEXING AND QUERY PROCESSING

Chapter Threee: Data Indexing and Query Processing (Previously published as Mohamed,

M. M. A. and Khokhar, A. A.: Dynamic indexing system for spatio-temporal queries in wireless

sensor networks. In Mobile Data Management (MDM), 2011 12th IEEE International Confer-

ence on, volume 2, pages 35-37. IEEE, 2011.; Ali Mohamed, M. M., Khokhar, A., Trajcevski, G.,

Ansari, R., and Ouksel, A.: Approximate hybrid query processing in wireless sensor networks.

In Proceedings of the 20th International Conference on Advances in Geographic Information

Systems, pages 542-545. ACM, 2012; Mohamed, M. M. A., Khokhar, A. A., and Trajcevski,

G.: Voronoi trees for hierarchical in-network data and space abstractions in wireless sensor

netowrks. In Proceedings of the 16th ACM International Conference on Modeling, Analysis &

Simulation of Wireless and Mobile Systems, pages 207-210. 2013.)

We now present the details of the abstractions and their use for efficient query processing along

with the nodes’ behavior for receiving requests and, in response, processing the given queries.

To efficiently respond to different query types a given WSN needs both physical-space and

data-space abstractions, defined respectively as follows:-

Physical-space Abstraction: Representing the sensed data in the field of interest at multiple

scales with respect to the geographical location of the sensing nodes.

Data-space Abstraction: Representing the sensor nodes’ locations in the field of interest at

multiple scales with respect to the range of the sensed data values.

15
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These abstractions must be performed in a manner that enables seamless aggregation as well as

proper preservation of the heterogeneous the data types. Towards that, our main desideratum

is to minimize the size of the updating messages, thereby reducing the communication costs and

prolonging the overall networks lifetime (2). Clearly, decreasing the size of the messages while

retaining the utility of the information content should be done in an energy-efficient manner

from the perspective of the local computations too. Hence, the data flowing across a particular

in-network hierarchical structure would have two forms: Raw data: The location and sensed

value of each individual sensor node. Progressively refined: The approximate embodiment of

the raw data for a geographic region or a data-space subset.

In the next subsections, we discuss the methods of processing and abstracting raw data and

present our novel representation constructs for progressive refinement.

3.1 Physical-space Abstraction

The objective is to provide a hierarchical multi-resolution abstraction scheme, enabling the

underlying hierarchical structure to answer approximate queries aimed at any fixed region of

the sensed field. To achieve this, the sensed data is gathered locally by a representative node

within each region, which then creates an abstract (coarse) representation of the sensed values.

The abstract representations from multiple regions are then merged in a hierarchical fashion to

represent larger regions in coarser forms. We formulate the physical-space abstraction problem

as follows:

Given: A hierarchical spanning tree T(V ′, E ′) of depth d, and (w.l.o.g.) a fixed fan-out f, in

a graph G(V, E), E ′ ⊆ E, V ′ ⊆ V, where ∀i:
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• Each leaf node v ′d,i represents a cluster (a non-overlapping spatial region), and

• It is logically connected to nodes vij, where j = 1, 2, ..,D, and ∀vij ∈ V, D = (|V |/fd), s.t.

∪fd,Di,j vij = V, and nodes vij are geographically collocated.

Find: An abstract representation pv ′d,i of the sensed values R = {r1, r2, .., rD} in the region

associated with node v ′d,i, such that: average error, communication cost, and computation cost

are decreased. We “loosely” assume existence of a spanning tree as the only “needed structure”

– our presented methods are independent from the selection of a particular hierarchical indexing

structure.

Each node v ′d,i in the spanning tree T(V ′, E ′) gathers the sensed values R = {r1, r2, .., rD} from

its set of logically connected sensor nodes vij, in its vicinity, and stores them in an array. Upon

acquiring its population’s readings, each node v ′d,i rank-orders the sensed data and stores it in

an array along with their corresponding sensor nodes’ physical locations.

3.1.1 Physical-space Representation at the Leaf Nodes of the Indexing Structure

The abstract representation pv ′d,i is introduced as an array of a fixed-size (k) and its values

are chosen by regularly sampling the sorted array of the population nodes with interval (D/k),

including the first and last elements of the sorted array. Figure 2 shows an example of the

sensed values in a group of sensor nodes in a small network. Leaf nodes of the spanning tree,

acting as local cluster-heads connected to their 1-hop neighbors, gather all the sensed values

and create the corresponding arrays.

The regularly sampled array pv ′d,i captures the main features of its sensed values within each
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Figure 2. Sensor nodes (in red) transmit their readings to the leaf node (cluster-head), which
sorts the received values and creates the representation construct by regular sampling.

cluster. It contains the lowest and highest readings for the phenomenon in its first and last

elements, respectively. The distribution of readings and the capability of interpolating other

values within acquainted error bound is determined by the size of the array. This approach

mimics a curve fitting process and is generic enough to capture different phenomena.

3.1.2 Physical-space Representation at the Non-Leaf Nodes of the Indexing Structure

To develop abstract representations of larger regions represented by the non-leaf nodes of

the spanning tree, each leaf node v ′d,i can apply wavelet transformation (16) to its representa-

tion construct pv ′d,i , and transmit the compressed representation to its parent in the spanning

tree. Each non-leaf node receives from its children a set of f arrays, representing the physical-

phenomenon at spatially non-overlapping regions in the field. Sample arrays are merged into

a larger one representing the sensed phenomenon in the area enclosing the f regions. The new
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Figure 3. Physical-space merging process in an intermediate level of the spanning tree (f = 2).
Lower level nodes compress their samples and transmit them to their parent which decodes,

merges them and samples again with rate 1/f .

physical-space abstraction of the larger region is created by regularly sampling the merged array

with a given sampling interval (f). Upon completion, the new construct is of the same size as

the received (input) arrays. It provides a regular sorted sample of the larger population, but

in a coarser form. Figure 3 illustrates the physical-space across one intermediate level. The

process of updating the data-payload throughout the participating nodes is performed by using

fixed size messages, keeping the communication workload equally distributed.

When a physical-space query is received by any of the indexing structure nodes, it can respond

within the level of accuracy it supports. The sorted data gives the capability of interpolating

real sensed values using the sample array elements. Using inexpensive linear interpolation a

node can determine the existence of a sensed data range, with a level of confidence relevant to

its position in the hierarchy. A data elaborative example for physical-space abstraction across

multiple levels of the indexing tree is shown in Figure 4.
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Figure 4. Physical-space abstraction across multiple levels of a hierarchy with f = 2. Each
node keeps a sorted array of sensed values within its region and sends a sample of it (yellow

background) to its parent, which merges all the samples from its children.

3.1.3 Error Bound Due to Hierarchical Sampling

A query response based on sampled values at any intermediate node in the indexing structure

will be approximate – however, the error will be bounded. In our scheme it may be compounded

due to the hierarchical nature of the sampling procedure. In the following we demonstrate that

this error is within a factor of ‘2 ’ compared to a centralized sampling scheme where all the

sensed values of a given region are available.

In centralized settings, at any level j of the hierarchical structure, the distance between two

samples is:

N
j
Centralized =

f(d−j+1)D

k
(3.1)
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Accordingly, the maximum interpolation error for a query will be:

E
j
Centralized =

f(d−j+1)D

2k
(3.2)

In the presented hierarchical sampling the values can be skewed in position during the merging

steps, in comparison to a centralized solution. This results in a shift affecting the representative

sample values at each level of the hierarchy which, in turn, affects the representation accuracy.

A similar analysis for a more special case of this idea was presented in (17). We formally define

skewing limit as the maximum shifting of position of a sampled value during the hierarchical

sampling process, compared to a centralized solution.

Lemma 1. The error introduced due to the skewing limit at any level j of abstraction for

intermediate sample values is no more than f(d−j+1)D
k , (where k is the sample size).

Proof. Using mathematical induction:

1. Base case (j = d− 1): f regular sample sets representing f ×D population are merged and

sampled for a new sample set S ′ of same size k. For each intermediate range between sampled

elements i and i− 1 in S ′, where 1 < i < k, the number of elements less than S ′[i− 1] is given

by

lb = (i− 2)
fD

k
(3.3)
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While the number of elements greater than S ′[i] is given by

ub = (k− i)
fD

k
(3.4)

Accordingly, from equations (3)and (4), the maximum number of elements between i and i− 1

is given by

Nd−1Distributed = fD− lb− ub = fD−
fD

k
(k− 2) = 2

fD

k
(3.5)

Therefore, the maximum introduced error at this level is given by

Ed−1Distributed =
fD

k
(3.6)

2. Inductive step: For abstraction at a lower level of the indexing structure, If the relationship

holds for j = m < d then at j = m − 1: For each intermediate range between elements i and

i− 1 in the new sample S ′, where 1 < i < k, the number of elements less than S ′[i− 1] is given

by

lb = ((i− 2)
fk

k
)
fd−mD

k
= (i− 2)

fd−m+1D

k
(3.7)



23

While the number of elements greater than S ′[i]S is given by

ub = ((k− i)
fk

k
)
fd−mD

k
= (k− i)

fd−m+1D

k
(3.8)

Accordingly, from equations (7) and (8), the maximum number of elements between i and i− 1

is given by

Nm−1
Distributed = fd−m+1D−

fd−m+1D

k
(k− 2) = 2

fd−m+1D

k
(3.9)

Therefore, the maximum introduced error at this level is given by

Em−1
Distributed =

fd−m+1D

k
(3.10)

3. Therefore, For any level of depth j in the indexing tree (1 ≤ j ≤ d), the maximum number

of elements between any two intermediate samples i and i− 1 is given by

N
j
Distributed = 2

fd−j+1D

k
(3.11)
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And the error at such level is given by

E
j
Distributed =

fd−j+1D

k
(3.12)

In conclusion, the error bound due to skewing in a distributed solution cannot exceed the size

of one sampling distance in an alternative centralized solution. The size of sample set and the

branching factor of the indexing tree are affecting parameters to this bound.

3.2 Data-Space Abstraction

We assume that the possible values of the sensed phenomenon are delimited within a fi-

nite range [min, max] for the potentially queried data-space. Our objective is to provide a

hierarchical multi-resolution abstraction scheme to obtain approximate answers to queries that

involve localizations of the related sensor nodes.

Hence, the data-space within each physical region is divided into q ranges and each one is

assigned to a representative node in the region. Each such node creates an abstracted repre-

sentation depicting the locations of all the sensor nodes within a particular data range – e.g.,

locations of all the nodes within the region that have sensed temperature above 110 degrees and

below 150 degrees. This data-space abstraction is performed by the nodes at different levels

of the spanning tree corresponding to the regions represented by the nodes. Using the same

definition of the spanning tree T(V ′, E ′) within the graph G(V, E) from the previous subsection,
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the data-space abstraction aims to:

Find: A representation construction Lv ′d,i of the sensor nodes location distribution w.r.t its

sensed value for each leaf node v ′d,i, such that each of the average error, communication cost,

and computation cost are decreased.

Similar to the physical-space abstraction, the data-space abstraction starts by leaf nodes v ′d,i

collecting their population’s sensed values – along with the corresponding location where a

particular value was sensed. Each leaf node sorts the gathered information according to sensed

values, and stores them in an array.

Each set Gl of f sibling leaf nodes represents a group of neighboring clusters within region l,

where l = 1, 2, .., fd−2. The data-space in each region l is split into q data ranges, where q ≥ f.

The responsibility of the data-space in each region l gets distributed among the f leaf nodes

of the group Gl. Each cluster head node (i.e: leaf node v ′d,i) is assigned the duty of keeping

the position of any sensor, within its region l, that reads a value within its data range(s) of

responsibility. Assuming, for simplicity, that each leaf node is responsible only for one data

range (q = f), the ranges of the data space for a group Gl, can be expressed as:

RGl = {RGl0, RGl1, ..., RGlf} (3.13)

RGl = {[min, V1], [V1 + ε, V2], [V2 + ε, V3], ..., [Vf + ε,max]} (3.14)

Where V1, V2, .., Vf denote the values in the data-space that split it into data ranges, and ε
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denotes the smallest sensing precision. For example, for a sensed phenomenon whose possible

range of values is [1-100], RGl =[1,25], [26,50], [51,75], [76,100]. Thus, each leaf node needs

to report to its f − 1 siblings, the positions of the nodes of its population conforming to their

assigned data range. This can be easily performed at each leaf node by a single scan on the

array that is sorted according to sensed values.

3.2.1 Data-space Representation at the Leaf Nodes of the Indexing Structure

Thus far, each of the leaf nodes got hold of the positions of all nodes that are sensing values

within its data range(s) of responsibility. In order to create the representation construct Lv ′d,i

of nodes positions for each leaf node v ′d,i, a bit-map is created. A bit-map is a is a 2D array of

a size that maps to the physical region it represents, where each entry represents an area that

can be occupied by no more than a single sensor node. Similar to a chess board, a square can

be filled no more than one piece at a time. The resolution of the map (i.e. size of each cell) is

application dependent. For example, in applications that seek the coverage of a large field, a

cell size could be the sensor node communication range.

The map entries/cells are initialized to zero. A leaf node, then, sets the cells occupied by

sensor nodes that reported values within its data range. The resulting map can be viewed as a

highly sparse 2D array of zeroes and ones, which is then compressed using Run-length coding

technique. Figure 5 depicts an example of bit-map construction for the sensed values within

one region.
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(a) Sensed values in {1, 100} range, reported
within a region(blank areas indicate absence of
sensor nodes).

(b) Four bitmaps : In (i), all locations that reported
values in the range {1, 25} are set to 1 Similarly in
(ii), (iii) and (iv) for data ranges {26, 50}, {51, 75},
{76, 100}, respectively.

Figure 5. Illustrative example of the bitmap creation.

3.2.2 Data-space Representation at the Non-Leaf Nodes of the Indexing Structure

In the indexing spanning tree, every two subsequent levels i and j contain, respectively, GCi

and GCj
sets of f sibling nodes, where each set represents a group of neighboring clusters within

one region (j = i + 1, Ci = 1, 2, .., fd−i−2, and Cj = 1, 2, .., fd−i−2). On both levels i and j, the

data-space of a region is distributed among a group of f sibling nodes.

For each data range RGl
, the corresponding responsible nodes (f in total) at level i compress

their maps using run-length encoding and send them to the node in level j responsible for the

same data range in the containing region. Upon receiving the f maps for the data range, the

recipient node concatenates them according to their geographic locations, which generates one
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larger map for the data range of responsibility in the whole region.

In order to provide approximate representation and keep message size fixed across the indexing

structure, the concatenation of the set of f maps has to be embodied in a coarser map whose

size does not exceed the size of the largest of the f maps. The concatenated map needs to be

zoomed out with a scale that reduces its size with a 1/f factor on average.

For example, if we have a geometric area represented in a map of 64 single bit cells, it can

determine the presence of up to 64 sensors. At the next level of abstraction, if the scaling factor

is 4, this region will be represented with 16 cells, each using 2 bits to specify the number of

sensors.

In this fashion, nodes keep approximating maps of different data ranges as they elevate through

the indexing structure, providing the ability to supply proper approximations for the data-

space. Figure 6 depicts a detailed map construction example and a set of its coarser versions.

This data-space abstraction method provides an energy efficient, load balanced, multi-resolution

localization tool across the data indexing hierarchy. When an approximate data-space query

is received at one of the indexing structure nodes, it can provide an answer identifying the

locations of the nodes within its data range of responsibility with a specific level of confidence.

A full example for a hierarchical representation of the data-space is shown in Figure 7.

3.2.3 Space Optimized Data-space Abstraction

In the some sensed fields, there are areas within the field that are not covered with sensors

because of physical conditions/limitations, or even as part of the coverage plan. In such cases,

the representation of these locations within the bitmap becomes an overhead. The elimination
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Figure 6. Illustration example for map creation for data range [26-50], and zooming out twice
with 1:4 factors.

Figure 7. Data-space (d = 2, f = 2) is split into two ranges. Leaf nodes create maps for their
data ranges, and transmit them to the upper level nodes responsible for the same data range.
Upper level nodes zoom-out the maps and recursively apply the same process till sink node.
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of such overhead can significantly reduce the communication cost of maintaining the data-space

abstraction, and hence prolong the network lifetime. Moreover, if the sensor nodes are static

within the field, this means that all the locations that do not have sensor nodes can be considered

as an overhead. In other words, the sparse bitmaps can be condensed by constructing a map

that only represents the locations of existing sensor nodes. Accordingly, this condensed version

can be communicated between the data-space indexing nodes, from which the exact map can

be reconstructed at the receiving node side. In order for this to be achieved, the receiving nodes

need to know the initial distribution of the sensor nodes, regardless of their sensed values. Once

this is known, a full map can be simply reconstructed from any condensed version by simply

reversing the condensing method. For example, Figure 8 depicts the construction of a condensed

version of a region by horizontally scanning the sensor nodes locations and condensing them

into a smaller –logical– region, and the corresponding binary representations for its different

data ranges. We note that once the condensing step is performed, the data does not need to be

represented in a two dimensional form. It can be represented as a single stream of bits marking

the locations of corresponding sensor nodes for each map.

3.3 K-D Trees

K-D Trees present a widely used data structure of the category of BSP data structures (5; 6).

They are capable of partitioning a given space according to the number of elements populated

in the space, in a way that preserves equal count on each side of every partition. Given a

set of N sensor nodes, randomly distributed in a 2D plane, at each level of the tree, splits

are performed one axis at a time, such that every partition has equal number of nodes. The
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Figure 8. Illustration example for condensed field representation and its corresponding maps
for four data ranges [1-25], [26-50], [51-75], [76-100] respectively.

partitioning process is recursively applied, alternating dimensions, till a predefined constant

number of sensor nodes is left in every subspace, and that we will call a cluster. The number

of recursive partitions to reach this cluster forming is denoted as d. Accordingly, fd clusters

will be created, each of which, having a number of sensor nodes no more than a fixed number,

denoted by D.

Within each cluster, one sensor node is elected as a cluster head, named as a local cluster head.

Similarly, elevating in the partitioning hierarchy, among each set of f neighboring clusters, one

sensor node is elected to be the head of this set of clusters, denoted as level i cluster head,

according to the level of partitioning. This process is applied, till reaching the single sink node

which heads the hierarchy of cluster heads. A color-coded description of the elected nodes at



32

Figure 9. Data-space communication example. For the local cluster heads (in green)
responsible for the lowest data range (i.e: 0-25%), maps are transmitted to the upper level

cluster head (in blue) responsible for the same data range.

different levels of division of the field was shown in Figure 1.

A spanning tree for the indexing structure is formed as a virtual tree rooted at the sink node.

The children of the sink node in the tree are the next level cluster heads. This continues till

reaching the local cluster heads which are logically connected to the sensor nodes population.

This branching reflects the spatial distribution of cluster heads and the physical sensor nodes.

Figure 9 depicts the communication in data-space abstraction for the first data range of the

data-space.

3.4 Voronoi Diagrams and Hierarchies

One of the most studied concepts in Computational Geometry (9) is the Voronoi diagram of

a collection of points, along with its geometric-dual, Delaunay triangulation. Given n distinct
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points in a plane – P = {p1, p2, .., pn} contained inside a convex polygon S in R, the bounded

Voronoi tessellation V∩S(P) = {V(p1)∩S, V(p2)∩S, .., V(pn)∩S} is defined as the decomposition

of the space S into n convex polygons, called Voronoi regions. Each Voronoi region V(pi) asso-

ciated with the point pi, has the property that for an arbitrary point q(x, y); if q(x, y) is inside

V(pi), then dist(q, pi) > dist(q, pj), for any other pj ∈ P(i 6= j). The function dist represents

a specified distance measure between two points, which can be as simple as Euclidean distance,

or may include other functions that parametrize more context-related information. A specific

example is the centroidal Voronoi tessellation CVT is a Voronoi tessellation with the property

that the generating point for each Voronoi region is the center of mass of the region.

A bottom-up approach for constructing a hierarchy based on Voronoi cells was presented in

(18), where at each level of the hierarchy, a Voronoi tessellation is calculated such that each set

of Voronoi cells in a given level is contained in one Voronoi cell in the higher level. However,

the boundaries of the Voronoi cells between levels are not guaranteed to fully coincide, which

does not result in exact containment of lower level cells in higher levels.

Tree-Maps (19) presented an approach to visualize hierarchical information structures by map-

ping the full hierarchy onto a rectangular region in a space-filling manner. In (7; 8), Voronoi

Treemaps were presented to build a hierarchical spatial data structure that is based on CVTs.

Voronoi Treemap is a top-down built data structures, which partitions a given convex polygon

space into a set of centroidal Voronoi cells, then recursively partitions each cell into further

CVT, given the generating points.

The Voronoi Treemaps represent a useful tool for creating a hierarchical spatial data structure
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Figure 10. Voronoi Treemap partitioning of 300 sensor nodes. Yellow (largest) node is the
sink. The four blue nodes are the next level, and the 16 green nodes are local cluster-heads.

Sensor nodes are the tiny red circles.

that splits the given space in multiple granulation levels by creating contiguous non-overlapping

regions, and without producing holes. In Algorithm 1, we present a distributed algorithm to

create a Voronoi Treemap and deploy the sensor nodes inside a convex polygon bounded field,

starting from the sink node. Figure 10 shows an example of a WSN field on which a Voronoi

Treemap is constructed.

The presented algorithm runs in time complexity of order O(log n), where n is the total num-

ber of the Voronoi partitions (i.e, indexing nodes). The message complexity of the algorithm

is of linear order O(n). We assume that we are given a distribution function of the phenom-

ena F(region, depth), which returns the location(s) of the point(s) of interest (i.e: hotspots)

within this region according to the given depth of the hierarchy. An example of the data space

abstraction in a hierarchical Voronoi partitioned field is depicted in Figure 11.
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Algorithm 1 Create Voronoi Hierarchy

Input: depth
Output: Creates the parts one level of Voronoi cells in the hierarchy and assigns cluster heads
for it. For lowest level, sensor nodes are allocated

1: if depth <MaxDepth then
2: generatingPointsLocations = F(Node.region, depth);
3: voronoiCells = createCentroidalVoronois(Node.region,

generatingPointsLocations);
4: for all cells Vi in the voronoiCells do
5: assign node C(depth, i) cluster head for Vi;
6: C(depth, i).region = Vi;
7: C(depth, i).CreateVoronoiHierarchy(depth+ 1);
8: end for
9: else
10: // Allocate sensor nodes for each local cluster.
11: allocateSensorNodesInCluster(Node.address, Node.region);
12: end if

3.5 Query Traversal

We note that the higher a given node is in a particular hierarchy, the wider the area for which

it is responsible, and the coarser the representation it keeps. When traversing towards the lower

levels (at extreme, the terminal/leaf nodes), finer detailed representations are found, albeit for

smaller collection for clusters. That is, for a particular node in the hierarchy, detailed constructs

of its physical-space representation are found in its child nodes, while detailed/zoomed-in data-

space versions are attained at the node’s child and nephew(s) which cover the same data range

that this node covers. Each leaf node of the tree represents a cluster which contains the exact

data of the group of sensors nodes logically connected to the spanning tree through this leaf

node.
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Figure 11. Data-space (d = 2, f = 2) is split into two ranges. Leaf nodes create maps for their
data ranges, and transmit them to the upper level nodes responsible for the same data range.
Upper level nodes zoom-out the maps and recursively apply the same process till sink node.

Queries originate at a sink, which we assume is connected to a base station. Upon receiving

a query, the root node first checks the query type to decide which representation is inquired.

It then analyzes the bounding constraints –if any exists– for range queries, where through the

bounding region and bounding data range constraints the node can determine which nodes

need to participate in the processing. The solution path is determined step by step, where each

indexing node that receives the query checks the intersection of the query’s geometric and data

range bounds with the geometric area and data range(s) that it covers. The decision of being

able to answer the query at each node is taken according to the accuracy requirement of the
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query. The behavior of each node is formally specified in Algorithm 2.

Once the query reaches the node(s) capable of answering it with satisfactory accuracy, the

response is backtracked through the same path it took from the root node. Each intermediate

node waits to receive the response from all the nodes it forwarded the query to. Once received,

it combines the query responses. The query results are obtained by concatenation of the data-

space maps, while physical-space range queries merge the arrays of sensed values. In the case

of extreme values (min or max) the merging trivially preserves the smallest or largest values.

See Algorithm 2 - Part 2 for additional details.
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Algorithm 2 Query Traversal

Part 1: Query-Forward
Input: Query Q(V, T, C, A)
Output: Immediate Query Response OR A saved memory record to wait for the reception of
query response from other nodes

1: Receive query(Q(T,C,A));
2: for all constraints Ci in C do
3: if the constraint cannot be satisfied at this level or by any subtree then
4: Send back response ‘No data available for this query’;
5: else
6: if accuracy A can be satisfied at this level then
7: Prepare response and send back;
8: else
9: Forward the query to the appropriate node(s) (for physical-space and data-space

coverage) in the next level (of depth = d+ 1);
10: Keep a record of the query and the number of nodes it was forwarded to, until the

response(s) come back from the lower level node(s);
11: end if
12: end if
13: end for

Part 2: Backtrack-response
Input: R(T,Attr[],A, Data[])
Output: Collect all the query responses expected to be received, augment, and forward the
result to the node that has sent this query.

1: Receive all n expected query responses (R(T,C,A)); //Known from the record saved in
Query Forward

2: for all attribute i in the Attr[] do
3: for all response Rj in the received responses do
4: if T = p then
5: //Physical-space query
6: Responsei += Merge Data[Rj];
7: else
8: //Data-space query
9: Responsei = Intersection (Data[Rj]);
10: end if
11: end for
12: end for
13: Send back the responses to the node that forwarded this query;



CHAPTER 4

MOBILITY MANAGEMENT

4.1 Introduction

Mobile sensor nodes (20; 21) greatly increase the adaptability of the WSNs from the perspec-

tives of: 1. ensuring a level of Quality of Service (QoS) in response to phenomena fluctuation,

in the sense of providing better spatial resolution of sampling in desired/targeted areas; and 2.

enabling a control over (balancing) the levels of connectivity and coverage. We note that the

motion of the nodes may vary in different applications but, from a general perspective, it can be

predictable (22), random (23), or controlled (24). For example, in the data coverage problem in

WSN (25), controlled mobility of the sensor nodes is utilized in different applications to achieve

more efficacious coverage.

An illustrating example of the motivation for mobility handling is shown in Figure 12. The left

side of Figure 12, a sensed field with randomly deployed sensor nodes is shown. The right side of

the same figure shows the nodes location distribution after the occurrence of an event of interest

in the southeast corner of the field. In this case, the application or mobility control algorithm

(as (26)) steered more sensor nodes towards that corner, in order to collect more precise infor-

mation, while still maintaining coverage and network connectivity across the region. Due to this

mobility of the nodes required by the application, the underlying distributed indexing structure

may become highly skewed, unless it is adjusted to reflect the new distribution of the nodes in

39
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Figure 12. Left Side - a set of sensor nodes randomly deployed. Right Side – nodes
distribution after occurrence of an event of interest in the southeast corner.

a balanced way. The main question addressed in this chapter is how to efficiently adapt the

indexing structures that manage in-network query processing and aggregation in such mobility

scenarios, in response to the change of nodes’ distribution, such that the overall maintenance

cost is decreased. We emphasize that the actual mobility information as to which nodes should

move in what direction is given by the application. Also, it is the application responsibility to

guarantee minimum number of nodes needed to provide connectivity and coverage. In order to

show our work, we use (26) as the dictating application for mobility.

4.2 Initial Configuration

Assume that logically there are two types of nodes, senor nodes that sense the field and

indexing structure nodes that contain the keys to help maintain the indexing structure. Physi-

cally, a node can be a sensor node as well as a node in the indexing structure. Further assume

that the number of nodes in the indexing structure is n, and the fan-out of each inner node is

k, such that the height of the indexing structure is O(logkn). The initial setup of the protocol
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Figure 13. A field with randomly deployed sensor nodes, where the corresponding borders
rank are assigned.

assigns an integer rank for each border/hyperplane corresponding to a node in the indexing BSP

tree, equal to the depth of the node in the tree (i.e., its level-distance from the root). Figure 13

illustrates the borders rank for a sensed field (color-coded with the same colors according to the

splitting order). Each leaf node is responsible for (the sensed values of) a group of m sensor

nodes within its vicinity. Sensor nodes periodically (with fixed cycle length) report their sensed

values and locations to their respective cluster head.

We reiterate that the motion/displacement of the nodes occurs due to a specific objective (e.g.,

better coverage due to an observed event in a given geographic region) and, as a result, some

leaf node(s) in the indexing structure may find more sensor nodes entering to its vicinity and

requesting to join. For example, an event of interest may require more sensor nodes to be

moved towards, in order to monitor and report more precise data, as depicted in Figure 14,
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Figure 14. An event of interest in the South-East corner of the sensed field.

which shows a field containing n = 103 randomly deployed (small size/red color) sensor nodes.

The indexing structure is based on orthogonal bisection (6), performed recursively, such that 16

(thin solid line/green color) local cluster heads are at the first level. Second level of the index-

ing structure consists of four (thicker dashed line/blue color) intermediate level cluster heads.

Last is the (thickest dotted line/yellow color) sink node. Border line shapes follow same nodes

drawing/color. In this (initial) configuration, an event of interest is observed in the South-East

corner. Also, note that sibling or child/parent node may not be within single hop of each other.

In such case, multihop routing of message will be assumed.

4.3 Processing a Request to Incorporate new Mobile Node

Each leaf node has a specified capacity m ′ > m. A leaf node will accept the joining of new

sensor nodes coming into its vicinity until reaching the threshold m ′. Congestion happens when
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a new join request is received at leaf node that has reached its maximum capacity m ′. The leaf

node then initiates a request to reduce the size of its space of responsibility by changing the

position of one of its surrounding borders/hyperplanes.

The process of border change starts with a communication aiming at changing the spatial

splitting locally. The leaf node in the indexing structure experiencing congestion starts by

locating the border of its surrounding sides corresponding to the lowest rank convex region. It

sends to its sibling node(s) on the other side of the lowest rank border, a change border request.

When sibling leaf node receives the change border request message, it starts assessing if it

can change the specified border in order to accommodate some of the sensor nodes currently

managed by the requesting sibling. The calculation in this case is based on the capacity of the

leaf node that received the request. A response is sent back to the requesting node after the

calculation. If all the involved leaf nodes have large populations, then they cannot accommodate

more incoming sensor nodes, causing them to reject the request. In such case, since the change

cannot be handled locally, a new request for changing borders is propagated in the hierarchy

to the node corresponding to the next higher rank – i.e., the requesting leaf node sends the

request message to its parent node. Upon receiving the request, the parent node checks if the

total number of sensor nodes covered by its children is at the capacity limits. If not, it initiates

a request to its sibling on the other side of the smallest rank border of its region. The same

assessment algorithm runs at the sibling node, which consequently sends the response back.

In case of rejection, the same process is recursively applied - in the worst case, reaching the

root of the hierarchy (the sink). The algorithm executed locally by the participating node is
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formalized in Algorithm 3. Algorithm 4 formalizes the local behavior of the nodes participating

in the border-adjustment.

Complexity: In the worst-case scenario, the request needs to be propagated all the way to the

sink node. For a BSP indexing tree consisting of n nodes, with a fan-out factor k, at each level,

at most k − 1 request message(s) will be transmitted to change the lowest rank border, and

k − 1 rejection message(s) will be received. In the 2D planar case, k = 2 for K-D trees and

k = 4 if quadtrees are used.

Since, by construction, the height of the BSP with n nodes and fan-out factor k is logkn, the

number of messages required 2× (k−1)× (logkn−1), bounding the message complexity of the

forwarding stage to O(logkn). We note that the overall network-wide running time complexity

is the same, since each participating node is executing constant operations to check its current

capacity.

4.4 Response Propagation

When a border change decision is taken in non-leaf nodes, all their affected child-nodes

are notified, recursively propagating the changes until the affected leaf nodes. Leaf nodes, in

turn, inform the affected sensor nodes to change their reporting destination. While this border

change information message is flowing through the structure, each recipient node recalculates

its population according to the new change to ensure that it is within its capacity. If not, the

node finding congestion in its region initiates a new change border request message and sends it

to its sibling node. The important observation is that this particular message is guaranteed to

affect borders that are in the sub-tree of the originally changed border, which caused this new
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Algorithm 3 Forward Mobility Request

Input: Rank of the border required to change, The count of sensor nodes associated to the
requesting indexing node (or its subtree for non-leaf nodes)
Output: A border change response OR, in case the whole region is congested, it issues a new
border change request (if request is received from a child node).
Receive border change request (Receiver, Sender.Rank, Sender.nodesCount)

1: if Sender.depth == Receiver.depth then
2: extraNodesCount= Sender.nodesCount - Receiver.optimalNodesCountForCluster;
3: if Receiver.nodesCount+ extraNodesCount<Receiver.maximumNodesCountForCluster

then
4: newBorderLocation = calculateNewBorderLocation(Sender.Rank,

extraNodesCount);
5: send border change response(Sender, accepted, Rank, newBorderLocation);
6: apply border change inform(this, Rank, newBorderLocation);
7: else
8: send border change response(Sender, rejected, Rank, Receiver.nodeCount);
9: end if
10: else
11: Receiver.UpdateNodesCount(Sender, Sender.nodesCount);
12: if Receiver.nodeCount <Receiver.maximumNodesCountForCluster then
13: newBorderLocation = calculateNewBorderLocation(Sender.Rank);
14: send border change response(Sender, accepted, Rank, newBorderLocation);
15: for all childNodes other than Sender do
16: send border change inform(childNode, Rank, newBorderLocation);
17: end for
18: else
19: Rank = Sender.Rank + 1;
20: send border change request (Sibling, Rank, Receiver.nodesCount);
21: requestingBorderChange = TRUE;
22: end if
23: end if
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Algorithm 4 Receive Mobility Response

Input: Rank of the border to be changed, The response (accept or reject), The new border
location (in case of acceptance)
Output: Applies the border change for the node, in case of acceptance, Or initiate new
request in case of rejection.
Receive border change response (Receiver, response, Rank, newBorderLoca-
tion)

1: if response == accepted then
2: apply border change inform(this, Rank, newBorderLocation);
3: requestingBorderChange = FALSE:
4: else
5: Rank = Sender.Rank + 1;
6: nodeCount = Sender.nodeCount + Receiver.nodesCount;
7: send border change request (Parent, Rank, nodesCount);
8: end if

congestion, because the capacity has already been checked/verified at the parent or ancestor

node.

The determining of the new border location is based on the population size of the requesting

(congested) and responding nodes. For that, we rely on the structural properties of the tree’s

boundary between the nodes at the same level. Namely, we move the border of the node that

has a capacity to incorporate new sensors in a direction perpendicular to the current border’s

position towards the requesting node position, resulting in shrinking the requesting node’s

area, and accordingly getting more sensor nodes out of its region towards the accepting node’s

region. The new border location in the low level requests (i.e, requests between leaf nodes) is

determined by the requesting node, which knows exactly the location of all its sensor nodes. In

higher level requests, the border location change is proportional to the desired new population
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Figure 15. Borders reconfiguration after sensor nodes are moved towards an event of interest
in the southeast corner of the field.

size of the congested region. After the change takes place, the node that asked for the border

change recalculates its new population to ensure it is within its capacity limits. If not, the node

reissues a new border change request, accordingly. Figure 15 shows the reconfiguration of the

borders after sensor nodes have moved towards an event of interest in the southeast corner of

the field.

The last step of the protocol involves notifying the mobile motes about the new borders of

the tree, so that they know which node-ID to use when reporting the sensed values. This is

formalized in Algorithm 5.

Complexity: Algorithm 5 executes when Algorithms 3 and 4 have terminated, and is applied to

all the children of the subtree rooted at the node at which Algorithm 4 has terminated. In the

worst-case scenario, the execution of Algorthms 3 and 4, will cause the request to be forwarded
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Algorithm 5 Apply and Propagate Mobility Response

Input: Rank of the border to be changed, The response (accept or reject), The new border
location (in case of acceptance)
Output: Applies the border change for the node, in case of acceptance, Or initiate new request
in case of rejection.
Receive border change inform (Receiver, Rank, newBorderLocation)

1: Receiver.border[Rank] = newBorderLocation;
2: if Receiver.depth == MaximumDepth then
3: for all sensorNodes do
4: if sensorNode.Location is out of leaf node new region then
5: send detach sensor(sensorNode);
6: end if
7: end for
8: else
9: for all childNodes other than Sender do
10: send border change inform(childNode, Rank, newBorderLocation);
11: end for
12: end if

all the way to the sink node. This, in turn, means that each of the n nodes in the tree will have

to be notified about borders change (and, eventually, decide upon the new border’s location).

Assuming an average of h hops communication between the nodes participating in the tree,

the total message-complexity of Algorithm 5 is O(hn). On the other hand, the computation

complexity is bounded by O(log m) – the capacity of each node. Namely, in the worst case, the

neighboring nodes (siblings) will have a difference of m− 1 motes (assuming at least one mote

for a minimal occupancy). Sorting the nodes according to the common-boundary coordinate

will take O(log m), plus the constant time for placing the new boundary.

We note that the mobility scenario that would make the protocol for adjusting the tree incur

its maximum cost, is having sensor nodes oscillating around the highest rank border. This case
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makes the majority of nodes move towards one side of the border within one update cycle,

which causes the indexing nodes to discover congestion and issue border change request(s). In

the next update cycle, the sensor nodes return back to the other side of the border. In such a

scenario, starting from a balanced state, the algorithm behavior would start by a first request

at the node(s) adjacent to the highest rank border to change their lowest rank border, which

gets accepted at the same level. After the accepting node(s) reach their capacity, while sensor

nodes are still crossing the highest rank border towards the adjacent cluster(s), the next request

will need to be elevated on level in the indexing tree. On the higher level, the same operation

will take place until the managed region is congested.

4.5 Mobility in Voronoi Treemaps

Vornoi diagrams (9) are widely used in WSN applications because of their ability to fit

several physical phenomena. Voronoi Treemaps (7; 8) represent a hierarchical spatial parti-

tioning method that is able to provide a hierarchical indexing structure which satisfies Voronoi

diagram properties at all of the hierarchy levels. Just as in orthogonal bisection trees (OBT)

(5; 6), Voronoi Treemaps are able to manage the sensor nodes in the field, where its leaf nodes

are considered as local cluster heads, and the higher level nodes are considered as the interme-

diate cluster heads till the root (sink) node.

When sensor nodes start moving in the field, because of the occurrence of some events that

require redistribution of resources, some local cluster heads suffer from an increasing traffic of

sensor nodes coming into their geographical regions. Once this occurs these local cluster heads

would want to shrink their geographic region of coverage, in order to keep a number of sensor
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nodes within their capacity m ′. Unlike OBT, the change of a single edge bordering two –or

more– neighboring clusters would violate a fundamental property of Vornoi Treemaps. Thus,

in order for a congestion at a specific local cluster to be resolved, and in the best case scenario,

the portion of the Treemap between this local cluster head node and its sibling nodes needs to

be recalculated. If all the sibling nodes of this congested local cluster head cannot collectively

resolve the problem by taking in its excess nodes, the problem has to be elevated to the upper

level of the Treemap.

The solution for mobility management in Voronoi Treemaps is of the same essence of the OBT

solution, in terms of the requesting, accepting, and response propagation. Algorithms 3, 4 and 5

would apply in the same way to create a request, assess its acceptance criterion, and propagate

the response. However, the main difference is related to the action to be taken (i.e, the nature

of response). Since Voronoi Treemaps cannot have single edge alterations, and there is a need

of recalculating the voronoi diagrams within a region in a way that results shrinking of some

cells (i.e, cluster) and expansion of others; Weighted Voronoi Tesselations (27; 28) can be used

to recalculate the required part of the Treemap, which can be defined as:

Weighted Voronoi Tessellations: In the basic Voronoi tessellation V(P) it is implicitly assumed

that each generator has the same weight. As an extension, a set of parameters W may be

given, and to each generator pi ∈ P a parameter wi ∈ W is assigned. These parameters are

the weights. By using weighted generators, it is possible to define weighted distance functions,

generating weighted Voronoi tessellations V(P,W).

Once the decision is made at a certain level in the Voronoi Treemap hierarchy for the weights of
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Figure 16. The large growing cell of a site t needs to push surrounding sites s away. To reduce
the number of iterations, displacements ds are determined depending on the distance from t

directly rather than alternating between weights and centroid updates for the same effect
(30).

its voronoi cells to be changed, the new Weighted Voronoi Tessellation is calculated. Dynamic

Voronoi Treemap calculation has been considered as a computationally expensive process (29).

In (30), an O(nlogn) iterative algorithm is presented for updating centroidal weighted Voronoi

diagrams. Figure 16(30) depicts the update of a cell that is being expanded at the expense of

its neighboring clusters area. Since the Voronoi Treemap is a top-bottom structure, the lower

levels of all the affected cells (i.e, the child nodes) will have to have their Voronoi Tessellations

recalculated, in order to adjust themselves within the bounds of their containing cells.
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4.6 Data Indexing Under Mobility

The aim of a in-network data indexing system is to arrange and store the sensed data in

a distributed fashion. Indexing tree manages the sensor nodes where each group of sensors

report their sensed values and positions to a node of the indexing tree. The recipient indexing

nodes store the received information, process them, and elevate approximate constructs across

the indexing hierarchy. Mobility causes some of the sensor nodes to move apart from their

reporting node(s) of the indexing structure, and hence, get into other node(s) vicinity. This

causes unbalance in number of senor nodes reporting to the nodes of the indexing structure.

Such unbalance results in the reported data across the indexing structure.

In physical-space abstraction, two approaches can be followed. The first approach is to increase

the size of the update message according to the count of the sensor nodes population attached to

each node of the indexing structure, in order to keep same sampling distance between the update

message values. This would not increase the overall size of physical-space update messages

traversed, because the total number of sensor nodes in the field is the same. However, it will

create a skew in the size flowing in each branch of the indexing tree, where the larger population

branches will have larger size update messages than the other branches. The second approach

is keeping the update messages size unchanged, at the expense of increase in the accuracy loss

across the indexing hierarchy. In other words, upon receiving a physical-space query, there

might be a bigger chance of not being able to satisfy its accuracy requirements from the higher

level nodes of the indexing tree, and having to forward the query to next level(s) for achieving

the required accuracy. The advantage for physical-space abstraction because of the mobility
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handling algorithm is that the change in number of nodes is bounded by the capacity of each

leaf node in the indexing tree, m ′.

In data-space abstraction, the change occurring is not because of the motion of sensor nodes,

but rather because of the modification of borders location to balance the indexing tree. Due to

this change, the bitmap constructs used to represent each data-space are increased/decreased

in size, in order to represent the new cluster space. Contrary to the physical-space abstraction,

which has its skew factor bounded by the capacity of the indexing structure leaf nodes m ′,

the area of a single cluster can increase to approach the size of the whole field. This can only

be bounded with the logic of the mobility algorithm, physical constraints of the sensors (i.e.,

robots moving them), and the field physical barriers. In such extreme case, the large regions

can be represented with lower granularity, so the cell size would be coarser than the same level

other nodes. This would require high accuracy queries for this region to be forwarded all the

way to the leaf nodes. The other solution is to forward the update of such lower level large size

cluster(s) as an array of positions rather than a bitmap, and insert them into the bitmap in the

higher level node(s) of the indexing tree.



CHAPTER 5

RESOURCE DISTRIBUTION

5.1 Introduction

A common method used in managing the data gathering and aggregation in WSN is to con-

struct a kind of a spatial indexing structure (6), which is maintained/updated in a distributed

manner, subject to particular Quality of Service (QoS) constraints (31). Contrary to the cen-

tralized settings, in-network coupling of data/information management and indexing structure

maintenance involves not only the spatial regions “covered” by a particular node, but also

roles/responsibilities of the nodes along the hierarchy of the particular index. Within a given

region, the residing group of sensor nodes is assigned the task of monitoring and reporting the

sensed values of the phenomena of interest. A particular problem that has been identified and

addressed in the literature is how to ensure certain coverage criteria with a given deployment

of a set of sensor nodes so that the spatial distribution of the monitored phenomena is matched

with a satisfactory accuracy (25; 26). A simple way to define an instance of this problem is

how to ensure connectivity and coverage without having any “holes” in the network (32).

Availability of mobile sensor nodes offers an immense flexibility to WSN, in the sense that the

location of the sensors can change in order to adapt to certain changes of the values of the sensed

phenomenon (21; 33; 20). If a pre-defined event of interest is detected during the monitoring

of the sensed field – e.g., a sudden increase in temperature and CO-concentration, indicating a

54
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possibility of a forest fire – then increasing the coverage in that locale may be needed, in order

to provide denser coverage and more accurate measurements. However, that process cannot be

executed “in isolation” – meaning, completely ignoring the quality of coverage in the rest of the

region(s) monitored by the (static and mobile) nodes (34). The left part of Figure 17 depicts a

stable scenario of sensor nodes distribution in a given field. The right portion illustrates how

some of the sensor nodes (indicated as blank disks with red circular boundary) are selected

to-be-moved in new locations inside the region in which an event of interest has been detected,

requiring increased coverage.

Figure 17. Relocation of sensors in response to an event.

In this chapter, we present efficient distributed algorithms for managing the relocation of mobile

sensors upon detection of event of interest in a particular geographic location. The methodology
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also caters to the constraint of satisfying the minimum number of nodes required by each of the

regions not co-located with events of interest, in order to meet connectivity, coverage, or any

other application-dependent demands. Our methodology is able to handle multiple simultane-

ous requests, and provide the resources for them from the nearest region capable of supplying.

The presented methodologies aim at minimizing the communication cost for the “bargaining”

process, and seek to supply the resources in a manner that minimizes the total motion, as well

as the response time. The algorithm proceeds in a “cascading manner” – meaning, if the regions

neighboring the one in which request-generating event is located are not able to satisfy fully

the demand, then they provide a partial supply and recursively propagate the request to their

(other) neighbors. We assume that the maximum number of nodes required by simultaneous of

events in the field is no more than the total number of existing sensor nodes in the field, after

satisfying the other regional constraints, i.e, coverage, connectivity, ..etc. Specifically, in this

work we also consider the management of such request when a hierarchical structure is present

and maintained in a distributed manner (cf. partitions in Figure 17).

5.2 Preliminaries

We assume a sensor network consisting of N nodes SN = {sn1, sn2, . . . , snN}, grouped into

geographically collocated K clusters (C1, C2, . . . , CK). We also assume that under normal initial

conditions, each cluster Ci contains ≈ N/K motes, which may be of two basic kinds: static –

SCi
, and mobile – MCi

where SCi
⊆ SN and MCi

⊆ SN, and SN = ∪(i)(SCi
∪MCi

). We assume

that the location of the individual nodes are known, either via GPS or via some collaborative

trillateration technique (35).
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In order to ensure some “desirable” properties – both from the pure networking aspect (e.g.,

connectivity, coverage), as well as application Quality of Service (QoS) requirements (e.g.,

density of coverage) – we assume that each cluster has a predefined lower-bound threshold

ΘCi
≤ (N/K) so that |MCi

| + |SCi
| ≥ ΘCi

. With this in mind, we note that part of the mobile

nodes in each cluster may be “free” to move outside that cluster, without violating the ΘCi

constraint. Hence, MCi
= Mb

Ci
∪Mf

Ci
, where Mb

Ci
denotes the mobile nodes bound to Ci and

Mf
Ci

denotes the free nodes which can cross the boundaries between neighboring clusters. While

the membership of a particular mobile node snj may vary – i.e., its state may transfer from

bound to free and vice-versa, we assume that at any time-instant Mf
Ci
∩Mb

Ci
= ∅.

Each cluster is assumed to have one designated sensor node that will act like a local cluster-

head, and we use H(Ci) to denote the local cluster-head of the cluster Ci. H(Ci) is in charge

of tasks such as gathering and maintaining the information about the status (e.g., locations,

expected-lifetime) of cluster’s population of nodes; coordinate the operation of the nodes (e.g.,

increase the sampling frequency); perform analysis/aggregation and information extraction of

the measurements from the nodes in the cluster; ..etc. Based on the spatial partitions used, we

assume a hierarchy which is constructed from the local cluster-heads, and rooted at a designated

sink.

For this work, the important responsibilities of a local cluster-head are:

1. Event detection – event denotes an occurrence of something of interest (36) and, based

on the reported values from the sensors in the cluster, the local cluster-head is in charge
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of detecting them1. We assume an application-dependent specification of “interesting”

events, for which the location of the sensors detecting them is known, along with two

values:

• The bounding rectangle – which is, some safety or quality based boundary around

the location of an event, approximated by the perimeter of a rectangle.

• The number of sensors needed to be placed around the perimeter of the bounding

rectangle – again, an application-dependent parameter. We assume that the sensors

will be located at a uniform distance around the boundary.

Hence, we use ECi,j(L, B, ne) to denote that the j-th event E has been detected at location

L in the cluster Ci, for which ne nodes are needed around the perimeter of the rectangle

B.

2. Mobility coordination – in order to ensure a desired QoS, the local cluster-head may need

to direct the mobile sensors toward the location of a given event. We assume the existence

of efficient techniques to orchestrate the trajectories of the mobile sensor for the purpose

of positioning them at the respective locations around the perimeter of the bounding

rectangle which can be viewed as a simplified instance of the techniques in (37) (cf. Sec.

5.4).

There are various spatial partitioning methods (5) and although throughout this work we use

rectangular regions, the results can be directly extended to the cases when the field of interest

1In this work, we do not consider any composite events.
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is convex polygon (subsequently split into a set of non-overlapping regions). A hierarchical

spanning tree data structure (indexing tree) is constructed to manage the WSN, which is rooted

at the sink node, and has the local-cluster-heads as the leaf nodes. The intermediate nodes are

called global-cluster-heads, and we use the term cluster-heads to refer to both local and global-

cluster-heads. Various widely used data structures conform to the aforementioned description,

and have been used in the existing state-of-the-art indexing systems – e.g., K-D Trees, Octrees

(11; 6), and Voronoi Treemaps (7; 8). We note that optimizing the energy consumption due

to altering the indexing structure is not considered in this work (i.e., no local cluster-head will

ever drop the number of actual sensors in its region below ΘCi
).

5.3 Request

We now proceed with the details of handling the requests for additional mobile nodes, to

be made available in a cluster in which an event of interest has been detected.

When a local cluster-head H(Ci) detects an event ECi,j(L, B, ne) within its region, it firstly

checks whether the mobile nodes from MCi
are sufficient to cover the requirements – i.e.,

whether |MCi
|≥ne. If so, the QoS requirements can be satisfied locally. Otherwise, H(Ci) may

need to request additional resources.

In the rest of this section, we focus on two basic techniques for handling the request from the

local cluster-head that needs more resources to cover an event within its region to the other

cluster-heads in the field. First, we present the centralized protocol, followed by two variants

of a distributed protocol.
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5.3.1 Centralized Requesting

Under the centralized requesting scheme, once a local cluster-head recognizes the need of

resources because of the detection of an event in its region, following is the protocol that is

executed:

1. H(Ci) sends a request to its parent node in the indexing tree by generating the message

Request(H(Ci), r, j), the semantics of which is: The local cluster-head of Ci is requesting r, j

nodes to satisfy the request of servicing the detection of its j− th event. See Figure 18(a).

2. Once sink node receives a particular request, it broadcasts the RequestSink(mid, H(Ci), r, j)

message to its children, which recursively propagate it down the hierarchy, until it has

reached the leaves (recall that leaves are actually the local cluster-heads). The parameter

mid is a unique message-ID, in case the sink needs to process multiple requests from the

same local cluster-head. See Figure 18(b).

3. Upon receiving the RequestSink(mid, H(Ci), r, j) message, each local cluster-head responds

with a message containing an information about its free mobile nodes, which could be

used to cater the given request. Thus, the local cluster-head of the l − th cluster, H(Cl)

will send the message RequestCater(mid, (H(Cl), Al)), indicating that it has Al available

nodes. We note that Al ≤ |Mf
Cl
)| (the number of the “free” mobile nodes) since H(Cl)

may be processing multiple request (including some due to events in its own geographical

region). The RequestCater(mid, H(Cl), Al) message is sent to the parent node in the

hierarchy, and each parent aggregates the (H(Cl), Al) pairs for a correspondingmid before

propagating it further up the hierarchy. See Figure 18(c).
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4. Once the sink has received the availabilities of individual clusters, it calculates the best

manner to move resources in response to Request(H(Ci), r, j), and individual messages

are sent down the hierarchy, notifying individual local cluster-heads how many of their

available nodes should be forwarded towards Ci. Each local cluster-head H(Cl)) whose re-

sources will need to be moved, will receive the message Allocate(mid, H(Ci), L(H(Ci)), H(Cl), al),

where al ≤ Al is the number of nodes to be moved towards H(Ci), located at L(Ci). See

Figure 18(d).

Figure 18 depicts the steps of the centralized requesting protocol. The hierarchical index in this

figure is based on a K-D Tree structure (orthogonal bisections). It shows an example scenario

prior to the event. We note that the criterion for selecting the resources to be forwarded is

discussed in section 5.4.

Assuming an n nodes K-D Tree as an example indexing structure, the complexity of executing

the centralized protocol can be characterized as follows:

• logn messages are needed to propagate the request from the H(Ci) to the sink node.

• n/2 = (O(n)) messages to send the information request from the sink back to all the local

cluster-heads. However, since some of them may be transmitted in parallel in different

sub-trees, the time, in terms of hops, is bounded by O(logn).

• O(n) messages which are from the local cluster-heads towards the sink – again, bounded

by O(logn) in terms of time (although two children will need sequential transmission

towards their parent, the bound is still O(logn)).
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(a) Step 1: The local-cluster-head (Green) detecting the event
sends a request to its parent node (Blue), which is forwarded
to the sink node (Yellow).

(b) Step 2: The sink node (Yellow) requests information
about available resources from all the local-cluster-heads
(Green) through the data structure hierarchy.

(c) Step 3: Available resources information is sent to the sink
node (Yellow) through the data structure hierarchy.

(d) Step 4: Sink node (Yellow) sends out the decision about
resource forwarding to the involved local-cluster-head (Green)
nodes throughout the data structure hierarchy.

Figure 18. The centralized requesting process in a sensed field spatially split with orthogonal
bisection, with a K-D Tree indexing structure. The middle large yellow node represent the
sink node, the four blue medium nodes are the global-cluster-heads, the sixteen green small

nodes are the local-cluster-heads, and the tiny red nodes represent the sensor nodes
distributed in the field
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• Let k denote the number of local cluster-heads selected to participate in sharing their

resources with H(Ci) (k ≤ n/2).

Thus, the overall communication complexity (message cost) is bounded by O(n), in terms of

number of messages, and O(logn) in terms of time.

5.3.2 Distributed Request Management

The distributed structural requesting protocol aims at minimizing the overall communica-

tion cost via exploiting spatial locality. We now present two approaches for handling a request

for additional resources. The first one, called structure-based is relying solely on an existing

hierarchical index structure, whereas the second one proposes a coupling between the indexing

structure and geographical proximity.

5.3.2.1 Structure-Based Distributed Request (SBDR) Management

Assuming a Binary Space Partitioning (BSP) structure which has recursively divided a given

space into contiguous non-overlapping regions, each border/hyperplane corresponding to node

in the indexing BSP tree, has a unique level (i.e., distance from the root).

When ECi,j(L, B, ne) is detected and H(Ci) determines that additional sensors are needed to

satisfy the QoS criteria, the SBDR protocol proceeds as follows:

1. H(Ci) sends the message Request(H(Ci), r, j) requesting additional mobile nodes to its

sibling node(s) in the indexing tree which is sharing a common border and parent. See

Figure 19(a).
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2. In the case that H(Cs,i), the sibling of H(Ci), can cater to the request, it responds with

Granted(H(Ci), j, rs). Clearly, for this we need that rs > r, and the nodes are selected

from Mf
Csi

which is properly updated.

3. In the case thatH(Cs,i) cannot cater to the request, it will send the message Deny(H(Ci), j, rs).

The meaning is that, although it cannot fully grant the request, the sibling is still able

to provide rs ≥ 0 nodes. In this case, H(Ci) will forward Request(H(Ci), r − rs, j) to its

parent.

4. The parent-node of H(Ci), in turn, instead of propagating the request towards the sink,

will actually forward the Request(H(Ci), r− rs, j) to its own sibling at the same level and

sharing a common border whether it can cater to H(Ci)’s request. See Figure 19(b).

5. The procedure is repeated recursively until, in the worst case, the request has reached the

root.

The SBDR protocol is illustrated in Figure 19. It depicts the chaining of the messages at two

levels from the root, since the request cannot be satisfied at the first level – i.e, by sibling local

cluster-heads.

Clearly, both the communication cost and the time for detecting the fulfillment of a particular

request will vary for the SBDR protocol. We note that, in the worst-case scenario, the request

needs to be propagated all the way to the sink node. Worse yet, the attempts to resolve it locally

constitute additional overhead in terms of the time needed to determine the servicing of the

request. However, as our experiments demonstrate, SBDR protocol does provide improvements

over the centralized protocol.
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(a) Local-cluster-head A detects an event, and sends
a resource request to its sibling local-cluster-heads B,
C and D, which send back the response.

(b) When the request is not satisfied at the local-
cluster-heads level, global-cluster-head C’ checks the
resource availability with its sibling nodes (A’, B’ &
D’)

Figure 19. SBDP with a K-D Tree indexing structure. The middle large yellow node
represents the sink node, the four blue medium nodes are the global-cluster-heads, the sixteen

green small nodes are the local-cluster-heads, and the tiny red nodes represent the sensor
nodes distributed in the field

5.3.2.2 Structure and Proximity based Distributed Request (SPDR) Management

The objective of the SPDR variant is to decrease the overhead induced by the sibling-to-

parent communication in the SBDR protocol. We observe that some local cluster-heads which

are not siblings may still share a common border. To capitalize on this, in addition to the

sensor nodes physically belonging to its cluster, each local cluster-head will maintain a list of

its “cousins” – which is, the sibling node and the nodes sharing common border.

Upon detecting an event ECi,j(L, B, ne), the local cluster-head H(Ci) executing CPDR protocol

initiates the following:
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1. H(Ci) sends the message Request(H(Ci), r, j) requesting additional mobile nodes to its

geographically neighboring nodes with which it is sharing a border. See Figure 20(a).

2. The sibling node H(Cs,i) and each of the Boarder-Neighbors (BN(H(Ci)) who can cater

to the request, responds with Granted(H(Ci), j, rs). In this case, the request is no longer

propagated. H(Ci) notifies its sibling and its neighbors how many mobile nodes each of

them should dispatch.

3. If the sibling node and some of the BN(H(Ci)) cannot cater to the request, they will each

send Deny(H(Ci), j, rs). Note, however that, unlike the SBDR protocol, now the sum

of the rs values from the sibling and the neighbors combined, may actually satisfy the

request.

4. If not, the message Request(H(Ci), r− Σ(rs), j) is propagated to the parent of H(Ci), and

parent recursively repeats the procedure. See Figure 20(b).

Figure 20 shows the messaging at two different levels in the hierarchy, where the request cannot

be satisfied at the first level, i.e, through sibling local-cluster-heads communication.

Again, we note that the worst-case scenario in terms of the upper-bound is the same as the

centralized protocol – and, once again, in the worst case scenario we have the additional over-

heads of the attempts to resolve the request locally. However, in practice, one can obtain

improvements – as demonstrated by our experiments.
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(a) Local-cluster-head A detects an event, and sends a
resource request to its neighboring local-cluster-heads
(B, C, D, K & L), which send back the responses.

(b) When the request is not satisfied at the local-
cluster-heads level, global-cluster-head C’ checks the
resource availability with the neighboring global-
cluster-heads (A’ & D’)

Figure 20. SPDR with a K-D Tree indexing structure. The middle large yellow node represent
the sink node, the four blue medium nodes are the global-cluster-heads, the sixteen green
small nodes are the local-cluster-heads, and the tiny red nodes represent the sensor nodes

distributed in the field

5.4 Supply

In this section we present the methodology of fulfilling a resource request, starting with the

process of acceptance of requests, selection of the nodes to be moved and moving them towards

the cluster which has signaled a request.

5.4.1 Strategy of Acceptance

Upon receiving a resource request, a cluster-head node compares the number of requested

sensor nodes Ri to the number of available resources within its region Vi. If the available

resources are sufficient to cater for the request, i.e, Vi > Ri, an acceptance message is sent to

the requesting node, and the process of selecting the sensor nodes to be moved and moving

them starts immediately.



68

Contrarily, if the available resources are less than the required resource, i.e, Vi < Ri, the request

cannot be rejected. The reason for this, is that in a global view of the field, sometimes no single

cluster might be able to suffice the needs for one request. However, a set of clusters can

provide a number of the needed resources, which make them collectively able to suffice the new

event needs. Therefore, in such scenario, the cluster-head receiving the request sends back a

partial acceptance message, indicating that it will be able to provide Vi resources. Accordingly,

when the requesting node receives this message, it forwards the request to another cluster-head

node –according to the requesting strategy– with the required number of resources updated,

i.e, Ri = Ri−Vi. Simultaneously, the partially accepting cluster-head node will start forwarding

the Vi sensor nodes, which will create “some” sufficiency for the requesting cluster until further

resources arrive. In other words, because of the partial acceptance feature, each request is –most

likely– going to add some help to the requesting node, unless the whole region is starving.

5.4.2 Nodes Selection (Which nodes to move?)

Once a local-cluster-head sends the requested resources –or some of them– to the requesting

local-cluster-head, a criterion is needed to determine which specific sensor nodes are the ones

to be forwarded. The selection criterion may involve the following metrics:

• Speed of Arrival/Travel Distance: The cluster-head node selects the sensor nodes to

be moved such that they would arrive to the destination in the fastest way (or travel

the shortest distance). This selection would vary according to the motion path (i.e,

Manhattan, direct straight path, ...etc.).



69

• Local Configuration Balance: Maintaining the balance of the sensor nodes distribution

inside the accepting cluster. Accordingly, the cluster-head selects the nodes to move in a

way that minimizes –or better eliminates– the need of moving the remaining nodes inside

the cluster to maintain its internal constraints (i.e, connectivity, coverage, ..etc).

• Global Configuration Balance: Maintaining balance of the sensor nodes distribution in

the whole field. The goal of this balance is to keep the available of the MC mobile sensor

nodes distributed across the field, which helps having resources available near to possible

future events. This also balances the load on the indexing tree, which keeps –relatively–

equal load of network information updates on the tree branches. We note that this option

is possible in a straight forward fashion in the centralized solution. However, including

this metric in distributed techniques would incur added overhead.

• Energy Consumption: The cluster-head node selects the sensor nodes to be moved accord-

ing to an optimization function which minimizes the consumed energy. The optimization

can focus on the energy consumed for communication, or the energy consumed in motion,

or a weighted factor of each of them.

5.4.3 Movement strategy (How to move the nodes?)

The sensor nodes selected to be moved towards the requesting cluster are informed by their

local-cluster-head. The supply of sensor nodes to the requesting cluster can follow different

methods. In this subsection, we present two methods to supply the requested resources from

the –partially or fully– accepting local-cluster-head(s) towards the requesting cluster, then we
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follow with a discussion on handling the request inside local-cluster-heads. In the scope of this

work, we assume an obstacle-free field, or that obstacle avoidance is implicitly taken care of.

5.4.3.1 Direct Forwarding

In direct forwarding, the sensor nodes move directly towards the requesting cluster. The

motion can be in a straight path or Manhattan, depending on the application setup. Once

the nodes are decided to move, they are informed by their local-cluster-head, and given the

location of the cluster of destination. The nodes leave their cluster towards the destination

cluster. On their way to the destination, the sensor nodes can turn off their sensing devices and

radio transceivers until they arrive, where, when the sensor nodes pass through intermediate

clusters, they do not need to report information. For some data intensive applications, the

passing sensor nodes can turn on the sensing and reporting, depending on the speed of motion

and the distance traversed inside the cluster. Figure 21 shows the direct forwarding of sensor

nodes towards the cluster containing the event.

5.4.3.2 Relayed Motion

The relayed motion depend on setting up the path of motion of the senor nodes through

the intermediate clusters before starting the real motion. The goal of this type of motion is to

minimize the traveled distance by each sensor node, and provide faster supply to the new events,

especially when the available resources for supply are more than one cluster away, i.e, not direct

neighboring. The method starts once resources are decided to be moved from cluster Csource to

cluster Cdest passing, in sequence, through clusters Ci, where i = 1, 2, .., k. In the path setup,

each local-cluster-head is informed with the local-cluster-head before it in the sequence, the one
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Figure 21. Six sensor nodes moved towards the cluster containing the event coming from three
different supplying clusters.

after it, and the number of resources to be supplied. After all the local-cluster-heads in the path

are informed –and possibly requested to confirm, for some applications– the real motion starts.

Each cluster-head sends the required amount of resources to the next cluster in the sequence,

starting from Csource through Ci to Cdest. This method gives the advantage of faster delivery

of the sensor nodes to the destination, regardless of the travel distance. However, it is at the

cost of more unbalance during the transient period, where some intermediate clusters may have

less number of nodes than its minimum requirements. Also, all the cluster head nodes along

the path need to know that they are participating in this scenario. Figure 22 shows the relayed

motion of sensor nodes towards the cluster containing the event, passing through intermediate

clusters.
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Figure 22. Six sensor nodes moved towards the cluster containing the event coming from two
supplying clusters, where one of them (the bottom cluster) relays two more sensor nodes from
its population for the cluster beneath it. It accordingly receives other two sensor nodes, which

it can place at the appropriate positions inside the cluster.

5.4.3.3 Intra-Cluster Motion

Once the sensor nodes from other clusters have reached the one who has requested re-

sources, the local cluster-head will need to execute a re-allocation algorithm. As mentioned in

Section 5.2, in this work we assume that an event is associated with a bonding rectangle, and

each type of an event has distribution of locations for the sensors around the boundary.

With this in mind, the re-location inside a given cluster can be readily accomplished using the

heuristics from (37). We note that there are different variants of the re-location problem –

e.g.: minimize the latest arrival time; determine locations that will maximize the reachabili-

ty/coverage, and with a given time-budget, ..etc. (26). In our work, we assume the simplest

variant – minimizing the latest arrival time, with the known destinations’ location. This is
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illustrated in Figure 23 – showing a zoomed-version of the cluster in which an event has been

detected in Figure 22. As can be seen, some of the previously available sensors, along with the

newly-arrived ones, are routed towards the predetermined locations along the perimeter of the

rectangle bounding the event.

Figure 23. An example of intra-cluster movement of nodes.
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EXPERIMENTAL RESULTS

The presented abstraction system was simulated using the SIDnet-SWANS WSN simulator

(13) based on Jist-SWANS discrete event simulation engine (14), as a 500 nodes network ran-

domly deployed in a square field of 300 meters length The simulated nodes apply MAC802.15.4

protocol for MAC layer, and Shortest Geographical Path Routing for routing layer. The power

consumption characteristics are based on Mica2 Motes specifications, MPR500CA. Each sensor

node has a GPS to obtain the location information. The Different types of data distributions

were considered to simulate sensing fields of different phenomena.

We execute three types of queries on the simulated network:

1. Physical-space queries – asking about the sensed data of a specific geographic area (i.e:

Q(v, G, A)).

2. Data-space queries – asking about the position of nodes sensing some specific data range

(i.e: Q(l, R, A)).

3. Hybrid queries – merging the first two types together by creating a physical space query

over a bounded data range (i.e: Q(v, G, R, A) or Q(l, G, R, A)).

6.1 Static Data Indexing

This section starts with a comparative evaluation for the abstraction methods against the

current state of the art, followed by presenting the energy cost and query latency for the indexing

74
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system in a static WSN. We compare the physical-space abstraction method to the Gaussian

models approximation method presented by Meliou et. al (15). For the data-space abstraction

however, to our best of knowledge, there are no available representation models to compare

experimental results to in the WSN literature.

6.1.1 Abstraction Techniques

In order to evaluate our abstraction techniques, we present the resulting errors from them

against the state of the art. The approximation error calculated for the presented physical-

space abstraction, and the Gaussian approximation method in (15) is based on normalized root

mean square error (NRMSE), In the case of (15) we report the average error and for the case

of regular sampling in our method we report the interpolation error of the estimated values.

In Figure 24, the results for the normal distribution show that the Gaussian method starts with

less accuracy than the presented sampling method, but ends up achieving a better precision

on the highest level. This is intuitively reasonable, as the global data distribution of the

underlying field tends to follow a normal distribution, fitting well with the abstraction method

of (15). Nonetheless, because the data in different regions of the fields may follow different

distribution functions (cf. (38; 39; 40)), the method used in (15) fails to capture the data with

the same efficiency as our presented method.

The results of the other distributions in Figure 24 show that the sampling method achieves

better accuracy, ranging from 10% to 90%. It is also important to mention that the average

error comparison does not capture an important feature many sensor networks applications

require, i.e. querying maximum and minimum values.
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Figure 24. Approximation error comparison (Gaussian vs. sampling) for normal, uniform, and
exponential distributions.

Figure 25 depicts the effect of changing the sample size on the abstraction error. The results

show clearly that the increase of the sample size reduces the average abstraction error. This

reduction varies with the different data distributions. For example, in the normal distribution,

the results show that the increase of sample size with more than three sample elements would

not result in any further reduction of the abstraction error. On the other side, the increase of

sample size for random and exponential distributions reduces the abstraction error.

6.1.2 Data Indexing and Query Processing

The presented system has shown good performance in terms of communication cost and la-

tency for a wide variety of queries. Physical-space, data-space, and hybrid queries were applied

to the system with different levels of accuracy, and bounding constraints on geometric field,
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(a) (b)

(c)

Figure 25. Approximation error comparison (Gaussian vs. sampling) for different
distributions with varying the sample size.
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(a) (b)

(c)

Figure 26. Latency Vs. Accuracy corresponding to the geometric coverage of query as
percentile of the area of the sensed field.

and data ranges.

The single-attribute-query results, depicted in Figure 26 and Figure 27, show the change in the

latency of query response with the change of desired accuracy, and geometric bounds (repre-

sented as percentile of the field size). In Figure 28, the communication cost is shown for the

cases in Figure 26 and Figure 27.
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(a) (b)

Figure 27. Latency Vs. Query Coverage plot for accuracy = [80%-90%] & [90%-100%].

The results of queries involving single attribute constraint show linear reduction in the number

of messages required for response, according to the specified coverage and accuracy. Such linear

reduction reflects the reduction in communication cost for querying. Query latency also varies

from immediate (zero sec. latency) approximate response at sink node up to about one second

to provide an exact answer (i.e. accuracy = 100%) for a query inquiring data about the whole

field. This maximum latency (one sec) is the baseline to which the analysis of the abstraction

method’s latency results has been compared.

The query latency results for the three types of queries in Figure 26 and Figure 27 show that

the data-space queries have higher latency than the physical space queries when there is no full

query coverage. This is due to the nature of locality of the indexing structure nodes for the

physical-space abstraction compared to the data-space abstraction. For a physical-space query
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if a node doesn’t satisfy the desired accuracy, it forwards the query to its child node(s), while

for a data-space query the node may send the query –according to the data range– to either

its child node or to its nephew(s) which is intuitively farther than all its child nodes because of

the spatial partitioning.

In Figure 29, simulation results are shown for queries containing query coverage constraints on

multiple attributes which represent four simulated phenomena. The first parts ((a), (b), and

(c)) show the case of identical constraints for all queries, which means that it is similar to a

replica of multiple single attribute queries. In this case we see a latency increase of 200ms for

all the query types that is consistent over different levels of regional coverage (50%, 75%, and

100%). This shows that using a unified organized information system achieves communication

efficiency without increasing latency overhead.

The second part of Figure 29 ((d) and (e)) depicts the results for the type of queries that

involves different coverage constraints on the queried attributes. The query latency in such

queries is governed by the highest query coverage required, as this would more likely be the one

involving the furthest queried node in the data structure. However, because of the distributed

nature of the query forwarding and augmentation, the results show that this latency increases

linearly as a function of the size of the queried region.

6.2 Mobile Data Indexing

The presented mobility management protocol was implemented on SIDnet-SWANS simu-

lator for WSN (13). The nodes’ mobility was assumed under two different mobility models:

random and controlled. The controlled mobility refers to a scenario where sensor nodes are
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(a) (b)

Figure 28. Number of messages communicated for different accuracies and geometric
coverages.

moved based on an underlying application requirement. For our simulations we used the algo-

rithm presented in (26) to compute the coordinates of mobile nodes at each step. In the case

of random mobility the new location of each node is computed using a random direction. In

addition, we also tested the mobility management protocol under different speeds, ranging from

0.5 m/s to 2 m/s, which is practically used in several WSN systems (41; 33).

For our experiments, we have constructed a K-D tree based hierarchical indexing structure

over the sensed field. The index nodes are considered to be static, but would rather be moved

according to the borders change, to maintain connectivity with the other nodes in their region.

The cycle time in our simulations is 5 seconds, i.e., every 5 seconds, nodes inform their value

as well positions to their immediate cluster heads (indexing tree leaf nodes).

We measure the performance of the protocol in terms of following parameters: mobility request
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(c) (d)

(e)

Figure 29. Simulation Results for Queries Containing Different Query Coverage Constraints
on Multiple Attributes.
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latency, mobility resolution factor, and query latency. Mobility request latency refers to the

time it takes for the protocol to adjust the structure to reflect the nodes new positions. Mobility

resolution factor (MRF) reflects the percentage of requests that required changes beyond the

first level of the indexing hierarchy.

Figure 30 plots the average mobility request latency under different mobility speeds. The per-

formance of both mobility cases is quite stable, where the latency is almost consistent with the

change of sensor nodes velocity. The mobility request latency for the controlled mobility sce-

nario (i.e. nodes move towards an events of interest while maintaining coverage (26)) is around

15% higher than the random mobility request latency. This is because the number of mobility

request received by the cluster heads in the case of controlled mobility is higher, compared

to the random mobility. Note that in the case of random mobility, overall more sensor nodes

maybe moving. However, a significant number of consecutive mobility steps may cancel each

other, thus keeping the sensor nodes within the same local region. On the other side, in the

controlled mobility scenario each sensor node is moving on a specific path towards the target

point. Accordingly, with each time step, a node progresses towards moving into or outside of a

specific local region, thus requiring mobility adjustment in the indexing structure.

In Figure 31, MRF is shown for different mobility scenarios. The general trend of the MRF

is larger for the controlled mobility algorithm, as the nodes following a specific path are able

to cause more disturbance in all the regions they pass by, which creates unbalance in multiple

local regions. Because of this unbalance, adjustment to mobility may require adjustment at

more than one of the hierarchy. The maximum MRF shown for all cases is less than 17%.
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Figure 30. Average latency of incorporating mobile node in the indexing structure Vs. sensor
node speed.

Which means that the mobility management protocol is able to resolve successfully over 83%

of the mobility requests at the lowest level of the indexing tree, without the need of having this

mobility information traverse the whole indexing structure.

Figure 32 compares the latency of different data queries to the mobility managed structure

(under random and controlled mobility) and the static structure where the indexing structure

does not change itself to accommodate mobility and thus becomes relatively unbalanced. We

present results for three different types of queries.

32(a) shows the difference in data-space query latency for static as well mobility manages struc-

tures under different mobility scenarios. The static case shows higher costs for achieving more

accurate results. This is because on the lower level of the indexing structure, the static scenario
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Figure 31. Mobility Resolution Factor (MRF): The percentage of mobility requests that the
mobility protocol is unable to resolve at the lowest level of the indexing structure.

would have a higher memory footprint for the congested regions, which requires more processing

and communication time. In 32(b), physical space query latency of the static indexing structure

almost matches the mobility managed structure under the random mobility scenario for lower

accuracy levels, which is slightly higher than the controlled mobility scenario. However for

exact queries (i.e., 100% accuracy), which require the indexing structure to get the data from

its leaf nodes, static scenario incurs higher query latency costs.

In Figure 32(b), the hybrid query latency can be viewed as a combination of latencies of both

physical-space and data-space queries, where it is clear that the incurred latency is higher for

the static case when requiring higher accuracy level. These results show the efficiency of appro-

priately handling mobility, and its effect on query latency for most cases of mobility scenario,
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(c)

Figure 32. Query latency for (a) data-space, (b) physical-space and (c) hybrid queries Vs.
required query response accuracy.

where the static indexing would not be able to provide same latency for queries inquiring higher

accuracy, especially for the queries inquiring exact responses.

6.3 Resource Distribution

We now discuss the simulation results illustrating the performance of the presented resource

supplying methodologies. The methods were implemented on an orthogonal bisection based K-

D Tree implementation (5; 6). The WSN has 500 nodes deployed in a square field of 300x300
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meters square, using MAC802.15.4, and Shortest Geographic Path for routing. The power

consumption characteristics are based on Mica2 Motes specifications, MPR500CA. The static

nodes in the field (SC) are 80 sensor nodes, within which are the K-D Tree nodes, which leaves

the sensed field with 420 mobile nodes (MCf). The experiments were run for the various

requesting techniques (Centralized, SBDR and SPDR). The number of requested nodes per

event was varied from 40 to 200 nodes. The simulated events were up to 12 simultaneous events

detected in different clusters. In our experiments, we compare the three requesting methods

according to several metrics, which we define as:

• Request Service Time: The time elapsed between the issuing of the initial request, till

the request is accepted and the nodes are forwarded to the requesting cluster.

• Average Travel Distance Per Sensor Node: The average distance each resource (i.e,

sensor node) needs to travel across the field to reach the requesting cluster.

• Communication Cost: The total number of messages transmitted during the requesting

process, including the request messages, response messages and decision messages.

• Resolution Level: The leaf-based level in the K-D Tree hierarchy at which the request

got accepted. We denote the local-cluster-heads as level 1, global-cluster-heads as level 2,

and the sink node as level 3.

In Figure 33, the average request service time for the two distributed methods start lower than

the centralized requesting method. However, with the increase in the number of requested

resources, their service time exceeds that of the centralized method. This happens because
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Figure 33. Average Request Service Time against Number of Requested Resources.

the amount of resources available in the clusters neighboring (spatially or structurally) to the

requesting cluster cannot suffice this large number of requested resources. Accordingly, further

requesting iterations takes place to negotiate resources with more physically distant cluster

heads up in the hierarchy. On the other side, the centralized requesting method provides a

service time that is mostly stable with the increase of the amount of requested resources.

The average travel distance per sensor node is depicted in Figure 34. The distributed spatial

requesting achieves the least average travel distance per sensor node, followed by the distributed

structural method. However it seems counter-intuitive that the centralized method does not

achieve the most optimal solution, this happens due to the less information it has. The decision

in the centralized method is taken at the sink node, which has comprehensive information

about the field until the local-cluster-heads level. Thus, it centrally calculates the most optimal

distance based on the providing local-cluster-heads locations, which might have the available

nodes within their clusters further from the border. On the contrary, the decentralized methods
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Figure 34. Average Travel Distance Per Sensor Node against Number of Requested Resources.

negotiate the resource supplying process first at the local-cluster-heads level, which makes them

able to optimize based on the real location of the sensor nodes rather than the local-cluster-

heads locations. If the centralized solution needed to be optimal, which is doable in terms of the

logical capability, this would require the requesting information process to include the locations

of the potential sensor nodes, which we consider as a significant communication overhead.

The communication cost of the centralized method is higher than the distributed methods, as

shown in Figure 35, because of the information gathering rounds. In order to compare the

communication cost of the two distributed methods, the resolution level depicted in Figure 36

gives us more clarity about the behavior inside the indexing hierarchy. The distributed methods

were able to handle the requests below 160 sensor nodes without the need of propagating the

request to the sink node. In this case, the communication cost of the distributed spatial method

is higher than the distributed structural method, because of its need to communicate with the
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Figure 35. Number of Messages Communicated against Number of Requested Resources.

neighbors list, which is more than the sibling nodes in the K-D Tree. After this threshold,

the communication cost of the distributed structural method slightly exceeds the distributed

spatial method, because the number of decision messages is more likely to be higher for the

structural method. This is because the partial acceptance across the hierarchy eliminates all

the neighboring list clusters from being included in any further decision announcements, as

they have already sent out their available resources to the requesting cluster.

Figure 37 and Figure 38 compare the three requesting strategies when multiple simultaneous

events are detected in different regions of the field, each requesting 30 sensor nodes. Thus,

multiple requests are issued to the indexing structures from different leaf nodes (i.e, local-

cluster-heads). The centralized method comes to be of the highest request service time and

average travel distance, while the other two distributed methods achieve comparable results.

The distributed methods outperform the centralized method because of their capability of
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Figure 36. Resolution Level in The Indexing Hierarchy against Number of Requested
Resources.

handling the requests within their locality by providing resource supplies from the (spatially or

structurally) neighboring clusters.
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Figure 37. Average Request Service Time against Number of Simultaneous Requests.

Figure 38. Average Travel Distance Per Sensor Node against Number of Simultaneous
Requests.



CHAPTER 7

RELATED WORK

Data indexing in WSN has been studied over the past decade, and several algorithms with

different perspectives were presented to solve it. Many of these algorithms did not consider

the mobility of sensor nodes. Centralized solutions, as in (42), proposed transmitting data

across paths in the network using lifting technique and wavelet based compression. In such

methods the network usually suffers from congestion around the sink node, which creates a

communication bottleneck, and decreases the lifetime of the nodes in the area around the sink

node. Several distributed data indexing algorithms were proposed (43; 44; 45; 15; 46). In (43),

a hierarchical data structure is constructed and data is mapped to the indexing structure using

geographic hash tables (GHT). This algorithm creates redundancy in data transmission, where

the same raw data is reported to multiple nodes in the indexing structure.

In (43; 44), DIMENSIONS, a three level spatio-temporal indexing algorithm is proposed, where

it starts by local temporal summarization of sensed values in each node, then locally gather-

ing this data in a grid-based overlay structure. The spatial summaries are then created using

Wavelet compression, and forwarded to the sink node. However this multi-layer hierarchical

solution provides a good localization that reflects efficient maintenance cost, it lacks represent-

ing the data-space information, which makes the system unable to support queries involving

data ranges. Also, with increasing data rate, the lossy summarization with no model wont be

able to capture the spatial distribution of the sensed data, which results in higher error rates

93
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for representing the sensed information.

Meliou et al. (15) proposed an algorithm with a novel idea for data indexing of sensed values in

a hierarchical data structure using approximate modeling. Gaussian models were used in this

system to abstract large amount of sensed values and elevate them across the hierarchy, leading

to more efficient reporting at the cost of accuracy loss across the hierarchy. Such system lacks

the representation of sensor nodes positions, and assumes that Gaussian models are suitable for

all types of sensed phenomena, which is not generic enough for a wide range of sensed phenom-

ena not of Gaussian distribution nature. Also, Gaussian models are successful in representing

the average behavior of a region, but they lose the information about the extreme (maximum

and minimum) sensed values, which are of high interest for many WSN applications.

An approach for constructing approximate spatial summaries and determining boundaries of re-

gions with same sensed values was presented in (47). Although the work addresses the issues of

different precision, the results cannot be straightforwardly extended to handle multiple queries

with awareness of both physical and data spaces. Another distributed algorithm proposed by

Ouksel and Hauswirth (45) indexes the WSN data across a spanning tree according to a key

for each node of the spanning tree. Each sensor node identifies its indexing node through a

key, which is formed by shuffling the position of the node, along with the values of the different

phenomenon being sensed. However this algorithm supports mobility of sensor nodes, it falls

short in the maintenance cost of the data updates, as a sensor node may have to update its

information at an indexing node that is far from its location. On the other side, if the key

is arranged in a way that favors position of sensor node for local region reporting, the sys-
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tem doesn’t support data-space indexing efficiently. Monitoring the WSN for events have been

studied in (48), where an algorithm is proposed to use an optimal number of monitoring nodes

and minimize false alarms. Such algorithms are useful for event based monitoring applications,

which do not consider aggregating the network data as much as answering specific predicates.

In (46), Zhang et al. index-based proposed a data dissemination scheme to address the problem.

With this scheme, sensing data are collected, processed and stored at the nodes close to the

detecting nodes, and the location information of these storing nodes is pushed to some index

nodes, which act as the rendezvous points for sinks and sources. To address the issues of fault

tolerance and load balance, the scheme is extended with an adaptive ring-based index (ARI)

technique, in which the index nodes for one event type form a ring surrounding the location

which is determined by the event type, and the ring can be dynamically reconfigured. In this

work, it is presumed that the querying is not going to be for all the data, but rather specific

events, which creates an initial analysis phase to decide the existence of events, categorize ac-

cording to them, and index only the events. This type of algorithms is optimized for some

specific applications that are interested in event detection, but not general enough to cover

different query forms. It also addresses the issues of false alarms and fault tolerance.

Optimal rate allocation for data aggregation has been studied in (49). In (50), a study for

the tradeoff between the number of monitoring nodes and the false alarm rate in the wireless

sensor networks is presented. It proposes fully distributed monitoring algorithms, to build up

a poller-pollee based architecture with the objective to minimize the number of overall pollers

while bounding the false alarm rate. The architecture is build upon the poller-pollee structure,
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where sensors self-organize themselves into two tiers, with pollees in the lower tier and pollers

in the upper tier. The pollees send status reports to the pollers along multihop paths, during

which the intermediate nodes do the aggregation to reduce the message overhead. Each poller

makes local decisions based on the received aggregated packets, and forwards its decision to-

wards the sink. Another monitoring algorithm that sends the status reports to different pollers

in a round robin manner is presented in (51), where status reports from different pollers are

combined to reduce false alarm.

Mobile WSN sink node idea in has taken good consideration in recent research. Controlled mo-

bility have been exploited in several works (52; 53; 54; 55; 56), in which the –one or multiple–

sink node(s) moves in the field and gathers the sensed data. Non-hierarchical solutions, as

(52; 53; 54; 55), study the optimal path to move across the field, in order to minimize latency.

In (56), Xing et al. propose at two tier system of mobile sink node which collects data from

static rendezvous points that collect sensed data locally within their vicinity. This clustered

data gathering approach increases the efficiency of data gathering and scheduling for sink node

mobility, however it doesn’t provide a full hierarchical approach for data indexing.

In the recent years, mobility has contributed to the variety of application domains for WSNs

and has brought a unique set of challenges and research results (21; 20). From the basic setup-

aspect, mobility facilitates deployment (57; 58), augments the monitoring (59; 11) and data

gathering (55; 56) capabilities.

But one example of a formalism for relocation of sensor nodes in the deployment phase is us-

ing a virtual force based algorithms, proposed in (60; 57; 58). Wang et. at. (58) propose an
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iterative algorithm in which coverage holes are detected by sensors using Voronoi diagrams (9).

The sensors are then moved from high density zones to low density zones increase coverage.

Many sensor relocation algorithms have been proposed (61; 34; 62; 60; 59; 63; 64), presenting

distributed algorithms in which the sensor nodes coordinate the relocation process themselves.

While these approaches are useful for low density and small scale WSN, in this work we tried to

capitalize on a hierarchical structure for settings in which WSNs have larger node population

in relatively small spatial regions. The main benefit of our approaches is the separation of the

bargaining process (requesting and supplying sensors) from the individual sensor nodes, and

elevating is to clusters’ level – thus savings in the communication and energy-expenditures.

In (61; 34), Cao et. al. proposed an algorithm, with physical implementation, of a Grid-Quorum

solution for sensor relocation in WSN. The sensed field is split into cells arranged in a grid.

Each cell has a cluster-head, which known the number of redundant nodes in its area. The in-

formation about redundant nodes are shared between cluster heads in the same row and column

of the grid. When coverage is required in a specific region, the request is communicated in the

row and column of its cell, where the supplier cells are identified using the intersection of the

request with the previously advertised redundant nodes. The movement of nodes then follows

a cascaded (relayed) path, which is negotiated between the sensor nodes along the path. The

single level clustering decreases the scalable performance of the algorithm. If the network size

is increased, the advertising and requesting processes will incur high communication cost and

latency. The arrangement of cascaded movement in long paths will also be energy intensive, in

terms of communication, as it will involve many sensor nodes. Our presented approach, which
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operates via hierarchical scheme alleviates some of these drawbacks.

Several fully distributed algorithms were proposed for sensor nodes relocation, for which com-

munication cost would highly increase for large scale and high density WSN. A vector algebra

based algorithm to find the locations of potential redundant nodes for coverage compensation

is proposed in(62). The selection of the best redundant nodes is performed opportunistically

by jointly considering the hole boundaries and the remaining energy of nodes. (60) proposed

a distributed algorithm for node deployment and event-based relocation, where sensor nodes

are moved by virtual forces. The algorithm requires knowledge of relative positions between

neighboring nodes, by which they coordinate their movements. In (59), an iterative distributed

relocation algorithm is presented, where each mobile sensor only requires local information in

order to optimally relocate itself. The mobile sensors are assumed to be able to move only

once over a short distance. Relocation of hopping sensors was investigated in rugged terrains

in (63; 64). The mobility model assumes that the sensor nodes move in fixed distance hops,

and the algorithms are designed to fill sensing holes by optimizing the required number of hops

using direct or relayed motion. Once again, the aspect of our work which complements the

contexts addressed in these works is the scalability-benefits.



CHAPTER 8

CONCLUSION

In this dissertation we presented an energy efficient solution for in-network data indexing

and querying in WSN. The presented system provides new methods of data and physical space

abstractions for data indexing in wireless sensor networks. The physical-space abstraction based

on rank order sampling is applicable to a wide range of applications because of its generic na-

ture. The data-space abstraction based on bit maps is first of its kind in indexing in wireless

sensor networks.

We proved that the presented system is liberated from organization of data to suit specific

query types, or specific data distributions. It rather gives a generic way to answer different

queries of various phenomena with high efficiency. It provides a unified information system

for multi-attribute sensed fields, which optimizes the in-network storage of sensed data using

the presented data abstraction schemes. This facilitates more optimal query processing that is

although distributed in its nature, yet capable of being communication efficient.

Fixed size update messages ensure load balancing across the network, reflecting longer network

life time. Gathering raw data within geometrically bounded clusters minimizes the communica-

tion overhead. Regular sampling of data values gives a suitable generic method for abstraction

which provides the network with the capability of estimating sensed values within reasonable

error bounds.

In order to show the applicability of the abstraction techniques to various data structures, a
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K-D Tree based implementation was implemented as a representative for the BSP data struc-

tures. We also presented a hierarchical data indexing and querying system based on Voronoi

Treemaps. We showed that the Voronoi Treemaps provide the benefits of a hierarchical data

structure that is context aware of the sensed phenomenon, and hence able to provide sensor

nodes deployment that is better capable of capturing the phenomenon distribution.

A protocol to manage and maintain in-network indexing structures in WSN under the con-

straint of mobile nodes was presented. The protocol is applicable to BSP tree structures, where

it is based on assigning incrementing values for space splitting borders of the BSP tree. The

protocol is based on shrinking and expanding the indexed regions according to the residing

number of nodes, in order to keep a balanced load for the indexing structure. The complexity

of the presented solution does not exceed a linear order in the size of the indexing structure.

Our results show the capability of handling over 83% of mobility within their local regions

of occurrence, without the need of communicating this information across the network. The

average latency of balancing the structure in the presence of mobility is in reasonable range.

The results also show improvement for query latency results, especially for the higher accuracy

queries.

We devised efficient methodologies for scalable management of relocation of mobile sensors in

WSNs, in response to a detection of event of interest. The presented work takes into consid-

eration the minimum nodes count needed in each spatial region for guaranteeing certain QoS

criteria. Capitalizing on a hierarchical structure, we presented distributed protocols which im-

prove both the response time and the energy consumption due to communication, along with
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the choices of nodes to move seeking the optimization of the traveled distance. We presented

three different requesting methods (centralized, SBDR and SPDR) and showed the difference

in performance between them. The presented approaches are capable of handling simultaneous

detection of multiple events. The displacement of the mobile sensor nodes is performed using

direct forwarding or relayed motion, which is handled between the cluster heads for large scale

management.



CHAPTER 9

FUTURE WORK

In our future work we plan to study a set of problems that pertain to the data indexing and

querying problem in WSN. We plan to explore different dimensions as:

• Dynamic Number of Sensor Nodes: The assumption of a fixed number of sensor

nodes in the field is unrealistic for several WSN applications. Over time, sensors function

might stop for a number of reasons, and new sensors are introduced/deployed in the sensed

field. Accordingly, the data indexing, mobility management, and resource distributions

algorithms need to be adaptable to handle the cases of varying number of sensor nodes in

the field, and to be able to achieve the best possible performance, from the perspectives

of coverage, monitoring, event handling, ..etc.

• Resource Distribution: We plan to investigate what are the costs involved in adjusting

different hierarchical structures (e.g., Voronoi Treemaps (7; 8)) when nodes move in re-

sponse to an event, and develop efficient algorithms for optimizing those costs and identify

the trade-offs involved. We also plan to investigate the problem of optimizing the motion

plans of the nodes when the budget of available nodes across the network is not sufficient

to cater to all the detected events.

• Communication Cost Optimization: We plan to investigate the data suppression

techniques, and incorporating the implicit clustering algorithms into the indexing struc-
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ture. In such way the data indexing system can be more energy efficient, and it would

also prolong network lifetime.



CITED LITERATURE

1. Zhao, F. and Guibas, L.: Wireless Sensor Networks: An Information Processing Approach.
San Francisco, CA, USA, Morgan Kaufmann Publishers Inc., 2004.

2. Dietrich, I. and Dressler, F.: On the lifetime of wireless sensor networks. ACM Trans. Sen.
Netw., 5(1):5:1–5:39, February 2009.

3. Mohamed, M. M. A. and Khokhar, A. A.: Dynamic indexing system for spatio-temporal
queries in wireless sensor networks. In Mobile Data Management (MDM), 2011
12th IEEE International Conference on, volume 2, pages 35–37. IEEE, 2011.

4. Ali Mohamed, M. M., Khokhar, A., Trajcevski, G., Ansari, R., and Ouk-
sel, A.: Approximate hybrid query processing in wireless sensor net-
works. In Proceedings of the 20th International Conference on Advances in
Geographic Information Systems, pages 542–545. ACM, 2012.

5. Samet, H.: Applications of spatial data structures: Computer graphics, image processing,
and GIS. Boston, MA, USA, Addison-Wesley Longman Publishing Co., Inc., 1990.

6. Samet, H.: The design and analysis of spatial data structures. Boston, MA, USA,
Addison-Wesley Longman Publishing Co., Inc., 1990.

7. Balzer, M., Deussen, O., and Lewerentz, C.: Voronoi treemaps for the visualiza-
tion of software metrics. In Proceedings of the 2005 ACM symposium on Software
visualization, pages 165–172. ACM, 2005.

8. Balzer, M. and Deussen, O.: Voronoi treemaps. In IEEE Symposium on Information
Visualization (InfoVis). IEEE, 2005.

9. De Berg, M., Cheong, O., van Kreveld, M., and Overmars, M.: Computational geometry.
Springer, 2008.

10. Mohamed, M. M. A., Khokhar, A. A., and Trajcevski, G.: Voronoi trees for hi-
erarchical in-network data and space abstractions in wireless sensor netowrks.
In Proceedings of the 16th ACM International Conference on Modeling, Analysis
& Simulation of Wireless and Mobile Systems, pages 207–210. 2013.

104



105

11. Mohamed, M. M. A., Khokhar, A., and Trajcevski, G.: Energy efficient in-network data
indexing for mobile wireless sensor networks. In Advances in Spatial and Temporal
Databases, pages 165–182. Springer, 2013.

12. Mohamed, M. M. A., Khokhar, A., and Trajcevski, G.: Energy efficient resource distri-
bution for mobile wireless sensor networks. In Mobile Data Management (MDM),
2014 IEEE 15th International Conference on, volume 2, pages 49–54. IEEE, 2014.

13. Ghica, O. C., Trajcevski, G., Scheuermann, P., Bischof, Z., and Valtchanov, N.: Sidnet-
swans: a simulator and integrated development platform for sensor networks appli-
cations. In Proceedings of the 6th ACM conference on Embedded network sensor
systems, SenSys ’08, pages 385–386, New York, NY, USA, 2008. ACM.

14. http://jist.ece.cornell.edu/index.html.

15. Meliou, A., Guestrin, C., and Hellerstein, J. M.: Approximating sensor network queries us-
ing in-network summaries. In Proceedings of the 2009 International Conference on
Information Processing in Sensor Networks, IPSN ’09, pages 229–240, Washington,
DC, USA, 2009. IEEE Computer Society.

16. Chui, C. K.: An introduction to wavelets. San Diego, CA, USA, Academic Press Profes-
sional, Inc., 1992.

17. Shi, H. and Schaeffer, J.: Parallel sorting by regular sampling. Journal of Parallel and
Distributed Computing, 14(4):361–372, 1992.

18. Gold, C. and Angel, P.: Voronoi hierarchies. In Geographic Information Science, pages
99–111. Springer, 2006.

19. Johnson, B. and Shneiderman, B.: Tree-maps: A space-filling approach to the visualiza-
tion of hierarchical information structures. In Visualization, 1991. Visualization’91,
Proceedings., IEEE Conference on, pages 284–291. IEEE, 1991.

20. Ekici, E., Gu, Y., and Bozdag, D.: Mobility-based communication in wireless sensor
networks. Communications Magazine, IEEE, 44(7):56–62, 2006.

21. Pileggi, S. F., Fernandez-Llatas, C., and Meneu, T.: Evaluating mobility impact on wireless
sensor network. In Proceedings of the 2011 UKSim 13th International Conference
on Modelling and Simulation, UKSIM ’11, pages 461–466, Washington, DC, USA,
2011. IEEE Computer Society.



106

22. Shah, R., Roy, S., Jain, S., and Brunette, W.: Data mules: modeling a three-tier archi-
tecture for sparse sensor networks. In Sensor Network Protocols and Applications,
2003. Proceedings of the First IEEE. 2003 IEEE International Workshop on,

pages 30–41, 2003.

23. Chakrabarti, A., Sabharwal, A., and Aazhang, B.: Using predictable observer mobility for
power efficient design of sensor networks. In Proceedings of the 2nd international
conference on Information processing in sensor networks, IPSN’03, pages 129–145,
Berlin, Heidelberg, 2003. Springer-Verlag.

24. Somasundara, A. A., Ramamoorthy, A., and Srivastava, M. B.: Mobile ele-
ment scheduling for efficient data collection in wireless sensor networks with
dynamic deadlines. In Proceedings of the 25th IEEE International Real-Time
Systems Symposium, RTSS ’04, pages 296–305, Washington, DC, USA, 2004. IEEE
Computer Society.

25. Mulligan, R. and Ammari, H. M.: Coverage in wireless sensor networks: a survey. Network
Protocols and Algorithms, 2(2):27–53, 2010.

26. Caicedo-Nuez, C. and Zefran, M.: A coverage algorithm for a class of non-convex regions.
In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, pages 4244–
4249, 2008.

27. Inaba, M., Katoh, N., and Imai, H.: Applications of weighted voronoi diagrams and
randomization to variance-based k-clustering. In Proceedings of the tenth annual
symposium on Computational geometry, pages 332–339. ACM, 1994.

28. Aurenhammer, F. and Edelsbrunner, H.: An optimal algorithm for constructing the
weighted voronoi diagram in the plane. Pattern Recognition, 17(2):251–257, 1984.

29. Sud, A., Fisher, D., and Lee, H.-P.: Fast dynamic voronoi treemaps. In Voronoi Diagrams
in Science and Engineering (ISVD), 2010 International Symposium on, pages 85–

94. IEEE, 2010.

30. Nocaj, A. and Brandes, U.: Computing voronoi treemaps: Faster, simpler, and resolution-
independent. In Computer Graphics Forum, volume 31, pages 855–864. Wiley On-
line Library, 2012.

31. Zhang, W., Cao, G., and Porta, T. L.: Data dissemination with ring-based index for
wireless sensor networks. IEEE Trans. Mob. Comput., 6(7):832–847, 2007.



107

32. Fang, Q., Gao, J., and Guibas, L. J.: Locating and bypassing holes in sensor networks.
MONET, 11(2):187–200, 2006.

33. Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., and Sukhatme, G.: Robo-
mote: enabling mobility in sensor networks. In Information Processing in Sensor
Networks, 2005. IPSN 2005. Fourth International Symposium on, pages 404–409,

2005.

34. Teng, J., Bolbrock, T., Cao, G., and Porta, T. L.: Sensor relocation with mobile sensors:
Design, implementation, and evaluation. In MASS, pages 1–9, 2007.

35. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E.: Wireless sensor networks:
a survey. Computer Networks, 38(4):393–422, 2002.

36. Adaikkalavan, R. and Chakravarthy, S.: Formalization and detection of events using
interval-based semantics. In COMAD, pages 58–69, 2005.

37. Trajcevski, G., Scheuermann, P., and Brönnimann, H.: Mission-critical management of
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