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SUMMARY

With the exponential growth of DNA sequences in the past twenty years, it has became inef-

fective to analyze DNA sequences only through the traditional biological experiments. Various

mathematical methods and computer algorithms are applied to sequence analyses and related

research areas, which help the biological study to be upgraded into automatic programming

from manual operation. Especially, there are two important research areas to study DNA se-

quences in bioinformatics. One is to predict the coding regions on DNA sequences, another

is to determine the evolutionary relationship based on DNA sequences. In this thesis, two

mathematical methods are introduced to show our achievements in these two research areas

respectively.

In chapter two, we introduce a simple parameter called TICOR (Threshold to Identify Coding

Region) to distinguish the coding regions from non-coding regions. The method only takes

the linear computation time which is much better than those of Fourier Transform and other

methods. Moreover, we are able to estimate the proportion of coding regions to the length of

the whole DNA sequence simply basing on the parameter TICOR. Finally, we develop a novel

method to predict the coding regions from DNA sequences, which we call TICORSCAN. We

do the test on the ROSETTA dataset(1) with our TICORSCAN method and other popular

method, such as GENSCAN(2) and TWINSCAN(3). The prediction accuracy shows that our

TICORSCAN method is able to predict the coding regions more efficiently.

Secondly, we report a novel mathematical method to transform the DNA sequences into the

x



SUMMARY (Continued)

distribution vectors in chapter three. The distribution vectors correspond to points in the

sixty dimensional Euclidean space. Each component of the distribution vectors represents the

distribution of one kind of nucleotide in k segments of the DNA sequence. The statistical prop-

erties of the distribution vectors are demonstrated and examined with huge datasets of human

DNA sequences and random sequences. The determined expectation and standard deviation

can make the mapping stable and practicable. Moreover, we apply the distribution vectors to

the clustering of the mitochondrial complete genomes from 80 placental mammals and the gene

Haemagglutinin (HA) of 60 H1N1 viruses from Human, Swine and Avian. The 80 mammals and

60 H1N1 viruses are classified accurately and rapidly compared to the multiple sequence align-

ment methods. The results indicate that the distribution vectors can reveal the similarity and

evolutionary relationship among homologous DNA sequences based on the distances between

any two of these distribution vectors. The advantage of fast computation offers the distribution

vectors the opportunity to deal with the huge amount of DNA sequences efficiently.
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CHAPTER 1

INTRODUCTION

With the maturity of the technology to identify DNA sequences in the last decades, the

amount of DNA sequences increases at an incredible speed. For example, Genbank, the National

Institutes of Health’s (NIH) genetic sequence database, is an annotated collection of all publicly

available DNA sequences. There were approximately 117,476,523,128 bases in 122,941,883

sequence records for almost all life-forms in August 2010, whereas there were only 680,338 bases

in 606 sequence records in December 1982(4). The number of bases in GenBank has doubled

approximately every 18 months since NIH launched the database. In order to analyze the

DNA sequences in the huge database, many mathematical methods and computer programs

are developed to solve specific problems about analyzing DNA sequences. In this chapter,

we will introduce elementary biological background and provide the brief introduction of two

important research areas. One is the prediction of Coding Regions in DNA sequences, another is

to do the clustering with homologous DNA sequences to discover the evolutionary relationship

among the organisms. Later, chapter two describes our TICORSCAN method to predict the

coding regions in the DNA sequences. The prediction has the high accuracy compared to other

popular methods, such as GENESCAN and TWINSCAN. Furthermore, our distribution vector

method will be introduced in the chapter three, which can map the DNA sequences into the

Euclidean space and do the clustering. The phylogenetic trees based on the clustering show

1
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that the distances between any two of the distribution vectors correspond to the similarity and

evolutionary relationship among these DNA sequences.

1.1 Coding Regions in DNA Sequences

Deoxyribonucleic acid (DNA) is a nucleic acid which carries genetic information for the

biological development of all cellular forms of life and many viruses, which consists of two long

strands with the double helix structure. Each strand has the direction from 5’ end to 3’ end and

consists four type nucleotides including Adenine (A), Guanine (G), Cytosine (C), and Thymine

(T). Adenine pairs with Thymine and Cytosine pairs with Guanine to form the double helix

structure.

Figure 1. The Double Helix Structure of DNA

The main biological function of DNA sequences is that could be encoded into protein sequences

via RNA transcription. However, Not the whole DNA sequences are encoded to protein se-

quences. Some regions are removed when the DNA sequences are transcribed into RNA, which



3

we call Introns. The regions transcribed into RNA are called Exons. Exons are encoded into the

protein sequences except the untranslated regions, which are important for efficient translation

of the transcript and for controlling the rate of translation. We define the coding regions as

the part of Exons that are encoded into protein sequences, while we consider the untranslated

regions and Introns together as the non-coding regions. Figure 2 explains the partition clearly.

Figure 2. The Partition of Coding Region, Exons and Introns

Traditionally, the exons or coding regions can be found by comparing DNA, RNA and Pro-

tein sequences in biological experiment. However, it becomes a challenge to find the Exons or

coding regions in DNA sequences with automatic computational methods when the amount of

DNA sequences increases rapidly. In 1982, Fickett(5) introduced a statistical method to predict

the coding regions regions which is based on simple and universal differences between coding

and non-coding DNA sequences. Later, Burset(6) provided the benchmark to evaluate of the

prediction programs. Recently, many methods are developed to predict the coding regions in

DNA sequences, which includes Dynamic Programming(7), Hidden Markov Model(2), Neural
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network(8) and other methods. However, those methods do not show the intrinsic biological

difference between coding regions and non-coding regions. They only estimate the parameters

of complicated statistical or machine learning models based on the relatively small training data

set and apply these models to predict the coding regions. In the chapter two, we introduce

our TICORSCAN method that can demonstrate the difference between coding regions and

non-coding regions by the curve directly. Most importantly, our method can predict the coding

regions in the DNA sequences with high accuracy.

1.2 Clustering Homologous DNA Sequences

About one hundred and fifty years ago, Charles Robert Darwin(9) published the famous

theory called natural selection in his book On the Origin of Species. He claimed that all species

of life in the earth are descended from common ancestors based on the geographical distribution

of wildlife and fossils he collected. The idea and a simple draft of the phytogenetic tree was

also provided in his book. Later, with the development of evolutionary biology, it necessary

to find a new practicable method to construct the phylogenetic tree automatically instead of

using fossils manually.

It is well known that DNA is transferred from organisms to their offspring. During the trans-

mission, A few changes always take place in DNA sequences. Hence, the organisms who share a

lineage and are descended from a common ancestor must have more similar DNA, RNA and pro-

tein sequences. In 1977, Carl Woese(10) firstly analyzed the phylogenetic relationship based on

16S ribosomal RNA, which became one standard for the research of evolutionary biology based

on DNA, RNA and Protein sequences. Later, The multiple sequence alignment (MSA) method
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was developed to deal with the current huge data set of DNA, RNA or protein sequences. The

distance matrix based on the aligned result is applied to build the phylogenetic tree, which cor-

respond to the evolutionary relationship among the input sequences. There are many multiple

sequence alignment computer programs available on internet, such as Clustal(11), Muscle(12)

and MAFFT(13). Those programs can receive good alignment result and create accurate phylo-

genetic tree. However, the computation time will increase rapidly when the number of sequences

or the lengths of sequences increase. Hence, we introduce the distribution vectors method in

chapter three, which can construct the accurate phylogenetic tree in linear time more faster

than the multiple sequence alignment programs.



CHAPTER 2

PREDICTING CODING REGIONS

2.1 Introduction

The DNA sequences are discovered as some kinds of permutations of four nucleotides through

biologic experiments, which include Adenine (A), Guanine (G), Cytosine (C), and Thymine

(T). Therefore, a DNA sequence can be considered as a character sequence constructed by

four letters, A, C, G and T. In order to analyze the functions of DNA sequences in computer

aided biological research, the character sequences should be translated into their numerical

representations. In the last twenty years, many kind of numerical representations and graphical

representations have been provided, such as Gate(14) and Yau(15). In this chapter, We assign

the four 4-D unit base vectors to the four nucleotides as follows.
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Then the character sequence of a DNA sequence is translated to a numerical sequence in a

4-dimensional space as

x(n) = uA(n)



1

0

0

0


+ uT (n)



0

1

0

0


+ uC(n)



0

0

1

0


+ uG(n)



0

0

0

1


, (2.1)

n=0,1,. . . ,N-1

where N is the length of the sequence, and uα(n) is the indicator sequence

uα(n) =


1, α appears at location n,

0, otherwise,

(2.2)

where α ∈ I = {A, T,C,G} and n=0,1,. . . ,N-1.

After the numerical sequence is defined, the Fourier transform of the 4-D numerical repre-

sentation of a DNA sequence at Equation 2.1 can be expressed as follows.

X(k) =
N−1∑
n=0

x(n)e−i 2πkn
N , at frequences k = 0, 1, . . . , N − 1 (2.3)

Similarly,

Uα(k) =

N−1∑
n=0

uα(n)e
−i 2πkn

N , at frequences k = 0, 1, . . . , N − 1, (2.4)
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where Uα(k) is Fourier transform of the indicator sequences uα(k). Therefore the power spec-

trum is

P (k) = X̄T (k)X(k) =
∑
α∈I

Ūα(k)Uα(k) k = 0, 1, . . . , N − 1, (2.5)

where X̄(k) is the conjugate of the complex vector X(k) and Ūα(k) is the conjugate of the

complex number Uα(k). After that, we define the total power spectrum as

PS =
N−1∑
k=0

P (k) (2.6)

and the average power spectrum as

AvgPS =
PS

N
=

∑N−1
k=0 P (k)

N
(2.7)

In 2001, Anastassiou(16) found that the spectrum of a coding DNA sequence usually demon-

strates one peak at frequency k = N
3 as shown in Figure 3. Later, Vera Afreixo(17) provided a

simplified formula to compute the spectrum at frequency k = N
3

P (
N

3
) =

∑
α∈I

[
(S(0)α − S(1)α + S(2)α

2
)2 +

3

4
(S(1)α − S(2)α)

2

]
, (2.8)

where I = {A, T,C,G} and

S(m)α =

N
3
−1∑

k=0

uα(3k +m), m = 0, 1, 2 (2.9)
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Figure 3. Power Spectrum of One Coding Sequence

Then we can define the parameter TICOR (Threshold to Identify Coding Regions) as the

ratio of P (N3 ) to the average power spectrum avgPS as follows

TICOR =
P (N3 )

avgPS
(2.10)

=

∑
α∈I

[
(S(0)α − S(1)α+S(2)α

2 )2 + 3
4(S(1)α − S(2)α)

2
]

∑N−1
k=0 P (k)2

N

(2.11)

2.2 Materials and Methods

Theorem 1: The sum of power spectrum is N2

PS =
N−1∑
k=0

P (k) =
N−1∑
k=0

∑
α∈I

Ūα(k)Uα(k) = N2, (2.12)

where α ∈ I = {A, T,C,G}.
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Proof. At first, we know

Ūα(k)Uα(k) =

N−1∑
l=0

uα(l)e
−i 2π

N
lk

N−1∑
j=0

uα(j)e
−i 2π

N
jk


=

∑
l∈Sα

ei
2π
N

lk
∑
j∈Sα

e−i 2π
N

jk = |Sα|+
∑

l,j∈Sα l ̸=j

e−i 2π
N

(j−l)k, (2.13)

where Sα = {n|uα(n) = 1, n = 0, 1, ..., N − 1}, α ∈ I = {A, T,C,G}. It is clear that

SA

∪
ST

∪
SG

∪
SC = {0, 1, . . . , N − 1} (2.14)

and

|SA|+ |ST |+ |SC |+ |SG| = N (2.15)

Therefore,

N−1∑
k=0

Ūα(k)Uα(k) = N |Sα|+
N−1∑
k=0

∑
l,j∈Sα l ̸=j

e−i 2π
N

(j−l)k

= N |Sα|+
∑

l,j∈Sα l ̸=j

N−1∑
k=0

e−i 2π
N

(j−l)k (2.16)

Here we can obtain the following result by using the geometric series

N−1∑
k=0

e−i 2π
N

(l−j)k =
1− e−i 2π

N
(l−j)N

1− e−i 2π
N

(l−j)
=

1− 1

1− e−i 2π
N

(l−j)
= 0, i ̸= j (2.17)
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Therefore,
N−1∑
k=0

Ūα(k)Uα(k) = N |Sα| (2.18)

Finally,

PS =

N−1∑
k=0

P (k) =

N−1∑
k=0

∑
α∈I

Ūα(k)Uα(k) =
∑
α∈I

N |Sα| = N2 (2.19)

Obviously,the average power spectrum avgPS = N . Therefore,

TICOR =

∑
α∈I

[
(S(0)α − S(1)α+S(2)α

2 )2 + 3
4(S(1)α − S(2)α)

2
]

N
(2.20)



12

It is clear that P (N3 ) ≥ 0, and P (N3 ) = 0 if and only if S(0)α = S(1)α = S(2)α. So P (N3 ) and

TICOR have the minimum value zero when S(0)α = S(1)α = S(2)α, α ∈ I, I = A,C,G, T .

On the other hand, Equation 2.8 can be written as follows,

P (
N

3
) =

∑
α∈I

[
(S(0)α − S(1)α + S(2)α

2
)2 +

3

4
(S(1)α − S(2)α)

2

]

=
∑
α∈I

[
S(0)2α + S(1)2α + S(2)2α − S(0)αS(1)α − S(0)αS(2)α − S(1)αS(2)α

]
=

2∑
l=0

(S(l)2A + S(l)2T + S(l)2C + S(l)2G)−
∑
α∈I

2∑
j=0
j ̸=k

2∑
k=0

S(j)αS(k)α

≤
2∑

l=0

(S(l)2A + S(l)2T + S(l)2C + S(l)2G)

=

2∑
l=0

(S(l)A + S(l)T + S(l)C + S(l)G)
2 −

2∑
l=0

∑
α,β∈I
α ̸=β

S(l)αS(l)β

≤
2∑

l=0

(S(l)A + S(l)T + S(l)C + S(l)G)
2

= 3(
N

3
)2 =

N2

3
(2.21)

Therefore, P (N3 ) has the maximum value N2

3 and TICOR has maximum value N
3 when

S(j)αS(k)α = 0, j, k = 0, 1, 2, j ̸= k α ∈ I (2.22)

and

S(l)αS(l)β = 0, α, β ∈ I, α ̸= β, l = 0, 1, 2 (2.23)
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It means a DNA sequence has the maximum value of the function P (N3 ) when the sequence is

constructed by a same codon repeated, such as ACT ACT ACT...ACT.

When we assume that each nucleotide in one DNA sequence could be A,C,G or T with the

probability 1
4 randomly and independently, all the expectations of S(k)α are N

12 . Therefore, we

can get the expectation of P (N3 ) as follows.

E[P (
N

3
)]

= E[
∑
α∈I

(S(0)2α + S(1)2α + S(2)2α − S(0)αS(1)α − S(0)αS(2)α − S(1)αS(2)α)]

= 12(E[S(0)2α]− E[S(0)α]
2) = 12V ar[S(0)α]

= 12
N

3

1

4
(1− 1

4
) =

3N

4
(2.24)

Then we can get the expectation of TICOR

E[TICOR] =
3

4
= 0.75 (2.25)

In order to predict the coding regions in the DNA sequence, we compute the average of TICOR

for all N − w + 1 subsequences by sliding a window with a fixed size w on the DNA sequence

from the first nucleotide to the end, which we call avgTICOR. The fixed size w should be a
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multiple of three to compute the TICOR. In this thesis, we choose w = 102 to optimize the

accuracy of predicting the coding regions.

avgTICOR =

N−w+1∑
k=1

TICOR(seq(k : k + w − 1))

N − w + 1
, (2.26)

where TICOR(seq(k : k + w − 1)) means the value of TICOR of the subsequence that starts

from the position k and stop at the position k + w − 1

Therefore,

E[avgTICOR] =

N−w+1∑
k=1

E[TICOR(seq(k : k + w − 1))]

N − w + 1
= 0.75 (2.27)

Moreover, we define TICOR(i) and V (i) to represent the property of the nucleotide at the

position i.

TICOR(i) =



i∑
k=i−w+1

TICOR(seq(k : k + w − 1))

w

i = w,w + 1, ..., N − w,N − w + 1

TICOR(w)

i = 1, 2, ..., w − 2, w

TICOR(N − w + 1)

i = N − w + 2, N − w + 3, ..., N − 1, N

(2.28)
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V (i) =



(TICOR(i−5)−TICOR(i+5))2

TICOR(i)
2

i = w − 4, w − 3, ..., N − w + 4, N − w + 5

0 i = 1, 2, ...w − 5 or N − w + 6, ..., N − 1, N

(2.29)

2.3 Application

At first, we calculate the value of avgTICOR for 500 human coding sequences and 500

human non-coding sequences randomly chosen from NCBI database. Figure 4 shows that

there are huge differences between the value of avgTICOR of coding sequences and non-coding

sequences. The value of avgTICOR for non-coding sequences are close to the mathematical

expectation of avgTICOR for random sequences, whereas most coding sequences hold much

higher value of avgTICOR.

Secondly, we compute the value of avgTICOR and the proportion of coding regions to the

length of the whole DNA sequence for 200 human DNA sequences. These 200 pairs of data

(avgTICOR, proportion) are plotted in Figure 5. Then the linear equation of the proportion

depending on avgTICOR is estimated by using the least squares method.

proportion = 32.1827× avgTICOR− 7.7358 (2.30)

Finally, we describe the strategy to predict the coding regions as follows, which we call

TICORSCAN.
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Figure 4. avgTICOR of 500 Human Coding Sequences and Non-Coding Sequences

Figure 5. The Relation Between avgTICOR and The Proportion of Coding Regions to the
Length of Whole DNA Sequences
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1. Calculate avgTICOR, TICOR(i) and V (i) for the DNA sequence.

2. Estimate the proportion of coding regions to the whole DNA sequence by using Equa-

tion 2.30. Then determine the threshold line, which is horizontal line. The regions where

the TICOR curve above this horizontal line are the potential coding regions. The hori-

zontal line is determined by the proportion of the coding regions.

3. Detect the points of intersection between the curve of TICOR and the threshold line.

4. Consider the points of intersection as above. For the point with a neighborhood where

the TICOR curve is increasing, this point is called the start position of the coding region.

Similarly, for the point with a neighborhood where the TICOR curve is decreasing, this

point is called the end position of the coding region.

5. Label the first position of the DNA sequence as the first start position of coding regions

if TICOR(1) is above the threshold line, the last position of the DNA sequence as the

last end position of coding regions if TICOR(N) is above the threshold line.

6. Relocate the start and end position in their neighborhood. We set the position which has

the maximum value of V (i) as the start or end position. The neighborhood is defined

as (position-25,position+25) in this application. Moreover, decide the first start position

and the last end position by considering the biology information: The start codon is ATG

and the stop codon is TGA,TAA or TAG.



18

7. Remove the pair of start and end position if the distance between them is too short, which

means the distance is less than 50 in this application. This step corrects the prediction

of short non-coding region over the threshold line.

8. Remove the end position and the next start position if the distance between them is too

short, which means the distance is less than 50 in this application. This step corrects the

prediction of short coding region below the threshold line.

9. Pair the start positions and the end positions of coding regions to finish predicting the

coding regions.

We apply our TICORSCAN method into the ROSETTA dataset which includes 117 orthol-

ogous human and mouse DNA sequences. Figure 6, Figure 7, Figure 8 and Figure 9 display

the process to predict the coding regions from the DNA sequence M11160. More examples are

illustrated in Figure 10, Figure 11, Figure 12 and Figure 13. Especially, Figure 12 shows that

there is a short non-coding region above the threshold line, which is successfully predicted as

the non-coding region by following the rule 7. On the other hand, there is a short coding region

below the threshold line in Figure 13. This region is considered as the coding region by applying

the rule 8. However, these two rules mistake the prediction of short non-coding regions and

coding regions sometimes. Over all, these two rules are important to increase the prediction

accuracy since the short non-coding and coding regions only constitute a small percentage of

the total nucleotides.

In order to compare the prediction accuracy, we predict the coding regions in the same

dataset by using GENSCAN, TBLASTX and other programs. To evaluate the accuracy, we
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count TP (true positives) as the number of nucleotides in the coding regions that are predicted as

in the coding regions, FP (false positives) as the number of nucleotides in the non-coding regions

which are predicted as in the coding regions, FN (false negatives) as the number of nucleotides

in the coding regions that are predicted as in the non-coding regions and TN (true negatives)

as the number of nucleotides in the non-coding regions which are predicted as in the non-coding

regions. Then we define sensitivity (Sn), specificity (Sp) and the approximate correlation (AC)

that summarizes the overall nucleotide sensitivity and specificity by one number. We compute

the overall prediction result, which includes Sn, Sp and AC, for our TICORSCAN method

and other programs. The accuracy in Table I shows that our TICORSCAN method performs

very well on the coding regions prediction. Moreover, we divide the ROSETTA dataset into

five subgroups by the range of the length of DNA sequences. The prediction record of the five

subgroups listed in Table II shows that our TICORSCAN method has a better prediction result

on the long coding regions.

Sn =
TP

TP + FN
(2.31)

Sp =
TP

TP + FP
(2.32)

AC =
1

2
(

TP

TP + FN
+

TP

TP + FP
+

TN

TN + FP
+

TN

TN + FN
)− 1 (2.33)
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TABLE I

PREDICTION ACCURACY ON THE ROSETTA DATASET
Program Sn Sp AC

GENSCAN 97.5 90.8 92.9
TBLASTX default 94.0 80.3 88.1
TWINSCAN 98.4 88.9 92.3
SGP-1 94.0 96.0 94.0
TICORSCAN 96.7 92.6 94.1

TABLE II

STATISTICS OF THE SUBSETS GROUPED BY THE LENGTH OF ACTUAL CODING
REGIONS

Length Range
Number of Coding Regions

Number of the Nucleotides Percentage
Actual Predicted

< 50 82 35 2488 1.1%
≥ 50 & < 100 209 134 15564 6.89%
≥ 100 & < 150 304 282 37974 16.76%
≥ 150 & < 250 249 243 46251 20.47%

≥ 250 189 188 123667 54.73%

Total 1033 847 225944 100%

2.4 Conclusion

This chapter introduces a parameter TICOR derived from the spectrum at frequency

k = N
3 . The TICOR presents the difference between coding regions and non-coding regions and

shows that the non-coding regions has the similar mathematical properties with the random

sequences. Moreover, we provide a linear equation to estimate the proportion of coding regions
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Figure 6. Drawing the TICOR Curve
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Figure 8. Predicting the start and end positions
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Figure 10. Single Coding Region
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Figure 12. Short Non-Coding Region over Threshold
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Figure 13. Short Coding Region below Threshold
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to the length of the whole DNA sequence based on its avgTICOR value. Finally, we develop a

new method to predict the coding regions in the DNA sequences, which we call TICORSCAN.

Our method is a faster method with linear computation time compared to other popular meth-

ods based on statistics model, machine learning or alignment method. Moreover, unlike these

complicated methods, our TICORSCAN method is straightforward to understand and easy

to implement. We test our method on the ROSETTA dataset. The experiment obtains the

high accuracy to predict the coding regions. Especially, our method works better for the long

coding regions, which successfully predict almost all the coding regions whose length is longer

than 150. However, the TICORSCAN method is not good for the short coding regions. First,

many short coding regions do not have obvious peaks in their TICOR curves. Secondly, in

order to keep the overall high accuracy, we consider the short regions which are less than 50

as the non-coding regions even if they have peaks. Fortunately, these missing short coding

regions affect the prediction accuracy little because the proportion of the nucleotides of missing

short coding regions to the all coding regions is tiny. Over all, our TICORSCAN method is an

efficient method to predict the coding regions with high accuracy.



CHAPTER 3

CLUSTERING HOMOLOGOUS DNA SEQUENCES

3.1 Methods

In the beginning, we define the indicator sequence uα(n) of the DNA sequence.

uα(n) =


1, if α appears at location n of the DNA sequence,

0, otherwise,

(3.1)

α ∈ I = {A, T,C,G}, n=0,1,. . . ,N-1 and N is the length of the DNA sequence.

To construct the distribution vectors, we fix k, which is a preset integer much less than N. Then

we define q as the quotient and r as the remainder in Equation 3.2 when dividing N by k.

q = ⌊N
k
⌋, r = N − k × q (3.2)

It is clear that 0 ≤ r < k. Therefore, we divide the DNA sequences into k segments with almost

equal lengths: The first r segments possess q+1 nucleotides and the remaining k-r segments

hold q nucleotides. Equation 3.3 explains the partition clearly.

N = k × q + r = r(q + 1) + (k − r)q (3.3)

26
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Then we define Qα(m, k) as the number of the nucleotides α in the mth segment of the DNA

sequence in Equation 3.4.

Qα(m, k) =



m(q+1)+q∑
i=m(q+1)

uα(i), m = 0, 1, 2...r − 1

(m+1)q+r−1∑
i=m×q+r

uα(i), m = r, r + 1...k − 1

(3.4)

For each k, we define the DVα(k) in terms of Qα(m, k) to describe the variability between any

two of Qα(m, k) for the particular nucleotide α in one DNA sequence.

DVα(k) =
8

3N(k − 1)

( k−1∑
i=0
i̸=j

k−1∑
j=0

(Qα(i, k)−Qα(j, k))
2

)
(3.5)

The intention for choosing the coefficient
8

3N(k − 1)
is to simplify the expectation to be a con-

stant. The explanation will be given later.

For each k ∈ K = {3, 4, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}, we compute the DVA(k),

DVC(k), DVG(k) and DVT (k) and put these together to obtain the sixty dimensional distri-

bution vector DV . It is clear there is no common factor except 1 among the numbers in the

set K, which makes the elements in the distribution vector more independent. The selection of

the size of the set K is crucial. The distribution vectors can map the sequences more precisely

when the size of K is large, which consists of only prime numbers except 4. On the other hand

for the short sequences, each segment is too short to provide the information if the k is too



28

large. In addition, the larger the size of the set K, the longer the computation time. All of the

above reasons should be considered in the selection of the set K.

DV = {DVA(3), DVC(3), DVG(3), DVT (3),

DVA(4), DVC(4), DVG(4), DVT (4),

...

DVA(47), DVC(47), DVG(47), DVT (47)} (3.6)

3.2 Statistical Properties

In order to study the expectation and standard deviation of the distribution vectors, we

need to consider the DNA sequence as a random sequence, which means every position in the

DNA sequence can be A, C, G or T with the same probability 1
4 independently.

First, we compute the expectation of Qα(m, k), Q2
α(m, k), Q3

α(m, k) and Q4
α(m, k) and the

variance of Qα(m, k) respectively.

E[Qα(m, k)] =
n∑

i=0

(i
n!

i!(n− i)!
pi(1− p)n−i) =

N

4k
(3.7)

E[Q2
α(m, k)] =

n∑
i=0

(i2
n!

k!(n− i)!
pi(1− p)n−i)

= pn(pn− p+ 1) =
N

4k
(
N

4k
+

3

4
) (3.8)
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V ar[Qα(m, k)] = E[Q2
α(m, k)]− E2[Qα(m, k)]

=
N

4k
(
N

4k
+

3

4
)− (

N

4k
)2 =

3N

16K
(3.9)

E[Q3
α(m, k)] =

n∑
i=0

(i3
n!

k!(n− i)!
pi(1− p)n−i)

= pn(p2n2 − 3p2n+ 2p2 + 3pn− 3p+ 1)

=
N

4k
(
N2

16k2
+

9N

16k
+

3

8
) (3.10)

E[Q4
α(m, k)] =

n∑
i=0

(i4
n!

k!(n− i)!
pi(1− p)n−i)

= pn(p3n3 + 6p2n2 − 6p3n2 − 18p2n

+ 11p3n+ 7pn− 6p3 + 12p2 − 7p+ 1)

=
N

4k
(
N3

64k3
+

9N2

32k2
+

51N

64k
− 3

32
) (3.11)

where n =
N

k
and p =

1

4
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Now we can compute the expectation and standard deviation of DVα(k).

E[DVα(k)] = E

[
8

3N(k − 1)

( k−1∑
i=0
i ̸=j

k−1∑
j=0

(Qα(i, k)−Qα(j, k))
2

)]

= E

[
16

3N

( k−1∑
m=0

Q2
α(m, k)− 1

k − 1

k−1∑
i=0,i̸=j

k−1∑
j=0

Qα(i, k)Qα(j, k)

)]

=
16

3N

( k−1∑
m=0

E[Q2
α(m, k)]− 1

k − 1

k−1∑
i=0,i ̸=j

k−1∑
j=0

E[Qα(i, k)]E[Qα(j, k)]

)

=
16k

3N
(E[Q2

α(m, k)]− E[Qα(i, k)]E[Qα(j, k)])

=
16k

3N
V ar[Qα(m, k)]

=
16k

3N

3N

16K

= 1 (3.12)

And
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E[DV 2
α (k)] = E

[(
8

3N(k − 1)

( k−1∑
i=0
i̸=j

k−1∑
j=0

(Qα(i, k)−Qα(j, k))
2

))2]

= E

[
256

9N2

( k−1∑
m=0

Q2
α(m, k)− 1

k − 1

k−1∑
i=0
i̸=j

k−1∑
j=0

Qα(i, k)Qα(j, k)

)2]

=
256

9N2(k − 1)2
E

[(
(k − 1)

k−1∑
m=0

Q2
α(m, k)−

k−1∑
i=0
i̸=j

k−1∑
j=0

Qα(i, k)Qα(j, k)

)2]

=
256

9N2(k − 1)2
E

[
(k − 1)2(

k−1∑
m=0

Q2
α(m, k))2

− 2(k − 1)(
k−1∑
m=0

Q2
α(m, k))(

k−1∑
i=0
i̸=j

k−1∑
j=0

Qα(i, k)Qα(j, k)) + (
k−1∑
i=0
i ̸=j

k−1∑
j=0

Qα(i, k)Qα(j, k))
2

]

=
256

9N2(k − 1)2
E

[
(k − 1)2

( k−1∑
m=0

Q4
α(m, k) +

k−1∑
i=0
i ̸=j

k−1∑
j=0

Q2
α(i, k)Q

2
α(j, k)

)

− 4(k − 1)
k−1∑
i=0
i ̸=j

k−1∑
j=0

Q3
α(i, k)Qα(j, k)− 2(k − 1)

k−1∑
i=0
i̸=j,l

k−1∑
j=0
j ̸=l

k−1∑
l=0

Q2
α(i, k)Qα(j, k)Qα(l, k)

+ 2
k−1∑
i=0
i̸=j

k−1∑
j=0

Q2
α(i, k)Q

2
α(j, k) + 4

k−1∑
i=0
i̸=j,l

k−1∑
j=0
j ̸=l

k−1∑
l=0

Q2
α(i, k)Qα(j, k)Qα(l, k)

+
k−1∑
i=0

i ̸=j,l,m

k−1∑
j=0

j ̸=l,m

k−1∑
l=0
l ̸=m

k−1∑
m=0

Qα(i, k)Qα(j, k)Qα(l, k)Qα(m, k)

]

=
256

9N2(k − 1)2
E

[
(k − 1)2

k−1∑
m=0

Q4
α(m, k)− 4(k − 1)

k−1∑
i=0
i̸=j

k−1∑
j=0

Q3
α(i, k)Qα(j, k)

+ ((k − 1)2 + 2)
k−1∑
i=0
i ̸=j

k−1∑
j=0

Q2
α(i, k)Q

2
α(j, k)− 2(k − 3)

k−1∑
i=0
i̸=j,l

k−1∑
j=0
j ̸=l

k−1∑
l=0

Q2
α(i, k)Qα(j, k)Qα(l, k)

+
k−1∑
i=0

i ̸=j,l,m

k−1∑
j=0

j ̸=l,m

k−1∑
l=0
l ̸=m

k−1∑
m=0

Qα(i, k)Qα(j, k)Qα(l, k)Qα(m, k)

]
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=
256

9N2(k − 1)2

(
k(k − 1)2E[Q4

α(m, k)]− 4k(k − 1)2E[Q3
α(m, k)]E[Qα(m, k)]

+ k(k − 1)((k − 1)2 + 2)E2[Q2
α(m, k)]− 2k(k − 1)(k − 2)(k − 3)E[Q2

α(m, k)]E2[Qα(m, k)]

+ k(k − 1)(k − 2)(k − 3)E4[Qα(m, k)]

)
(3.13)

Combining the results from Equation 3.7, Equation 3.8, Equation 3.10 and Equation 3.11 into

Equation 3.13.

E[DV 2
α (k)] =

256

9N2(k − 1)2
(k(k − 1)2

N

4k
(
N3

64k3
+

9N2

32k2
+

51N

64k
− 3

32
)

− 4k(k − 1)2
N

4k
(
N2

16k2
+

9N

16k
+

3

8
)
N

4k

+ k(k − 1)((k − 1)2 + 2)(
N

4k
(
N

4k
+

3

4
))2

− 2k(k − 1)(k − 2)(k − 3)
N

4k
(
N

4k
+

3

4
)(
N

4k
)2

+ k(k − 1)(k − 2)(k − 3)E( N

4k
)4)

=
k + 1

k − 1
− 2

3N
(3.14)

Therefore,

V ar[DVα(k)] = E[DV 2
α (k)]− E2[DVα(k)] (3.15)

=
k + 1

k − 1
− 2

3N
− 1 =

2

k − 1
− 2

3N

≈ 2

k − 1
, when N is large. (3.16)
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Then,

std[DVα(k)] =
√

V ar[DVα(k)] ≈
√

2

k − 1
(3.17)

After deriving the equations of the expectation and standard deviation of the distribution vec-

tors, we examine these properties with two large datasets. One is 5000 Human DNA sequences

from the NCBI database, which are divided into five groups by the respective lengths of DNA

sequences. The detail of grouping is provided in Table III. Another dataset is 5000 random

DNA sequences which are divided into five groups also. Each group consists of 1000 random

sequences each with a fixed length. The lengths of these groups are 200, 400, 800, 1500 and

3000 corresponding to the Group I, II, III, IV and V respectively. We compare the means and

standard deviations for the ten groups with the theoretical expectation and standard deviation

as in Figure 14, Figure 16, Figure 15 and Figure 17. The selection of the set K plays an im-

portant role in the values of DVα(k). The variability of the distribution vectors is small when

k is large. Moreover, the mean and standard deviation within the five human DNA sequences

groups also converge to the theoretical expectation and standard deviation when we increase

the dimension, even though the convergence is not as good as those of the random sequences.

3.3 Application

We apply our distribution vector method to two datasets. One is 80 Mitochondrial com-

plete genomes of placental mammals from NCBI database, another is the gene Haemagglutinin

(HA) of 60 H1N1 viruses from Influenza Virus Sequence Database. At first we calculate the

distribution vectors of these sequences and the distances between any two of these distribution
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TABLE III

THE GROUPING OF 5000 HUMAN DNA SEQUENCES
Number Range of length

Group I 996 < 384

Group II 1001 ≥ 384 and < 651

Group III 999 ≥ 651 and < 1053

Group IV 1500 ≥ 1053 and < 2265

Group V 504 ≥ 2265

Figure 14. The Mean of Distribution Vectors for Human Sequences
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Figure 15. The Mean of Distribution Vectors for Random Sequences

Figure 16. The Standard Deviation of Distribution Vectors for Human Sequences
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Figure 17. The Standard Deviation of Distribution Vectors for Random Sequences

vectors for each dataset. The phylogenetic trees are built based on the distance matrix by

using the function hclust from the R program(18), where the average linkage method is used in

the clustering. The two trees are plotted in Figure 20 and Figure 24. Moreover, we apply the

multiple alignment on the same two datasets with ClustalW2, MAFFT and Muscle and do the

clustering with the average linkage method also. The results are provided in the Supplement.

For the dataset of 60 H1N1 (HA) viruses, our distribution vector method classifies these viruses

into four groups correctly. The four groups include the avian older than 2009, European swine

older than 2009, American swine older than 2009 and the new 2009 viruses from human, swine

and avian. The result shows the 2009 human H1N1 viruses have closer relationship with old

American swine than old avian and European swine. ClustalW2 and Muscle also classify the 60

H1N1 viruses into the four groups except that the virus swine/wisconsin/1961 is not classified

well. Unfortunately, MAFFT is unable to put the old avian viruses into one group. On the
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other hand, all the four methods classify most of the 80 animals correctly by the respective

orders they belong. Our distribution vector method divides the animals in the order of Car-

nivora into two groups: bears and non-bears, while other three methods make more errors with

the order of Carnivora. Moreover, only our distribution vector method puts pig in to the order

of Artiodactyla successfully. In general, all the four methods can do the clustering with the

animals and viruses corresponding to the evolution relationship. But our distribution vector

method obtains the best results in the clustering.

In order to compare the speed of our method and the other three methods, we do the test on

two sets of sequences. The first set consists of 8 datasets. The number of sequences in each

dataset is 10, 20, 30, 40, 50, 60, 70 an 80 respectively where the lengths of all the sequences are

around 4000. Another set also consists of 8 datasets. All the 8 datsets include 40 sequences.

The lengths of all sequences in the 8 datasets are around 1000, 2000, 3000, 4000, 5000, 6000,

7000 and 8000 respectively. We build the phylogenetic tree on each dataset of the two sets

by the four methods and record the time each method takes. The results in Figure 18 and

Figure 19 show that our method is much faster than the other three methods. The time of our

method increases linearly when the number of sequences or the length of sequences increases,

whereas the acceleration of the time for the other three methods is much higher. The actual

time differences are much higher than the visual differences in the figure since we are using the

log(time) as the label of y-axis.
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Figure 18. The Time Comparison of Four Methods on First Set
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Figure 19. The Time Comparison of Four Methods on Second Set
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Conclusion

This chapter introduces the distribution vectors to map the DNA sequences into the sixty

dimensional Euclidean space. We prove that expectation and standard deviation of the distri-

bution vectors do not depend on the length of the sequences. The experiments on the human

DNA sequences and random sequences confirm the result. The determined expectation and

standard deviation show that the distribution vector mapping is bounded and stable. Each

component of the distribution vectors represents the distribution of one kind of nucleotide in

k segments of the DNA sequence and plays the same important role in the mapping and clus-

tering. Furthermore, we do the clustering on 80 mitochondrial complete genomes and the gene

Haemagglutinin (HA) of 60 H1N1 viruses with our distribution vector method and other three

methods. The phylogenetic trees we obtain show that the distances between the distribution

vectors correspond to the evolutionary relationships between these sequences. Our method

works for a set of genome sequences or a set of gene sequences. Most importantly, the distribu-

tion vector method is much faster than the other methods. Hence our method is more efficient

to deal with huge datasets than the other methods. Especially, Our distribution vector method

only needs to compute the distribution vector of a new sequence when it is put in the dataset,

while those multiple sequence alignment methods have to do the multiple sequence alignment

on the new dataset when a new sequence is added. It will be more practical to find the closest

sequence to the new sequence in a huge dataset with our distribution vector method. Our

method may help to discover the functionality or the evolution of the new sequence.
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Figure 20. The Clustering result of 80 Mitochondrial Genomes
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Figure 24. The Clustering result of 60 H1N1 viruses
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TABLE IV: THE LIST OF 60 H1N1 VIRUSES

Source Location Year Accession

Swine

Wisconsin 1998 AAF87282

Belgium 1998 ACN67524

Scotland 1999 ACO25069

Argentina 2009 ADC32526

Osaka 2009 BAI49135

Italy 2009 ADA70669

Hong Kong 2009 ADG08380

Italy 2009 ADD84723

Belgium 1979 ACO24983

Netherlands 1980 AAD25309

France 1984 ACO25089

Italy 1987 AAD25310

Spain 1991 ACO25122

England 1992 ACO25133

Germany 1995 CAP49183

Wisconsin 1961 AAD25302

Wisconsin 1968 ABV25636

Continued on next page
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Table IV – continued from previous page

Source Location Year Accession

Swine

Tennessee 1975 ABR28680

New Jersey 1976 AAB39851

Kentucky 1976 ABR28614

Nebraska 1977 ABR28647

Arizona 1977 ABU80287

Ontario 1981 ABR28658

Indiana 1988 ABF71860

Maryland 1991 ABR29565

California 1991 ABY84684

Mallard

Ohio 1993 ABM21960

Maryland 2002 ABS70389

Maryland 2002 ABS70400

Minnesota 2008 ACT84288

Northern Shoveler Minnesota 2008 ACT84833

Shorebird Delaware 2006 ACU15899

Northern Pintail Alaska 2007 ACY67472

Green Winged Teal Louisiana 1987 ACZ48419

Continued on next page
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Table IV – continued from previous page

Source Location Year Accession

Turkey
Ontario 2009 ADI52835

Ontario 2009 ADI52836

Human

Cherry Point 2009 ACY77544

Bogota 2009 ACY77554

Toronto 2009 ACQ44556

Illinois 2009 ACS72651

Colorado 2009 ACR49290

Finland 2009 ACS50088

Philippines 2009 ACR78158

Shanghai 2009 ACR54974

Osaka 2009 ACR46991

Paris 2009 ACR43939

Beijing 2009 ACR32998

New York 2010 ADI99560

California 2010 ADI99550

Orenburg 2010 ADI99498

Mexico City 2009 ADI49787

Continued on next page
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Table IV – continued from previous page

Source Location Year Accession

Human

Singapore 2010 ADI24597

Berlin 2009 ADI49382

Florida 2009 ACR08526

Brisbane 2009 ACR08498

Maryland 2009 ACR08538

Washington 2009 ACR08543

Narita 2009 ACR09395

Lisboa 2009 ACR15748

Hong Kong 2009 ACR18920
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TABLE V: THE LIST OF 80 MITOCHONDRIAL

GENOMES

Order Species Accession

Primates

Human V00662

Pigmy Chimpanzee D38116

Common Chimpanzee D38113

Western Gorilla D38114

Common Gibbon X99256

Hamadryas Baboon Y18001

Western Chimpanzee GU112744

Vervet Monkey EF597501

Gelada Baboon FJ785426

Barbary Ape NC 002764

Proboscidea

African Elephant AJ224821

Asiatic Elephant DQ316068

American Mastodon NC 009574

Woolly Mammoth NC 007596

Perissodactyla

Indian Rhinoceros X97336

Black Rhinoceros NC 012682

Continued on next page
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Table V – continued from previous page

Order Species Accession

Javan Rhinoceros NC 012683

Perissodactyla

Horse NC 001640

Donkey NC 001788

Woolly Rhinoceros NC 012681

Macroscelidea
Elephant Shrew AB096867

Short-eared Elephant Shrew NC 004026

Erinaceomorpha
Western European Hedgehog X88898

Long-eared Hedgehog NC 005033

Rodentia

Greater Cane Eat NC 002658

Ehrenberg’s Mole Rat NC 005315

Golden Hamster NC 013276

Norway Rat X14848

Chinese hamster EU660217

Eurasian Red Squirrel AJ238588

Lagomorpha

Black-lipped Pika NC 011029

Rabbit AJ001588

European Hare NC 004028

Artiodactyla
Pig AJ002189

Continued on next page
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Table V – continued from previous page

Order Species Accession

Sheep AF010406

Artiodactyla

Goat AF533441

Chamois FJ207539

Pyrenean Chamois FJ207538

Japanese Serow NC 012096

Sumatran-Serow FJ207534

Cetacea

Yangtze River dolphin NC 007629

Sei Whale NC 006929

Narwhal AJ554062

Indus River Dolphin NC 005275

Fin Whale NC 001321

Blue Whale NC 001601

Bowhead Whale AJ554051

Chiroptera

Okinawa Least Horseshoe Bat NC 005434

Little Red Flying Fox NC 002619

Egyptian Rousette NC 007393

Formosan Lesser Horseshoe Bat NC 005433

Continued on next page
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Table V – continued from previous page

Order Species Accession

Tubulidentata Aardvark Y18475

Carnivora

Tiger EF551003

Leopard EF551002

Clouded Leopard NC 008450

Cheetah NC 005212

Domestic Cat U20753

Tibetan Wolf NC 011218

Giant Panda EF212882

Asian Black Bear DQ402478

Brown Bear AF303110

Polar Bear AF303111

Spectacled Bear EF196665

Australian Sea Lion NC 008419

Hooker’s Sea Lion NC 008418

Wolverine NC 009685

Dog U96639

Coyote DQ480511

Continued on next page
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Table V – continued from previous page

Order Species Accession

Gray Wolf DQ480508

Carnivora

American Black Bear AF303109

Raccoon Dog NC 013700

Dhole GU063864

Eurasian Wolf NC 009686

Red Panda NC 009691

Atlantic Walrus NC 004029

Steller Sea Lion NC 004030

Cave Bear NC 011112

Small Indian Mongoose NC 006835

Mongolian Wolf EU442884

Soricomorpha Long-clawed shrew AB061527
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