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SUMMARY

In the realm of primary cells, the Li/CFx chemistry holds immense potential due to its

unmatched theoretical specific energy, longevity, and shelf time. However, little work has

been done on creating a simple, practical methodology to determine the state of charge (SoC)

of a partially-discharged battery in critical applications, such as remote sensing and probing,

and mission control hardware. We propose an approach in which the SoC can be estimated by

measuring the output voltage under various current loads and fitting the data to an original

model in the general form of a logistic curve. The resulting function can then be used in

conjunction with least squares analysis to e�ciently estimate the SoC.
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1 INTRODUCTION

Much of current chemical energy storage research is focused on secondary batteries due to

the ever increasing popularity of portable electronic devices[1, 13, 17, 19, 38, 41], electric

vehicles[7, 8, 37], and large-scale energy storage systems[12, 34]. On the other hand, primary

batteries still play crucial roles in many industrial segments, most notably in the the medical

and military sectors[6, 32, 36]. Primary batteries o�er cheaper, high power, high energy density

alternatives when charging is either impossible or unnecessary, as in the cases of medical

implants, autonomous defense systems, and deep space probes. Lithium cells in particular

have become preferred for such specialized industries due to their high energy density[6, 18,

22], and of the variety of available cathode chemistries, CFx has generated great interest

owing to its particularly high theoretical specific capacity[24, 29, 30, 31, 40, 41]. Though

CFx performs less e�ectivley at higher discharge rates and low temperatures[24], its potential

remains unmatched for applications that have a low power demand and operate in moderate

environments for very extended periods of time.

Due to the critical nature of the aforementioned applications, it is of vital importance

to be able to quickly and simply determine the state of charge and remaining lifetime of

primary batteries. Various analytical techniques have been proposed for secondary batteries,

ranging from using extended Kalman filters[20, 16] and fuzzy neural networks[21] to more

straightforward Coulomb counting[10, 28], but little literature has been published on state of

charge measurements for primary cells. Determining the remaining charge in batteries with

CFx cathodes in particular has proven to be di�cult because the discharge curve is essentially
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flat[30, 40, 39], meaning that there is little voltage variation throughout the discharge process.

In this thesis, we propose such a methodology based on a nonlinear fit to the measured voltage

data taken for a reference cell at various applied currents. These sigmoidal fits can then be

used as reference curves to which an arbitrary cell with similar specifications can be compared

and evaluated using the least squares technique.
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2 BACKGROUND

Commercial primary lithium batteries largely use lithium metal as the anode due to its low

molar weight, high specific capacity, and the fact that it is the most electropositive alkali

metal[18, 31]. Thus the variety of chemistries we will review below are exclusively cathode

chemistries. It should also be noted that all stated specific capacities are theoretical capacities

as a result of the di�cultly inherent in assessing the practical capacities of cathodes produced

using di�erent methodologies and in varying environments. Practical capacities are signifi-

cantly less than the given theoretical figures, though the relative rankings remain the same.

2.1 Primary Lithium Battery Chemistries

2.1.1 Manganese Dioxide, MnO2

Electrolytic manganese dioxide (EMD) is the most common primary lithium cathode chem-

istry on the market, constituting roughly 80% of all commercially sold primary lithium cells[18].

It occurs as a wide variety of polymorphs, including α-MnO2 (often referred to as hollandite),

β-MnO2 (often referred to as pyrolusite), and γ-MnO2[9]. The γ-phase is what is largely uti-

lized in the production of primary lithium batteries, and has a complex structure that can

be described as ramsdellite interspersed with rutile-like pyrolusite with microtwinning de-

fects throughout the crystal. Alternately, the structure can be described as “tunnels” of space

defined by rows of octahedral units of MnO6 (Fig. 1), broken up into aligned chunks by

microtwinning defects.

The result is a chemistry that has a theoretical specific energy of around 310 mAh/g, the
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capability to be used for both high and low drain applications, good safety, and relatively low

cost [18, 31]. Due to its numerous positive characteristics, MnO2 batteries have are used in a

wide variety of circumstances ranging from digital cameras and calculators to small military

electronics[31].

Li + MnIVO2 → LiMnIIIO2 (1)

Figure 1: Depiction of γ-MnO2 structure, with ramsdellite and pyrolusite structures for refer-
ence. Reproduced from Ref. [5] with permission from The Royal Society of Chemistry

2.1.2 Silver Vanadium Oxide (SVO), Ag2V4O11

The SVO chemistry was developed relatively recently, and was first used in a medical implant

in 1987. SVO batteries are in fact utilized almost exclusively for implantable cardioverter

defibrillators (ICD) due to their ability to deliver high currents while having low self-discharge

rates. The ability to discharge rapidly allows the battery to quickly charge the capacitor in an
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ICD so that it can deliver a pulse of energy up to 35 J[4]. This capability is attributable to

the silver atoms intercalated in the vanadium-oxygen layers, creating a C-centered monoclinic

unit cell[18]. These atoms reduce to metallic silver during discharge and considerably raise

the conductivity of the material as a whole[6, 31].

7Li + Ag2V4O11 → Li7Ag2V4O11 (2)

Figure 2: Depiction of ε-Ag2V4O11 structure. Silver atoms are colored yellow, oxygen atoms
are colored red. Vanadium atoms are located at the center of the octahedra. Reproduced from
Ref. [4] with permission from Springer

SVO has a theoretical specific capacity of around 315 mAh/g[6, 35], making it quite com-

petitive with with manganese dioxide, but displays a unique two-plateau discharging profile.

When an SVO cell is discharged under constant load, a film forms on the lithium anode and

eventually increases the internal resistance of the system, e�ectively decreasing the nominal

cell voltage and introducing a voltage delay[6, 18, 31]. This is helpful when identifying the
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state of charge of the battery, but makes extended use of the battery more di�cult, and has

led researchers to attempt to combine SVO with CFx to create a material with the best char-

acteristics of both chemistries.

2.1.3 Polycarbon Mono�uoride, (CFx)n

Also referred to as graphite fluoride, the CFx structure can be described as fluorinated sheets of

graphene, with the value of x usually ranging between 0.9 and 1.2. It is a gray, thermally stable

powder that is synthesized by reacting fluorine gas with a relatively pure carbon compound

at high temperatures[14, 27]. The carbon compound is often petroleum coke or graphite,

but di�erent forms of carbon feedstocks such as carbon black can also be used[14, 27, 31].

The chemistry’s greatest advantage lies in its immense theoretical specific capacity of 860

mAh/g (partially due to its low density), and though practical applications result in an actual

capacity of 400 mAh/g[18], CFx remains one of the most energy-dense materials available. This

explains the continued interest and research into CFx, since the remaining untapped potential

is significant. The material also exhibits very low self-discharge rates of 0.5% to 1.0% per year as

well as excellent safety characteristics[24]. The reason behind the lack of danger is that it has

relatively poor electrical conductivity, though it should be noted that as the cell continues to

discharge, the graphite becomes defluorinated and gradually gains conductivity[31]. Despite

this drawback, carbon monofluoride’s properties have led to the cathodes being used in a

wide variety of low-power, long-life applications such as pacemakers, portable electronics,

utility meters, and military technologies such as communications equipment[31].
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nxLi + (CFx)n → nxLiF + nC (3)

Figure 3: Depiction of CFx structure. Carbon atoms are colored yellow, fluorine atoms are
colored cyan. Reprinted with permission from [2]. Copyright 2010 American Chemical Soci-
ety.

This wide-ranging applicability is only possible due to the equally diverse geometries in

which CFx can be produced, including coins, cylinders, and pins. Like the previously men-

tioned chemistries, cells are largely constructed with an elemental lithium anode, an electrolyte

which is a mix of a lithiated salt such as LiBF4 or LiPF6 and an organic solvent such as ethylene

carbonate or γ-butyrolactone, and a separator[14, 18, 31]. As long as the electrode materials

are structurally supported - either by being attached to a stronger material (as in the case of

a current collector in a cylindrical cell) or by virtue of the inherent form (as in a coin cell) -

the cell can be constructed in virtually any shape desired. The result is that most companies

o�er the option of customized packaging.

CFx does however have a significant disadvantage in the form of its particularly flat dis-
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charge curve. Unlike an SVO cell which is marked by the sudden increase in internal resistance,

a CFx cell that is discharged under a constant load displays a very consistent measured voltage

that only drops rapidly at a very high depth of discharge. As these are primary batteries, the

determination of their state of charge is not a trivial problem since they are not designed to

be recharged. Significant work has been done to solve this issue, some of which are presented

in the next section.

2.2 State of Charge Estimation Methods

The importance of estimating the state of charge of a battery quickly and accurately is clear,

especially if it is being used in a critical application such as a medical implant. Current

available techniques can generally be separated into one of three categories: book-keeping,

adaptive systems, or direct measurement[10]. Though there is a large (and increasing) number

of available methodologies, only three of the most commonly studied and used ones will be

reviewed here for the sake of brevity.

2.2.1 Coulomb Counting

Coulomb counting is a book-keeping method in which the remaining charge is determined by

calculating how much charge has left the system. This is done by measuring the discharge cur-

rent and integrating over the time of discharge, resulting in a nearly literal count of number of

electrons transferred from the anode to the cathode[3, 10, 25, 28]. Despite this method’s inher-

ent simplicity, there are various sources of inaccuracy that must be accounted for, including

self-discharge losses, actual maximum capacity determination, and temperature and discharge
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rate-dependent discharge e�ciency. Depending on the materials in the cell, the ambient tem-

perature, and the current state of charge, self-discharge losses can be notable, and since the

mechanism behind self-discharge does not involve the flow of charge between terminals, it must

be considered separately from the rest of the counting system[3, 28]. The maximum capacity

of the cell is also likely to be di�erent from the nominal capacity as a consequence of varying

manufacturing environments and slight di�erences in the materials themselves. Finally, the

system must also account for the battery discharging e�ciency, which describes how much of

the contained charge can actually be accessed[3, 10, 28]. This is determined by the reaction

kinetics of the cell, which in turn implies that the e�ciency is dependent on both ambient

temperature as well as discharge rate. There is no standardized solution to incorporate the

e�iciency into the coulomb counting method, so custom calculation modifications must be

made on a cell-by-cell basis.

2.2.2 Kalman Filter

The Kalman filter is an algorithm which predicts the future state of a system based on data

collected from the current state of the system. To clarify, it is a recursive method that combines

the predicted data with the current data to produce another more accurate estimate of future

data[10, 11, 15, 16]. This concept can be compactly stated as follows:

xn = An−1,nxn−1 + wn
(4)
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yn = Cnxn + vn (5)

Eqn. 4 is the state equation, where xn is the actual state of the system at time n, A is the

state transition matrix from n−1 to n, and wn is a zero mean white noise vector. Eqn. 5 is the

observation equation, where yn is the observed vector, Cn is the measurement matrix, and

vn is a zero mean white noise vector that is independent from wn[15]. The state equation can

more simply be described as stating that when some matrix A operates on the state vector at

time n− 1 and this quantity is summed with some amount of randomized noise, the result is

the state vector at time n. The observation equation can also be described textually by stating

that the observation vector y at time n is equivalent to the components of the state vector

which are being measured, with each component summed with some amount of randomized

noise. In practice, the actual state of the system is not known, so Eqn. 6 is used to find an

estimated state vector.

x̂n,n = x̂n,n−1 + Kn
(
yn −Cnx̂n,n−1

)
(6)

The matrix K is the Kalman gain, and can be calculated from the covariance matrices of

the previous state vector and the two white noise vectors. As this is not a thesis describing the

Kalman filter method, the specifics of the calculation process will be avoided.

Most of the methods developed for determining the SoC use the extended Kalman filter,

which is a nonlinear extension of the Kalman filter. This naturally lends itself to use in bat-
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tery systems since the internal mechanisms that drive the cells are inherently nonlinear (e.g.

di�usion). The fundamental concept remains the same however, with commonly measured

properties being voltage, discharge current, internal resistance, and temperature[11]. The re-

sulting SoC estimates have been shown to have accuracies within 1%[11], making the Kalman

filter one of the best choices for applications requiring a high degree of accuracy. However,

there are two major disadvantages. First, much time must be expended in ensuring that the

chosen model is appropriate and applicable to the system at hand. Second, depending on the

number of measurements and variables, the required computing power can be significant.

2.2.3 Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is a direct measurement method that infers

information about the state of an electrochemical system by measuring the impedance of the

system over a wide range of AC frequencies[10, 28, 31, 33]. Before delving into the tech-

nique itself, some background information and terminology will be covered for the sake of

clarification.

Impedance is e�ectively a generalized form of resistance which measures not only a circuit

element’s opposition to a static current but also to a current changing with respect to time.

This is mathematically expressed as Z = R + iX, where the impedance Z is a sum of the

static resistance R and the dynamic resistance X . X, called the reactance, is imaginary by

virtue of its relation to oscillating functions. Thus elements such as capacitors and inductors

can also be given impedance values, which in the ideal case are purely imaginary. Impedances
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are a function of frequency, and can therefore be parametrically visualized in what are called

’Nyquist plots’ by using the imaginary component and real component of the impedance

evaluated at each frequency as coordinates on the plot.

Electrochemical cells are often approximated by an equivalent electrical circuit called a

Randles circuit (Fig. 4). The electrolyte solution and the electron-transfer process are both

modeled as straightforward resistors, but the other two elements are more complex. The

electrical double layer is a concept in which a charged surface - in this case, an electrode -

causes ions of the opposite charge to be adsorbed onto the surface, which in turn causes a

loosely organized layer of mixed-charge ions to form in response, with a greater emphasis on

ions with the charge of the electrode[23]. These two layers act like the plates in a traditional

capacitor, which then means that when the system is subjected to an oscillating potential,

the double layer also contributes impedance to the currently flow. However, since the double

layer is not a static structure, modeling its contribution as a simple capacitor is not entirely

accurate, and as such it is sometimes replaced by what is called a constant phase element to

represent an imperfect capacitor[31]. The Warburg element exists in case the di�usion process

at the electrode-electrolyte interface is a limiting process, and is therefore placed in series with

the charge-transfer resistor.
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Figure 4: The Randles circuit. RS is the electrolyte solution resistance, Rct is the charge-
transfer resistance, Cdl is the electrical double layer capacitance, ZW is a Warburg impedance
element

Figure 5: Generalized Nyquist plot of the circuit from Fig. 4, where RΩ is the equivalent of
RS. Reproduced from Ref. [33] with permission from Elsevier

Figure 6: Depiction of the electrical double layer at a metal-solution interface. Reproduced
from Ref. [23] with permission from Springer
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Assuming that a reasonable equivalent electric circuit is chosen, any electrochemical cell’s

impedance can be defined as a function of frequency. This analysis method is known as EIS.

As a cell discharges, this function evolves over time in a fashion unique to each chemistry, and

this change can theoretically be used to determine the SoC of the cell[10, 33]. The di�culties

inherent in this process are numerous: it is very temperature dependent, requires much com-

putational power, and demands an accurate circuit model of the system. As such, EIS is rarely

used in practice as a SoC estimation technique[26]. Our proposed methodology is a direct

measurement method that avoids the computational di�culties that EIS poses and provides

a framework for quickly and simply determining a practical model for a primary cell.
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3 EXPERIMENTAL PROCEDURE

3.1 Equipment

A circuit was constructed to measure voltages and discharge times of BR2325 coin cells as an

example of a specific CFx cell of interest(1) (Fig. 9). A galvanostat(2) was used to maintain a

constant current through the circuit, while data was collected using a ADC-24 Data Logger(3)

from Pico Technology Ltd. Two di�erent galvanostats were used over the course of data

collection: a Keithley SourceMeter 2400 and a Xantrex XDL 35-5P. The experimental setup

was designed with a variable resistor(4) (in the form of a resistance substitution box from

IET Labs) so as to keep the system’s overall potential drop similar between tests with di�erent

current loads. Additionally, two 20 kΩ resistors were used to keep the measured voltage within

the data logger’s specifications.

Figure 7: Keithley SourceMeter®2400 Galvanostat
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Figure 8: Diagram of the circuit used for data collection; Rin is the internal resistance of the
measurement device, and B is the measured battery

Figure 9: Physical setup used for data collection: 1) Cell of interest, 2) galvanostat, 3) data
logger, 4) esistance substitution box

16



3.2 Experimental Methods

3.2.1 Data Collection

The Keithley 2400 SourceMeter was used to collect the measured voltage data for the 0.1 mA

test, and the Xantrex XDL 35-5P was used for the 0.3 mA, 1.0 mA, 3.2 mA, 10 mA, and 32

mA tests, for a total of six data sets (Fig. 10). Additionally, the SourceMeter was used to

perform voltage sweeps on new cells to validate both the short-circuit current and open-circuit

voltage values (inset Fig. 11).

3.2.2 Data Processing

The data was then processed to convert the time stamps to depth of discharge values (θ)

by dividing each set’s data points by the respective total run time of reaching a zero cell

voltage. New data sets were then constructed from the data, grouped by discrete θ values

(Table 1). Since the discharge profile of CFx cells tends to be very flat during the initial period

of discharge, a greater number of sets were taken from higher theta values since they provided

better di�erentiation.

3.2.3 Proposed Model

The measured voltage can be expected to approach an asymptote as the applied current

approaches zero and decrease exponentially at higher currents. This led to the decision to fit

the data to a sigmoid logistic function of the form seen in Eqn 7.
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V (I, θ) = 2VOC

[
−1

2
+

1

1 + ea(b+ln I)

]
(7)

This equation can be rearranged into the form seen in Eqn. 8, where I0 is a θ-dependent

indicator of the short circuit current, a is a θ-dependent measure of the curve’s steepness, VOC

is the open circuit voltage parameter, and I is the applied current.

V (I, θ) = 2VOC

[
−1

2
+

1

1 + ea(I+I0)

]
(8)
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4 RESULTS AND DISCUSSION

4.1 Preliminary Assumptions

It was observed that there was very little di�erence in the measured short circuit current for

both directions of the voltage sweep of a fully charged cell, so a trial value of 0.2 A was chosen

for the short circuit current. This meant that in addition to the collected data (Table 1), we

could add an additional point at 0.2 A and 0 V. Since the fit was not constrained to this point,

it can be seen that the short circuit current (i.e. the X-intercept of the curve) is not identical

for each curve.

The open circuit voltage was also chosen to be a fixed point. Though this is not a wholly

accurate representation of the physical processes inside the cell, it is not a large approximation

either due to the observation that as the current load becomes smaller, the measured voltage

approaches the shape of a step function (Fig. 11). Additionally, the measured voltage’s depen-

dence on θ is inconsistent and therefore precarious, as can be seen from the varying profiles

of the empirical data’s curves. By averaging the values of the y-intercepts of the voltage sweep

curves (Fig. 11, inset), we were able to determine the approximate value of VOC = 2.74. Each

set of voltage vs. θ data was fit to the model proposed in Eqn. 7, resulting in six sets of

parameters, (Table 1).
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Table 1: Parameter values for the logistic fits at VOC = 2.74 V
a b

θ = 0.2 0.854 1.592
θ = 0.4 0.821 1.591
θ = 0.6 0.762 1.590
θ = 0.7 0.702 1.572
θ = 0.8 0.655 1.632
θ = 0.9 0.524 1.888

4.2 Initial Attempts

Before the results are presented, our initial attempts to find a SoC estimation method based

on only measured voltage will be discussed because knowing why and how they failed were

arguably as enlightening as finding the successful approach.

Our first approach was to find an analytical function for the theta-dependent open circuit

voltage by extrapolating the discrete-θ fits to I → −∞. This was before our eventual decision

to fix the open circuit voltage, and we believed that finding this function was the way to

achieve the highest accuracy. We were able to fit those six points and find the function, but we

realized that this method was too easily skewed by the uncertainty of the small θmeasurements.

Additionally, the resulting function was so flat at lower values of θ that the error margins were

far too small to be practical.

Even after deciding upon an approximate fixed open circuit voltage, developing Eqn. 7

still required careful consideration of the objectives of this study. Namely, the six data sets

could be fit much more closely with a greater number of parameters, but this was misleading

for a few reasons: first, the accuracy of the overall method would not necessarily follow from

a fit with a lower error. Second, a large number of parameters would decrease the simplicity
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and ease of calculation of this methodology. Finally, limiting our model to two parameters

allowed us to glean some physical meaning from the parameters themselves.

4.3 Finding the Complete Function

The parameters a and b were then themselves fit to two exponential fits. This allowed us to

express the measured voltage as a function of applied current and the state of discharge, which

can in turn be visualized as a 3D surface (Fig. 13). Therefore, given any drain current and

measured voltage, we can determine the depth of discharge with Eq. 7, where

a = 0.81 + 1.086 · 10−4e8.917θ, b = 1.586 + 5.224 · 10−9e19.858θ (9)

When the resulting complete function is evaluated at a specific current, it can be seen that

the profile is very flat at low depth of discharge and approaches 0 V as the depth of discharge

approaches 1 (Fig. 14).

Figure 10: Initial collected data with six di�erent load currents
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Figure 11: Initial collected data, with conversions from time to depth of discharge. Inset shows
data from both forward and reverse voltage sweeps on a new cell

Figure 12: Plot of sigmoidal functions fit to the collected data, denoted by the circular markers.
The markers at (ln 0.2, 0) denote the “trial” short circuit current
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Figure 13: Surface plot of the measured voltage as a function of the natural logarithm of the
applied current and the depth of discharge

Figure 14: Cross section of the complete function at a) I = 1 mA and b) I = 10 mA
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4.4 Application Example

Due to the possible variance in ambient conditions and the inherent di�erences between indi-

vidual batteries[20], Eqn. 7 cannot serve as a universal function to determine θ. However, we

can use the method of least squares to make an accurate estimate. If the voltage is measured at

a particular applied current, we can define a residual as the di�erence between the measured

voltage VM and the expected voltage VE . Repeating this process for multiple applied currents

results in a set of residuals, which can then be squared and summed to provide a measure of

the error. θ can then be found by minimizing the error.

Error =
∑
i

r2
i =

∑
i

[VM − VE (Ii, θ)]
2 (10)

As an example, here we demonstrate the processing of a set of simulated data taken from

a battery at θ = 0.8 under the aforementioned six di�erent current loads. The six voltage-

current data pairs results in six residuals, which are squared and summed to find the the total

error (Eqn. 10). We then minimize the error by numerically solving for the θ at which the

derivative of the error is zero, resulting in θ = 0.82 (Fig. 15).

Error = [1.41− VE (0.032, θ)]2 + [1.95− VE (0.01, θ)]2 +

[2.35− VE (0.0032, θ)]2 + [2.63− VE (0.001, θ)]2 +

[
2.69− VE

(
3 · 10−4, θ

)]2
+
[
2.73− VE

(
1 · 10−4, θ

)]2
(11)
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Table 2: Simulated measured voltage data for six di�erent drain currents
Current (mA) Voltage (V)

32 1.41
10 1.95
3.2 2.35
1.0 2.63
0.3 2.69
0.1 2.73

Figure 15: Plot of the derivative of the total error. The error is minimized at θ = 0.82

4.5 Rescaling of the Method and Broader Usage

An important issue regarding the application of the proposed method is the testing of batteries

with di�erent capacities. If the size of the electrodes change, then one would expect that

the testing current values would have to be rescaled. However, this can be done within the

proposed model without having to take an entirely new series of tests with each battery. One

possible approach is to employ a single fresh battery and determine six load currents Ii (i =

1...6) such that the five ratios of the corresponding measured voltages Vi+1

Vi
are the same as in

the proposed model at θ ∼ 0 (i.e. calculated from Eqns. 7-9):
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0.994035, 0.983377, 0.958748, 0.900327, 0.756785 (Ii+1 > Ii) (12)

These load currents are the new test currents that should be applied to the batteries of

interest instead of the original current values mentioned in Fig. 10. Then one can take a

partially discharged battery of interest, test it at these load currents and measure the corre-

sponding voltages. The data set can then be run through the model in a manner similar to

the one detailed previously, which will yield the θ for that battery.

The calculated voltages in Eqns. 7 or 8 could have been divided by VOC to provide a di-

mensionless model, which would then familitate a more natural application of such a rescaling

technique.
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5 CONCLUSIONS

A methodology to quickly assess the state of charge of Li/CFx batteries was proposed. By

taking voltage measurements of a battery at various applied currents and normalizing all

data to the depth of discharge θ, we were able to construct fits for V vs ln I data sets at six

discrete states of charge based on a logistic model. Each curve produced two parameters, and

these parameters were then themselves fit, resulting in a single analytical expression for the

measured voltage as a function of I and θ, which can be visualized as a surface. By using this

function in conjunction with the least squares method, a polynomial function of theta results

and an unknown Li/CFx battery’s state of charge can be numerically calculated. The means

by which this method could be applied beyond the specific battery type tested in this thesis

was also shown to be based on a choice of a particular set of load currents.

The major advantages conferred by this method are its low processing cost and flexibility.

Since the reference model and parameters have already been calculated here, any implemen-

tation of this system would only have to numerically solve Eqn. 10. Furthermore, the use

of the least squares method provides inherent flexibility to the technique that could partially

account for unexpected variables.

It should be noted that further refinements of this methodology can certainly be made,

particularly by increasing the number of benchmark tests, as well as taking into accout various

environmental conditions. Even so, the proposed technique promises charge estimates at low

costs and short testing times.
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