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SUMMARY

The goal of this thesis is to establish a theoretical foundation and defensive mechanisms against

integrated circuit (IC) piracy. IC piracy is defined as the practice of an untrusted manufacturer to produce

illegal copies of IC chips, or to steal the intellectual property of the IC design via reverse engineering

approaches. IC piracy prevention is especially challenging, as the potential attackers are in the very

strong position of chip manufacturers, having accesses to the design details and controls to the final

production process.

The proposed work aims at the hardware obfuscation based prevention strategy: an “obfuscated”

IC design given to the untrusted manufacturer will yield chips that are “locked” (non-functioning), until

being “unlocked” (configured correctly) in a trusted facility. The obfuscation strategy mimics that of an

encryption process, ensuring that some critical information (analogous to the key) of the design is not

revealed to the untrusted manufacturer. During the “unlocking” process (analogous to decryption) in a

trusted facility, the key is used to restore the chips to their correct functionality.

Currently, many obfuscation approaches exist, yet they mostly present various ad-hoc choices of

obfuscation target, and are based on heuristic methods. There lacks a theoretically sound and provably

secure foundation to address the two main categories of attacks: 1) algorithmic attacks applied on the

obfuscated design, that could potentially crack the keys efficiently, and 2) physical attacks applied on

the unlocked chips, aiming at reading out the keys directly from the on-chip memory cells.

The goal of this work is to achieve an IC piracy prevention paradigm similar to modern cryptography,

in their reliance on the secrecy of a key alone, rather than that of the scheme itself, as well as their
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SUMMARY (Continued)

provable defense strength via imposing prohibitively high attacking cost, measured by computational

complexity. This will lay the basic principles for a future “Design-Against-Piracy” paradigm, similar to

the widely used “Design-For-Test” practices in IC industry today.

The proposed work aims at simultaneously expanding the control of a designer, and restraining

the control of an attacker, throughout the IC design and fabrication process. This is approached in the

following ways: 1) novel primitives are introduced with the representational power to unify the existing

obfuscation schemes, and based on which quantitative analysis of attack and defense costs are possible

to carry out; 2) by systematic entangling the various obfuscation primitives in a hierarchical manner,

a strong defense mechanism can be built to ensure that the cost of algorithmic attacks (in terms of

computational complexity) can be raised exponentially, while the designer’s cost (in terms of hardware

overhead on chip) only increases linearly; 3) against the worst-case scenario of combined algorithmic

and physical attacks, a preventive architecture is proposed to deliver a unique key per chip, via the

engagement of Physically Unclonable Functions (PUFs) into the obfuscation paradigm. This will ensure

that even a completely leaked key cannot be used for piracy purposes. Overall, the deliverable security

(in terms of attack costs) and defense costs (as overhead on the designer’s side) can be quantitatively

modeled, analyzed, and proved, in an asymptotic manner, making it suitable for the scalability of IC

design, serving a strong basis for a “design against piracy” framework.

The research work in this thesis will deliver an overall strong foundation of hardware security to

actively prevent IC piracy with the following guarantees:

xiv



SUMMARY (Continued)

1. Any attackers (even in the strongest position of a manufacturer) cannot crack the design or unlock

the chips within a reasonable amount of time, and such attacking cost is in full control of the

designer.

2. Any wrong key cannot unlock a chip to function, and even in the extreme cases of a completely

leaked key, the security of the original design can be nonetheless protected, as the unique key one

chip can neither unlock any other chip, nor be used to reverse engineering to gain information of

the original design.
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CHAPTER 1

INTRODUCTION

Parts of this chapter have been presented in (Khaleghi et al., 2015), (Khaleghi et al., 2016),
(Khaleghi and Rao, 2018). Copyright c© 2015, 2016, 2018, IEEE.

1.1 Overview

The goal of the proposed work is to develop a theoretically sound foundation against the threat of

integrated circuits (IC) piracy (Rostami et al., 2013) (Roy and Koushanfar, 2008), (Torrance and James,

2011). IC piracy usually refers to an untrusted manufacturer producing more chips than authorized to

sell at a marginal cost, or stealing the intellectual property of the design via reverse engineering tech-

niques. These threats have emerged due to the globalization of the semiconductor industry. According

to the Semiconductor Industry Association (SIA), counterfeiting costs U.S semiconductor industry over

$7.5 billion per year (Office, 2011).

Using the paradigm of modern cryptography as an analogy, if the original IC design file is considered

as a plain-text “message”, then a successful prevention framework should ensure that security relies

solely on the secrecy of a key, not that of the scheme or the encrypting algorithms. Similarly, the

strength of a defense mechanism should rely on imposing a prohibitive attacking cost: cracking of a key

is provably infeasible in a limited time.

However, the reality of IC piracy prevention is far from achieving such a goal. Most existing ap-

proaches are ad-hoc based, lacking of theoretical principles, fine-grained quantitative models, and prov-

able results. Furthermore, there lacks a similar foundation which serves as the basis to the approaches,

1
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as in the case of modern cryptography paradigm. This is partially because the challenges of IC piracy

are relatively new, but more importantly, IC piracy has its unique challenges that have no parallels in the

software domain.

Essentially, IC piracy has to deal with a very strong potential attacker in the position of an untrusted

manufacturer, who is usually at the final stage of the production chain to fabricate the chips, and has

access to the majority, if not the entire design in details 1.

Furthermore, an IC piracy prevention framework cannot be achieved by a straightforward adoption

of the established encryption schemes. First, one cannot simply apply, say, RSA (Rivest et al., 1978)

encryption, onto a design file (treating it as a plaintext message), because then the encrypted file be-

comes useless for fabrication of any chips: the transformation imposed by RSA (and other encryption

algorithms) onto the original design file does not yield a valid format of description of any chip, let alone

a desired “locked chip”. In the context of IC piracy prevention, since the design files are used to describe

a chip product (which has a well-defined functionality), and the potential attacker is in the position of

the manufacturer, a “properly encrypted” design file should still yield the valid, intended chip products,

except that these chips (manufactured according to the “encrypted” design file) should be “locked” in

their functionalities, until some key is applied to “unlock” them. Such a requirement (encryption of a

design yielding locked chips) is the unique attribute of the IC piracy prevention paradigm. Second, the

abilities and tools of the attacker in the position of manufacturer are significant: the potential attackers

1It is true that the format of the design that is made available to the manufacturer (such as the final layout
form) might be quite different from a human-understandable one (such as the high-level behavioral description),
yet powerful tools are available to perform reverse engineering practices to extract design information and steal
intellectual properties (Torrance and James, 2011) (Chipworks, 2012), (DARPA, 2012), (Fleet and Dransfield,
1998).
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are essentially endowed with the job of fabricating the chips, so they should always have access to most

(if not all) details of the design, and controls to the process. In addition, they have possess powerful

tools to perform side channel attacks, or invasive attacks, physically, on legally unlocked chips. Finally,

if a common key is used across all the fabricated chips, then such a key (that must be stored on every

chip) becomes the most vulnerable part of the entire obfuscation mechanism. In other words, a leaked

key from side-channel attack can be used to unlock other chips, thus compromising the entire security

mechanism.

1.2 Previous Works

Against IC piracy, a number of approaches have been proposed to embed in the design or on chip

some forms of a designer’s watermark, or a buyer’s signature, such that illegal copies of a design or

unauthorized chips can be detected and used in litigation to prove the ownership of that design or the

source of piracy (Kahng et al., 1998a), (Koushanfar et al., 2005), (Kahng et al., 1998b), (Lach et al.,

1998), (Rostami et al., 2013), (Caldwell et al., 2004), (Holcomb et al., 2009), (Ruhrmair et al., 1011),

(Rostami et al., 2013). Such schemes can passively detect IC piracy practices, yet cannot actively prevent

IC piracy from occurring. Although watermarking and fingerprinting schemes provide mechanisms for

detection of illegal copies in case of litigation, they cannot prevent reverse engineering or unauthorized

manufacturing of a design in the first place.

Obfuscation-based approaches (Roy and Koushanfar, 2008) (Rajendran et al., 2012b) (Alkabani

and Koushanfar, 2007) (Chakraborty and Bhunia, 2008) (Chakraborty and Bhunia, 2009) (Rostami et

al., 2013) (Baumgarten et al., 2010) (Khaleghi et al., 2015) (Zamanzadeh and Jahanian, 2013) follow

such a preventive flow, with the main idea of “concealing / withholding” an important part of the design
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Figure 1: Illustration of the design-manufacturing flow assumed by the obfuscation-based schemes

(which essentially constitutes the “key”), so that no manufactured chip can function correctly (thus

considered “locked”), until being “activated” in a trusted facility, by restoring the missing part of the

design into the chips. Then, the chips are considered “unlocked” and can be made available to the open

market. As long as no direct access is available to read out the re-installed keys in the unlocked chips,

an attacker cannot restore the entire design, or deliver any functioning chips without the knowledge of

the key. Since the designer is the only one with the withheld information (thus the entire design) and

controls the unlocking process for every chip, untrusted manufacturers are prevented from conducting

IC piracy. Fig. 1 illustrates the overall flow of such obfuscation based schemes.

Fig. 2(a) shows an example of an obfuscation scheme from (Roy and Koushanfar, 2008)(Rajendran

et al., 2012b), which allows the designer to configure the negation of any wires in a post-manufacturing

stage. This is achieved by inserting additional XOR/XNOR gates, called key gates, on selected lines
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(b) Wire scrambler

Scrambling Key

(c) LUT insertion(a) key gates

K2

K1

LUT

LUT

Figure 2: (a) The content of K1 and K2 obfuscates the functionality of the circuit; (b) wiring interconnects are

scrambled for obfuscation purposes; (c) obfuscation by replacing logic functions with LUTs.

of the original design, and use a 1-bit memory cell to control the negation of the other input of the key

gate. The key gate thus acts as a configurable NOT gate, depending on the bit stored in the memory. For

a manufactured circuit to function as the original design, the content of the memory cells connected to

the key-gates must be configured correctly in the post-manufacturing stage (K1 = 0 and K2 = 1 in the

case of Fig. 2(a)). Such memory configuration becomes the key and should be kept as a secret from the

potential attackers (untrusted manufacturer).

Fig. 2(b) shows a different example of obfuscation, named scrambling, where the designer can

choose to withhold key information about any interconnect configurations (Zamanzadeh and Jahanian,

2013). Fig. 2(b) shows the original connections of some wires, and then obfuscation is performed

by replacing the interconnect configuration with a Scrambler. The scrambler in this example allows

the 4 input lines and the 5 outputs to be connected in arbitrary ways, so that the correct configuration

remains unknown to the attacker without having access to the content of the scrambling key, which will

be applied after the manufacturing of the chips.



6

Fig. 2(c) shows a last example of obfuscation scheme using reconfigurable logic insertion to allow

the designer to withhold any general function block in the design (Baumgarten et al., 2010) (Khaleghi et

al., 2015). Here, various functional parts of the original design are replaced by Look-Up Tables (LUTs).

These LUTs consist of memory cells which will eventually be configured to be the truth-table of the

functions that were replaced, in the post-manufacturing stage, to restore the correct functionality of the

chips.

1.2.1 MUX-based implementation of obfuscation schemes

A key insight derived from a broad examination across various obfuscation approaches is that the

memory cells (holding the “key”) on chip usually provide controls to select, among multiple possibil-

ities, the “correct” configuration, for an “unlocked” chip. The configuration possibilities could take

various forms, such as the truth-table of a logic function 2(c), or how wires are connected together

2(b). Theoretically, with k selection bits, one can control / select among 2k choices, and this is the

functionality of the fundamental digital logic building block of multiplexers (MUXs).

Based on the way of how a MUX is used in the context of various hardware obfuscation schemes,

two categories of MUX-based implementation of obfuscation schemes exist, depending on where the

key cells will be located. We therefore denote them as Content Obfuscator, used for implementing the

obfuscation scheme shown in 2(c), and Wire Obfuscator, used for implementing the obfuscation scheme

shown in 2(b).

Fig. 3(a) shows an example (of using LUT to obfuscate a 2-input / 2-output function) and the

general form of a Content Obfuscator, that can be used to implement any general ways of using LUTs to

replace an N-input / M-output logic function, including the key-gate based and LUT-based obfuscation
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Figure 3: Two MUX-based obfuscation implementations with examples and general forms

approaches (Roy and Koushanfar, 2008) (Rajendran et al., 2012b) (Bao and Wang, 2014) (Rajendran et

al., 2012a) (Baumgarten et al., 2010) (Khaleghi et al., 2015). The peripheral circuit is then connected

to the MUX via the N select lines and M outputs, while the total number of M× 2N bit key cells

(essentially forming the truth-table of a LUT) are located at the input lines of the MUX. The size (and

therefore hardware costs) of a Content Obfuscator grows exponentially to its input width N.

Fig. 3(b) shows an example (of configuring interconnects between 8 inputs and 7 outputs) and the

general form of a Wire Obfuscator, that can be used to implement the general interconnect mapping

configurations between N and M ends. To choose from N potential input bits, lg(N) cells are needed at

the select lines of a MUX. When M output bits are needed to be chosen from the N input bits, a total of

M× lg(N) key cells are needed, positioned at the select lines. This is a typical “multiplexing” model to

provide “configurable switching” control ability, and can be used to model the wiring scramble obfus-

cation schemes (Zamanzadeh and Jahanian, 2013). When using MUXes to implement the mapping, the

key cell values are located on the select lines of the MUX, and the peripheral circuits are connected to

the MUX via the N input lines and M output lines. The number of key cells of a Wire Obfuscator grows
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in logarithm scale to the input width N, while the MUX overhead (in terms of hardware cost) grows

linearly to the input / output width (N,M).

1.3 Attack Models and Assumptions

Despite the variety in their approaches, a common strategy among the existing hardware obfuscation

schemes is to replace a certain piece of design information by a configurable module, eventually imple-

mented with (tamper-resistant) memory cells on a chip. The post-manufacturing stage of configuring

such memory cells makes it possible for the designer to both conceal / withhold some crucial design

information from the potential attackers, as well as unlock fabricated chips. While most obfuscation

approaches try to ensure that the required effort for an attacker to obtain the correct key is computation-

ally hard, significant challenges still remain, as most approaches, as well as the selection of obfuscation

targets, are ad-hoc based (Roy and Koushanfar, 2008) (Rajendran et al., 2012b) (Bao and Wang, 2014)

(Rajendran et al., 2012a) (Alkabani and Koushanfar, 2007) (Baumgarten et al., 2010) (Zamanzadeh and

Jahanian, 2013), making them susceptible to various attacks.

Assuming the strongest type of attackers, in the position of a manufacturer, we categorize the attacks

into two types: 1) algorithmic attack on the partially available obfuscated design file, and 2) physical

attack on an unlocked chip, as is illustrated in Fig. 4.

Rather than focusing on a specific set of detailed attack types and assumptions, we focus on an

abstract level of attack taxonomy to provide a basis for defense mechanisms. For example, a number of

different techniques can be applied in attempt to read out the content of the key memory cells on-chip,

such as side-channel attacks or UV radiation, yet instead of proposing schemes to deal with each form
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Figure 4: An overview of attack models, assumptions, and the proposed defensive mechanisms

of the attacks specifically, based on their physical access mechanisms, the proposed research will focus

on how to ensure that an assumed leaked key will render useless for the attacker.

For algorithmic attacks, we assume that the attacker possesses: a) complete knowledge of the secu-

rity scheme, b) gate-level netlist of the design, except for the obfuscation information, c) input / output

access to some legally unlocked chips. The attacker is also assumed to possess powerful simulation

tools and computation abilities. However, here the attacker is assumed to not have direct access to

the keys on-chip. These assumptions are commonly recognized and adopted by many of the IC pro-

tection schemes, assuming a tamper-resisitant on-chip memory module to be used for the keys (Roy
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and Koushanfar, 2008),(Rajendran et al., 2012b), (Chakraborty and Bhunia, 2008), (Chakraborty and

Bhunia, 2009), (Baumgarten et al., 2010) (Khaleghi et al., 2015) (Zamanzadeh and Jahanian, 2013).

For the next stage of physical access attack category, the attacker is assumed to have everything

from above in the algorithmic attack category. In addition, the attacker can gain full content of the key

cells of a chip.

1.3.0.1 Algorithmic attacks on obfuscated design files

Via brute-force attack, as is shown to a Content Obfuscator in Fig. 5(a), an attacker needs to solve

for all of the 24 = 16 possible patterns of the key, which is exponential to the key size and input size,

and employ a verification process for every potential key pattern. The verification process involves,

in the worst case scenario, applying all the possible input combinations (from 000 to 111 of 23 = 8

in this example), to both the simulated design (with the potential key), and the unlocked chip, for

comparison. A mismatch will indicate the key pattern to be wrong, while a matching takes all the input

patterns to validate a correct key pattern. Therefore, any obfuscation scheme with a Content Obfuscator

is generally effective against brute-force attacks, by imposing a prohibitively expensive computational

cost (exponential to both the key size and the input size) to the attacker.

Unfortunately, an attacker equipped with a partially available design and an unlocked chip can resort

to the more effective algorithmic attack, by focusing on one key cell at a time. The main idea is to use

an input combination that can successfully “isolate” one target key cell, and propagate its value towards

the outputs. In the example shown in Fig. 5(a), if an input combination can “activate” the address of

key cell k1, and propagate the value cell to the primary output, then the value of k1 can be obtained by

observing the output of the legally unlocked chip. If each key cell can be cracked this way, then the
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Figure 5: Examples of algorithmic attacks on: (a) a Content Obfuscator (b) a Wire Obfuscator

number of trials for the attacker will be reduced to the size of the key - a complete collapse from the

brute-force attack complexity.

Fig. 5(a) shows the process of algorithmic attack for finding such an input combination to crack

k1. In order to activate the address of k1, the attacker needs to use an input combination that makes

x1 = x2 = 0. Based on the available design, it can be deduced that there are two input combinations for

(I1, I2, I3) that can satisfy this condition: (0,0,0) or (0,0,1), as both patterns will select the value of k1

to appear on wire y. However, to ensure that k1 can be propagated all the way to the primary output,

(0,0,0) does not qualify, because the signal at y will eventually be blocked by z = 0. On the other hand,

input combination (0,0,1) can successfully reveal k̄1 to the primary output. In general, using algorithmic

attacks to solve for a particular key cell of a Content Obfuscator, one needs to solve for the primary

input combination, such that: 1) the address for the key cell is selected, and 2) the value (or its negation)

of the cell can be propagated to one of the primary outputs.
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A similar attack can be performed on a Wire Obfuscator, shown in Fig. 5(b). In this example, since

the key is connected to the selector of the MUX, there is no direct way to send it to the output of the

MUX. However, the attacker can try to send a pair of opposite values (1 and 0) to the input lines of the

MUX, and observe the value on the output to deduce the bit at the selection line. One way to achieve

this in the example shown in Fig. 5(b) is by making I3 = 0 and I4 = 1, and then set I1 = 0 to drive the

value of k to the output end.

Such an algorithmic attack has been shown to be equivalent to the “Automatic Test Pattern Gen-

eration (ATPG)” problem, which is a classical NP-Complete problem in the domain of digital testing

(Abramovici et al., 1990) 1. Due to its NP-Complete complexity, sometimes it is assumed that algorith-

mic attack poses a high cost for the attackers.

However, while it is true that each run of the the algorithmic attack is either NP-Complete or NP-

Hard (Abramovici et al., 1990) (Rajendran et al., 2012b) (Erb et al., 2013), our preliminary research

data verify that it is dangerous for a protection scheme to rely solely on the hardness of such NP-

Complete/NP-Hard problems, per se, because even though such problems can take exponentially scaled

time to solve in the worst case they could be easily solvable in some of the best cases, when constraints

are not stringent (Khaleghi et al., 2015). The need of systematically introduced entanglement against

algorithmic attacks is shown in Fig. 12: To perform algorithmic attacks on content obfuscator, while

some of the worst cases could take up to 250ms to solve one key cell, the median runtime of all the

benchmarks is as little as 27.7ms. Furthermore, due to its important application in chip testing, many

1ATPG by itself is concerned with finding an input pattern that can distinguish between the correct circuit and
a faulty circuit, assuming a fault occurring at a particular location.
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powerful tools and heuristic algorithms are available to tackle the ATPG problem effectively. For in-

stance, a SAT-based algorithmic attack has been shown to be successful in retrieving the full / partial

key from a fabricated chip (Subramanyan et al., 2015) efficiently.

1.3.0.2 Physical attacks on unlocked chips

The algorithmic attack assumes the attacker to have access to the input/output of an unlocked chip,

but no access to the key memory cells. Such an assumption is held by most obfuscation schemes, em-

phasizing that the memory cells where the key is stored on chip can be made tamper-resistent. However,

physical access attacks do pose a powerful threat when the attackers are equipped with strong tools

and abundant funds (Joye, 2009) (Stanojlovic and Petkovic, 2010) (Samyde et al., 2002) (Rakers et al.,

2001) (Tiri et al., 2002) (Moore et al., 2003) (Iyengar et al., 2016) (Rostami et al., 2013) (Skorobogatov,

2009) (Skorobogatov, 2010). Even if only a portion of all the key cells are gained, in a statistical way,

such information could still be used to aid the algorithmic attack to accelerate the cracking of the rest

of the key tremendously. Even though such physical attacks are harder to carry out, and their results

are probabilistic rather than deterministic, their existence has to be taken into account and modeled with

their strongest form, to provide a solid ground of defense mechanisms. For the proposed research, we

categorize the physical attack approaches based on what they are able to achieve, in the obfuscation

paradigm, rather than how they are carried out.

Write-in of Key cells: A write-in attack is defined as for an attacker to set the value of some key

cells of an unlocked chip, independent of the ability to read out their values. This is possible, as there

needs to be a mechanism for the designer to write in the key into all the chips in the post-manufacturing

stage. The same mechanism to write-in might be exposed to the attacker, even if the designer tries
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to remove the channel after the unlock process, because strong invasive schemes are possible from a

manufacturer, such as a hidden write-access at the manufacturing stage, or via advanced tools such as

radiation, etc. (Skorobogatov, 2009) (Skorobogatov, 2010).

Such write-in access can be used to efficiently help an algorithmic attack: an attacker can try out

a specific value (say 1) by writing it into the key cell of an unlocked chip A, and then test it out for a

number of input combinations and against another unlocked chip B with the correct key. During this

process, a single mismatch can verify that the trial value (1 for example) of the target key cell is wrong,

and therefore the true key value should be the opposite (in this case 0). In the case that no mismatches

are found for a while, the inserted value is likely to be the actual content of the target cell, and the

attacker can write in the opposite value into the same cell to seek for a mismatch as verification. This

way, the attacker has a large probability of cracking a portion of the key cells within a limited number

of trials.

Read-Out of Key cells: Undoubtedly, the most desirable ability from an attacker’s point of view is

to read out the values of key cells, from an unlocked chip. This is possible for powerful attackers - to

probe and read out the content of the key memory directly, with approaches such as Side-Chanel attacks

despite being expensive and inexact, to at least read out a portion of the key (Joye, 2009) (Stanojlovic

and Petkovic, 2010) (Samyde et al., 2002) (Rakers et al., 2001) (Tiri et al., 2002) (Moore et al., 2003)

(Iyengar et al., 2016) (Rostami et al., 2013).

In the extreme case of a completely leaked key, assuming a common key is used to obfuscate all

the chips, the attacker achieves the ultimate goal of cracking the obfuscation scheme: an untrusted

manufacturer can then fabricate more chips and directly use the leaked key to unlock them for sale.
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Overall, regardless of the various ways that an attacker might have to read out the content of the protected

memory on chip, such a capability needs to be considered in a worst-case scenario, to construct a

provably strong defensive mechanism.

1.4 Organization

The organization of this dissertation is as follows. Chapter 2 deals with the algorithmic attacks by

proposing a novel protection scheme, called Entanglement: 1) the algorithmic attacks are prevented by

forcing the attacker to solve a huge number of problems of high computational complexity; 2) the attack

cost (in terms of computational complexity) is quantitatively controllable at the designer’s end, with

low hardware overhead: while the cost of attack can be increased exponentially, the hardware overhead

imposed on the designer’s side grows only linearly.

Chapter 3 lays out the foundation for preventing the physical attacks by proposing the idea of “group

formation” to exploit the nano-scale analog disorders of devices for making “strong” Physically Un-

clonable Functions (PUFs) . PUFs are an emerging technology that could play the key roles in various

security applications. Depending upon the size of its truth-table, i.e., the search space for an attacker to

fully specify its behavior, a PUF can be categorized as either “weak” or “strong”. This chapter presents

a scheme for making a strong PUF based on Spin-Transfer Torque Magnetic RAM (STT-MRAM), an

emerging nano-electronic memory device. In the end, this chapter sheds light on how to make a strong

PUF in general, by extending the idea of group formation beyond the STT-MRAM devices.

Chapter 4 proposes a strong PUF-based hardware obfuscation scheme to effectively prevent IC

piracy even in the case of a leaked key from some activated chip. To ensure that each chip has a

unique key, PUFs have been proposed to be integrated with hardware obfuscation. Such a paradigm
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is constrained to use weak PUFs, because, to uniquely set the key (the content of the configurable

module) for each chip, the designer needs to fully characterize the PUFs for all the chips. In this

chapter, we argue that a powerful attacker in the position of a manufacturer can fully characterize all

the weak PUFs, and use any leaked key to break the obfuscation framework. This chapter proposes

to employ strong PUFs (with huge search space of truth-table) into the obfuscation framework, against

such an attacker/manufacturer. While it is impossible for an attacker to fully characterize the strong

PUFs, the main challenge becomes ensuring that the designer does not need to bear the burden of fully

characterizing the strong PUFs to generate a unique key per-chip. This is achieved by employing an

Obfuscator block into the design, which enables the designer to select an arbitrarily subset of the strong

PUF to work, while guaranteeing that the architecture does not reveal to the attacker/manufacturer of

the choices made by the designer.

Chapter 5 concludes this dissertation.



CHAPTER 2

HARDWARE OBFUSCATION THROUGH ENTANGLEMENT AGAINST

ALGORITHMIC ATTACKS

Parts of this chapter have been presented in (Khaleghi et al., 2015). Copyright c© 2015,
IEEE.

2.1 Introduction

In the past, the IC industry involved the vertical chain of chip manufacturing model, where all the

steps, such as design, synthesis, verification, fabrication and test of IC’s, were carried out in presum-

ably trustable facilities. However, the continuous decrease in feature sizes imposes the huge cost of

upgrading fabrication facilities to meet the growing technological requirements for modern IC fabrica-

tion. Furthermore, due to the increased time-to-market pressure for many high-speed and low-power

IC’s, it is no longer feasible for companies to carry out all the levels of design single-handedly (Roy

and Koushanfar, 2008). This has led to the formation of a series of pure contract silicon foundries that

specialized in IC fabrication. Consequently, many renowned semiconductor companies have become

completely fab-less today.

Globalization of the semiconductor industry has raised serious concerns about trustworthy hardware.

Since IC designers no longer have complete control over the manufacturing process, a design is prone

to various “hardware attacks”, such as IC Piracy and Reverse Engineering (Roy and Koushanfar, 2008),

(Torrance and James, 2011): IC piracy usually refers to an untrusted manufacturer, producing more chips

17
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than authorized at a marginal cost, and selling them illegally. Furthemore, an untrusted manufacturer

can also steal the design information by employing various reverse engineering techniques.

A strong IC protection scheme must be resilient to a powerful attacker (in the position of a manu-

facturer), with strong knowledge, tools, and facilities. Similarly to the modern cryptography schemes,

hardware security should rely solely on the secrecy of a certain key, rather than the secrecy of the scheme

itself. Based on these assumptions, we adopt the following threat models:

• Who is the attacker? When does the attack happen? We assume the attacker enters after the

creation of the gate-level netlist. It could be any party in the untrusted IC manufacturing chain,

which has access to any forms of a design (such as layout, mask, etc.) that is revealed during

these stages.

• What is the goal of the attacker? We assume that the attacker aims to either gain knowledge of

the design (reverse engineering), or produce illegal copies of the functioning IC’s (piracy).

• What are accessible by the attacker? How does it attack? We assume the attacker to have: 1)

the complete knowledge of the gate-level netlist; either by direct access from the IC design or

by reverse engineering of the layout, mask, or a manufactured IC. 2) the power of performing

simulation, modifying the design, and manufacturing IC’s according to a modified design; 3) full

knowledge of the security scheme, except for some “key” that can be kept secret by the designer;

4) access to functional IC’s, purchased from the open market, which have been activated by the

designer.



19

The Design Withholding category of techniques work by selecting and replacing a small portion of

the design with a reconfigurable block, so that the manufactured chips will not function properly, until

they are activated in a trusted facility (Baumgarten et al., 2010), (Zamanzadeh and Jahanian, 2013).

Generally, the most powerful way for an attacker to recover the withheld piece is to apply algorithmic

attacks on the available part of the design. This actually translates into the practice of solving a number

of problems of NP-Complete or higher complexities. We argue that purely relying on the complexity of

such problems does not form a strong protection foundation, as these problems might be solvable in a

short amount of time under many non-worst-case scenarios.

The proposed work in this chapter substantially strengthens the framework of Design Withholding

by what we refer to as Entanglement. The proposed scheme does not rely on the difficulty for an attacker

to solve some problems of high complexities, but rather, on the exponentially boosted number of such

problems that an attacker has to solve. Entanglement gives the designer the full control of scaling up

the attacking cost exponentially, at a linearly increased hardware cost.

Two ways of Entanglement are proposed: 1) the “External Entanglement” technique can exponen-

tially boost the number of NP-Complete/NP-Hard problems needed for an attacker to solve, for a small

withheld function of a design; 2) the “Internal Entanglement” technique decomposes a large withheld

function into multiple pieces, such that the necessitated hardware on the designer’s side is efficiently

shrunk, while the attacking cost remains huge as that of the original withheld large piece.

2.2 Previous Works

IC Piracy and Reverse Engineering are highly difficult to address, because of the strong position of

an untrusted manufacturer: the manufacturer is in full control of analyzing and modifying the design at
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the final stage for manufacturing. Unsurprisingly, existing IC protection techniques proposed in the past

are mostly passive or ad-hoc solutions.

In the category of watermarking-based approaches, a designer’s watermark is embedded upon fab-

rication and cannot be removed from the IC. When an illegal copy of a design is found, the designer

will retrieve the watermark in litigation to claim the ownership of that design (Kahng et al., 1998a)

(Koushanfar et al., 2005) (Kahng et al., 1998b) (Lach et al., 1998), (Rostami et al., 2013). Fingerprint-

ing1 techniques work by embedding both the designer’s watermark and the buyer’s signature in the

design. Not only can the designer claim the ownership of a design, but it can also reveal the source of

piracy by retrieving the buyer’s signature (Caldwell et al., 2004) (Holcomb et al., 2009) (Ruhrmair et

al., 1011). Such schemes can passively provide mechanisms for detection of illegal copies, yet cannot

prevent reverse engineering or IC Piracy from occurring.

Obfuscation-based approaches, on the other hand, aim at “hiding” the design from potential attack-

ers with extra obfuscating hardware, so that no manufactured IC can function correctly, unless being

activated by its designer. Since the designer is the only one who knows the correct key, it can control

the number of functioning IC’s, and prevent untrusted manufacturer from conducting IC piracy (Roy

and Koushanfar, 2008),(Rajendran et al., 2012b), (Alkabani and Koushanfar, 2007), (Chakraborty and

Bhunia, 2008) (Chakraborty and Bhunia, 2009). Most obfuscation-based approaches try to ensure that

the required effort for an attacker to obtain the correct key is computationally impractical. However,

since the entire design, despite being obfuscated, is available to the manufacturer, if the attacker is able

to identify the part of the design dedicated for the obfuscation purpose, a functioning IC might be pro-
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duced by discarding the obfuscating circuitry entirely, thus bypassing the difficult path of searching for

the key to unlock the obfuscated design.

The category of withheld-based approaches, on the other hand, try to ensure that the entire design

is not made available to the manufacture, thus taking away the opportunity for the attacker to gain the

full knowledge of the design. Usually, some part of the design is replaced with several lookup-tables

(LUT’s), which will be configured in a trusted facility after manufacturing of the chips (Baumgarten

et al., 2010), (Bao and Wang, 2014). Another technique in a similar direction works by withholding a

part of the wiring topology during the design process, and inserting the correct wiring topology after

fabrication (Zamanzadeh and Jahanian, 2013).

In fact, the obfuscation-based techniques can be covered in the withheld-based framework, making

it easier to use the latter to develop theoretical foundation for trustworthy schemes. Furthermore, as

opposed to the obfuscation-based approaches where the entire (obfuscated) design is made available

the manufacturer, some parts of the design are never given to the manufacturer in the withheld-based

approaches. This provides a stronger position for the withheld-based approaches to take away the op-

portunity for piracy and reverse engineering. Nonetheless, as we will show in the next section, the

withheld-based techniques are susceptible to a category of algorithmic attacks, called ATPG-based at-

tacks, and are not scalable due to the imposed hardware overhead on the designer’s side.

2.3 Preliminaries and Motivation: Design Withholding Framework

In this section, we provide the models for the Design Withholding framework as a basis to build up

the proposed Entanglement schemes. We also present the models and costs on both the attacker’s side

and the designer’s side.
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Figure 6: An example, where a part of a design (including 2 inputs and 1 output) is replaced with a LUT on chip.

2.3.1 Withholding a single-output function

Suppose the circuit in Fig. 6(a) is an original design that needs to be fabricated, with a part of

the design (shown in the rectangle) to be withheld from the manufacturer. Since the withheld piece is a

Boolean function (y= x̄1+x2) with 2 inputs and 1 output, it can be replaced by a 4:1 lookup table (LUT)

on chip, as is shown in Fig. 6(b). Without the correct content of the LUT, none of the manufactured chips

will work as designed, until the LUT is configured inside a trusted facility, according to the withheld

function.

To recover the original design, an attacker needs to find the key: the content of the LUT. For the

chips on the market that have been activated, there is no direct access for the attacker to probe or observe

the securely stored content of the LUT. Nonetheless, the attacker does have access to the primary inputs

and outputs of such legally activated chips.

With the help of a fully activated chip and the partially available design (everything except for the

withheld part), the attacker can perform an “ATPG-based” attack. For example, in order to find out
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the value of the first cell in the LUT, the attacker needs to first activate its address by finding an input

combination that makes x1 = x2 = 0. There are two input combinations that can satisfy this condition:

(I1 = I2 = I3 = 0) or (I1 = I2 = 0, I3 = 1). Both patterns can select the value of the first memory cell to

the wire y. The next job of the attacker is to make sure that this value at y is propagated to the primary

output of the circuit. It turns out that the first input combination (I1 = I2 = I3 = 0) would not work: it

will block the propagation of signal y, i.e., the primary output of the circuit would be dominated by the

value of the other input bit of the final AND gate (signal z), which is 0. On the other hand, the other

input combination (I1 = I2 = 0, I3 = 1) can successfully reveal the first bit of the LUT to the primary

output.

In general, for every single bit of the LUT, the attacker needs to solve for the primary input com-

bination, such that: 1) the address for the specific cell is selected, and 2) the value of this cell can be

propagated (in its original or negated form) to one of the primary outputs. If such an input combination

can be found, it can be applied to the primary inputs of the activated chip, and the content of the target

cell will be revealed at the output end of the activated chip.

This problem is equivalent to the classical problem of Automatic Test Pattern Generation (ATPG)

in IC testing, which is of NP-Complete complexity (Abramovici et al., 1990). In general, for every

single bit of the LUT, an attacker has to perform such an “ATPG-based” attack, with the goal of finding

a certain combination of the primary inputs to “stimulate” a cell, while at the same time, “propagate”

the cell’s content to one of the primary outputs. This process can be done for every cell in parallel, to

finally recover the withheld function of the design.
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Figure 7: Withholding a multi-output function to elevate each attack from NP-Complete to NP-Hard complexity.

2.3.2 Withholding a multiple-output function

Fig. 7(a) shows an example of withholding a multiple-output function with 3 inputs (x1,x2,x3) and

2 outputs (y1 and y2). Accordingly, a LUT with 16 memory cells is required to replace the 2-output

withheld function (8 cells for each output), as is shown in Fig. 7(b).

We argue that the change from a single-output to a multiple-output function has made a qualitatively

different problem to solve for an attacker. This is due to the correlation between the multiple output

bits (y1 and y2). For example, as is shown in Fig. 7(b), in order to find the value of the right column of

the first address in the LUT (shown as the “Target cell”), the attacker needs to solve the primary inputs

to: 1) activate the address of x1 = x2 = x3 = 0, and 2) propagate the value of the Target cell from y1

to the primary output of the circuit. However, any input combination that activates the Target cell at y1

would also activate the cell of the left column at y2 (shown as the “Correlated cell”) at the same time.

The value of this cell is unknown to the attacker, despite the fully specified primary inputs. Due to the

correlation between these two cells, an attacker cannot solve each of them independently, or in parallel.
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Instead, each has to be modeled as a distinct unknown variable in the ATPG algorithm to be solved at

the same time.

Propagating the value of the Target cell in the presence of the unknown values of many Correlated

cells is qualitatively different, and a harder problem to address, because keeping track of all the un-

known values’ symbolic computation simultaneously will quickly become intrackable as the number

of unknown values increases. Alternatively, if the attacker does not keep each unknown as a dedicated

variable, the computation will quickly lose precision, because to too many signals of unknown values

are mingled together. For example, the attacker cannot determine the output of the XOR gate (signal z),

because both of the inputs of this gate (y1 and y2) have unknown values. In other words, as opposed to

the case of a single-output function, the attacker cannot propagate the value of the Target cell (y1) to the

next level (z), due to the unknown Correlated cell (y2) that is not accessible by the attacker.

Such an ATPG problem with unknown values is of NP-Hard complexity (Erb et al., 2013), and is

significantly harder than the single-output function case, which is of NP-Complete complexity. Further-

more, it is also shown that most existing deterministic ATPG tools are not able to handle such tasks

efficiently (Erb et al., 2013).

2.3.3 Challenges for design withholding framework

In this section, we provide the cost analysis for the designer (in terms of hardware) and for the

attacker (in terms of computational complexity) to crack the Design Withholding scheme.

Assuming that the withheld function has n inputs {x1,x2, ...,xn} and m outputs {y1,y2, ...,ym}, it

can be modeled by an LUT with n selection lines (addressing to 2n memory cells), and m output lines.

Accordingly, 2n×m memory bits are needed, in addition to the MUXes, constituting the hardware cost
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for the designer. On the other hand, an attacker has to solve 2n×m problems, each with NP-Complete

(for m = 1) or NP-Hard (for m > 1) complexity.

However, it is dangerous for a protection scheme to rely solely on the hardness of NP-Complete/NP-

Hard problems, per se, because even though such problems can take exponentially scaled time to solve

in the worst case, they could be easily solvable in some of the best cases, when constraints are not

stringent (Fujiwara and Toida, 1982). Consequently, there is no guarantee that an attacker, aided by

powerful ATPG tools, cannot obtain the desired information within a reasonable time limit.

In order to achieve a theoretically sound barrier, the designer should rely on the number of NP-

Complete/NP-Hard problems for an attacker to solve, rather than the difficulty of solving the problems

itself. Scaling up the number of such problems essentially means to increase the number of memory

cells to crack. Since the memory stores the truth table of the withheld function, the increase in the

number of memory cells is exponential to the size of the withheld function. However, the hardware

cost for the designer to implement the withheld piece grows at the same exponential rate, making it

unrealistic for a designer to bear the cost.

As an example, if the designer wants to double the number of ATPG-based attacks by withholding

one more input signal (thus doubling the truth table of the original plan), the size of LUT would double

to be 2n+1×m. Such a doubling in search space of the attacker is achieved at the cost of doubling the

hardware on each chip. This is apparently not a scalable approach to deliver a desired level of security.

2.4 Entanglement

In this section, we propose two Entanglement techniques: 1) drastically increase the cost of the at-

tacker for a small withheld function, without boosting the hardware overhead; 2) drastically decrease the
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the help of an Obfuscator; c) the attacker has to solve a much larger number of cells, due to the entanglement.

hardware cost of a large withheld function, while maintaining the high cost to attack. In both schemes,

the computational complexity for an attacker to recover the withheld information is quantitatively con-

trollable at the designer’s end. Furthermore, while the cost of attack can be scaled up exponentially, the

hardware overhead grows only linearly on the designer’s side.

2.4.1 External entanglement

As we discussed in the previous section, an ideal protection scheme must force an attacker to recover

a huge truth table, while the imposed hardware overhead on the designer should be much less. The main

idea of achieving such a goal is by introducing some “noise” or redundancy, such that one can virtually

enlarge the search space for an attacker. This can be achieved if the attacker cannot distinguish between

the added redundant part (“noise”) and the original withheld piece (“signal”). In other words, if the

attacker lacks some crucial information to identify the small subset of “signal” among the “noise”,

it will have to treat them the same way and solve them all. Meanwhile, the designer, with the full

knowledge of the signal/noise distinction, is able to pay the small cost with respect to the signal part
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only. If such a scheme can be developed at a low hardware overhead, it can successfully achieve the

goals of IC piracy and reverse engineering prevention.

Fig. 8 shows an example, for which, the withheld piece is a function with 2 inputs (x1 and x2) and

1 output (y). As is shown in Fig. 8(b), the 2 original inputs (x1 and x2) and a redundant “noise” signal

z are all fed into a programmable Obfuscator logic block. The role of the Obfuscator is to block the

noise, signal z, while propagating the original signals (x1 and x2) for an activated chip. By withholding

the configuration of Obfuscator from the attacker, it will have to work on a virtually enlarged function

of 3 inputs, thanks to the additional noise signal z, which “entangles” the original function of x1 and x2.

The Obfuscator block should also be programmed in a trusted facility, so that the original address bits

(x1 and x2) can be “disentangled” for activating the chips. In this scheme, the size of the reconfigurable

block will remain unchanged (a single-output LUT with 4 cells in this example).

Since the attacker does not have on-chip access to the Obfuscator block, it cannot identify which

of the 3 wires (among x1,x2, and z) is the redundant one. Therefore, the attack model has to model the
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much larger virtual function of 3-bit input. As is depicted in Fig. 8(c), the total search space is enlarged

to be 8 bits in this case, effectively doubling the attacker’s cost without doubling the necessitated LUT

size on the designer’s side.

Fig. 9 shows a general implementation of the Obfuscator block, where n original wires and r redun-

dant ones are entangled. This block can be implemented with n MUXes, selecting from a few inputs

either form the n original address bits or from the r redundant signals to output to an address bit of the

LUT. As long as a permutation of original wires (x1 to xn) can be obtained at the outputs of these n

MUXes, the network can be implemented with local connections. After manufacturing, the value of the

Obfuscation Controller will be set (together with the LUT) in a trusted facility, in a way such that: 1)

all the redundant noise signals are blocked; and 2) a permutation of the original wires are selected for

the LUT. Now, the “key” for the design consists of two parts that must be stored in a protected memory

on chip: the content of the LUT, and the content of the Obfuscation Controller.

Cost Analysis: The hardware cost in the general case of a withheld function with n inputs, m

outputs, and r redundant noise signals includes: the implementation cost of the LUT, of O(m× 2n)

complexity, plus the cost for the Obfuscator block, of O(n+ r) complexity (including n MUXes and the

interconnect network). Since an attacker cannot identify which of the n+ r wires are the original ones,

the attack model has to tackle an enlarged virtual LUT of n+ r address bits. This effectively boost the

total search space to be O(m×2(n+r)), which is 2r times larger than the complexity of the hardware cost

imposed on the designer’s side. Therefore, such an External Entanglement scheme achieves the goal of

blowing up the attacking cost exponentially, while maintaining the hardware cost on the designer’s side

to grow linearly only.
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2.4.2 Internal entanglement

Fig. 10(a) shows a single piece of design with 6 inputs (x1 to x6) and 1 output (y). The total number

of memory cells required to implement this function is 26 = 64. This figure also illustrates how the

target function can be divided into multiple parts, while all of them are kept entangled so that the cost

of attacking cannot be reduced. The original function is divided into two layers: the outputs of the two

pieces in the first layer (y1 and y2) are fed to the one piece in the second layer. In this example, the

withheld pieces in the first layer are two functions, each with 3 inputs and 1 output. The withheld piece

in the second layer is a function (XOR gate) with 2 inputs and 1 output. Fig. 10(b) shows the on-chip

implementation of the withheld pieces using three small LUT’s. The hardware cost, in terms of the total

number of cells in all the LUT’s, is reduced to 20.
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The interlocking way of connecting these LUT’s in 2 levels essentially forms an entanglement such

that the attacker has no way of activating and observing the value of a particular cell in any of the LUT’s.

Basically, the cells of the two LUT’s in the first layer (y1 and y2) serve as the address bits of the LUT in

the second layer. Accordingly, the attacker is only able to select an address at the first layer to activate

the outputs at y1 and y2. At this point, the attacker loses control to activate any selected cell in the second

layer, due to the fact that the values of the cells in the first layer (y1 and y2) are needed to proceed, yet

they remain unknown. Furthermore, assuming that the attacker selects one cell in each of the LUT’s in

the first layer by sending the required values to signals x1 to x6, and observes the value at signal y for

the activated chip, it does not reveal the content of any of the cells in any of the LUT’s. This is due

to the fact that the values of the cells in the first layer (y1 and y2) are unknown, even though the cells

containing those values are selected by the attacker. Accordingly, the observed value at y could belong

to any of the cells in the second layer. Therefore, as is depicted in Fig. 10(c), the attacker has to model

the entire system as one big LUT with 6 inputs (x1 to x6), and 26 = 64 cells to solve, while the hardware

cost is shrunk to be 20.

In general, the Internal Entanglement scheme employs two or more layers. In the case of having two

layers, there are k LUT’s at the first layer, with possibly different sizes (number of address bits), where

the outputs of the LUT’s at the first layer are connected to the address bits of a single LUT at the second

layer. This can be easily extended to more than two layers of LUT’s. Generally, each LUT could be a

single-output or a multiple-output function.

Cost Analysis: Suppose there are k one-output LUT’s at the first layer, each with n address bits,

and the outputs of these LUT’s are the address bits of a one-output LUT in the second layer. While
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the hardware cost on the designer’s side is O(k× 2n + 2k), the key size that an attacker has to crack

is O(2n×k). Therefore, the Internal Entanglement scheme drastically reduces the hardware cost at the

designer’s side, without affecting the attacking cost.

Overall, although each of the two proposed techniques can be implemented independently by itself,

they can be combined to form an even stronger overall protection scheme. Fig. 11 shows a schematic

design, where both entanglement techniques are combined together.

2.5 Evaluation

The effectiveness of the proposed scheme is analyzed using the ISCAS-85 combinational bench-

marks. Attacks are simulated using the Atalanta ATPG tool (Lee and Ha, 1991).

Fig. 12 verifies the fact that a strong protection scheme should not rely on the hardness of some NP-

Complete problems, by showing the runtime of various cases for the attacker. The attacks are performed

for each benchmark, on all the possible single-output withheld functions. As the figure indicates, even

though it could take a relatively long time in some of the worst cases, most of the cells can be cracked
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Figure 12: The minimum, first quartile, median, third quartile, and maximum runtime for an attacker to solve

an input pattern for each cell, in the case of withholding one piece of design with a single-output (NP-Complete

complexity) over all possible single-output functions.

in a very short time. While some of the worst cases could take up to 250ms to solve, the median runtime

of all the benchmarks is as little as 27.7ms. Apparently, even though NP-Complete problems can take

exponential time to solve in the worst case, the average cases are very easy to solve in the cases of

ATPG-based attack.

Fig. 13 verifies the effectiveness of the Internal Entanglement scheme. It shows that as the hardware

overhead on the designer’s side grows linearly, the runtime (measured by the number of cells to solve) for

an attacker increases exponentially. To verify a reasonable performance, we examine various hardware

overhead, ranging from 2.5%, to 25% of the total number of transistors. The values of k and n for the

Internal Entanglement scheme are selected to maximize the key size for the attacker. The time scale (10
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Figure 13: Attacking cost vs. Hardware cost for the Internal Entanglement scheme.

years line) is calculated using the median time obtained in Fig. 12 (28ms per cell). Even if an attacker

can employ much faster computers and perform the cracking process in parallel, the attack complexity

grows exponentially with a linearly increased hardware overhead, as is verified by Fig. 14, which shows

the same data in a logarithmic scale.

Fig. 14 shows clearly that, as the size of the circuit becomes larger, the required hardware cost

to achieve computationally impractical attacks becomes smaller. For example, while 20% hardware

overhead is required to achieve 10 years of attacking time for C2670, a 10% overhead for C7552 is

sufficient to achieve a much better protection (more than 1000 years of computation). Overall, as long

as the attacker has to spend a reasonable amount of time to solve each cell (which is a valid assumption

for the NP-Complete problems), the protection level is fully controllable by the designer, under a very

reasonable amount of hardware overhead.
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Figure 14: Attacking cost (Logarithmic Scale) vs. hardware overhead for the Internal Entanglement scheme.

2.6 Conclusions

Two Entanglement schemes are proposed in this chapter, for the withheld-based framework: 1) the

External Entanglement scheme forces the attacker to solve a hugely boosted number of problems for

a small withheld piece, at a low hardware overhead for the designer; and 2) the Internal Entanglement

scheme decomposes a large withheld function into multiple ones, such that the hardware overhead is

drastically reduced for the designer, while the cost to attack remains that of the original large withheld

function. The proposed techniques in this chapter aim at defending the design against the very powerful

and effective ATPG-based attacks, thus pushing an attacker to resort to much harder strategies such as

side-channel attacks (Rostami et al., 2013), (Stanojlovic and Petkovic, 2010) (Joye, 2009). We show

that by engaging Entanglement in the withheld-based framework, the ATPG-based attacks can be made

arbitrarily expensive with the designer’s full control. Meanwhile, the Entanglement guarantees that the
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exponentially scaled up attacking cost is feasible to achieve: the needed hardware cost at the designer’s

end only increases linearly. This scheme has laid a solid foundation for withheld-based protection

schemes against ATPG-based attacks, and provided a game-shifting paradigm to strengthen the weakest

defense against IC piracy and reverse engineering attacks.



CHAPTER 3

A NEW WAY OF CONSTRUCTING STRONG PUFS

WITH STT-MRAM AS A CASE STUDY

Parts of this chapter have been presented in (Khaleghi et al., 2016). Copyright c© 2016,
IEEE.

3.1 Introduction

While classical and modern cryptography schemes can effectively resist against powerful attacks,

they all rely on the concept of a secret key. It is usually assumed that such a key can be securely stored

in physical devices, perhaps inside some highly secure, tamper-resistant memories. In practice, how-

ever, powerful invasive and side-channel attacks can easily extract the key information form protected

memories (Herder et al., 2014) (Rostami et al., 2013)(Joye, 2009)(Stanojlovic and Petkovic, 2010).

Physically Unclonable Functions (PUFs) are an emerging technology that could play the key roles in

various security applications. Basically, PUFs can offer a unique key for every chip by deriving it from

some noisy physical characteristic of the chip. Particularly, one main advantage of PUFs is that they do

not require the key to be explicitly stored on chip; instead, they provide a challenge-response mechanism

via physical interaction, making them harder to crack for a variety of powerful attacks (Herder et al.,

2014) (Ruhrmair et al., 2010). For example, any attack on a PUF device must be attempted while the chip

is powered on; otherwise, no information can be gained. In addition, invasive attacks, which are known

to be powerful for extracting the key from a digital memory, usually affect the physical characteristics

of the IC, based on which, a PUF is built. Therefore, invasive attacks may render useless, as they would

37
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essentially change (destroy) a PUF device (Devadas et al., 2008). Furthermore, since PUFs are based

on nano-scale structural disorders, they cannot be cloned physically, even by the same manufacturing

process.

Each PUF can be essentially seen as a function, providing a unique way of mapping the challenges

into the responses. Depending upon the size of its truth-table, i.e., the search space for an attacker to

fully specify its behavior, each PUF can be categorized as either “weak” or “strong”. Weak PUFs offer

a limited search space, polynomial with respect to the number of their building components. Strong

PUFs, on the other hand, offer a huge search space, exponential with respect to the number of their

components. This makes them suitable for a wider range of security applications (Herder et al., 2014).

Spin-Transfer Torque Magnetic RAM (STT-MRAM) is an emerging Non-Volatile Memory (NVM)

that can offer low power consumption, and high scalability (Wolf et al., 2010). Process variations

are increased due to technology scaling of NVM devices, making them a good candidate for PUFs. The

work in (Zhang et al., 2014) proposes a weak PUF based on STT-MRAM, which is capable of producing

response bits with desirable randomness and reliability.

It is usually assumed that the type of a PUF, whether strong or weak, is inherently determined by

its architecture and the kind of nano-scale analog disorders, based upon which a PUF is built. In this

chapter, we will show that this assumption is not necessarily true, by presenting a scheme to construct

a strong PUF based on STT-MRAM devices. To achieve a huge search space, we propose the idea of

“group formation” to exploit the nano-scale analog disorders of STT-MRAM devices. Furthermore,

we will discuss the necessary conditions for making a strong PUF in general by extending the idea of
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“group formation”. This chapter also applies the generalized idea of “group formation” to a popular

CMOS-based weak PUF to form a strong one.

3.2 Preliminaries

In this section, we briefly explain the basics of PUF devices, and define the two primary PUF types:

“weak” and “strong”.

3.2.1 General concepts of a PUF

Due to the nano-scale structural disorders, occurring during the fabrication phase of IC production,

each chip is slightly different from the others, made with the same fabrication process. A PUF is a

physical system that presents unclonability by exploiting these slight variations. A PUF can be stim-

ulated with external inputs, called challenges, upon which it reacts with corresponding outputs, called

responses. Therefore, every PUF implements a unique way of mapping challenges to responses for a

specific IC. Since exact control over the manufacturing process is impossible, it is infeasible to build

identical PUFs with the same Challenge-Response Pairs (CRPs). Consequently, it is also presumably

impossible to predict the behavior of a PUF, unless by testing its all possible CRPs. Furthermore, PUFs

can be usually implemented with a very small hardware investment, proportional to the number of chal-

lenge and response bits. Therefore, from a hardware perspective, PUFs are easy to build, but hard to

duplicate; and from a software perspective, PUFs are easy to evaluate, but hard to predict.

In general, the potential applications of a PUF depends heavily on the number of CRPs that it can

offer (Herder et al., 2014).
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3.2.1.1 Weak PUFs

Some PUFs offer a limited number of CRPs, ranging from one (in the most extreme case) to

polynomial-sized with respect to the number of their building components.

For example, the power-on state of an SRAM cell constitutes a weak PUF (Holcomb et al., 2009).

Each SRAM cell has a tendency towards logic 1 or 0, due to process variations. Basically, every SRAM

cell has two identical positive feedback at the device level, forcing the cell to either of the states during

a write operation. If no write is performed at power-on, the more powerful feedback (due to process

variations) will force the cell into its associated state. As a result, the initial power-on state of each

SRAM cell will be either 1 or 0, making each cell a weak PUF with one CRP: the challenge is the

powering on the cell, and the response is the initial state of the SRAM cell. Note that employing more

SRAM cells would only increase the number of response bits, not that of CRPs.

Due to their limited number of CRPs, weak PUFs are mostly used for key-generation purposes in

cryptography, where a few unique keys must be generated for every chip (Herder et al., 2014) (Sush and

Devadas, 2007). However, since the entire truth-table of a weak PUF can be obtained in polynomial

time complexity, its CRPs must be kept secret to prevent the potential attackers from building up the

entire truth-table of the PUF, and emulating its behavior.

3.2.1.2 Strong PUFs

Some PUFs, on the other hand, offer a huge number of CRPs, usually exponential to the number of

their building components.

Figure 15 shows an example of a strong PUF, called Arbiter (Devadas et al., 2008). The actual

propagation delay of each Multiplexer (MUX) differs slightly from the others due to process variations.
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Figure 15: Arbiter PUF circuit: two delay paths are created based on the challenge (C1 to Cn). Depending on the

arrival times of the rising edge at the inputs of the D-FF (arbiter), the response (R) could become either “1” or

“0”.

A signal transition, say from 0 to 1, will propagate through two different paths of MUXes, determined by

the challenge (C1 to Cn). Each challenge bit feeds in a set of two MUXes that are positioned vertically,

so that the two selected paths would not share any of the MUXes. Depending on the order of arrivals

of the rising edge at the terminals of the D-Flip Flop, the response bit (R) would be either 0 or 1. In

this PUF, the challenges are the selection of any two complementary paths, a total of 2n possible CRPs,

where n is half the number of MUXes.

Due to its huge number of CRPs, the security of a strong PUF does not rely on keeping its CRPs

secret, but rather on the fact that recovering the entire truth-table of the PUF in a reasonable time

is infeasible. Consequently, they can be employed in a wider range of security applications, such as

authentication and logic obfuscation (Herder et al., 2014).
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Figure 16: (a) MTJ device structure and its resistance model; (b) The complete structure of an STT-MRAM cell

3.2.2 STT-MRAM devices

Spin-Transfer Torque Magnetic RAM (STT-MRAM) is an emerging nano-electronic memory device

that can offer significant performance improvement and power reduction (Wolf et al., 2010). Figure 16

shows the architecture of an STT-MRAM device. As it is shown in Figure 16(a), the storage part of

the device is a Magnetic Tunnel Junction (MTJ), consisting of three layers: two ferromagnetic layers,

separated by an insulating oxide layer. One of the ferromagnetic layers, called the “fixed layer”, has a

fixed magnetization vector in any operating condition, while the other one, called the “free layer”, has

a magnetization vector that is free to switch between two directions. Accordingly, the MTJ cell has two

states, shown in Figure 16(a):

1. Parallel (P): when the magnetization directions of both ferromagnetic layers are the same, the

MTJ cell has a low resistance, associated with logic 0.
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with the same magnetization; (b) The complete architecture of the PUF.

2. Anti-Parallel (AP): when ferromagnetic layers have opposite magnetization directions, the MTJ

cell has a high resistance, associated with logic 1.

Figure 16(b) shows a commonly used structure of an STT-MRAM cell. By allowing a current to

flow through the device, this structure enables both Read/Write operations without relying on an external

magnetic field. The magnetization direction of the free layer, which specifies the logic value of the cell,

is determined by the direction of the current flow through the device. By comparing the resistance of a

cell with a fixed reference resistance, the value of the cell, either 0 or 1 (P or AP) can be determined.

3.2.3 An STT-MRAM based weak PUF

Due to process variations, the equivalent resistance of an STT-MRAM cell in either of its states (P

or AP) would be slightly different from those of the other cells (Zhang et al., 2014) (Wolf et al., 2010).

Figure 17 depicts the architecture of a weak PUF based on the idea presented in (Zhang et al., 2014).
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The main idea behind this PUF is to compare the resistance of two cells, set to the same state (either

both to P or both to AP), as shown in Figure 17(a). Depending upon which cell has a slightly higher

resistance, the response bit would be either 1 or 0.

Figure 17(b) shows the complete architecture of such a PUF: a memory composed of n STT-MRAM

cells. In this PUF, the challenges are the pattern of magnetization (P or AP) of each pair of cells, and

the responses are the outputs of the sense-amplifiers, comparing the resistances of adjacent cells. As

it is shown in Figure 17(b), every pair of adjacent cells in such a PUF must be set to the same state;

otherwise, the output of their corresponding sense-amplifier can be easily predicted by an attacker, as

state AP has a higher resistance than state P.

In order to verify that such architecture is a weak PUF, one must consider the number of CRPs that

can essentially reveal the entire truth-table of the PUF. Assuming that the outputs of all sense-amplifiers

form a single response (consisting of n/2 bits), there exist 2n/2 CRPs for such a PUF. However, most

of these CRPs are not independent from each other. In fact, the entire truth-table of this PUF can be

obtained by examining the following two CRPs: the one with every pair set to P, and the one with every

pair set to AP. All other CRPs can be predicted by referring to these two CRPs. This is due to the fact

that the value of the response bit for each pair is independent from the states of other pairs. In other

words, each pair of cells can only offer 2 valuable bits of information.

3.3 A Strong PUF Based on STT-MRAM

3.3.1 Motivation

Basically, every PUF is made by exploiting some noisy analog feature, presented at the implementa-

tion level of identically designed components. For example, the gate delays are the analog feature used



45

in designing an Arbiter PUF; and the resistances of the MTJ cells are the analog feature in the given

STT-MRAM based PUF example. These noisy analog features will eventually “collapse” into some

digital bits, before they can be used as CRPs for security applications.

The infinite precisions of such analog features are inherently capable of offering an unlimited num-

ber of independent CRPs. The reason why some PUFs are “strong”, while the others are “weak” has to

do with how much precision of those analog features is exploited, before collapsing them into the digital

domain. In the case of the weak PUF based on STT-MRAM cells, the resistance of a cell (an analog

value) is compared with that of another cell to form a digital response (0 or 1). If instead of comparing

two cells at a time, the resistances of a group of cells can be combined, and then compared with that of

another group, a huge number of new CRPs can be introduced, exponential to the number of cells. We

will provide two motivational examples to introduce the main elements that will be used in the proposed

strong PUF.

1) Group Formation

The main idea of combining the resistances of a group of cells, before collapsing them into a digital

signature, is to compare their overall resistance with that of another group. This is demonstrated with

an example shown in Figure 18(a). This Figure shows a memory with 6 STT-MRAM cells, all of which

are set to a same fixed magnetization (P in this case). The functionality of the Group Formation Block

is to allow the formation of two 3-cell groups, so that the overall resistances of the two groups can be

compared to form a response bit (signal R). Based on the number of choices for the two groups, the total

number of CRPs becomes 1
2

(6
3

)
= 10.
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Figure 18: (a) The idea of forming 2 groups to increase the number of CRPs; (b) An example architecture for

implementing the Group Formation Block for a PUF with 6 cells.

Figure 18(b) shows the architecture of the Group Formation Block. The two groups of cells (Group

1 and Group 0) are each connected to one port of the sense-amplifier. Each cell i can be selected to join

either Group 1 or Group 0, by setting its corresponding challenge bit Ci. For example, if the first cell is to

belong to Group 1 (connected to negative port of the sense-amplifier), then, its corresponding challenge

bit must be set to 1 (C1 = 1), so as to turn ON its corresponding switch in Group 1. It must be noted that

a cell cannot be connected to both groups at the same time, due to the fact that the current division for

each cell must be avoided. This is achieved by using 6 challenge bits (C1 to C6) to control 12 switches,

in such a way that if the corresponding switch of any cell is ON for one group, the corresponding switch

of the same cell for the other group is OFF, and vice versa.
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2) Bit Pattern

Besides allowing the formation of two groups with multiple cells, another dimension to increase

the number of CRPs is changing the bit pattern (magnetization vector) of cells. Even though such a

dimension was used as the basis of the previous weak PUF, it was only exploited to a very limited

extent. Under the group formation framework, changing the bit pattern of cells can significantly boost

the number of CRPs.

Figure 19(a) shows an example of changing the bit patterns for a PUF with 6 STT-MRAM cells. In

this example, each group has two cells in state P and one cell in state AP, which makes their resistance

comparison able to serve as a PUF response bit. Figure 19(b) shows another valid CRP by changing

both the groups and the bit pattern of the cells. Figure 19(c) is an example of an invalid CRP, because

the total resistance of Group 1 is predictably larger than that of Group 0, as there are two cells in state

AP in Group 1, while all the cells in Group 0 are in state P. Even though not all the CRPs are valid in

such a PUF, there exists ∑
3
i=0

(3
i

)2
= 20 valid CRPs for every single selection of two groups, enabled by

changing the bit patterns of cells.

3.3.2 Architecture

The overall architecture of the proposed strong PUF, which is based on the ideas of group formation

and changing the bit patterns, is depicted in Figure 20(a). Similar to the motivational examples, this

architecture supports the combination of n/2 cells per group. By setting the challenge bits (C1 to Cn),

two groups of resistances would be connected to the two ports of the sense-amplifier. Then, the overall

resistances of these two groups are compared to form a single response bit.
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Figure 19: (a)(b) Examples of valid CRPs by changing the bit patterns and group formations; (c) An invalid CRP:

Group 1 with two AP’s and one P has a higher resistance than Group 0 with three P’s.

Figure 20(b) shows an example of choosing a CRP for a PUF with 6 STT-MRAM cells. In this

example, the cells 1, 2, and 4 are selected to form Group 1 (by setting C1 =C2 =C4 = 1), and the other

three cells are selected to form Group 0 (by setting C3 =C5 =C6 = 0).

It must be noted that in such architecture, the overall resistance of each group is the equivalent

parallel resistance of all the cells in that group. Consequently, the overall resistances of Group 1 (rG1)

and Group 0 (rG0) in Figure 20(b) are determined by the following equations:

1
rG1

=
1
rP

1
+

1
rAP

2
+

1
rP

4
and

1
rG0

=
1

rAP
3

+
1
rP

5
+

1
rP

6
(3.1)

Since the overall resistances of the two groups must be equal in theory, the following constraints

must be satisfied when selecting these groups:
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P’s and one AP.

1. the number of cells in each group must be equal to n/2; otherwise, the groups would be unbal-

anced and not useful. 1

2. the number of cells in states P and AP must be equal in both groups; otherwise, the group with

more cells in state AP would have a higher resistance, and the response can be predicted.

1It must be noted that the proposed architecture does not allow the formation of groups with equal number of
cells, other than n/2 cells per group. This is to avoid the CRP information of the smaller groups to be used for
determining that of the larger ones, which can be exploited by an attacker to characterize the PUF.
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3.3.3 Analysis

To prove that the proposed PUF is in fact a strong one, we need to show that the number of CRPs

is exponential (or larger) with respect to the number of elements in the PUF. As it was motivated in the

previous section, each challenge in this PUF consists of 2 parts:

1. Group Formation: A part of challenge (C1 to Cn) selects two groups of cells to be connected to

the two ports of the sense-amplifier. Taking into account the 1st constraint above, there are 1
2

( n
n/2

)
possible combinations of these groups for a PUF with n cells.

2. Bit Pattern: A part of challenge (initialization of STT-MRAM cells) specifies the state of each

cell. Taking into account the 2nd constraint above, for a certain selection of the two groups (each

with n/2 cells), the total number of possible combinations for the states are ∑
n/2
i=0

(n/2
i

)2
.

By putting together these two factors, the total number of CRPs for the given PUF is given as

follows:

1
2
×
(

n
n
2

)
×

n/2

∑
i=0

(n
2
i

)2

=
1
2

(
n
n
2

)2

(3.2)

It can be shown that the total number of CRPs, given in Eq. 3.2 grows faster than exponentially (facto-

rial growth) with respect to the number of cells in the memory. As it was illustrated in the motivational

examples, the information of none of these CRPs can be used to determine the responses of new chal-

lenges; thus, the proposed PUF is in fact a strong one.

In terms of hardware cost, only a single sense-amplifier is needed, compared to the n/2 sense-

amplifiers in the weak PUF. 2n switches are required for implementing the Group Formation block. In
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Figure 21: The quality of the proposed strong PUF with respect to three parameters: (a) Inter-chip Hamming

distance: measuring the randomness among different chips; (b) Hamming weight: measuring the randomness

among various bits of a same response within a same chip; (c) Bit aliasing: measuring the randomness for each

response bit among various responses within a same chip.

terms of time overhead, the previous weak PUF can generate n/2 response bits at one cycle. For the

proposed strong PUF, one bit is generated per clock cycle. Nevertheless, this time overhead is not an

important issue in most of the security applications, especially due to the fact that at any time, one would

only require to examine a few CRPs.

3.4 Evaluation

The purpose of this section is to verify the quality of the proposed strong PUF. Basically, a good PUF

must offer maximum randomness of the responses within a chip (intra-chip uniqueness), and among

different chips (inter-chip uniqueness). In other words, applying various challenges to a same PUF

must generate random responses. Furthermore, applying the same challenges to various PUFs must

result in random responses as well. Such uniqueness is usually measured by metrics such as Hamming
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Distance, which shows the number of positions at which the two responses are different. In a fully

random distribution (the ideal situation), the Hamming distance is equal to 50%.

Since the proposed strong PUF can generate one response bit per challenge, every 1024 response

bits are treated as one response to measure intra-chip randomness. A total of 100 chips, each with

1000 CRPs are studied in this experiment. All simulations are performed in MATLAB by adopting the

mathematical models of STT-MRAM devices from (Zhang et al., 2014).

Figure 21(a) shows the distribution of the inter-chip average Hamming distance for 100 chips. Ba-

sically, the average Hamming distance between every possible pair of chips is calculated by computing

the Hamming distances of the same CRPs for every pair of chips. Then, the distribution of the average

Hamming distance is plotted. As it can be seen from the graph, the median of this distribution is 49.99%,

which shows a promising inter-chip randomness.

In order to evaluate the intra-chip randomness, two metrics are employed: 1) Hamming Weight,

which measures the randomness of bits within the same response for a certain chip; and 2) Bit Aliasing,

which measures the randomness of bits, placed at the same position among different responses for a

certain chip. Figure 21(b) plots the Hamming weight of every chip, which is calculated by calculating

the average Hamming weights of all possible pairs of responses within each chip. Figure 21(c) plots

the bit aliasing of each chip, based on the bit positions, calculated for every possible pair of responses

as well. As it can be seen from these graphs, the average values for both of these metrics are 50.12%,

which verifies a promising randomness within each chip as well.
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3.5 Strong PUF Beyond STT-MRAM

In this section, we will extend the idea of “group formation” beyond the STT-MRAM devices, and

discuss the necessary conditions for making a strong PUF in general.

As it was discussed earlier, each PUF is built upon some noisy analog feature with infinite precision.

To make a strong PUF, such infinite precision of those analog features must be exploited extensively be-

fore collapsing them into the digital domain, in such a way that the number of CRPs grows exponentially

with respect to the building components of the PUF. There are two necessary conditions for making a

strong PUF:

1) Device-level compatibility for group formation: The key idea for making a strong PUF is

to see whether or not, the analog feature of a given component can be combined to from a group of

components, before being collapsed into the digital domain. If so, the options of which components

to be combined into groups will greatly increase the search space of the PUF. For example, the group

formation is inherently supported by the analog feature of the STT-MRAM devices, the resistances of

the MTJ cells.

However, such a combination of components is not always supported by the analog feature of the

PUF device. For example, as is stated in section 3.2.1, the power-on state of a traditional SRAM cell is

a weak PUF. In this case, the analog noisy feature is the two identical positive feedback at the device

level, forcing the cell to either of the states during a write operation. In this example, the analog feature,

which is not accessible at any design-level higher than the device level, does not support the necessitated

feature as discussed to work in the group formation framework.
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Figure 22: (a) RO-based weak PUF circuit: the frequencies of two ROs are compared to form the response bit R;

(b) The proposed Strong PUF based on the idea of group formation: each Inverter in every pair belongs to one of

the two ROs; The highlights correspond to the first and the last pair of Inverters for C1 = 1 and Cn = 0; (c) The

two options for each pair of Inverters (1≤ i≤ n).

2) Architecture-level support to achieve exponentially large number of CRPs: Once the fea-

sibility of combining the analog feature is determined, the same principle can be adopted in various

architectures to boost the number of CRPs.

Next, we provide some insights on how to make a strong PUF in general based on the group forma-

tion scheme by presenting a case study of a popular CMOS-based PUF.

3.5.1 Case study of a RO-based strong PUF

Figure 22(a) shows an example of a popular weak PUF based on identical Ring-Oscillators (ROs),

proposed in (Sush and Devadas, 2007). The actual frequency of each RO is slightly different from the

other ones within the same chip. In such a PUF, the challenges are the selection of any two ROs, and

the responses are either 1 or 0, depending on which of the two ROs has a slightly higher frequency. This

PUF has a total of
(n

2

)
possible CRPs, which is polynomial with respect to the number of ROs.



55

As a matter of fact, not all of these CRPs are independent. For example, if RO A has a higher

frequency than RO B, and B has a higher frequency than C, then, the response from comparing A and

C can be predicted without actually examining it. Therefore, the full characterization of this PUF can

be achieved by collecting the information for as low as O(n× log(n)) CRPs, as such a characterization

problem is equivalent to the classical sorting problem.

This results in a total of
(n

2

)
possible CRPs, where n is the number of ROs. In theory, there exist n!

possible distinct PUFs for this architecture. Thus, by choosing a large enough n, it would be unlikely

for two different chips to have the exact same CRPs.

It can be seen that the analog feature in this PUF is the gate delays of the Inverters, which supports

the idea of group formation at the device level, i.e., combining a number of Inverters can make ROs with

slightly different frequencies. Figure 22(b) depicts the architecture of a RO-based strong PUF. Similar

to the proposed strong PUF based on STT-MRAM devices, it guarantees the exponential number of

CRPs by maintaining the following two conditions: 1) fixing the group size to be always equal to n (for

2n components); and 2) allowing each component to be in one of the two, bot not both, groups.

This architecture has n pairs of Inverters that play the key roles in obtaining the exponential number

of ROs. As illustrated in Figure 22(c), the status of switches for every pair of Inverters are strongly

correlated, so that if one Inverter belongs to one RO, the other Inverter in the pair belongs to the other

RO (total of two options per pair). This is to ensure that each RO has exactly n Inverters (condition 1).

Furthermore, each Inverter can belong to either of ROs, but it cannot belong to both of them at the same

time (condition 2). As an example, the highlights in Figure 22(b) correspond to the first and the last
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pair of Inverters for C1 = 1 and Cn = 0, respectively. Since there are two options for each pair of the

Inverters, there exists a total of 2n CRPs in this PUF, making this architecture a strong PUF.

In general, if the group formation is supported by the analog feature of a device, then, the imple-

mentation of the two above mentioned conditions in an architecture with 2n components can result in a

total of 2n CRPs, thus achieving a strong PUF. The first conditions essentially forbids the formation of

groups with equal number of cells, other than n cells per group. Otherwise, an attacker can use the CRP

information of the smaller groups to determine that of the larger ones. The second condition guarantees

the exponential number of CRPs by allowing each component to belong to either of the two groups; thus

doubling the search-space of the PUF for each additional component.

It can be seen that the proposed strong PUF requires additional hardware to implement the switches.

However, it reduces the number of ROs in the weak version down to two instances. It also does not

require the potentially huge MUXes, required in the weak version. In fact, depending on the number of

ROs and their sizes for a certain weak PUF, the strong version could offer a huge hardware reduction.

3.6 Conclusions

In this chapter, we present a method for making a strong PUF based on STT-MRAM technology.

Simulation results confirmed the effectiveness and uniqueness of the proposed strong PUF. We also

discussed the possibility of making a strong PUF in general, by presenting the required conditions

both at the device-level and the architecture-level. Even though the security of PUFs is still under

investigation, and it is not clear which technology could be used in which applications, the proposed

approach of group formation in this chapter is of a general framework that can be applied to a wide

range of devices for building strong PUFs.



CHAPTER 4

INTEGRATING STRONG PUFS INTO THE HARDWARE OBFUSCATION

FRAMEWORK AGAINST LEAKED KEYS

Parts of this chapter have been presented in (Khaleghi and Rao, 2018). Copyright c© 2018,
IEEE.

4.1 Introduction

The globalization of the semiconductor industry has raised serious concerns about the security of

Integrated Circuits (ICs). Since IC designers no longer have full control over the manufacturing process,

a design is prone to various hardware attacks from a malicious manufacturer. Particularly, a manufac-

turer can conduct IC piracy via producing unauthorized extra chips and/or stealing the information of a

design through reverse engineering attempts (Rostami et al., 2013) (Koushanfar, 2012).

Hardware obfuscation schemes aim at preventing IC piracy attacks by enabling the designers to

control the number of functioning chips through a post-fabrication activation process (Rostami et al.,

2013) (Koushanfar, 2012). The key idea is to withhold a part of the design and replace it with a con-

figurable module at the design stage, so that none of the manufactured chips would function properly

without being “activated” by the designer (Chakraborty and Bhunia, 2008)(Alkabani and Koushanfar,

2007)(Rajendran et al., 2012b) (Baumgarten et al., 2010) (Zamanzadeh and Jahanian, 2013). Such a

post-fabrication activation is achieved by securely restoring the withheld function back into the chips

through specifying the content of the configurable modules. Afterwards, the chips are considered “un-

locked” and can be made available to the open market. Without direct access to probe the securely

57



58

stored key (the content of the configurable module) for the activated chips, an attacker cannot recover

the entire design or overbuild illegal ICs.

Various types of hardware obfuscation approaches have been proposed in the literature. The combinational-

based schemes work by inserting additional XOR gates with configurable bits into the design that must

be set correctly to activate the chips (Rajendran et al., 2012b) (Koushanfar, 2012). The sequential-based

approaches work by inserting additional “dummy” states into the Finite State Machine (FSM), so that

the circuit functions properly only when a certain sequence of inputs (the key) is applied to the chips

(Chakraborty and Bhunia, 2008)(Alkabani and Koushanfar, 2007). Permutation-based techniques pro-

pose to scramble the interconnect network of the design, so that only the correct key can configure the

original interconnect network (Zamanzadeh and Jahanian, 2013). The withheld-based schemes work by

replacing a part of the design (the key) with a Look-Up Table (LUT) that must be configured properly

to activate the chips (Khaleghi et al., 2015) (Baumgarten et al., 2010).

The obfuscation schemes try to ensure that the required effort for an attacker to obtain the correct

key is computationally infeasible (Rostami et al., 2013) (Koushanfar, 2012). Most of these schemes

are based on the assumption that there is no direct access to the content of the key for legally activated

chips (Rajendran et al., 2012b)(Baumgarten et al., 2010)(Chakraborty and Bhunia, 2008)(Rostami et al.,

2013). In practice, however, powerful invasive and side-channel attacks can be applied for extracting

the key information from read-proof memories (Rostami et al., 2013) (Joye, 2009) (Stanojlovic and

Petkovic, 2010) (Rakers et al., 2001) (Tiri et al., 2002) (Moore et al., 2003). Ultimately, if a common

key is used across all the fabricated chips, then such a key (that must be stored on every chip) becomes
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the most vulnerable part of the entire obfuscation mechanism. In other words, a single leaked key can

compromise the entire security mechanism.

This threat motivates the approach of having a unique key for every chip, so that even if a key is

leaked from some chip, it cannot be used to unlock other chips. A promising direction to address this

problem is to use Physically Unclonable Functions (PUFs) (Herder et al., 2014). A PUF is a physical

system, built based on the inherent process variations of chips at the manufacturing stage, which can be

used as a unique signature/function for every chip. Nonetheless, engaging a PUF as a key against IC

piracy is challenging, because a straightforward approach that uses the PUF only as a signature of the

chip can be easily bypassed by the attacker/manufacturer (Alkabani and Koushanfar, 2007) (Wendt and

Potkonjak, 2014).

The hardware obfuscation schemes in (Wendt and Potkonjak, 2014) and (Alkabani and Koushanfar,

2007) propose to modify the original design and engage a PUF as a part of the circuit’s functionality.

As each chip’s PUF has a unique and unpredictable functionality, these schemes couple the PUF with

a configurable module (constituting the key), which will be individually programmed for every chip by

the designer during the post-fabrication activation process.

To program the configurable module of each and every chip, the designer needs to fully characterize

the behavior of all the PUFs for all the chips, thus is constrained to use the PUFs with a limited search

space, namely weak PUFs (Wendt and Potkonjak, 2014) (Alkabani and Koushanfar, 2007) (Herder et

al., 2014). Unfortunately, an untrusted manufacturer is in a strong position of doing the same character-

ization for all the chips before handing them over to the designer for the activation process. In this case,

when a leaked key is obtained for some activated chip, the attacker/manufacturer can easily recover
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the entire original design from: 1) the information of the leaked key, combined with 2) the pre-stored

characterization of its associated PUF.

This chapter proposes to employ strong PUFs (with huge search space of truth-table) into the ob-

fuscation framework, against such an attacker/manufacturer. While it is impossible for an attacker to

fully characterize the strong PUFs, the main challenge becomes ensuring that the designer does not need

to bear the burden of fully characterizing the strong PUFs to generate a unique key per-chip. This is

achieved by employing an Obfuscator block into the design, which enables the designer to select an

arbitrarily subset of the strong PUF to work, while guaranteeing that the architecture does not reveal to

the attacker/manufacturer of the choices made by the designer. The chapter also discusses the security

of the proposed scheme against several attacks, including the machine learning attacks (Ruhrmair et al.,

2010) that are known to be powerful for characterizing many strong PUFs in a short time.

4.2 Preliminaries

Based on the number of CRPs that it can offer, each PUF belongs to one of the following two

categories (Herder et al., 2014):

1. Weak PUFs offer a limited number of CRPs with respect to the number of their building compo-

nents, such as SRAM-based PUF (Holcomb et al., 2009).

2. Strong PUFs offer a huge number of CRPs, i.e., exponential to the number of their building

components, such as a delay-based Arbiter PUF (Devadas et al., 2008).

Since the entire truth-table of a weak PUF can be fully characterized via exhaustive evaluation, its

CRPs must be kept secret from the potential attackers. Otherwise, once the entire truth-table is obtained,
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Assumptions in this paper:

Untrusted IC ManufacturingDesign House (Trusted) Trusted Facility: Activation Process Open Market: Activated chips

Attacker/Manufacturer can: 

− access the characterization channels

− fully characterize weak PUFs for all chips

Attacker/Manufacturer cannot: 

− fully characterize strong PUFs for all chips

− control or install trojan as PUF

Designer can: 

− access the characterization channels

− fully characterize weak PUFs for all chips

− configure LUTs based on:
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− access the characterization channels

− Remove the characterization channels
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Figure 23: Flow of PUF-based hardware obfuscation: (a) A part of the design with n inputs and m outputs is

selected to be withheld as the master key. (b) The chip model with a PUF and a LUT, coupled to replace the

master key. The manufactured chips based on this model will not be functional until activated by the designer.

(c) The designer configures the LUT for each chip based on the behavior of the PUF to match the master key. (d)

Activated chips in the open market.

the PUF is no longer unpredictable or unclonable, and its behavior can be emulated in software. For a

strong PUF with an exponentially large number of CRPs, however, it is impossible to derive its entire

truth-table via an exhaustive evaluation. Therefore, the security of an “ideal” strong PUF does not rely

on keeping its CRPs secret, but rather on its exponentially huge truth-table (CRP space).

4.2.1 Machine learning attacks against strong PUFs

In theory the knowledge of a limited number of CRPs for an ideal PUF should not reveal any

information about the responses to other untested challenges. However, this is not true in practice.

As a matter of fact, machine learning classification algorithms (Kotsiantis et al., 2007) (Nasrabadi,
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2007)(Abbasi et al., 2016) (Sharifzadeh et al., 2017) (Morente-Molinera et al., 2017) can be used to

fully characterized many existing strong PUFs (Ruhrmair et al., 2010) (Becker, 2015), in which a precise

model of the PUF is built in software after examining a limited number of CRPs.

The training size of such machine learning algorithms (which translates into the attack complexity)

depends on the type of the PUF and the parameters of the PUF (Ruhrmair et al., 2010). For instance,

the Arbiter PUF (Devadas et al., 2008) can be attacked in a linear time with respect to the number of its

components. However, the training size to attack a different variant of the Arbiter PUF that uses nonlin-

earity in its architecture, known as the XOR Arbiter PUF (Zhou et al., 2017), grows exponentially with

respect to the number of its components. As a result, while an Arbiter PUF with 128 sages (components)

can be modeled in 2.10 seconds, modeling an XOR Arbiter PUF (with almost 5x hardware overhead)

requires more than 16 hours (Ruhrmair et al., 2010). Another variant of the Arbiter PUF, known as the

Lightweight PUF (Majzoobi et al., 2008), with a similar hardware cost, requires 267 days to be fully

characterized (Ruhrmair et al., 2010).

Therefore, although machine learning attacks can model a wide variety of strong PUFs in a rea-

sonable time with high accuracy, there exist promising secure PUFs against such attacks (Zhou et al.,

2017) (Majzoobi et al., 2008). Thus, the underlying assumption of this chapter is that it is prohibitively

expensive to characterize the behavior of all the strong PUFs for all the fabricated chips, where a such

secure strong PUFs are employed.

4.2.2 Weak PUF-based hardware obfuscation

The work in (Wendt and Potkonjak, 2014) engages a PUF to achieve a unique key per chip. The

basic flow is depicted in Fig. 23. It works by replacing a part of the circuit’s functionality (the master
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key), shown in Fig. 23(a), with a PUF and a Look-Up Table (LUT), shown in Fig. 23(b). The LUT for

each chip (serving as its key) will be uniquely configured by the designer in a post-fabrication activation

process, shown in Fig. 23(c), so that the combination of the PUF and the LUT is functionally equivalent

to the same common master key (withheld function) for all the chips. This approach guarantees that in

case a key (the content of the LUT) is leaked from some chip, it cannot be simply inserted into other

chips to activate them, because each LUT content is PUF-specific.

To configure the content of the LUT for each chip based on its unique PUF to achieve the function-

ality of the master key, the designer needs to obtain the PUF’s CRPs. This is done via the peripheral

characterization channels, shown in Fig. 23(c), during the activation process (Wendt and Potkonjak,

2014). Such channels provide a direct mechanism for the designer to apply the challenges and observe

the responses. Since the inputs of the master key can potentially take any values from the internal signals

in the circuit, the designer will need the knowledge of the entire CRP space (truth-table) of each PUF.

Consequently, the designer is limited to the choice of a weak PUF, because the entire CRP space of a

strong PUF is impractical to obtain.

4.3 Motivation

Based on the depicted flow in Fig. 23, in order to recover the master key, the attacker needs: 1)

the information of a leaked key from some activated chip, and 2) the entire truth-table of the PUF

for the same chip. It is usually assumed that the designer can remove all the PUF characterization

channels from the chips after the activation process, so that there would be no physical channels left to

characterize the PUFs for the legally activated chips in the open market, as shown in Fig. 23(d) (Wendt
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and Potkonjak, 2014) (Helfmeier et al., 2013). This can effectively prevent an attacker from obtaining

the PUF truth-table for legally activated chips.

However, we argue that a malicious manufacturer can nonetheless gain access to the PUF at the

fabrication stage (before sending the chips to the designer). At this stage, shown in Fig. 23(b), the

characterization channels are fully accessible. Therefore, the attacker can obtain and store the truth-

tables of all such weak PUFs for all the chips with a reasonable cost. Upon obtaining a leaked key from

some activated chip in the market, the attacker can look up the truth-table of the PUF for the leaked

chip in its database. Then, the attacker can derive the master key by combining the fully characterized

truth-table of the PUF, and the LUT (leaked key) of the chip.

This threat motivates the usage of strong PUFs: their huge CRP space makes it prohibitively expen-

sive both in terms of time and storage for an attacker to obtain the entire truth-table of all the PUFs (for

all the chips) via the characterization channels during the manufacturing stage.

However, a straightforward adaptation of a strong PUF in the architecture in Fig. 23 is not feasible,

as it would entail the same prohibitive characterization cost on the designer’s side. Furthermore, since

the functionality of the PUF is coupled with that of the LUT, switching from a weak PUF to a strong

one implies a very large master key, thus increasing the implementation cost of the LUT exponentially.

This is because adding a single input to the withheld function would double the required LUT size on

chip.

Table I compares the usage of weak PUFs vs. strong PUFs in the obfuscation framework in terms

of implementation cost of the LUT, as well as the PUF characterization costs on designer’s side and

attacker’s side. As it can be seen from the table, the main challenge of adopting either of the PUFs is
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TABLE I: Using weak PUFs vs strong PUFs in an obfuscation framework: an ideal scenario is marked out

Weak PUF Strong PUF

LUT cost

(size of master key)
*LOW HIGH

PUF characterization

for designer
*EASY HARD

PUF characterization

for attacker
EASY *HARD

that they would entail the same level of characterization difficulty for the designer and the attacker. To

achieve a secure, yet low cost obfuscation scenario, the following goals must be accomplished:

1. Small LUT size (i.e., the hardware cost).

2. Easy PUF characterization for designer.

3. Hard PUF characterization for attacker.

4.4 A Strong PUF-based Hardware Obfuscation

The key idea of the proposed scheme is to allow the designer to use a small subset of the entire CRP

space of a strong PUF at the activation stage (as if the designer is dealing with a weak PUF), so as to

maintain a low LUT cost. Meanwhile, the attacker is forced to deal with the entire CRP space of strong

PUFs. To create such a “characterization gap” between the designer and the attacker, the designer’s
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Figure 24: The architecture of the proposed scheme: by assigning Key1 for each chip, a permutation of the

original wires appears at n inputs of the PUF, and the other p inputs of the PUF are set with arbitrarily specified

values. Only a subset of the PUF with n inputs and n outputs will be used by the designer. The LUT (Key2) is

programmed to compensate for the unique behavior of the PUF. The unique key per chip is 〈Key1 , Key2〉.

selections of the subset of the PUF for each chip must be hidden from the attacker at the manufacturing

stage.

Such a secure subset selection is achieved by employing an Obfuscator coupled with the strong PUF

in the obfuscation framework. Fig. 24 depicts the main architecture of the proposed scheme. Suppose

that the master key (withheld function) has n inputs and m outputs (the same as in the case of a weak

PUF), such that 2n is a reasonable space. To maintain the same amount of hardware for implementing

the LUT, the strong PUF must have the same n outputs as the weak PUF. The number of inputs of the

strong PUF, however, is set to n+ p, in such a way that p >> n, so that the entire truth-table of the PUF

(with 2n+p CRPs) can be increased exponentially by increasing the value of p.
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Figure 25: (a) Obfuscator: By specifying the Selection bits, a permutation of n original wires, as well as p fixed

values (0 or 1) will appear at the output of the block; (b) Examples of an Obfuscator block (with n = 3 and p = 4)

to allow the designer to select any subset of the CRP space during the activation process without revealing it to

the attacker at the manufacturing stage; (c) A possible MUX-based implementation of the Obfuscator

The functionality of the Obfuscator, shown in Fig 25(a), enables the designer to use any subset

(with n inputs) of the entire CRP space of the strong PUF for each chip by fixing the values of p inputs

during the activation process, and collecting the truth-table information of the PUF with the remaining

n inputs, a total of 2n CRPs (the same as the case of employing a weak PUF). The configuration of

the Obfuscator is determined by: 1) scrambling the n original wires, signals {x1,x2, ...,xn}, such that a

permutation of them appears at the inputs of the PUF; and 2) sending arbitrarily specified values to the

other p inputs of the PUF. The specific configuration of each chip’s Obfuscator is set by the Selection

bits block, during the activation process. Fig. 25(b) shows two small examples of an Obfuscator with

different configurations.
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Overall, the Obfuscator ensures that: 1) the designer is able to select an arbitrarily CRP subset (with

n inputs) of the strong PUF during the activation process for each chip; and 2) the architecture does not

reveal to the attacker during the manufacturing stage which subset of the PUF will be selected later on.

As a result, the unique key per chip consists of two elements: 1) the subset selection of the strong PUF,

i.e., the content of the Selection bits (Key1); and 2) the content of the LUT (Key2) configured based on

the functionality of the selected subset of the PUF.

At the manufacturing stage, the manufacturer cannot identify the subset of the strong PUF that will

be used by the designer for each chip. Therefore, to get a full database of the CRP space of all PUFs,

the attacker/manufacturer has to examine and store all 2n+p possible CRPs for every PUF, which is

prohibitively costly.

At the activation stage, by specifying the content of Selection bits (Key1), n inputs of the PUF will

be connected to a permutation of the original wires of the master key, {x1,x2, ...,xn}, and the rest will

be fully specified for every chip. With the p fixed inputs, a total of 2n CRPs remains for each PUF. The

designer can then examine all 2n CRPs (as if it was a weak PUF) using the characterization channels to

determine the content of the LUT (Key2) for every chip, so that the combination of the selected subset

of the strong PUF and LUT is functionality equivalent with the withheld function.

It must be noted that while the designer needs to check 2n different CRPs to derive the unique

key of every chip at the activation stage, the attacker is forced to examine and store all 2n+p possible

CRPs (p >> n) for every PUF at the manufacturing stage. At the end of the activation process, all the

characterization channels to the PUF are removed to prevent any further characterization of the PUFs
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for activated chips. This can be achieved by laser burning access wires or burning supporting fuses

(Helfmeier et al., 2013) (Wendt and Potkonjak, 2014).

Fig. 25(c) shows a general implementation of the Obfuscator block. This block can be implemented

with n+ p Multiplexers (MUXes). Each MUX selects a few inputs (less or equal to n) from the original

inputs of the master key and the fixed values (logic “1” or “0”) to output to an input bit of the PUF.

Furthermore, this architecture can employ a relatively large number of “dummy” fan-outs, say q,

from the original gates of the design, which will be connected to the inputs of the Obfuscator block

(along with the n original signals) (Khaleghi et al., 2015). The propagation of these dummy fan-outs

will be blocked by the Obfuscator. Therefore, if an attacker wants to model the entire scheme with

a virtual LUT, the q dummy fan-outs increases the search space of the attacker exponentially (with

O(2n+q) complexity) at a linear hardware overhead of the fan-outs (Khaleghi et al., 2015).

4.5 Security Analysis

4.5.1 Attack model

The proposed scheme and discussion of this chapter is based on the assumptions that the attacker

has: 1) the complete gate-level net-list; 2) full knowledge of the security scheme; 3) access to the

activated chips from the open market; 4) access to the content of on-chip LUT (via side-channel attacks,

etc); 5) access to the PUF characterization channels at the manufacturing stage. On the other hand,

this chapter assumes that the attacker cannot: 1) access the PUF characterization channels of legally

activated chips; 2) fully characterize strong PUFs for all the chips at the manufacturing stage.
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4.5.2 Attack analysis upon a leaked key

In the proposed scheme, the unique key per chip consists of two parts: Key1, the content of the

Selection bits, and Key2, the content of the LUT. Consider the worst case that the attacker has achieved

a copy of the entire key, 〈Key1 , Key2〉, for a particular chip. It is obvious that this key cannot be used

directly to activate other chips. In order to recover the master key, the attacker has to examine the CRP

space of the subset of the PUF that is used by the designer for the leaked chip. Next, we will discuss

various possible attacks under such a scenario:

4.5.2.1 PUF characterization of chips in open market

After obtaining a leaked key 〈Key1 , Key2〉 from some chip, the attacker would be able to identify

the subset of the PUF that is used by the designer for that chip (from analyzing Key1). However, as all

the characterization channels of the PUFs have been removed at the end of the activation process, the

PUF can be no longer characterized.

4.5.2.2 PUF characterization of chips at manufacturing stage

At the manufacturing stage, the characterization channels are available to the attacker. However,

since the chips are not activated yet, the attacker cannot have the “leaked key” to help indicate which

subset of the PUF will be used. The huge CRP space of the strong PUFs ensures that it is prohibitively

expensive to exhaustively examine all the CRPs even for a single PUF. As it was discussed in section

4.2.1, it is also prohibitively expensive for a manufacturer to perform machine learning attacks on all

the fabricated chips, where a secure strong PUF is employed.
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4.5.2.3 SAT-based attacks

Without a direct way to obtain the CRP space of the PUFs, the attacker can model the entire security

block (Obfuscator, PUF and the LUT) with a virtual LUT, and then try to find the content of such LUT

by applying carefully designed primary inputs to a working chip and analyzing the values of the primary

outputs (Subramanyan et al., 2015). The key idea to overcome such SAT-based attacks is to carefully

select the withheld function at the design stage, so that the outputs of the LUTs become strongly corre-

lated (Rajendran et al., 2012b) (Baumgarten et al., 2010) (Khaleghi et al., 2015). The proposed scheme

in this work can work with many SAT-based prevention schemes to achieve a stronger framework. Fur-

thermore, the designer can increase the number of q dummy fan-outs fed to the Obfuscator (as it was

explained in section 4.4), so as to increase the cost of SAT-based attacks by enlarging the size of the

virtual LUT exponentially at a linear cost.

4.5.3 Attack complexity

The attack complexity for PUF characterization (in terms of time and storage) at the manufacturing

stage is O(2n+p) multiplied by the number of fabricated chips. If the attacker decides to bypass the entire

scheme, the attack model has to tackle an enlarged virtual LUT of n+ q address bits. This effectively

boost the total search space to be O(m× 2n+q), which is 2q times larger than the complexity of the

hardware cost imposed on the designer’s side. Therefore, the attacking costs both at the manufacturing

stage and after obtaining a leaked key can be controlled by the designer through tuning the parameters

p and q, respectively.
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4.6 Cost and Implementation Discussion

4.6.1 Hardware cost complexity

The hardware cost complexity in the general case of a withheld function with n inputs, m outputs

along with the PUF and Obfuscator includes: the implementation cost of the LUT (Key2), of O(m×

2n) complexity, plus the cost for the Obfuscator block, of O((n+ p)× n) complexity (including n+ p

MUXes and the interconnect network). The cost of the Selection bits block (Key1) would be of O((n+

p)× log(n)). The PUF architecture would have the cost complexity of O(n+ p). Overall, as it is shown

in Fig. 24, the LUT cost of implementing the withheld function will remain unchanged (compared to

the weak PUF implementation).

4.6.2 PUF reliability

One of the important factors that need to be considered for any PUF-based scheme is the noisiness

of PUF devices. It is usually suggested that using an Error Correcting Code (ECC) (Yu and Devadas,

2010) can compensate for the noisiness of the PUF. In this particular scheme, the existence of many

redundant CRPs in a strong PUF can be used to reduce (not eliminate) the cost of ECC: it has been

shown that some of the challenge bits of PUFs may show an unstable behavior for many cases. Such an

issue can be handled by avoiding the use of the unstable challenge bits of the PUF, through employing an

alternate, yet similar architecture, in which the LUT precedes the PUF. This way, the unstable challenge

bits of the PUF can be avoided by configuring the content of the LUT (Key2) accordingly.

4.6.3 Performance overhead

From the timing perspective, replacing a part of the design with a PUF coupled with a LUT can

significantly increase the delay of the overall design, if the withheld function lies in a critical path. In
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order to avoid such timing violations, one must carefully select the withheld function to avoid the critical

paths.

4.7 Evaluation

This section evaluates the effectiveness of the proposed scheme by comparing the hardware overhead

for the designer and the cost to attack. The experiments are run on a number of ITC’99 benchmarks

(Corno et al., 2000). The size of the LUT (Key2) is fixed to be 32-bit (n = 5) for all the experiments.

This is to ensure that the time complexity for the designer to derive the key is reasonable. The strong

PUF is built based on the proposed XOR Arbiter in (Zhou et al., 2017). Fig. 26 shows the attacking cost

against hardware overhead for three benchmarks 1. Two types of attacks are considered: 1) the attack

at manufacturing stage to obtain the entire-truth table information of a PUF, and 2) the attack to crack

the security scheme after the key leaks out from some chip. Different curves on each plot are derived by

increasing parameter p; thus, all points on each curve have the same attacking cost at the manufacturing

stage (equal to 2n+p CRPs). The cost to attack after a leaked key is obtained from one chip is depicted

on the y-axis in terms of the size of the virtual LUT (determined jointly by parameters q and n) that must

be cracked by the attacker.

The logarithmic scale of the y-axis in Fig. 26 indicates that the cost to attack at the manufacturing

stage and upon obtaining a leaked key can be increased exponentially at a linear hardware overhead.

Also, it can be seen that given a fixed hardware overhead, the designer can increase the difficulty of one

1The reported hardware overheads do not take into account the implementation costs of Error Correcting Codes
(ECC) to emphasize on the overhead of the proposed scheme; however, the ECC overhead must be added to the
overall overhead of the system.
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of the attacks at the cost of decreasing the difficulty of the other attack. However, the designer is in full

control of tuning the parameters of the scheme (p, q, and n) at the design stage, so that both attacks

become prohibitively expensive. Furthermore, Fig. 26 shows the scalability of the proposed scheme: A

larger circuit (b19) can achieve the same level of security as a smaller circuit (b18) at a lower hardware

overhead (6% for b19 compared to 12% for b18). Here, the total size of the key contains 312 flip-flops

for both circuits, which is reasonable compared to the total number of flip-flops in each design.

4.8 Conclusion

In this chapter, we argued that a weak PUF-based obfuscation is subject to attacks from a manufac-

turer that can: 1) pre-collect the entire truth-table of the PUFs for all the chips at the fabrication stage

with a reasonable cost; and 2) using the information of a leaked key from an activated chip, to recover

the master key. The proposed scheme engages a strong PUF in the obfuscation scheme, and therefore

relies on the prohibitively expensive cost for an attacker to characterize and store all the strong PUFs

for all the fabricated chips. While the cost to attack grows exponentially for the attacker, the hardware

cost grows linearly for the designer to adopt such a scheme, therefore making it a viable and scalable

solution against IC piracy attacks.
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CHAPTER 5

CONCLUSION

Parts of this chapter have been presented in (Khaleghi et al., 2015), (Khaleghi et al., 2016),
(Khaleghi and Rao, 2018). Copyright c© 2015, 2016, 2018, IEEE.

IC piracy is a significant security threat, where malicious manufacturers can produce unauthorized

extra chips and/or steal the information of a design through reverse engineering attempts.

As a countermeasure, hardware obfuscation schemes usually withhold a part of the design (which

thereafter constitutes the “key”) by replacing it with configurable modules, so that none of the man-

ufactured chips will function properly until they are activated in a trusted facility, where the withheld

function is restored back into the reconfigurable block on chip. Enforcing the configurable module to be

filled in with the withheld key information enables a post-manufacturing activation of each authenticate

chip allows the designer to control the number of functioning chips in market.

However, most existing obfuscation approaches are ad-hoc based, and are facing two major chal-

lenges: 1) algorithmic attacks applied on the obfuscated design, that could potentially crack the keys

efficiently, and 2) physical attacks applied on the unlocked chips, aiming at reading out the keys directly

from the on-chip memory cells.

To address these two challenges, the proposed work aims at simultaneously expanding the control of

a designer, and restraining the control of an attacker, throughout the IC design and fabrication process.

This is approached in the following ways: 1) by systematic entangling the various obfuscation primitives

in a hierarchical manner, a strong defense mechanism can be built to ensure that the cost of algorithmic
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attacks (in terms of computational complexity) can be raised exponentially, while the designer’s cost

(in terms of hardware overhead on chip) only increases linearly; 2) against the worst-case scenario of

combined algorithmic and physical attacks, a preventive architecture is proposed to deliver a unique key

per chip, via the engagement of Physically Unclonable Functions (PUFs) into the obfuscation paradigm.

The architecture and integration with the obfuscation primitives allows a PUF to be harnessed to equip

each chip with a unique key, with controls by the designer while out of the controls of a potential

attacker. This will ensure that even a completely leaked key cannot be used for piracy purposes. Overall,

the deliverable security (in terms of attack costs) and defense costs (as overhead on the designer’s side)

can be quantitatively modeled, analyzed, and proved, in an asymptotic manner, making it suitable for

the scalability of IC design, serving a strong basis for a “design against piracy” framework.
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