

Generating Control Policies for

Timed Discrete-Event Systems through

Efficient State Space Exploration

BY

FRANCESCA SCHULER
B.S., University of Illinois, Urbana-Champaign, 1995

M.S., University of Illinois, Chicago, 1997
M.B.A., DePaul University, Chicago, 2000

M.S., Illinois Institute of Technology, Chicago 2004

THESIS

Submitted as partial fulfillment of the requirements

for the degree of Doctor of Philosophy in
Industrial Engineering and Operations Research

in the Graduate College of the
University of Illinois at Chicago, 2016

Chicago, Illinois

Defense Committee:

 Houshang Darabi, Chair and Advisor
 Thomas Babin, Charter Dura-Bar

Ugo Buy, Computer Science
Julius Gyorfi, Motorola Mobility
David He, Mechanical and Industrial Engineering

ii

ACKNOWLEDGEMENTS

I would like to thank my thesis committee – Dr. Thomas Babin, Dr. Ugo Buy, Dr.

Julius Gyorfi, Dr. David He and my advisor Dr. Houshang Darabi for their support and

assistance. They provided guidance in various areas that helped me accomplish my

research goals.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

LIST OF TABLES ... iv

LIST OF FIGURES ... v

SUMMARY ... vii

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ...11

2.1 Petri net software tools ...11

2.2 State space and state space reduction ...26

2.3 Line balancing and buffer allocation optimization ..27

2.4 Queuing networks performance and blocking ...30

2.5 Flexible manufacturing ..31

3. EXACT METHODS FOR DETERMINING STATE SPACE PARAMETERS34

3.1 Model 1: N server, N+1 sequential line model with unity capacity servers and no buffer

capacity restriction ..34

3.2 Model II: N server, N+1 sequential line with reduced capacity for one buffer43

4. OPTIMIZATION FRAMEWORK FOR BUFFER CLUSTERING POLICY50

5. APPLYING MODELS TO INDUSTRY EXAMPLES ...58

5.1 Applying Chapter 3 results to distribution center example ...58

5.2 Applying Chapter 4 results to the manufacturing center ..62

6. CONCLUSIONS AND FUTURE WORK ..69

CITED LITERATURE ..72

VITA ..79

APPENDIX I: PETRI NET TOOLS ASSESSED ..82

iv

LIST OF TABLES

Table 1. Case study distribution center processes with process times 3

Table 2. Case study manufacturing production line process steps and process times 3

Table 3. Two-way variable table for MB4 ...62

Table 4. Wj buffer cluster sets and BBj values for each buffer cluster set63

Table 5. Buffer cluster sets and buffer storage savings ...65

Table 6. Wj buffer cluster sets and BBj values for each buffer cluster set (T2 = 3s)67

Table 7. Buffer cluster sets and buffer storage savings with T2 at 2 and 3 seconds67

Table 8. Number of time steps for required buffer size computations ..68

Table 9. Calculation and computation time savings varying K1 ...68

v

LIST OF FIGURES

Figure 1-1. Distribution center operational workflow ... 1

Figure 1-2. Manufacturing operational workflow ... 1

Figure 1-3. Distribution line ... 2

Figure 1-4. Manufacturing production line .. 2

Figure 1-5. Distribution center increasing cyclic pattern and stable cyclic pattern 7

Figure 1-6. N-Server, N+1 Buffer sequential line ... 7

Figure 1-7. Work cells with one or more serial stations in between .. 9

Figure 1-8. Work cells using buffer cluster concept with serial stations in between 9

Figure 2-1. Number of tools versus observed first and last year of release21

Figure 2-2. Number of tools versus support type ...22

Figure 2-3. Number of Petri net tools meeting multiple criteria ..23

Figure 3-1. Frequency of arrivals to S2 when T2 > T1 ...37

Figure 3-2. Frequency of arrivals to S2 when T1 > T2 ...37

Figure 3-3. Frequency of arrivals to S2 when T1 = T2 ...37

Figure 3-4. Frequency of arrivals to Si when Ti > MTi-1 ..38

Figure 3-5. Frequency of arrivals to Si when MTi-1 > Ti ..39

Figure 3-6. Time defined for SAi(t) from 1 through K1th arrival ...40

Figure 3-7. Maximum number of entities buffer Bi experiences given inventory K142

Figure 3-8. Buffer behavior when Bv capacity set to Lv ..44

Figure 3-9. Rules for determining impacted arrivals and departures for Bi and Si45

Figure 3-10. Time defined for BDi(t) from 1 through K1th departure ...47

Figure 4-1. Illustration of K2i, K3i, and MBi -1. ...50

Figure 4-2. Non-sequential and sequential clusters maintaining operation sequence52

Figure 4-3. Buffer profiles of Bk and Bp and time intervals 1 through 3 for p = k + 154

vi

Figure 5-1. Shift completion vs. demand ...60

Figure 5-2. MBi vs. pre flash service time (T3) ...61

Figure 5-3. Serial production line ..65

Figure 5-4. Production line with buffer clusters ..65

vii

SUMMARY

Production systems are event driven and require knowledge of timing of events across all

elements of the system particularly when developing policies for production control. A suite of

time-dependent models are derived for a class of discrete systems, in particular, an N-Server,

N+1-Buffer sequential line. First, time-dependent models for buffers and servers are derived.

From the time-dependent server and buffer arrival and departure models the maximum number

of entities any buffer in the serial line will experience across all times is derived. One

assumption is then relaxed, thereby reducing the capacity of a queue. The transition and block

times for all queues and servers are derived and time-dependent models for server and queue

arrivals and departures are developed. Lastly, a buffer cluster concept is proposed and a time

based parametric model is derived that determines the sizing of the buffer cluster. A reduced

time space for which to search for the buffer cluster sizing is derived and a model that

determines an optimal buffer clustering policy is presented. Real world production examples

are used to illustrate where the models are utilized and discuss several additional applications

and benefits of the models.

1

1. INTRODUCTION

The motivation for this research stems from real world production lines of mobile devices

including cellular phones and land mobile radios. The manufacturing facility and distribution

center provides the critical data required for the research. The data consists of the operational

workflows, process times, number of stations per process, and operator skill sets. The

operational workflow of the distribution assembly line consists of nine process steps as shown in

Figure 1-1. The operational workflow of the manufacturing production line consists of the seven

process steps as shown in Figure 1-2. Production demand varies from shift to shift.

Figure 1-1. Distribution center operational workflow

Figure 1-2. Manufacturing operational workflow

Other production lines are present, therefore space constraints exist. Buffer sizes cannot

get too large that they infringe upon on other production line activities. In the sequential line,

depending on the location of the incoming and outgoing process steps, the buffer in between

could be a pallet or a box.

2

Figure 1-3 and Figure 1-4 show the serial lines the distribution center and manufacturing

facility had in place. In these figures, the squares without a grid pattern represent server

stations where a process step occurs. The serving stations may be manual, semi-automated or

fully automated. The squares with a grid pattern represent buffers. Buffer B1 holds the initial

inventory that needs to be processed by the line. Buffers B10 (for distribution) and B8 (for

manufacturing) holds the final product inventory. A description of each process along with

service times for the manufacturing and distribution lines respectively are available in Table 1

and Table 2.

Figure 1-3. Distribution line

Figure 1-4. Manufacturing production line

3

Table 1. Case study distribution center processes with process times

Element Name Description

Process
Time per

Product Unit

S1 Part Picking
Part Picking objective is to retrieve phones from Storage so that
they can be preprocessed based on production demand. 40 seconds

S2 Pre-Work
Pre-work objective is to perform appropriate operations to the
phone prior to Pre-Flash. 240 seconds

S3 Pre-Flash
Pre-flash objective is to update specific firmware on phone prior
to Flash. 60 seconds

S4 Flash
Flash process objective is to put secondary firmware on phone
prior to Postponement. 520 seconds

S5 Postponement
Postponement objective is to perform a customized process by
which a generic or family product requires (e.g. carrier specific). 300 seconds

S6 Packing
Packing objective is to pack product based on orders (in an over
pack, with user guide, transformer, etc.). 160 seconds

S7 Consolidation
Consolidation objective is to consolidate product based on
orders, time frame and deliveries and occurs prior to Stretching. 640 seconds

S8 Stretching
Stretching objective is to wrap product deliveries appropriately
and occurs prior to Shipping. 240 seconds

S9 Shipping Shipping objective is to prepare product for delivery. 80 seconds

Table 2. Case study manufacturing production line process steps and process times

Element Name Description

Process Time
Per Product
Unit (sec)

S1 PC Board Inspection Inspects PC board 1

S2 Housing Assembly
Assembles printed circuit board into
pre-assembled housing 2

S3 Display Assembly Assembles display onto housing 4

S4
Acoustic Component
Assembly

Assembles acoustic components onto
housing 5

S5 Gasket Assembly Assembles gaskets onto housing 14

S6
Battery and Cover
Assembly

Assembles battery and cover onto
housing 10

S7 Unit Testing Tests production units 19

There are several problem areas the distribution center and manufacturing process

teams desired to investigate as a part of this research. First of all, the distribution center staff

identified key parameters to investigate: (1) the maximum buffer size allowed such that no buffer

4

exper ences block ng dur ng a sh f () he sh f where a buffer’s capac y should change o mee

the production demand changes (3) the number of units processed by a bottleneck station when

time of blocking occurs (4) the buffer transition and block time when a buffer size is reduced (5)

the reaction time to route a resource (operator or workstation) to a bottleneck process to prevent

impact to other processes (6) the time a failed machine must recover by as not to impact the

production line or the time interval which to route a resource (operator or workstation) to a failed

process (7) the maximum demand that the serial line can support given the limited shift time and

buffer sizes (8) ability to determine production line behavior with varying process times.

The distribution center team was also interested in the exploration of the deployment of

sensing and tracking technology to drive control policies as illustrated in (1) through (8) above.

For example, a control policy to route a resource to a bottleneck process within the required

reaction time to prevent impact to other processes. Or similarly, a policy is created to route a

resource to a failed machine when the machine does not re-start within the required recovery

time.

The last area of interest for the distribution center was directed toward leveraging flexible

processes in their serial line. For example, the Postponement process was flexible in that it

could occur after Pre-Flash or after the Flash process. A control policy was developed that

assessed the buffer size at the Flash process and determined whether product should get

routed to Postponement [1]. This area is discussed in detail as part of the Petri net survey in

Chapter 2.

The manufacturing process team identified that their production lines could gain

efficiencies such as increased throughput or reduced work in progress by utilizing specific

configurations while maintaining the chronological order of operations. Some of the

configurations, such as work cell or U-shaped production lines that have groups of buffers, often

increase the space utilization. Therefore, the manufacturing center could not take advantage of

the configuration efficiencies that a work cell or U-shaped production line provide. To solve this

5

problem, the concept of a buffer cluster is introduced. A time based parametric model that

determines the sizing of the buffer cluster is derived that also provides a reduced time space for

which to search for the buffer cluster sizing. The model then determines an optimal buffer

clustering policy that can be applied to any N-server, N+1 buffer sequential line configuration.

This solution minimizes the buffer storage space utilized while ensuring no overflows or

underflows occur in the buffer.

We explored the potential deployment of sensing and tracking technologies to enable

control policies to address the key parameters (1) through (8) cited above which would require a

model of the distribution center. Before creating the model, the appropriate modeling language

and tool needs to be selected. Petri nets have been used to model discrete event systems and

develop techniques for design, control and system measurement of discrete event systems.

Petri nets are thought to be the ideal formalism to create the distribution center model. As there

are several Petri net software tools available, the majority developed by university based

academic teams and some by industry, a Petri net selection process is conducted. First, Petri

net software selection criteria is developed in order to select an appropriate tool based on the

goals of the distribution center team and expansion of research into new areas. The criteria for

selecting the Petri net tool software are identified. Criteria included Petri Nets with Time,

Performance Analysis, Token Attribute Setting (Colored Petri nets), Import/Export Capability,

GUI: Editor and simulator, tool support and year of the last software tool release, operating

system and scalability. After identifying the criteria, a detailed Petri net survey consisting of

over fifty Petri net software tools is conducted that is discussed in detail along with detailed

descriptions of the selection criteria in the literature review of Chapter 2.

As a result of the survey, the ability to scale the distribution center model to include the

level of detail of interest including process times, operator skill sets, transportation times, and

over five hundred batches of units per shift, required a Petri net tool to support scalability of

500+ tokens and 500+ Petri net elements (places and transitions). The tools in the market did

6

not provide reliable results. Therefore, other discrete tools are assessed and a discrete event

tool by Mathworks, named SimEvents is identified and a distribution center model is created. A

control policy is created based on the flash buffer threshold as a trigger for re-routing product.

The analysis requires over 150 simulations to identify the optimal control policy [1]. Although an

optimal control policy is found, the system state space is not well understood as to why some

control policies work better or worse than others. This leads us to the research at hand. The

research put forward in the upcoming chapters provides methods for determining the state

space parameters in the system which would enable us to address the distribution center and

manufacturing facility areas of interest. For example, the maximum buffer capacity a buffer will

experience, the numbers of arrivals and departures from a server or buffer at any given time,

the time of transition or blocking of a buffer, the time of impact of a blocked buffer on other

buffers and servers in the system, the time or size of a buffer or server to execute a control

policy are all derived without running hundreds of simulations. This work was then leveraged to

derive a model for the buffer cluster sizing and policy to enable alternate configurations of the

sequential lines in the manufacturing center.

While working with the simulation model of the distribution center, cyclic patterns are

observed for the buffers and servers, a sample which is shown in Figure 1-5. The observations

of the cyclic patterns were utilized in Chapter 3 in deriving the exact methods to calculate key

parameters (1) through (8) identified by the distribution center team. However, the distribution

center process was abstracted such that it could expand or contract as new products are

introduced. Thus, an N-Server, N+1 Buffer sequential line shown in Figure 1-6 is considered.

Exact methods are developed that enable us to extract the parametric state space across every

workstation and buffer at a given time identifying the key parameters (1) through (8) above

without using simulation.

7

Figure 1-5. Distribution center increasing cyclic pattern and stable cyclic pattern

Figure 1-6. N-Server, N+1 Buffer sequential line

We first assume each server has a capacity of unity and each buffer has a capacity equal to or

greater than the starting inventory. From this first scenario, we derive the number of arrivals

and departures at a given time for each server and buffer. We also derive the number of

entities in the buffer at any given time and the maximum capacity a buffer will experience such

that a bottleneck does not occur.

Next, we select one buffer and determine the maximum capacity required and then

reduce the level of capacity of that buffer to create a bottleneck. We derive the equations for

determining the block time and transition times across all of the elements and determine again

the server and buffer arrival and departure models at any given time. We also present a

decision tree for determining which buffers and which servers are impacted by the reduced

capacity buffer and a pointer to the models to use for each case.

8

In Chapter 4, we use the results of Chapter 3 (related to Figure 1-6) and apply them to a

different model, a manufacturing work cell (related to Figure 1-7). In this scenario, because the

buffers were sized separately (as dedicated buffers) with respect to the serial line and grouped

in the center of the work cell, the grouped buffers were not leveraging available space in the

neighboring buffers during the production shift. Therefore, the work cell exceeded the typical

spacing between production lines due to the buffer storage space. A buffer cluster concept is

proposed transitioning the grouped dedicated buffers in the center of the work cell to a single

buffer cluster which enables increased buffer utilization and reduces the size of the grouped

dedicated buffers. This allows the facility to benefit from efficiencies (e.g., increased

throughput, work in progress reduction) by use of alternate configurations while reducing the

buffer storage space.

In the case of this manufacturing facility, as with many facilities globally, the use of a bar

code or radio frequency identification (RFID) is utilized which aids in facilitating the buffer cluster

concept. Each time product moves from one station to another, the product bar code or RFID is

scanned to ensure the prior processes are completed. Only if the prior processes are

completed is that product picked from the buffer for the operator to perform the process at that

station. Once the process is completed, the operator scans the product to inform the system

that this process has been completed and puts the product back into the buffer. The buffer

cluster may be partitioned and marked such that each station has a core area utilized by only

that station and a shared area. Operators first focus on filling their core area and then move to

shared area if needed. In an automated environment the shared area is a bin that may

automatically move product to the core areas when space becomes available.

The groups of buffers in Figure 1-7 may vary in the number of buffers within the work cell and

the number of serial stations in between the work cells as shown. The authors proposed

transitioning the grouped buffers in the center of the work cell to a single buffer cluster shown in

9

Figure 1-8 which enables increased buffer utilization and reduces the size of the grouped

buffers, reducing the buffer storage space. This allows the facility to benefit from efficiencies

(e.g., increased throughput, work in progress reduction) by use of alternate configurations. In

addition, in the case study in Chapter 5, we will discuss how sensitivity analysis of the buffer

cluster size can be conducted using the models derived herein varying parameters such as the

production demand and process times.

Figure 1-7. Work cells with one or more serial stations in between

Figure 1-8. Work cells using buffer cluster concept with serial stations in between

Once the buffer clustering policy is identified for a production line, an activity relationship chart is

created for the buffers and stations in the production line and the amount of space assigned to

each activity is determined. From the space relationship diagram, one or more feasible layout

concepts are generated. The optimal production line layout is then selected.

10

In Chapter 5, we apply all of the models created in the previous chapters to the real

world distribution and manufacturing center examples. In the final chapter, Chapter 6, we

discuss conclusions.

11

2. LITERATURE REVIEW

The class of discrete event systems of interest, in particular, the serial line as shown in

Figure 1-6, has been studied quantitatively for years with numerous publications available. In

this chapter a review of relevant literature is presented. Section 2.1 is devoted to the survey of

Petri net software tools as referenced in the Introduction in Chapter 1. Section 2.2 covers state

space research. Section 2.3 presents the quantitative analysis of production lines including the

line balancing problem, the buffer allocation problem and queuing network and performance

blocking. Section 2.4 of the literature also discusses concepts in 2.3 explored with the addition

of flexible manufacturing systems with varying configurations (U-shaped, work-cells). We

assess the literature in these areas and discuss how the research differs from the prior art.

2.1 Petri net software tools

2.1.1 Background

Discrete event systems consist of interacting components that are associated with a

function that the system is intended to perform [2]. Discrete event systems are prevalent in

several real-world applications including manufacturing, supply chain, healthcare and retail.

Individuals in industry and academia have sought to model discrete event systems and develop

techniques for design, control and system measurement of discrete event systems[2]. Such

formalisms as Petri nets have their roots as a means for providing a common mathematical

language to represent and model event driven networks. Petri nets were invented in August

1939 for the purpose of describing chemical processes [3]. Petri nets are assembled from

places and transitions. Places represent resources that can be available or not. Individual

resources are abstractly referred to as tokens[4]. In the early 1960s Petri nets were recognized

as being the most sufficient method for modeling and analyzing concurrent processes and

12

resource sharing. After exploring simple models manually, there came a need to do analysis of

more complex models and assess he model’s performance. As such here was a need for

computer software tools to enable and analyze models for larger and more complex systems.

Computer software tools for Petri net Discrete Event Simulation and Non-Petri net Discrete

Event Simulation evolved soon after and today are applied in several environments including

manufacturing and distribution [5] healthcare applications[6], customer order and workflow

systems [7] and stress or reliability analysis of a system [8] .

Although Petri nets have been used for decades as a means for modeling, simulating

and analyzing concurrent systems in several environments, the practical usage of Petri nets is

limited by the lack of computer tools which handle large and complex nets in a comfortable

way[9]. Because of the lack of computer tools, the adoption rate in industry does not compare

to that of non-Petri net discrete event system computer tools. Non-Petri net discrete event

simulation, first emerging in the late 1950s and growing steadily since that time is now

recognized as the most frequently used Operational Research techniques across a range of

industries: manufacturing, travel, finance, and health[10]. Petri net computer tools have

remained prevalent in academic environments but achieved a smaller level of adoption in

industry worldwide. One reason for the greater adoption of Non-Petri net discrete event

computer tools when compared to Petri Net computer tools, especially in industry is the

availability of stable and well supported computer tools. For Non-Petri net Discrete Event

Simulation, such tools include ARENA[11], Simul8[12], WITNESS[13], DELMIA[14] and

SimEvents [15] that allow users to model large, complex systems easily.

There have been surveys of Petri Net tools completed in past years. Most notably, a

Petri Net survey of tools [16] was completed that is also referenced by Petri Net World[17]

provides a database of about 73 tools with several categories for those who use Petri net tools

to identify what tool may be most suitable for their needs. The first category is the types of Petri

nets supported by the tool, for example, Petri nets with time and stochastic Petri nets. It also

13

provides a components category where the types of analysis are listed for each tool such as

simple performance analysis, net reductions and structural analysis, and a listing of the

operating systems that the tools support. Each category and sub-category is explicitly defined.

Harald Storrle provided an evaluation of high-end tools for Petri nets [18]. The overall survey

was conducted in three rounds. In the third round the focus was on a small number of tools that

were evaluated thoroughly in terms of functionality, maintenance, openness and interfaces.

These surveys have several drawbacks. These surveys did not consider the computer

software tool features and requirements needed to model real-world examples. Since these

surveys were conducted the need for advanced features and requirements of computer tools

has evolved, especially in industry. These surveys did not consider a solution that would

require several criteria be met simultaneously for an industry application using Petri net software

tools. In addition, a significant number of tools out there have websites that are no longer

available, have not released an updated version of their tool in recent years or offer no

maintenance or support for their tools.

This survey provides quantitative analysis across the span of Petri net computer

software tools available today and illustrates and identifies trends in the Petri net computer tool

software domain. It targets two groups of individuals: 1. Industry and academic professionals

who are looking to use Petri net software computer tools to conduct their research and

development work across a wide domain of uses including healthcare, supply chain,

manufacturing, hospitality, etc. and 2. academic and industry professionals who are looking to

develop or continue developing and supporting Petri net software tools. For the former group of

professionals searching for viable Petri net computer tools for use for modeling, simulation and

analysis this survey profiles 64 Petri net computer tools available today. The survey groups the

Petri net computer tools according to whether or not they meet a set of defined criteria. The

criteria were determined through a specific industry example and is defined and specified later

in this survey. The results of the grouping set expectations for the actual number of tools that

14

are suitable based on the defined criteria and provide academic and industry professionals with

a head start for identifying what Petri net tools will work for them rather than taking a trial and

error approach in identifying a suitable tool. For the latter group, this survey provides

professionals with the primary and critical requirements and features sought out by academic

and industry Petri net computer tool users. Focusing development effort on these features will

ensure repeated and increased usage of these computer tools among academia and industry

professionals.

This survey is organized as follows. In first section, a case study conducted by the

authors is reviewed. The case study illustrates the need for Petri net software tools and was

utilized to identify key criteria sought by Petri net computer tool users both in academia and

industry. The next section translates the criteria into specific Petri net tool requirements. The

requirements are defined into a higher level category. Within each category, the requirement is

defined and a method of measurement for whether the Petri net tool meets the requirement is

introduced. The following section describes the survey methodology, reviews the 68 Petri net

computer tools and measures each category (within a subset of categories) using the defined

measures. Data is collected, analyzed and put into a graphical format and results are

interpreted and key findings identified. The survey then focuses upon key Petri net computer

tools that most closely matched the criteria. Finally, the survey discusses key conclusions and

recommendations.

2.1.2 Industry example

A d s r bu on cen er prov ded he au hors w h da a regard ng he cen er’s process flow

and loading. The process contained nine steps from part picking through shipping. The

distribution center personnel was looking toward adopting sensor network in the form of radio

frequency identification tags and other sensors (e.g. motion, weight, etc.) to gain efficiencies

such as improved work in process distribution, station utilization and throughput in addition to

15

bottleneck reduction. Each process step contained stations, resource pools, buffers and

transportation methods with excess of 16000 units processed per 10-hour shift translating into

over 500 Petri net elements (places and transitions) and 16000 tokens. During the data

collection and analysis process, it was found that the distribution process was not effectively

leveraging overlaps in resource skill sets and that more resource sharing across processes

would enhance performance. In addition, it was found that there were interchangeable process

steps for various entity types that were not being leveraged. An implementation of an efficient,

real time control policy would be required to gather local and global sensing data to make real

time decisions regarding resource and entity flows [1].

Given Petri ne s’ ab l y o eff c en ly model and analyze concurren processes and

shared resources, Petri net computer tools were the ideal tool to implement the distribution

center processes and analyze control policies involving resource sharing and interchangeable

process steps. In order to successfully create control policies a Petri net computer tool is

required to model and analyze the system. Ideally, one would like to also use the Petri net

computer tool to act as or interface with the controller for the live system implementing the

control policies in real-time.

This case study was used to identify the selection criteria and requirements needed to

model, analyze and implement real-time control policies in a large system containing hundreds

of places and transitions and potentially thousands of tokens or more. This example has all the

characteristics of problems in several domains such as manufacturing and supply chain [19] but

also in other domains such as healthcare [20], retail and hospitality.

2.1.3 Petri net tool criteria, requirements, categories and measures

Suraj et al.[9] found three things are essential for modeling and analyzing by means of

Petri nets - a good editor, a simulator and a powerful analysis engine. Moreover, a program

should have a graphical user interface providing an opportunity to work directly with the

16

graphical representations of Petri nets and should be able to read and write data in formats of

other popular simulators of Petri nets[9] . The authors found these to be important criteria

needed by a Petri net computer tool based on the case study and included them in the list. The

case study pointed to several other criteria also measured as part of the survey.

The essential requirements for modeling and analyzing via Petri net computer tools are

described below based on needs found in literature and the case study. The requirement is

slotted into a higher level category where it is defined and a method for measuring the

requirement across the Petri Net tools is specified. The category and measure for each

computer tool is listed in Appendix I. How each category and requirement is measured for each

of the computer tools in Appendix I is discussed below. The categories are Petri nets with Time,

Performance Analysis, Multiple Attribute Support, Import and Export Capability, Graphical User

Interface and Editor, Tool Support, Year of Last Tool Release, Operating System, and

Commercial or Academic. Two criteria, Scalability and Live System Support, are also defined

below, but were assessed on a subset of the tools based on the survey methodology described

in 2.1.4

Petri nets with time:

Timed Petri nets provide a uniform environment for modeling, design and performance

analysis of discrete event systems [21]. Wang states that the advantages of timed Petri nets

include the ability to use the same modeling language for the specification/validation of

functional/logical properties (such as absence of deadlocks) and performance properties (such

as system waiting time). Timed Petri nets also enable modeling of system features such as

priorities, synchronization, blocking and multiple resource holding.

A key requirement for Petri net computer tool is supporting timed Petri nets where a

deterministic or stochastic time can be assigned to a place or transition within the net. Within

the tools assessed in Appendix I, the tools were categorized as binary, either supporting timed

Petri nets or not.

17

Performance analysis:

The tool shall enable simulation of system performance with time and output

performance related parameters in a text file or graphically for a user to easily view Petri Net

results. Performance parameters include average token time in place, transition firing delays,

utilization of a place, etc. In addition, the tool shall simulate both deterministic and stochastic

time intervals. The analysis engine of the Petri Net computer tool needs to simulate with

accuracy and consistency. Within list of computer tools in Appendix I, tools were categorized as

binary, either supporting performance analysis or not.

Multiple attribute support:

The tool shall allow user to set attributes to tokens as in colored Petri nets. Multiple

attributes should be able to be assigned to a token at multiple points within the model and those

attributes should be able change dynamically as the token traverses through places and

transitions within the model. For example, if a token visits a place, a token attribute is assigned

and may change over time based on the most recent places visited. Such behavior may be

emulated via Colored Petri nets. Within Appendix I, the Petri net computer tools were

categorized as binary, either supporting Colored Petri Nets or not.

Import and export capability:

The tool shall support import and export capability by supporting a simulator that reads

and writes data in formats of other simulators of Petri nets. The tools were categorized in

Appendix I as supporting import and export capability or not.

Graphical user interface & editor:

The tool shall have a graphical user interface providing an opportunity to construct, edit

and work directly with the graphical representations of Petri nets (places, transitions and

tokens). The tool shall support the ability to easily apply mathematical rules to tokens traversing

places and transitions throughout the model (AND, OR, etc.). The tools were categorized in

Appendix I as binary, either supporting a GUI editor and simulator or not. Ideally, the tool

18

should also enable creation of subsystems for modularity and ease of re-use of modules

throughout the model.

Tool support:

The tool shall have a support team to answer questions and provide workarounds or

fixes to bugs and defects found in the tool. The tool has had a release or software update

within 3 years. Petri net tools were assessed in terms of the tool support they provided. The

tools were categorized as follows:

1. No Support: The tool does not offer any support. After the tool is downloaded, no

support is available.

2. Limited Support: The tool offers limited support. The support team may answer

questions and may consider fixing some minor bugs.

3. Full Support: The tool offers substantial support. The support team answers any

questions about the tool, welcomes feedback and comments, and assesses and fixes

major and minor tool defects and bugs or provides suitable workarounds.

Tool support Categorization was made based upon information available at the Petri net tool

websites and attempts to contact the tool owner(s) via phone or email.

Year of last tool release:

The year of the last release or update of the tool can be a good indicator of the level of

support one might receive, the ease of use of the tool and performance (e.g. speed). Given the

evolution of operating systems and the impact of that on application design, one typically

observes some level of difficulty with tools that have not evolved with updated operating

systems. The survey lists the last observed year of release or update of the tool.

Operating system:

The computer tool shall be supported on recent operating systems for desktops and

laptops. Within the survey, the following categorization is used:

19

1. For a Windows environment, Appendix I lists the most recent version available explicitly,

for example, 2000, XP, Vista or Win 7+. If a less recent version is available, the survey is

left blank.

2. If a L nux env ronmen s ava lable “L nux” s listed; otherwise, it is left blank.

3. If neither Linux nor a recen W ndows vers on s ava lable he survey l s s “None”.

4. If the tool is available in Java, depending on the Java Run Time Environment Version, a

Windows, MAC OS X or Linux version is provided.

5. If the computer tool is supported on MAC OS X, Appendix I lists MAC OS X.

Commercial / academic:

Whether a tool is commercial or academic is not a requirement, however, it can imply

cos . W h n he survey ools marked as “Academ c” are mpl ed as ava lable a no cos wh le

“Commerc al” mplies a cost. If marked “ o h” mpl es ha a vers on s ava lable for academ a

at no cost or a discount while a commercial version is also available at a cost.

Scalability:

The tool shall support the modeling of 500+ Petri net elements (places and transitions)

and 1000+ tokens without becoming unstable. By effects visible to the user during instability, is

that the computer tool yields incorrect results and can become unresponsive causing the tool to

crash. The industry example discussed earlier provided a baseline for the level of complexity

and scalability criteria a Petri net tool should support to enable Petri net applications in industry.

Scalability of the tools listed in Appendix I will be discussed in 2.1.4.

Live system support:

The Petri ne compu er ool shall suppor a “l ve” mode where he user s able o ex

simulator mode and port real time data from devices such as sensors, databases and wireless

devices into the model. The computer tool, therefore, should provide an interface to real-time

enforcement of decision control policies. Live system support of the tools listed in Appendix I

will be discussed in 2.1.4.

20

2.1.4 Petri net survey methodology and findings

A total of 80 Petri Net tools were discovered either on-line, through paper references or

previous surveys. Of the 80 tools, approximately 20% of the tools are either no longer available,

on websites that are no longer indexed or their corresponding academic research went in a

different direction where the tool evolved and exited the Petri net domain. The remaining 64

tools surveyed are in Appendix I. The survey methodology is as follows. Individual criteria were

assessed for each tool, except for scalability and live system support. To support the case

study, simultaneous support of criteria in a single tool is required. After assessing each

individual criteria in the tool, an assessment of what tools supported three or more criteria

simultaneously was conducted that narrowed the available tools to small group. Scalability and

live system support were then assessed on the smaller subset of tools. In this section, we use

our collected data and observations (including what is reported in Appendix I) to analyze the

current status of Petri net tools and draw conclusions when possible about the needs and

potential research issues in this area.

First and last observed year of tool release:

Figure 2-1 shows a profile of the observed first and last tool release year. One of the

earlier tools ARP [22] had an initial release in 1988 and is one of the earlier tools whose website

is still available. The reason for this is that the early 1990s had several breakthroughs with

respect to Petri net model checking [23] and ease of programming and software environments

for creating more sophisticated software tools in general. There were multiple tools in the early

1990s, but there were observed only a handful that has their website still available. Of the tools

found and referenced, 31% (20 of the 64 tools) have had a tool release in less than 3 years.

Not having a release within three years is an indicator that the tool will not evolve with new

features and functionality in the future and will most likely no longer be supported from the

defect fix perspective. Given the smaller population of users utilizing these types of analysis

21

tools in general, three years is a standard period of time for a tool to get deployed, used and get

feedback or fixes in for another release. Tool updates peaked in 2006 with 9 tools releasing a

software update followed by 8 tools making a release 2015.

Across all of the tools, the average life expectancy is 6.6 years. The life expectancy was

calculated as the difference (in years) between their first and last release. It is assumed that

these tools have reached end of life. The number of new tools has declined since 2010, with no

new tools from 2011 through 2016.

Figure 2-1. Number of tools versus observed first and last year of release

0

1

2

3

4

5

6

7

8

9

10

1
9

8
8

1
9

9
0

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

Observed
First Tool
Release Year

Observed
Last Tool
Release Year

22

Analysis of tool support:

Figure 2-2 show for the Petri Net tools assessed how many offered full, limited or no

support. Of the 64 tools, 22% offer no support, 69% offer limited support and 9% offer full

support. Three of the 6 tools with full support had a last observed release after 2012.

Figure 2-2. Number of tools versus support type

Operating system:

All of the tools but 1 [22] could run on a Windows OS of 2000 or later and Linux.

However, for tools developed in the 1990s and early 2000s suffered in areas of performance

(speed) and ease of use. There were signs of latency when working with the graphical editor

and the drag and drop features were not as reliable.

Petri nets with time, performance analysis and token attribute setting:

Of the 64 tools assessed, 34 (53%) supported timed Petri nets, 26 (41%) supported

performance analysis, 33 (51%) supported multiple attributes or Colored Petri Nets, 32 (50%)

supported Interchange Import and Export across tools and 51 tools (80%) supported a graphical

editor. 25 (39%) tools supported both timed Petri nets and performance analysis, 13 tools

(20%) supported Timed Petri Nets, Performance Analysis and Colored Petri Nets. Of the 13

14

44

6

0

20

40

60

None Limited Full

Number of Tools vs. Support Type

23

tools that met the Time Petri Net, Performance Analysis and Colored Petri net criteria, those

that had a release in 2012 or later were narrowed to 5 tools.

Figure 2-3 shows how the number of options narrows quickly when multiple criteria are

applied simultaneously to the list of tools in Appendix I. The graph shows that when 1 & 2 are

applied, options decline from 64 to 25. When criteria 1 and 2 and 3 are applied options decline

to 13 and when the software release after 2012 is applied, this narrows the options more to 5

tools.

Figure 2-3. Number of Petri net tools meeting multiple criteria

34

26

33 32

51

20
25

5

13

3 5
1 3 1

0

10

20

30

40

50

60

Criteria Applied

N
u

m
b

er
 o

f
T

o
o

ls

24

Graphical user interface and editor and import and export capability:

The idea of an interchange format for Petri nets has been around for some time,

especially in the last decade with the development of interchange formats based upon Extended

Markup Language (XML). A tool should support such a convenient way to exchange information

across different Petri net types [24][25][26][27] . 51 of the 64 (80%) tools had an editor and 52%

(33 of the 64 tools) had import and export capability. For the tools that did not provide a

graphical editor, it was because that tool was focused on either providing code blocks used to

generate a GUI or the tool was focused upon model verification or analyzing of the Petri net and

not building the Petri net. The tools provided a textual net file format for which to create the

Petri net or a method to import a textual file into the tool.

Scalability:

All tools did not explicitly list scalability within the website, user guide, etc. In fact, Petri

net tools were rarely explicit about how many elements (Petri net places, transitions and tokens)

 hey could suppor and pr or surveys have no nqu red abou scalab l y of models. S orrle’s

survey [16] assessed the scalability for a handful of tools where the data was available. About

7% were explicit about the number of elements supported. For example, Pnet Lab[28]

supported only 25 places and transitions. Poses++[29] supports up to 500 elements without a

license and claims supporting test models with a license of plants containing up to 30,000

transitions, 30,000 predicates and 100,000 arcs. Poses++ targets fast simulation of high level

Petri nets focused upon colored and predicate/transition nets only, so does not meet the primary

requirements sited above.

Petri net Toolbox[30] is a plug-in with Matlab[31]. The tool enables analysis of timed

Petri nets, allows one to choose distribution driving stochastic Petri nets and enabled one to

monitor and graph the number of tokens and utilization of places. The case study exhibited a

need to model close to 500 places. However, after modeling close to 50 places, the tool would

crash and there were accuracy issues, for example, transitions did not fire appropriately or

25

transition the correct number of tokens. Tools like GreatSPN [32], Renew [33], and CPN Tools

[34] were also assessed. Renew is Java based and one must program time related

performance metrics as no library exists. For large nets where several performance measures

are required for each place, not having a default preset of performance measures burdens the

user and does not make sense for large nets in industry applications. GreatSPN and CPN

Tools exhibited similar symptoms as Petri Net Toolbox and were unstable once large nets (>50

elements). CPN Tools is similar to Renew in that a programming inscription language (not as

common as Java) is required to program in the user interface, but requires a steeper learning

curve. Yasper [35] attempts to address the ease of use issues with tools like ExSpecT

[36], Renew and CPN Tools.

Live system support:

The survey did not uncover Petri net tools supporting a live system mode where one

could port real time data and execute decision and control policies in real-time. The co-

habitation of modeling, simulation and real-time execution of decision and control policies was

found to be important in model validation and realizing the benefits of policies targeted at

reducing cycle times, improving throughput or reducing work in progress. As the case study

would implement the control policies in an environment where sensing and control technology

were present, linking the model to the live system would prove beneficial during validation.

2.1.5 Conclusion

The survey has found, that although a plethora of Petri net tools exist, with a number of

tools providing software updates, very few support the primary requirements and features

identified as part of the case study and required in domains such as manufacturing, supply

chain, and healthcare. Features such as timed Petri nets, colored Petri nets, and performance

analysis along with adequate tool technical support are critical for increasing Petri net tool

adoption in industry. In addition, features such as scalability or the ability to model a larger

http://www.exspect.com/

26

scale system reduce the available tool set even further. Lastly, live system support is a desired

requirement not supported in Petri net tools included in the survey. The co-habitation of

modeling, simulation, and interfaces to the live system for real-time execution of the model is

key to monitoring and measuring of the benefits of decision and control policies implemented.

Given the lack of a tool that supported the needs of the case study, the authors turned to a non-

Petri net solution [15].

2.2 State space and state space reduction

The key issues faced by large, N-Server, N+1 Queue serial lines, is that the number of

possible states grows exponentially during system execution [37] due to the large number of

elements or components that make up the system and the number of entities that traverse the

system. In some systems, the execution of a large number of entities is required to exhibit a

specific system level characteristic leading to a specific state. This large number of entities

results in a large number of states, some or most of which may be unnecessary or can be

significantly reduced o reach he s a e ha s mos relevan o he sys em’s charac er s c s a e

space. These extraneous states can make it difficult to understand the characteristic state

space and cloud the ability to enable control and decision policies for scheduling systems, an

important aspect of the real-time control of dynamic systems [38]. In industry, where systems

are well known for having large state spaces, control policies are instantiated using reachability

techniques [39] [40] or simulation methods [41][42]. Once state spaces become large, it is often

difficult to determine why one control policy behaves better or worse than another control policy.

State space explosion and methods to reduce state spaces have been researched

extensively in areas of automatic verification of systems and model checking. Clark et al [37]

uses partial order techniques while Musuvathi [43] describes three different methods.

Musuva h ’s f rs me hod s down-scaling which reduces the scale of the system, for example, by

reducing the number of nodes. This has a large risk for eliminating critical states that may

27

contribute to the characteristic state space of the system. The second method is abstraction of

state, which standardizes distinct but equivalent states and eliminates information that is judged

to be unimportant for the properties checked. With this method, there is high risk of eliminating

a state that is pertinent to the characteristic state space of the system. The final method, using

heuristics when checking the entire state space, is infeasible and provides for more intelligent

methods for checking and reducing the state space.

The next group of state space reduction literature involves the use of Petri net formalism

to reduce the state space. In the early 1960s, Petri nets were recognized as being the most

sufficient method for modeling and analyzing concurrent processes and resource sharing. Sloan

and Buy [44][45] discuss how reachability based methods suffer from the state explosion

problem and extend several rules for the reduction of ordinary Petri nets. They also provide for

the notion of equivalence among time Petri nets proving that the reduction rules yield equivalent

nets such that timing and concurrency properties are preserved. Wang et al [46] proposes a set

of component-level reduction rules for timed Petri nets that reduces the state space while

ma n a n ng he ne ’s ex ernal observable m ng proper es. Juan et al [47] propose reduction

methods using delay time Petri nets.

This research proposed in Chapters 3 differs from the above literature sited in that it

derives a time-based closed form solution for determining the state of every buffer and server in

an N+1 Buffer, N-Server sequential line while keeping the entire system intact. In doing so, a

closed form solution for the maximum number of entities a buffer will experience is also derived.

2.3 Line balancing and buffer allocation optimization

Quantitative analysis of assembly lines, such as those in Figure 1-6, includes the line

balancing problem which comes along with other decision problems such as the positioning and

sizing of the buffers [48], when keeping the overall throughput in mind becomes the buffer

allocation problem [49]. The decision problem of optimally partitioning (balancing) the assembly

28

work among the stations with respect to some objective is known as the assembly line

balancing problem (ALBP) [48]. The previous literature has categorized assembly line

balancing into two main categories (1) Simple Assembly Line Balancing Problem (SALBP) and

the (2) General Assembly Line Balancing Problem (GALBP). There are several methods that

have been utilized for solving such problems including deterministic, stochastic and inexact

methods (where heuristic or approximate methods are used).

The ALBP assigns tasks to the station while optimizing some criteria and not violating

the constraints. The ALBP problem has the following considerations where all inputs are known

with certainty, a task cannot be split among two or more stations, tasks cannot be processed in

arbitrary sequences and all tasks must be processed [50]. SALBP adds the following

considerations: (1) all stations are equipped and manned to process any one of the tasks (2) the

task process times are independent of the station which they are performed (3) any task can be

processed at any station (4) the total line is considered to be serial with no feeder or parallel

sub-assembly lines and (5) the assembly system is assumed to be designed for a unique model

of a single product [50]. SALBP-1 is the first version of SALBP that adds an additional

constraint that the cycle time is given and fixed. The goal of SALBP-1 is to minimize total slack

or the number of stations along the line [51][52]. A second version of SALBP called SALBP-2

replaces constraint of fixed cycle time with the constraint of a fixed number of stations. For this

version, the goal is to minimize cycle time or production rate [53][54][55]. Methods utilized to

solve SALBP-1 are linear programming [56], integer programming [57], specialized algorithms

based on integer programming techniques [58] and dynamic programming [59]. Heuristic

methods are utilized to solve SALBP-2 class of problems [60][61]. GALBP is a generalized form

of SALBP-1 and SALBP-2 where there is no explicit concern for the fixed cost of the station or

the variable cost for operating the station [50].

There are relevant properties for characterizing ALBPs due to the different conditions in

manufacturing and assembly line systems [48]. For example, for paced assembly lines, every

29

station is limited to the cycle time which can be no longer than the largest task time. When all

stations operate at an individual speed, entities must wait before they can enter the next station

or they become idle, unless there are buffers in between stations. For an unpaced, buffered

assembly line, the line balancing problem comes along with other decision problems such as

the positioning and sizing of the buffers [48].

One of the key problems in designing a production flow line is determining the number

and sizes of buffers between stations keeping overall throughput in mind. This is known as the

Buffer Allocation Problem [49]. Wei et al. provide an estimation of buffer size in a serial

manufacturing system within a stochastic optimization problem [62]. Chaharsooghi and

Nahavandi [49] present a heuristic algorithm to find the optimal allocation of buffers that

maximizes throughput. Yamashita and Altiok [63] use a dynamic programming algorithm that

uses decomposition for a minimum-total-buffer allocation resulting in a desired throughput in

production lines with phase-type processing times.

There are several buffer alloca on s ra eg es: Equal uffer Chow’s Rule L&L’s Rule

and C&N’s Rule [64]. Equal buffer strategy allocates buffers equally over the l ne. Chow’s rule

[65] uses dynamic programming to solve the buffer allocation problem with a fixed total buffer

size. Throughput and the coefficient of variation of inter-departure times are estimated by

regress on models. L&L’s rule s s m lar o Chow’s rule. I uses a d fferen se of equa ons o

estimate the throughput and the coefficient of variation [66]. C&N’s rule s s m lar o L&L’s rule

except all possible allocations of buffers are tried and then the allocation with the highest

estimated throughput is selected. Gershwin and Schor [67] define and analyze two problems,

one called a primal problem that minimizes the total buffer space subject to a production rate

constraint and another, a dual problem that maximizes production rate subject to a total buffer

space constraint. Enginarlar et al [68] discuss the concept of level of buffering (LB) and provide

a method for calculating the smallest LB ensuring the desired production rate in serial lines with

unreliable machines and later[69] introduce Lean Level of Buffering (LLB) where a normalized

30

buffer capacity and production line efficiency is used to develop exact formulas for two and

three machine lines and approximations for lines with more than three machines.

The research proposed differs from the line balancing and buffer allocation literature

sited as the proposed research identifies exact methods for determining the state of the system

or an element of the system at a given time. States include the number of arrivals and

departures an element sees at a given time, the maximum number of entities a buffer will

experience given the placement of the stations and buffers and the time the buffer reaches

capacity. If a buffer has a reduced capacity, the time the buffer transitions to a blocked state

and the time the buffer becomes blocked. Such research can be used as boundary conditions

or inputs to a line balancing or buffer allocation optimization problem to reduce solution time for

line balancing optimization problems or to generate control policies for improved production

efficiencies.

2.4 Queuing networks performance and blocking

Queuing networks were first used to model manufacturing systems in the 1950s [70].

Performance analysis is important for the design, operation and management of production

systems [71]. The previous section covered the aspect of optimization related to queues and

buffers, the dimensioning and placement of queues and related line balancing. There is also

literature that addresses use of queuing networks for performance evaluation of queuing

networks assessing metrics such as production rate or throughput, average buffer levels and

probabilities of blockage and starvation.

Gershwin [72] developed an efficient decomposition method using conservation of flow

for evaluation of performance measures for production systems with finite buffers. Gershwin

points out the difficulty to evaluate queuing networks due to their large state spaces and

presents a method of approximation for calculating production rate or throughput and the

average amounts of material in the buffers. Lim et al [73] developed an aggregation method

31

consisting of both forward and backward aggregation that converges on a production rate

representing the system throughput eliminating the need for complex and costly computer

simulations. Kouikoglou and Phillis use a probabilistic technique [74] that observes a limited

number of events which are sufficient to determine the system performance and mean buffer

levels. Earlier, the same authors developed a hybrid simulation and analytic model for the study

of production networks where they utilized nonlinear difference equations to determine and

obtain accurate estimates of average throughput and buffer levels. The algorithm was more

efficient that traditional simulators [75][76]. Morrison [77] demonstrates that flow line models

with deterministic services times can be decomposed into segments and uses recursion to

calculate overall delay of entities in the system.

The research proposed in Chapter 3 differs from queuing network performance and

blocking literature sited as the proposed research identifies exact methods for a class of

networks, particularly reliable sequential production lines of infinite length, determining the state

of the system or an element of the system at a given time without the need for simulation.

States include the number of arrivals and departures and element sees at a given time, the

required buffer capacity given the placement of the stations and buffers and the time the buffer

reaches capacity. If a buffer has a reduced capacity, the time the buffer transitions to a blocked

state and the time the buffer becomes blocked is captured. Such research can be used as

boundary conditions or inputs to assessing system throughput or to generate control policies for

improved production efficiencies.

2.5 Flexible manufacturing

Facilities everywhere are facing growing competition and must find ways to maximize

production efficiency to remain competitive in the market place [78] . Facilities are assessing

alternate production line configurations to gain production efficiencies such as throughput

increases or work in progress reduction while maintaining the chronological order of operations.

32

Literature also discusses concepts explored with the addition of flexible manufacturing systems

with varying configurations (serial, sequential, work cells) and product types [79][80]. We turn to

the industries where work cell configurations are used, such as mobile device, wood, and

apparel production industries [81][82][83] or any production line where a work cell configuration

exists.

Considering flexible manufacturing systems and work cell literature, Ramirez-Serrano

and Benhabib [84] introduce a control algorithm to analyze concurrent operation of supervisors

to check for existence or absence of deadlock states within a work-cell. Outside of supervisory

control, there have been several studies that investigate the utilization of work-cell and

reconfigurable manufacturing systems to increase the efficiency and capacity of production

lines. Ich kawa’s s udy [85], for example, investigates a laptop production system and

optimizing the supply of parts via material handlers from the receiving area to the cells. Another

study [78] analyzes use of product-oriented layout, material handling and layout of work-cells to

maximize production efficiency in areas such as average units produced per day, labor cost per

unit and distance traveled per day to obtain parts. Logendran and Karim [86] uses a non-linear

programming model comprised of binary and integer variables and a tabu search type algorithm

to address the availability of alternative locations for a work-cell and the use of alternative routes

to move part loads between cells when capacity of the material loader is limited. Youssef and

ElMaraghy [87] introduce a configuration selection approach that minimizes reconfiguration

effort but still supporting the capacity needs of production.

This paper differs from the prior literature reviewed in that it presents methods for

extracting the buffer size where the buffer space is shared by several stations (via a buffer

cluster) using methods derived from state space parameters with respect to time for any

sequential N-Server, N+1-Buffer production line. The buffer sizing model is then utilized in an

optimization framework that enables setting of the policy specifying the buffers that can be

clustered ensuring no buffer overflows. The model provides an output of the required buffer

33

cluster sizing for that policy and allows the facility to set the policy that minimizes space

utilization of the production line without decreasing the number of overall production lines that fit

within the facility.

34

3. EXACT METHODS FOR DETERMINING STATE SPACE PARAMETERS

This chapter derives exact methods for determining state space parameters for two

models both using the N-Server, N+1-Buffer sequential line defined in Figure 1-6. In the first

model, we impose no buffer capacity restriction and derive state space parameters. In the

second model, we impose a buffer capacity restriction and in addition to the state space

parameters, develop a decision tree for determining the servers and queues impacted by the

buffer restriction.

3.1 Model 1: N server, N+1 sequential line model with unity capacity servers and no

buffer capacity restriction

In this section, we define the parameters used for deriving the number of arrivals and

departures at a given time t for any server or queue in Figure 1-6. We start by calculating the

number of arrivals and departures at Server Si, = …N by any me t. Next we derive the

number of arrivals and departures from any buffer Bi = …N+ by any given time t. We

then apply the relationships generated to derive the maximum number of entities a buffer Bi will

experience and the number of entities at any given time t, Bi(t). Bi(t) is then later extended in

Chapter 4 to determine the buffer cluster size. Before deriving the aforementioned relationships,

we list the notations, assumptions and definitions.

Notations:

N1) K1 = Magnitude of inventory at B1 a me =0 K = …N (Constant).

N2) BAi(t) = Cumulative number of arrivals to buffer Bi by me = …N+ .

N3) BDi(t) = Cumulative number of departures from buffer Bi by me = …N+ .

N4) SAi(t) = Cumulative number of arrivals to server Si by me = …N.

N5) SDi(t) = Cumulative number of departures from server Si by me = …N.

35

N6) Ti, = …N s he serv ce me for server Si = …N (Th s ncludes bo h he process me
of the unit and the transportation time of the unit from the buffer to the station and the station to
the next buffer).

Assumptions:

A1) Each Server Si can process at most one entity at a time (capacity = 1).

A2) Each buffer Bi = …N+ has a capac y grea er or equal o he s ar ng nven ory

A3) Service time Ti for each server Si is deterministic

A4) The starting inventory at time t=0- , K1 is located in buffer B1

A5) At time t = 0, B1 has a departure and S1 has an arrival

A6) Buffer B1 has only departures while Buffer BN+1 has only arrivals and every buffer Bi in
between has both departures and arrivals; BA1(t) = 0; BDN+1(t) = 0 as shown in Figure 1-6.

A7) If there is at least one part in Bi and Si is idle, then with no delay, an entity is moved to Si for
processing.

A8) Machines are reliable.

Definitions:

D1) MTi = max[T1,T2…Ti] = …N.

D2) ∑
i

1=j
jTi =τ , i =1,2.....N, and 0=τ0 .

D3) MBi = Maximum number of entities that buffer Bi, i = 2,..N will experience.

D4) We use   as a floor function that maps a real number to the largest previous integer

value.

This model supports adding inventory (that could be in the form of batches of varying sizes)

anytime before the last item in inventory B1 leaves the first server S1 (i.e. a batch can be added

anytime before t = - + K - MT). K1 can be either the initial inventory or a summation of

inventory (in the form of batches) throughout the shift.

36

Before proceeding to calculate the number of arrivals and departures from server Si we derive

relationships for the frequency of arrivals to server Si. The following Lemma establishes this

relationship.

3.1.1 Deriving the frequency of arrivals to Server Si

Lemma 1: The frequency of arrivals to Server Si is

MT

We use induction to demonstrate this. We start by focusing on the first two servers, S1 and S2

as shown in Figure 1-6. Given buffer B1 holds the inventory of entities for the sequential line,

the frequency of arrivals to S1 is equal to

T
=

MT
 . We also calculate the frequency for S2 as

every other server in the line is similar to S2 in the way that it is preceded by another server. For

S2 and its preceding server S1, we have 3 conditions for the service times:

1. T1 > T2

2. T1 = T2

3. T1 < T2

Figure 3-1 shows a typical scenario when T2 > T1. In this case, the frequency of arrivals to S2

(immediately after departure of the first entity) is equal to

T
. Figure 3-2 shows that if T1 > T2,

the frequency of arrivals to S2 is

T
.

Figure 3-3 shows that if T1 = T2, the frequency of arrival to S2 is equal to

T
 or

T
 .

37

Figure 3-1. Frequency of arrivals to S2 when T2 > T1

Figure 3-2. Frequency of arrivals to S2 when T1 > T2

Figure 3-3. Frequency of arrivals to S2 when T1 = T2

Therefore, from the definition of MT2, for server S2, the frequency of arrivals is always

MT
. Now

we assume the first arrival occurs at 2-iτ for Si-1 (i < N-1) and after that arrivals to Si-1 occur in

38

intervals of MTi-1. We prove that the interval for arrivals to Si is MTi. In this case, we have two

scenarios:

1. Ti > MTi-1

2. Ti < MTi-1

Again, we are concerned with the frequency of arrivals immediately after the departure of the

first entity from Si shown by X in Figure 3-4 and Figure 3-5. We demonstrate that the frequency

of arrivals immediately after the departure of the first entity from Server Si is the reciprocal of the

maximum of services times MTi-1 and Ti or

Max (MT
 -

 T)

MT
 . For scenario 1, from Figure 3-4,

the frequency of arrivals to server Si is

T
 =

Max (MT
 -

 T)

MT
 . For scenario 2 as shown in Figure

3-5 the frequency of arrivals to Si is

MT
 -

 =

Max (MT
 -

 T)

MT
 . It is a trivial case when MTi-1 = Ti,

then the arrival rate to Si is

MT
. This completes the proof of Lemma 1.

Figure 3-4. Frequency of arrivals to Si when Ti > MTi-1

39

Figure 3-5. Frequency of arrivals to Si when MTi-1 > Ti

3.1.2 Deriving cumulative arrivals and cumulative departures at server Si

Theorem 1: For the sequential system the cumulative arrivals and cumulative departures at

server Si at time t is:

SA =
m n K +

 -
 -

MT
 f -

 0 herw se

 (3.1)

S =
m n K +

 -

MT
 f

 0 herw se

 (3.2)

Proof: First, we show that (3.1) holds for i=1. At i=1, we have = T

 = =T = MT . 0 = 0.

Based on the sequential line assumption, at time t = 0, one part is loaded to server S1 (recall

that K1 > 1). This part is processed for T1 = units of time and if buffer B1 still carries a part,

server S1 is loaded again. This loading operation (arrival event) happens at time t = .

Continuing with this pattern, one can see that server S1 is loaded at time stamp 0,

 …. K , therefore the last loading of server S1 happens at time t = K1 . After this time

no loading occurs as all the parts in buffer B1 have been depleted, and the total number of

arrivals to S1 remains K1. This means that the cumulative number of arrivals to server S1 at time

t can be shown by:

40

SA =

 + 0 K

K K

and it can immediately be concluded that SA = m n K +

 0.

This proves that (3.1) holds for i=1. Second, we prove (3.1) holds for Si where 1 < i < N. By

definition for t < - , SAi (t) = 0 and for t = - , SAi(t) = 1. Figure 3-6 shows the cumulative

arrivals to server Si at any time t. We notice that the interarrival times are MTi. Now we

consider the case where 1< SAi (t) < K1.

Figure 3-6. Time defined for SAi(t) from 1 through K1th arrival

Assume that - + (m - 2)*MTi < t < - + (m - 1)*MTi where m – 1 is an integer number and is

the number of arrivals before t. We know from the relationship that the frequency of arrivals to

Server Si is

MT
 and that for the m - 1th and mth arrivals, time is defined in the following interval:

 - + (m – 2)*MTi < t < - + (m – 1)*MTi

We can write:

t = - + (m – 2)*MTi + α MTi where 0 α < 1

 t - - = ((m – 2) + α)*MTi

41

When α = he coeff c en ((m – 2) + α) = m -1 =
 -

 -

MT
 and Si experiences the mth arrival. For

0 α he coeff c en = (m –) + α = m – 2 =
 -

 -

MT
 and Si has experienced the m -1th

arrival. Therefore, for 1 < SAi(t) < K1, SAi(t) = 1 +
 -

 -

MT
 . Based on the definition of arrival and

departure of entities from server S1 one can see that because of the relationship

SDi(t) = SAi(t + Ti) (3.3)

that means (3.2) holds.

3.1.3 Deriving the cumulative arrivals and cumulative departures for buffer Bi

Corollary 1: For the sequential system described in Figure 1-6 the cumulative arrivals and

cumulative departures at buffer Bi at time t are:

 A =
m n K +

 -
 -

MT
 -

 f -

 0 herw se

 (3.4)

 =
m n K +

 -
 -

MT
 f -

 0 herw se

 (3.5)

Proof: For any Bi where = 3…N+ he number of arr vals a Bi is equal to the number of

departures from Si-1 at a given time t. Therefore taking (3.2) from the perspective of Si-1 and

applying the condition (3.6) that proves (3.4).

BAi(t) = SDi-1(t) (3.6)

The number of departures from Bi is equal to the number of arrivals at server Si. Therefore,

taking (3.1) from the perspective of arrivals at Si and applying the condition (3.7) proves (3.5).

BDi(t) = SAi(t) (3.7)

3.1.4 Deriving the maximum number of entities buffer Bi will experience

Corollary 2: For the sequential system, the maximum number of entities that buffer Bi will

experience given starting inventory K1 as shown in Figure 3-7 is:

42

MBi = (K1 –1) - (K -) (3.8)

Where Yi =
 MT

 -

MT
 for = …N.

When Ti > MTi-1, then MTi-1 < MTi and Yi < 1. When Ti < MTi-1, then MTi = MTi-1 and Yi =1.

When Yi =1, MBi = 0, thus a buffer size = 1 is required for transport only to the next process, we

call this a transport buffer. We prove this for MBi = 3 …N and when i < 1. For Yi =1, as

mentioned before, is a transport buffer with MBi =1.

Figure 3-7. Maximum number of entities buffer Bi experiences given inventory K1

For Bi of interest, at any given time t the number of entities is equal to:

Bi(t) = BAi(t) - BDi(t), Bi(t) > 0 (3.9)

We first find the time (say T) when Bi(t) reaches its maximum level and then plug in T to (3.9),

therefore calculating MBi. By assumption, the first departure from Si-1 and the first arrival to Si

happen simultaneously. After this event, because MTi = Ti > MTi-1 and using the relationship

that the frequency of arrivals to Server Si is

MT
, the departure rate from Si-1 will be greater than

the arrival rate to Si. This causes the accumulation in Bi to increase until the last departure

43

(K1th departure) from Si-1 occurs. Therefore the maximum accumulation happens when the last

departure from Si-1 occurs.

T = MTi-1*(K1-1) + - (3.10)

Plugging in T from (3.10) into (3.9) and using the results of Corollary 1 we have:

Bi(t) = BAi(t) - BDi(t) = min (K1, 1+
 -

 -

MT
 -

) – min (K1, 1 +
 -

 -

MT
)

= MBi =
 MT

 -
 (K -)

MT
 -

 -
 MT

 -
 (K -)

MT
 = (K1 –1) - (K -)

3.2 Model II: N server, N+1 sequential line with reduced capacity for one buffer

This model is synonymous with the first model in Figure 1-6. After calculating MBi for

each Bi in Model 1, one may discover that for a specific buffer, Bv, MBv is too large for the

workspace and would like to identify the impact to other buffers and servers in the serial line

when the size of Bv is reduced to a value of Lv where Lv < MBv. This model assesses the impact

of this capacity reduction on each buffer and server in the serial line at the time of interest t.

In Figure 3-8, we show the typical behavior of Bv. In h s f gure “A” represen s an arr val

and “ ” represen s a depar ure. The arrival rate and departure rate of Bv are not impacted until

Lv is reached (at the R1th arrival). After Lv is reached, the arrival rate follows the departure rate

until K1 units arrive. This is because when Bv is blocked, it prevents the entity in its prior server

(Sv-1) from departing. Thus, there is no space made available in Bv until after its subsequent

server (Sv) has a departure. Only after Sv has a departure, can another entity arrive to Sv

creating a departure from Bv so that Bv can receive an arrival. Therefore, after Bv is blocked,

arrivals to Bv occur at the same time as its departures. We define this phase as lock step. After

K1 units arrive to Bv (end of lock step), only departures occur.

44

Figure 3-8. Buffer behavior when Bv capacity set to Lv

Notations:

N7) Bv is the buffer that is too large given the workspace constraints and requires capacity
reduction.

N8) Lv is the reduced size of the buffer Bv.

N9) R1 is the number of arrivals that the buffer experiences when the buffer reaches a size of Lv

N10) TT is the transition time of Bi. It is the last time an entity arrives according to the prior

arrival rate before getting blocked. We notice that TT has been defined in a generic way as
other buffers might be blocked because of capacity reduction of Bv.

N11) XTv is the block time of Bv. It is the first time an entity arrives at the departure rate of the
blocked buffer.

Definitions:

D5) BRv = MBv – Lv, the amount that Bv is reduced, BRv > 0

D6) ECi = Bi Size – MBi, is the amount the buffer size exceeds MBi. Given Bv is the only reduced
buffer (below MBv), ECi > 0

D7) EC
v-
 = The excess capacity available from Bi of interest to Bv-1

Assumptions:

A9) This model applies to buffers Bi (where Yi <1) and excludes transport buffers (where Yi =1).

A10) Each Bi has its capacity set to at least MBi and one only buffer (Bv) has its capacity set to a
value (Lv) less than MBv. (This relaxes the second assumption in the first model).

We first discuss a set of rules for which buffers and servers in the serial line are

impacted or not impacted as a result of reducing the size of Bv. Then we will derive the arrival

45

and departure formulas for each impacted buffer or server. For any Bi or Si, Figure 3-9 below

shows the rules for what equation for arrivals and departures to use based on whether i = v, i >

v or i < v. For each condition, if for a specific Bi or Si a reference is made to use an equation in

Model 1, that indicates that the server or buffer is not impacted by the reduced size of Bv. For

those Bi and Si that are impacted by reduced capacity of Bv, those equation references are

derived in this section.

 Figure 3-9. Rules for determining impacted arrivals and departures for Bi and Si

3.2.1 Deriving arrival and departure formulas for impacted buffers and servers:

Given Lv, we solve for R1, TTv and XTv for Bv and ultimately BDv(t) and BAv(t). We then

calculate the TTi and XTi for all other servers Si and buffers Bi impacted. We then derive the

46

number of buffer arrivals and departures and the number of server arrivals and departures with

respect to time BAi(t), BDi(t), SAi(t) and SDi(t).

We use (3.8) and find R1, TTv and XTv for Bv. As shown in Figure 3-8, up to Lv, the

buffer departures and arrivals show the exact behavior as in Model 1. The number of arrivals up

to Lv is R1, a value less than K1. At t = TTv, entity R1 arrives to Bv. Using (3.10) where time

was defined for BAi(t) from 1 through K1th arrival, we substitute R1 for K1 for Bv.

TTv (for R1 arrivals) = MTv-1*(R1-1) + v- (3.11)

Plugging in T from (3.11) into (3.9) and using the results of Corollary 1 we have:

Bi(t) = Lv = BAi (TTv) - BDi (TTv) = 1+
TTv - v-

MT
v-

 - 1 -
TTv - v-

MTv
 =

MT

v- (R -)

MT
v-

MT

v- (R -)

MTv
 = (R1 –1) - v (R -)

We solve the above equation for R1 and then we solve for the transition time TTv when the R1th

arrival occurs using (3.11).

In Figure 3-8 when he buffer’s l m ed capac y s reached he arr vals are n lock s ep

with departures for Bv. In order to calculate the XTv, we must find the last departure that

occurred by t = TTv. The very next departure after TTv will be the departure where the arrival is

in lock step with the departure. That departure will occur at XTv. We solve for BDv (t) at t = TTv

via BDv (TTv) = 1 +
TTv - v-

MTv

The next arrival and departure (BDv(TTv) + 1) will be in lock step with the BDv (t)

departure profile. Because departures are not impacted by setting of Lv, we can solve for XTv

using the time defined for the first through K1th departure from BDv(t). We use (3.7) of Corollary

1 to derive BDi(t). Figure 3-10 shows the time of each departure from buffer Bi from 1 through

K1.

47

Figure 3-10. Time defined for BDi(t) from 1 through K1th departure

We substitute BDv(TTv) +1 for m and solve for Tv

XTv = MTv*((BDv(TTv)+1)-1) + v-

Because of the relationships (3.6) and (3.7) in Corollary 1, the TTv and XTv become critical times

propagated through to every buffer Bi prior to Bv. At the time a buffer is blocked, this prevents

the entity in the prior server from departing, preventing an arrival in the server. Only after the

server ahead of the blocked buffer has a departure, can the blocked buffer entity depart and

accept another entity. Thus, the profile of each buffer Bi prior to Bv shifts to meet the departing

profile of Bv and the departing profile equals the arrival profile of Server Sv as in (3.7).

Therefore, the block time XTv of Bv is the same for every Bi prior to Bv. For TTi, the time TTi

relative to XTv may vary for each Bi prior to Bv. That is, the time from TTi to the next arrival

where the arrival becomes in lock step with the departure varies due to the differences in

service times. To calculate the TTi for each Bi before Bv, we use the TTv from Bv and calculate

the number of arrivals using the BAi(t) in (3.4).

BAi(TTv) = 1 +
TTv - -

MT
 -

Then we solve for TT at the next arrival which will be the TT for the Bi of interest and

substituting BAi(TTv)+1 for m (see (3.10)).

TT = ((BAi(TTv)+1)-1)*MTi-1 + -

48

3.2.2 Deriving arrival and departure formulas for Impacted Buffers and Servers

Now we can derive the formula for the arrivals and departures for buffers and servers

that are impacted by the reduced capacity of Bv as shown in Figure 3-9.

 Bi of interest is Bv (i = v): The arrivals of Bv are impacted and use (3.12).

 Bi of interest is Bv-1 (where i = v-1) and if K1 arrivals and departures are not already

completed before XTv, the departure formula in (3.13) always applies to impacted buffer Bv-1.

The arrival formula (3.12) applies when condition EC
v-
 < BRv is met.

 Bi of interest where i < v-1 and if K1 arrivals and departures are not already completed

before XTv, (3.12) and (3.13) apply when condition EC
v-
 < BRv is met.

In general, when t < - , no arrivals or departures have occurred to Bi. If - < t < TTi, then

equations (3.4) and (3.5) hold but within new intervals of interest as shown in (3.12) and (3.13).

If the time of interest t for Bi is greater than TTi and less than XTv, (3.4) and (3.5) hold, however t

= TTi. As shown in Figure 3-8, there are no arrivals or departures in between the transition time

and the block time. For the interval of t > XTv, BAi (t) remains the same for entities prior to XTv,

however after XTv, the BAi(t) and BDi(t) assumes the BDv(t) profile and thus the use of MTv.

 A =

0 f -

m n K +
 –

 -

MT
 -

 f - TT

m n K +
 TT – -

MT
 -

 f TT Tv

m n K +
 TT – -

MT
 -

 +
 – Tv

MTv
 f Tv

 (3.12)

 =

0 f -

m n K +
 –

 -

MT
 f - TT

m n K +
 TT – -

MT
 f TT Tv

m n K +
 TT – -

MT
 +

 – Tv

MTv
 f Tv

 (3.13)

We have completed the arrival and departure profiles for buffers and proceed to the servers Si.

49

 Si of interest is Sv-1 (where i = v-1) and if K1 arrivals and departures are not already
completed before XTv: The formulas (3.14) and (3.15) always apply

 Si of interest where i < v-1and if K1 arrivals and departures are not already completed

before XTv: (3.14) and (3.15) apply when condition EC
v-
 +

< BRv is met

From (3.6) and (3.7) in Corollary 1, no new calculations are needed for the servers. The TTi for

server Si is equivalent to the TTi calculated for the buffer ahead of server Si or TTi+1. As a result,

one derives an equivalent set of server arrival and departure models shown in (3.14) and (3.15).

SA =

0 f

m n K +
 –

MT

 f TT +

m n K +
 TT + –

MT

 f TT + Tv

m n K +
 TT + –

MT

 +
 – Tv

MTv

 f Tv

 (3.)

S =

0 f

m n K +
 –

MT
 f TT +

m n K +
 TT + –

MT
 f TT + Tv

m n K +
 TT + –

MT
 +

 – Tv

MTv
 f Tv

 (3.15)

In Chapter 5, we will apply the results to parameters (1) through (8) identified in the Introduction.

50

4. OPTIMIZATION FRAMEWORK FOR BUFFER CLUSTERING POLICY

In this chapter, we derive the buffer clustering optimization framework utilizing the model

from Chapter 3 to provide the buffer cluster sizing and an optimal buffer clustering policy.

Before deriving the aforementioned relationships, we list the notations, assumptions and

definitions. We use Figure 4-1 which shows the inventory profile in buffer Bi to illustrate some of

the notations K2i, K3i, and MBi -1.

Figure 4-1. Illustration of K2i, K3i, and MBi -1

Notations:

N12) Wj is a set of one or more buffers which we refer to as a buffer cluster.

N13) BBj is the maximum number of entities a buffer cluster Wj must be able to hold to ensure
that no overflows or underflows occur in the buffer cluster.

N14) Xj is a binary variable {0,1} and defines whether cluster Wj must be realized {1} or not {0} (
i.e. Xj = 1 determines that cluster Wj must be selected as a part of the buffer cluster policy).

N15) K2i is the last arrival to buffer Bi that occurs when the number of entities in Bi is MBi -1

N16) K3i is the number of entities that depart buffer Bi changing the number of entities in buffer
Bi to MBi-1 from MBi. This occurs right after the last arrival (K1 arrival) to buffer Bi

N17) is the time of the first arrival changing the number of entities in buffer Bi to MBi from
MBi-1 (K2i + 1 arrival).

51

N18) is the time of the first departure (K3i) departing after the last arrival (K1 arrival) for
buffer Bi. It is the last time the number of entities in buffer Bi equals MBi.

N19) q is the time the last entity departs from server SN to buffer BN+1

N20) H is the size each entity occupies within a cell of a buffer in square meters

N21) G is the maximum size of a buffer cluster W j in square meters.

Assumptions: (Assumptions A1 through A8 from Chapter 3 hold)

A11) Possible combinations (clusters) of buffers are given.

A12) A buffer Bi mus be e her a ded ca ed buffer or n a s ngle clus er; hus f { 3 … i … N}
denotes the index set of intermediate buffers Bi and { …j … C} the index set of buffer
clusters Wj, then

 W ={ 3 … N

C

 =

Although a buffer cluster must maintain the sequence of operations, meaning it must facilitate

an entity to move in the sequence of operations from servers S1, S2, S3… to SN the buffers

included in a cluster should not necessarily be sequential. Therefore, a buffer cluster may

include non-sequential buffers and still maintain the sequence of operations. The example in

Figure 4-2 shows non-sequential buffers B2 and B5 clustered (W1) and sequential buffers B3 and

B4 clustered (W2) while still maintaining the sequence of operations S1 through S5 as shown by

the arrows.

52

Figure 4-2. Non-sequential and sequential clusters maintaining operation sequence

Equation (3.8) in Chapter 3 provides us with the maximum number of entities that buffer

Bi will experience over a given demand K1 within a production shift and is used for sizing the

standalone buffers to ensure that no overflows or underflows occur. We need to understand the

size required for the buffer cluster combinations at any given time. Thus, for the buffer cluster,

we must assess the buffer sizes leveraging (3.9) at every given time t from the time of first

arrival of an entity in buffer B2 (to the completion of the production shift (q) (See assumption

A6).

 =m n (K +
 -

 -

MT
 -

) –m n K -
 -

 -

MT
 - q] (4.1)

From (4.1) we see that the search for the buffer cluster size requires a calculation at

each time step throughout the production shift for every buffer Bi. This results in a significant

number of computations. We quantify and illustrate in Chapter 5 how the number of

calculations and the simulation time can be substantially reduced. Before we can quantify the

savings, we must first solve for BBj defined as the maximum number of entities the buffer cluster

Wj must hold such that no overflows or underflows occur in the buffer cluster.

53

To solve for BBj, we first solve and (see Figure 4-1) and then prove that the

maximum buffer cluster size required occurs when one of the individual buffers Bi is at a

maximum during the time interval]. To solve for we first solve for the last

arrival (K2i) that occurs at MBi - 1. We modify (3.8) as shown in (4.2).

MBi -1 = (K2i –1) - (K -) (4.2)

Then to get the first arrival that occurs at MBi, we solve for the time that the K2i + 1 arrival

arrives to buffer Bi

 = - + (K +)- MT - (4.3)

To determine , we first we solve for the time of the K1th arrival to buffer Bi using (3.10) and

use (3.5) to calculate the number of departures that have occurred by the K1th arrival. Then we

add one to the departures (named K3i) and calculate the time of this departure () using (4.4).

 = - + K3 - MT (4.4)

The minimum size for a cluster W j such that no overflows occur is shown in 4.5.

BBj = max
 =

N]
 r r W

() W (4.5)

We now prove that the buffer cluster size required occurs when at least one of the

individual buffers in the cluster Wj is at a maximum according to (4.5).

Lemma 2: Minimum size for cluster Wj such that no overflows occur takes place when at least

one of the buffers Bi in cluster Wj has reached the maximum number of entities, MBi.

We take buffers Bk and Bp that are in cluster Wj and output to servers Sk and Sp respectively

where k < p, and the constraints MTk-1 < MTk and MTp-1 < MTp hold. We recall from Corollary 2

that when MTk-1 = MTk and MTp-1 = MTp, the buffer size is 1. We observe the buffer inventory

profiles of Bk and Bp at three specific time intervals of the buffer inventory covering the time from

the first arrival to buffer Bk to the last departure from buffer Bp as shown in Figure 4-3. For each

interval, we also observe when buffers Bk and Bp are sequential (p = k+1) and when they are not

54

(p > k +1). Figure 4-3 shows the case when p = k+1. As p > k+1, the buffer profiles drift apart

and the overlap in Time Interval 3 decreases until no overlap exists.

Figure 4-3. Buffer profiles of Bk and Bp and time intervals 1 through 3 for p = k + 1

Time Interval 1: k- < t < k (Bk and Bp are increasing; Bk has reached a maximum)

Buffer Bk has its first arrival at k- and increases until it reaches MBk. Buffer Bp has its first

arrival at p- and increases until it reaches its maximum, MBp. For Buffers Bk and Bp where p =

k+1, p- k- = Tk. Thus, buffer Bp starts increasing Tk seconds after the first arrival to buffer

Bk. When p > k+1, p- k- is greater than Tk meaning that time of the first arrival of Bp

approaches and can exceed time interval [k k] when Bk is maximum. When buffer Bk is at

its maximum (MBk), buffer Bp is increasing in size, while after reaching MBk, buffer Bk begins to

decline. Therefore, a possible buffer cluster maximum between buffers Bk and Bp is at MBk.

Time Interval 2: p < t < p- + K - MTp (Bk is decreasing and reaches zero; Bp has reached

its maximum and begins to decline including its last departure)

The last arrival to buffer Bp at time ApK = p-
+ K - MTp-

The last departure of buffer Bk occurs at time kK = k-
+ K - MTk

55

When we subtract these times we get:

 p- + K - MTp- - k- - K - MTk= p- - k- + K - MTp- - K - MTk =

 p- - k- - K - (MTp- -MTk) (4.6)

For Buffers Bk and Bp where p = k+1 then MTp- - MTk = 0 and p- - k- = Tk then (4.6) equals

Tk. Therefore, the last departure of Bk occurs Tk seconds prior to the last arrival to buffer Bp.

Thus Bk is reaches zero while Bp is at a maximum. When p > k+1, then p- - k- is greater

than Tk and MTk < MTp-1, therefore (K1-1)*(MT
p-

-MTk) > 0, resulting in (4.6) being greater than

Tk. Therefore, a possible buffer cluster maximum between buffers Bk and Bp occurs at MBp.

Time Interval 3: k < t < p (Bk is decreasing; Bp is increasing but has not reached a

maximum)

At time k, Bk has experienced its last arrival (K1) and it has reached a maximum MBk.

Therefore, after this time, only departures occur. Thus in essence, MBk indicates the number

of departures that are left for buffer Bk until it reaches zero. During this time interval, buffer Bp

 s ncreas ng (hasn’ reached a max mum ye) mean ng has bo h arr vals and depar ures.

When p = k+1, MTk = MTp-1 indicating that the number of departures remaining at buffer Bk ,

MBk, is also the number of entities still to arrive at buffer Bp and they occur at the same time.

However, given that Bp s ncreas ng and hasn’ reached a max mum s also exper enc ng

departures at a rate of MTp. During this time interval, the quantity of inventory of buffer Bk

declines from MBk to zero. Although Buffer Bp entities arrive at the same rate as buffer Bk

departures, its inventory increases more slowly than the decline of departures from buffer Bk

given buffer Bp also has entities departing at a rate of MTp during this time interval. Therefore

the sum of the inventory profiles of buffer Bk and Bp during this time interval will not exceed the

maximum inventory observed in time interval (1) or (2) described above. When p > k + 1,

buffer Bp has its first entity arriving even later than in the p = k+1 case. Although the decline of

buffer Bk remains the same, buffer Bp starting arrival approaches the time when buffer Bk

56

approaches MBk and the summation of the two inventory profiles will not exceed the maximum

inventory observed in time interval (1) or (2) described above. Based on results of the analysis

for each of the time intervals, we must search the union of time intervals in (4.7) for each buffer

to find the maximum buffer cluster size BBj.

 … … N
 N

 (4.7)

For a given production line, there can be thousands of buffer cluster combinations.

Consider a collection of candidate buffer clusters W j, j  … C no necessar ly d s o n for

which the minimum storage requirements BBj have been computed via (4.5). We use integer

programming to find the buffer cluster combination that provides the minimum total space

occupied by all clusters. From here we set the objective function as shown in (4.8) to determine

the buffer cluster(s) size across the production line where Xj determines what buffer cluster

combinations should be present to minimize the overall size of the buffer cluster(s) throughout

the production line where Xj  {0, 1} is a decision variable that determines whether the buffer

cluster Wj should be realized or not. As defined earlier each buffer can only participate in one

and only one realized buffer cluster. The first set of constraints (4.9) show that a buffer Bi can

only participate in one combination buffer cluster. The second set of constraints (4.10) is the

maximum size of a buffer cluster in square meters. The third set of constraints (4.11) are the

binary constraints for Xj. We define Vj to ensure constraint (4.9) applies only to buffers within

cluster Wj.

57

Vj = { i, Bi Wj} 1 < j < C

Objective Function:

Minimize

C
 = (4.8)

Subject to:

∑
∈ jVi:j

jX 1= , 1 < i < N (4.9)

 < G, 1 < j < C (4.10)

 = 0 or 1 j (4.11)

58

5. APPLYING MODELS TO INDUSTRY EXAMPLES

Returning to the distribution and manufacturing examples discussed in the introduction

and we illustrate how the above formulations from Chapters 3 and 4 are applied to each

problem class. These methods are used and compared to results from simulation and found to

be exact.

5.1 Applying Chapter 3 results to distribution center example

As discussed in the introduction, there were problem areas the distribution center team

desired to investigate as part of the research. Below we illustrate how the model in Chapter 3 is

applied to these problem areas.

(1) The maximum buffer size allowed such that no buffer experiences blocking during a shift.

To determine the maximum buffer size allowed such that no buffer experiences blocking during

a shift where the demand K1 = 350, we use (3.8).

MB2 = (K1 –1) - (K -) = 349 - ⎣
 0

 0
*349⎦ = 291 Where Y2 =

MT

MT
 =

 0

 0

Similarly, MB3 = 0, MB4 = 188, MB5 = 0, MB6 = 0, MB7 = 66, MB8 = 0, MB9 = 0

(2) The sh f where a buffer’s capac y should change o mee he produc on demand changes.

Because the service times remain the same, increasing K1, only impacts those buffers where

MTi ≠MTi-1. Buffers MB2, MB4 and MB7 undergo a buffer size increase with an increase in

demand. For example, when demand increases to K1=400 the capacities for buffers B2, B4 and

B7 must be increased to 333, 215, and 75 respectively.

(3) The number of units processed by the bottleneck station when time of blocking occurs.

Suppose that the Flash Process (S4) and Buffer B4 cannot support the required capacity (188)

and has space available for only 160 units. The number of units that have arrived at B4 when L4

= 160 entities is R1.

Lv = (R1 –1) - v (R -)  160 = (R1 – 1) -
 0

 0
 (R -)  R1 = 298

59

Therefore, 298 units have arrived when B4 reaches capacity of L4 and 102 units remain to be

processed to fill the K1 = 400 demand in (2).

(4) The buffer transition and block time when a buffer size is reduced (Lv < MBv).

We determine the transition and block time when we reduce the capacity of Buffer B4 to Lv =160

units. We first calculate the transition time, or the last time an entity arrives to B4 according to

the prior arrival rate before getting blocked.

TT4 (for R1 arrivals) = MT3*(R1-1) + 3
= 240*(298-1) + 340 = 71620 seconds

The very next departure after TT4 will be the departure where the arrival is in lock step with the

departure. We solve for BD4 (t) at t = TT4

BD4 (TT4) = 1 +
TT - 3

MT
  BD4 (TT4) = 1 +

 0-3 0

 0
 = 138

The BD4(TT4) departure will occur at XT4. Therefore, we solve for XT4 as follows:

XT4 = MT4*((BD4(TT4)+1)-1) + 3 = 520*138 + 340 = 72100 seconds

(5) The reaction time to route a resource (operator or workstation) to a bottleneck process to

prevent impact to other processes prior to the bottleneck.

The distribution center production team determined that the time to boot up a flash station in the

Flash Process is tFB = 310s. Therefore, to prevent the blocking at time t = 72100 seconds

calculated in (4), an additional flash station would need to be booted by time t = TT4 – tFB =

71620 – 310 = 71310 s so that blocking can be alleviated for the remaining 102 entities. We

use time t = TT4 as that is the last time an entity arrives to B4 according to the prior arrival rate,

and we ensure that the second flash station is available by that time to prevent blocking at time t

= XT4.

(6) The maximum demand the serial line can support given the limited shift time and buffer

sizes.

We use (3.2) to find the time of the last departure from the ninth server S9 in serial line and the

fact that there are 43200 seconds in a 12-hour shift.

60

SD9 = +
 3 00- 0

 0
 = 64 entities depart 

3 0

 = 5.46 shifts required to finish 350 entities.

(7) The shift time to finish a given demand with limited buffer sizes

All 350 entities will complete at time t using (3.2): 350 = 1 +
 - 0

 0
 where t = 225640 seconds

to complete all 350 entities. Figure 5-1 uses (3.2) to profile for shift completion time vs. demand.

Figure 5-1. Shift completion vs. demand

(8) Determining the production line behavior with varying process times.

We can easily apply these methods to scenarios where service times vary. For a given buffer,

we identified that MTi-1 and MTi are the critical parameters for identifying the maximum number

of entities a buffer will experience. We calculated MB4 as 188 for the buffer prior to the Flash

process. The Flash process (T4 = MTi = MT4) is fully automated for the mobile devices. The

Pre-work process (T2 = MTi-1 = MT2) is also fully automated. However, if the Pre-Flash process

(the process in between MTi-1 and MTi) is not fully automated, say it is a manual process and

has variable service times depending on the operator skill, Figure 5-2 shows that the Pre-Flash

service time (60 second process time) can vary significantly without impacting any other MBi in

the serial line because it is not an MTi or MTi-1 value for any buffer in the serial line. It can vary

61

from 1 to 240 seconds without impacting other buffer MBi values. If Pre-Flash service time

exceeds 240 seconds, it begins to impact MB4 and MB3 as shown in Figure 5-2. Therefore,

from a control policy perspective, the Pre-Flash process does not require significant monitoring

or immediate knowledge of events as the process can vary significantly without impacting other

buffers.

Figure 5-2. MBi vs. pre flash service time (T3)

We can expand this further to the critical MTi and MTi-1 for MB4. Let us say that for MB4, where

both MTi (Flash = 520 seconds) and MTi-1 (Pre-Work = 240 seconds) are manual or have

variable service times, one can use the results of (3.8) and create a two-way variable table (see

Table 3) to find the maximum and minimum MB4. Green indicates the maximum values and red

indicates the minimum values In this case, MTi was varied from 500 to 540 seconds and MTi-1

was varied from 220 to 260 seconds. Results show that deterministically MB4 = 188. When

using a two-way variable table we find MB4 varies from a minimum of 168 to a maximum of 207.

Using a simulation model, several hundred simulation runs are required to get these exact

results.

62

Table 3. Two-way variable table for MB4

5.2 Applying Chapter 4 results to the manufacturing center

In the first section we will apply the model in chapter 4 to the manufacturing center

industry example. In the second section we quantify and illustrate in how the model significantly

reduced number of calculations required to calculate the buffer cluster size.

5.2.1 Buffer clustering policy for manufacturing center

As discussed in the Introduction, the underlying motivation for this research was a case

study where a manufacturing facility that produces mobile devices wished to change over from a

serial line to a buffer cluster configuration. Table 2 in the Introduction shows the server stations

and process times. The footprint for buffer cell holding an entity is 0.005m2. The maximum

buffer cluster size is 1.825 m2.

Given B1 and B8 are the starting and ending inventory buffers, these are not included in

the analysis. We use (3.8) and (4.5) to populate Table 4 with Wj cluster sets and size for buffers

B2 through B7. The production line shift is 8 hours and 458 units are projected to ship by the end

of the shift. There is a space constraint of 1.825 square meters for the buffer cluster size. In

63

Table 4, the cells in red indicate that the cluster does not meet the space constraint (i.e. the

buffer cluster size BBj > 365 entities).

Table 4. Wj buffer cluster sets and BBj values for each buffer cluster set
W1 = {B2} W2 ={B3} W3 = {B4} W4 = {B5} W5 = {B6}

BB1 = 229 BB2 = 229 BB3 = 92 BB4= 294 BB5 = 1 (Transport)

W6 = {B7} W7 = {B2,B3} W8 = {B2,B4} W9 = {B2,B5} W10 = {B2,B6}

BB6 =121 BB7 = 343 BB8 = 251 BB9 =294 BB10 = 230

W11= {B2, B7} W12={B3,B4} W13={B3,B5} W14 = {B3,B6} W15 = {B3,B7}

BB11 = 237 BB12 = 274 BB13 = 346 BB14 = 230 BB15 = 246

W16 = {B4,B5} W17={B4,B6} W18 = {B4,B7} W19={B5,B6} W20={B5,B7}

BB16 = 326 BB17 = 93 BB18 = 126 BB19 =295 BB20=337

W21={B6,B7} W22 = {B2,B3, B4} W23 = {B2,B3,B5} W24 = {B2,B3,B6} W25 = {B2,B3,B7}

BB21=122 BB22 = 365 BB23 = 401 BB24 = 344 BB25 = 351

W26 = {B2,B4,B5} W27 = {B2,B4,B6} W28 = {B2,B4,B7} W29 = {B2,B5,B6} W30 = {B2,B5,B7}

BB26 = 326 BB27 = 252 BB28 = 259 BB29 = 295 BB30 = 337

W31 = {B2,B6,B7} W32={B3,B4,B5} W33={B3,B4,B6} W34 ={B3,B4,B7} W35={B3, B5,B6}

BB31 = 238 BB32 = 391 BB33 = 275 BB34 = 291 BB35 = 347

W36={B3, B5,B7} W37={B3, B6,B7} W38={B4,B5,B6} W39={B4,B5,B7} W40={B4, B6,B7}

BB36 = 363 BB37 = 247 BB38 = 327 BB39 = 360 BB40 = 127

W41={B5, B6,B7} W42 = {B2,B3,B4,B5} W43 = {B2,B3,B4,B6} W44 = {B2,B3,B4,B7} W45 = {B2,B3,B5,B6}

BB41 = 338 BB42 = 423 BB43 = 366 BB44 = 373 BB45 = 402

W46 = {B2,B3,B5,B7} W47 = {B2,B3,B6,B7} W48 = {B2,B4,B5,B6} W49 = {B2,B4,B5,B7} W50 = {B2,B4,B6,B7}

BB46 = 409 BB47 = 352 BB48 = 327 BB49 = 360 BB50 = 260

W51 = {B2,B5,B6,B7} W52 = {B3,B4,B5,B6} W53= {B3,B4,B5,B7} W54 = {B3,B4,B6,B7} W55 = {B3,B5,B6,B7}

BB51 = 338 BB52 = 392 BB53 = 408 BB54 = 292 BB55 = 364

W56 = {B4,B5,B6,B7} W57 = {B2,B3,B4,B5,B6} W58 = {B2,B3,B4,B5,B7} W59 = {B2,B3,B4,B6,B7} W60 = {B2,B3,B5,B6,B7}

BB56 = 361 BB57 = 424 BB58= 431 BB59 = 374 BB60 = 410

W61 = {B2,B4,B5,B6,B7} W62 = {B3,B4,B5,B6,B7} W63 = { B2,B3,B4,B5,B6,B7}
 BB61 = 361 BB62 = 409 BB63 = 432

The objective function according to (4.8) and constraints according to (4.9), (4.10) and

(4.11) are below. As discussed in Chapter 4, a buffer cannot participate in multiple clusters at

the same time. Table 5 shows the buffer storage space savings for the top buffer cluster

configurations considered by the manufacturing center compared to that of the cluster that does

not consider the space constraint and that for dedicated buffers. The manufacturing center

desired to leverage the cluster for work cells to minimize the buffer storage space. The top

buffer cluster configurations considered by the manufacturing center contained buffer clusters

with three or four buffers clustered together.

64

Objective Function:

Minimize
 3
 =

Subject to:
Constraint for B2:
X1+X7+X8+X9+X10+X11+X22+X23+X24+X25+X26+X27+X28+X29+X30+X31+X42+X43+X44
+ X45 +X46+ X47+X48+X49+X50+X51+X57+X58+X59+X60+X61+X63=1
Constraint for B3:
X2+X7+X12+X13+X14+X15+X22+X23+X24+X25+X32+X33+X34+X35+X36+X37+X42+X43+
X44+X45+X46+X47+X52+X53+X54+X55+X57+X58+X59+X60+X62+X63=1
Constraint for B4:
X3+X8+X12+X16+X17+X18+X22+X26+X27+X28+X32+X33+X34+X38+X39+X40+X42+X43+
X44+ X48+X49+X50+X52+X53+X54+X56+X57+X58+X59+X61+X62+X63=1
Constraint for B5:
X4+X9+X13+X16+X19+X20+X23+X26+X29+X30+X32+X35+X36+X38+X39+X41+X42+X45+
X46+X48+X49+X51+X52+X53+X55+X56+X57+X58+X60+X61+X62+X63=1
Constraint for B6:
X5+X10+X14+X17+X19+X21+X24+X27+X29+X31+X33+X35+X37+X38+X40+X41+X43+
X45+X47+X48+X50+X51+X52+X54+X55+X56+X57+X59+X60+X61+X62+X63=1
Constraint for B7:
X6+X11+X15+X18+X20+X21+X25+X28+X30+X31+X34+X36+X37+X39+X40+X41+X44+X46+
X47+X49+X50+X51+X53+X54+X55+X56+X58+X59+X60+X61+X62+X63=1

Space Constraints: 0.00 . 1 < j < 63

Binary Constraint: = 0 or 1

Figure 5-3 is the original production line configuration. Batches of 80 come from

inventory and enter the production line (B1). Batches of 80 are put on a pallet and shipped (B8).

The top cluster configurations considered by the facility based on buffer storage savings were

then entered into a facility layout tool. The configuration shown in Figure 5-4 was selected {B3,

B4, B7}, {B2, B5, B6} resulting in a 39.3% buffer storage savings (1.9 square meters).

65

Table 5. Buffer cluster sets and buffer storage savings

Cluster Set
Size

(No. Entities)
Size
(m2)

Buffer Storage
Space

Savings (m2)
Space

Savings %

{B2},{B3},{B4},{B5}, {B6},{B7}* 966 4.83
 {B2,B3,B4,B5,B6,B7}** 432 2.16 2.67 55.3%

 {B2,B4, B5,B6,B7} , {B3} 590 2.95 1.88 38.9%

 {B2,B5,B6,B7} , {B3 ,B4} 612 3.06 1.77 36.7%

 {B3,B5,B6,B7} , {B2,B4} 615 3.08 1.76 36.3%

 {B3,B4,B6,B7} , {B2,B5} 586 2.93 1.90 39.3%

{B2,B4,B5,B6}, {B3,B7} 573 2.87 1.97 40.7%

{B2,B4,B6,B7}, {B3,B5} 606 3.03 1.80 37.3%

 {B3,B5,B7} , {B2,B4,B6} 615 3.08 1.76 36.3%

 {B3,B5,B7} , {B6},{B2,B4} 615 3.08 1.76 36.3%

 {B3,B4,B7} , {B2, B5, B6} 586 2.93 1.90 39.3%

 {B3,B4,B7} , {B6},{B2, B5} 586 2.93 1.90 39.3%

 {B3,B4,B6} , {B2, B5, B7} 612 3.06 1.77 36.6%

 {B2,B5,B7} , {B6},{B3, B4} 612 3.06 1.77 36.6%

 {B2,B4,B5} , {B6},{B3, B7} 573 2.87 1.97 40.7%

 *Dedicated Buffers
 ** Optimal Buffer Cluster without space constraints

Figure 5-3. Serial production line

Figure 5-4. Production line with buffer clusters

As discussed in the introduction, equation (4.5) along with the objective function (4.8)

and constraints in (4.9) through (4.11) can be used to conduct sensitivity analysis of the buffer

66

cluster size by varying parameters such as server process time Ti and production demand K1.

Now we leverage the framework of the model and vary the process time of one server to

demonstrate how the model can be used for sensitivity analysis. In this case we vary the

process time of server S2 to three seconds, calculate the BBj values for each cluster set and

show the buffer cluster sets in Table 6. As before, the cells in red indicate that the cluster does

not meet the space constraint and are the same cells that did not meet the space constraint in

Table 4. If the cells are highlighted in purple, they used to meet the space constraint, but due to

the change in the process times, no longer meet the constraint. The cells highlighted in blue

exceeded the space constraint in Table 4, but now meet the constraint in Table 6. The BBj

values in red indicate a change in the size of the cluster from Table 4.

We take the configurations from Table 5 and identify in Table 7 that there are

configurations that now, with S2 equaling 3 seconds do not meet the space constraint

(highlighted in red). We see that the configuration selected with a process time S2 equaling 2

seconds, {B3, B4, B7}, {B2, B5, B6}, with 586 entities, achieves a total buffer size of 572 entities

when the process time of S2 is 3 seconds. This scenario is highlighted in green in Table 7. So

the initial buffer cluster set shown in Figure 5-4 can remain and still satisfy the space constraints

when the process time of S2 varies from two to three seconds.

67

Table 6. Wj buffer cluster sets and BBj values for each buffer cluster set (T2 = 3s)
W1 = {B2} W2 ={B3} W3 = {B4} W4 = {B5} W5 = {B6}

BB1 = 305 BB2 = 115 BB3 = 92 BB4= 294 BB5= 1 (Transport)

W6 = {B7} W7 = {B2,B3} W8 = {B2,B4} W9 = {B2,B5} W10 = {B2,B6}

BB6 =121 BB7 = 343 BB8 = 327 BB9 =363 BB10 = 306

W11= {B2, B7} W12={B3,B4} W13={B3,B5} W14 = {B3,B6} W15 = {B3,B7}

BB11 = 313 BB12 = 183 BB13 = 294 BB14 = 116 BB15 = 140

W16 = {B4,B5} W17={B4,B6} W18 = {B4,B7} W19={B5,B6} W20={B5,B7}

BB16 = 326 BB17 = 93 BB18 = 126 BB19 =295 BB20=337

W21={B6,B7} W22 = {B2,B3, B4} W23 = {B2,B3,B5} W24 = {B2,B3,B6} W25 = {B2,B3,B7}

BB21=122 BB22 = 365 BB23 = 401 BB24 = 344 BB25 = 351

W26 = {B2,B4,B5} W27 = {B2,B4,B6} W28 = {B2,B4,B7} W29 = {B2,B5,B6} W30 = {B2,B5,B7}

BB26 = 385 BB27 = 328 BB28 = 335 BB29 = 364 BB30 = 371

W31 = {B2,B6,B7} W32={B3,B4,B5} W33={B3,B4,B6} W34 ={B3,B4,B7} W35={B3, B5,B6}

BB31 = 314 BB32 = 358 BB33 = 184 BB34 = 208 BB35 = 295

W36={B3, B5,B7} W37={B3, B6,B7} W38={B4,B5,B6} W39={B4,B5,B7} W40={B4, B6,B7}

BB36 = 337 BB37 = 141 BB38 = 327 BB39 = 360 BB40 = 127

W41={B5, B6,B7} W42 = {B2,B3,B4,B5} W43 = {B2,B3,B4,B6} W44 = {B2,B3,B4,B7} W45 = {B2,B3,B5,B6}

BB41 = 338 BB42 = 423 BB43 = 366 BB44 = 373 BB45 = 402

W46 = {B2,B3,B5,B7} W47 = {B2,B3,B6,B7} W48 = {B2,B4,B5,B6} W49 = {B2,B4,B5,B7} W50 = {B2,B4,B6,B7}

BB46 = 409 BB47 = 352 BB48 = 386 BB49 = 393 BB50 = 336

W51 = {B2,B5,B6,B7} W52 = {B3,B4,B5,B6} W53= {B3,B4,B5,B7} W54 = {B3,B4,B6,B7} W55 = {B3,B5,B6,B7}

BB51 = 372 BB52 = 359 BB53 = 384 BB54 = 209 BB55 = 338

W56 = {B4,B5,B6,B7} W57 = {B2,B3,B4,B5,B6} W58 = {B2,B3,B4,B5,B7} W59 = {B2,B3,B4,B6,B7} W60 = {B2,B3,B5,B6,B7}

BB56 = 361 BB57 = 424 BB58= 431 BB59 = 374 BB60 = 410

W61 = {B2,B4,B5,B6,B7} W62 = {B3,B4,B5,B6,B7} W63 = { B2,B3,B4,B5,B6,B7}
 BB61 = 394 BB62 = 385 BB63 = 432

Table 7. Buffer cluster sets and buffer storage savings with T2 at 2 and 3 seconds

Cluster Set

Size
(No. Entities)

T2 = 2 sec

Size
(No. Entities)

T2 = 3 sec

Size
(m2)

T2 = 2 sec

Size
(m2)

T2 = 3 sec

Buffer Storage
Space Savings
(m2) T2 = 2 sec

Buffer Storage
Space Savings
(m2) T2 = 3 sec

Space
Savings %
T2 = 2 sec

Space
Savings %
T2 = 3 sec

{B2},{B3},{B4},{B5},{B6},{B7}* 966 928 4.83 4.64

{B2,B3,B4,B5,B6,B7}** 432 432 2.16 2.16 2.67 2.48 55.3% 53.5%

{B2,B4, B5,B6,B7} , {B3} 590 509 2.95 2.55 1.88 2.10 38.9% 45.2%

{B2,B5,B6,B7} , {B3 ,B4} 612 555 3.06 2.78 1.77 1.87 36.7% 40.2%

{B3,B5,B6,B7} , {B2,B4} 615 665 3.08 3.33 1.76 1.32 36.3% 28.3%

{B3,B4,B6,B7} , {B2,B5} 586 572 2.93 2.86 1.90 1.78 39.3% 38.4%

{B2,B4,B5,B6}, {B3,B7} 573 526 2.87 2.63 1.97 2.01 40.7% 43.3%

{B2,B4,B6,B7}, {B3,B5} 606 630 3.03 3.15 1.80 1.49 37.3% 32.1%

{B3,B5,B7} , {B2,B4,B6} 615 665 3.08 3.33 1.76 1.32 36.3% 28.3%

{B3,B5,B7} , {B6},{B2,B4} 615 665 3.08 3.33 1.76 1.32 36.3% 28.3%

{B3,B4,B7} , {B2, B5, B6} 586 572 2.93 2.86 1.90 1.78 39.3% 38.4%

{B3,B4,B7} , {B6},{B2, B5} 586 572 2.93 2.86 1.90 1.78 39.3% 38.4%

{B3,B4,B6} , {B2, B5, B7} 612 555 3.06 2.78 1.77 1.87 36.6% 40.2%

{B2,B5,B7} , {B6},{B3, B4} 612 555 3.06 2.78 1.77 1.87 36.6% 40.2%

{B2,B4,B5} , {B6},{B3, B7} 573 526 2.87 2.63 1.97 2.01 40.7% 43.3%

5.2.2 Computational savings for buffer cluster sizing

Table 8 shows that for this case study, we identified 25 critical time steps to measure the

buffer size, resulting in 25 calculations. For Buffer B6, because MTi-1 > MTi, no time interval to

68

detect the maximum buffer size is required because buffer size required is always 1 (as

discussed in Corollary 2, this is a transport buffer).

Table 9 shows the average savings in time steps processed and average solution time

savings benefits based on number of buffers to cluster in the sequential line. We start with 6

buffers similar to the industry example and double the production line size to 12 buffers and 24

buffers respectively. We also vary the K1 or production demand (from 100 to 300) such that it

would cover a production shift interval spread of 8 to 12 hours.

Table 8. Number of time steps for required buffer size computations
Element Bi B2 B3 B4 B5 B6 B7

 458 917 1831 2292 0 6434

 459 918 1836 2307 0 6438

Sum B2 – B7 is 25

1 1 5 15 0 4

Table 9. Calculation and computation time savings varying K1
(A) (B) (C) (D) (E) (F) (G)

No.
Buffers

Average
Time
Steps

Average
Solution Time

36000 time
steps (sec)

Average
Sum

Time Steps

Solution Time for

Calculations (sec)

Savings in time
steps processed

((B)-(D))/(B)
(%)

Savings in Solution
Time

((C)-(E))/(C)
(%)

6 36000 137 422 19 99% 86%

12 36000 227 921 25 97% 89%

24 36000 466 2355 33 93% 93%

69

6. CONCLUSIONS AND FUTURE WORK

The main contributions of the research are:

1. Closed Form, exact method, time-dependent models were derived in Chapter 3 for

extracting state space parameters for an N-Server, N+1-Buffer sequential line with

accurate results. State space parameters include the number of arrivals and departures

at any buffer or server for any given time of interest and the maximum number of entities

a buffer will experience when servers have capacity of unity and buffers have unlimited

capacity. When a queue has its capacity reduced, the model determined the blocking

time and transition times for any queue and server in the serial line. An algorithm is also

derived for determining which queues and which servers are impacted by the reduced

capacity queue and the number of entities in any queue or server at time of interest t.

The algorithm provided the rules for determining impacted arrivals and departures for Bi

and Si and the corresponding equations to use.

2. We used the time dependent model of the sequential line described in Chapter 3 and

applied them to a different model, a buffer cluster as shown in Chapter 4. We derived an

optimization framework that enabled a buffer clustering policy and provides output of the

required buffer sizing for that policy. The result reduces the buffers storage space and

thus the production line footprint when implemented, while ensuring no bottlenecks. We

also reduced the buffer and time search space significantly reducing the number of

computations. We demonstrated in the case study how the models derived can be used

to conduct sensitivity analysis of the buffer cluster size by varying parameters such as

process time or production demand. Lastly, we showed how the buffer clustering policy

can be used in a facility layout tool where a feasible layout concept is generated.

70

Our results suggest that time-dependent exact methods can be derived and applied with

accurate results. These methods were applied to the industry examples for both a distribution

center where distribution line consisted of 9 processes and manufacturing center where

production line consisted of 7 processes. For the distribution center we validated and aided in

key problem areas identified by the distribution center team: (1) the maximum buffer size

allowed such that no buffer experiences block ng dur ng a sh f () he sh f where a buffer’s

capacity should change to meet the production demand changes (3) the number of units

processed by a bottleneck station when time of blocking occurs (4) the buffer transition and

block time when a buffer size is reduced (5) the reaction time to route a resource (operator or

workstation) to a bottleneck process to prevent impact to other processes (6) the time a failed

machine must recover by as not to impact the production line or the time interval which to route

a resource (operator or workstation) to a failed process (7) the maximum demand that the serial

line can support given the limited shift time and buffer sizes (8) the ability to predict production

line behavior with varying process times. For the manufacturing center, we developed and

applied a buffer clustering model reducing buffer storage space. The models are applied to

these areas in Chapter 5.

Results such as those presented in this paper enable one to extract the parametric state

space of a system at a given time without any significant computational efforts and as an

alternative to running a full simulation. We now discuss the benefits of these models. From the

case study above, the results of this research enable us to identify sensitivity of processes

(servers) to human or machine failure rates and impact based on the duration of the failure. We

are able to determine by what time a workstation must recover without impacting the remaining

workstations. Another benefit is that given the knowledge of timing of events across the entire

system, allows one to enable control policies minimizing technology investments. For example,

knowledge of the entire state space at a given time means that technologies such as sensors

and wireless communications do not need to reside at every server or queue. In manufacturing

71

and distribution centers today, workstations, operators and product entities have wireless

communication devices that report sensing data, radio frequency identification or bar code

information up to a central database. Deploying these devices across all production elements

such as buffers and workstations in addition to sending data at a high frequency rate leads to

high fixed and maintenance costs for investment in communication devices and large database

storage. A parametric state space allows for a minimum set of devices and monitoring or

reporting data for critical events as opposed to every event.

Our results suggest that parametric time-dependent exact methods can be derived and

applied with accurate results. We derived and demonstrated usage of a time based parametric

model for N+1- Queue, N-Server sequential line to assist production environments in sizing

buffers, in particular, buffer clusters appropriately when alternate production line configurations

are desired. We derived an optimization framework that enabled a clustering policy and

provides output of the required buffer sizing for that policy. The result reduces production line

footprint when implemented, thus minimizing the facility space utilized while ensuring no

bottlenecks. We also reduced the buffer and time search space significantly reducing the

number of computations.

Related future studies relax assumptions of the models in this paper and also expand

configurations. In particular, studies that relax the capacity constraints and reliability constraints

of the servers would provide added value to the sequential line and buffer clustering models.

The ability to extract time dependent state space models is a rich area for Operations Research

with several applications in industry.

72

CITED LITERATURE

[1] F. Schuler and H. Darabi, "Supervisory control and data collection policies for a distribution
center modeled as a discrete event system," in IEEE International Conference on
Networking, Sensing and Control, Chicago, 2010.

[2] C. Cassandras and S. LaFortune, Introduction to discrete event systems, New York City,
New York: Springer Science and Business Media, Inc., 2007.

[3] T. Murata, "Petri nets: properties, analysis and applications," Proceedings of the IEEE, vol.
77, no. 4, pp. 541-580, 1989.

[4] K. VanHee, A. Serebrenik and N. Sidorova, "Token history Petri nets," Fundamente
Informaticae, vol. 85, no. 1-4, pp. 219-234, 2008.

[5] G. Zeng, W. Wu, M. Zhou, W. Mao, H. Su and J. Chu, "Design of Petri net based deadlock
prevention controllers for flexible manufacturing systems," in IEEE International
Conference on Systems, Man and Cybernetics, San Antonio, Texas, 2009.

[6] Y. Tang and L. Pogach, "A conceptual model for a value-driven learning healthcare
system," in IEEE International Conference on Systems, Man and Cybernetics., San
Antonio, Texas, 2009.

[7] J. Li, Y. Fan and M. Zhou, "Timing constraint workflow nets for workflow analysis," IEEE
Transactions on Systems, Man and Cybernetics, Part A. Systems and Humans, vol. 33, no.
2, pp. 179- 193, 2003.

[8] R. Guillerm, H. Demmou and N. Sadou, "ESA Petrinet: Petri net based tool for reliability
analysis," in IEEE International Conference on Systems, Man and Cybernetics, San
Antonio, Texas, 2009.

[9] Z. Suraj, B. Fryc, Z. Matusiewicz and K. Pancerz, "A Petri net system - an overview,"
Fundameta Informaticae, vol. 71, no. 1, pp. 101-120, 2006.

[10] B. Hollocks, "Forty years of discrete event simulation - a personal reflection," Journal of the
Operational Research Society, vol. 57, no. 12, pp. 1383-1399, 2006.

[11] Rockwell Automation, "Arena Simulation Software," Rockwell Automation, [Online].
Available: http://www.arenasimulation.com/. [Accessed 23 June 2016].

[12] Simul8, "Simul8 - Process improvement with simulation software," Simul8, [Online].
Available: http://www.simul8.com/. [Accessed 6 February 2016].

73

[13] Lanner Group, "Witness," Lanner, [Online]. Available: www.lanner.com. [Accessed 6
February 2016].

[14] Dassault Systems, "Delmia Digital Manufacturing and Production," Dassault Systems,
[Online]. Available: http://www.3ds.com/products/delmia. [Accessed 6 February 2016].

[15] MathWorks, "SimEvents - model and simulate discrete-event systems," MathWorks,
[Online]. Available: http://www.mathworks.com/products/simevents/. [Accessed 6 February
2016].

[16] University of Hamburg, Germany, "Petri nets tools database quick overview," University of
Hamburg, Germany, [Online]. Available: http://www.informatik.uni-
hamburg.de/TGI/PetriNets/tools/quick.html. [Accessed 6 February 2016].

[17] University of Hamburg, "Petri nets world," University of Hamburg, [Online]. Available:
http://www.informatik.uni-hamburg.de/TGI/PetriNets/. [Accessed 6 February 2016].

[18] H. Storrle, "An evaluation of high-end tools for Petri-nets," Ludwig-Maximilians-Universit at
Munchen Institut fur Informatik, [Online]. Available:
http://www.pst.ifi.lmu.de/~stoerrle/V/Evaluierung.pdf. [Accessed 6 February 2016].

[19] M. Dong and F. Chen, "Process modeling and analysis of manufacturing supply chain
networks using object oriented Petri nets," Robotics and Computer Integrated
Manufacturing, vol. 17, no. 1-2, pp. 121-129, 2001.

[20] S. Ling and H. Schmidt, "Time Petri nets for workflow modeling and analysis," in IEEE
International Conference on Systems, Man, and Cybernetics, Nashville, Tennessee, 2000.

[21] J. Wang, Timed Petri nets: theory and applications, Massachusetts: Kluwer Academic
Publishers, 1998, pp. 4-6.

[22] C. Maziero, "The ARP tool," Federal University of Santa Catarina - Brazil, 14 September
2009. [Online]. Available: http://www.ppgia.pucpr.br/~maziero/doku.php/software:arp_tool.
[Accessed 23 June 2012].

[23] O. Grumber and H. Veith, Twenty-five years of model checking history, achievements,
perspectives, New York City: Springer, 2008.

[24] R. Lyngs and T. Mailund, "Textual interchange format for high-level Petri nets," in
Proceedings of the workshop on practical use of coloured Petri nets and design/CPN,
Denmark, 1998.

[25] PNML.org, "PNML.org," PNML.org, [Online]. Available: http://www.pnml.org/. [Accessed 6
February 2016].

74

[26] G. Frey and L. Litz, "XML based interchange for Petri nets - a control engineer's point of
view," University of Kaiserslautern, Institute of Process Automation, Kaiserslautern,
Germany, 2000.

[27] M. Cabasino, L. Contini, A. Giua, C. Seatuzu and A. Solinas, "A software platform for the
integration of discrete event system tools," in IEEE Conference on Automation, Science
and Engineering, Trieste, Italy, 2011.

[28] J. Coppola, "Pnet Lab," Automatic Control Group of the University of Salerno, 23 June
2012. [Online]. Available: http://www.automatica.unisa.it/PnetLab.html. [Accessed 23 June
2012].

[29] S. S. O. L. Projects, "Poses++," Gesellschaft fur prozebautomation and consulting mbh ,
August 2011. [Online]. Available: http://www.gpc.de/e_poses.html. [Accessed 23 June
2012].

[30] Department of Automatic Control and Applied Informatics of the Technical University of
Iasi, Romania., "Petri net toolbox for Matlab," Department of Automatic Control and Applied
Informatics of the Technical University of Iasi, Romania., [Online]. Available:
http://www.ac.tuiasi.ro/pntool/. [Accessed 6 February 2016].

[31] G. A. T. U. o. Iasi, "Third-Party Products & Services - Petri net toolbox," Mathworks, June
2007. [Online]. Available:
http://www.mathworks.com/products/connections/product_detail/product_35741.html.
[Accessed 23 June 2012].

[32] U. o. Torino, "Graphical editor and analyzer for timed and stochastic Petri nets,"
Dipartmento di Informatica, University of Torino, [Online]. Available:
http://www.di.unito.it/~greatspn/index.html. [Accessed 6 February 2016].

[33] Theoretical Foundations Group of the Department for Informatics of the University of
Hamburg, "Renew - the reference net workshop," Theoretical Foundations Group of the
Department for Informatics of the University of Hamburg, [Online]. Available:
http://www.renew.de/. [Accessed 6 February 2016].

[34] University of Technology Eindhoven, "CPN Tools," University of Technology Eindhoven,
[Online]. Available: http://cpntools.org/. [Accessed 6 February 2016].

[35] University of Technology Eindhoven and Deloitte, "Yasper - Yet another smart process
editor," University of Technology Eindhoven and Deloitte, [Online]. Available:
http://www.yasper.org/. [Accessed 6 February 2016].

[36] E. University of Technology, "ExSpecT - Executable Specification Tool," Stichting ASPT,
[Online]. Available: http://www.exspect.com/. [Accessed 6 February 2016].

75

[37] E. Clark, O. Grumber, M. Minea and D. Peled, "State space reduction using partial order
techniques," International Journal on Software Tools for Technology Transfer , vol. 2, no. 3,
pp. 279-287, 1999.

[38] S. Park, N. Raman and M. Shaw, "Adapative scheduling in dynamic flexible manufacturing
system: a dynamic rule selection approach," IEEE Transactions on Robotics and
Automation, vol. 13, no. 4, pp. 486- 502 , 1999.

[39] V. Kochikar and T. Narendran, " A framework for assessing the flexibility of manufacturing
systems," International Journal of Production Research, vol. 30, no. 12, pp. 2873-2895,
1992.

[40] M. Jeng, C. Lin and Y. Huang, "Petri net dynamics-based scheduling of flexible
manufacturing systems with assembly," Journal of Intelligent Manufacturing , vol. 10, no. 6,
pp. 541-555, 1999.

[41] R. Brennan, "Toward real-time distributed intelligent control: a survey of research themes
and applications," IEEE Transactions on Systems, Man and Cybernetics, Part C, vol. 37,
no. 5, pp. 744- 765 , 2007.

[42] J. Moffett and M. Sloman, "Policy hierarchies for distributed systems management," IEEE
Journal on Selected Areas in Communications, vol. 11, no. 9, pp. 1404-1414 , 1993.

[43] M. Musuvathi, "Handling state space explosion," 10 August 2002. [Online]. Available:
http://static.usenix.org/events/osdi2002/tech/full_papers/musuvathi/musuvathi_html/node11
.html. [Accessed 23 June 2012].

[44] U. Buy and R. Sloan, "A Petri net based approach to real-time program analysis," in
Proceedings of the Seventh International Workshop on Software Specification and Design,
Los Alamitos, 1993.

[45] U. Buy and R. Sloan, "Reduction rules for time Petri nets," Acta Informatica, vol. 33, no. 7,
pp. 687-706, 1996.

[46] J. Wang, Y. Deng and M. Zhou, "Compositional time Petri nets and reduction rules," IEEE
Transactions on Systems, Man, and Cybernetics, Part B., vol. 30, no. 4, pp. 562-572, 2000.

[47] E. Juan, J. Tsai, T. Murata and Y. Zhou, "Reduction methods for real time using delay time
Petri nets," IEEE Transactinos on Software Engineering., vol. 27, no. 5, pp. 422-448, 2001.

[48] C. Becker and A. Scholl, "A Survey on problems and methods in generalized assembly line
balancing," European Journal of Operations Research, vol. 168, no. 3, pp. 694-715, 2006.

[49] S. Charharsooghi and N. Nahavandi, "Buffer allocation problem, a heuristic approach,"
Scientia Iranica, vol. 10, no. 4, pp. 401-409, 2003.

76

[50] I. Baybars, "A survey of exact algorithms for the simple assembly line balancing problem,"
The Institute of Management Sciences, vol. 32, no. 8, pp. 909-931, 1986.

[51] J. Jackson, "A computing procedure for a line balancing problem," Management Science,
vol. 2, no. 1, pp. 261-271, 1956.

[52] D. Freeman, "A general line balancing model," in 1968, Tampa, Florida, Proceedings 19th
Annual Conference AIIE.

[53] A. Mastor, "An experimental investigation and compariative evalution of production line
balancing techniques," Management Sciences, vol. 16, no. 11, pp. 728-746, 1970.

[54] T. Wee and M. Magazine, "An efficient branch and bound algorithm for assembly line
balancing - Part 1: minimize number of work stations," Working Paper: #150, 1981.

[55] T. Wee and M. Magazine, "An efficient branch and bound algorithm for assembly line
balancing - Part 2: maximize production rate," Department of Management Sciences,
University of Waterloo, Waterloo, Ontario, 1981.

[56] M. Salveson, "The assembly line balancing problem," Journal of Industrial Engineering, vol.
6, no. 3, pp. 18-25, 1955.

[57] S. a. S. C. Thangavelu, "Assembly line balancing by zero-one integer programming," AIIE
Transactions, vol. 3, no. 1, pp. 61-68, 1971.

[58] J. Patterson and J. Albracht, "Assembly line balancing: 0-1 programming with Fibonacci
search," Operations Research, vol. 23, no. 1, pp. 166-174, 1975.

[59] M. K. R. a. S. R. Held, "Assembly line balancing - dynamic programming with precedence
constraints," Operations Research, vol. 11, no. 1, pp. 442-459, 1963.

[60] E. Mansoor, "Assembly line balancing – an improvement on the ranked positional weight
technique," Journal of Industrial Engineering, vol. 15, no. 1, pp. 73-77, 1964.

[61] E. Mansoor and M. Yadin, "On the problem of assembly line balancing," in Development in
Operations Research, New York, Gordon and Breach, 1971, pp. 361-375.

[62] K. T. Q. a. O. N. Wei, "Estimation of buffer size using stochastic approximation methods,"
in IEEE Proceedings of the 28th Conference on Decision and Control, Tampa, Florida,
1989.

[63] H. Yamashita and T. Altiok, "Buffer capacity allocation for a desired throughput in
production lines," IIE Transactions, vol. 30, no. 1, pp. 883-891, 1998.

77

[64] F. T. S. Chan and E. Y. H. Ng, "Comparative evaluations of buffer allocation strategies in a
serial production line," The International Journal of Advanced Manufacturing Technology.,
vol. 19, no. 11, pp. 789-800, 2002.

[65] W. M. Chow, "Buffer capacity analysis for sequential production lines with variable
processing times," International Journal of Production Research, vol. 25, no. 8, p. 1183–
1196, 1987.

[66] C. M. Liu and C. L. Lin, "Performance evaluation of unbalanced serial production lines,"
International Journal of Production Research, vol. 32, no. 12, p. 2897–2914, 1994.

[67] S. Gershwin and J. Schor, "Efficient algorithms for buffer space allocation," Annals of
Operations Research, vol. 93, no. 1-4, pp. 117-144, 2000.

[68] E. Enginarlar, J. Li and S. Meerkov, "Buffer capacity for accommodating machine
downtime in serial production lines," in IEEE Conference on Decision and Control, Orlando,
Florida, 2001.

[69] E. Enginarlar, J. Li and S. Meerkov, "How lean can buffers be?," IIE Transactions, vol. 37,
no. 1, pp. 333-342, 2005.

[70] M. Govil and M. Fu, "Queuing theory in manufacturing: a survey," Journal of Manufacturing
Systems, vol. 18, no. 3, pp. 214-240, 1999.

[71] J. Li, D. Blumenfeld, N. Huang and J. Alden, "Throughput analysis of production systems:
recent advances and future topics," International Journal of Production Research, vol. 47,
no. 14, p. 3823–3851, 2009.

[72] S. Gershwin, "An efficient decomposition method for the approximate evaluation of
production lines with finite storage space," in Proceedings of 23rd Conference on Decision
and Control, Las Vegas, Nevada, 1984.

[73] J. Lim and S. Meerkov, "Homeogeneous, asymptotically reliable serial production lines:
theory and case study," IEEE Transactions on Automatic Control, vol. 35, no. 5, pp. 524-
534, 1990.

[74] V. Kouikoglou and Y. Phillis, "A serial finite unreliable queue model for production lines," in
Proceedings of the 31st Conference on Decision and Control, Tuscon, Arizona, 1992.

[75] V. Kouikoglou and Y. Phillis, "An efficient discrete-event model for production networks of
general geometry," in Proceedings of the 29th IEEE Conference on Decision and Control,
Honolulu, Hawaii, 1990.

[76] V. Kouikoglou and Y. Phillis, "An exact efficient discrete-event model for production lines
with buffers," in Proceedings of the 28th IEEE Conference on Decision and Control,
Tampa, Florida, 1989.

78

[77] J. R. Morrison, "Deterministic Flow Lines with Applications," IEEE Transactions on
Automation Science and Engineering, vol. 7, no. 2, pp. 228-239, 2010.

[78] S. Aghazadeh, S. Hafeznezami, L. Najjar and Z. Huq, "The influence of work-cells and
facility layout on the manufacturing efficiency.," Journal of Facilities Management, vol. 9,
no. 3, pp. 213-224, 2011.

[79] K. C. So, "Allocating Buffer Storages in a Flexible Manufacturing System.," International
Journal of Flexible Manufacturing Systems, vol. 1, pp. 223-237, 1989.

[80] C. D. Senanayake and V. Subramaniam, "Analysis of a two-stage, flexible production
system with unreliable machines, finite buffers and non-negligible setups.," Flexible
Services and Manufacturing Journal, vol. 25, pp. 414-442, 2013.

[81] S. Leavengood, "Increasing the production capacity of a work cell using modeling and
simulation," in International Conference on Management of Engineering and Technology,
Portland, Oregon, 2002.

[82] E. Muth, "Analysis of closed loop conveyor systems, the discrete flow case," AIIE
Transactions, vol. 6, no. 1, pp. 73-83, 1974.

[83] R. Tomastik, "Schedule flexible manufacturing systems for apparel production,"
Proceedings of IEEE Transactions on Robotics and Automation, vol. 12, no. 5, pp. 789-
799, 1996.

[84] A. Ramirez-Serrano and B. Benhabib, "Supervisory Control of Multiworkcell Manufacturing
Systems and Shared Resources," IEEE Transactions on System, Man and Cybernetics -
Part B, vol. 30, no. 5, pp. 668-683, 2000.

[85] H. Ichikawa, "Simulating an applied model to optimize cell production and parts supply
(Mizusumashi) for Laptop Assembly," in 2009 Winter Simulation Conference Proceedings,
Austin, Texas, 2009.

[86] R. Logendran and Y. Karim, "Design of manufacturing cells in the presence of alternative
cell locations and material transporters," Journal of Operational Research Society, vol. 54,
pp. 1059-1075, 2003.

[87] A. Youssef and H. A. ElMaraghy, "Optimal configuration selection for reconfigurable
manufacturing systems," International Journal of Flexible Manufacturing Systems, vol. 19,
pp. 67-106, 2007.

79

VITA

NAME: Francesca Schuler

EDUCATION:
Master of Science in Computer Engineering - Networking/Communications
Emphasis, Illinois Institute of Technology- Chicago, Illinois – May, 2004

Master of Business Administration – Operations Management Emphasis
DePaul University - Chicago, Illinois, August, 2000

Master of Science in Mechanical Engineering – Robotics/Manufacturing Emphasis,
University of Illinois, Chicago, Illinois, May, 1997

Bachelor of Science in Mechanical Engineering
University of Illinois - Urbana, Illinois - May, 1995

PUBLICATIONS:

F. Schuler and H. Darabi. “Buffer clustering policy for sequential production lines with
deterministic processing times ” Journal of Flexible Services and Manufacturing.
Tentatively Accepted.

F. Schuler and B. Connor. “Secur ng your cr cal nfras ruc ure aga ns cyber attacks,” in
2014, Washington D.C. Proceedings of the Public Safety Broadband Summit and Expo.

F. Schuler and . arab “Superv sory con rol and da a collec on pol c es for a
d s r bu on cen er modeled as a d scre e even sys em ” n 0 0 Ch cago Ill no s
Proceedings of the IEEE International Conference on Networking, Sensing and Control.
pp. 177-182.

H. Darabi, L. Baghdasyran, F. Schuler, and A. Schaller “A modeling and optimization
management tool for large-scale supply chain networks,” International Journal of
Industrial and Systems Engineering, vol. 5, no.1, pp. 48 – 78, 2010.

H. Darabi, L. Baghdasyran, F. Schuler, and A. Schaller “Evalua on of supply cha n
performance with information accuracy considerations ” n 00 rlando Flor da
Proceedings of the Institute Industrial Engineers Annual Conference.

F. Schuler, J. Liu, C. Zhou, and M. Toloo, “Technology nser on n a supply cha n
organization: experiences, challenges and lessons learned ” n 00 Ch cago Ill no s
Proceedings of the National Manufacturing Week.

M. Toloo, F. Schuler, and J. L u “In egra ng d scre e-event simulation into a supply
chain organ za on’s ranspor a on strategy,” n 00 rlando Flor da Proceedings of
the Winter Simulation Conference.

80

A. Schaller L. aghdasaryan F. Schuler and . arab “Experience and challenges in
creating mathematical models that facilitates simultaneous product and supply chain
design, in 2005, Atlanta, Georgia, Proceedings of the Annual Industrial Engineering
Research Conference.

H. Darabi, L. Baghdasyran, F. Schuler, A. Schaller ”A graph based me hod for handling
model flexibility of supply chains,” n 00 San Franc sco Cal forn a Proceed ngs of he
Institute of Operations Research and Management Science Conference.

A. Schaller, F. Schuler, and C. Zhou “Impac of d g al s x s gma manufac ur ng
practices on cost of poor manufacturing qual y ” n 00 Ch cago Ill no s Proceedings
of the National Manufacturing Week.

A. Anant, J. Baik, F. Ruffolo, and N. E ckelmann “Apply ng s mula on ools for
quan a ve managemen of sof ware process mprovemen ” in 2003, Chicago, Illinois,
Proceedings of Chicago Software Process Improvement Network.

A. Anant, J. Baik, N. Eickelmann, and F. Ruffolo “An empirical study of modifying the
fagan inspection process and the resulting main effects and interaction effects among
defects found, effort required, rate of preparation and inspection, number of team
members and product,” n 00 Greenbelt, Maryland, Proceedings of the 27th Annual

NASA Goddard Software Engineering Workshop.

PATENTS:

F. Schuler, E. Chen, K. Reitsma, J. Marocchi, L. Whitelock. 2015. Method and apparatus
for receiving a data stream during an incident. US 9,226,124. Issued December 2015.

T. Miller, S. Glass, D. Klein, W. Mao, F. Schuler. 2015. Secure ad hoc communication
systems and methods across heterogeneous systems. US 9,178,893. Issued November
2015.

E. Chen, A. Agulnik, F. Liang, W. Mao, T. Miller, F. Schuler. 2015. Method and
apparatus for managing quality of service settings for group communications. US
9,173,134. Issued October 2015.

W. Mao, T.Miller, F.Schuler. 2015. Method and apparatus for maintaining priority and
quality of service across multi-user devices. US 9,037,145. Issued May 2015.

T. Miller, E. Chen, W. Mao, F. Schuler, S. Vanswol. 2014. Method and apparatus for
ensuring critical resource allocation for group calls made in a push-to-talk
communication environment. US 8,886,244. Issued November 2014.

F. Schuler; I. Ahmed, K. Jonnalagadda. 2013. Method and apparatus for determining a
physiological parameter using a fingerprint sensor on a portable electronic device. US
8,605,961. Issued December 2013.

I. Ahmed, J. Farshi, K. Jonnalagadda, F. Schuler. 2013. Method and apparatus for
determining blood oxygenation using a mobile communication device. US 8,503,712.
Issued August 2013.

http://patents.justia.com/patent/9226124
http://patents.justia.com/patent/9226124
http://patents.justia.com/patent/9178893
http://patents.justia.com/patent/9178893
http://patents.justia.com/patent/9173134
http://patents.justia.com/patent/9173134
http://patents.justia.com/patent/9037145
http://patents.justia.com/patent/9037145

81

J. Gyorfi, F. Schuler, E. Buhrke, J. Lopez, H. Yu. 2013. Mobile Virtual and Augmented
Reality System. Korea 10-2010-7023341. Issued January 2013.

F. Schuler, K. Jonnalagadda. 2012. Portable electronic device and method of power
management for same to accommodate projector operation. US 8,231,233.
Issued July 2012.

F. Schuler, J. Gyorfi, S. Mok. 2011. Method and apparatus for providing a prioritized list
of display devices for display of a media file. US 8,078,230. Issued December 2011.

F. Schuler, D. Hong, K. Jonnalagadda, K. Kaustubh, A. Khawand, J. Lacal, P. Ramadas.
2011. Method for autonomously monitoring and reporting sound pressure level exposure
for a user of a communication device. US 7,983,426 B2. Issued July 2011.

F. Schuler, K. Jonnalagadda. 2011. Dynamic updating of product profiles for active
lifestyles. US 7,924,158 B2. Issued April 2011.

J. Danvir, K. Jonnalagadda, F. Schuler. 2010. Monitoring for radio frequency enables
items based on activity profiles. US 7,834,762 B2. Issued: November 2010.

F. Schuler, K. Jonnalagadda. 2010. Method and apparatus for predictive, context-aware,
and networked exposure time monitoring. US 7,818,142 B2. Issued: October 2010.

L. Grajales, M. Krizik, I. Nicolaescu, J. Preston, F. Schuler, M. Toloo. 2010. Method and
system for facilitating command of a group. Korea 10-09888988. Issued: October 2010.

F. Schuler, K. Jonnalagadda, X. Luo. 2010. Monitoring for radio frequency enabled
items based on shared group activity profiles. US 7,688,208 B2. Issued: March 2010.

82

APPENDIX I: PETRI NET TOOLS ASSESSED

83

84

85

86

