
 

Generating Control Policies for 
 

Timed Discrete-Event Systems through 
 

Efficient State Space Exploration 

 

 

 

 

BY 
 

FRANCESCA SCHULER 
B.S., University of Illinois, Urbana-Champaign, 1995 

M.S., University of Illinois, Chicago, 1997 
M.B.A., DePaul University, Chicago, 2000 

M.S., Illinois Institute of Technology, Chicago 2004 
 
 
 
 

THESIS 

 
Submitted as partial fulfillment of the requirements  

for the degree of Doctor of Philosophy in  
Industrial Engineering and Operations Research 

in the Graduate College of the 
University of Illinois at Chicago, 2016 

 

Chicago, Illinois 

 

 

 

 

 

 

 

Defense Committee: 

 
 Houshang Darabi, Chair and Advisor 
 Thomas Babin, Charter Dura-Bar 

Ugo Buy, Computer Science 
Julius Gyorfi, Motorola Mobility 
David He, Mechanical and Industrial Engineering 

   



ii 

ACKNOWLEDGEMENTS 

I would like to thank my thesis committee – Dr. Thomas Babin, Dr. Ugo Buy, Dr. 

Julius Gyorfi, Dr. David He and my advisor Dr. Houshang Darabi for their support and 

assistance.  They provided guidance in various areas that helped me accomplish my 

research goals. 

  



iii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ........................................................................................................... ii 

LIST OF TABLES ....................................................................................................................... iv 

LIST OF FIGURES ..................................................................................................................... v 

SUMMARY ............................................................................................................................... vii 

1. INTRODUCTION ................................................................................................................ 1 

2. LITERATURE REVIEW .....................................................................................................11 

2.1 Petri net software tools ...............................................................................................11 

2.2 State space and state space reduction .......................................................................26 

2.3 Line balancing and buffer allocation optimization ........................................................27 

2.4 Queuing networks performance and blocking .............................................................30 

2.5 Flexible manufacturing ................................................................................................31 

3. EXACT METHODS FOR DETERMINING STATE SPACE PARAMETERS .......................34 

3.1 Model 1:  N server, N+1 sequential line model with unity capacity servers and no buffer 

capacity restriction ................................................................................................................34 

3.2 Model II:  N server, N+1 sequential line with reduced capacity for one buffer ..............43 

4. OPTIMIZATION FRAMEWORK FOR BUFFER CLUSTERING POLICY ...........................50 

5. APPLYING MODELS TO INDUSTRY EXAMPLES ...........................................................58 

5.1 Applying Chapter 3 results to distribution center example ...........................................58 

5.2 Applying Chapter 4 results to the manufacturing center ..............................................62 

6. CONCLUSIONS AND FUTURE WORK ............................................................................69 

CITED LITERATURE ................................................................................................................72 

VITA ..........................................................................................................................................79 

APPENDIX I: PETRI NET TOOLS ASSESSED ........................................................................82 

 



iv 

LIST OF TABLES 

 
Table 1. Case study distribution center processes with process times ....................................... 3 

Table 2.  Case study manufacturing production line process steps and process times ............... 3 

Table 3. Two-way variable table for MB4 ...................................................................................62 

Table 4. Wj buffer cluster sets and BBj values for each buffer cluster set ..................................63 

Table 5. Buffer cluster sets and buffer storage savings .............................................................65 

Table 6. Wj buffer cluster sets and BBj values for each buffer cluster set (T2 = 3s) ....................67 

Table 7. Buffer cluster sets and buffer storage savings with T2 at 2 and 3 seconds ...................67 

Table 8. Number of time steps for required buffer size computations ........................................68 

Table 9. Calculation and computation time savings varying K1 .................................................68 

  



v 

LIST OF FIGURES 

 
Figure 1-1. Distribution center operational workflow ................................................................... 1 

Figure 1-2. Manufacturing operational workflow ......................................................................... 1 

Figure 1-3.  Distribution line ....................................................................................................... 2 

Figure 1-4. Manufacturing production line .................................................................................. 2 

Figure 1-5.  Distribution center increasing cyclic pattern and stable cyclic pattern ...................... 7 

Figure 1-6.  N-Server, N+1 Buffer sequential line ....................................................................... 7 

Figure 1-7. Work cells with one or more serial stations in between ............................................ 9 

Figure 1-8. Work cells using buffer cluster concept with serial stations in between .................... 9 

Figure 2-1. Number of tools versus observed first and last year of release ...............................21 

Figure 2-2. Number of tools versus support type .......................................................................22 

Figure 2-3. Number of Petri net tools meeting multiple criteria ..................................................23 

Figure 3-1. Frequency of arrivals to S2 when T2 > T1 .................................................................37 

Figure 3-2. Frequency of arrivals to S2 when T1 > T2 .................................................................37 

Figure 3-3. Frequency of arrivals to S2 when T1 = T2 .................................................................37 

Figure 3-4. Frequency of arrivals to Si when Ti > MTi-1 ..............................................................38 

Figure 3-5. Frequency of arrivals to Si when MTi-1 > Ti ..............................................................39 

Figure 3-6. Time defined for SAi(t) from 1 through K1th arrival ...................................................40 

Figure 3-7. Maximum number of entities buffer Bi experiences given inventory K1 ...................42 

Figure 3-8. Buffer behavior when Bv capacity set to Lv ..............................................................44 

Figure 3-9. Rules for determining impacted arrivals and departures for Bi and Si ......................45 

Figure 3-10. Time defined for BDi(t) from 1 through K1th departure ...........................................47 

Figure 4-1. Illustration of K2i, K3i,             and MBi -1. ...........................................................50 

Figure 4-2. Non-sequential and sequential clusters maintaining operation sequence ................52 

Figure 4-3. Buffer profiles of Bk and Bp  and time intervals 1 through 3 for p = k + 1 ..................54 



vi 

Figure 5-1. Shift completion vs. demand ...................................................................................60 

Figure 5-2. MBi vs. pre flash service time (T3) ...........................................................................61 

Figure 5-3. Serial production line ..............................................................................................65 

Figure 5-4. Production line with buffer clusters ..........................................................................65 

 

  



vii 

SUMMARY 

Production systems are event driven and require knowledge of timing of events across all 

elements of the system particularly when developing policies for production control.  A suite of 

time-dependent models are derived for a class of discrete systems, in particular, an N-Server, 

N+1-Buffer sequential line.  First, time-dependent models for buffers and servers are derived.  

From the time-dependent server and buffer arrival and departure models the maximum number 

of entities any buffer in the serial line will experience across all times is derived.  One 

assumption is then relaxed, thereby reducing the capacity of a queue. The transition and block 

times for all queues and servers are derived and time-dependent models for server and queue 

arrivals and departures are developed.  Lastly, a buffer cluster concept is proposed and a time 

based parametric model is derived that determines the sizing of the buffer cluster.  A reduced 

time space for which to search for the buffer cluster sizing is derived and a model that 

determines an optimal buffer clustering policy is presented.  Real world production examples 

are used to illustrate where the models are utilized and discuss several additional applications 

and benefits of the models. 
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1. INTRODUCTION 

The motivation for this research stems from real world production lines of mobile devices 

including cellular phones and land mobile radios.  The manufacturing facility and distribution 

center provides the critical data required for the research.  The data consists of the operational 

workflows, process times, number of stations per process, and operator skill sets.  The 

operational workflow of the distribution assembly line consists of nine process steps as shown in 

Figure 1-1.  The operational workflow of the manufacturing production line consists of the seven 

process steps as shown in Figure 1-2. Production demand varies from shift to shift.   

 

Figure 1-1. Distribution center operational workflow 

 
 

Figure 1-2. Manufacturing operational workflow 

Other production lines are present, therefore space constraints exist. Buffer sizes cannot 

get too large that they infringe upon on other production line activities.  In the sequential line, 

depending on the location of the incoming and outgoing process steps, the buffer in between 

could be a pallet or a box.  
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Figure 1-3 and Figure 1-4 show the serial lines the distribution center and manufacturing 

facility had in place.  In these figures, the squares without a grid pattern represent server 

stations where a process step occurs.  The serving stations may be manual, semi-automated or 

fully automated.  The squares with a grid pattern represent buffers.  Buffer B1 holds the initial 

inventory that needs to be processed by the line.  Buffers B10 (for distribution) and B8 (for 

manufacturing) holds the final product inventory.  A description of each process along with 

service times for the manufacturing and distribution lines respectively are available in Table 1 

and Table 2. 

 
Figure 1-3.  Distribution line 

 
Figure 1-4. Manufacturing production line 
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Table 1. Case study distribution center processes with process times 

Element Name Description 

Process 
Time per 

Product Unit 

S1 Part Picking 
Part Picking objective is to retrieve phones from Storage so that 
they can be preprocessed based on production demand. 40 seconds 

S2 Pre-Work 
Pre-work objective is to perform appropriate operations to the 
phone prior to Pre-Flash.  240 seconds 

S3 Pre-Flash 
Pre-flash objective is to update specific firmware on phone prior 
to Flash. 60 seconds 

S4 Flash 
Flash process objective is to put secondary firmware on phone 
prior to Postponement.  520 seconds 

S5 Postponement 
Postponement objective is to perform a customized process by 
which a generic or family product requires (e.g. carrier specific).   300 seconds 

S6 Packing  
Packing objective is to pack product based on orders (in an over 
pack, with user guide, transformer, etc.). 160 seconds 

S7 Consolidation 
Consolidation objective is to consolidate product based on 
orders, time frame and deliveries and occurs prior to Stretching. 640 seconds 

S8 Stretching 
Stretching objective is to wrap product deliveries appropriately 
and occurs prior to Shipping.   240 seconds 

S9 Shipping Shipping objective is to prepare product for delivery. 80 seconds 

 

Table 2.  Case study manufacturing production line process steps and process times 

Element Name Description 

Process Time 
Per Product 
Unit (sec) 

S1  PC Board Inspection Inspects PC board  1 

S2 Housing Assembly 
Assembles printed circuit board into 
pre-assembled housing  2 

S3 Display Assembly Assembles display onto housing  4 

S4 
Acoustic Component 
Assembly 

Assembles acoustic components onto 
housing   5 

S5 Gasket Assembly Assembles gaskets onto housing   14 

S6 
Battery and Cover 
Assembly 

Assembles battery and cover onto 
housing 10 

S7 Unit Testing Tests production units 19 

 

There are several problem areas the distribution center and manufacturing process 

teams desired to investigate as a part of this research.  First of all, the distribution center staff 

identified key parameters to investigate: (1) the maximum buffer size allowed such that no buffer 
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exper ences block ng dur ng a sh f  ( )  he sh f  where a buffer’s capac  y should change  o mee  

the production demand changes (3) the number of units processed by a bottleneck station when 

time of blocking occurs (4) the buffer transition and block time when a buffer size is reduced (5) 

the reaction time to route a resource (operator or workstation) to a bottleneck process to prevent 

impact to other processes (6) the time a failed machine must recover by as not to impact the 

production line or the time interval which to route a resource (operator or workstation) to a failed 

process (7) the maximum demand that the serial line can support given the limited shift time and 

buffer sizes (8) ability to determine production line behavior with varying process times.   

The distribution center team was also interested in the exploration of the deployment of 

sensing and tracking technology to drive control policies as illustrated in (1) through (8) above. 

For example, a control policy to route a resource to a bottleneck process within the required 

reaction time to prevent impact to other processes.  Or similarly, a policy is created to route a 

resource to a failed machine when the machine does not re-start within the required recovery 

time. 

The last area of interest for the distribution center was directed toward leveraging flexible 

processes in their serial line.  For example, the Postponement process was flexible in that it 

could occur after Pre-Flash or after the Flash process.  A control policy was developed that 

assessed the buffer size at the Flash process and determined whether product should get 

routed to Postponement [1].  This area is discussed in detail as part of the Petri net survey in 

Chapter 2. 

The manufacturing process team identified that their production lines could gain 

efficiencies such as increased throughput or reduced work in progress by utilizing specific 

configurations while maintaining the chronological order of operations.  Some of the 

configurations, such as work cell or U-shaped production lines that have groups of buffers, often 

increase the space utilization.  Therefore, the manufacturing center could not take advantage of 

the configuration efficiencies that a work cell or U-shaped production line provide.  To solve this 
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problem, the concept of a buffer cluster is introduced.  A time based parametric model that 

determines the sizing of the buffer cluster is derived that also provides a reduced time space for 

which to search for the buffer cluster sizing.  The model then determines an optimal buffer 

clustering policy that can be applied to any N-server, N+1 buffer sequential line configuration. 

This solution minimizes the buffer storage space utilized while ensuring no overflows or 

underflows occur in the buffer. 

We explored the potential deployment of sensing and tracking technologies to enable 

control policies to address the key parameters (1) through (8) cited above which would require a 

model of the distribution center.  Before creating the model, the appropriate modeling language 

and tool needs to be selected.  Petri nets have been used to model discrete event systems and 

develop techniques for design, control and system measurement of discrete event systems.  

Petri nets are thought to be the ideal formalism to create the distribution center model.  As there 

are several Petri net software tools available, the majority developed by university based 

academic teams and some by industry, a Petri net selection process is conducted.  First, Petri 

net software selection criteria is developed in order to select an appropriate tool based on the 

goals of the distribution center team and expansion of research into new areas.  The criteria for 

selecting the Petri net tool software are identified.  Criteria included Petri Nets with Time, 

Performance Analysis, Token Attribute Setting (Colored Petri nets), Import/Export Capability, 

GUI: Editor and simulator, tool support and year of the last software tool release, operating 

system and scalability.  After identifying the criteria, a detailed Petri net survey consisting of 

over fifty Petri net software tools is conducted that is discussed in detail along with detailed 

descriptions of the selection criteria in the literature review of Chapter 2. 

As a result of the survey, the ability to scale the distribution center model to include the 

level of detail of interest including process times, operator skill sets, transportation times, and 

over five hundred batches of units per shift, required a Petri net tool to support scalability of 

500+ tokens and 500+ Petri net elements (places and transitions).  The tools in the market did 
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not provide reliable results.  Therefore, other discrete tools are assessed and a discrete event 

tool by Mathworks, named SimEvents is identified and a distribution center model is created.  A 

control policy is created based on the flash buffer threshold as a trigger for re-routing product.  

The analysis requires over 150 simulations to identify the optimal control policy [1].  Although an 

optimal control policy is found, the system state space is not well understood as to why some 

control policies work better or worse than others.  This leads us to the research at hand.  The 

research put forward in the upcoming chapters provides methods for determining the state 

space parameters in the system which would enable us to address the distribution center and 

manufacturing facility areas of interest.  For example, the maximum buffer capacity a buffer will 

experience, the numbers of arrivals and departures from a server or buffer at any given time, 

the time of transition or blocking of a buffer, the time of impact of a blocked buffer on other 

buffers and servers in the system, the time or size of a buffer or server to execute a control 

policy are all derived without running hundreds of simulations.  This work was then leveraged to 

derive a model for the buffer cluster sizing and policy to enable alternate configurations of the 

sequential lines in the manufacturing center. 

While working with the simulation model of the distribution center, cyclic patterns are 

observed for the buffers and servers, a sample which is shown in Figure 1-5.  The observations 

of the cyclic patterns were utilized in Chapter 3 in deriving the exact methods to calculate key 

parameters (1) through (8) identified by the distribution center team.  However, the distribution 

center process was abstracted such that it could expand or contract as new products are 

introduced.  Thus, an N-Server, N+1 Buffer sequential line shown in Figure 1-6 is considered.  

Exact methods are developed that enable us to extract the parametric state space across every 

workstation and buffer at a given time identifying the key parameters (1) through (8) above 

without using simulation. 
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Figure 1-5.  Distribution center increasing cyclic pattern and stable cyclic pattern 

 
Figure 1-6.  N-Server, N+1 Buffer sequential line 

We first assume each server has a capacity of unity and each buffer has a capacity equal to or 

greater than the starting inventory.  From this first scenario, we derive the number of arrivals 

and departures at a given time for each server and buffer.  We also derive the number of 

entities in the buffer at any given time and the maximum capacity a buffer will experience such 

that a bottleneck does not occur. 

Next, we select one buffer and determine the maximum capacity required and then 

reduce the level of capacity of that buffer to create a bottleneck.  We derive the equations for 

determining the block time and transition times across all of the elements and determine again 

the server and buffer arrival and departure models at any given time.  We also present a 

decision tree for determining which buffers and which servers are impacted by the reduced 

capacity buffer and a pointer to the models to use for each case. 
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In Chapter 4, we use the results of Chapter 3 (related to Figure 1-6) and apply them to a 

different model, a manufacturing work cell (related to Figure 1-7).  In this scenario, because the 

buffers were sized separately (as dedicated buffers) with respect to the serial line and grouped 

in the center of the work cell, the grouped buffers were not leveraging available space in the 

neighboring buffers during the production shift.  Therefore, the work cell exceeded the typical 

spacing between production lines due to the buffer storage space.  A buffer cluster concept is 

proposed transitioning the grouped dedicated buffers in the center of the work cell to a single 

buffer cluster which enables increased buffer utilization and reduces the size of the grouped 

dedicated buffers.  This allows the facility to benefit from efficiencies (e.g., increased 

throughput, work in progress reduction) by use of alternate configurations while reducing the 

buffer storage space. 

In the case of this manufacturing facility, as with many facilities globally, the use of a bar 

code or radio frequency identification (RFID) is utilized which aids in facilitating the buffer cluster 

concept.  Each time product moves from one station to another, the product bar code or RFID is 

scanned to ensure the prior processes are completed.  Only if the prior processes are 

completed is that product picked from the buffer for the operator to perform the process at that 

station.  Once the process is completed, the operator scans the product to inform the system 

that this process has been completed and puts the product back into the buffer.  The buffer 

cluster may be partitioned and marked such that each station has a core area utilized by only 

that station and a shared area.  Operators first focus on filling their core area and then move to 

shared area if needed.  In an automated environment the shared area is a bin that may 

automatically move product to the core areas when space becomes available. 

The groups of buffers in Figure 1-7 may vary in the number of buffers within the work cell and 

the number of serial stations in between the work cells as shown.  The authors proposed 

transitioning the grouped buffers in the center of the work cell to a single buffer cluster shown in  
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Figure 1-8 which enables increased buffer utilization and reduces the size of the grouped 

buffers, reducing the buffer storage space.  This allows the facility to benefit from efficiencies 

(e.g., increased throughput, work in progress reduction) by use of alternate configurations.  In 

addition, in the case study in Chapter 5, we will discuss how sensitivity analysis of the buffer 

cluster size can be conducted using the models derived herein varying parameters such as the 

production demand and process times. 

 
Figure 1-7. Work cells with one or more serial stations in between 

 
Figure 1-8. Work cells using buffer cluster concept with serial stations in between 

Once the buffer clustering policy is identified for a production line, an activity relationship chart is 

created for the buffers and stations in the production line and the amount of space assigned to 

each activity is determined.  From the space relationship diagram, one or more feasible layout 

concepts are generated.  The optimal production line layout is then selected. 
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In Chapter 5, we apply all of the models created in the previous chapters to the real 

world distribution and manufacturing center examples.  In the final chapter, Chapter 6, we 

discuss conclusions. 
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2. LITERATURE REVIEW 

 

The class of discrete event systems of interest, in particular, the serial line as shown in 

Figure 1-6, has been studied quantitatively for years with numerous publications available.  In 

this chapter a review of relevant literature is presented.  Section 2.1 is devoted to the survey of 

Petri net software tools as referenced in the Introduction in Chapter 1.  Section 2.2 covers state 

space research.  Section 2.3 presents the quantitative analysis of production lines including the 

line balancing problem, the buffer allocation problem and queuing network and performance 

blocking.  Section 2.4 of the literature also discusses concepts in 2.3 explored with the addition 

of flexible manufacturing systems with varying configurations (U-shaped, work-cells).  We 

assess the literature in these areas and discuss how the research differs from the prior art. 

2.1 Petri net software tools 

2.1.1 Background 

Discrete event systems consist of interacting components that are associated with a 

function that the system is intended to perform [2].  Discrete event systems are prevalent in 

several real-world applications including manufacturing, supply chain, healthcare and retail.  

Individuals in industry and academia have sought to model discrete event systems and develop 

techniques for design, control and system measurement of discrete event systems[2].  Such 

formalisms as Petri nets have their roots as a means for providing a common mathematical 

language to represent and model event driven networks.  Petri nets were invented in August 

1939 for the purpose of describing chemical processes [3].  Petri nets are assembled from 

places and transitions.  Places represent resources that can be available or not. Individual 

resources are abstractly referred to as tokens[4].  In the early 1960s Petri nets were recognized 

as being the most sufficient method for modeling and analyzing concurrent processes and 
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resource sharing.  After exploring simple models manually, there came a need to do analysis of 

more complex models and assess  he model’s performance.  As such   here was a need for 

computer software tools to enable and analyze models for larger and more complex systems. 

Computer software tools for Petri net Discrete Event Simulation and Non-Petri net Discrete 

Event Simulation evolved soon after and today are applied in several environments including 

manufacturing and distribution [5] healthcare applications[6], customer order and workflow 

systems [7] and stress or reliability analysis of a system [8] . 

Although Petri nets have been used for decades as a means for modeling, simulating 

and analyzing concurrent systems in several environments, the practical usage of Petri nets is 

limited by the lack of computer tools which handle large and complex nets in a comfortable 

way[9].  Because of the lack of computer tools, the adoption rate in industry does not compare 

to that of non-Petri net discrete event system computer tools.  Non-Petri net discrete event 

simulation, first emerging in the late 1950s and growing steadily since that time is now 

recognized as the most frequently used Operational Research techniques across a range of 

industries: manufacturing, travel, finance, and health[10].  Petri net computer tools have 

remained prevalent in academic environments but achieved a smaller level of adoption in 

industry worldwide.  One reason for the greater adoption of Non-Petri net discrete event 

computer tools when compared to Petri Net computer tools, especially in industry is the 

availability of stable and well supported computer tools.  For Non-Petri net Discrete Event 

Simulation, such tools include ARENA[11], Simul8[12], WITNESS[13], DELMIA[14] and 

SimEvents [15] that allow users to model large, complex systems easily. 

There have been surveys of Petri Net tools completed in past years. Most notably, a 

Petri Net survey of tools [16] was completed that is also referenced by Petri Net World[17] 

provides a database of about 73 tools with several categories for those who use Petri net tools 

to identify what tool may be most suitable for their needs.  The first category is the types of Petri 

nets supported by the tool, for example, Petri nets with time and stochastic Petri nets. It also 
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provides a components category where the types of analysis are listed for each tool such as 

simple performance analysis, net reductions and structural analysis, and a listing of the 

operating systems that the tools support.  Each category and sub-category is explicitly defined.  

Harald Storrle provided an evaluation of high-end tools for Petri nets [18].  The overall survey 

was conducted in three rounds. In the third round the focus was on a small number of tools that 

were evaluated thoroughly in terms of functionality, maintenance, openness and interfaces. 

These surveys have several drawbacks.  These surveys did not consider the computer 

software tool features and requirements needed to model real-world examples. Since these 

surveys were conducted the need for advanced features and requirements of computer tools 

has evolved, especially in industry.  These surveys did not consider a solution that would 

require several criteria be met simultaneously for an industry application using Petri net software 

tools.  In addition, a significant number of tools out there have websites that are no longer 

available, have not released an updated version of their tool in recent years or offer no 

maintenance or support for their tools. 

This survey provides quantitative analysis across the span of Petri net computer 

software tools available today and illustrates and identifies trends in the Petri net computer tool 

software domain.  It targets two groups of individuals: 1. Industry and academic professionals 

who are looking to use Petri net software computer tools to conduct their research and 

development work across a wide domain of uses including healthcare, supply chain, 

manufacturing, hospitality, etc. and 2. academic and industry professionals who are looking to 

develop or continue developing and supporting Petri net software tools.  For the former group of 

professionals searching for viable Petri net computer tools for use for modeling, simulation and 

analysis this survey profiles 64 Petri net computer tools available today.  The survey groups the 

Petri net computer tools according to whether or not they meet a set of defined criteria.  The 

criteria were determined through a specific industry example and is defined and specified later 

in this survey.  The results of the grouping set expectations for the actual number of tools that 
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are suitable based on the defined criteria and provide academic and industry professionals with 

a head start for identifying what Petri net tools will work for them rather than taking a trial and 

error approach in identifying a suitable tool.  For the latter group, this survey provides 

professionals with the primary and critical requirements and features sought out by academic 

and industry Petri net computer tool users.  Focusing development effort on these features will 

ensure repeated and increased usage of these computer tools among academia and industry 

professionals. 

This survey is organized as follows.  In first section, a case study conducted by the 

authors is reviewed.  The case study illustrates the need for Petri net software tools and was 

utilized to identify key criteria sought by Petri net computer tool users both in academia and 

industry.  The next section translates the criteria into specific Petri net tool requirements.  The 

requirements are defined into a higher level category.  Within each category, the requirement is 

defined and a method of measurement for whether the Petri net tool meets the requirement is 

introduced.  The following section describes the survey methodology, reviews the 68 Petri net 

computer tools and measures each category (within a subset of categories) using the defined 

measures.  Data is collected, analyzed and put into a graphical format and results are 

interpreted and key findings identified.  The survey then focuses upon key Petri net computer 

tools that most closely matched the criteria.  Finally, the survey discusses key conclusions and 

recommendations. 

2.1.2 Industry example 

A d s r bu  on cen er prov ded  he au hors w  h da a regard ng  he cen er’s process flow 

and loading. The process contained nine steps from part picking through shipping.  The 

distribution center personnel was looking toward adopting sensor network in the form of radio 

frequency identification tags and other sensors (e.g. motion, weight, etc.) to gain efficiencies 

such as improved work in process distribution, station utilization and throughput in addition to 
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bottleneck reduction.  Each process step contained stations, resource pools, buffers and 

transportation methods with excess of 16000 units processed per 10-hour shift translating into 

over 500 Petri net elements (places and transitions) and 16000 tokens.  During the data 

collection and analysis process, it was found that the distribution process was not effectively 

leveraging overlaps in resource skill sets and that more resource sharing across processes 

would enhance performance.  In addition, it was found that there were interchangeable process 

steps for various entity types that were not being leveraged.  An implementation of an efficient, 

real time control policy would be required to gather local and global sensing data to make real 

time decisions regarding resource and entity flows [1]. 

Given Petri ne s’ ab l  y  o eff c en ly model and analyze concurren  processes and 

shared resources, Petri net computer tools were the ideal tool to implement the distribution 

center processes and analyze control policies involving resource sharing and interchangeable 

process steps.  In order to successfully create control policies a Petri net computer tool is 

required to model and analyze the system.  Ideally, one would like to also use the Petri net 

computer tool to act as or interface with the controller for the live system implementing the 

control policies in real-time.  

This case study was used to identify the selection criteria and requirements needed to 

model, analyze and implement real-time control policies in a large system containing hundreds 

of places and transitions and potentially thousands of tokens or more.  This example has all the 

characteristics of problems in several domains such as manufacturing and supply chain [19] but 

also in other domains such as healthcare [20], retail and hospitality.  

2.1.3 Petri net tool criteria, requirements, categories and measures  

Suraj et al.[9] found three things are essential for modeling and analyzing by means of 

Petri nets - a good editor, a simulator and a powerful analysis engine.  Moreover, a program 

should have a graphical user interface providing an opportunity to work directly with the 
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graphical representations of Petri nets and should be able to read and write data in formats of 

other popular simulators of Petri nets[9] .  The authors found these to be important criteria 

needed by a Petri net computer tool based on the case study and included them in the list.  The 

case study pointed to several other criteria also measured as part of the survey. 

The essential requirements for modeling and analyzing via Petri net computer tools are 

described below based on needs found in literature and the case study.  The requirement is 

slotted into a higher level category where it is defined and a method for measuring the 

requirement across the Petri Net tools is specified.  The category and measure for each 

computer tool is listed in Appendix I.  How each category and requirement is measured for each 

of the computer tools in Appendix I is discussed below.  The categories are Petri nets with Time, 

Performance Analysis, Multiple Attribute Support, Import and Export Capability, Graphical User 

Interface and Editor, Tool Support, Year of Last Tool Release, Operating System, and 

Commercial or Academic.  Two criteria, Scalability and Live System Support, are also defined 

below, but were assessed on a subset of the tools based on the survey methodology described 

in 2.1.4 

Petri nets with time: 

Timed Petri nets provide a uniform environment for modeling, design and performance 

analysis of discrete event systems [21].  Wang states that the advantages of timed Petri nets 

include the ability to use the same modeling language for the specification/validation of 

functional/logical properties (such as absence of deadlocks) and performance properties (such 

as system waiting time).  Timed Petri nets also enable modeling of system features such as 

priorities, synchronization, blocking and multiple resource holding. 

A key requirement for Petri net computer tool is supporting timed Petri nets where a 

deterministic or stochastic time can be assigned to a place or transition within the net.  Within 

the tools assessed in Appendix I, the tools were categorized as binary, either supporting timed 

Petri nets or not. 
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Performance analysis:  

The tool shall enable simulation of system performance with time and output 

performance related parameters in a text file or graphically for a user to easily view Petri Net 

results. Performance parameters include average token time in place, transition firing delays, 

utilization of a place, etc. In addition, the tool shall simulate both deterministic and stochastic 

time intervals.  The analysis engine of the Petri Net computer tool needs to simulate with 

accuracy and consistency. Within list of computer tools in Appendix I, tools were categorized as 

binary, either supporting performance analysis or not.   

Multiple attribute support:  

The tool shall allow user to set attributes to tokens as in colored Petri nets.  Multiple 

attributes should be able to be assigned to a token at multiple points within the model and those 

attributes should be able change dynamically as the token traverses through places and 

transitions within the model.  For example, if a token visits a place, a token attribute is assigned 

and may change over time based on the most recent places visited.  Such behavior may be 

emulated via Colored Petri nets.  Within Appendix I, the Petri net computer tools were 

categorized as binary, either supporting Colored Petri Nets or not.  

Import and export capability: 

The tool shall support import and export capability by supporting a simulator that reads 

and writes data in formats of other simulators of Petri nets.  The tools were categorized in 

Appendix I as supporting import and export capability or not. 

Graphical user interface & editor: 

The tool shall have a graphical user interface providing an opportunity to construct, edit 

and work directly with the graphical representations of Petri nets (places, transitions and 

tokens).  The tool shall support the ability to easily apply mathematical rules to tokens traversing 

places and transitions throughout the model (AND, OR, etc.).  The tools were categorized in 

Appendix I as binary, either supporting a GUI editor and simulator or not.  Ideally, the tool 
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should also enable creation of subsystems for modularity and ease of re-use of modules 

throughout the model. 

Tool support:  

The tool shall have a support team to answer questions and provide workarounds or 

fixes to bugs and defects found in the tool.   The tool has had a release or software update 

within 3 years.  Petri net tools were assessed in terms of the tool support they provided. The 

tools were categorized as follows: 

1. No Support:  The tool does not offer any support.  After the tool is downloaded, no 

support is available. 

2. Limited Support:  The tool offers limited support. The support team may answer 

questions and may consider fixing some minor bugs. 

3. Full Support:  The tool offers substantial support. The support team answers any 

questions about the tool, welcomes feedback and comments, and assesses and fixes 

major and minor tool defects and bugs or provides suitable workarounds. 

Tool support Categorization was made based upon information available at the Petri net tool 

websites and attempts to contact the tool owner(s) via phone or email. 

Year of last tool release: 

The year of the last release or update of the tool can be a good indicator of the level of 

support one might receive, the ease of use of the tool and performance (e.g. speed).  Given the 

evolution of operating systems and the impact of that on application design, one typically 

observes some level of difficulty with tools that have not evolved with updated operating 

systems.  The survey lists the last observed year of release or update of the tool. 

Operating system:  

The computer tool shall be supported on recent operating systems for desktops and 

laptops. Within the survey, the following categorization is used:  
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1. For a Windows environment, Appendix I lists the most recent version available explicitly, 

for example, 2000, XP, Vista or Win 7+. If a less recent version is available, the survey is 

left blank. 

2. If a L nux env ronmen   s ava lable  “L nux”  s listed; otherwise, it is left blank. 

3. If neither Linux nor a recen  W ndows vers on  s ava lable   he survey l s s “None”. 

4. If the tool is available in Java, depending on the Java Run Time Environment Version, a 

Windows, MAC OS X or Linux version is provided. 

5. If the computer tool is supported on MAC OS X, Appendix I lists MAC OS X. 

Commercial / academic: 

Whether a tool is commercial or academic is not a requirement, however, it can imply 

cos .  W  h n  he survey   ools marked as “Academ c” are  mpl ed as ava lable a  no cos   wh le 

“Commerc al”  mplies a cost.  If marked “ o h”     mpl es  ha  a vers on  s ava lable for academ a 

at no cost or a discount while a commercial version is also available at a cost. 

Scalability:  

The tool shall support the modeling of 500+ Petri net elements (places and transitions) 

and 1000+ tokens without becoming unstable.  By effects visible to the user during instability, is 

that the computer tool yields incorrect results and can become unresponsive causing the tool to 

crash.  The industry example discussed earlier provided a baseline for the level of complexity 

and scalability criteria a Petri net tool should support to enable Petri net applications in industry.  

Scalability of the tools listed in Appendix I will be discussed in 2.1.4. 

Live system support: 

The Petri ne  compu er  ool shall suppor  a “l ve” mode  where  he user  s able  o ex   

simulator mode and port real time data from devices such as sensors, databases and wireless 

devices into the model.  The computer tool, therefore, should provide an interface to real-time 

enforcement of decision control policies.  Live system support of the tools listed in Appendix I 

will be discussed in 2.1.4. 
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2.1.4 Petri net survey methodology and findings 

A total of 80 Petri Net tools were discovered either on-line, through paper references or 

previous surveys.  Of the 80 tools, approximately 20% of the tools are either no longer available, 

on websites that are no longer indexed or their corresponding academic research went in a 

different direction where the tool evolved and exited the Petri net domain.  The remaining 64 

tools surveyed are in Appendix I. The survey methodology is as follows. Individual criteria were 

assessed for each tool, except for scalability and live system support.  To support the case 

study, simultaneous support of criteria in a single tool is required.  After assessing each 

individual criteria in the tool, an assessment of what tools supported three or more criteria 

simultaneously was conducted that narrowed the available tools to small group.  Scalability and 

live system support were then assessed on the smaller subset of tools.  In this section, we use 

our collected data and observations (including what is reported in Appendix I) to analyze the 

current status of Petri net tools and draw conclusions when possible about the needs and 

potential research issues in this area. 

First and last observed year of tool release:  

Figure 2-1 shows a profile of the observed first and last tool release year.  One of the 

earlier tools ARP [22] had an initial release in 1988 and is one of the earlier tools whose website 

is still available.  The reason for this is that the early 1990s had several breakthroughs with 

respect to Petri net model checking [23] and ease of programming and software environments 

for creating more sophisticated software tools in general.  There were multiple tools in the early 

1990s, but there were observed only a handful that has their website still available.  Of the tools 

found and referenced, 31% (20 of the 64 tools) have had a tool release in less than 3 years.  

Not having a release within three years is an indicator that the tool will not evolve with new 

features and functionality in the future and will most likely no longer be supported from the 

defect fix perspective.  Given the smaller population of users utilizing these types of analysis 
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tools in general, three years is a standard period of time for a tool to get deployed, used and get 

feedback or fixes in for another release.  Tool updates peaked in 2006 with 9 tools releasing a 

software update followed by 8 tools making a release 2015.   

Across all of the tools, the average life expectancy is 6.6 years.  The life expectancy was 

calculated as the difference (in years) between their first and last release.  It is assumed that 

these tools have reached end of life.  The number of new tools has declined since 2010, with no 

new tools from 2011 through 2016.  

 
Figure 2-1. Number of tools versus observed first and last year of release 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1
9

8
8

 

1
9

9
0

 

1
9

9
2

 

1
9

9
4

 

1
9

9
6

 

1
9

9
8

 

2
0

0
0

 

2
0

0
2

 

2
0

0
4

 

2
0

0
6

 

2
0

0
8

 

2
0

1
0

 

2
0

1
2

 

2
0

1
4

 

2
0

1
6

 

Observed 
First Tool 
Release Year 

Observed 
Last Tool 
Release Year 



22 
 

 

Analysis of tool support:  

Figure 2-2 show for the Petri Net tools assessed how many offered full, limited or no 

support.  Of the 64 tools, 22% offer no support, 69% offer limited support and 9% offer full 

support.  Three of the 6 tools with full support had a last observed release after 2012. 

 
Figure 2-2. Number of tools versus support type 
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tools that met the Time Petri Net, Performance Analysis and Colored Petri net criteria, those 

that had a release in 2012 or later were narrowed to 5 tools. 

Figure 2-3 shows how the number of options narrows quickly when multiple criteria are 

applied simultaneously to the list of tools in Appendix I.  The graph shows that when 1 & 2 are 

applied, options decline from 64 to 25.  When criteria 1 and 2 and 3 are applied options decline 

to 13 and when the software release after 2012 is applied, this narrows the options more to 5 

tools.  

 

Figure 2-3. Number of Petri net tools meeting multiple criteria 
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Graphical user interface and editor and import and export capability: 

The idea of an interchange format for Petri nets has been around for some time, 

especially in the last decade with the development of interchange formats based upon Extended 

Markup Language (XML). A tool should support such a convenient way to exchange information 

across different Petri net types [24][25][26][27] .  51 of the 64 (80%) tools had an editor and 52% 

(33 of the 64 tools) had import and export capability.  For the tools that did not provide a 

graphical editor, it was because that tool was focused on either providing code blocks used to 

generate a GUI or the tool was focused upon model verification or analyzing of the Petri net and 

not building the Petri net.  The tools provided a textual net file format for which to create the 

Petri net or a method to import a textual file into the tool.   

Scalability: 

All tools did not explicitly list scalability within the website, user guide, etc.  In fact, Petri 

net tools were rarely explicit about how many elements (Petri net places, transitions and tokens) 

 hey could suppor  and pr or surveys have no   nqu red abou  scalab l  y of models.  S orrle’s 

survey [16] assessed the scalability for a handful of tools where the data was available. About 

7% were explicit about the number of elements supported.  For example, Pnet Lab[28] 

supported only 25 places and transitions. Poses++[29] supports up to 500 elements without a 

license and claims supporting test models with a license of plants containing up to 30,000 

transitions, 30,000 predicates and 100,000 arcs.  Poses++ targets fast simulation of high level 

Petri nets focused upon colored and predicate/transition nets only, so does not meet the primary 

requirements sited above. 

Petri net Toolbox[30] is a plug-in with Matlab[31].  The tool enables analysis of timed 

Petri nets, allows one to choose distribution driving stochastic Petri nets and enabled one to 

monitor and graph the number of tokens and utilization of places.  The case study exhibited a 

need to model close to 500 places.  However, after modeling close to 50 places, the tool would 

crash and there were accuracy issues, for example, transitions did not fire appropriately or 
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transition the correct number of tokens.  Tools like GreatSPN [32], Renew [33], and CPN Tools 

[34] were also assessed.  Renew is Java based and one must program time related 

performance metrics as no library exists.  For large nets where several performance measures 

are required for each place, not having a default preset of performance measures burdens the 

user and does not make sense for large nets in industry applications.  GreatSPN and CPN 

Tools exhibited similar symptoms as Petri Net Toolbox and were unstable once large nets (>50 

elements).  CPN Tools is similar to Renew in that a programming inscription language (not as 

common as Java) is required to program in the user interface, but requires a steeper learning 

curve.  Yasper [35] attempts to address the ease of use issues with tools like ExSpecT 

[36], Renew and CPN Tools. 

Live system support: 

The survey did not uncover Petri net tools supporting a live system mode where one 

could port real time data and execute decision and control policies in real-time.  The co-

habitation of modeling, simulation and real-time execution of decision and control policies was 

found to be important in model validation and realizing the benefits of policies targeted at 

reducing cycle times, improving throughput or reducing work in progress.  As the case study 

would implement the control policies in an environment where sensing and control technology 

were present, linking the model to the live system would prove beneficial during validation. 

2.1.5 Conclusion 

The survey has found, that although a plethora of Petri net tools exist, with a number of 

tools providing software updates, very few support the primary requirements and features 

identified as part of the case study and required in domains such as manufacturing, supply 

chain, and healthcare.  Features such as timed Petri nets, colored Petri nets, and performance 

analysis along with adequate tool technical support are critical for increasing Petri net tool 

adoption in industry.  In addition, features such as scalability or the ability to model a larger 

http://www.exspect.com/
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scale system reduce the available tool set even further.  Lastly, live system support is a desired 

requirement not supported in Petri net tools included in the survey.  The co-habitation of 

modeling, simulation, and interfaces to the live system for real-time execution of the model is 

key to monitoring and measuring of the benefits of decision and control policies implemented.  

Given the lack of a tool that supported the needs of the case study, the authors turned to a non-

Petri net solution [15].  

2.2 State space and state space reduction 

The key issues faced by large, N-Server, N+1 Queue serial lines, is that the number of 

possible states grows exponentially during system execution [37] due to the large number of 

elements or components that make up the system and the number of entities that traverse the 

system.  In some systems, the execution of a large number of entities is required to exhibit a 

specific system level characteristic leading to a specific state.  This large number of entities 

results in a large number of states, some or most of which may be unnecessary or can be 

significantly reduced  o reach  he s a e  ha   s mos  relevan   o  he sys em’s charac er s  c s a e 

space.  These extraneous states can make it difficult to understand the characteristic state 

space and cloud the ability to enable control and decision policies for scheduling systems, an 

important aspect of the real-time control of dynamic systems [38]. In industry, where systems 

are well known for having large state spaces, control policies are instantiated using reachability 

techniques [39] [40] or simulation methods [41][42].  Once state spaces become large, it is often 

difficult to determine why one control policy behaves better or worse than another control policy. 

State space explosion and methods to reduce state spaces have been researched 

extensively in areas of automatic verification of systems and model checking.  Clark et al [37] 

uses partial order techniques while Musuvathi [43] describes three different methods. 

Musuva h ’s f rs  me hod  s down-scaling which reduces the scale of the system, for example, by 

reducing the number of nodes.  This has a large risk for eliminating critical states that may 
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contribute to the characteristic state space of the system.  The second method is abstraction of 

state, which standardizes distinct but equivalent states and eliminates information that is judged 

to be unimportant for the properties checked.  With this method, there is high risk of eliminating 

a state that is pertinent to the characteristic state space of the system.  The final method, using 

heuristics when checking the entire state space, is infeasible and provides for more intelligent 

methods for checking and reducing the state space. 

The next group of state space reduction literature involves the use of Petri net formalism 

to reduce the state space.  In the early 1960s, Petri nets were recognized as being the most 

sufficient method for modeling and analyzing concurrent processes and resource sharing. Sloan 

and Buy [44][45] discuss how reachability based methods suffer from the state explosion 

problem and extend several rules for the reduction of ordinary Petri nets.  They also provide for 

the notion of equivalence among time Petri nets proving that the reduction rules yield equivalent 

nets such that timing and concurrency properties are preserved.  Wang et al [46] proposes a set 

of component-level reduction rules for timed Petri nets that reduces the state space while 

ma n a n ng  he ne ’s ex ernal observable   m ng proper  es. Juan et al [47] propose reduction 

methods using delay time Petri nets. 

This research proposed in Chapters 3 differs from the above literature sited in that it 

derives a time-based closed form solution for determining the state of every buffer and server in 

an N+1 Buffer, N-Server sequential line while keeping the entire system intact.  In doing so, a 

closed form solution for the maximum number of entities a buffer will experience is also derived. 

2.3 Line balancing and buffer allocation optimization 

Quantitative analysis of assembly lines, such as those in Figure 1-6, includes the line 

balancing problem which comes along with other decision problems such as the positioning and 

sizing of the buffers [48], when keeping the overall throughput in mind becomes the buffer 

allocation problem [49].  The decision problem of optimally partitioning (balancing) the assembly 
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work among the stations with respect to some objective is known as the assembly line 

balancing problem (ALBP) [48].  The previous literature has categorized assembly line 

balancing into two main categories (1) Simple Assembly Line Balancing Problem (SALBP) and 

the (2) General Assembly Line Balancing Problem (GALBP).  There are several methods that 

have been utilized for solving such problems including deterministic, stochastic and inexact 

methods (where heuristic or approximate methods are used). 

The ALBP assigns tasks to the station while optimizing some criteria and not violating 

the constraints.  The ALBP problem has the following considerations where all inputs are known 

with certainty, a task cannot be split among two or more stations, tasks cannot be processed in 

arbitrary sequences and all tasks must be processed [50].  SALBP adds the following 

considerations: (1) all stations are equipped and manned to process any one of the tasks (2) the 

task process times are independent of the station which they are performed (3) any task can be 

processed at any station (4) the total line is considered to be serial with no feeder or parallel 

sub-assembly lines and (5) the assembly system is assumed to be designed for a unique model 

of a single product [50].  SALBP-1 is the first version of SALBP that adds an additional 

constraint that the cycle time is given and fixed.  The goal of SALBP-1 is to minimize total slack 

or the number of stations along the line [51][52].  A second version of SALBP called SALBP-2 

replaces constraint of fixed cycle time with the constraint of a fixed number of stations.  For this 

version, the goal is to minimize cycle time or production rate [53][54][55].  Methods utilized to 

solve SALBP-1 are linear programming [56], integer programming [57], specialized algorithms 

based on integer programming techniques [58] and dynamic programming [59].  Heuristic 

methods are utilized to solve SALBP-2 class of problems [60][61].  GALBP is a generalized form 

of SALBP-1 and SALBP-2 where there is no explicit concern for the fixed cost of the station or 

the variable cost for operating the station [50]. 

There are relevant properties for characterizing ALBPs due to the different conditions in 

manufacturing and assembly line systems [48].  For example, for paced assembly lines, every 
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station is limited to the cycle time which can be no longer than the largest task time.  When all 

stations operate at an individual speed, entities must wait before they can enter the next station 

or they become idle, unless there are buffers in between stations.  For an unpaced, buffered 

assembly line, the line balancing problem comes along with other decision problems such as 

the positioning and sizing of the buffers [48]. 

One of the key problems in designing a production flow line is determining the number 

and sizes of buffers between stations keeping overall throughput in mind.  This is known as the 

Buffer Allocation Problem [49].  Wei et al. provide an estimation of buffer size in a serial 

manufacturing system within a stochastic optimization problem [62].  Chaharsooghi and 

Nahavandi [49] present a heuristic algorithm to find the optimal allocation of buffers that 

maximizes throughput.  Yamashita and Altiok [63] use a dynamic programming algorithm that 

uses decomposition for a minimum-total-buffer allocation resulting in a desired throughput in 

production lines with phase-type processing times. 

There are several buffer alloca  on s ra eg es: Equal  uffer  Chow’s Rule  L&L’s Rule  

and C&N’s Rule [64].  Equal buffer strategy allocates buffers equally over the l ne. Chow’s rule 

[65] uses dynamic programming to solve the buffer allocation problem with a fixed total buffer 

size.  Throughput and the coefficient of variation of inter-departure times are estimated by 

regress on models.  L&L’s rule  s s m lar  o Chow’s rule. I  uses a d fferen  se  of equa  ons  o 

estimate the throughput and the coefficient of variation [66].  C&N’s rule  s s m lar  o L&L’s rule 

except all possible allocations of buffers are tried and then the allocation with the highest 

estimated throughput is selected.  Gershwin and Schor [67] define and analyze two problems, 

one called a primal problem that minimizes the total buffer space subject to a production rate 

constraint and another, a dual problem that maximizes production rate subject to a total buffer 

space constraint.  Enginarlar et al [68] discuss the concept of level of buffering (LB) and provide 

a method for calculating the smallest LB ensuring the desired production rate in serial lines with 

unreliable machines and later[69] introduce Lean Level of Buffering (LLB) where a normalized 
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buffer capacity and production line efficiency is used to develop exact formulas for two and 

three machine lines and approximations for lines with more than three machines. 

The research proposed differs from the line balancing and buffer allocation literature 

sited as the proposed research identifies exact methods for determining the state of the system 

or an element of the system at a given time.  States include the number of arrivals and 

departures an element sees at a given time, the maximum number of entities a buffer will 

experience given the placement of the stations and buffers and the time the buffer reaches 

capacity.  If a buffer has a reduced capacity, the time the buffer transitions to a blocked state 

and the time the buffer becomes blocked.  Such research can be used as boundary conditions 

or inputs to a line balancing or buffer allocation optimization problem to reduce solution time for 

line balancing optimization problems or to generate control policies for improved production 

efficiencies. 

2.4 Queuing networks performance and blocking 

Queuing networks were first used to model manufacturing systems in the 1950s [70].  

Performance analysis is important for the design, operation and management of production 

systems [71].  The previous section covered the aspect of optimization related to queues and 

buffers, the dimensioning and placement of queues and related line balancing.  There is also 

literature that addresses use of queuing networks for performance evaluation of queuing 

networks assessing metrics such as production rate or throughput, average buffer levels and 

probabilities of blockage and starvation. 

Gershwin [72] developed an efficient decomposition method using conservation of flow 

for evaluation of performance measures for production systems with finite buffers.  Gershwin 

points out the difficulty to evaluate queuing networks due to their large state spaces and 

presents a method of approximation for calculating production rate or throughput and the 

average amounts of material in the buffers.  Lim et al [73] developed an aggregation method 
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consisting of both forward and backward aggregation that converges on a production rate 

representing the system throughput eliminating the need for complex and costly computer 

simulations. Kouikoglou and Phillis use a probabilistic technique [74] that observes a limited 

number of events which are sufficient to determine the system performance and mean buffer 

levels.  Earlier, the same authors developed a hybrid simulation and analytic model for the study 

of production networks where they utilized nonlinear difference equations to determine and 

obtain accurate estimates of average throughput and buffer levels.  The algorithm was more 

efficient that traditional simulators [75][76].  Morrison [77] demonstrates that flow line models 

with deterministic services times can be decomposed into segments and uses recursion to 

calculate overall delay of entities in the system. 

The research proposed in Chapter 3 differs from queuing network performance and 

blocking literature sited as the proposed research identifies exact methods for a class of 

networks, particularly reliable sequential production lines of infinite length, determining the state 

of the system or an element of the system at a given time without the need for simulation.  

States include the number of arrivals and departures and element sees at a given time, the 

required buffer capacity given the placement of the stations and buffers and the time the buffer 

reaches capacity.  If a buffer has a reduced capacity, the time the buffer transitions to a blocked 

state and the time the buffer becomes blocked is captured.  Such research can be used as 

boundary conditions or inputs to assessing system throughput or to generate control policies for 

improved production efficiencies. 

2.5 Flexible manufacturing  

Facilities everywhere are facing growing competition and must find ways to maximize 

production efficiency to remain competitive in the market place [78] .  Facilities are assessing 

alternate production line configurations to gain production efficiencies such as throughput 

increases or work in progress reduction while maintaining the chronological order of operations.  
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Literature also discusses concepts explored with the addition of flexible manufacturing systems 

with varying configurations (serial, sequential, work cells) and product types [79][80].  We turn to 

the industries where work cell configurations are used, such as mobile device, wood, and 

apparel production industries [81][82][83] or any production line where a work cell configuration 

exists. 

Considering flexible manufacturing systems and work cell literature, Ramirez-Serrano 

and Benhabib [84] introduce a control algorithm to analyze concurrent operation of supervisors 

to check for existence or absence of deadlock states within a work-cell.  Outside of supervisory 

control, there have been several studies that investigate the utilization of work-cell and 

reconfigurable manufacturing systems to increase the efficiency and capacity of production 

lines.  Ich kawa’s s udy [85], for example, investigates a laptop production system and 

optimizing the supply of parts via material handlers from the receiving area to the cells.  Another 

study [78] analyzes use of product-oriented layout, material handling and layout of work-cells to 

maximize production efficiency in areas such as average units produced per day, labor cost per 

unit and distance traveled per day to obtain parts.  Logendran and Karim [86] uses a non-linear 

programming model comprised of binary and integer variables and a tabu search type algorithm 

to address the availability of alternative locations for a work-cell and the use of alternative routes 

to move part loads between cells when capacity of the material loader is limited.  Youssef and 

ElMaraghy [87] introduce a configuration selection approach that minimizes reconfiguration 

effort but still supporting the capacity needs of production. 

This paper differs from the prior literature reviewed in that it presents methods for 

extracting the buffer size where the buffer space is shared by several stations (via a buffer 

cluster) using methods derived from state space parameters with respect to time for any 

sequential N-Server, N+1-Buffer production line.  The buffer sizing model is then utilized in an 

optimization framework that enables setting of the policy specifying the buffers that can be 

clustered ensuring no buffer overflows.  The model provides an output of the required buffer 
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cluster sizing for that policy and allows the facility to set the policy that minimizes space 

utilization of the production line without decreasing the number of overall production lines that fit 

within the facility. 
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3. EXACT METHODS FOR DETERMINING STATE SPACE PARAMETERS 

 
This chapter derives exact methods for determining state space parameters for two 

models both using the N-Server, N+1-Buffer sequential line defined in Figure 1-6.  In the first 

model, we impose no buffer capacity restriction and derive state space parameters.  In the 

second model, we impose a buffer capacity restriction and in addition to the state space 

parameters, develop a decision tree for determining the servers and queues impacted by the 

buffer restriction. 

3.1 Model 1:  N server, N+1 sequential line model with unity capacity servers and no 

buffer capacity restriction 

In this section, we define the parameters used for deriving the number of arrivals and 

departures at a given time t for any server or queue in Figure 1-6.  We start by calculating the 

number of arrivals and departures at Server Si,   =     …N by any   me t.  Next we derive the 

number of arrivals and departures from any buffer Bi    =      …N+  by any given time t.  We 

then apply the relationships generated to derive the maximum number of entities a buffer Bi will 

experience and the number of entities at any given time t, Bi(t).  Bi(t) is then later extended in 

Chapter 4 to determine the buffer cluster size. Before deriving the aforementioned relationships, 

we list the notations, assumptions and definitions. 

Notations: 

 
N1) K1 = Magnitude of inventory at B1 a    me  =0  K  =      …N (Constant). 

N2) BAi(t) = Cumulative number of arrivals to buffer Bi by   me     =    …N+ . 

N3) BDi(t) = Cumulative number of departures from buffer Bi by   me     =    …N+ . 

N4) SAi(t) = Cumulative number of arrivals to server Si by   me     =    …N. 

N5) SDi(t) = Cumulative number of departures from server Si by   me     =    …N.
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N6) Ti,   =  …N  s  he serv ce   me for server Si    =  …N  (Th s  ncludes bo h  he process   me 
of the unit and the transportation time of the unit from the buffer to the station and the station to 
the next buffer). 
 
Assumptions: 

A1) Each Server Si can process at most one entity at a time (capacity = 1). 

A2) Each buffer Bi    =  …N+   has a capac  y grea er or equal  o  he s ar  ng  nven ory  

A3) Service time Ti for each server Si is deterministic  

A4) The starting inventory at time t=0- , K1 is located in buffer B1  

A5) At time t = 0, B1 has a departure and S1 has an arrival 

A6) Buffer B1 has only departures while Buffer BN+1 has only arrivals and every buffer Bi in 
between has both departures and arrivals; BA1(t) = 0; BDN+1(t) = 0 as shown in Figure 1-6. 
 
A7) If there is at least one part in Bi and Si is idle, then with no delay, an entity is moved to Si for 
processing. 
 
A8) Machines are reliable. 

Definitions: 

D1) MTi = max[T1,T2…Ti  ]   =    …N.  

D2) ∑
i

1=j
jTi =τ , i =1,2.....N, and 0=τ0 . 

D3) MBi = Maximum number of entities that buffer Bi, i = 2,..N will experience. 

D4) We use    as a floor function that maps a real number to the largest previous integer 

value.  
 
This model supports adding inventory (that could be in the form of batches of varying sizes) 

anytime before the last item in inventory B1 leaves the first server S1 (i.e. a batch can be added 

anytime before t =    - +  K -   MT ).  K1 can be either the initial inventory or a summation of 

inventory (in the form of batches) throughout the shift. 
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Before proceeding to calculate the number of arrivals and departures from server Si we derive 

relationships for the frequency of arrivals to server Si.  The following Lemma establishes this 

relationship. 

3.1.1 Deriving the frequency of arrivals to Server Si 

Lemma 1: The frequency of arrivals to Server Si is 
 

MT 
 

We use induction to demonstrate this.  We start by focusing on the first two servers, S1 and S2 

as shown in Figure 1-6.  Given buffer B1 holds the inventory of entities for the sequential line, 

the frequency of arrivals to S1 is equal to  
 

T 
=

 

MT 
 .  We also calculate the frequency for S2 as 

every other server in the line is similar to S2 in the way that it is preceded by another server.  For 

S2 and its preceding server S1, we have 3 conditions for the service times: 

1. T1 > T2 

2. T1 = T2 

3. T1 < T2 

Figure 3-1 shows a typical scenario when T2 > T1.  In this case, the frequency of arrivals to S2 

(immediately after departure of the first entity) is equal to 
 

T 
.  Figure 3-2 shows that if T1 > T2, 

the frequency of arrivals to S2 is 
 

T 
.   

Figure 3-3 shows that if T1 = T2, the frequency of arrival to S2 is equal to 
 

T 
 or 

 

T 
  . 
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Figure 3-1. Frequency of arrivals to S2 when T2 > T1 

 
Figure 3-2. Frequency of arrivals to S2 when T1 > T2 

 
Figure 3-3. Frequency of arrivals to S2 when T1 = T2 

Therefore, from the definition of MT2, for server S2, the frequency of arrivals is always 
 

MT 
.  Now 

we assume the first arrival occurs at 2-iτ  for Si-1 (i < N-1) and after that arrivals to Si-1 occur in 
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intervals of MTi-1.  We prove that the interval for arrivals to Si is MTi.  In this case, we have two 

scenarios: 

1. Ti > MTi-1  

2. Ti < MTi-1 

Again, we are concerned with the frequency of arrivals immediately after the departure of the 

first entity from Si shown by X in Figure 3-4 and Figure 3-5.  We demonstrate that the frequency 

of arrivals immediately after the departure of the first entity from Server Si is the reciprocal of the 

maximum of services times MTi-1 and Ti or 
 

Max (MT
 - 

 T )
 

 

MT 
 .  For scenario 1, from Figure 3-4, 

the frequency of arrivals to server Si is 
 

T 
  = 

 

Max (MT
 - 

 T )
 

 

MT 
 .  For scenario 2 as shown in Figure 

3-5 the frequency of arrivals to Si is 
 

MT
 - 

  = 
 

Max (MT
 - 

 T )
 

 

MT 
 . It is a trivial case when MTi-1 = Ti, 

then the arrival rate to Si is 
 

MT 
.  This completes the proof of Lemma 1. 

 
Figure 3-4. Frequency of arrivals to Si when Ti > MTi-1 
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Figure 3-5. Frequency of arrivals to Si when MTi-1 > Ti 

3.1.2 Deriving cumulative arrivals and cumulative departures at server Si 

Theorem 1: For the sequential system the cumulative arrivals and cumulative departures at 

server Si at time t is:  

SA    =  
m n   K   +  

   -  
 - 

 

MT 
    f       - 

 0                               herw se

           (3.1)  

    
      

S     =  
m n   K   +   

  -   

MT 
      f       

 0                               herw se

         (3.2) 

 

Proof:  First, we show that (3.1) holds for i=1.  At i=1, we have   = T 
 
 = =T = MT  .  0 = 0.  

Based on the sequential line assumption, at time t = 0, one part is loaded to server S1 (recall 

that K1 > 1).  This part is processed for T1 =    units of time and if buffer B1 still carries a part, 

server S1 is loaded again.  This loading operation (arrival event) happens at time t =   . 

Continuing with this pattern, one can see that server S1 is loaded at time stamp 0, 

        ….  K   , therefore the last loading of server S1 happens at time t = K1  .  After this time 

no loading occurs as all the parts in buffer B1 have been depleted, and the total number of 

arrivals to S1 remains K1. This means that the cumulative number of arrivals to server S1 at time 

t can be shown by: 
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SA    =  
 
 

  
 +     0      K   

K          K   

   

and it can immediately be concluded that SA    = m n  K    +  
 

  
        0.   

This proves that (3.1) holds for i=1.  Second, we prove (3.1) holds for Si where 1 < i < N.  By 

definition for t <   - , SAi (t) = 0 and for t =   - , SAi(t) = 1.  Figure 3-6 shows the cumulative 

arrivals to server Si at any time t.  We notice that the interarrival times are MTi.  Now we 

consider the case where 1< SAi (t) < K1. 

 
Figure 3-6. Time defined for SAi(t) from 1 through K1th arrival 

Assume that     -  + (m - 2)*MTi  < t <   -  + (m - 1)*MTi where m – 1 is an integer number and is 

the number of arrivals before t.  We know from the relationship that the frequency of arrivals to 

Server Si is 
 

MT 
 and that for the m - 1th and mth arrivals, time is defined in the following interval:   

  -  + (m – 2)*MTi  <  t  <   -   + (m – 1)*MTi 

We can write: 

t =   -  + (m – 2)*MTi + α MTi where 0   α < 1  

 t -   -  = ((m – 2) + α)*MTi  
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When α =     he coeff c en  ((m – 2) + α) = m -1 =  
   -  

 - 
 

MT 
  and Si experiences the mth arrival. For 

0   α       he coeff c en  =  (m –  ) + α  = m – 2 =   
   -  

 - 
 

MT 
  and Si has experienced the m -1th 

arrival. Therefore, for 1 < SAi(t) < K1, SAi(t) = 1 + 
   -  

 - 
 

MT 
 .  Based on the definition of arrival and 

departure of entities from server S1 one can see that because of the relationship  

SDi(t) = SAi(t + Ti)       (3.3)  

that means (3.2) holds. 

3.1.3 Deriving the cumulative arrivals and cumulative departures for buffer Bi 

Corollary 1: For the sequential system described in Figure 1-6 the cumulative arrivals and 

cumulative departures at buffer Bi at time t are:  

 A    =  
m n   K   +  

   -  
 - 

 

MT
 - 

     f       - 

 0                               herw se

    (3.4)  

      =  
m n   K   +   

  -  
 - 

MT 
      f       - 

 0                               herw se

  (3.5)

 
Proof:  For any Bi where   =    3…N+    he number of arr vals a  Bi is equal to the number of 

departures from Si-1 at a given time t.  Therefore taking (3.2) from the perspective of Si-1 and 

applying the condition (3.6) that proves (3.4).   

BAi(t) = SDi-1(t)       (3.6) 

The number of departures from Bi is equal to the number of arrivals at server Si.  Therefore, 

taking (3.1) from the perspective of arrivals at Si and applying the condition (3.7) proves (3.5). 

BDi(t) = SAi(t)        (3.7) 

3.1.4 Deriving the maximum number of entities buffer Bi will experience 

Corollary 2: For the sequential system, the maximum number of entities that buffer Bi will 

experience given starting inventory K1 as shown in Figure 3-7 is: 
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MBi = (K1 –1) -     (K - )      (3.8)  

Where Yi =  
 MT

 - 
 

MT 
  for   =  …N.  

 
When Ti > MTi-1, then MTi-1 < MTi and Yi < 1. When Ti < MTi-1, then MTi = MTi-1 and Yi =1. 
 

When Yi =1, MBi = 0, thus a buffer size = 1 is required for transport only to the next process, we 

call this a transport buffer.  We prove this for MBi    =   3 …N and when  i < 1.  For Yi =1, as 

mentioned before, is a transport buffer with MBi =1. 

 
Figure 3-7. Maximum number of entities buffer Bi experiences given inventory K1 

 

For Bi of interest, at any given time t the number of entities is equal to: 

Bi(t) = BAi(t) - BDi(t), Bi(t) > 0  (3.9)  

We first find the time (say T) when Bi(t) reaches its maximum level and then plug in T to (3.9), 

therefore calculating MBi.  By assumption, the first departure from Si-1 and the first arrival to Si 

happen simultaneously.  After this event, because MTi = Ti > MTi-1 and using the relationship 

that the frequency of arrivals to Server Si is 
 

MT 
, the departure rate from Si-1 will be greater than 

the arrival rate to Si.  This causes the accumulation in Bi to increase until the last departure 
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(K1th departure) from Si-1 occurs.  Therefore the maximum accumulation happens when the last 

departure from Si-1 occurs.  

T = MTi-1*(K1-1) +   -    (3.10) 

Plugging in T from (3.10) into (3.9) and using the results of Corollary 1 we have:  

Bi(t) = BAi(t) - BDi(t) = min (K1, 1+  
   -  

 - 
 

MT
 - 

 ) – min (K1, 1 +  
   -  

 - 
 

MT 
  ) 

= MBi =  
 MT

 - 
 (K - )  

MT
 - 

  - 
 MT

 - 
 (K - )  

MT 
  = (K1 –1) -     (K - )   

3.2 Model II:  N server, N+1 sequential line with reduced capacity for one buffer 

This model is synonymous with the first model in Figure 1-6.  After calculating MBi  for 

each Bi in Model 1, one may discover that for a specific buffer, Bv, MBv is too large for the 

workspace and would like to identify the impact to other buffers and servers in the serial line 

when the size of Bv is reduced to a value of Lv where Lv < MBv.  This model assesses the impact 

of this capacity reduction on each buffer and server in the serial line at the time of interest t. 

In Figure 3-8, we show the typical behavior of Bv.   In  h s f gure “A” represen s an arr val 

and “ ” represen s a depar ure.  The arrival rate and departure rate of Bv are not impacted until 

Lv is reached (at the R1th arrival).  After Lv is reached, the arrival rate follows the departure rate 

until K1 units arrive.  This is because when Bv is blocked, it prevents the entity in its prior server 

(Sv-1) from departing.  Thus, there is no space made available in Bv until after its subsequent 

server (Sv) has a departure.  Only after Sv has a departure, can another entity arrive to Sv 

creating a departure from Bv so that Bv can receive an arrival.  Therefore, after Bv is blocked, 

arrivals to Bv occur at the same time as its departures.  We define this phase as lock step. After 

K1 units arrive to Bv (end of lock step), only departures occur. 
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Figure 3-8. Buffer behavior when Bv capacity set to Lv 

Notations: 
 
N7) Bv is the buffer that is too large given the workspace constraints and requires capacity 
reduction. 
 
N8) Lv is the reduced size of the buffer Bv.  
 
N9) R1 is the number of arrivals that the buffer experiences when the buffer reaches a size of Lv 

 

N10) TT  is the transition time of Bi.  It is the last time an entity arrives according to the prior 

arrival rate before getting blocked. We notice that TT  has been defined in a generic way as 
other buffers might be blocked because of capacity reduction of Bv. 
 
N11) XTv is the block time of Bv. It is the first time an entity arrives at the departure rate of the 
blocked buffer.  

 
Definitions: 
 
D5) BRv = MBv – Lv, the amount that Bv is reduced, BRv > 0 
 
D6) ECi = Bi Size – MBi, is the amount the buffer size exceeds MBi. Given Bv is the only reduced 
buffer (below MBv), ECi > 0 
 

D7)  EC 
v- 
 = The excess capacity available from Bi of interest to Bv-1 

 
Assumptions: 
 
A9) This model applies to buffers Bi (where Yi <1) and excludes transport buffers (where Yi =1). 
 
A10) Each Bi has its capacity set to at least MBi and one only buffer (Bv) has its capacity set to a 
value (Lv) less than MBv. (This relaxes the second assumption in the first model). 
 

We first discuss a set of rules for which buffers and servers in the serial line are 

impacted or not impacted as a result of reducing the size of Bv.  Then we will derive the arrival 
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and departure formulas for each impacted buffer or server.  For any Bi or Si, Figure 3-9 below 

shows the rules for what equation for arrivals and departures to use based on whether i = v, i > 

v or i < v.  For each condition, if for a specific Bi  or Si a reference is made to use an equation in 

Model 1, that indicates that the server or buffer is not impacted by the reduced size of Bv.  For 

those Bi and Si that are impacted by reduced capacity of Bv, those equation references are 

derived in this section. 

 
 Figure 3-9. Rules for determining impacted arrivals and departures for Bi and Si  

3.2.1 Deriving arrival and departure formulas for impacted buffers and servers:  

Given Lv, we solve for R1, TTv and XTv for Bv and ultimately BDv(t) and BAv(t).  We then 

calculate the TTi and XTi for all other servers Si and buffers Bi impacted. We then derive the 
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number of buffer arrivals and departures and the number of server arrivals and departures with 

respect to time BAi(t), BDi(t), SAi(t) and SDi(t). 

We use (3.8) and find R1, TTv and XTv for Bv.  As shown in Figure 3-8, up to Lv, the 

buffer departures and arrivals show the exact behavior as in Model 1. The number of arrivals up 

to Lv is R1, a value less than K1.  At t = TTv, entity R1 arrives to Bv.  Using (3.10) where time 

was defined for BAi(t) from 1 through K1th arrival, we substitute R1 for K1 for Bv. 

TTv (for R1 arrivals) = MTv-1*(R1-1) +  v-  (3.11) 

Plugging in T from (3.11) into (3.9) and using the results of Corollary 1 we have: 

Bi(t) = Lv = BAi (TTv) - BDi (TTv) = 1+  
TTv -  v- 

 

MT
v- 

  - 1 -  
TTv -  v- 

 

MTv
  = 

 
MT

v-    (R - ) 

MT
v- 

   
MT

v-    (R - ) 

MTv
    = (R1 –1) -   v (R - )  

We solve the above equation for R1 and then we solve for the transition time TTv when the R1th 

arrival occurs using (3.11). 

In Figure 3-8  when  he buffer’s l m  ed capac  y  s reached   he arr vals are  n lock s ep 

with departures for Bv. In order to calculate the XTv, we must find the last departure that 

occurred by t = TTv.  The very next departure after TTv will be the departure where the arrival is 

in lock step with the departure.  That departure will occur at XTv.  We solve for BDv (t) at t = TTv 

via BDv (TTv) = 1 +  
TTv -  v- 

 

MTv
  

The next arrival and departure (BDv(TTv) + 1) will be in lock step with the BDv (t) 

departure profile. Because departures are not impacted by setting of Lv, we can solve for XTv 

using the time defined for the first through K1th departure from BDv(t).  We use (3.7) of Corollary 

1 to derive BDi(t).  Figure 3-10 shows the time of each departure from buffer Bi from 1 through 

K1. 
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Figure 3-10. Time defined for BDi(t) from 1 through K1th departure 

We substitute BDv(TTv) +1 for m and solve for  Tv   

XTv = MTv*((BDv(TTv)+1)-1) +  v-  

Because of the relationships (3.6) and (3.7) in Corollary 1, the TTv and XTv become critical times 

propagated through to every buffer Bi prior to Bv.  At the time a buffer is blocked, this prevents 

the entity in the prior server from departing, preventing an arrival in the server.  Only after the 

server ahead of the blocked buffer has a departure, can the blocked buffer entity depart and 

accept another entity.  Thus, the profile of each buffer Bi prior to Bv shifts to meet the departing 

profile of Bv and the departing profile equals the arrival profile of Server Sv as in (3.7).  

Therefore, the block time XTv of Bv is the same for every Bi prior to Bv.  For TTi, the time TTi 

relative to XTv may vary for each Bi prior to Bv.  That is, the time from TTi to the next arrival 

where the arrival becomes in lock step with the departure varies due to the differences in 

service times. To calculate the TTi for each Bi before Bv, we use the TTv from Bv and calculate 

the number of arrivals using the BAi(t) in (3.4). 

BAi(TTv) = 1 +  
TTv -   -  

MT
 - 

  

Then we solve for TT  at the next arrival which will be the TT  for the Bi of interest and 

substituting BAi(TTv)+1 for m (see (3.10)). 

TT   = ((BAi(TTv)+1)-1)*MTi-1 +   -  
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3.2.2 Deriving arrival and departure formulas for Impacted Buffers and Servers  

Now we can derive the formula for the arrivals and departures for buffers and servers 

that are impacted by the reduced capacity of Bv as shown in Figure 3-9. 

 Bi of interest is Bv (i = v): The arrivals of Bv are impacted and use (3.12).  

 Bi of interest is Bv-1 (where i = v-1) and if K1 arrivals and departures are not already 

completed before XTv, the departure formula in (3.13) always applies to impacted buffer Bv-1. 

The arrival formula (3.12) applies when condition  EC 
v- 
  < BRv is met. 

 Bi of interest where i < v-1 and if K1 arrivals and departures are not already completed 

before XTv, (3.12) and (3.13) apply when condition  EC 
v- 
 < BRv is met. 

In general, when t <   - , no arrivals or departures have occurred to Bi. If    -  < t < TTi, then 

equations (3.4) and (3.5) hold but within new intervals of interest as shown in (3.12) and (3.13). 

If the time of interest t for Bi is greater than TTi and less than XTv, (3.4) and (3.5) hold, however t 

= TTi.  As shown in Figure 3-8, there are no arrivals or departures in between the transition time 

and the block time.  For the interval of t > XTv, BAi (t) remains the same for entities prior to XTv, 

however after XTv, the BAi(t) and BDi(t) assumes the BDv(t) profile and thus the use of MTv. 

 A    = 

 
 
 
 

 
 
 

0                                               f       - 

m n   K   +  
   –  

 - 
 

MT
 - 

               f    -        TT 

m n   K   +  
 TT  –   -  

MT
 - 

           f TT        Tv

m n   K   +  
 TT  –   -  

MT
 - 

 +  
   –  Tv 

MTv
    f      Tv

    (3.12) 

      = 

 
 
 
 

 
 
 

0                                               f       - 

m n   K   +  
   –  

 - 
 

MT 
               f    -        TT 

m n   K   +  
 TT  –   -  

MT 
           f TT        Tv

m n   K   +  
 TT  –   -  

MT 
 +  

   –  Tv 

MTv
    f      Tv

             (3.13)

 

We have completed the arrival and departure profiles for buffers and proceed to the servers Si.  
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 Si of interest is Sv-1 (where i = v-1) and if K1 arrivals and departures  are not already 
completed before XTv: The formulas (3.14) and (3.15) always apply  
 

 Si of interest where i < v-1and if K1 arrivals and departures are not already completed 

before XTv: (3.14) and (3.15) apply when condition  EC 
v- 
 + 

 

< BRv is met   

 

From (3.6) and (3.7) in Corollary 1, no new calculations are needed for the servers.  The TTi for 

server Si is equivalent to the TTi calculated for the buffer ahead of server Si or TTi+1.  As a result, 

one derives an equivalent set of server arrival and departure models shown in (3.14) and (3.15).  

SA    = 

 
 
 
 

 
 
 

0                                               f         

m n   K   +  
   –      

MT 

                     f             TT + 

m n   K   +  
 TT +  –      

MT 

           f TT +         Tv

m n   K   +  
 TT +  –      

MT 

 +  
   –  Tv 

MTv

    f      Tv

     (3.  )  

S     = 

 
  
 

  
 

0                                               f       

m n   K   +  
   –    

MT 
                     f           TT + 

m n   K   +  
 TT +  –    

MT 
           f TT +         Tv

m n   K   +  
 TT +  –    

MT 
 +  

   –  Tv 

MTv
    f      Tv

   (3.15) 

 

In Chapter 5, we will apply the results to parameters (1) through (8) identified in the Introduction. 
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4. OPTIMIZATION FRAMEWORK FOR BUFFER CLUSTERING POLICY 

In this chapter, we derive the buffer clustering optimization framework utilizing the model 

from Chapter 3 to provide the buffer cluster sizing and an optimal buffer clustering policy.  

Before deriving the aforementioned relationships, we list the notations, assumptions and 

definitions.  We use Figure 4-1 which shows the inventory profile in buffer Bi to illustrate some of 

the notations K2i, K3i,                 and  MBi -1. 

 
Figure 4-1. Illustration of K2i, K3i,               and MBi -1 

Notations: 

N12) Wj is a set of one or more buffers which we refer to as a buffer cluster. 
 
N13) BBj  is the maximum number of entities a buffer cluster Wj must be able to hold to ensure 
that no overflows or underflows occur in the buffer cluster. 
 
N14) Xj is a binary variable {0,1} and defines whether cluster Wj must be realized {1} or not {0} ( 
i.e. Xj = 1 determines that cluster Wj must be selected as a part of the buffer cluster policy). 
 
N15) K2i is the last arrival to buffer Bi that occurs when the number of entities in Bi is MBi -1 
 
N16) K3i is the number of entities that depart buffer Bi changing the number of entities in buffer 
Bi to MBi-1 from MBi. This occurs right after the last arrival (K1 arrival) to buffer Bi 

 

N17)        is the time of the first arrival changing the number of entities in buffer Bi  to MBi from 
MBi-1 (K2i + 1 arrival).
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N18)       is the time of the first departure (K3i) departing after the last arrival (K1 arrival) for 
buffer Bi.  It is the last time the number of entities in buffer Bi equals MBi. 
 
N19) q is the time the last entity departs from server SN to buffer BN+1 

N20) H is the size each entity occupies within a cell of a buffer in square meters 

N21) G is the maximum size of a buffer cluster W j in square meters. 

Assumptions: (Assumptions A1 through A8 from Chapter 3 hold) 

A11) Possible combinations (clusters) of buffers are given. 

A12) A buffer Bi mus  be e  her a ded ca ed buffer or  n a s ngle clus er;  hus   f {   3  … i … N} 
denotes the index set of intermediate buffers Bi and {      …j  …  C} the index set of buffer 
clusters Wj, then 
 

 W ={  3 … N 

C

 = 

 

Although a buffer cluster must maintain the sequence of operations, meaning it must facilitate 

an entity to move in the sequence of operations from servers S1, S2, S3… to SN the buffers 

included in a cluster should not necessarily be sequential.  Therefore, a buffer cluster may 

include non-sequential buffers and still maintain the sequence of operations.  The example in 

Figure 4-2 shows non-sequential buffers B2 and B5 clustered (W1) and sequential buffers B3 and 

B4 clustered (W2) while still maintaining the sequence of operations S1 through S5 as shown by 

the arrows. 
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Figure 4-2. Non-sequential and sequential clusters maintaining operation sequence 

Equation (3.8) in Chapter 3 provides us with the maximum number of entities that buffer 

Bi will experience over a given demand K1 within a production shift and is used for sizing the 

standalone buffers to ensure that no overflows or underflows occur.  We need to understand the 

size required for the buffer cluster combinations at any given time.  Thus, for the buffer cluster, 

we must assess the buffer sizes leveraging (3.9) at every given time t from the time of first 

arrival of an entity in buffer B2 (    to the completion of the production shift (q) (See assumption 

A6). 

     =m n (K   +  
  -  

 - 
 

MT
 - 

 ) –m n  K     -  
  -  

 - 
 

MT 
                 -  q]      (4.1) 

From (4.1) we see that the search for the buffer cluster size requires a calculation at 

each time step throughout the production shift for every buffer Bi.  This results in a significant 

number of computations.  We quantify and illustrate in Chapter 5 how the number of 

calculations and the simulation time can be substantially reduced.  Before we can quantify the 

savings, we must first solve for BBj defined as the maximum number of entities the buffer cluster 

Wj must hold such that no overflows or underflows occur in the buffer cluster.  
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To solve for BBj, we first solve       and        (see Figure 4-1) and then prove that the 

maximum buffer cluster size required occurs when one of the individual buffers Bi is at a 

maximum during the time interval                    ].  To solve for       we first solve for the last 

arrival (K2i) that occurs at MBi - 1. We modify (3.8) as shown in (4.2). 

MBi -1 = (K2i –1) -     (K   - )      (4.2) 

Then to get the first arrival that occurs at MBi, we solve for the time       that the K2i + 1 arrival 

arrives to buffer Bi  

      =   - +  (K  + )-   MT -  (4.3) 

To determine      , we first we solve for the time of the K1th arrival to buffer Bi using (3.10) and 

use (3.5) to calculate the number of departures that have occurred by the K1th arrival.  Then we 

add one to the departures (named K3i) and calculate the time of this departure (     ) using (4.4). 

       =   - +  K3 -   MT   (4.4) 

The minimum size for a cluster W j such that no overflows occur is shown in 4.5.   

BBj = max
       = 

N                ]
   r r   W  

( )     W   (4.5) 

We now prove that the buffer cluster size required occurs when at least one of the 

individual buffers in the cluster Wj is at a maximum according to (4.5).  

Lemma 2: Minimum size for cluster Wj such that no overflows occur takes place when at least 

one of the buffers Bi in cluster Wj has reached the maximum number of entities, MBi. 

We take buffers Bk and Bp that are in cluster Wj and output to servers Sk and Sp respectively 

where k < p, and the constraints MTk-1 < MTk and MTp-1 < MTp hold. We recall from Corollary 2 

that when MTk-1 = MTk and MTp-1 = MTp, the buffer size is 1. We observe the buffer inventory 

profiles of Bk and Bp at three specific time intervals of the buffer inventory covering the time from 

the first arrival to buffer Bk to the last departure from buffer Bp as shown in Figure 4-3. For each 

interval, we also observe when buffers Bk and Bp are sequential (p = k+1) and when they are not 
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(p > k +1). Figure 4-3 shows the case when p = k+1. As p > k+1, the buffer profiles drift apart 

and the overlap in Time Interval 3 decreases until no overlap exists. 

 
Figure 4-3. Buffer profiles of Bk and Bp  and time intervals 1 through 3 for p = k + 1 

Time Interval 1:  k-  < t <       k (Bk and Bp are increasing; Bk has reached a maximum) 

Buffer Bk has its first arrival at  k-  and increases until it reaches MBk.  Buffer Bp has its first 

arrival at  p-  and increases until it reaches its maximum, MBp. For Buffers Bk and Bp where p = 

k+1,   p-   k-  = Tk. Thus, buffer Bp starts increasing Tk seconds after the first arrival to buffer 

Bk. When p > k+1,  p-   k-  is greater than Tk meaning that time of the first arrival of Bp 

approaches and can exceed time interval [    k      k ] when Bk is maximum.  When buffer Bk is at 

its maximum (MBk), buffer Bp is increasing in size, while after reaching MBk, buffer Bk begins to 

decline.  Therefore, a possible buffer cluster maximum between buffers Bk and Bp is at MBk. 

Time Interval 2:      p < t <  p- +  K -   MTp (Bk is decreasing and reaches zero; Bp has reached 

its maximum and begins to decline including its last departure) 

The last arrival to buffer Bp at time  ApK  = p- 
+  K -   MTp-  

The last departure of buffer Bk occurs at time   kK = k- 
+  K -   MTk 
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When we subtract these times we get: 

 p- +  K -   MTp- -  k- -  K -   MTk=  p- -  k- +  K -   MTp- -  K -   MTk  = 

   p- -  k- -  K -   (MTp- -MTk)      (4.6) 

For Buffers Bk and Bp where p = k+1 then MTp- - MTk = 0 and    p- -  k-   = Tk then (4.6) equals 

Tk.  Therefore, the last departure of Bk occurs Tk seconds prior to the last arrival to buffer Bp. 

Thus Bk is reaches zero while Bp is at a maximum.  When p > k+1, then    p- -  k-  is greater 

than Tk and MTk < MTp-1, therefore (K1-1)*(MT
p- 

-MTk) > 0, resulting in (4.6) being greater than 

Tk.  Therefore, a possible buffer cluster maximum between buffers Bk and Bp occurs at MBp. 

Time Interval 3:      k < t <      p (Bk is decreasing; Bp is increasing but has not reached a 

maximum) 

At time      k, Bk has experienced its last arrival (K1) and it has reached a maximum MBk. 

Therefore, after this time, only departures occur.  Thus in essence, MBk indicates the number 

of departures that are left for buffer Bk until it reaches zero.  During this time interval, buffer Bp 

 s  ncreas ng (   hasn’  reached a max mum ye )  mean ng    has bo h arr vals and depar ures.  

When p = k+1, MTk = MTp-1 indicating that the number of departures remaining at buffer Bk , 

MBk, is also the number of entities still to arrive at buffer Bp  and they occur at the same time.  

However, given that Bp  s  ncreas ng and hasn’  reached a max mum      s also exper enc ng 

departures at a rate of MTp.  During this time interval, the quantity of inventory of buffer Bk 

declines from MBk to zero.  Although Buffer Bp entities arrive at the same rate as buffer Bk 

departures, its inventory increases more slowly than the decline of departures from buffer Bk 

given buffer Bp also has entities departing at a rate of MTp during this time interval.  Therefore 

the sum of the inventory profiles of buffer Bk and Bp during this time interval will not exceed the 

maximum inventory observed in time interval (1) or (2) described above.  When p > k + 1, 

buffer Bp has its first entity arriving even later than in the p = k+1 case.  Although the decline of 

buffer Bk remains the same, buffer Bp starting arrival approaches the time when buffer Bk 
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approaches MBk and the summation of the two inventory profiles will not exceed the maximum 

inventory observed in time interval (1) or (2) described above.  Based on results of the analysis 

for each of the time intervals, we must search the union of time intervals in (4.7) for each buffer 

to find the maximum buffer cluster size BBj. 

                                          …                 …     N  
      N

    (4.7) 

For a given production line, there can be thousands of buffer cluster combinations.  

Consider a collection of candidate buffer clusters W j, j     …  C  no  necessar ly d s o n   for 

which the minimum storage requirements BBj have been computed via (4.5).  We use integer 

programming to find the buffer cluster combination that provides the minimum total space 

occupied by all clusters.  From here we set the objective function as shown in (4.8) to determine 

the buffer cluster(s) size across the production line where Xj determines what buffer cluster 

combinations should be present to minimize the overall size of the buffer cluster(s) throughout 

the production line where Xj  {0, 1} is a decision variable that determines whether the buffer 

cluster Wj should be realized or not.  As defined earlier each buffer can only participate in one 

and only one realized buffer cluster.  The first set of constraints (4.9) show that a buffer Bi can 

only participate in one combination buffer cluster.  The second set of constraints (4.10) is the 

maximum size of a buffer cluster in square meters.  The third set of constraints (4.11) are the 

binary constraints for Xj.  We define Vj to ensure constraint (4.9) applies only to buffers within 

cluster Wj. 
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Vj = { i, Bi   Wj}   1 < j < C  

Objective Function:  

Minimize          

C
 =              (4.8) 

Subject to:  

∑
∈ jVi:j

jX 1= , 1 < i < N    (4.9) 

       
 
 < G,   1 < j < C    (4.10) 

   = 0 or 1    j      (4.11)
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5. APPLYING MODELS TO INDUSTRY EXAMPLES 

 
Returning to the distribution and manufacturing examples discussed in the introduction 

and we illustrate how the above formulations from Chapters 3 and 4 are applied to each 

problem class.  These methods are used and compared to results from simulation and found to 

be exact.  

5.1 Applying Chapter 3 results to distribution center example 

As discussed in the introduction, there were problem areas the distribution center team 

desired to investigate as part of the research. Below we illustrate how the model in Chapter 3 is 

applied to these problem areas.  

(1) The maximum buffer size allowed such that no buffer experiences blocking during a shift. 

To determine the maximum buffer size allowed such that no buffer experiences blocking during 

a shift where the demand K1 = 350, we use (3.8). 

MB2 = (K1 –1) -     (K - )  = 349 - ⎣
 0

  0
*349⎦ = 291    Where Y2 = 

MT 

MT 
 =

 0

  0
 

Similarly, MB3 = 0, MB4 = 188, MB5 = 0, MB6 = 0, MB7 = 66, MB8 = 0, MB9 = 0 

(2) The sh f  where a buffer’s capac  y should change  o mee   he produc  on demand changes. 

Because the service times remain the same, increasing K1, only impacts those buffers where 

MTi ≠MTi-1. Buffers MB2, MB4 and MB7 undergo a buffer size increase with an increase in 

demand. For example, when demand increases to K1=400 the capacities for buffers B2, B4 and 

B7 must be increased to 333, 215, and 75 respectively. 

(3) The number of units processed by the bottleneck station when time of blocking occurs. 

Suppose that the Flash Process (S4) and Buffer B4 cannot support the required capacity (188) 

and has space available for only 160 units. The number of units that have arrived at B4 when L4 

= 160 entities is R1. 

Lv = (R1 –1) -   v (R - )    160 = (R1 – 1) -  
  0

  0
 (R - )   R1 = 298
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Therefore, 298 units have arrived when B4 reaches capacity of L4 and 102 units remain to be 

processed to fill the K1 = 400 demand in (2).  

(4) The buffer transition and block time when a buffer size is reduced (Lv < MBv). 

We determine the transition and block time when we reduce the capacity of Buffer B4 to Lv =160 

units. We first calculate the transition time, or the last time an entity arrives to B4 according to 

the prior arrival rate before getting blocked. 

TT4 (for R1 arrivals) = MT3*(R1-1) +  3  
= 240*(298-1) + 340 = 71620 seconds

 

The very next departure after TT4 will be the departure where the arrival is in lock step with the 

departure.  We solve for BD4 (t) at t = TT4 

BD4 (TT4) = 1 +  
TT - 3

MT 
     BD4 (TT4 ) = 1 +  

    0-3 0

  0
 = 138 

The BD4(TT4) departure will occur at XT4. Therefore, we solve for XT4 as follows: 

XT4 = MT4*((BD4(TT4)+1)-1) + 3 = 520*138 + 340 = 72100 seconds 

(5) The reaction time to route a resource (operator or workstation) to a bottleneck process to 

prevent impact to other processes prior to the bottleneck. 

The distribution center production team determined that the time to boot up a flash station in the 

Flash Process is tFB = 310s.  Therefore, to prevent the blocking at time t = 72100 seconds 

calculated in (4), an additional flash station would need to be booted by time t = TT4 – tFB = 

71620 – 310 = 71310 s so that blocking can be alleviated for the remaining 102 entities.  We 

use time t = TT4 as that is the last time an entity arrives to B4 according to the prior arrival rate, 

and we ensure that the second flash station is available by that time to prevent blocking at time t 

= XT4. 

(6) The maximum demand the serial line can support given the limited shift time and buffer 

sizes. 

We use (3.2) to find the time of the last departure from the ninth server S9 in serial line and the 

fact that there are 43200 seconds in a 12-hour shift.   
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SD9 =  +  
 3 00-   0

  0
  = 64 entities depart 

3 0

  
 = 5.46 shifts required to finish 350 entities.   

(7) The shift time to finish a given demand with limited buffer sizes 

All 350 entities will complete at time t using (3.2): 350 = 1 +  
  -    0

  0
  where t = 225640 seconds 

to complete all 350 entities. Figure 5-1 uses (3.2) to profile for shift completion time vs. demand. 

 
Figure 5-1. Shift completion vs. demand 

 

(8) Determining the production line behavior with varying process times. 

We can easily apply these methods to scenarios where service times vary. For a given buffer, 

we identified that MTi-1 and MTi are the critical parameters for identifying the maximum number 

of entities a buffer will experience.  We calculated MB4 as 188 for the buffer prior to the Flash 

process.  The Flash process (T4 = MTi = MT4) is fully automated for the mobile devices. The 

Pre-work process (T2 = MTi-1 = MT2) is also fully automated. However, if the Pre-Flash process 

(the process in between MTi-1 and MTi) is not fully automated, say it is a manual process and 

has variable service times depending on the operator skill, Figure 5-2 shows that the Pre-Flash 

service time (60 second process time) can vary significantly without impacting any other MBi in 

the serial line because it is not an MTi or MTi-1 value for any buffer in the serial line. It can vary 



61 

 

from 1 to 240 seconds without impacting other buffer MBi values. If Pre-Flash service time 

exceeds 240 seconds, it begins to impact MB4 and MB3 as shown in Figure 5-2.  Therefore, 

from a control policy perspective, the Pre-Flash process does not require significant monitoring 

or immediate knowledge of events as the process can vary significantly without impacting other 

buffers.  

 
Figure 5-2. MBi vs. pre flash service time (T3)  

We can expand this further to the critical MTi and MTi-1 for MB4.  Let us say that for MB4, where 

both MTi (Flash = 520 seconds) and MTi-1 (Pre-Work = 240 seconds) are manual or have 

variable service times, one can use the results of (3.8) and create a two-way variable table (see 

Table 3) to find the maximum and minimum MB4. Green indicates the maximum values and red 

indicates the minimum values In this case, MTi was varied from 500 to 540 seconds and MTi-1 

was varied from 220 to 260 seconds. Results show that deterministically MB4 = 188. When 

using a two-way variable table we find MB4 varies from a minimum of 168 to a maximum of 207.  

Using a simulation model, several hundred simulation runs are required to get these exact 

results. 
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Table 3. Two-way variable table for MB4 

 

5.2 Applying Chapter 4 results to the manufacturing center 

In the first section we will apply the model in chapter 4 to the manufacturing center 

industry example.  In the second section we quantify and illustrate in how the model significantly 

reduced number of calculations required to calculate the buffer cluster size. 

5.2.1 Buffer clustering policy for manufacturing center 

As discussed in the Introduction, the underlying motivation for this research was a case 

study where a manufacturing facility that produces mobile devices wished to change over from a 

serial line to a buffer cluster configuration.  Table 2 in the Introduction shows the server stations 

and process times.  The footprint for buffer cell holding an entity is 0.005m2.  The maximum 

buffer cluster size is 1.825 m2. 

Given B1 and B8 are the starting and ending inventory buffers, these are not included in 

the analysis. We use (3.8) and (4.5) to populate Table 4 with Wj cluster sets and size for buffers 

B2 through B7.  The production line shift is 8 hours and 458 units are projected to ship by the end 

of the shift.  There is a space constraint of 1.825 square meters for the buffer cluster size. In 
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Table 4, the cells in red indicate that the cluster does not meet the space constraint (i.e. the 

buffer cluster size BBj > 365 entities). 

Table 4. Wj buffer cluster sets and BBj values for each buffer cluster set 
W1 = {B2} W2 ={B3} W3 = {B4} W4 = {B5} W5 = {B6} 

BB1 = 229 BB2 = 229 BB3 = 92 BB4= 294 BB5 = 1 (Transport) 

W6 = {B7} W7 = {B2,B3} W8 = {B2,B4} W9 = {B2,B5} W10 = {B2,B6} 

BB6 =121 BB7 = 343 BB8 = 251 BB9 =294 BB10 = 230 

W11= {B2, B7} W12={B3,B4} W13={B3,B5} W14 = {B3,B6} W15 = {B3,B7} 

BB11 = 237 BB12 = 274 BB13 = 346 BB14 = 230 BB15 = 246 

W16 = {B4,B5} W17={B4,B6} W18 = {B4,B7} W19={B5,B6} W20={B5,B7} 

BB16 = 326 BB17 = 93 BB18 = 126 BB19 =295 BB20=337 

W21={B6,B7} W22 = {B2,B3, B4} W23 = {B2,B3,B5} W24 = {B2,B3,B6} W25 = {B2,B3,B7} 

BB21=122 BB22 = 365 BB23 = 401 BB24 = 344 BB25 = 351 

W26 = {B2,B4,B5} W27 = {B2,B4,B6} W28 = {B2,B4,B7} W29 = {B2,B5,B6} W30 = {B2,B5,B7} 

BB26 = 326 BB27 = 252 BB28 = 259 BB29 = 295 BB30  = 337 

W31 = {B2,B6,B7} W32={B3,B4,B5} W33={B3,B4,B6} W34 ={B3,B4,B7} W35={B3, B5,B6} 

BB31 = 238 BB32 = 391 BB33 = 275 BB34 = 291 BB35 = 347 

W36={B3, B5,B7} W37={B3, B6,B7} W38={B4,B5,B6} W39={B4,B5,B7} W40={B4, B6,B7} 

BB36 = 363 BB37 = 247 BB38 = 327 BB39 = 360 BB40 = 127 

W41={B5, B6,B7} W42 = {B2,B3,B4,B5} W43 = {B2,B3,B4,B6} W44 = {B2,B3,B4,B7} W45 = {B2,B3,B5,B6} 

BB41 = 338 BB42 = 423 BB43 = 366 BB44 = 373 BB45 = 402 

W46 = {B2,B3,B5,B7} W47 = {B2,B3,B6,B7} W48 = {B2,B4,B5,B6} W49 = {B2,B4,B5,B7} W50 = {B2,B4,B6,B7} 

BB46 = 409 BB47 = 352 BB48 = 327 BB49 = 360 BB50 = 260 

W51 = {B2,B5,B6,B7} W52 = {B3,B4,B5,B6} W53= {B3,B4,B5,B7} W54 = {B3,B4,B6,B7} W55 = {B3,B5,B6,B7} 

BB51 = 338 BB52 = 392 BB53 = 408 BB54 = 292 BB55 = 364 

W56 = {B4,B5,B6,B7} W57 = {B2,B3,B4,B5,B6} W58 = {B2,B3,B4,B5,B7} W59 = {B2,B3,B4,B6,B7} W60 = {B2,B3,B5,B6,B7} 

BB56 = 361 BB57 = 424 BB58= 431 BB59 = 374 BB60 = 410 

W61 = {B2,B4,B5,B6,B7} W62 = {B3,B4,B5,B6,B7} W63 = { B2,B3,B4,B5,B6,B7} 
  BB61 = 361 BB62 = 409 BB63 = 432 
   

The objective function according to (4.8) and constraints according to (4.9), (4.10) and 

(4.11) are below. As discussed in Chapter 4, a buffer cannot participate in multiple clusters at 

the same time.  Table 5 shows the buffer storage space savings for the top buffer cluster 

configurations considered by the manufacturing center compared to that of the cluster that does 

not consider the space constraint and that for dedicated buffers.  The manufacturing center 

desired to leverage the cluster for work cells to minimize the buffer storage space. The top 

buffer cluster configurations considered by the manufacturing center contained buffer clusters 

with three or four buffers clustered together. 
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Objective Function: 

Minimize         
 3
 =   

 
Subject to: 
Constraint for B2: 
X1+X7+X8+X9+X10+X11+X22+X23+X24+X25+X26+X27+X28+X29+X30+X31+X42+X43+X44
+ X45 +X46+ X47+X48+X49+X50+X51+X57+X58+X59+X60+X61+X63=1 
Constraint for B3: 
X2+X7+X12+X13+X14+X15+X22+X23+X24+X25+X32+X33+X34+X35+X36+X37+X42+X43+ 
X44+X45+X46+X47+X52+X53+X54+X55+X57+X58+X59+X60+X62+X63=1 
Constraint for B4: 
X3+X8+X12+X16+X17+X18+X22+X26+X27+X28+X32+X33+X34+X38+X39+X40+X42+X43+ 
X44+ X48+X49+X50+X52+X53+X54+X56+X57+X58+X59+X61+X62+X63=1 
Constraint for B5: 
X4+X9+X13+X16+X19+X20+X23+X26+X29+X30+X32+X35+X36+X38+X39+X41+X42+X45+ 
X46+X48+X49+X51+X52+X53+X55+X56+X57+X58+X60+X61+X62+X63=1 
Constraint for B6: 
X5+X10+X14+X17+X19+X21+X24+X27+X29+X31+X33+X35+X37+X38+X40+X41+X43+ 
X45+X47+X48+X50+X51+X52+X54+X55+X56+X57+X59+X60+X61+X62+X63=1 
Constraint for B7: 
X6+X11+X15+X18+X20+X21+X25+X28+X30+X31+X34+X36+X37+X39+X40+X41+X44+X46+
X47+X49+X50+X51+X53+X54+X55+X56+X58+X59+X60+X61+X62+X63=1 
 
Space Constraints:     0.00      .     1 < j < 63 

 
Binary Constraint:    = 0 or 1 

 
Figure 5-3 is the original production line configuration. Batches of 80 come from 

inventory and enter the production line (B1). Batches of 80 are put on a pallet and shipped (B8). 

The top cluster configurations considered by the facility based on buffer storage savings were 

then entered into a facility layout tool.  The configuration shown in Figure 5-4 was selected {B3, 

B4, B7}, {B2, B5, B6} resulting in a 39.3% buffer storage savings (1.9 square meters).  
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Table 5. Buffer cluster sets and buffer storage savings 

Cluster Set 
Size  

(No. Entities) 
Size  
(m2) 

Buffer Storage 
Space  

Savings (m2) 
Space 

Savings % 

{B2},{B3},{B4},{B5}, {B6},{B7}* 966 4.83 
  {B2,B3,B4,B5,B6,B7}** 432 2.16 2.67 55.3% 

 {B2,B4, B5,B6,B7} , {B3} 590 2.95 1.88 38.9% 

 {B2,B5,B6,B7} , {B3 ,B4} 612 3.06 1.77 36.7% 

 {B3,B5,B6,B7} , {B2,B4} 615 3.08 1.76 36.3% 

 {B3,B4,B6,B7} , {B2,B5} 586 2.93 1.90 39.3% 

{B2,B4,B5,B6}, {B3,B7} 573 2.87 1.97 40.7% 

{B2,B4,B6,B7}, {B3,B5} 606 3.03 1.80 37.3% 

 {B3,B5,B7} , {B2,B4,B6} 615 3.08 1.76 36.3% 

 {B3,B5,B7} , {B6},{B2,B4} 615 3.08 1.76 36.3% 

 {B3,B4,B7} , {B2, B5, B6} 586 2.93 1.90 39.3% 

 {B3,B4,B7} , {B6},{B2, B5} 586 2.93 1.90 39.3% 

 {B3,B4,B6} , {B2, B5, B7} 612 3.06 1.77 36.6% 

 {B2,B5,B7} , {B6},{B3, B4} 612 3.06 1.77 36.6% 

 {B2,B4,B5} , {B6},{B3, B7} 573 2.87 1.97 40.7% 

  *Dedicated Buffers 
  ** Optimal Buffer Cluster without space constraints 

 
Figure 5-3. Serial production line 

 

Figure 5-4. Production line with buffer clusters 

As discussed in the introduction, equation (4.5) along with the objective function (4.8) 

and constraints in (4.9) through (4.11) can be used to conduct sensitivity analysis of the buffer 
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cluster size by varying parameters such as server process time Ti and production demand K1.  

Now we leverage the framework of the model and vary the process time of one server to 

demonstrate how the model can be used for sensitivity analysis.  In this case we vary the 

process time of server S2 to three seconds, calculate the BBj values for each cluster set and 

show the buffer cluster sets in Table 6. As before, the cells in red indicate that the cluster does 

not meet the space constraint and are the same cells that did not meet the space constraint in 

Table 4.  If the cells are highlighted in purple, they used to meet the space constraint, but due to 

the change in the process times, no longer meet the constraint.  The cells highlighted in blue 

exceeded the space constraint in Table 4, but now meet the constraint in Table 6.  The BBj 

values in red indicate a change in the size of the cluster from Table 4.   

We take the configurations from Table 5 and identify in Table 7 that there are 

configurations that now, with S2 equaling 3 seconds do not meet the space constraint 

(highlighted in red).  We see that the configuration selected with a process time S2 equaling 2 

seconds, {B3, B4, B7}, {B2, B5, B6}, with 586 entities, achieves a total buffer size of 572 entities 

when the process time of S2 is 3 seconds. This scenario is highlighted in green in Table 7.  So 

the initial buffer cluster set shown in Figure 5-4 can remain and still satisfy the space constraints 

when the process time of S2 varies from two to three seconds. 
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Table 6. Wj buffer cluster sets and BBj values for each buffer cluster set (T2 = 3s) 
W1 = {B2} W2 ={B3} W3 = {B4} W4 = {B5} W5 = {B6} 

BB1 = 305 BB2 = 115 BB3 = 92 BB4= 294 BB5= 1 (Transport) 

W6 = {B7} W7 = {B2,B3} W8 = {B2,B4} W9 = {B2,B5} W10 = {B2,B6} 

BB6 =121 BB7 = 343 BB8 = 327 BB9 =363 BB10 = 306 

W11= {B2, B7} W12={B3,B4} W13={B3,B5} W14 = {B3,B6} W15 = {B3,B7} 

BB11 = 313 BB12 = 183 BB13 = 294 BB14 = 116 BB15 = 140 

W16 = {B4,B5} W17={B4,B6} W18 = {B4,B7} W19={B5,B6} W20={B5,B7} 

BB16 = 326 BB17 = 93 BB18 = 126 BB19 =295 BB20=337 

W21={B6,B7} W22 = {B2,B3, B4} W23 = {B2,B3,B5} W24 = {B2,B3,B6} W25 = {B2,B3,B7} 

BB21=122 BB22 = 365 BB23 = 401 BB24 = 344 BB25 = 351 

W26 = {B2,B4,B5} W27 = {B2,B4,B6} W28 = {B2,B4,B7} W29 = {B2,B5,B6} W30 = {B2,B5,B7} 

BB26 = 385 BB27 = 328 BB28 = 335 BB29 = 364 BB30  = 371 

W31 = {B2,B6,B7} W32={B3,B4,B5} W33={B3,B4,B6} W34 ={B3,B4,B7} W35={B3, B5,B6} 

BB31 = 314 BB32 = 358 BB33 = 184 BB34 = 208 BB35 = 295 

W36={B3, B5,B7} W37={B3, B6,B7} W38={B4,B5,B6} W39={B4,B5,B7} W40={B4, B6,B7} 

BB36 = 337 BB37 = 141 BB38 = 327 BB39 = 360 BB40 = 127 

W41={B5, B6,B7} W42 = {B2,B3,B4,B5} W43 = {B2,B3,B4,B6} W44 = {B2,B3,B4,B7} W45 = {B2,B3,B5,B6} 

BB41 = 338 BB42 = 423 BB43 = 366 BB44 = 373 BB45 = 402 

W46 = {B2,B3,B5,B7} W47 = {B2,B3,B6,B7} W48 = {B2,B4,B5,B6} W49 = {B2,B4,B5,B7} W50 = {B2,B4,B6,B7} 

BB46 = 409 BB47 = 352 BB48 = 386 BB49 = 393 BB50 = 336 

W51 = {B2,B5,B6,B7} W52 = {B3,B4,B5,B6} W53= {B3,B4,B5,B7} W54 = {B3,B4,B6,B7} W55 = {B3,B5,B6,B7} 

BB51 = 372 BB52 = 359 BB53 = 384 BB54 = 209 BB55 = 338 

W56 = {B4,B5,B6,B7} W57 = {B2,B3,B4,B5,B6} W58 = {B2,B3,B4,B5,B7} W59 = {B2,B3,B4,B6,B7} W60 = {B2,B3,B5,B6,B7} 

BB56 = 361 BB57 = 424 BB58= 431 BB59 = 374 BB60 = 410 

W61 = {B2,B4,B5,B6,B7} W62 = {B3,B4,B5,B6,B7} W63 = { B2,B3,B4,B5,B6,B7} 
  BB61 = 394 BB62 = 385 BB63 = 432 
   

 

Table 7. Buffer cluster sets and buffer storage savings with T2 at 2 and 3 seconds 

Cluster Set 

Size  
(No. Entities) 

T2 = 2 sec 

Size  
(No. Entities) 

T2 = 3 sec 

Size  
(m2) 

T2 = 2 sec 

Size  
(m2) 

T2 = 3 sec 

Buffer Storage 
Space Savings 
(m2) T2 = 2 sec 

Buffer Storage 
Space Savings 
(m2)  T2 = 3 sec 

Space 
Savings % 
T2 = 2 sec 

Space 
Savings % 
T2 = 3 sec 

{B2},{B3},{B4},{B5},{B6},{B7}* 966 928 4.83 4.64    
 

 

{B2,B3,B4,B5,B6,B7}** 432 432 2.16 2.16 2.67 2.48 55.3% 53.5% 

{B2,B4, B5,B6,B7} , {B3} 590 509 2.95 2.55 1.88 2.10 38.9% 45.2% 

{B2,B5,B6,B7} , {B3 ,B4} 612 555 3.06 2.78 1.77 1.87 36.7% 40.2% 

{B3,B5,B6,B7} , {B2,B4} 615 665 3.08 3.33 1.76 1.32 36.3% 28.3% 

{B3,B4,B6,B7} , {B2,B5} 586 572 2.93 2.86 1.90 1.78 39.3% 38.4% 

{B2,B4,B5,B6}, {B3,B7} 573 526 2.87 2.63 1.97 2.01 40.7% 43.3% 

{B2,B4,B6,B7}, {B3,B5} 606 630 3.03 3.15 1.80 1.49 37.3% 32.1% 

{B3,B5,B7} , {B2,B4,B6} 615 665 3.08 3.33 1.76 1.32 36.3% 28.3% 

{B3,B5,B7} , {B6},{B2,B4} 615 665 3.08 3.33 1.76 1.32 36.3% 28.3% 

{B3,B4,B7} , {B2, B5, B6} 586 572 2.93 2.86 1.90 1.78 39.3% 38.4% 

{B3,B4,B7} , {B6},{B2, B5} 586 572 2.93 2.86 1.90 1.78 39.3% 38.4% 

{B3,B4,B6} , {B2, B5, B7} 612 555 3.06 2.78 1.77 1.87 36.6% 40.2% 

{B2,B5,B7} , {B6},{B3, B4} 612 555 3.06 2.78 1.77 1.87 36.6% 40.2% 

{B2,B4,B5} , {B6},{B3, B7} 573 526 2.87 2.63 1.97 2.01 40.7% 43.3% 

 

5.2.2 Computational savings for buffer cluster sizing 

Table 8 shows that for this case study, we identified 25 critical time steps to measure the 

buffer size, resulting in 25 calculations.  For Buffer B6, because MTi-1 > MTi, no time interval to 
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detect the maximum buffer size is required because buffer size required is always 1 (as 

discussed in Corollary 2, this is a transport buffer). 

Table 9 shows the average savings in time steps processed and average solution time 

savings benefits based on number of buffers to cluster in the sequential line.  We start with 6 

buffers similar to the industry example and double the production line size to 12 buffers and 24 

buffers respectively.  We also vary the K1 or production demand (from 100 to 300) such that it 

would cover a production shift interval spread of 8 to 12 hours. 

Table 8. Number of time steps for required buffer size computations 
Element Bi B2 B3 B4 B5 B6 B7 

        458 917 1831 2292 0 6434 

       459 918 1836 2307 0 6438 

                
Sum B2 – B7 is 25 

1 1 5 15 0 4 

Table 9. Calculation and computation time savings varying K1 
(A) (B) (C) (D) (E) (F) (G) 

No. 
Buffers 

 

Average 
Time 
Steps 

Average 
Solution Time 

36000 time 
steps (sec) 

Average 
Sum 

                
Time Steps 

Solution Time for 

                
Calculations (sec) 

Savings in time 
steps processed 

((B)-(D))/(B) 
(%) 

Savings in Solution 
Time 

((C)-(E))/(C) 
(%) 

6 36000 137 422 19 99% 86% 

12 36000 227 921 25 97% 89% 

24 36000 466 2355 33 93% 93% 
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6. CONCLUSIONS AND FUTURE WORK 

The main contributions of the research are: 

1. Closed Form, exact method, time-dependent models were derived in Chapter 3 for 

extracting state space parameters for an N-Server, N+1-Buffer sequential line with 

accurate results.  State space parameters include the number of arrivals and departures 

at any buffer or server for any given time of interest and the maximum number of entities 

a buffer  will experience when servers have capacity of unity and buffers have unlimited 

capacity. When a queue has its capacity reduced, the model determined the blocking 

time and transition times for any queue and server in the serial line.  An algorithm is also 

derived for determining which queues and which servers are impacted by the reduced 

capacity queue and the number of entities in any queue or server at time of interest t. 

The algorithm provided the rules for determining impacted arrivals and departures for Bi 

and Si and the corresponding equations to use. 

2. We used the time dependent model of the sequential line described in Chapter 3 and 

applied them to a different model, a buffer cluster as shown in Chapter 4. We derived an 

optimization framework that enabled a buffer clustering policy and provides output of the 

required buffer sizing for that policy.  The result reduces the buffers storage space and 

thus the production line footprint when implemented, while ensuring no bottlenecks. We 

also reduced the buffer and time search space significantly reducing the number of 

computations.  We demonstrated in the case study how the models derived can be used 

to conduct sensitivity analysis of the buffer cluster size by varying parameters such as 

process time or production demand.  Lastly, we showed how the buffer clustering policy 

can be used in a facility layout tool where a feasible layout concept is generated. 
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Our results suggest that time-dependent exact methods can be derived and applied with 

accurate results.  These methods were applied to the industry examples for both a distribution 

center where distribution line consisted of 9 processes and manufacturing center where 

production line consisted of 7 processes.  For the distribution center we validated and aided in 

key problem areas identified by the distribution center team:  (1) the maximum buffer size 

allowed such that no buffer experiences block ng dur ng a sh f  ( )  he sh f  where a buffer’s 

capacity should change to meet the production demand changes (3) the number of units 

processed by a bottleneck station when time of blocking occurs (4) the buffer transition and 

block time when a buffer size is reduced (5) the reaction time to route a resource (operator or 

workstation) to a bottleneck process to prevent impact to other processes (6) the time a failed 

machine must recover by as not to impact the production line or the time interval which to route 

a resource (operator or workstation) to a failed process (7) the maximum demand that the serial 

line can support given the limited shift time and buffer sizes (8) the ability to predict production 

line behavior with varying process times. For the manufacturing center, we developed and 

applied a buffer clustering model reducing buffer storage space. The models are applied to 

these areas in Chapter 5. 

Results such as those presented in this paper enable one to extract the parametric state 

space of a system at a given time without any significant computational efforts and as an 

alternative to running a full simulation.  We now discuss the benefits of these models.  From the 

case study above, the results of this research enable us to identify sensitivity of processes 

(servers) to human or machine failure rates and impact based on the duration of the failure.  We 

are able to determine by what time a workstation must recover without impacting the remaining 

workstations.  Another benefit is that given the knowledge of timing of events across the entire 

system, allows one to enable control policies minimizing technology investments.  For example, 

knowledge of the entire state space at a given time means that technologies such as sensors 

and wireless communications do not need to reside at every server or queue.  In manufacturing 
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and distribution centers today, workstations, operators and product entities have wireless 

communication devices that report sensing data, radio frequency identification or bar code 

information up to a central database.  Deploying these devices across all production elements 

such as buffers and workstations in addition to sending data at a high frequency rate leads to 

high fixed and maintenance costs for investment in communication devices and large database 

storage.  A parametric state space allows for a minimum set of devices and monitoring or 

reporting data for critical events as opposed to every event.   

Our results suggest that parametric time-dependent exact methods can be derived and 

applied with accurate results.  We derived and demonstrated usage of a time based parametric 

model for N+1- Queue, N-Server sequential line to assist production environments in sizing 

buffers, in particular, buffer clusters appropriately when alternate production line configurations 

are desired.  We derived an optimization framework that enabled a clustering policy and 

provides output of the required buffer sizing for that policy.  The result reduces production line 

footprint when implemented, thus minimizing the facility space utilized while ensuring no 

bottlenecks.  We also reduced the buffer and time search space significantly reducing the 

number of computations. 

Related future studies relax assumptions of the models in this paper and also expand 

configurations.  In particular, studies that relax the capacity constraints and reliability constraints 

of the servers would provide added value to the sequential line and buffer clustering models.  

The ability to extract time dependent state space models is a rich area for Operations Research 

with several applications in industry. 
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