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SUMMARY 

This thesis describes the development of palladium-catalyzed regiodivergent dimerization 

reaction of terminal alkynes and highly efficient [4+2] benzannulation reaction of enynes with diynes, as 

well as application of the latter for the synthesis of fluorine-containing aromatic compounds. 

In the first part of the thesis, experimental and theoretical investigation of the palladium-catalyzed 

dimerization of terminal alkynes is presented. Chapter 1.1 summarizes advances in transition metal-

catalyzed approaches toward hydroalkynylation reaction providing an overview of the existing strategies 

for regio- and stereoselectivity control of this process. Specific attention is given to palladium-catalyzed 

methodologies, including discussion of various catalytic systems, their scope and limitations, reaction 

mechanisms, as well as synthetic applications. Chapter 1.2 describes the development of regiodivergent 

dimerization of alkynes. It is shown that employment of N-heterocyclic carbene-based palladium catalyst 

in the presence of phosphine ligand allows for highly regio- and stereoselective head-to-head 

dimerization reaction. Alternatively, an addition of carboxylate anion to the reaction mixture triggers a 

selective head-to-tail coupling. The origins of this regioselectivity switch, which were revealed by the 

computational studies, are also discussed. The experimental details for the Pd-catalyzed dimerization 

reaction, described in Chapter 1.2, are presented in Chapter 1.3. 

The second part of the thesis is devoted to the development of highly efficient catalytic system for 

the palladium-catalyzed [4+2] benzannulation of enynes with diynes. Accordingly, thermal and transition 

metal-catalyzed strategies for [4+2] benzannulation of enynes with various enynophiles are summarized 

in Chapter 2.1. It includes detailed discussion of palladium-catalyzed benzannulation reaction, which is 

the most explored transformation of this type. The development of a highly efficient catalytic system for 

this process is presented in Chapter 2.2. It is shown that employment of N-heterocyclic carbene-based 

palladium precatalyst allowed to achieve turnover numbers of the catalyst up to 1800. The presented 

method is proved to be general across a wide range of enynes and diynes. Additionally, developed 

catalytic system also expanded the scope of the [4+2] homo-benzannulation reaction. The experimental 
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details for the Pd-catalyzed benzannulation reaction, described in Chapter 2.2, are presented in Chapter 

2.3. 

Part three of the thesis describes the development of an efficient method toward fluorinated and 

perfluoroalkylated densely substituted benzene derivatives. In Chapter 3.1 modern methods for the 

synthesis of aryl fluorides via electrophilic and nucleophilic fluorination of functionalized arenes are 

summarized. Additionally, existing annulative approaches for the synthesis of these valuable molecules 

from fluoro-containing precursors are highlighted. Chapter 3.2 discribes the synthesis of fluorinated 

benzenes from easily available acyclic precursors via the chemo- and regioselective Pd-catalyzed [4+2] 

cross-benzannulation reaction. The described method also provides an efficient access for 

perfluoroalkylated analogs. The synthetic utility of the obtained products has been also demonstrated by 

efficient synthesis of various aromatic and heteroaromatic compounds. Chapter 3.3 provides experimental 

details for the synthesis of fluorine-containing arenes via benzannulation reaction, as well as their further 

transformations. 
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PART ONE 

DEVELOPMENT OF REGIODIVERGENT PALLADIUM-CATALYZED DIMERIZATION OF 

TERMINAL ALKYNES 

1.1. INTRODUCTION 

Dimerization of alkynes is one of the most straightforward and atom-economical methods for 

synthesis of conjugated enynes, important synthetic intermediates1 and key structural units found in a 

variety of bioactive molecules,2 as well as polymeric and optical materials.3 A number of transition metals 

and main group elements have shown catalytic activity in this transformation.4 The main challenge of 

alkyne dimerization is the control of regio- and sometimes stereoselectivity due to the competing head-to-

tail (ht) and head-to-head (hh) reaction modes leading to the formation of gem-1,3-disubstituted (1-02), 

1,4-disubsituted (E)-(1-03) or (Z)-(1-04) enynes (Scheme 1.1). Moreover, formation of side products, 

such as cumulenes 1-09, linear and branched trimers 1-10 – 1-12, higher oligomers and polymers 1-13, as 

well as aromatized trimers 1-14 and 1-15, also compromise selectivity of the dimerization reaction. 

 

Scheme 1.1. Dimerization of Terminal Alkynes for the Synthesis of 1,3-Enynes. 
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Nevertheless, highly efficient and general methods for dimerization of alkynes to form single 

enyne products were developed by using appropriate metals and by careful tuning of the ligands at the 

metal center.4 Commonly accepted reaction pathways start with the formation of metal acetylide 1-05 

followed by the migratory insertion of the second alkyne molecule to form the dimeric product. Both 

carbometallation, alkyne insertion into metal–carbon bond (path A), and hydrometallation, alkyne 

insertion into metal–hydrogen bond (path B), are equally plausible for the head-to-head or the head-to-

tail dimerization reactions. Alternatively, dimerization can proceed via formation of metal vinylidene 

intermediate 1-08 followed by insertion of the alkynyl moiety (path C). In the following section advances 

toward selective transition metal-catalyzed dimerization of alkynes are summarized with the emphases 

placed on mechanistic proposals and their investigations. Additionally, palladium-catalyzed homo- and 

cross-dimerization reactions are discussed in greater details, including the scope, mechanistic rationales 

and synthetic applications. 

1.1.1. Dimerization of Alkynes Catalyzed by Early Transition Metals 

A variety of rare-earth metals complexes, of scandium,5 yttrium,6,7,8,9,10,11,12 lanthanum,6b,7,12b 

cerium,6b neodymium,7 samarium,7 lutetium,11 thorium, 13,14 and uranium13,15 catalysts, were studied in 

dimerization and oligomerization reactions of terminal alkynes (Scheme 1.2). Overall, most of them 

efficiently catalyze dimerization of alkynes with different degrees of selectivity, which strongly depend 

on the nature of catalyst and/or alkyne. To exemplify this dependence, comparison of selectivities in 

dimerization of phenylacetylene (1-01a) in the presence of various lanthanide and actinide complexes is 

given in Table 1.1. Thus, treatment of phenylacetylene with silylamides of Y, La, Nd, or Sm led to the 

full conversion of the substrate, yet the formation of only small amounts of enyne products 1-02a, 1-03a, 

and 1-04a was observed (entries 1-4).7 However, in the presence of anilines, for instance, 

para-chloroaniline, selectivity of the dimerization reaction catalyzed by yttrium silylamide 1-16 is 

dramatically improved as (Z)-1,4-diphenylenyne was formed as a sole product in 90% yield (entry 5).8 
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Scheme 1.2. Complexes of Scandium, Yttrium, Lanthanides and Actinides Used in Dimerization of 
Terminal Alkynes. 
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Table 1.1. Dimerization of Phenylacetylene Catalyzed by Lanthanide and Actinide Complexes. 

 

Entry Catalyst Distribution of products Yield, % Ref. 

1-02a 1-03a 1-04a other 
products 

 

1 1-16 23 0.5 0.5 76 – 7 

2 1-17 7 4 8 81 – 7 

3 1-18 14 2 2 82 – 7 

4 1-19 17 13 3 67 – 7 

5 1-16/4-Cl-C6H4NH2 0 0 100 0 90 8a 

6 1-21 89 11 0 0 – 6b 

7 1-22 0 86 0 14 – 6b 

8 1-23 0 82 0 18 – 6b 

9 1-25 6 0 89 5 – 11 

10 1-26 0 0 92 8 – 11 

11 1-29 0 0 100 0 99 11 

12 1-31 100 0 0 0 – 10 

13 1-32/[PhNHMe2][B(C6F5)4] 0 0 100 0  12 

14 1-33 0 0 100 0  12b 

15 1-34 0 0 100 0  12b 

16 1-35 28 0 0 72 – 13a 

17 1-36 30 0 0 70 – 13a 

18 1-35/t-BuNH2 0 100 0 0 – 13d 

19 1-37 32 0 0 68 – 15 

Ph
[M] cat.

Ph

Ph

Ph Ph

+ +Ph

Ph

+ trimers
&
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Due to their high activity, the regioselectivity of the dimerization reaction catalyzed by actinide 

complexes 1-35 – 1-38 is often compromised by a facile formation of trimers, tetramers and other 

oligomeric by-products (entries 16-19).13,14 Nevertheless, a selective head-to-head dimerization reaction 

to afford single (E)-enyne 1-03 was achieved in the presence of thorium matallocene 1-35 and 

tert-butylamine (entry 18).13d However, high selectivity in head-to-head reaction is specific for 

phenylacetylene, as predominant head-to-tail reaction mode was observed for aliphatic substrates.13d 

The mechanism of dimerization and oligomerization of terminal alkynes by lanthanide5-12 and 

actinide13-15 complexes was studied in detail, and various catalytically relevant intermediates were 

isolated and characterized. The generally accepted mechanistic rationale for dimerization reaction with 

lanthanide-based catalysts is outlined in Scheme 1.3A. 

 

Scheme 1.3. Proposed Mechanism for the Dimerization of Terminal Alkynes Catalyzed by Lanthanides. 

The reaction is initiated by σ-bond metathesis between alkyl precatalyst 1-39 and alkyne 1-01 to 

form the alkynyl lanthanide species 1-40. Coordination of the second alkyne moiety followed by the 

migratory insertion in the head-to-head (1-41 → 1-42) or the head-to-tail (1-41 → 1-43) manner provides 

corresponding vinyl metal intermediates. Regio- and stereoselectivity of this step highly depends on the 

metal, ligands, and alkyne structure. A subsequent σ-bond metathesis with starting alkyne releases the 

product and returns an active lanthanide acetylide 1-40 to the catalytic cycle. On the other hand, 
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bimetallic catalytic intermediates were proposed for the Z-selective head-to-head dimerization, catalyzed 

by lutetium complexes (Scheme 1.3B).11b Accordingly, rapid formation of alkynylide-bridged dimeric 

intermediate 1-44 occurs upon initial σ-bond metathesis. Coordination of the second alkyne moiety to the 

metal center leads to the cleavage of one of the acetylide bridges. As opposed to a monometallic pathway, 

the C–C bond formation occurs between alkynyl units bonded to different metal centers via a nucleophilic 

attack of acetylide on the coordinated alkyne in intermediate 1-45. Presumably, this step is responsible for 

the high regio- and stereoselectivity of the process. The catalytic cycle is then completed by the σ-bond 

metathesis with starting alkyne. Notably, isolated compound 1-44 (Ln = Lu) demonstrated similar 

catalytic activity in dimerization reaction, which supports bimetallic nature of the reactive intermediates. 

Dimerization of alkynes catalyzed by actinides follows mechanistic pathway similar to that of 

lanthanides (see Scheme 1.3A). However, in this case, two coordination sites of the metal center allow 

binding of two alkyne molecules with the formation of intermediate 1-48 (Scheme 1.4). Therefore, 

undesired reductive eliminations from 1-48 or 1-49 might lead to the formation of oligomeric side 

products, which account for low selectivity of this transformation. Improved selectivity in the presence on 

amine additives can be explained by the formation of monoalkynyl amido intermediate 1-50. 

 

Scheme 1.4. Proposed Mechanism for the Dimerization and Oligomerization of Terminal Alkynes 
Catalyzed by Actinides. 

Metallocenes of titanium,16,17 zirconium,18 and hafnium19 exhibit strong preference for head-to-

head dimerization reaction. It was first demonstrated by highly selective alkyne dimerization reaction 

catalyzed by Cp*2TiCl2 (1-51)/i-PrMgBr system.16 Later, similar results were achieved employing 

titanocene 1-52, which did not require an additional reductant (Scheme 1.5).17a 
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Scheme 1.5. Head-to-tail Dimerization of Terminal Alkynes Catalyzed by Titanocenes. 

Mechanistically, this transformation is analogous to the previously described lanthanide-catalyzed 

reactions (see Scheme 1.3A). Catalytically relevant intermediate 1-56 is formed from titanocene 

dichloride 1-51 via sequence of reduction, hydrotitanation of an alkyne molecule, and σ-bond metathesis 

(Scheme 1.6).16 In case of employment of 1-52 as a catalyst, the reaction is initiated by ligand exchange 

with terminal alkyne, followed by the formation of acetylenide 1-56.17a 

 

Scheme 1.6. Reaction Initiation in Dimerization of Terminal Alkynes Catalyzed by Titanocenes. 
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(Scheme 1.7).18 However, selectivity of this transformation varies depending on starting alkyne. Thus, 

sterically hindered substrates provide head-to-tail dimers with high selectivity whereas more reactive 
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catalytic activity to that of precatalyst 1-58. 
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Scheme 1.7. Dimerization of Terminal Alkynes Catalyzed by Cationic Zirconocenes. 

Unlike other zirconium catalysts, cationic bis(ureate)dibenzyl zirconium complex 1-60 in the 

presence of aniline co-catalyst promotes selective head-to-head dimerization with the exclusive formation 

of (Z)-enyne 1-04 (Scheme 1.8). 20 The reaction is efficient for a variety of aryl and alkenyl acetylenes. 

Similarly to the lanthanide-catalyzed Z-selective head-to-head dimerization reaction (see Scheme 1.3B), 

this transformation is believed to involve bimetallic intermediates. Accordingly, the reaction of 

precatalyst 1-60 with aniline gave dimeric bridged imido species 1-61, which was shown to catalyze rapid 

and selective dimerization of phenylacetylene. 

 

Scheme 1.8. Z-Selective Head-to-head Dimerization of Terminal Alkynes Catalyzed by Cationic 
Zirconium Complexes. 
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Scheme 1.9. Regioselective cross-Dimerization of Terminal Alkynes Catalyzed by Titanocenes (ratio of 
1-62 to other enyne products is shown in parentheses). 

1.1.2. Dimerization of Alkynes Catalyzed by Late Transition Metals 

A majority of late transition metals displayed catalytic activity in dimerization reaction of 

alkynes. Among them, reactions of Ru, Os, Rh, and Ir, were investigated the most. Thus, representative 

examples of selective dimerization reactions will be discussed below. 
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terminal alkynes. Consequently, several efficient and selective catalysts for the head-to-head dimerization 

leading to (Z)-24,25,26 or (E)-27,28,291,4-disubstituted enynes were developed (Schemes 1.10, 1.11).  

 

Scheme 1.10. Ruthenium Catalysts for Z-selective Head-to-head Dimerization of Terminal Alkynes. 
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Scheme 1.11. Ruthenium Catalysts for E-selective Head-to-head Dimerization of Terminal Alkynes. 

Tripodal phosphine ruthenium complexes 1-63 – 1-65 were shown to be excellent precatalysts for 

the head-to-head dimerization of acetylenes giving (Z)-enynes 1-04 selectively (Scheme 1.12).24 

 

Scheme 1.12. Z-selective Ruthenium-catalyzed Head-to-head Dimerization of Terminal Alkynes. 
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Scheme 1.13. Proposed Mechanism for Z-selective Ruthenium-catalyzed Head-to-head Dimerization of 
Terminal Alkynes. 

Other powerful ruthenium-based catalysts for the Z-selective head-to-head dimerization are 

thiolate-bridged diruthenium complexes, such as 1-67.25 Interestingly, this catalyst also promotes 

intramolecular cyclization of diynes to give endo-macrocyclic (Z)-enynes 1-84 with good efficiency 

(Scheme 1.14).25b From the mechanistic standpoint, dimerization reaction in the presence of 1-67 follows 

the same catalytic cycle as the dimerization catalyzed by monometallic ruthenium catalysts, which was 

supported by isolation of intermediate 1-85. 

 

Scheme 1.14. Macrocyclization of Aliphatic Diynes through Ruthenium-catalyzed Head-to-head 
Dimerization of Terminal Alkynes. 
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Scheme 1.15. E-Selective Ruthenium-catalyzed Head-to-head Dimerization of Terminal Alkynes. 

Based on this profound effect of acetate anion, an unusual mechanistic pathway was suggested 

(Scheme 1.16). First, in the presence of acetic acid dimeric ruthenium tetrachloride complex 1-71b (or 

1-71a) can be converted to the mononuclear species 1-86, which enters the catalytic cycle. Intramolecular 

proton transfer from alkyne to the acetate ligand substantially facilitates the formation of necessary 

ruthenium acetylide 1-88 from intermediate 1-87. Next, after coordination of second alkyne moiety, 

intermediate 1-89 tautomerizes into ruthenium vinylidene 1-90. Selectivity of this stereo-determining step 

is dictated by steric interactions of alkyne substituents with the π-ligand. Formed upon alkynyl-vinylidene 

coupling, enyne-containing ruthenium complex 1-91 liberates the product 1-03 by protonation with acetic 

acid in inter- or intramolecular manner. 

 

Scheme 1.16. Proposed Mechanism for E-selective Ruthenium-catalyzed Head-to-head Dimerization of 
Terminal Alkynes. 
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As opposed to the Ru-catalyzed head-to-head dimerization processes, which involve vinylidene 

intermediates 1-81 or 1-90, alternative head-to-tail reaction requires formation of vinyl-alkynyl ruthenium 

species and a subsequent reductive elimination. Head-to-tail dimerization was only observed for 

diruthenium µ-methylene complex 1-92 in the reaction with excess of phenylacetylene (Scheme 1.17).31 

 

Scheme 1.17. Ruthenium-catalyzed Head-to-tail Dimerization of Phenylacetylene. 

The first example of Rh-catalyzed dimerization of terminal alkynes was demonstrated by 

Wilkinson group in 1968.32 They found that tris(triphenylphosphine)rhodium chloride promotes homo-

coupling of substituted propargyl alcohols to form (E)-1,4-disubstituted enyne 1-03 (Scheme 1.18). Later 

reports further confirm high preference of Wilkinson's catalyst toward E-selective head-to-head 

dimerization reaction mode.33 

 

Scheme 1.18. Head-to-head Dimerization of 2-Methylbut-3-yn-2-ol Promoted by Wilkinson's Catalyst. 
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dimerization of alkynes catalyzed by Rh-complexes, possessing non-bridged PNP34a or various OCO34b 

pincer ligands, required longer reaction times and provided mixtures of products. 

 

Scheme 1.19. Head-to-head Dimerization of Terminal Alkynes Catalyzed by Pincer Rhodium Catalyst. 

It is generally accepted that Rh-catalyzed dimerization proceeds via oxidative addition of Rh to 

the C–H bond of terminal alkyne to form intermediate 1-99 (Scheme 1.20). 

 

Scheme 1.20. Proposed Mechanism for Rhodium-catalyzed Head-to-head Dimerization of Terminal 
Alkynes. 
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enyne product upon heating.35 Therefore, reductive elimination from intermediate 1-101 completes the 

catalytic cycle of Rh-catalyzed head-to-head dimerization of alkynes. 

An interesting stereoselectivity switch was observed in case of the Rh-catalyzed head-to-head 

dimerization in the presence of MeI under basic conditions.36 It was found that depending on the reaction 

media, the formation of either (E)-(1-03) or (Z)-1,4-enynes (1-04) can be achieved with good to high 

selectivity (Scheme 1.21). Thus, in aprotic solvent, such as THF, E-selective dimerization is predominant 

whereas MeOH facilitates Z-selective reaction. Based on the observed change of selectivity, two distinct 

mechanistic routes were proposed. 

 

Scheme 1.21. Stereodivergent Rhodium-catalyzed Head-to-head Dimerization of Terminal Alkynes. 
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metathesis with alkyne molecule and 1-107 or 1-109 furnishes (E)-enyne 1-03 or (Z)-isomer 1-04, 

respectively. 

Although formation of 1,3-disubstituted enyne 1-02 via Rh-catalyzed dimerization reaction was 

observed in several cases,33,35 a general and selective method for the head-to-tail reaction was developed 

only recently.37 Particularly, employment of NHC-based Rh-catalyst 1-110 in the presence of pyridine 

enabled high conversion of various aryl- or alkylalkynes into gem-enynes 1-02. Notably, addition of 

pyridine completely suppressed the [2+2+2] cycloaddition, which otherwise is a predominant reaction 

pathway (Scheme 1.22). 

 

Scheme 1.22. Rhodium-catalyzed Head-to-tail Dimerization of Terminal Alkynes (DFT calculations are 
performed at B3LYP/6-31G(d,p) level). 
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considered in this case. DFT calculations revealed that the former route is significantly favorable (12.6 

kcal/mol) over the latter path. Particularly, addition of alkyne into Rh–H bond requires 7.7 kcal/mol 

(1-113→1-114 via transition state 1-117), whereas energy barrier for analogous insertion into Rh–C is 

36.1 kcal/mol (1-115→1-116 via transition state 1-118). Noteworthy, in this particular system, energy 

gain of hydrorhodation in the head-to-tail over the head-to-head manner is about 2 kcal/mol (not 

shown).37a 

Similar preference of hydrometallation over carbometallation event was also found in Co-

catalyzed head-to-head dimerization.38, 39 Thus, hydride cobalt complex HCo(PMe3)4 was found to be 

suitable catalyst for dimerization of aryl- and heteroarylalkynes (Scheme 1.23). 

 

Scheme 1.23. Cobalt-catalyzed Head-to-head Dimerization of Terminal Alkynes (DFT calculations are 
performed at B3LYP/SVP level). 
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DFT calculations indicated that reaction route, which involves insertion of alkyne moiety into 

Co–H bond, is energetically favorable compared to the corresponding Co–C insertion, even though the 

former path requires additional isomerization of formed vinylalkynyl intermediate 1-126 to 1-121, 

necessary for a subsequent reductive elimination. 

Several examples of Ir-catalyzed dimerization reactions were reported.40 Among them, high 

selectivity toward the formation of (E)-1,4-disubstituted enynes 1-03 was achieved by employing 

structurally different catalysts, such as 1-130,40d 1-131,40e or 1-132,40f (Scheme 1.24). From mechanistic 

standpoint, in all cases oxidative addition/migratory insertion/reductive elimination sequence, analogous 

to that of Rh- and Co-catalyzed transformations, was proposed. 

 

Scheme 1.24. Efficient Iridium Catalysts for Head-to-head Dimerization of Terminal Alkynes. 
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intermediate 1-137 to form 1-138 via transition state 1-142 compared to that of transformation from 1-135 

to 1-136 via transition state 1-140 (17.9 kcal/mol). Notably energy difference for the corresponding 

migratory insertion event is much smaller (3.4 kcal/mol) favoring formation of 1-137 over 1-135. Overall, 

reductive elimination step serves as a thermodynamic sink, controlling regioselectivity of this 

transformation. 

 

Scheme 1.25. Regioselectivity-determining Reductive Elimination Proposed for Iridium Head-to-head 
Dimerization of Terminal Alkynes (DFT calculations are performed at PBE/STO-3G&311G(p)&SDD 
level). 
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form intermediate 1-144, which is then converted to gold acetylenide 1-145 with the assistance of base. 

Subsequent nucleophilic addition of acetylenide 1-145 to 1-144 leads to the formation of enynyl gold 

intermediate 1-146, which upon protiodeauration delivers the final product. 

 

Scheme 1.26. Gold-catalyzed Head-to-tail Dimerization of Terminal Alkynes. 
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and internal alkynes catalyzed by several transition metal complexes (Scheme 1.27). For example, 

stereodivergent dimerization catalyzed by iridium catalyst 1-147 afforded both stereoisomers of 

1-trimethylsilyl-4-alkylenynes, (Z)- (1-149) or (E)-1-150a, depending on the choice of a phosphine 

ligand.52  

 

Scheme 1.27. Hydroalkynylation of Alkynes with Silyl Alkynes Catalyzed by Late Transition Metals. 
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and stereoselectivity. Regioselectivity of the Ni-catalyzed transformation depends on alkyl substituent of 

the acceptor alkyne with the preference for the formation of α-styrenes 1-152 in cases of propargyl amine 

derivatives. Lastly, cobalt catalyst enables highly chemo- and stereoselective hydroalkynylation reaction 

to form 1-153.56 However, regioselectivity of this process strongly depends on substitution of the acceptor 

alkyne. 

Hydroalkynylation of internal alkynes with terminal alkynes other than silylacetylenes is rare 

(Scheme 1.28). Thus, selective cross-addition of arylalkynes with highly activated symmetrical 

ynedioates was achieved in the presence of Rh catalyst 1-155. 57  For the Ru-catalysis, selective 

hydroalkynylation was achieved only using sterically demanding donor alkynes 1-01.58 Notably, highly 

regioselective addition to unsymmetrically substituted alkynes can be achieved in case of substrates 

bearing an electron-withdrawing substituent. 

 

Scheme 1.28. Hydroalkynylation of Internal Alkynes Catalyzed by Late Transition Metals. 
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Scheme 1.29. Rhodium-catalyzed cross-Dimerization of Two Terminal Alkynes. 

1.1.3. Palladium-catalyzed Dimerization of Alkynes 

1.1.3.1. Palladium-catalyzed Head-to-tail Dimerization of Terminal Alkynes 

Arguably, the Pd-catalyzed dimerization reaction of alkynes is the most studied. Highly 

regioselective head-to-tail dimerization reaction of terminal alkynes was developed by Trost group in 

1987.60 Thus, in the presence of catalytic amounts of Pd(OAc)2 and electron-rich sterically hindered 

phosphine ligand TDMPP, terminal alkynes 1-01 dimerize to form 1,3-disubstituted enynes 1-02 (Scheme 

1.30). 

 

Scheme 1.30. Palladium-catalyzed Head-to-tail Dimerization of Terminal Alkynes. 
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Employment of both Pd(OAc)2 and TDMPP ligand 1-158 is crucial for high selectivity and 

efficiency of this transformation. This methodology proved to be general for a variety of aryl- (e.g. 1-01a) 

or alkylalkynes (1-01b), including sterically demanded alkynes (1-01c, 1-01d) and structurally complex 

substrates 1-01e or 1-01f. 

Subsequently, Pfaltz's group demonstrated that employment of phosphinooxazoline-based ligand 

1-159 allows dimerization of alkynes with catalyst loading as low as 0.04 mol % with no loss of 

efficiency or selectivity of the process (Scheme 1.31).61 

 

Scheme 1.31. Employment of Phosphinooxazoline-based Ligand 1-159 in the Palladium-catalyzed Head-
to-tail Dimerization of Terminal Alkynes. 

Additionally, intramolecular dimerization of alkynes was successful under these conditions61,62 

providing rapid access to macrocyclic enynes. Competing intermolecular dimerization and 

oligomerization processes were suppressed by slow addition of substrate 1-160 (Scheme 1.32). 

 

Scheme 1.32. Synthesis of Macrocyclic Enynes via Palladium-catalyzed Head-to-tail Dimerization of 
Terminal Alkynes. 
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the formation of alkenyl palladium 1-166, which upon protiodepalladation delivers the product 1-02 and 

returns Pd(OAc)2 to the catalytic cycle. Alternatively, intermediate 1-164 was proposed to be an active 

catalytic species (Scheme 1.33B). In this case, intermediate 1-166 is converted to the final product via 

oxidative addition of alkyne to form alkynylpalladium species 1-167, followed by a reductive elimination. 

Based on experimental observations, both of these mechanistic hypotheses are equally possible. 

 

Scheme 1.33. Plausible Mechanism for the Palladium-catalyzed Head-to-tail Dimerization of Terminal 
Alkynes Involving (A) Protiodepalladaion or (B) Reductive Elimination Pathways. 

Recently, a complementary approach for the head-to-tail dimerization of terminal alkynes was 

reported by Guo and Han (Scheme 1.34).63 Thus, Pd(0) catalyst in the presence of catalytic amount of 

diphenylphosphinic acid triggers homo-coupling of terminal alkynes 1-01 with the exclusive formation of 

1,3-enyne products 1-02. This method is proved to be general for a variety of alkyl- and aryl-substituted 

alkynes regardless of steric or electronic nature of the substrate. 
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Scheme 1.34. Head-to-tail Dimerization of Terminal Alkynes Catalyzed by Palladium/Brønsted Acid 
System. 

The mechanism of this transformation was investigated in a series of stoichiometric experiments 

(Scheme 1.35). Hence, treatment of terminal (1-01a) or internal (1-168) alkynes with Pd(PEt3)4 in the 

presence of diphenylphosphinic acid resulted in the formation of vinylpalladium complexes 1-169 and 

1-170 with high regio- and stereoselectivity. The mechanism of this hydropalladation process is not well 

understood. 64  Subsequent reaction of these complexes with phenylacetylene afforded alkynylvinyl 

palladium species 1-171 and 1-172 presumably via a ligand exchange. Notably, alkynyl vinyl palladium 

complex 1-171 can be obtained directly in the reaction of phenylacetylene 1-01a with Pd(PEt3)4 in the 

presence of catalytic amount of phosphinic acid. 

 

Scheme 1.35. Brønsted Acid-catalyzed Synthesis of Alkynylvinyl Palladium Complexes. 
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starts with the coordination of the alkyne to the metal center to afford intermediate 1-173, which in the 

presence of phosphinic acid undergoes hydropalladation leading to vinyl palladium species 1-174, which 

is similar to 1-169. Subsequent ligand exchange with the second alkyne moiety delivers alkynylvinyl 

palladium intermediate 1-175, which upon reductive elimination delivers 1,3-disubstituted enyne 1-02. 

Initial hydropalladation (1-173 → 1-174) event represents regio- and stereodetermining step. Notably, this 

mechanistic pathway is distinct from mechanistic route, previously proposed by Trost, in which regio- 

and stereoselectivity is determined during the carbopalladation step (see Scheme 1.33). 

 

Scheme 1.36. Proposed Mechanism for Head-to-tail Dimerization of Terminal Alkynes Catalyzed by 
Palladium and Brønsted Acid. 
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Scheme 1.37. Palladium-catalyzed Head-to-head Dimerization of Arylalkynes. 

However, unusual reactivity pattern was observed for head-to-head dimerization of ortho-

substituted arylalkynes (Table 1.2). For example, ortho-fluorophenylacetylene (1-01p) smoothly 
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size and electronic nature completely suppressed the dimerization reaction (entries 3-5). Furthermore, 

subjection of alkyl-substituted substrates to the reaction conditions resulted in complete decomposition of 

starting materials (not shown). Therefore, it is concluded that at least one ortho-H-atom is required for 

selective head-to-head dimerization reaction under these reaction conditions. 

Based on the observations discussed above, the following mechanistic rationale was proposed 

(Scheme 1.38). Accordingly, with the aid of TDMPP and diethylamine, [(π-allyl)PdCl]2 is first converted 

to the active catalytic species 1-176, which upon oxidative addition of the alkyne forms alkynyl palladium 

intermediate 1-177. Next, coordination of the second alkyne molecule leads to the formation of 

intermediate 1-178. The regio- and steriodetermining step involves carbopalladation of 1-178 en route to 

1-180, which proceeds through a key transition state 1-179. It is believed, that agostic interactions 

between metal center and ortho-C–H bond of arylalkyne stabilize this transitions state, thus, decreasing 

the energy barrier of this transformation. This coordination also dictates orientation of the second alkyne 

moiety, providing high regio- and stereoselectivity of head-to-head dimerization. 

 

Scheme 1.38. Proposed Mechanism for E-selective Palladium-catalyzed Head-to-head Dimerization of 
Terminal Alkynes. 

O
Me

OMe
P
Ar2

Pd

Ph

Ph Pd H

PAr3

Ph Pd H

PAr3

Ph
Ph

Pd
HAr3P H

H
Ph

Ph Pd
PAr3H 1-176

1-177

1-1781-179

1-180

HNEt2

NEt2

[(!-allyl)PdCl]2

1-01
1-03

‡

1-01
+

1-158

1-01



 30 

Independently, Nolan group reported that an employment of N-heterocyclic carbene (NHC)-based 

palladium catalysts allows for efficient dimerization reaction favoring head-to-head process (Table 1.3).66  

Table 1.3. Dimerization of Terminal Alkynes Catalyzed by Pd(OAc)2/NHC/Base. 

 

Entry  R Base 1-02 : 1-03 : 1-04 Combined yield, % 

1 Ph Cs2CO3 0 : 97 : 3 98 

2 Ph K2CO3 26 : 69 : 5 100 

3 n-Bu Cs2CO3 6 : 91 : 3 97 

4 n-Bu K2CO3 91 : 9 : 0 89 

5 t-Bu Cs2CO3 0 : 99 : 1 90 

6 t-Bu K2CO3 52 : 44 : 4 48 

7 Me2NCH2- Cs2CO3 7 : 92 : 1 90 

8 Me2NCH2- K2CO3 76 : 24 : 0 92 

Although this reaction generally gives high yields of the dimeric products, regio- and 

stereoselectivity of this process depends on the substrate, as well as on inorganic base used. For instance, 

dimerization of phenyl acetylene in the presence of Cs2CO3 proceeded regioselectively to afford a mixture 

of 1,4-enynes 1-03 and 1-04 strongly favoring (E)-isomer 1-03 (entry 1). However, employment of 

K2CO3 scrambles both regio- and stereoselectivity of dimerization (entry 2). Interestingly, in case of 

linear alkyl-substituted alkynes almost complete switch of regioselectivity was observed (entries 3, 4). 

Overall, despite of high selectivity achieved for particular substrates (entry 5), this method lacks 

generality and cannot be broadly applied for a selective head-to-head dimerization of alkynes. No 

mechanistic hypothesis was offered to explain selectivity dependence on the nature of inorganic base. 
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Very recently, highly efficient and selective catalytic system for the head-to-head dimerization of 

arylalkynes based on defined NHC-palladium catalyst was developed (Scheme 1.39).67 Thus, arylalkynes 

were dimerized in the presence of only 0.25 mol % of SIPrPd(cinn)Cl catalyst delivering 

(E)-1,4-disubstituted enynes 1-03 in high to excellent yields. The reaction is general for arylalkynes of 

different electronic nature and substitution pattern, including ortho-substituted substrates (1-03n, 1-03w), 

as well as heteroarenes (1-03x). However, this catalytic system is inefficient for dimerizing aliphatic 

alkynes. 

 

Scheme 1.39. Head-to-head Dimerization of Arylalkynes. 
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Scheme 1.40. Palladium-catalyzed cross-Dimerization of Alkynes. 

Electron-withdrawing nature of acceptor alkyne is responsible for excellent regioselectivity of 

cross-addition reaction. Moreover, this reaction proceeds with high stereoselectivity leading to the 

formation of a sole product 1-182. To date, this is the only hydroalkynylation methodology, which is 

general with respect to various donor alkynes. 

Analogously, the cross-addition of terminal alkynes to internal alkynes can be achieved using 

Pd(0)/Brønsted acid catalytic system (Scheme 1.41). Notably, acceptor alkynes are more reactive 

coupling partners in hydroalkynylation reaction compared to terminal alkynes in homo-dimerization, 

since cross-dimerization reaction proceeds at lower temperature with equally good efficiency. 

 

Scheme 1.41. Cross-Dimerization of Alkynes Catalyzed by Palladium and Brønsted Acid. 

Employment of Brønsted acid co-catalyst strategy also allowed for the development of efficient 

hydroalkynylation reaction of ynamides (Scheme 1.42).68 The scope of terminal alkynes was found to be 

quite broad as various aryl-, alkyl-, alkenyl- or silyl-substituted enynes were obtained in good yields with 
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high stereoselectivities. With regard to acceptor alkynes, only aryl ynamides were efficient in this 

transformation. 

 

Scheme 1.42. Cross-Dimerization of Terminal Alkynes with Ynamides Promoted by Palladium/Brønsted 
Acid Cooperative Catalysis. 

Similarly to homo-dimerization reaction, this transformation proceeds through initial 

hydropalladation of ynamide (1-185 → 1-186, Scheme 1.43). However, prior to ligand exchange 

(1-188 → 1-189) and subsequent reductive elimination (1-189 → 1-184), the initially formed vinyl 

palladium intermediate (Z)-1-186 undergoes a Brønsted acid-catalyzed isomerization to form more 

favorable (E)-1-188 through intermediacy of 1-187. High stereoselectivity in this case is attributed to the 

streric interactions of alkyne substituents R2 and NR2 of (Z)-1-186, which are reduced in its (E)-analog 

1-188. Notably, this transformation represents a rare example of a formal trans-hydroalkynylation 

reaction of internal alkynes. 

 

Scheme 1.43. Proposed Mechanism for cross-Dimerization of Terminal Alkynes with Ynamides 
Promoted by Palladium/Brønsted Acid Cooperative Catalysis. 
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Selective cross-addition of two unactivated alkynes was achieved by coupling of TIPS-acetylene 

with various terminal and internal alkynes in the presence of a binuclear palladium catalyst 1-192 

(Scheme 1.44).69 In this case, high chemoselectivity was attributed to the low reactivity of TIPS-acetylene 

toward homo-coupling reaction. Noteworthy, formation of TIPS-acetylene homodimers was practically 

suppressed (<5%) whereas no more than 20% of homodimers of the second acetylene was formed. The 

reaction is sensitive to sterics and is not applicable to couplings with activated terminal alkynes, such as 

arylacetylenes, due to their predominant dimerization. 

 

Scheme 1.44. Selective cross-Addition of TIPS-acetylene to the Unactivated Alkynes Catalyzed by 
Binuclear Palladium Complex. 

Interestingly, reaction of TIPS acetylene with an activated alkyne under these conditions suffers 

from poor regio- and stereoselectivity (Scheme 1.45), which is in sharp contrast with the selective Trost 

hydroalkynylation reaction. This result indicates that these two Pd-catalyzed cross-addition processes 

most likely proceed via different mechanistic routes. 

 

Scheme 1.45. cross-Addition of TIPS-acetylene to the Activated Alkyne Catalyzed by Binuclear 
Palladium Complex. 
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1.1.3.4. Synthetic Application of Palladium-catalyzed Dimerization Reactions of Alkynes 

Due to high efficiency, broad functional group compatibility, and operational simplicity, both Pd-

catalyzed homo- and cross-dimerization reactions found broad applications in various cascade or 

sequential transformations. 

One-pot palladium-catalyzed dimerization/[4+2] benzannulation sequence was developed for the 

synthesis of polysubstituted aromatic compounds (Scheme 1.46). 70  Notably, homo-dimerization of 

alkynes occurred in the presence of Pd(0) catalyst as opposed to that observed in the presence of 

Pd(OAc)2/PR3 catalytic conditions. High regioselectivity of both processes secured the formation of a 

single regioisomer of the desired aromatic product 1-193 with good to high efficiency. 

 

Scheme 1.46. Synthesis of Multisubstituted Benzenes via One-pot Palladium-catalyzed 
Dimerization/[4+2] Benzannulation Sequence. 

Analogous sequence, which employs cross-dimerization of terminal alkynes with internal 

acceptor alkynes followed by benzannulation reaction with diyne, formally represents highly 

regioselective [2+2+2] cycloaddition of three different alkynes (Scheme 1.47). Thus, pentasubstituted 

benzenes 1-194 were obtained via a one-pot two steps sequence from linear starting materials in good 

yields. 
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Scheme 1.47. Synthesis of Multisubstituted Benzenes via Palladium-catalyzed cross-Dimerization/[4+2] 
Benzannuation Sequence. 

Cascade trimerization of arylalkynes to form alkynylbutadienes 1-12 was achieved in the 

presence of Pd and Cu catalysts (Scheme 1.48).71 This transformation is believed to proceed through 

initial Pd-catalyzed dimerization to form intermediate 1-195. Subsequent alkynylation with cooper 

acetylide produces butadienyl palladium species 1-196, which upon protiodepalladation affords product 

1-12. 

 

Scheme 1.48. Cascade Trimerization of Alkynes via Dimerization/Alkynylation Sequence. 
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The selectivity of this transformation strongly depends on the reaction media and nature of the substrates. 

For instance, trimerization reaction of electron-rich methoxy-substituted arylalkyne toward 1-12e 

afforded a mixture of double bond isomers with irreproducible ratio, whereas reaction of electron-

deficient substrates produced single (Z)-isomers. Interestingly, the efficiency of cascade transformation is 

considerably higher compared to the analogous stepwise process presumably due to the low stability of 

1,3-diarylenynes. 

Head-to-head dimerization of alkynes catalyzed by NHC-based Pd catalyst was successfully 

applied for the synthesis of π-conjugated polymeric materials (Scheme 1.49).72 Thus, using polyaddition 

strategy poly(fluoreneethynylenevinylene) 1-198 was obtained from 2,7-diethynyl-9,9-dioctylfluorene 

1-197 with high efficiency. Notably, the geometry of vinylene unit of obtained polymer is translated from 

prototype dimerization of monoalkynyl substrate. 

 

Scheme 1.49. Synthesis of Poly(fluoreneethynylenevinylene) 1-198 via Palladium-catalyzed Head-to-
head Dimerization of Alkynes. 

Trost group developed an array of methods toward heterocyclic compound via cross-

dimerization/cyclization sequences (Scheme 1.50). 73  Thus, proper design of substrates for 

hydroalkynylation reaction allowed for the synthesis of enynes 1-201, which posses alcohol or amine 

functionalities for a subsequent cyclization reaction. This strategy was applied for efficient synthesis of 

butenolides 1-202 or furans 1-203,73a dihydropyrans 1-204,73b pyroles 1-205,73c dihydrofuranones and 

pyrrolidinones 1-207, and other heterocycles.73d 
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Scheme 1.50. Synthesis of Various Heterocycles via Tandem Hydroalkynylation/Cyclization Reactions. 

Particularly, addition of terminal alkynes to the  γ-hydroxyalkynoates 1-200 led to the formation 

of butenolides 1-202 or furans 1-203 regioselectively depending on the reaction conditions (Scheme 

1.51).73a Thus, employment of tributyltin acetate facilitated the lactonization reaction giving access to 

butenolide 1-202a. Alternatively, selective 5-endo-dig cyclization to produce furan 1-203a was 

predominant in the presence of DBU. 

 

Scheme 1.51. Synthesis of Butenolides and Furans via Palladium-catalyzed cross-
Dimerization/Cyclization Sequence. 
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1.52).73b Notably, in most cases the 6-endo-dig cyclization was predominant over the 5-exo-dig 

cyclization or lactonization processes. Interestingly, a 7-membered ring analog 1-209a was also obtained 

using this strategy although addition of more electrophilic palladium trifluoroacetate was required. 

 

Scheme 1.52. Synthesis of Oxygen Heterocycles via Palladium-catalyzed cross-Dimerization/6-Endo-dig 
Cyclization Sequence. 

Similar approach was utilized for the synthesis of pyrroles starting from propargylic amines 

1-200d (Scheme 1.53).73c In this case products of the dimerization reaction, enynes 1-201d, were isolated 

in good yields. Subsequent 5-endo-dig cyclization in the presence of catalytic amounts of Pd(OCOCF3)2 

resulted in the formation of 2,4-disubstituted pyrroles 1-205. This transformation can also be conducted in 

a one-pot manner with no loss of efficiency. 

 

Scheme 1.53. Synthesis of Pyrroles via Palladium-catalyzed cross-Dimerization/5-Endo-dig Cyclization 
Sequence. 
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Notably, careful ligand optimization was required to completely suppress a competitive 1,6-reduction of 

this intermediate. Additionally, high stereoselectivity of cross-dimerization reaction ensured high 

enantioselectivity of subsequent asymmetric reduction. Similarly to the unsaturated analogs (vide supra), 

the products of this transformation 1-206 can be converted to various heterocycles (1-207, 1-210, 1-211) 

via cyclization on either alkynyl or ester side. 

 

Scheme 1.54. Synthesis of β-Alkynyl Esters via Palladium-catalyzed cross-Dimerization/1,4-Reduction 
of Ynenoates. 
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isomerization form allenes 1-217. A subsequent Diels-Alder cycloaddition delivers tetrahydrobenzofuran 

derivatives 1-215 as single diastereomers. This report highlights versatility of the Pd-catalyzed cross-

addition reaction, as it does not interfere with other processes required for an efficient cascade of this 
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Scheme 1.55. Synthesis of Fused Bicycles via Palladium-catalyzed cross-Dimerization/Intramolecular 
Diels-Alder Sequence. 

An exceptional functional group compatibility of this process was further exemplified in the 

synthesis of bryostatin 16 (Scheme 1.56).75 Thus, advanced intermediate 1-218 was efficiently converted 

into macrocycle 1-219 via the intramolecular cross-addition of terminal alkyne to the tethered acceptor 

alkyne moiety. The macrocyclic enyne 1-219 was then elaborated into the target bryostatin 16 in just 3 

steps. 

 

Scheme 1.56. Palladium-catalyzed Hydroalkynylation Reaction Applied for a Key Macrocyclization en 
route to Bryostatin 16. 
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palladium-catalyzed head-to-tail homo- and cross-dimerization strategies became useful synthetic tool 

due to their high efficiency, operational simplicity, robustness and broad functional group compatibility. 

However, alternative head-to-head coupling, catalyzed by palladium complexes, received much less 

attention. Indeed, existing approaches for selective Pd-catalyzed head-to-head dimerization reaction are 

limited to homo-coupling of aromatic substrates or strongly depend on substitution pattern in case of 

aliphatic alkynes. Therefore, no clear correlation between mechanistic path and the reaction selectivity 

was established to date. Nonetheless, understanding the mechanistic origins of the dimerization selectivity 

would lay the foundation for design of novel synthetic methods based of hydroalkynylation strategy. 
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1.2. DEVELOPMENT OF REGIODIVERGENT PALLADIUM-CATALYZED DIMERIZATION 

OF TERMINAL ALKYNES 

1.2.1. Development of Highly Efficient Head-to-head Dimerization of Terminal Alkynes 

In continuation of our search for a highly selective Pd-catalyzed head-to-head dimerization 

reaction of terminal alkynes,65 we turned our attention to N-heterocyclic carbene-based (NHC) palladium 

complexes as they displayed reasonable selectivity in this transformation (Table 1.4).66 

Table 1.4. Optimization of Conditions for the Palladium-catalyzed Head-to-head Dimerization of 
Terminal Alkynes.a 

 

Entry Catalyst Ligand Base Time Conversion 1-03a : 1-04a : 1-02ab Yield, %c 

1 IPr-Pd-IPr - - 2 h 100% 100 : 0 : 0 67 

2 IPr-Pd-IPr PPh3 - 24 h 78% 100 : 0 : 0 - 

3 IPr-Pd-IPr PPh3 CsOPiv 24 h 85% 100 : 0 : 0 - 

4 IPr-Pd-IPr TDMPP - 1.5 h 100% 100 : 0 : 0 92 

5 IPr-Pd-IPr TDMPP CsOPiv 2 h 100% 98 : 2 : 0 67 

6 IPr-Pd-IPr TDMPP K2CO3 1,5 h 100% 100 : 0 : 0 63 

7 IPr-Pd-IPr - CsOPiv 24 h 73% 59 : 0 : 41 - 

8 IMes-Pd-IMes - - 3 h 100% 100 : 0 : 0 90 

9 IMes-Pd-IMes TDMPP - 1 h 100% 100 : 0 : 0 94 
aReaction conditions: catalyst (2 mol %), ligand (2 mol %), base (2 mol %), toluene (1 M), 60 °C. bNMR 
ratio. cIsolated yield. 

We have found that bis-N-heterocyclic carbene palladium complex (IPr-Pd-IPr) displays high 

selectivity toward head-to-head dimerization affording single isomer (E)-enyne 1-03 in moderate yield 

(entry 1). Addition of triphenylphosphine to the reaction mixture alone or in combination with inorganic 
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base did not improve the reaction efficacy (entries 2, 3). Nevertheless, in the presence of electron-rich and 

bulky phosphine ligand TDMPP (1-158), fast head-to-head dimerization of phenylacetylene 1-01a was 

observed delivering (E)-enyne 1-03a in 92% yield with perfect regio- and stereoselectivity (entry 4). 

Importantly, addition of inorganic bases to this catalytic system compromises reaction yields (entries 5, 

6). On the other hand, regioselectivity of dimerization in the presence of CsOPiv additive only was low 

(entry 7, vide infra). Importantly, less sterically hindered NHC-based complex IMes-Pd-IMes was equally 

efficient and selective catalyst in this reaction (entries 8, 9). 

Next, the generality of this transformation was examined (Table 1.5). Thus, a variety of 

arylalkynes, such as electron-rich alkynes 1-01j and 1-01i or electron-deficient alkynes 1-01l, 1-01y, and 

1-01u were smoothly converted to (E)-1,4-disubstituted enynes in good to high yields (entries 2-6). 

Importantly, the reaction was not sensitive to sterics as it was demonstrated by a selective dimerization 

reaction of ortho-substituted arylalkynes 1-01z and 1-01q (entries 7, 8). Although coupling did not 

proceed with 2,6-dimethylphenylacetylene (1-01r), it was efficient with 2,6-disubstituted alkynes 1-01s 

and 1-01t, thus eliminating involvement of agostic interactions65 as a possible regiocontroling element of 

this process (entries 9-11). Additionally, an employment of 1-naphthylacetylene (1-01n) provided 

corresponding enyne in good yield (entry 12). Furthermore, alkynes bearing heteroaromatic substituents, 

such as 3-thiophenyl (1-01aa), 2- and 3-pyridyl (1-01x, 1-01ab), as well as 4-isoquinolyl (1-01ac), 

underwent efficient dimerization under these reaction conditions (entries 13-16). Gratifyingly, aliphatic 

alkynes were also competent substrates in this dimerization reaction. Thus, dodecyne 1-01ad was 

converted to (E)-1,4-disubstituted enyne 1-03ad in 91% yield (entry 17). Similarly to arylalkynes, 

sterically hindered aliphatic acetylenes 1-01ae and 1-01h reacted efficiently with selective formation of 

enyne products (entries 18, 19). Furthermore, various functionalities, such as ethers (entries 20, 21), 

alcohols (entries 22-25), acetal (entry 26), amine (entry 27), and amide (entry 28), were well tolerated 

under the reaction conditions. Notably, the reaction was easily scalable providing comparable yield of 

1-03a even in the presence of 0.5 mol % of the catalyst (entry 1). 



 45 

Table 1.5 Palladium-catalyzed Dimerization of Terminal Alkynes toward (E)-1,4-Disubstituted Enynes.a 

 

Entry Alkyne   Yield of 1-03, %b 

1 

 

 
1-01a 

92 

86c 

2 

 

R = OMe 1-01j 81 

3 R = Me 1-01i 92 

4 R = CN 1-01l 82 

5 R = COOMe 1-01y 67 

6 R = Cl 1-01u 51 

7 

 

R = OMe 1-01z 77 

8 R = Me 1-01q 81 

9 

 

R = Me 1-01r -d 

10 R = F 1-01s 88 

11 R = OMe 1-01t 75 

12 

 

 
1-01n 66 

13 
 

 1-01aa 65 

14 

 

 
1-01x 93 

15 

 

 
1-01ab 56 
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Entry Alkyne   Yield of 1-03, %b 

16 

 

 

1-01ac 78 

17   1-01ad 91 

18 
 

 1-01ae 91 

19   1-01h 65 

20 
 

 1-01af 71 

21 
 

 1-01ag 62 

22 
 

 1-01ah 94 

23 

 

 
1-01c 85 

24 

 

 
1-01ai 88 

25 

 

 
1-01aj 89 

26 

 

 
1-01ak 93 

27 
 

 1-01al 81 

28 
 

 1-01am 96 

aReaction conditions: 1-01 (0.5 mmol), IPr-Pd-IPr (2 mol %), TDMPP (2 mol %), toluene (0.5 mL), 
60 °C. bIsolated yield. cReaction conditions: 1-01a (5 mmol), IPr-Pd-IPr (0.5 mol %), TDMPP (1 mol %), 
toluene (5.0 mL), 60 °C. dNo reaction was observed. 
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1.2.2. Effect of Carboxylate Anion on Regioselectivity of Dimerization Reaction 

Intrigued by Nolan's report on base-dependent reaction selectivity (Table 1.6, entries 1, 2),66 we 

investigated if analogous effect could be observed in our catalytic system producing head-to-head 

dimerization products. To this end, dimerization of phenylacetylene in the presence of IPr-Pd-IPr/TDMPP 

catalytic system and base additives was tested. Thus, the reaction performed in the presence of K2CO3 

under otherwise identical conditions afforded 1-03a with similar selectivity albeit in diminished yield 

(entries 3, 4). Similar result was observed when less hindered IMes-based catalyst precursor was 

employed (entry 5). Interestingly, commercially available IPrPdAllCl complex afforded 1-03a in good 

yield with slightly altered stereoselectivity of the dimerization with no effect on regioselectivity, although 

prolonged reaction time was required (entry 6). Head-to-head dimerization still remained a major 

pathway when reaction was run in the presence of potassium or cesium carbonates (entries 7, 8). 

However, when catalytic amount of cesium acetate was added, clear preference for the head-to-tail 

dimerization was observed delivering dimeric products 1-03a and 1-02a as a 1:4 mixture (entry 9). In the 

presence of potassium acetate, the ratio was further improved (entry 11). Ultimately, an employment of 

cesium pivalate allowed for perfect head-to-tail regioselectivity furnishing enyne 1-02a (entry 10). In 

contrast to the inorganic bases, addition of pyridine suppressed the reaction (entry 12). Moreover, an 

employment of tertiary amines, such as triethylamine or DABCO, resulted in decomposition of starting 

phenylacetylene. These results clearly indicate that among all bases tested only carboxylate anion is 

capable of the selectivity switch from the head-to-head to the head-to-tail dimerization path. To further 

verify this observation, regioselectivity of the reaction catalyzed by define complexes IPrPdPPh3
76

 and 

IPrPd(OPiv)2
77

 was compared. Thus, employment of IPrPdPPh3 led to a facile formation of 

(E)-1,4-diphenylenyne 1-03a, whereas 1,3-diphenylenyne 1-02a formed predominately under 

IPrPd(OPiv)2/TDMPP catalysis (entries 13, 14). 
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Table 1.6. Investigation of the Base Effect on the Selectivity of the Palladium-catalyzed Dimerization of 
Terminal Alkynes.a 

 

Entry Catalyst Ligand Base Time, h 1-03a : 1-04a : 1-02ab Yield, %c 

1d Pd(OAc)2 IMes·HCl Cs2CO3 2 93:7:0 98 

2d Pd(OAc)2 IMes·HCl K2CO3 2 69:5:26 98 

3 IPr-Pd-IPr TDMPP - 2 100:0:0 92 

4e IPr-Pd-IPr TDMPP K2CO3 2 99:1:0 63 

5e Pd(IMes)2 TDMPP K2CO3 9 99:1:0f 56 

6 IPrPdAllCl  TDMPP - 24 96:4:0f 94 

7e IPrPdAllCl TDMPP K2CO3 12 97:0:7 62 

8e IPrPdAllCl TDMPP Cs2CO3 12 100:0:0 83g 

9 IPrPdAllCl TDMPP CsOAc 1 20:0:80 70g 

10 IPrPdAllCl  TDMPP CsOPiv 1 0:0:100 62 

11 IPrPdAllCl TDMPP KOAc 1 10:0:90 64g 

12 IPrPdAllCl TDMPP Pyridine 16 - -h 

13 IPrPdPPh3 - - 1 97:0:3 87g 

14 IPrPd(OPiv)2 TDMPP  1 5:0:95f 80g 

aReaction conditions: catalyst (2 mol %), ligand (2 mol %), base (2 mol %), toluene (1 M), 60 °C. 
bDetermined by GC/MS and NMR. cIsolated yield. dReaction conditions: catalyst (1 mol %), ligand (2 
mol %), base (2 equiv), DMA (1 M), 80 °C. Reproduced from ref. 66. e2 equiv of base was used. 
fFormation of a small amount of diphenyldiyne was observed. gNMR yield of the major isomer. hNo 
reaction was observed. 
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In order to investigate the generality of the observed carboxylate anion effect, the reactivity of 

several other alkynes was tested using IPrPdAllCl/TDMPP catalytic system with (method B) or without 

CsOPiv (method A, Table 1.7). Thus, electron-rich (1-01j, 1-01i) para-substituted arylalkynes were 

converted to the corresponding enynes 1-03j, 1-03i or 1-02j, 1-02i with high efficiency and 

regioselectivity depending on the employed conditions (entries 2, 3). Graduate increase of steric 

hindrance at ortho-position affected head-to-head reaction resulting in reduced yields and selectivities in 

case of mono-ortho-substituted arylalkynes 1-01z and 1-01q and complete loss of reactivity in case of 

2,6-disubstituted arylacetylenes 1-01r and 1-01t. However, the corresponding head-to-tail dimerization 

proceeded smoothly for mono-ortho-substituted arylalkynes 1-01z and 1-01q. In the case of alkyne 1-01r, 

1,3-disubstituted enyne 1-02r was formed predominantly although efficiency and selectivity were 

diminished. In contrast, clean conversion of 2,6-dimethoxyphenylacetylene 1-01t to 1,3-disubstituted 

enyne 1-02t was observed (entries 4-7). 1-Naphthylacetylene (1-01n) underwent both reactions with 

formation of the corresponding enynes in good yields with perfect regio- and stereoselectivity (entry 8). 

Further studies indicated that combination of IPrPdAllCl and TDMPP displays poor activity in the 

dimerization of aliphatic alkynes. Thus, reaction of dodecyne (1-01ad) delivered a mixture of dimeric 

products favoring (E)-1,4-disubstituted enyne 1-03ad in moderate yield only (entry 9). Other tested 

aliphatic substrates did not dimerize under these conditions. On the other hand, addition of catalytic 

amount of CsOPiv into the reaction mixture promoted the head-to-tail dimerization of alkylalkynes. 

Hence, linear alkynes 1-01ad and 1-01ag were selectively converted to the corresponding 

1,3-disubstituted enynes (entries 9, 11). Similarly to the reactivity of aryl-substituted alkynes, sterically 

demanding aliphatic alkynes underwent the head-to-tail dimerization with slightly decreased selectivities 

(entries 10, 12). 
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Table 1.7. Carboxylate Effect in Palladium-catalyzed Dimerization of Terminal Alkynes. 

 

Entry Alkyne   
Method A,  Method B, 

yield of 1-03, %a,c yield of 1-02, %b,c 

1 
 

 1a 94 (96:4:0) 62 

2 
 

R = OMe 1j 77 85 (5:0:95) 

3 R = Me 1i 88 88 

4 

 

R = OMe 1z 45 (83:0:17) 80 

5 R = Me 1q 52 (70:0:30) 97 

6 

 

R = Me 1r -d 37 (15:0:85) 

7 R = OMe 1t -d 78 (2:0:98) 

8 

 

 1n 65 80 

9   1ad 58 (83:7:10) 93 

10   1h -d 65 (9:0:91)e 

11 
 

 1ag -d 83 

12 

 

 1ak -d 81 (19:0:81) 

aReaction conditions for method A: 1-01 (0.5 mmol), IPrPdAllCl (2 mol %), TDMPP (2 mol %), toluene 
(0.5 mL), 60 °C. bReaction conditions for method B: 1-01 (0.5 mmol), IPrPdAllCl (2 mol %), TDMPP (2 
mol %), CsOPiv (2 mol %), toluene (0.5 mL), 60 °C. cIsolated yield. Ratio of 1-03 : 1-04 : 1-02 is shown 
in parentheses if more then one isomer was formed. dNo reaction was observed. eNMR yield. 
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The direct comparison of these two catalytic systems clearly demonstrates a dramatic effect of 

carboxylate anion on the regioselectivity of Pd-catalyzed dimerization reaction. Thus, under the base-free 

conditions, terminal alkynes selectively undergo head-to-head dimerization reaction, whereas in the 

presence of carboxylate anion under otherwise identical conditions the head-to-tail dimerization becomes 

a predominant process. 

1.2.3. Investigation of the Reaction Mechanism 

Having established the methods for the selective head-to-head and head-to-tail dimerization 

reactions of terminal alkynes, we turned our attention to the investigation of the origins of the observed 

regioselectivity switch. To this end, the reaction mechanism was studied computationally in the group of 

our collaborator, Prof. Valentine Ananikov. Theoretical calculations were carried out at B3LYP/6-

311G(d)&SDD level in order to locate intermediate complexes and transition states. Free energy surfaces 

ΔG of the computed catalytic cycles will be discussed for detailed comparison of head-to-head and head-

to-tail dimerization. For ΔE energy surface see Experimental Section. 

1.2.3.1. Head-to-head Dimerization of Alkynes 

As described above, it is generally considered that the Pd-catalyzed dimerization of terminal 

alkynes starts with the formation of the π-complex A, in which the first molecule of the alkyne is bound 

to the L–Pd(0) center (Scheme 1.57, L = NHC). The coordination of the alkyne is followed by oxidative 

addition of the C–H bond via the transition state B-TS leading to the formation of hydrido complex C. 

According to the calculated energy surface, this process was found to be endothermic with the energy 

change of ΔGA → C = 14.8 kcal/mol and activation barrier of ΔG≠
A → B-TS = 17.6 kcal/mol (Figure 1.1). 

Available coordination vacancy and labile structure of complex C provides an access to four different 

reaction channels: head-to-head dimerization via carbopalladation or hydropalladation path (Scheme 

1.57A), and head-to-tail dimerization via carbopalladation or hydropalladation path (Scheme 1.57B). 
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Accordingly, all intermediate species and transition states for complete characterization of these reaction 

pathways were located (Figure 1.2). 

 

Scheme 1.57. Proposed Mechanism for the Palladium-catalyzed Head-to-head (A) and Head-to-tail (B) 
Dimerization of Terminal Alkynes. 
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Figure 1.1. Calculated Free Energy Surface (ΔG, kcal/mol) of Palladium-catalyzed Head-to-head and Head-to-tail Dimerization of Terminal 
Alkynes at B3LYP/6-311G(d)&SDD Level (see Scheme 1.57 for structures and Figure 1.2 for molecular geometries). 
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Figure 1.2. Optimized Molecular Structures of Reaction Intermediates at the B3LYP/6-311G(d)&SDD Level (normal mode corresponding to 
imaginary frequency in the transition state is visualized, hydrogen atoms of the complexes are omitted for clarity with the exception of reacting H 
atoms, see Experimental Section for geometric parameters). 
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Coordination of the second alkyne molecule furnishes formation of π-complexes D-hh, D'-hh, 

D-ht, D'-ht differentiated by orientation of alkyne molecule around Pd–C and Pd–H bonds (Figures 1.1, 

1.2). Carbopalladation involves complexes D-hh and D-ht, whereas hydropalladation originated from 

complexes D'-hh and D'-ht. All these complexes have similar relative energies with the largest deviation 

of ΔG = 4.3 kcal/mol was observed between D-ht and D'-ht. Due to the small energy difference, all of the 

proposed pathways should be further considered. Accordingly, carbopalladation was found to be an 

exothermic process for both head-to-head (ΔGD-hh →  F-hh = -13.9 kcal/mol) and head-to-tail (ΔGD-ht → F-ht 

= -11.1 kcal/mol) dimerization reactions. Alkynes insertion into the Pd–C bond requires ΔG≠
D-hh → E-TS-hh 

= 18.6 kcal/mol and ΔG≠
D-ht → E-TS-ht = 23.3 kcal/mol, respectively. Hydropalladation is also an exothermic 

process with a similar energy gain of ΔGD'-hh → F'-hh = -16.9 kcal/mol for head-to-head and ΔGD'-ht → F'-ht 

= -16.0 kcal/mol for head-to-tail dimerizations. However, the activation barriers for alkyne insertion into 

the Pd–H bond were dramatically lower compared to that for alkyne insertion into the Pd–C bond. Thus, 

it is only requires 2.1 kcal/mol and 1.9 kcal/mol of activation energy for the head-to-head and the head-

to-tail dimerizations, respectively. Therefore, the activation barriers calculated for hydropalladation 

pathway are in order of magnitude lower than the corresponding barriers for carbopalladation path. 

In all cases, the insertion of the second alkyne molecule takes place through the concerted-type 

transition states (Figure 1.3). For the hydropalladation pathway, lower in energy transition state E'-TS-hh 

was characterized with shorter Pd–C bond of 2.103 Å and longer C–H bond of 1.817 Å compared to the 

corresponding interatomic distances of E'-TS-ht. In case of the carbopalladation pathway, more favorable 

transition state E-TS-hh possesses longer Pd–C bond of 2.216 Å and shorter C–C bond of 1.936 Å, 

compared to that of E-TS-ht. It is interesting to note the change in the delocalization of electron density 

associated with the different mechanisms. Thus, an increase in the negative charge on the metal 

atom -0.003, -0.016, -0.026, -0.057, is accompanied with higher relative energy on the potential energy 

surface 24.2, 25.3, 38.0 and 42.4 kcal/mol for E'-TS-hh, E'-TS-ht, E-TS-hh, and E-TS-ht, respectively 

(Figures 1 and 3). The charges on the carbon atoms of the acetylenide Pd–Cα≡Cβ group, which are equal 
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to ca. -0.15α/-0.06β for carbopalladation (E-TS-hh and E-TS-ht) and ca. -0.16α/-0.19β for 

hydropalladation (E'-TS-hh and E'-TS-ht) do not depend on the regioselectivity of the insertion of the 

second alkyne molecule. In contrast, significant changes in the electron density localization were 

observed for the carbon atoms of the alkyne molecule coordinated as π-complex. Particularly, for the 

highest in energy transition state E-TS-ht, the charges on the carbon atoms were found to be -0.353 and 

+0.071. Notably, it was the only case with the positive charge on the alkyne carbon atom. For the 

E'-TS-hh, E'-TS-ht, and E-TS-hh transition states, significant differences in the charge of the carbon 

atoms bound in π-fashion were also observed with the values in the range of -0.029 to -0.275. 

 

Figure 1.3. Interatomic Distances and Atomic NBO Charges (in parenthesis) for Optimized Molecular 
Structures of E-TS-hh, E'-TS-hh, E-TS-ht and E'-TS-ht Calculated at the B3LYP/6-311G(d)&SDD 
Level (other atoms are omitted for clarity; normal mode corresponding to imaginary frequency in the 
transition state is visualized by arrows). 

The last step of the catalytic cycle involves the reductive elimination with the formation of 

product 1-03 for the head-to-head dimerization and product 1-02 for the head-to-tail dimerization. This 

step proceeds easily by overcoming corresponding activation barriers in the range of ΔG≠
F → G-TS = 0.7 – 
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5.2 kcal/mol (Figure 1). For the F-ht → H-ht reaction the barrier of <1 kcal/mol was estimated, as the 

direct transformation towards the product was observed. Transition state G-TS-ht was not localized due 

to a very shallow energy surface. 

In all cases, formation of complexes H-hh, H-ht, H'-hh and H'-ht is a highly exothermic process 

with the energy gain of >30 kcal/mol relative to that of complexes F-hh, F-ht, F'-hh and F'-ht, and with 

energy gain of >22 kcal/mol relative to initial point of the catalytic cycle A. The change in the free energy 

between points A and H ensures the overall driving force of the dimerization reaction. Additionally, 

comparison of relative energy of complexes H-hh, H'-hh with H-ht, H'-ht indicated that the products of 

the head-to-head dimerization are more stable by ~5 kcal/mol. Dissociation of the product and 

coordination of new molecule of alkyne 1-01 completes turnover of the catalytic cycle (Scheme 1.57). 

Analysis of the calculated energy surface clearly indicated that hydropalladation is the kinetically 

preferred reaction pathway for both head-to-head and head-to-tail dimerizations. Substantial energy 

difference in the calculated activation barriers indicates that alkyne insertion into the Pd–H bond will 

occur wherever possible. Alkyne insertion into the Pd–C bond may only take place if Pd–H would be 

unavailable for the insertion. Among the studied reactions pathways, the head-to-head alkyne 

dimerization through hydropalladation mechanism represents the most favorable transformation on the 

overall energy surface. This result is in agreement with the experimental findings. 

1.2.3.2. Hydro-/Carbopalladation Mechanism Switch 

A facile reaction is an important advantage of hydropalladation pathway governed by small 

activation barriers. However, since the activation barriers are low, the difference in the activation energies 

between the head-to-head and the head-to-tail dimerizations is also negligible. In practice, this suggests 

that the regioselectivity of the reaction proceeding through the hydropalladation mechanism would be 

difficult to control. Therefore, the outcome of the reaction would depend on several factors, such as 

reaction conditions, nature of substituents in the reagents, ligands, etc. In contrast, the carbopalladation 

mechanism was characterized with high activation barriers, which resulted in larger difference between 
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energies of the transition states corresponding to the head-to-head and the head-to-tail dimerizations. 

Particularly, the difference between the E'-TS-hh and E'-TS-ht was of only 1.1 kcal/mol for 

hydropalladation path, while the difference between the E-TS-hh and E-TS-ht was 4.4 kcal/mol for 

carbopalladation pathway (Figure 1.1). As evident from the calculations, in order to direct alkyne 

insertion into the Pd–C bond, the hydropalladation path should be deactivated. Potentially, addition of a 

suitable base that will interact with hydrogen ligand would deactivate Pd–H bond. In order to test this 

hypothesis, acetate anion was employed to simulate the interaction of palladium acetylenide C with mild 

carboxylate base. For mimicking reaction in polar media, a complete dissociation of ions was considered 

(Scheme 1.58, path a). Additionally, a model for reaction in regular organic solvents with low or medium 

polarity, which most likely would involve ion pairs, was also studied (Scheme 1.58, path b). Full size 

IPr-NHC ligand was involved in the calculations. 

 

Scheme 1.58. Interaction of Complex C with Acetate Anion. 

The process involving complete dissociation of ions was considered first (Scheme 1.58, path a). 

The calculations revealed that proton removal from complex C leading to the formation of acetic acid and 

anionic complex C(-) is energetically favorable process with ΔGС → С(-) = -19.8 kcal/mol (Scheme 1.59, 

Figure 1.4). Coordination of the second alkyne molecule to C(-) gave π-complexes D(-)-hh and D(-)-ht 

depending on the orientation of the second alkyne molecule. Notably, D(-)-ht was found to be 

considerably more stable than D(-)-hh by the value of 5.5 kcal/mol on the calculated energy surface. 
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Scheme 1.59. Proposed Mechanism for the Anionic Pd-catalyzed Head-to-head and Head-to-tail 
Dimerization of Terminal Alkynes. 

 

Figure 1.4. Calculated Energy Surface (ΔG, kcal/mol) of Anionic Palladium-catalyzed Head-to-head and 
Head-to-tail Dimerization of Terminal Alkynes (different reactions paths are denoted by different colors; 
see Experimental Section for optimized structures; B3LYP/6-311G(d)&SDD). 
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Due to the absence of Pd–H bonds, only carbopalladation pathway was possible for the located 

π-complexes. Thus, formation of palladium complexes F(-)-hh and F(-)-ht via the transition states 

E(-)-TS-hh and E(-)-TS-ht were found to be an exothermic process (ΔGD-hh → F-hh = -20.8 kcal/mol, 

ΔGD-ht →  F-ht = -11.3 kcal/mol) requiring 24.7 kcal/mol and 38.4 kcal/mol of activation energy, 

respectively. Therefore, under anionic manifold, the dimerization proceeds via the carbopalladation route, 

whereas a competitive hydropalladation path is eliminated. The overall energy surface indicates that the 

head-to-head dimerization remains more favorable compared to the head-to-tail dimerization in this case. 

Another possible interaction of complex C with acetate ion involves formation of the ion-pair 

complex (Scheme 1.58, path b). The calculations carried out with the Pd–O distance of 2.20 Å indicated 

that formation of ion-pair complex is possible since computed difference in free energies for this event is 

small (ΔG = +0.7 kcal/mol). Furthermore, geometry optimization for coordination of the second alkyne 

molecule and formation of complex D-ht with bound acetate ligand (D-ht+AcO(-)) have revealed a 

plausible structure with the hydrogen atom migrated from Pd to the oxygen atom of the carboxylate group 

(Figure 1.5). Within this complex, both alkyne units remained bound to the metal rendering the possibility 

for the head-to-tail dimerization. In contrast, during the geometry optimization of the analogous complex 

corresponding to the head-to-head dimerization mechanism, a dissociation of one of the alkyne molecules 

was observed (Figure 1.5). This process involved movement of the hydrogen atom from the carboxylate 

group to the neighboring acetylenide residue. 

 

Figure 1.5. Comparison of Initial and Optimized Molecular Structures of D-ht, D-ht+AcO(-) and D-hh 
and D-hh+AcO(-). 
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These results suggest that in case of ion-pair structures, the head-to-head dimerization may be 

disfavored due to instability of the intermediate complex. Observed elimination of one of the alkyne 

molecules from the coordination sphere of palladium might be attributed to the induced steric strain after 

the coordination of acetate anion to the palladium complex. Complex D-hh should be more sensitive to 

the steric effects due to the existing interactions of alkyne substituent R with the NHC ligand (Scheme 

1.60). In analogous complex D-ht the steric strain is relived due to opposite alignments of the R 

substituent. Similar effect was observed in the calculated pathway for anionic complex. Thus, D(-)-hh 

was found higher in energy by ΔG = +5.5 kcal/mol compared to D(-)-ht (Figure 1.5). Notably, calculated 

energy difference for the complexes D-hh/D-ht and D'-hh/D'-ht was much smaller in the reaction 

without acetate ion additive (Figure 1.1). 

 

Scheme 1.60. Steric Strain in the Complexes D-hh and D-ht. 

Thus, addition of the acetate ion played a dual role in the studied system: i) removal of hydrogen 

atom from palladium thus deactivating favorable hydropalladation pathway; and ii) imposing larger 

difference in the stability of palladium complexes involved in the head-to-tail and the head-to-head 

dimerizations. Therefore, the calculations strongly suggested that the head-to-tail dimerization is a more 

favorable process in the case of ion-pair intermediates. 
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amido groups. Another feature of this method is its insensitivity to sterics, as bulky aryl or aliphatic 

substrates can be efficiently converted to the corresponding enynes. The reaction is also easily scalable 

and operates under mild conditions. It was also found that combination of several NHC-based palladium 

precursors with phosphine additives selectively promotes the head-to-head dimerization of terminal 

alkynes. However, an addition of carboxylate anion to the catalytic system dramatically affects the 

selectivity favoring the head-to-tail dimerization reaction. The effect of carboxylate was found to be 

general for a wide range of terminal alkynes, including sterically demanding aromatic or aliphatic 

substrates. The DFT calculations revealed that under neutral reaction conditions, the hydropalladation 

pathway is kinetically preferred over the carbopalladation path for both head-to-head and head-to-tail 

dimerizations. Analysis of the calculated energy surfaces indicated that the head-to-head alkyne 

dimerization is the most favorable among the routes studied. However, it has been found that the 

formation of anionic Pd-complexes or ion-pairs in the presence of carboxylate anion deactivates the 

hydropalladation pathway. Furthermore, only intermediates leading to the head-to-tail dimerization were 

located upon optimization of ion-paired structures. Coordination of second alkyne molecule in head-to-

head fashion was restricted by a steric demand of the corresponding intermediates. Therefore, based on 

computational studies, the head-to-tail dimerization via the carbopalladation pathway was found 

preferential for the carboxylate-assisted reaction. We believe that this observation might have an impact 

beyond dimerization of acetylenes. Particularly, it would provide a basis for the development of selective 

processes in which hydro- and carbometallation are competing reaction pathways. 
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1.3. EXPERIMENTAL SECTION 

1.3.1. General Information 

NMR spectra were recorded on a Bruker Avance DRX-500 (500 MHz) and Bruker Avance 

DRX-400 (400 MHz) spectrometers. LRMS and HRMS analysis was performed on Micromass 70 VSE 

high-resolution mass spectrometer or Micromass LCT spectrometer equipped with a time-of-flight 

analyzer. GC/MS analysis was performed on a Hewlett Packard Model 6890 GC interfaced to a Hewlett 

Packard Model 5973 mass selective detector (15 m x 0.25 mm capillary column, HP-5MS). Column 

chromatography was carried out employing Silicycle Silica-P Flash silica gel (40-63 µm). Precoated silica 

gel plates Merck 60 F-254 were used for thin-layer analytical chromatography. All manipulations with 

transition metal catalysts were conducted in oven-dried glassware under inert atmosphere using a 

combination of glovebox and standard Schlenk techniques. Small-scale reactions were carried in Wheaton 

V-vials equipped with Mininert Syringe valve and stirring bar. Anhydrous solvents purchased from 

Aldrich were additionally purified on PureSolv PS-400-4 by Innovative Technology, Inc. purification 

system and/or stored over calcium hydride; toluene was additionally redistilled over calcium hydride, 

degased and kept in the glovebox. All other starting materials were purchased from Alfa Aesar, Oakwood 

Products, Sigma Aldrich, Strem Chemicals, and SynQuest Laboratories. Catalysts IPr-Pd-IPr,76 

IPrPdPPh3
76

 and IPrPd(OPiv)2
77

 were prepared using known procedures. The spectral data for new 

compounds are provided below. 

1.3.2. Synthesis of 1,4-Disubstituted (E)-Enynes 

 

General procedure: An oven-dried 1 mL Wheaton microreactor was loaded with IPr-Pd-IPr (8.9 

mg, 2 mol %) and tris(2,6-dimethoxyphenyl)phosphine (4.4 mg, 2 mol %). Anhydrous toluene (0.5 mL) 

was added followed by alkyne 1-01 (0.5 mmol). The reaction mixture was stirred at 60 °C until the 

R toluene, 60 °C R

R

1-01

IPr-Pd-IPr (2 mol %)
TDMPP (2 mol %)

1-03
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completion. The reaction course was monitored by GC/MS analysis. After the reaction completion, the 

reaction mixture was filtered through a short celite plug and concentrated. The product was purified by 

column chromatography. 

1-03a:78 0.5 mmol scale, 1.5 h, 60 °C; eluent: 100% hexanes; obtained: 47 mg 

(92%), white solid; 5 mmol scale, 0.5 mol % of IPr-Pd-IPr; 2h, 60 °C; eluent: 

100% hexanes; obtained: 440 mg (86%), white solid. 1H NMR (500 MHz, 

CDCl3) δ ppm 7.53–7.49 (m, 2H), 7.47–7.43 (m, 2H), 7.39–7.29 (m, 6H), 7.07 (d, J = 16.3 Hz, 1H), 6.42 

(d, J = 16.2 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ ppm 141.3, 136.4, 131.5, 128.8, 128.6, 128.4, 128.2, 

126.3, 123.4, 108.2, 91.8, 88.9. HRMS (ESI) calcd. for C16H12 [M]+: 204.0939; found: 204.0945. 

1-03j:33d 0.5 mmol scale, 5 h, 60 °C; eluent: 100% hexanes; obtained: 

53 mg (81%), white solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.41 (d, 

J = 8.8 Hz, 2H), 7.36 (d, J = 8.8 Hz, 2H), 6.96 (d, J  =16.2 Hz, 1H), 

6.89–6.85 (m, 4H), 6.24 (d, J = 16.2 Hz, 1H), 3.82 (s, 6H). 13C NMR (125 MHz, CDCl3) δ ppm 160.0, 

159.5, 140.0, 132.9, 129.4, 127.6, 115.8, 114.2, 114.0, 106.0, 91.0, 88.0, 55.33, 55.30. HRMS (EI) calcd. 

for C18H17O2 [M+H]+: 265.1229; found: 265.1229. 

1-03i:33d 0.5 mmol scale, 1.5 h, 60 °C; eluent 100% hexanes; obtained: 53 

mg (92%), white solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.39–7.36 (m, 

2H), 7.34–7.31 (m, 2H), 7.18–7.12 (m, 4H), 7.01 (d, J =16.2 Hz, 1H), 6.34 

(d, J =16.2 Hz, 1H), 2.36 (s, 6H). 13C NMR (125 MHz, CDCl3) δ ppm 140.9, 138.6, 138.2, 133.7, 131.4, 

129.4, 129.1, 126.2, 120.4, 107.2, 91.6, 88.5, 21.5, 21.3. HRMS (ESI) calcd. for C18H16 [M]+: 232.1252; 

found: 232.1253. 

1-03l:65 0.5 mmol scale, 3 h, 60 °C. eluent 30% EtOAc in hexanes; 

obtained: 52 mg (82%), yellow solid; 1H NMR (500 MHz, CDCl3) δ ppm 

7.67–7.62 (m, 4H), 7.57–7.50 (m, 4H), 7.08 (d, J = 16.3 Hz, 1H), 6.49 (d, 

MeO

OMe

Me

Me

NC

CN
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J = 16.2 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ ppm 140.7, 140.1, 132.6, 132.09, 132.07, 127.7 126.8, 

118.6, 118.4, 112.2, 111.9, 111.2, 92.2, 92.0. HRMS (EI) calcd. for C18H11N2 [M+H]+: 255.0922; found: 

255.0925. 

1-03y: 0.5 mmol scale, 2 h, 60 °C; eluent 10% EtOAc in hexanes; 

obtained: 54 mg (67%), yellow solid. 1H NMR (500 MHz, CDCl3) 

δ ppm 8.03–7.99 (m, 4H), 7.53 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.3 

Hz, 2H), 7.09 (d, J = 16.2 Hz, 1H), 6.49 (d, J = 16.2 Hz, 1H), 3.93 (s, 6H). 13C NMR (125 MHz, CDCl3) δ 

ppm 166.6, 166.5, 141.0, 140.3, 131.5, 130.1, 129.6, 129.5, 127.8, 126.2, 110.3, 92.3, 91.4, 52.2, 52.1. 

HRMS (ESI) calcd. for C20H16O4 [M]+: 320.1049; found: 320.1040. 

1-03u:28a 0.5 mmol scale, 3 h, 60 °C; eluent 100% hexanes; obtained: 35 

mg (51%), white solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.41–7.30 (m, 

8H), 6.99 (d, J = 16.2 Hz, 1H), 6.34 (d, J = 16.2 Hz, 1H). 13C NMR (125 

MHz, CDCl3) δ ppm 140.2, 134.7, 134.5, 134.3, 132.7, 129.0, 128.7, 127.5, 121.8, 108.5, 91.1, 89.5. 

HRMS (ESI) calcd. for C16H10Cl2 [M]+: 272.0160; found: 272.0168. 

1-03z:79 0.5 mmol scale, 2 h, 60 °C; eluent 100% hexanes; obtained: 51 mg 

(77%), light yellow oil. 1H NMR (500 MHz, CDCl3) δ ppm 7.48–7.44 (m, 2H), 

7.38 (d, J = 16.4 Hz, 1H), 7.31–7.24 (m, 2H), 6.97–6.87 (m, 4H), 6.55 (d, J = 

16.4 Hz, 1H), 3.92 (s, 3H), 3.88 (s, 3H). 13C NMR (125 MHz, CDCl3) δ ppm 159.8, 157.0 136.4, 133.5, 

129.5, 126.9, 125.5, 120.7, 120.5, 112.9, 111.0, 110.6, 109.1, 93.8, 87.6, 55.8, 55.5. HRMS (EI) calcd. 

for C18H17O2 [M+H]+: 265.1229; found: 265.1225. 

1-03q:12a 0.5 mmol scale, 1.5 h, 60 °C; eluent 100% hexanes; obtained: 47 mg 

(81%), light yellow solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.54–7.52 (m, 1H), 

7.48 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 16.1 Hz, 1H), 7.25–7.15 (m, 6H), 6.37 (d, J = 

16.1 Hz, 1H), 2.51 (s, 3H), 2.42 (s, 3H). 13C NMR (125 MHz, CDCl3) δ ppm 140.1, 138.7, 135.8, 135.4, 

MeO2C
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131.9, 130.6, 129.5, 128.5, 128.2, 126.3, 125.6, 125.0, 123.2, 109.4, 93.1, 90.4, 20.7, 19.8. HRMS (ESI) 

calcd. for C18H16 [M]+: 232.1252; found: 232.1251. 

1-03s: 0.5 mmol scale, 2 h, 60 °C; eluent 100% hexanes. obtained: 61 mg (88%), 

white solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.31–7.19 (m, 2H), 7.17 (d, J = 

16.8 Hz, 1H), 6.96–6.88 (m, 4H), 6.78 (d, J = 16.7 Hz, 1H). 13C NMR (125 MHz, 

CDCl3) δ ppm 163.0 (dd, J = 6.2 Hz, J = 238.4 Hz), 160.9 (dd, J = 6.1 Hz, J = 238.2 Hz), 129.8 (t, J = 9.9 

Hz), 129.4 (t, J = 10.9 Hz), 129.1, 114.1 (t, J = 9.9 Hz), 113.7 (t, J = 15.5 Hz), 111.7 (dd, J = 4.8 Hz, J = 

21.1 Hz), 111.2 (dd, J = 4.6 Hz, J = 19.8 Hz), 102.4 (t, J = 19.5 Hz), 98.7, 79.7. HRMS (ESI) calcd. for 

C16H8F4 [M]+: 276.05621; found: 276.05616. 

1-03t: 0.5 mmol scale, 22 h, 100 °C; eluent 25% EtOAc in hexanes; obtained: 61 

mg (75% yield), yellow solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.45 (d, J = 

16.6 Hz, 1H), 7.20 (t, J = 8.4 Hz, 1H), 7.15 (d, J = 8.3 Hz, 1H), 7.06 (d, J = 16.6 

Hz, 1H), 6.56–6.53 (m, 4H), 3.91 (s, 6H), 3.85 (s, 6H). 13C NMR (125 MHz, CDCl3) δ ppm 161.1, 158.9, 

132.0, 129.2, 128.7, 114.4, 112.3, 102.3, 100.9, 103.5, 99.6, 83.3, 56.1, 55.7. HRMS (EI) calcd. for 

C20H21O4 [M+H]+: 325.1440; found: 325.1443. 

1-03n:33d 0.5 mmol scale, 24 h, 60 °C; eluent 100% hexanes; obtained: 50 mg 

(66%), yellow solid. 1H NMR (500 MHz, CDCl3) δ ppm 8.48 (d, J = 8.3 Hz, 1H), 

8.25 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 16.0 Hz, 1H), 7.91–7.84 (m, 4H), 7.80–7.74 

(m, 2H), 7.67–7.45 (m, 6H), 6.64 (d, J = 16.0 Hz, 1H). 13C NMR (125 MHz, 

CDCl3) δ ppm 138.4, 133.8, 133.7, 133.3, 130.9, 130.5, 129.1, 128.8, 128.7, 128.4, 126.8, 126.5, 126.3, 

126.1, 125.6, 125.4, 123.6, 123.5, 121.1, 110.9, 94.1, 89.8. HRMS (ESI) calcd. for C24H16 [M]+: 

304.1252; found: 304.1247. 

1-03aa:12a 0.5 mmol scale, 2 h, 60 °C; eluent 100% hexanes; obtained: 35 mg 

(65%), white solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.46–7.44 (m,  1H), 
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7.32–7.23 (m, 4H), 7.15–7.13 (m, 1H), 7.02 (d, J = 16.2 Hz, 1H), 6.19 (d, J = 16.1Hz, 1H). 13C NMR 

(125 MHz, CDCl3) δ ppm 139.3, 135.1, 129.8, 128.3, 126.5, 125.3, 124.4, 123.6, 122.5, 107.8, 88.3, 86.7. 

HRMS (EI) calcd. for C12H8S2 [M]+: 216.0068; found: 216.0079. 

1-03x:12a 0.5 mmol scale, 24 h, 60 °C; eluent 50% EtOAc in hexanes; obtained: 48 

mg (93%), yellow oil; 1H NMR (500 MHz, CDCl3) δ ppm 8.62–8.58 (m, 2H), 

7.68–7.63 (m, 2H), 7.48 (d, J = 7.8 Hz 1H), 7.29–7.26 (m, 1H), 7.24–7.18 (m, 

2H), 7.16 (d, J = 15.9 Hz, 1H), 6.98 (d, J = 15.9 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ ppm 153.8, 

150.1, 149.9, 143.4, 141.8, 136.6, 136.1, 127.2, 123.2, 122.8, 122.7, 111.8, 92.4, 88.5. HRMS (EI) calcd. 

for C14H11N2 [M+H]+: 207.0922; found: 207.0921. 

1-03ab: 0.5 mmol scale, 24 h, 60 °C; eluent 50% EtOAc in hexanes; obtained: 

29 mg (56%), white solid. 1H NMR (500 MHz, CDCl3) δ ppm 8.72 (s, 1H), 

8.66 (s, 1H), 8.55–8.52 (m, 2H), 7.77–7.74 (m, 2H), 7.31–7.275 (m, 2H), 7.06 

(d, J = 16.3 Hz, 1H), 6.45 (d, J = 16.3 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ ppm 152.2, 149.8, 148.7, 

148.4, 138.5, 138.3, 132.5, 131.7, 123.6, 123.1, 120.3, 109.8, 91.4, 89.2. HRMS (EI) calcd. for C14H11N2 

[M+H]+: 207.0922; found: 207.0919. 

1-03ac: 0.5 mmol scale, 24 h, 60 °C; eluent 100% EtOAc; obtained: 60 mg 

(78%), yellow solid. 1H NMR (500 MHz, CDCl3) δ ppm 9.24– 9.21 (m, 2H), 

8.78–8.76 (m, 2H), 8.35–8.32 (m, 1H), 8.20–8.17 (m, 1H), 8.05–8.01 (m, 2H), 

7.86–7.79 (m, 3H), 7.71–7.67 (m, 2H), 6.69 (d, J = 16.1 Hz, 1H). 13C NMR (125 

MHz, CDCl3) δ ppm 152.8, 152.1, 146.6, 140.1, 136.0, 135.5, 133.2, 131.2, 

131.1 128.3, 128.2, 128.0, 127.8, 127.6, 127.5, 125.1, 122.7, 115.9, 112.0, 95.7, 87.4. HRMS (EI) calcd. 

for C22H15N2 [M+H]+: 307.1235; found: 307.1235. 

1-03ad:66 0.5 mmol scale, 20 h, 60 °C; eluent 100% hexanes; obtained: 75 mg (91%), 

colourless oil. 1H NMR (500 MHz, CDCl3) δ ppm 6.04 (dt, J = 7.1 Hz, 15.6 Hz, 1H), 
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5.48–5.42 (m, 1H), 2.32–2.22 (m, 2H), 2.13–2.03 (m, 2H), 1.55–1.48 (m, 2H), 1.41–1.21 (m, 30H), 0.91–

0.86 (m, 6H). 13C NMR (125 MHz, CDCl3) δ ppm 143.4, 110.7, 89.7, 79.2, 33.0, 31.9, 30.0, 29.6, 29.54, 

29.47, 29.3, 29.2, 29.1, 28.94, 28.9, 22.7, 19.4, 14.1. HRMS (ESI) calcd. for C24H44 [M]+: 332.3443; 

found: 332.3437. 

1-03ae:80 0.5 mmol scale, 16 h, 60 °C; eluent 100% hexanes; obtained: 49 mg 

(91%), colorless oil. 1H NMR (500 MHz, CDCl3) δ ppm 6.00 (dd, J = 16.1 Hz, J 

= 7.1 Hz, 1H), 5.43 (dt, J = 1.6 Hz, 16.0 Hz, 1H), 2.49–2.40 (m, 1H), 2.04–1.95 

(m, 1H), 1.84–1.05 (m, 20H). 13C NMR (125 MHz, CDCl3) δ ppm 148.6, 107.5, 93.0, 79.1, 41.1, 32.8, 

32.4, 29.7, 26.0, 25.89, 25.85, 25.0. HRMS (EI) calcd. for C16H24 [M]+: 216.1878; found: 216.1874. 

1-03h:66 0.5 mmol scale, 24 h, 60 °C; eluent 100% hexanes; obtained: 27 mg 

(65%), colourless oil. 1H NMR (500 MHz, CDCl3) δ ppm 6.08 (d, J = 16.2 Hz, 

1H), 5.41 (d, J = 16.2 Hz, 1H), 1.24 (s, 9H), 1.01 (s, 9H). 13C NMR (125 MHz, 

CDCl3) δ ppm 153.3, 105.3, 97.3, 77.7, 33.7, 31.1, 29.1, 27.9. HRMS (ESI) calcd. For C12H20 [M]+: 

164.1565; found: 164.1556. 

1-03af: 0.5 mmol scale, 13 h, 60 °C; eluent 10% EtOAc in hexanes; obtained: 

25 mg (71%), colourless oil. 1H NMR (500 MHz, CDCl3) δ ppm 6.19 (dt, J = 

5.5 Hz, 16.0 Hz, 1H), 5.76 (dqn, J = 1.8 Hz, 16.0 Hz, 1H), 4.21 (d, J = 1.9 Hz, 2H), 3.97 (dd, J = 1.7 Hz, 

5.5 Hz, 2H), 3.39 (s, 3H), 3.34 (s, 3H). 13C NMR (125 MHz, CDCl3) δ ppm 139.9, 111.0, 85.5, 84.3, 

72.1, 60.3, 58.2, 57.6. HRMS (EI) calcd. For C8H12O2Na [M]+: 163.0735; found: 163.0738. 

1-03ag: 0.5 mmol scale, 16 h, 60 °C; eluent 10% EtOAc in hexanes; 

obtained: 35 mg (61%), colourless oil. 1H NMR (500 MHz, CDCl3) δ 

ppm 6.07 (dt, J = 7.1 Hz, J = 15.8 Hz, 1H), 5.56–5.51 (m, 1H), 4.65 (s, 2H), 4.60 (s, 2H), 3.64 (t, J = 6.8 

Hz, 2H), 3.55 (t, J = 6.6 Hz, 2H), 3.37 (s, 3H), 3.35 (s, 3H), 2.61–2.56 (m, 2H), 2.40–2.34 (m, 2H). 13C 
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NMR (125 MHz, CDCl3) δ ppm 139.8, 111.7, 96.4, 85.7, 79.9, 66.7, 66.0, 55.2, 33.4, 20.9. HRMS (EI) 

calcd. for C12H20O4Na [M+Na]+: 251.1259; found: 251.1260. 

1-03ah: 0.5 mmol scale, 16 h, 60 °C; eluent 50% EtOAc in hexanes; obtained: 46 

mg (94%), colourless oil. 1H NMR (500 MHz, CDCl3) δ ppm 6.01 (dt, J = 7.0 Hz, 

15.5 Hz, 1H), 5.50–5.43 (m, 1H), 3.68 (t, J = 6.3 Hz, 2H), 3.66 (t, J = 6.5 Hz, 2H), 2.36–2.31 (m, 2H), 

2.12 (q, J = 7.2 Hz, 2H), 1.72–1.66 (m, 2H), 1.64–1.54 (m, 4H), 1.50 – 1.43 (m, 2H), 1.40 (s, 2H). 13C 

NMR (125 MHz, CDCl3) δ ppm 142.9, 110.2, 88.4, 79.5, 62.7, 62.5, 32.6, 32.1, 31.9, 25.0, 24.9, 19.1. 

HRMS (EI) calcd. for C12H21O2 [M+H]+: 197.1542. Found: 197.1545. 

1-03c:32 1 mmol scale, 16 h, 60 °C; eluent 20% EtOAc in hexanes; obtained: 71 mg 

(85%), white solid. 1H NMR (500 MHz, CDCl3) δ ppm 6.23 (d, J = 16.1 Hz, 1H), 

5.72 (d, J = 16.0 Hz, 1H), 2.22 (s, 1H), 1.67 (s, 1H), 1.52 (s, 6H), 1.31 (s, 6H). 13C 

NMR (125 MHz, CDCl3) δ ppm 150.5, 106.3, 94.4, 80.2, 71.0, 65.5, 31.4, 29.4. HRMS (EI) calcd. for 

C10H16O2Na [M+Na]+: 191.1048; found: 191.1050. 

1-03ai:81 0.5 mmol scale, 16 h, 60 °C; eluent 20% EtOAc in hexanes; obtained: 91 

mg (88%), white solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.60 (d, J = 7.6 Hz, 

4H), 7.39–7.25 (m, 16H), 6.82 (d, J = 16.0 Hz, 1H), 5.99 (d, J = 15.8 Hz, 1H), 2.82 (s, 1H), 2.32 (s, 1H). 

13C NMR (125 MHz, CDCl3) δ ppm 148.4, 145.0, 144.9, 128.4, 128.3, 127.71, 127.65, 126.9, 126.1, 

108.9, 93.2, 85.2, 79.3, 74.8. HRMS (EI) calcd. for C30H24O2Na [M+Na]+: 439.1674; found: 439.1678. 

1-03aj:32 0.5 mmol scale, 16 h, 60 °C; eluent 20% EtOAc in hexanes; obtained: 55 

mg (89%), white solid. 1H NMR (500 MHz, CDCl3) δ ppm 6.24 (d, J = 16.0 Hz, 

1H), 5.79 (d, J = 16.0 Hz, 1H), 1.93–1.87 (m, 2H), 1.71–1.45 (m, 20H), 1.32–1.20 

(m, 2H). 13C NMR (125 MHz, CDCl3) δ ppm 150.4, 107.0, 93.5, 72.5, 71.9, 69.0, 40.0, 37.5, 25.3, 25.2, 

23.3, 21.8. HRMS (EI) calcd. for C16H24O2Na [M+Na]+: 271.1674; found: 271.1682. 
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1-03ak: 0.5 mmol scale, 3 h, 60 °C; eluent 10% EtOAc in hexanes, obtained: 59 

mg (93%), colourless oil. 1H NMR (500 MHz, CDCl3) δ ppm 6.14 (dd, J = 4.4 

Hz, 16.1 Hz, 1H), 5.87 (dt, J = 1.3 Hz, 16.1 Hz, 1H), 5.37 (d, J = 1.2 Hz, 1H), 

4.93 (dd, J = 1.1 Hz, 4.3 Hz, 1H), 3.79–3.70 (m, 2H), 3.65–3.55 (m, 4H), 3.52–3.44 (m, 2H), 1.26-1.17 

(m, 12H). 13C NMR (125 MHz, CDCl3) δ ppm 141.3, 112.0, 99.8, 91.7, 86.2, 82.7, 61.1, 60.9, 15.2, 15.1. 

HRMS (EI) calcd. For C14H24O4Na [M+Na]+: 279.1572; found: 279.1579. 

1-03al:66 0.5 mmol scale, 16 h, 60 °C; eluent 60% EtOAc in hexanes; obtained: 

34 mg (81%), yellow oil. 1H NMR (500 MHz, CDCl3) δ ppm 6.14–6.04 (m, 

1H), 5.61 (d, J = 15.8 Hz, 1H), 3.31 (s, 2H), 2.92 (d, J = 7.0 Hz, 2H), 2.26 (s, 6H), 2.18 (s, 6H). 13C NMR 

(125 MHz, CDCl3) δ ppm 140.6, 112.0, 84.5, 83.2, 61.6, 48.6, 45.6, 44.2. HRMS (EI) calcd. for C10H19N2 

[M+H]+: 167.1548; found: 167.1548. 

1-03am: 0.5 mmol scale, 16 h, 60 °C; eluent 20% EtOAc in hexanes; 

obtained: 102 mg (96%), white solid. 1H NMR (500 MHz, CDCl3) δ 

ppm 7.86–7.81 (m, 4H), 7.73–7.68 (m, 4H), 5.88 (dt, J = 7.0 Hz, 15.7 Hz, 1H), 5.31 (dt, J = 1.7 Hz, 15.8 

Hz, 1H), 3.78 (t, J = 7.0 Hz, 2H), 3.66 (t, J = 7.2 Hz, 2H), 2.35 (dt, J = 1.8 Hz, 2H), 2.10–2.04 (m, 2H), 

1.91 (q, J = 7.0 Hz, 2H), 1.72 (q, J = 7.4 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ ppm 168.3, 141.4, 

133.9, 133.8, 132.2, 132.1, 123.2, 110.5, 87.6, 79.5, 37.44, 37.36, 30.18, 27.5, 27.3, 17.2. HRMS (EI) 

calcd. for C10H19N2 [M+H]+: 427.1658. Found: 427.1658. 
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1.3.3. Comparison of Carboxylate-free and Carboxylate-assisted Palladium-catalyzed Dimerization 

of Terminal Alkynes 

 

General procedure for method A: An oven-dried 1 mL Wheaton microreactor was loaded with 

IPrPdAllCl (5.7 mg, 2 mol %) and tris(2,6-dimethoxyphenyl)phosphine (4.4 mg, 2 mol %). Anhydrous 

toluene (0.5 mL) was added followed by alkyne 1-01 (0.5 mmol). The reaction mixture was stirred at 60 

°C until the completion. The reaction course was monitored by GC/MS analysis. After the reaction 

completion, the reaction mixture was concentrated and filtered through a short silica gel plug. The 

product was purified by column chromatography. Spectral data for compounds 1-03 obtained by this 

method are identical to those described above. 

1-03a: 0.5 mmol scale, 24 h, 60 °C; obtained: 48 mg (94%, 2:3:4 = 96:4:0). 

1-03j: 0.5 mmol scale, 30 h, 60 °C; obtained: 51 mg (88%). 

1-03i: 0.5 mmol scale, 48 h, 60 °C; obtained: 51 mg (77%). 

1-03z: 0.5 mmol scale, 22 h, 60 °C; obtained: 30 mg (42%, 2:3:4 = 83:0:17). 

1-03q: 0.5 mmol scale, 24 h, 60 °C; obtained: 30 mg (52%, 2:3:4 = 70:0:30). 

1-03n: 0.5 mmol scale, 30 h, 60 °C; obtained: 40 mg (65%). 

1-03ad: 0.5 mmol scale, 48 h, 60 °C; obtained: 48 mg (58%, 2:3:4 = 83:7:10). 

General procedure for method B: An oven-dried 1 mL Wheaton microreactor was loaded with 

IPrPdAllCl (5.7 mg, 2 mol %), tris(2,6-dimethoxyphenyl)phosphine (4.4 mg, 2 mol %), and cesium 

pivalate (2.3 mg, 2 mol %). Anhydrous toluene (0.5 mL) was added followed by alkyne 1-01 (0.5 mmol). 

The reaction mixture was stirred at 60 °C until the completion. The reaction course was monitored by 

R
R

R

R

RIPrPdAllCl (2 mol %)
TDMPP (2 mol %)

CsOPiv (2 mol %)
toluene, 60 °C

toluene, 60 °C 1-011-03 1-02

method A method B
IPrPdAllCl (2 mol %)
TDMPP (2 mol %)
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GC/MS analysis. After the reaction completion, the reaction mixture was concentrated and filtered 

through a short silica gel plug. The product was purified by column chromatography. 

1-02a:60 0.5 mmol scale, 3 h, 60 °C; eluent 100% hexanes; obtained: 32 mg (62%), 

colorless oil. 1H NMR (500 MHz, CDCl3) δ ppm 7.75–7.70 (m, 2H), 7.56–7.53 (m, 2H), 

7.42–7.32 (m, 6H), 6.01 (d, J = 1.0 Hz, 1H), 5.79 (d, J = 1.0 Hz, 1H). 13C NMR (125 

MHz, CDCl3) δ ppm 137.3, 131.7, 130.6, 128.4, 128.3, 126.1, 123.1, 120.6, 90.8, 88.6. HRMS (ESI) 

calcd. for C16H12 [M]+: 204.09390 found: 204.0941. 

1-02j:63a 0.5 mmol scale, 5 h, 60 °C; eluent 5% EtOAc in hexanes; obtained: 56 

mg (85%, 2:3:4 = 5:0:95), yellow solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.69–

7.65 (m, 2H), 7.49–7.45 (m, 2H), 6.93–6.85 (m, 4H), 5.85 (d, J = 0.7 Hz, 1H), 

5.63 (d, J = 0.7 Hz, 1H ), 3.84 (s, 3H), 3.83 (s, 3H). 13C NMR (125 MHz, CDCl3) 

δ ppm 159.7, 159.6, 133.1, 130.1, 127.6, 127.3, 118.1, 115.3, 114.0, 113.7, 90.6, 87.5, 55.35, 55.32. 

HRMS (ESI) calcd. for C18H17O2 [M+H]+: 265.1229; found: 265.1222. 

1-02i:63a 0.5 mmol scale, 2 h, 60 °C; eluent 100% hexanes; obtained: 51 mg (88%), 

white solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.65–7.61 (m, 2H), 7.45–7.42 (m, 

2H), 7.21–7.14 (m, 4H), 5.93 (d, J = 1.0 Hz, 1H), 5.70 (d, J = 0.9 Hz, 1H), 2.38 (s, 

6H). 13C NMR (125 MHz, CDCl3) δ ppm 138.5, 138.2, 134.6, 131.6, 130.6, 129.10, 

129.07, 126.0, 120.1, 119.4, 90.8, 88.1, 21.5, 21.2. HRMS (ESI) calcd. for C18H16 [M]+: 232.1252; found: 

232.1252. 

1-02z:12a 0.5 mmol scale, 2 h, 60 °C; eluent 5% EtOAc in hexanes; obtained: 53 mg 

(80%), light yellow solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.75–7.70 (m, 1H), 

7.47–7.43 (m, 1H), 7.31–7.25 (m, 2H), 7.02–6.97 (m, 1H), 6.97–6.86 (m, 3H), 6.11 

(dd, J = 0.97 Hz, 1.9 Hz, 1H), 5.97 (dd, J = 1.0, 1.9 Hz, 1H), 3.89 (s, 6H). 13C 

NMR (125 MHz, CDCl3) δ ppm 160.1, 157.3, 133.5, 130.6, 129.6, 129.1, 128.0, 127.2, 125.4, 120.5, 

MeO
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120.4, 112.8, 111.5, 110.7, 94.1, 85.3, 55.8, 55.6. HRMS (ESI) calcd. for C18H16O2 [M]+: 264.1150: 

found: 264.1159. 

1-02q:12a 0.5 mmol scale, 2 h, 60 °C; eluent 100% hexanes; obtained: 56 mg 

(97%), colorless oil. 1H NMR (500 MHz, CDCl3) δ ppm 7.44–7.40 (m, 1H), 7.37–

7.33 (m, 1H), 7.28–7.18 (m, 5H), 7.16–7 .10 (m, 1H), 5.89 (d, J = 1.8 Hz, 1H), 

5.55 (d, J = 1.7 Hz, 1H), 2.52 (s, 3H), 2.44 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 

ppm 140.2, 139.4, 135.5, 132.0, 131.9, 130.4, 129.4, 128.8, 128.3, 127.9, 125.9, 125.5, 124.9, 123.0, 93.3, 

89.6, 20.7, 20.3. HRMS (ESI) calcd. for C18H16 [M]+: 232.1252. Found: 232.1257. 

1-02r: 0.5 mmol scale, 24 h, 80 °C; eluent 100% hexanes; obtained: 24 mg (37%, 

2:3:4 = 15:0:85), colorless oil. 1H NMR (500 MHz, CDCl3) δ ppm . 7.14–7. 10 (m, 

1H), 7.09 – 7.05 (m, 3H), 7.03 – 7.00 (m, 2H), 5.93 (d, J = 2.0 Hz, 1H), 5.36 (d, J = 

2.0 Hz, 1H), 2.40 (s, 6H), 2.38 (s, 6H). 13C NMR (125 MHz, CDCl3) δ ppm 140.3, 

139.4, 135.5, 130.2, 127.7, 127.4, 127.2, 126.6, 129.6, 124.6, 122.9, 97.5, 87.0, 21.0, 20.2. HRMS (ESI) 

calcd. for C20H20 [M]+: 260.1565; found: 260.1573. 

1-03r (minor isomer): 1H NMR (500 MHz, CDCl3) δ ppm 7.15–7.05 (m, 7H), 

6.06 (d, J = 16.7 Hz, 1H), 2.51 (s, 6H), 2.40 (s, 6H). 13C NMR (125 MHz, CDCl3) 

δ ppm 140.2, 139.1, 136.2, 135.6, 128.1, 127.7, 127.3, 126.7, 123.1, 114.2, 96.9, 

88.6, 21.1. HRMS (EI) calcd. for C20H20 [M]+: 260.1565; found: 260.1585. 

1-02t: 0.5 mmol scale, 24 h, 80 °C; eluent 25% EtOAc in hexanes; obtained: 63 

mg (78%, 2:3:4 = 2:0:98), yellow solid. 1H NMR (500 MHz, CDCl3) δ ppm  7.21 

(t, J = 8.3 Hz, 1H), 7.16 (t, J = 8.4 Hz, 1H), 6.60 (d, J = 8.4 Hz, 2H), 6.48 (d, J = 

8.4 Hz, 2H), 6.04 (d, J = 2.1 Hz, 1H), 5.55 (d, J = 2.1 Hz, 1H),  3.85 (s, 6H), 3.81 

Me
Me

Me
MeMe

Me

OMe
OMeMeO

OMe

Me

Me

Me

Me



 74 

(s, 6H). 13C NMR (125 MHz, CDCl3) δ ppm 161.5, 157.8, 129.2, 128.7, 126.9, 123.6, 118.0, 104.5, 

103.8, 103.6, 98.7, 79.5, 56.2, 56.0. HRMS (ESI) calcd. for C20H21O4 [M+H]+: 325.1440; found: 

325.1440. 

1-02n: 0.5 mmol scale, 2 h, 60 °C; eluent 100% hexanes; obtained: 61 mg 

(80%), colorless oil. 1H NMR (500 MHz, CDCl3) δ ppm 8.54–8.49 (m, 1H), 

8.25–8.21 (m, 1H), 7.94–7.86 (m, 2H), 7.95–7.79 (m, 2H), 7.67–7.60 (m, 2H), 

7.58–7.44 (m, 5H), 7.43–7.38 (m, 1H), 6.17 (d, J = 1.8 Hz, 1H), 5.85 (d, J = 1.8 

Hz, 1H). 13C NMR (125 MHz, CDCl3) δ ppm 137.7, 133.8, 133.2, 133.1, 130.9, 130.8, 130.5, 128.8, 

128.6, 128.3, 128.2, 126.7, 126.4, 126.3, 126.1, 126.0, 125.8, 125.4, 125.2, 120.8, 94.9, 89.2. HRMS 

(ESI) calcd. for C24H16 [M]+: 304.1252. Found: 304.1239. 

1-02ad:66 0.5 mmol scale, 7 h, 60 °C; eluent 100% hexanes; obtained: 77 mg (93%), 

colorless oil. 1H NMR (500 MHz, CDCl3) δ ppm 5.20 (d, J = 2.1 Hz, 1H), 5.12 (s, 

1H), 2.30 (t, J = 7.1 Hz, 2H), 2.11 (t, J = 7.6 Hz, 2H), 1.57–1.47 (m, 4H), 1.43–1.36 (m, 2H), 1.32–1.21 

(m, 26H), 0.91–0.86 (m, 6H). 13C NMR (125 MHz, CDCl3) δ ppm 132.5, 119.2, 90.1, 81.1, 37.6, 31.9, 

29.63, 29.60, 29.57, 29.5, 29.36, 29.35, 29.2, 29.0, 28.9, 28.8, 28.1, 22.7, 19.3, 14.1. HRMS (ESI) calcd. 

for C24H44 [M]+: 332.3443. Found: 332.3447. 

1-02h:63a 0.5 mmol scale, 7 h, 60 °C; due to high volatility product was not isolated in 

pure form, 65% NMR yield (2:3:4 = 9:0:91). 1H NMR (500 MHz, C6D6) δ ppm 5.41 

(d, J = 1.5 Hz, 1H), 5.20 (d, J = 1.4 Hz, 1H), 1.28 (s, 9H), 1.25 (s, 9H). 13C NMR (125 

MHz, CDCl3) δ ppm 142.4, 115.8, 98.9, 79.3, 35.9, 31.9, 30.9, 28.9, 18.8. 

1-02ag: 6 mmol scale, 12 h, 60 °C; eluent 20% EtOAc in hexanes; obtained: 567 

mg (83%), colorless liquid. 1H NMR (500 MHz, CDCl3) δ ppm 5.31 (m, 1 H), 5.23 

(m, 1 H), 4.63 (s, 2 H), 4.61 (s, 2 H), 3.68 (t, J = 6.7 Hz, 2 H), 3.64 (t, J = 6.9 Hz, 2 H), 3.35 (s, 3 H), 3.34 

(s, 3 H), 2.59 (t, J = 6.9 Hz, 2 H), 2.39 (t, J = 6.6 Hz, 2 H). 13C NMR (125 MHz, CDCl3) δ ppm 128.4, 
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122.0, 96.4, 87.0, 81.2, 66.0, 65.7, 55.2, 55.1, 37.7, 20.8 HRMS (ESI) calcd. for C12H20O4Na [M+Na]+: 

251.1259; found: 251.1258. 

1-02ak: 0.5 mmol scale, 6 h, 60 °C; eluent 10% EtOAc in hexanes; obtained: 52 mg 

(81%, 2:3:4 = 19:0:81), yellow oil. 1H NMR (500 MHz, CDCl3) δ ppm 5.78 (t, J = 

1.5 Hz, 1H), 5.69–5.67 (m, 1H), 5.38 (s, 1H), 4.90–4.89 (m, 1H), 3.79–3.72 (m, 2H), 

3.67–3.56 (m, 4H), 3.54–3.46 (m, 2H), 1.25–1.18 (m, 12H). 13C NMR (125 MHz, CDCl3) δ ppm 128.7, 

125.0, 100.2, 91.7, 85.5, 83.0, 61.4, 60.9, 15.2, 15.1.  calcd. for C14H24O4Na [M+Na]+: 279.1572; found: 

279.1569. 

1.3.4. Theoretical Study 

The standard 6-311G(d) basis set 82  for H, C, N, O and the triple-z basis set with the 

Stuttgart/Dresden effective core potentials83 (SDD) for Pd were used for all calculations with the some 

exceptions (this basis sets combination is denoted as 6-311G(d)&SDD). The B3LYP hybrid density 

functional84 was applied for geometry optimization and thermochemical calculations of initial complexes, 

transition states, intermediate complexes and products. B3LYP/6-311G(d)&SDD level of theory 

adequately describes the energy and geometry parameters of the palladium complexes as was shown in 

previous studies.85 The normal coordinate analysis was performed to characterize the nature of the 

stationary points for all optimized structures. Thermodynamic properties of all studies structures were 

calculated for 298.15 K and 1 atm. Correctness of the obtained transition states was proved by IRC 

(Intrinsic Reaction Coordinate) calculations.86 All calculations were carried out using the Gaussian 09 

program.87 

Investigation of the reactions with neutral palladium complexes (Scheme 1.57) were performed 

for model complexes. The model complexes contain simplified ligand, which has methyl groups on the 

nitrogen atoms. Such model systems adequately represent of relative energy surfaces of metal-mediated 

dimerization of alkynes.88 

EtO

OEt

OEt

EtO



 76 

Calculated free energy surface of Pd-catalyzed head-to-head and head-to-tail dimerization of 

phenylacetylene is shown on Figure 1.1. Calculated ΔE, ΔH and ΔG energy data is given in Table 1.8 and 

ΔE energy surface is shown on Figure 1.6. 

Anionic palladium complexes (Scheme 1.58, 1.59, Figure 1.4), generated as a result of interaction 

with acetate anion, contain real-size NHC ligand for reproducing of the steric effects in catalytic cycle. 

Calculated ΔE, ΔH and ΔG energy data is given in Table 1.9, and ΔE energy surface is shown on Figure 

1.7. 

The calculations of the interaction with base (acetate ion) and formation of the ion pairs in 

different cases of the substrate molecules orientation (Figure 1.5) were carried out with the standard 

DGDZVP89 basis set for H, C, N, O (+SDD basis for Pd) and the M06L90 density functional method. The 

AcO(-) anion is coordinated with Pd atom by fixation of the Pd-O distance at 2.2 angstroms 

(ModReduntant option of the Gaussian program package). 
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Table 1.8. Calculated ΔE, ΔH and ΔG (in kcal/mol) Energy Data for the Studied Catalytic Reaction with 
Phenylacetylene at B3LYP/SDD&6-311G(d) Level (Scheme 1.57, Figure 1.1). 

Point ΔE ΔH ΔG Point ΔE ΔH ΔG 

Head-to-head carbopalladation Head-to-head hydropalladation 

A 0.0 0.0 0.0 A 0.0 0.0 0.0 

B-TS 20.4 17.6 17.6 B-TS 20.4 17.6 17.6 

C 16.8 15.2 14.8 C 16.8 15.2 14.8 

D-hh 9.0 9.0 19.4 D’-hh 11.2 11.2 22.1 

E-TS-hh 26.3 25.4 38.0 E’-TS-hh 13.3 12.2 24.2 

F-hh -8.8 -8.0 5.5 F’-hh -7.9 -5.1 5.2 

G-TS-hh -7.2 -7.2 6.2 G’-TS-hh -5.6 -3.7 8.2 

H-hh -42.5 -39.0 -27.6 H’-hh -42.8 -39.4 -28.2 

Head-to-tail carbopalladation Head-to-tail hydropalladation 

A 0.0 0.0 0.0 A 0.0 0.0 0.0 

B-TS 20.4 17.6 17.6 B-TS 20.4 17.6 17.6 

C 16.8 15.2 14.8 C 16.8 15.2 14.8 

D-ht 8.8 8.8 19.1 D’-ht 11.7 11.8 23.4 

E-TS-ht 30.9 29.6 42.4 E’-TS-ht 13.3 12.5 25.3 

F-ht -6.2 -5.6 8.0 F’-ht -7.1 -4.5 7.4 

G-TS-ht - - - G’-TS-ht -1.5 0.0 12.6 

H-ht -39.2 -35.9 -23.4 H’-ht -37.9 -34.7 -22.5 
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Figure 1.6. Calculated Energy Surface (ΔE, kcal/mol) of Palladium-catalyzed Head-to-head and Head-to-
tail Dimerization of Terminal Alkynes (see Scheme 1.57; different reactions paths are denoted by 
different colors; B3LYP/6-311G(d)&SDD). 

Complete Dissociation Involving Anionic Pd Species in the Catalytic Cycle 

 

Figure 1.7. Calculated Energy Surface (ΔE, kcal/mol) of Pd(-)-catalyzed Head-to-head and Head-to-tail 
Dimerization of Terminal Alkynes (see Scheme 1.59; different reactions paths are denoted by different 
colors; B3LYP/6-311G(d)&SDD). 
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Table 1.9. Calculated ΔE, ΔH and ΔG (in kcal/mol) Energy Data of Pd(-)-Catalyzed Head-to-head and 
Head-to-tail Dimerization of Phenylacetylene (see Scheme 1.59) at B3LYP/SDD&6-311G(d) Level. 

Point ΔE ΔH ΔG Point ΔE ΔH ΔG 

Head-to-head carbopalladation Head-to-tail hydropalladation 

A 0.0 0.0 0.0 A 0.0 0.0 0.0 

B-TS 20.9 18.0 14.3 B-TS 20.9 18.0 14.3 

C 16.9 15.5 13.9 C 16.9 15.5 13.9 

C(-) -6.2 -5.6 -5.9 C(-) -6.2 -5.6 -5.9 

D(-)-hh -10.5 -8.5 4.0 D(-)-ht -14.8 -12.9 -1.5 

E(-)-TS-hh 15.5 16.1 28.7 E(-)-TS-ht 24.1 24.3 36.9 

F(-)-hh -31.5 -28.8 -16.8 F(-)-ht -28.7 -25.8 -12.8 
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PART TWO 

DEVELOPMENT OF HIGHLY EFFICIENT CATALYTIC SYSTEM FOR THE PALLADIUM-

CATALYZED [4+2] BENZANNULATION REACTION OF ENYNES 

2.1. INTRODUCTION 

The ability of conjugated enynes to serve as a four-carbon unit in thermal or Lewis-acid mediated 

cycloaddition reaction with alkynes to form aromatic products was first recognized by Danheiser1 

(Scheme 2.1). Although this enyne-yne cycloaddition reaction represents powerful method for the 

synthesis of bicyclic aromatic compounds, it is limited to intramolecular processes. 

 
Scheme 2.1. Danheiser [4+2] Benzannulation Reaction of Conjugated Enyne with Alkyne. 

With the aid of transition metals, intermolecular catalytic analogs for this transformation became 

available, opening an easy access to densely substituted aromatic products from acyclic starting materials 

via a formal [4+2] cycloaddition of enyne with enynophile (Scheme 2.2). The first example of the [4+2] 

benzannulation reaction between two molecules of conjugated enynes 2-03 under palladium catalysis was 

reported in 1996 by Yamamoto group2 (Scheme 2.2B). Since then, the palladium-catalyzed formal 

cycloaddition of this type has been intensively investigated and became a useful synthetic tool for 

construction of polysubstituted benzenes.3 Besides that, synthetic potential of enynes was realized in 

benzannulation reaction, catalyzed by gold (Scheme 2.2A) or cobalt (Scheme 2.2C) complexes. Three 

types of enynophiles, such as simple alkynes 2-04 (Scheme 2.2A), alkynes conjugated with double 2-03 

(Scheme 2.2B, C) or triple bonds 2-07 (Scheme 2.2B), were shown to participate in these formal [4+2] 

cycloaddition reactions, leading to the formation of diversely substituted styrenes 2-05, 2-06, and 2-09, as 

well as aryl acetylenes 2-08. Therefore, besides the construction of aromatic ring, useful functionalities, 

R3n

R2

R2

n
LA or !R1

R1

R32-01 2-02



 

 

92 

such as double or triple bond, are introduced to the product via a single operation through the [4+2] 

benzannulation of enynes with alkenyl- or alkynyl-containing enynophiles. Accordingly, advances in 

thermal and transition-metal catalyzed [4+2] benzannulation reactions are summarized in the following 

section. 

 
Scheme 2.2. Transition Metal-catalyzed Intermolecular Benzannulation Reactions of Conjugated Enynes 
with Enynophiles: (A) Gold-catalyzed [4+2] Benzannulation of Enynes with Alkynes; (B) Palladium-
catalyzed [4+2] Benzannulation of Enynes with Enynes or Diynes; (C) Cobalt-catalyzed [4+2] homo-
Benzannulation of Enynes. 

2.1.1. Danheiser Intramolecular [4+2] Benzannulation Reaction of Enynes with Alkynes 

In 1994, Danheiser group reported the first example of intramolecular cycloaromatization 

(benzannulation) reaction between conjugated enyne and alkyne.1 It was found that thermolysis of yne-

enynes 2-01 in the presence of phenol additives leads to the formation of aromatized products 2-02 with 

good yields (Scheme 2.3A). Substrates possessing electron-deficient alkynes (2-01a–2-01c) demonstrated 

higher reactivity toward cycloaddition reaction compared to their electron neutral analogs (2-01d, 2-01e) 

presumably due to the lower LUMO energies of enynophile. Notably, various Lewis acids additives 

greatly facilitate the reaction. For example, addition of stoichiometric amount of ZnBr2 allowed for 

smooth conversion of disubstituted enynes to the desired aromatic compounds 2-02f, 2-02g at 40 °C 

(Scheme 2.3B). Additionally, a direct comparison of thermal and Lewis acid mediated conditions 
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revealed that employment of AlCl3 provided desired product 2-02h with higher efficiency under 

considerably milder reaction conditions (Scheme 2.3C). 

 
Scheme 2.3. Danheiser Intramoleculat [4+2] Benzannulation Reaction of Enynes with Alkynes: (A) 
Selected Examples of Thermal [4+2] Benzannulation Reaction; (B) Selected Examples of Lewis Acid-
mediated [4+2] Benzannulation Reaction; (C) Comparison of Thermal and Lewis Acid-mediated [4+2] 
Benzannulation Reaction. 

The developed method was applied for synthesis of various indolines (Scheme 2.4A).4 The 

distinct feature of this approach is the construction of aromatic ring of indoline core from linear 

precursors as opposed to widely used strategy of heterocycle installation onto the existent aromatic core. 

Subsequently, this method allows decorating aromatic ring of indolines with various substituents. Thus, 

easily available ynamides 2-10 underwent efficient [4+2] benzannulation reaction to form the 

corresponding indolines 2-11. Interestingly, diyneamide was also compatible substrate for this 

transformation providing easy entry to the corresponding alkynyl indoline 2-11d. Additionally, 

employment of enyneamides allows for synthesis of indolines with alternative substitution pattern 

(Scheme 2.4B). Particularly, it allows introducing substituent at C-4 position, which is not accessible via 

cycloaddition of enynes with yneamides. The reaction proceeds smoothly for a variety of enyneamides 
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2-12 with the formation of cyclized product 2-13 in high yields. Overall, this thermal intramolecular 

cycloaddition methodology provides two complementary routes toward indoline derivatives. 

 
Scheme 2.4. Synthesis of Indolines via Danheiser [4+2] Benzannulation Reaction of (A) Enynes with 
Ynamides and (B) Enyne Amides with Alkynes. 

Later, this methodology was further expanded to the reaction of enynes with benzynes (Scheme 

2.5).5 Employment of a nitrogen-containing tether allows for a rapid synthesis of the corresponding 

dihydrobenzoisoquinoline derivatives 2-16. Notably, this benzannulation reaction smoothly proceeds at 

ambient temperatures presumably due to the high reactivity of benzyne intermediate 2-15 toward the 

cycloaddition reaction. 

 
Scheme 2.5. Danheiser Intramolecular [4+2] Benzannulation Reaction of Enynes with Benzynes. 
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Besides being useful synthetic tool for the synthesis of bicyclic and polycyclic scaffolds, this 

transformation is also intriguing form mechanistic standpoint. Extensive experimental and theoretical 

mechanistic studies suggest intermediacy of strained cyclic allene in this transformation.6 Thus, a flash 

vacuum thermolysis of compound 2-17 led to the formation of three products, which presumably derived 

from cumulene intermediate 2-18. (Scheme 2.6). 

 
Scheme 2.6. Gas-Phase Thermal Intramolecular [4+2] Benzannulation Reaction. 

The formation of analogous cumulene intermediate 2-24 via a cycloaddition of 2-22 was also 

confirmed by computational methods.6b,c The rearrangement of this intermediate into the final product 

2-31 was proposed to proceed through two possible pathways: via 1,3-H-migration followed by 

isomerization of the double bond (Scheme 2.7, path a), or via two consecutive 1,2-H-migrations though a 

carbene intermediate 2-29 (Scheme 2.7, path b). DFT calculations suggested preference of the second 

reaction route as energy barrier for transformation of intermediate 2-24 into intermediate 2-26 via 

transition state 2-25-TS was found considerably higher compared to that of formation 2-29 from 2-24 via 

2-28-TS. Additionally, subsequent hydrogen migration in carbene intermediate 2-29 to form product 2-31 

is energetically more favorable than double bond isomerization of 2-26 via 2-27-TS. This route also 

explains the experimentally observed formation of isomeric products 2-19 and 2-21 via competitive H or 

Me migrations (Scheme 2.6). The formation of product 2-20 can be explained by the six-π-electron 

electrocyclic ring opening of intermediate 2-18. The influence of the reaction media into the reaction 

mechanism was also studied theoretically, but no strong dependence was revealed. Therefore, it is 

assumed that the thermal [4+2] cycloaddition in solution proceeds via similar mechanistic path. 
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Scheme 2.7. Mechanistic Rationale for Intramolecular [4+2] Benzannulation Reaction Studied by 
Computational Methods (Gibbs free energy ΔG, kcal/mol, is given in parentheses, level of theory MP2/6–
31G*). 

2.1.2. Gold-catalyzed Formal [4+2] Benzannulation Reaction of Enyne with Alkyne 

Transition metal-catalyzed [4+2] benzannulation reaction of enyne with alkyne enynophile was 

reported by Toste group.7 The reaction between enynes 2-03 and propargyl ethers 2-04 in the presence of 

gold catalyst led to the formation of multisubstituted arenes 2-05 via a formal [4+2] cross-benzannulation 

reaction (Scheme 2.8). 

 
Scheme 2.8. Gold-catalyzed Formal [4+2] Benzannulation Reaction of Enynes and Alkynes. 

Synthesis of aromatic products was achieved in a stepwise fashion. For example, reaction 

between conjugated enyne 2-03a and propargyl ether 2-04a in the presence of catalytic amounts of AuCl 

afforded cyclopropane 2-33 as a single regioisomer with high cis-diastereoselectivity, which in the 

presence of triarylphosphitegold(I) chloride was selectively converted to the styrene 2-05a or fluorene 

2-34, depending on a silver co-catalyst used (Scheme 2.9). 
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Scheme 2.9. Synthesis of Styrenes and Fluorenes via Gold-catalyzed Formal [4+2] Benzannulation 
Reaction of Enyne and Alkyne. 

Mechanistically, this reaction involves intermolecular cyclopropanation of enyne 2-03a via the 

gold carbenoid 2-35, formed from rearrangement of propargyl ether 2-04a, followed by the 5-endo-dig 

cyclization induced by a cationic gold catalyst with the formation of bycyclic intermediate 2-37 (Scheme 

2.10). Pivaloyloxy group migration (2-37 → 2-38) and a subsequent cycloisomerization through 

pentadientyl cation 2-39 lead to the aromatic product 2-40, which under electrophilic conditions 

undergoes E1 elimination or Friedel-Crafts alkylation to furnish 2-05a or 2-34, respectively. 

 
Scheme 2.10. Proposed Mechanism for Gold-catalyzed Formal [4+2] Benzannulation Reaction of Enyne 
and Alkyne. 

Me

Ph
+ Me

OPiv

H

MePh

PivO

MeMe(ArO)3PAuCl
AgOTf

CH2Cl2, -10 °C

(ArO)3PAuCl
AgSbF6

CH2Cl2, -10 °C

Me

Me

Me

Me

Me
Me

AuCl
CH2Cl2, -25 °C

Ar = 2,4-di-t-butylphenyl
2-05a (89%)

2-03a 2-04a

2-33 (84%) 2-34 (76%)

[Au]
[Au]

OPiv H

MePh

PivO

[Au]

Me

H

[Au]

Ph

OPiv

Me

H

[Au]

Ph

OPiv

[Au] Me

Ph

OPiv

Me

Ph

PivO

Me

Ph

MePh

Me

Me

MeMe

2-35 2-36

2-372-382-39

2-402-41

2-34

2-04a 2-03a

2-05a



 

 

98 

2.1.3. Palladium-catalyzed [4+2] Benzannulation Reaction 

2.1.3.1. Palladium-catalyzed [4+2] Benzannulation Reaction of Enynes 

Yamamoto group demonstrated that conjugated enynes 2-03 cyclodimerize in the presence of 

Pd(0) catalyst to form styrene derivatives 2-06 (Scheme 2.11).2 The main feature of this reaction is its 

exclusive regiospecificity. Thus, selective formation of a single isomer 2-06 occurred upon reaction, 

whereas isomeric products 2-42, as well as possible products of alkyne trimerization, were never detected. 

 
Scheme 2.11. Palladium-catalyzed [4+2] homo-Benzannulation Reaction. 

The generality of this transformation was intensively studied.2,8 The scope of monosubstituted 

enynes is summarized in Scheme 2.12. Thus, 3-substituted enynes underwent benzannulation to form 

1,4-disubsituted benzenes 2-06a-d. Likewise, enynes bearing 1-alkyl, 1-aryl, or 1-heretoaryl substitution 

reacted with the formation of 2,6-disubstituted styrenes 2-06e-m in good to high yields. As shown, 

various functional groups, such as hydroxyl, carbonyl and amino groups, were well tolerated in this 

reaction. Among 4-substituted enynes, only ones possessing electron-withdrawing groups were reactive 

toward cyclodimerization. Notably, (Z)-substituted enyne gave desired product 2-06n in higher yield 

compared to its (E)-analog 2-06o. 
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Scheme 2.12. Palladium-catalyzed [4+2] homo-Benzannulation Reaction of Monosubstituted Enynes. 

Homo-benzannulation reaction of di- or trisubstituted enynes is a less facile process.8b,c Thus, 

neither 3,4- nor 1,3-dialkyl enynes underwent homo-benzannulation in the presence of Pd(PPh3)4. 

However, introduction of electron-withdrawing substituent led to a dramatic enhancement of their 

reactivity, providing styrene derivatives with moderate to good yields starting from 3,4-disubstituted 

enynes (Scheme 2.13). Analogously to monosubstituted substrates, disubstituted (Z)-enynes 2-06q and 

2-06r afforded the corresponding products with higher efficiency. Using this dimerization approach, 

naphthalenone derivative 2-44 can be obtained via the single operation starting from cyclic enyne 2-43. 
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Scheme 2.13. Palladium-catalyzed [4+2] homo-Benzannulation Reaction of 3,4-Disubstituted Enynes. 

Overall, the reactivity of enynes toward the Pd-catalyzed [4+2] homo-benzannulation reaction 

depends on both electronic and steric properties of the substrate. The reaction is more facile with electron-

deficient substrates. Substitution at the third position of enyne generally promotes benzannulation 

reaction, whereas 4-substituted substrates are the least reactive. Reactivity also becomes lower as number 

of substituents increases. 

Differences in enynes reactivity allowed for control of selective cross-benzannulation reaction 

between two enynes9 (Scheme 2.14). Thus, reaction between highly active electron-deficient enynes 2-03 

and less reactive enynes 2-03' occurred in a regio- and chemoselective manner, which was achieved via a 
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Scheme 2.14. Palladium-catalyzed [4+2] cross-Benzannulation Reaction of Two Enynes. 

Nakao, Shirakawa, Hiyama, and co-workers developed metallative version of the Pd-catalyzed 

[4+2] benzannulation reaction.10 They have demonstrated that benzannulation reaction of enynes 2-03 in 

the presence of bis(tributyl)tin oxide offers easy access to the 3-alkenylarylstannanes 2-46 (Scheme 2.15). 

Reaction was shown to proceed with good yields for a variety of monosubstituted enynes, whereas 

amount of non-stannylated byproduct varied from 4 to 30%. 

 
Scheme 2.15. Stannylative Palladium-catalyzed [4+2] homo-Benzannulation Reaction. 
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Additionally, the metallative version was also applicable to cross-benzannulation reaction 

between two different enynes (Scheme 2.16). 

 
Scheme 2.16. Stannylative Palladium-catalyzed [4+2] cross-Benzannulation Reaction of Two Enynes. 

One of the widely used methods for the synthesis of enynes is the Sonogashira cross-coupling 

reaction between vinyl bromides and terminal alkynes. Base on that, a cascade transformation for the Pd-

catalyzed [4+2] benzannulation reaction between two enynes has been developed.11 Thus, enyne formed 

via the Sonogashira cross-coupling protocol reacted with another enyne moiety to form the corresponding 

aromatic product. In intramolecular version of the cascade sequence, the substrate 2-49 with aryl ester 

tether between vinylbromide and enyne moieties underwent the in situ benzannulation after the 

Sonogashira cross-coupling reaction with the formation of phenanthren-9(10H)-ones 2-51 (Scheme 

2.17).11a The use of nonflexible aryl tether was essential for the one-pot transformation, as the authors 

have shown that reaction stops at the formation of the corresponding bis-enyne intermediate, similar to 

2-50, if flexible alkyl linkage was employed. Presumably, rigid tether brings alkyne unit closer to an 

enyne moiety thus promoting the benzannulation step. 

 
Scheme 2.17. Sonogashira cross-Coupling /Intramolecular cross-Benzannulation Sequence. 
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styrenes in a single transformation under the Sonogashira cross-coupling reaction conditions (Scheme 

2.18). This method was efficient for both aryl and alkyl acetylenes. Among vinyl bromides, only acrylate 

derivatives were shown to produce styrene derivatives in good yields. 

 
Scheme 2.18. Sonogashira cross-Coupling /Intermolecular homo-Benzannulation Sequence. 

2.1.3.2. Palladium-catalyzed [4+2] cross-Benzannulation Reaction of Enynes with Diynes 

Shortly after palladium-catalyzed [4+2] homo-benzannulation reaction of two enynes was 

discovered,2 a cross-benzannulation of enynes with diyne enynophiles was developed,12 thus substantially 

expanding the scope of this transformation. Similarly to homo-, the cross-benzannulation reaction occurs 

in high regioselective manner offering an easy access to densely substituted aryl acetylenes 2-08 as sole 

regioisomers (Scheme 2.19).12,13 
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In most cases, the reaction is chemoselective, providing product of the cross-benzannulation 

reaction only. The reactivity trend of enynes in the cross-benzanulation reaction remains consistent to that 

of the palladium-catalyzed homo-benzannulation of two enynes. However, in this case, the scope was 

expanded to 1,4-disubstituted and 1,3,4-trisubstituted substrates providing access toward aromatic 

products 2-08i-l. 

Being perfectly regiospecific with regard to the orientation of enynes, the reaction is less selective 

with respect to the regioselectivity with unsymmetrically-substituted diyne enynophiles. Expectedly, 

single products are formed in the reaction with symmetrically substituted diynes (Scheme 2.19). 

However, if unsymmetrical diynes are employed, both triple bonds are capable to undergo benzannulation 

reaction with the formation of two regioisomers 2-56 and 2-57 (Table 2.1). The regioselectivity pattern of 

unsymmetrically-substituted substrates is not well understood. Experiment showed that in some cases 

only one triple bond of unsymmetrical diyne was reactive toward the benzannulation reaction. Thus, 

terminal diynes, possessing tertiary substituents at the second alkyne moiety, reacted with 3-methylenyne 

2-54 selectively to produce single products (entries 2, 3). In both arylacetylene products the bulky groups 

were attached to the aromatic ring. Similar result was obtained for the disubstituted diyne (entry 6). 

Interestingly, silylsubstituted diyne reacted selectively at silylalkyne unit to form o-alkynylarylsilane 

(entry 7), which was not the case for terminal alkyne (entry 4), thus indicating that steric demand is not 

the only factor affecting the reaction regioselectivity. Nonetheless, for the majority of the substrates, both 

triple bonds of the diyne participated in the benzannulation reaction to afford mixtures of two 

regioisomers with moderate to good selectivity (entries 1, 4, 5). 
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Table 2.1. Palladium-catalyzed [4+2] cross-Benzannulation Reaction of 3-Methylenyne 2-54 with 
Unsymmetrically Substituted Diynes. 

 

Entry R1 R2 Yield of 2-56, % Yield of 2-57, % 

1 H n-C6H13- 2-56a 50 2-57a 28 

2 H t-Bu- 2-56b 52 2-57b traces 

3 H MOMOC(Me)2- 2-56c 80 2-57c none 

4 H TMS 2-56d 23 2-57d 18 

5 n-Bu Ph 2-56e 46 2-57e 54 

6 n-Bu MOMOC(Me)2- 2-56f 54 2-57f traces 

7 Ph TMS 2-56g 78 2-57g none 

Analogously to the palladium-catalyzed [4+2] benzannulation reaction of two enynes, the 

stannylative version of benzannulation reaction of enyne 2-54 with diphenylbutadiyne was also successful 

providing 3-alkynylarylstannane 2-58 in 85% yield10 (Scheme 2.20). Notably, the metallative version of 

this reaction allowed introducing substitution at the meta- position to the alkynyl moiety, which is the 

only nonfunctionalizable position via the non-metallative method. 

 
Scheme 2.20. Stannylative Palladium-catalyzed [4+2] cross-Benzannulation Reaction of Enyne with 
Dyine. 
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dihalide 2-59 and two molecules of terminal diyne produced phenanthren-9(10H)-one derivatives 2-61 

with modest yields under the Sonogashira cross-coupling conditions (Path A). Alternatively, 

incorporation of two different substituents to the final product 2-64 was achieved via a stepwise addition 

of terminal alkyne and dyine moieties (Path B). 

 
Scheme 2.21. Sonogashira cross-Coupling /Intramolecular cross-Benzannulation Sequence. 
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chemoselectivity of this process. 
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Scheme 2.22. Palladium-catalyzed Dimerization of Acetylenes followed by Intramolecular [4+2] cross-
Benzannulation Reaction. 

As discussed above, the Pd-catalyzed benzannulation reaction requires an activating group 

(alkenyl or alkynyl) in the molecule of enynophile, as no benzannulation was observed with alkynes 

lacking adjacent multiple bond functionality. Activating group also serves as a directing group providing 

perfect regioselectivity with respect to enyne leading to the formation of a single regioisomer in both 

homo- and cross-benzannulation reactions. These unique features of the process cannot be explained by 

mechanistic rationale available for the intramolecular Danheiser reaction.6 To expose these issues, 

alternative pathway for the palladium catalyzed benzannulation was proposed (Scheme 2.23). 

 
Scheme 2.23. Proposed Mechanism for Palladium-catalyzed [4+2] Benzannulation Reaction. 
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Thus, coordination of palladium catalyst to triple bonds of substrates followed by 

metallacycloaddition leads to the formation of the key intermediate 2-70, which gained additional 

stabilization by bounding with an activating alkenyl or alkynyl group. These species can undergo 

reductive elimination to form strained cyclic allene 2-71 similar to the intermediate 2-18 (Scheme 2.6) 

involved in the Danheiser cycloaddition reaction (Scheme 2.23, path I). However, this route does not 

explain stereoselectivity of hydrogen migration observed in the benzannulation of monodeuterated 

(E)-2-77 and (Z)-2-77 enynes (Scheme 2.24),13b since 1,5-hydride shift should not exhibit stereochemical 

preference in planar cyclic cumulene 2-71. 

 
Scheme 2.24. Deuterium Labeling Studies on Stereoselectivity of Hydrogen Migration. 
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more favorable migration of the (E)-hydrogen atom compared to that of (Z)-hydrogen, regardless of the 

pathway, as latter atom is significantly more hindered by the vicinal substituents and by ligands at 

palladium atom. 

2.1.3.3. Synthetic Applications of Palladium-catalyzed [4+2] Benzannulation Reaction 

Excellent functional group compatibility is another important feature of the palladium-catalyzed 

[4+2] benzannulation reaction, therefore, its synthetic potential was systematically investigated. As a 

result, a variety of methods for the synthesis of diversely substituted aromatic compounds were 

developed. Selected examples are discussed bellow. 

Often introduction of a heteroatom-based functionality to the aromatic ring through the Pd-

catalyzed benzannulation strategy is complicated by lack of stability and availability of the corresponding 

starting materials. Nevertheless, proper design of substrates allowed for the synthesis of both oxygen and 

nitrogen containing arenes (Schemes 2.25-2.29).17 ,18  For example, 1-(2-80) and 3-alkoxysubstituted 

enynes (2-82) under homo-benzannulation reaction conditions were transformed into the corresponding 

resorcinol derivative 2-8117b and p-methoxyacetophenone 2-8417a (Scheme 2.25). In the former case, 

tert-butyl ether group assured necessary stability of the starting enyne. 3-Alkoxyenynes are generally 

more stable, however, α-methoxystyrene 2-83, formed upon benzannulation, hydrolyzed rapidly on the 

silica gel affording the acetophenone derivative 2-84. 

 
Scheme 2.25. Synthesis of Aryl Ethers via Palladium-catalyzed [4+2] homo-Benzannulation of Enynes. 
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Similarly, a variety of arylethers can be obtained via the [4+2] cross-benzannulation reaction of 

enynes with diynes (Scheme 2.26).17 Notably, using this strategy, alkoxy substituent can be introduced at 

the positions 2, 4, and 6 of arylacethylene product 2-87 with the use of appropriate coupling partners. 

Moreover, starting from silylethers, the corresponding p-alkynylphenols can be synthesized upon silyl 

group removal.17b 

 
Scheme 2.26. Synthesis of Aryl Ethers via Palladium-catalyzed cross-Benzannulation of Enynes with 
Dyines. 

Methodology for synthesis of β-alkoxy alkynyl ethers was further elaborated into the one-pot 

procedure for the synthesis of coumaranones (Scheme 2.27). Thus, TsOH was directly added to the 

reaction mixture upon completion of the benzannulation step, which resulted in the hydrolysis of the 

tert-butyl ether and a subsequent cyclization producing coumaranone 2-90 in high yield starting from 

linear precursors.17a 

 
Scheme 2.27. One-pot Synthesis of Coumaranone 2-90 via Palladium-catalyzed [4+2] 
Benzannulation/Acid-mediated Cyclization. 
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Importantly, unsymmetrically substituted diyne 2-91 underwent a cross-benzannylation reaction 

with 3-methylenyne 2-54 in highly regioselective manner with the formation of alkoxysubstituted 

arylalkyne 2-92 as a single reaction product (Scheme 2.28). Similar preference was observed for 

differently substituted enynes, although up to 20% of another regioisomer was formed in some cases.17b 

 
Scheme 2.28. Regioselective Palladium-catalyzed [4+2] cross-Benzannulation Reaction of 
Alkoxysubstituted Diyne. 

Reactivity of nitrogen-containing enynes is lower compared to that of oxygen-based analogs. 

Thus, 3-aminosubstituted enynes 2-93 are inert toward homo-dimerization reaction in the presence of 

palladium catalyst. However, reaction between aminoenynes 2-93 with diynes proceeded smoothly with 

the formation of aniline derivatives 2-94 in acceptable yields (Scheme 2.29).18 

 
Scheme 2.29. Synthesis of Protected Anilines via Palladium-catalyzed [4+2] cross-Benzannulation 
Reaction of Aminoenynes with Diynes. 

Phosphine oxides are among various functionalities that can be introduced into the aromatic 

alkynes via the Pd-catalyzed benzannulation reaction. Thus, the reaction between readily available enynes 

2-95 with 5,7-dodecadiyne resulted in the formation of corresponding benzylphosphine oxides 2-96 in 

good yields (Scheme 2.30). 19 
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Scheme 2.30. Synthesis of Arylphosphine Oxides Palladium-catalyzed [4+2] cross-Benzannulation 
Reaction. 

An efficient strategy toward α-aryl carbonyl compounds has been developed based on 

combination of an In-catalyzed Conia-ene reaction and the Pd-catalyzed cross-benzannulation reaction 

(Scheme 2.31).20 Thus, regioselective In-catalyzed addition of ketoesters to terminal diynes allowed for 

efficient synthesis of enynes 2-99, which subsequently underwent smooth benzannulation reaction to 

form densely substituted α-aryl ketones 2-100 in high to excellent yields. 

 
Scheme 2.31. Synthesis of α-Arylated Carbonyl Compounds via Sequential Indium-catalyzed Conia-ene 
and Palladium-catalyzed [4+2] cross-Benzannulation Reactions. 

Both intramolecular homo-benzannulation of enynes and intermolecular cross-benzannulation of 

enynes with diynes were applied for the synthesis of cyclophane-type compounds.2,21 As shown in Table 

2.2, bisenynes 2-101 in the presence of palladium catalyst under high dilution underwent [4+2] 

benzannulation producing exomethylene paracyclophanes 2-102.21a The efficiency of this transformation 

varied significantly depending on the length of the carbon chain in the starting bisenyne 2-101. Thus, 

cyclophanes 2-102e–f, bearing a relatively longer tether, were synthesized in good yields (entries 5-10), 

whereas highly strained cyclophanes 2-102a and 2-102b were formed in 2 and 18% yields, respectively 

(entries 1,2). 
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Table 2.2. Synthesis of Exomethylene Paracyclophanes via Intramolecular Palladium-catalyzed [4+2] 
homo-Benzannulation of Enynes. 

 

Entry N Pd(PPh3)4, mol % C, M  Yield, % 

1 7 40 0.001 2-102a 1.7 

2 8 40 0.001 2-102b 18 

3 9 40 0.001 2-102c 36 

4 10 40 0.001 2-102d 47 

5 
11 

40 0.001 
2-102e 

61 

6 10 0.001 51 

7 
12 

40 0.005 
2-102f 

71 

8 10 0.005 59 

9 
14 

40 0.005 
2-102g 

71 

10 10 0.005 67 

Analogously to the all carbon cyclophanes, ether-containing exomethylene paracyclophanes can 

be easily prepared via the Pd-catalyzed benzannulation of bisenynes 2-103 (Scheme 2.32A).21b 

Additionally, introduction of ester tether at C-4 position of tethered enynes allowed for the smooth 

synthesis of methacyclophanes, containing endocyclic double bond (Scheme 2.31B).21b In agreement with 

general reactivity profile of enynes toward the Pd-catalyzed homo-benzannulation, the ester-containing 

substrates 2-105 provided better yields of desired cyclophanes under milder reaction conditions compared 

to that of alkyl substituted bisenynes 2-101 or 2-103. 

(CH2)n

toluene, !
high dilution

(CH2)n

2-101 2-102

Pd(PPh3)4 (2-20 mol %)
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Scheme 2.32. Synthesis of Para- (A) and Metacyclophanes (B) via Intramolecular Palladium-catalyzed 
[4+2] homo-Benzannulation of Enynes. 

Different types of cyclophanes, such as ortho-, meta-, or paracyclophanes, were obtained via the 

intermolecular Pd-catalyzed [4+2] cross-benzannulation of cyclic enynes with diynes.21d For example, 

compound 2-109, containing both meta- and orthocyclophane motifs, was synthesized upon reaction of 

enyne 2-107 and diyne 2-108 in 72% yield (Scheme 2.33). 

 
Scheme 2.33. Synthesis of Cyclophane 2-109 via Palladium-catalyzed [4+2] cross-Benzannulation of 
Enyne with Diyne. 

Besides a wide use of the Pd-catalyzed [4+2] benzannulation reaction to the direct synthesis of 

adducts with desired functionalities, it was also employed for a late stage derivatization of molecules of 

interest. For instance, novel quinuclidine derivatives were prepared via this methodology (Scheme 

2.34).22 Thus, enyne-containing quinuclidine derivative 2-110 underwent benzannulation reaction to form 

pentasubstituted benzene 2-111 in a fair yield. On the other hand, a formal [2+2+2] benzannulation of 

phenylacethylene with diyne 2-112, possessing quinuclidine moieties, furnished aromatized product 

2-113 with good efficiency. 
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Scheme 2.34. Modification of Quinuclidine Derivatives via Palladium-catalyzed [4+2] cross-
Benzannulation Reaction. 

2.1.4. Cobalt-catalyzed [4+2] homo-Benzannulation Reaction 

Complementary to the palladium-catalyzed version, the [4+2] homo-benzannulation of enynes 

under a cobalt-catalysis was reported by Hilt group.23 It was found that 1-substituted enynes formed the 

corresponding 2,6-disubstituted styrenes 2-06 in moderate to good yields in the presence catalytic 

amounts of Co(dppp)Br2, zinc powder, and zinc iodide under mild reaction conditions (Scheme 2.35). 

 
Scheme 2.35. Cobalt-catalyzed [4+2] Homo-Benzannulation Reaction toward 2,6-Substituted Styrenes. 

Remarkably, a change of solvent from DCM to THF resulted in an unprecedented switch of 

reaction regioselectivity leading to the formation of 2,3-substituted styrenes 2-09. A variety of 1-aryl- or 

heteroarylsubstituted enynes 2-03 were shown to react with good efficiency (Table 2.3). Notably, in the 

case of bromo-substituted enyne, a clean reaction without protodebromination or formation of cross-

coupling products occurred (entry 4). For a dienyne substrate, having both terminal and endocyclic double 

bonds, the former double bond reacted regioselectively, while the double bond of the cyclohexene subunit 

remained untouched (entry 8). 
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Table 2.3. Cobalt-catalyzed [4+2] homo-Benzannulation Reaction Toward 2,3-Substituted Styrenes. 

 

Entry R  Yield, % Entry R  Yield, % 

1 Ph 2-09a 60 5 (3,5-t-Bu)2-C6H3- 2-09e 86 

2 p-MeO-C6H4- 2-09b 39 6 2-naphthyl- 2-09f 76 

3 p-Cl-C6H4- 2-09c 66 7 

 

2-09g 55 

4 m-Br-C6H4- 2-09d 65 8 
 

2-09h 39 

Enyne 2-114, possessing 2-pyridyl substituent, afforded bispyridyl derivatieves 2-09i, which 

reacted efficiently with dihalomethane to form planar chiral bispyridinium salts 2-115 (Scheme 2.36).24 

 
Scheme 2.36. Cobalt-catalyzed Dimerization of Pyridylenyne. 

Interestingly, under the same reaction conditions the benzannulation reaction did not take place 

when electron deficient enynes, such as 2-116, were used as substrates. Instead, the corresponding alkyne 

trimerization product 2-117 was formed (Scheme 2.37). These results highlight significant difference 

between the cobalt- and the palladium-catalyzed benzannulation reactions, as electron poor enynes were 

the most reactive substrates for the latter [4+2] benzannulation reaction. 
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Scheme 2.37. Cobalt-catalyzed Cyclotrimerization of Electron-Deficient Conjugated Enyne. 

Solvent coordinating ability was proposed to be a major factor for selectivity control in the 

cobalt-catalyzed transformation. Presumably, a more coordinating solvent, such as THF, can serve as 

additional ligand, therefore establishing an alternative arrangement of the bidentate phosphine ligand 

(dppp) and the coordinated starting material at the metal center. However, no experimental evidences 

were obtained to support this hypothesis so far. 

2.1.5. Summary and Outlook 

The thermal, Lewis acid-mediated, and transition metal-catalyzed [4+2] benzannulation reactions 

of enynes with various alkyne-containing enynophiles are powerful atom-economical methods for the 

aromatic ring construction from easily accessible starting materials. The proper choice of the coupling 

partners allows for the synthesis of densely substituted benzenes with high chemo- and regioselectivity. 

Despite of significant progress achieved during the past years expanding the utility of benzannulation 

reaction, several challenges remain unsolved, such as necessity for the activating group at enynophile or 

regioselectivity control in case of the reaction with unsymmetricaly substituted diynes. Additionally, 

further development of general approaches for the synthesis of aromatic compounds possessing valuable 

functionalities is highly desirable.  
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2.2. DEVELOPMENT OF HIGHLY EFFICIENT CATALYTIC SYSTEM FOR THE 

PALLADIUM-CATALYZED [4+2] BENZANNULATION REACTION 

2.2.1. Optimization of the Reaction Conditions toward High TON Benzannulation Reaction 

In the era of sustainable chemistry, development of highly active catalytic systems for atom and 

step economical processes is on high demand.25 One of the ways to improve activity of the catalytic 

system in transition-metal catalysis is the stabilization of the reactive metal complex, which allows for 

high turnover numbers (TONs) of the catalyst. Although the immense progress has been achieved in the 

development of high TON Pd-catalyzed cross-coupling reactions,26 cycloaddition reactions catalyzed by 

palladium complexes with high TONs are rare.27 

Despite remarkable selectivity and broad scope, the palladium-catalyzed [4+2] benzannulation 

reaction employing di- and trisubstituted enynes usually required prolonged heating (up to 14 days) and 

high catalyst loading (5 mol % of Pd(PPh3)4 to ensure complete conversion of starting materials. In order 

to improve catalytic activity, systematic studies of additives and ligands effects on the benzannulation 

reaction were performed (Table 2.4).16 First, a dramatic acceleration was observed in a presence of Lewis 

acids, in particularly, methylaluminoxane (MAO) in combination with electron-rich bulky tris(2,6-

dimethoxyphenyl)phosphine (TDMPP) ligand. The use of these reaction conditions resulted in shorter 

reaction times at lower temperatures (entries 1,2). Furthermore, investigation of a base effect on the 

benzannulation reaction revealed that additions of tertiary amine to the reaction media enabled full 

conversion within 6 hours giving quantitative NMR yields (entry 3). However, it was shown that amine 

caused substantial decomposition of enyne in several cases. Although introduction of stoichiometric 

additives significantly improved the catalytic system, catalyst loading remained relatively high with its 

turnover number limited to 20. Therefore, we were interested in improving efficacy of the palladium-

catalyzed [4+2] benzannulation reaction. 
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Table 2.4. Comparison of Different Catalytic Systems for Palladium-catalyzed cross-Benzannulation 
Reaction.a 

 

Entry Pd (mol %) Conditions Time, h Yield, % TON TOF Ref. 

1 Pd(PPh3)4 (5.0) A 96 90 18.0 10-4 13b 

2 Pd(OAc)2 (5.0) B 17 72 14.4 10-3 16 

3 Pd(PPh3)4 (5.0) C 6 100 20 10-2 16 

aConditions: A: Pd(PPh3)4 (5 mol %), toluene, 100 °C; B: Pd(OAc)2 (5 mol %), TDMPP (0.5 equiv), tert-
butylacetylene (20 mol %), MAO (0.2 equiv), toluene, 80 °C; C: Pd(PPh3)4 (5 mol %), Et3N (2 equiv), 
toluene, 100 °C. 

To this end, the cross-benzannulation reaction of enyne 2-03a and diyne 2-04a toward arylalkyne 

2-08aa was tested. We turned our attention to the ligands, which show superior performance in high TON 

Pd-catalyzed cross-coupling reactions and related processes. Thus, biphenyl phosphine ligands A,28 

multidentate ferrocene-based ligands B,29 and N-heterocyclic carbene (NHC) ligands C30 were examined 

(Figure 1). 

 
Figure 2.1. Typical Ligands for High TON Catalytic Systems in the Palladium-catalyzed 
Transformations. 

It was found that the employment of 2-diphenylphosphino-2′-(N,N-dimethylamino)-biphenyl 

(PhDavePhos, A1) did not provide any improvement compared to the standard reaction conditions (Table 

2.5, entries 1, 2). Disappointedly, no reaction was observed in the presence of 

1,1'-bis(diphenylphosphino)ferrocene (DPPF) (entry 3). Several commercially available bidentate ligands 

were also tested to mimic the highly active multidentate analogs B. However, ferrocene-based 
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phosphines, as well as other bidentate ligands, were ineffective in this reaction. Likewise, employment of 

1,3-bis(2,6-di-i-propylphenyl)imidazolium chloride (IPr•HCl, C1) as an NHC-ligand precursor did not 

promote the reaction (entry 4). On the other hand, combination of NHC and phosphine ligands resulted in 

improvement of the reaction yield (entry 5).31 Utilization of the mixed ligand C232 or defined IPrPdPPh3 

catalyst33 was not beneficial (entries 6, 7). Gratifyingly, employment of Pd NHC-based pre-catalyst 

IPrPdAllCl resulted in shortened reaction time (entry 8). It also allowed reducing the amount of catalyst 

to 0.5 mol % (entry 9). Further decreasing the catalyst loading led to the termination of the reaction at 

about 20% conversion (entry 10). Among phosphine co-ligands, electron-rich phosphines were the most 

efficient (entries 11, 12). Cesium carboxylates were found to be superior compared to other inorganic 

bases tested. Thus, reaction was completed within 8 hours in 85% yield in the presence of CsOPiv (entry 

13), although high TON were still illusionary (entry 14). Expectedly, increase of concentration gave 

reasonable improvement of the reaction yield (entry 15). Finally, in the presence of tri(2-furyl)phosphine 

(TFP) ligand under nearly neat conditions, a TON higher than 1700 has been achieved (Table 1, entry 

17)!* 

 

 

 

 

 

 

 

  
                                                
* See experimental section 2.3.4. for detailed optimization of the reaction conditions. 
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Table 2.5. Conditions Optimization for the Palladium-catalyzed [4+2] Benzannulation Reaction.a 

 

Entry [Pd] cat., n mol % Ligand Base T, °C; t, h C, M Yield, %b 

1 Pd2dba3, 1.5  PPh3 - 80, 80 1.0 74 

2 Pd2dba3, 1.5  A1 - 80, 80 1.0 69 

3 Pd2dba3, 1.5  DPPF - 80, 80 1.0 0c 

4 Pd2dba3, 1.5  C1 Cs2CO3 80 120 1.0 0c 

5 Pd2dba3, 1.5 C1, PPh3 Cs2CO3 80, 66 1.0 82 

6 Pd2dba3, 1.5  C2 Cs2CO3 120, 20 1.0 58 

7 IPrPdPPh3, 1.5 - - 80, 40 1.0 67 

8 IPrPdAllCl, 1.5 PPh3 Cs2CO3 80, 40 1.0 77 

9 IPrPdAllCl, 0.5 PPh3 Cs2CO3 80, 100 1.0 75 

10 IPrPdAllCl, 0.1 PPh3 Cs2CO3 80, 100 1.0 21d 

11 IPrPdAllCl, 1.0 TFP Cs2CO3 100, 25 1.0 80 

12 IPrPdAllCl, 1.0 A1 Cs2CO3 100, 25 1.0 83 

13 IPrPdAllCl, 1.0 A1 CsOPiv 100, 8 1.0 85 

14 IPrPdAllCl, 0.1 A1 CsOPiv 120, 15 1.0 39d 

15 IPrPdAllCl, 0.1 A1 CsOPiv 120, 15 2.5 74 

16 IPrPdAllCl, 0.1 TFP CsOPiv 120, 15 10 86 

17 IPrPdAllCl, 0.05 TFP CsOPiv 120, 40 20 85 
aReaction conditions: 2-03a (0.1 mmol), 2-07a (0.11 mmol), Pd (n mol %), ligand (5n mol %), base (10n 
mol %) in dry toluene. bGC/MS yield at 100% conversion of enyne. cNo reaction was observed. 
dConversion was not complete. 
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2.2.2. Scope of Enynes and Diynes 

Next, the scope of enynes in the [4+2] cross-benzannulation reaction, catalyzed by 

IPrPdAllCl/TFP/CsOPiv system, was investigated (Table 2.6). It was found that arylenynes possessing 

electron-poor aromatic substituents were slightly more efficient compared to their electron-rich 

counterparts (entries 1 – 3). Enynes bearing 1,3-dialkyl substitution smoothly underwent benzannulation 

reaction regardless of the substituent size at the C-3 position (entries 4, 5). The least reactive 

1,4-disubstituted substrate 2-03g gave the product in diminished yield (entry 7), however 

1,3,4-trisubstituted enyne 2-03h reacted well (entry 8). Enynes bearing masked hydroxyl group provided 

access to phenol 2-08ia, benzyl- 2-08ja, and homobenzyl alcohol 2-08ka derivatives (entries 9 – 11). 

Substrate 2-03l possessing tertiary amine group reacted smoothly to give the corresponding ortho-alkynyl 

benzylamine 2-08la (entry 12). 

The scope of diynes is presented in Table 2.7. Due to low solubility of 1,4-diphenylbutadiyne 

under the reaction conditions, the benzannulation proceeded to about 50% conversion, thus providing 

poor yield of the product (entry 1). However, decreasing the concentration allowed to obtain the 

corresponding biarylalkyne 2-08db in 84% yield, although higher catalyst loading was required under 

more dilute conditions (entries 2, 3). Analogous to the reactivity trend observed for enynes, electron-

deficient diaryldiyne 2-07d gave better yield of the corresponding product compared to that for electron-

rich compound 2-07c (entries 4, 5). Diyne possessing protected alcohol moiety underwent benzannulation 

in slightly diminished yield (entry 6). Unlike the corresponding enyne 2-03l, diyne 2-07f bearing amine 

functionality gave unsatisfactory yield due to its decomposition (entry 7). 
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Table 2.6. The Scope of Enynes in the Palladium-catalyzed [4+2] Benzannulation Reaction.a 

 

Entry Enyne  Product  Yield, %b TONc 

1 
 

2-03a 

 

2-08aa 83 
1660 

(20)16 

2 

 

2-03b 

 

2-08ba 86 1720 

3 

 

2-03c 

 

2-08ca 71 1420 

4 
 

2-03d 

 

2-08da 85 1700 

5 
 

2-03e 

 

2-08ea 87 
1740 

(17)15 

6 
 

2-03f 

 

2-08fa 84 1680 

7 
 

2-03g 

 

2-08ga 53 1060 

8 
 

2-03h 

 

2-08ha 75 
1480 

(15)16 
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Entry Enyne  Product  Yield, %b TONc 

9 
 

2-03i 

 

2-08ia 41 
820 

(15)16 

10 
 

2-03j 

 

2-08ja 77 1540 

11 

 

2-03k 

 

2-08ka 69 
1380 

(11)15 

12 
 

2-03l 

 

2-08la 90 1800 

aReaction conditions: 2-03 (1 equiv), 2-07a (1.1 equiv), IPrPdAllCl (0.05 mol %), TFP (0.25 mol %), 
CsOPiv (0.5 mol %) in dry toluene (20 M). bIsolated yield, %. cTON is equal to [(product mol)×(catalyst 
mol)-1], previously reported TONs are in parentheses. 
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Table 2.7. The Scope of Diynes in the Palladium-catalyzed [4+2] Benzannulation Reaction.a 

 

Entry R  Product Yield, %b TONc 

1 

 

 

 

 41 820 

2 2-07b 2-08db 62d 620 

3   84e 168 

4 
 

2-07c 

 

2-08dc 77e 154 

5 
 

2-07d 

 

2-08dd 88e 196 

6 
 

2-07e 

 

2-08de 59 1180 

7 
 

2-07f 

 

2-08df 32 620 

8 
 

2-07b 

 

2-08ab 55d,f 
550 

(17)13b 

aReaction conditions: 2-03d (1 equiv), 2-07 (1.1 equiv), IPrPdAllCl (0.05 mol %), TFP (0.25 mol %), 
CsOPiv (0.5 mol %) in dry toluene (20 M). bIsolated yield, %. cTON is equal to [(product mol)×(catalyst 
mol)-1], previously reported TON is in parentheses. dIPrPdAllCl (0.1 mol %), TFP (0.5 mol %), CsOPiv 
(1.0 mol %) in dry toluene (10 M). eIPrPdAllCl (0.5 mol %), TFP (2.5 mol %), CsOPiv (2.5 mol %) in 
dry toluene (2 M). f(3-methylbut-3-en-1-ynyl)benzene 2-03a was used.  

Me

n-Bu R

R Men-Bu

RR

+
CsOPiv, toluene, 120 °C

2-03d 2-07 2-08

IPrPdAllCl, TFP

Men-Bu

PhPh

OMe

Men-Bu

MeO

OMe

CO2Et

Men-Bu

EtO2C

CO2Et

OMOM
Men-Bu

OMOM

OMOM

NMe2

Men-Bu

NMe2
Me2N
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2.2.3. Optimization of Reaction Conditions and Scope of the Palladium-catalyzed [4+2] homo-

Benzannulation Reaction 

Next, we turned our attention to the Pd-catalyzed [4+2] homo-benzannulation reaction. Although 

the [4+2] homo-benzannulation of 1- or 3-monosubstituted enynes is well elaborated, homo-

benzannulation of disubstituted enynes was limited to electron deficient substrates. Notably, during the 

initial optimization of the cross-benzannulation reaction, formation of trace amount of enyne dimer was 

observed. We found this result quite surprising, as 1,3-disubstituted electron-neutral enynes did not 

undergo homo-dimerization reaction before.2,8 We decided to investigate the potential homo-

benzannulation reaction of disubstituted enyne 2-03a in the absence of diyne coupling partner (Table 2.8). 

Thus, it was found that in the presence of 1.5 mol % of IPrPdAllCl, 3 mol % of 

tris(p-methoxyphenyl)phosphine and 3 mol % of Cs2CO3 in toluene (1 M) enyne 2-03a underwent homo-

benzannulation providing the corresponding styrene derivative 2-06aa in 65% unoptimized yield (entry 

1). Employment of catalytic conditions effective for cross-benzannulation reaction did not improve 

reaction efficiency (entry 2). Further optimization of ligand revealed than biarylphosphines, such as 

RuPhos and PhDavePhos, were the most effective (entries 3-6). Ultimately, it was found that the catalyst 

loading could be reduced to 0.5 mol % with enhanced yield upon prolonged heating (entries 7, 8). Further 

decreasing of catalyst amount gave unsatisfactory results (entries 9, 10). 
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Table 2.8. Optimization of Conditions for Palladium-catalyzed [4+2] homo-Benzannulation Reaction of 
Disubstituted Enynes.a 

 

Entry n of Pd, mol % Ligand Base C, M T, °C t, h Yield, %b 

1 1.5 (p-MeOC6H4)3P Cs2CO3 1.0 80 80 65 

2 1.5 TFP CsOPiv 1.0 120 48 50 

3 1.5 RuPhos CsOPiv 1.0 120 20 80 

4 1.0 PPh3 CsOPiv 1.0 120 15 0c 

5 1.0 TTMPP CsOPiv 1.0 120 15 55 

6 1.0 PhDavePhos CsOPiv 1.0 120 20 74 

7 0.5 PhDavePhos CsOPiv 1.0 120 48 78 

8 0.5 RuPhos CsOPiv 1.0 120 48 80 

9 0.25 PhDavePhos CsOPiv 1.0 120 120 32d 

10 0.25 RuPhos CsOPiv 1.0 120 120 37d 

aReaction conditions: 2-03a (0.1 mmol), IPrPdAllCl (n mol %), ligand (5n mol %), base (2n mol %) in 
dry toluene. bGC/MS yield at 100% conversion of enyne. cNo reaction was observed. dConversion was not 
complete. 

The scope of this transformation was also examined (Table 2.9). Expectedly, electron-deficient 

substrate 2-03b provided desired product in higher yield (entry 2), whereas reactivity of electron-rich 

enyne 2-03c was lower (entry 3). Bis-1,3-dialkyl substituted enyne 2-03d reacted efficiently to afford 

styrene 2-06dd (entry 4). Likewise, styrenes 2-06jj and 2-06ll with alkoxy- and alkylamine moieties were 

effectively synthesized in good yields from the corresponding alkoxymethyl- and aminomethylenynes 

(entries 5, 6). Unfortunately, trisubstituted enynes did not undergo homo-benzannulation reaction even 

under these highly efficient conditions. 

Ph

Me IPrPdAllCl (n mol %)
L (5n mol %)

Base (5n mol%)
toluene, T, t

Me

PhPh

Me
2-03a 2-06aa
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Table 2.9. The Scope of the Palladium-catalyzed [4+2] homo-Benzannulation of 1,3-Disubstituted 
Enynes.a 

 

Entry Enyne Product  Yield, %b 

1 2-03a 

 

2-06aa 80 

2 2-03b 

 

2-06bb 89 

3 2-03c 

 

2-06cc 47 

4 2-03d 

 

2-06dd 77 

5 2-03j 

 

2-06jj 73 

6 2-03l 

 

2-06ll 76 

aReaction conditions: 2-03 (1 equiv), IPrPdAllCl (0.5 mol %), RuPhos (2.5 mol %), CsOPiv (2.5 mol %) 
in dry toluene (5 M). bIsolated yield, %. 
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Me
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Me
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Me
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Me
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2.2.3. Summary 

In summary, a highly efficient catalytic system for [4+2] benzannulation of enynes with 

enynophiles has been developed. Newly found conditions enabled synthesis of variety of densely 

substituted arylacetylenes with high turnover number of the palladium catalyst. Moreover, the new 

catalytic system allowed to expand the scope of this transformation, as previously unreactive 

1,3-disubstituted enynes underwent efficient homo-benzannulation to afford multisubstituted styrenes. 
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2.3. EXPERIMENTAL SECTION 

2.3.1. General Information 

NMR spectra were recorded on a Bruker Avance DRX-500 (500 MHz) and Bruker Avance 

DRX-400 (400 MHz) spectrometers. LRMS and HRMS analysis was performed on Micromass 70 VSE 

high-resolution mass spectrometer or Micromass LCT spectrometer equipped with a time-of-flight 

analyzer. GC/MS analysis was performed on a Hewlett Packard Model 6890 GC interfaced to a Hewlett 

Packard Model 5973 mass selective detector (15 m x 0.25 mm capillary column, HP-5MS). Column 

chromatography was carried out employing Silicycle Silica-P Flash silica gel (40-63 µm). Precoated silica 

gel plates F-254 were used for thin-layer analytical chromatography. All manipulations with transition 

metal catalysts were conducted in oven-dried glassware under inert atmosphere using a combination of 

glovebox and standard Schlenk techniques. Small-scale reactions were carried in Wheaton V-vials 

equipped with Mininert Syringe valve and stirring bar. Anhydrous solvents purchased from Aldrich were 

additionally purified on PureSolv PS-400-4 purification system by Innovative Technology, Inc. and/or 

stored over calcium hydride; toluene was additionally redistilled over calcium hydride, degased and kept 

in the glovebox. All other starting materials were purchased from Strem Chemicals, Sigma Aldrich, or 

Alfa Aesar. 

2.3.2. Preparation of Enynes 

Enynes 2-03a-d, 2-03f-h, 2-03j, 2-03l were obtained via Sonogashira cross-coupling reaction: 

 

General procedure: A Schlenk flask was charged with Pd(PPh3)2Cl2 (2 mol %) and CuI (5 mol 

%) under N2 atmosphere. THF and Et3N were added subsequently in 1:1 ratio (1M). Vinyl bromide (in 

case of 2-03a–d, 2-03g), trifluoromethylsulfonate (2-03f), or tosylate (2-03h) (1 equiv) was added to the 

reaction mixture, followed by dropwise addition of corresponding alkyne (1.1 equiv). The reaction 

R1
+ X

R2

R3 R1

R2

R3

Pd(PPh3)2Cl2
CuI, Et3N, THF

50 °C 2-03
X = Br, OTf, OTs
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mixture was heated to 50 °C and stirred until completion. The reaction was then quenched with saturated 

NH4Cl solution and extracted with EtOAc (3 × 5 mL). Combined extracts were dried over Na2SO4 and 

solvent was removed under vacuum. The residue was purified by flash column chromatography (2-03b–

d, 2-03f, 2-03g, 2-03h, 2-03j) or by Kugelrohr distillation under reduced pressure (2-03a, 2-03d, 2-03l) to 

afford corresponding enyne 2-03. 

Compounds 2-03a,34 2-03b,35 2-03c,36 2-03f,37 2-03g,38 2-03h15 are known and their analytical 

data are in agreement with literature data. 

2-03j: 60% yield, colorless liquid. 1H NMR (500 MHz, CDCl3) δ ppm 5.30 (m, 1 H), 

5.23 (m, 1 H), 4.82 (t, J = 3.4 Hz, 1 H), 4.29 – 4.41 (m, 2 H), 3.88 – 3.82 (m, 1 H), 3.56 

– 3.51 (m, 1 H), 1.89 (s, 3 H), 1.88 – 1.79 (m, 1 H), 1.78 – 1.70 (m, 1 H), 1.67 – 1.50 (m, 4 H) 13C NMR 

(125 MHz, CDCl3) δ ppm 126.4, 122.2, 96.8, 87.0, 84.1, 62.0, 54.7, 30.3, 25.4, 23.4, 19.0 HRMS (ESI) 

calculated for C11H16O2Na [M+Na]: 203.1048, found: 203.1049. 

2-03l: 30% yield, colorless liquid. 1H NMR (500 MHz, CDCl3) δ ppm 5.26 (m, 1 H), 

5.19 (m, 1 H), 3.34 (s, 2 H), 2.29 (s, 6 H), 1.89 (m, 3 H) 13C NMR (125 MHz, CDCl3) δ 

ppm 126.7, 121.3, 88.5, 83.7, 48.4, 44.2, 23.7 HRMS (EI+) calculated for C8H12N0–1 [M–1]: 122.09697, 

found: 122.09636. 

Enynes 2-03e, 2-03k were obtained via dimerization of terminal alkynes according to literature 

procedure:14 

 

Compounds 2-03e39 is known and its analytical data is in agreement with literature data. 

2-03k: 83% yield, colorless liquid. 1H NMR (500 MHz, CDCl3) δ ppm 5.31 (m, 1 

H), 5.23 (m, 1 H), 4.63 (s, 2 H), 4.61 (s, 2 H), 3.68 (t, J = 6.7 Hz, 2 H), 3.64 (t, J = 

6.9 Hz, 2 H), 3.35 (s, 3 H), 3.34 (s, 3 H), 2.59 (t, J = 6.9 Hz, 2 H), 2.39 (t, J = 6.6 Hz, 2 H) 13C NMR (125 

R
R

R
Pd(OAc)2, TDMPP

toluene, rt
2-03

Me

THPO

Me

Me2N

MOMO

MOMO
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MHz, CDCl3) δ ppm 128.4, 122.0, 96.4, 87.0, 81.2, 66.0, 65.7, 55.2, 55.1, 37.7, 20.8 HRMS (ESI) 

calculated for C12H20O4Na [M+Na]+: 251.1259, found: 251.1258. 

Enyne 2-03i was obtained via known procedure and its analytical data is in agreement with 

literature data.17b 

2.3.3. Preparation of Diynes 

Diynes 2-07a, 2-07c–f were prepared via Cu-mediated Glaser coupling of alkynes according to 

literature procedure:40 

 
Compounds 2-07a,

40 2-07c–d,41 2-07f,42 are known and their analytical data are in agreement with 

literature data. 

2-07e: 99% yield, colorless oil. 1H NMR (500 MHz, CDCl3) δ ppm 

4.62 (m, 4 H), 3.62 (dt, J = 6.7 Hz, J = 1.1 Hz, 4 H), 3.35 (s, 6 H), 2.53 

(dt, J = 6.8 Hz, J = 1.1 Hz, 4 H) 13C NMR (125 MHz, CDCl3) δ ppm 96.4, 74.4, 66.1, 65.5, 55.3, 20.8 

HRMS (ESI) calculated for C12H18O4Na [M+Na]+: 249.1103, found: 249.1104. 

2.3.4. Palladium-catalyzed [4+2] cross-Benzannulation of Enynes with Diynes 

Optimization of conditions for palladium-catalyzed [4+2] cross-benzannulation, general 

procedure: A mixture of (3-methylbut-3-en-1-ynyl)benzene 2-03a (0.1 mmol, 1 equiv) and 

dodeca-5,7-diyne 2-07a (1.1 mmol, 1.1 equiv) was placed to an oven-dried 0.5 mL V-vial, equipped with 

a stirring bar. Base (2n mol %) and phosphine ligand (2n mol %) was added under N2 atmosphere. 

Solution of IPrPdAllCl (n mol %) in toluene was added via microsyringe under N2 atmosphere and the 

reaction vessel was capped with syringe valve. The reaction mixture was stirred at elevated temperature 

upon completion, which was monitored by GC/MS (Table 2.10).   

R
R

Cu(OAc)2•H2O
CH3CN, reflux

2-07

R

OMOM

MOMO
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Table 2.10. Optimization of Conditions for Palladium-catalyzed [4+2] cross–Benzannulation Reaction. 

 

Entry Pd source n, mol % Ligand Base C, M T, °C t, h Yield, % 

Optimization of palladium sourse 

1 Pd2dba3  1.5 PPh3 - 1.0 80 80 74 

2 Pd2dba3  1.5 C1 Cs2CO3 1.0 120 120 0 

3 Pd2dba3  1.5 C1, PPh3 Cs2CO3 1.0 80 66 82 

4 Pd2dba3  1.5 C2 Cs2CO3 1.0 120 20 58 

5 Pd2dba3 1.5 PhDavePhos - 1.0 80 72 69 

6 Pd2dba3 1.5 dppf - 1.0 120 120 0 

7 IPrPdPPh3 1.5 - - 1.0 80 40 67 

8 IPrPdAllCl 1.5 PPh3 Cs2CO3 1.0 80 40 78 

9 IMesPdAllCl 1.0 PPh3 Cs2CO3 1.0 80 100 79 

10 IMesPdAllCl 0.5 PPh3 Cs2CO3 1.0 80 100 41 

11 IPrPdAllCl 1.0 PPh3 Cs2CO3 1.0 80 40 79 

12 IPrPdAllCl 0.5 PPh3 Cs2CO3 1.0 80 100 75 

13 IPrPdAllCl 0.1 PPh3 Cs2CO3 1.0 80 100 21 

14 SIPrPdAllCl 1.0 PPh3 Cs2CO3 1.0 80 100 79 

15 SIPrPdAllCl 0.5 PPh3 Cs2CO3 1.0 80 100 75 

16 SIPrPdAllCl 0.1 PPh3 Cs2CO3 1.0 80 100 0 

Me

Ph n-Bu

n-Bu MePh

n-Bun-Bu

+
base, toluene

T [°C], t [h]

Pd (n mol %)
L (5 n mol %)

2-03a 2-07a 2-08a
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Entry Pd source n, mol % Ligand Base C, M T, °C t, h Yield, % 

Optimization of phosphine ligand 

1 IPrPdAllCl 1.0 PPh3 Cs2CO3 1.0 100 40 79 

2 IPrPdAllCl 1.0 (p-MeC6H4)3P Cs2CO3 1.0 100 40 85 

3 IPrPdAllCl 1.0 (p-MeOC6H4)3P Cs2CO3 1.0 100 40 84 

4 IPrPdAllCl 1.0 TDMPP Cs2CO3 1.0 100 40 53 

5 IPrPdAllCl 1.0 TFP Cs2CO3 1.0 100 25 80 

6 IPrPdAllCl 1.0 (p-F3CC6H4)3P Cs2CO3 1.0 100 40 80 

7 IPrPdAllCl 1.0 (F5C6)3P Cs2CO3 1.0 100 40 0 

8 IPrPdAllCl 1.0 RuPhos Cs2CO3 1.0 100 40 74 

9 IPrPdAllCl 1.0 PhDavePhos Cs2CO3 1.0 100 25 83 

10 IPrPdAllCl 1.0 dppf Cs2CO3 1.0 100 40 0 

11 IPrPdAllCl 1.0 Cy3P Cs2CO3 1.0 100 40 17 

12 IPrPdAllCl 1.0 Ph3P(CH2)2PPh3 Cs2CO3 1.0 100 40 0 

Optimization of inorganic base 

1 IPrPdAllCl 1.0 PhDavePhos CsOAc 1.0 100 8 83 

2 IPrPdAllCl 1.0 PhDavePhos CsOPiv 1.0 100 8 85 

3 IPrPdAllCl 1.0 PhDavePhos K2CO3 1.0 100 25 83 

4 IPrPdAllCl 1.0 PhDavePhos KOAc 1.0 100 25 63 

5 IPrPdAllCl 1.0 PhDavePhos Na2CO3 1.0 100 25 31 

6 IPrPdAllCl 1.0 PhDavePhos NaOAc 1.0 100 25 48 
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Entry Pd source n, mol % Ligand Base C, M T, °C t, h Yield, % 

Optimization of catalyst loading and concentration 

1 IPrPdAllCl 0.5 PhDavePhos CsOPiv 1.0 120 8 86 

2 IPrPdAllCl 0.25 PhDavePhos CsOPiv 1.0 120 20 85 

3 IPrPdAllCl 0.1 PhDavePhos CsOPiv 1.0 120 20 39 

4 IPrPdAllCl 0.1 PhDavePhos CsOPiv 0.5 120 15 43 

5 IPrPdAllCl 0.1 PhDavePhos CsOPiv 2.5 120 15 74 

6 IPrPdAllCl 0.1 PhDavePhos CsOPiv 5.0 120 15 67 

7 IPrPdAllCl 0.1 TFP CsOPiv 2.5 120 15 77 

8 IPrPdAllCl 0.1 TFP CsOPiv 5.0 120 15 80 

9 IPrPdAllCl 0.1 TFP CsOPiv 10 120 15 86 

10 IPrPdAllCl 0.05 TFP CsOPiv 10 120 15 84 

11 IPrPdAllCl 0.05 TFP CsOPiv 20 120 15 85 

12 IPrPdAllCl 0.01 TFP CsOPiv neat 120 15 0 
  



 

 

136 

 

General procedure for palladium-catalyzed [4+2] cross-benzannulation: A mixture of enyne 

2-03 (1.0 mmol, 1 equiv) and diyne 2-07 (1.1 mmol, 1.1 equiv) was placed to an oven-dried 0.5 mL 

V-vial, equipped with a stirring bar. CsOPiv (1.2 mg, 0.005 mmol, 0.5 mol %) was added under N2 

atmosphere. 50 ml of stock solution of IPrPdAllCl (0.0005 mmol, 0.05 mol %) and (2-furyl)3P (0.0025 

mmol, 0.25 mol %) in toluene [prepared by dissolving IPrPdAllCl (5.7 mg, 0.01 mmol) and (2-furyl)3P 

(11.6 mg, 0.05 mmol) in 1 mL of toluene] was added via microsyringe under N2 atmosphere and the 

reaction vessel was capped with syringe valve. The reaction mixture was stirred at 120 °C for 40-120 h. 

Resulting mixture was cooled down to room temperature, diluted with DCM, and filtered through a celite 

plug. The filtrate was concentrated under a reduced pressure, and the crude product was purified by 

column chromatography on silica gel to afford 2-08. 

2-08aa:13b 253.8 mg (1 mmol scale), 83% yield, colorless oil (eluent: hexanes). 1H 

NMR (500 MHz, CDCl3) δ ppm 7.60 – 7.56 (m, 2 H), 7.42 – 7.37 (m, 2 H), 7.35 – 

7.31 (m, 1 H), 7.02 (s, 2 H), 2.83 (m, 2 H), 2.37 (s, 3 H), 2.34 – 2.29 (m, 2 H), 1.72 – 1.64 (m, 2 H), 1.50 

– 1.40 (m, 4 H), 1.39 – 1.28 (m, 2 H), 0.99 (dt, J = 7.3 Hz, J = 1.6 Hz, 3 H), 0.89 (dt, J = 7.3 Hz, J = 1.6 

Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 145.5, 144.2, 141.7, 136.9, 129.5, 128.4, 127.8, 127.6, 

126.8, 119.0, 96.6, 78.5, 35.0, 33.0, 30.7, 22.9, 21.9, 21.4, 19.3, 14.1, 13.7 HRMS (ESI) calculated for 

C23H29 [M+H]+: 305.2269, found: 305.2271. 

2-08ba: 156.1 mg (0.5 mmol scale), 86% yield, pale yellow oil (hexanes : 

EtOAc = 10:1). 1H NMR (500 MHz, CDCl3) δ ppm 8.08 – 8.04 (m, 2 H), 7.65 

– 7.61 (m, 2 H), 7.03 (d, J = 1.0 Hz, 1 H), 6.99 (d, J = 1.0 Hz, 1 H), 3.94 (s, 3 

H), 2.81 (m, 2 H), 2.35 (s, 3 H), 2.29 (t, J = 6.9 Hz, 2 H), 1.69 – 1.59 (m, 2 H), 1.47 – 1.38 (m, 4 H), 1.34 

– 1.28 (m, 2 H), 0.97 (t, J = 7.4 Hz, 3 H), 0.86 (t, J = 7.3 Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 

167.2, 146.5, 145.7, 143.0, 137.0, 129.5, 129.0, 128.9, 128.5, 127.5, 118.9, 97.1, 78.1, 52.0, 34.9, 32.9, 

R2

R1 R3 R

R R2R1

R3

RR

+
CsOPiv, toluene, 120 °C

2-03 2-07 2-08

IPrPdAllCl (0.05 mol %)
TFP (0.25 mol %)
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n-Bun-Bu

Me

n-Bun-Bu

MeO2C
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30.6, 22.8, 21.9, 21.4, 19.3, 14.0, 13.6 HRMS (ESI) calculated for C25H31O2 [M+H]+: 363.2324, found: 

363.2323. 

2-08ca: 118.5 mg (0.5 mmol scale), 71% yield, colorless oil (hexanes : EtOAc = 

20:1). 1H NMR (500 MHz, CDCl3) δ ppm 7.53 (d, J = 8.7 Hz, 2 H), 6.99 (s, 2 H), 

6.94 (d, J = 8.7 Hz, 2 H), 3.87 (s, 3 H), 2.82 (m, 2H), 2.37 – 2.32 (m, 5 H), 1.71 – 

1.63 (m, 2 H), 1.53 – 1.33 (m, 6 H), 0.98 (t, J = 7.4 Hz, 3 H), 0.90 (t, J = 7.3 Hz, 3 H) 13C NMR (125 

MHz, CDCl3) δ ppm 158.7, 145.6, 143.7, 136.8, 134.2, 130.5, 128.0, 127.7, 118.9, 113.0, 96.4, 78.6, 55.3, 

35.0, 33.0, 30.8, 22.9, 21.9, 21.4, 19.4, 14.1, 13.7 HRMS (ESI) calculated for C24H31O [M+H]+: 

335.2375, found: 335.2378. 

2-08da: 242.0 mg, 85% yield, colorless oil (hexanes). 1H NMR (500 MHz, CDCl3) 

δ ppm 6.83 (s, 2 H), 2.75 – 2.70 (m, 4 H), 2.49 (t, J = 6.9 Hz, 2 H), 2.29 (s, 3 H), 

1.65 – 1.48 (m, 8 H), 1.44 – 1.35 (m, 4 H), 0.98 – 0.93 (m, 9 H) 13C NMR (125 MHz, CDCl3) δ ppm 

144.9, 136.6, 126.8, 119.8, 96.6, 77.8, 34.8, 33.0, 31.1, 22.8, 22.0, 21.4, 19.4, 14.0, 13.6 HRMS (ESI) 

calculated for C21H33 [M+H]+: 285.2582, found: 285.2578. 

2-08ea:15 285.1 mg (1 mmol scale), 87% yield, colorless oil (hexanes). 1H NMR 

(500 MHz, CDCl3) δ ppm 6.84 (s, 2 H), 2.76 – 2.72 (m, 4 H), 2.57 – 2.47 (m, 4 H), 

1.67 – 1.49 (m, 10 H), 1.45 – 1.31 (m, 6 H), 1.00 – 0.91 (m, 12 H) 13C NMR (125 

MHz, CDCl3) δ ppm 144.8, 141.7, 126.1, 120.0, 96.6, 77.9, 35.6, 34.8, 33.6, 33.0, 31.2, 22.8, 22.4, 22.5, 

19.4, 14.03, 13.97, 13.6 HRMS (ESI) calculated for C24H39 [M+H]+: 327.3052, found: 327.3057. 

2-08fa: 144.7 mg (0.5 mmol scale), 84% yield, colorless oil (hexanes). 1H NMR 

(500 MHz, CDCl3) δ ppm 7.61 – 7.58 (m, 2 H), 7.43 – 7.39 (m, 2 H), 7.36 – 7.32 

(m, 1 H), 7.03 (s, 2 H), 2.86 – 2.82 (m, 2 H), 2.65 – 2.60 (m, 2 H), 2.33 (t, J = 6.9 

Hz, 2 H), 1.73 – 1.60 (m, 4 H), 1.50 – 1.31 (m, 8 H), 0.99 (t, J = 7.4 Hz, 3 H), 0.95 (t, J = 7.3 Hz, 3 H), 

0.89 (t, J = 7.3 Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 145.5, 144.1, 142.0, 141.8, 129.5, 127.8, 

Me

n-Bun-Bu

MeO

Men-Bu

n-Bun-Bu

n-Bun-Bu

n-Bun-Bu

n-BuPh

n-Bun-Bu
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127.6, 127.1, 126.9, 119.1, 96.5, 78.5, 35.6, 35.0, 33.6, 33.0, 30.7, 22.9, 22.5, 21.9, 19.3, 14.1, 14.0, 13.7 

HRMS (ESI) calculated for C26H35 [M+H]+: 347.2739, found: 347.2737. 

2-08ga:13b 161.7 mg (1 mmol scale), 53% yield, colorless oil (hexanes). 1H NMR 

(500 MHz, CDCl3) δ ppm 7.58 – 7.56 (m, 2 H), 7.41 – 7.38 (m, 2 H), 7.35 – 7.31 

(m, 1 H), 7.14 – 7.08 (m, 2 H), 2.92 – 2.88 (m, 2 H), 2.38 (s, 3 H), 2.32 (t, J = 6.9 

Hz, 2 H), 1.64 – 1.57 (m, 2 H), 1.54 – 1.43 (m, 4 H), 1.39 – 1.31 (m, 2 H), 1.00 (t, J = 7.4 Hz, 3 H), 0.89 

(t, J = 7.3 Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 143.9, 142.2, 141.8, 134.7, 129.5, 129.3, 127.6, 

126.7, 126.6, 122.1, 96.8, 78.9, 31.8, 31.7, 30.6, 23.3, 21.9, 19.7, 19.3, 14.0, 13.6 HRMS (ESI) calculated 

for C23H29 [M+H]+: 305.2269, found: 305.2271. 

2-08ha:15 281.7 mg, 75% yield, colorless oil (hexanes : EtOAc = 20:1). 1H NMR 

(500 MHz, CDCl3) δ ppm 7.54 – 7.51 (m, 2 H), 7.41 – 7.37 (m, 2 H), 7.36 – 7.32 

(m, 1 H), 7.04 (s, 1 H), 4.43 (q, J = 7.2 Hz, 2 H), 2.83 – 2.77 (m, 2 H), 2.33 (s, 3 

H), 2.29 (t, J = 6.9 Hz, 2 H), 1.70 – 1.62 (m, 2 H), 1.47 – 1.38 (m, 7 H), 1.36 – 1.27 (m, 2 H), 0.96 (t, J = 

7.4 Hz, 3 H), 0.87 (t, J = 7.3 Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 169.8, 145.1, 142.2, 141.0, 

133.4, 133.3, 129.3, 128.8, 127.7, 127.2, 120.2, 97.3, 77.9, 61.1, 33.0, 32.8, 30.5, 23.3, 21.9, 19.6, 19.3, 

14.3, 13.9, 13.6 HRMS (ESI) calculated for C26H33O2 [M+H]+: 377.2481, found: 377.2480. 

2-08ia:16 85.4 mg (0.5 mmol scale), 41% yield, colorless oil (hexanes). 1H NMR 

(500 MHz, CDCl3) δ ppm 7.59 – 7.55 (m, 2 H), 7.42 – 7.37 (m, 2 H), 7.36 – 7.31 

(m, 1 H), 6.69 (s, 2 H), 2.82 – 2.77 (m, 2 H), 2.30 (t, J = 6.89 Hz, 2 H), 1.70 – 1.62 (m, 2 H), 1.48 – 1.36 

(m, 4 H), 1.37 – 1.29 (m, 2 H), 1.02 – 0.95 (m, 12 H), 0.88 (t, J = 7.3 Hz, 3 H), 0.23 (s, 6 H) 13C NMR 

(125 MHz, CDCl3) δ ppm 154.5, 147.2, 145.6, 141.4, 129.3, 127.6, 127.0, 119.3, 118.7, 115.0, 95.7, 78.3, 

35.0, 32.7, 30.7, 25.7, 22.7, 21.9, 19.3, 18.3, 14.0, 13.6, –4.3 HRMS (ESI) calculated for C28H41OSi 

[M+H]+: 421.2927, found: 421.2927. 
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2-08ja: 132.5 mg (0.5 mmol scale), 77% yield, colorless oil (hexanes : EtOAc = 

10:1). 1H NMR (500 MHz, CDCl3) δ ppm 7.12 (s, 1 H), 6.92 (s, 1 H), 4.87 (d, J = 

12.8 Hz, 1 H), 4.78 (t, J = 3.5 Hz, 1 H), 4.66 (d, J = 12.8 Hz, 1 H), 4.00 – 3.95 (m, 1 H), 3.60 – 3.54 (m, 1 

H), 2.76 – 2.72 (m, 2 H), 2.48 (t, J = 6.9 Hz, 2 H), 2.32 (s, 3 H), 1.96 – 1.87 (m, 1 H), 1.81 – 1.69 (m, 2 

H), 1.67 – 1.47 (m, 9 H), 1.43 – 1.33 (m, 2 H), 0.98 – 0.92 (m, 6 H) 13C NMR (125 MHz, CDCl3) δ ppm 

144.9, 140.0, 137.0, 128.3, 125.4, 118.9, 98.5, 97.9, 76.8, 67.9, 62.0, 34.5, 32.9, 31.0, 30.6, 25.6, 22.7, 

22.0, 21.5, 19.5, 19.4, 14.0, 13.6 HRMS (ESI) calculated for C23H35O2 [M+H]+: 343.2637, found: 

343.2634. 

2-08ka:15 133.9 mg (0.5 mmol scale), 69% yield, pale yellow oil (hexanes : 

EtOAc = 10:1). 1H NMR (500 MHz, CDCl3) δ ppm 6.93 (s, 1 H), 6.92 (s, 1 

H), 4.63 (s, 2 H), 4.61 (s, 2 H), 3.77 (t, J = 7.4 Hz, 2 H), 3.73 (t, J = 7.1 Hz, 

2 H), 3.33 (s, 3 H), 3.30 (s, 3 H), 3.06 (t, J = 7.4 Hz, 2 H), 2.83 (t, J = 7.1 Hz, 2 H), 2.73 (m, 2 H), 2.47 (t, 

J = 6.9 Hz, 2 H), 1.64 – 1.55 (m, 4 H), 1.54 – 1.46 (m, 2 H), 1.42 – 1.33 (m, 2 H), 0.97 – 0.91 (m, 6 H) 

13C NMR (125 MHz, CDCl3) δ ppm 145.2, 140.3, 137.7, 127.3, 121.2, 97.5, 96.4, 96.3, 77.3, 68.3, 67.6, 

55.14, 55.06, 36.2, 35.4, 34.8, 32.9, 31.1, 22.7, 22.0, 19.4, 14.0, 13.6 HRMS (ESI) calculated for 

C24H39O4 [M+H]+: 391.2848, found: 391.2851. 

2-08la: 129.1 mg (0.5 mmol scale), 90% yield, pale yellow oil (EtOAc : MeOH = 

10:1). 1H NMR (500 MHz, CDCl3) δ ppm 7.04 (s, 1 H), 6.89 (s, 1 H), 3.57 (s, 2 H), 

2.76 – 2.71 (m, 2 H), 2.50 (t, J = 6.9 Hz, 2 H), 2.32 – 2.27 (m, 9 H), 1.66 – 1.49 (m, 6 H), 1.44 – 1.34 (m, 

2 H), 0.99 – 0.92 (m, 6 H) 13C NMR (125 MHz, CDCl3) δ ppm 144.9, 140.4, 136.7, 128.0, 127.3, 120.5, 

97.6, 77.5, 62.2, 45.7, 34.7, 33.0, 31.1, 22.8, 22.1, 21.4, 19.4, 14.0, 13.6 HRMS (ESI) calculated for 

C20H32N [M+H]+: 286.2535, found: 286.2531 

2-08db: 121.6 mg (1 mmol scale, 0.05 mol % IPrPdAllCl, 41% yield); 200.6 mg (1 

mmol scale, 0.1 mol % IPrPdAllCl, 62% yield); 271.6 mg (1 mmol scale, 0.5 mol % 
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IPrPdAllCl, 84% yield), colorless oil (hexanes : EtOAc = 20:1). 1H NMR (500 MHz, CDCl3) δ ppm 7.75 

– 7.72 (m, 2 H), 7.53 – 7.51 (m, 2 H), 7.50 – 7.47 (m, 1 H), 7.36 – 7.32 (m, 5 H), 7.16 (s, 1 H), 7.14 (s, 1 

H), 3.01 (m, 2 H), 2.46 (s, 3 H), 1.86 – 1.79 (m, 2 H), 1.60 – 1.54 (m, 2 H), 1.08 (t, J = 7.3 Hz, 3 H) 13C 

NMR (125 MHz, CDCl3) δ ppm 145.7, 144.5, 141.3, 138.1, 131.1, 129.6, 128.7, 128.3, 127.9, 127.83, 

127.76, 127.3, 124.1, 118.2, 96.6, 88.3, 35.1, 33.2, 23.0, 21.6, 14.2 HRMS (ESI) calculated for C25H25 

[M+H]+: 325.1956, found: 325.1956. 

2-08dc: 148.2 mg (0.5 mmol scale, 0.5 mol % IPrPdAllCl), 77% yield, 

colorless oil (hexanes : EtOAc = 20:1). 1H NMR (500 MHz, CDCl3) δ ppm 

7.61 (d, J = 8.7 Hz, 2 H), 7.27 (d, J = 8.8 Hz, 2 H), 7.06 (s, 1 H), 7.03 (s, 1 

H), 6.99 (d, J = 8.8 Hz, 2 H), 6.84 (d, J = 8.8 Hz, 2 H), 3.89 (s, 3 H), 3.81 (s, 

3 H), 2.92 (m, 2 H), 2.39 (s, 3 H), 1.79 – 1.71 (m, 2 H), 1.54 – 1.45 (m, 2 H), 1.00 (t, J = 7.4 Hz, 3 H) 13C 

NMR (125 MHz, CDCl3) δ ppm 159.3, 158.9, 145.4, 143.7, 137.6, 134.0, 132.5, 130.7, 128.2, 127.7, 

118.4, 116.3, 114.0, 113.1, 95.4, 87.0, 55.33, 55.28, 35.1, 33.0, 22.9, 21.5, 14.1 HRMS (ESI) calculated 

for C27H29O2 [M+H]+: 385.2168, found: 385.2171. 

2-08dd: 205.8 mg (0.5 mmol scale, 0.5 mol % IPrPdAllCl), 88% yield, 

colorless oil (hexanes : EtOAc = 4:1). 1H NMR (500 MHz, CDCl3) δ ppm 

8.13 (d, J = 8.1 Hz, 2 H), 7.97 (d, J = 8.1 Hz, 2 H), 7.67 (d, J = 8.1 Hz, 2 

H), 7.31 (d, J = 8.1 Hz, 2 H), 7.10 (s, 1 H), 7.08 (s, 1 H), 4.43 (q, J = 7.05 

Hz, 2 H), 4.36 (q, J = 7.05 Hz, 2 H), 2.91 (m, 2 H), 2.40 (s, 3 H), 1.74 – 1.68 (m, 2 H), 1.53 – 1.33 (m, 8 

H), 0.99 (t, J = 7.3 Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 166.6, 166.0, 146.2, 145.7, 143.6, 138.8, 

130.9, 129.52, 129.46, 129.3, 129.0, 128.3, 127.8, 117.5, 95.2, 90.8, 61.1, 61.0, 35.0, 33.1, 22.8, 21.5, 

14.4, 14.3, 14.1 HRMS (ESI) calculated for C31H33O4 [M+H]+: 469.2379, found: 469.2380. 

2-08de: 102.2 mg (0.5 mmol scale), 59% yield, colorless oil (hexanes : EtOAc = 

4:1). 1H NMR (500 MHz, CDCl3) δ ppm 6.88 (s, 1 H), 6.86 (s, 1 H), 4.68 (s, 2 

H), 4.64 (s, 2 H), 3.80 – 3.73 (m, 4 H), 3.39 (s, 3 H), 3.33 (s, 3 H), 3.05 (t, J = 7.4 Hz, 2 H), 2.78 (t, J = 
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7.0 Hz, 2 H), 2.72 (m, 2 H), 2.28 (s, 3 H), 1.63 – 1.55 (m, 2 H), 1.42 – 1.33 (m, 2 H), 0.94 (t, J = 7.4 Hz, 3 

H) 13C NMR (125 MHz, CDCl3) δ ppm 145.2, 140.4, 137.1, 127.5, 119.8, 96.5, 96.2, 93.3, 78.5, 67.6, 

66.5, 55.3, 55.1, 35.3, 34.6, 32.9, 22.7, 21.4, 21.3, 14.0 HRMS (ESI) calculated for C21H32O4Na 

[M+Na]+: 371.2198, found: 371.2202. 

2-08df: 45.8 mg (0.5 mmol scale), 32% yield, yellow oil (EtOAc : MeOH = 

10:1). 1H NMR (500 MHz, CDCl3) δ ppm 7.07 (s, 1 H), 6.91 (s, 1 H), 3.58 (s, 4 

H), 2.76 (m, 2 H), 2.39 (s, 6 H), 2.31 (s, 3 H), 2.28 (s, 6 H), 1.65 – 1.56 (m, 2 H), 

1.42 – 1.33 (m, 2 H), 0.93 (t, J = 7.3 Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 145.1, 140.8, 137.5, 

128.1, 127.3, 119.6, 91.8, 82.4, 62.2, 48.9, 45.7, 44.2, 34.7, 33.0, 22.8, 21.4, 14.0 HRMS (ESI) calculated 

for C19H31N2 [M+H]+: 287.2487, found: 287.2489. 

2-08ab:13b 190.0 mg (1 mmol scale), 55% yield, white solid (hexanes : EtOAc = 

20:1). 1H NMR (500 MHz, CDCl3) δ ppm 7.71 – 7.68 (m, 4 H), 7.50 – 7.47 (m, 4 H), 

7.44 – 7.40 (m, 2 H), 7.25 (s, 2 H), 7.21 – 7.17 (m, 3 H), 7.03 – 6.99 (m, 2 H), 2.47 (s, 3 H) 13C NMR 

(125 MHz, CDCl3) δ ppm 144.9, 141.2, 138.2, 131.0, 129.7, 129.3, 128.1, 127.7, 127.4, 123.8, 117.4, 

95.1, 89.1, 21.5 HRMS (ESI) calculated for C27H21 [M+H]+: 345.1643, found: 345.1652. 

2.3.5. Palladium-catalyzed [4+2] homo-Benzannulation of Enynes 

 

Optimization of conditions for palladium-catalyzed [4+2] homo-benzannulation, general 

procedure: (3-methylbut-3-en-1-ynyl)benzene 2-03a (0.1 mmol, 1 equiv) was placed to an oven-dried 

0.5 mL V-vial, equipped with a stirring bar. Base (5n mol %) and phosphine ligand (5n mol %) were 

added under N2 atmosphere. Solution of IPrPdAllCl (n mol %) in toluene was added via microsyringe 
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under N2 atmosphere and the reaction vessel was capped with syringe valve. The reaction mixture was 

stirred at elevated temperature upon completion, which was monitored by GC/MS (Table 2.8). 

 

General procedure for palladium-catalyzed [4+2] homo-benzannulation of enynes: Enyne 2-

03 (0.5 mmol, 1 equiv) was placed to an oven-dried 0.5 mL V-vial, equipped with a stirring bar. 

IPrPdAllCl (1.4 mg, 0.0025 mmol, 0.5 mol %), RuPhos (5.8 mg, 0.0125 mmol, 2.5 mol %), CsOPiv (1.2 

mg, 0.005 mmol, 1 mol %). 100 ml of toluene were added under N2 atmosphere and the reaction vessel 

was capped with syringe valve. The reaction mixture was stirred at 120 °C for 15-48 h. Resulting mixture 

was cooled down to room temperature, diluted with DCM and filtered through a celite plug. The filtrate 

was concentrated under reduced pressure and the crude product was purified by column chromatography 

on silica gel to afford styrene 2-06. 

2-06aa: 114.0 mg (1 mmol scale), 80% yield, colorless liquid (hexanes). 1H NMR (500 

MHz, CDCl3) δ ppm 7.43 – 7.28 (m, 10 H), 7.17 (s, 2 H), 5.00 (m, 1 H), 4.68 (m, 1 H), 

2.44 (s, 3 H), 1.53 (m, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 143.0, 142.6, 140.8, 

138.3, 136.0, 130.2, 129.2, 127.7, 126.6, 119.7, 24.9, 21.1 HRMS (ESI) calculated for C22H21 [M+H]+: 

285.1643, found: 285.1641. 

2-06bb: 107.2 mg (0.6 mmol scale), 89% yield, white solid 

(hexanes : EtOAc = 10:1). 1H NMR (500 MHz, CDCl3) δ ppm 8.03 

(d, J = 8.3 Hz, 4 H), 7.44 (d, J = 8.3 Hz, 4 H), 7.15 (s, 2 H), 4.95 (m, 

1 H), 4.63 (m, 1 H), 3.94 (s, 6 H), 2.42 (s, 3 H), 1.47 (s, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 167.1, 

147.2, 142.2, 139.9, 138.1, 136.5, 130.3, 129.2, 129.1, 128.5, 120.5, 52.1, 24.8, 21.0 HRMS (ESI) 

calculated for C26H25O4 [M+H]+: 401.1753, found: 401.1755. 

Me

R

IPrPdAllCl

Me

R R

Me

RuPhos, CsOPiv
toluene, 120 °C2-03 2-06

Me

Ph Ph

Me

Me

MeMeO2C CO2Me



 

 

143 

2-06cc: 48.3 mg (0.6 mmol scale), 47% yield, white solid (hexanes : 

EtOAc = 20:1). 1H NMR (500 MHz, CDCl3) δ ppm 7.32 (d, J = 8.7 Hz, 4 

H), 7.12 (s, 2 H), 6.91 (d, J = 8.7 Hz, 4 H), 5.01 (m, 1 H), 4.67 (m, 1 H), 

3.86 (s, 6 H), 2.41 (s, 3 H), 1.55 (s, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 158.4, 143.2, 140.4, 138.4, 

136.0, 135.0, 130.2, 130.0, 119.5, 113.1, 55.2, 24.9, 21.0 HRMS (ESI) calculated for C24H25O2 [M+H]+: 

345.1855, found: 345.1858. 

2-06dd: 126.5 mg (1.34 mmol scale), 77% yield, colorless oil (hexanes). 1H NMR 

(500 MHz, CDCl3) δ ppm 6.91 (s, 2 H), 5.30 (m, 1 H), 4.80 (m, 1 H), 2.54 (m, 4 H), 

2.33 (s, 3 H), 2.00 (m, 3 H), 1.64 – 1.49 (m, 4 H), 1.45 – 1.36 (m, 4 H), 0.96 (t, J = 7.3 

Hz, 6 H) 13C NMR (125 MHz, CDCl3) δ ppm 144.1, 139.6, 139.5, 135.8, 127.0, 115.6, 34.5, 32.9, 25.5, 

23.0, 21.2, 14.1 HRMS (ESI) calculated for C18H29 [M+H]+: 245.2269, found: 245.2270. 

2-06jj: 44.7 mg (0.34 mmol scale), 73% yield, colorless oil (hexanes : EtOAc = 

4:1). 1H NMR (500 MHz, CDCl3) δ ppm 7.24 (s, 2 H), 5.28 (m, 1 H), 4.80 (m, 1 

H), 4.76 (dd, J = 11.7 Hz, J = 2.6 Hz, 1 H), 4.72 – 4.65 (m, 3 H), 4.45 (dd, J = 

11.9 Hz, J = 2.0 Hz, 1 H), 4.39 (d, J = 11.7 Hz, 1 H), 3.95 – 3.89 (m, 2 H), 3.58 – 3.51 (m, 2 H), 2.36 (s, 3 

H), 2.01 (m, 3 H), 1.91 – 1.82 (m, 2 H), 1.77 – 1.49 (m, 12 H) 13C NMR (125 MHz, CDCl3) δ ppm 142.7, 

139.5, 136.4, 134.9, 128.7, 128.5, 116.2, 116.0, 115.9, 98.2, 98.1, 67.0, 66.9, 62.0, 30.7, 25.5, 21.2, 19.4 

HRMS (ESI) calculated for C22H32O4Na [M+Na]+: 383.2198, found: 383.2197. 

2-06ll: 93.5 mg (1 mmol scale), 76% yield, yellow solid (EtOAc : MeOH = 10:1). 

1H NMR (500 MHz, CDCl3) δ ppm 7.22 (s, 2 H), 5.26 (m, 1 H), 4.70 (m, 1 H), 

3.42 – 3.37 (m, 2 H), 3.33 – 3.28 (m, 2 H), 2.33 (s, 3 H), 2.24 (s, 12 H), 1.95 (m, 

3 H) 13C NMR (125 MHz, CDCl3) δ ppm 143.7, 140.0, 136.2, 135.5, 128.0, 115.8, 60.9, 45.6, 25.6, 21.1 

HRMS (ESI) calculated for C16H27N2 [M+H]+: 247.2174, found: 247.2176. 
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PART THREE 

DEVELOPMENT OF PALLADIUM-CATALYZED [4+2] BENZANNULATION REACTION 

TOWARD FLUORO- AND PERFLUOROALKYLARENES 

3.1. INTRODUCTION 

Due to their unique physical, chemical, and biological properties,1 fluoro- and perfluoroalkyl-

containing aromatic compounds are garnering increasing attention in various research areas, such as 

pharmaceutical,2 agrochemical,3 and material4 sciences, as well as positron emission tomography (Figure 

3.1).5 The widespread application of fluoroarenes triggered immense progress in fluoroorganic chemistry, 

which resulted in the development of efficient methodologies toward synthesis of aryl fluorides.6  

 
Figure 3.1. Examples of Fluorinated Arenes in Pharmaceuticals (A), Agrochemicals (B), Advanced 
Organic Materials (C), and PET tracers (D). 
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Fluoroarenes 3-01 are generally synthesized via modification of prefunctionalized aromatic 

compounds via electrophilic or nucleophilic fluorination (Scheme 3.1). Advances in this area associated 

with the introduction of novel fluorinating reagents for both electrophilic and nucleophilic processes. 

Moreover, transition metal-mediated or -catalyzed procedures dramatically increase efficiency, 

practicality and functional groups compatibility of these methods. Additionally, several approaches for 

synthesis of fluoroarenes from non-aromatic precursors were recently demonstrated. Accordingly, 

synthetic methods toward aryl fluorides via electrophilic or nucleophilic fluorination, as well as via 

benzannulation methods, are summarized in the following section. 

 
Scheme 3.1. Synthetic Strategies toward Fluorinated Aromatic Ring. 

3.1.1. Fluorination of Aromatic Compounds with Electrophilic Fluorinating Reagents 

Early examples of synthesis of fluoroarenes rely on direct fluorination of aromatic compounds 

with molecular fluorine7 or acetyl hypofluorite8 via electrophilic aromatic substitution (Scheme 3.2). 

Expectedly, the marginal regioselectivity of these processes strongly depends on the substrate nature. In 

case of milder electrophilic source, such as acetyl hypofluorite, the scope of the reaction is limited to the 

activated electron-rich systems. 
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Scheme 3.2. Direct Fluorination of Aromatic Compounds via SEAr. 

To address these issues, metal-halogen exchange of organometallic compounds, such as aryl- 

tin,9, 10   11 germanium,9d silicon,9b,d,12,13 ,14 boron, 15 lead,16 and mercury10,17,18 derivatives, were studied. 

Besides fluorine9,12 and acetyl hypofluorite,9,12,14,18 other fluorinating reagents, such as CF3OF,10 

CsSO4F,11,15 XeF2,12,17 and BF3,16 found applications in the synthesis of fluorinated benzenes (Table 3.1). 

Table 3.1. Synthesis of Fluorobenzene via Fluorination of Organometallic Reagents. 

 

Entry Organometallic substrate Fluorinating reagent Yield of 3-01a, % Ref. 

1 PhSn(n-Bu)3 F2 70 9 

2 PhSn(n-Bu)3 CH3CO2
18F 72a 9c 

3 PhSnMe3 CF3OF 50 10 

4 PhSnMe3 CsSO4F 69 11 

5 PhSiMe3 F2 23 12 

6 PhSiMe3 BF3·OEt2/Pb(OAc)4 83 16 

7 PhSiMe3 XeF2 65 13 

8 K2[PhSiF5] CH3CO2
18F 20a 14 

9 Ph2Hg CF3OF 83 10 

10 PhHgOAc CH3CO2F 58 18 

11 Ph4Pb F2 48 9b 

12 PhPb(OAc)3 BF3·OEt2 62 16 

aRadiochemical yield, %. 
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Although good yields were achieved for the synthesis of fluorobenzene using 

phenyltrialkylstannanes (entries 1, 2, 4), phenyltrimethylsilane (entry 6), or diphenylmercury (entry 9), 

these strategies often suffer from side protiodemetallation and overfluorination reactions, especially if 

more reactive aryl derivatives are used. Additionally, organolithium and organomagnesium reagents were 

tested in fluorination reactions with fluorine19 or perchloryl fluoride (FClO3)20 providing only moderate 

yields of desired fluoroaromatic products. Moreover, these processes also operationally difficult, as they 

require handling of hazardous reagents. 

The major breakthrough in electrophilic fluorination is associated with introduction of modern 

nitrogen-based fluorinating reagents, which are non-toxic, non-explosive, stable and easy to handle 

(Scheme 3.3).21 Importantly, these mild reagents allow selective mono-fluorination and are compatible 

with various functional groups. 

 
Scheme 3.3. Commonly Used Reagents for Electrophilic Fluorination. 

Accordingly, the early examples employing these reagents include fluorination of aryl Grignard 

reagents or aryllithium derivatievs with N-fluorosulfonimides, such as 3-09 (NFSI) or 3-10 (Scheme 

3.4).22 Interestingly, an efficient ortho-fluorination can be achieved using directed ortho-metallation 

(DOM) strategy (e.g. 3-18 → 3-19). Although clean conversions to the desired fluorinated products were 

often observed, the availability, stability and reactivity of metallated precursors significantly limit the 

scope of this methodology. 
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Scheme 3.4. Electrophilic Fluorination of Organomagnesium and Organolithium Compounds. 

Efficient strategy for halogen-magnesium exchange of aryl halides, developed by Knochel, 23 

dramatically enhanced synthetic applicability of this method. 24  It was demonstrated, that various 

fluoroarenes can be accessed using N-fluorosulfonimide (NFSI) 3-0924a or N-fluoro-2,4,6-

trimethylpyridinium tetrafluoroborate (F-TMP-BF4) 3-12 (Scheme 3.5).24b Careful optimization of the 

reaction conditions, such as employed fluorinating agent and reaction solvent, resulted in minimized 

protonation of Grignard reagents and good yields of aryl fluorides. 

 
Scheme 3.5. Electrophilic Fluorination of Grignard Reagents Stabilized by LiCl. 

This methodology was further applied for the synthesis of ortho-fluorobiaryls via domino 

Gringard addition/fluorination reaction (Scheme 3.6).25 Thus, coupling of Gringard reagents 3-20 with 

benzyne, generated form 1-bromo-2-chlorobenzene (3-21), afforded biaryl organomagnesium species 

3-22, which in turn underwent electrophilic fluorination with F-TMP-BF4 (3-12). Overall, this 

transformation can be considered as arylative fluorination of benzynes. 
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Scheme 3.6. Synthesis of ortho-Fluorobiaryls via Arylative Fluorination. 

The reaction of Grignard reagents with fluorine electrophiles is efficient for a variety of 

haloarenes, including highly activated electron-rich or sterically hindered ortho-disubstituted substrates. 

However, these procedures are not compatible with functionalities, which are sensitive to 

organomagnesium reagents. In a search for a more general method, several approaches for transition 

metal-mediated or -catalyzed electrophilic fluorination were developed. 

Accordingly, Ritter group has found that aryl stannanes 3-25 can be converted to fluoroarenes 

using F-TEDA-BF4 (3-15) or F-TEDA-PF6 (3-16) in the presence of silver triflate (Scheme 3.7).26 

Notably, this method tolerates a variety of functional groups, including cyanides, aldehydes, phenols, and 

aliphatic alcohols. In order to avoid employment of toxic aryl tin reagents, analogous silver-mediated 

fluorination of boronic acids 3-26 or silanes 3-27 was subsequently developed. 

 
Scheme 3.7. Silver-mediated Electrophilic Fluorination of Organometallic Reagents. 
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Further development led to the introduction of silver-catalyzed fluorination of aryl stannanes with 

F-TEDA-PF6 (3-16) (Scheme 3.8).27 Thus, in the presence of silver oxide and NaHCO3/NaOTf additives 

desired fluoroarenes were obtained in good to high yields. Importantly, addition of sodium salts 

suppressed protiodemetallation side reaction, which is otherwise a predominant process. Synthetic utility 

of this methodology was demonstrated by a late stage fluorination of various biologically relevant 

molecules. 

 
Scheme 3.8. Silver-catalyzed Electrophilic Fluorination of Organostannanes. 

Alternative copper-mediated method employs F-TMP-PF6 (3-13) and F-TMP-OTf (3-14) as 

fluorinating reagents. Thus, Sanford28 and Hartwig29 groups independently reported that aryl boronic 

esters or aryl trifluoroborate salts could be converted to fluoroarenes in the presence of electrophilic 

copper (I) triflate (Scheme 3.9). These reactions exhibit broad substrates scope and functional group 

tolerance, which is a significant improvement compared to the analogous copper-free fluorination 

reaction.30 Similar reactivity was also observed for aryl stannanes. Copper mediated homocoupling to 

form biaryls, which is the major side reaction of this process, was suppressed by premixing (t-

BuCN)2CuOTf and F-TMP-X prior to addition of an organometallic substrate. In this case, reagent F-

TMP-X serves not only as a source of fluorine atom, but also as an oxidant for copper. Accordingly, 

NMR studies indicated formation of Cu(III) intermediate in the reaction of (t-BuCN)2CuOTf with 3-30, 

which then underwent transmetallation with aryl boronic reagent presumably via intermediacy of 3-31. 

Final reductive elimination delivered the desired fluorinated product 3-01. 
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Scheme 3.9. Copper-mediated Electrophilic Fluorination of Organoboron Reagents. 

Fluorination of aromatic compounds involving aryl palladium species was extensively studied by 

Ritter group. A step-wise procedure for palladium-mediated fluorination of boronic acids was developed 

first (Scheme 3.10).31 It was shown, that transmetallation of aryl boronic acids 3-26 with palladium 

acetate complex 3-33 led to the formation of a stable aryl palladium complexes 3-34. Subsequent 

treatment of the latter with Selectfluor (3-15) afforded desired fluoroarenes 3-01 in good yields. 

Noteworthy, mild reaction conditions and fast reaction times make this strategy applicable for the 

synthesis of PET tracers, as for this purpose reaction time becomes the most crucial factor. 

 
Scheme 3.10. Palladium-mediated Electrophilic Fluorination of Aryl Boronic Acids. 
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investigated in detail (Scheme 3.11).32 It was proposed, that the C–F bond forms via a key reductive 

elimination from Pd(IV) metal center. Indeed, related Pd(IV) complexes 3-35 and 3-37, that possess both 

aryl and fluoride ligands, were successfully isolated. Under forcing conditions, these complexes released 

fluoroarenes 3-36 or 3-38, thus, confirming feasibility of reductive elimination step. 
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Scheme 3.11. Reductive Elimination from Palladium(IV) Center to Form C–F Bond. 

Recently, Ritter group introduced a novel palladium-based electrophilic fluorinating reagent 3-40 

(Scheme 3.12), which was prepared by treatment of palladium complex 3-39 with potassium fluoride.33 

Reaction of this compound with arylpalladium complex 3-34 (see Scheme 10) provides fast and efficient 

access to fluoroarenes. Single electron transfer (SET) mechanism was proposed for the transfer of 

fluoride from one palladium complex to the other.33b 

 
Scheme 3.12. Palladium-mediated Electrophilic Fluorination of with Pd-based Fluorinating Reagent. 

The first transition metal-catalyzed fluorination of aryl trifluoroborates was also developed by 

Ritter and co-workers (Scheme 3.13). 34  With the aid of terpyridine palladium catalyst 3-41 and 

Selectfluor (3-15), fluoroarenes were synthesized with exceptional efficiency. Variety of substrates, 

including electron-rich or sterically hindered aryltrifluoroborates, reacted smoothly under these reaction 

conditions. In case of electron-deficient analogs, formation of small amounts of other regioisomers was 

observed. Notably, the reaction is equally efficient in the presence of other palladium catalysts, such as 

[Pd(MeCN)][BF4]2 or Pd(O2CCF3)2. 
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Scheme 3.13. Palladium-catalyzed Electrophilic Fluorination of Aryl Trifluoroborates. 

As opposed to other transition metal-mediated or catalyzed processes (vide supra), SET-

mechanism, which does not involve formation of aryl-palladium intermediates, was proposed for this 

catalytic system (Scheme 3.14). The reaction starts with the formation of bisterpyrydyl Pd-complex 3-43, 

which, in the presence of Selectfluor (3-15), undergoes oxidation to form an unusual Pd(III) intermediate 

3-45 and radical cation 3-44. Next, fluorine radical transfer to trifluoroborate 3-29 generates radical 

species 3-47, which upon subsequent oxidation with Pd(III) intermediate 3-45 delivers the corresponding 

cyclohexadienyl cation 3-48 and returns Pd(II) complex 3-43 to the catalytic cycle. Finally, elimination of 

BF3 leads to the fluorinated product 3-01. Indeed, a separately prepared well-defined Pd(III) complex 

3-45 possesses catalytic activity in fluorination reaction of 3-29 in the presence of Selectfluor. On the 

other hand, further oxidation of 3-45 with Selectfluor to form Pd(IV) species was not observed. 

 
Scheme 3.14. Proposed Mechanism for Palladium-catalyzed Electrophilic Fluorination of Aryl 
Trifluoroborates. 
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Site selectivity of fluorination methods described above is controlled by the C–M bond 

preinstalled at the aromatic core. Another powerful strategy for selective functionalization of aromatic 

compounds is a directed C–H activation. The first example of directed Pd-catalyzed C–H fluorination was 

demonstrated by Sanford group in 2006 (Scheme 3.15).35 They found, that employment of F-pyridine-BF4 

reagent (3-11) allows fluorination of 2-pyridylarenes 3-49 in good yields. Although this reaction 

exhibited poor selectivity for mono- versus bis-ortho-fluorination, it demonstrated feasibility of the 

Pd(II)-catalyzed electrophilic fluorination. 

 
Scheme 3.15. Palladium-catalyzed Directed Electrophilic C–H Fluorination of 2-Pyridylarenes. 

This seminal work has triggered development of several protocols for directed Pd-catalyzed 

ortho-fluorination (Scheme 3.16).36,37 

 
Scheme 3.16. Palladium-catalyzed Directed Electrophilic C–H Fluorination. 
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(3-50d), as well as pyrazole, benzoxazole, and pyrazine (not shown), were efficient in fluorination of 

aromatic C–H bonds using NFSI (3-09).36c,d Ultimately, a very mild procedure for Pd-catalyzed C–F bond 

formation directed by oxime ethers (3-50e) was developed.36e 

The mechanism of these transformation involves formation of aryl Pd(II) intermediate 3-51, its 

oxidation with fluorinating reagent to Pd(IV) species 3-52, and reductive elimination to form C–F bond 

(Scheme 3.17). Recent ESI-MS studies36e suggested that palladium is bound to two molecules of substrate 

(L = 3-50) during the reaction. 

 
Scheme 3.17. Proposed Mechanism for Palladium-catalyzed Directed Electrophilic C–H Fluorination. 
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Scheme 3.18. Balz-Schiemann Fluorination. 

Another traditional approach toward fluorobenzenes is nucleophilic aromatic substitution with 

potassium fluoride (Scheme 3.19).39 Although used on industrial scale, displacement of both chloride 

(Halex process) and nitro-groups typically require harsh reaction conditions due to low solubility of 

potassium fluoride. Mild conditions for this transformation were developed by DiMagno group.40 They 

have demonstrated that employment of anhydrous tetrabutylamonium fluoride (TBAF) in DMSO allows 

fluorination under ambient temperature delivering desired products in excellent yields. However, at least 

one electron-withdrawing substituent on the aromatic ring is required for a facile nucleophilic 

displacement of this type. 

 
Scheme 3.19. Nucleophilic Aromatic Substitution toward Fluoroarenes. 

Fluoroarenes can be also obtained by decomposition of biarylidonium salts in the presence of 

potassium fluoride 41  or by thermal decomposition of iodonium salts bearing fluorine-containing 

counterion (Scheme 3.20).42 Fluorination of symmetrical iodonium salts provides fluorobenzenes in 

modest yields, whereas reactions of unsymmetricaly-substituted substrates often suffer from poor 

selectivity. Nonetheless, selective aryl transfer was demonstrated when iodonium reagents bearing 2-

thienyl group (Ar  = 2-thienyl) were employed in this transformation.41b 

 
Scheme 3.20. Fluorination of Iodonium Salts. 
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In 2008, Grushin group reported, that treatment of aryl bromides with tetramethylammonium 

fluoride led to the formation of isomeric fluorinated products.43 For instance, under these reaction 

conditions 2-bromonaphthalene (3-58) was converted to a mixture of 1-(3-59)- and 2-(3-59')- 

fluoronaphthalenes in a 2:3 ratio (Scheme 3.21). It was suggested, that this reaction proceeds through the 

intermediacy of isomeric benzynes 3-61 and 3-61', which formed upon deprotonation and subsequent 

bromide elimination. Nucleophilic addition of fluoride followed by protonation furnished fluorinated 

products. 

 
Scheme 3.21. Nucleophilic Fluorination of Aryl Bromides via Formation of Benzyne Intermediates. 

The strategy for nucleophilic fluorination of benzyne was later applied for the synthesis of 

various disubstituted fluoroarenes from corresponding ortho-silyl-arylnonaflates 3-64 (Scheme 3.22).43b 

Formation of benzyne was realized via silicon abstraction by fluoride anion and a subsequent elimination 

of the nonaflate leaving group. One-pot nonaflylation/fluorination procedure of ortho-silylphenols 3-63 

was also developed. 

 
Scheme 3.22. Nucleophilic Fluorination of ortho-Silylphenols. 
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this transformation is hard to control. For example, fluorination of 4-(tert-butyl)catechol (3-66) afforded a 

mixture of three products favoring fluorinated derivative 3-67. 

 

Scheme 3.23. Fluorination of Catechols with Deoxo-Fluor. 

A straightforward fluorination strategy based on ipso-substitution of phenols was developed by 

Ritter group.45 It was shown that treatment of phenols with PhenoFluor (3-71) and cesium fluoride 

afforded the corresponding aryl fluorides in high yields (Scheme 3.24). This methodology is general for a 

wide range of electron-rich, as well as electron-deficient substrates, and tolerates a variety of functional 

groups with exception to hydrogen bond donors, such as alcohols or amides. Reaction of phenol 3-72 

with PhenoFluor in the absence of CsF resulted in the formation of intermediate 3-73, in which [HF2]- 

anion is coordinated to the imidazolium heterocycle through a hydrogen bonding. Subsequent reaction of 

3-73 with cesium fluoride delivered the product 3-74. Notably, hydrogen bonding between protons of 

imidazolium and fluoride is essential for efficient substitution, as PhenoFluor analogs, that lack the 

opportunity for similar hydrogen bonding, e.g. 4,5-dichloroimidazolium or saturated dihydroimidazolium 

congeners, were not efficient in this transformation. 

 
Scheme 3.24. Nucleophilic Deoxyfluorination of Phenols with PhenoFluor. 
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Several transition metal-mediated methodologies based on palladium, nickel, and copper 

complexes, were recently developed. Thus, Buchwald group reported the first example of transition 

metal-catalyzed nucleophilic fluorination of aryl triflates (Scheme 3.25).46 The main challenge associated 

with nucleophilic fluorination by Pd(0) is the reductive elimination step. As it was previously discussed, 

reductive elimination from ArPd(IV)F intermediates leads to the facile formation of desired C–F bond. 

However, analogous reductive elimination from ArPd(II)F complexes proved to be restricted due to the 

formation of stable fluoride-bridged dimers [ArPd(µ-F)]2 and competing formation of P–F bonds with the 

phosphine ligands.47 Both of these issues were addressed by introducing extremely sterically bulky ligand 

BrettPhos (3-76). Steric bulk around the metal center, posed by this ligand, facilitates reductive 

elimination from ArPd(II)F as it has been demonstrated in a stoichiometric experiment.46a  

 
Scheme 3.25. Synthesis of Aryl Fluorides via Palladium(0)-catalyzed Nucleophilic Fluorination. 
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efficiency of this methodology, CsF packed-bed flow reactor was designed. Performing this reaction in 

flow eliminated the difficulties related to low solubility of cesium fluoride and shortened reaction times 

from 12 h to 20 min.46b Moreover, more efficient catalytic system was developed by replacement of 
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employment of this precatalyst, together with halophilic fluoride source AgF and basic promoter KF, 

allowed an efficient fluorination of aryl bromides and aryl iodides 3-79.48 

Surprisingly, fluorination of para-substituted electron-rich substrates often produces mixtures of 

para- and meta-fluoroarenes (Scheme 3.26). For example, reaction of p-butylphenyltriflate (3-80) 

afforded the mixture of para- (3-81) and meta- (3-81') isomers in a 1.5:1 ratio. Diminished selectivity 

sometimes observed for meta-substituted substrates also. Notably, formation of unexpected isomer can be 

decreased by changing reaction solvent to cyclohexene. 

 
Scheme 3.26. Palladium(0)-catalyzed Nucleophilic Fluorination of para-Substituted Aryl Triflate. 

The unusual behavior of these substrates elicited extensive mechanistic investigations, which 

provide more insides on this transformation.49 It was found that ligand 3-77 was not an actual supporting 

ligand in a key C–F bond forming process (Scheme 3.27). Thus, the initial product of oxidative addition 

of Pd(0) complex 3-82 into C–Br bond of aryl bromide 3-83, aryl Pd(II) intermediate 3-84, isomerizes to 

the stable Pd(II) complex 3-85 bearing dearomatized ligand. Treatment of this complex with aryl bromide 

under basic conditions afforded new Pd(II) complex 3-86, indicating that Pd(0) could be restored by 

rearomatization of 3-85 in the presence of a base. No further arylation of the ligand was observed. 

Notably, modified ligand 3-87 was isolated from the catalytic fluorination reaction. Therefore, it is 

concluded, that reductive elimination to form C–F bond is more facile if the metal center is supported by 

ligands similar to 3-87 as opposed to the original ligand 3-77. In fact, phosphine 3-87 is the only ligand, 

which promotes fluorination of heteroaryl bromides. 
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Scheme 3.27. Ligand Modification in Palladium(0)-catalyzed Nucleophilic Fluorination. 

Overall, mechanistic cycle of the Pd(0)-catalyzed fluorination is initiated by the formation of 

Pd(0) species 3-88, followed by oxidative addition of aryl (pseudo)halide leading to 3-89. Subsequent 

transmetallation with CsF (or AgF) to form 3-90 and reductive elimination deliver final aryl fluoride and 

return palladium to its resting state (3-88). Observed formation of regioisomeric products in case of para-

subatituted substrates is attributed to the competing ortho-deprotonation of 3-89 with cesium fluoride to 

form Pd-benzyne intermediate 3-91.49b Upon reaction with HF, 3-91 forms two isomeric L·Pd(Ar)F 

complexes leading to regioisomeric arylfluorides 3-81 and 3-81' after subsequent reductive elimination. 

 
Scheme 3.28. Mechanistic Rationale for Palladium(0)-catalyzed Nucleophilic Fluorination. 
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A facile formation of aryl fluoride was observed upon treatment of Ni-complex 3-92 with TBAT 

(3-93) and iodonium oxidant 3-94 (Scheme 3.29).50 Remarkably, this reaction was completed within one 

minute, which makes it suitable for the synthesis of PET tracers. Indeed, fluorination of various nickel-

based analogs of 3-92 with [18F]fluoride delivered desired 18F-aryl fluorides with good radiochemical 

yields. The necessary nickel complexes are stable to air or moisture and can be synthesized from aryl 

bromides via a two-step procedure. 

 
Scheme 3.29. Nickel-mediated Fluorination of Aromatic Compounds. 

The feasibility of copper-mediated fluorination reaction using nucleophilic fluorine sources51 was 

first observed in halogen exchange reaction of macrocyclic tris(amine) substrate 3-95 using silver fluoride 

(Scheme 3.30).52 It was established, that Cu-catalyst undergoes reversible oxidative addition to the 

carbon-halogen bond (X = Cl, Br) of 3-95 to form Cu(III) intermediate 3-97. Subsequent salt metathesis 

with AgF leads to Cu–F intermediate 3-98, which upon reductive elimination gives the final product. 
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Scheme 3.30. Copper-catalyzed Fluorination of Aromatic Ring in Macrocyclic System. 

Building on this strategy, Hartwig group reported copper-mediated iodine/fluorine exchange in 

aryl iodides with silver fluoride (Scheme 3.31).53 They found that easily available (t-BuCN)2CuOTf is 

suitable promoter for this transformation. The reaction is general for a variety of aryl iodides of different 

electronic nature, as well as for sterically hindered substrates. Mechanistically, this process is similar to 

that described above, involving oxidative addition, ligand exchange, and reductive elimination steps. 

Alternative pathway, in which ligand exchange occurs prior to the oxidative addition, was ruled out due to 

the low stability of Cu(I) fluorides. 

 
Scheme 3.31. Copper-mediated Fluorination of Aryl Iodides. 
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Similar catalytic reaction was developed for ortho-pyridyl-substituted aryl bromides 3-101 

(Scheme 3.32).54 In this case, pyridyl group facilitates oxidative addition step and provides additional 

stabilization of intermediates throughout the catalytic cycle. 

 
Scheme 3.32. Copper-catalyzed Fluorination of 2-Pyrydyl-substituted Aryl Bromides. 

Unsymmetrical aryl(mesityl)-iodonium salts were also shown to be suitable substrates for 

nucleophilic copper-catalyzed fluorination (Scheme 3.33).55 Employment of copper catalyst was essential 

for high selectivity of fluoride transfer to the less hindered aryl group. Thus, in the presence of copper, 

formation of mesitylfluoride by-product is minimized whereas its predominant formation observed for a 

Cu-free fluorination. Notably, this reaction tolerates a wide range of functional groups, including halogen 

substituents, such as Br and Cl. 

 
Scheme 3.33. Copper-catalyzed Fluorination of Aryl Iodonium Salts. 
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fluoride anion leads to the formation of Cu(III) intermediate 3-104 prior to the oxidative addition to the 

C–I bond of 3-102 to afford aryl Cu(III) fluoride 3-105. Subsequent reductive elimination completes the 

catalytic cycle. 

Oxidative copper-mediated fluorination of aryl trifluoroborates with potassium fluoride was 

established by Sanford group (Scheme 3.34).56 The reaction is efficient for a number of electron-rich or 

electron-deficient substrates, only excluding halogen-containing starting materials. Interestingly, 

Cu(OTf)2 plays a dual role in this transformation; it promotes the C–F bond formation, and oxidizes 

ArCu(II)F intermediate 3-107 into ArCu(III)F 3-108 species, thus facilitating reductive elimination. 

Notably, a ligand exchange between copper triflate and potassium fluoride prior to transmetallation with 

aryltrifluoroborate was proposed in this case. Recently, Gouverneur group56 developed the copper-

mediated nucleophilic 18F-fluorination of aryl boronic esters using similar strategy. 

 
Scheme 3.34. Copper-mediated Fluorination of Aryl Trifluorobrates. 

Direct conversion of aryl C–H bond to C–F bond was achieved by Daugulis group via the copper-
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removed upon basic hydrolysis to liberate fluorinated benzoic acids. 
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Scheme 3.35. Directed Copper-catalyzed Fluorination of Benzoic Acid Derivatives. 

3.1.3. Synthesis of Fluoroarenes via Benzannulation Methods 

Compared to various methods for fluorination of preexisting aromatic cores emerging in recent 

years (vide supra), the synthesis of fluoroarenes starting from linear non-aromatic precursors received 

much less attention. 

An efficient strategy for the synthesis of fluorinated aromatic compound from bis-1,3-diynes was 

developed by Lee group (Scheme 3.36).58 They have demonstrated regioselective addition of fluoride 

anion onto aryne intermediates 3-112, formed upon silver-mediated hexadehydro-Diels-Alder reaction of 

bis-1,3-diynes 3-111.59,60 Silver-catalyzed protocol employing pyridinium tetrafluorobarate (3-114) as a 

fluoride source was equally facile. This approach provides quick access to densely substituted fluorinated 

indolines, isoindolines, and dihydroisobenzofurans. 

 
Scheme 3.36. Synthesis of Fluoroarenes via Tandem Hexadehydro-Diels-Alder Reaction/Fluorination 
Sequence. 
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Moreover, dihalogenated aromatic core can be constructed using this strategy (Scheme 3.37). 

Thus, aryl silver intermediate 3-115, produced upon fluorination of aryne, in the presence of electrophilic 

halogenating reagents, can be converted to the corresponding ortho-halo-fluoroarenes 3-116 – 3-118 in 

good to high yields. 

 
Scheme 3.37. Synthesis of Halofluoroarenes via HDDA/Fluorination/Halogenation Sequence. 

Intramolecular cyclization of fluorine-containing substrates to form fluorinated aromatic core was 

also demonstrated. Thus, benzylic difluoroallenes 3-120 were converted to the corresponding 

fluoronaphthalenes 3-121 via indium catalyzed cyclization reaction (Scheme 3.38). 61  Analogously, 

fluorinated phenanthrenes (e.g. 3-123) were synthesized via sequential cyclization, ring expansion, and in 

situ oxidation of cyclopentene-containing substrates, such as 3-122. Notably, starting 1,1-difluoroallenes 

3-120 are easily available from corresponding aldehydes 3-119 and 2-iodo-1,1,1-trifluoroethane. 

 
Scheme 3.38. Synthesis of Fluoronaphthalenes via Indium-catalyzed Intramolecular Cyclization of 
Difluoroallenes. 
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subsequent Fridel-Crafts-type cyclization and protonation of C–In bond affords intermediate 3-126. 

Elimination of fluorine to form another cationic intermediate 3-127, followed by an 1,2-alkyl group 

migration and deprotonation, delivers the final product 3-121. 

 
Scheme 3.39. Mechanism of Indium-catalyzed Cyclization of Difluoroallenes. 

Another example of intramolecular cyclization of fluorinated precursors en route to fluoroarenes 

was recently reported by Magauer group.62 They have developed a base mediated cyclization of 2-allyl-3-

(trifluoromethyl)phenols leading to the formation of fluorinated naphthols in moderate yields (Scheme 

3.40). 

 
Scheme 3.40. Base-mediated Cyclization toward Fluorinated Naphthols. 
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6-π-electrocyclization and aromatization afford the desired fluorinated arene 3-129. Notably, this reaction 

requires ortho-hyrdoxyl group to facilitate allylic isomerization event. 

 
Scheme 3.41. Mechanism of Base-mediated Cyclization. 

Lastly, a formal [2+2+2] cycloaddition of triisopropylsilylfluoroacetylene to form 1,2,4-

trifluorobenzene was demonstrated.63 Thus, alkyne 3-134 trimerizes to form stable Dewar benzene 3-135 

under exclusion of light to prevent competing polymerization. Fluorinated Dewar benzene 3-135 can be 

selectively converted to fluorinated benzene 3-136 in excellent yields upon thermolysis or under UV-

irradiation. However, this process is unique to the particular sterically hindered fluoroalkyne.64 

 
Scheme 3.42. Synthesis of 1,2,4-Trifluorobenzene via Dewar Benzene Derived from TIPS-
fluoroacetylene. 

3.1.4. Summary and Outlook 

In recent years, significant progress toward the synthesis of aryl fluorides has been achieved. 
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chemistry with the transition metal catalysis resulted in the development of innovative strategies for the 

construction of carbon–fluorine bond. Consequently, various methods for installation of fluorine 

functionality onto broad range of aromatic substrates became available. Much less established strategy for 

the synthesis of aryl fluorides starting from non-aromatic precursors was proved to be efficient for several 

types of substrates. Therefore, the development of novel methodologies toward privileged fluoro-

containing aromatic compounds from easily available acyclic precursors continues to be in high demand. 
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3.2. SYNTHESIS OF FLUORO- AND PERFLUOROALKYLARYL ALKYNES VIA 

PALLADIUM-CATALYZED [4+2] BENZANNULATION REACTION. 

Cycloaddition methods serve as a powerful toolset for a rapid assembly of an aromatic core.65 

Although several examples are known for the introduction of perfluoroalkyl groups66 to the benzene ring 

via [2+2+2] cycloaddition reaction of perfluoroalkylated alkynes,67,68 to the best of our knowledge, a 

general strategy for construction of aryl fluorides via similar methods has not been previously described, 

presumably due to an explosive nature of required starting fluoroalkynes.64,69 We envisioned that Pd-

catalyzed [4+2] cross-benzannulation reaction between conjugated enynes and diynes (see Part II) might 

provide an alternative route for a facile synthesis of fluorinated benzene core (Scheme 3.43). In this case 

the fluorine atom could be introduced at the alkene moiety of an enyne coupling partner 3-137, thus 

avoiding an employment of fluoroalkynes. Importantly, compared to the other vinyl halides, vinyl 

fluorides are less reactive toward the oxidative addition of low-valent transition metals,70 which would 

allow the Pd(0)-catalyzed benzannulation process of fluoroenynes 3-137 to proceed without the 

defluorination reaction. 

 
Scheme 3.43. Palladium-catalyzed [4+2] Benzannulation for the Synthesis of Aryl Fluorides. 
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3.2.1. Synthesis of Perfluoroalkyl-substituted Arylalkynes 

To test our benzannulation strategy toward fluoroarenes, the cycloaddition of 

perfluoroalkylenynes 3-141 was examined first. The required conjugated enynes 3-141 were easily 

prepared via the Sonogashira cross-coupling reaction of perfluoroalkyl-containing vinyl bromides 3-140 

with terminal alkynes (Scheme 3.44). For example, 3-trifluoromethyl-1-phenylenyne 3-141a was 

prepared from commercially available 2-bromo-3,3,3-trifluoropropene 3-140a and phenylacetylene in 

80% yield. Analogously, enynes possessing substituents with longer perfluoroalkyl chains (4-141b, 

3-141c) can routinely be obtained using this method. 

 
Scheme 3.44. Synthesis of 3-Perfluoroalkyl Enynes via Sonogashira cross-Coupling Reaction. 

Having starting materials in hands, we first examined the reactivity of trifluoromethylenynes 

toward the benzannulation reaction with the aid of recently developed highly efficient catalytic system 

(see Part II). Gratifyingly, the cross-benzannulation reaction between enyne 3-141a and diphenyldiyne 

3-138a, in the presence of 1 mol % of a Pd-catalyst, afforded the desired trifluoromethyl-containing arene 

3-142aa in 84% yield in a highly regio- and chemoselective manner (Table 3.2, entry 1). Analogously, 

reaction between enyne 3-141a and dialkylsubstituted diyne 3-138b proceeded with good efficiency 

(entry 2). Employment of alkyl substituted enyne 3-141d afforded the corresponding trifluoromethylarene 

3-142da in high yield (entry 3). However, 3,5-dialkyl substituted trifluoromethylarene 3-142db was 

obtained in 72% yield along with 15% of the homo-benzannulation product of 3-141d (entry 4). 

Presumably, the high reactivity of enyne 3-141d and the low reactivity of diyne 3-138b both accounted 

for this result. Similarly to trifluoromethylarenes, arylalkynes bearing a perfluoroalkyl chain can also be 

obtained with high efficiency via the benzannulation reaction of enynes 3-141b and 3-141c (entries 5, 6). 
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Table 3.2. Palladium-catalyzed [4+2] Benzannulation Reaction toward Perfluoroalkylbenzenes.a 

 

Entry Enyne Diyne Product Yield, %b 

1 
   

84 

 3-141a 3-138a 3-142aa  

2 
   

76 

 3-141a 3-138b 3-142ab  

3 
   

89 

 3-141d 3-138a 3-142da  

4 
   

72 

 3-141d 3-138b 3-142db  

5 
   

77 

 3-141b 3-138b 3-142bb  

6 
   

87 

 3-141c 3-138b 3-142cb  

aReaction conditions: 3-141 (0.6 mmol), 3-138 (0.5 mmol), IPrPdAllCl (1 mol %), (2-furyl)3P (2 mol %), 
CsOPiv (2 mol %), toluene (1 M), 100 °C, 16–24 h. bIsolated yields, %. 
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3.2.2. Synthesis of Fluoroarylalkynes 

Encouraged by these results, we turned our attention to the synthesis of aryl fluorides via the 

benzannulation of fluoro-containing enynes 3-137, which were prepared by Sonogashira coupling of 

various alkynes with 1-bromo-1-fluoroethylene. To our delight, 3-fluoro-1-phenylenyne 3-137a 

underwent a facile benzannulation reaction with diphenyldiyne 3-138a, thus giving access to p-

alkynylaryl fluoride 3-01aa in 85% yield (Table 2, entry 1). Likewise, fluoroenyne 3-137b provided the 

cross-benzannulation product 3-01ba in good yield (entry 2). As expected, enyne 3-137c bearing an 

electron-donating group delivered the corresponding fluoroarene with moderate efficiency (entry 3). 

Substrates 3-137d, 3-137e substituted at the propargylic position were smoothly converted to the 

corresponding fluoroarene derivatives (entries 4, 5). Similarly, alkyl substituted fluoroenynes were 

competent substrates for the benzannulation reaction (entries 6, 7). Differently substituted alkyl enynes 

possessing valuable functionalities, such as silyloxy (entry 8), amino (entries 5, 9), cyano (entry 10), and 

ester (entry 11) groups, were well tolerated under these reaction conditions. 
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Table 3.3. Scope of Enynes in Palladium-catalyzed [4+2] Benzannulation Reaction toward 
para-Fluoroarylalkynes.a 

 

Entry Enyne Product Time, h Yield (%)b 

1 
  

16 85 

 3-137a 3-01aa   

2 

  

16 78 

 3-137b 3-01ba   

3 

  

24 51 

 3-137c 3-01ca   

4 
  

20 57 

 3-137d 3-01da   

5 
  

16 84 

 3-137e 3-01ea   

6 
  

20 71 

 3-137f 3-01fa   

7 
  

20 86 

 3-137g 3-01ga   

F

R1 Ph

Ph FR1

PhPh

+

3-137 3-138a 3-01

IPrPdAllCl (1 mol %)
(2-furyl)3P (2 mol %)

CsOPiv (2 mol %)
toluene, 100 °C

F

Ph

FPh

PhPh

F

MeO2C

F

PhPh

MeO2C

F

MeO

F

PhPh

MeO

F

Ph

F

PhPh

Ph

F

Bn2N

F

PhPh

Bn2N

n-C10H21

F Fn-C10H21

PhPh

F
Ph

F

PhPh

Ph



 181 

Entry Enyne Product Time, h Yield (%)b 

8 
  

20 83 

 3-137h 3-01ha   

9 
  

16 82 

 3-137i 3-01ia   

10 
  

24 60 

 3-137j 3-01ja   

11 
  

24 62 

 3-137k 3-01ka   

aReaction conditions: 3-137 (0.6 mmol), 3-138a (0.5 mmol), IPrPdAllCl (1 mol %), (2-furyl)3P (2 mol 
%), CsOPiv (2 mol %), toluene (1 M), 120 °C, 16–24 h. bIsolated yields, %. 
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Next, the reactivity of different diynes in benzannulation with enyne 3-137a was examined 

(Scheme 3.45). Thus, employment of either electron-deficient (3-138c) or electron-rich (3-138d) 

symmetrical diaryldiynes, led to the formation of fluorinated arenes in good yields. Likewise, dialkyl-

substituted diyne (3-138b) smoothly underwent benzannulation reaction with enyne 3-137a. 

 
Scheme 3.45. Scope of Diynes in Palladium-catalyzed [4+2] Benzannulation Reaction toward 
para-Fluoroarylalkynes. 

3.2.3. Development of Regioselective Palladium-catalyzed [4+2] Benzannulation Reaction 

As discussed in section 2.1.3.2, palladium-catalyzed benzannulation reaction of unsymmetrically 

substituted substrates suffers from poor regioselectivity (see Table 2.1). Nonetheless, good 

regioselectivity was observed in the reaction between 3-methylenyne 3-143a and 

1-trimethylsilyl-4-phenyl-1,3-diyne (3-144) leading to the formation of single regioisomer 3-145a in good 

yield (Scheme 3.46). Unfortunately, analogous reaction with less reactive disubstituted enyne 3-143b did 

not proceed. We believe, that even though introduction of silyl group allows controlling regioselectivity 

of the Pd-catalyzed benzannulation reaction, it substantially decreases the reactivity of diynes toward this 

transformation. Additionally, benzannulation reaction of silyl-substituded compounds is restricted to the 

employment of neutral reaction conditions due to the low stability of starting diyne in the presence of a 

strong base required in more efficient catalytic conditions. 

 
Scheme 3.46. Regioselective Palladium-catalyzed [4+2] Benzannulation of Silyldiyne. 
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We hypothesized that reactivity of silyldiynes might be improved by changing substitution at the 

silyl group. Therefore, benzannulation reaction of various symmetrical silyl-substituted diynes with enyne 

3-143b was tested (Table 3.4). Similarly to the unsymmetrical trimethylsilyldiyne 3-144, 

bis(trimetylsilyl)diyne 3-146a did not undergo benzannulation reaction (entry 1). Diynes, possessing 

smaller silyl groups, such as bis(dimethylsilyl)diyne (3-146b) or bis(dimethylfluorosilyl)diyne (3-146c), 

rapidly decomposed in the presence of palladium catalyst (entries 2, 3). Although the formation of desired 

product was observed employing bis(dimethylphenylsilyl)diyne (3-146d), this reaction was slow and did 

not proceed to the completion (entry 4). Gratifyingly, full conversion of starting materials was achieved in 

benzannulation reaction of enyne 3-143b with bis(dimethylmethoxysilyl)diyne 3-146e providing desired 

product in 67% yield (entry 5). We believe that methoxy group on silicon provides necessary balance 

between stability and reactivity of diyne due to favorable stereoelectronic nature of dimethylmethoxysilyl 

functionality. 

Table 3.4. Optimization of Silyl-substituted Diyne Coupling Partner in Palladium-catalyzed [4+2] 
Benzannulation Reaction.a 

 

Entry SiR3  Results Yield, %b 

1 SiMe3 3-146a no reaction – 

2 SiMe2H 3-146b fast diyne decomposition – 

3 SiMe2F 3-146c fast diyne decomposition – 

4 SiMe2Ph 3-146d slow incomplete reaction – 

5 SiMe2OMe 3-146e full conversion in 5 days 67 

aReaction conditions: 3-143b (1.2 equiv), 3-146 (1 equiv), Pd(PPh3)4 (5 mol %), toluene (1 M), 80-100 
°C. bIsolated yield, % 
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Encouraged by these results, we tested the reactivity of unsymmetrically substituted diyne 3-148, 

possessing dimethylmetoxysilyl moiety. After slight optimization of the reaction conditions, we found, 

that silyldiyne 3-148 reacted with enyne 3-141a to produce trifluoromethyarene 3-149 in 78% NMR yield 

with perfect regioselectivity (Scheme 3.47). Although hydrolytically unstable, product 5ac possesses a 

valuable ortho-alkynyl arylsilyl ether functionality that can be further utilized in the synthesis of various 

aromatic scaffolds (vide infra). Similarly, 3-fluoroenyne 3-137a underwent benzannulation reaction with 

unsymmetrically substituted silyldiyne 3-148. In this case, the product was isolated as desilylated adduct 

3-150 after treatment of the reaction mixture with TBAF in a one-pot fashion. 

 
Scheme 3.47. Regioselective Palladium-catalyzed [4+2] Benzannulation of Trifluoromethyl- and 
Fluorine-containing Enynes with Unsymmetrical Diyne 3-148. 

3.2.4. Synthetic Applications 

Benzannulation strategy, which leads to alkynyl-containing arenes, offers a unique opportunity 

for accessing various aromatic and heteroaromatic scaffolds. It seems particularly attractive for the 

synthesis of molecules possessing a modifiable silyl group at the aromatic ring. Accordingly, we explored 

further transformations of trifluoromethyl-containing o-alkynylsilylether 3-149. Given the hydrolytical 

instability of 3-149, it was used as a crude material. ortho-Alkynylbiaryls are valuable substrates in the 

synthesis of polycyclic aromatic scaffolds. Thus, benzannulation product 3-149 was desilylated to afford 

the corresponding o-alkynylbiaryl 3-151 in 76% yield via a one-pot operation (Scheme 3.48). 
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Scheme 3.48. Synthesis of ortho-Alkynyl Biaryl 3-151 via One-pot Palladium-catalyzed [4+2] 
Benzannulation/Desilylation Sequence. 

Obtained o-alkynylbiaryl 3-151 underwent smooth Pd-catalyzed 5-exo-dig cyclization71 followed 

by hydrogenation to form the corresponding trifluoromethyl-containing fluorene 3-153 (Scheme 3.49). 

Alternatively, arylative 5-exo-dig cyclization71b of 3-151 afforded unsymmetrically substituted fluorene 

3-155 as a single stereoisomer. 

 
Scheme 3.49. Synthesis of Perfluoroalkyl-containing Fluorenes via Palladium-catalyzed 5-exo-dig 
Cyclization. 

Furthermore, electrophilic 6-endo-dig cyclization72 of o-alkynylbiaryl 3-151 under gold catalysis 

delivered the CF3-containing phenanthrene 3-156 in excellent yield (Scheme 3.50). Iodo-containing 

phenanthrene 3-157 was efficiently assembled from 3-151 via an ICl-induced 6-endo-dig cyclization.73 

 
Scheme 3.50. Synthesis of Perfluoroalkyl-containing Phenanthrenes via Electrophilic 6-endo-dig 
Cyclization. 
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Naturally, we were interested in exploring the advantages provided by the silyl group located at 

the ortho-position to the triple bond. Thus, reduction of the silyl ether group with DIBAL provided access 

to hydrosilane 3-158 in 75% yield over a two-steps sequence (Scheme 3.51). This compound represents 

not only a hydrolytically stable analog of 3-149, but it is also a potential substrate for the synthesis of 

benzosilols.74 

 
Scheme 3.51. Synthesis of ortho-Alkynylaryldimethylsilane via One-pot Palladium-catalyzed [4+2] 
Benzannulation/Reduction Sequence. 

Alternatively, silver fluoride-mediated electrophilic halogenation of 3-149 afforded haloarenes 

3-159a and 3-159b in good yields (Scheme 3.52). ortho-Alkynylaryliodide 3-159a was then efficiently 

converted to a densely substituted indole 3-160 via the Pd-catalyzed amination/cyclization sequence.75 

Notably, the overall procedure allows for synthesis of 6-substituted indole in just three steps starting from 

acyclic precursors 3-141a and 3-148. Additionally, Sonogashira cross-coupling of 3-159a with 

trimethylsilylacetylene afforded the Bergman cyclization precursor 3-161. 

 
Scheme 3.52. Synthesis of ortho-Alkynylhaloarenes via One-pot Palladium-catalyzed [4+2] 
Benzannulation/Electrophilic Halogenation Sequence and their Further Applications. 
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Finally, the Tamao oxidation of 3-149 under mildly basic conditions offered an access toward o-

alkynylphenol 3-162, leaving the triple bond unaffected (Scheme 3.53). Further electrophilic cyclization 

under Pt-catalysis76 delivered the benzofuran 3-163. Interestingly, under forcing oxidation conditions, an 

unprecedented direct transformation of o-alkynylsilylbenzene 3-149 into benzofuran 3-163 was observed. 

 
Scheme 3.53. Synthesis of ortho-Alkynylphenol and Benzofuran via One-pot Palladium-catalyzed [4+2] 
Benzannulation/Oxidation Sequence. 

3.2.5. Summary 

In conclusion, an efficient and selective method for synthesis of fluoro- and 

perfluoroalkylaromatic compounds via the Pd-catalyzed [4+2] cross-benzannulation reaction has been 

developed. Cycloaddition strategy is proved to be effective for the rapid construction of aromatic 

fluorides from fluorine-containing easily available acyclic starting materials. The developed method 

allowed for synthesis of densely substituted p-trifluoromethyl- and p-perfluoroalkylarenes. Additionally, 

regioselective Pd-catalyzed [4+2] cross-benzannulation reaction of unsymmetrically-substituted diynes 

has been demonstrated. Importantly, this benzannulation reaction with fluoro-containing enynes provides 

an efficient route toward versatile synthons, possessing o-alkynylsilyl structural motif, which could be 

easily transformed into a variety of diverse aromatic and heteroaromatic structures, such as fluorenes, 

phenanthrenes, o-alkynylphenols, bis-o-alkynylbenzenes, benzofurans, and indoles. Accordingly, the 

developed strategy offers a viable and very general alternative to the existing fluorination and 

perfluoroalkylation methods towards these valuable molecules.  
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3.3. EXPERIMENTAL SECTION 

3.3.1. General Information 

NMR spectra were recorded on a Bruker Avance DRX-500 (500 MHz) and Bruker Avance DRX-

400 (400 MHz) spectrometers. LRMS and HRMS analysis was performed on Micromass 70 VSE high-

resolution mass spectrometer or Micromass LCT spectrometer equipped with a time-of-flight analyzer. 

GC/MS analysis was performed on a Hewlett Packard Model 6890 GC interfaced to a Hewlett Packard 

Model 5973 mass selective detector (15 m x 0.25 mm capillary column, HP-5MS). Column 

chromatography was carried out employing Silicycle Silica-P Flash silica gel (40-63 µm) or Fluka Florisil 

(60-100 mesh). Precoated silica gel plates Merck 60 F-254 were used for thin-layer analytical 

chromatography. All manipulations with transition metal catalysts were conducted in oven-dried 

glassware under inert atmosphere using a combination of glovebox and standard Schlenk techniques. 

Small-scale reactions were carried in Wheaton V-vials equipped with Mininert Syringe valve and stirring 

bar. Anhydrous solvents purchased from Aldrich were additionally purified on PureSolv PS-400-4 

purification system by Innovative Technology, Inc. and/or stored over calcium hydride; toluene was 

additionally redistilled over calcium hydride, degased and kept in the glovebox. All other starting 

materials were purchased from Alfa Aesar, Oakwood Products, Sigma Aldrich, Strem Chemicals, and 

SynQuest Laboratories. 

3.3.2. Starting Materials Synthesis 

Enynes 3-137a–k and 3-141a–d were obtained via Sonogashira cross-coupling reaction. 

 

General procedure for the synthesis of enynes 3-137a-k: 1-Bromo-1-fluoroethylene (~1.2 

equiv) was condensed into the cold Schlenk tube (acetone/dry ice cooling bath) followed by the addition 

of dry triethylamine under Ar atmosphere. Pd(PPh3)2Cl2 (5 mol %), CuI (10 mol %) and corresponding 

Br

F
R

+

R

F

3-137
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CuI (10 mol %), Et3N/THF
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alkyne (1.0 equiv) were subsequently added to the reaction mixture. The Schlenk tube was sealed and the 

reaction mixture was allowed to warm to ambient temperature and stirred overnight. Upon completion the 

reaction mixture was quenched with saturated NH4Cl solution and extracted with pentane (3-137a–

3-137d, 3-137j) or EtOAc (3-137e–3-137i, 3-137k). Combined extracts were dried over Na2SO4 and 

solvent was removed under reduced pressure. The residue was purified by column chromatography to 

afford corresponding enyne 3-137. Enynes 3-137 tend to decompose upon storage and therefore were 

used immediately. Although enynes 3-137 could be stored in a solution in freezer, repurification is 

recommended prior to use. 

3-137a: 99% yield, colorless liquid (eluent: pentane). 1H NMR (500 MHz, CDCl3)  δ ppm 

7.53 – 7.48 (m, 2 H), 7.40 – 7.34 (m, 3 H), 5.13 (dd, J = 3.0 Hz, 11.7 Hz, 1 H), 4.97 (dd, J = 

3.0 Hz, 44.2 Hz, 1 H) 13C NMR (125 MHz, CDCl3) δ ppm 146.7 (d, J = 240.7 Hz), 131.8, 129.4, 128.4, 

121.1, 100.3 (d, J = 24.7 Hz), 91.0 (d, J = 6.3 Hz), 80.6 (d, J = 44.1 Hz) 19F NMR (470 MHz, CDCl3) δ 

ppm -97.2 (dd, J = 11.4 Hz, 44.3 Hz, 1 F) HRMS (EI+) calculated for C10H7F [M]+: 146.0532, found: 

146.0539. 

3-137b: 78% yield, colorless liquid (eluent: hexanes : EtOAc = 10 : 1). 1H NMR 

(500 MHz, CDCl3) δ ppm 8.03 – 8.00 (m, 2 H), 7.56 – 7.53 (m, 2 H), 5.17 (dd, J 

= 3.2 Hz, 11.6 Hz, 1 H), 5.00 (dd, J = 3.2 Hz, 44.0 Hz, 1 H), 3.92 (s, 3 H) 13C 

NMR (125 MHz, CDCl3) δ ppm 166.2, 146.3 (d, J = 241.0 Hz), 131.7, 130.6, 129.5, 125.6, 101.3 (d, J = 

24.2 Hz), 90.0 (d, J = 6.4 Hz), 83.1 (d, J = 44.1 Hz), 52.3 19F NMR (470 MHz, CDCl3) δ ppm -98.0 (dd, J 

= 11.5 Hz, 43.9 Hz, 1 F) HRMS (EI+) calculated for C12H9FO2 [M]+: 204.0587, found: 204.0595. 

3-137c: 95% yield, colorless liquid (eluent: pentane : Et2O = 10 : 1). 1H NMR (500 

MHz, CDCl3) δ ppm 7.45 – 7.43 (m, 2 H), 6.89 – 6.86 (m, 2 H), 5.08 (ddd, J = 1.6 

Hz, 3.0 Hz, 11.6 Hz, 1 H), 4.92 (ddd, J = 1.7 Hz, 3.0 Hz, 44.4 Hz, 1 H), 3.83 (s, 3 

Ph

F

F

MeO

F

MeO2C
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H) 13C NMR (125 MHz, CDCl3) δ ppm 160.5, 146.9 (d, J = 240.3 Hz), 133.4, 114.1, 113.1, 99.6 (d, J = 

25.2 Hz), 91.2 (d, J = 6.3 Hz), 79.5 (d, J = 43.8 Hz), 55.3 19F NMR (470 MHz, CDCl3) δ ppm -96.6 (dd, J 

= 10.5 Hz, 44.3 Hz, 1 F) HRMS (EI+) calculated for C11H9FO [M]+: 176.0638, found: 176.0630. 

3-137d: 96% yield, colorless liquid (eluent: pentane). 1H NMR (500 MHz, CDCl3) δ ppm 

7.37 – 7.34 (m, 4 H), 7.31 – 7.27 (m, 1 H), 5.02 (ddd, J = 2.0 Hz, 2.8 Hz, 11.8 Hz, 1 H), 

4.84 (ddd, J = 2.0 Hz, 2.7 Hz, 44.3 Hz, 1 H), 3.78 (d, J = 4.6 Hz, 2 H) 13C NMR (125 MHz, CDCl3) δ 

ppm 146.6 (d, J = 240.4 Hz), 135.2, 128.7 128.0, 127.0, 99.4 (d, J = 24.8 Hz), 90.3 (d, J = 6.3 Hz), 74.5 

(d, J = 44.0 Hz), 25.4 19F NMR (470 MHz, CDCl3) δ ppm -96.3 (dd, J = 6.9 Hz, 45.0 Hz, 1 F) HRMS 

(EI+) calculated for C11H8F [M-H]+: 159.0610, found: 159.0617. 

3-137e: 70% yield, pale yellow oil (eluent: hexanes : EtOAc = 10 : 1). 1H NMR (500 

MHz, CDCl3) δ ppm 7.60 – 7.57 (m, 4 H), 7.53 – 7.48 (m, 4 H), 7.46 – 7.41 (m, 2 H), 

5.24 (ddd, J = 1.7 Hz, 3.0 Hz, 11.8 Hz, 1 H), 5.06 (ddd, J = 1.2 Hz, 3.0 Hz, 44.3 Hz, 1 H), 3.88 (s, 4H), 

3.57 (d, J = 4.2 Hz, 2 H) 13C NMR (125 MHz, CDCl3) δ ppm 146.6 (d, J = 240.9 Hz), 138.7, 129.2 128.6, 

127.5, 99.9 (d, J = 24.7 Hz), 87.7 (d, J = 6.2 Hz), 77.9 (d, J = 43.9 Hz), 57.9, 41.7 19F NMR (470 MHz, 

CDCl3) δ ppm -95.5 (dd, J = 10.1 Hz, 44.1 Hz, 1 F) HRMS (ESI) calculated for C19H19FN [M+H]+: 

280.1502, found: 280.1504. 

3-137f: quant yield, colorless liquid (eluent: hexanes). 1H NMR (500 MHz, CDCl3) δ 

ppm 4.94 (dd, J = 2.9 Hz, 11.8 Hz, 1 H), 4.84 (dd, J = 2.9 Hz, 44.7 Hz, 1 H), 2.33 (dt, J 

= 4.8 Hz, 7.1 Hz, 2 H), 1.59 – 1.52 (m, 2 H), 1.43 – 1.35 (m, 2 H), 1.32 – 1.25 (m, 12 H), 0.89 (t, J = 6.9 

Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 146.9 (d, J = 239.8 Hz), 98.5 (d, J = 25.4 Hz), 93.2 (d, J = 

6.5 Hz), 75.6 (d, J = 44.0 Hz), 31.9, 29.54, 29.46, 29.3, 29.1, 28.8, 28.0, 22.7, 19.0, 14.1 19F NMR (470 

MHz, CDCl3) δ ppm -95.4 (ddd, J = 3.8 Hz, 7.1 Hz, 44.7 Hz, 1 F) HRMS (EI+) calculated C14H23F [M]+: 

210.1784, found: 210.1775. 
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3-137g: 84% yield, colorless liquid (eluent: hexanes). 1H NMR (500 MHz, CDCl3) δ 

ppm 7.33 – 7.29 (m, 2 H), 7.24 – 7.19 (m, 3 H), 4.98 (ddd, J = 2.7 Hz, 2.7 Hz, 11.8 Hz, 

1 H), 4.78 (ddd, J = 2.7 Hz, 2.7 Hz, 44.7 Hz, 1 H), 2.75 (dt, J = 2.2 Hz, 7.9 Hz, 2 H), 2.39 – 2.34 (m, 2 

H), 1.94 – 1.87 (m, 2 H) 13C NMR (125 MHz, CDCl3) δ ppm 146.8 (d, J = 240.0 Hz), 141.1, 128.5, 128.4, 

126.1, 98.8 (d, J = 25.3 Hz), 92.6 (d, J = 6.2 Hz), 73.1 (d, J = 43.8 Hz), 34.7, 29.5, 18.4 19F NMR (470 

MHz, CDCl3) δ ppm -95.6 (d, J = 44.2 Hz, 1 F) HRMS (EI+) calculated for C13H12F [M-H]+: 187.0923, 

found: 187.0928. 

3-137h: 80% yield, colorless liquid (eluent: hexanes). 1H NMR (500 MHz, CDCl3) δ 

ppm 4.94 (dd, J = 2.9 Hz, 11.8 Hz, 1 H), 4.74 (dd, J = 2.9 Hz, 44.7 Hz, 1 H), 3.70 (t, 

J = 5.9 Hz, 2 H), 2.46 – 2.41 (m, 2 H), 1.79 – 1.73 (m, 2 H), 0.90 (s, 9 H), 0.06 (s, 6 H) 13C NMR (125 

MHz, CDCl3) δ ppm 146.8 (d, J = 239.7 Hz), 98.6 (d, J = 25.3 Hz), 92.7 (d, J = 6.3 Hz), 72.7 (d, J = 43.8 

Hz), 61.3, 30.1, 25.9, 18.3, 15.5, -5.4 19F NMR (470 MHz, CDCl3) δ ppm -95.6 (ddd, J = 4.3 Hz, 6.5 Hz, 

44.8 Hz, 1 F). 

3-137i: 50% yield, pale yellow liquid (eluent: hexanes : EtOAc = 10 : 1). 1H NMR 

(500 MHz, CDCl3) δ ppm 4.94 (dd, J = 2.9 Hz, 11.8 Hz, 1 H), 4.73 (dd, J = 2.9 Hz, 

44.7 Hz, 1 H), 2.47 (t, J = 7.0 Hz, 2 H), 2.42 – 2.32 (m, 6 H), 1.70 – 1.64 (m, 2 H), 1.48 – 1.39 (m, 4 H), 

0.87 (t, J = 7.4 Hz, 6 H) 13C NMR (125 MHz, CDCl3) δ ppm 146.9 (d, J = 240.0 Hz), 98.5 (d, J = 25.6 

Hz), 93.2 (d, J = 6.2 Hz), 72.6 (d, J = 43.9 Hz), 56.3, 52.8, 26.0, 20.4, 16.9, 11.9 19F NMR (470 MHz, 

CDCl3) δ ppm -95.5 (ddd, J = 4.5 Hz, 6.5 Hz, 44.7 Hz, 1 F) HRMS (ESI) calculated for C13H23FN 

[M+H]+: 212.1815, found: 212.1812. 

3-137j: 85% yield, colorless liquid (eluent: hexanes : EtOAc = 10 : 1). 1H NMR (500 

MHz, CDCl3) δ ppm 4.96 (dd, J = 2.6 Hz, 11.9 Hz, 1 H), 4.77 (dd, J = 2.4 Hz, 44.7 Hz, 

1 H), 2.53 – 2.43 (m, 4 H), 1.92 – 1.84 (m, 2 H) 13C NMR (125 MHz, CDCl3) δ ppm 146.2 (d, J = 240.0 

Hz), 118.8, 99.6 (d, J = 24.6 Hz), 89.9 (d, J = 6.5 Hz), 74.1 (d, J = 44.3 Hz), 23.9, 18.1, 16.1 19F NMR 
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(470 MHz, CDCl3) δ ppm -96.7 (dd, J = 11.2 Hz, 44.7 Hz, 1 F) HRMS (EI+) calculated for C8H8FN [M]+: 

137.0641, found: 137.0637. 

3-137k: quant yield, colorless liquid (eluent: hexanes : EtOAc = 10 : 1). 1H NMR 

(500 MHz, CDCl3) δ ppm 4.91 (dd, J = 3.0 Hz, 11.9 Hz, 1 H), 4.77 (dd, J = 2.9 Hz, 

44.7 Hz, 1 H), 3.64 (s, 3 H), 2.42 – 2.36 (m, 4 H), 1.84 (quint, J = 7.2 Hz, 2 H) 13C NMR (125 MHz, 

CDCl3) δ ppm 173.2, 146.6 (d, J = 240.0 Hz), 98.9 (d, J = 25.1 Hz), 91.6 (d, J = 6.5 Hz), 73.3 (d, J = 44.0 

Hz), 51.5, 32.6, 23.1, 18.4 19F NMR (470 MHz, CDCl3) δ ppm -96.0 (dd, J = 11.0 Hz, 44.6 Hz, 1 F) 

HRMS (EI+) calculated for C9H11FO2 [M]+: 170.0743, found: 170.0752. 

 

General procedure for the synthesis of enynes 3-141a, d: A Schlenk flask was charged with 

Pd(PPh3)2Cl2 (2 mol %) and CuI (5 mol %) under N2 atmosphere. Dry triethyamine/THF (1:1 ratio, 1M) 

and 2-bromo-3,3,3-trifluoro-1-propene (3-140, 1.0 equiv) were added subsequently followed by dropwise 

addition of the corresponding alkyne (1.1 equiv). The reaction mixture was stirred at ambient temperature 

until completion. The reaction was then quenched with saturated NH4Cl solution and extracted with 

pentane. Combined extracts were dried over Na2SO4 and solvent was removed under vacuum. The residue 

was purified by column chromatography to afford the corresponding enyne 3-141. 

3-141a: 80% yield, colorless liquid (eluent: pentane). 1H NMR (500 MHz, CDCl3) δ ppm 

7.52 – 7.49 (m, 2 H), 7.40 – 7.33 (m, 3 H), 6.12 – 6.11 (m, 1 H), 5.97 – 5.95 (m, 1 H) 13C 

NMR (125 MHz, CDCl3) δ ppm 131.8, 129.2, 128.4, 126.7 (q, J = 3.8 Hz), 122.8 (q, J = 35.2 Hz), 121.7, 

121.4 (q, J = 273.7 Hz), 93.2, 81.4 19F NMR (470 MHz, CDCl3) δ ppm -69.5 (s, 3 F) HRMS (EI+) 

calculated for C11H7F3 [M]+: 196.0500, found: 196.0506. 

3-141d: 76% yield, colorless liquid (eluent: pentane). 1H NMR (500 MHz, CDCl3) δ 

ppm 5.94 – 5.96 (m, 1 H), 5.75 – 5.76 (m, 1 H), 2.34 (t, J = 7.1 Hz, 2 H), 1.60 – 1.52 
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(m, 2 H), 1.44 – 1.37 (m, 2 H), 1.36 – 1.26 (m, 4 H), 0.90 (t, J = 7.0 Hz, 3 H) 13C NMR (125 MHz, 

CDCl3) δ ppm 125.3 (m), 122.9 (d, J = 34.9 Hz), 121.4 (d, J = 273.7 Hz), 95.2, 73.2, 31.2, 28.4, 28.1, 

22.5, 19.2, 13.9 19F NMR (470 MHz, CDCl3) δ ppm -70.0 (s, 3 F) HRMS (EI+) calculated for C11H16F3 

[M+H]+: 205.1204, found: 205.1212. 

 

Synthesis of enyne 3-141b: A Schlenk flask was charged with Pd(PPh3)2Cl2 (18 mg, 0.025 

mmol), CuI (10 mg, 0.05 mmol), and 1,4-diazabicyclo[2.2.2]octane (112 mg, 1.0 mmol) under N2 

atmosphere. Dry THF (2.0 mL) and 2-bromo-3,3,4,4,4-pentafluoro-1-butene (112 mg, 0.5 mmol) were 

added sequentially, followed by dropwise addition of phenylacetylene (66 mL, 0.6 mmol). The reaction 

mixture was stirred at ambient temperature until completion. The reaction was then quenched with 

saturated NH4Cl solution and extracted with pentane. Combined extracts were dried over Na2SO4 and 

solvent was removed under vacuum. The residue was purified by column chromatography (eluent: 

pentane) to afford enyne 3-141b (60.0 mg, 49%) as a colorless liquid. 1H NMR (500 MHz, CDCl3) δ ppm 

7.51 – 7.47 (m, 2 H), 7.39 – 7.33 (m, 3 H), 6.16 – 6.14 (m, 1 H), 6.11 – 6.10 (m, 1 H) 13C NMR (125 

MHz, CDCl3) δ ppm 131.8, 129.2, 128.4, 121.7, 93.8, 81.7 Carbon atoms corresponding to C2F5 group 

and double bond can not be identified due to C-F coupling. 19F NMR (470 MHz, CDCl3) δ ppm -85.1 (s, 3 

F), -117.6 (s, 2 F) HRMS (EI+) calculated for C12H7F5 [M]+: 246.0468, found: 246.0473 

 

Synthesis of enyne 3-141c: A Schlenk flask was charged with Pd(PPh3)2Cl2 (105 mg, 0.15 

mmol), CuI (60 mg, 0.3 mmol) under N2 atmosphere. Dry THF (10 mL), dry triethylamine (835 mL, 6.0 

mmol), and 2-bromo-3,3,4,4,5,5,6,6,6-nonafluoro-1-hexene (972 mg, 3.0 mmol) were added 

subsequently, followed by dropwise addition of phenylacetylene (395 mL, 3.6 mmol). The reaction 
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mixture was stirred at ambient temperature until completion. The reaction was then quenched with 

saturated NH4Cl solution and extracted with hexane (3 × 5 mL). Combined extracts were dried over 

Na2SO4 and solvent was removed under vacuum. The residue was purified by column chromatography 

(eluent: hexanes) to afford the corresponding enyne 3-141c (982 mg, 95%) as a colorless liquid. 1H NMR 

(500 MHz, CDCl3) δ ppm 7.51 – 7.46 (m, 2 H), 7.39 – 7.33 (m, 3 H), 6.15 – 6.11 (m, 2 H) 13C NMR (125 

MHz, CDCl3) δ ppm 131.8, 129.6, 129.3, 128.4, 121.7, 93.7, 81.8 Carbon atoms corresponding to C4F9 

group and double bond can not be identified due to C-F coupling. 19F NMR (470 MHz, CDCl3) δ ppm -

82.5 (t, J = 8.3 Hz, 3 F), -113.7 (t, J = 11.7 Hz, 2 F), -124.0 (m, 2 F), -127.4 (t, J = 11.7 Hz, 2 F) HRMS 

(EI+) calculated for C14H7F9 [M]+: 346.0403, found: 346.0402. 

Diynes 3-138b, 3-138c, and 3-138d were synthesized via Glaser coupling, analytical data of 

obtained compounds 3-138b77 and 3-138c, 3-138d78 are in agreement with the literature data. 

3.3.3. Synthesis of para-Fluoroarylalkynes 

 

General procedure: An oven-dried 1.0 mL V-vial equipped with a stirring bar was charged with 

IPrPdAllCl (2.8 mg, 0.005 mmol, 1 mol %), (2-furyl)3P (1.2 mg, 0.01 mmol, 2 mol %), CsOPiv (1.2 mg, 

0.01 mmol, 2 mol %), and toluene (0.5 mL) under N2 atmosphere. Enyne 3-137 (0.6 mmol, 1.2 equiv) and 

diyne 3-138 (0.5 mmol, 1.0 equiv) were subsequently added. The reaction vessel was caped with Mininert 

syringe valve and the reaction mixture was stirred at 120 °C for 16-24 h. Upon reaction completion the 

resultant mixture was cooled to room temperature, diluted with CH2Cl2, and filtered through a celite plug. 

The filtrate was concentrated under reduced pressure, and the crude product was purified by column 

chromatography to afford 3-01. 

3-01aa: 147.4 mg (0.5 mmol scale), 85% yield, colorless solid (eluent: hexanes). 1H 

NMR (500 MHz, CDCl3) δ ppm 7.71 – 7.67 (m, 4 H), 7.53 – 7.44 (m, 6 H), 7.23 – 7.19 
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(m, 3 H), 7.16 (s, 1H), 7.14 (s, 1H), 7.03 – 6.99 (m, 2 H) 13C NMR (125 MHz, CDCl3) δ ppm 161.9 (d, J 

= 250.1 Hz), 147.2 (d, J = 8.3 Hz), 140.1, 130.9, 129. 5, 128.1, 127.93, 127.90, 123.5, 116.6, 115.5 (d, J = 

22.2 Hz), 95.3, 88.1 19F NMR (470 MHz, CDCl3) δ ppm -113.2 (t, J = 8.7 Hz, 1 F) HRMS (EI+) 

calculated for C26H17F [M]+: 348.1314, found: 348.1316.  

3-01ba: 159.4 mg (0.5 mmol scale), 78% yield, white solid (eluent: 

hexanes : EtOAc = 4 : 1). 1H NMR (500 MHz, CDCl3) δ ppm 8.18 – 8.15 (m, 2 

H), 7.78– 7.76 (m, 2 H), 7.68 – 7.66 (m, 2 H), 7.52 – 7.43 (m, 3 H), 7.24 – 7.12 

(m, 5 H), 7.00 – 6.97 (m, 2 H), 3.98 (s, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 166.9, 161.8 (d, J = 

250.6 Hz), 147.5 (d, J = 8.4 Hz), 145.8 (d, J = 8.3 Hz), 144.6, 139.9, 130.9, 129.6, 129.5, 129.2, 128.2, 

128.1, 128.05, 127.95, 123.1, 116.5, 116.1 (d, J = 22.1 Hz), 115.4 (d, J = 22.5 Hz), 95.7, 87.6, 52.2 19F 

NMR (470 MHz, CDCl3) δ ppm -112.6 (m, 1 F) HRMS (EI+) calculated for C28H19FO2 [M]+: 406.1369, 

found: 406.1373. 

3-01ca: 95.5 mg (0.5 mmol scale), 51% yield, white solid (eluent: hexanes : EtOAc 

= 20 : 1). 1H NMR (500 MHz, CDCl3) δ ppm 7.70 – 7.64 (m, 4 H), 7.51– 7.43 (m, 

3 H), 7.25 – 7.19 (m, 3 H), 7.14 – 7.08 (m, 2 H), 7.07 – 7.01 (m, 4 H), 3.90 (s, 3 H) 

13C NMR (125 MHz, CDCl3) δ ppm 161.9 (d, J = 249.8 Hz), 159.5, 147.3 (d, J = 8.6 Hz), 146.7 (d, J = 

8.5 Hz), 140.2, 132.5, 130.9, 130.7, 129.5, 128.1, 127.90, 127.87, 123.5, 116.4, 115.3 (d, J = 22.1 Hz), 

115.1 (d, J = 22.4 Hz), 113.3, 95.2, 88.3, 55.4 19F NMR (470 MHz, CDCl3) δ ppm -113.3 (m, 1 F) HRMS 

(EI+) calculated for C27H19FO [M]+: 378.1420, found: 378.1413. 

3-01da: 102.7 mg (0.5 mmol scale), 57% yield, pale yellow oil (eluent: hexanes). 1H 

NMR (500 MHz, CDCl3) δ ppm 7.69 – 7.66 (m, 2 H), 7.51 – 7.47 (m, 2 H), 7.46 – 7.42 

(m, 1 H), 7.37 – 7.34 (m, 4 H), 7.31 – 7.26 (m, 6 H), 7.03 (dd, J = 2.6 Hz, J = 9.2 Hz, 1 H), 6.89 (dd, J = 

2.6 Hz, J = 9.3 Hz, 1 H), 4.36 (s, 2 H) 13C NMR (125 MHz, CDCl3) δ ppm 162.1 (d, J = 249.7 Hz), 146.8 

(d, J = 8.5 Hz), 146.5 (d, J = 7.9 Hz), 140.1, 139.8, 131.2, 129.4, 129.1, 128.6, 128.3, 128.2, 127.93, 

127.90, 126.5, 123.5, 117.6, 115.3 (d, J = 22.2 Hz), 114.6 (d, J = 22.4 Hz), 96.5, 87.3, 40.8 19F NMR (470 
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MHz, CDCl3) δ ppm -112.8 (m, 1 F) HRMS (EI+) calculated for C27H19F [M]+: 362.1471, found: 

362.1473. 

3-01ea: 219.7 mg (0.5 mmol scale), 84% yield + ~8% of enyne dimer, yellow oil 

(eluent: hexanes : EtOAc = 10:1). 1H NMR (500 MHz, CDCl3) δ ppm 7.65 – 7.62 (m, 2 

H), 7.60 (dd, J = 2.6 Hz, 9.6 Hz, 1 H), 7.50 – 7.25 (m, 18 H), 7.04 (dd, J = 2.6 Hz, 9.1 Hz, 1 H), 3.99 (s, 2 

H), 3.74 (s, 4 H) 13C NMR (125 MHz, CDCl3) δ ppm 162.6 (d, J = 249.1 Hz), 146.7 (d, J = 8.2 Hz), 145.5 

(d, J = 7.9 Hz), 140.0, 139.2, 131.1, 129.4, 128.8, 128.4, 128.3, 128.2, 127.9, 127.8, 127.1, 123.5, 117.1, 

115.1 (d, J = 22.8 Hz), 114.2 (d, J = 22.8 Hz), 96.9, 86.6, 58.4, 55.9 19F NMR (470 MHz, CDCl3) δ ppm -

112.6 (m, 1 F) HRMS (ESI) calculated for C35H29FN [M+H]+: 482.2284, found: 482.2278. 

3-01fa: 145.8 mg (0.5 mmol scale), 71% yield, pale yellow oil (eluent: hexanes). 1H 

NMR (500 MHz, CDCl3) δ ppm 7.66 – 7.63 (m, 2 H), 7.49 – 7.40 (m, 3 H), 7.30 – 7.27 

(m, 5 H), 6.97 (dt, J = 2.6 Hz, J = 9.4 Hz, 2 H), 2.97 – 2.92 (m, 2 H), 1.79 – 1.72 (m, 2 H), 1.48 – 1.22 

(m, 14 H), 0.89 (t, J = 6.9 Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 162.1 (d, J = 249.3 Hz), 148.5 (d, 

J = 7.9 Hz), 146.7 (d, J = 8.4 Hz), 140.2, 131.6, 128.6, 129.4, 128.3, 128.0, 127.9, 127.8, 123.7, 117.2, 

114.6 (d, J = 21.6 Hz), 114.0 (d, J = 22.3 Hz), 95.7, 87.1, 35.4, 31.9, 30.5, 29.64, 29.56, 29.3, 22.7, 14.1 

19F NMR (470 MHz, CDCl3) δ ppm -113.6 (m, 1 F) HRMS (EI+) calculated for C30H33F [M]+: 412.2566, 

found: 412.2556. 

3-01ga: 167.1 mg (0.5 mmol scale), 86% yield + ~3% of enyne dimer, pale yellow 

oil (eluent: hexanes). 1H NMR (500 MHz, CDCl3) δ ppm 7.66 – 7.62 (m, 2 H), 7.49 – 

7.40 (m, 3 H), 7.32 – 7.18 (m, 10 H), 7.01 – 6.95 (m, 2 H), 3.03 – 2.98 (m, 2 H), 2.79 (t, J = 7.6 Hz, 3 H), 

2.15 – 2.08 (m, 2 H) 13C NMR (125 MHz, CDCl3) δ ppm 162.1 (d, J = 249.2 Hz), 147.9 (d, J = 7.8 Hz), 

146.8 (d, J = 8.5 Hz), 142.1, 140.2, 131.2, 129.5, 128.6, 128.5, 128.3, 128.1, 127.94, 127.86, 125.9, 

123.6, 117.4 (d, J = 2.9 Hz), 114.7 (d, J = 21.5 Hz), 114.2 (d, J = 22.3 Hz), 96.0, 87.1, 36.0, 35.0, 32.0 19F 

NMR (470 MHz, CDCl3) δ ppm -113.5 (m, 1 F) HRMS (EI+) calculated for C29H23F [M]+: 390.1783, 

found: 390.1780. 
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3-01ha: 184.0 mg (0.5 mmol scale), 83% yield, pale yellow oil (eluent: hexanes). 

1H NMR (500 MHz, CDCl3) δ ppm 7.65 – 7.62 (m, 2 H), 7.49 – 7.44 (m, 2 H), 

7.43 – 7.39 (m, 1 H), 7.29 – 7.27 (m, 5 H), 6.99 (s, 1 H), 6.98 (s, 1 H), 3.74 (t, J = 6.2 Hz, 3 H), 3.03 – 

2.99 (m, 2 H), 2.03 – 1.96 (m, 2 H), 0.92 (s, 9 H), 0.08 (s, 6 H) 13C NMR (125 MHz, CDCl3) δ ppm 162.0 

(d, J = 249.3 Hz), 147.7 (d, J = 7.9 Hz), 146.7 (d, J = 8.2 Hz), 140.1, 131.1, 129.4, 128.3, 128.0, 127.9, 

127.8, 123.6, 117.3, 114.7 (d, J = 21.6 Hz), 114.1 (d, J = 22.3 Hz), 96.0, 86.9, 62.6, 33.1, 31.8, 26.0, 18.4, 

-5.3 19F NMR (470 MHz, CDCl3) δ ppm -113.6 (m, 1 F) HRMS (EI+) calculated for C29H33FOSi [M]+: 

444.2285, found: 444.2294. 

3-01ia: 168.8 mg (0.5 mmol scale), 82% yield, pale yellow oil (eluent: 

hexanes : EtOAc = 10 : 1). 1H NMR (500 MHz, CDCl3) δ ppm 7.66 – 7.63 (m, 2 

H), 7.49 – 7.45 (m, 2 H), 7.43 – 7.40 (m, 1 H), 7.30 – 7.27 (m, 5 H), 7.00 (s, 1 H), 6.98 (s, 1 H), 2.98 – 

2.93 (m, 2 H), 2.61 – 2.57 (m, 2 H), 2.43– 2.39 (m, 4 H), 1.96 – 1.88 (m, 2 H), 1.51– 1.43 (m, 4 H), 0.88 

(t, J = 7.5 Hz, 6 H) 13C NMR (125 MHz, CDCl3) δ ppm 162.0 (d, J = 249.4 Hz), 148.1 (d, J = 7.9 Hz), 

146.7 (d, J = 8.4 Hz), 140.2, 131.1, 129.4, 128.2, 128.0, 127.9, 127.8, 123.6, 117.3, 114.6 (d, J = 21.6 

Hz), 114.0 (d, J = 22.3 Hz), 95.9, 87.0, 56.3, 53.9, 33.4, 27.8, 20.4, 12.0 19F NMR (470 MHz, CDCl3) δ 

ppm -113.5 (m, 1 F) HRMS (ESI) calculated for C29H33FN [M+H]+: 414.2597, found: 414.2586. 

3-01ja: 102.5 mg (0.5 mmol scale), 60% yield, pale yellow oil (eluent: 

hexanes : EtOAc = 10:1). 1H NMR (500 MHz, CDCl3) δ ppm 7.66 – 7.62 (m, 2 H), 

7.50 – 7.46 (m, 2 H), 7.45 – 7.42 (m, 1 H), 7.31 – 7.30 (m, 5 H), 7.05 (dd, J = 2.6 Hz, 9.2 Hz, 1 H), 6.99 

(dd, J = 2.6 Hz, 8.8 Hz, 1 H), 3.14 – 3.10 (m, 2 H), 2.45 (t, J = 7.2 Hz, 2 H), 2.19 – 2.11 (m, 2 H) 13C 

NMR (125 MHz, CDCl3) δ ppm 162.0 (d, J = 250.4 Hz), 147.3 (d, J = 8.3 Hz), 145.0 (d, J = 8.0 Hz), 

139.8, 131.1, 129.3, 128.39, 128.37, 128.01, 127.97, 123.1, 119.4, 117.5, 115.0 (d, J = 22.2 Hz), 114.9 (d, 

J = 21.8 Hz), 96.5, 86.4, 34.0, 25.9, 16.8 19F NMR (470 MHz, CDCl3) δ ppm -112.6 (m, 1 F) HRMS 

(EI+) calculated for C24H18FN [M]+: 339.1423, found: 339.1431. 
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3-01ka: 115.6 mg (0.5 mmol scale), 62% yield, pale yellow oil (eluent: 

hexanes : EtOAc = 10:1). 1H NMR (500 MHz, CDCl3) δ ppm 7.64 – 7.61 (m, 2 

H), 7.49 – 7.44 (m, 2 H), 7.43 – 7.39 (m, 1 H), 7.31 – 7.27 (m, 5 H), 6.98 (ddd, J = 2.6 Hz, 9.2 Hz, 16.6 

Hz, 2 H), 3.66 (s, 3 H), 3.02 – 2.98 (m, 2 H), 2.44 (t, J = 7.4 Hz, 2 H), 2.15 – 2.08 (m, 2 H) 13C NMR 

(125 MHz, CDCl3) δ ppm 173.7, 162.0 (d, J = 249.8 Hz), 146.87 (d, J = 8.4 Hz), 146.75 (d, J = 8.1 Hz), 

140.0, 131.1, 129.4, 128.3, 128.1, 127.9, 127.8, 123.4, 117.4, 114.8 (d, J = 21.6 Hz), 114.4 (d, J = 22.3 

Hz), 96.0, 86.8, 51.6, 34.4, 33.5, 25.5 19F NMR (470 MHz, CDCl3) δ ppm -113.2 (m, 1 F) HRMS (EI+) 

calculated for C25H21FO2 [M]+: 372.15256, found: 372.1517. 

3-01ac: 159.8 mg (0.5 mmol scale), 69% yield, white solid (eluent: 

hexanes : EtOAc = 4 : 1). 1H NMR (500 MHz, CDCl3) δ ppm 8.17 (d, J = 

8.2 Hz, 2 H), 7.86 (d, J = 8.2 Hz, 2 H), 7.74 (d, J = 8.2 Hz, 2 H), 7.66 – 7.63 

(m, 2 H), 7.52 – 7.44 (m, 3 H), 7.18 (dd, J = 2.4 Hz, 9.0 Hz, 1 H), 7.14 (dd, 

J = 2.4 Hz, 8.8 Hz, 1 H), 7.01 (s, 1 H), 6.99 (s, 1 H), 3.98 (s, 3 H), 3.88 (s, 3 H) 13C NMR (125 MHz, 

CDCl3) δ ppm 166.8, 166.4, 161.1 (d, J = 251.8 Hz), 148.0 (d, J = 8.3 Hz), 146.2 (d, J = 8.4 Hz), 144.4, 

139.8, 130.7, 129.7, 129.5, 129.41, 129.35, 129.3, 128.2, 128.0, 127.7, 116.2 (d, J = 22.2 Hz), 116.0, 

115.5 (d, J = 22.7 Hz), 94.9, 90.6, 52.23, 52.15 19F NMR (470 MHz, CDCl3) δ ppm -111.7 (m, 1 F) 

HRMS (EI+) calculated for C30H21FO4 [M]+: 464.1424, found: 464.1415. 

3-01ad: 124.8 mg (0.5 mmol scale), 61% yield, white solid (eluent: 

hexanes : EtOAc = 4 : 1). 1H NMR (500 MHz, CDCl3) δ ppm 7.69 – 7.63 (m, 

4 H), 7.50 – 7.41 (m, 3 H), 7.12 – 7.08 (m, 2 H), 7.03 – 6.97 (m, 4 H), 6.76 – 

6.73 (m, 2 H), 3.90 (s, 3 H), 3.77 (s, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 

161.7 (d, J = 249.8 Hz), 159.42, 159.38, 146.9 (d, J = 8.5 Hz), 146.3 (d, J = 8.4 Hz), 140.3, 132.6, 132.4, 

130.7, 129.5, 127.84, 127.80, 116.8, 115.7, 115.2 (d, J = 22.2 Hz), 115.0 (d, J = 22.4 Hz), 113.8, 113.3, 

95.2, 87.0, 55.4, 55.3 19F NMR (470 MHz, CDCl3) δ ppm -114.0 (m, 1 F) HRMS (EI+) calculated for 

C28H21FO2 [M]+: 408.1526, found: 408.15160. 
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3-01ab: 121.6 mg (0.5 mmol scale), 79% yield, pale yellow oil (eluent: hexanes). 1H 

NMR (500 MHz, CDCl3) δ ppm 7.59 – 7.56 (m, 2 H), 7.44 – 7.35 (m, 3 H), 6.92 (s, 1 

H), 6.91 (s, 1 H), 2.88 – 2.83 (m, 2 H), 2.32 (t, J = 6.9 Hz, 2 H), 1.72 – 1.66 (m, 2 H), 

1.50 – 1.42 (m, 4 H), 1.38 – 1.31 (m, 2 H), 0.99 (t, J = 7.4 Hz, 3 H), 0.89 (t, J = 7.3 Hz, 3 H) 13C NMR 

(125 MHz, CDCl3) δ ppm 161.4 (d, J = 247.7 Hz), 148.2 (d, J = 7.7 Hz), 146.3 (d, J = 8.2 Hz), 140.5, 

129.3, 127.7, 127.4, 118.8, 114.3 (d, J = 21.4 Hz), 113.8 (d, J = 22.2 Hz), 96.9, 77.6, 34.9, 32.5, 30.6, 

22.7, 21.9, 19.2, 14.0, 13.6 19F NMR (470 MHz, CDCl3) δ ppm -113.2 (m, 1 F) HRMS (EI+) calculated 

for C22H25F [M]+: 308.1940, found: 308.1934. 

 

Synthesis of 3-150: An oven-dried 3 mL V-vial equipped with a stirring bar was charged with 

Pd2(dba)3 (11.4 mg, 0.0125 mmol, 2.5 mol %), diphenylphosphino-2'-(N,N-dimethylamino)biphenyl 

(PhDavePhos, 19.1 mg, 0.025 mmol, 10 mol %), and toluene (1 mL) under N2 atmosphere. Enyne 3-137a 

(73.0 mg, 0.5 mmol, 1 equiv) and diyne 3-148 (160.5 mg, 0.75 mmol, 1.5 equiv) were sequentially added. 

The reaction vessel was caped with Mininert syringe valve and the reaction mixture was stirred at 100 °C 

for 72 h. Upon reaction completion resultant mixture was cooled to room temperature and solution of 

TBAF (1M in THF, 1.0 mL, 1.0 mmol) was added. The reaction mixture was stirred at ambient 

temperature for 1 h, diluted with CH2Cl2, and filtered through a celite plug. The filtrate was concentrated 

under reduced pressure and the crude product was purified by column chromatography (eluent: hexanes) 

to afford 3-150 (67.3 mg, 48%) as a pale yellow oil. The product was obtained as an inseparable mixture 

with corresponding enyne dimer (~ 8%). 1H NMR (500 MHz, CDCl3) δ ppm 7.70 – 7.67 (m, 2 H), 7.65 

(dd, J = 5.8 Hz, 8.6 Hz, 1 H), 7.52 – 7.47 (m, 2 H), 7.46 – 7.42 (m, 1 H), 7.36 – 7.29 (m, 5 H), 7.17 (dd, J 

= 2.7 Hz, 9.6 Hz, 1 H), 7.06 (dd, J = 2.7 Hz, 8.3 Hz, 1 H) 13C NMR (125 MHz, CDCl3) δ ppm 162.4 (d, J 

= 249.9 Hz), 146.2 (d, J = 8.0 Hz), 139.5, 134.7 (d, J = 8.5 Hz), 131.3, 129.2, 128.8, 128.3, 128.2, 128.03, 
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128.00, 123.3, 116.5 (d, J = 22.4 Hz), 114.3 (d, J = 21.9 Hz), 91.8, 88.4 19F NMR (470 MHz, CDCl3) δ 

ppm -112.5 (m, 1 F) HRMS (EI+) calculated for C20H13F [M]+: 272.1001, found: 272.1001. 

3.3.4. Synthesis of Perfluoroalkyl Arylalkynes. 

 

General procedure: An oven-dried 1.0 mL V-vial equipped with a stirring bar was carged with 

IPrPdAllCl (2.8 mg, 0.005 mmol, 1 mol %), (2-furyl)3P (1.2 mg, 0.01 mmol, 2 mol %), CsOPiv (1.2 mg, 

0.01 mmol, 2 mol %), and toluene (0.5 mL) under N2 atmosphere. Enyne 3-141 (0.6 mmol, 1.2 equiv) and 

diyne 3-138 (0.5 mmol, 1.0 equiv) were subsequently added. The reaction vessel was caped with Mininert 

syringe valve and the reaction mixture was stirred at 100 °C for 16-24 h. Upon reaction completion 

resultant mixture was cooled to room temperature, diluted with CH2Cl2, and filtered through a celite plug. 

The filtrate was concentrated under a reduced pressure, and the crude product was purified by column 

chromatography on silica gel to afford 3-142. 

3-142aa: 167.9 mg (0.5 mmol scale), 84% yield, pale yellow oil (eluent: hexanes). 

1H NMR (500 MHz, CDCl3) δ ppm 7.72 – 7.68 (m, 4 H), 7.68 – 7.66 (m, 2 H), 7.54 

– 7.45 (m, 6 H), 7.28 – 7.20 (m, 3 H), 7.04 – 7.00 (m, 2 H) 13C NMR (125 MHz, 

CDCl3) δ ppm 145.6, 139.9, 131.3, 129.8 (q, J = 32.8 Hz), 129.5, 128.5, 128.2, 128.1, 128.0, 125.0 (m), 

124.1, 123.9 (q, J = 270.0 Hz), 122.9, 98.1, 87.8 19F NMR (470 MHz, CDCl3) δ ppm -64.2 (s, 3 F) HRMS 

(EI+) calculated for C27H17F3 [M]+: 398.1282, found: 398.1286. 

3-142ab: 136.8 mg (0.5 mmol scale), 76% yield, pale yellow oil (eluent: hexanes). 

1H NMR (500 MHz, CDCl3) δ ppm 7.57 – 7.54 (m, 2 H), 7.44 – 7.35 (m, 5 H), 2.91 

– 2.88 (m, 2 H), 2.35 – 2.31 (m, 2 H), 1.72 – 1.64 (m, 2 H), 1.61 – 1.49 (m, 4 H), 1.36 – 1.26 (m, 2 H), 

0.98 (t, J = 7.3 Hz, 3 H), 0.87 (t, J = 7.3 Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 146.4, 144.9, 

140.3, 129.3, 128.8 (q, J = 32.4 Hz), 127.8, 127.6, 125.6, 124.2 (q, J = 271.9 Hz), 123.9 (m), 123.5 (m), 
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100.1, 77.6, 34.9, 32.6, 30.4, 22.7, 21.8, 19.3, 13.9, 13.5 19F NMR (470 MHz, CDCl3) δ ppm -64.1 (s, 3 F) 

HRMS (EI+) calculated for C23H25F3 [M]+: 358.1908, found: 358.1901. 

3-142da: 181.0 mg (0.5 mmol scale), 89% yield, pale yellow oil (eluent: hexanes). 

1H NMR (500 MHz, CDCl3) δ ppm 7.77 – 7.66 (m, 2 H), 7.58 – 7.44 (m, 5 H), 7.40 

– 7.31 (m, 5 H), 3.05 – 3.01 (m, 2 H), 1.85 – 1.78 (m, 2 H), 1.55 – 1.48 (m, 2 H), 

1.44 – 1.37 (m, 4 H), 0.94 (t, J = 7.1 Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 146.5, 145.1, 140.7, 

132.5, 131.4, 129.7 (q, J = 32.4 Hz), 129.5, 128.6, 128.4, 128.0, 127.9, 124.1 (q, J = 272.0 Hz), 124.12 

(m), 123.7 (m), 98.4, 86.8, 35.4, 31.8, 30.6, 29.4, 22.7, 14.1 19F NMR (470 MHz, CDCl3) δ ppm -64.1 (s, 

3 F) HRMS (EI+) calculated for C27H25F3 [M]+: 406.1908, found: 406.1911. 

3-142db: 131.1 mg (0.5 mmol scale), 72% yield + 15% of enyne dimer, pale 

yellow oil (eluent: hexanes). 1H NMR (500 MHz, CDCl3) δ ppm 7.25 (s, 2 H), 2.83 

– 2.77 (m, 4 H), 2.52 (t, J = 6.9 Hz, 2 H), 1.67 – 1.58 (m, 6 H), 1.57 – 1.49 (m, 3 

H), 1.44 – 1.28 (m, 10 H), 1.00 – 0.94 (m, 6 H) 13C NMR (125 MHz, CDCl3) δ ppm 145.72, 145.65, 

143.3, 128.5 (q, J = 31.9 Hz), 124.3 (q, J = 272.5 Hz), 122.5 (m, 2C), 100.1, 76.9, 35.1, 34.7, 32.6, 31.7, 

30.8, 30.4, 29.3, 22.64, 22.58, 22.0, 19.4, 14.0, 13.9, 13.6 19F NMR (470 MHz, CDCl3) δ ppm -64.1 (s, 3 

F) HRMS (EI+) calculated for C23H33F3 [M]+: 366.2534, found: 366.2543. 

3-142bb: 89.5 mg (0.3 mmol scale), 77% yield, pale yellow oil (eluent: hexanes). 

1H NMR (500 MHz, CDCl3) δ ppm 7.58 – 7.55 (m, 2 H), 7.45 – 7.36 (m, 5 H), 

2.92 – 2.88 (m, 2 H), 2.34 (t, J = 6.8 Hz, 2 H), 1.72 – 1.65 (m, 2 H), 1.49 – 1.40 (m, 4 H), 1.37 – 1.29 (m, 

2 H), 0.99 (t, J = 7.3 Hz, 3 H), 0.88 (t, J = 7.3 Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 146.3, 144.8, 

140.3, 129.3, 127.8, 127.6, 126.9 (t, J = 23.7 Hz), 125.8, 125.0 (t, J = 5.4 Hz), 124.7 (t, J = 5.8 Hz), 

100.4, 77.6, 35.0, 32.5, 30.4, 22.7, 21.8, 19.3, 13.9, 13.5 Carbon atoms corresponding to C2F5 group can 

not be identified due to C-F coupling. 19F NMR (470 MHz, CDCl3) δ ppm -86.2 (s, 3F), -116.4 (s, 2F) 

HRMS (EI+) calculated for C24H25F5 [M]+: 408.1877, found: 408.1872. 

CF3n-C6H13

PhPh

CF3n-C6H13

n-Bun-Bu

C2F5Ph

n-Bun-Bu



 202 

3-142cb: 178.0 mg (0.4 mmol scale), 87% yield, pale yellow oil (eluent: hexanes). 

1H NMR (500 MHz, CDCl3) δ ppm 7.57 – 7.54 (m, 2 H), 7.45 – 7.37 (m, 5 H), 

2.92 – 2.87 (m, 2 H), 2.33 (t, J = 7.0 Hz, 2 H), 1.71 – 1.64 (m, 2 H), 1.49 – 1.40 (m, 4 H), 1.36 – 1.28 (m, 

2 H), 0.98 (t, J = 7.3 Hz, 3 H), 0.87 (t, J = 7.3 Hz, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 146.2, 144.7, 

140.3, 129.3, 127.8, 127.6, 127.0 (t, J = 24.1 Hz), 125.9, 125.5 (t, J = 5.5 Hz), 125.1 (t, J = 5.8 Hz), 

100.5, 77.6, 34.9, 32.5, 30.3, 22.6, 21.8, 19.3, 13.9, 13.5 Carbon atoms corresponding to C4F9 group can 

not be identified due to C-F coupling. 19F NMR (470 MHz, CDCl3) δ ppm -82.6 (m, 3 F), -112.6 (m, 2 F), 

-124.2 (m, 2 F), -127.1 (m, 2 F) HRMS (EI+) calculated for C26H25F9 [M]+: 508.1812, found: 508.1818. 

3.3.5. Synthesis of Silyl-substituted Diynes and their Application in Pd-catalyzed [4+2] 

Benzannulation Reaction 

 

Synthesis of diyne 3-146b: Bis(trimethylsilyl)butadiyne 1-146a (7.78 g, 40 mmol) was dissolved 

in dry THF (100 mL) under Ar atmosphere and the resultant solution was cooled to -78 °C. Solution of 

MeLi·LiBr in ether (1.5 M, 66 mL, 84 mmol) was then slowly added, and the reaction mixture was 

allowed to warm to room temperature and stirred for additional 1.0 h. After this time it was cooled to -78 

°C and freshly redistilled dimethylchlorosilane (9.33 mL, 84 mmol) was slowly added. The reaction 

mixture was allowed to warm to room temperature and stirred for 15 min. Upon reaction completion 

solvent was evaporated under reduced pressure and residue was purified by distillation (~60 °C, 20 mm 

Hg) to afford diyne 1-146b (5.72 g, 78%) as a colorless liquid. 1H NMR (500 MHz, CDCl3) δ ppm 4.17 – 

4.12 (m, 2 H), 0.26 (d, J = 3.8 Hz, 6 H) 13C NMR (125 MHz, CDCl3) δ ppm 89.1, 83.3, -3.54. 

Me3Si

SiMe3

HMe2Si

SiMe2H
1.MeLi•LiBr, Et2O, -78°C

2. Me2SiHCl 3-146b (86%)3-146a

C4F9Ph

n-Bun-Bu
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Synthesis of diyne 3-146c: Synthesis of diyne 3-146c was achieved using modified literature 

method.79 To a solution of silane 1-146b (1.66 g, 10 mmol) in dry THF (30 mL) was added CuCl2 (2.69 g, 

20 mmol), CuI (190 mg, 1 mmol), and KF (640 mg, 11 mmol) under Ar atmosphere. The reaction mixture 

was stirred at ambient temperature for 5 h. Upon reaction completion, the reaction mixture was filtered 

through celite, solvent were removed under reduced pressure and residue was purified by Kugelrohr 

distillation (~60 °C, 20 mm Hg), which afforded diyne 1-146c (1.01 g, 50%) as a colorless liquid. 1H 

NMR (500 MHz, CDCl3) δ ppm 0.43 – 0.39 (m, 12 H) 13C NMR (125 MHz, CDCl3) δ ppm 88.0 (d, J = 

4.3 Hz), 82.8 (d, J = 25.5 Hz), 0.1 (d, J = 16.1 Hz) 19F NMR (470 MHz, CDCl3) δ ppm -158.1 (m, 2 F). 

 

Synthesis of diyne 3-146d: Bis(trimethylsilyl)butadiyne 1-146a (0.97 g, 5 mmol) was dissolved 

in dry THF (15 mL) under Ar atmosphere and the resultant solution was cooled to -78 °C. Solution of 

MeLi·LiBr in ether (1.5 M, 8 mL, 12 mmol) was then slowly added, and the reaction mixture was allowed 

to warm to room temperature and stirred for additional 1.0 h. After this time it was cooled to -78 °C and 

dimethylphenylchlorosilane (2.00 mL, 12 mmol) was slowly added. The reaction mixture was allowed to 

warm to room temperature and stirred for 15 min. Upon reaction completion, solvent was evaporated 

under reduced pressure and residue was purified by column chromatography to afford diyne 1-146d (1.51 

g, 95%) as a white solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.71 – 7.66 (m, 4 H), 7.48 – 7.41 (m, 6 H), 

0.55 – 0.51 (m, 12 H) 13C NMR (125 MHz, CDCl3) δ ppm 135.6, 133.8, 129.8, 128.1, 89.6, 84.5, -1.3. 

HMe2Si

SiMe2H

FMe2Si

SiMe2F
CuCl2, KF, CuI

THF, rt
3-146c (50%)3-146b

2. Me2PhSiCl PhMe2Si

SiMe2Ph

Me3Si

SiMe3 1.MeLi•LiBr, Et2O, -78°C

3-146a 3-146d (95%)
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Synthesis of diyne 3-146e: Synthesis of diyne 3-146e was achieved using modified literature 

method.80 To a solution of silane 1-146b (1.66 g, 10 mmol) in dry acetonitrile (5 mL) was added 

[Ru(p-cymene)Cl2]2 (61 mg, 0.1 mmol) and dry MeOH (3 mL) under Ar atmosphere. The reaction 

mixture was stirred at ambient temperature for 10 min. Upon reaction completion solvents were removed 

under reduced pressure and residue was purified by Kugelrohr distillation (~100 °C, 20 mm Hg) which 

afforded diyne 1-146e (1.94 g, 86%) as a colorless liquid.  1H NMR (500 MHz, CDCl3) δ ppm 3.50 (s, 6 

H), 0.27 (m, 12 H) 13C NMR (125 MHz, CDCl3) δ ppm 87.7, 83.6, 51.0, -0.8. 

 

Synthesis of 3-147e: An oven-dried 3 mL V-vial equipped with a stirring bar was charged with 

Pd(PPh3)4 (28 mg, 0.025 mmol, 5 mol %), and toluene (0.5 mL) under N2 atmosphere. Enyne 3-141b 

(71.0 mg, 0.5 mmol, 1 equiv) and diyne 3-148 (135.6 mg, 0.6 mmol, 1.2 equiv) were subsequently added. 

The reaction vessel was caped with Mininert syringe valve and the reaction mixture was stirred at 100 °C 

for 120 h. Upon reaction completion, resultant mixture was cooled to room temperature, diluted with 

CH2Cl2, and filtered through a celite plug. The filtrate was concentrated under reduced pressure, and the 

crude product was purified by column chromatography on Florisil (eluent: hexanes : EtOAc = 50 : 1) to 

afford 3-147 (123.5 mg, 67%) as a pale yellow oil. 1H NMR (500 MHz, CDCl3) δ ppm 7.58 – 7.53 (m, 2 

H), 7.45 (s, 1 H), 7.41 – 7.37 (m, 2 H), 7.36 – 7.31 (m, 1 H), 7.22 (s, 1 H), 3.60 (s, 3 H), 3.34 (s, 3 H), 

2.41 (s, 3 H), 0.52 (m, 6 H), 0.18 (s, 6 H) 13C NMR (125 MHz, CDCl3) δ ppm 145.5, 141.9, 140.8, 138.1, 

133.8, 131.5, 129.5, 127.6, 127.2, 122.2, 105.9, 97.5, 50.9, 50.7, 21.6, -1.0, -1.7. 

  

HMe2Si

SiMe2H

(MeO)Me2Si

SiMe2(OMe)
[Ru(p-cymene)Cl2]2

MeOH, CH3CN, rt 3-146e (86%)3-146b

Ph

Me

MeOMe2Si

SiMe2OMe Ph

SiMe2OMeMeOMe2Si

Me

toluene, 100°C,
120h

Pd(PPh3)4
+

3-147 (67%)3-146e3-143b
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Diyne 3-148 was synthesized via the following sequence: 

 

Synthesis of diyne 3-165: To a solution of phenylacetylene (5.5 mL, 50 mmol) in acetone (50 

mL) was added N-bromosuccinimide (10.6 g, 60 mmol) and AgNO3 (850 mg, 5 mmol). The reaction 

mixture was stirred at room temperature under exclusion of light for 2 h. Upon completion the reaction 

mixture was concentrated under reduced pressure and filtered through a celite plug to afford crude 3-164 

which was submitted to the next step without further purification. 

To an aqueous solution of n-BuNH2 (30%, 20 mL) was added copper(I) chloride (990 mg, 10 

mmol) at 0 oC which resulted in a blue solution. After stirring of the mixture for 5 min few crystals of 

NH2OH·HCl were added which resulted in a colorless solution. 2-methylbut-3-yn-2-ol (5.0 mL, 50 mmol) 

was then added and resultant yellow solution was stirred for an additional 10 min. A solution of freshly 

prepared (bromoethynyl)benzene 3-164 (9.05 g, 50 mmol) in CH2Cl2 (20 mL) was slowly added under a 

flow of Ar, and the reaction mixture was allowed to warm up to room temperature and stirred for 1 h. 

Upon completion the reaction mixture was extracted with CH2Cl2, dried over Na2SO4, and concentrated 

under vacuum. The residue was purified by column chromatography (eluent: hexanes : EtOAc = 4 : 1) to 

afford diyne 3-165 (6.9 g, 75%) as a white solid. Analytical data of compound 3-165 are in agreement 

with the literature data 

Synthesis of diyne 3-166: Diyne 3-166 was prepared according to the literature procedure.81 

Alcohol 3-165 (6.44 g, 35.0 mmol) was dissolved in dry toluene. NaOH powder (4.20 g, 105 mmol) was 

added and the reaction mixture was heated for 15 min at 135 °C under Ar atmosphere. Upon completion 

of the reaction solvent was evaporated under reduced pressure, and the residue was purified by column 

Ph
NBS, AgNO3

acetone Ph

Br

3-164 (quant)

OH

CuCl, NH2OH•HCl
BuNH2/H2O Ph

OH

3-165 (75%)

NaOH
toluene, reflux

Ph

H

3-166 (52%)

1. BuLi, THF
2. Me2SiHCl

Ph

SiMe2H

3-167 (78%)

[Ru(p-cymene)Cl2]2

MeOH, CH3CN
Ph

SiMe2OMe

3-148 (71%)
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chromatography (eluent: pentane) to afford 3-166 (2.3 g, 52%) as a colorless liquid. Compound 3-166 is 

unstable neat and was immediately submitted to the next step. Analytical data of compound 3-166 are in 

agreement with the literature data. 

Synthesis of diyne 3-167: Phenylbutadiyne 3-166 (2.3 g, 18 mmol) was dissolved in dry THF (20 

mL) under Ar atmosphere and the resultant solution was cooled to -78 °C. Solution of n-BuLi in hexane 

(2.5 M, 8 mL, 20 mmol) was then added dropwise, and the reaction mixture was allowed to warm to room 

temperature and stirred for additional 1.5 h. After this time it was cooled to -78 °C and freshly redistilled 

dimethylchlorosilane (2.22 mL, 20 mmol) was slowly added. The reaction mixture was allowed to warm 

to room temperature and stirred for 15 min. Upon reaction completion solvent was evaporated under 

reduced pressure and residue was purified by the column chromatography on Florisil (eluent: hexanes) to 

afford 3-167 (2.58 g, 78%) as a colorless liquid. 1H NMR (500 MHz, CDCl3) δ ppm 7.52 – 7.49 (m, 2 H), 

7.38 – 7.30 (m, 3 H), 4.24 – 4.19 (m, 1 H), 0.32 – 0.30 (m, 6 H) 13C NMR (125 MHz, CDCl3) δ ppm 

132.7, 129.4, 128.4, 121.2, 89.1, 87.5, 74.1, 71.2, -3.3. 

Synthesis of diyne 3-148: Synthesis of diyne 3-148 was achieved using modified literature 

method.80 To a solution of silane 3-167 (2.58 g, 14 mmol) in dry acetonitrile (5 mL) was added 

[Ru(p-cymene)Cl2]2 (42 mg, 0.07 mmol) and dry MeOH (3 mL) under Ar atmosphere. The reaction 

mixture was stirred at ambient temperature for 10 min. Upon reaction completion solvents were removed 

under reduced pressure and residue was purified by Kugelrohr distillation (~80 °C, 0.5 mm Hg) which 

afforded diyne 3-148 (2.1 g, 71%) as a colorless liquid. 1H NMR (500 MHz, CDCl3) δ ppm 7.53 – 7.49 

(m, 2 H), 7.40 – 7.37 (m, 1 H), 7.35 – 7.30 (m, 2 H), 3.54 (s, 3 H), 0.32 (s, 6 H) 13C NMR (125 MHz, 

CDCl3) δ ppm 132.7, 129.5, 128.4, 121.1, 88.0, 87.3, 77.5, 73.9, 51.0, -0.7 HRMS (EI+) calculated for 

C13H14OSi [M]+: 214.0814, found: 214.0815. 
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Synthesis of 3-149: An oven-dried 3 mL V-vial equipped with a stirring bar was charged with 

Pd2(dba)3 (5.7 mg, 0.00625 mmol, 2.5 mol %), (2-furyl)3P (5.8 mg, 0.0025 mmol, 10 mol %), and toluene 

(0.5 mL) under N2 atmosphere. Enyne 3-141a (49.0 mg, 0.25 mmol, 1 equiv) and diyne 3-148 (80.0 mg, 

0.375 mmol, 1.5 equiv) were subsequently added. The reaction vessel was caped with Mininert syringe 

valve and the reaction mixture was stirred at 80 °C for 16 h. Upon reaction completion resultant mixture 

was cooled to room temperature, diluted with CH2Cl2, and filtered through a celite plug. The filtrate was 

concentrated under reduced pressure, and the crude product (NMR yield 78%) was purified by column 

chromatography on Florisil (eluent: hexanes : EtOAc = 50 : 1) to afford 3-149 (50.9 mg, 50%) as a pale 

yellow oil. 1H NMR (500 MHz, CDCl3) δ ppm 7.90 – 7.89 (m, 1 H), 7.70 – 7.67 (m, 1 H), 7.65 – 7.62 (m, 

2 H), 7.52 – 7.42 (m, 3 H), 7.33 – 7.26 (m, 5 H), 3.63 (s, 3 H), 0.59 (s, 6 H) 13C NMR (125 MHz, CDCl3) 

δ ppm 144.9, 142.7, 139.8, 131.11, 131.06, 129.6 (m), 129.5, 129.2 (q, J = 31.3 Hz), 128.7, 128.4, 127.98, 

127.95, 127.3 (m), 124.2 (q, J = 271.2 Hz), 122.8, 97.4, 89.3, 50.9, -1.73 19F NMR (470 MHz, CDCl3) δ 

ppm -64.2 (s, 3 F) HRMS (EI+) calculated for C24H21F3OSi [M]+: 410.1314, found: 410.1320. 

Due to its limited stability toward chromatographic agents 3-149 was used without purification in 

following transformations. 

3.3.6. Synthetic Applications of ortho-Silylaryl Alkynes 

 

Synthesis of 3-151: An oven-dried 3 mL V-vial equipped with a stirring bar was charged with 

Pd2(dba)3 (22.9 mg, 0.025 mmol, 2.5 mol %), (2-furyl)3P (23.2 mg, 0.1 mmol, 10 mol %), and toluene (1 

Ph
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mL) under N2 atmosphere. Enyne 3-141a (196.0 mg, 1.0 mmol, 1 equiv) and diyne 3-148 (321.0 mg, 1.5 

mmol, 1.5 equiv) were subsequently added. The reaction vessel was caped with Mininert syringe valve 

and the reaction mixture was stirred at 80 °C for 16 h. Upon reaction completion resultant mixture was 

cooled to room temperature and solution of TBAF (1M in THF, 2.0 mL, 2.0 mmol) was added. The 

reaction mixture was stirred at room temperature for 1 h, diluted with CH2Cl2, and filtered through a celite 

plug. The filtrate was concentrated under reduced pressure and the crude product was purified by column 

chromatography (eluent: hexanes) to afford 3-151 (243.9 mg, 76%) as a pale yellow oil. The product was 

obtained as an inseparable mixture with corresponding enyne dimer (~ 5%). 1H NMR (500 MHz, CDCl3) 

δ ppm 7.77 – 7.74 (m, 1 H), 7.70 – 7.66 (m, 3 H), 7.61 – 7.57 (m, 1 H), 7.53 – 7.43 (m, 3 H), 7.37 – 7.29 

(m, 5 H) 13C NMR (125 MHz, CDCl3) δ ppm 144.4, 139.3, 133.1, 131.5, 130.2 (q, J = 32.3 Hz), 129.3, 

128.7, 128.3, 128.1, 126.3 (m), 125.4, 123.7 (m), 123.6 (q, J = 271.6 Hz), 122.8, 94.5, 88.1 19F NMR (470 

MHz, CDCl3) δ ppm -64.3 (s, 3 F) HRMS (EI+) calculated for C21H13F3 [M]+: 322.0969, found: 322.0961. 

 

Synthesis of 3-153: Synthesis of compound 3-152 was achieved via a modified literature 

method.71a o-Alkynylbiaryl 3-151 (46.0 mg, 0.143 mmol) was placed to an oven-dried 1 mL V-vial 

equipped with a stirring bar. Pd(OAc)2 (1.6 mg, 0.007 mmol), 1,1'-bis(diphenylphosphino)ferrocene 

(DPPF, 8.3 mg, 0.014 mmol), and toluene (0.3 mL) were added under N2 atmosphere. The reaction vessel 

was caped with Mininert syringe valve and the reaction mixture was stirred at room temperature for 5 

min. Water (2.5 mL, 0.14 mmol) was then added via microsyringe. The reaction mixture was heated to 

100 °C and stirred at this temperature for 1 h. Upon reaction completion resultant mixture was cooled to 

room temperature, diluted with CH2Cl2, and filtered through a celite plug. The filtrate was concentrated 

under reduced pressure, and the crude product was submitted to hydrogenation without further 

purification. Intermediate 3-152 was dissolved in dry MeOH (1.0 mL) and Pd/C (10 wt.%, 7.5 mg, 0.014 

Ph

Ph

CF3

3-151

CF3

Ph

CF3

Ph
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(93%)

Pd(OAc)2 (5 mol %)
DPPF (10 mol %)

H2O (1 equiv),
toluene, 100 °C, 1 h

H2 (1 atm)
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MeOH, rt, 2 h
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mmol) was added. Flask was flushed with Ar, then Ar balloon was replaced with H2 balloon, and reaction 

mixture was stirred for 2 h at ambient temperature. Upon reaction completion the resultant mixture was 

diluted with CH2Cl2, and filtered through a celite plug. The filtrate was concentrated under reduced 

pressure and the crude product was purified by column chromatography (eluent: hexanes) to afford 3-153 

(43.0 mg, 93%) as a pale yellow oil. 

3-152: 75.7 mg (0.25 mmol scale), 94% yield, white solid (eluent: hexanes), the 

product was obtained as an inseparable mixture with regio- and stereoisomers (<5%). 

1H NMR (500 MHz, CDCl3) δ ppm 7.94 (s, 1 H), 7.84 – 7.81 (m, 2 H), 7.62 (d, J = 

8.4 Hz, 1 H), 7.59 – 7.56 (m, 2 H), 7.51 – 7.47 (m, 2 H), 7.46 – 7.38 (m, 3 H), 7.33 – 7.30 (m, 2 H) 13C 

NMR (125 MHz, CDCl3) δ ppm 141.6, 139.55, 139.48, 137.9, 136.3, 135.6, 130.0 (q, J = 31.5 Hz), 129.7, 

129.2, 128.7, 128.53, 128.51, 127.8, 124.5, 124.4 (q, J = 272.0 Hz), 123.5 (m), 120.4, 120.0, 116.5 (m) 

19F NMR (470 MHz, CDCl3) δ ppm -63.9 (s, 3 F) HRMS (EI+) calculated for C21H13F3 [M]+: 322.0969, 

found: 322.0972. 

3-153: 43.0 mg (0.14 mmol scale), 93% yield, white solid (eluent: hexanes). 1H NMR 

(500 MHz, CDCl3) δ ppm 7.97 (s, 1 H), 7.79 (d, J = 7.6 Hz, 1 H), 7.47 (d, J = 7.9 Hz, 

1 H), 7.40 (t, J = 7.4 Hz, 1 H), 7.36 – 7.19 (m, 8 H), 4.28 (d, J = 7.6 Hz, 1 H), 3.19 

(dd, J = 13.8 Hz, 7.4 Hz, 1 H), 3.06 (dd, J = 13.8 Hz, 8.0 Hz, 1 H) 13C NMR (125 MHz, CDCl3) δ ppm 

150.3, 147.0, 141.5, 139.5, 139.2, 129.5, 129.4 (q, J = 32.4 Hz), 128.4, 127.6, 127.5, 126.6, 125.1, 124.9, 

123.4 (m), 120.2, 116.7 (m), 48.8, 39.8 19F NMR (470 MHz, CDCl3) δ ppm -63.5 (s, 3 F) HRMS (EI+) 

calculated for C21H14F3 [M-H]+: 323.1047, found: 323.1041. 

Ph

CF3

Ph

CF3
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Synthesis of 3-155: Synthesis of compound 3-155 was achieved via a modified literature 

method.71b o-Alkynylbiaryl 3-151 (48.0 mg, 0.15 mmol) and methyl 4-iodobenzoate 3-154 (78.6 mg, 0.3 

mmol) were placed to an oven-dried 1 mL V-vial equipped with a stirring bar. Pd(OAc)2 (1.7 mg, 0.0075 

mmol), 1,1'-bis(diphenylphosphino)ferrocene (DPPF, 8.3 mg, 0.015 mmol), Cs2CO3 (97.5 mg, 0.3 mmol), 

and toluene (0.75 mL) were added under N2 atmosphere. The reaction vessel was caped with Mininert 

syringe valve and the reaction mixture was heated to 100 °C and stirred at this temperature for 24 h. Upon 

reaction completion the resultant mixture was cooled to room temperature, diluted with CH2Cl2, and 

filtered through a celite plug. The filtrate was concentrated under reduced pressure and the crude product 

was purified by column chromatography (eluent: hexanes : EtOAc = 10 : 1) to afford 3-155 (37.1 mg, 

54%) as a white solid. 1H NMR (500 MHz, CDCl3) δ ppm 8.11 (d, J = 8.3 Hz, 2 H), 7.92 (s, 1 H), 7.75 (d, 

J = 7.6 Hz, 1 H), 7.49 (d, J = 8.3 Hz, 2 H), 7.46 – 7.44 (m, 3 H), 7.37 – 7.34 (m, 2 H), 7.31 (dt, J = 7.5 

Hz, 0.9 Hz, 1 H), 7.19 (d, J = 8.2 Hz, 1 H), 6.99 (dt, J = 7.8 Hz, 1.1 Hz, 1 H), 6.68 (t, J = 8.5 Hz, 2 H), 

3.97 (s, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 166.7, 147.0, 146.4, 141.8, 141.4, 140.9, 139.4, 138.4, 

134.1, 130.2, 130.1, 129.7, 129.6, 129.1, 128.9, 128.3, 127.4, 125.1, 124.9, 123.3 (m), 119.8, 116.1 (m), 

52.3 19F NMR (470 MHz, CDCl3) δ ppm -63.9 (s, 3 F) HRMS (EI+) calculated for C29H19F3O2 [M]+: 

456.1337, found: 456.1341. 

 

Synthesis of 3-156: Synthesis of compound 3-156 was achieved via a modified literature 

method.72 o-Alkynylbiaryl 3-151 (80.5 mg, 0.25 mmol) was placed to an oven-dried 3 mL V-vial 

equipped with a stirring bar. [Tris(2,4-di-tert-butylphenyl)phosphite]gold chloride (11.0 mg, 0.0125 
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Ph
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mmol), AgSbF6 (8.6 mg, 0.025 mmol), and toluene (1.0 mL) were added under N2 atmosphere. The 

reaction vessel was caped with Mininert syringe valve and the reaction mixture was heated to 100 °C and 

stirred at this temperature for 3 h. Upon reaction completion the resultant mixture was diluted with 

CH2Cl2 and filtered through a celite plug. The filtrate was concentrated under reduced pressure and the 

crude product was purified by column chromatography (eluent: hexanes) to afford 3-156 (72.9 mg, 91%) 

as a white solid. 1H NMR (500 MHz, CDCl3) δ ppm 9.01 (s, 1 H), 8.80 (d, J = 8.3 Hz, 1 H), 7.99 (d, J = 

8.4 Hz, 1 H), 7.97 (dd, J = 1.0 Hz, 8.5 Hz, 1 H), 7.82 (dd, J = 1.3 Hz, 8.3 Hz, 1 H), 7.77 – 7.72 (m, 2 H), 

7.61 (ddd, J = 1.1 Hz, 6.9 Hz, 8.1 Hz, 1H), 7.57 – 7.48 (m, 5 H) 13C NMR (125 MHz, CDCl3) δ ppm 

141.2, 140.2, 133.4, 131.4, 130.4, 129.9, 129.4, 128.4, 127.7, 127.4 (q, J = 32.3 Hz), 127.3, 127.2, 127.1, 

126.7, 124.7 (q, J = 272.0 Hz), 122.9, 122.7 (m), 120.1 (m) 19F NMR (470 MHz, CDCl3) δ ppm -63.2 (s, 

3 F) HRMS (EI+) calculated for C21H13F3 [M]+: 322.0969, found: 322.0975. 

 

Synthesis of 3-157: Synthesis of compound 3-157 was according to the literature method.73 To a 

solution of arylalkyne 3-151 (103.0 mg, 0.32 mmol) in dry CH2Cl2 (3.0 mL) was slowly added solution of 

ICl (1M in CH2Cl2, 0.6 mL, 0.6 mmol) at 0 °C and the reaction mixture stirred for 30 min at this 

temperature. Upon completion the reaction was diluted with CH2Cl2 (10 mL), washed with saturated 

aqueous Na2S2O3, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified 

by column chromatography (eluent: hexanes) to afford 3-157 (130.7 mg, 91%) as a white solid. 1H NMR 

(500 MHz, CDCl3) δ ppm 8.98 (s, 1 H), 8.75 (d, J = 8.4 Hz, 1H), 8.61 (d, J = 8.7 Hz, 1 H), 7.88 (dd, 1.5 

Hz, J = 8.7 Hz, 1 H), 7.74 (ddd, J = 1.5 Hz, 6.8 Hz, 8.3 Hz, 1 H), 7.61 – 7.53 (m, 3 H), 7.52 – 7.44 (m, 2 

H), 7.31 – 7.27 (m, 2 H) 13C NMR (125 MHz, CDCl3) δ ppm 147.6, 144.9, 135.7, 134.3, 132.6, 130.08, 

129.99, 129.7, 128.9, 128.6, 128.1, 127.9, 127.7, 124.4 (q, J = 272.6 Hz), 123.8 (m), 122.6, 120.2 (m), 
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105.1 19F NMR (470 MHz, CDCl3) δ ppm -63.3 (s, 3 F) HRMS (EI+) calculated for C21H12F3I [M]+: 

447.9936, found: 447.9933. 

 

Synthesis of 3-158: An oven-dried 3 mL V-vial equipped with a stirring bar was charged with 

Pd2(dba)3 (5.7 mg, 0.00625 mmol, 2.5 mol %), (2-furyl)3P (5.8 mg, 0.0025 mmol, 10 mol %), and toluene 

(0.5 mL) under N2 atmosphere. Enyne 3-141a (49.0 mg, 0.25 mmol, 1 equiv) and diyne 3-148 (80.0 mg, 

0.375 mmol, 1.5 equiv) were subsequently added. The reaction vessel was caped with Mininert syringe 

valve and the reaction mixture was stirred at 80 °C for 16 h. Upon reaction completion resultant mixture 

was cooled to room temperature, diluted with hexanes and filtered through a short Florisil column to 

remove Pd residue. The filtrate was concentrated under reduced pressure, and the crude product was 

submitted to the next step without further purification. Intermediate 3-149 was dissolved in dry toluene 

(1.0 mL) and solution of diisobutylaluminium hydride (1M in toluene, 0.5 mL, 0.5 mmol) was slowly 

added at 0 °C. The reaction mixture was stirred at this temperature for 1 h and then Na2SO4·10H2O was 

added. The resultant mixture was stirred for an additional 15 min, diluted with hexanes, dried over 

Na2SO4, and filtered through a celite plug. The filtrate was concentrated under reduced pressure and the 

crude product was purified by column chromatography (eluent: hexanes) to afford 3-158 (71.0 mg, 75% 

over two steps) as a pale yellow oil. 1H NMR (500 MHz, CDCl3) δ ppm 7.81 – 7.79 (m, 1 H), 7.71 – 7.69 

(m, 1 H), 7.68 – 7.65 (m, 2 H), 7.53 – 7.45 (m, 3 H), 7.34 – 7.32 (m, 5 H), 4.74 (sept, J = 3.7 Hz, 1 H), 

0.56 (d, J = 3.8 Hz, 6 H) 13C NMR (125 MHz, CDCl3) δ ppm 144.5, 142.3, 139.7, 131.2, 130.6, 129.2 (q, 

J = 32.2 Hz), 129.9 (q, J = 3.6 Hz), 129.5, 128.8, 128.4, 128.04, 128.02, 127.2 (q, J = 3.9 Hz), 124.2 (q, J 

= 272.8 Hz), 122.9, 97.8, 88.9, -3.91 19F NMR (470 MHz, CDCl3) δ ppm -64.2 (s, 3 F) HRMS (EI+) 

calculated for C23H19F3Si [M]+: 380.1208, found: 380.1215. 

Ph

SiMe2OMePh

CF3

3-149

Ph

CF3

Ph

Me2
Si OMe

+

3-141a

3-148

DIBAL (2 equiv)

toluene, 0 °C, 1 h

3-158 (75%)

[Pd] cat.
Ph

SiMe2HPh

CF3
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Synthesis of 3-159: An intermediate 3-149 (0.25 mmol scale) was obtained according to the 

procedure described for the synthesis of 3-158. To a solution of 3-149 in dry acetonitrile (3.0 mL) were 

added AgF (127.0 mg, 1.0 mmol) and N-iodosuccinimide (112.0 mg, 0.5 mmol) under Ar atmosphere. 

The reaction mixture was stirred at ambient temperature for 3 h under exclusion of light. The resultant 

mixture was diluted with CH2Cl2 and filtered through a celite plug. The filtrate was concentrated under 

reduced pressure and the crude product was purified by column chromatography (eluent: hexanes) to 

afford 3-159a (87.6 mg, 78% over two steps) as a white solid. The product was obtained as an inseparable 

mixture with corresponding enyne dimer (~ 6%). 1H NMR (500 MHz, CDCl3) δ ppm 8.14 – 8.12 (m, 1 

H), 7.64 – 7.61 (m, 3 H), 7.52 – 7.43 (m, 3 H), 7.40 – 7.29 (m, 5 H) 13C NMR (125 MHz, CDCl3) δ ppm 

145.7, 139.4, 134.2 (m), 131.5, 130.4 (q, J = 32.4 Hz), 129.2, 129.1, 128.5, 128.4, 128.1, 128.0, 125.9 

(m), 122.8 (q, J = 271.9 Hz), 122.4, 102.4, 98.7, 91.0 19F NMR (470 MHz, CDCl3) δ ppm -62.0 (s, 3 F) 

HRMS (EI+) calculated for C21H12F3I [M]+: 447.9936, found: 447.9943. 

Analogous procedure with the use of N-bromosuccinimide (75.0 mg, 0.5 mmol) afforded 3-159b 

(73.5 mg, 73%) as a white solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.90 – 7.88 (m, 1 H), 7.65 – 7.60 (m, 

3 H), 7.52 – 7.44 (m, 3 H), 7.38 – 7.29 (m, 5 H) 13C NMR (125 MHz, CDCl3) δ ppm 146.5, 139.1, 131.6, 

130.4 (q, J = 32.4 Hz), 129.3, 129.1, 128.5, 128.4, 128.1, 127.9 (m), 127.6, 126.9, 125.0 (m), 123.1 (q, J 

= 272.0 Hz), 122.4, 99.7, 87.1 19F NMR (470 MHz, CDCl3) δ ppm -64.4 (s, 3 F) HRMS (EI+) calculated 

for C21H12BrF3 [M]+: 400.0074, found: 400.0067. 

Ph
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CF3

3-149

Ph

CF3

Ph

Me2
Si OMe

+
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3-148

[Pd] cat.
Ph

XPh

CF3

X = I
Br

3-159a (78%)
3-159b (73%)

AgF (4 equiv)
NXS (2 equiv)

CH3CN, rt, 2 h
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Synthesis of 3-160: Synthesis of compound 3-160 was achieved via a modified literature 

method.75 o-Iodoarylalkyne 3-159a (62.7 mg, 0.15 mmol) was placed to an oven-dried 3 mL V-vial 

equipped with a stirring bar. Pd(OAc)2 (1.7 mg, 0.0075 mmol), 1,3-(2,6-diisopropylphenyl)imidazolium 

chloride (IPr·HCl, 6.3 mg, 0.015 mmol), t-BuOK (50.4 mg, 0.45 mmol), and toluene (0.1 mL) were 

added under N2 atmosphere. The reaction vessel was caped with Mininert syringe valve and the reaction 

mixture was stirred at 80 °C for 3 h. Upon completion the reaction was diluted with CH2Cl2 (10 mL), 

filtered through a celite plug, and concentrated under reduced pressure. The residue was purified by 

column chromatography (eluent: hexanes) to afford 3-160 (49.5 mg, 77%) as a white solid. 1H NMR (500 

MHz, CDCl3) δ ppm 7.78 – 7.75 (m, 2 H), 7.56 – 7.52 (m, 2 H), 7.50 – 7.42 (m, 3 H), 7.29 – 7.25 (m, 7 

H), 7.19 – 7.16 (m, 2 H), 6.99 (d, J = 0.7 Hz, 1 H), 2.44 (s, 3 H) 13C NMR (125 MHz, CDCl3) δ ppm 

143.7, 140.0, 138.7, 137.9, 135.1, 134.8, 131.8, 130.2, 129.0, 128.8, 128.7, 128.2, 127.84, 127.79, 127.6, 

124.7 (q, J = 32.6 Hz), 124.0 (q, J = 271.6 Hz), 117.0 (m), 107.3 (m), 102.9, 21.2 19F NMR (470 MHz, 

CDCl3) δ ppm -62.0 (s, 3 F) HRMS (EI+) calculated for C28H20F3N [M]+: 427.1548, found: 427.1538. 

 

Synthesis of 3-161: Aryiodide 3-159a (62.7 mg, 0.15 mmol) was placed to an oven-dried 3 mL 

V-vial equipped with a stirring bar. Pd(PPh3)2Cl2 (5.3 mg, 0.0075 mmol), CuI (3.0 mg, 0.015 mmol) were 

added under N2 atmosphere. Dry THF (0.5 mL) and dry Et3N (0.5 mL) were subsequently added followed 

by addition of the trimethysilylacetylene (30 mL, 0.3 mmol). The reaction vessel was caped with Mininert 

syringe valve and the reaction mixture was stirred at 80 °C for 12 h. Upon completion the reaction was 

Ph

IPh

CF3
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Ph CF3
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IPr•HCl (10 mol %)
t-BuOK (3 equiv)
toluene, 80 °C

p-Toludine (1.2 equiv)
Pd(OAc)2 (5 mol %)
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(77%)

Ph
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Ph

Ph

CF3

TMS

TMS

CuI (10 mol %)
Et3N, 80 °C

(1.5 equiv)
Pd(PPh3)2Cl2 (5 mol %)

3-161 
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quenched with saturated NH4Cl solution and extracted with EtOAc. Combined extracts were dried over 

Na2SO4, and concentrated under reduced pressure. The crude product was purified by column 

chromatography (eluent: hexanes) to afford 3-161 (40.2 mg, 64%) as a white solid. 1H NMR (500 MHz, 

CDCl3) δ ppm 7.78 – 7.76 (m, 1 H), 7.65 – 7.62 (m, 2 H), 7.60 – 7.58 (m, 1 H), 7.51 – 7.43 (m, 3 H), 7.36 

– 7.28 (m, 5 H), -0.31 (s, 9 H) 13C NMR (125 MHz, CDCl3) δ ppm 144.9, 139.1, 131.6, 129.7 (q, J = 32.6 

Hz), 129.2, 128.8, 128.3, 128.1, 127.80 (m), 127.75, 127.1, 125.8 (m), 123.5 (q, J = 272.2 Hz), 122.8, 

102.5, 100.4, 99.0, 87.0, -0.1 19F NMR (470 MHz, CDCl3) δ ppm -64.5 (s, 3 F) HRMS (EI+) calculated 

for C26H21F3Si [M]+: 418.1365, found: 418.1357. 

 

Synthesis of 3-162: An intermediate 3-149 (0.25 mmol scale) was obtained according to the 

procedure described for the synthesis of 3-158. To a solution of 3-158 in dry THF (5.0 mL) were added 

solution of t-BuOOH (5.5 M in decane, 450 mL, 2.5 mmol) and KH (100.0 mg, 2.5 mmol) at 0 °C. The 

reaction mixture was stirred for 30 min. Upon completion the reaction was quenched with saturated 

NH4Cl solution and extracted with EtOAc. Combined extracts were dried over Na2SO4, and concentrated 

under reduced pressure. The crude product was purified by column chromatography (eluent: hexanes : 

EtOAc = 10 : 1) to afford 3-162 (70.5 mg, 83%) as a white solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.69 

– 7.66 (m, 2 H), 7.52 – 7.42 (m, 3 H), 7.41 – 7.32 (m, 5 H), 7.36 – 7.28 (m, 2 H), 6.26 (s, 1 H) 13C NMR 

(125 MHz, CDCl3) δ ppm 157.0, 145.0, 139.0, 131.4, 131.6 (q, J = 32.4 Hz), 129.3, 129.0, 128.5, 128.3, 

128.2, 121.8, 123.7 (q, J = 272.8 Hz), 118.0 (m), 111.9, 110.3 (m), 101.2, 81.7 19F NMR (470 MHz, 

CDCl3) δ ppm -64.6 (s, 3 F) HRMS (EI+) calculated for C21H13F3O [M]+: 338.0919, found: 338.0915. 
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Synthesis of 3-163: Compound 3-163 was prepared according to the literature method.76 o-

Alkinylphenol 3-162 (50.7 mg, 0.15 mmol) was placed to an oven-dried 3 mL V-vial equipped with a 

stirring bar. PtCl2 (2.5 mg, 0.0075 mmol) and toluene (0.3 mL) were added under N2 atmosphere. The 

reaction vessel was caped with Mininert syringe valve and the reaction mixture was stirred at 80 °C for 16 

h. Upon completion the reaction was diluted with CH2Cl2 (10 mL), filtered through a celite plug, and 

concentrated under reduced pressure. The residue was purified by column chromatography (eluent: 

hexanes) to afford 3-163 (36.1 mg, 71%) as a white solid. 1H NMR (500 MHz, CDCl3) δ ppm 7.89 (d, J = 

7.5 Hz, 2 H), 7.79 (s, 1 H), 7.69 (d, J = 7.2 Hz, 2 H), 7.59 – 7.53 (m, 3 H), 7.50 – 7.46 (m, 3 H), 7.43 – 

7.39 (m, 1 H), 7.23 (s, 1 H) 13C NMR (125 MHz, CDCl3) δ ppm 158.8, 154.3, 139.0, 132.5, 130.6, 129.6, 

129.4, 129.0, 128.9, 128.4, 128.1, 126.7 (q, J = 32.7 Hz), 125.2, 124.6 (q, J = 271.5 Hz), 119.5 (m), 107.5 

(m), 100.6 19F NMR (470 MHz, CDCl3) δ ppm -62.6 (s, 3 F) HRMS (EI+) calculated for C21H13F3O [M]+: 

338.0919, found: 338.0921. 

 

Synthesis of 3-163: An intermediate 3-149 (0.25 mmol scale) was obtained according to the 

procedure described for the synthesis of 3-158. To a solution of 5ac in MeOH - THF mixture (MeOH : 

THF = 1:1; 10.0 mL) were added H2O2 solution (50 wt.% in water, 200 mL, ~2.5 mmol) and t-BuOK 

(84.0 mg, 0.75 mmol) at room temperature. The reaction mixture was stirred for 30 min at this 

temperature and then heated to 65 °C and stirred for 24 h. Upon completion the reaction was quenched 

with saturated NH4Cl solution and extracted with EtOAc. Combined extracts were dried over Na2SO4, 

CF3Ph

OHPh
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toluene, 80 °C O

Ph

Ph CF3
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Ph
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Ph
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(72%)
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and concentrated under reduced pressure. The crude product was purified by column chromatography 

(eluent: hexanes) to afford 3-163 (60.7 mg, 72%) as a white solid. 
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1H NMR spectrum of 1-03a: 

 

13C NMR spectrum of 1-03a:
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1H NMR spectrum of 1-03j: 

 

13C NMR spectrum of 1-03j: 
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1H NMR spectrum of 1-03i: 

 

13C NMR spectrum of 1-03i: 
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1H NMR spectrum of 1-03y: 

	  
13C NMR spectrum of 1-03y: 
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1H NMR spectrum of 1-03u: 

 

13C NMR spectrum of 1-03u: 
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1H NMR spectrum of 1-03z: 

 

13C NMR spectrum of 1-03z: 
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1H NMR spectrum of 1-03q: 

 
13C NMR spectrum of 1-03q: 
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1H NMR spectrum of 1-03s: 
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1H NMR spectrum of 1-03t:  

	  
13C NMR spectrum of 1-03t: 
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1H NMR spectrum of 1-03ab:	  

	  
13C NMR spectrum of 1-03ab: 
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1H NMR spectrum of 1-03ac: 

	  
13C NMR spectrum of 1-03ac: 
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1H NMR spectrum of 1-03ad: 	  

 

13C NMR spectrum of 1-03ad: 
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1H NMR spectrum of 1-03ae:	  

 

13C NMR spectrum of 1-03ae:	  

 

  

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

4.
05

7.
00

1.
47

2.
62

1.
22

1.
05

1.
02

1.
00

6.
02

6.
01

5.
99

5.
98

5.
45

5.
42

2.
45

1.
79

1.
72

1.
71

1.
71

1.
70

1.
69

1.
30

1.
29

1.
28

1.
27

1.
25

1.
24

1.
08

180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

14
8.

57

10
7.

53

93
.0

2

79
.1

3
77

.2
6

77
.0

0
76

.7
5

41
.1

4
32

.8
2

32
.3

6
29

.7
1

26
.0

3
25

.8
5

24
.9

9



	  

	  

241 

1H NMR spectrum of 1-03h:	  

 

13C NMR spectrum of 1-03h: 
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1H NMR spectrum of 1-03af: 

	  
13C NMR spectrum of 1-03af: 
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1H NMR spectrum of 1-03ag: 

	  
13C NMR spectrum of 1-03ag: 
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1H NMR spectrum of 1-03ah:	  

	  
13C NMR spectrum of 1-03ah: 
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1H NMR spectrum of 1-03c: 

 

13C NMR spectrum of 1-03c: 
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1H NMR spectrum of 1-03ai: 

 

13C NMR spectrum of 1-03ai: 
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1H NMR spectrum of 1-03aj:  
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1H NMR spectrum of 1-03ak: 	  

 
13C NMR spectrum of 1-03ak: 
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1H NMR spectrum of 1-03al:	  
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1H NMR spectrum of 1-03am:  

	  
13C NMR spectrum of 1-03am: 

 

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

2.
33

2.
64

2.
49

2.
46

2.
41

0.
96

1.
00

4.
54

7.
81

7.
80

7.
80

7.
69

7.
68

7.
68

7.
67

7.
67

7.
26

5.
88

5.
87

5.
85

5.
84

5.
82

5.
30

5.
27

3.
76

3.
75

3.
74

3.
64

3.
63

3.
61

2.
34

2.
32

2.
31

2.
05

2.
03

2.
02

1.
89

1.
88

1.
87

1.
70

1.
69

1.
67

180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

16
8.

30

14
1.

41

13
3.

87
13

3.
81

13
2.

16
13

2.
06

12
3.

17

11
0.

50

87
.5

5
79

.5
0

77
.3

2
77

.0
6

76
.8

0

37
.4

4

30
.1

8
27

.5
4

27
.3

0

17
.2

1

N N

3

3

O

O

O

O



	  

	  

251 

1H NMR spectrum of 1-02j:  

 

13C NMR spectrum of 1-02j: 
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1H NMR spectrum of 1-02i: 

 

13C NMR spectrum of 1-02i: 
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1H NMR spectrum of 1-02z: 

 

13C NMR spectrum of 1-02z: 
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1H NMR spectrum of 1-02q:	   

 

13C NMR spectrum of 1-02q: 
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1H NMR spectrum of 1-02r: 

 
13C NMR spectrum of 1-02r: 
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1H NMR spectrum of 1-03r: 

 

13C NMR spectrum of 1-03r: 
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1H NMR spectrum of 1-02t: 

 
13C NMR spectrum of 1-02t: 
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1H NMR spectrum of 1-02n: 

 
13C NMR spectrum of 1-02n: 
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1H NMR spectrum of 1-02ad: 

 
13C NMR spectrum of 1-02ad: 
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1H NMR spectrum of 1-02ag: 

 
13C NMR spectrum of 1-02ag: 
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1H NMR spectrum of 1-02ak: 

	  
13C NMR spectrum of 1-02ak: 
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APPENDIX II 

Optimized Molecular Structures for Part One 
  



 

	  

263 

 

Optimized Molecular Structures of L-Pd(0), 1-01, 1-03, A, B-TS and C at 
B3LYP/6-311G(d)&SDD Level (normal mode corresponding to imaginary frequency in the 
transition state is visualized, interatomic distances in Å, valence angles in degrees; hydrogen 
atoms of the complexes are omitted for clarity with the exception of reacting H1 atom): 
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Optimized Molecular Structures of D-hh, E-TS-hh, F-hh, G-TS-hh, H-hh at the 
B3LYP/6-311G(d)&SDD Level (normal mode corresponding to imaginary frequency in the 
transition state is visualized, interatomic distances in Å, valence angles in degrees; hydrogen 
atoms of the complexes are omitted for clarity with the exception of reacting H1 and H2 atoms): 
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Optimized Molecular Structures of D’-hh, E’-TS-hh, F’-hh, G’-TS-hh, H’-hh at the 
B3LYP/6-311G(d)&SDD Level (normal mode corresponding to imaginary frequency in the 
transition state is visualized, interatomic distances in Å, valence angles in degrees; hydrogen 
atoms of the complexes are omitted for clarity with the exception of reacting H1 and H2 atoms): 
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Optimized Molecular Structures of D-ht, E-TS-ht, F-ht, H-ht at the B3LYP/6-311G(d)&SDD 
Level (normal mode corresponding to imaginary frequency in the transition state is visualized, 
interatomic distances in Å, valence angles in degrees; hydrogen atoms of the complexes are 
omitted for clarity with the exception of reacting H1 and H2 atoms): 
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Optimized Molecular Structures of D’-ht, E’-TS-ht, F’-ht, G’-TS-ht, H’-ht, and 1-02 at the 
B3LYP/6-311G(d)&SDD level (normal mode corresponding to imaginary frequency in the 
transition state is visualized, interatomic distances in Angstroms, valence angles in degrees; 
hydrogen atoms of the complexes are omitted for clarity with the exception of reacting H1 and 
H2 atoms): 
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Optimized Molecular Structures of A, B-TS, C, C(-) at the B3LYP/6-311G(d)&SDD Level 
(normal mode corresponding to imaginary frequency in the transition state is visualized, 
interatomic distances in Å, valence angles in degrees): 
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Optimized Molecular Structures of D(-)-hh, E(-)-TS-hh, F(-)-hh at the B3LYP/6-311G(d)&SDD 
Level (normal mode corresponding to imaginary frequency in the transition state is visualized, 
interatomic distances in Å, valence angles in degrees): 
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Optimized Molecular Structures of D(-)-ht, E(-)-TS-ht, F(-)-ht at the B3LYP/6-311G(d)&SDD 
Level (normal mode corresponding to imaginary frequency in the transition state is visualized, 
interatomic distances in Å, valence angles in degrees): 
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Initial and Optimized Molecular Structures of D-ht and D-ht+AcO(-), M06L/DGDZVP&SDD: 

 

Initial and Optimized Molecular Structures of D-hh and D-hh+AcO(-), M06L/DGDZVP&SDD. 
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APPENDIX III 

Selected NMR Spectra for Part Two 
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Me

THPO

1H NMR spectrum of 2-03j: 
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13C NMR spectrum of 2-03j: 
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Me

Me2N

1H NMR spectrum of 2-03l: 
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13C NMR spectrum of 2-03l: 
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MOMO

MOMO

1H NMR spectrum of 2-03k: 
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13C NMR spectrum of 2-03k: 
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OMOM

MOMO

1H NMR spectrum of 2-07e: 
OZ-2078_001000fid
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13C NMR spectrum of 2-07e: 
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MePh

n-Bun-Bu

1H NMR spectrum of 2-08aa: 

id.esp

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

2.
95

2.
07

2.
03

2.
02

2.
00

1.
91

1.
08

1.
92

7.
59

7.
59

7.
58

7.
57

7.
41

7.
40

7.
39

7.
35

7.
34

7.
02

2.
85

2.
83

2.
81

2.
37

2.
33

2.
32

2.
31

1.
68

1.
47

1.
47

1.
46

1.
45

1.
44

1.
01

0.
99

0.
98

0.
90

0.
89

0.
88

 
13C NMR spectrum of 2-08aa: 
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Me

n-Bun-Bu

MeO2C

1H NMR spectrum of 2-08ba: 
OZ-2055.esp
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13C NMR spectrum of 2-08ba: 

OZ-2055_002000fid
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Me

n-Bun-Bu

MeO

1H NMR spectrum of 2-08ca: 
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13C NMR spectrum of 2-08ca: 
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1H NMR spectrum of 2-08da: 
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13C NMR spectrum of 2-08da: 
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1H NMR spectrum of 2-08ea: 
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13C NMR spectrum of 2-08ea: 
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13C NMR spectrum of 2-08fa: 
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180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

14
5.

47
14

4.
14

14
1.

95
14

1.
81

12
9.

51
12

7.
76

12
7.

59
12

7.
13

12
6.

86
11

9.
13

96
.5

4

78
.5

2
77

.3
2

77
.0

7
76

.8
2

35
.6

3
35

.0
4

33
.5

5
33

.0
1

30
.7

2
22

.8
7

22
.4

9
21

.9
0

19
.3

4
14

.0
9

14
.0

3
13

.6
7

 
 



 

	   	  

283 

Ph

n-Bun-Bu
Me

1H NMR spectrum of 2-08ga: 

OZ-1847_001000fid
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13C NMR spectrum of 2-08ga: 

OZ-1847_002000fid

180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

14
3.

85
14

2.
24

14
1.

76
13

4.
70

12
9.

48
12

9.
29

12
7.

57
12

6.
74

12
6.

61
12

2.
10

96
.8

0

78
.9

4
77

.2
9

77
.0

4
76

.7
9

31
.7

5
31

.6
9

30
.6

3
23

.3
2

21
.8

9
19

.6
9

19
.3

0
14

.0
3

13
.6

3

 



 

	   	  

284 

Ph

n-Bun-Bu
CO2Et

Me

1H NMR spectrum of 2-08ha: 
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13C NMR spectrum of 2-08ha: 

fidrc.mrc
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1H NMR spectrum of 2-08ia: 
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13C NMR spectrum of 2-08ia: 
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1H NMR spectrum of 2-08ja: 
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13C NMR spectrum of 2-08ja: 

fid1.mrc
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1H NMR spectrum of 2-08ka: 
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13C NMR spectrum of 2-08ka: 
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1H NMR spectrum of 2-08la: 
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13C NMR spectrum of 2-08la: 
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1H NMR spectrum of 2-08db: 
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13C NMR spectrum of 2-08db: 
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1H NMR spectrum of 2-08dc: 
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13C NMR spectrum of 2-08dc: 
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180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

15
9.

29
15

8.
91

14
5.

38
14

3.
69

13
7.

55
13

3.
95

13
2.

46
13

0.
67

12
8.

20
12

7.
74

11
8.

35
11

6.
34

11
3.

95
11

3.
11

95
.3

9

87
.0

0

77
.2

8
77

.0
3

76
.7

8

55
.3

3
55

.2
8

35
.0

4
33

.0
6

22
.8

8
21

.4
7

14
.0

9

 
 



 

	   	  

291 

Men-Bu

EtO2C

CO2Et

1H NMR spectrum of 2-08dd: 
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13C NMR spectrum of 2-08dd: 

OZ-2064_002000fid

180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

16
6.

58
16

6.
01

14
6.

17
14

5.
74

14
3.

63
13

8.
83

13
0.

85
12

9.
52

12
9.

32
12

9.
04

12
8.

27
12

7.
83

11
7.

51

95
.1

7
90

.8
3

77
.3

8
77

.1
3

76
.8

8

61
.0

7
60

.9
8

34
.9

7
33

.1
0

22
.8

3
21

.5
3

14
.4

1
14

.3
2

14
.0

7

 
 



 

	   	  

292 

Men-Bu

OMOM

OMOM

1H NMR spectrum of 2-08de: 
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13C NMR spectrum of 2-08de: 

OZ-2079_002000fid
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1H NMR spectrum of 2-08df: 
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13C NMR spectrum of 2-08df: 

OZ-2134_002000fid
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1H NMR spectrum of 2-08ab: 
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13C NMR spectrum of 2-08ab: 

OZ-1845_002000fid
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You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN.

Should any provision of this Agreement be held by a court of competent jurisdiction to
be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby.

The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
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any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party.

This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

These terms and conditions together with CCC�s Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns.

In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC�s Billing and Payment terms and
conditions, these terms and conditions shall prevail.

WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC�s Billing and Payment
terms and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

This Agreement shall be governed by and construed in accordance with the laws of the
State of New York, USA, without regards to such state�s conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses:: Creative Commons Attribution (CC-BY) license Creative
Commons Attribution Non-Commercial (CC-BY-NC) license and Creative Commons
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Attribution Non-Commercial-NoDerivs (CC-BY-NC-ND) License. The license type is
clearly identified on the article.

Copyright in any research article in a journal published as Open Access under a Creative
Commons License is retained by the author(s). Authors grant Wiley a license to publish the
article and identify itself as the original publisher. Authors also grant any third party the right
to use the article freely as long as its integrity is maintained and its original authors, citation
details and publisher are identified as follows: [Title of Article/Author/Journal Title and
Volume/Issue. Copyright (c) [year] [copyright owner as specified in the Journal]. Links to
the final article on Wiley�s website are encouraged where applicable.

The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-commercial re-use of an open access article, as long as
the author is properly attributed.

The Creative Commons Attribution License does not affect the moral rights of authors,
including without limitation the right not to have their work subjected to derogatory
treatment. It also does not affect any other rights held by authors or third parties in the
article, including without limitation the rights of privacy and publicity. Use of the article
must not assert or imply, whether implicitly or explicitly, any connection with, endorsement
or sponsorship of such use by the author, publisher or any other party associated with the
article.

For any reuse or distribution, users must include the copyright notice and make clear to
others that the article is made available under a Creative Commons Attribution license,
linking to the relevant Creative Commons web page.

To the fullest extent permitted by applicable law, the article is made available as is and
without representation or warranties of any kind whether express, implied, statutory or
otherwise and including, without limitation, warranties of title, merchantability, fitness for a
particular purpose, non-infringement, absence of defects, accuracy, or the presence or
absence of errors.

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC) License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)
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Use by non-commercial users

For non-commercial and non-promotional purposes, individual users may access, download,
copy, display and redistribute to colleagues Wiley Open Access articles, as well as adapt,
translate, text- and data-mine the content subject to the following conditions:

The authors' moral rights are not compromised. These rights include the right of
"paternity" (also known as "attribution" - the right for the author to be identified as
such) and "integrity" (the right for the author not to have the work altered in such a
way that the author's reputation or integrity may be impugned).

Where content in the article is identified as belonging to a third party, it is the
obligation of the user to ensure that any reuse complies with the copyright policies of
the owner of that content.

If article content is copied, downloaded or otherwise reused for non-commercial
research and education purposes, a link to the appropriate bibliographic citation
(authors, journal, article title, volume, issue, page numbers, DOI and the link to the
definitive published version on Wiley Online Library) should be maintained.
Copyright notices and disclaimers must not be deleted.

Any translations, for which a prior translation agreement with Wiley has not been
agreed, must prominently display the statement: "This is an unofficial translation of an
article that appeared in a Wiley publication. The publisher has not endorsed this
translation."

Use by commercial "for-profit" organisations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee. Commercial
purposes include:

Copying or downloading of articles, or linking to such articles for further
redistribution, sale or licensing;

Copying, downloading or posting by a site or service that incorporates advertising
with such content;

The inclusion or incorporation of article content in other works or services (other than
normal quotations with an appropriate citation) that is then available for sale or
licensing, for a fee (for example, a compilation produced for marketing purposes,
inclusion in a sales pack)

Use of article content (other than normal quotations with appropriate citation) by
for-profit organisations for promotional purposes

Linking to article content in e-mails redistributed for promotional, marketing or
educational purposes;
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Use for the purposes of monetary reward by means of sale, resale, licence, loan,
transfer or other form of commercial exploitation such as marketing products

Print reprints of Wiley Open Access articles can be purchased from:
corporatesales@wiley.com

Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA
/Section/id-410895.html

Other Terms and Conditions:

v1.9

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.
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JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

Nov 25, 2014

This is a License Agreement between Olga V Zatolochnaya ("You") and John Wiley and
Sons ("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The
license consists of your order details, the terms and conditions provided by John Wiley and
Sons, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

License Number 3515630879060

License date Nov 24, 2014

Licensed content publisher John Wiley and Sons

Licensed content publication Wiley oBooks

Licensed content title [4 + 2] Benzannulation of Enynes with Alkynes

Book title Transition-Metal-Mediated Aromatic Ring Construction

Licensed copyright line Copyright © 2013 John Wiley & Sons, Inc. All rights reserved.

Licensed content author Vladimir Gevorgyan,Olga V. Zatolochnaya

Licensed content date Jul 15, 2013

Start page 355

End page 377

Type of use Dissertation/Thesis

Requestor type Author of this Wiley chapter

Format Electronic

Portion Full chapter

Will you be translating? No

Title of your thesis /
dissertation

Development of Palladium-catalyzed Alkyne Dimerization and Enyne
Benzannulation Methodologies

Expected completion date Dec 2014

Expected size (number of
pages)

400

Total 0.00 USD

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or
one of its group companies (each a"Wiley Company") or handled on behalf of a society with
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which a Wiley Company has exclusive publishing rights in relation to a particular work
(collectively "WILEY"). By clicking �accept� in connection with completing this
licensing transaction, you agree that the following terms and conditions apply to this
transaction (along with the billing and payment terms and conditions established by the
Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at
the time that you opened your Rightslink account (these are available at any time at
http://myaccount.copyright.com).

Terms and Conditions

The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright.

You are hereby granted a personal, non-exclusive, non-sub licensable (on a
stand-alone basis), non-transferable, worldwide, limited license to reproduce the
Wiley Materials for the purpose specified in the licensing process. This license is for a
one-time use only and limited to any maximum distribution number specified in the
license. The first instance of republication or reuse granted by this licence must be
completed within two years of the date of the grant of this licence (although copies
prepared before the end date may be distributed thereafter). The Wiley Materials shall
not be used in any other manner or for any other purpose, beyond what is granted in
the license. Permission is granted subject to an appropriate acknowledgement given to
the author, title of the material/book/journal and the publisher. You shall also duplicate
the copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission.

With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner. You may not alter, remove or suppress
in any manner any copyright, trademark or other notices displayed by the Wiley
Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer
or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to
you hereunder to any other person.

The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
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("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto.

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU

WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.

You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN.

Should any provision of this Agreement be held by a court of competent jurisdiction to
be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby.

The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
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any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party.

This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

These terms and conditions together with CCC�s Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns.

In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC�s Billing and Payment terms and
conditions, these terms and conditions shall prevail.

WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC�s Billing and Payment
terms and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

This Agreement shall be governed by and construed in accordance with the laws of the
State of New York, USA, without regards to such state�s conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses:: Creative Commons Attribution (CC-BY) license Creative
Commons Attribution Non-Commercial (CC-BY-NC) license and Creative Commons
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Attribution Non-Commercial-NoDerivs (CC-BY-NC-ND) License. The license type is
clearly identified on the article.

Copyright in any research article in a journal published as Open Access under a Creative
Commons License is retained by the author(s). Authors grant Wiley a license to publish the
article and identify itself as the original publisher. Authors also grant any third party the right
to use the article freely as long as its integrity is maintained and its original authors, citation
details and publisher are identified as follows: [Title of Article/Author/Journal Title and
Volume/Issue. Copyright (c) [year] [copyright owner as specified in the Journal]. Links to
the final article on Wiley�s website are encouraged where applicable.

The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-commercial re-use of an open access article, as long as
the author is properly attributed.

The Creative Commons Attribution License does not affect the moral rights of authors,
including without limitation the right not to have their work subjected to derogatory
treatment. It also does not affect any other rights held by authors or third parties in the
article, including without limitation the rights of privacy and publicity. Use of the article
must not assert or imply, whether implicitly or explicitly, any connection with, endorsement
or sponsorship of such use by the author, publisher or any other party associated with the
article.

For any reuse or distribution, users must include the copyright notice and make clear to
others that the article is made available under a Creative Commons Attribution license,
linking to the relevant Creative Commons web page.

To the fullest extent permitted by applicable law, the article is made available as is and
without representation or warranties of any kind whether express, implied, statutory or
otherwise and including, without limitation, warranties of title, merchantability, fitness for a
particular purpose, non-infringement, absence of defects, accuracy, or the presence or
absence of errors.

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC) License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)
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Use by non-commercial users

For non-commercial and non-promotional purposes, individual users may access, download,
copy, display and redistribute to colleagues Wiley Open Access articles, as well as adapt,
translate, text- and data-mine the content subject to the following conditions:

The authors' moral rights are not compromised. These rights include the right of
"paternity" (also known as "attribution" - the right for the author to be identified as
such) and "integrity" (the right for the author not to have the work altered in such a
way that the author's reputation or integrity may be impugned).

Where content in the article is identified as belonging to a third party, it is the
obligation of the user to ensure that any reuse complies with the copyright policies of
the owner of that content.

If article content is copied, downloaded or otherwise reused for non-commercial
research and education purposes, a link to the appropriate bibliographic citation
(authors, journal, article title, volume, issue, page numbers, DOI and the link to the
definitive published version on Wiley Online Library) should be maintained.
Copyright notices and disclaimers must not be deleted.

Any translations, for which a prior translation agreement with Wiley has not been
agreed, must prominently display the statement: "This is an unofficial translation of an
article that appeared in a Wiley publication. The publisher has not endorsed this
translation."

Use by commercial "for-profit" organisations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee. Commercial
purposes include:

Copying or downloading of articles, or linking to such articles for further
redistribution, sale or licensing;

Copying, downloading or posting by a site or service that incorporates advertising
with such content;

The inclusion or incorporation of article content in other works or services (other than
normal quotations with an appropriate citation) that is then available for sale or
licensing, for a fee (for example, a compilation produced for marketing purposes,
inclusion in a sales pack)

Use of article content (other than normal quotations with appropriate citation) by
for-profit organisations for promotional purposes

Linking to article content in e-mails redistributed for promotional, marketing or
educational purposes;
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Use for the purposes of monetary reward by means of sale, resale, licence, loan,
transfer or other form of commercial exploitation such as marketing products

Print reprints of Wiley Open Access articles can be purchased from:
corporatesales@wiley.com

Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA
/Section/id-410895.html

Other Terms and Conditions:

v1.9

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.
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JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

Nov 24, 2014

This is a License Agreement between Olga V Zatolochnaya ("You") and John Wiley and
Sons ("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The
license consists of your order details, the terms and conditions provided by John Wiley and
Sons, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

License Number 3515630272317

License date Nov 24, 2014

Licensed content publisher John Wiley and Sons

Licensed content publication Advanced Synthesis & Catalysis

Licensed content title Beyond the Limits: Palladium-N-Heterocyclic Carbene-Based
Catalytic System Enables Highly Efficient [4+2]  Benzannulation
Reactions

Licensed copyright line Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Licensed content author Olga V. Zatolochnaya,Alexey V. Galenko,Vladimir Gevorgyan

Licensed content date Apr 13, 2012

Start page 1149

End page 1155

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Electronic

Portion Full article

Will you be translating? No

Title of your thesis /
dissertation

Development of Palladium-catalyzed Alkyne Dimerization and Enyne
Benzannulation Methodologies

Expected completion date Dec 2014

Expected size (number of
pages)

400

Total 0.00 USD

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or
one of its group companies (each a"Wiley Company") or handled on behalf of a society with
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which a Wiley Company has exclusive publishing rights in relation to a particular work
(collectively "WILEY"). By clicking �accept� in connection with completing this
licensing transaction, you agree that the following terms and conditions apply to this
transaction (along with the billing and payment terms and conditions established by the
Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at
the time that you opened your Rightslink account (these are available at any time at
http://myaccount.copyright.com).

Terms and Conditions

The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright.

You are hereby granted a personal, non-exclusive, non-sub licensable (on a
stand-alone basis), non-transferable, worldwide, limited license to reproduce the
Wiley Materials for the purpose specified in the licensing process. This license is for a
one-time use only and limited to any maximum distribution number specified in the
license. The first instance of republication or reuse granted by this licence must be
completed within two years of the date of the grant of this licence (although copies
prepared before the end date may be distributed thereafter). The Wiley Materials shall
not be used in any other manner or for any other purpose, beyond what is granted in
the license. Permission is granted subject to an appropriate acknowledgement given to
the author, title of the material/book/journal and the publisher. You shall also duplicate
the copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission.

With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner. You may not alter, remove or suppress
in any manner any copyright, trademark or other notices displayed by the Wiley
Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer
or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to
you hereunder to any other person.

The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
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("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto.

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
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