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SUMMARY

The risk-neutral density (RND) for a future payoff of an asset can be estimated from market

option prices that expire on the same date. We propose a nonparametric approach to estimate

the risk-neutral density using piece-wise constant functions with extended tails beyond traded

strike prices. We reformulate the estimation problem into a double-constrained optimization

problem to determine its parameters, which can be efficiently solved using numerical implemen-

tations in R. Our approach is very general and is able to recover the risk-neutral density very

well with available market option prices. Our method provides accurate estimates for options

with any strike, which further presents a practical way to reveal valuable insights and explore

profitable investment opportunities in financial markets. We evaluate our method numerically

using options on S&P 500 over twenty years. Our cross-validation study shows that our method

performs much better than the cubic spline method proposed in the literature.

Pricing financial derivatives is a key application of the risk-neutral density. We apply

our method in pricing variance swap (51), an over-the-counter financial contract that allows

investors to hedge risks due to the volatility of financial products. We derive the theoretical

price of a variance swap under the no-arbitrage assumption. Based on the vanilla option prices

traded on the Chicago Board Options Exchange (CBOE), we estimate the moments of the

risk-neutral density under a relatively general framework. Using our proposed nonparametric

approach, we derive the moments from the estimated risk-neutral density function directly. In

order to compare the fair prices based on our methods with the market prices of variance swaps,

xi



SUMMARY (Continued)

we reproduce the historical prices of variance swaps from the CBOE variance future prices. Our

study shows that the proposed approach can capture the market prices of long-term variance

swaps reasonably well.
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CHAPTER 1

INTRODUCTION

A financial derivative is an asset whose value depends on the value of another asset. There

are many kinds of derivatives in financial markets, such as various options with different un-

derlying assets, equities and indices, futures and swaps, etc. The theoretical fair price of a

derivative can be based on a risk-neutral density. In section 1, we review some preliminary

knowledge about risk-neutral density as well as some commonly used methods for estimating

a risk-neutral density. In section 2, we introduce a financial derivative, called variance swap,

and reviews its pricing approaches in the literature. In the last section, we introduce the data

sources used in our work and the corresponding time ranges.

1.1 Risk-neutral density

Risk-neutral density approach has been widely used in pricing derivatives in financial mar-

kets. It is essentially a probability measure which is also known as an equivalent martingale

measure. The fair price of a derivative can be calculated as its expected discounted payoff

under the risk-neutral measure assuming that there is no arbitrage in the market. Such a

probability density is called “risk-neutral” since the risk (variance) of the future payoff is not

under consideration when pricing. The first fundamental theorem of asset pricing (71) says

a risk-neutral measure exists if and only if there is no arbitrage in the market. The future

payoff of a derivative is discounted by a risk-free interest rate which stands for an investor’s

1
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expectation of payoff for $1 risk-free investment over a specified period. In the real world, such

a rate may not exist since the market always carries certain risk. We use zero-coupon interest

rate of the Treasure bills as the risk-free rate in our analysis.

The prices of derivatives contain much useful information about the dynamics of the under-

lying asset with the connection of its payoff and future price. They are often used to estimate

the probability distribution of the future price of the asset, which is initially proposed by Bree-

den and Litzenberger (1978) (13). Different instruments can be used to recover risk-neutral

densities. Among them, European options are the most common ones. European options refer

to contracts that give the investors the right but not the obligation to trade assets at pre-agreed

strike prices at the corresponding maturity date and can only be exercised at the maturity date.

Among all the underlying assets which options written on, Standard & Poor’s 500 Index is the

most popular one which aggregates the value of stocks of the largest 500 companies traded on

American stock exchanges and provides a credible view of American stock market for investors.

According to Bliss and Panigirtzoglou (2002) (11), the numerous methodologies toward

recovering risk-neutral density functions can be classified into five groups, stochastic process

method, implied binomial tree method, finite-difference method, implied volatility smoothing

method and PDF approximation function method. As one of them, the stochastic process

method uses a stochastic process, such as a geometric Brownian motion or jump-diffusion

process, to describe the price dynamics of the underlying asset and then obtains an implicit

characterization.



3

A stochastic process is defined as a collection of random variables with time indices and

used to describe a random system evolving over time, such as random walks, martingales, etc.

Martingale refers to a process that the conditional expectation of the future value equals to the

present value. A geometric Brownian motion process is a continuous-time stochastic process

that satisfies the stochastic differential equation:

dSt = µSt dt+ σSt dWt

where Wt is a standard Brownian motion which refers to a stochastic process that has 0 initial,

independent Gaussian-distributed increments, and continuous paths. Here µ is the constant

drift and σ is the constant volatility.

Different estimation approaches associated with various stochastic processes have been em-

ployed by Bates (1991) (7), Malz (1996) (58) and others. The stochastic process method doesn’t

rely on the market option prices. However, for general processes that contain jumps or other

non-stationary volatilities, it is difficult to derive closed-form formula based on a stochastic

process method.

Rather than specifying the process of the underlying asset, Rubinstein (1994) (65) and

Jackwerth and Rubinstein (1996) (46) developed a non-parametric Bayesian method called

“implied binomial tree method”. This iterative approach focuses on constructing a binomial

tree model on the evolution of the prices of the underlying asset.
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One can also use the finite-difference method to approximate the risk-neutral density, as

first proposed by Breeden and Litzenberger (1978) (13). It provides a general approach for

estimating the function. Presented in Cox and Ross (1976) (28), the prices of call and put

options are:

Ct,T (K) = e−r(T−t)
ˆ ∞
K

fQ(ST )(ST −K)dST

Pt,T (K) = e−r(T−t)
ˆ K

−∞
fQ(ST )(K − ST )dST

(1.1)

where Ct,T (K) and Pt,T (K) denote the prices of European call and put options with strike price

K at time t that expire at T. Here r represents the risk-free rate and fQ(ST ) is the risk-neutral

density for the underlying asset at the maturity date. Breeden and Litzenberger (1978) (13)

showed that differentiating the expression for call option with respect to strike price K is given

by

∂Ct,T (K)

∂K
= −e−r(T−t)

ˆ ∞
K

fQ(ST )dST (1.2)

and differentiating again with respect to K yields a result that is equal to the discounted

risk-neutral density at future asset price

∂2Ct,T (K)

∂K2
= −e−r(T−t)fQ(ST ) (1.3)

The derivation of the results only requires Ct,T (K) to be twice differentiable. One drawback of

this approach is the requirement of options across a wide range of strike prices. Unfortunately,
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there are limited options traded at a discrete level of strike prices, and therefore, the approach

essentially needs to interpolate between observed strike prices and extrapolate outside the range.

As an alternative method, implied volatility smoothing method is to infer the risk-neutral

density indirectly by estimating volatility smile instead. The plot of implied volatilities from

options with same expirations across strike prices is like a smile. One can determine the im-

plied volatility by converting option price under Black-Scholes model. A continuous smoothing

approximation function can then be used to interpolate the implied volatility on strike prices.

The derived volatilities are converted back to option prices based on Black-Scholes model again.

A variety of functions can be used to estimate the implied volatility nonparametrically, Shimko

(1993) (18) used a polynomial function, smoothing spline was employed in Campa et. al. (1997)

(70), a three-dimensional kernel regression was suggested by Ait-Sahalia and Lo (1995) (1) and

a natural spline was described in Robert and Nikolaos (2002) (11). This approach can eliminate

much of non-linearity and result in more smoothness and accurate results but is lack of guar-

antee that the total cumulative probability is one, as reviewed by Bhupinder Bahra (1997) (5).

Later, Seung (2014) (56) improved this method by adding power tails and chooses an optimum

number of knots.

And the last but not the least is the PDF approximation function method which is further

divided into parametric and nonparametric approaches. One can assume parametric statistical

distribution families to infer the risk-neutral density and to recover the parameters by solving

an optimization problem. When some parametric assumptions of the underlying asset dynamics

are satisfied, this approach is more common to use. Jarrow and Rudd (1982) (47) applied this
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method by assuming lognormal distributions. A similar approach taken by Melick and Thomas

(1997) (59), they considered a model proposed by Ritchey (1990) (63), which solved the param-

eters of a mixture of lognormal distributions. A three-parameter Burr distribution employed by

Sherrick et al (1992) (69) where Burr family is a unimodal family of distributions that covers

a broad range of shapes and the distributions are very similar to gamma distributions, log-

normal distributions, the J-shaped beta distributions, etc. Other principal distributions used

to estimate the risk-neutral density are, for example, Weibull distribution, Variance Gamma

distribution, Normal Inverse Gaussian distribution.

Considering the limitation on the model-based assumptions for the parametric approach,

the nonparametric procedure is more general and robust to estimate the risk-neutral density

without restrictions on the price dynamics of the underlying asset or distribution families.

The nonparametric method can be realized in the following three ways: the first one is by

solving an optimization problem that minimizes the distance between the risk-neutral density

and the prior density regarding squared errors with the knowledge of prior distribution. In

Rubinstein 1994 (65), he specified the prior distribution as a lognormal distribution and solved

the quadratic optimization problem for recovering the risk-neutral density. In a later paper

written by Jackwerth and Rubstein (1997) (46), they minimized the distance regarding the

roughness of estimated risk-neutral density. The second maximum entropy method is a Bayesian

method proposed by Jaynes (1979 (49), 1982 (50)). Later, Kelly and Buchen (1995) (17)

used the approach based on given information and that claimed that the resulted risk-neutral

distribution was the only distribution that one could infer from market options. Entropy
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measures the amount of missing information. The last kernel estimation method, which dates

back to Rosenblatt (1956) (64) and Parzen (1962) (61), was used by Ait-Sahalia and Lo (1995)

(1) and others.

In our paper, we propose a piece-wise constant nonparametric approach to estimate the

risk-neutral density from market option prices on S&P 500. Our contributions are twofold:

firstly, our method can recover the risk-neutral density effectively with available options; and

secondly, our method provides a practical way to explore profitable investment opportunities

in financial markets by comparing the fair prices and the market prices. In addition, piece-wise

constant functions are concise and easy to understand and implement. Our cross-validation

study shows that our method performs much better than the cubic spline method proposed by

Monteiro et. al. (2008) (60).

One key application of the risk-neutral density is to provide a fair price for any derivative

with the same time to expiration based on the market options. In the next section, we briefly

introduce another financial derivative called variance swap, and review the standard methods

in the literature for valuing variance swap.

1.2 Variance swap

A variance swap is a financial product which allows investors to trade realized variance

against current implied variance. Variance is the square of volatility. Volatility measures the

price movements of the underlying asset. Realized volatility refers to the standard deviation

of log returns over a specified period that has happened or will have occurred in the future.

Implied volatility indicates the market expectation or assessment of the volatility. There are
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many advantages trading variance swaps. It offers an easier and straightforward way to hedge

risks. More important, it provides the investors pure exposure to the variance of the underlying

asset without directional risk. The transaction cost for trading variance swap is rather low

since it is a forward contract and there is no charge to enter technically. It is also notable liquid

across major equities, indices and stock markets, and growing across other markets. Historical

evidence indicates selling variance systematically is profitable.

There are numerous methods in the literature for valuing variance swap. Following Song-

Ping Zhu and Guang-Hua Lian (2010) (76), we classify the methods into two categories, analyt-

ical method and numerical method. The analytical method is further divided into a valuation

by portfolio replication and stochastic volatility model. The portfolio replication replicates the

variance swap by a portfolio of standard options when the prices of the underlying asset evolve

continuously. One can approximate a discretely sampled variance by a continuously sampled

variance, see examples in Carr and Madan (1998) (23) and Demeterfi et. al. (1999) (29). This

replication method has a significant advantage that it doesn’t rely on the volatility process.

However, there are two drawbacks commented by Carr and Corso (2001) (21) that the repli-

cation strategy requires consecutive strikes and it may not be the case in the financial market.

Moreover, the continuous sampling time of the variance swap assumes a continuous model,

which is violated when the trading frequency is not high enough, yielding inaccurate results.

The stochastic volatility model method is also popular. GARCH model and jump-diffusion

model are employed many times in evaluating variance swap as shown in Javaheri et. al. (2004)

(48), Heston (2000) (44), and Howison et. al. (2004) (45). Elliott at al. 2007 (32) developed
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a model under Heston stochastic process for pricing variance swap. Before that, Swishchuk

(2004) (73) used a similar approach to model variance swap under the same Heston model. The

stochastic volatility model method also assumes a continuous sampling time of variance and

introduces a significant systematic bias.

Despite the analytical success of the replication method and the stochastic volatility model

method, numerical solution is more attractive and explicit in pricing derivatives. Due to this

reason, the numerical method is another major approach for valuing variance swap, especially

in cases where analytic solutions are not available. A fair amount of papers is devoted to this

approach. Little and pants (2001) (57) applied a finite-difference method under a diffusion

model for a discretely sampled variance swap, and their results were shown to be extremely ac-

curate and robust. Similarly, Windcliff et. al. (2006) (75) adopted a partial-integral differential

equation approach and extended it to handle other model assumptions that have no stochas-

tic volatility involved. Brodie and Jain (2008 ) (15) studied the effects of jumps and discrete

sampling time, resulting in a closed-form solution for pricing variance swap under a variety

of models such as Heston model, jump-diffusion model, etc. Zhu and lian (2010) (76) further

investigated the Heston two-factor stochastic volatility model and also derived a closed-form

exact solution.

In the real world, the variance of the prices of the underlying asset varies with time. Any

method assuming continuous models may result in systematic bias. Motivated to find an alter-

native way to price variance swap that is independent of the continuous time model assumption

and also ends in a better estimate of the fair price, we propose a moment-based method under a



10

general framework with only no-arbitrage assumption. In order to compare the fair prices based

on our methods with the market prices of variance swaps, we further reproduce the historical

prices of variance swaps by variance futures, which are future products similar to variance swaps

in the sense that they both trade the difference of variance. Our study shows that the proposed

approach can capture the market prices of long-term variance swaps reasonably well.

1.3 Data source and preparation

Our data contains standard European options written on S&P 500 indices from January

2nd, 1996 to August 31st, 2015. The expiration date of the options is on the third Saturday of

the delivery month. Given the fact that no trading data is available on Saturday, we treat the

third Friday instead as the expiration date. The continuously compounded zero-coupon interest

rates cover dates from January 2nd, 1996 to August 31st, 2015. For variance futures, the trading

dates are from December 10th, 2012 to August 31st, 2015, with start dates from December 21st,

2010 to July 30th, 2015 and expiration dates from January 18th, 2013 to January 1st, 2016.

We download options and interest rates from Wharton Research Data Services, and variance

futures from CBOE website. We use variance futures to replicate variance swaps in our analysis

and the date coverages for variance swaps are entirely consistent with those for variance futures.

To prepare the options, we keep the options that satisfy all the three filters.

1. Positive bid prices.

2. Positive volumes.

3. Expiry more than seven days.
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The first filter is intuitive to perform. Under the theoretical assumptions, options shouldn’t

have negative bid prices. We then drop options with zero volumes given that options with small

trading volumes are less likely to indicate the market directions. Besides, options that have

expiries within seven days are more fluctuate and easy to be overwhelmed by other influencing

factors, and therefore more unstable and unpredictable.

There are 7385062 raw options in total, and after filter 1, there are 6760963 options. After

filter 2, there are 1971929 options left, and after the last screen, there are 1844693 options for

our analysis. The start dates of the rest options is from January 02, 1996 to December 30,

2015.

Bid-ask spread

In general, the ask price is always greater than the bid price to make a transaction happen.

Two parties make a deal when the seller asks for an asking price but is willing to sell at a

bid price. The buyer requests for a bid price but is going to pay at an asking price. Brokers

take the difference between the asking and bid prices at settlement as the transaction cost.

There is a column named “Volume” in the data that should provide us the information about

transactions. However, there are a non-trivial amount of records have zero volume that indicates

no agreements. After applying filter one, we keep all the options with positive bid prices and

take the average price of the bid and ask prices to serve as the settlement price for each option.

However, this is not applicable for options with zero volume. Besides the previously mentioned

problem that such an option is insufficient to indicate the market direction, it is also far from

stable because one could ask or bid for any price. Therefore, we perform an investigation on
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Figure 1: Histogram for bid-ask spread of data.

options with zero volume and check if there is greater bid-ask spread. We are also aware that a

transaction could still be manipulated by brokers to make an agreement even when the volume

is nonzero. We ignore these cases in our analysis. As shown in Figure 1, the outcomes are

consistent with our assertion that for those options with zero volumes, the bid-ask spreads are

wider in general.

The remainder of the thesis is organized as follows. In Chapter 2, we first describe the

non-negativity cubic spline approach in the literature. Then we present our piece-wise constant

nonparametric approach to estimating risk-neutral density in details under different scenarios.

A comparison between our method and the non-negativity cubic spline approach is conducted,

establishing some evidence in favor of ours. Chapter 3 is devoted to the application of variance

swap valuation from our proposed nonparametric approach. We summarize our work in Chapter

4.



CHAPTER 2

NONPARAMETRIC APPROACHES FOR ESTIMATING

RISK-NEUTRAL DENSITY

We review a variety of nonparametric approaches for recovering the risk-neutral proba-

bility density function in the first chapter. Among them, the method proposed by Monteiro

et. al. (2008) (60) is the most related one to our proposed approach. They addressed the recov-

ering problem using a cubic spline method which ensures smoothness property for the estimated

density and chose more knots than option strikes for more flexibility under the constraints of

non-negativity of the density. In the first section, we review the details of their cubic spline

method with the non-negativity conditions and explain how the optimization was implemented.

We introduce our proposed nonparametric method in the second section. To extend the anal-

ysis, we further present the weighted least square method in section 2.3. We then describe

the data manipulation for our analysis. In the last section, we provide the applications of our

method in details. A comparison study between our approach and the cubic spline approach is

also conducted at the end.

2.1 Nonparametric approaches in the literature

Following Monteiro et. al. (2008) (60), to formulate the cubic spline for our problem, we fix a

current trading date t and an expiration date T, and let [a, b] be the range of all available strike

prices and Rt,T be the annualized risk-free interest rate for the period [t, T ]. Consider ns + 1

13
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equally spaced knots for the spline problem with a = x1 < x2 < x3 < ... < xns < xns+1 = b.

For the cubic spline approach, there are four parameters for each interval between two adjacent

knots, (αs, βs, γs, δs), s = 1, 2, . . . , ns, with a total of 4ns parameters. Let z denote the collection

of all the parameters, and pz(x), x ∈ [a, b] be the cubic spline functions over [a, b].

According to Monteiro et. al. (2008) (60), the knots of cubic splines are not necessarily to

be a subset of the available strikes with expiration T. Nevertheless, the closer the knots are

to the strikes, the better the result of the optimization is. Moreover, the first and last knot

points must be within a distance of 6% away from the range of available strikes. They further

emphasized that the number of knots should not be too bigger than the number of strikes.

In their experiments with the market option prices, they first eliminate all the prices of the

options that contain potential arbitrage opportunities by the following procedures:

1. Remove any price that is not in the bid-ask interval.

2. Regenerate all call option prices by the put-call parity based on available put option

prices. If there is already a call option available with the same strike, whose price is

different from the price generated from the corresponding put option, the price with a

higher trading volume stays.

3. Check the monotonicity and strict convexity of the remaining call options after the above

steps and remove any violated prices.

To ensure the non-negativity of the estimated risk-neutral density function for every single

point in [a, b], a corollary (Corollary 1 in Monteiro et. al. (2008) (60)) is considered in the paper.
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However, the problem guaranteed non-negativity is much more complicated and computation-

ally expensive to solve. Since the set with non-negative constraints everywhere is only a subset

of the solutions from another optimization problem with the non-negativity property ensured

only at the knots, that is,

fs(xs) ≥ 0, s = 1, 2, . . . , ns and fns(xns+1) ≥ 0. (2.1)

We only solve the latter optimization problem for comparison purpose. If our approach

could perform better than the cubic spline method with constraints given in Equation (2.1),

then our approaches are guaranteed to be better than the solution obtained from the original

optimization problem as well.

Cubic spline approach, by definition, is continuous and is a good technique to yield appro-

priate smoothness for fitting a function given the nature that splines are piecewise polynomial

functions. The additional knots in their method enables the model with more flexibility. Most

of all, their method using spline functions are the first approach that guarantees positivity of

the risk-neutral density estimation.

However, cubic spline requires more work than constant interpolation and through their

studies, they generated “fake” call option prices using put-call parity to eliminate “artificial”

arbitrage opportunities. In other words, they manually replaced “abnormal” options and re-

sulted in much information loss from the market and these prices in their analysis may not

reflect the true expectations from investors in the market.
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2.2 Piece-wise constant nonparametric approach

In this section, we state our method in details. In our work, we assume the risk-neutral

density for the log function of the future payoff log(ST ) is piecewise constant across the range

of the strike prices. We formulate the estimation problem into an optimization problem that

can yield appropriate coefficients for the risk-neutral density. Denote the fair prices of the put

and call options traded at time t with the expiration date T by Pt,T (St,K) and Ct,T (St,K),

respectively, where St stands for current price of the underlying asset and K is the corresponding

strike prices. Let K1 < K2 < . . . < Kq stand for the collection of all distinct strikes for put

or call options traded in the market at time t with expiration T. Let C be the collection of

indices for call options and P be the collection for put options. Then C
⋃
P = {1, 2, . . . , q}. Let

m = |C| be the number of call strikes, and n = |P| be the number of put strikes. Note that

m+ n ≥ q.

Let fQ(y) denote the risk-neutral density function, where Q stands for the risk-neutral

measure. According to the definition of the risk-neutral density, we have the fair price

Pi ≡ Pt,T (St,Ki)

= EQe
−Rt,T (Ki − ST )+

= e−Rt,T

ˆ logKi

−∞
(Ki − ey)fQ(y)dy, i ∈ P.

(2.2)
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Cj′ ≡ Ct,T (St,Kj′)

= EQe
−Rt,T (ST −Kj′)+

= e−Rt,T

ˆ ∞
logKj′

(ey −Kj′)fQ(y)dy, j′ ∈ C.

(2.3)

where Rt,T stands for the risk-free interest rate from t to T. That is, $1 at time t ends for sure

with eRt,T dollars at time T.

We extend the support of risk-neutral density function fQ on both sides of available strike

prices by multipliers c1 and c2 with c1 > 1, c2 > 1. Here c1 and c2 are two predetermined num-

bers. The knots for our method are K0 = (c1)
−1K1 < K1 < K2 < . . . < Kq < c2Kq = Kq+1.

The values of function fQ which are constant for each interval are denoted as a1, a2, . . . , aq+1 ≥

0. Based on the pricing mechanism for options, any option with strike price greater than c2Kq

or less than (c1)
−1K1 has almost no liquidity. Therefore, the density to fit is in the form of

fQ(y) = al for logKl−1 < y ≤ logKl where l = 1, 2, . . . , q + 1 and zero elsewhere. Later in the

chapter, we show that our proposed density function can recover the risk-neutral density fairly

well.

Based on the properties of the density function, we have
´ +∞
−∞ fQ(y)dy = 1. That is

q+1∑
l=1

al log
Kl

Kl−1
= 1 (2.4)
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In general, our optimized objective function is

argmin
a1,...,aq+1

{
∑
j′∈C

(Cj′ − C̃j′)
2 +

∑
i∈P

(Pi − P̃i
2
)} (2.5)

subject to al ≥ 0, l = 1, 2, . . . , q + 1 and Equation (2.4). Note that Cj′ and Pi depend on fQ

and thus are functions of a1, a2, . . . , aq, aq+1 .

We then rewrite the call and put option prices in Equation (2.2) and Equation (2.3) in terms

of a1, a2, . . . , aq, aq+1 as follows

eRt,TPi =

ˆ logKi

−∞
(Ki − ey)fQ(y)dy

=

q+1∑
l=1

ˆ logKl

logKl−1

(Ki − ey)aldy · 1(Ki ≥ Kl)

=

q+1∑
l=1

al[(Kilog
Kl

Kl−1
)− (Kl −Kl−1)] · 1(Ki ≥ Kl), i ∈ P.

(2.6)

eRt,TCj′ =

ˆ ∞
logKj′

(ey −Kj′)fQ(y)dy

=

q+1∑
l=1

ˆ logKl

logKl−1

(ey −Kj′)aldy · 1(Kj′ ≤ Kl−1)

=

q+1∑
l=1

al[(Kl −Kl−1)−Kj′ log
Kl

Kl−1
] · 1(Kj′ < Kl), j

′ ∈ C.

(2.7)

Let X
(p)
i,l = [Kilog(Kl/Kl−1)− (Kl −Kl−1)] · 1(Ki ≥ Kl), l = 1, 2, . . . , q + 1 be an entry of

the design matrix for put options; and X
(c)

j′ ,l
= [(Kl −Kl−1)−Kj′ log(Kl/Kl−1)] · 1(Kj′ < Kl),

l = 1, 2, . . . , q + 1 for call options.
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From Equation (2.4), aq+1 can be represented by a1, a2, . . . , aq, as

aq+1 = (1−
q∑

l=1

al
logKl

Kl−1
)(logc2)

−1 (2.8)

The fair price then can be written as a function of a1, a2, . . . , aq only. We plug Equation (2.8)

into Equation (2.6) and Equation (2.7) and have

eRt,TPi =

q+1∑
l=1

alX
(p)
i,l

= a1X
(p)
i,1 + a2X

(p)
i,2 + . . .+ aqX

(p)
i,q

+ (1− a1log
K1

K0
− . . .− aqlog

Kq

Kq−1
)(logc2)

−1X
(p)
i,q+1

= a1[X
(p)
i,1 − (log

K1

K0
)(logc2)

−1X
(p)
i,q+1]

+ . . .

+ aq[X
(p)
i,q − (log

Kq

Kq−1
)(logc2)

−1X
(p)
i,q+1] +

1

logc2
X

(p)
i,q+1

4
= a1X

(P )
i,1 + a2X

(P )
i,2 + · · ·+ aqX

(P )
i,q +X

(P )
i,q+1, i ∈ P.

(2.9)
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where X
(P )
i,l = X

(p)
i,l − (logKl/Kl−1)(logc2)

−1X
(p)
i,q+1, l = 1, 2, . . . , q and X

(P )
i,q+1 = X

(p)
i,q+1/logc2.

Similarly for call options:

eRt,TCj′ =

q+1∑
l=1

alX
(c)

j′ ,l

= a1X
(c)

j′ ,1
+ a2X

(c)

j′ ,2
+ . . .+ aqX

(c)

j′ ,q

+ (1− a1log
K1

K0
− . . .− aqlog

Kq

Kq−1
)(logc2)

−1X
(c)

j′ ,q+1

= a1[X
(c)

j′ ,1
− (log

K1

K0
)(logc2)

−1X
(c)

j′ ,q+1
]

+ . . .

+ aq[X
(c)

j′ ,q
− (log

Kq

Kq−1
)(logc2)

−1X
(c)

j′ ,q+1
] +

1

logc2
X

(c)

j′ ,q+1

4
= a1X

(C)

j′ ,1
+ a2X

(C)

j′ ,2
+ · · ·+ aqX

(C)

j′ ,q
+X

(C)

j′ ,q+1
, j′ ∈ C.

(2.10)

where X
(C)

j′ ,l
= X

(c)

j′ ,l
−(logKl/Kl−1)(logc2)

−1X
(c)

j′ ,q+1
, l = 1, 2, . . . , q and X

(C)

j′ ,q+1
= X

(c)

j′ ,q+1
/logc2.

2.2.1 Numerical implementation algorithms adopted

In the optimization literature, there are many algorithms available for solving unconstrained

optimization problems (Chong and Zak, 1996 (25); Kuang et. al., 2016 (54)). However, after

combining the two constraints, non-negativity and unity integration, only limited methods could

be used to solve our constrained optimization problem (Chong and Zak, 1996 (25)). In this

part, we explain in details for some commonly used algorithms and choose the best fit for our

study based on their empirical performances.
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Many of the available algorithms rely on manipulations of matrices. We now state without

proof some facts of matrix derivatives which are needed later in this part (Petersen and Pedersen,

2008 (62)).

∇x(aTx) = a (2.11)

∇x(xTa) = a (2.12)

∇x(xTAx) = (A + AT )x (2.13)

Lawson-Hanson algorithm with q+1 parameters

We first consider the situation shown in Equation (2.6) and Equation (2.7). Lawson-Hanson

algorithm with q+1 parameters has been used to solve this non-negative least square optimiza-

tion problem (Lawson and Hanson, 1974 (55)). Given the design matrix A and the response

vector y, we solve the problem argmin
x
||Ax− y||2 which subject to x ≥ 0 and Ax = y, where

||.||2 denotes the L2−norm. For a vector z ∈ Rn, the L2−norm ||z||2 is given by (
∑n

i=1 |zi|2)1/2.

For our problem, the design matrix A = (X1, X2, . . . , Xq, Xq+1) is an (m+n)×(q+1) matrix,

where the l-th column Xl includes both X
(p)
i,l , i ∈ P and X

(c)

j′ ,l
, j′ ∈ C; x = (a1, a2, . . . , aq, aq+1)

T

is a (q + 1)-vector and y represents the (m+ n)-vector including P̃i, i ∈ P and C̃j′ , j
′ ∈ C.

In R interface, the corresponding function is “nnls”. Due to the mechanism of the algorithm,

the main problem when applying the Lawson-Hanson algorithm with q + 1 parameters is that

more than half of x’s are 0 because of the non-negativity restriction and it is also hard to include

the unity constraint.
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Algorithm 1 Lawson-Hanson algorithm ([Lawson and Hanson (1974) (55)])

1: Set P := NULL,Z := {1, 2, . . . , q + 1}, and x := 0.
2: Compute the (q+1)-vector w := AT (y −Ax).
3: If the set Z is empty or if wj ≤ 0 for all j ∈ Z, go to Step 12.
4: Find an index t ∈ Z such that wt = max{wj : j ∈ Z}.
5: Move the index t from set Z to set P.
6: Let AP be the (p+ 1)× (p+ 1) matrix defined by

Column j of AP :=

{
column j of A if j ∈ P

0 if j ∈ Z

Compute the (p+1)-vector z as a solution of the least square problem APz = y.
Note that only the components zj , j ∈ P, are determined by the problem.
Define zj := 0 for j ∈ Z.

7: If zj ≥ 0 for all j ∈ P, set x := z and go to Step 2.
8: Find an index q ∈ P such that xq/(xq − zq) = min{xj/(xj − zj) : zj ≤ 0, j ∈ P}.
9: Set α := xq/(xq − zq).
10: Set x := x + α(z− x).
11: Move all indices from set P to Z for those xj = 0. Go to Step 6.
12: End : Completed.

Lawson-Hanson algorithm with q parameters

Considering the drawback from the Lawson-Hanson algorithm with q + 1 parameters, we

narrow the optimization problem to a1, a2, . . . , aq and solve the problem under Equation (2.9)

and Equation (2.10) where there are only q parameters. The unity constraint has been incor-

porated in the form. Here A = (X
′
1, X

′
2, . . . , X

′
q) is an (m + n) × q matrix, where the l-th

column X
′
l includes both X

(P )
i,l , i ∈ P and X

(C)

j′ ,l
, j′ ∈ C; x = (a1, a2, . . . , aq)

T is a Q-vector and

y represents the (m+ n)-vector including P̃i and X
(P )
i,q+1, i ∈ P; and C̃j′ and X

(C)
j′,q+1, j

′ ∈ C.

Although the main problems of the previous algorithm have been solved, the lack of guar-

antee for the non-negativity of the last coefficient aq+1 is unsettled.
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Quasi-Newton method with q+1 parameters

Given the drawbacks of the Lawson-Hanson algorithm, we apply an alternative penalty

method called Quasi-Newton method, which optimizes the objective function using the function

values and also the gradient values with a faster convergence rate (Broyden-Fletcher-Goldfarb-

Shanno (16) (35) (38) (67)). It is also capable to minimize the objective function with linear

inequality constraints.

In this case, the design matrix A = (X1, X2, . . . , Xq, Xq+1) is an (m+ n)× (q + 1) matrix,

where the l-th column Xl includes both X
(p)
i,l , i ∈ P and X

(c)

j′ ,l
, j′ ∈ C; x = (a1, a2, . . . , aq, aq+1)

T

is a (q+ 1)-vector and y represents the (m+n)-vector including P̃i, i ∈ P and C̃j′ , j
′ ∈ C. The

feasible region in this scenario is ux− c ≥ 0, where uT = (Iq+1,w) is (q+ 1)× (q+ 2), Iq+1 is

a (q + 1) × (q + 1) identity matrix, w = (−log(K1/K0),−log(K2/K1), . . . ,−log(Kq+1/Kq))
T ,

x = (a1, a2, . . . , aq+1)
T and c = (0, 0, . . . , 0,−1)T . The illustration is shown in Algorithm 2.

Initial values are required before we implement the algorithm. To control for the sensitivity

to different (t, T ) combinations, uniform initial values are applied and modified accordingly. We

start with initial values 1/(q + 1), where q is the number of unique strike prices for each (t, T )

pair. These initial values are considered to incorporate the effects of the contract duration and

work well for most of the pairs, which are marked as general days. The rest special pairs fail

to result in a feasible estimation of parameters because the general initials are too close to the

boundary and the function doesn’t work, and they need adjustments on the initials. All special

pairs we have in this setup are shown in Table I. We summarize our options of initial values

below.
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Algorithm 2 Quasi-Newton method with q+1 parameters with BFGS update ([Broyden-
Fletcher-Goldfarb-Shanno (16) (35) (38) (67)])

1: Initialize x(0) either follow uniform 1
q+1 for general dates or uniform 0.001 for special dates

2: x(0) ∈ domain (F) = {ux− c ≥ 0}, and an approximate Hessian matrix H0

3: For k = 1,2,. . . until convergence do
4: Compute Quasi-Newton direction ∆x = −H−1k−1∇F (x(k−1))
5: Determine step size t (e.g. perform line search)
6: compute x(k) = x(k−1) + t∆x

7: Update Hk = Hk−1 + yyT

yT s
− Hk−1ss

THk−1

sTHk−1s

8: where s = x(k) − x(k−1), y = ∇F (x(k))−∇F (x(k−1))

9: Inverse update H−1k = (I− syT

yT s
)H−1k−1(I−

ysT

yT s
) + ssT

yT s
10: End for
11: Solution is x∗ = (a∗1, a

∗
2, . . . , a

∗
q+1) and record ||Ax∗ − y||2 = −b as the least square.

TABLE I: Special dates

t 01/22/10 07/22/11 03/21/13 11/15/13 10/20/14
T 04/17/10 06/29/12 03/28/13 11/22/13 09/30/15

t 03/04/15 03/24/15 04/27/15 04/27/15 06/30/15
T 03/31/15 06/19/15 0515/15 03/31/16 07/10/15

1. For general dates, we set the initials for parameters to be 1/(q + 1).

2. For special dates, we adjust the initials for the parameters to be all 0.001 such that they

are not far from the general initials 1/(q + 1).

In R interface, the corresponding function is “ConstrOptim” with option “BFGS”. The

main limitation using this algorithm compared with the Lawson-Hanson with q+ 1 parameters
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is that it can only handle inequality constraints. That causes a problem when we include the

constraint
∑q+1

l=1 al log(Kl/Kl−1) = 1. In other words, the integration may not be even close to

1 for some solution sets. In addition, we have q + 2 constraints here with the extra aq+1 ≥ 0

for only q + 1 parameters. That may give the function a narrower plane to optimize and often

cause problems. Therefore, a minor inconsistency exists using the algorithm with all parameters

considered.

Quasi-Newton method with q parameters

We improve the efficiency of the above Quasi-Newton method by considering only the first

q parameters with constraints a1 ≥ 0, . . . , aq ≥ 0 and
∑q

l=1 al logKl/Kl−1 ≤ 1 as shown in

Algorithm 3. This solves the issue in the previous approach that it can only handle inequality

constraints. The feasible region in this scenario is ux ≥ c, where uT = (Iq,w) is q × (q + 1),

Iq is a q × q identity matrix, w = (−log(K1/K0),−log(K2/K1), . . . ,−log(Kq/Kq−1))
T , x =

(a1, a2, . . . , aq)
T and c = (0, 0, . . . , 0,−1)T . Here A = (X

′
1, X

′
2, . . . , X

′
q) is an (m+n)×q matrix,

where the l-th column X
′
l includes both X

(P )
i,l , i ∈ P and X

(C)

j′ ,l
, j′ ∈ C; x = (a1, a2, . . . , aq)

T

is a q-vector and y represents the (m + n)-vector including P̃i and X
(P )
i,q+1, i ∈ P; and C̃j′ and

X
(C)
j′,q+1, j

′ ∈ C.

The function to minimize is f(x) = (y−Ax)T (y−Ax). The derivative of f(x) with respect

to x is given by

∇xf(x) = ∇x(y−Ax)T (y−Ax)

= ∇x(yTy− yTAx− xTATy + xTATAx)

= −2ATy + 2ATAx

(2.14)
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Note that we use Equation (2.11) to Equation (2.13) to derive Equation (2.14).

To best control for the sensitivity of the algorithm to initial values, we further consider two

kinds of initials, uniform initials and random initials for the optimization problem:

1. Fixed initials:

We set our initial parameter values for a1, . . . , aq to be a fixed value.

Since
∑q

l=1 al log(Kl/Kl−1) ≤ 1, that is, ( max
1≤i≤q

ai)
∑q

l=1 log(Kl/Kl−1) ≤ 1, we have

max
1≤i≤q

ai ≤ (
∑q

l=1 log(Kl/Kl−1))
−1 = (log(Kq/K0))

−1. To be more conservative, we set

a1 = a2 = . . . = aq = (2log(Kq/K0))
−1.

2. Random uniform initials:

Besides the fixed initials, we add random initials that follow an uniform distribution.

That is, a1, a2, . . . , aq ∼ unif(0, (log(Kq/K0))
−1).

In general, we solve the optimization problem using the fixed initial combined with three

to five random uniform initials. The resulted parameters estimations are derived based on the

initial value that minimizes the most of the objective function. This procedure guarantees our

estimations are not so sensitive to the initial values.

We show four approaches to solve the optimization problem and in order to locate the

one that works the best, we conduct a performance comparison on the randomly selected

nine special pairs and six general pairs of dates mentioned in 2.2.1. The results from the

Lawson-Hanson algorithm are excluded from the comparison table due to its high incapability

to implement the non-negativity and unity constraints despite the fact that the prediction
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Algorithm 3 Quasi-Newton method with q paramters

1: Initialize x(0) either follow uniform initials or random initials (choose 3 random ones)
2: x(0) ∈ domain (F) = {ux− c ≥ 0}
3: For k = 0,1,2,. . . until convergence do
4: Evaluate b = −F (x(k)) = −(y −ATx(k))T (y −ATx(k))
5: with J = ∇F (x(k)) = −2ATy + 2ATAx(k)

6: Solve Js = b
7: x(k+1) = x(k) + s
8: End for
9: Record ||Ax−y||2 = −b for each initial at convergence and choose the smallest one as selected one.
10: Solution is the corresponded x∗ = (a∗1, a

∗
2, . . . , a

∗
q)

11: and a∗(q+1) = (1−
∑q

l=1 a
∗
l log(Kl/Kl−1))(log(c2))

−1.

errors are competitively small. We include the results from the Quasi-Newton method with

q + 1 parameters in the comparison Table II, however, simulation studies show that it always

results in a value much less than 1 when checking for the unity constraint. While, Quasi-Newton

method with q parameters, in the other hand, provides a consistent nonnegative estimate for

aq+1 in our studies despite the lack of guarantee in the theoretical way. Prediction errors are

also calculated to support the best approach among Quasi-Newton methods in Table II. Here

prediction error is calculated by root mean squared error (RMSE =
√

1
n

∑n
i=1(P

est
i − P obs

i )2).

From Table II, when the number of unique strikes in (t, T) is small, say 2 or 3, the Quasi-

Newton methods are unstable based on the large dispersions. For those date pairs with a

small number of unique strikes marked in the parenthesis in the table, errors from Quasi-

Newton method with q parameters are relatively large. However, as mentioned earlier, Quasi-

Newton with q+1 parameters has a serious drawback that the overall integration may not be 1.
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TABLE II: Comparison between three approaches

RMSE
t T Quasi-Newton with q+1 Quasi-Newton with q

Special

01/22/10 04/17/10 0.7895 0.7337
07/22/11 06/29/12 1.1854e-11 (q=3)2.8737
03/21/13 03/28/13 0.3460 0.2872
11/15/13 11/22/13 1.0735 1.0291
10/20/14 09/30/15 9.1205e-14 (q=2)1.9793e-21
03/04/15 03/31/15 0.5757 0.5543
03/24/15 06/19/15 2.4000 2.2890
04/27/15 05/15/15 2.5932 2.5450
04/27/15 03/31/16 5802.5240 (q=3)5601.8300
06/30/15 07/10/15 3.4878 3.4285

General

05/08/96 05/18/96 159.8124 153.9730
04/25/03 05/17/03 3.0660 3.0328
08/19/10 11/20/10 0.3720 0.3705
03/21/07 09/22/07 20.6366 20.5287
12/01/10 06/18/11 0.5571 0.5543
11/24/10 12/17/11 0.0518 0.05268
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Additionally, the prediction errors from Quasi-Newton method with q parameters are smaller

for the general pairs.

Note that all the prediction errors in the table are derived employing all options available

to fit the density and reconciled from the fair option prices and the market prices. Therefore,

combining all the advantages and disadvantages of the methods discussed above, Quasi-Newton

method with q parameters is chosen for our study.

2.2.2 Estimation using out-of-the-money options

Inspired by the study of Ghysels and Wang (2014) (37), we employ out-of-the-money (OTM)

options to fit the risk-neutral density and then find the fair prices for OTM and in-the-money

(ITM) call and put options separately. OTM options refer to the options that have no intrinsic

values. For call options, OTM is used to describe the situation when the strike price is higher

than the current market price of the underlying asset, while for put options, OTM means the

strike is lower than the current market price of the underlying asset. On the contrary, in-the-

money means that the strike price is lower than the current market price of the underlying

asset for call options or higher than the current price for put options, which does not neces-

sarily indicate that the investors are sure to profit but are worthwhile to exercise options after

considering the cost of trading options. In a real market, OTM options are more popular and

have more liquidity than ITM options due to the following reasons. Firstly, OTM options are

cheaper than ITM options. The deeper the options go ITM, the more they act similarly as“the

underlying asset”, the less volatile and more difficult they are to manage and hedge. Secondly,
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the more OTM options are traded, the closer the bid-ask spread is, which in returns, result in

larger trading volume.

Let P obs
i , i = 1, 2, . . . , n be the market price of n assets and P est

i , i = 1, 2, . . . , n be our

estimated/predicted prices. We use the absolute error (La) and the relative error (Lr) defined

below to evaluate and compare prediction performance.

La =

√√√√ 1

n

n∑
i=1

(P est
i − P obs

i )2

Lr =

√√√√ 1

n

n∑
i=1

(
P est
i − P obs

i

P obs
i

)2

Using OTM options to price OTM options

Let K1,K2, . . . ,Kq be the distinct and increasing strike prices for all options traded for a

pair of dates (t, T) and Ko
1 ,K

o
2 ,K

o
3 , . . . ,K

o
p be the distinct and increasing strike prices for OTM

options only. For each fixed (t, T), we fit a risk-neutral density using all the available OTM

call and put options, and then calculate the fair prices of both OTM options and ITM options

based on the fitted density.

When we fit the density using OTM options, all the strikes of OTM call options are to the

right of the strike which is equal to market price of the underlying asset and those of OTM

put options are to the left. Assuming Kp < ST < Kp+1, all OTM put options have strikes

less than or equal to Kp and all OTM call options have strikes greater than or equal to Kp+1.

The estimation of ap+1 for period Kp to Kp+1 is unavailable and the corresponding row of
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design matrix Xp+1 are all zeros. With the additional unity constraint, we solve all the density

coefficients.

In terms of the tails of the risk-neutral density, we first start with combining the strike

prices from OTM/ITM options together, and expanding the support for the density on both

sides of available strike prices by predetermined numbers c1 and c2. There are two options on

extending the support of the risk-neutral density.

1. Extend the support by log(K1/c1) and log(Kq × c2) which includes the information from

ITM options as well

2. Extend the support by log(Ko
1/c1) and log(Ko

p×c2) instead which excludes the information

from ITM options

To determine which option is better to adopt, we testify the empirical results from both

extensions using options with time to expirations within 7 ∼ 14 days. Based on the prediction

errors of OTM-option fitting with selected Quasi-Newton method, the performance is fairly

worse under the first option for support extension and it is not hard to understand considering

that we are adding extra information extracted from ITM options when we fit the density for

OTM options only. Therefore, the final strategy we adopted is the second option using the two

strike prices on both sides of OTM options and extend the support by dividing and multiplying

c1 and c2 on the two selected strikes. It turns out that the fair prices for OTM options are close

to the market prices.
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Using OTM options to price ITM options

It is intuitive to raise the question that, when we derive density using only OTM call and

put options, the strike prices may not cover the same set of strikes of ITM options from the

same date pair and that causes issue for pricing ITM options. As a solution, we carry forward

the nearest density values for each additional strike knot from ITM options. We state a simple

example to illustrate this idea. If all the strikes from a (t, T) pair is K1,K2, . . . ,K5 and OTM

option strikes cover only K1,K2 and K5, and the estimated density value for the period K2 to

K5 is a2. To estimate the density values of the risk-neutral density for ITM options accordingly,

we assign a2 for periods K2 to K3, K3 to K4, and K4 to K5. Renaming a2 to be b2, b3 and b4

and we can calculate the fair prices for ITM options using the interpolated density function.

There are two similar considerations on extending the support of the risk-neutral density

for ITM options:

1. Extend the support by log(K1/c1) and log(Kq × c2)

2. Cut the support at log(K1) and log(Kq) instead

We propose the first tail extension option using the two strikes on both sides of all the

available options because the risk-neutral density for ITM options are interpolated from that

of OTM options. An information abandon from OTM options on the support afterwards is not

necessary. While, the other option is by considering the final selection of the support extended

for the risk-neutral density of OTM options. When we extend the support of the density for

OTM options using only the two strikes on both sides from OTM options, as we mentioned
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earlier, this set may not be the same set for the strikes of all options. Given the fact that we have

employed the two strikes on both sides of all available option strikes instead of only ITM option

strikes for the support extension of the density for ITM options, it actually can be regarded

as a support extension is performed already. Therefore, the second option is stated to choose

log(K1) and log(Kq) as the support of the risk-neutral density. Based on the prediction errors

from the fitted results for ITM options, applying the second option results in more desirable

outcomes.

Numerical experiments

We use an example to illustrate the results using our best strategies. The start date of the

options in this experiment is December, 10th, 2012 and the expiration date is December 21st,

2013, which was associated with a reasonable number of traded options. The error performances

for pricing OTM options and ITM options using OTM options are shown in Figure 2.

Figure 2(a) and Figure 2(b) are the results from pricing OTM options using only OTM

options. From Figure 2(a), when the log prices of options are positive, the absolute errors are

larger for the options with higher prices if we ignore the three outliers. The absolute errors are

unstable when option prices are cheaper, which are easier to be affected by external factors.

Figure 2(b) further confirms the trend we observed from Figure 2(a). Although the absolute

errors increase with the option prices, the absolute magnitude for absolute errors is no larger

than 0.3. The actual deviations are small in the relative sense. Moreover, the mean of the

relative errors is 0.038, that is, the fair prices are 3.8% far from the market prices in average.
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(d) relative error from predicting ITM options

Figure 2: Error results from the estimated risk-neutral density using only OTM options.
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For ITM options, it is clear the absolute errors are increasing as the ITM options are more

expensive from Figure 2(c). Two lines are corresponding to put and call options respectively.

Although the magnitude of the errors is much larger than that of OTM options, the option

prices are much higher as well. As seen from Figure 2(d), the relative errors are still small and

the curves becomes flat after option prices hit certain values. The mean relative error is 0.044,

which explains the fair prices are accurate compared to 5% level.

There are two core functions we implement through the studies:

1. Fair price prediction function: given a series of call options and put options with market

prices and strike prices, and further provided the information of the new option on whether

it is a call or put option (no need for the information whether it is an ITM/OTM option)

and its strike price, we are able to output the fair price of the options.

2. Prediction evaluation function: given a series of call options and put options with their

market prices and strike prices, and information of current market price of the underlying

asset (used to identify ITM/OTM options), we are able to predict fair price for any

option of the same (t, T) using OTM options and output the prediction errors for the

whole option dataset.

After checking some random samples from options that have different time to expirations,

the prediction errors are decreasing as the time to expiration gets longer. In order to get a

better view of the error trend, we divide the time to expirations of all the options into more

distinguished and informative expiry categories, as 7 ∼ 14 (about one or two weeks), 17 ∼ 31

(about one month), 81 ∼ 94 (about 3 months), 171 ∼ 199 (about 6 months), 337 ∼ 393 (about
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one year), 502 ∼ 592 (about one and a half years) and 670 ∼ 790 (about two years). We follow

Ghysels and Wang (2014) (37) on the division of the first four categories, and based on their

overall trends of the previous lasting periods: one week between 7 ∼ 14, two weeks between

17 ∼ 31, two weeks between 81 ∼ 94 and four weeks between 171 ∼ 199 for half year, we set

four weeks each away from 365 days and get 337 ∼ 393. Similarly, for one and a half years, the

center of the range is 365 + 364/2 = 547 and the window is 45 days and we get 502 ∼ 592. The

last one, with the window for two years to be 60 days and the center at 365 ∗ 2 = 730, we get

670 ∼ 790.

We divide all the options into the seven expiries and estimate their fair prices using our

approach. Prediction error is calculated for each expiry and the results are shown in Table III.

We extend the support of the risk-neutral density using c1 = c2 = 2, which is a reasonable

choice to start.

As we indicate earlier, the error results for different expiries in Table III show an obvious

decreasing trend at the beginning and a slightly increasing trend afterward in the relative

errors indicating that as the time to expiration of options gets longer within three months,

the predictions are more accurate. For options with even longer expirations, the prices are

not as predictable compared to options with shorter expirations because of the less liquidity.

But we don’t get similar trend in absolute errors along with longer expiries. In addition, we

have better predictions in OTM put options than ITM call options overall and it is easy to

understand that as for put options, there is an upper limit for strike prices that is the market

price of the underlying asset and therefore, put options are easier to estimate than call options.
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TABLE III: Prediction errors using OTM options only (c1 = c2 = 2) across different numbers
of days to expiration

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 0.1238 0.1152 0.0389 0.0646 0.0318 0.0545 0.0368
La(OTM)c 0.0694 0.0830 0.1844 0.3579 1.0075 1.0560 1.0374
Lr(ITM)c 0.0428 0.0282 0.1010 0.1932 0.3110 0.4265 0.3917
La(ITM)c 3.0298 3.3180 9.7533 27.8996 53.8949 86.7297 89.0749

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 0.1266 0.0786 0.0419 0.0427 0.0462 0.0792 0.0792
La(OTM)p 0.0891 0.0660 0.1098 0.1345 0.3228 0.4267 0.4487
Lr(ITM)p 0.0352 0.0362 0.1268 0.1957 0.3693 0.4519 0.4806
La(ITM)p 2.7418 3.1522 13.4135 25.9584 61.0158 116.4508 119.0193

From the predicted results under least square (LS) setup, the options with lower prices tend

to have larger relative errors. To put more weights for such valued options, we incorporate

option prices in our problem and solve the weighted least square problem using Quasi-Newton

method with q parameters. More details are discussed in next section.

2.2.3 Support of risk-neutral density

For the choices of c1 and c2, initially, we proposed value 2 such that the density coverage ex-

tends from log(Ko
1) and log(Ko

q ) to log(Ko
1/2) and log(2×Ko

q ). From Figure 3(a) to Figure 3(d),

we observe that OTM options are “predicted” vey well in terms of that all the blue triangles

overlap most of red triangles, while there is still a large dispersion for ITM options. Since the

ITM put options are the options with strikes above the market price of the underlying asset

and their prices are more expensive for higher strikes, they are more related about the value
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choice of c1 and similarly, ITM call options are more about c2. Due to the large dispersions in

ITM options, we come up with the three options for c1 and c2 below.

1. Option 1: c1 = c2 = 25. This option comes after we explore all the strikes we have in the

data and the maximum of the ratio Kq/K1 is 50. To be conservative, we choose half of

the value that is 25.

2. Option 2: c1 = c2 = (Kq/K1)
−1/d, where d = 3, 4, 6. The idea of this option is to extend

the support of the risk-neutral density proportionally to the coverage of K1 and Kq for

each date pair.

3. Option 3: c1 = c2 = D = T − t. From Figure 3(a) to Figure 3(d), the dispersion gets

larger as time to expiration gets longer. Therefore, we incorporate time effect and make

the support of the density related to the calendar difference between trading date t and

expiration date T.

For testing purpose, we select random samples consisting of 400 options from each expiry

category and get the resulted Table IV to Table IX. Table IV saves the results under the same

samples selected under initial values of c1 = c2 = 2 for comparison purposes. After comparing

the prediction errors in the tables, we finally choose c1 = c2 = 25 which overall results in the

most smallest prediction errors.

2.3 Weighted least square approach

From the results from OTM options fit in Figure 2, the performances of pricing ITM options

are much better than those of OTM options with cheaper prices. Therefore, we introduce a
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TABLE IV: Prediction errors using OTM options only (c1 = c2 = 2) across different numbers
of days to expiration on random samples

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 0.1038 0.0923 0.0353 0.0268 0.0362 0.0545 0.0209
La(OTM)c 0.0621 0.0807 0.2565 0.3460 1.5277 1.0206 1.1902
Lr(ITM)c 0.0398 0.0346 0.1190 0.1721 0.2798 0.4683 0.3988
La(ITM)c 4.3085 3.7492 11.8101 20.5624 47.8511 99.1927 86.0505

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 0.1006 0.0746 0.0353 0.0407 0.0356 0.0737 0.0936
La(OTM)p 0.0711 0.0733 0.1013 0.1220 0.3683 0.3649 0.5370
Lr(ITM)p 0.0468 0.0374 0.1170 0.1791 0.3932 0.4711 0.5369
La(ITM)p 3.5978 3.2752 11.2022 21.6712 67.2936 163.7171 156.6169

TABLE V: Prediction errors using OTM options only (c1 = c2 = 25) across different numbers
of days to expiration on random samples

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 0.1133 0.1123 0.0299 0.0376 0.0495 0.0353 0.0293
La(OTM)c 0.0752 0.0940 0.2760 0.5491 1.2988 1.3148 1.5798
Lr(ITM)c 0.0381 0.0332 0.1059 0.1832 0.3034 0.4056 0.3621
La(ITM)c 4.3331 4.1401 10.3426 20.4578 52.8451 83.2963 67.9067

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 0.0945 0.0769 0.0396 0.0465 0.0419 0.0695 0.0591
La(OTM)p 0.0561 0.0805 0.2111 0.2255 0.6349 0.5804 0.6653
Lr(ITM)p 0.0422 0.0335 0.1075 0.1451 0.3277 0.4109 0.4210
La(ITM)p 3.0744 3.0847 9.9002 17.0209 54.6001 80.4175 77.5613
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TABLE VI: Prediction errors using OTM options only (c1 = c2 = log(T − t)) across different
numbers of days to expiration on random samples

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 0.1112 0.1123 0.0297 0.0375 0.0497 0.0360 0.0295
La(OTM)c 0.0704 0.0811 0.2792 0.5538 1.3311 1.3618 1.6156
Lr(ITM)c 0.0836 0.0319 0.1057 0.1825 0.3024 0.4080 0.3663
La(ITM)c 4.4863 3.8008 10.3880 20.2873 52.8986 84.2491 68.9093

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 0.0994 0.0750 0.0390 0.0478 0.0404 0.0657 0.0638
La(OTM)p 0.0777 0.0750 0.2111 0.2323 0.6667 0.6213 0.7234
Lr(ITM)p 0.0436 0.0387 0.1063 0.1411 0.3240 0.4102 0.4230
La(ITM)p 3.3572 3.3735 9.7878 16.3755 54.2074 80.4826 79.0742

TABLE VII: Prediction errors using OTM options only (c1 = c2 = (Kq/K1)
1/3) across different

numbers of days to expiration on random samples

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 0.1046 0.0996 0.0426 0.1023 0.1529 0.2337 0.2102
La(OTM)c 0.0584 0.0850 1.0362 2.0417 13.0792 16.7835 27.9646
Lr(ITM)c 0.0952 0.0393 0.1694 0.2327 0.5010 0.5050 0.4303
La(ITM)c 4.8199 4.5071 15.8765 34.1979 80.2804 103.0873 87.6817

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 0.1030 0.0763 0.0605 0.0690 0.1429 0.1923 0.2036
La(OTM)p 0.0745 0.0785 0.9411 2.5309 7.7945 12.1792 13.8996
Lr(ITM)p 0.0718 0.0584 0.2493 0.3690 0.5440 0.6503 0.6922
La(ITM)p 4.1569 4.3017 20.9261 50.3718 90.1149 197.0478 143.2748
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TABLE VIII: Prediction errors using OTM options only (c1 = c2 = (Kq/K1)
1/4) across different

numbers of days to expiration on random samples

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 0.1046 0.1084 0.0484 0.0930 0.1819 0.3180 0.2806
La(OTM)c 0.0584 0.0844 1.1939 2.4008 14.6926 19.4472 30.5360
Lr(ITM)c 0.0952 0.0476 0.1952 0.2645 0.5694 0.5593 0.4843
La(ITM)c 4.8188 4.7278 18.4657 41.2385 88.9068 113.2197 94.1843

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 0.1030 0.0841 0.0763 0.0884 0.1710 0.2247 0.2309
La(OTM)p 0.0745 0.0778 1.1246 2.8592 8.6809 13.7723 15.2062
Lr(ITM)p 0.0718 0.0594 0.2838 0.4257 0.5816 0.7048 0.7458
La(ITM)p 4.1569 4.1479 23.2385 57.6544 98.4602 251.9125 161.3962

TABLE IX: Prediction errors using OTM options only (c1 = c2 = (Kq/K1)
1/6) across different

numbers of days to expiration on random samples

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 0.11214 0.17477 0.05402 0.09095 0.18646 0.29904 0.27212
La(OTM)c 0.07914 0.12204 1.55229 3.86591 13.41894 29.94325 31.82281
Lr(ITM)c 0.06410 0.06706 0.29224 0.39968 0.70794 0.77012 0.54976
La(ITM)c 4.69434 5.54487 26.85361 52.00493 118.67398 145.53461 129.04097

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 0.11828 0.10083 0.10468 0.13835 0.22255 0.27483 0.27900
La(OTM)p 0.09178 0.13253 1.29180 3.07821 8.57532 15.04433 17.10664
Lr(ITM)p 0.09055 0.08519 0.31122 0.41914 0.69427 0.78684 1.16228
La(ITM)p 4.41297 4.90298 25.07219 52.09654 104.57145 371.04980 205.80759
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weighted least square method (WLS) as an estimation technique and reformulate our problem by

incorporating weight factors that are inversely proportional to option market prices. Weighted

least squares are similar to least squares but more efficient in handling situations where the

data points are various in quality. But it is not hard to imagine that there are sacrifices in

absolute difference evaluation using weighted least square approach which is in favor of relative

errors.

Denote zd be the adjusted price of an option calculated from P̃i, i ∈ P or C̃j′ , j
′ ∈ C,

where d = 1, 2, . . . ,m+ n. Here A = (X
′
1, X

′
2, . . . , X

′
q) is an (m+ n)× q matrix, where the l-th

column X
′
l includes both X

(P )
i,l , i ∈ P and X

(C)

j′ ,l
, j′ ∈ C; x = (a1, a2, . . . , aq)

T is a q-vector and

y represents the (m + n)-vector including P̃i and X
(P )
i,q+1, i ∈ P; and C̃j′ and X

(C)
j′,q+1, j

′ ∈ C.

Let W be an (m+n)× (m+n) diagonal matrix with diagonal entries 1/z2d, d = 1, 2, . . . ,m+n.

The function to minimize is f(x) = (y−Ax)TW(y−Ax). The derivative of f(x) with respect

to x is

∇xf(x) = ∇x(y−Ax)TW(y−Ax)

= ∇x(yTWy− yTWAx− xTATWy + xTATWAx)

= −2ATWy + 2ATWAx

(2.15)

Same as before, we use Equation (2.11), Equation (2.12) and Equation (2.13) with A =

ATWA in the derivation. Similar to algorithm 3, the pseudo code for weighted least square is

as follows.
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Algorithm 4 Weighted Least Squares using Quasi-Newton method with q paramters (WLS(q))

1: Initialize x(0) either follow uniform initials or random initials (choose 3 random ones)
2: x(0) ∈ domain (F) = {ux− c ≥ 0}
3: For k = 0,1,2,. . . until convergence do
4: Evaluate b = −F (x(k)) = −(y −ATx(k))TW(y −ATx(k))
5: with J = ∇F (x(k)) = −2ATWy + 2ATWAx(k)

6: Solve Js = b
7: x(k+1) = x(k) + s
8: End for
9: Record (y −ATx)TW(y −ATx) = −b for each initial at convergence
10: and choose the smallest one as selected one.
11: Solution is the corresponded x∗ = (a∗1, a

∗
2, . . . , a

∗
q)

12: and a∗(q+1) = (1−
∑q

l=1 a
∗
l log(Kl/Kl−1))(log(c2))

−1.

We conduct similar experiments under WLS structure with support extension under c1 =

c2 = 2 and illustrate the comparison results in Table X and Table XI.

After comparisons of the fair prices from fitting OTM options under LS and WLS, the

prediction errors for OTM options are much smaller under WLS which evident that WLS is

preferable in small prediction errors for OTM options. It is also obvious to discover that when

the time to expiration gets longer, the trends for relative errors under WLS behave totally

different for OTM call and put options. More specifically, the relative errors for OTM options

under WLS are decreasing over time especially for call options, when the relative errors decrease

at the first several expiries and increase a bit for the last two longer expiries for put options.

In addition, under both setups, the relative prediction errors of ITM options are much larger

compared to those of OTM options which stay below 0.08 across different expiries.
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TABLE X: Prediction errors for put options under WLS and LS using OTM options only across
different numbers of days to expiration

LS 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 0.1266 0.0786 0.0419 0.0427 0.0462 0.0792 0.0792
La(OTM)p 0.0891 0.0660 0.1098 0.1345 0.3228 0.4267 0.4487
Lr(ITM)p 0.0352 0.0362 0.1268 0.1957 0.3693 0.4519 0.4806
La(ITM)p 2.7418 3.1522 13.4135 25.9584 61.0158 116.4508 119.0193

WLS 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 0.0770 0.0646 0.0345 0.0317 0.0232 0.0390 0.0405
La(OTM)p 0.1083 0.0794 0.1277 0.1603 0.3645 0.5362 0.5407
Lr(ITM)p 0.0318 0.0337 0.1280 0.1967 0.3677 0.4521 0.4797
La(ITM)p 2.6852 3.0818 13.4794 26.0510 60.9564 116.6707 119.6271

TABLE XI: Prediction errors for call options under WLS and LS using OTM options only
across different numbers of days to expiration

LS 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 0.1238 0.1152 0.0389 0.0646 0.0318 0.0545 0.0368
La(OTM)c 0.0694 0.0830 0.1844 0.3579 1.0075 1.0560 1.0374
Lr(ITM)c 0.0428 0.0282 0.1010 0.1932 0.3110 0.4265 0.3917
La(ITM)c 3.0298 3.3180 9.7533 27.8996 53.8949 86.7297 89.0749

WLS 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 0.0757 0.0707 0.0247 0.0199 0.0187 0.0165 0.0124
La(OTM)c 0.0948 0.1064 0.2322 0.4277 1.2143 1.3484 1.3381
Lr(ITM)c 0.0439 0.0289 0.1021 0.1921 0.3096 0.4264 0.3910
La(ITM)c 3.0941 3.3411 9.8543 27.8492 53.6843 86.7620 88.9238
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2.4 Applications of risk-neutral density estimate

From the above comparisons between LS and WLS structures, the error results show dif-

ferent behaviors for OTM options and ITM options. That implies the inconsistency between

OTM options and ITM options. In other words, this could be served as an evidence that the

financial market is not consistent. The market pricing mechanism for options has a main type

that the ask-bid pricing mechanism operated through the system of market makers. The more

active the option, typically the tighter the bid/ask spread. Therefore, from the inconsistency

of relative error trends, the ask-bid pricing mechanisms for OTM options and ITM options are

different. We find an example of a series of options that have fair amount of strikes and at the

same time, have resulted in relative “bad” errors (we define any relative errors that are greater

than 0.05 to be “bad”) across all expiries to illustrate how the predictions perform as time

to expiration gets longer. After checking all options, there is no single start date of options

that have bad errors across all expiries. We alternate to find options that have large relative

errors for longer expiries and there are five start dates (“2002-06-27”, “2002-07-01”, “2002-07-

02”, “2008-12-19” and “2011-06-28”) that have large errors starting from 3-month expiry and

longer. Take the first start date “2002-06-27” as an example. The results from OTM fitting are

shown in Figure 3.

From the Figure 3, the dispersions between the market prices and fair prices for ITM options

get a bit larger as strikes increase. In other words, the higher the market prices of ITM options,

the more chance that the market prices are overpriced. The fair prices of options get higher

than the market prices as time to expiration gets longer. Therefore, in the following part, we
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use all options to fit the density in order to include the information from ITM options as well

and it is shown to have better predictions for ITM options.

As an application of our method, we are able to recover all the prices for call and put options

given any strike price K. We extend our method using all options fit. The more options are

included, more implied information of market we have and more accurate our results are.

2.4.1 Estimation using all options

In this part, we expand the option pricing strategy on options that expire in different expiries

and compare the results between the groups. We use all the options in a (t, T) pair instead of

only OTM options to fit the density. We also conduct cross-validation experiments, to be more

specific, the leave-one-out cross validation. That is, we use all the options except the one to be

estimated to fit the density and predict the option price using the estimated density.

We choose c1 = c2 = 25 in OTM options fit. While for all-option fit, it turns out that the

results from the same coefficients are far from desirable. To be more considerate, we choose

3, 5, 10 as alternative testing options. Together with the results from candidate values 2

and 25, the results are all shown in Table XII to Table XVI. We only show the results under

LS for illustration purposes. Comparing the prediction errors in the tables, we finally choose

c1 = c2 = 2 for the support of the risk-neutral density, which overall outputs the most smallest

prediction errors for all-option fit no matter under LS or WLS structure.

Based on the results under the final selection of the support extension numbers, the predic-

tions for ITM options are better under all-option fit than using only OTM options to fit the

density. We can understand in the following way. When we estimate OTM options using OTM
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Figure 3: Example of trading day on 2002-06-27 comparing original prices and predicted prices
across different expires using OTM-option fit under LS.
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TABLE XII: Prediction errors using all options (c1 = c2 = 2) across different numbers of days
to expiration

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 1.156 1.002 0.922 0.434 0.084 0.131 0.168
La(OTM)p 0.406 0.474 0.617 3.313 2.400 3.200 5.009
Lr(ITM)p 0.030 0.023 0.029 0.073 0.076 0.064 0.077
La(ITM)p 1.633 1.824 3.308 5.158 8.464 15.729 10.06

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 2.764 2.006 1.256 0.519 0.691 0.176 0.177
La(OTM)c 0.746 0.786 1.374 2.299 2.914 4.267 6.022
Lr(ITM)c 0.027 0.014 0.012 0.041 0.028 0.037 0.047
La(ITM)c 2.227 2.324 3.284 4.607 3.238 13.23 7.901

TABLE XIII: Prediction errors for put options using all options (c1 = c2 = 3) across different
numbers of days to expiration

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 1.2363 1.0742 1.0469 0.5225 0.0998 0.1414 0.1879
La(OTM)p 0.4151 0.4779 0.6399 6.0024 4.6917 6.3833 10.3420
Lr(ITM)p 0.0297 0.0224 0.0435 0.1340 0.1483 0.1231 0.1613
La(ITM)p 1.6041 1.7833 5.0110 9.5930 13.2879 16.0196 19.9915

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 2.8176 2.0826 1.3200 0.5376 0.6142 0.3121 0.1812
La(OTM)c 0.7514 0.7995 1.6772 3.2090 4.1842 5.7418 7.8092
Lr(ITM)c 0.0271 0.0136 0.0119 0.0574 0.0400 0.0486 0.0632
La(ITM)c 2.2113 2.3071 3.2341 6.1779 5.2566 8.6651 10.5469
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TABLE XIV: Prediction errors for put options using all options (c1 = c2 = 5) across different
numbers of days to expiration

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 1.2671 1.1241 1.1530 0.5978 0.1227 0.1565 0.2167
La(OTM)p 0.4159 0.4819 0.6552 9.0065 7.2336 10.0559 16.1629
Lr(ITM)p 0.0291 0.0222 0.0620 0.2024 0.2293 0.1886 0.2534
La(ITM)p 1.5772 1.7603 7.1750 14.6343 20.3607 21.3011 30.5641

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 2.8721 2.1205 1.3516 0.5478 0.9109 0.4944 0.1829
La(OTM)c 0.7600 0.8034 1.7550 3.4632 4.7066 6.4902 8.0893
Lr(ITM)c 0.0271 0.0135 0.0120 0.0610 0.0440 0.0541 0.0681
La(ITM)c 2.2031 2.2947 3.1995 6.5523 5.4152 8.0756 11.4468

TABLE XV: Prediction errors for put options using all options (c1 = c2 = 10) across different
numbers of days to expiration

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 1.156 1.002 0.922 0.434 0.084 0.131 0.168
La(OTM)p 0.4107 0.4798 0.6587 12.0819 9.8675 13.8740 22.1820
Lr(ITM)p 0.0279 0.0219 0.0816 0.2726 0.3127 0.2565 0.3477
La(ITM)p 1.5595 1.7434 9.4794 19.8353 27.8990 28.6397 41.2097

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 2.9271 2.1293 1.3719 0.5519 0.9546 0.6387 0.1808
La(OTM)c 0.7701 0.8056 1.5761 2.9582 4.1593 6.2396 6.9338
Lr(ITM)c 0.0275 0.0136 0.0121 0.0511 0.0379 0.0483 0.0586
La(ITM)c 2.2077 2.2929 3.1855 5.5744 5.0093 7.3338 10.0750



50

TABLE XVI: Prediction errors for put options using all options (c1 = c2 = 25) across different
numbers of days to expiration

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 1.2169 1.0801 1.2237 0.7075 0.1731 0.1961 0.2886
La(OTM)p 0.4014 0.4637 0.6510 14.6686 12.1104 17.1537 27.3416
Lr(ITM)p 0.0265 0.0213 0.0985 0.3317 0.3831 0.3166 0.4278
La(ITM)p 1.5536 1.7352 11.4666 24.2388 34.2975 35.2836 50.2617

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 2.9146 2.1238 1.3569 0.5542 0.9967 0.7447 0.1770
La(OTM)c 0.7784 0.8120 1.2817 2.0270 3.0845 5.5750 4.9766
Lr(ITM)c 0.0282 0.0139 0.0122 0.0334 0.0256 0.0360 0.0393
La(ITM)c 2.2222 2.3182 3.2074 3.8660 4.0796 5.7753 7.2660

options only, there is no external noise and when we estimate ITM options using only OTM

options, the results are highly affected by the difference between the two pricing mechanisms.

While using all options to fit and price, things work in the opposite direction.

We also conduct a comparison of the performances under LS setup and WLS setup, with

results shown in Table XVII and Table XVIII. From the results, the results under WLS setup

are more preferable if we control our relative errors within 0.07. In terms of absolute errors,

WLS is in good performance in predicting OTM options and the regular LS is good in ITM

options.

In Figure 4, we use another example of options traded on March 18th, 2015 and expired on

April 17th, 2015 to show the fitted performance under WLS.
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TABLE XVII: Prediction errors for call options under LS and WLS using all options (c1 = c2 =
2) across different numbers of days to expiration

LS 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 2.764 2.006 1.256 0.519 0.691 0.176 0.177
La(OTM)c 0.746 0.786 1.374 2.299 2.914 4.267 6.022
Lr(ITM)c 0.027 0.014 0.012 0.041 0.028 0.037 0.047
La(ITM)c 2.227 2.324 3.284 4.607 3.238 13.23 7.901

WLS 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 0.0751 0.0701 0.0241 0.0377 0.0367 0.0342 0.0440
La(OTM)c 0.1063 0.1212 0.2460 2.7290 3.4660 3.5504 6.1585
Lr(ITM)c 0.0212 0.0196 0.0155 0.0896 0.0445 0.0403 0.0537
La(ITM)c 2.8701 3.0760 4.5941 10.4246 10.2022 15.3275 10.7337

TABLE XVIII: Prediction errors for put options under LS and WLS using all options (c1 =
c2 = 2) across different numbers of days to expiration

LS 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 1.156 1.002 0.922 0.434 0.084 0.131 0.168
La(OTM)p 0.406 0.474 0.617 3.313 2.400 3.200 5.009
Lr(ITM)p 0.030 0.023 0.029 0.073 0.076 0.064 0.077
La(ITM)p 1.633 1.824 3.308 5.158 8.464 15.729 10.06

WLS 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 0.0767 0.0644 0.0344 0.0468 0.0327 0.0444 0.0518
La(OTM)p 0.1125 0.0878 0.1903 1.8165 2.0243 2.7545 5.1333
Lr(ITM)p 0.0226 0.0202 0.0333 0.0623 0.0636 0.0701 0.0704
La(ITM)p 2.2309 2.3946 4.6722 5.3686 8.7092 17.4991 11.9397
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Figure 4: An example of ratio of fitted option prices and market prices under LS and WLS
setup
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There is an obvious scale decrease of the ratios of the fair prices over the market prices for

both call and put options, suggesting the efficiency of reformulating the problem by incorpo-

rating the weight factor of option values.

More investigation on confidence bounds

We further calculate the error values for each (t, T) pair and derive summaries that enable

us to get more informative plots. We investigate the confidence bounds for the absolute and

relative errors from pricing call and put options in the seven different expiries under LS setup.

For each plot, we mark medians and two boundary quantiles as references. For the choices of

quantiles, if 97.5% and 2.5% quantiles are too spread, 90% and 10% are also appropriate; even

75% and 25% are reasonable. In our work, results of 75-25 confidence bounds are shown in

Figure 5 and Figure 6. When looking at the absolute errors, the errors are all increasing when

expiries get longer generally regardless of whether we are predicting OTM or ITM options and

call or put options. These are not hard to understand. As expiries get longer, the affects from

the market on options get weaker and the prices of options are more unstable. Also given the

reason that the liquidity is small for options with longer time to expirations, the bid-ask spreads

are wider and consequently, the estimation variations are more and more noticeable. For the

relative ones, they are in the opposite trends due to the facts that the option prices are more

expensive with longer expirations. Even though we have the same level of absolute errors, we

are getting more accurate estimations compared to the market prices relatively.

We also investigate the points that have large relative errors under WLS using all-option fit

since the relative errors under WLS are supposed to be constantly small, and also inspired by
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Figure 5: Absolute prediction errors using all-option fit, group 1 to 7 are corresponding to 7
expiries: 7 ∼ 14, 17 ∼ 31, 81 ∼ 94, 171 ∼ 199 , 337 ∼ 393, 502 ∼ 592 and 670 ∼ 790
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Figure 6: Relative prediction errors using all-option fit, group 1 to 7 are corresponding to the
seven expiries
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Figure 7: Box plot of relative error using all-option fit under WLS

our belief that the option prices are not consistent in the market. The resulted box plot for the

four relative errors using all-option fit under WLS are exhibited and the axis range is manually

cut to show the main part, as shown in Figure 7. After investigation,

1. For the relative error of OTM put options using WLS, there are two cases where the error

rate is larger than 0.3. The two cases are 2014-12-10 to 2014-12-20 and 2014-12-12 to

2014-12-20.

(a) 2014-12-10 to 2014-12-20: There are 142 unique strike prices and 194 options where

among which there are 124 options with price lower than $10. Also there are 37

OTM call options and 102 OTM put options. The range of strike prices is from 1400

to 3000 and the current price for the underlying asset is $2026.14.
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(b) 2014-12-12 to 2014-12-20: There are 148 unique strike prices and 204 options where

among which there are 130 options with price lower than $10. Also there are 38

OTM call options and 109 OTM put options. The range of strike prices is from 1400

to 2195 and the trading price for the underlying asset is $2002.33.

2. For the relative error of ITM put options using WLS, there are two cases where the error

rate is larger than 0.2. The two cases are 2002-05-10 to 2002-05-18 and 2007-12-21 to

2007-12-28.

(a) 2002-05-10 to 2002-05-18: There are 19 unique strike prices and 29 options where

among which there are 9 OTM call options and 6 OTM put options. The range of

strike prices is from 900 to 1375 and the trading price for the underlying asset is

$1054.99.

(b) 2007-12-21 to 2007-12-28: There are 2 unique strike prices and 2 options where

among which there are 0 OTM call options and 0 OTM put options. The range of

strike prices is from 1440 to 1485 and the trading price for the underlying asset is

$1484.46.

The dates where the fair prices are relatively further from the market prices are mainly

focused on year 2002, 2007 and 2014. Those are the dates when the overall stock market was

near the most values, see Figure 8. Therefore, it is reasonable to believe that the market

prices were highly over or under estimated and that also explains why the predicted prices are

relatively far from the market prices.
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Figure 8: S&P500 historical price trend

In summary, our method has very practical applications. Our approach can estimate the

risk-neutral density given any option data set, and can predict the option fair price precisely for

any strike price given a set of options traded on the same trading date and expiration date. The

performance from leave-one-out cross validation study guarantees the accuracy of the method.

1. Reasonable RND estimation

Our method results in an appropriate estimation of the risk-neutral density. We pick a

certain day which has many options available for better illustration purpose and draw

the estimated risk-neutral density function to visually review the shape of the density.

Based on our results, the density plot derived from WLS setup is more clear in the shape.

Shown in Figure 9 is an example of our fitted density of options traded on December 10th,
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Figure 9: An example of fitted risk-neutral density plot.

2014 and expired on December 31st, 2014. The graph is very consistent with the common

guess of RND shape.

2. Recover option prices

Our method can further recover the fair option price for any strike price given a set of

corresponding options. For any given series of option prices with their corresponding

strike prices and information of put/call options, we could estimate the fair option price

for any given strike prices reasonably well.

3. Unveil investment opportunities

From an economic point of view, we are able to use the estimated density to price options

and recognize some options on the markets that are under or above estimated. Although it
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is inadequate to claim the existence of the arbitrage opportunities as the lack of guarantee

to earn and there is mature system in the market that is designed to catch such direct

difference in the option prices, we can explore profitable investment opportunities for

investors. An example is shown in Figure 10. We can look into those points where there

is a dispersion between the market price (red triangle) and the fair price (blue triangle)

for profitable investment opportunities. While in the statistical point of view, we utilize

market options directly, options that have noises from different sources. As a result, the

option pricing estimation process is noisy. By incorporating experiments on confidence

bounds, we can have more confidence to make better strategy and improve the rate of

returns.

We also conduct the leave-one-out cross validation study. Cross validation is powerful in

checking the performance of a prediction method. We set aside one option each time and

perform estimation for the RND and then predict the option price for the one outside

the pool and compare how close is the fair price with the market value. Our example of

options traded on April 14th, 2014 and expired on May 9th, 2014 gives a good sense how

well our method performs even without incorporating weight factors in Figure 11.

2.4.2 Comparison with cubic spline methods

We conduct comparison between the cubic spline approach in the literature (Monteiro

et. al. (2008) (60)) with our method. In contrast to the existing techniques, we allow bet-

ter fitness without the smoothness assumption required by the cubic spline method in finding

the optimized risk-neutral density. In the meanwhile, our approach, extracting information
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Figure 10: An example of leave-one-out cross validation performance of our approach under LS
setup for unveil investment opportunities
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Figure 11: An example of leave-one-out cross validation performance of our approach under LS
setup where t = 2014-04-14 and T = 2014-05-09
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from the market prices of call and put options, acknowledges the existing market noise in the

prices. The comparison test is also conducted with the European options on S&P 500. The

rest of the section is organized as follows: In the first subsection, steps of preprocessing data in

the cubic spline method are specified. Second subsection is devoted to a numerical comparison

of our approach and the existing cubic spline approach using the market data. An example

of options traded on April 29th, 2003 with expiration date on May, 17th, 2003 is used as an

illustration for the performance on cross validation study. A comparison of fitted errors is also

shown afterwards. We have 20 years in coverage and randomly select 10 pairs of (t, T) from

each year. Then, we testify the results on these 200 pairs of (t, T) using all the options traded

to compare the fitting performance of our approach with the cubic spline method. We conclude

in the last subsection with a detailed discussion.

Our numerical implementations are based on “[R]: lsei(a, b, c, d, e, f)” from package “lsei“,

where a stands for design matrix; b for response vector; c for matrix of numeric coefficients on

the left-hand sides of equality constraints; d for vector of numeric values on the right-hand sides

of equality constraints; e for matrix of numeric coefficients on the left-hand sides of inequality

constraints and f for vector of numeric values on the right-hand sides of inequality constraints.

The reason why we alternative numerical implementation method is because the large amount

of equality constraints imposed in the cubic spline method and lsei function is able to take all

into consideration at the same time. In general, the optimization problem with constraints can

be solved using previously mentioned Quasi-Newton method with syntax ConstrOptim in [R].
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(a) 7 points given (b) points left after testing strict convexity

Figure 12: Convex hull idea illustration.

We follow the same filter steps they did on the market options, the new data set consists

of updated call options and original put options, which is ready for the optimization problem.

When tested for strict convexity which is not stated in details in the paper, we employ the idea

of convex hull to eliminate options that violate. The idea of convex hull is shown in Figure 12.

Suppose we have 7 points shown in Figure 12(a), if we could detect a high density point set,

the set contains the points retained for convexity. We then connect every two points and check

if every other points are above the line, if so, add 1 on the index vector for the two points.

Finally, we have a point set like what is shown in Figure 12(b). The 5 points on the boundary

are the points that satisfy strict convexity. The index vector is (1, 2, 0, 2, 2, 0, 1). The points

corresponding to 0 in the index vector are dropped for violation.
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Figure 13: Strict convexity check.

Example on a specific date

We test the performance of the cubic spline approach with our method on options traded

on April 29th, 2003 and expired on May 17th, 2003 for illustration and this is also the example

used in the paper.

Figure 13 is the result after applying the convex hull in this example. After checking strict

convexity, call options in Figure 13(b) are ready to be used in the optimization problem.

Before we solve the problem, we also check Figure 14 which shows more information about

which option is actually used in RND estimation. The red triangle options are the ones we

have in the raw data set. After updating call options following the above three steps, we have

blue triangles left representing the options finally used in the optimization problem. The point
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Figure 14: Call option used in RND fitting in cubic spline

with zero value on the side in the graph indicates the corresponding call options are used in

RND estimation which are from the original raw data set. Those call options with value one

indicate that the options are generated by the put-call parity. The vertical dotted line presents

the current price of the underlying asset.

No matter whether we incorporate the trading volume as weights or not, the updating

process for call options is the same. We solve the optimization problem under the ordinal

least square and also weighted least square setup and the fitted results are shown in Figure 15.

Again, the red triangles are the market prices for the options and blue triangles are the fair

prices from the cubic spline method.

We further check the performance of the cubic spline method by cross validation study.

Assuming one of the option is missing from the option data set and we use the rest of options
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Figure 15: Original option prices and fitted option prices from cubic spline approach.

TABLE XIX: Prediction errors for cubic spline and our approach from leave-one-out cross
validation

Error
LS WLS

cubic spline our approach cubic spline our approach

Lr 6.0574 0.4786 4.7060 0.2033
La 1.1519 0.3034 1.0401 0.2952

to solve the optimization problem and estimate the parameters. The fair price of the missing

option is derived then and the results are shown in Figure 16. We present the relative and

absolute errors from the cubic spline and our approach in Table XIX.



67

600 700 800 900 1000 1100

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

leave one out estimate for options 

K

p
ri

ce

Market price

Pred price

(a) No weight optimization

600 700 800 900 1000 1100

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

leave one out estimate for options 

K

p
ri

ce

Market price

Pred price

(b) Volume as weight optimization

Figure 16: Leave-one-out cross validation results from cubic spline approach.

Example on 200 random pairs of (t, T) for each expiry

To test performance for generosity, we select all the options from randomly selected 200

pairs of (t, T) from each expiry. Among the 200 pairs, their approach is not applicable for some

pairs due to the following reasons.

1. When there are only one or two call options left after monotonicity, it is not enough to

perform strict convexity test.

2. When there are no put options in a pair of (t, T), three-step filter and generation of call

options is unavailable.

3. When we use updated call options to solve the problem and derive the estimation for

parameters to further price other options, the strike prices of other options may exceed
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the knots range for the cubic spline that based on only updated call option strike prices

and there is a potential problem.

4. Sometimes, the number of options used in optimization problem is just too small.

For the reasons mentioned above, we could only get a portion of 200 pairs from each expiry

available for the cubic spline approach. We retain the same set of options predicted using

our method and compare the relative and absolute errors for each expiry. The results are in

Table XX to Table XXIII.

TABLE XX: Prediction errors under LS across different numbers of days to expiration for the
random samples - cubic spline

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 3.8327 2.9500 2.6389 16829.2549 1012.6762 90.2878 266.3112
La(OTM)p 2.6838 1.3278 2.8206 195650.2875 21201.5085 3996.7152 24199.6961
Lr(ITM)p 0.2162 0.0840 0.1916 984.9820 362.7766 214.3127 0.1726
La(ITM)p 4.0392 2.6735 12.7982 92972.8596 112651.8417 41209.6607 24.6097

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 9.7180 5.4070 14.1011 35249.5239 2320.8766 42857.0170 3821.7437
La(OTM)c 4.8243 3.5290 64.8064 244086.2498 178003.2008 516510.8951 21750.0136
Lr(ITM)c 0.3703 0.1814 0.8891 1132.6060 1343.2508 1254.2174 147.3485
La(ITM)c 7.3512 6.2559 35.8245 160963.1956 358948.7427 387661.7611 71957.5822

Discussion and Conclusion

From all the comparison results shown in the specific example and in the 200 random

samples from each expiry, our approach is more stable and precise than the cubic spline with
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TABLE XXI: Prediction errors under WLS across different numbers of days to expiration for
the random samples - cubic spline

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 4.3636 3.0586 2.9058 16392.0113 1002.5010 90.2846 266.3731
La(OTM)p 3.3993 1.7206 3.4074 190668.5547 21012.3756 3996.6323 24201.2311
Lr(ITM)p 0.2677 0.1566 0.2006 952.0472 359.5709 298.3378 0.1482
La(ITM)p 5.3896 4.8317 13.6291 89828.9872 111633.9924 57267.4141 21.8593

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 8.8340 2.5977 14.0896 35153.2759 2302.5577 61680.2524 3823.3592
La(OTM)c 5.1684 2.7804 64.7542 231577.1938 176428.5863 882193.0322 21758.2561
Lr(ITM)c 0.3388 0.1643 0.8858 1129.9532 1330.0822 2032.7718 147.4041
La(ITM)c 7.7784 5.5999 35.7376 160585.4643 355420.4223 637677.2702 71984.7514

non-negativity knots. Eliminating and smoothing out the option prices as indicated by their

approach, loses much information from the market. The market prices are the real market’s

forecast for the real volatility of stock, and using observed option prices in the market makes

more sense. While in comparison, our approach utilize all the available options. All the resulted

are derived from knots which are the trading strike prices. Our method by constructing constant

functions between adjacent knots performs better than the cubic spline approach from the cross

validation study.
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TABLE XXII: Prediction errors under LS across different numbers of days to expiration for the
random samples - Our approach(LS)

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 1.7967 1.1802 1.3613 0.3295 0.0332 0.0284 0.0619
La(OTM)p 0.5681 0.5121 0.7318 0.7259 0.6243 1.2463 1.3791
Lr(ITM)p 0.0507 0.0314 0.0283 0.0127 0.0129 0.0154 0.0292
La(ITM)p 1.3306 1.1971 1.6070 1.0579 1.0643 1.6030 2.6901

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 3.1561 1.7677 0.3382 0.1153 0.0700 0.0381 0.0866
La(OTM)c 1.0150 0.7498 0.9550 0.9019 1.4528 1.9220 1.5863
Lr(ITM)c 0.0337 0.0172 0.0170 0.0087 0.0083 0.0137 0.0124
La(ITM)c 3.0607 1.9650 3.0129 1.6332 0.9139 1.9206 2.1083

TABLE XXIII: Prediction errors under WLS across different numbers of days to expiration for
the random samples - Our approach(LS)

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)p 0.0821 0.0576 0.0195 0.0142 0.0041 0.0133 0.0337
La(OTM)p 0.1058 0.0928 0.2323 0.4836 0.5745 0.9600 0.9866
Lr(ITM)p 0.0306 0.0260 0.0202 0.0136 0.0145 0.0188 0.0423
La(ITM)p 1.4264 1.3410 1.6377 1.3798 2.4415 2.5551 3.8917

Days 7 ∼ 14 17 ∼ 31 81 ∼ 94 171 ∼ 199 337 ∼ 393 502 ∼ 592 670 ∼ 790

Lr(OTM)c 0.0730 0.0502 0.0158 0.0164 0.0174 0.0201 0.0147
La(OTM)c 0.1021 0.1154 0.3746 0.6520 1.4593 2.3057 1.2442
Lr(ITM)c 0.0315 0.0271 0.0213 0.0168 0.0097 0.0204 0.0234
La(ITM)c 4.0856 2.8867 5.0610 4.7761 1.1971 3.3539 4.1070



CHAPTER 3

PRICING VARIANCE SWAP

In this chapter, we start with the introduction to variance swap, including its pricing for-

mula. In Section 3.2, we present how data is processed and prepared for our analysis, and

illustrate variance future and how we replicate variance swap using variance future. Section

3.3 is devoted to describe two methods for estimating moments of the risk-neutral density. We

evualate the prediction performance by comparing the fair prices of variance swap from the two

approaches with the market prices and conclude in the end.

3.1 Introduction to variance swap

In this section, we first introduce the payoff function and the pricing formula for variance

swap. Based on the form of the formula, we then describe a theoretical approach for obtaining

the first two moments of the risk-neutral distribution. At last, we describe how we estimate

the first moment of the risk-neutral distribution from real data.

Payoff function

The payoff of a variance swap is defined as the variance notional Nvar multiplies by the

difference between annualised realised variance σ2realised and variance strike σ2strike, which is

given by (see, for example, https://en.wikipedia.org/wiki/Variance swap)

Nvar(σ
2
realised − σ2strike) (3.1)

71
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Variance notional and variance strike are usually given before the sale of a variance swap

contract. Variance notional is referred as the profit/loss of the variance swap due to one unit

change of realised variance or strike variance. The annualised realised variance is defined as

σ2realised =
A

n

n∑
i=1

R2
i (3.2)

where A is the number of trading days per year, which on average is 252. Here n denotes the

total number of trading days during the observational period and Ri represents the ith daily

return. Denote S0, S1, S2, ..., Sn be the closing prices of the underlying asset in the observational

period with n+ 1 trading days, and then Ri = log(Si/Si−1), for i = 1, . . . , n.

Under the assumption of no arbitrage, let K be the strike price, and {St}, t ∈ [0, T ], where

T is the expiration time, be the current price of the underlying asset. One can denote the

corresponding daily log return Ri = log(Si/Si−1), for i = 1, . . . , T . We express the market

prices of European call options and put options written on the underlying asset at time t with

expiration date t + n (here t + n ≤ T ) as Ct,n;K and Pt,n;K . We also denote rt be the risk-

free interest rate for period [t, t + 1], which is obtained from risk-free zero coupon bond, and

Rt,T =
∑T−1

t rt be the cumulative risk-free interest rate from t to T.
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Assuming the stock price follows martingale, the fair price of a variance swap is the dis-

counted expected payoff under the risk-neutral measure Q. We denote the price of variance

swap at time t with expiration T by V St,T , given by

V St,T = EQ
t {e−Rt,T × payoff}

= EQ
t {e−Rt,TNvar(σ

2
realised − σ2strike)}

= e−Rt,TNvar{EQ
t (σ2realised)− σ2strike}

= e−Rt,TNvar{EQ
t (
A

T

T∑
i=1

R2
i )− σ2strike}

(3.3)

To proceed, we describe the assumptions required in our method and derive the correspond-

ing pricing formula for variance swap in the next section.

3.2 Data preparation

In this section, we start with the details how we interpolate risk-free interest rates for our

study, followed by the assumptions needed in our analysis. We then illustrate the replica-

tion strategy by variance future for variance swap valuation. We also present the full data

preparation process afterwards.

3.2.1 Formula and interest rates

In Equation (3.3), Nvar and σ2strike are known values. We begin with the estimation of

the cumulative risk-free interest rate Rt,T =
∑T−1

t rt. In our data, for each calendar day, the

cumulative risk-free interest rates are given in the discrete time points, shown in Figure 17.

The days difference provided in the original data set may not cover the time to expirations of
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Figure 17: Illustration of original risk-free interest rates

Figure 18: Illustration of interest rate interpolation

the available options. We, therefore, employ an interpolation method to derive the cumulative

risk-free interest rates needed in the pricing formula for variance swap.

To interpolate a cumulative risk-free interest rate, we utilize the two adjacent cumulative

interest rates. Denote [0, ti] be the shorter period of days to maturity, [0, ti+1] be the longer

period of days to maturity. Let ri denote the cumulative risk-free interest rate for period [0, ti],

and ri+1 be the interest rate for [0, ti+1]. Assume tj ∈ [ti, ti+1] and r[i,i+1] presents the unit

risk-free interest rate in period [ti, ti+1]. The interpolation idea is shown in Figure 18.
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To interpolate interest rate rj , the first equation is:

eri×
ti
365 er[i,i+1]×

ti+1−ti
365 = eri+1×

ti+1
365

r[i,i+1] =
ri+1ti+1 − riti
ti+1 − ti

(3.4)

The second equation to calculate annualized daily interest rate rj is:

eri×
ti
365 er[i,i+1]×

tj−ti
365 = erj×

tj
365

rj =
riti + r[i,i+1](tj − ti)

tj

(3.5)

In the second equation, we use the fact that the unit risk-free interest rate within time

period [ri, ri+1] is the same as the unit rate in time period [ri, rj ]. Combine Equation (3.4) and

Equation (3.5), we get rj = {riti + [(ri+1ti+1− riti)/(ti+1− ti)]× (tj − ti)}/tj for tj ∈ [ti, ti+1],

where i = 0, 1, 2, . . . , n−1. Here t0 is the start date for an option and tn is the longest expiration

date for options with the same start date. This formula solves one of the unknown quantities

we have in Equation (3.3).
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We then estimate EQ
t (AT

∑T
i=1R

2
i ). Note that EQ

t [
∑T

i=1R
2
i ] =

∑t
i=1R

2
i +

∑T
i=t+1 E

Q
t [R2

i ].

The key part

T∑
i=t+1

EQ
t [R2

i ] =

T∑
i=t+1

EQ
t [log

Si
Si−1

]2 =

T∑
i=t+1

[EQ
t (logSi)

2 + EQ
t (logSi−1)

2 − 2EQ
t (logSi)(logSi−1)]

=

T∑
i=t+1

EQ
t (logSi)

2 +

T∑
i=t+1

EQ
t (logSi−1)

2 − 2

T∑
i=t+1

EQ
t (logSi)(logSi−1)

=
T∑

i=t+1

EQ
t (logSi)

2 +
T∑

i=t+1

EQ
t (logSi−1)

2 − 2
T∑

i=t+1

EQ
t [logSi−1 + log(

Si
Si−1

)][logSi−1]

=

T∑
i=t+1

EQ
t (logSi)

2 +

T∑
i=t+1

EQ
t (logSi−1)

2 − 2

T∑
i=t+1

EQ
t (logSi−1)

2

− 2

T∑
i=t+1

EQ
t [logSi−1][log(

Si
Si−1

)]

= EQ
t [logST ]2 − [logSt]

2 − 2
T∑

i=t+1

EQ
t [logSi−1][log(

Si
Si−1

)]

(3.6)

To proceed, there are two assumptions we adopt on the Stock Price Process in order to

evaluate variance swaps

1. No arbitrage in the financial market to ensure existence of risk-neutral density

2. Increments of the process logSt are independent, that is:

logSt ⊥⊥ log
St+1

St
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The first assumption is necessary when we estimate the fair price of any derivative in the

financial market. Applying the independent assumption, we have

Equation (3.6) = EQ
t [logST ]2 − [logSt]

2 − 2
T∑

i=t+1

EQ
t [logSi−1]EQ

t [log(
Si
Si−1

)]

= EQ
t [logST ]2 − [logSt]

2 − 2

T∑
i=t+1

EQ
t [logSi−1][EQ

t logSi − EQ
t logSi−1]

= EQ
t [logST ]2 − [logSt]

2 − 2

T∑
i=t+1

[EQ
t logSi−1E

Q
t logSi − (EQ

t logSi−1)
2]

(3.7)

Here [logSt]
2 is the function of the current price of the underlying asset. In Section 3.3, we

estimate all the first and second moments in Equation (3.7) for evaluating the fair price of

variance swap.

3.2.2 Replicating by variance futures

In this part, we introduce variance future and how we replicate variance swap using vari-

ance future. Variance future is another financial contract that is an over-the-counter variance

trade. As stated by Biscamp and Weithers (2007) (9), variance swap and variance future are

essentially the same in the sense that they both trade the difference of variance, yet provid-

ing more advantages from trading contracts. So one can replicate variance swap by variance

future. Variance future products with 12-month(with futures symbol VA) or 3-month(with

futures symbol VT) expirations are traded on the CBOE Futures Exchange (see, for example,

http://cfe.cboe.com/products/products va.asp). We use VA in our analysis.

We downloaded variance future data from CBOE website. If variance futures and variance

swap share the same expiration date, then at the start point of the observation period, there is
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no difference between trading a variance future and trading a variance swap with $50 variance

notional. Once we enter the the observation period, there is a ratio multiplier for variance

notional taking account for the number of past trading days.

Variance Notional of Future = 50× Ne −M
Ne − 1

(3.8)

where M is the number of observed days to date. Here Na is the actual number of trading days

and Ne is the expected number of trading days in the observation period. They are the same

for most of the time. An example of an exception was on June 11, 2004, most of US markets

were closed to mourn for former president Ronald Reagan. When this happens, Na would be

one day less while Ne stays the same.

For variance futures, the final realised variance RUG is defined similarly to that of variance

swap, by measuring the variance from the time of initial listing until expiration of the contract

RUG = 252× (

Na−1∑
i=1

R2
i /(Ne − 1))× 1002 (3.9)

In the pricing formula Equation (3.3) for variance swap

V St,T = e−Rt,TNvar{EQ
t (
A

T

T∑
i=1

R2
i )− σ2strike}

= e−Rt,TNvar{
A

T
[
M−1∑
i=1

R2
i + EQ

t (

Ne∑
i=M

R2
i )]− σ2strike}

(3.10)



79

Where
∑M−1

i=1 R2
i =

∑M−1
i=1 (log(Si/Si−1))

2 is solved using previous market prices of the

underlying asset. We employ the similar formulation of calculating RUG for IUG, which is the

square of market implied volatility (implied volatility is represented by the settlement price in

the data), by

IUG =

Ne∑
i=M

R2
i ×

A

Ne −M + 1
× 1002 (3.11)

We then have

EQ
t (

Ne∑
i=M

R2
i ) = IUG× Ne −M + 1

A
× 1

1002
(3.12)

After plugging into the formula, we derive the historical prices of variance swaps from variance

futures.

3.2.3 Data information and manipulation

In this part, we illustrate in details how we process and prepare the data for our study. Our

data contains standard European options on the S&P 500 index, which are exercised on the

third Saturday of the expiration month. Since there is no trade data on Saturday to calculate

return, we treat the previous Friday to be the expiration date.

Option data we used in the first two chapters covers from 12/10/2012 to 08/31/2015. The

continuously compounded risk-free interest rate we have is from 01/02/1996 to 08/31/2015.

While for variance future, the trade date is from 12/10/2012 to 08/31/2015, start date from

12/21/2010 to 07/30/2015 and end date from 01/18/2013 to 01/01/2016. Option and interest

rate data are downloaded from Wharton Research Data Services while variance future data are

downloaded from CBOE website.
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Since we are using variance future to replicate variance swap, the date ranges for variance

swap are determined by those of variance future. We illustrate the data manipulation for

variance future first.

Variance future preparation

(I) Download daily VF files

We batch record the addresses and download the 771 daily files corresponding to variance fu-

tures with 12-month expirations from CBOE website (see, for example, http://cfe.cboe.com/pro-

ducts/vacdata.aspx) for our analysis. Each file contains multiple daily variance contract data,

with an example shown in Figure 19. The first row saves the expiration dates corresponded to

the inception dates (same as start dates) that in the second row. The strikes for the contracts

are listed in the third row. How we manipulate the excel files when we read them in [R] interface

and get needed information are presented in details.

1. The sheet name of those files are either “VA contract” or simply “1”. We take special

care of the sheet names when we use “[R]: read.xlsx” to load the files.

2. The date formats for some of the files are in the form of “date” class like “2014-08-18”

while for others are in the form of “character” class like “06/21/15”. We reformat the all

the dates into “date” class.

3. For the trading date of the contract, we extract the date contained in the name of each

daily file and replicate it to the same length as the number of pairs of start and expiration
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dates in the file. We reorder the dates with the start date, trading date and expiration

date into a new file containing such information.

(II) Download VF files for each expiration date

The variance future files are saved in small files according to different expiration months.

Similarly to what we did to the daily files, we also batch record and download the 46 12-month

S&P 500 variance future files from CBOE website (see, for example, http://cfe.cboe.com/data/h-

istoricaldata.aspx#VA), as shown in Figure 20. How we process and summarize the information

from the files is explained here.

1. The file names are in the similar form as of “CFE G14 V A.csv”, where “VA” stands

for the 12-month variance futures and “14” represents the year of the expiration date for

variance futures. Here “G” is the monthly code for variance futures with a full list of

codes here: F (January), G (February), H (March), J (April), K (May), M (June), N

(July), Q (August), U (September), V (October), X (November), Z (December) (see, for

example, http://cfe.cboe.com/tradecfe/ticker va.aspx). To be consistent with the market

default rule, we use the third Friday of the expiration month to be the expiration date

for the contract. Further, for the ease of calculation in the following stage, the dates in

column “Futures” are all transferred to “year-month-day” format.

2. The columns we keep in the VF files are “Trade Date”, “Futures” and “Settle”.
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Figure 19: Example of variance future contract daily file.

Figure 20: Example of variance future contract file.
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(III) Data cleaning and modification

After we download and extract the information needed from the variance future files, we

clean the data for our study.

1. There are 9 records that have start date same with the expiration date. It is intuitive

that the neighborhood of the error records should share the same start and expiration

date information. We correct the records accordingly.

2. The trading dates of the variance futures we keep are no later than “2015-12-31”. Any

contract that have trading dates and expiration dates later than “2016-01-01” are deleted

from the data.

3. There are 3 records that have start dates later than the trading dates, which are dropped

directly.

(IV) Data integration

After we extract and clean the data from daily files and variance future files, we combine

the information together in the order of start date, trading date, expiration date, settlement

prices and strike prices. There are some issues in the process as mentioned below.

1. One of the expiration dates in VF file is “2014-04-18” which is a Friday. While in the

daily files, there is no such end date and only “2014-04-17” is available. Be subject to VF

files, we make adjustments accordingly for daily files.

2. We calculate M and Ne, which stands for the number of observed days to date t − t0

and the expected trading days in the observation period T − t0. When the end date is
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Figure 21: Check of settlement prices of variance futures.

“2014-04-18”, it is not a trading day and therefore, no market price for underlying asset.

We manually add this date and the market price of the underlying asset with values the

same of the previous day.

3. The settlement price, which represents the market implied volatility, indicates the mar-

ket’s expectation for future prices. Evidenced from CBOE website (see, for example,

http://cfe.cboe.com/Data/Settlement.aspx), the magnitude of settlement is around 20.

However, there are some settlements in the file that are over 100. We check the settle-

ment price in Figure 21, which explains some inconsistency. After further investigation,

the values of settlement prices that are larger than 100 are divided by 32 as duotricemary

notation for our analysis.

Prepare options

Options are used to estimate the moments of the risk-neutral density for pricing variance

swaps. We compare the fair prices of variance swaps with the market historical prices from
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replicating variance futures. The options are filtered and those with the same starting dates

for variance futures stay. The dates are from 2012-12-10 to 2015-08-31.

1. Options traded before 02/15/2015 are expired on the third Saturday of the expiration

month, and those traded after 02/15/2015 are expired on the third Friday of the expiration

month. As we mentioned earlier, there is no trading information from Saturday. We set

the expiration dates for all the options be the third Friday of the expiration month.

2. There is no trading price available in the option data. We take the average of bid and

offer prices as the trading price of the options.

3. There are in total of 686 trading dates in option data. For each of the trading dates, we

locate how many expiration dates are corresponded. Afterwards, we calculate the calendar

difference between every expiration date and trading date and save for our study.

To calculate the trading days between given start date and expiration date, we download a

date set with S&P500 historical trading prices and simply count the difference of row numbers

between the two dates. In this way, we accurately exclude all the holidays and non-trading

days.

3.3 Estimating moments of the risk-neutral density

We present two methods to estimate the moments of the risk-neutral density for pricing

variance swap, used in Equation (3.3). One is called moment-based method following Bakshi,

Kapadia and Madan(2003). The other method is based on our proposed nonparametric ap-

proach to first estimate the risk-neutral density and calculate the moments accordingly. We

start with the moment-based method.
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3.3.1 Moment-based method

As was shown in Equation (3.3), the pricing formula of variance swap, the first and second

moments are needed for evaluating the fair price. In this section, we illustrate how to estimate

the available moments and further how to interpolate moments needed in the evaluation.

In traditional financial markets, the normal distribution is often used to model the risk-

neutral density of log returns. Nowadays, people recognize that normal distribution performs

bad in the sense that it doesn’t possess semi-heavy tail or asymmetry in the actual risk-neutral

density. We then introduce a more realistic modeling for the financial market based on gener-

alized hyperbolic(GH) family of distributions. In the literature, Ghysels and Wang (2014) (37)

used the GH family to model the risk-neutral density of conditional log return of the underlying

asset. Following the approach of Bakshi, Kapadia and Madan (2003) (6), the risk-neutral mo-

ments can be written in terms of the volatility contract Vt,n, cubic contract Wt,n, and quartic

contract Xt,n, which are estimated by portfolios of OTM call and put option prices respectively.

Vt,n = EQ
t (e−Rt,nR2

t (n))

=

ˆ ∞
St

2(1− ln(K/St))

K2
Ct,n;KdK

+

ˆ St

0

2(1− ln(K/St))

K2
Pt,n;KdK

(3.13)

Wt,n = EQ
t (e−Rt,nR3

t (n))

=

ˆ ∞
St

6ln(K/St)− 3(ln(K/St))
2

K2
Ct,n;KdK

+

ˆ St

0

6ln(K/St)− 3(ln(K/St))
2

K2
Pt,n;KdK

(3.14)
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Xt,n = EQ
t (e−Rt,nR4

t (n))

=

ˆ ∞
St

12(ln(K/St))
2 − 4(ln(K/St))

3

K2
Ct,n;KdK

+

ˆ St

0

12(ln(K/St))
2 − 4(ln(K/St))

3

K2
Pt,n;KdK

(3.15)

Where Rt(n) = log(St+n/St). Therefore, the conditional mean of log(St+n) is

Meant,n = µt,n + log(St)

V ar(t, n) = eRt,nVt,n − µ2t,n

(3.16)

Where µt,n = EQ
t Rt(n) = EQ

t log(St+n/St). By the martingale property, we have EQ
t (e−Rt,nSt+n) =

St, t+n ∈ [t, T ], where Rt,n represents the cumulative risk-free interest rate for period [t, t+n]

and eRt,n is a constant for fixed t and n. Here St is the current market price of the underlying

asset. We rewrite the martingale property by eRt,n = EQ
t [St+n/St] = EQ

t [St+n/St] = EQ
t e

Rt(n).

By Taylor Expansion for exponential function ex ≈ 1 + x+ x2/2! + x3/3! + x4/4!, we have

EQ
t e

Rt(n) ≈ EQ
t [1 +Rt(n) +R2

t (n)/2 +R3
t (n)/6 +R4

t (n)/24] (3.17)

That is

eRt,n = 1 + EQ
t Rt(n) + EQ

t R
2
t (n)/2 + EQ

t R
3
t (n)/6 + EQ

t R
4
t (n)/24

= 1 + µt,n + eRt,nVt,n/2 + eRt,nWt,n/6 + eRt,nXt,n/24

(3.18)
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Move µt,n to the left and get

µt,n = eRt,n − 1− eRt,nVt,n/2− eRt,nWt,n/6− eRt,nXt,n/24 (3.19)

We then plug the Equation (3.19) into Equation (3.16) and calculate the moments.

3.3.2 Nonparametric approach

In the previous part, we calculate the moments for pricing variance swap using moment-

based method. Next, we calculate the moments by our proposed nonparametric approach

illustrated in Chapter 2. In Chapter 2, we first use OTM options to estimate the risk-neutral

density. The main reason is to check the power of our prediction by using OTM options as a

training data and ITM options as a testing data. The performance comparison is conducted

by cross validation study. Another reason to start with OTM options comes from the moment-

based method. We mentioned in previous part that following Bakshi, Kapadia and Madan

(2003) (6), the three volatility contract, cubic contract and quartic contract are estimated by

using OTM options. In this part, we instead, use all the available options to estimate the

risk-neutral density and calculate moments, offering more information in the pricing process.

Further, we estimate the risk-neutral densities from both least square and weighted least square

structures.

Based on our nonparametric approach in estimating RND, we have the density of log(ST )

in the form of fQ(x) =
∑q+1

i=1 ai1[logKi−1,logKi](x), where ai is the piece-wise constant value on
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interval [logKi−1, logKi], with q is the number of unique strikes for all the options in (t, T ) and

K0 = log(K1/c1) and Kq+1 = log(Kq × c2).

According to Equation (3.7), the key part of the payoff function of variance swaps is

EQ
t [logST ]2 − [logSt]

2 − 2
∑T

i=t+1[E
Q
t logSi−1E

Q
t logSi − (EQ

t logSi−1)
2]. We calculate the first

and second moments for evaluating the fair price of variance swap.

Since on each interval of the estimated risk-neutral density, it is a uniform distribution.

Recall for X ∼ Unif(a, b), we have fX(x) = 1/(b − a) and E(X) =
´ b
a x1/(b − a)dx = 1/(b −

a)x2/2|ba = (b2 − a2)/2(b− a). Therefore, for X = log(ST ),

EQ
t (X) =

ˆ ∞
−∞

xf(x)dx

=

ˆ logKq+1

logK0

x

q+1∑
i=1

ai1[logKi−1,logKi](x)dx

=

q+1∑
i=1

ai

ˆ logKi

logKi−1

xdx

=

q+1∑
i=1

ai
1

2
[(logKi)

2 − (logKi−1)
2]

(3.20)

EQ
t (X2) =

ˆ ∞
−∞

x2f(x)dx

=

ˆ logKq+1

logK0

x2
q+1∑
i=1

ai1[logKi−1,logKi](x)dx

=

q+1∑
i=1

ai

ˆ logKi

logKi−1

x2dx

=

q+1∑
i=1

ai
1

3
[(logKi)

3 − (logKi−1)
3]

(3.21)
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Figure 22: Illustration of mean interpolcation

We calculate the first and second moments at all available expiration dates for each start

date t and the moments from both moment-based method and our nonparametric approach are

pretty close. We then perform interpolations for mean and variance shown in next part.

Mean Imputation

We first illustrate the imputation idea used in calculating the first moment of the conditional

log return. We have calculated means at all available expiration dates for each t . Imputation

method is implemented to find all other mean values at each time point from trading date t

to expiration date T. Denote all the expiration dates by t + n1, t + n2, . . . , as partially shown

in Figure 22. The time point to be imputed is denoted by t+ n0. Since all the information at

time t is available, logSt can be viewed as the expectation at time t, EQ
t logSt. Therefore, we

separate into cases according to whether t+n0 is in the interval [t, t+n1] or not. It is assumed

that the log return is the same for each day.
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1. Case 1: For n0 ∈ [0, n1], , say, the mean value EQ
t (logSt+n1) has been calculated.

EQ
t (logSt+n1)− EQ

t (logSt+n0) =
(n1 − n0)[EQ

t (logSt+n1)− logSt]
n1

(3.22)

So:

EQ
t (logSt+n0) = EQ

t (logSt+n1)− (n1 − n0)[EQ
t (logSt+n1)− logSt]

n1

=
n0EQ

t (logSt+n1) + (n1 − n0)log(St)

n1

(3.23)

2. Case 2: For n0 ∈ [ni, ni+1], i = 1, 2, . . ., say, the mean values EQ
t (logSt+ni) and

EQ
t (logSt+ni+1) have already been calculated.

EQ
t (logSt+n0)− logSt = EQ

t (logSt+n0)− EQ
t (logSt+ni) + EQ

t (logSt+ni)− logSt

=
(n0 − ni)[EQ

t (logSt+ni+1)− EQ
t (logSt+ni)]

ni+1 − ni
+ EQ

t logSt+ni − logSt
(3.24)

Cancelling out logSt on both sides, we have

EQ
t (logSt+n0) =

(n0 − ni)[EQ
t (logSt+ni+1)− EQ

t (logSt+ni)]

ni+1 − ni
+ EQ

t (logSt+ni)

=
(n0 − ni)EQ

t (logSt+ni+1) + (ni+1 − n0)EQ
t (logSt+ni)

ni+1 − ni

(3.25)

Variance Imputation

To calculate the variance at T of the log returns for pricing variance swaps, a similar

interpolation is performed with the available variances of log returns for option data, which

are traded at t and expired at time other than T. Based on the scatterplot of all available
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variances we have from the existing contracts, the trend of variances has a curved pattern.

More specifically, it follows a quadratic curve. To implement the linear interpolation, a square-

root transformation of variances is operated before interpolation. Then the interpolation is

performed.

1. Case 1: For n0 ∈ [0, n1], the values VQ
t (logSt+n1) and

√
VQ
t (logSt+n1) have been calcu-

lated.

√
VQ
t (logSt+n0) =

n0

√
VQ
t (logSt+n1)

n1
(3.26)

2. Case 2: For n0 ∈ [ni, ni+1], i = 1, 2, . . ., the square-root values

√
VQ
t (logSt+ni) and√

VQ
t (logSt+ni+1) have been calculated.

√
VQ
t (logSt+n0) =

√
VQ
t (logSt+n0)−

√
VQ
t (logSt+ni) +

√
VQ
t (logSt+ni)

=
(n0 − ni)[

√
VQ
t (logSt+ni+1)−

√
VQ
t (logSt+ni)]

ni+1 − ni
+

√
VQ
t (logSt+ni)

=
(n0 − ni)

√
VQ
t (logSt+ni+1) + (ni+1 − n0)

√
VQ
t (logSt+ni)

ni+1 − ni
(3.27)

Any variance can be derived from the squared of interpolated square-root variance. After

we have all the mean values and variance values at each time point, the second moment values

are derived by EQ
t (logSt+n0)2 = [EQ

t (logSt+n0)]2 + VQ
t (logSt+n0). Everything in the pricing

formula (3.3) has been figured out. As we mentioned earlier, the estimated results for moments

from moment-based method and our nonparametric approach are similar. We compare and



93

calibrate our results in the next section using moments from our nonparametric approach for

illustration.

3.4 Calibration results and comparisons

We now have all the moments of log returns needed for evaluating variance swap from

options. We also have the market historical prices replicated from variance futures to calibrate.

In addition, since the variance swaps to evaluate have already been exercised and the most

important part in the price formula Equation (3.3) is the summation of log returns, we can

evaluate the log returns by directly adding up the ratios of adjacent observed market prices of

the underlying asset within the period to further check our results. That is, to estimate the

realized variance part of the price formula EQ
t (σ2realised) for variance swap, we have three ways

to derive the quantity.

1. Method 1 (OP): Moment-based method or our nonparametric approach: use option data

to calculate the moments, as our fair prices of variance swaps

2. Method 2 (VF): Calibration method: use CBOE traded variance future to replicate the

historical market prices of variance swaps

3. Method 3 (True): Use the true observed market prices of the underlying asset of S&P 500

to calculate the “True” realized variance of corresponding period by taking summation of

squares of log returns to provide further reference

It is clearer to use ratios to present the results. There are three ratio quantities that of

interest: OP/True, VF/True, and OP/VF. We plot those quantities with x axis to be the

remaining calendar days of each contract, see Figure 23(a), Figure 23(b) and Figure 23(c).



94

Comparison results

For the ratio OP/True, with respect to the remaining calendar days in the contract in

Figure 23(a), our results indicates that our method using options performs well when the

remaining days of the contract are more than 365 days. A reasonable guess for this phenomenon

is that long-term option data are more reasonable and stable, which are less likely to be affected

by the external factors or noises. However, there is an apparent exponential curve when the

remaining days of the contract is greater than 365. The market also follows the same trend

when we look at the ratio graph of VF and True in Figure 23(b). That indicates that neither

options and variance futures can perfectly represent the expectation of the trend in the financial

markets. Given the results that both ratios of OP/True and VF/True have a similar exponential

trends, we compare the ratio of OP/VF across the remaining calendar days in the contract. As

shown in Figure 23(c), the ratio is close to 1 when the remaining calendar days in the contract

are over one year but less than two years, and it is increasing in an exponential curve as the

remaining calendar days get even longer. Figure 23(d) is another view of the relation between

OP and VF. The conclusion is consistent with Figure 23(c).

We further evaluated the pricing performance with respect to the end dates of the contracts.

It turns out that the pricing method using options performs well when end dates of the contracts

are in the last four months of 2015, which are also the last four months available in our data.

The results are presented in Figure 24. In Figure 24(a), we compare OP with True. They

are relatively close to each other and the over trend is an exponential curve. To calibrate our

results from OP, we check Figure 24(b), which demonstrates a similar graph with Figure 24(a)
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and proves the good performance of our OP method. To demonstrate a more informative

comparison, we plot the two ratios OP/True and VF/True across the remaining days of the

contracts, that are in the last four months of 2015, in the same window and differentiate them

by different colors, shown in Figure 24(c). The green dots represent the ratio OP/True and the

red dots for VF/True. They are following almost the same trend, especially when the contracts

have remaining calendar days within two years or so. One possible explanation could be that

the options expired in the near future contain more information needed to price a variance swap

and it is more accurate as an indication of the market expectation.
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(a) The ratio of OP/True shows an exponential
curve when time to expiration is more than 365.
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(b) The ratio of VF/True also shows an exponential
curve when time to expiration is more than 365.
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Figure 23: Comparison of VS estimation based on OP, VF and True with respect to the
remaining calendar days in the contract
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Figure 24: Comparison of VS estimation based on OP, VF and True on the nearest four end
dates



CHAPTER 4

CONCLUSION

The risk-neutral probability distribution for a future payoff of an asset can be estimated from

market option prices that expire on the same date. In our work, we propose a nonparametric

approach for estimating the risk-neutral density for an underlying asset from the corresponding

options and investigate the empirical performance of our method.

Our proposed piece-wise constant nonparametric method in Chapter 2 is a highly efficient

method for estimating the risk-neutral density in the sense that it provides a simpler form

to implement. Under our approach, the risk-neutral density can be recovered effectively with

available options. To guarantee a better estimate, we followed two alternatives after we refor-

mulated the estimation problem into an optimization problem with constraints. In the first

one, we employed the ordinal least square structure. In the second one, we incorporated the

weights that are inversely proportional to option prices. In the examples tested, we observed

that the weighted lease square structure is more in favor of the relative mean squared errors

than the absolute mean squared errors which are favored by the regular least squares.

We also investigated the estimation performances employing only OTM options and all

options available. We started from OTM-option fit by using OTM options as training data

and tested for prediction accuracy for both OTM and ITM options. The results confirmed our

assertions that the OTM and ITM options have different pricing mechanisms. We extended

our work from using only OTM options to estimate the risk-neutral density to all the available
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options. The purpose of this to incorporate more information known for us for better pricing

variance swap. The empirical performance of our approach compared to the non-negativity

cubic spline approach in the literature shows that our method performs much better.

By comparing the fair prices from our method with the market prices, we can further provide

a practical way to explore profitable investment opportunities in financial markets.

Risk-neutral density approach has been widely used in pricing derivatives in financial mar-

kets. In Chapter 3, using our nonparametric approach to derive moments for pricing variance

swap, we can capture the market prices of long-term variance swaps reasonable well.

As part of future work, we plan to consider more complicated tail densities and study the

performance under least square and weighted least square structures. We will examine different

weights for different purposes. Another topic of our future research is to investigate short-term

variance swaps based on more information given from CBOE researchers for its uncertainty in

the data. It would be interesting to apply time series tools as well in the analysis.
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