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SUMMARY 

 
 
Most of the computational finite element (FE)-based bio-mechanics models employ static or 

quasi-static assumptions. These models fail to capture the response of the human body and its 

joints to high speed cyclic loading. They also fail to accurately capture the change in the system 

motion that is governed by highly nonlinear differential and algebraic equations. This thesis aims 

at addressing this important issue by developing a new computational framework for modeling 

human body and its joints, with particular interest in the knee joint mechanics. The new 

computational framework is based on successful integration of multibody system (MBS) and 

large displacement FE algorithms. In this new computational framework, the absolute nodal 

coordinate formulation (ANCF) is used as the basis for the description of the rigid geometry as 

well as the deformation of the very flexible ligaments. ANCF finite elements have many 

desirable features that can be exploited in modeling complex bio-mechanics systems. These 

elements can be used to capture the deformations of the ligament cross sections, allow for the use 

of general material laws that are suited for developing accurate ligament models, have a constant 

inertia matrix that lead to an optimum sparse matrix structure, and their kinematic description is 

consistent with the description used in computational geometry methods, thereby allowing for 

converting CAD models to FE meshes without geometry distortion. The new computational 

framework used in this thesis also allow for modeling more general boundary conditions at the 

ligament bone insertion sites. The approach described in this thesis can be used to develop more 

realistic models of the human body joints and is applicable to future research studies on 

ligaments, muscles and soft tissues (LMST).  
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SUMMARY (continued) 

Specifically, the main contributions of this thesis can be summarized as follows: 

1. This investigation clearly demonstrates that different models for the bone/ligament 

insertion sites can be developed. To this end, two different sets of clamped end 

conditions at the ligament/bone insertion site are examined using nonlinear large 

displacement ANCF finite elements. The first set of end conditions, called the partially 

clamped joint, eliminates only the translations and rotations at a point, allowing for the 

cross section stretch and shear at the ligament/bone connection. The second joint, called 

the fully clamped joint, eliminates all the translation, rotation, and deformation degrees 

of freedom of the cross section at the ligament/bone insertion sites. In the case of the 

fully clamped joint, the gradient vectors do not change their length and orientation, 

allowing for the use of the constant strain assumptions. The partially clamped joint, on 

the other hand, allows for the change in length and relative orientation of the gradient 

vectors at the bone/ligament insertion site, leading to the cross section deformation 

induced by knee movements.  

2. The thesis reports a new numerical comparative study to demonstrate the effect of the 

boundary conditions at the insertion site on the ligament deformations. Two different 

ANCF finite element models are used in the first chapter; the first model employs the 

fully parameterized three-dimensional beam element, while the second model employs 

the three-dimensional cable element. The three-dimensional fully parameterized beam 

element allows for a straight forward implementation of a Neo-Hookean constitutive 

model that can be used to accurately predict the large displacement as experienced in 

knee flexation and rotation.  
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SUMMARY (continued) 

At the ligament/bone insertion site, the ANCF fully parameterized beam element is 

used to define a fully or partially constrained joint; while the ANCF cable element can 

only be used to define one joint type. The fully and partially clamped joint constraints 

are satisfied at the position, velocity, and acceleration levels using a dynamic 

formulation that is based on an optimum sparse matrix structure.  

3. A new method is proposed for developing ANCF surfaces that can be used in the 

description of the rigid geometry of the bones. Besides modeling the ligaments 

deformation, it is demonstrated that ANCF can also be used in modeling the contact 

geometry in biomechanics applications. Two ANCF approaches can be used to model 

the rigid contact surface geometry. In the first approach, fully parameterized ANCF 

volume elements are converted to surface geometry using parametric relationship that 

reduces the number of independent coordinate lines. This parametric relationship can 

be defined analytically or using a spline function representation. In the second 

approach, an ANCF surface that defines a gradient deficient thin plate element is used. 

This second approach does not require the use of parametric relations or spline function 

representations. These two geometric approaches shed light on the generality of and the 

flexibility offered by the ANCF geometry as compared to computational geometry 

(CG) methods such as B-splines and NURBS (Non-Uniform Rational B-Splines). 

Furthermore, because B-spline and NURBS representations employ a rigid recurrence 

structure, they are not suited as general analysis tools that capture different types of 

joint discontinuities.  
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SUMMARY (continued) 

ANCF finite elements, on the other hand, lend themselves easily to geometric 

description and can additionally be used effectively in the analysis of ligaments, 

muscles, and soft tissues (LMST). In this thesis, ANCF finite elements are used to 

define the femur/tibia rigid body contact surface geometry. Two different contact 

formulations are used in this investigation to predict the femur/tibia contact forces; the 

elastic contact formulation where penetrations and separations at the contact points are 

allowed, and the constraint contact formulation where the non-conformal contact 

conditions are imposed as constraint equations, and as a consequence, no separations or 

penetrations at the contact points are allowed. For both formulations, the contact 

surfaces are described in a parametric form using surface parameters that enter into the 

ANCF finite element geometric description. A set of nonlinear algebraic equations that 

depend on the surface parameters is developed and used to determine the location of the 

contact points. These two contact formulations are implemented in a general MBS 

algorithm that allows for modeling rigid and flexible body dynamics. 

4. The formulation of the insertion site partially clamped joint is not unique, different 

partially clamped joint models can be developed, and these models are associated with 

different joint coordinate systems. The relationship between the ligament/bone insertion 

site boundary conditions and the choice of the joint coordinate system is explained in 

this thesis. The thesis examines the use of two different frames in the formulation of the 

ligament/bone constraints. These two frames are the tangent and the cross section 

frames.  
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SUMMARY (continued) 

The tangent frame is a coordinate system selected such that one of its axes is tangent to 

the space curve defined by the beam centerline, while in the cross section frame the 

coordinate system is selected such that two of its axes lie in the plane that defines the 

beam cross section. In order to formulate the connectivity conditions using the tangent 

and cross section frame, a large displacement three-dimensional ANCF beam element 

is used.  

5. Most existing beam formulations assume that the cross section of the beam remains 

rigid regardless of the amplitude of the displacement. ANCF finite elements, however, 

allow for the deformation of the cross section and lead to a more general beam models 

that capture the coupling between different modes of displacements. One of the main 

contributions of this thesis is to examine the effect of the order of interpolation on the 

modes of deformation of the beam cross section using ANCF finite elements; this is 

particularly important in the bio-mechanics applications. To this end, a new two-

dimensional shear deformable ANCF beam element is developed. The new finite 

element employs a higher order of interpolation, and allows for new cross section 

deformation modes that cannot be captured using previously developed shear 

deformable ANCF beam elements. The element developed in this thesis relaxes the 

assumption of the planar cross section; thereby allowing for including the effect of 

warping as well as for different stretch values at different points on the element cross 

section. The displacement field of the new element is assumed to be cubic in the axial 

direction and quadratic in the transverse direction.  
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SUMMARY (continued) 

Using this displacement field, more expressions for the element extension, shear and 

the cross section stretch can be systematically defined. Measures of the shear angle, 

extension, and cross section stretch can also be systematically defined using coordinate 

systems defined at the element material points. Using these local coordinate systems, 

expressions for a nominal shear angle are obtained. The differences between the cross 

section deformation modes obtained using the new higher order element and those 

obtained using the previously developed lower order elements are highlighted. 

Numerical examples are presented in order to compare the results obtained using the 

new finite element and the results obtained using previously developed ANCF finite 

elements. 
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CHAPTER 1 
 

INTRODUCTION 

 

1.1. Motivation and Objectives 

Most investigations on human body motion are focused on the simulation of human tasks based 

on the assumption that the joints that constrain the relative motion of the system components are 

ideal or perfect joints. Furthermore, most of the finite element based investigations are based on 

static or quasi-static assumptions. In order to better understand the performance of the human 

body mechanics, it is necessary to develop realistic and detailed models that more accurately 

describe the characteristics of the human joints.  An important example of which is the knee 

joint. This joint is the largest synovial joint in the body and the most complex with six degrees of 

freedom in load bearing physiological motion. The stiffness and stability of the joint are 

provided by complex interactions between muscles, ligaments, articulating cartilage and menisci. 

The individual role of each element in overall response of the joint can substantially alter with 

structural changes in the other components, boundary conditions, flexion angle, load magnitudes 

and load combinations. Integrating FE methods and multibody system (MBS) algorithms is 

necessary for developing accurate and detailed biomechanics models. This is particularly 

important given the fact that most biomechanics finite element models are not suited for 

capturing accurately the dynamic modes of ligament and muscle deformations because, as 

previously mentioned, these models are based on static or quasi static assumptions. 

The aim of this thesis is to introduce a new computational environment for modeling 

ligament dynamics and the contact geometry in bio-mechanics applications based on the 
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integration of the finite element absolute nodal coordinate formulation (ANCF) and multibody 

system (MBS) algorithms. In this unified computational environment, one method will be used 

for the development of the geometry as well as the analysis. One of the objectives of this thesis is 

to investigate ligament dynamics under a prescribed motion and ligament/bone insertion site 

constraints. In order to examine ligament/bone connectivity, two large displacement three-

dimensional ANCF finite elements are used to obtain two different knee joint models that have 

different modes of deformation. Both three-dimensional finite elements are based on a nonlinear 

elasticity theory that accounts for geometric nonlinearities due to large displacements and 

rotations. Furthermore, two different sets of clamped end conditions are examined: the fully 

clamped joint and the partially clamped joint. The partially clamped joint, eliminates only the 

translations and rotations at a point, allowing the cross section to stretch and shear at 

bone/ligament insertion site. The second joint; called the fully clamped joint, eliminates all the 

translation, rotation and deformation degrees of freedom of the cross section at the bone/ligament 

intersection. For the partially clamped joint, two sets of end conditions expressed in terms of the 

orthonormal vectors that define the tangent and the cross section frame are considered. The 

tangent frame is a coordinate system selected such that one of the frame axes is tangent to the 

space curve defined by the beam centerline, while in the cross section frame the coordinate 

system is selected such that two of its axes lie in the plane that defines the beam cross section.  

Another objective of this thesis is the development of two general contact formulations 

based on ANCF finite elements for bio-mechanics applications; the elastic contact formulation 

where penetrations and separations at the contact points are allowed, and the constraint contact 

formulation where the non-conformal contact conditions are imposed as constraint equations, 
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and as a consequence, no separations or penetrations at the contact points are allowed. ANCF 

finite elements are also used to describe the contact surface geometry.  

Most beam finite elements are based on a kinematic description that assumes that the 

element cross section remains rigid regardless of the amount of deformation and loading. 

Therefore, these elements are not suited for capturing the change of the dimensions of the 

ligament and muscle cross sections. This shows how the assumption of the cross section rigidity 

can be relaxed using new ANCF finite elements. The thesis proposes a new shear deformable 

element that allows systematically for capturing the cross section deformation as well as 

warping.  

 

1.2. Background 

The dynamics of mechanical systems consisting of interconnected rigid and deformable 

components that undergo large translations and rotations has been the subject of a large number 

of investigations. Such mechanical systems are known in the literature as Multibody Systems 

(MBS). Multibody dynamic theory can be divided into two main categories: rigid body 

mechanics and structural mechanics in which the deformation effect is taken into consideration. 

Computational biomechanics is an important branch of the field of MBS dynamics. The 

use of the MBS methodologies allowed for making significant progress in the study and 

simulation of biomechanical applications (Guess et al., 2010).There are several methods in the 

literature for studying the kinematics and dynamics of rigid and deformable bodies that 

experience large rotations and translations. One of the most widely used for modeling small 

deformation and large rotation problems is the floating frame of reference (FFR) formulation. 
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This formulation describes the rigid and flexible body motion correctly in the case of small 

deformation. When the body experiences large deformation, however, it is not recommended to 

use the FFR formulation that employs linear mode. ANCF finite elements are more suited for the 

solution of the large rotation and large deformation problems as in case of the knee joint. ANCF 

finite elements are also consistent with the computational geometry methods. 

Before defining the scope and organization of this thesis, a literature survey on some of 

the important topics discussed in this investigation is provided. 

1.2.1. Absolute Nodal Coordinate Formulation (ANCF)  

The finite element methods are numerical procedures that can be applied to a large class of 

engineering problems (Saed Moavani, 2008). In fact the finite element method is the most widely 

used numerical approach in the study of the deformation of the elastic components in MBS 

applications. These systems represent a large number of industrial and technological applications 

such as robotics, machines, vehicles and biomechanical systems. Very complicated problems can 

be solved by dividing a structure into small elements, obtain the algebraic or differential 

equations for each element, and then solving the system of equations for the entire structure. 

ANCF finite elements are used to solve large deformation and large rotation MBS problems. In 

this formulation, displacements and slopes at the nodal points are used as nodal coordinates. 

Some of the desirable features of ANCF include the constant mass matrix of the finite elements, 

zero centrifugal and Coriolis forces, and the simplicity of imposing some of the joint constraints. 

Moreover, ANCF allows for a straight forward implementation of general constitutive equations.  

Classical Euler-Bernoulli beam theory neglects the shear effect and assumes that the 

cross section of the beam remains rigid and perpendicular to the beam neutral axis when the 
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beam deforms. In Timoshenko beam theory, on the other hand, the cross section is permitted to 

rotate with respect to a Frenet frame defined at material points on the beam centerline. While 

Timoshenko beam theory accounts for the shear effect, it also assumes that the cross sections 

remain planar, but are not restrained to be perpendicular to the bending axis. Most existing finite 

element beam formulations also use this assumption of rigid and planar cross section. In some of 

these finite element formulations, the displacement of the cross section in the planar analysis is 

defined by two translation coordinates and one rotation coordinate. In the spatial analysis, six 

coordinates are used; three translations and three rotations. In some finite element formulations, 

the translations and rotations of the cross section are defined as field variables using independent 

interpolations (Crisfield and Moita, 1991). By using the translation and rotation fields, one can 

develop expressions for the strains that enter into the formulation of the constitutive equations 

and elastic forces of the beam. Because of the nature of the coordinates used, most existing finite 

element formulations, however, lead to highly nonlinear inertia matrix in the spatial large 

displacement analysis of beam problems. 

Fully parameterized ANCF finite elements, on the other hand, relax the assumption of the 

rigidity of the element cross section; allowing for the cross section to deform (Abbas et al., 2010; 

Dufva et al., 2005; Garcia-Vallejo et al., 2004 and 2007; Gerstmayr et al., 2008; Gerstmayr and 

Irshik, 2008; Gerstmayr and Matikainen, 2005; Nachbagauer et al., 2010; Kerkkanen et al., 2005; 

Koyama eta al., 2006; Sopanen and Mikkola, 2003; Sugiyama et al., 2006; Sugiyama and Soda, 

2009; Tian et al., 2010). ANCF finite elements can also be used to capture the coupling between 

the cross section deformation, and the extension and bending of the finite element (Hussein et al., 

2007). Nonetheless, the cross section deformation modes depend on the order of interpolation 
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used. Linear interpolation in the transverse direction allows for a stretch of the cross section, 

nonetheless, the cross section remains planar and the stretch does not depend on the location of 

the material points on the cross section. Furthermore, linear interpolation in the transverse 

direction does not allow for capturing the effect of warping. In order to capture the warping 

effect and allow for the variation of the stretch at material points on the cross section, higher 

order interpolation in the transverse direction needs to be used as explained in this thesis. 

1.2.2. Review of the Existing Knee Models  

From the mathematical point of view, knee models can be divided in to phenomenological and 

anatomical models. While the fist category describes the response of the knee without 

considering anatomical parts of the knee joint, the anatomical models describe accurate 

mechanical properties for each part. Furthermore, from the kinetic point of view anatomical 

models can be evaluated in static, quasi-static or dynamic conditions. Most of the knee models 

are static and quasi-static, but in the last decade the number of the dynamic models has also 

increased (Bertozzi et al., 2008).  Most of the dynamic models are focused in studying only some 

aspects of the knee joint behavior, for this reason more realistic and detailed knee models are 

necessary to be developed. 

The knee joint is one of the largest and most complex joint of the human body. The knee 

sustains high forces and moments and is situated between the body’s two longest lever arms (the 

femur and the tibia), making it particularly susceptible to injury. The stiffness and stability of the 

joint are provided by complex interactions between muscles, ligaments, articulating cartilage and 

menisci. The individual role of each element in overall response of the joint can substantially 

alter with structural changes in the other components, boundary conditions, flexion angle, load 
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magnitudes and load combinations. The knee joint must support motion in the frontal plane 

(abduction and adduction), the sagittal plane (extension and flexion), and the transverse plane 

(external and internal rotation) allowing the femur and tibia to rotate, twist, and slide relative to 

one another (Bartel et al., 2006; Silva et al., 2007; Yamaguchi, 2001). 

The study of the human body motion as a multibody system (MBS) is a challenging 

research field that has witnessed significant developments over the last years. In general, most of 

the investigations focused on the simulation of human tasks based on the assumption that the 

joints that constrain the relative motion of the system components are ideal or perfect joints 

(Machado et al., 2010). The motion of the natural knee joint is determined by the geometry of the 

joint surfaces; constrained by the ligaments, the joint capsule, soft tissues  and the active muscle 

forces acting across the joint (Bartel et al., 2006). In this thesis, the joint capsule, soft tissues, and 

muscle forces are not taken in consideration.  

There are several finite elements models that discuss tibia-femoral contact, but most are 

limited to simple boundary conditions and are based on quasi-static assumptions (Blankvoort et 

al., 1996; Bendjaballah et al., 1995; Mclean et al., 2003; Donahue et al., 2002). In a 2004 survey 

that addressed three-dimensional knee contact models (Bey et al., 2004), it was found that 

current MBS knee models (Blankvoort et al., 1991; Abdel-Rahmen et al., 1997; Piazza and Delp, 

2001; Elias et al., 2004) are either quasi-static with deformable contact or dynamic with rigid 

contact.  

Machado discussed the most relevant contact models used in biomechanics applications: 

Elastic contact force based on the Hertzian contact theory, Kelvin and Voigt linear model, Hunt 

and Crossley or Lankarani and Nikravesh contact models which are based on a modified 
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Hertzian theory are some of the common contact force models used to model contact mechanics 

of the knee joint (Machado, 2012).  

Advanced knee models can be analyzed using either finite element or multi-body 

algorithms but more recently, studies in biomechanics show the importance of MBS models in 

combination with finite element methods in the field of biomechanical modeling (Guess et al., 

2010; Engel et al., 2011). This combination can provide important information about knee joint 

mechanics. 

 

1.3. Scope and Organization of the Thesis 

This thesis is organized in six chapters including this introductory chapter. In this section, the 

organization and scope of the thesis as well as a summary of the contents and contributions of its 

chapters are presented. 

In Chapter 2, four models are developed to discuss both the ligament dynamics under a 

prescribed motion and ligament/bone insertion site constraints. Two models allow for the 

deformation of the ligament cross section at the ligament/bone connection, while the other 

models do not allow for such modes of cross section deformation. In order to examine 

ligament/bone connectivity, two large displacement three-dimensional beam and cable finite 

elements are used to develop two different knee joint models that have different modes of 

deformation. Both three-dimensional finite elements are based on a nonlinear elasticity theory 

that accounts for geometric nonlinearities due to large displacements and rotations. The results 

obtained using the two finite element formulations are compared and the convergence of the 

models is examined.  To illustrate the application of the two finite element formulations, the 
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study utilizes the methods of constrained dynamics to simulate the motion of a simplified knee 

model of the lateral and medial collateral ligaments with anatomically correct size and insertion 

geometry relative to the femur, tibia and fibula. The ligaments structural flexibility is modeled 

using the large displacement finite element absolute nodal coordinate formulation (ANCF). The 

ANCF fully parameterized three-dimensional beam element used in Chapter 2 allows for a 

straight forward implementation of a Neo-Hookean constitutive model that accurately represents 

the ligament deformations as experienced in knee flexion and rotation. These fully parameterized 

ANCF elements also capture the cross section deformations, thereby allowing for developing 

different models for the ligament/bone insertion site constraints. 

In the case of conventional structural beam finite elements, a maximum of six boundary 

conditions can be imposed at a nodal point; with the maximum number defining the conventional 

clamped end conditions. However, in the case of fully parameterized spatial ANCF finite 

elements, one can use three translation coordinates and nine position vector gradients at the node. 

In this case, six boundary conditions on the translations and rotations at a material point do not 

eliminate the deformation modes at this point. One can then define several types of joints; two of 

them are investigated in this thesis. The first, called the partially clamped joint, while the second, 

called the fully clamped joint. Other partially clamped joints that have a number of constraint 

equations larger than six and less than the number of constraint equations employed in the fully 

clamped joint can also be developed in a straight forward manner. A clear definition of which 

joint is actually used in the dynamic modeling is particularly important in developing accurate 

FE/MBS models of the knee.  
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In order to accurately determine the locations of the contact points the use of accurate 

description of the shapes of the two contact surfaces is necessary. This is accomplished in 

Chapter 3 of the thesis using ANCF finite elements. The methods adopted allow for the use of 

complex geometry for the contact surfaces based on full parameterization. These methods also 

allow for the use of spline representations to define the contact surface geometry when analytical 

description cannot be found. In one method, ANCF volume geometry is converted to surface 

geometry using a parametric relationship that reduces the number of independent coordinate 

lines. In the second method, ANCF surfaces can be directly used without the need for using the 

parametric relationship. Both ANCF beam and plate elements can be used to model complex 

structures by changing the magnitude of the gradient vectors in the reference strain-free 

configurations. Two formulations; the elastic and constraint, are used in this chapter to predict 

the contact forces. A set of nonlinear algebraic equations that depend on the surface parameters 

is developed and used to determine the location of the contact points. In both methods, the 

assumptions of non-conformal contact are used. In the constraint method, the normal contact 

forces are obtained as reaction forces using the technique of Lagrange multipliers. In the elastic 

contact formulation, penetration between the bodies is allowed; this penetration and its derivative 

enter into the calculation of the contact forces. 

Chapter 4 is concerned with the investigation of two models that have two different 

formulations for the bone/ligament insertion site constraints. It is shown that the formulation of 

the clamped joint constraints when fully parameterized ANCF finite elements are used is not 

unique. The partially clamped joint, which allows for the deformation of the cross section at the 

bone/ligament insertion sites, can be defined using different orthogonal vectors that define 
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different joint frames. The case of the partially clamped joint is discussed in Chapter 4 using two 

sets of orthogonal vectors that are associated with two different joint frames. The first is called 

the tangent frame, while the second is called the cross section frame. The relation between the 

two frames is shown using the knee joint model developed in Chapter 2. In order to formulate the 

constraint equations of joints between two bodies modeled using two different formulations, one 

needs to properly define a set of joint coordinate systems that are used to describe the 

connectivity conditions. The cross section and tangent frame allow for the deformation of the 

cross section at the ANCF/rigid body connection. In order to examine this connectivity using the 

tangent and cross section frame, one large displacement three-dimensional finite beam elements 

is used to develop the computer knee joint models.  

In Chapter 5, a new two-dimensional beam element with 16-degree of freedom 

(TDBE16) is developed and used to study the deformation of the element cross section. The new 

shear deformable TDBE16 has eight nodal coordinates per node. These nodal coordinates are 

two position coordinates that define the location of the node in the global coordinate system, four 

displacement gradient coordinates, and two curvature coordinates. The use of these coordinates 

allow for increasing the order of interpolation in the transverse direction, thereby capturing the 

warping effect and allowing for the variation of the stretch along cross section lines. The 

fundamental differences between the shear representations in Timoshenko beam and TDBE12 

(two-dimensional beam element with 12 nodal coordinates) and TDBE16 models are 

highlighted. It is shown that the shear angle in Timoshenko beam theory requires the definition 

of a local frame; while the TDBE12 and TDBE16 shear strain definitions that enter into the 

formulation of the elastic forces do not require introducing such a local frame. TDBE16 is a fully 
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parameterized ANCF finite element that leads to a constant mass matrix, allows for the use of 

general constitutive equations and general continuum mechanic approach in the formulation of 

the elastic forces, and captures modes that couple the deformation of the cross section, and 

extension and bending of the beam.  The results, obtained using the TDBE16 model, are 

compared with the results obtained using the TDBE12 model in order to examine the effect of 

the order of interpolation on the deformation of the cross section. 

The thesis ends with Chapter 6 which gives summary of and conclusions drawn from 

this investigation. 
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CHAPTER 2 

LIGAMENTS DEFORMATION 

 

The focus of this chapter is to study the mechanics of the knee joint shown in Figure 1 using new 

ligament/bone insertion site constraint models that require the integration of multibody system 

and large displacement finite element algorithms. Two different sets of clamped end conditions 

at the ligament/bone insertion site are examined using nonlinear large displacement absolute 

nodal coordinate formulation (ANCF) finite elements. The first set of end conditions, called the 

partially clamped joint, eliminates only the translations and rotations at a point, allowing for the 

cross section stretch and shear at the ligament/bone connection. The second joint, called the fully 

clamped joint, eliminates all the translation, rotation and deformation degrees of freedom of the 

cross section at the ligament/bone insertion site. In the case of the fully clamped joint, the 

gradient vectors do not change their length and orientation, allowing for the use of the constant 

strain assumptions. The partially clamped joint, on the other hand, allows for the change in 

length and relative orientation of the gradient vectors at the bone/ligament insertion site, leading 

to the cross section deformation induced by knee movements. Nanson’s formula is applied as a 

measure of the deformation of the cross section in the case of the partially clamped joint. In this 

study, the major bones in the knee joint consisting of the femur, tibia, fibula are modeled as rigid 

bodies; while the ligaments structures are modeled using the large displacement ANCF finite 

elements. Two different ANCF finite element models are developed in this chapter; the first 

model employs the fully parameterized three-dimensional beam element shown in Figure 2, 

while the second model employs the three-dimensional cable element shown in Figure 3.          
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The three-dimensional fully parameterized beam element allows for a straight forward 

implementation of a Neo-Hookean constitutive model that can be used to accurately predict the 

large displacement as experienced in knee flexation and rotation. At the ligament bone insertion 

site, the ANCF fully parameterized beam element is used to define a fully or partially 

constrained joint; while the ANCF cable element can only be used to define one joint type. The 

fully and partially clamped joint constraints are satisfied at the position, velocity, and 

acceleration levels using a dynamic formulation that is based on an optimum sparse matrix 

structure. The approach described in this investigation can be used to develop more realistic 

models of the knee and is applicable to future research studies on ligaments, muscles and soft 

tissues (LMST). In particular, the partially clamped joint representation of the ligament/bone 

insertion site constraints can be used to develop improved structural mechanics models of the 

knee. 

 

2.1 Knee Joint 

The knee joint is the junction of the femur (thigh bone or upper leg bone) and the tibia (shin bone 

or larger bone of the lower leg) known as the tibio-femoral joint with a third sesamoid bone 

called the patella (knee cap) and attached patella tendon.  The patella provides protection for the 

knee and leverage for the quadriceps femoris muscle which cross anterior to the tibio-femoral 

joint to insert on the tibia.  This chapter will consider only the tibio-femoral joint without the 

contribution of the patella and patella tendon (sometimes referred to as the patello-femoral joint).  
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Figure 1    Anatomy of the knee (http://www.aclsolutions.com/anatomy.php) 
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Figure 2    ANCF beam element 

 
Figure 3     ANCF cable element 

 

X 
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The intercondylar regions of the distal end of the femur and the proximal end of the tibia are 

partially covered with articular cartilage and connected menisci; cartilage is a tough, elastic 

material that helps absorb shock and assists the knee joint to move smoothly.  

The menisci are c-shaped pads of connective tissue that are divided into two crescent-

shaped discs positioned between the tibia and femur on the lateral and medial side of each knee. 

The two menisci in each knee act as shock absorbers, cushioning the lower part of the leg from 

the weight of the rest of the body, as well as enhancing stability and providing a smooth surface 

for joint articulation. In addition the knee joint is surrounded by fluid-filled sacs called bursae 

that serve as gliding surfaces to reduce friction between the bones and tendons (Bartell et al., 

2006).  

2.1.1. Ligaments and Knee Model 

A ligament is composed of tough fibrous material and functions to control excessive motion by 

limiting joint mobility. The four major stabilizing ligaments of the knee are the medial and 

lateral collateral ligaments (MCL and LCL, respectively), and the anterior and posterior cruciate 

ligaments (ACL and PCL, respectively). The superficial fibers of the MCL are anchored 

superiorly to the medial femoral epicondyle descending anteriorly to attach to the posterior tibia 

and resist widening of the inside of the joint, or prevent “opening-up” of the knee.  

The posterior fibers of the MCL (deep MCL) attach to the medial meniscus structure; and 

during knee flexion, these fibers and those attached to the femur twist and help stabilize the 

medial meniscus. The LCL is attached superiorly to the lateral femoral epicondyle and inferiorly 

to the lateral surface of the fibular head. The LCL and MCL help stabilize the motion in the 

sagittal plane such that the LCL is the primary restraint to varus (abduction) rotation and the 
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superficial portion of the MCL is the primary restraint to valgus (adduction) rotation (Nordin and 

Frankel, 2001). The two cruciate ligaments (ACL, PCL) are located in the intercondylar region 

of the knee and interconnect the femur and tibia in a cross linkage arrangement. The ACL helps 

prevent anterior displacement of the tibia relative to the femur and the PCL resists posterior 

translation of the tibia relative to the femur (Nordin and Frankel, 2001). The remainder of the 

applied load not absorbed by the ligaments is absorbed by the remainder of the knee structure. 

The knee functions to allow movement of the leg and is critical to normal walking. The 

knee flexes (bends) normally to a maximum of 135 degrees and extends (straightens) to 0 

degrees. The bursae, or fluid-filled sacs, serve as gliding surfaces for the tendons to reduce the 

force of friction as these tendons move. The knee is a weight-bearing joint such that the menisci 

serve to evenly load the surface during weight- bearing and also adds in disbursing joint fluid for 

joint lubrication. There are additional ligaments and tendons as well as a number of bursa and 

sections of fat pad and dense tissue that are part of the knee capsule, that contribute to knee 

stability.  

2.1.2. Muscles 

There are two major groups of muscles at the knee. The quadriceps femoris muscle comprises 

four muscles on the anterior thigh that work to straighten the leg from a bent position. The 

hamstring muscle consists of three muscles located in the posterior compartment of the thigh 

which flex the leg at the knee joint and extend the thigh at the hip joint.  

2.1.3. Tendons 

Tendons are tough cords of tissue that connect muscle to bone. In the knee, the quadriceps 

femoris tendon connects the quadriceps muscle to the patella extending to insert on the posterior 
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tibia providing power to extend the leg.  The collective hamstring tendons insert into the lateral 

surface of the head of the fibula and medially to the tibia (Drake et al., 2005). 

This part of the thesis is focused on developing a new non-incremental forward dynamic 

finite element/multibody system framework for the ligament-to-bone insertion site constraints 

subjected to cyclic motion. It is not the intent of this chapter investigation to develop a full knee 

model capturing the mechanics as the femur and tibia rotate, twist, and slide relative to one 

another; but to demonstrate the fundamental issue related to modeling the ligament-to-bone 

insertion site. Two joint conditions are developed with constraints that either allow for the cross 

section deformation at the ligament/bone connections or preclude such deformation.  Before 

discussing the ligament/bone boundary conditions, the finite elements used in the ligament 

modeling are first presented. 

 

2.2. Ligament Finite Element Models 

It is clear from the description of the knee joint presented in the preceding section that the 

ligament/bone connection is not rigid. While different dynamic models that employ different 

material properties can be developed for the knee joint, this investigation is only focused on 

developing new finite element/multibody system models for the ligament/bone insertion site 

constraints. Some of these models capture the cross section deformation at the insertion site 

using structural finite elements such as beams. This can be achieved by using the fully 

parameterized ANCF beam elements that allow for the deformation of the element cross section. 

The use of such fully parameterized ANCF elements allows developing different joint types 

including fully and partially clamped joints. On the other hand, the ANCF gradient deficient 
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cable element, which is simpler, does not allow for the deformation of the cross section, and 

therefore, it can be used with only one joint type. 

2.2.1. Fully Parameterized ANCF Beam Element 

Most existing finite element beam formulations assume that the element cross section remains 

rigid as the beam deforms. Such element formulations, therefore, cannot capture the deformation 

of the ligament cross section. Furthermore, most of these beam element formulations are based 

on linear or nonlinear classical beam theory and do not allow for a straight forward 

implementation of general constitutive equations. To address these modeling deficiencies, fully 

parameterized ANCF beam elements that capture the cross section deformations and allow for a 

straight forward implementation of general constitutive equations are used in this chapter to 

model the ligament mechanics. Using the fully parameterized ANCF beam element shown in 

Figure 1, the position vector r of an arbitrary point on element e can be defined in a global 

coordinate system XYZ  as ( , , )x y z=r S e , where ( , , )x y zS   is the element shape function matrix, 

e  is the vector of nodal coordinates, and ,x y  and z  are the element local coordinates. The 

vector of element nodal coordinates e  can be defined for the three-dimensional beam element as  

( ) ( )1 2
TT T 

  
=e e e , where superscripts 1 and 2 refer, respectively, to the first and second 

nodes on the element. The nodal coordinates at node k can be written as follows (Shabana, 

2008): 

  ( ) ( ) ( ) ( )/ / /
TT T T Tk k k k kx y z = ∂ ∂ ∂ ∂ ∂ ∂  

e r r r r  (2.1) 
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where kr  is the global position vector of node k, and k k
x x= ∂ ∂r r , k k

y y= ∂ ∂r r  and k k
z z= ∂ ∂r r  

define the position vector gradients at the node k. This representation ensures inter-element 

continuity of the global position vector gradients at the nodal points without making any 

assumptions on the magnitude of the rotation or deformation within the element (Sugiyama et al., 

2003). In this thesis a transversely isotropic, hyper-elastic, quasi-incompressible constitutive 

material model is used for the knee ligaments. 

 The vector of generalized elastic forces can be obtained as ( )T

k U= ∂ ∂Q e , where U  

is the strain energy function. In the case of ligaments, the expression for the strain energy 

function can be written as (Peña et al., 2006) 

                                              ( )( ) ( )( )( )2
1 21 2 ln tr 3

V

U D J C F dV= + − +∫ C                              (2.2) 

Where V  is the element volume, D  is the inverse of the bulk modulus; 1C  is the Neo-Hookean 

constant; ( )det= =J J J  is the determinant of the matrix of position vector gradients J ; ( )tr C  

is the trace of the matrix 2 3−= JC C , where = TC J J  is the right Cauchy-Green deformation 

tensor; and 2F  is a function of the stretch λ   that is defined as, 0 0
Tλ = a Ca  (Peña et al., 2006) . In 

this equation, 0a  is a unit vector in the initial direction of the ligament fibers. The strain energy 

density function that accounts for the collagen fibers 2F  is defined as (Weiss et al., 1996).  

                                             
( )( )4

2

1 *
2 3

*
2 5 6

0 1

1 1C

F

F C e

F C C

λ

λ λ λ

λ λ λ λ

λ λ λ λ λ

−

⋅∂ ∂ = <
⋅∂ ∂ = − ≤ < 


⋅∂ ∂ = + ≥ 

                                      (2.3) 
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where 3 4 5, , ,C C C  and 6C  are material constants, and *λ  is the stretch at which collagen fibers 

start to be straightened (Peña et al., 2006). The vector of generalized elastic forces can then be 

obtained as  

                
( ) ( ) ( )( )5 3 2 31 2

1

tr21 ln tr
3

T

k
V

C FJ JJ C J dV
D J

λ
λ

− −
 ∂ ∂∂ ∂ = − + +   ∂ ∂ ∂ ∂  

∫
C

Q C
e e e

              (2.4) 

 In order to eliminate all possible degrees of displacement and deformation at a node in 

the case of a three-dimensional fully parameterized ANCF element, twelve constraint equations 

must be imposed (three for the translations, three for the rotations, and six for the strain 

components). Furthermore, since fully parameterized ANCF elements have a complete set of 

gradient vectors, the Green-Lagrange strain tensor can be defined for the element as 

( ) 2T= −ε J J I . For example, the normal strains are ( )11 1 2T
x xε = −r r , ( )22 1 2T

y yε = −r r  and 

( )33 1 2T
z zε = −r r . One can show that at 0ξ = , 0x = and ( )1 1

22 1 2
T

y yε = −r r , 

( )1 1
33 1 2

T

z zε = −r r ; while at 0.5, 0.5x lξ = = , and  the normal strains are 

( ) ( )( )1 2 1 2
22 0.25 1 2

T

y y y yε = + + −r r r r , ( ) ( )( )1 2 1 2
33 0.25 1 2

T

z z z zε = + + −r r r r . At 1, x lξ = = , and 

the normal strains are ( )2 2
22 1 2

T

y yε = −r r , ( )2 2
33 1 2

T

z zε = −r r . The axial strain can be calculated 

in the same manner. These closed form strain expressions which measure the stretch of the 

element cross section can be used to verify the numerical results of the finite element/multibody 

system knee joint model obtained in this chapter. 
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2.2.2. Gradient Deficient ANCF Cable Element 

The gradient deficient ANCF cable element, which does not allow for shear deformation, has 

two nodes Figure 3. Each node has six coordinates; three translational coordinates r  and three 

gradient coordinates defined by the vector xr . Therefore, the vector of nodal coordinates has 

eight elements and is defined as (Gerstmayr and Shabana, 2006) 

  
( ) ( ) ( ) ( )0 0

TT T T T
x xx x x l x l = = = = = e r r r r             (2.5) 

The global position vector r of the material point P  on the cable element can be defined 

using the element shape functions and the nodal coordinate vector as ( )x=r S e                                

where S is the element shape function matrix expressed in terms of the element spatial 

coordinate x . This shape function is defined in Appendix A of the thesis. Since the cable element 

has one gradient vector only, the general continuum mechanics approach cannot be used to 

formulate the element elastic forces. The strain energy of the cable element can be written as 

                                                   ( )2 2
11 1 1

0 0

1 1
2 2

l l

U EA dx EIk dxε= +∫ ∫                                            (2.6) 

where E  is the modulus of elasticity, A  is the element cross section area, I  is the second 

moment of area, and k  is the curvature.  

 

2.3. Partially Clamped Joint 

In this section, the formulation of the partially clamped joint, also called rigid or bracket joint is 

discussed. This joint, which can be used to connect rigid, flexible, and very flexible bodies 

eliminates six degrees of freedom, and therefore, requires six constraint equations. The degrees 
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of freedom eliminated are three relative translation coordinates and three relative rotations 

between two coordinate systems on the two bodies connected by the joint. Therefore, in the case 

of very flexible bodies modeled using the fully parameterized ANCF finite elements, the 

partially clamped joint does not eliminate all the degrees of freedom at the joint node, allowing 

the finite element to deform at this node. Different joint frames can be used to impose the 

partially and fully clamped joint constraints Figure 4 (Sugiyama et al., 2003; and Hussein et al., 

2009). In this chapter, the cross-section frame is used.  

 

              (a) Gradients                         (b) Tangent frame                   (c) Cross section frame 

Figure 4    ANCF joint coordinate systems 
 

2.3.1. Cross - Section Frame 

The cross section frame, used in this thesis, is a coordinate system selected such that two of its 

axes lie in the plane that defines the beam cross section as shown in Figure 4c. Let st , sn  and sb  

be three orthogonal vectors defined at an arbitrary point on the beam centerline of an element e. 

A vector on the cross section of the beam can be defined as s y y=n r r , where y y= ∂ ∂r r  and 

yr  is the Euclidian norm of yr  defined by T
y yr r . A unit vector st  normal to both sn  and 

z∂ ∂r can be defined as        
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s z
s

s z

×
=

×
n rt
n r

                                                                 (2.7) 

where z z= ∂ ∂r r . A unit vector sb  can then be defined as s s s= ×b t n . One can show that the 

unit vector sb  lies in the cross section plane that contains the gradient vectors yr  and zr . The 

orthogonal triad st , sn  and sb  can be used to define the orthogonal transformation matrix sA  as 

s s s s =  A t n b  (Weed et al., 2008). 

2.3.2. Constraint Equations  

The three nodal translations and the unit vectors that define the orientation of the flexible body 

frame at the joint definition point can be used in the absolute nodal coordinate formulation to 

impose six constraint equations for the partially clamped joint. For example, using this approach, 

a very flexible body modeled using the absolute nodal coordinate formulation can be attached to 

a rigid body or a flexible body modeled using the floating frame of reference (FFR) formulation. 

 In the knee joint example, the ligaments are very flexible and can be effectively modeled 

using the absolute nodal coordinate formulation, while the tibia and femur can be modeled as 

rigid bodies Figure 5 (Weed et al., 2008). The partially clamped joint eliminates all the relative 

translational and rotational degrees of freedom at the ligament/bone connection. Note that 

partially clamped joints used to connect finite elements of bodies modeled using the absolute 

nodal coordinate formulation can be formulated using simple linear connectivity conditions. 

However, when two bodies are modeled using two different formulations that employ two 

different sets of generalized coordinates, the algebraic constraint equations of the partially 

clamped joint are nonlinear functions of these generalized coordinates. Consider, for example, a 
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very flexible ANCF body that is connected to a rigid body or to a flexible FFR body using a 

partially clamped joint; the resulting algebraic constraint equations are highly nonlinear 

functions of the system coordinates.  

 

 

Figure 5    Coordinate systems used in the joint formulation 
 

 The six constraint equations of the partially clamped joint can be written as follows 

(Hussein et al., 2009): 

  ( )
T

T

T

1

2

2 1

,

i j
P P

i j
i j

i j

i j

 −
 
 

= = 
 
 
 

r r

v v
C q q 0

v v

v v

 (2.8) 

where iq  and jq are the position coordinates of the bodies connected by the joint, i
Pr  and j

Pr  are 

the global position vectors of the joint definition point P  on bodies i  and j , respectively, iv  
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and 1
iv  are two vectors defined on body i ; and 1

jv  and 2
jv  are two vectors defined on body j  

(Hussein et al., 2009). In the case of the FFR formulation, the vector , ,k
P k i j=r , can be written 

as 

  , ,k k k k
P P k i j= + =r R A u   (2.9) 

 In this equation, kR  is the global position vector of the origin of body k  coordinate 

system, kA  is the transformation matrix that defines the orientation of this coordinate system 

with respect to the global system, and k
Pu  is the local position vector of the joint definition point 

with respect to body k  coordinate system. The first vector equation in Equation 2.8 prevents the 

relative translations between the two bodies, while the remaining three scalar equations prevent 

the relative rotations between the two bodies. Equation 2.8 does not impose constraints on the 

strains in the case of a fully parameterized ANCF finite element, allowing for the deformation of 

the cross section.  

 The constraint Jacobian matrix of the partially clamped joint as defined by the Equation 

2.8 is 

  

T T

T T

T T

1 1

2 2

2 1 1 2

-

[  ]i j

i j
P P

i j j i

i j j i

i j j i

 
 
 

= = = 
 
 
 

q q q

H H

v H v H
C C C 0

v H v H

v H v H

    (2.10) 

where the Jacobian matrices i
PH , j

PH , iH , 2
iH , 1

jH and 2
jH are defined as follows: 
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

∂ ∂ ∂ = = = ∂ ∂ ∂ 
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q q q
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   (2.11) 

As discussed in previous publications, in order to have simpler formulation for the constraint 

equations; one can choose, without any loss of generality, the vectors defined on the ANCF body 

to be i
s=v n  , 1

i
s=v b  (Hussein et al., 2009). 

2.3.3. Cross Section Deformation 

As previously mentioned, the partially clamped joint allows for the deformation of the cross 

section; while in the case of the fully clamped joint, the gradient vectors are constrained such 

that the cross section remains the same at the joint definition point as the ligament deforms. In 

this chapter, the deformation of the ligament cross section is measured using Nanson’s formula 

which defines the ratio of the area in the deformed (current) configuration to the area in the 

undeformed (reference) configuration (Ogden, 1984; Shabana, 2008). This formula is given by 

  
( )1 2T T

ds J
dS

=
n JJ n

 (2.12) 

In this equation, dS  and ds are the areas of an infinitesimal surface in the reference and current 

configurations, respectively; n  is a unit vector normal to the area in the current configuration; 

and J = J  is the determinant of the matrix of position vector gradients. In the case of the fully 

parameterized ANCF beam element considered in this chapter, one can show that the preceding 

equation reduces to the simple form ( ) y zds dS = ×r r  (Hussein et al., 2009). 
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2.4. Fully Clamped Joint 

The fully clamped joint formulation eliminates all the translation, rotation, and deformation 

degrees of freedom at the joint node. Therefore, the cross section of the finite element at the joint 

node does not deform. Let ,i i
x yr r , and i

zr  be the gradient vectors at an arbitrary node on the 

ANCF body i . One can always define three orthogonal unit vectors 1v j , 2v j , and 3v j  at the joint 

node on the FFR body j .  The twelve constraint equations of the fully clamped joint can then be 

written as follows: 

  
1

2

3

, )

i j
P P
i j
xi j
i j
y

i j
z

 −
 

− = = − 
 − 

r r
r v

C (q q 0
r v

r v

 (2.13) 

 In this equation, i
Pr  and j

Pr  are the same as defined in the preceding section. One may 

choose not to constrain all the strains by eliminating some constraint equations in Equation 2.13. 

Other possibilities of constraints at clamped joints when ANCF finite elements are used to model 

one of the bodies of the joint were proposed in the literature (Garcia-Vallejo et al., 2007; Garcia-

Vallejo et al., 2008).  Furthermore, Equation 2.13 can be slightly modified to account for the 

effect of initial stretch of the ligaments. This can be accomplished by relaxing some of the 

conditions of the orthonormality of the vectors 1v j , 2v j , and 3v j
.  
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The constraint Jacobian matrix of the fully clamped joint is defined as 

  
1

2

3

[ ]i j

i j
P P
i j
x
i j
y
i j
z

 
 
 = = =
 
 
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q q q

H -H
H -H

C C  C 0
H -H
H -H

 (2.14) 

The matrices that appear in this equation are defined as 

  
31 2

1 2 3
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q q q q

   (2.15) 

The dimensions of the matrices in this equation, as in the case of the partially clamped joint, 

depend on the formulation used in the dynamic modeling of the bodies connected by the joint. 

 Of particular importance in the study of knee mechanics is how the application of the two 

different joint definitions (the partially and fully clamped joints) affect the stress concentrations 

and deformation at the ligament/bone insertions sites. These insertion sites are noted as direct 

and indirect.  The direct insertion site is a well-defined transition from the ligament fibrils to 

zones of fibrocartilage and calcified fibrocartilage, terminating at approximately right angles in 

the bone outer structure. An example of a direct insertion site is the femoral attachment of the 

MCL (Benjamin et al., 2006, Weiss et al., 2001).  Finite element analysis predicts that the 

ligament deformation at the insertion site can vary significantly which can be captured with the 

partially clamped joint (Moffat et al., 2008). 

 The indirect insertion has a more gradual transition with the fibers attaching to the bone 

obliquely without the fibrocartilage zones as seen in the direct insertion site.  An example of an 

indirect insertion site is the tibia attachment of the MCL (Weiss et al., 2001). It is reported in the 
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literature that the largest stress concentration can occur at the distal end of the MCL (the tibia 

attachment) which also can be modeled with the partially clamped joint (Moffat et al., 2008).  

 

2.5. Numerical Results 

In the numerical study presented in this section, the use of the ANCF beam and cable elements in 

the nonlinear dynamic analysis of the knee joint model is investigated. Numerical results using 

the Neo-Hookean material model are obtained for the partially and fully clamped joint models 

based on the fully parameterized ANCF finite elements. A method based on the integration of 

multibody system and large deformation finite element algorithms is introduced for modeling the 

dynamics of the knee joint model shown in Figure 1 (Weed et al., 2008). In this model the tibia, 

femur and fibula are modeled as rigid bodies; while the two ligaments are modeled using the 

three-dimensional ANCF beam and cable elements. The goal of this chapter is to develop a new 

computational framework for the computer aided analysis of a non-incremental forward dynamic 

knee model integrating multibody system and large displacement finite element algorithms. In 

order to maintain the focus on the development of the complex computational algorithms 

demonstrated in this thesis, the approach applies the newly developed framework to a simplified 

knee model such that the femur and tibia are modeled using a revolute joint which eliminates the 

translations and rotation in the frontal and transverse planes allowing only rotation of the femur 

relative to the tibia in the sagittal plane. The prescribed displacement is simulated in the analysis 

by properly selecting the revolute joint axis of rotation of the femur with respect to the tibia. In 

this thesis the fibula is connected to the tibia using rigid joint, constraining all the translations 
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and rotations of the fibula with respect to the tibia, which is assumed to be rigidly attached to the 

ground. 

The LCL is assumed clamped to the fibula and femur. This ligament is positioned 

vertically lengthwise and rotated 19 degrees from the vertical of the femur. It has a length of 66.6 

mm and elliptical cross-section radii of 3.4 mm and 2.3 mm. The LCL femoral insertion site is 

19.5 mm above the inferior tip of the femur with the fibular insertion site located 43.5 mm below 

the tibial plateau (LaPrade et al., 2007). The anterior fibers of the MCL are clamped to the femur 

and tibia. The ligament has a length of 94.8 mm with cross-section radii of 7 mm and 2.3 mm; 

and it is attached vertically and lengthwise to the femur 32.8 mm above the inferior tip of the 

femur. Its tibial attachment is 62 mm below the tibial plateau (Meister et al., 2000). Table I 

shows other dimensions and inertia properties of the model; while Table II shows the values of 

the ligament material coefficients used in this thesis. The MCL and LCL are exposed to residual 

stresses as all biological soft tissues. The residual longitudinal strain in the MCL and LCL is 

assumed to be 0.04 (Weed et al., 2008). The knee joint model used in this thesis is shown in 

Figure 6. A preliminary model of the knee joint showed the two ligaments (LCL, MCL) 

contained a high oscillation to in-plane and out-plane bending that is not present in normal 

physiological motion. These oscillations may be a result of the selection of a constitutive model 

that does not account for ligament viscoelasticity as observed in cyclic motion, does not account 

for the ligament compression due to the surrounding knee capsule, and does not take into account 

the additional restraint of the deep MCL fibers connected to the medial meniscus. To correct this 

situation the two-ligament model was modified by adding internal damping to absorb the 
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oscillations. This damping simulates the knee capsule consisting of various soft tissues, muscles 

and fat composites that surround and contain the two exterior ligaments. 

Therefore, in the current model damper elements are added to damp out the high frequencies in 

the LCL and MCL. The mid-point of the MCL is connected to the tibia by a linear damping 

element with a damping coefficient 5 N.s/m and along its length by a series of four damping 

elements with an assumed damping coefficient of 1 N.s/m each along the length of the ligament. 

These elements represent the surrounding tissue encompassing the knee capsule as well as the 

MCL deep fiber connection to the medial meniscus structure. The knee model used is solved by 

giving the femur a prescribed flexation. The angle of flexation is governed by the following 

equation: 

                                  
( )( )max

1 1 cos 2
2

tθ θ π τ= −                                         (2.16) 

where t is the simulation time, o45max =θ and τ = 0.2 s. From the previous equation, the angle of 

flexation θ oscillates between zero and maxθ . The angle θ reaches maxθ  when t= τ/2, and it 

becomes zero again when the first cycle is completed at t = τ. The results obtained show 

convergence can be achieved by using 8 finite elements along the MCL and LCL structures 

(Hussein et al., 2009).  The loading scenario considered is a combined compression load of 1150 

N with a valgus torque of 10 Nm applied to the femur. 

The change in the length of the MCL and LCL for the case of the fully clamped joint 

during the flexion- extension is shown in Figure 7, and for the partially clamped joint case in 

Figure 8.  The axial strains of the midpoint in both cases of fully and partially clamped joint are 

presented in Figures 9 and 10. The results of the ligament length and axial strains presented in 



34 

 

 

 

Figures 7-10 show a good agreement between the cable and beam element models. While the 

results of the cable element model are shown in all these figures, it is important to remember that 

the cable element model allows only for the use of one joint type that does not permit for the 

cross section deformation. Figures 11 - 14 show the normal strain for the MCL and LCL for the 

partially and fully clamped joint. In the case of the fully clamped joint the normal strain is 

constant because of the ligaments pretension (The pretension was assumed to be homogenous in 

the entire beam). Figure 15 shows the change in the cross sections at the midpoints of the MCL 

and LCL using Nanson’s formula. This change in the cross section dimension can be effectively 

captured using the fully parameterized ANCF beam element employed in this chapter. The 

results presented in Figure 15 for the fully clamped joint case show that the area in any current 

configuration is reduced. It is important to note that the insertion site mechanics must allow 

stress concentrations in the ligament which can only be captured using the partially clamped 

joint. 
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Table I    DIMENSIONS AND INERTIA OF THE FEMUR AND TIBIA (İSCAN, 2005) 
 

Body Name Length (cm)   m(kg) Ixx(kg m2) Iyy(kg m2) Izz (kg m2) 

Femur 40   7.516 0.354614 0.354614 0.004604 

Tibia 40   3.537 0.166880 0.166880 0.002166 

 

 

 

Table II    LIGAMENT MATERIAL COEFFICIENTS (MPA) (WEED ET AL, 2008) 
 

Ligament C1 C2 C3 C4 C5 λ* D 

MCL 1.44 0.0 0.57 48.0 467.1 1.063 0.00126 

LCL 1.44 0.0 0.57 48.0 467.1 1.063 0.00126 
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Figure 6     Knee joint model 
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Figure 7    Length in the case of the fully clamped joint 

 (  LCL beam elements,    MCL beam elements, 
                         LCL cable elements,    MCL cable elements) 

 
 

 
Figure 8    Length in the case of the partially clamped joint 

 (  LCL beam elements,    MCL beam elements, 
                         LCL cable elements,    MCL cable elements) 
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Figure 9    Axial strain of the midpoint in the case of the fully clamped joint 

 (  LCL beam elements,    MCL beam elements, 
                         LCL cable elements,    MCL cable elements) 
 
 

 
Figure 10    Axial strain of the midpoint in the case of the partially clamped joint 

(  LCL beam elements,    MCL beam elements, 
                         LCL cable elements,    MCL cable elements) 
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Figure 11    Normal strain Ɛ22 at the midpoint 

( LCL partially clamped,    MCL partially clamped, 
LCL fully clamped,  MCL fully clamped) 

 
 
 

 
Figure 12    The strain Ɛ22 at LCL, MCL/tibia insertion site 

 ( LCL partially clamped,    MCL partially clamped, 
LCL fully clamped,  MCL fully clamped) 
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Figure 13    Normal strain Ɛ33 at the midpoint 

 ( LCL partially clamped,    MCL partially clamped, 
LCL fully clamped,  MCL fully clamped) 

 
 
 

 
Figure 14    The strain Ɛ33  at LCL, MCL/tibia insertion site 

( LCL partially clamped,    MCL partially clamped, 
LCL fully clamped,  MCL fully clamped) 
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Figure 15    Deformation of the cross section area at the midpoint 

            ( LCL partially clamped,    MCL partially clamped, 
                                 LCL fully clamped,  MCL fully clamped) 
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2.6. Concluding Remarks 

In this chapter, new finite element/multibody system models are developed for the ligament/bone 

insertion site constraints. Two ANCF finite elements are employed in this chapter; the first is the 

fully parameterized beam element, while the second is the gradient deficient cable element. The 

fully parameterized ANCF beam element allows for using different ligament/bone insertion site 

constraint models. The partially and fully clamped ligament/bone joints are considered. The 

partially clamped joint allows for the cross section deformation at the ligament/bone insertion 

site. This cross section deformation can be measured using Nanson’s formula. 

The analysis reported in this chapter has shown that the fully parameterized ANCF beam 

element allows for more modes of deformation at the knee ligament/bone insertion site as 

compared to the gradient deficient cable element which cannot capture the expected change in 

the ligament cross section. The numerical results demonstrate that the new computational finite 

element/multibody framework using the simplified two ligament model with either the beam or 

cable element can yield useful data in regard to the change in length and strains of either the LCL 

or MCL regardless of the insertion site constraints (fully clamped or partially clamped). In 

addition, the analysis demonstrates that the ligament-to-bone direct connection which is a 

progression of elastic type fibrocartilage, collagen and bone that can deform (as a result of stress 

concentrations) under a prescribed cyclic motion precludes the application of the fully clamped 

beam which does not allow such deformation (Benjamin M, et al. 2006). 

The data shows higher strains for both ligaments than the quasi-static finite element 

models reported in the literature (Weiss et al., 2001; Peña et al., 2006). The higher strains are the 

result of the integration of the fully parameterized ANCF beam finite element model into a 
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dynamic multibody computational framework that captures the large displacement and change in 

the ligament cross section resulting from the prescribed cyclic motion. High strains are also 

justified in the simple model considered in this chapter, because two ligaments only were 

considered and the femur is subjected to a relatively high speed of rotation. The two ligaments 

considered carry the entire load which in reality is shared by other ligaments and tissues of the 

knee joint. 
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CHAPTER 3 

CONTACT GEOMETRY 

 

In previous chapter, the sliding between the femur and tibia was modeled by using a kinematic 

revolute joint placed at a specific location in the model with only the two outside ligaments 

(MCL, LCL) providing stability.  This joint allows only rotation of the femur relative to the tibia 

in the sagittal plane. One goal of the current chapter is to improve the kinematic and force knee 

joint model by allowing more degrees of freedom of the femur with respect to the tibia and 

include the two interior cruciate ligaments (ACL and PCL). Having additional degrees of 

freedom requires the use of a femur/tibia contact force model that was not required when the 

kinematic revolute joint was used by the authors in previous chapter.  

 Two ANCF approaches can be used to model the rigid contact surface geometry. In the 

first approach, fully parameterized ANCF volume elements are converted to surface geometry 

using parametric relationship that reduces the number of independent coordinate lines. This 

parametric relationship can be defined analytically or using a spline function representation. In 

the second approach, an ANCF surface that defines a gradient deficient thin plate element is 

used. This second approach does not require the use of parametric relations or spline function 

representations. These two geometric approaches shed light on the generality of and the 

flexibility offered by the ANCF geometry as compared to computational geometry (CG) methods 

such as B-splines and NURBS (Non-Uniform Rational B-Splines). Furthermore, because B-

spline and NURBS representations employ a rigid recurrence structure, they are not suited as 

general analysis tools that capture different types of joint discontinuities. ANCF finite elements, 
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on the other hand, lend themselves easily to geometric description and can additionally be used 

effectively in the analysis of ligaments, muscles, and soft tissues (LMST), as demonstrated in 

this thesis using the knee joint as an example. In this chapter, ANCF finite elements are used to 

define the femur/tibia rigid body contact surface geometry. The same ANCF finite elements are 

also used to model the MCL and LCL ligament deformations as shown in the previous chapter. 

Two different contact formulations are used in this thesis to predict the femur/tibia contact 

forces; the elastic contact formulation where penetrations and separations at the contact points 

are allowed, and the constraint contact formulation where the non-conformal contact conditions 

are imposed as constraint equations, and as a consequence, no separations or penetrations at the 

contact points are allowed. For both formulations, the contact surfaces are described in a 

parametric form using surface parameters that enter into the ANCF finite element geometric 

description. A set of nonlinear algebraic equations that depend on the surface parameters is 

developed and used to determine the location of the contact points. These two contact 

formulations are implemented in a general MBS algorithm that allows for modeling rigid and 

flexible body dynamics. 

 

3.1. ANCF Geometry and Kinematics 

The geometry of the knee joint models reported in the literature varies (Guess et al., 2010, 

Ashraf et al., 2003); some models have symmetric femoral and tibial components while others 

are unsymmetrical. While the general geometry description used in this thesis allows for 

modeling arbitrary shapes, symmetric surfaces are used in the knee joint model considered in this 

thesis. Two steps are employed in the computational algorithm used to obtain the numerical 
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solution of the femur/tibia contact problem. In the first step, the locations of the points of contact 

between the femur and tibia are determined. This first step is purely geometric and requires the 

use of accurate description of the shapes of the femur and tibia surfaces. This is accomplished in 

this investigation using ANCF finite elements. In the second step, the geometry results are used 

to determine the femur/tibia contact forces. To this end, two different contact formulations, the 

elastic and constraint contact formulations, are used. The results obtained using these two 

different contact formulations that lead to models with different number of degrees of freedom 

will be compared. The accuracy of the forces predicted using these two different formulations 

depends strongly on the accuracy of the geometry results obtained in the first step. The methods 

adopted in this thesis allow for the use of complex geometry for the contact surfaces based on 

full parameterization. Figure 16 shows the profiles used in this chapter for tibia surface and for 

the lateral and medial condyle of the femur. These methods also allow for the use of spline 

representations to define the contact surface geometry when analytical description cannot be 

found. 

 

3.2. ANCF Beam Element 

As previously mentioned, ANCF finite elements can be used in the geometry description as well 

as in the dynamic force analysis. All B-spline and NURBS representations can be converted 

without geometry distortion to ANCF/FE meshes using a linear transformation. The converse, 

however, is not true, that is, not all ANCF representations can be converted to B-spline or 

NURBS representation (Shabana, 2012). Because ANCF finite elements can accurately describe 

the geometry of the femur and tibia rigid surfaces, different geometry models that employ 
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different ANCF finite elements can be used. In this chapter, we consider two ANCF elements as 

examples; these elements are the fully parameterized ANCF three-dimensional beam element 

shown in Figure 17, and the gradient deficient ANCF thin plate element shown in Figure 18. 

Other ANCF elements such as the fully parameterized plate element can also be used. The 

numerical results, however, will be obtained using the fully parameterized three-dimensional 

beam element that requires the use of the spline function representation to define a surface. This 

element is chosen because it can also be used to model the ligament mechanics.A surface can be 

described in terms of two parameters (coordinate lines). When ANCF beam elements are used, 

the global position vector ijr  of an arbitrary point on the fully parameterized beam element j  of 

body i  can be defined using the element shape function matrix ijS  and the vector of nodal 

coordinates ije  as ( )( , , )ij ij ijx y z t=r S e , where t  is time, and x , y , and z  are the local element 

coordinates. The vector of nodal coordinates ije  consists of absolute position and gradient 

coordinates. The element has two nodes, and each node has twelve coordinates that define the 

global position vector of the node and the three gradient vectors ,ij ij ij ij
x yx y= ∂ ∂ = ∂ ∂r r r r , and 

ij ij
z z= ∂ ∂r r  (Shabana, 2012). The representation ( )( , , )ij ij ijx y z t=r S e  describes a volume since 

three parameters (coordinate lines) x , y , and z  are used for this fully parameterized element. 

The ANCF representation allows for systematically converting this volume geometry to surface 

geometry. This can be accomplished by eliminating one of the independent parameters by 

expressing this parameter in terms of the other two. For example, the use of the functional 

relationship ( )z f y=  converts the ANCF volume geometry to surface geometry in the case of 

the beam element. In this case, the ANCF representation can be written as 
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( )( ) ( ), ,ij ij ijx y f y t=r S e , where ( )f y  is a known a function that can be used to define the 

surface shape. A more general function relationship such as ( ),z f x y=  can also be used.  

 

 

 

 

Figure 16    Femur and tibia profile 
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Figure 17    ANCF 3D beam element 
 

 

 

  

Figure 18    ANCF thin plate element 
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3.2.1. ANCF Thin Plate Element 

Another ANCF finite element that can be used to describe the surface geometry is the gradient 

deficient thin plate element shown in Figure 18. This element has four nodes, each of which has 

nine nodal coordinates. Only the two parameters x  and y  are used to define the thin plate 

element geometry. In this case, one can write the global position vector on the element mid-

surface as ( ) ( ),ij ij ijx y t=r S e . The vector of element nodal coordinates in this case consists of 

the node position vector and the two gradient vectors ij ij
x x= ∂ ∂r r  and ij ij

y y= ∂ ∂r r . This leads 

to an element with thirty six degrees of freedom. Both ANCF beam and plate elements can be 

used to model tapered structures by changing the magnitude of the gradient vectors in the 

reference strain-free configurations. Using the gradient vectors, ANCF tapered elements can be 

easily obtained. 

3.2.2. Computational Geometry Methods 

It is shown in the literature that all Bezier and B-spline curve representations used in CAD 

systems can be converted to ANCF finite elements, without any geometry distortion, using a 

linear transformation (Sanborn et al., 2009). This unique ANCF feature allows for establishing a 

simple and efficient interface between CAD systems and FE/MBS analysis software. 

Nonetheless, B-spline curves and surfaces are based on rigid recurrence formulas that do not 

provide the flexibility offered by FE formulations. For this reason, not all ANCF finite elements 

can be converted to B-spline representations. An example of these ANCF finite elements that 

cannot be converted to B-spline representation is the thin plate element previously discussed in 

this section. B-spline surfaces are governed by the recurrence 
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relationship , , ,0 0
( , ) ( ) ( )n m

i p j q i ji j
u v N u N v

= =
= ∑ ∑r P , where u  and v  are the parameters; )(, uN pi  

and , ( )j qN v  are B-spline basis functions of degree p  and q , respectively; and ,i jP  are a 

bidirectional set of control points. A cubic B-spline surface can be converted to a higher 

dimensional ANCF plate element that has four nodes, each of which has the nodal coordinate 

vectors , ,x y∂ ∂ ∂ ∂r r r , and 2 x y∂ ∂ ∂r  (Mikkola and Shabana, 2012). Note that the resulting 

element, which has curvatures in addition to the gradients as nodal coordinates, has forty eight 

nodal coordinates as compared to the lower dimensional thirty-six degree of freedom ANCF thin 

plate element previously discussed in this chapter. While, for the geometry description, the 

increase in the dimensionality of the element may not be a concern, such an increase in the 

element dimension can be an issue in the analysis. B-spline and NURBS surface representations 

do not offer the flexibility of using lower dimensional models for a given order of interpolation 

because of the rigid recurrence formulas used. 

3.2.3. Surface Parameterization 

In general, four surface parameters can be used to describe the geometry of the two surfaces in 

contact. The surface parameters can be written in a vector form as 

                                 [ ] Tjjii ssss 2121=s                                              (3.1) 

where superscripts i  and j  refer to bodies i  (femur) and j  (tibia), respectively. Using these 

parameters, the location of the contact point P can be defined, respectively, in the coordinate 

systems of bodies i  and j  as  
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The tangents to the surface at the contact point are defined in body i  coordinate system as 
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Using these tangent vectors, the normal vector can be defined as kkk
21 ttn ×= . The 

parameterization used in Equation 3.2 for the surfaces, as well as the tangent and the normal 

vectors, can be used to describe the geometry of the femur and tibia surfaces Figure 19. This 

parameterization allows for the description of general surfaces and also allows for the use of 

numerical or tabulated data to define the contact surface geometry. When the ANCF beam 

elements are used to describe the contact surface geometry, one can assume 1
kx s=  and 

2 , ,ky s k i j= = . In this case, ( ) ( ) ( )d x dx y dy z dz= ∂ ∂ + ∂ ∂ + ∂ ∂r r r r . Using the functional 

relationship, ( )z f y= , one can write  ( ) ( ) ( ) ( )( )( )( )d x dx y z f y y dy= ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂r r r r . In 

the case of more general surfaces, the function relationship ( ),z f x y=  can be used. In this case, 

one has ( ) ( ) ( )( )( )( ) ( ) ( ) ( )( )( )( ), ,d x z f x y x dx y z f x y y dy= ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂r r r r r . 

These differential relationships can be used to define the tangent and normal vectors as well as 

their derivatives that enter into the formulations of the kinematics and force equations when 

complex femur and tibia surfaces are used. As shown by Equations 3.2 and 3.3, two of the 

surface parameters ( is1 , is2 ) are used to define the location of the contact point in the coordinate 

system iii ZYX of body i , while the other two parameters ( js1 , js2 ) define the location of the 
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contact point in body j  coordinate system jjj ZYX . The location of the origin and the 

orientation of the two body coordinate systems are defined, respectively, by the vector kR  and 

the transformation matrix kA , ,k i j= . Using this description, the global position vector of an 

arbitrary point on the surface of the two bodies can be written as 

                                                     , ,k k k k k i j= + =r R A u                                 (3.4) 

where ku is the local position vector that defines the location of an arbitrary point on the surface 

of body i  or body j  with respect to the respective body coordinate system. Differentiation of the 

preceding equation with respect to time defines the absolute velocity and acceleration vectors of 

the arbitrary point on the surfaces of the two bodies. 

 
 

                      Figure 19     Surface parameterization 
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3.3. Femur/Tibia Elastic Contact Formulation 

The geometry description methods discussed in the preceding section are general and can be 

used to describe the surfaces of two arbitrary bodies i  and j . In this section and the following 

section, two different contact formulations that can be used to predict the forces of contact 

between the femur, denoted as body f , and the tibia, denoted as body t , are discussed. These 

are the elastic and constraint contact formulations. 

 In the elastic approach, the contact conditions are not considered as kinematic constraints 

that must be satisfied at the position, velocity, and acceleration levels. Therefore, no degrees of 

freedom are eliminated, and the femur has six degrees of freedom with respect to the tibia. The 

contact conditions, which allow for small penetrations at the contact points, are used to obtain 

the surface parameters that define the location of the contact points. In the elastic contact 

formulation, four algebraic equations are solved, for each contact, to determine the four 

parameters that describe the geometry of the femur and tibia surfaces. These four equations can 

be written as 

                                              
( ) ( )1 2

1 2

0, 0

0, 0

t f t t f t

f t f t

⋅ − = ⋅ − = 


⋅ = ⋅ = 

t r r t r r

t n t n
                                             (3.5) 

where 1
kt  and 2 , ,k k f t=t , are the tangents to the tibia and femur surfaces at the potential contact 

point, tfft rrr −=  is the vector that defines the relative position of the point on the femur with 

respect to the point on the tibia; and tn  is the normal to the tibia surface at the potential contact 

point. Because the tangent and the normal vectors are functions of the surface parameters, and 

assuming that the generalized coordinates of the femur and tibia are known, one can write the set 
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of algebraic equations of Equation 3.5 in a vector form as E(s) = 0, where E is the vector of 

nonlinear algebraic equations that can be solved using an iterative Newton-Raphson algorithm 

for the surface parameters that define the potential non-conformal contact points. This requires 

evaluating the Jacobian matrix of the algebraic equations and iteratively solving the following 

system for each contact to determine the Newton differences associated with the surface 

parameters: 
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       (3.6)  

In this equation, 1 2 1, ,f f ts s s∆ ∆ ∆ , and 2
ts∆  are the Newton differences. Convergence is achieved 

when the norm of the violation of the algebraic equations or the norm of Newton differences is 

less than a specified tolerance. Having determined the vector of the surface parameters, the 

penetration δ  can be calculated as tft nr ⋅=δ . Knowing the penetration and its time derivative, 

the normal contact force can be evaluated using the following equation: 

                                       
3/ 2

hF K Cδ δ δ= − − &                                           (3.7) 

where hK  is a constant that depends on the surface curvatures and the elastic properties, and C  

is an assumed damping coefficient. The time rate of penetration, δ& , can be evaluated as the dot 

product of the relative velocity vector between the contact points on the femur and the tibia and 
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the normal vector to the surface at the contact point. The absolute value of the penetration, δ , is 

introduced in the preceding equation in order to guarantee that the contact force is zero when the 

penetration is zero.  

 

3.4. Femur/Tibia Constraint Contact Formulation 

In this section, the constraint contact formulation is briefly discussed in order to highlight the 

basic differences between the two force approaches that will be used in this investigation. The 

surface geometric description of the femur and tibia is assumed to be the same in both 

formulations. In the case of the constraint contact formulation, the femur has five degrees of 

freedom with respect to the tibia since the motion along the normal to the surfaces at the contact 

point is not allowed. 

 The contact points on the surfaces must coincide during the dynamic simulation avoiding 

penetration and separation between the two bodies. Another condition is that the normals to the 

surfaces at the contact point must remain parallel.  These conditions define the following five 

nonlinear algebraic constraint equations that are required to describe the non-conformal contact 

between the femur and tibia: 

                
( ) ( )

( )
1 2

1 2

0, 0

0, 0, 0

t f t t f t

f t f t t f t

⋅ − = ⋅ − = 


⋅ = ⋅ = ⋅ − = 

t r r t r r

t n t n n r r
                              (3.8) 

The vectors that appear in this equation are the same as defined in the preceding section. In order 

to eliminate the four surface parameters associated with each contact, four contact constraint 

equations are selected such that their Jacobian matrix is a non-singular square matrix. The four 
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equations are chosen from Equation 3.8 by excluding the last equation that defines the relative 

motion along the normal to the surface at the contact point. This equation can be added to the 

system differential equations of motion in order to determine the normal contact force using the 

technique of Lagrange multipliers. The MBS algorithm used in this investigation ensures that the 

contact constraints of Equation 3.8 are satisfied at the position, velocity, and acceleration levels. 

In general the kinematic constraint equations imposed on the motion of the multibody system can 

be expressed in a vector form as 0sqC =),,( t , where C  is the vector of constraint functions, q is 

the vector of the system generalized coordinates, s is the vector of surface parameters, and t is 

time (Shabana et al., 2008). In this constraint contact formulation, the geometric surface 

parameters are treated as dependent variables and are systematically eliminated from the 

equation of motion. Only one Lagrange multiplier associated with the contact constraints is used 

and this Lagrange multiplier defines the normal contact force. Using this constraint approach, no 

separation or penetration between the tibia and femur at the contact point is allowed. 

 

3.5. Ligament Modeling 

The use of ANCF beam elements to describe the femur and tibia rigid surface geometry was 

discussed in Section 3.3. The same ANCF beam elements can be used in the deformation 

analysis of the ligaments, muscles, and soft tissues (LMST) as described in Chapter 2. The 

dynamics of the MCL and LCL will be examined using ANCF meshes that capture the ligament 

large displacements and the cross section deformations, and allow for the use of general material 

models. This sheds light on the potential use of ANCF finite elements in the successful 

integration of computer aided design and analysis (I-CAD-A).  



58 

 

 

 

 The necessary knee joint stability for optimal daily function is provided by the interaction 

of various articulations, menisci, ligaments as well as muscle forces (Nordin et al., 2001). 

Ligaments are connective tissue that connects bones to other bones, and are an important part of 

knee anatomy. The predominant kinematic characteristics of the knee are determined by the 

curvatures of the femoral and tibial articulating surfaces as well as by the orientation of the knee 

(Kapandji, 1970). 

 The ligaments control the passive motion of the knee joint while the dynamic stability of 

the joint is provided by muscular movements. The tibio-femoral joint is supported by the 

collateral ligaments (LCL, MCL), and the two cruciate ligament (ACL, PCL). For a better 

description of their behavior it is important to know their components. Ligaments structure 

consists of network of collagenous fibers that can have different lengths and complex 

orientations.  Constitutive models describe their performance by predicting large deflections and 

deformations. Because of their structure, most fibrous soft tissues are assumed to be continuous 

fiber. This type of material has a single preferred direction (a material that is reinforced by only 

one family of fibers) and it is usually modeled as transversely isotropic hyper-elastic material 

(Leondes, 2007).  

 As was mentioned earlier, this work is a continuation of the previous chapter where only 

two of the ligaments MCL and LCL were modeled using ANCF finite elements. The 

implementation of such general material models with ANCF structural beam elements was 

demonstrated in previous studies (Mohamed et al., 2010, Weed et al., 2008).This chapter will 

extend the MCL and LCL model to include the tibio femoral contact and the two cruciate 

ligaments. 
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3.5.1. Anterior Cruciate Ligament (ACL) 

The ACL is one of the four major ligaments of the knee. It provides primary restraint to anterior 

displacement of the tibia as well as rotational stability. The kinematics of the ACL has received 

much attention due to its important role in normal knee function as well as in ligament 

reconstruction (Mow et al., 1997). The ligament is the primary restraint against anterior tibial 

displacement and internal rotation of the tibia at the knee. Non-contact ACL injuries occur when 

a high force at the joint in the direction of either internal rotation or anterior tibial translation 

exceeds the tensile strength of the ligament (Milner, 2008). The ACL is modeled in this study 

using a linear spring damper element with a length of 0.0342 m, and stiffness of 200000 N/m 

(Kennedy et al., 1974, Bartel et al., 2006). 

3.5.2. Posterior Cruciate Ligament (PCL)  

This ligament, which connects the tibia to the femur, is located at the center of the knee, behind 

ACL. The PCL is reported to be stronger than the ACL, and is not injured as often as the ACL 

(Amis et al., 2003). The configuration of the PCL allows the ligament to resist forces pushing the 

tibia posterior relative to the femur. The function of the PCL is to prevent the femur from sliding 

off the anterior edge of the tibia and to prevent the tibia from displacing posterior to the femur. 

The PCL is modeled in this study using a linear spring damper element with a length of 0.0375 

cm, and stiffness of 200000 N/m (Wang, 2002, Bartel et al., 2006). 

3.5.3. Menisci  

A meniscus is a disk of fibrocartilage that serves as a pad between the ends of bones in the knee 

joint, provides stability and distributes the whole body weight across knee joint. Menisci are two 
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“c” shape pads that help distribute the loads from the femoral condyles to the tibial plateaus 

(Bartel et al., 2006). The main function of the menisci is to transmit joint loads from the femur to 

the tibia (Machado et al., 2010).   

 There are few studies in the literature based on knee joint models that include menisci. 

Penã et al. presented in their research a three-dimensional finite element model of the knee that 

includes femur, tibia, all four major ligaments, articular cartilage and menisci. In this study the 

meniscal tissues were assumed to be single phase linear elastic, isotropic and homogenous 

materials. Their model describes the importance of the combined role of the menisci and 

ligaments in the stability of the joint (Penã et al., 2006). Another study provides a method that 

develops a new representation of the knee with menisci within a dynamic three-dimensional 

MBS framework (Guess et al., 2010). The meniscus model includes elements (linearly elastic 

isotropic materials) connected through 6 6×  stiffness matrices. One of the limitations of the 

method is that the menisci provide only a secondary kinematic constraint during walking. 

 In this thesis a different approach for modeling the menisci is presented employing 

formulas for tangential forces and spin moment (Vollebregt, 2008). These formulas are given by 

                    ( ) ( ) ( )1 2 1 1
ˆ ˆ ˆ, ,

T T Tf t t f t t f t t
x yF D F D M D= − = − = −v v t v v t ω ω n                   (3.9) 

where fv and tv are the absolute velocities of the bodies at the contact point (femur/tibia), 

fω and tω  are the absolute angular velocities of the bodies in contact, 1
ˆtt  and 2

ˆtt  are unit tangent 

vectors on the tibia at the point of contact, ˆ tn  is the unit normal vector at the point of contact, 

and D  and 1D  are assumed in this investigation to have constant values of 50 N.s/m and 100 

N.s, respectively. In addition to these forces, a spring-damper system is applied in parallel at the 
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main points of contact between the femur and tibia to resist stresses or shocks applied to the joint 

(Fung, 1993).  The spring stiffness and damping coefficients are sized to allow a smooth motion 

during knee joint flexion. 

 

3.6. Multibody System Equations 

ANCF finite elements allow for successful integration of CAD geometry and FE/MBS 

algorithms that are designed to solve the differential and the algebraic equations of complex 

physics and engineering systems. In this section, the dynamic equations used in the present 

chapter and the knee joint model previously presented in Chapter 2 are briefly discussed. 

3.6.1. Multi-Formulation MBS Approach 

In order to be able to efficiently solve the resulting nonlinear dynamic equations of complex 

biomechanics systems, a multi-formulation approach that allows for modeling bodies with 

different degrees of flexibility must be used. One can use either the floating frame of reference 

(FFR) formulation or rigid body formulation to model the tibia, fibula, and femur. In the current 

work the bones are modeled as rigid bodies that can be modeled using the rigid body Newton-

Euler equations which employ reference coordinates that define the location and orientation of 

the rigid body coordinate system. The FFR formulation employs coupled reference and elastic 

coordinates and can be used to model bodies that experience small deformations. ANCF finite 

elements can be used for the geometry description and for the analysis of large deformations. 

Joint constraints that describe insertion site kinematics and specified motion trajectories are 

formulated using a set of nonlinear algebraic constraint equations that are adjoined to the system 

differential equations of motion using the technique of Lagrange multipliers. The following 
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augmented form of the equations of motion is used to obtain the vector of reference, elastic, and 

ANCF accelerations (Shabana, 2005): 

                                       

r f a
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                                        (3.10) 

In this equation, subscripts r , f , and a  refer, respectively, to reference, elastic and absolute 

nodal coordinates; rrm , rfm , frm , ffm  are the inertia sub-matrices that appear in the FFR 

formulation; aam  is the constant symmetric mass matrix associated with the ANCF finite 

elements; this matrix is an identity matrix when Cholesky coordinates are used (Shabana, 2005); 

rqC , 
fqC , and 

aqC  are the Jacobians of the constraint equations associated, respectively, with 

the reference, elastic, and ANCF coordinates, λ  is the vector of Lagrange multipliers, and cQ  is 

the quadratic velocity vector that results from the differentiation of the constraint equations twice 

with respect to time. The generalized coordinates, rq  and fq  are the coordinates used in the 

FFR formulation to describe the motion of rigid and flexible bodies that experience small 

deformations. The vector aq  is the vector of ANCF coordinates used to describe the motion of 

flexible bodies that may undergo large displacement, deformations, and change in the cross 

section. 

3.6.2. Solution Algorithm  

By solving the preceding equation, the independent accelerations can be identified and integrated 

forward in time in order to determine the independent coordinates and velocities. Knowing the 
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independent coordinates, the nonlinear kinematic constraint equations can be solved for the 

dependent coordinates using an iterative Newton-Raphson algorithm. Knowing all the 

coordinates and the independent velocities, the dependent velocities can be determined using the 

algebraic constraint equations at the velocity level. The use of this procedure ensures that the 

constraint equations are satisfied at the position, velocity, and acceleration levels. 

  

3.7. Numerical Results 

In the numerical study presented in this section, the use of the contact formulations discussed in 

this chapter in the nonlinear dynamic analysis of the knee joint model is investigated.  A method 

based on the integration of geometry, MBS, large deformation FE algorithms, and contact 

formulations is introduced for modeling the dynamics of the knee joint model. Three-

dimensional ANCF beam elements are used to model both the femur and tibia contact surface 

geometry and the MCL and LCL deformations. The femur/tibia interaction forces are predicted 

using two different contact formulations; the elastic and constraint contact formulations. In the 

knee joint model considered in this study, the femur, tibia, fibula are considered as rigid bodies, 

the LCL and MCL are modeled using ANCF finite elements, and the ACL and PCL are modeled 

using spring-damper elements. All the ligaments are assumed to have pretension. The lengths, 

masses, and mass moments of inertia of the femur and tibia are given in Table I while the 

physical properties and insertion sites of the ligaments are given in Table III. Damping 

coefficients used for the ligaments were calculated using the simple formula kmcligament ξ2= , 

where c is the damping parameter, ξ  is the damping factor, k  is the stiffness coefficient, and m 

represents the mass. 
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3.7.1. Simulation Scenarios 

In order to demonstrate the use of the proposed approach for modeling the knee joint mechanics, 

two very dynamic scenarios are considered. In the first scenario, lower speed motion is 

considered, while in the second scenario an extremely high speed motion is considered. This 

latter case demonstrates the applicability of the approach for modeling other biological systems. 

The knee model used is assumed to be subjected to a prescribed femur flexation; with the 

angle of flexation is governed by the equation ( )max0.5 1 cos(2 /tθ θ π τ= − , where t  is time, 

45max =θ deg, and 0.2τ =  s for the lower speed scenario and 1τ = s for the extreme motion 

scenario. The center of this prescribed rotation lies at the point at which the two cruciate 

ligaments cross each other, approximately 0.017 m from the contact point in vertical direction. 

This is the point about which the bones rotate relative to each other in the sagittal plane during 

flexion and extension. The residual longitudinal strain is approximately 3-5% in the ligaments of 

the synovial joints. (Song et al, 2004). In this study the initial strain of the ligaments was 

assumed to be 4% for the ANCF MCL and LCL models, and 5% for the cruciate ligaments. The 

insertion sites and lengths of the LCL and MCL ligaments are the same as the ones used in 

Chapter 2. The fibula is connected to the tibia using rigid joint, constraining all the translations 

and rotations of the fibula with respect to the tibia. In the elastic approach, the contact conditions 

are not considered as kinematic constraints that must be satisfied at the position, velocity, and 

acceleration levels. Therefore, no degrees of freedom are eliminated, and the femur has six 

degrees of freedom with respect to the tibia. However, since the rotation of the femur is specified 

the femur has five degrees of freedom with respect to the tibia. These degrees of freedom are 
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controlled by the ligament stiffness forces.  The anatomical knee joint model is presented in 

Figure 1, while the femur and tibia profiles are shown in Figure 16. 

3.7.2. Simulation Results for the Slower Motion Scenario 

In the slow motion scenario, the knee angle changes from 0 to 45 degrees within 0.5 seconds, 

this equivalent to one cycle per second. In this case the results of the X-displacements of the 

femur center of mass presented in Figures 20 - 21 show a good agreement between the elastic 

contact formulation (ECF) and embedded constraint contact formulation (ECCF) models. The 

first contact C1 is on the lateral side of the knee joint, while the second contact C2 is on the 

medial side. The magnitudes of the contact forces obtained using the elastic and constraint 

formulations are compared in Figures 22 and 23 for the two contacts C1 and C2. These 

magnitudes depend also on the length and insertion points of the cruciate ligaments. In 

equilibrium the femur is not in alignment with the tibia and the weight of the femur and any 

reaction force results in an angulation of the joint surface.   Since the joint reaction force must be 

perpendicular to the contact surface, a stretching of the collateral (MCL and LCL) and cruciate 

(ACL and PCL) ligaments result, accompanied by a high tensile force in each ligament. The joint 

compressive forces consist of the vertical component of the reaction forces and the tension in the 

patella tendon, and the quadriceps and hamstring muscles are accounted for in the computational 

model developed in this chapter by increased ligament tensile forces.  The sum of the contact 

forces between the lateral and medial sides of the knee joint is shown in Figure 24.  The contact 

forces are relatively high due too high initial tension in the cruciate ligaments and relatively high 

speed rotation of the femur. The four ligaments considered in the model carry the entire load 
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which in reality is shared by other tendons, muscles, and tissues of the knee joint; for this reason 

relatively high initial tension was added to the ACL and PCL.  

As previously mentioned, the geometry of the femur and tibia surfaces are described in 

this investigation using four surface parameters. The deformations of the cruciate ligaments, 

which are modeled using spring damper elements, are shown in Figures 25 and 26. Figure 27 

shows the change in the cross section at the midpoint of the MCL using Nanson’s formula, while 

Figure 28 shows the axial strain at the midpoint for the medial collateral ligament. The results 

presented in these figures are based on the assumption that the two condyles have the same 

shape. In reality, the two condyles have different geometries, and therefore, there is a lack of 

symmetry. As previously mentioned in the chapter, symmetry was used in order to be able to 

develop a simpler contact model with results that can be easily interpreted.   

3.7.3. Simulation Results for the Extreme Motion Scenario 

The extreme motion scenario demonstrates that the proposed FE/MBS approach can be used for 

very fast dynamic cases unlike most of the FE knee joint models which are based on quasi-static 

assumptions. This scenario can be applied to other biological systems (not human), and the 

results of this scenario can also be compared with the results previously presented in the second 

chapter of this thesis using the very high speed. Figure 29 shows comparison between the mid-

point axial strain results predicted using the model proposed in this chapter and the model 

previously developed (Chapter 2) in which the effects of the cruciate ligaments, meniscus and 

contact formulation were not taken into consideration. As expected, the strains in the lateral and 

medial ligaments, predicted using the approach presented in this chapter, are much lower than 

the ones found in the first chapter of this thesis.  Figures 30 and 31 show the normal contact 
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forces at the lateral and medial sides of the knee in the extreme case scenario. Forces are 

relatively high due to high initial tension in the cruciate ligaments and the very high speed 

rotation of the femur. The maximum value of the medial contact force is larger than the 

maximum value of the lateral contact force. This conclusion is in agreement with what reported 

in the literature that the medial condyle carries more load than the lateral condyle (Cheng, 1988). 

3.7.4. Limitations, Repeatability, and Validation of the Model 

It is important to point out that the current model does not have representations of the patella, 

patellar tendon, joint capsule, skin and muscles. Attachment of the medial meniscus periphery to 

the tibial cartilage is not modeled. Geometry of the knee structures was obtained using a physical 

knee model. This may induce inaccuracy in insertion sites of the cruciate ligaments. 

Furthermore, the femur and tibia surfaces are assumed to be symmetric in order to simplify and 

check the results of the contact geometry and forces. The material properties of the ligaments are 

based on the model proposed by Pena et al. (2006); these material properties are not specimen-

specific. It is difficult to validate the present model because of the limited amount of 

experimental data that describe the dynamics behavior of the human knee joint. Most of the data 

that describe the joint response are obtained using static or quasi-static models.  

  Because the model presented in this chapter allows for the simulation of very dynamic 

scenarios, at this point, the validation can only be based on qualitative evaluation of joint 

response by comparison with data published in the literature, and with data presented in the 

previous chapter. 

In order to allow others to reproduce the model presented in the thesis, more information 

needs to be provided. For simplicity, the contour of the tibial plateau was described as a straight 
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line, while the femur surface was approximated by a sixth order polynomial with constant 

coefficients A0 = 0.018, A1 = 43 10−− ⋅ , A2= -93, A3= 15, A4= 61.6 10⋅ , A5= 46.7 10− ⋅ , A6 

= 102.4 10− ⋅ . Dimensions and inertia properties of the femur and tibia are presented in Table I. 

Physical properties and insertion sites of the lateral and medial ligaments are presented in the 

numerical results section and for the cruciate ligaments are presented in Table III. 

In order to validate the model presented in this chapter, two loadings are considered. This 

allows comparing the results of the new knee joint model with the results presented in Chapter 2, 

and Sasaki and Neptun (2010). The first loading scenario considered is a combined compression 

load of 1150N with a valgus torque of 10 Nm applied to the femur. As compared with the results 

presented in Chapter 2, the results presented in Figure 29, as expected, show a decrease in the 

lateral and medial ligament strains due to the addition of the cruciate ligaments and the use of the 

new contact formulation presented in this chapter. In order to compare the contact force results 

of the new knee joint model with the results of the contact forces presented by Sasaki and 

Neptun (2010), in addition to the prescribed motion of the femur, a compressive force of 737 N 

which represents the body weight was applied to the femur. Knowing that the model presented 

Sasaki and Neptun includes the patella and muscles forces which are not included in the model 

developed in this chapter, the differences in the results obtained using the two models are 

acceptable.  
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Table III    PHYSICAL PROPERTIES AND INSERTION SITES OF THE LIGAMENTS 
 (MOMMERSTEEG ET AL, 1994, MACHADO, 2009) 

 

Ligament 
 

Xf [m] 
 

Yf[m] Zf [m] Xt [m] Yt [m] Zt [m] L0 (m) K (N/mm) C (Ns/m) 

ACL 
 

-0.012 
 

-0.005 -0.18 0.012 0.003 0.197 0.0342 200 1226.1 

PCL 
 0.007 0.01 -0.18 -0.013 -0.005 0.192 0.0375 200 1226.1 
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Figure 20    X- Displacement of the femur's center of mass 

 (         ECF,               ECCF) 
 

 
Figure 21    Z- Displacement of the femur's center of mass 

 (       ECF,               ECCF) 
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Figure 22    Normal contact force for the knee lateral side 

 (            ECF,             ECCF) 
 
 

 
Figure 23    Normal contact force for the knee medial side 

 (            ECF,             ECCF) 
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Figure 24    Sum of normal contact forces (ECF) 
(▬  lateral side,            medial side,           sum) 

 

 
Figure 25    Deformation of the ACL ligament 

(         ECF,            ECCF) 
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Figure 26    Deformation of the PCL ligament 

(           ECF,            ECCF) 
 
 

 
Figure 27    MCL cross section deformation at the midpoint 

(         ECF,            ECCF) 
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         Figure 28    Axial strain at the midpoint for MCL 

           (         ECF,            ECCF) 
 

 
               Figure 29    Axial strain at the midpoint for MCL 

                                         (    ▬    previous knee model,           current knee model) 
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Figure 30    Normal contact force for the knee lateral side 
 ( ▬   ECF,               ECCF) 
 
 

 
 

Figure 31    Normal contact force for the knee medial side 
 ( ▬   ECF,               ECCF) 
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3.8. Concluding Remarks 

The main contribution of this chapter is to introduce a new unified approach for modeling the 

contact geometry and ligament deformation in bio-mechanics applications using ANCF finite 

elements. In this unified computational environment, one method was used for the development 

of accurate geometry as well as for performing the analysis. The main features that characterize 

and distinguish the model proposed here are: a) ANCF geometry and analysis are integrated to 

study the femur/tibia contact and large ligament displacements, b) the methods used are general 

and can be applied to other biomechanics systems, c) the model is dynamic and is more 

appropriate for studying human activities as compared to the static models, d) this model relates 

the knee mechanical properties and the contact forces produced, e) the model is simple and easy 

to implement in other types of biomechanical systems. The model considered in this 

investigation demonstrated the importance of the integration of geometry, FE, and MBS 

algorithms. 

 The previous chapter did not consider the geometry of the contact between the femur and the 

tibia of the knee joint. Two general formulations based on ANCF finite elements for modeling 

the contact in bio-mechanics applications are presented. In one method, ANCF volume geometry 

is converted to surface geometry using a parametric relationship that reduces the number of 

independent coordinate lines. In the second method, ANCF surfaces can be directly used without 

the need for using the parametric relationship. Each contact surface is described in a parametric 

form using two surface parameters that enter into the ANCF finite element geometric 

description. In addition to the geometry description of the femur and tibia surfaces, ANCF finite 
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elements are used in modeling the LCL and MCL large displacements. Both ligaments are 

assumed to have distributed inertia and elasticity. 

 Two formulations, the elastic and constraint, are used in this thesis to predict the 

femur/tibia contact forces. A set of nonlinear algebraic equations that depend on the surface 

parameters is developed and used to determine the location of the contact points. In both 

methods, the assumptions of non-conformal contact are used. In the constraint method, if no 

degrees of freedom are specified, the femur has five degrees of freedom with respect to the tibia, 

and the normal contact forces are obtained as reaction forces using the technique of Lagrange 

multipliers. In the elastic contact formulation, penetration between the bodies is allowed; this 

penetration and its derivative enter into the calculation of the contact forces. In the elastic contact 

formulation, if no degrees of freedom are specified, the femur has six degrees of freedom with 

respect to the tibia. The numerical results obtained in this chapter show, in general, a good 

agreement between the results obtained using the constraint and elastic contact formulations. 
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CHAPTER 4 

BONE/LIGAMENT INSERTION SITE CONSTRAINTS 

 

Because the absolute nodal coordinate formulation (ANCF) allows for capturing the cross 

section deformation, different sets of clamped end conditions can be formulated. As discussed in 

Chapter 2, these include fully clamped joint and partially clamped joint. A partially clamped 

joint eliminates only the translations and rotations at the joint definition point, allowing for the 

cross section stretch and shears. The fully clamped joint, on the other hand, eliminates all the 

translations, rotations, and deformation degrees of freedom of the cross section at the joint 

definition point. In addition, in the case of partially clamped joint, the gradient vectors do not 

always define a set of orthogonal unit vectors at the joint node when the body deforms. The 

formulation of the partially clamped joint depends on the joint coordinate system selected. 

Different choices for this coordinate system, including the tangent and the cross section frames, 

can be made. This chapter is focused on examining the effect of the choice of the joint coordinate 

system on the formulation of the clamped joint boundary conditions. To this end the tangent and 

cross section frames are used. The tangent frame is a coordinate system selected such that one of 

its axes is tangent to the space curve defined by the beam centerline, while in the cross section 

frame the coordinate system is selected such that two of its axes lie in the plane that defines the 

beam cross section. In order to examine the effect of using these two frames on the formulation 

of the boundary conditions, the knee joint model from previous chapter will be used. This model 

consists of the femur, tibia, fibula which are modeled as rigid bodies; with the lateral and medial 

ligaments modeled using the large displacement ANCF finite elements.  The contact constraint 
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formulation is used in this investigation to predict the femur/tibia contact forces. The numerical 

results obtained show that, while the type of frame does not significantly affect the motion, the 

cross section frame has a better convergence characteristics than the tangent frame for the knee 

joint example considered in this chapter. 

 

4.1. Clamped Joint Formulation 

One of the important joints that are widely used in various types of physics and engineering 

system models is the clamped joint. When fully parameterized ANCF finite elements are used, 

different clamped joint models can be defined. In this section, as previously discussed in the 

thesis, the formulation of the partially clamped joints is discussed. Fully parameterized planar 

and spatial ANCF finite elements are based on the general continuum mechanics theory. The 

elimination of the relative translations and rotations at a point in the ANCF finite element does 

not necessarily define a fully clamped joint, particularly in the case of fully parameterized ANCF 

finite elements. 

 The partially clamped joint, which can be used to connect rigid, flexible, and very 

flexible bodies, eliminates six degrees of freedom, and therefore, it requires six constraint 

equations. The degrees of freedom eliminated are three relative translation coordinates and three 

relative rotations between two coordinate systems on the two bodies connected by the joint. 

Therefore, in the case of very flexible bodies modeled using the fully parameterized ANCF finite 

elements, the partially clamped joint does not eliminate all the degrees of freedom at the joint 

node, allowing the finite element to deform at this node. Recall that ANCF gradient vectors do 

not always define a set of orthogonal unit vectors at the joint node when the body deforms. 
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Nonetheless, by using the gradient vectors, one can always define a set of orthonormal vectors at 

arbitrary points on the finite element (Sugiyama et al., 2003). 

 Different sets of orthonormal vectors can be defined. In this investigation, two different 

sets of orthonormal vectors that define two different frames are presented in the case of partially 

clamped joint. The first set defines the tangent frame, while the second defines the cross section 

frame. The knee joint model presented in Chapter 3 is used in this investigation to examine the 

behavior of these two frames. In this model, shown in Figure 1 the very flexible ligaments LCL 

and MCL can be effectively modeled using ANCF finite elements, while the tibia and femur can 

be modeled as rigid bodies. The partially clamped joint formulation requires the formulation of 

the constraint equations of the spherical joint in which the relative translation between two 

bodies is eliminated in three perpendicular directions. The constraint equations of the spherical 

joint which eliminate the relative translational displacement between bodies i  and j  at a joint 

definition point P or a node can be written as 

  i j i j
P PC(q ,q ) = r - r = 0  (4.1) 

where iq and jq  are the generalized coordinates used to model bodies i  and j , respectively; and 

i
Pr  and j

Pr  are the global position vectors of point P  on bodies i  and j , respectively. In the case 

of the floating frame of reference (FFR) formulation, the vector , ,k
P k i j=r , can be written as 

  , ,k k k k
P P k i j= + =r R A u  (4.2) 

In this equation, kR  is the global position vector of the reference point of body k  coordinate 

system, kA  is the transformation matrix that defines the orientation of this coordinate system 
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with respect to the global system, and k
Pu  is the local position vector of the joint definition point 

with respect to body k  coordinate system. 

 Three degrees of relative rotation must also be constrained in addition to the conditions of 

Equation 4.1. Let iv  and jv  be two vectors defined along a selected joint axis on body i  and 

body j , respectively. These two vectors must remain parallel to each other. The condition that 

the two vectors must remain parallel is equivalent to the condition i j× =v v 0 , which can 

alternatively be written using two independent dot product equations (Shabana, 2001). Therefore, 

the orientation constraint equations in the partially clamped joint can be written using the dot 

product as 

  
T T T

1 2 2 10, 0, 0i j i j i j= = =v v v v v v  (4.3) 

where 1
jv  and 2

jv  are two orthogonal vectors that are orthogonal to jv , and 2
iv  is a vector 

defined on body i  that is perpendicular to iv  and must remain perpendicular to 1
jv . The 

conditions of Equation 4.3 eliminate all the rigid body rotation degrees of freedom of body i  

with respect to body j . In the case of the FFR formulation, the vectors that appear in Equation  

4.3 can be written in terms of vectors defined in their respective body coordinates.The six 

constraint equations of the partially clamped joint can then be written as follows: 

  

T

T

T

1

2

2 1

, )

i j
P P

i j
i j

i j

i j

 −
 
 

= = 
 
 
 

r r

v v
C (q q 0

v v

v v

 (4.4) 
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where iq  and jq are the position coordinates of the bodies connected by the joint. The constraint 

Jacobian matrix of the partially clamped joint as defined by Equation 4.4 is: 

  
( ) ( )
( ) ( )
( ) ( )

T T

T T

T T

1 1

2 2

2 1 1 2

-

[  ]i j

i i j j
p p

i j j j i i

i j j j i i

i j j j i i

 ∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ 
 = = =

∂ ∂ ∂ ∂ 
 
 ∂ ∂ ∂ ∂ 

q q q

r q r q

v v q v v q
C C C 0

v v q v v q

v v q v v q

 (4.5) 

The number and type of generalized coordinates of the two bodies used in this equation depends 

on the type of formulation (Rigid, FFR, or ANCF) used to model the bodies connected by the 

joint. A fundamental difference in the case of the partially clamped joint formulation is that the 

gradient vectors on the ANCF body do not remain orthogonal unit vectors, and therefore, shear 

deformation and stretch of the cross section at the joint node are allowed. 

 

4.2. Joint Frames 

In the absolute nodal coordinate formulation, the orientation and shape of the cross section is 

defined using three independent vectors ie
xr , ie

yr , ie
zr , where subscript , ,x y z  indicate partial 

derivatives of the vector r . These vectors define nonorthogonal basis vectors at the deformed 

configuration. Different frames can be defined using these vectors, the cross section frame and 

the tangent frame (Sugiyama et al., 2003). 

 

 

 

 



83 

 

 

 

4.2.1. Tangent Frame 

The tangent frame is a coordinate system selected such that one of its axes is tangent to the space 

curve defined by the beam centerline.  The normal plane of the tangent frame is always 

perpendicular to the tangent vector but does not coincide with the beam cross section, as shown 

in Figure 4b. Let ie
tt , ie

tn  and ie
tb  be three orthogonal vectors defined at an arbitrary point on the 

beam centerline of an element e on a body i . The vector tangent to the beam centerline can be 

defined as 

  
ie
x

ie
xie

t r
r

t = , (4.6) 

where ieieie
x x∂∂= rr  is the tangent to the centerline, and ie

xr  is the Euclidian norm of ie
xr  

defined by 
Tie ie

x xr r . A unit vector ie
tb  normal to both ie

tt  and ieie y∂∂r can be defined as 

  
ie ie
t yie

t ie ie
t y

×
=

×

t r
b

t r
, (4.7) 

where ieieie
y y∂∂= rr . A unit vector ie

tn that completes the tangential frame triad can then be 

defined as 

  ie
t

ie
t

ie
t tbn ×= . (4.8) 

Because the vector ie
tb is derived using the vector ie

yr , ie
tb  is always perpendicular to ie

yr but not 

necessarily to vector ie
zr .The tangent frame can also be defined using the vector ie

zr . This frame 

is independent of the vector ie
yr and is defined as follows (Dufva et al., 2006) 
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rt
r

ie
ie x
t ie

x
1 = , 

r tn
r t

ei ie
ie z t1
t1 ei ie

z t1

×
=

×
, b t nie ie ie

t1 t1 t1= ×  (4.9) 

The orthogonal triad ie
tt , ie

tn  and ie
tb  can be used to define the orthogonal transformation matrix 

ie
tA  as follows: 

  ie ie ie ie
t t t t =  A t n b  (4.10) 

The matrix of the position vector gradients J can be expresses as follows: 

  J A Uie
t t t= , rJ r r r

x

ie
ie ie ie

t x y z
∂  = =  ∂  

(4.11) 

  ( )
( ) ( ) ( )

( ) ( )
( )

0

0 0

t r t r t r

U A J n r n r

b r

T T Tie ie ie ie ie ie
t x t y t z

T T Tie ie ie ie ie
t t t t y t z

Tie ie
t z

 
 
 

= =  
 
  

 (4.12) 

where ( ) ( ) ( )0, 0, 0
T T Tie ie ie ie ie ie

t x t x t y= = =n r b r b r . It is clear from the Equation 4.12, that on the 

centerline of the beam, one has the following decomposition for the matrix of the position vector 

gradients: 

  J A Uie
t t t= , (4.13) 

where U is an upper triangular matrix that enter into the formulation of the Lagrangian strains 

Tensor: 

  ( ) ( )1 2 1 2ε J J I U U IT T
t t t t= − = −  (4.14) 
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The matrix Ut  can be written as 

  

( )

( ) ( ) ( )
0

0 0

Tie ie
x x xy xz

ie ie ie
x x x

T T Tie ie ie ie ie ie
x x y y xy xy x x yz xy xz

t ie ie ie ie ie ie
x y x x y x

ie ie
x y

ε ε

ε ε ε ε ε

 
 
 
 
 − − =
 × ×
 
 
 × 
 

r r

r r r

r r r r r r
U

r r r r r r

J
r r

 (4.15) 

The decomposition of Equation 4.11 is the QR decomposition of the matrix of the position vector 

gradients defined on the beam centerline, with Q = ie
tA and R = Ut . The use of the decomposition 

leads to the same definition of the Lagrangian strain components. The proof that the use of 

tangent frame leads to the QR decomposition is presented in the literature (Sugiyama et al., 

2006). Note that the elements of the upper- triangular matrix U defines components that can be 

related to the stretch and shear deformation on the beam centerline. 

4.2.2. Cross Section Frame 

As previously mentioned in Chapter 2 of the thesis, another possible choice for the coordinate 

system is to use the cross section frame that describes the orientation of a joint coordinate system 

that is rigidly attached to the beam centerline, Figure 4c. In the three-dimensional two nodes 

ANCF beam element, the cross section deforms but remains planar due to the use of linear 

polynomials in y and z. It can be shown that an arbitrary vector drawn on the cross section can be 

expressed as a linear combination of the two vectors ie
yr and ie

zr  (Sugiyama et al., 2003). 

Let ie
st , ie

sn  and ie
sb  be three orthogonal vectors defined at an arbitrary point on the beam 
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centerline of an element e on a body i . A vector on the cross section of the beam can be defined 

as 

  
ie
yie

s ie
y

=
r

n
r

, (4.16) 

where ie ie ie
y y= ∂ ∂r r , and ie

yr  is the Euclidian norm of ie
yr  defined as 

Tie ie
y yr r . A unit vector ie

st  

normal to both ie
sn  and ie iez∂ ∂r can be defined as 

  
ie ie

ie s z
s ie ie

s z

×
=

×
n rt
n r

 (4.17) 

where ie ie ie
z z= ∂ ∂r r . A unit vector ie

sb  can then be defined as 

  ie ie ie
s s s= ×b t n  (4.18) 

 One can show that the unit vector ie
sb  lies in the cross section plane that contains the 

gradient vectors ie
yr  and ie

zr . In the case of the cross section frame, the orientation of the joint 

coordinate system at an arbitrary point on an element can be defined using the following 

orthogonal transformation matrix: 

  ie ie ie ie
s s s s =  A t n b  (4.19) 

Note that in the deformed configuration, the cross section frame is not in general the same as the 

tangent frame previously discussed in this section, and they differ due the rotation of the cross 

section as the result of the shear effect. 

 The matrix of the position vector gradients J can be expresses as follows: 

  J A Uie
s s s= ,  rJ r r r

x

ie
ie ie ie

s x y z
∂  = =  ∂  

(4.20) 
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( )
( )
( ) ( ) ( )
( ) ( )

0 0

0

t r

U A J n r n r n r

b r b r

Tie ie
s x

T T T Tie ie ie ie ie ie ie
s s s s x s y s z

T Tie ie ie ie
s x s z

 
 
 

= =  
 
    

 (4.21) 

where ( ) ( ) ( )0, 0, 0
T T Tie ie ie ie ie ie

s y s z s y= = =t r t r b r . It is clear from Equation 4.16, that on the 

centerline of the beam, one has the following decomposition for the matrix of the position vector 

gradients: 

  J A Uie
s s s= ,  (4.22) 

where U is an upper triangular matrix that depends on the strains. 

  ( ) ( ) ( )1 2 1 2 1 2ε J J I U A A U I U U IT T T T
s s s s s s s s= − = − = −  (4.23) 

The matrix Us can be written as 

  
( )

( ) ( ) ( )

0 0

0

ie ie
y z

Tie ie
y yxy yz

s ie ie ie
y y y

T T Tie ie ie ie ie ie
y y xz yz xy y y z z yz yz

ie ie ie ie ie ie
y z y y z y

ε ε

ε ε ε ε ε

 
 

× 
 
 
 =
 
 
 − −
 
 × × 

J
r r

r r
U

r r r

r r r r r r

r r r r r r

 (4.24) 
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4.3.  Relation between Joint Frames 

Consider the case of the two coordinate systems (tangent and cross section frame) discussed in 

the preceding section; these two coordinate systems have two different orientations. Let A ie
s be 

the transformation matrix that defines the orientation of the coordinate system defined by the 

cross section frame with respect to the global coordinate system, and A ie
t be the transformation 

matrix that defines the orientation of the coordinate system defined by the tangent frame with 

respect to the global coordinate system. Let u be a vector defined in the global coordinate 

system, u s  a vector defined in the cross section coordinate system, and ut  a vector defined in the 

tangent coordinate system, then u can be defined as u A u A uie ie
s s t t= =  and u T uie

s st t= . Using the 

formulas for the tangent and cross section frames presented in the preceding section, one can 

obtain the transformation matrix the defines the orientation of the tangent frame with respect to 

the cross section frame as 

  T ie
st = ( )Tie

tA ie
sA =

Tie ie ie
t t t  t n b ie ie ie

s s s  t n b
 

(4.25) 

This transformation can be written in a more explicit form as 

    T ie
st =

( )

( ) ( ) ( )( )

( )

r r

r r r r r r r r r

r rr r r r

r r r r r r r r r r r r r r r

r r

Tie ie
xz y y xy yzxy

ie ie ie ie ie ie ie ie ie
x y z x y x y z y

TT T ie ieie ie ie ie
xy xy yz y y xy xzx x y y xy xyxy

ie ie ie ie ie ie ie ie ie ie ie ie ie ie ie
x y x y z x y x y x y x y z y

Tie ie
xy yz y y xz

J

J

ε ε εε

ε ε ε ε εε εε

ε ε ε

−

× ×

−−−

× × × × ×

− ( )
0

r r

r r r r r r r r r

Tie ie
y y

ie ie ie ie ie ie ie ie ie
x y y z x y y z y

J

 
 
 
 
 
 
 
 
 
 
 × × × ×    

(4.26) 
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where ( )r r rie ie ie
x y zJ = × , ( )r r

Tie ie
xy x yε = , ( )r r

Tie ie
xz x zε = , ( )r r

Tie ie
yz y zε = . In the knee joint model 

used in this investigation, the ligaments don’t experience a planar motion and the constitutive 

model used for modeling the ligaments is nearly incompressible.  

 

4.4. Constraint Contact Formulation 

In the second chapter, a kinematic revolute joint was used to model the sliding between the 

femur and tibia. Only two lateral ligaments were providing stability for the knee: LCL and MCL. 

In the third chapter, two contact formulations were used to model the tibia/femur contact of the 

knee joint: the elastic contact formulation and the constraint contact formulations. The effects of 

the meniscus and two other ligaments were taken into consideration. The two contact 

formulations were successfully implemented in a general MBS algorithm that allows for 

modeling rigid and flexible body dynamics.  In this chapter, the constraint contact formulation is 

used to predict the femur/tibia contact forces. First, the contact points on the surfaces must 

coincide, and second, the two surfaces must have the same tangent planes at the contact point. 

No penetrations and separations are allowed in this formulation and the non-conformal contact 

conditions are imposed as constraints equations. As shown in the preceding chapter, the 

following five constraint equations are required to describe the non-conformal contact between 

the two bodies. 

  ( ) ( ) ( )1 2 1 2
0, 0, 0, 0, 0f f f f ft t t t t t t t⋅ − = ⋅ − = ⋅ = ⋅ = ⋅ − =t r r t r r t n t n n r r  (4.27) 

where 
1
kt and 

2
kt , k = f, t , are respectively, the tangents to the tibia and the femur surfaces at the 

potential contact point, ft f t= −r r r  is the vector that defines the relative position of the point on 
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the femur with respect to the point on the tibia; and tn  is the normal to the tibia surface at the 

potential contact point. 

 

4.5. Change in Area 

As previously mentioned, the partially clamped joint allows for the deformation of the cross 

section. In the case of the fully clamped joint, the gradient vectors are constrained to be 

orthogonal unit vectors, and therefore, the cross section area remains the same in both 

configurations: reference and current configurations. Nanson’s formula, which defines the 

relationship between the areas in the undeformed and deformed (or reference and current) states 

can be used to calculate the cross section deformation in the two cases of the partially clamped 

joint (tangent frame and cross section frame) (Ogden, 1984; Shabana, 2008). This formula as 

shown in Chapter 2 of the thesis is given by 

  
( )1 2T T

ds J
dS

=
n JJ n

 (4.28)  

In this equation, dS  and ds are the areas of an infinitesimal surface in the reference and current 

configurations, respectively; n  is a unit vector normal to the area in the current configuration; 

and J = J  is the determinant of the matrix of position vector gradients. (Hussein et al., 2009) 

In this chapter, as previously pointed out, the cross section frame and the tangent frame are used 

for the ANCF bodies. As a consequence, the unit vector normal to the cross section surface is 

defined by the following equation: 

  
ie
z

ie
y

ie
z

ie
y

rr
rr

n
×

×
=  (4.29) 
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The matrix of position vector gradients is 

  x y z =  J r r r  (4.30) 

Using Equation 4.21, one obtains for cross section and tangent frame: 

  ie
z

ie
ydS

ds rr ×=               (4.31) 

These simple formulas are used in this investigation to obtain the ratio of the cross section area 

in the current and reference configurations for the tangent and cross section frames. 

 

4.6. Constrained MBS Equations 

Nonlinear finite element formulations can be integrated with the computational multibody 

system algorithms that are designed to solve the differential and the algebraic equations of 

complex systems. In order to be able to solve the resulting nonlinear dynamic equations, a multi-

formulation approach will be used. The tibia and the femur are modeled as rigid bodies. On the 

other hand, the very flexible bodies (ligaments) will be modeled using the large deformation 

ANCF finite elements. Joint constraints that describe insertion site conditions and specified 

motion trajectories are being formulated using a set of nonlinear algebraic constraints equations 

that are adjoined to the system differential equations of motion using the technique of Lagrange 

multipliers. The augmented form of the equations of motion is used to obtain the vector of 

reference, elastic, and absolute accelerations. 

 Lagrange multipliers are used to determine the generalized constraint forces associated 

with the reference, elastic and absolute nodal coordinate formulation. The algorithm is based on 

a sparse matrix structure of the augmented Lagrangian form of the equation of motion and has 



92 

 

 

 

been discussed in several previous publications (Yakoub et al., 1999). As previously mentioned 

in this thesis, the augmented form of the equations of motion can be written as (Shabana, 2005): 

   

T

T

T

q

q

q

q q q

m m 0 C Qq
m m 0 C Qq

Qq0 0 m C
QλC C C 0

r

f

a

r f a

rr rf rr

fr ff ff

aaaa

c

             =              
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 (4.32) 

where the subscripts r, f and a refer respectively, to reference, elastic and absolute nodal 

coordinates; mrr , m rf , m fr , m ff are the inertia sub-matrices that appear in the FFR formulation; 

maa is the constant symmetric mass matrix associated with the absolute nodal coordinate 

formulation and it is the identity matrix when Cholesky coordinates, qa , are used; 
rqC , 

fqC , and 

qC
a
 are the Jacobian matrices of the constraint equations associated, respectively, with the 

reference, elastic, and ANCF coordinates, λ  is the vector of Lagrange multipliers, and Qc  is the 

quadratic velocity vector that results from the differentiation of the constraint equations twice 

with respect to time. The generalized coordinates, qr and q f , are the coordinates used in the 

FFR formulation to describe the motion of rigid and flexible bodies that experience small 

deformation. The vector qa  is the vector of absolute nodal coordinate formulation used to 

describe the motion of flexible bodies that may experience large displacement, deformations, and 

change in the cross section. Knowing the independent coordinates, the nonlinear kinematic 

constraint equations can be solved for the dependent coordinates using an iterative Newton-

Raphson algorithm.  
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4.7.  Numerical Results 

In the numerical study presented in this section, two different joint frames are used to impose the 

partially clamped joint constraints: tangent and cross section frame. The goal of this chapter is to 

examine the effect of using different frames to formulate the partially clamped joints. In order to 

focus on the frames discussed in this chapter, the newly developed framework is applied to a 

simplified knee model (Chapter 3). The lateral ligaments LCL and MCL and the contact surface 

geometry of the femur and tibia are modeled using three dimensional ANCF beam elements. In 

this numerical study, the fibula, assumed rigid, is connected to the tibia using rigid joint, 

constraining all the translations and rotations of the fibula with respect to the tibia; also the 

constraint contact formulation is used to predict the femur/tibia contact forces. The tibia and the 

femur are also considered as rigid bodies and the cruciate ligaments ACL and PCL are modeled 

using spring damper elements. All the ligaments are assumed to have pretension. 

 The results from this section are based on the knee joint example used in Chapter 3 of 

this thesis. For completeness the important details of the knee model are presented again. The 

LCL is assumed clamped to the fibula and femur. This ligament is positioned vertically 

lengthwise and rotated 19 degrees from the vertical axis of the femur. It has a length of 66.6 mm 

and elliptical cross-section radii of 3.4 mm and 2.3 mm. The LCL femoral insertion site is 19.5 

mm above the inferior tip of the femur with the fibular insertion site located 43.5 mm below the 

tibial plateau (LaPrade et al., 2007). The anterior fibers of the MCL are clamped to the femur and 

tibia. This ligament has a length of 94.8 mm with cross-section radii of 7 mm and 2.3 mm; and it 

is attached vertically and lengthwise to the femur 32.8 mm above the inferior tip of the femur. Its 

tibial attachment is 62 mm below the tibial plateau (Meister et al., 2000). Table I shows other 
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dimensions and inertia properties of the femur and tibia; Table II shows the values of the 

ligament material coefficients used in this investigation; while Table III presents the physical 

properties of the ligaments. The MCL and LCL are exposed to residual stresses as all biological 

soft tissues. The residual longitudinal strain in the MCL and LCL is assumed to be 0.04 (Weed et 

al., 2008) and for ACL and PCL is assumed to be 0.05 (Song et al, 2004). 

 The result of the X-displacement of the femur center of mass is presented in Figure 32, 

while the magnitudes of the two contact forces obtained using the constraint contact formulation 

for both cases tangent and cross section frames are shown in Figures 33-34. Previous knee model 

used in Chapter 3 showed the magnitudes of the contact forces depend on the length and 

insertion site of the cruciate ligaments. 

 As previously mentioned in this chapter, the fully clamped joint eliminates all the 

translation, rotation and deformations degrees of freedom of the cross section at the ligament/ 

bone insertion site; the gradient vectors do not change their length and orientation, and at the 

joint node remain orthogonal unit vectors. Figure 35 illustrates the differences between the axial 

strains in the case of fully clamped joint and partially clamped joint for the MCL. The axial 

strain at the midpoint in the case of fully clamped joint is smaller since the deformation of the 

material is fully constrained at the ligament ends and in this special case the material will deform 

more at the middle. 

 The partially clamped joint is not a fully constrained connection; the cross section of the 

joint has the freedom to deform at the joint node. Numerical results using the Neo-Hookean 

material model are obtained for the partially clamped joint models in both cases, based on the 

fully parameterized ANCF beam elements. The convergence the fully parameterized ANCF 
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beam element models is examined by comparing 8 and 12 elements models. Using this 

convergence results, all the other figures are produced using the 8 beam element model. Figure 

36 shows the axial strain at the LCL/femur insertion site, while Figure 37 shows the axial strain 

of the MCL midpoint. The LCL axial strain of the fibula insertion site is presented in Figure 38. 

Figures 39-40 show the change in the cross sections at the midpoints of the MCL and LCL using 

Nanson’s formula. In Figures 41-44 shear strain at LCL/MCL femur insertion site are presented; 

it can be seen that yzε is equal to zero only in the case of the tangent frame in this knee joint 

example. These figures show a good agreement between the two frames. The results presented 

for the tangent frame show that the maximum strain appears at the ligaments/femur insertion site 

for both the LCL and MCL. 

 The results also indicated the strain is different in different regions of the two lateral 

ligaments and the distribution of the strain changes with flexion angle. The highest strain in the 

MCL and LCL were found at the ligament/femur insertion site at full extension. Maximum 

strains in this example are slightly lower than the ones presented in the literature (Weiss et al., 

2001). From the results presented in these figures, it can be seen that the tangent frame has a 

better convergence than the cross section frame in the case of axial strains.  
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Figure 32    X Coordinate of center of mass of the femur 
(  Cross section frame,   Tangent frame) 

 
 

 
Figure 33    Normal contact forces for contact 1 

      (  Cross section frame,   Tangent frame) 
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Figure 34    Normal contact forces for contact 2 

(  Cross section frame,   Tangent frame) 
 

 
Figure 35    Axial strain of the MCL midpoint 

(  cross section frame,   tangent frame,  ▬  fully clamped) 
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Figure 36    Axial strain of the LCL / femur insertion site  

(  LCL tangent frame,   LCL cross section frame) 
 

 

 
Figure 37    Axial strain of the MCL midpoint 

(  MCL cross section frame,   MCL tangent frame) 
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Figure 38    Axial strain of the LCL/fibula insertion site 

(  LCL cross section frame,   LCL tangent frame) 
 
 
 

 
Figure 39    Deformation of the cross section area at the midpoint 

( MCL cross section frame,    MCL tangent frame) 
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Figure 40    Deformation of the cross section area at the midpoint  
( LCL cross section frame,    LCL tangent frame) 

 
 
 

 
Figure 41    Shear strain Ɛxz  at LCL femur insertion site 

( LCL cross section frame,    LCL tangent frame) 
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Figure 42    Shear strain Ɛxz   at MCL femur insertion site 

( MCL cross section frame,    MCL tangent frame) 
 

 
Figure 43    Shear strain Ɛyz  at LCL femur insertion site 

( LCL cross section frame,    LCL tangent frame) 
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Figure 44    Shear strain Ɛyz  at MCL femur insertion site 

( MCL cross section frame,    MCL tangent frame) 
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4.8. Concluding Remarks 

In this chapter, the formulation of the boundary conditions of the partially clamped joint is 

investigated using two different models that employ the cross section and the tangent frames. 

The fully parameterized ANCF beam element, which allows for the deformation of the cross 

section, is employed in this investigation with the human knee joint as an example. The fully 

clamped joint does not allow for the cross section deformation, while the partially clamped joint 

allows for the cross section deformation at the ligament/bone insertion site. This cross section 

deformation can be measured using Nanson’s formula. The numerical results demonstrate that 

the new computational finite element/multibody system framework using the simplified knee 

model with either the cross section frame or tangent frame can yield useful data in regard to the 

change in length and strains of either the LCL or MCL. The data shows higher strains for both 

ligaments than the quasi-static finite element models reported in the literature (Weiss et al., 2001; 

Peña et al., 2006). The higher strains are the result of the integration of the fully parameterized 

ANCF beam finite element model and contact constraint formulation into a dynamic multibody 

computational framework that captures the large displacement and change in the ligament cross 

section resulting from the prescribed cyclic motion.  Also, the use of the constraint contact 

formulation, the pretension in the cruciate ligaments and the fact that the knee joint model used 

in this study is not symmetric, have an important effect on the strains obtained in this chapter. 

 In general, the tangent frame and the cross-section frame are not the same and they differ 

due to the rotation of the cross-section as the result of the shear and torsion effects. In most 

applications, the difference is small, permitting without producing significant errors the use of 
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either frame. Nonetheless, the results of the example used in this investigation show that the 

cross section frame has a better convergence characteristics as compared to the tangent frame. 
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CHAPTER 5 

CROSS SECTION DEFORMATION  

 

Most existing beam formulations assume that the cross section of the beam remains rigid 

regardless of the amplitude of the displacement. The absolute nodal coordinate formulation 

(ANCF), however, allows for the deformation of the cross section and leads to a more general 

beam models that capture the coupling between different modes of displacement. This chapter 

examines the effect of the order of interpolation on the modes of deformation of the beam cross 

section using ANCF finite elements. To this end, a new two-dimensional shear deformable 

ANCF beam element is developed. The new finite element employs a higher order of 

interpolation, and allows for new cross section deformation modes that cannot be captured using 

previously developed shear deformable ANCF beam elements. The element developed in this 

study relaxes the assumption of planar cross section; thereby allowing for including the effect of 

warping as well as for different stretch values at different points on the element cross section. 

The displacement field of the new element is assumed to be cubic in the axial direction and 

quadratic in the transverse direction. Using this displacement field, more expressions for the 

element extension, shear and the cross section stretch can be systematically defined. Measures of 

the shear angle, extension, and cross section stretch can also be systematically defined using 

coordinate systems defined at the element material points. Using these local coordinate systems, 

expressions for a nominal shear angle are obtained. The differences between the cross section 

deformation modes obtained using the new higher order element and those obtained using the 

previously developed lower order elements are highlighted. Numerical examples are presented in 
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order to compare the results obtained using the new finite element and the results obtained using 

previously developed ANCF finite elements. 

 

5.1. Background 

Before introducing the higher order TDBE16, the TDBE12 that will be used in the comparative 

study presented in this chapter is first reviewed in this section. 

5.1.2. TDBE12 Displacement Field  

The planar shear deformable TDBE12 displacement field is cubic in the longitudinal coordinate 

x  and linear in the transverse coordinate y . The displacement field of this ANCF finite element 

is defined as (Omar and Shabana, 2001; Shabana, 2008) 

2 3
0 1 2 3 4 5

2 3
0 1 2 3 4 5

a a x a y a xy a x a x
b b x b y b xy b x b x

 + + + + +
=  + + + + + 

r                                               (5.1) 

where r is the global position vector of an arbitrary point on the finite element, ai and bi 

(i=0,1,…,5) are the polynomial coefficients, and x and y are the coordinates defined in the beam 

coordinate system. The coordinates of each node of this shear deformable element consist of one 

position vector and two gradient vectors. For node k , these coordinates are defined as 

               ( ) ( ) ( )
TT T Tk k k k

,x ,y
 =   

e r r r                                           (5.2) 

where ek is the nodal coordinate vector at node k , kr  is the global position vector of node k and 

,
k k
x x= ∂ ∂r r  and ,

k k
y y= ∂ ∂r r  define the position vector gradients. Using the preceding two 

equations, one can write the global position vector as ( ) ( ),x y t=r S e ; where  
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( 1)( ) ( )
Tk T k T+=   e e e  is the vector of the element nodal coordinates, t  is time, and S  is the 

element shape function matrix defined as  

1 2 3 4 5 6s s s s s s =  S I I I I I I                   (5.3) 

where I  is a 2 2×  identity matrix, and the shape functions is (i=1,2,…,6) are defined as 

          
2 3 2 3

1 2 3
2 3 2 3

4 5 6

1 3 2 ( 2 ) ( )

3 2 ( )

s s l s l
s s l s l

ξ ξ ξ ξ ξ η ξη

ξ ξ ξ ξ ξη

= − + = − + = − 


= − = − + = 
                        (5.4) 

and, /x lξ = , /y lη = , l is the length of the element in the reference configuration (Omar and 

Shabana, 2001).   

5.1.3. Gradients and Element Cross Section 

As previously mentioned, the TDBE12 displacement field is linear in the transverse coordinate 

y , and consequently, the gradient vector , yr  defines the orientation of the element cross section. 

Furthermore, the cross section remains planar despite the fact that the element displacement 

allows for the cross section stretch. Nonetheless, this stretch does not depend on the location of 

the material points on the cross section. The TDBE gradient vectors are defined as 

2
1 3 4 5

, 2
1 3 4 5

1, 2, 3, 4, 5, 6,

2 3
2 3x

x x x x x x

a a y a x a x
b b y b x b x

s s s s s s

 + + +
=  + + + 

 =  

r

I I I I I I e
        (5.5) 

and 

2 3
, 3, 6,

2 3
y y y

a a x
s s

b b x
+ 

 = =   + 
r 0 0 I 0 0 I e        (5.6) 
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It is clear from these two equations that the TDBE12 gradient vector ,xr  is linear in the 

transverse coordinate y , and since the position vector can be written as ( ) , yc y= +r r r , the 

gradient , yr  defines the TDBE12 cross section, where ( ) ( )0c y= =r r . The gradient vector , yr  

enters into the definition of the matrix of position vector gradients and the Green-Lagrange strain 

tensor. Therefore, the order of interpolation of this gradient vector will have an effect on various 

strain measures as will be discussed in this section.  

5.1.4. Local Measures and Comparison with Timoshenko Beam 

In Timoshenko beam theory, the cross section remains rigid and planar, that is, cross section 

stretch is not allowed. The rotation of the cross section α  with respect to a line perpendicular to 

the centerline defines the shear angle. Using TDBE12 gradients, the shear angle of Timoshenko 

beam theory at an arbitrary point x  on the element centerline is defined as 

( ) ( )( )1
, ,ˆ ˆsin T
x yc

xα −= − r r , where ( )c
 implies points at the element centerline ( )0y = . This 

equation shows that the shear in Timoshenko beam theory is independent of the transverse 

coordinate y . When ANCF TDBE12 is used, the shear measure is defined in terms of , ,ˆ ˆT
x yr r  

which is function of y  as well as x ; and different point on the cross section have different shear 

values. 

 The assumption of the cross section rigidity in Timoshenko beam theory does not allow 

for stretch in the direction of the y  coordinate. This stretch effect can be captured by ANCF 

finite elements. In the case of ANCF finite elements, the stretch measure is function of , ,
T
y yr r  

which is the square of the magnitude of the gradient vector , yr . Nonetheless, for the TDBE12, 
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this stretch measure for a given x  is constant along cross section lines and it is independent of 

y . 

 As previously mentioned in this thesis, ANCF finite elements can also capture the change 

in the cross section area as defined by Nanson’s formula given by 

 1/2( )T T
Jda dA=

n JJ n
                                            (5.7) 

 where dA  and da  are the areas of an infinitesimal surface in the reference and current 

configurations, respectively; n  is a unit normal to the surface; , ,x y =  J r r  is the matrix of 

position vector gradients; and J  is the determinant of J . Since the TDBE12 cross section 

remains planar, n  is independent of y , and TJ n  is linear in y ; da dA  is independent of y  in 

the case of TDBE12; that is, area ratios at all points of a cross section at fixed longitudinal 

coordinate x  are the same. This fact is proved in Appendix B of the thesis. 

 

5.2. Proposed New Shear Deformable Element  

In this section, a new shear deformable ANCF finite beam element, TDBE16, is introduced. This 

element allows for the variation of the stretch along cross section lines, capturing warping modes 

of deformation, and allows for a more general description for the change of the cross section 

area. The results obtained using the proposed element will be compared with the results obtained 

using TDBE12 in order to validate the new element and also in order to demonstrate the 

fundamental difference between the TDBE12 and TDBE16. 
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5.2.1. TDBE16 Displacement Field 

In order to allow for warping of the cross section and for the variation of the stretch along cross 

section lines, the use of the following displacement field is proposed: 

2 3 2 2 3
0 1 2 3 4 5 6 7

2 3 2 2 3
0 1 2 3 4 5 6 7

( 3 )
( 3 )

a a x a y a xy a x a x a x y y a x y
b b x b y b xy b x b x b x y y b x y

 + + + + + + − +
=  + + + + + + − + 

r                       (5.8) 

 where r  is the global position vector of an arbitrary point P  on the element as shown in Figure 

45, ai and bi (i=0,1,…,7) are the polynomial coefficients. For this element, the following vector 

of nodal coordinates ke  is used at node k : 

                ( ) ( ) ( ) ( )
TT T T Tk k k k k

,x ,y ,xy
 =   

e r r r r                                          (5.9) 

where, as in the TDBE12 model, kr  is the global position vector of node k , and ,
k k
x x= ∂ ∂r r , 

,
k k
y y= ∂ ∂r r  and 2

,
k k
xy x y= ∂ ∂ ∂r r  define the position vector gradients at node k .  

The TDBE16 has additional vector, ,
k
xyr , in the nodal coordinates since higher order of 

interpolation is used. Using the two preceding equations, the element shape function matrix S  

can be defined as 

1 2 3 4 5 6 7 8s s s s s s s s =  S I I I I I I I I                                     (5.10) 

where, the shape functions is (i=1,2,…,8) can be written as 

                     

2 3 2 3
1 2

2 2 2 3 2 2 2 2 3
3 4

2 3 2 3
5 6

2 2 2 3 2 2 2 2 3
7 8

1 3 2 ( 2 )

( 3 9 2 ) ( 2 6 + )

3 -2 ( )

(3 9 2 ) ( 3 )

s s l
s l l s l l
s s l
s l l s l l

ξ ξ ξ ξ ξ

η ξ η ξ η ξ η ξη ξ η ξ η ξ η

ξ ξ ξ ξ

ξ η ξ η ξ η ξ η ξ η ξ η

− + − +


− + + − + 


− + 
− − − + + 

= =
= =
= =
= =

           (5.11)  
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Note that 1 2 5, ,s s s  and 6s  are the same as those of the TDBE12. Nonetheless, some of the 

TDBE16 shape functions such as 3s , 4s , 7s , and 8s  are quadratic in η , while TDBE12 shape 

functions are only linear in η . It follows that the TDBE16 transverse gradient vector , yr  can 

capture quadratic cross section strain variations. It is also important to mention that a standard 

finite element assembly process will ensure continuity of the curvature vector ,xyr  for the 

TDBE16, while this continuity is not guaranteed in the case of the TDBE12 models. 

 

 

 

 

 
Figure 45    Undeformed and deformed beam configurations 
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5.2.2. TDBE16 Gradient Vectors 

As previously mentioned, the proposed new ANCF finite element is cubic in x  and quadratic in 

y . The gradient vectors of the element are defined as 

   

2 2 2
1 3 4 5 6 7

, 2 2 2
1 3 4 5 6 7

1, 2, 3, 4, 5, 6, 7, 8,

2 3 2 ( 3 ) 3
2 3 2 ( 3 ) 3x

x x x x x x x x

a a y a x a x a x y y a x y
b b y b x b x b x y y b x y

s s s s s s s s

 + + + + − +
=  + + + + − + 

 =  

r

I I I I I I I I e

    (5.12) 

and 

   

2 3
2 3 6 7

, 2 3
2 3 6 7

3, 4, 7, 8,

(1 6 )
(1 6 )y

y y y y

a a x a x y a x
b b x b x y b x

s s s s

 + + − +
=  + + − + 

 =  

r

0 0 I I 0 0 I I e

     (5.13) 

The derivatives of the shape functions that appear in the preceding two equations are 

 

( )
( )

1 2 2 2 2
1, 2, 3,

2 2 2 1 2 2
4, 5, 6,

2 2 2 2 2
7, 8,

2 2 3 2 2 2 3
3, 4,

7,

6 , 1 4 3 , 6 18 6

4 12 3 , 6 , 2 3

6 18 6 , 2 6 3

1 3 18 2 , 2 12

3

x x x

x x x

x x

y y

y

s l s s l

s l l l l s l s

s l s l l l

s l s l l l l

s

ξ ξ ξ ξ ξη ξη ξ η

η ξη ξη ξ η ξ ξ ξ ξ

ξη ξη ξ η ξη ξη ξ η

ξ ξ η ξ ξ ξ ξ η ξ

ξ

−

−

= − + = − + = − + +

= − + + = − = − +

= − − = − + +

= − + + = − + +

= 2 2 3 2 2 2 3
8,18 2 , 6yl s l l lξ η ξ ξ ξ η ξ








− − = − + +    (5.14) 

Note that in the case of the TDBE16 model, , yr  becomes dependent on the transverse coordinate 

y  and is quadratic in the longitudinal coordinate x . 
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5.2.3. Local Measures and Comparison with TDBE12 

The fact that the TDBE16 gradient vector , yr  can vary linearly with respect to y and quadratic 

with respect to x regardless of the load applied makes the new element fundamentally different 

from TDBE12. The TDBE16 cross section is no longer defined by the vector , yr  because of the 

warping effect, the stretch of the TDBE16 is no longer constant along the cross section lines, and 

Nanson’s formula leads to different area ratios for different values for the TDBE16 transverse 

coordinate y . The global position of an arbitrary point on the TDBE16 can be written as 

( ) , yc y= + +r r r h , where ( ) ( )0c y= =r r , and [ ]2 2
6 63 Tx y a b=h . Because of the TDBE16 

kinematic description, the definition of the shear angle used in Timoshenko beam theory is not 

straight forward as in the case of the TDBE12 element in which the cross section remains planar. 

 

5.3. Average Measures  

While a general continuum mechanics approach based on the Green-Lagrange strain tensor 

definition is used in this investigation to define the element elastic forces, it is sometimes 

convenient to introduce coordinate systems that can be used to define average kinematic 

measures, instead of the local measures. These coordinate systems, which do not affect the 

definition of the Green-Lagrange strains, can be used to define nominal cross section planes that 

can be used to define nominal measures. Furthermore, these coordinate systems enter into the 

formulation of the joints in multibody system (MBS) applications. Therefore, it is also important 

to understand the basic differences in the definitions of these frames when different finite 

elements are used. To this end, two different frames; the tangent frame and the cross section 
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frame; that are often used in flexible MBS applications are discussed in this section. The analysis 

presented in this section will also shed more light on the fundamental differences between the 

two ANCF elements considered in this investigation. 

5.3.1. Tangent Frame 

The axes of the tangent frame at an arbitrary point on the element centerline is defined by the 

columns of the transformation matrix At . This matrix is the same as the orthogonal matrix Q 

that appears in the QR decomposition of the matrix of the position vector gradients J , where R 

is an upper-triangular matrix (Sugiyama et al., 2006). Therefore, in the case of the tangent frame, 

t =A Q . The vector tangent to the beam centerline can be defined as 1 2 , ,i r r
Tt t t

x xi i = =  , 

while the vector normal to the beam centerline is 2 1

Tt t ti i = − j . The two orthogonal vectors 

it and jt  define the columns of the transformation matrix A i jt t t =   . The matrix of position 

vectors gradients can then be expressed as J A Ut t= , where tU  is an upper-triangular stretch 

matrix defined as     

( ) , ,
, ,

,0

T TT

TT

t tt
T x yt t

x y tt
y

  
   = = =         

i r i ri
U A J r r

j rj
                                  (5.15)  

In the case of Euler-Bernoulli beam theory, tU  reduces to a diagonal matrix since the cross 

section remains orthogonal to the beam centerline. Note also that the Green-Lagrange strain 

tensor can still be expressed in terms of  tU  as  ( ) ( )2 2
TT t t= − = −ε J J I U U I ; and tU  reduces 

to the identity matrix in the case of rigid body motion. 
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In the case of Timoshenko beam theory, the off-diagonal upper-triangular element in tU  

is ( )( ), cos 2
Tt

y α π= +i r , where α  is the shear angle; while the diagonal element ,

Tt
yj r  is equal 

to one since the cross section remains rigid and planar. The diagonal element ,

Tt
xi r , however, can 

be used to measure the extension of the beam and this element is equal to 2 1xxε − , where xxε  is 

the normal Lagrangian strain associated with the longitudinal coordinate line. 

In the case of the TDBE12, a measure of the Timoshenko shear angle α  can be obtained 

using the equation ( )( ),̂ cos 2
Tt

y α π= +i r , where ,̂ yr  is a unit vector along , yr . In this case, the 

cross section remains planar and , yr  is independent of y . In the more general TDBE16 case, , yr  

and ,̂ yr  depend on the transverse coordinate y , and therefore, one cannot in general determine an 

equivalent to the shear angle used in Timoshenko beam theory. For instance, 

( ) ( )( ),̂ cos 2
Tt

y cc
α π= +i r  defines a shear angle at the element centerline, where subscript c  

refers to variables and vectors at 0y = . Furthermore, the element ,̂

Tt
yi r  of the matrix tU , as well 

as the Lagrangian shear strain xyε , remains the same for all values of the transverse coordinate 

y , while these terms do not remain constant in the more general TDBE16 model. Similar 

comments apply to the diagonal element ,

Tt
yj r  of  tU  and the normal Lagrangian strain yyε . Note 

that this component of normal strain cannot be captured by Timoshenko beam theory. 

The TDBE12 and TDB16 axial strain distributions along the coordinate line y  are 

different, and both are significantly different from the distribution used in Euler-Bernoulli and 

Timoshenko beam theories. This is clear from the definition of the displacement field of the two 
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ANCF finite elements and the diagonal element ,

Tt
xi r  of the stretch matrix tU . This diagonal 

element defines the axial Lagrangian strain xxε . In both TDBE12 and TDBE16 models, xxε  is 

not restricted to a linear strain distribution along y ; it is quadratic in the TDBE12 case, and of 

fourth order in the TDBE16 case. 

5.3.2. Cross Section Frame  

In the case of the cross section frame, the transverse axis is defined as 

( ) ( )1 2 , ,[ ]c c c T
y yc c

j j= =j r r  , and the vector normal to jc  is 2 1ic c cj -j =   . The two orthogonal 

vectors ci  and cj define the axes of a coordinates system called cross section frame. This frame 

is defined by the transformation matrix A i jc c c =   . The matrix of position vectors gradients 

can be expressed as J A Uc c= , where 

,

, ,

0cT
xc

cT cT
x y

 
=  

  

i r
U

j r j r                                  
(5.16) 

In the TDBE12 model, as previously mentioned, , yr  is independent of y , and this gradient 

vector defines the element cross section. In this case, an angle equivalent to the shear angle used 

in Timoshenko beam theory can be defined using the equation ( ),̂ cos
Tc

x cc
α=i r . Since in the 

TDBE16 model, ( ), y c
r  does not define the element cross section, the shear angle cα  is not 

equivalent to that used in the Timoshenko beam theory. One can also use the elements of the 

stretch matrix cU  to demonstrate that the ANCF TDBE12 and TDBE16 models are more general 

as compared to the finite elements that are based on the Euler-Bernoulli and Timoshenko beam 

theories.  
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5.4. Equations of Motion and Warping 

While TDBE12 and TDBE16 have two different displacement fields and employ different 

number of nodal coordinates, one can show that the two elements can correctly describe an 

arbitrary rigid body displacement. These displacement fields do not employ rotations as nodal 

coordinates, and therefore, can define a unique rotation field. The two elements also have a 

constant mass matrix, allow for the use of general constitutive equations and general continuum 

mechanics approach in formulating the elastic forces, and allow for capturing the coupling 

between the cross section deformation, and bending and extension of the finite element. Using 

the kinematic equations presented in this chapter, the equations of motion of the two finite 

elements can be written in the following form (Shabana, 2008): 

e=Me Q&&      (5.17) 

where eQ  is the element nodal force vector, T

V
dVρ= ∫M S S  is the constant symmetric mass 

matrix, and ρ  and V  are, respectively, the element density and volume. The vector eQ  is a 

nonlinear function of the element nodal coordinates. In this chapter, a general continuum 

mechanics approach based on Green-Lagrange strain tensor and the second Piola-Kirchhoff 

stress tensor is used to formulate the generalized elastic forces associated with the finite element 

nodal coordinates.  Because the mass matrix is constant, an LU factorization can be performed 

only once at the beginning of the simulation. Note that the dimensions of the vectors and mass 

matrix that appear in Equation 5.17 depend on the finite element used. Furthermore, because the 

two elements employ different order of interpolation along the y  coordinates, exact integration 

in this direction requires the use of different numbers of integration points. Full integration is 
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used in the numerical results obtained using the two elements and presented in the following 

section. An explicit Adams predictor-corrector method with variable order and variable step size 

is used in the direct numerical integration of the system equations of motion. 

 The effect of warping is included in some of the existing FE formulations by adding a 

warping function (Tsai et al., 2004; Yu et al, 2005). The warping function in these investigations 

does not capture other modes of deformations of the cross section; in some of these formulations 

which are implemented in commercial finite element codes, yyε  is identically equal to zero, and 

therefore, the stretch of the cross section is not captured. Another example is Timoshenko’s work 

on warping which assumes that the cross section second moment of area does not change during 

the deformation; an assumption which is relaxed when fully parameterized ANCF finite elements 

are used. Furthermore, in most (not all) existing beam formulations a stretch of the finite element 

does not lead to a reduction in the dimension of the cross section; and such an important mode of 

deformation among others is not captured. As an example, the work by Yu et al. (2005) is based 

on the classical beam theory and assumes that one covariant vector can be determined from the 

other two by using the cross product. This assumption is not used in fully parameterized ANCF 

beam elements that employ independent gradient vectors as nodal coordinates. 

 Most planar beam elements implemented in commercial codes do not account for the cross 

section deformation. For the most part, warping is considered for spatial elements to account for 

the coupling between torsional and bending deformations. While, the new element developed in 

this investigation is a planar element; the results obtained using this element are compared in the 

following section with the results obtained using a spatial element that accounts for warping. 

This spatial element is implemented in the general purpose FE commercial code ANSYS.  
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5.5. Numerical Results 

In this section, the results obtained using the shear deformable beam element TDBE16 model are 

validated and compared with the results obtained using the TDBE12 model for different 

simulation scenarios of a free falling flexible pendulum under the effect of its weight. The 

nonlinear Green-Lagrange strain and the second Piola-Kirchhoff stress tensor are used with the 

Gauss integration technique to evaluate the nonlinear elastic forces. The principle of virtual work 

is utilized to define the generalized forces associated with the nodal coordinates (Shabana, 2008). 

The free falling two-dimensional pendulum is shown in Figure 46. The beam, which is assumed 

to have a square cross section, is connected to the ground by a pin joint; and has length of 1.2 m, 

a mass density of 5540 kg/m3, Young’s modulus 67 10E = ×  N/m2, and Poisson's ratio of 0.3. 

Two different beam models were considered in this study; the first model has 0.04×0.04 m2 cross 

section area, while the second model has 0.02×0.02 m2 cross section area. The beam shown in 

Figure 46 is assumed to be initially straight and horizontal and has zero initial velocity. The 

gravity constant is assumed to be 9.81m/s2.   

In the first model, the cross section area of the pendulum beam is chosen to be 

0.04×0.04m2. Figures 47-48 show, respectively, the tip point vertical displacement and midpoint 

transverse deformation obtained using the TDBE12 and TDBE16 models. These figures show 

that the TDBE12 and TDBE16 results are in a good agreement. Figure 49 shows the energy 

balance results obtained using the TDBE16 model. These results clearly show that the new finite 

element does not lead to a violation of the principle of work and energy. As previously 

mentioned in this chapter, the area ratio predicted by Nanson’s formula in the TDBE12 case 

remains constant along the y  coordinate. This is not, however, the case when the TDBE16 
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model is used as demonstrated by the results presented in Figure 50. The results of this figure 

show that TDBE12 and TDBE16 results are in a good agreement at the element centerline, while 

the TDBE16 model predicts significantly different results away from the centerline. This change 

cannot be captured using Timoshenko beam or the TDBE12 models. Similar behavior is 

observed with the transverse strain yyε , as shown in Figure 51. As previously discussed in this 

chapter, yyε  remains constant along y  in the TDBE12 case, while the TDBE16 model captures 

warping and allow for the change of yyε  along the coordinate line y . Figure 52 shows the 

nominal shear angle cα  as predicted by the two element models using the cross section frame. 

The transverse deformation results are obtained using 6 and 8 finite elements. Figures 53 and 54 

show that in both TDBE12 and TDBE16 models, the 8-element solution it’s a convergent 

solution. For the area ratio results, however, 16 finite elements were required in order to achieve 

convergence. 

In the second model, the cross section area of the pendulum is changed to 0.02×0.02 m2. 

The tip vertical displacement and midpoint transverse deformation for both elements are shown 

in Figures 55-56. The TDBE16 energy balance for this model is shown in Figure 57. The area 

ratio and the normal strain yyε  are shown in Figures 58 and 59. It is clear from the results 

presented in these two figures that the TDBE16 model captures again the change in these two 

measures in the case of thinner beams. Figure 60 shows the nominal shear angle cα  predicted by 

the two element models using the cross section frame. 

Commercial FE codes have only spatial elements that account for the effect of warping. 

Some of these elements include the effect of warping by adding a seventh degree of freedom at 
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the node. While these elements do not capture all the modes of deformations captured by ANCF 

finite elements, a comparison is made with the BEAM188 element implemented in ANSYS. This 

element can have six or seven degrees of freedom per node; the seventh degree of freedom 

accounts for warping. BEAM188 is based on first order shear deformation theory (Timoshenko 

Beam theory). Figure 61 shows the vertical displacement of the tip point obtained using 

TDBE12, TDBE16, and ANSYS-BEAM188 elements. The results presented in this figure show 

a good agreement. Figure 62 show also a good agreement between the midpoint transverse 

deformation results obtained using the TDBE12, TDBE16 and ANSYS-BEAM188 models. It is 

important, however, to point out that the ANSYS-BEAM188 element, while it accounts for 

warping, does not capture the stretch of the cross section, and therefore, 0yyε =  for this element. 

 

 

 
   

Figure 46    The free falling flexible pendulum 
 

 

 

 

Y 

X O 

Gravity force 



122 

 

 

 

 
Figure 47    Tip vertical displacement for the 0.04×0.04 m2 cross section model 

(           TDBE12;             TDBE16)  
 

 
Figure 48    Midpoint transverse deformation for the 0.04×0.04 m2 cross section model 

(            TDBE12;             TDBE16)   
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Figure 49    Energy balance for the 0.04×0.04 m2 cross section TDBE16 model 

   (           kinetic energy;           elastic energy;               potential energy;              total energy) 
 

 
Figure 50    Area ratio at x = 0.6m for the 0.04×0.04 m2 cross section model 

(            TDBE12;               y = 0.016m (TDBE16);             y = 0.0m (TDBE16)) 
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      Figure 51    Transverse normal strain at x = 0.6 m for the 0.04×0.04 m2 cross section  

(              TDBE12;             y = 0.016 m (TDBE16);              y = 0.0 m (TDBE16)) 
 
 

 
Figure 52    Midpoint shear angle of the 0.04×0.04 m2 cross section model  

(             TDBE12;             TDBE16) 
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Figure 53    Midpoint transverse deformation for 0.04×0.04 m2 cross section TDBE12 model 

 (             6 elements;             8 elements) 
 

 
Figure 54    Midpoint transverse deformation for 0.04×0.04 m2 cross section  

          TDBE16 model (             6 elements;             8 elements) 
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Figure 55    Tip vertical displacement for the 0.02×0.02 m2 cross section model  

 (              TDBE12;              TDBE16) 
 

 
      Figure 56    Midpoint transverse deformation for the 0.02×0.02 m2 cross section model   

     (             TDBE12;              TDBE16)   
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Figure 57    Energy balance for the 0.02×0.02 m2 cross section TDBE16 model 

(             kinetic energy;             elastic energy;             potential energy;             total energy) 
 

 
 Figure 58    Area ratio at x = 0.6 m for the 0.02×0.02 m2 cross section model   

 (               TDBE12;               y = 0.008m (TDBE16);              y = 0.0m (TDBE16)) 



128 

 

 

 

 
Figure 59    Transverse normal strain at x = 0.6 m for the 0.02×0.02 m2 cross section model 

(              TDBE12;              y = 0.008m (TDBE16);                y = 0.0m (TDBE16)) 
 

 
Figure 60   Midpoint shear angle of the 0.02×0.02 m2 cross section model 

(             TDBE12;             TDBE16) 
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Figure 61 Tip vertical displacement for the 0.04×0.04m2 cross section model 
(              TDBE12;               TDBE16;               BEAM188)  

 

 
      Figure 62 Midpoint transverse deformation for the 0.04×0.04 m2 cross section model 

     (             TDBE12;              TDBE16 ;             BEAM188 ) 
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5.6. Concluding Remarks 

Most existing finite element beam formulations assume that the cross section of the beam 

remains rigid regardless of the amplitude of the displacement. Fully parameterized ANCF finite 

elements, however, relaxes this assumption and allow for the deformation of the cross section. In 

this chapter, the effect of the order of interpolation on the modes of deformation of the beam 

cross section using ANCF finite elements is examined. To this end, a new two-dimensional shear 

deformable ANCF beam element is introduced. The new finite element employs a higher order 

of interpolation, and allows for new cross section deformation modes that cannot be captured 

using previously developed shear deformable ANCF beam elements. The element developed in 

this study relaxes the assumption of planar cross section; thereby allowing for including the 

effect of warping as well as for different stretch values at different points on the element cross 

section. The displacement field of the new element is assumed to be cubic in the axial direction 

and quadratic in the transverse direction. Using this displacement field, expressions for the 

element extension, shear and the cross section stretch were used to study the effect of the order 

of interpolation. The change in the area of the cross section is measured using Nanson’s formula. 

The differences between the cross section deformation modes obtained using the new higher 

order element and those obtained using the previously developed lower order elements were 

highlighted. Numerical examples were presented in order to compare the results obtained using 

the new finite element and the results obtained using previously developed ANCF finite 

elements. The results obtained in this study showed a good agreement between the TDBE12 and 

TDBE16 models for deformation and strain measures at the element centerline. Nonetheless, the 
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results show that the TDBE16 model captures variations along the cross section lines that cannot 

be captured using the TDBE12 model. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

The main contribution of this thesis is to introduce a new unified approach for modeling the 

contact geometry and ligament deformation in bio-mechanics applications using ANCF finite 

elements. In this unified computational environment, one method was used for the development 

of accurate geometry as well as for performing the analysis. The main features that characterize 

and distinguish the model proposed here are: a) ANCF geometry and analysis are integrated to 

study the femur/tibia contact and large ligament displacements, b) the methods used are general 

and can be applied to other biomechanics systems, c) the model is dynamic and is more 

appropriate for studying human activities as compared to the quasi-static models, d) this model 

relates the knee mechanical properties and the contact forces produced, e) the model is simple 

and easy to implement in other types of biomechanical systems. The model considered in this 

thesis demonstrated the importance of the integration of geometry, FE, and MBS algorithms. 

In the model presented in Chapter 2, new finite element/multibody system models are 

developed for the ligament/bone insertion site constraints. Two ANCF finite elements are 

employed; the first is the fully parameterized beam element, while the second is the gradient 

deficient cable element. The fully parameterized ANCF beam element allows for using different 

ligament/bone insertion site constraint models. The partially and fully clamped ligament/bone 

joints are considered. The partially clamped joint allows for the cross section deformation at the 

ligament/bone insertion site. This cross section deformation can be measured using Nanson’s 

formula. 
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The analysis reported in Chapter 2 has shown that the fully parameterized ANCF beam 

element allows for more modes of deformation at the knee ligament/bone insertion site as 

compared to the gradient deficient cable element which cannot capture the expected change in 

the ligament cross section. The numerical results demonstrate that the new computational finite 

element/multibody framework using the simplified two ligament model with either the beam or 

cable element can yield useful data in regard to the change in length and strains of either the LCL 

or MCL regardless of the insertion site constraints (fully clamped or partially clamped). In 

addition, the analysis demonstrates that the ligament-to-bone direct connection which is a 

progression of elastic type fibrocartilage, collagen and bone that can deform (as a result of stress 

concentrations) under a prescribed cyclic motion precludes the application of the fully clamped 

beam which does not allow such deformation (Benjamin M, et al. 2006). 

The data shows higher strains for both ligaments than the quasi-static finite element 

models reported in the literature (Weiss et al., 2001;  Peña et al., 2006). The higher strains are the 

result of the integration of the fully parameterized ANCF beam finite element model into a 

dynamic multibody computational framework that captures the large displacement and change in 

the ligament cross section resulting from the prescribed cyclic motion. High strains are also 

justified in the simple model considered in Chapter 2, because two ligaments only were 

considered and the femur was subjected to a relatively high speed of rotation. The two ligaments 

considered carry the entire load which in reality is shared by other ligaments and tissues of the 

knee joint. 

 Two general formulations based on ANCF finite elements for modeling the contact 

geometry in bio-mechanics applications are presented in Chapter 3. In one method, ANCF 
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volume geometry is converted to surface geometry using a parametric relationship that reduces 

the number of independent coordinate lines. In the second method, ANCF surfaces can be 

directly used without the need for using the parametric relationship. Each contact surface is 

described in a parametric form using two surface parameters that enter into the ANCF finite 

element geometric description.  

 Two formulations, the elastic and constraint, are used in this thesis to predict the 

femur/tibia contact forces. A set of nonlinear algebraic equations that depend on the surface 

parameters is developed and used to determine the location of the contact points. In both 

methods, the assumptions of non-conformal contact are used. In the constraint method, if no 

degrees of freedom are specified, the femur has five degrees of freedom with respect to the tibia, 

and the normal contact forces are obtained as reaction forces using the technique of Lagrange 

multipliers. In the elastic contact formulation, penetration between the bodies is allowed; this 

penetration and its derivative enter into the calculation of the contact forces. In the elastic contact 

formulation, if no degrees of freedom are specified, the femur has six degrees of freedom with 

respect to the tibia. The numerical results obtained in Chapter 3 show a good agreement between 

the results obtained using the constraint and elastic contact formulations. 

 In Chapter 4, the formulation of the boundary conditions of the partially clamped joint is 

investigated using two different models that employ the cross section and the tangent frames. 

The fully parameterized ANCF beam element, which allows for the deformation of the cross 

section, is employed in the investigation. The numerical results demonstrate that the new 

computational finite element/multibody system framework using the simplified knee model with 

either the cross section frame or tangent frame can yield useful data in regard to the change in 
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length and strains of either the LCL or MCL. The data shows higher strains for both ligaments 

than the quasi-static finite element models reported in the literature (Weiss et al., 2001; Peña et 

al., 2006). The higher strains are the result of the integration of the fully parameterized ANCF 

beam finite element model and contact constraint formulation into a dynamic multibody 

computational framework that captures the large displacement and change in the ligament cross 

section resulting from the prescribed cyclic motion.  Also, the use of the constraint contact 

formulation, the pretension in the cruciate ligaments and the fact that the knee joint model is not 

symmetric, have an important effect on the results obtained in this thesis. 

 In general, the tangent frame and the cross-section frame are not the same and they differ 

due to the rotation of the cross section as the result of the shear and torsion effects. In most 

applications, the difference is small, permitting without producing significant errors the use of 

either frame. Nonetheless, the results of the example used in this thesis show that the cross 

section frame has a better convergence characteristics as compared to the tangent frame. 

Most existing finite element beam formulations assume that the cross section of the beam 

remains rigid regardless of the amplitude of the displacement. Fully parameterized ANCF finite 

elements, however, relaxes this assumption and allow for the deformation of the cross section. In 

Chapter 5, the effect of the order of interpolation on the modes of deformation of the beam cross 

section using ANCF finite elements is examined. To this end, a new two-dimensional shear 

deformable ANCF beam element is introduced. The new finite element employs a higher order 

of interpolation, and allows for new cross section deformation modes that cannot be captured 

using previously developed shear deformable ANCF beam elements. The element developed in 

this thesis relaxes the assumption of planar cross section; thereby allowing for including the 
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effect of warping as well as for different stretch values at different points on the element cross 

section. The displacement field of the new element is assumed to be cubic in the axial direction 

and quadratic in the transverse direction. Using this displacement field, expressions for the 

element extension, shear and the cross section stretch were used to study the effect of the order 

of interpolation. The differences between the cross section deformation modes obtained using the 

new higher order element and those obtained using the previously developed lower order 

elements were highlighted. Numerical examples were presented in order to compare the results 

obtained using the new finite element and the results obtained using previously developed ANCF 

finite elements. The results obtained in this thesis show a good agreement between the TDBE12 

and TDBE16 models for deformation and strain measures at the element centerline. Nonetheless, 

the results show that the TDBE16 model captures variations along the cross section lines that 

cannot be captured using the TDBE12 model. 

6.2.  Limitations and Future Work 

As in many modeling projects, the knee model presented in this investigation has limitations. It 

is important to point out that the current model does not have representations of the patella, 

patellar tendon, joint capsule, skin and muscles.  Attachment of the medial meniscus periphery to 

the tibial cartilage is not modeled. The description of the cruciate ligaments and menisci is very 

simple. Geometry of the knee structures was obtained using a physical knee model. Furthermore, 

the femur and tibia surfaces are assumed to be symmetric in order to simplify and check the 

results of the contact geometry and forces. The material properties of the ligaments are based on 

the model proposed by Pena et al. (2006); these material properties are not specimen-specific. 

These limitations may have significant influence on the model's predictive capacity depending 
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on the purpose of its utilization.  Some of these issues can be addressed by the Dynamic 

Simulation Laboratory team. As future work ANCF can be used to model ligaments, menisci, 

muscles and the geometry of the femur and tibia condyles without any limitations. 

It is difficult to validate the present model because of the limited amount of experimental 

data that describe the dynamics behavior of the human knee joint. Most of the data that describe 

the joint response are obtained using static or quasi-static models. Because the model presented 

in this thesis allows for the simulation of very dynamic scenarios, at this point, the validation can 

only be based on qualitative evaluation of joint response by comparison with data published in 

the literature. 

The procedures developed in this research can be used in modeling ligament, muscles, 

and soft tissues (LMST). The integration of geometry, finite element, and multibody system 

algorithms, as defined in this thesis, is necessary for developing bio-mechanics models that 

capture significant details that cannot be captured using existing multibody system algorithms. 
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APPENDIX A 

The shape function S  used in Chapter 2 for the fully parameterized three-dimensional ANCF 

beam element is defined as 

  1 2 3 4 5 6 7 8[s s s s s s s s=S I   I   I   I   I   I   I   I] (A.1) 

where I  is a 3 × 3 identity matrix, and , 1, 2, ,8ls l = K , are the shape functions defined as 
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
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                                       (A.2) 

where , ,x l y l z lξ η ς= = = , and l  is the length of the finite element in the reference 

configuration. In the case of cable 

elements, the shape function matrix 

can be defined as: 

                                                  (A.3) 

where I is a 3 × 3 identity matrix. In this equation, the shape functions are written as follows: 

               2 3 2 3 2 3 2 3
1 2 3 41 3 2 , ( 2 ), 3 2 , ( )S S l S S lξ ξ ξ ξ ξ ξ ξ ξ ξ= − + = − + = − = − +

   (A.4)
 

where x lξ = and l  is the length of the element. 
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APPENDIX B 

In this appendix, it is shown that, for a given x , the area ratio as defined by Nanson’s formula is 

independent of the coordinate y  in the case of the TDBE12 model.  To this end, a unit vector n 

is defined normal to cross section surface in the current configuration as 

, 2 , 1

,

n
r

T

y y

y

r r − =         (B.1) 

where , , 1 , 2

T

y y yr r =  r . It follows that  

,

0J n
r

T

T

y

J 
=  

  
        (B.2) 

Substituting into Equation 7 for the expression of J and using ( )2

,n JJ n rT T
yJ= , one can show 

that , yda dA = r . Since the gradient vector ,r y  is independent of y  in the case of the TDBE12 

model, the area ratio in this case will be also independent of y . This is not the case, however, for 

the TDBE16 model. 
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