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SUMMARY

Autonomous Robotics involves the independent operation of a robot in a work environment.

The Baxter Robot head camera, unlike some other external camera devices such as the Microsoft

Kinect, lacks a depth sensor, which leads to its inability to gauge any distance-based information

only from its field of vision. This makes Baxter-centered vision-only pick and place tasks quite

challenging.

In this project, we see how Deep Learning has been used to automatically learn vision-

based depth information for a sample plane, in the Baxter’s Cartesian Frame of reference.

Using Deep Neural Networks(DNNs), we can see how this vision-based depth information can

be learnt quite accurately, even for a highly nonlinear fish-eye distortion that is present in

Baxter’s head camera’s field of vision.

Using only a handful of collected points as seeds,we efficiently generated large synthetic

data sets, which were then used to train Deep Models, ultimately mapping a Cartesian plane

to Baxter’s field of view, for fast pick and place operations of test targets on that plane. The

goal of this approach was to design a generalized pipeline, that can be used for other robots,

which fall into a similar category as the Baxter, virtually seamlessly.

xi



CHAPTER 1

INTRODUCTION

1.1 Problem Statement

When we consider object manipulation by organisms, like humans, there exists a quick-

response feedback mechanism intermediate to the perceptive stage and the final action that

is taken (1). Complex manipulation tasks, including the extraction of an object from a bin

containing many other objects, is easily performed without a lot of advance planning, relying

only on haptic and optical feedback (1). On the other hand, object manipulation by robots is

more heavily dependent on pre-planning, analysis, and complex decision making, along with

relatively simple feedback, including trajectory traversal, to ensure a stable execution of the

task. (1)

A humanoid robot, with the use of two robotic arms, can move and engage with objects,

much like us humans. This feature of such robots has made them get attention from organi-

zations and researchers in the field of robotics. They have been useful for many tasks, such as

product assembly, and object manipulation. In the past few years, there has been an advent

in the development of bipedal robots, also including the Baxter robot(2)(3) have been widely

applied in the industrial field, especially for the assembly task. More often than not, such

tasks involve the use of Computer Vision and Mechatronics, both of which have gone extensive

development over the past few decades. (3)

1
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The Baxter camera system, on its own, is not equipped with depth sensors, making it

difficult to evaluate three-dimensional Cartesian coordinates of the objects within its field of

vision. External camera devices, such as the relatively inexpensive Microsoft Kinect depth

camera, bridge this gap quite efficiently, though at the cost of extending the dependence of the

operation beyond the physical limits of the Baxter robot itself.

1.2 Thesis Statement

Coordinate Frame Transformation, or Reference Frame Transformation, is a process that

is used to effectively locate a target, detected in a robot’s field of view, in three-dimensional

Cartesian space. Being able to evaluate the three-dimensional Cartesian coordinates of a target

object helps eliminate the usage of error based proximity detection of the robotic arm, in relation

to the target. This greatly reduces the grasp time, which in-turn reduces the overall time for

completion of a complex task involving multiple grasps. Here, the grasp approach mechanism

begins with detecting, and isolating the target object within the task frame, which is a subset

of the field of view of the robot’s camera.

Post the detection of the target by the robot, the coordinates of the centroid of the target

are now fed into a trained Deep Learning model, which effectively outputs the corresponding

three-dimensional Cartesian coordinates of this target in the robot’s own frame of reference.

Subsequently, the usage of an Inverse Kinematics solver, on the calculated Cartesian coordi-

nates, directs the motion of the robot arm towards the target, effectively attempting a grasp.

This mechanism attempts a grasp without the usage of dynamic calibration of the robotic arm,
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during the traversal, which leads to significant reduction in latency between planning and the

grasp action itself.

Dynamic trajectory planning can sometimes lead the robot arm to take a very convoluted

path from its initial position, to ultimately reach the target object. Alternate approaches,

that use external cameras equipped with depth sensors, extend the dependence of the robot

beyond its own resources. The presented Frame Transform model can reduce this dependence,

by using only the robot’s resources, and Deep Learning to bridge the gap created by the absence

of advanced features(in this case, lack of depth sensors on the built-in head Camera), in the

hardware present on the Baxter Robot.

The goal of the experiment is to determine the extent to which a Deep Learning Model

can be used to replace a more conventional semi-analytical multi-stage pipeline for location

estimation. We aim to explore the capabilities of Deeper Models and their ability to learn

complex relations which would otherwise be concluded by means of a multi-stage pipeline of

execution. While this experiment is constrained to a sample Cartesian Plane in the Baxter’s

frame of reference, it is intended to be a starting point to using Deep Learning to locate targets

in Baxter’s proximity efficiently.

1.3 Outline of the Document

This thesis is organized into five parts: Introduction; Conceptual Foundation; Computer

Vision Subsystem; Frame Transformation Subsystem; Experiments and Results.

The first chapter, Introduction , gives an overview of the problem space that is being

explored in this project, and the solution that is being proposed to combat the stated problem.
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Followed by this, in the next chapter, Conceptual Foundation , gives a brief introduction to

the major concepts and theoretical knowledge that was used in the project’s various components.

This is important to thoroughly understand the further chapters in the thesis.

The third chapter, Computer Vision Subsystem , details the entire process of enabling

the robot to “see” and effectively perceive the given environment. In this chapter, we see the

various steps that are taken from obtaining the image of the work environment, to the various

image manipulation techniques that have been applied to the obtained image. This is followed

by the details of the object recognition algorithms that are applied on the processed image,

which then enables us to evaluate the visual pixel coordinate position of the concerned target.

In the fourth chapter, Frame Transformation Subsystem , we see how the location

information obtained from the Computer Vision subsystem is put to use. Here, we showcase

how deep learning is applied to use the visual location information to determine the actual

location of the target in Cartesian space. It includes the design, implementation, training, and

testing of a variety of different models, to obtain this result.

In the fifth chapter, Experiments and Results, we see the performance of the different

models that were created and tested. We compare all the models to get an empirical and

quantitative view on the performance and effectiveness of the different models and the approach,

as a whole.

Finally, in the last chapter, we conclude the thesis and explain the further research that can

be carried out in the future, in this area and related sub-areas.



CHAPTER 2

CONCEPTUAL FOUNDATION

2.1 Autonomous Robotic Control

Autonomy, according to Oxford 1, is the ability for an entity to make an informed decision,

or choose a particular course of action, without interference from the environment around it.

Wikipedia 2 defines an autonomous robot (AR), as one that operates and performs tasks with a

high level of autonomy. While some autonomous robots behave autonomously on when certain

rigid environmental requirements are met, others are able to function as fully autonomous,

completely independent of most environmental constraints.

In general, a robot is considered completely autonomous when it meets the following crucial

requirements:

1. The robot should be able to observe and obtain information about the environment that

it is operating within

2. The robot should have the capacity to perform tasks unsupervised, for extended periods

of time satisfactorily.

1https://en.oxforddictionaries.com/definition/autonomy

2https://en.wikipedia.org/wiki/Autonomous robot

5
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3. For performing the assigned tasks, the robot should be able to manage to traverse the work

environment either completely without, or partially with assistance from an operator.

4. The robot should know how to steer clear of actions and modes of operation that can be

considered potentially dangerous to the other entities both within, and outside the work

environment.

As we can see in the Figure 1, the Baxter Robot has a work surface placed in front of it. The

work surface is centered and perpendicular to the Baxter’s origin, and the lower center placed

at x = 0.74m. The entire work surface an elevation of z = −0.24m with respect to Baxter’s

origin. The Baxter head camera is held at a pan of P = 0 at the default inclination. The

output of the head camera is fed to the Deep Learning Subsystem for location prediction based

on visual coordinates. Unlike dynamic methods for calculating coordinates of target based on

relative position of a movable camera (4), this approach looks at a more direct, absolute value

based static estimation of a target’s position.

2.2 The Baxter Robot

The Baxter Robot was introduced by a company by the name Rethink Robotics. It is an

humanoid industrial robot, which is made to be extremely safe, and is designed to work in

collaboration with human users.(4) It is mounted on a moving pedestal connected to its torso.

The robot has two arms on either side of the robot’s body. Each of the two arms have seven

joints and subsequently seven Degrees of Freedom (DOF) provided by the joints. The complete

robot can be seen in Figure 2 (The Microsoft Kinect unit visible above the LCD screen is part

of a different experiment).(2)
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Figure 1. Hand-Eye Coordination Experimental Setup

Each of the two arms can be customized with different attachments such as two-pronged

grippers, and robotic hands with fingers. These attachments can be fixed to the ends of each

arm when required. The head of the the Baxter robot is an LCD screen which also acts as

a display and a face, when necessary. The head has a pan joint, which can be controlled

programmatically. The Baxter also has three cameras. The primary camera is positioned on

top of the head, at the top bezel portion of the LCD screen. The two secondary cameras are

present on the ends of each of the two arms. Each of the three cameras have a focal length
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Figure 2. The Baxter Robot
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of 1.2mm, with a maximum resolution of 1280 x 800 and an effective resolution of 640x400,

operating with a frame rate of 30fps.(2)

The seven joints present on each of the arms of the Baxter Robot are labeled as:

Jbaxter = [S0, S1, E0, E1,W0,W1,W2] (2.1)

The total connections, consisting of these seven joints, accompanied by eight corresponding

links, provide the seven DOF to the robot. There are three basic types of joints on the robot:

1. Shoulder Joints:

Sbaxter = [S0, S1] (2.2)

2. Elbow Joints:

Ebaxter = [E0, E1] (2.3)

3. Wrist Joints:

Wbaxter = [W0,W1,W2] (2.4)

The joint S0 is directly attached to the robot’s arm mount, which in turn is fixed to the

torso of the robot. S0 and S1 contain the Upper Shoulder section of the arm between them,

while S0 and E0 contain the Lower Shoulder section. E0 and E1 contain the Upper Elbow

section of the arm between them, while E0 and W0 contain the Lower Elbow section. W0 and

W1 contain the Upper Forearm section of the arm between them, while W1 and W2 contain the
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Figure 3. The Baxter Head Camera and LCD Screen.
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Figure 4. The Baxter Robotic Arm and Joints.
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Lower Forearm section. The robot’s wrist, also known as the end-effector, is located beyond

the wrist joint W2.(5) The seven joints are also divided into two categories, based on their

movement-type:

1. Bend Joints: (These joints are flexible to bend about a hinged pivot point.)

Jbaxterbend = [S1, E1,W1] (2.5)

2. Rotational Joints: (These joints rotate about an axis.)

Jbaxterrotational = [S0, E0,W0,W2] (2.6)

These joints will be referenced in later sections, when calculating Cartesian coordinates using

Inverse Kinematics service that is available in the Baxter Robot SDK.

2.3 ROS(The Robot operating System)

The Robot Operating System (ROS) is a very popular and widely used robotics mid-level

framework, that is flexible, and is used for writing robot-specific software programs. ROS

provides a variety of different tools and libraries that users can use to create extremely complex

and very robust robot behavior with relative ease. ROS also extends to a large variety of

different popular robotic platforms. As Wikipedia 1 says, ROS is technically a middleware, as it

helps to provide a mode of communication between different processes at the lowest level. Even

1https://en.wikipedia.org/wiki/Robot Operating System
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as ROS is a middleware rather than a conventional operating system, there are still services that

it provides including, but not limited to as hardware abstraction, passing of messages between

different processes, device control at low-levels and package management.(6)(7)

Processes that are ROS based are generally represented in the form of a graph architecture,

where nodes are denoted wherever the different ROS processes take place. These nodes can

effectively send and receive various information, including ones related to sensor output data,

control related messages, among others. In this experiment, the nodes are the control programs

written and the services present within the Baxter code infrastructure. In particular, the

major nodes used are the Baxter head camera, and the Inverse Kinematics node, for complex

mathematical transformation based calculations throughout the execution of the primary task

and the course of action related to it. As a sample case, a Baxter Node publishes the image

that is viewed by the head camera. An OpenCV bridge then subscribes to that node, and

receives that image for further processing. Some of the important ROS client libraries are

written in C++, Python, and Lisp, which are designed to operate in Unix based systems only.

Packages in ROS are used for a variety of applications such as action-planning, perceptive

recognition, SLAM(simultaneous localization and mapping), robot models and various other

general algorithms.(6)(7)

2.4 Baxter Forward and Inverse Kinematics

Robot kinematics refers to the area of analysis of the motion of multi-DOF robot mecha-

nisms, primarily using geometry. This focus on geometric analysis is based primarily on the

assumption, that the robotic body links are immovable in nature, which are intended to be
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solely rotary or bend links. Robot kinematics helps develop a bidirectional relation between

the absolute Cartesian location of the end-effector(the end of the robot’s arm, here), and the

various joint parameters that dictate the motion of the robot’s arms. It enables researchers

formulate and modify frame based transforms and motion path planning in a very direct man-

ner. Baxter has a lot of very helpful modules containing functions for both forward and inverse

kinematic operations. Robot kinematics is crucial for designing a simulation model.(8)

In forward kinematics, the various link and joint parameters are used to calculate the

position of a robot’s end-effectors analytically. These positional coordinate parameters are

calculated with respect to the base/origin contained within the robot (the lower center point

in the torso, in the case of the Baxter robot). The Baxter robot SDK it uses a coordinate

transformation system representation, called as the URDF (Unified Robot Description Format)

format, which is used to define the coordinate transformation relation between the robot’s joints

and it’s links. The URDF file is written in XML describing a robot, and explaining in detail

about its various parts, joints, and dimensions, among other parameters.(8)

The graph representation of Baxter robot’s internal mechanism can be seen in Figure 5.

This graph can be obtained by using the rosgraph command in the appropriate ROS terminal.

The obtained graphical representation is a good visual map about the relation between the

various mechanisms between the joints, links, as well as the kinematics operations within the

Baxter.

Arm control for the Baxter robot is normally carried out using the seven joint angles.

As an example, position joint control allows the user to be able to fix the position value in
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Figure 5. Diagram of Baxter’s Internal Mechanism
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radians for each of the two shoulders, elbows, and wrist joints. In robotics manipulation, the

Cartesian space of the arm’s endpoint, is much more easier to work with. In the Baxter too,

the Inverse Kinematics package called as IKService is used for the transformation from the

Cartesian space representation of the position, to the seven joint angle values, which can be

used to directly control the robot.(2) The Cartesian representation for the position of Baxter’s

end-effectors is as follows(5):

Pend−effector = [x, y, z, ri, rj , rk, rw] (2.7)

Here, [x, y, z] represent the three values determining the Cartesian coordinate position of the

end-effector in Baxter’s frame of reference, and [ri, rj , rk, rw] represent the four quaternion

values representing the orientation (roll, pitch, and yaw) of the end-effector with respect to

Baxter.

2.5 Overview of OpenCV

Computer Vision is the area of Computer Science which focuses on creating programs to

enable a machine to interpret and analyze visual data, such as images and video, enabling it

to ”see”. OpenCV (Open Source Computer Vision Library) is a readily available open source

computer vision package that was created to provide libraries containing functions written as

optimized and portable code. It is primarily geared toward real-time computer vision prob-

lems.(9)
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In OpenCV, images are represented as matrices, (numpy arrays in python), consisting of

three channels of pixels: BGR (Blue, Green and Red). Each pixel itself is represented as

intensity values, in the form of real numbers, in each of the three channel matrices. The images

that are captured are generally known as raw images. These raw images undergo a series of

transformations and manipulations before Computer Vision Algorithms can be applied on them.

Using these transformations can tremendously help to concentrate the important information

from the image, while leaving the remaining data out. These transformations also help process

the images more effectively, for useful evaluations using computer vision algorithms. Some of

the transformations that were used in this project were

1. Geometric Transformations

2. BGR → Grayscale Transformation

3. Gaussian Filtering

4. Otsu’s Thresholding

5. Canny Edge Detection

2.5.1 Geometric Transformations

Sometimes, the captured images are very large in size, with the most important information

being concentrated to one small region in the image. To make the images easier to work with,

they are reduced to a much more manageable size, which both reduces space and computation

time. This can be done with the simple command cv2.resize(img,(int(newX),int(newY))),

where img is the image matrix, and newX and newY are the desired resized dimensions.
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OpenCV “squeezes” the original image to fit within the new dimensions, although, not main-

taining the original aspect ratio. In our experiment, we choose the scaling factor to maintain

the original aspect ratio of the image. Cropping the image is a much simpler operation, as it

is exactly the same as slicing a matrix. (10) We crop the original image, so as to only keep the

work surface in the view of the Baxter, and remove the other objects within its view.

2.5.2 BGR → Grayscale Transformation

This transformation essentially reduces a colored image to a grayscale image. What it also

does, is reduced the number of channels from three to one. This greatly reduces the size of the

image matrix as well. Detecting intensity based gradients becomes much simpler, and isolation

of features can be done with much less filtering and thresholding. Grayscale images are also

useful for applying edge detection algorithms. This can be done in OpenCV by simply using

the flag cv2.COLOR BGR2GRAY (10)

2.5.3 Gaussian Filtering

Image blurring or Image Smoothing is obtained by performing a convolution operation of the

image with a low-pass kernel. This technique is useful for removing noises present in the image.

This method in fact eliminates high frequency content including noise and fine edges, from the

image. Thus, the edges in the new image are blurred after applying this filtering operation.

Gaussian Filtering is performed by convolution operation of the image with a Gaussian kernel.

This operation can be executed by using the function, cv2.GaussianBlur(). Here, we mention

the width and height values for the Gaussian kernel, which are conventionally chosen to be

positive odd integers. In addition, the standard deviation in X and Y direction, which are
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denoted as σX and σY respectively, are also mentioned. In the case that only σX is given, σY

is considered equal to σX . If σX = σY = 0, then they are both calculated from the vale of the

kernel size. Gaussian blurring is a very effective technique for in removing the Gaussian noise

present in an image.(10)

2.5.4 Canny Edge Detection

Edge detection is a very useful image processing operation that helps identify the boundaries

of various objects and surfaces on the image. It is especially used for isolating objects within

an image and find their boundary limits. Canny Edge Detection is a popular multi-stage

edge detection algorithm, that takes place in four different stages.

1. Noise Reduction

2. Intensity Gradient Determination

3. Non-max Suppression

4. Hysteresis Thresholding

Noise Reduction: The first stage in this algorithm is to minimize the amount of noise

that is present in the image with the help of applying a Gaussian Filter (conventionally with a

5x5 kernel size) on the original image.

Intensity Gradient Determination: This filtered and noise-free image that is obtained

after this stage, is then convolved directions, by using a Sobel kernel in each of the two image

coordinate to obtain a first order differential coefficient in both the directions. The derivatives

obtained are G x and G y in the x axis and the y axis pixel coordinate directions in that
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order. The obtained two differential coefficient values then are further used to calculate the

edge gradient and direction every pixel in the image. The direction of the Gradient is always

perpendicular to edges.

Non-max Suppression: After calculating the magnitude and direction values for the

gradient, the image is then analyzed to eliminate any pixels which may not contribute to an

edge. This is done by determining if every pixel is locally a peak value in its vicinity, in the

direction of the differential coefficient.

Hysteresis Thresholding: In this step, the true edges are filtered out of the pseudo-edges

in the image. This is done by using two threshold values, namely minVal and maxVal . Edges

that had an intensity gradient value, that was greater than maxVal are definite edges and those

edges with the value less than that of minVal are not true edges, and are discarded. The ones

that lie between the two threshold values are classified as edges or non-edges based on the

manner of connectivity. They are considered to be part of true edges only if they are directly

joined to a definite edge, and discarded otherwise. All this is carried out in OpenCV by means

of a single function, cv2.Canny()

2.5.5 Contours

Contours, in Computer Vision, are defined at the very high level as a curve that connects

all continuous points, along a set margin boundary, which either are of the same color or same

level of intensity. The detected contours, in an image are very useful for analyzing shapes, and

also for the tasks of detecting objects and subsequently recognizing those objects. It is common

practice to use binary images to find contours. Thus, before applying the contour detection
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algorithm, we apply a binary threshold or canny edge detection to the image. This is followed

by using findContours function to determine the contours from an image. (10)

2.6 Deep Feedforward Neural Networks

Deep Feedforward Neural Networks (DNNs), are primarily considered as the baseline for

most deep learning models. The main aim of a DNN is to be able to approximate some arbitrary

function f∗. These DNN models are referred to as feedforward, because the path taken by

the information is first through the function that is being evaluated from x , followed by the

transitional stage analysis and calculations that define the function f , ultimately reaching

the desired output y .(11). A generalized architecture of a Deep Neural Network used in this

experiment is shown in Figure 6.

2.6.1 Hidden Units

After the input layer, a series of many hidden layers further extract much more abstract

features from the input features. The layers are called as “hidden as their values are not directly

given as input data. Instead, the neural network model must evaluate the information which

is useful for explaining the patterns in the training data.(11) Rectified linear units, or ReLU

units are a very good option, when it comes to hidden units. The challenging task is to decide

when to use which kind of hidden units. The process of formulating an optimal hidden layer

comprises of a lot of trial and error, testing various types of units based on their predicted

performance, after which, it is used to then train a neural network model, after which we test

the effectiveness of the hidden unit on a validation dataset. (11)
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Figure 6. Deep Neural Network General Architecture
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2.6.2 Leaky Rectified Linear Units (LeakyReLU)

Rectified linear units, or ReLU units, as we saw in the previous section, follow the activation

function g(z) = max0, z. ReLU units are very similar to linear units and thus, are easy

to optimize. The gradient direction is much more useful for learning, compared to activation

functions with the potential to have second-order effects. ReLU units are conventionally applied

in h = g(W>x+ b). A generalization of ReLU, called as Leaky ReLU(12), is based on using a

non-zero slope αi when:

zi < 0 : hi = g(z, α)i = max(0, zi) + αimin(0, zi) (2.8)

Leaky ReLU fixes αi to a small value like 0.02.



CHAPTER 3

COMPUTER VISION SUBSYSTEM:

TARGET DETECTION AND LOCALIZATION

The Computer Vision Subsystem experimental setup is the same as described in Chapter

2, and can be seen in Figure 1. Computer Vision Subsystem comprises of three stages mainly,

which we shall see in detail, in this chapter:

1. Image Extraction and Processing

2. Image Analysis and Object Detection

3. Object Localization and Position Mapping

3.1 Baxter Area of Operation

The Baxter robot is quite flexible spatially, in most controlled autonomous operative envi-

ronments. The robot in itself, however has various inevitable hardware limitations, due to the

design and build of its various components. These limitations invariably include the robot’s

two arms. Each of the two Baxter’s robotic arms have a near hemispherical three-dimensional

Cartesian reach, inside which they can operate at highest efficiency. The current project, how-

ever has an area of operation spread out over a fixed work surface, which contains the intended

target objects.

The effective area of operation of the Baxter robot is given by the area covered by the

intersection of the Baxter’s reach limits, with the horizontal work surface. This area of operation
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can be viewed in Figure 7. The area in gray represents an approximate reach boundary for

Baxter, and the overlap with the work surface represents the effective area of operation.

3.2 Image Extraction from Baxter camera using CVBridge

As we have seen earlier, Baxter has three camera units (one on each arm, and one on the

head). Each of these three cameras have their images that are Published at dedicated ROS

nodes, as soon as they are enabled. The operations and specifications of the camera units

can be controlled by the help of the Baxter Camera Control Modules, which contains all the

functions necessary to adjust the camera resolution, and opening/closing. The image can be

easily obtained by Subscribing to the corresponding ROS node.

This image can be extracted using cv bridge package as follows(13):

raw_image = bridge.imgmsg_to_cv2(head_image, desired_encoding="passthrough")

This extracted image is now ready to be analyzed using OpenCV. The transformation method

can be seen in Figure 8.

3.3 Color-Space Transformation and Smoothing

The head camera images were subscribed to at a resolution of 1280x800px. The head was

fixed at its default position (zero pan and default tilt angle). The raw image obtained was then

cropped manually, so as to isolate the work surface. The cropped image was at a resolution of

840x270px. This resolution was chosen so as to make the work surface entirely visible, while

leaving out any other background view that may obstruct focus from the target object. The raw

image of the work environment as observed from Baxter’s head camera can be seen in Figure 9
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Figure 7. Baxter’s Effective Area of Operation
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Figure 8. CvBridge

Figure 9. Raw Image of Work Surface
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As we can see, the image has been cropped to isolate the work surface for easier analysis for

target objects.

The next stage would be to apply a color space transformation to this image that has been

obtained from the head camera. As discussed in Chapter 2, we apply a BGR → GRAY color

space transformation using cv2.COLOR BGR2GRAY . This transformation can be seen in

Figure 10 (b). The reason we apply this transformation is to convert the three-color channel

image into a monochrome color channel image. This makes it easier for us to apply further

filters and transformations to the image.

After the color-space transformation, we now have a monochromatic image. The next stage

is to eliminate any unwanted noise from this image. This can be done by performing a smoothing

(also known as blurring) operation on the image. As we saw in Chapter 2, smoothing of an

image is done by a 2D convolution operation of the image with an existing, or custom-made

low pass filter. In this experiment, we use a Gaussian Kernel. This is a preferred kernel for

this project, as it is very effective in eliminating the Gaussian Noise that is present in the

monochromatic image. This stage, as previously seen, can be carried out by using the function

cv2.GaussianBlur(), as follows:

guass_image = cv2.GaussianBlur(gray_space_image,(5,5),0)

In the above example, as in our experiment, we have used a (5, 5) kernel for the convolution

with the monochromatic image. The effect of this operation is a slight blur in the image, as

can be observed in the Figure 10 (c). This image is now relatively free of Gaussian noise, and

ready for object detection algorithms to take over.
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Figure 10. Image Transformation and Smoothing
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3.4 Object Detection from Image

As we saw in the previous section, the transformed, and smoothed image is now ready for

applying Object detection algorithms. As we can see in Figure 10 (c), the target block that

is intended to be grasped, is present a little offset from the lower centre of the work surface

(within the area of operation for the Baxter Robot). We shall consider a cube block case for

explanation of the next stages in this experiment. The same logic can be extended to other

shapes as well, with equivalent modification. There are two steps to detecting a regular target

object (a cube block here):

1. Detecting the approximate shape of the target

2. Isolating the possible target contour based on area of all potential targets

3.4.1 Shape Detection

From the previous section, we have obtained a filtered and noise-free image. We apply

Canny Edge detection algorithm on this image, to detect the target object. The edge detected

image can be seen in Figure 11 (b).

The algorithm for shape detection revolves around the concept of approximate contour

vertex count. We can determine the locations of the contours in the processed image. The

function cv2.findContours is used to obtain a collection of contour outline curves for every

white blob that is present on the edge-detected image. For us to identify the shape of the

target object, we shall be applying the technique of approximating contours. This method of

approximating contours is an algorithm that helps to reduce total count of points present in the
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Figure 11. Edge Detected Image
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contour plot by replacing it with a smaller array of points. This algorithm of approximating a

curve is also known as the Ramer-Douglas-Peucker(14) algorithm, or the split-and-merge

method. The process of Contour estimation is based assuming that a given curve can be

reduced to a continuous series of short length line segments. This step give us an approximated

curve that effectively consists of a subset of coordinates that were part of the original curve. For

performing an approximation of a contour, we first calculate the perimeter of the given contour-

plot, after which we construct the final contour approximation. Contour approximation can be

implemented using OpenCV by applying the function cv2.approxPolyDP .

After approximating the contour, we can perform a shape detection operation on the image.

What we need to understand here, is that a given approximated contour contains a list of vertex

coordinates. We can effectively identify the shape of an object by observing the total number

of vertices present in this list. As an example, if a contour-plot contains four vertices, then it

can be identified as either a square or a rectangle. To distinguish between the two, we calculate

the value of aspect ratio of the identified shape, which is the ratio of width of the contour

bounding box with its height. For a square, as in our case, the contour aspect ratio value is

approximately 1. The angles of the square cross section would not be 90 degrees, however, and

the square would be closer to a rhombus due to fish-eye distortion.

3.5 Object Localization using Contour plot

In the field of Computer Vision and Image Processing, the values of moments of an image

are quite useful to describe the shape of a particular object present in an image. These moment

values can record inherent statistically important properties of the given shape contour, which
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Figure 12. Object Localization and Centroid Calculation

include area of the object, its centroid, the relative orientation value, in addition to other

desirable properties of the object. The centroid coordinates C(x, y) of a given contour can

be calculated in the following manner. We apply the function cv2.moments() on the contour

and receive a dictionary M containing the moment values. The coordinates are given by:

X =
M10

M00
;Y =

M01

M00
(3.1)

The localization of the object and centroid calculation can be seen in Figure 12. The

pixel coordinates of the object are now obtained and can be used as inputs to the Frame

Transformation Subsystem.



CHAPTER 4

FRAME TRANSFORMATION SUBSYSTEM:

TARGET CARTESIAN POSITIONING

From the Computer Vision Subsystem, we have obtained the (x, y) coordinates for the

centroid of the target object placed in the work space (a cube, in our case). Now, the next

stages in the process will be to use these visual coordinates, and determine the three-dimensional

Cartesian coordinates of the target object on the work surface, in the frame of reference of the

Baxter’s torso. After obtaining the Cartesian coordinates, we can use Inverse Kinematics to

solve for the corresponding joint angle values for each of the seven robot arm joints. After all

these stages, the robot can attempt a grasp, to potentially pick up the target cubic block.

4.1 Seed Data Collection

The primary approach taken by us to designing a Machine Learning model to obtain Carte-

sian Coordinates from visual coordinates, in the most ideal case, would involve large scale

collection of training data: both visual coordinates, and their corresponding three-dimensional

Cartesian coordinates. This procedure will be very time-consuming, thus reducing the practi-

cality of a trained model significantly. Instead, automating the collection of seed training points

and generating a large dataset from those points, to train a model, is a much more convenient

alternative.
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Figure 13. Contour Plot of Reference Rectangle

For collecting the seed points, we have a reference rectangle drawn on the work surface, as

seen in Figure 9. We first identify this rectangle as a contour in the image of the environment

as seen by the Baxter Robot. As an example, you can see the contour of the rectangular box

in red in the Figure 13. From this contour, we obtain the contour plot, which is the array of

all coordinate points that the contour-plot comprises of. The coordinates are saved as a numpy

array, which can be used to plot and extract seed points along the perimeter of the rectangular

contour. For this project, we experiment with two seed sizes: 6 point seed array, and 12 point

seed array. Here, s, is the number of seeds, and we can see training data and targets for s = 6

and s = 12 in Figure 14 and Figure 15 respectively.

4.2 Synthetic Data Creation using Point-Web Generation

After collecting the seed points, we then use these seed points to generate our synthetic

dataset to train the Machine Learning Models. This is done by collecting training points
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Figure 14. Input and Target Seeds (s = 6)
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Figure 15. Input and Target Seeds (s = 12)
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generated along the web of line segments created by taking pairs of seed points as the endpoints

for each line segment. In other words, we take all possible pairs of seed points, and determine the

equation of the line segment with those points are the endpoints. The general slope-intercept

form of an equation of a line, having slope m and y-intercept c is given by:

y = m.x+ c (4.1)

The equation can be determined using the two point form of the equation of a line in a 2D

plane. The two point form for the equation of a line with points (x1, y1) and (x2, y2) as the

endpoints is given as:

(y − y1) =

[
(y2 − y1)
(x2 − x1)

]
(x− x1) (4.2)

The above equation can be re-written as

y =

[
(y2 − y1)
(x2 − x1)

]
(x) +

[
y1 −

(y2 − y1)
(x2 − x1)

(x1)

]
(4.3)

From equations 4.1, and 4.3, we can get the slope m and y-intercept c as

m =

[
(y2 − y1)
(x2 − x1)

]
(4.4)

c =

[
y1 −

(y2 − y1)
(x2 − x1)

(x1)

]
(4.5)
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After we obtain the equations for each of the line segments in the web, we can use them to

generate N points along each of the lines, with ends P1(x1, y1), and P2(x2, y2) as follows:

xmin = min(x1, x2) (4.6)

xmax = max(x1, x2) (4.7)

d =
|x1 − x2|
N − 1

(4.8)

The N points can be generated using these values as:

X = [(xmin), (xmin + d), (xmin + 2d), ..., (xmin + (N − 2)d), (xmax)] (4.9)

Once we have the x-coordinate value vector generated, we can use vector algebra to generate

the corresponding ordinate vector as:

Y = mX + C (4.10)

Here, m is the slope calculated from equation 4.4, and C is the vector broadcasted form of c

calculated in equation 4.5. The same set of equations can be used for both the seed values. The

web of points generated for s = 6 is shown in Figure 16, and he points generated for s = 12

is shown in Figure 17. In this project we have used N = 2000, to generate 260,000 training

examples for s = 6 and 1, 080, 000 training examples for s = 12.
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Figure 16. Generated Synthetic Training Data and Targets (s = 6)
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Figure 17. Generated Synthetic Training Data and Targets (s = 12)
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TABLE I

ARCHITECTURES OF DNN MODELS
Model Layers (nL) Nodes (nN ) Seed Size s

DNN 100 5 5 100 6

DNN 100 10 10 100 6

DNN 100 20 20 100 6

DNN 100 30 30 100 6

DNN 200 5 5 200 6

DNN 200 10 10 200 6

DNN 500 2 2 500 6

DNN 100 5 5 100 12

DNN 100 10 10 100 12

DNN 100 20 20 100 12

DNN 200 5 5 200 12

4.3 Deep Neural Network Models - Architectures

The architecture of the Deep Learning Models that has been used here is Deep Multi Layer

Perceptron Neural Networks, or simple Deep Neural Networks (DNNs). As a part of laying

down notation references used for the models, the number of layers shall be given by nL, and

the number of nodes present in each layer shall be given by nN . Activation functions for each

neuron shall be given by g() and the output of each neuron is given by z. We have evaluated

eleven different models for the project. The architecture specifications can be seen in Table I.

All neurons use a LeakyReLU activation function with gradient r = 0.02. Using LeakyReLU

activation will help combat the vanishing gradient problem often faced in very Deep Models.
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4.4 Deep Neural Network Models - Training and Evaluation

4.4.1 Training

The models were all built using the Keras framework over TensorFlow. The optimizer

used for the models was the Adam Optimizer (15). This was because it adaptively decays the

learning rate while training to help efficient convergence of the model. The hyper-parameter

specifications can be seen in. All models were trained in batches of size b = 2048, for k = 600

epochs. The models were trained on a CUDA GPU. The training data was divided onto a 90%

training set and a 10% test set for all the models. For the models, we used the decay parameters

β1 = 0.9 and β2 = 0.999.

4.4.2 Evaluation

The loss function used for training the model was the mean Euclidean Distance Loss func-

tion, for the predicted coordinate with respect to the ground truth coordinates. This loss

function, for m training examples can be defined as:

J(W ) =
1

m

m∑
i=1

E(Yi, Ŷi) =
1

m

m∑
i=1

√
[Yi − Ŷi]2 (4.11)

The training progress of the models trained on data generated from seed s = 6 can be seen in

Figure 18 and Figure 19, and the models trained on data generated from seed s = 12 can be

seen in Figure 20.

The final testing losses can also be seen in Table II and in Figure 21. From here, it can be

observed that interestingly, a denser point web proved to be counter-intuitive to the effectiveness
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in prediction. Generally, the point webs generated by s = 6 seed size proved to be very effective

in letting the models generalize to the test set.

Figure 18. Training of Deep Learning Models (s = 6)
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Figure 19. Training of Larger Deep Learning Models (s = 6)

The error on the test set was not uniformly distributed across the plane. The points further

away from Baxter experienced higher error prediction rates than the points closer to it. This is

quite possibly due to increasing fish-eye convergence away from the Baxter. Model DNN 100 30

performed the best, reaching a test error of 3.103cm after the 600 epochs of training, for seed

s = 6. This model took approximately 2 hours to train on the GPU.
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Figure 20. Training of Deep Learning Models (s = 12)

In total, about 100 different model architectures were tested and tuned during the course of

the research. Out of those, the eleven that have been showcased here, were chosen to represent

a sample of all the models tested. The models chosen were chosen as they best represented the

relation between model architecture and the performance on the two data sets. The criteria

for choosing the models included effectiveness, and training time feasibility, which made them



47

TABLE II

TRAINING AND EVALUATION RESULTS
Model Learning Rate (α) Euclidean Distance Error (cm)

Seed size s = 6

DNN 100 5 50e-4 10.16

DNN 100 10 20e-4 7.07

DNN 100 20 15e-4 5.97

DNN 100 30 10e-4 3.10

DNN 200 5 15e-4 6.13

DNN 200 10 10e-4 4.71

DNN 500 2 50e-4 14.51

Seed size s = 12

DNN 100 5 50e-4 11.73

DNN 100 10 50e-4 9.31

DNN 100 20 20e-4 11.89

DNN 200 5 10e-4 10.97

useful for the transformation problem. It was also observed that tuning of the various hyper-

parameters and choosing the appropriate architecture of the models was extremely challenging,

and finalizing a model took several training sessions before it could be deemed feasible. The

training data was split into two sets; 90% in the training set, and 10% in the validation set.

The validation set was used to tune the hyper-parameters to their optimal values.

4.5 Inverse Kinematics using IKService

Once we have obtained the Cartesian coordinates, we need to extend the robot arm to that

point in space, in the Baxter’s Frame of reference. For this, we shall use Inverse Kinematics.

Baxter SDK has on-robot Inverse-Kinematics (IK) Service which can be used to obtain a joint
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angles solution, if valid, for a given endpoint Cartesian point and Orientation. We can thus

obtain the seven joint angles from Cartesian coordinates as follows:

IK([x, y, z, ri, rj , rk, rw]) = [S0, S1, E0, E1,W0,W1,W2] (4.12)

For this experiment, we have tested with a top approach grasp constraint, for the Inverse

Kinematics calculations. For this, we have a constant values for [ri, rj , rk, rw]. as:

ri = 0, rj = 0, rk = 0, rw = 1 (4.13)

Thus, [x, y] for the final Cartesian position for the Baxter end-effector is obtained from the

Deep Learning Model, [z] = 0.24 is constant for the experimental setup, and the orientation

values [ri, rj , rk, rw] = [0, 0, 0, 1] are constraints that are set on the Inverse-Kinematics solver,

to plan and attempt a top grasp for the target.

In this chapter, we have seen how the models fared in the training and validation phase of

the experiment. In the next chapter, we shall see how these models fared in the live experiments

that were carried out to confirm their performance.
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Figure 21. Training and Evaluation Results



CHAPTER 5

EXPERIMENTS AND RESULTS

In this section, we shall discuss the grasps that were attempted using the various models

and present evaluation metrics for those experiments.

5.1 Test grasp reach attempts

For each of the eleven models, we tried five grasp attempts as part of the testing process.

For the experiment, we used an 8cmx8cmx6cm cuboidal block as a target for the robot to

pick-up. Of the five attempts, four were within the area of operation of the robot arm, and one

test attempt beyond the area of operation for evaluation purposes. The test grasp positions

can be seenTable III. A total of 55 grasp attempts were recorded in the testing process, 44

being actual grasps, and 11 being theoretical grasps. An actual grasp was one, where the target

was placed in a region within the FOV of Baxter, and inside the area of operation, as seen in

Figure 7. An actual grasp was one, where the target was placed in a region within the FOV of

Baxter, but outside the area of operation.

A sample grasp attempt can be seen in Figure 22. Here, in (a), we see that the arm is

at an arbitrary neutral position on the right side of the Baxter’s torso (not constant). In (b),

it reads the environment in front of it through the head camera, and detects and locates the

target block. In (c), it approaches the target from a top-based approach path. Finally, in (d),

we can pick the block off the work space, for further actions.
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TABLE III

TEST GRASP POSITIONS
Position x y

1 75.0000 21.0000

2 75.0000 -23.0000

3 79.0000 12.0000

4 85.0000 -30.0000

5 89.0000 -32.0000

5.2 Grasp attempt evaluation metrics

As we saw in the previous section, each model was tested on five grasps. During the training

of the models, it was also observed that the errors for the validation set examples increased,

further away from the Baxter. Hence it was fair to expect a similar trend in the experimental

grasps too. For the grasps, we obtain the grasp-wise Euclidean distance error for each model

on each grasp, and compare them in Figure 23. From the figure, we can see that for s = 6,

DNN 100 30 performs the best with extremely low errors on all grasps. Meanwhile for s = 12,

DNN 200 5 performs the best. We can also observe that for the last grasp, which is the virtual

grasp point, the error is higher in all models. This follows the trend of increasing non-linearity

in the fish-eye distortion, as we go farther from the Baxter.

5.3 Comparison of DNN models

Finally, we can compare the overall performance of all models for both the data-sets, and

view the average error of each model on all five grasps, for both s = 6 and s = 12 in Figure 25.
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Figure 22. Grasp Attempt for Cuboidal Target

Here we see that overall for s = 6, DNN 100 30 performed the best with only 2.0111 cm error

in grasping, while DNN 200 5 performed the best with 5.832 cm of error for s = 12.
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Figure 23. Performance of Models for s = 6 and s = 12
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Figure 24. Success Rates for Models on Test Grasps
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Figure 25. Average Euclidean Distance Error



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In Chapter 3, we have discussed how we can enable the robot to detect, and localize the

target object placed on the work surface using OpenCV. This information can be then used to

calculate the position of the target in the field of view of the Baxter.

In Chapter 4, we saw how the visual position of the target was fed into various Deep

Learning Models, which were then used to locate the target in Cartesian Frame of the Baxter.

The results obtained from this section show us that Deep Neural Networks are indeed quite

efficient in mapping highly nonlinear transformations with a high level of generalization. These

models, coupled with an Inverse Kinematics solver enabled a predetermined approach to the

target, rather than a dynamic grasp approach.

The approach discussed here was also intended to be expandable to similar robotic systems,

with very little modification in the execution pipeline. The computer vision subsystem, along

with the Frame Transformation subsystem help us achieve successful grasps by the Baxter.

6.2 Future Work

This experiment was a means to explore how Deep Learning can be used to replace tra-

ditional semi-analytical based execution pipelines for segments of robotic tasks, such as pick-

and-place. Future work in this domain will enable us to use more complex approaches, similar
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to the one used here, to map three-dimensional Cartesian spaces using Deep Learning, instead

of planes, which will open up a range of tasks that can be accomplished with increased effi-

ciency. We could also look into approaches using Convolutional Neural Network based models,

to further extend the capabilities of the Baxter.
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