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Summary  

Uncertainty is a fundamental factor we should consider in process design because it 

is inherent characteristics of any process systems. However, classical process design uses 

only nominal information to find optimal design variables, and in reality, this is not suitable 

because these parameters have unavoidable variations, leading to uncertainty. Thus design 

is usually oversized to minimize risk of operating outside specifications to accommodate 

uncertainties. But this arbitrary overdesign does not always guarantee feasibility and 

optimality of the process. For this reason, novel consideration of uncertainty is necessary 

and important for the optimality and feasibility of operation of the chemical plant.  

The first aim of this thesis is to develop novel methodologies to tackle problems of 

classical approach for design under uncertainty. Two main topics in design under 

uncertainty –flexibility analysis and integrations of design and control dealt with this thesis.  

Part A addresses flexibility analysis of process. A new hybrid algorithm for 

flexibility analysis problem is suggested. Flexibility analysis is to quantify flexibility of a 

given process design to handle uncertainty in process parameters as well as variations in 

operating conditions. It is one of important problem in “design under uncertainty”. It is 

formulated as a multistage global optimization problem, whose search space is 

discontinuous and non-differentiable. Traditional local deterministic approaches cannot 

solve this problem properly, so I used a new approach based stochastic method and project 

technique to tackle this problem. This approach can be easily parallelized, so it reduces 

computational time when we solve large size problems. 

In part B, the problem of integrating design and control is addressed. Integration of 

design and control is finding an optimal design considering dynamic controllability. It aims 
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at pursuing the synergetic power of a simultaneous approach to guarantee the economical 

and robust operation of the process in spite of any disturbance and uncertainty. However 

integration of design and control renders a complex combinatorial optimization problem 

which cannot be solved directly with existing mathematical methods. Thus we suggested a 

decomposition technique which eases the problems of this integration called embedded 

control optimization. In this thesis, I will extend embedded control optimization for 

integration of design and control. A new identification method is adopted to produce a 

better performance, and this methodology will be applied to large-scale processes 

successfully.     

 The second area this thesis considers is global optimization. Global optimization 

applications are widespread in all disciplines. Despite there are many challenging and 

important problems that require global solutions, relatively little effort has been made in 

this area compared to the area of local optimization. Specially, the problem of finding all 

solutions in nonconvex search area remains as still challenging and difficult area in applied 

mathematics, engineering, and sciences.  

Part C addresses global optimization for multimodal objective functions. A novel 

hybrid sequential algorithm is suggested in this part. It aims to find multiple global 

solutions as well as local solutions. To locate multiple optimal points, it uses niche concept. 

It also adopts a local deterministic method to accelerate finding solutions. This algorithm 

was applied to tackle multiplicity problems in engineering problems such as finding 

multiple optimal parameters of distributed systems in problem inversion. 
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PART A: Flexibility Analysis under Uncertainty 
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Flexibility analysis is an important task for the optimal design and synthesis of 

chemical processes with uncertainty. It is a challenging problem because of the 

discontinuity and nonconvexity of rigorous flexibility programming formulations. In this 

article, we propose a new parallel hybrid algorithm based on stochastic search in 

conjunction with a nearest constraint projection technique to numerically solve the 

flexibility index problem. This method can be useful regardless of the convexity of the 

design constraints. The stochastic method robustly identifies the global solution without 

the need for derivative information. The new nearest constraint projection technique is used 

to handle the constraints of the flexibility index problem in reduced state space. In contrast 

to existing methods, this technique does not require the addition of artificial variables for 

active constraints, does not need to have access to explicit analytical forms of the problem 

formulation or its derivatives, and does not solve for additional artificial variables. Its 

implementation is well-suited for parallel computing so that computational time can be 

dramatically reduced. Five applications illustrate the efficacy of the proposed method. 
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CHAPTER I. PARALLEL HYBRID ALGORITHM FOR 
PROCESS FLEXIBILITY ANALYSIS  
Previously published as:  

Moon, J., Kulkarni, K., Zhang, L., and Linninger, A.A., “Parallel Hybrid Algorithm 

for Process Flexibility Analysis”, Industrial and Engineering Chemistry Research, 47 

(21), 8324-8436, 2008.  

1 Overview of flexibility analysis 

Flexibility, along with the issues of operability, controllability, and reliability, are 

important design objectives for feasible and safe operation of chemical processes (Naraway 

& Perkins, 1993; Luyben & Floudas, 1994; Mohideen et al., 1996). Chemical plants should 

perform safety within acceptable quality ranges despite of operational disturbances and 

inherent uncertainties of the process parameters. For realistic process designs, it is 

important to quantify its degree of flexibility to handle uncertainty in process parameters 

as well as variations in operating conditions.  

There are two kinds of mathematical programming methods for Rigorous flexibility 

analysis - the feasibility test and the flexibility index problems (Ostrovsky et al., 1994; 

Halemane & Grossmann, 1983). The feasibility test determines whether a given design 

specification performs feasibly over known ranges of uncertain parameters. The flexibility 

index problem seeks the maximum deviation of parameter from the nominal conditions the 

design can endure until it becomes infeasible (Swaney & Grossmann, 1985; Grossmann & 

Floudas, 1986). Several numerical approaches have been developed for solving the 

flexibility index problem. Swaney and Grossmann (1985) suggested a branch and bound 

algorithm which requires the assumption of critical points lying at a vertex. Grossmann 

and Floudas (1986) developed an active constraint set method to formulate the flexibility 

index problem as an MINLP. With few exceptions such as the αBB deterministic global 
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optimization by Floudas et al. (2001) or Lucia et al. (2005), previous flexibility solution 

efforts appears to only deploy local optimization techniques. In contrast to other design 

optimization problems in which locally optimal solutions may suffice, the solution to the 

flexibility index problem must be global to be rigorous. Therefore, local optimization is 

inadequate for flexibility analysis and global solution is a must. 

Another important characteristic of the flexibility index problem is its inherent 

discontinuity and non-differentiability. The flexibility search space violates basic 

assumptions required by many deterministic local optimizations. The uncertain 2D space (

1
 and 2

 ) shown in Figure 1 illustrates this characteristic of the flexibility index. Despite 

continuity and differentiability of all constraints, the feasible deviation index, δ, plotted for 

rays emanating from the nominal conditions with angle  displays discontinuous and non-

differentiable functional form. This non-differentiable δ space is problematic for gradient-

based search methods.  

In light of these challenges, we propose a novel hybrid algorithm for flexibility 

analysis. This algorithm will deploy a stochastic element to search the design space 

globally, while using local gradient information to explore a reduced state variable space. 

The novel nearest constraint projection technique is used to handle design constraints. It 

will also permit analysis of problems in which constraint derivatives are unavailable, such 

as large process models of legacy code or built with commercial black-box flowsheet 

simulators. It may also be useful in situations in which deterministic global algorithms are 

unsuitable. The proposed method also lends itself readily to parallelization, so that dramatic 

overall computational time reductions are possible. 
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Figure 1: Depiction of the discontinuity and non-differentiability of the flexibility index 

problem. This graph shows the feasible deviation index, , plotted for rays 

emanating from the nominal conditions with angle . This non-differentiable 

δ space is problematic for gradient-based search methods. 
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2 Methodology  

2.1 Mathematical formulation of flexibility index problem 

The scalar flexibility index, F, is defined as the largest normalized deviation from 

nominal conditions a design can tolerate while still ensuring feasible operation. Flexible 

process design aims at choosing design variables and controls so that the flexibility of the 

design is largest. For a design to be called flexible, it should at least more than unity which 

means that all expected deviation can be handled without violating any design constraints. 

At least more than unity which means that all expected deviation can be expected without 

violating any design constraints. The flexibility index, F, is given in system (1). 

min

. . ( , ) 0

( , ) min

. . ( , , ) 0,

( , , ) ,

i

j

F

s t

u

s t h i I

g u j J













 

 

z

d θ

d θ

d, z x θ

d, z x θ

 , (1) 

where d corresponds to the vector of design variables, x is the vector of state variables, z 

is the vector of controls, and is the vector of uncertain parameters. The equality 

constraints, hi, enforce mass and energy balances and equilibrium relations; inequality 

constraints, gj, typically represents operational and design conditions. The scalar   

measures the infinity norm of the parameter deviation in the normalized uncertain space, 

as defined in equation (2). 

| | | |
, 1, ...,

N N

j j j j

j
j j

Max j p
   


 



  
   

   
 

(2) 

where, p is the number of uncertain parameters, 
N

j
  and j

 , refers to the nominal value 

and the expected deviation of the uncertain parameter, j. The function ( , ) 0 d θ  defines 
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the feasible region boundary in the space of uncertain parameters, as shown in Figure 2 

(Swaney & Grossmann, 1985). 

 
Figure 2: Graphical representation of the feasible region boundary, ( , ) 0 d θ , 

and the critical point, c
θ .Geometrically, the flexibility index F, 

corresponds to the dimension of the hyper rectangle touching the 

feasible region boundary at the critical point. 

 

The flexibility index problem aims at identifying the critical point, c
θ , corresponding 

to the worst case scenario on the feasible region boundary closest to the nominal conditions. 

Geometrically, the flexibility index, corresponds to the dimension of the hyper-rectangle 

just touching the feasible region boundary at the critical point. Unfortunately, the feasibility 

function ( , ) d θ  is usually not explicitly given, so that finding globally the closest critical 

point is not a simple task. Moreover, solving for critical points of the feasibility function 

locally in one sector of the uncertain space, does not teach anything about the flexibility in 

another region. Hence, the ( , ) d θ  surface needs to be searched globally. The next 

1


2


N
θ

c
θ

( , ) 0 d θ

F

1


2


N
θ

c
θ
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subsection will introduce a hybrid algorithm to identify the critical point and the flexibility 

index globally. 

2.2 Hybrid algorithm 

We have chosen a hybrid method combing the robustness of stochastic global search 

with the superior performance of Newton-type deterministic techniques. The main idea of 

the hybrid algorithm is to generate samples of uncertain parameter realizations located 

precisely on the feasible region boundary. To accomplish this task we use a genetic search 

based on the principles of natural selection and inheritance (Holland, 1975; Goldberg, 

1989; De Jong, 1975). Candidate solutions generated by the stochastic search (Deb, K. 

2000; Kim & Myung, 1997) are then projected onto the boundary of the feasible region 

while rigorously satisfying all state equations. This nearest constraint projection technique 

ensures that all candidate solutions are placed exactly on the flexibility boundary. To 

satisfy equality constraints, we adopt gradient-based methods such as quasi-Newton 

methods. Since all candidate solutions of the evolving population are members of the 

feasible region boundary, the sample with the minimum infinity norm is the critical point. 

Thus, the proposed hybrid algorithm exhibits both stochastic and deterministic features. 

The information flow of the hybrid algorithm is depicted in Figure 3. In the first step, 

an initial random sample population is generated in the space of the uncertain parameters, 

. In the next step, each crude sample is projected onto the feasible region boundary, 

( , ) 0 d θ . The details of this nearest projection technique will be described in section 3. 

This step also deploys Newton-type methods to satisfy equality constraints corresponding 

to the reduced state space. The ‘fitness’ of each projected candidate solutions is inversely 

proportional to the infinity norm, . In the natural selection step, samples with superior 
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‘fitness’ scores are chosen to produce competitive offspring for the next generation. 

Candidate solutions with low fitness are unlikely to reproduce and tend to disappear. 

Offspring, child
 , are computed by combing the parameter values of the selected parents, 

1 2
,   according to the arithmetic crossover formula with one random variable,  , given 

in equation (3).   

1 2
(1 ) ,  0 1

child
          

(3) 

Mutations occurring with given likelihood change the states of a single candidate 

solution according to a random event drawn from the probability density function given in 

equation (4).   

'
(0,1)

n n n
N     

(4) 

Here,   is the standard deviation of the normal distribution
(0,1)

n
N

. Mutations are 

needed to counter clustering of the candidate solutions in the search space and helps 

explore the entire search space uniformly. The overall algorithm terminates when the 

specified generation limit is reached. The critical point is the candidate solution with the 

highest fitness. Since all candidate solutions lie on the feasible boundary, the minimal -

deviation marks the critical point. 
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Figure 3: Flowchart of the proposed hybrid algorithm.  
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3 Nearest constraint projection technique  

Our hybrid algorithm needs to maintain an evolving population of candidate 

solutions located precisely at the feasibility boundary. The crude samples generated by 

genetic inheritance do not lie of the flexibility boundary in general as schematically 

depicted in Figure 4. Therefore, we project the parameter values of the crude samples onto 

the feasibility boundary with exact methods. This correction process known as repair 

procedure is implemented efficiently as a one-dimensional directional search (Garey & 

Johnson, 1974; Press et al., 2007; Michalewicz, 1994). The search direction is selected to 

be collinear to the direction of the uncertain parameter dimension, *
θ , corresponding to the 

specific coordinate marking the infinity norm. The required parameter corrections are 

implemented iteratively to ensure precise location of the feasibility boundary, while 

simultaneously satisfying all state equations. Nevertheless, a repair procedure in a single 

direction is merely a one-dimensional search requiring but small computational effort. The 

projection is similar to the well-known line search strategies deployed in step-size 

controlled Newton methods. 
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Figure 4: A schematic depiction of crude samples and the one-dimensional projection to 

the feasible boundary, ( , ) 0 d θ . The crude samples generated by genetic 

inheritance do not lie of the flexibility boundary in general. One-dimensional 

projection brings the samples to the feasibility boundary. 
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3.1 Illustration of a nonlinear two dimensional flexibility problem 

The evolution of the hybrid mechanism is illustrated graphically with the help of an 

example with two uncertain parameters in (5). 

1 2 3

2

1 1 2

3

2 1 2

2

3 1 2

1 2

min

. . ( ) ( ) ( ) 0

30( 5) 550 50 0

500 50 0

15( 3) 50 0

                

, 2

        (4, 4)

N N

N

F

s t g or g or g

g

g

g



 

 

 

 

 

 





    

   

   

     

   



θ θ θ

θ θ θ θ θ

θ

 , (5) 

Figure 5 shows snapshots of samples belonging to successive generations leading to 

the global solution.  

As the evolution progresses, each sample is projected onto the feasibility boundary 

delineated by the nearest constraint. We have observed that computational effort for 

bringing the crude samples to the feasibility boundary diminishes as the solutions draw 

closer to a critical region. After 12 generations, the candidate solutions coalesce around to 

the critical point (5.7429, 2.2571). This example was solved repeatedly with different 

nominal points in each run. Table 1 and Figure 6 summarize the results and the performance 

parameters. We found that the flexibility index was correctly detected in all instances 

within reasonable CPU time. 
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(a) (b) 

  

(c) (d) 

Figure 5: Snapshot of for flexibility index problem. Samples coalesce to the critical point (5.7429, 

2.2571). 
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Figure 6: Critical points and independent operational regions corresponding to different 

nominal points in the uncertain parameter space of example. The proposed 

method correctly identifies the size of hyper-rectangle in each situation. 

 

Table 1: Critical points and flexibility indices corresponding to different nominal points 

Nominal point Critical point found Flexibility index CPU Time(msec) 

5,5 

2,1 

4,4 

3.5,8 

2,3 

4,1 

5,7 

5.8975,5.8975 

1.5935,0.5935 

5.7429,2.2571 

2.9707,8.5293 

1.4712,3.5286 

4.4065,0.5935 

5.1954,7.1954 

0.4488 

0.2033 

0.8715 

0.2646 

0.2644 

0.2033 

0.0977 

203 

204 

201 

198 

204 

200 

203 
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3.2 Nearest constraint projection with controls 

The flexibility of a design problem can be drastically enhanced with adjustable 

controls, z. To better understand the impact of controls on the feasibility function, , 

consider the example in (6) visualized in Figure 7 with two uncertain parameters, 1 and 

2, and one control, z.  

 
2 2

1 1 2

2

3

1 0    

1 0

0

g z

g z

g z

     

  

  

 
(6) 

For a fixed z value, the feasible region, ( , ) 0 d θ , is a circle in the θ space; the 

feasible region changes for different realizations of the control levels, z, as depicted in 

Figure 7a. The feasible region ( , ) 0 d θ  is the unified gray region made possible by 

permissible control adjustments z. Thus, the enlarged area projected onto the θ space for 

all permissible z levels is the feasible region shown in Figure 7b. In general, an explicit 

expression for the feasible region boundary with control, ( , ) 0d θ  , is not available. 

Hence, we augment the nearest constraint projection technique to move infeasible samples 

to the feasible search space with additional control adjustments. This technique will be 

shown to explore both the space of uncertain parameters,θ , as well as the controls, z.  
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(a) (b) 

Figure 7: Geometric representation of the feasible region, ( , ) 0 d θ , in the presence of 

control, (a) depicts constraint variation due to changing z values in theθ space. 

(b) shows the projection of the z space onto the θ space to obtain, ( , ) 0 d θ . 

The feasible region is the unified gray region made possible by permissible 

control adjustments z.  

 

With control degrees of freedom, projection onto the feasibility boundary becomes 

more challenging, because control especially with feedback adds arbitrary nonlinearity and 

complexity to the design constraints. Rather than insisting on rigorous projection, we 

propose an opportunistic zig-zag search which is easy to implement and computationally 

inexpensive. Since the projection on the feasibility boundary is performed for each crude 

sample of the population, the zig-zag control projection need not be correct in every 

instance. As long as one sample of the genetic search yields the flexibility expansion 

achievable with adaptable control, the overall algorithm will proceed to the global solution 

from generation to generation in a statistical sense. Hence, projection with zig-zag search 

needs to succeed merely in a statistical sense true to the stochastic nature of the proposed 

methodology. 
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3.3 Implementation of the nearest constraint projection technique 

This section introduces the detailed implementation of the nearest constraint 

projection technique with zig-zag search. The example of Figure 8 illustrates the essential 

steps of the method for a problem with one uncertain parameter and one control. It 

graphically represents the simultaneous movement in the space of the uncertain parameter,

θ , and control, z. For a fixed control level z, the thick line delineates the range that the 

parameter θ  can assume without violating design constraints. It is the objective of the 

projection technique to identify the largest possible θ extension achievable by suitable 

control adjustments within permissible range, zmin and zmax.  

In the example, the maximum tolerable θ extension is marked by P5. For a given 

starting value P1(θ,z), the algorithm searches in the θ-direction outward from the nominal 

condition until it hits the feasibility boundary at P2. When there are no controls, this first 

step completes the projection correction. With control, repeated adjustments to the control, 

z, and search direction, θ, are necessary until the furthest point P5 belonging to the 

feasibility boundary is found. A detailed examination of the zig-zag search follows:  
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Figure 8: Graphical representation of the nearest constraint projection technique. 
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Step 1. Select the initial search direction *
 . First, the projection direction is decided 

to correspond to the specific component of the parameter vector, θ, with the maximum 

scaled deviation from the nominal point. The maximum scaled deviation equals the infinity 

norm given in equation (2). 

Step 2. Determine the orientation  . Once the critical component and its direction,

*
 , has been found, the orientation of movement needs to be determined. The orientation 

parameter   can be computed as in (7) for the one-dimensional move to lead away from 

the nominal point: 

 
*

*

1,  if  
    where  ( , ) 0

1,  if  

N

N

  


  

  
     

   

θ θ d θ  (7) 

Step 3. Line search in *
-direction -direction. Line search starts from P1 in the 

direction of increasing , for a fixed control level, z=z1, until it meets the constraint 

boundary at P2. 

1

* * *
0.01

i i step step
   


        

(8) 

Here,
step

 , is a sufficiently small positive step size, typically 1% of the interval range 

* . Additional safeguards maintain adjustments within the upper and lower bound, U  

and L . If the flexibility problem has no adjustable controls, the projection method 

terminates at this point. When adjustable controls are available, steps 4-6 for the zig-zag 

search need to be traversed. 

Step 4: Control Adjustment. At the current position P2, further movement in the 

positive *  direction causes infeasibility. However, with suitable control action a higher 

-level might be reachable. The algorithm performs line search in the positive z direction 



 23 

until a constraint boundary is met at '

2
P  for z= '

1
z  ,or the maximum control range zmax is 

encountered.   

Step 5: Expanding the feasibility range. To explore whether increased control action 

does expand the feasible region, the  space needs to be explored for different control 

levels. We propose to choose a new control level, 2
z , given as the average of 1

z and '

1
z .  

'

1 1

2
2

z z
z


  

(9) 

Step 6: Test new control level. At the newly chosen control level, z2, we proceed 

repeatedly with steps 3, 4 and 5, until no more control movement is possible without 

causing a constraint violation. For deciding the correct z-direction, there are three 

possibilities as depicted in Figure 9. In type-1, the candidate solution is located on the lower 

boundary; thus increasing the current control level expands the feasible region as shown in 

Figure 9a. In type-2, the candidate solution hits the upper boundary; thus decreasing current 

control level augments the feasible region as shown in Figure 9b. Candidate solution 

positions falls on an extreme point so that an increase or decrease of the current control 

level would make the sample infeasible. This case is shown in Figure 9c. The numerical 

test in (10) determines the correct move in the z-direction for the three types by examining 

the feasibility of two adjacent points: ( , , )
k

G z h


θ d , ( , , )
k

G z h


θ d , where h is a small 

scalar. 

max ( , , )

max ( , , )

j k
j

j k
j

G g z h

G g z h





 

 

θ d

θ d
 

(10) 

If 0G

  and 0G


 , this means the current point is of type 1. Thus, the control 

level, z, must be increased(type-1). If 0G

 and 0G


 , then the control level, z, must 

be decreased (type-2). When both G   and G  are infeasible, this means the current point 



 24 

is the candidate critical point which does not allow further movement in the θ space (type-

3).  

The final point encountered is a member of the feasibility boundary, ( , ) 0 d θ . 

Thus starting from the initial point, P1, the algorithm performs zig-zag movements in θ  and 

z space as depicted in Figure 8.  

Projection with open boundaries. It should be pointed out that the proposed 

projection technique is also applicable for the case of open constraint boundaries, the 

bounds of parameter ranges are enforced in steps 3. Thus, when there are no design 

constraints limiting the expansion, the algorithm automatically stops at the upper or lower 

bound of the permissible uncertain parameter realizations, U

i
  and L

i
 .  

Feasibility function evaluation and state variable solving. We need to ensure that the 

projection process produces corrected samples that satisfy the state equations. Hence, the 

uncertain parameter θ and states variable x  are updated in accordance with the help of 

Newton-type methods. We used Newton method and Quasi Newton method (Press et al., 

2007). Both methods used numerically approximated Jacobian matrices as starting points. 

Thus, the overall algorithm has a hybrid structure due to a genetic search in the parameter 

space combined with a gradient-based solution of the equality constraint set in the reduced 

state space. This combination harnesses the robustness of the stochastic genetic method as 

well as the efficiency of the gradient-based equation solving methods. In addition, it saves 

computational time by avoiding the solution of the full state space with genetic search. 
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(c) 

Figure 9: Three possible types for deciding correct direction of control moves. (a) For 

a type 1, G+<0, G->0. (b) For a type 2, G+>0, G-<0. (c) For a type 3, G+>0, 

G->0. 
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3.4 Multiple controls 

The discussion of the projection technique presented in previous section considered 

only one control. For flexibility analysis with multiple controls, all possible controls should 

be considered for expanding flexibility. Projection with one control leads to the local 

extreme point (this is called local termination). We continue the zig-zag search for other 

controls until we reach a point which cannot be extended in spite of changing controls. 

Unfortunately, an increase in the number of controls leads to a combinatorial explosion. 

Hence the proposed algorithm is suitable for complex nonlinear problems with only modest 

number of adjustable controls.  

 
Figure 10: Flowchart of the nearest constraint projection technique with multiple controls. 
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In order to better illustrate the projection technique for multiple controls, consider 

the following simple example that has one uncertain variable and two controls as depicted 

in Figure 11. This example traverses each step of the flow chart presented in Figure 10. 

Note again that the zig-zag search need not be rigorous in each run, as long as one sample 

succeeds in identifying the largest range, the conditions of a convergence of the ensemble 

in a statistical sense would be satisfied.  

2 2 2

1 1 2
1 0

0, 1
N

g z z

 

    

   
 (11) 

Let us assume that the starting point is P1( 1 2
0.1,  0.4,  0.5z z    ).  

Step 1: Projection in  1
,  z  space: This step involves projection in the space of   

and z1 for a fixed value of 2
0.5z  . Thus, starting from P1, the proper projection point  

P2  1 2
0.75,  0.0,  0.5z z     is obtained by following the projection steps for a single 

control as shown in Figure 11b. 

Step 2: Projection in  2
,  z  space: This step involves projection in the space of   

and z2 starting from P2  1 2
0.75,  0.0,  0.5z z     as depicted in Figure 11c. The 

outcome of this search is P3  1 2
1.0,  0.0,  0.0z z     and corresponds to local 

termination at this step. 

Step 3: Projection in  1
,  z  space: Starting from P3  1 2

1.0,  0.0,  0.0z z     

obtained in step 2, we explore the  1
,  z  space again. In this case, P3 cannot be moved by 

changing z1 because it is a point of type 3 in the  1
,  z  space. So, this step locally 

terminates at P4=P3. 
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Step 4:  Projection in  2
,  z  space: Starting from P4 obtained in step 3, we explore 

the  2
,  z  space again. Here, P4  cannot be moved by changing z2, because it is a point of 

type 3 in the  2
,  z  space. So, this step locally terminates at P5=P4. 

Step 5: Checking global termination: Since the projection technique exploring the 

space of both controls, z1 and z2, independently yield the termination points  

P3=P4=P5  1 2
1.0,  0.0,  0.0z z    , we conclude that the algorithm globally terminates 

at this point.  
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(a) 

 
(b) 

 
 

(c) 

 

Figure 11: Graphical illustration of the example for the example in section 3.4. (a) This 

example has one parameter,  , and two controls, z1 and z2. (b) In step 1, 

projection in  1
,  z  space yields the local termination point P2. (c) In step 2, 

projection in  2
,  z  space yields the local termination point P3, which is also 

the global termination point P4, P5. 
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3.5 Overcoming problems with disjoint or complicated flexibility regions 

Non-linearity introduced commonly by feedback control may create highly complex 

non-convex feasibility regions. In extreme cases, the feasibility space may even be divided 

into disjoint regions. We obtained good results in challenging case by reinitializing the 

projection method from different control levels as follows. We create multiple starting 

samples at different control level. Then, we follow step 1-5 for each starting point. The 

sample reaching the furthest distance from the nominal point holds the desired -value. 

The following example demonstrates the re-initialization process with multiple control 

starting points for the problem in (12).  

1

2

sin 6.5 0

sin 2 1 0

g z z

g z





   

    
 

(12) 

The search space for this problem is not convex as shown in Figure 12. Moreover, 

the feasible region falls into two separate not connected regions. In this example, the 

sample is projected onto the region ( , ) 0d θ  . This projection starts with the control 

level z=1 (P1), z=2 (P2) and z=7 (P3). Projection begins from a point like 
1

(1,1)P  and 

terminates at '

1
(8.3, 2.0)P . This is not yet the most flexible point achievable with adjustable 

control and does therefore not constitute a point on the boundary of the feasible region,

( , ) 0d θ  . When proceeding from the point like
3

(1, 7)P , the solution '

3
(14.4, 7.9)P is 

found, which does belong to the feasibility boundary. For completeness, there may be some 

points like 
2

(1, 2)P  whose control and uncertain parameter pairing already violate 

constraints. In the current implementation, we abandon such samples without further 

exploration. In summary, multiple control level starting points are necessary to find 

candidate solutions on the feasible boundary in problems with complex constraints or 
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disjoint feasibility spaces. Large population sizes ensure dense exploration of the uncertain 

parameter and control variable space with high probability. 

 
Figure 12: Projection with multiple control level in the disjoint feasible region. To 

efficiently explore the feasible region boundary, multiple control level starting 

points are necessary to find candidate solutions on the feasible boundary in 

problems with complex constraints or disjoint feasibility spaces.  

 

3.6 Implementation  

 Problem formulation. A final comment explains the ease in formulating the 

flexibility analysis with the novel hybrid algorithm. We can directly use legacy code 

representing state equations and design specification inequalities. In contrast to 

deterministic methods, there is no need for algebraic manipulations to transform the design 

equations into a min-max-min flexibility problem, introduce artificial variables for active 

constraints, or provide derivative information of constraints or inequalities. The proposed 

algorithm is capable of computing the fitness function as well as conducting these 

projection methods with no user intervention. For the state space equality constraints, the 
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quasi-Newton approximates gradients with secant information without the need for 

analytical or numerical derivatives. Thus, the hybrid algorithm is suitable to conduct 

flexibility analysis on black box legacy code. The hybrid algorithm simply uses the 

embedded state equations to perform repeated function evaluation. This feature may be 

advantageous in industrial applications. The ease of setting up the mathematical problem 

formulation for global flexibility analysis is a plus of the proposed algorithm. 

Choosing parameters. Like every numerical scheme, the hybrid method features 

several adjustable parameters. It is common knowledge that parameter setting criteria 

cannot guarantee solutions universally, and problem specific considerations are 

unavoidable. However, this limitation befalls any stochastic technique. Even deterministic 

methods require problem-specific adjustable parameters; their rigorous foundation often 

does not carry to a digital computer with finite precision. For these case studies we have 

adopted an empirical procedure to set initial population size, mutation rates, or number of 

generations to working reliably in all case studies. The population size should be at least 

100 times the dimension of the uncertain space. In the case studies, the generation counter 

was 50. Population size can be traded against to the generation, so that smaller populations 

require more iteration. Typically, after two or three trail-and-error adjustments, 

applications converged reliably to the same solution independent of initial guesses or 

parameter choices. The mild inconvenience for tuning as described in these implementation 

guidelines may not constitute an unreasonable limitation of the proposed numerical 

method.  
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4 Applications 

In this section, five applications demonstrate the performance of the hybrid 

algorithm. The first application critically compares the robustness and performance of our 

hybrid algorithm against a commercial MINLP. Additional applications demonstrate 

reliability and computational speed in classical test case studies from the literature. We 

also demonstrate the applicability of our hybrid method for a reactor-cooler system 

problem with three controls. Finally, an industrial size realistic polymerization reactor 

demonstrates substantial performance advancements realizable with parallel processing. 

All applications were implemented with on Intel core2 PC-CPU 2.4Ghz. Parallel 

computing examples were implemented on a decentralized local area network with up to 

ten PCs communicating with a simple TCP/IP inter-process protocol. 

4.1 Application 1: Non-convex, nonlinear two dimensional problem 

This application considers a simple two-dimensional non-convex problem with three 

non-convex inequality constraints including a periodically varying boundary. The 

flexibility problem is formulated as in system (13). The nonlinear constraints lead to critical 

points which do not necessarily lie on the vertex of the flexibility box. 

1 2 3

1 2 1 1

2 2 1 1 1

2

3 2 1 1

1 2

min

. . ( ) ( ) ( ) 0

4 9 198 4 sin(2 ) 0

20 ( 4)( 8)( 12) 240 0

sin(2 ) 2 0.0125 0

                

, 3

N N

F

s t g or g or g

g

g

g



  

   

  

 

 

 





    

      

     

     

   

θ θ θ

θ θ θ θ θ

 (13) 

  Multiple simulations experiments were conducted to test the new method with 

parameters: population size=30, maximum number of generations=30, selection ratio=0.5, 

and mutation ratio=0.01; and are summarized in Table 2. 
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Table 2: Critical points and flexibility indices corresponding to several nominal points for application 1. The super script * indicates 

the incorrect solution obtained with the MINLP method (TOMLAB). 
N

θ  Our approach Local MINLP (TOMLAB) 

 C
θ  FI CPU Time 

(msec) 

C
θ  FI CPU Time 

(msec) 

4,4 3.9499,3.1941 0.2686 218 3.9517,3.1940 0.2687 3,078 

8,10 9.2873,11.0767 0.4291 202 9.3046,11.0674 0.4349 1,937 

12,6 13.1388,5.0686 0.3796 196 13.1387,5.0684 0.3796 11,031 

16,10 17.1950,10.9777 0.3983 234 17.1951,10.9778 0.3983 2,765 

15,8 16.5772,6.4212 0.5263 207 17.4279,9.9876 0.8093* 3,328 

15,12 16.5462,13.2651 0.5154 189 16.5463,13.2652 0.5154 3,828 

9,7 10.2778,4.3115 0.8962 210 12.6009,4.0538 1.2003* 2,896 
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Figure 13a illustrates the outcomes of each flexibility index problems according to 

different nominal point. For each nominal point, the critical scenarios with its rectangular 

feasibility boxes are depicted. We compared the hybrid algorithm results with an active 

constraint method implemented with a TOMLAB dense branch and bound MINLP method 

with starting values initialized at the nominal point, N
θ . The MINLP algorithm failed in 

finding the correct solution in two cases. The details of Figure 13b shows that the MINLP 

methods broke down when the critical point does not lie on vertices as is the case for the 

flexibility problem for nominal points, N
θ (15, 8) and  N

θ (9, 7). These results underscore 

how some off-the-shelf MINLP methods may be inadequate for rigorous flexibility 

analysis, and global algorithms have to be deployed.(Tawarmalani & Sahinidis, 2004; 

Androulakis et al., 1995). In addition, the MINLP solver also exceeded 10-15 times the 

CPU requirement of our hybrid method. 
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(a) 

 
(b) 

Figure 13: The results of application 1; (a) Seven nominal points and corresponding 

critical points found by our method. (b) The MINLP method failed when 

critical point did not lie on the vertex. Our method finds exact solutions even 

though the constraints are non-convex. The MINLP solver also required about 

10-15 times the CPU times of our hybrid method. 
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4.2 Application 2: Heat exchanger network with varying heating duties 

 
Figure 14: Heat exchanger network reproduced from Grossmann et al. (1986). FH1 is the 

uncertain parameter and Qc is the control variable. 

 

This application concerns the flexibility of the heat exchanger network shown in 

Figure 14 and initially used as a benchmark by Grossmann and Floudas (1986) with 

parameters given in Table 3.  

Table 3: Heat exchanger variables, definitions and units. 

Variable Definition and units 

FH1 

Qc 

The heat flow rate of stream H1 (kW/K) 

Heat load in the cooler (kW/K) 

 

This application has only one uncertain parameter, the heat flow rate of stream, FH1. 

Its nominal value is 1kW/K and expected deviations are 
1

0.8
H

F


   and
1

0
H

F


  . The 

heat load, c
Q , in the cooler is considered as an adjustable control. In this application, the 

heat load adds a challenge because this freely adjustable control parameterizes the 

constraints. The search for control decisions is expected to increase process flexibility. The 

following inequality constraints are obtained by eliminating the equality constraints of the 

problem.  

1 2

3

C2 388K

2kW/K

H2,2kW/K

723K

H1,FH1

583K

Qc

C1 313K
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T3≤323K
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   

 
(14) 

 This application requires only one projection cycle, because it has only one uncertain 

parameter and one control variable. Figure 15 shows the geometry of the feasible region in 

the space of uncertain parameter FH1 and control Qc as well as the trajectory of the zig-zag 

projection path with 83 moves. The problem converged to the critical point FH1 = 1.118, 

Qc = 40.66 for any choice of initial guesses. This result agrees with the solutions offered 

by the original authors. The CPU time for this application was 123ms, which is acceptable. 

The application shows that our method was reliable, requires no derivative information, 

and converges in reasonable CPU times. 

 
Figure 15: The feasible region of application 2 and the trajectory of the suggested projection technique 

starting from the point (1,15). Our method converged to the critical point FH1 =1.118, Qc 

=40.66. 

Starting point (1,15)

Ending point(1.118,40.66)

Starting point (1,15)

Ending point(1.118,40.66)
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4.3 Application 3: Pump and pipe with uncertainty in operating pressure 

 
Figure 16: The flowsheet for the centrifugal pump and pipe case study. 

 

This test application involves a centrifugal pump and a pipe as shown Figure 16 

(Swaney & Grossmann, 1985; Grossmann & Floudas, 1986; Floudas et al., 2001). A 

description of the variables and units is provided in Table 4.  

Table 4: The variables of pump and pipe application 

Variable Definition and units 

m 

P1 

D 

H 

W 

Cv
max 

P2* 

η 

k 

ε 

ρ 

r 

Liquid flow rate (kg/s) 

Inlet pressure of liquid flow rate (kPa) 

Pipe diameter (m) 

Pump head(kJ/kg) 

The driver power (kW) 

The control valve size 

Desired pressure(kPa) 

The pump efficiency 

Pressure drop in the pipe (kPa) 

Tolerance for the delivery pressure 

The liquid density 

The control range (0<r<1) 

 

The pump transports the liquid at pressure, P1 = 1,000kPa, and flow rate, m, to a 

destination at pressure, P2. The delivery pressure, P2, must remain within a tolerance, ε, of 

the desired level, P2*. In this application, P2* and m, are considered uncertain parameters, 

and, Cv, is the control variable. This problem has nonlinear constraints and one adjustable 

control. The nominal and the expected deviation of the uncertain parameters are shown in 

Table 5.  

 

 

 

P1m

ρ

H,W

η

Cv

∆P,k

D

P2
P1m

ρ

H,W

η

Cv
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D
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Table 5: Nominal points and expected deviation of application 3 

Parameter P2* (kPa) m(kg/s) 

Nominal value 800 10 

+ deviation 200 2 

- deviation 550 5 

 

D, H, W and Cvmax are regarded as design variables and their values are D=0.0762 

m, H=1.3 kJ/kg, W=31.2 kW, Cvmax =0.0577. The values of the other constants are k = 

1.101E-6kPa, ρ = 1000 kg/s, and η = 0.5, ε=20. By eliminating all equality constraints, we 

arrive at problem (15).  

2 ' 1.84 5.16 *

1 1 2

2 ' 1.84 5.16 *

2 1 2

3

'

*

2

0

0

0

0.3 120

250 1000

5 12

v

v

v

g P H m C km D P

g P H m C km D P

g mH W

C

P

m

 

 







      

       

  

 

 

 

 
(15) 

For a complete discussion, the reader is referred to Swaney and Grossmann (1985). 

A variable, '

v
C , is introduced artificially for simplifying the model representation. The 

variable '

v
C  introduced in equation (16) serves as the control. 

'

2

1
v

v

C
C

  
(16) 

This application was solved with the following parameters: population size=400, 

selection ratio=0.5 mutation ratio=0.05, maximum number of generations=50. The critical 

point was m=11.233, P2*=923.408 with a flexibility index value of 0.617, which is the 

same result as in the original work (Grossmann & Floudas, 1986). Figure 17 depicts the 

location of the correct real critical point. The CPU time for robust global problem solution 

was 57.5 sec. 
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Figure 17: The result for the pump and pipe application depicting the critical point (m=11.233, 

P2*=923.408) as a corner of the hyper rectangle touching the feasible region. 

 

4.4 Application 4: Reactor and cooler system with uncertain kinetics 

   
Figure 18: The flowsheet of first-order reactor system. It involves a heat exchanger and a reactor 

with first order exothermic reaction. 
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This case examines the flexibility of a simple flowsheet consisting of a reactor and a 

heat exchanger shown in Figure 18 (Floudas et al., 2001). The reaction is first-order 

exothermic, 90% of A is converted to B. The mathematical model involves mass balance, 

heat balances of the reactor and the heat exchanger. This problem features large number of 

equations, nonlinearity in the constraints and presence of three nonlinear controls. By 

eliminating equality constraints in the model, eight inequality constraints are obtained as 

in system (17). 

0 1 0 ln 0 0

1

0 0 1 0 ln 0

2 0 0 1 0 ln

3 1

4 1

5 1 2

6 2 1

7 1 2

8 2 1

( )
exp( / ) 0

( ) ( )

0.9( ) ( ) 0
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311 0

0

0

11.1 0

11.1 0
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w w

w

w

F c T T AU T C k
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H F F c T T AU T F
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g T T

g T T
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  
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   

    

    

 (17) 

The design variables are the reactor volume V=4.6m3 and the area of heat exchanger 

A=12m2. The uncertain parameters of this application are the feed flow rate F0 (kmol h-1) 

and the reaction rate constant ko(h
-1). Table 6 lists nominal values and deviations of 

uncertain parameters.  

Table 6: Nominal points and expected deviation of application 4 

Parameter F0(kmol h-1) ko(h-1) 

Nominal value 45.36 12 

+ deviation 22.68 1.2 

- deviation 22.68 1.2 

 

The control variables are the reactor temperature T1, the temperature of the outlet 

stream after cooler T2, and the outlet temperature of the cooling water Tw2.  
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The hybrid algorithm parameters used in this application were population size=400, 

selection ratio=0.5, mutation ratio=0.05, maximum number of generations=50. Floudas et 

al (2001) reported a flexibility index of 0.064, while our algorithm found a critical point 

(85.19,12.40), which corresponds to a flexibility index of 1.75 with control variable values 

of T1=389K, T2=389K, Tw2=350K as depicted in Figure 19. The CPU time was 68 sec. 

 
Figure 19: Normalized feasible region and critical point found using hybrid algorithm. 

We found critical point (85.19, 12.40) which lies on constraint g1. The control 

levels for this region is T1=389K, T2=389K, Tw2=350K. 

 

4.5 Application 5: Polymerization Reactor with uncertain kinetics 

The free radical solution polymerization of styrene in a jacketed CSTR is investigated 

(Maner, 1996). This case study is the most complex application due to its high 

dimensionality and adjustable controls. A schematic representation of the reactor depicting 

the inlet and outlet streams along with all the system variables is given in Figure 20.  
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Figure 20: Polymerization reactor. (a) monomer: styrene (b) initiator: azo-bis-

isobutyronitrile (AIBN), (c) solvent: benzene (d) the outlet stream: monomer, 

initiator, and the polymer (e) cooling jacket inlet (f) coolant efflux. The monomer, 

the initiator, the solvent are inlet streams and produce polymer. 

 

The following three feed streams enter the reactor: pure styrene monomer (a), azo-

bis-isobutyronitrile (AIBN), initiator (b) and benzene, solvent (c). The outlet stream (d) 

contains un-reacted monomer, un-reacted initiator, and the polymer. The reactor has a 

cooling jacket with inlet (e) and coolant efflux (f). A MIMO feedback controller maintains 

the desired polymer chain length within desired quality limits by manipulating initiator and 

coolant flows. The polymer chain length is a function of the ratio of the first and the zeroth 

moments of the polymer, the number average of molecular weight, D1/D0. Steady state 

material and energy balances of this process are given in system (18): 
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where kt is the overall chain termination constant, kp is the propagation constant and 

kd is the initiation constant. 

The product quality challenge lies in keeping the number average of molecular 

weight (NAMW) (D1/D0) between 52,569 g/mol and 64,361 g/mol expressed 

mathematically in the following two inequality constraints. 

1

1

0

52659 0
D

g
D

     (19) 

1

2

0

64361 0
D

g
D

    (20) 

Moreover, the reactor temperature should not exceed 423K. 

3
423 0g T    (21) 

The uncertain variables of the process are Ad, Ed, At, Et, Ap, Ep, Qm and Tf. The 

control variables are QI and Qc. Table 7 lists the nominal values and expected deviations 

of uncertain parameters. More process details can be found in Maner et al (1996).  

Table 7: Nominal values and deviations of uncertain parameters of the polymerization 

reactor 

Parameter Nominal values +  deviations - deviations 
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Qf (l/s) 0.105 0.0021 0.0021 

Tf (K) 330 6.6 6.6 

Ad (1/s) 13
5.95 10  12

1.1 10  12
1.1 10  

Ed (K) 14897 297.4 297.4 

At (l/mol s) 9
1.25 10  6

2.5 10  6
2.5 10  

Et (K) 843 16.86 16.86 

Ap (l/mol s) 7
1.06 10  5

2.1 10  5
2.1 10  

Ep (K) 3557 71.1 71.1 

 

Results. This application was solved for three different reactor types: V=1,000l, 

3,000l, and 5,000l. In the simulations, parameters were set as follows: population 

size=30,000, maximum number of generations=30, selection ratio=0.5, mutation 

ratio=0.05. The results in Table 8 show that only a 5000 l  reactor guarantees flexible 

operation in all expected uncertain scenarios.  

Table 8: The observed flexibility indexes as a function of the increasing reactor volume 

Volume (l) Flexibility index 

1000 0.425 

3000 0.865 

5000 1.115 

 

The trend of larger volumes increasing flexibility makes sense intuitively. However, 

the current study only considers steady state performance. In a dynamic flexibility analysis 

considers simultaneous design and control decisions as a function of time, the trade-off 

between size and flexibility exhibits an optimum. Integrated design and control decisions 

for achieving dynamic flexibility are discussed elsewhere (Malcolm et al. 2007).  

4.6 Parallelization  

Stochastic algorithms like our hybrid algorithm tend to be computationally expensive 

due to many function evaluations. Fortunately, our proposed method is easy to parallelize. 

This option for massive parallelization will be shown as a major strength of the proposed 
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method. We have tested the master-slave model (Hauser, 1994) in our algorithm as shown 

in Figure 21. One processor, called the Master consists of two parts, the GA module, and 

the scheduler. The GA module implements selection, mating, and mutation procedures and 

keeps overall results. The scheduler controls communication between the master and the 

slave nodes. Moreover, it tracks the response time of each slave to optimally distribute 

computational function evaluation tasks in packages proportional to the available free CPU 

capacity. The optimal scheduling of jobs according to performance feedback helps 

avoiding bottle necks. According to the communication between GA module and 

scheduler, packages of uncertain parameter sets and required evaluation tasks are sent from 

the master to slave nodes. The slave nodes perform the projection technique onto the 

feasible region boundary, implement the Newton-type solution of the non-linear state 

equation sets and evaluate the flexibility  of each candidate solution. The final 

performance of each sample in terms of a value and the corresponding corrected  values 

positioned exactly on the feasibility boundary, , are sent back to master node via a TCP/IP 

communication usually via a binary large objects (BLOB). 

To demonstrate the advantages of parallelization, we solved the flexible 

polymerization reactor problem in parallel with increasing number of slave computer 

nodes. Figure 22 compares the required computational times achievable with a single 

processor with the parallel multiple processor network. The CPU time for this application 

with single processor was 102 minutes. With three slave processors the program took 34 

minutes. This is three times faster than the single CPU approach. With six processors, 

computational time was cut to 20 minutes, which is still six times faster than a single 

processor. Finally, we used nine processors the CPU time was further reduced to 12 
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minutes. These experiments demonstrate that the speed of computation increases linearly 

with the number of processors. In all cases of the extensive collection of case studies, the 

hybrid algorithm exhibited correct and robust convergence as well as efficient 

performance. 

 
Figure 21: A master-slave framework for parallel implementation of the hybrid algorithm: 

the master executes GA operations and distributes sample  to slave nodes. The 

slave nodes project  onto the region of boundary and evaluate the cost and 

send it back to master. 
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Figure 22: Computational time (left hand axis) vs number of processors in application 5 : 

9 processor system is approximately one and half times faster than 6 process 

system, three times faster than 3 processor system, and nine times faster than a 

single processor system. The computational speed increases linearly with the 

number of processors. (right hand axis). 
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5 Conclusions 

This chapter introduces a new hybrid algorithm combining the advantages of 

stochastic search techniques method a deterministic nearest constraint projection technique 

for the flexibility index problem. The algorithms may be useful in some cases where 

deterministic global optimization methods are impractical or unavailable. Due to the NP-

hardness of the search space, one should not expect any algorithm to be superior in all 

cases; a list of selection criteria when to use the proposed hybrid framework follows. 

The novel method appears to offer the following main advantages. The direct 

implementation using the hybrid algorithm does not require derivative information or 

introduction of artificial variables such as Lagrangian multipliers or problem 

transformation to a min-max optimization approach. The proposed method even admits the 

direct use of black box models or legacy code to perform flexibility analysis without 

manipulating the original problem formulation. Secondly, the proposed method is very 

robust without failing to identify the correct global solutions in all cases of a comprehensive 

test suite. Five applications were studied to demonstrate the methodology’s effectiveness 

for solving non-convex flexibility index problems. Situations in which traditional local 

MINLP solvers fail to find the correct solution were discussed.   

Finally, we found the performance of the method to be competitive even when using 

only a single CPU. Moreover, massive parallelization is easy to implement due to the 

simple problem formulation and the independent decomposable solution strategy offered 

by the evolving candidate solution population. A linear acceleration up to a ten nodes was 

demonstrated with a realistic problem. For large applications drastic reductions in required 
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computations times can be expected. The ease-of-use as well as the option for 

parallelization may be considered strong points of the proposed method. 

When deploying stochastic method, robustness is often traded against drastic 

increases in CPU time. The proposed hybrid algorithm is promising in delivering both 

reliable convergence as well as reasonable performance in difficult global flexibility 

analysis. 
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Nomenclature (Chapter I) 

 

A area of heat exchanger (m2) 

Cv valve constant (kgm3/kPa)5/s 

Cv
max control valve size 

d vector of design variables 

D pipe diameter (m) 

D0 molar  density(g/l) 

D1 mass  density(g/l) 

F flexibility index  

FH1 heat flow rate of stream H1 (kW/K) 

F0 feed flow rate of reactor inlet (kmol h-1) 

gj inequality constraints  

hi equality constraints  

H pump head(kJ/kg) 

kd initiation constant (h-1) 

ko reaction rate constant (h-1).  

kt overall chain termination constant (h-1) 

kp propagation constant (h-1) 

m liquid flow rate (kg/s) 

n
N  normal distribution 

c
Q  cooling water flow(l/s) 

QI initiator flow(l/s) 

Qm monomer flow(l/s) 

P1, P2 inlet and outlet of pressure (kPa)  

P2* desired pressure (kPa) 

r control valve range  

T1 reactor temperature (K) 

T2 temperature of the outlet stream after cooler(K)  

Tf inlet temperature(K) 

Tw2 outlet temperature of the cooling water(K)  

V reactor volume(m3) 

W driver power (kW) 

x vector of state variables 

z vector of controls 

zmin, zmax   minimum and maximum control range 

 

Greek symbols 

  infinity norm, the parameter deviation 

θ  vector of expected deviations 

step
  Step size 



 53 

*  interval range 

ε tolerance for delivery pressure 

η pump efficiency 

 vector of uncertain parameters.  
N

θ  vector of nominal value. 
c
θ  vector of the critical point 

*
θ  uncertain parameter dimension  

U , L  upper and lower bound of uncertain parameter 

ρ liquid density 
  feasibility function  

  the standard deviation 
  direction orientation. 
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PART B: Integration of Design and Control 
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High-performance processes require a design that operates close to design boundaries 

and specifications, while the robust performance is guaranteed with satisfying all design 

constraints. To approach tighter boundaries of process performance safely, much attention 

has been devoted to integration of design and control that considers dynamic controllability 

and the design decisions simultaneously. However, the mathematical formulations of 

rigorous methods that solve design and control simultaneously are challenging and easily 

become intractable numerically and computationally. This part introduces a new 

mathematical formulation to reduce this combinatorial complexity of integrating design 

and control. We will show that a substantial reduction in problem size can be achieved 

using embedded control decisions within specific designs. These embedded control 

decisions avoid a combinatorial explosion of control configuration, using a full state space 

model that does not require a pairing of control variables and loops. The current capabilities 

of the methodology will be demonstrated using a realistic reactor column flowsheet. 
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CHAPTER II. OVERVIEW OF EMBEDDED 
CONTROL OPTIMIZATION 
Previously published as:  

Moon, J., Kim, S., and Linninger, A.A., “Integrated Design and Control under 

Uncertainty: Embedded Control Optimization for Plantwide Processes”, Computers & 

Chemical Engineering 35 (9), 1718-1724, 2011  

1 Previous works and difficulties in integration of design and control 

Integration of design and control received attention in the scientific community for 

the last 30 years and several methodologies have been developed. Controllability was 

studied based on such as Right Half Plane (RHP) zeros, relative gain analysis, stability 

analysis or linear-quadratic Gaussian (LQG)-based dynamic measures (Kuhlmann & 

Bogle, 2001; Luyben et al., 1996; Papalexandri & Pistikopoulos, 1994; Perkins & Wong, 

1985; Psarris & Floudas, 1991). These analyses are simple and easy to apply, so they are 

suitable for large-scale processes, even though, they are limited to steady state or linear 

dynamic models. The trade-off between economic benefits and controllability with  multi-

objective criteria e were also developed. (Brengel & Seider, 1992; Lenhoff & Morari, 1982; 

Luyben & Floudas, 1994; Palazoglu & Arkun, 1986). The main drawback of these 

approaches lies in difficulties to quantify the controllability for incorporation in the 

objective function alongside capital cost. Other approaches deal with a single economic 

objective function, while avoiding dynamic constraint violations. These methods used 

dynamic optimization to obtain the best design that satisfies all dynamic constraints (Bahri 

et al., 1997; Bansal et al., 2002; Contou-Carrere et al. 2004; Kookos & Perkins, 2001; 

Mohideen et al., 1996a, 1996b; Perkins & Walsh, 1996; Walsh & Perkins, 1994). Excellent 

reviews of integrated design and control methodologies can be found elsewhere (Sakizlis 

et al., 2004; Seferlis & Georgiadis, 2004). Unfortunately, few methodologies for design 
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and control integration are suitable for plantwide process scope because of its mathematical 

complexity. The conceptual problem of the integration of design and control under 

uncertainty is formulated as a stochastic infinite dimensional mixed integer dynamic 

optimization problem. The solution of integrated design and control problems usually 

requires much computational time, integer decisions, and non-convex equations. This 

problem poses an extreme challenge to existing mathematical programming techniques. 

Moreover, control feedback may introduce instability for certain parameter realizations. 

The mathematical complexity and large computational time requirement make it 

impossible to apply current optimization algorithms for a large scale, plant-wide process 

cases. 

Our group (Malcolm et al.,2007) proposed a new method entitled embedded control 

optimization. This integrated design and control method reduces the combinatorial 

complexity of the nonpolynomial-hard search space. It delegates control decisions to a 

suboptimzation step, which adaptively adjusts suitable control moves for a given design. 

Thus control decisions are embedded for each candidate design. Therefore, we propose to 

use embedded control optimization for the plantwide process which optimizes the control 

choices adaptively so that In next two sections of this chapter, the embedded control 

optimization methodology is reviewed.  

2 Mathematical programs decomposition for design under uncertainty  

Embedded control optimization adapts a two-level hierarchical design procedure as 

summarized in Table 9. In level-1, a mathematical process model is built and types of 

variable are defined. In level-2, the mathematical programming framework optimizes 

design and control decisions to maximize robust expected performance.  
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Table 9: Proposed decision hierarchy for integrated design and control  

(Malcolm et al, 2007) 

Level-1: Dynamic modeling, flexibility concepts and structural decisions:  

Identify state variables, x, and formulate conservation laws and 

constitutive equations. Select design variables, d, controls, c, and 

characterize uncertainty sources. 

Level-2: Design optimization:  

Perform integrated design and control optimization steps with increasing 

level of complexity: 

 Mathematical modeling of the uncertain space 

 Dynamic stochastic optimization of the expected performance 

 Stability  

 Dynamic feasibility  

 

2.1 Level-1: Modeling and structural decisions  

The mathematical model based on fundamental conservation laws and first principles 

is built for dynamics of process in level-1. And four types of variables used in the model 

are defined. The types of variables  are  classified into four categories: (i) design decisions, 

d, (ii) control decisions, c, (iii) uncertainty sources, θ and , as well as (iv) state variables, 

x. Table 10 summarizes variables categories of the proposed methodology. 

Table 10: Variable types in integrated design and control (Malcolm et al, 2007) 

Variable Type Symbol Type  Example 

Design d 
Discrete Structural decisions: Connectivity 

Continuous Reactor volume, Column length 

Control c 
Discrete Control configuration, Control type 

Continuous Set points, Control tuning parameters 

State x Continuous Temperature, Composition, Pressure 

Uncertainty 
θ Time independent Parametric uncertainty 

ξ(t) Time dependent Variations due to seasonal changes 

 

Design variables is defined as two kinds- d, -discrete variables and continuous 

variables. Discrete variables represent structural decisions such as the connectivity or 

existence of units. Continuous variables represent equipment size or operating condition. 
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For instance, the choice of reactor type-CSTR or Plug flow reactor would be a discrete 

decision. The reactor size, or column length are continuous variables. The control variable 

set, c, represents alternative controller structures, tuning parameters, and set-points. 

Uncertain variables are categorized into two types- time invariant type (θ) and time variant 

type (ξ). Static uncertain parameters θ vary randomly within a certain value ranges. All 

periodical changing pattern of influences are represented as ξ(t).  

2.2 Level-2: Problem decomposition and optimization 

In level-2, the optimization problem defined in level -1 is solved to obtain the optimal 

design that is the most economic and robust to expected uncertainties and dynamic 

disturbances. As mentioned above, the problem is a stochastic infinite dimensional mixed 

integer dynamic optimization problem and the solution requires expensive computational 

time. To overcome the intractability of the original problem, Pistikopoulos and co-workers 

proposed a problem decomposition algorithm as shown in Figure 23 (Mohideen et al., 

1996a). In their decomposition technique, the optimal design choices are made 

stochastically in a discrete sampling space of a stochastic framework. Control decisions are 

taken at the same level as design decisions. Since the discrete sampling space does not 

include all critical scenarios, an another search for critical constraint violations is required. 

Accordingly, the rigorous feasibly test explores whether the current design and control 

choices are feasible in the entire uncertain space. If a new critical scenario is found, it is 

added to the discrete sample spaces. Thus, this decomposition technique requires three 

steps: sampling (A), main optimization (B), and feasibility test (C). The embedded control 

strategy also adopts this decomposition framework, but avoids the combinatorial explosion 

of discrete control configurations by the embedded control principles. 
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Figure 23: Decomposition algorithm for integrated design and control under uncertainty. 

Main optimization problem (B) is separated from feasibility test (C). 

(Mohideen et al., 1996a)  
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Several sampling techniques such as the Monte Carlo (James, 1985) or Latin hyper 

cube sampling (Mckay, Beckman, & Conover, 2000) can be used for creating a 

representative sample of the uncertain operations or parameters. In step (B), a probabilistic 

objective of the main optimization problem is minimization of total expected cost, Eq. (22). 

Equality constraints include conservation laws, hc, Eq. (23), and the selected control 

algorithm, hCTR, Eq.(24). Inequalities, g, enforce safety, equipment and production 

constraints at specific instances in time or in an integral sense (Eq.(25)). 

 
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Since the solution obtained in step (B) does not guarantee the process feasibility in the 

uncertain space, a rigorous feasibility test exploring the whole entire uncertain space must 

be followed in step (C). If critical scenarios causing failure are found, they are added to the 

sample set, and the design needs to be optimized again. Mathematically, the flexibility 

analysis of a given design d is formulated as a max–min–max problem as described in (26). 
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For this feasibility analysis, several programming techniques are available. 

(Dimitriadis & Pistikopoulos, 1995; Grossmann & Floudas, 1987; Moon et al., 2008; 

Swaney & Grossmann, 1985). However, because design and control are addressed 

simultaneously; this formulation easily leads to infinite permutations of structural control 

and design decisions. Moreover, the solution of design with control feedback is a non-

polynomial dynamic mixed-integer global optimization problem. The embedded control 

strategy also adopts this decomposition framework, but avoids the combinatorial explosion 

of discrete control configurations by the embedding control. 

3 Embedded control optimization 

Even though the problem decomposition suggested by Pistikopoulos substantially 

reduces the size of problem, it is still challengeable because of combinatorial complexity 

of the NP-hard search space. Specifically, the control decisions such as feedback closed 

loops, or pairing of manipulated and control variables cause a combinatorial explosion in 

the number of possible process design and control realizations. We therefore propose to 

separate the design decisions from the control decisions by a decision position technique 

shown in Figure 24. The master level makes design decisions such as reactor dimensions, 

residence time, reactor length, and diameter that dominate dynamic process performance. 

Control decisions are not made at this level. The optimal control actions are dynamically 

computed during the dynamic simulation subprocess based on the optimal regulation 

applied to a linear full state space model. The full linear state space model is dynamically 

adapted with the moving horizon estimator. With the full state space model and a multiple-

input and multiple-output control strategy, the embedded control algorithm avoids 

combinatorial problems of pairing control variables with manipulated variables. Moreover, 
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the control optimization is separated from the main design optimization. In the current 

stage, we chose a Linear Quadratic Regulator (LQR) to compute the best control action to 

minimize a simple cost function as given in (27) and (28). The optimality condition of this 

problem admits an analytical solution; therefore, its computation is very economical. 

Accordingly, the regulator chooses an optimal control moves for a given design. It also 

ensures closed-loop stability and circumvents the combinatorial challenge of control 

variable pairing. 
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Figure 24: Embedded optimization. A two-hierarchical loop renders more tractable 

optimization problem to determine the best economical design that has also 

dynamic controllability. 

 

  



 65 

The LQR needs a linear state space model. We produce a linear process model by 

mapping the nonlinear dynamic process equations into a linear state space model using 

linear identification methods. This identification is executed in every step of the discretized 

time horizon. The required input–output data sets are obtained by sampling the dynamic 

system model at suitably chosen sampling intervals. The adaptive identification solves a 

least square fitting problem. The sequential least squares method (Hsia, 1977) is suitable 

because it produces state space model updates recursibly with little computational cost, 

without having to solve least square optimization problems (Malcolm et al., 2007). In this 

work, we also use a Moving Horizon Estimation technique (Gatzke and Doyle, 2002; 

Haseltine & Rawlings, 2005; Liebman, Edgar, & Lasdon, 1992; Rawlings & Bakshi, 2006). 

Moving horizon estimation is more efficient than full information estimation (FIE). Also it 

shows better performance with linearizing models than sequential least square approach 

used in our previous paper, because it only considers a recent data set for linearization. Our 

previous experience shows that the FIE method performs poorly in highly nonlinear 

processes so that the estimator and real process performance often disagreed, making it 

difficult for least square regulator to ensure satisfactory performance. 

The basic strategy of moving horizon estimation is illustrated in Figure 25. It 

estimates the state and parameters using a moving data window of fixed size. When new 

observation become available, new data are added to the data window and the same amount 

of oldest data is removed from the window. It provides a generic approach to state and 

parameter estimation, which can be applied to both linear and nonlinear processes. When 

introducing the moving horizon technique, past dynamics are slowly discounted; moving 

horizon window captures process dynamics even in highly nonlinear transitions. We can 
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obtain a linearized model at certain discretized time with a finite set of data by solving a 

least square problem described in (29). 

where x is process data vector, x  is linear model data, and H is horizon length 

 

Figure 25: Moving horizon estimation-basic concept .The state is estimated from a 

horizon of the most recent H+1 output measurements that moves forward at 

each sampling time when a new measurement is available. 

 

The next chapter demonstrates the effectiveness of embedded control optimization 

strategy by designing an entire process flowsheet with control and design integration under 

uncertainty. 
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CHAPTER III. DESIGN AND CONTROL 
INTEGRATION FOR ISOMERIZATION PROCESS  

Previously published as:  

Moon, J., Kim, S., and Linninger, A.A., “Embedded Control for Optimizing Flexible 

Dynamic Process Performance” , Industrial and Engineering Chemistry Research, 50 

(9), 4993–5004, 2011 

 

This chapter demonstrates the effectiveness of embedded control optimization for an 

entire flowsheet. We show the large scale case study- for integrated design and control of 

an isomerization process under uncertainty (Luyben et al., 1998). The aim of this case study 

is to determine optimal design specifications for optimal performance under uncertainty 

with reasonable control for dynamically flexible operations. This task of design and control 

integration should be done simultaneously with reasonable computational effort. 

1 Isomerization Process description  

Isomerization process converts normal butane to isobutene, as shown in (30). 

 

(30) 

This process is important because isobutane is a valuable primary feedstock 

component for motor fuel alkylation. Motor fuel alkylate is an environmentally superior 

blending component that has paraffinic, high-octane, low-vapor-pressure blending 

properties. 
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Figure 26: Isomerization process (Luyben et al., 1998). In this process, normal butane is 

converted to isobutane. The process is comprised of a reactor, a feed-effluent 

heat exchanger, and two distillation columns. 

 

The isomerization flowsheet consists of a PFR, a Feed Fluent exchange heater, and 

two distillation columns, as shown in Figure 26. The input feed is the mixture of nC4 and 

iC4. It also has a small amount of propane (nC3) and isopentane (iC5). Since the input feed 

already has some amount of iC4, it does not enter the reactor directly. It enters 

Deisobutanizer column (DIB) and some of iC4 is separated from the input feed. Propane, 

which is the lightest component, also comes out in the distillate stream. Because of similar 

volatilities of iso/normal butane, it is hard to separate iC4 from nC4. Thus, relatively higher 

number of tray and reflux ratio are required. The bottom feed of DIB goes into the purge 

column,where most of iC5 is purged to the bottom stream. The upper stream is vaporized 

and goes into the reactor by passing the heat exchanger. In the reactor, some of the normal 
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butane is converted to isobutene in the vapor phase. We assume that this is the first order 

exothermic irreversible reaction as shown in (31). 

4
, exp

nC o

E
r kC k k

RT

 
   

 
 

(31) 

where r is reaction rate, k is temperature-dependent reaction rate constant, ko is pre-

exponential factor, E is activation energy , and T is the reactor temperature (given in 

degrees Rankin). 

Since the effluent of the reactor should be condensed and liquefied for separation, the 

input stream of the reactor should be preheated to initiate the reaction. To reduce the energy 

requirement, a feed effluent heat exchanger (FEHE) is inserted to recover the heat of the 

reactor effluent. However, preheating is insufficient; therefore, a furnace is used to heat the 

input stream to the desired temperature. The effluent of reactor is liquefied in the condenser 

and redirected to the DIB. The stream is above the fresh feed, because the concentration of 

isobutane in the reactor effluent is higher than that of the fresh feed.  

2 Mathematical models for simulation 

We used MATLAB to simulate the flowsheet. The isomerization flowsheet is 

composed of several units that are described as partial differential equations (PDEs). We 

discretized the pellet reactor with 10 collocation nodes to convert PDEs to ordinary 

differential equations (ODEs). Also, tray-by-tray models for the DIB column and the purge 

column simulation were used. In this study, we chose to neglect the dynamics of the heat 

exchanger and the furnace, because they have fast dynamic responses, compared to other 

units such as distillation columns or plug-flow reactors, so they are not the dominant units 

used to study integrated design and control. A dynamic mathematical model was 
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implemented in MATLAB with 505 variables, 501 equations, and 3 inequality constraints. 

Details of the mathematical model that describes the isomerization process are described 

in the Appendix A. 

3 Operational constraints and control action strategy 

We set two quality constraints and one safety constraint for operating this process. 

Following the report by Luyben et al. (1998) for the product quality, the mole fraction of 

nC4 of the final product (x1) should be less than 2%. For complete elimination of the 

heaviest inert (iC5), the mole fraction of iC5 (x2) at the top stream of the purge column 

should be less than 0.1%. For safety reasons, the reactor pressure (x3) should never exceed 

700 psia (to prevent explosion). To satisfy quality and safety constraints, we use the reflux 

ratio (u1) and the vapor ratio of DIB column (u2), the reflux ratio of purge (u3), and the input 

temperature of the reactor (u4) as manipulated variables. 

1
0.02x   

(32) 

2
0.001x    

(33) 

3
700 ( )x hard  

(34) 

3
650 ( )x soft  

(35) 

Among these constraints, the safety constraint (34), which involves the reactor 

pressure, must be enforced for all time periods of all possible uncertain scenarios. Violation 

of (34) is unacceptable at any times under any circumstances. On the other hand, it is 

impossible to keep the product specifications exactly at the set point target in a real 

operation. Therefore, the quality constraints for bottom and product streams are soft. 

However, the optimal process should deviate as little as possible for this target. The control 
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averts any disturbance and keeps the variables close to the desired values; however, it 

cannot do so without minimal departure of set points. For this reason, we add another 

conservative constraint (35) to avoid the violation of (34) at any time. Thus, (32), (33) and 

(35) are soft constraints and (34) is a hard constraint. 

Table 11: Design, process, and manipulated variables 

Variable Type Symbols Description 

Design  d1 

d2 
d3 
d4 

Reactor volume size (ft3) 

Total tray number of DIB 

Total tray number of purge column 

Heat exchanger size (ft2) 

Process x1 

x2 

x3 

Mole fraction of nC4 at top of DIB 

Mole fraction of iC5 at top of purge column 

Reactor pressure 

Manipulated u1 

u2 

u3 

u4 

Reflux ratio of DIB column 

Vapor ratio of DIB column  

Reflux ratio of purge column 

Input temperature of reactor 

 

 

Figure 27: Design, process and manipulated variables in isomerization process case study. 
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4 Design variables 

The design optimization features four key design variables, as shown in Table 11 and 

Figure 27: the reactor size (d1), the total tray number of DIB (d2), the total tray number of 

the purge column (d3) and the heat exchanger size (d4). The conversion ratio in the reactor is 

almost linearly proportional to the reactor size (d1) as shown in Figure 28. Since a high 

conversion ratio decreases the amount of normal butane in the recycle stream, it also 

decreases the amount of normal butane in the top of DIB. As a result, a larger reactor size 

eases the product separation. Increasing the number of DIB trays improves the separation.  

Also, a larger number of trays in the purge column purges more isopentane. However, 

larger columns increase the total capital cost, so there is a tradeoff between controllability 

and capital cost. An economic tradeoff between the operating cost and the capital cost, with 

respect to heat exchanger size (d4), also should be considered. A larger heat exchanger may 

reduce the energy needed in the furnace to keep the input temperature at a desired value. 

Again, larger heat exchanger areas need more capital cost. 
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Figure 28: Reactor size vs conversion ratio. Conversion ratio is almost linearly 

proportional to the reactor size. This means a larger reactor will increase the 

controllability. 

 

5 Uncertainty scenarios 

To account for uncertainty in the real process operations, several expected 

uncertainty scenarios are considered for the design and control integration. We chose two 

scenarios:  an instantaneous increase of the feed rate at certain time (t) and a dynamics 

composition change of nC4 and iC4 in input feed (w1), as shown in Table 12. In Case 1, we 

doubled the feed rate at a certain time (t = 1500). In Case 2, we changed the composition 

of nC4 and iC4 in the input feed. In Case 3, we applied two dynamic disturbance scenarios 

at t = 1500. 
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Table 12: Dynamic disturbance scenarios 

 Disturbance type 0<t<1500 1500<t<3500 

w1 Feed rate change Fi:578 lb-mol/hr Fi:1,156 lb-mol/hr 

w2 Feed composition 

change 

nC3: 0.02 

iC4: 0.24 

nC4: 0.69 

iC5: 0.05 

nC3: 0.02 

iC4: 0.04 

nC4: 0.89 

iC5: 0.05 

 

For time-invariant uncertainty, we wish to investigate the impact of two main 

uncertain parameters associated with chemical reactions. The first parameter is the pre-

exponential factor ko, and the second is the heat of reaction, . Their nominal values and 

variances are illustrated in Table 13. We assume that 10% of variation exists from nominal 

points. 

Table 13: Nominal values and expected deviation of uncertain parameters 

 N  


  variance 

ko (hr-1) 8
4 10  7

4 10  10% 

 (Btu/lbmol) -3600 360 10% 

 

6 Control Structures 

Because this is a 3 by 4 system, we may consider pairing between process variables 

and manipulated variables. However, as shown in Figure 29, all process variables and 

manipulated variables are highly correlated, so it is not obvious how to pair variables. For 

example, x1 is correlated with u1 and u2. If the reflux ratio of the DIB column is increased, 

the impurity of product (x1, which represents the composition ratio of nC4) will be 

decreased. If we increase the vapor ratio of the DIB column, x1 also will be increased. In 

addition, x1 is also highly correlated with u4 (the input feed temperature). As u4 is increased, 

the conversion ratio also is increased, which is helpful for separation. However, increasing 

u4 may lead to higher pressure in the reactor, which violates safety constraint (34). 
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Figure 29: Relationship  between x and u. All variables are highly correlated. 

 

7 Performance of a Nominal Process  

We computed two control strategies. First, we paired process variables with 

manipulated variables based on unit control. Hence, x1 is paired with u1 and u2, x2 is paired 

with u3, and finally x3 is paired with u4, as shown in Figure 30. Then, we tested this paired 

control structure and integrated structure with specific process designs (d1 = 550, d2 = 40, 

d3 = 20, d4 = 10). We simulated for 2500 discretized times and an activated controller after 

t = 1000. As shown in Figure 31, the classical control configuration failed to meet the 

requirement of the constraints after t = 2500. This controller did not use u4 to satisfy 
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constraints (32) and (33). On the other hand, integrated control configuration succeeded in 

keeping all process variables under their set points after t = 2500, as shown in Figure 32. 

 

Figure 30: Classical control structure u1 (reflux ratio of DIB) and u2 (vapor ratio of DIB) 

are paired with x1 (the mole fraction of nC4 at the top of the DIB), u1 (the reflux 

ratio of the DIB); u3 (the vapor ratio of the purge column) is paired with x2 (the 

mole fraction of nC4 at the top of the DIB), and u4 (the input temperature of 

the reactor) is paired with x3 (the reactor pressure). 
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Figure 31: Result of the classical control structure. The classical control structure  could 

not keep x1 and x2 under the set points until t = 2500. 
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Figure 32: Result of the integrated control structure. It succeeded in keeping all process 

variables under the set points. Unlike the classical control structure, It used u4 

to control x1 and x2. 
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8 Optimal design process 

To maximize the performance, while, at the same time, planning flexible operation 

in expected scenarios, we performed the design optimization under uncertainty as follows. 

First, we collected uncertain samples (step A) and performed embedded control 

optimization (step B), in which the optimal control decision is made. Finally, we checked 

the feasibility of the design obtained in step B (step C). 

As a first attempt to perform the stochastic optimization, we chose 10 samples in the 

uncertain space of reaction conditions using Latin hypercube method and evaluated the 

probabilities of each parameter set to calculate the expected cost, as shown in Figure 33. 

 

Figure 33: Probability of two uncertain parameters. We chose 10 samples using Latin 

Hypercube method. 
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We now wish to rigorously determine the design and manipulated variables, such 

that the process does not violate the constraint limits in any realization of the reaction 

conditions and dynamic performance due to uncertainty. For the capital cost, we considered 

the reactor, the columns, and the heat exchanger. For the expected operating cost, we 

considered energy consumptions in the furnace, the condensers, and the reboilers. The 

master level of this problem is to minimize the total annual cost.  

 
max

1 2
, , ( )

0

. .   
Capital CostExpected Operating cost 

min , , ( ), , ( , )

t

s s

d c x t
t s

s t

C d c x t t dsdt C d c penalty 
 

       
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Expected 
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(36) 
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c
h d x t x t t s     Conservatio

nal Laws  
(37) 

 1 2
( , ( ), ( ), , ) 0, ,

point s

j
g t t t t H H d x u θ  

point 

Constraints 
(38) 

 ( , ( ), ( ), , ) 0 0,
path s

j end
g t t t t H d x u θ  

Path 

constraints 
(39) 

 

Since constraints (32) and (33) are soft constraints, they do not need to be satisfied 

in all time periods. Thus, we implemented them as point constraints, to be satisfied at 

certain time instances during the period of operation, as defined in (38). In this case, values 

of H1 = 3250 and H2 = 3500 are used. On the other hand, constraint (34) is a path constraint, 

as defined in (39), since it should be satisfied for all simulation times. 

To solve optimal design problem, a Nelder-Mead simplex method was used in the 

master level of our methodology, and the embedded control approach was used to adjust 

the optimal control decisions. For numerical solution in suboptimization, control vector 

parameterization (Feehery & Barton, 1998) was adopted. To handle the inequality 

constraints, a penalty is added to the objective function. 

Next, a rigorous feasibility test of the current best design specification was 

performed. Initially, we performed a steady state feasibility test. A system that is infeasible 
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in steady state is not feasible in dynamic state either. If we find a critical point in steady- 

state feasibility test, then we return to the main optimization problem (step B) without 

doing a dynamic feasibility test. However, steady state feasibility does not guarantee all 

trajectories satisfy constraints. Therefore, we also performed dynamic feasibility test in 

which all the trajectories of the current design were checked to be feasible under steady 

state conditions. 

For the feasibility test in this study, Active Constraint Strategy was adpated 

(Dimitriadis & Pistikopoulos, 1995; Grossmann & Floudas, 1987). A mathematical 

formulation for Active Constraint Strategy is given in (40). 
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(40) 

where d is the vector of design variables, x the vector of state variables, u the vector of 

manipulated variables and the vector of uncertain parameters. Here sj is are slack 

variables and j and j are lagrange multipliers. i I  and j J  are the index sets for 

equality constraints and inequality constraints, respectively. 

To handle differential equations, we used a collocation meth- od to represent 

differential equations by polynomial approximation (Dimitriadis & Pistikopoulos, 1995). 
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Also, we simplified the dynamic feasibility by examining only weights at time nodes 

instead of examining the course of all trajectories between collocation nodes. We admit 

that there could be critical points between time nodes that violate dynamic constraints. This 

exercise was beyond the range of the current work. 

9 Results 

Case 1: Design and Control Optimization with Feed Rate Change. The first case 

considers the increase of feed rate in fresh feed (Fi). We optimized the design under the 

dynamic disturbance w1. The initial guess for the case was d1= 3000, d2= 70, d3= 40, d4= 

1200. We optimized with 10 time-invariant uncertain samples. In the first trial, we obtained 

the design specification d1= 285, d2= 89, d3= 35, d4= 1539. With the steady feasibility test, 

a critical point (k0 = 3.6 x 108 hr-1, λ = -3960 Btu/lb-mol) was identified. Since the steady 

feasibility test yielded a critical point, the dynamic flexibility test had not been tested yet. 

Thus, we optimized design and control decision again with 10 original uncertain scenarios 

augmented by the new critical scenario. A second improved design was found to be d1= 

334, d2= 94, d3= 46, d4= 1585, which is a more conservative design than the first one. With 

this design specification, in both steady-state feasibility tests and dynamic feasibility tests, 

no critical points were identified.  The performance of the final design specification with 

the critical uncertain parameter point is shown in Figure 34. This simulation result is 

composed of three phases. We started the process at t = 0. As an initial point, we assume 

x1 = 0, x2 = 0, x3 = 600. In the first 200 time steps, the controller was not switched on yet, 

so that sufficient data could be gathered for the process identification (phase I). At t = 60, 

a large system deviation occurred in the x2   composition, as indicated in Figure 34, because 

the system identification had not stabilized yet. After t = 200, the control is activated and 
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x2 is decreased by adjusting manipulated variables (phase II). When the disturbance w1 hits 

the process at t = 1500, x1 is increased, but without exceeding the upper limit (phase III). 

This scenario has no further challenges to remain within desired operational limits.  

Case 2: Design and Control Optimization with Feed Composition Change. We 

performed optimization with disturbance scenario w2 in Case 2. In this case, we initially 

obtained the optimal design d1= 184, d2= 89, d3= 46, d4= 1545 with 10 uncertain scenarios. 

In steady feasibility tests, we found a critical point (k0 = 3.6 x 108 hr-1, λ = -3960 Btu/lb-

mol). Accordingly, the design problem was solved again with this critical point 

incorporated in the scenario samples. The second optimization yielded a design with d1= 

193, d2 = 93, d3 = 46, d4 = 1540, which is less expensive than that in the flowsheet of Case 

1. As shown in Figure 35, the disturbance w2 increased the reactor pressure and the 

embedded control system adjusted the manipulated variables to keep all process variables 

below upper limits. In phase II, x2 is increased during the startup process, which is similar 

to that observed for Case 1. Like Case 1, the controller adjusted the manipulated variables 

and kept all process variables within the desired limits. In phase III, the dynamic 

disturbance w2 increased all process variables, as well as the product impurity (x1) and the 

reactor pressure (x3); however, these will meet, causing unacceptable constraint violations. 

Case 3: Integrated Design and Control with Feed Flow Rate and Feed 

Composition Change. In this case, we performed integrated design and control 

optimization with both disturbance scenarios w1 and w2. In the first iteration, the optimal 

flowsheet was d1= 407, d2= 88, d3= 46, d4= 1542. The dynamic feasibility test identified 

the critical point (k0 = 3.6 x 108  hr-1,  λ = -3960  Btu/lb-mol).  Then, the design optimization 

is run again, with a final result of d1= 470, d2= 90, d3=46, d4= 1533. This allows no  phase 
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to  have disturbances and no control (see Figure 36). After t = 200, the controller is engaged 

and keeps all variables below the upper limits. In the second phase, x1 and x3 were increased 

and exceeded the upper limits when two dynamic disturbances occurred. 

All results are summarized in Table 14. The result of Case 3 is the most expensive, 

because it accommodates both disturbances simultaneously. The parameter values in 

steady state of optimal design of each case study are summarized in Table 15.  
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Table 14: Best design with ten original samples and a critical point 

Case 

no 

 d1 d2 d3 d4 C1 C2 TAC 

1 1st 285 89 35 1,539 656 3,213 1,727 

2nd  334 94 46 1,585 503 3,507 1,672 

2 1st 184 89 46 1,545 356 2,628 1,232 

2nd 193 93 46 1,540 329 2,691 1,226 

3 1st 407 88 46 1,541 904, 3,861 2,191 

2nd 470 90 46 1,533 659 4,184 2,054 

C1: operating cost (k$/year), C2: capital cost (k$), TAC: total annual cost (k$) C1+C2/3,  

 

Table 15: Parameter values in steady states 
Unit Parameter Case1 Case 2 Case 3 

t<1500 t>1500 t<1500 t>1500 t<1500 t>1500 

Reactor Volume ft3 

Conversion Ratio 

Input Temp. 

Output Temp 

334 

0.94 

405 

459 

334 

0.78 

404 

463 

193 

0.68 

432 

465 

193 

0.72 

419 

469 

470 

0.98 

390 

446 

470 

0.88 

396 

471 

DIB Total trays 

Feed Trays 

Reflux ratio 

Vapor ratio 

Reflux drum hold up, ft3 

Base hold up, ft3 

94 

26/56 

7.9 

7.7 

850 

1000 

94 

26/56 

8.0 

7.7 

850 

1000 

93 

37/56 

7.9 

4.5 

850 

1000 

93 

37/56 

8.0 

5.1 

850 

1000 

90 

36/54 

7.1 

7.6 

850 

1000 

90 

36/54 

8.0 

7.7 

850 

1000 

Purge 

column 

Total trays 

Feed Trays 

Reflux ratio 

Vapor ratio 

Reflux drum hold up ft3 

Base hold up ft3 

46 

23 

7.99 

170 

185 

200 

46 

23 

7.98 

170 

185 

200 

46 

23 

6.3 

139 

185 

200 

46 

23 

5.1 

115 

185 

200 

46 

23 

7.3 

158 

185 

200 

46 

23 

7.7 

167 

185 

200 

FEHE Area, ft2 

Input temp. of hot stream, K 

Output temp. of hot stream, K 

Input temp. of cold stream, K 

Output temp. of cold stream, K 

1585 

459 

222 

115 

298 

1585 

463 

280 

115 

315 

1540 

465 

260 

115 

313 

1540 

469 

267 

115 

324 

1533 

445 

215 

115 

298 

1533 

471 

288 

115 

345 
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Figure 34: Simulation result of the final optimal design (Case 1): (a) trajectories of process 

variables x1-x3 and (b) trajectories of manipulated variables u1-u4. In the 

identification phase (phase I), the controller is not activated, because sufficient 

data have not been collected for the moving horizon estimator. Phase II 

describes startup behavior. The controller kept all process variables under the 

upper limits. When a dynamic disturbance occurred, all values of process 

variables are increased. However, they did not exceed the upper limits but 

reached a new steady state. 
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Figure 35: Simulation result of the final optimal design (Case 2). A feed composition 

change occurred at t = 1500, but the response of the embedded controller was 

satisfactory. 
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Figure 36: Simulation result of the final optimal design (Case 3). In this case, two dynamic 

disturbances occurred at t=1500, which caused increases in x1 and x3 increased. 
However, the embedded controller adjusted the manipulated variables to keep 

all process values below the upper limits.  
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10 Discussion 

In this chapter we performed design optimization considering controllability with 

dynamic disturbance scenarios. The optimal design and control decisions obtained in the 

previous section were able to reject the expected dynamic disturbances satisfactorily. 

In Case 1, disturbance w1-doubling the feed rate-decreased the conversion ratio, 

which resulted in an increase in x1. However, the optimal design with embedded control 

was robust enough to reject this disturbance. Even though x1 was increased, its value did 

not exceed the upper limit. 

Case 2 considered dynamic disturbance w2- feed composition change. Because the 

mole fraction of nC4 in the input feed was increased in the disturbance scenario, it made 

the separation more difficult. As expected, the disturbance increased the mole fraction of 

nC4 of the final product (x1), as well as the top stream of the purge column (x2) and brought 

the quality violation of constraint (33). However, the final optimal design chosen by 

embedded control optimization strategy had good controllability to accommodate this 

violation. 

In Case 3, the design should be robust enough to safely operate for both disturbances 

at t= 1500. The trajectories of the process in Case 3 reflect tougher dynamic control 

challenges than observed for Case 1 and Case 2. To reject two disturbances, the final design 

of Case 3 required a larger size than that needed for Case 1 or Case 2. We found the same 

critical point (k0= 3.6 x 108 hr-1, λ = -3960 Btu/lb-mol) in all cases. This point is located on 

the vertex of uncertain space. This point can be reasonably considered to be the worst-case 

scenario, because small k0 makes the conversion ratio small and a small heat of reaction 
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(large absolute value) increases the reactor temperature, which results in an increase in 

pressure. 

Our methodology is to recast an integrated design and control examined. Also, we 

wish to improve the quality of identification for highly nonlinear processes, using more-

advanced identification, such as the subspace identification method or nonlinear model 

predictive control. However, these advanced algorithms are more expensive; therefore, a 

tradeoff between accuracy and performance of algorithms needs to be considered.  
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Nomenclature (Chapter III) 

 = parameter matrix in state space model 

 = parameter matrix in state space model 

 c = control decision 

C1 = operating cost 

C2 = capital cost 

d = design decisions  

di  design variables 

E = activation energy, Btu/lb-mol 

Fi = fresh flow rate,  lb-mol/hr 

FR = Recycle flow rate , lb-mol/hr 

H = moving horizon time 

k  temperature dependent rate constants, hr-1 

ko = preexponential factor (hr-1) 

Q = covariance matrix 

r = reaction rate, lb-mol / hr ft3 

R = covariance matrix 

t = time, m 

T = reactor temperature, K 

*
K  = control gain 

U = overall heat transfer coefficient, Btu/ft3·h·K 

V = the reactor volume, ft3 

wi  disturbance scenarios 
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X = state variable 

 

Greek letters 

  = flexibility index 

θ = static parametric uncertainty 

ξ = time dependent uncertainty source or disturbance 

 = uncertain space 

 = heat of reaction, Btu/lb-mol 
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PART C: Global Optimization for Finding 

Multiple Solutions 
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Investigation of multiple solutions in global optimization problems is important 

because multimodal objective functions are common in engineering and operational 

research. Several deterministic methods were developed for finding multiple solutions. In 

stochastic optimization technique fields, several genetic algorithms called ‘niche 

technique’ were developed for the multimodal situation. They were successful in some 

cases by maintaining the diversity of certain properties within the population, but still have 

some limitations. To tackle these problems, a ‘hybrid sequential niche algorithm’ is 

proposed in this part. This is based on sequential niche technique suggested by Beasley et 

al (1993). Like Beasley’s method, it finds all solutions sequentially. But our algorithm 

deploys a deterministic local search to accelerate speed, therefore ours is faster than the 

traditional niche methods. In addition, its robustness is enhanced because it uses variable 

niche size. It adaptively sets niche size for each solution, so it is more robust to find multiple 

optima even though the solutions are not evenly distributed. This algorithm was tested with 

several challengeable benchmark functions. Also it was used for finding multiple, optimal 

parameter sets in designing distributed systems.  

Part C consists of two chapters. Chapter IV overviews global optimization, and 

reviews several deterministic and stochastic optimization methods. Chapter V presents 

details of hybrid sequential niche algorithm and several case studies. 
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CHAPTER IV. REVIEW OF GLOBAL OPTIMIZATION 

Previously published as:  

Moon, J., and Linninger, A.A., “A Hybrid Sequential Niche Algorithm for Optimal 

Engineering Design with Solution Multiplicity”, Computers and Chemical 

Engineering, 33 (7), 1261-1271, 2009.  

 

Global optimization is an area of mathematics that involves the search for solutions 

to equation systems or maximum/minimum of a given objective function according to some 

conditions. Global optimization is distinguished from regular optimization (called local 

optimization). While the regular optimization focuses on finding the maximum or 

minimum in nearby local area, global optimization pursues to find maximum or minimum 

through the whole boundary. As shown in Figure 37, the global maximum is the highest 

location on the boundary, whereas the other two maxima are the local maxima. This is the 

main difference between a global maximum and local extrema. Global maximum is a point 

where its function values achieves the greatest in the boundary. Local maximum is area 

that is the highest value when compared to only its neighboring points. Global optimization 

is an important issue in engineering and science fields, because there are many optimization 

problems local optimization approaches cannot find global solution. Thus, the area of 

global optimization has been much paid attention in the last two decades.  
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Figure 37: Example of a global maximum near local maximum locations. 

 

Existing global optimization algorithms can be categorized into deterministic method 

and stochastic method. Deterministic method is a mathematical technique based on the 

concept that the next step can be determined precisely from the past behavior of a set of 

data. The behavior by the method is determined by initial state and inputs and never 

produce different result as long as inputs are same. Deterministic method includes 

trajectory methods that travel along the function and check for the global optimum, and 

also branch and bound methods. Each branch is checked for a global extremum, and then 

it is further branched until the global extremum is located. Stochastic methods incorporate 

with random numbers to predict the next step. It searches a set of points randomly, and 

choose some of points that are superior than others. Then the chosen is next step and this 

procedure is repeated until it finds optimum. Since the method uses random number in the 

algorithm, it present different behavior whenever it runs.  Techniques for global 
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optimization can include characteristics of deterministic or stochastic methods 

individually, or a combination of both. While deterministic approaches guarantee -global 

minimum in mathematical sense, stochastic methods guarantee asymptotic convergence 

guarantees only at infinity for optimization problems. 

1 Deterministic optimization methods 

Several global optimization techniques have already been extensively researched, 

and are fairly successful at obtaining the global extremum for a series of functions. The 

examples of deterministic methods are the interval method, (Hansen, 1979); branch and 

bound procedures (Al-Khayyal and Falk, 1983; Horst and Tuy, 1987); cutting plane 

methods (Tuy et al. 1985); outer approximation approaches (Horst, 1992); Lipschitzian 

methods, (Hansen et al, 1992a,1993b); reformulation-linearization (Serali and 

Alameddine, 1992; Sherali and C.H. Tuncbilek, 1992); the αBB method (Floudas, 2000); 

the homotopy method (Dunlavy & Leary, 2005), and global terrain methods (Lucia and 

Yang, 2002). 

Among these deterministic methods, several deterministic methods-interval 

methods, homotopy method, aBB method, and BARON are reviewed in this section. 

1.1 Interval method (Hansen, 1979) 

The interval method finds a global extremum by producing bounds on the objective 

function. Then it divides the objective function into separate intervals and determines if the 

global extremum is located on that interval, and if is not located, it removes the interval 

from the domain. The method repeats this process until the interval is small enough. The 

bounds are based on the range of the objective function in the domain, as computed with 

interval arithmetic. Thus these bound may be too loose.  
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1.2 Homotopy method 

Homotopy method converts an original problem into a simpler one that is easy to 

solve.  Then it gradually deforms this simpler problem into the original and find the actual 

solution from the solution of simpler one already found, as a starting point, lastly it ends 

with the solution of the original problem. The homotopy-continuation method provides a 

smooth transition from an approximation to true solution(s) of ( ) 0W x  , using of a scalar 

homotopy parameter, t. The Newton homotopy has the form: 

0
( , ) ( ) (1 ) ( ) 0H x t W x t W x     

(41) 

 

Starting at t = 0, H(x,0)= 0 is trivial to solve given any initial vector, x0. A homotopy 

path is generated as t increases to unity, where the true solutions are located. To track the 

homotopy paths, a predictor-corrector procedure is used. It determines if a local extremum 

lies in that section of the function, and if not, removes it from further consideration. If a 

local extremum is found, it checks to see if it is less than the current global extremum and 

then updates the global extremum value accordingly. 

1.3 αBB method 

BB method was proposed for locating global minimum solution of constrained 

nonconvex problems by Floudas group (Androulakis et al., 1995; Adjiman et al, 1996). 

This is based on a branch and bound framework (Horst and Tuy, 1990) and converging 

lower and upper bounds. It deals with nonconvex minimization problem and guarantees 

global optimality mathematically. Lower bounds are obtained through the solution of 

convex programming problems and upper bounds based on solving nonconvex problem 

with local methods. The αBB method adapts an α parameter to assist in the convergence of 

functions. The method begins with the original problem with the complete feasible region 
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called the root problem. The lower-bounding and upper bounding procedures are applied 

to the root problem. If the upper and lower bounds meet, then an optimal solution is found 

and ends the whole procedures. If not, the feasible region is divided into two and these 

subproblems become children of the root search node. The algorithm is used recursively to 

the subproblems, producing a tree of subproblems. If an optimal solution is found in the 

subproblem, the rest of the tree is removed: if the lower bound for a node exceeds the best 

known feasible solution, global solution does not exist in the subspace. Therefore, the node 

is out from consideration and search for another node is implemented. This search 

procedure is performed repeatedly until all nodes are searched or removed. 

1.4 Branch and reduced algorithm (BARON) 

The Branch And Reduce Optimization Navigator (BARON) is another global 

optimization based on branch-and-bound technique (Sahinidis, 1996). BARON 

incorporates conventional branch and bound with range reduction techniques for tightening 

lower bounds. These reduction techniques are used to subproblems of the search tree in 

pre- and post-processing steps to reduce the search space and relaxation gap. BARON is 

hired as the part of a commercial software -GAMS. 

1.5 Global terrain method 

Global terrain method is a set of algorithms to find all solutions and saddle points 

based on moving along curves of the gradient vector field to both uphill and downhill 

movement. (Lucia and Feng, 2002). This methodology is an overall philosophy for moving 

from one stationary point to another that requires reliable local equation solving tools as 

well as reliable and efficient uphill exploration. Theoretical foundation for this work rests 

on the fundamental observations that (1) solutions and singular points are smoothly 

connected when the model functions are smooth; (2) valleys, ridges, ledges, etc. provide a 
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natural characterization of this connectedness; (3) valleys, ridges, etc. can, in turn, be 

characterized as a collection of constrained extrema over a set of level curves; (4) there is 

an equivalent characterization of valleys, ridges, etc. as solutions to generalized, 

constrained eigenvalue–eigenvector problems; and (5) the natural flow of Newton-like 

vector fields tends to be along these distinct features of the landscape.  

The global terrain method consists of a series of downhill, equation-solving 

computations and uphill, predictor–corrector calculations. Downhill movement to either a 

singular point or solution is conducted using reliable, norm-reducing (complex domain) 

trust region methods. Uphill movement, on the other hand, is necessarily to a singular point 

and uses approximate uphill Newton-like predictor steps combined with intermittent 

corrector steps. Each corrector step is defined by calculating an extremum in the gradient 

norm on the current level set for the least-squares function can be shown to be equivalent 

to a solution to a generalized, constrained eigenvalue–eigenvector problem and helps 

ensure that valleys and ridges are tracked as closely as desired. Initial starting points are 

arbitrary, while starting points for subsequent subproblems defining movement from one 

stationary point to another are along appropriately determined eigendirections, since 

valleys and ridges are generalized eigenpathways. Collisions with boundaries of the 

feasible region and the presence of points at infinity are also addressed and the heuristic 

termination criterion based on the concept of limited connectedness is presented. Details 

of this methodology and the result of test runs are described in APPENDIX B.  

2 Stochastic methods  

This section addresses the review of stochastic optimization methods. Examples of 

stochastic methods are genetic algorithms (Goldberg, 1989); the scatter search approach 
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(Egea et al.,2007); simulated annealing (Kirkpatrick and Vecchi, 1983); and Particle swarm 

optimization (Edward and Kennedy, 1995). 

2.1 Genetic Algorithms 

The Genetic Algorithms are optimization methods which mimic behavior the 

processes of evolution in nature. This algorithm is based on randomized operators, such as 

selection, cross-over and mutation, inspired by the natural reproduction and evolution of 

the living creatures. It was developed by Holland (1975) and finally popularized by 

Goldberg (1989).  

The Genetic algorithms perform following steps:  

 Step 1-Start: Generate an initial population randomly.  

 Step 2-Fitness: Evaluate the fitness for each individual in the current population 

M(t)  

 Step 3-Selection: Select some superior individuals from population.  

 Step 4-Crossover: Produce offspring by selected individuals via genetic operators. 

Offspring replace individuals unselected in Step 3. 

 Step 5-Mutation: Mutate some individuals with a certain mutation probability.  

 Step 6-Iteration: Repeat Step 2 to Step 5 until the convergence is obtained. 

Genetic algorithms are simple and robust search algorithms so that it is good for 

discovering good solutions rapidly for difficult high-dimensional problems. GAs are useful 

and efficient when the search space is complex or hard to be understood; mathematical 

analysis or derivative information is unavailable. Also the algorithms are easily parallelized 

like other evolutionary algorithms, customized and hybridized. Details of hybrid genetic 

algorithms will be considered next chapter. 
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2.2 Scatter search 

Scatter search is a population-based method for combinatorial and nonlinear 

optimization problems. Scatter search uses strategies for combining solution vectors that 

are effective in a variety of problem formulation. Glover (1977) introduced Scatter search 

as a heuristic for integer programming. This search is known as flexible, since each of its 

elements can be implemented in various ways and degrees of complexity. The basic design 

to implement scatter search comes from the well-known “five-method template” (Laguna 

and Martí, 2003). Since Scatter Search does not have only a single uniform design, many 

variations can be derived from the basic template. By Laguna and Marti 2003, The basic 

templates are as follows: 

1. A Diversification Generation Method: Generate a collection of diverse trial 

solutions randomly as an input.” 

2. An Improvement Method: improve a trial solution to more enhanced solutions. 

Neither the input nor the output solutions are required to be feasible, though 

the output solutions is usually expected to be improved. 

3. A Reference Set Update Method: Build a reference set consisting of the best 

solutions found organized to provide efficient accessing by other parts of the 

method.”  

4. A Subset Generation Method : Operate on the reference set, to produce several 

subsets of its solutions to create combined solutions. 

5. A Solution Combination Method : Transform the subset of solutions produced 

by the Subset Generation Method into more improved solution vectors. 
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2.3 Simulated annealing  

Simulated annealing, introduced by Kirkpatrick and Vecchi (1983), simulates the 

annealing process in which an element is heated above its melting temperature then 

gradually cooled to produce the crystalline lattice, minimizing the energy probability 

distribution. Fast cooling the liquid prevents the elements from crystallization and it 

becomes an amorphous mass with a higher than optimum energy state. The key of 

successful crystallization is how to control the rate of change of temperature properly. 

This method starts with a random new variable set. Then it evaluates cost functions 

of the new variable set. If the sum of cost of new variables set is better than that of the old, 

the new set replaces the old set. If not, the new set is selected if the following condition is 

satisfied. 

[ ( ) ( )]/old newf p f p T
r e


  

(42) 

where r is a uniform random number and T analogous to temperature. 

Thus, the new variable set is accepted with a certain probability. The new variable 

set can be made by changing the values of the old with random number, as follows 

new old
p dp  

(43) 

where d is either uniformly or normally distributed about pold.  

If the new variables sets do not produce lower costs than old one any more after a certain 

number of iterations is done, the values of T and d are decreased by a certain percent. When 

the value of T is almost zero, the iteration is finally stops and locates the solution. There 

are various ways of defining cooling schedule-how to decrease T. One of most 

representative examples of cooling schedules are as follows: 
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( ) /
n o o n

T T n T T N    linear decreasing  
(44) 

1
0.99

n n
T T


  Geometrically decreasing 

(45) 

/ log(1 )
n

T c n   Hayjek optimal  
(46) 

where Tn is the temperature of step n, To initial temperature, N: total number of steps  

The traveling salesperson problem (Kirkpatrick, 1983) was solved with Simulated 

annealing, and the algorithm has been applied successfully to various problems.  

2.4 Particle swarm optimization 

Particle swarm optimization is “a swarm intelligent technique inspired by the social 

behavior of animals such as birds flocking and fish schooling” (Edward and Kennedy, 

1995). Like Genetic Algorithms, Particle Swarm Algorithm starts with a random 

population, but the particle swarm optimization adapts evolution operators such as 

crossover or mutation.  

Each particle (called individual in other algorithms), moves the search space with an 

its own velocity, and save the best position found by itself. Each particle is regarded as a 

point in a D-dimensional space that adjusts ‘flying’ according to its own and others’ flying 

experience. The particles adjust velocities and positions based on the local and global 

solutions as follows: 

   1 1 2 2

new old lb old gb old

new old new

v wv c r p p c r p p

p p v

         

 
 

(47) 

where w: inertia weight v: particle velocity, p: particle position; r1, r2: independent uniform 

random numbers; c1,c2 : learning factors, plb : best local solution, pgb: best global solution. 
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The new velocity is updated by the best global solution associated with the lowest 

cost ever found by a particle and the best local solution associated with the lowest cost in 

the current population. Particle swarm optimization has relatively fewer parameters to 

adjust than other evolutionary algorithms. Inertial weight w is used to control the impact 

of the previous history of velocities on the current one. It results in a reduction of the 

number of iterations if the proper value is given. Initially, it is large value and then 

gradually decreased. The parameter c1 is called a cognitive parameter and the parameter c2 

is a social parameter. They are used to guarantee the convergence. Many studies have been 

done to find the best values of c1 and c2. (Edward and Kennedy, 1995; Ozcanand and 

Mohan, 1999; Ratnaweera and Halgamuge, 2004) While c1 and c2 are used for the 

convergence of the population, r1 and r2 are used to maintain the diversity of the population. 

They are random variables between 0 and 1.  

Since its fast convergence and easy implementation, the particle swarm optimization 

is applied in many areas such as neural network, dynamic web organizing, fitness 

prediction, mountain clustering, and parameter selection. 

3 Comparisons of global optimization methods 

3.1 Deterministic vs stochastic methods 

Comparison between deterministic and stochastic methods were performed in several 

literatures (Liberti & Kucherenko, 2005; Blake, 1989; Decker & Aarts, 1991; Dixon et al, 

1975; Zabinsky, 1998). The main advantage of deterministic methods is, they provide a 

theoretical guarantee of locating global minimum, or at least a local minimum whose 

objective function differs by at worst  from the global minimum for a given 

Stochastic methods only offer the global optimality in probability. However, 
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stochastic methods adapt better to black-box formulations or extremely ill conditioned 

objective functions than deterministic methods, because they usually rely on function 

evaluations rather than gradient and Hessian information, most of deterministic methods 

require.  

3.2 A comparison of complete global optimization solvers (Neumair et al, 2005)   

In addition to these methods there exist numerous commercial software programs 

that implement global optimization techniques. A Comparison of these commercially or 

freely available solvers is very time consuming and difficult work. Also the results are rely 

on what kind of test suite are used.  

Neumair et al (2005) tested global solvers- BARON, GlobSol, ICOS, LGO, LINGO, 

OQNLP, Premium Solver, and the local solver MINOS. BARON, GlobSol, ICOS, LGO, 

LINGO, and Premium Solver are based on a deterministic branch and bound approach. 

OQNLP is a stochastic method which uses the scatter search and multistarting heuristic 

algorithms. They concluded that among the currently available global solvers, BARON is 

best in terms of the performance and robustness. OQNLP, which is known as the best 

stochastic solver is close to BARON. However, none of the current global solvers is fully 

reliable: ICOS is excellent for pure constraint satisfaction problems, while slower than 

BARON, has excellent reliability properties. In problems which have less than 100 

variables, BARON showed the success result of 90%, which is the best one among the 

solvers compared in the paper. But in problems with > 100 variables, OQNLP solves 

(within the imposed time limit) the highest percentage (72%) of problems. 

3.3 “No free lunch theorems for optimization” (Wolpert & Macready, 1997) 

So which algorithm is the best? Since Neumiar’s results are based on specific test 

problems, it is hasty to say BARON or OQNLP is the best for all optimization problems. 
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Wolpert & Macready (1997) developed a framework to explore the connection between 

effective algorithm and the problems they are solving. With this framework and test, they 

concluded “the average performance of all search algorithms over all problems is equal” 

(No free lunch theorems). They warned the danger of comparing algorithms by their 

performance on small sample of problems. This also means, we have to use the right 

algorithm for the right problem and need problem-specific knowledge to be incorporated 

into the behavior of algorithm. 
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CHAPTER V. HYBRID SEQUENTIAL NICHE 
ALGORITHM FOR PROBLEMS WITH SOLUTION 
MULTIPLICITY  

1 Introduction 

Detection of multiple solutions in optimization problems is important because 

multimodal objective functions are common in engineering and physics. For this reason, 

algorithms for finding all solutions in multimodal problems are desirable. Several 

deterministic methods such as the homotopy method (Sun and Seider, 1995), interval 

methods (Stadtherr et al., 1995), mixed integer nonlinear programming (McDonald and 

Floudas, 1995), and global terrain methods (Lucia and Yang, 2002) are suitable for finding 

multiple solutions. In stochastic optimization, traditional genetic algorithms (GAs) always 

coalesce to only a single solution, thus they are not suitable for multimodal objective 

functions. Several GAs with ‘niche technique’ were adapted to address the multimodal 

problems (Beasley et al., 1992; Goldberg and Richardson, 1987; De Jong, 1975; Mahfoud, 

1992; Miller and Shaw, 1996). They were successful in many cases by maintaining the 

diversity of certain properties within the population, but still have some limitations. First, 

they assume that all optima are evenly distributed. Second, these methods require a priori 

information about the number of solutions. Also the computational effort is larger than 

normal GA. Details of problems in niche techniques will be described later.  

In this part, a hybrid sequential niche algorithm is described to create a reliable 

multimodal optimizer with reasonable performance. It uses a niche technique suggested by 

Beasley et al. (1993) to find all solutions sequentially. In addition, robustness is enhanced 

with niche size adaptation, which adjusts the niche size according to the problem space 
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topology in the vicinity of multiple optima. Our algorithm deploys a deterministic local 

search, therefore it converges much faster than the traditional niche methods. 

1.1 Niche methods 

A key point for locating multiple solutions with stochastic search is how to maintain 

population diversity. Traditional genetic algorithms coalesce to a single solution, thus 

traditional genetic algorithms do not offer a good strategy for optimization problems with 

many local optima. In biology, a niche refers ‘a different subspace to support different 

types of life’ (Miller and Shaw, 1996). In niche genetic search, we borrow this concept of 

nature to tackle solution multiplicity. The niche idea in multimodal search is illustrated in 

Figure 38. Around each local extremum, a subspace with limited capacity to support 

candidate solutions is introduced. The total capacity a niche can occupy is proportional to 

the quality of the extremum. The neighborhood of superior maxima can hold more 

individuals than inferior local maxima. This limitation mechanism prevents the population 

from converging to a single solution or getting fragmented into multiple extrema 

simultaneously. Several methods based on niche formation have been developed. De Jong 

(1975) and Mahfoud (1992) proposed a crowding method. Goldberg and Richardson 

(1987) introduced the mechanism fitness sharing to maintain the population diversity. 

Miller and Shaw (1996) proposed a dynamic niche method to reduce computational 

expense of fitness sharing. Beasley et al. (1993) developed a niche technique with 

sequential identification of multiple extrema.  

 



 110 

 

Figure 38: Multiple niches in two-dimensional search space. Each peak conforms a local 

extrema and niche area of attraction.  

The sequential niche technique is an iterative method using knowledge from previous 

stages to avoid researching the area near previously found extrema. Blocking a niche 

obtained in the previous stages, sequential niche algorithm proceeds to exploring different 

regions of the search space. The solution strategy advances sequentially, updating 

information about the set of previously detected niches. The idea of avoiding part of the 

feasible region is also used in tunneling methods (Levy and Montalvo, 1985) as well as 

global terrain methods (Lucia and Yang, 2002). To implement this concept, a penalty 

known as ‘derating function’ is dynamically incorporated into the objective function. The 

derating function bars the population from reentering existing niches in later stages. The 

sequential niche technique only needs small population thus requiring less calculation 

times than other niche methods. Therefore, we adapted a sequential framework for the 

engineering design problems with multiple solutions. However, in contrast to previous 

work, we also incorporate gradient-based deterministic optimization techniques to improve 

performance. The resulting speed-up is critical in large engineering design problems.  
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A specific difficulty for niche methods concerns proper determination of a suitable 

niche radius (Deb and Goldberg, 1989; Beasley et al., 1993). If the radius is chosen too 

small, candidate solutions converging near the extremum may be mistaken for a new 

solution. If the radius is too large, two or more optima may be lumped together erroneously 

into a single niche, thus failing to distinguish separate local optima. To tackle this 

difficulty, we will introduce an adaptive technique to choose the niche size automatically. 

1.2 Hybrid genetic algorithms 

The strength of genetic algorithms - simplicity and robustness- are often offset by 

excessive resource requirement. To accelerate the overall performance, stochastic GA 

elements can be combined with a local deterministic search. This hybrid scheme combines 

advantages of the robust GA with the fast convergence of gradient-based optimization thus 

leading to better performance. In a two-stage hybrid method, GA iteration proceeds until 

individuals begin to coalesce in some region. Then, the method switches to local optimizer 

for fast computation of the precise extremum coordinates using a gradient-based 

deterministic algorithm. Thus hybrid methods improve both the speed of finding solutions 

as well as accuracy. Li and Aggarwal (2000), and Sabatini (2000) adopted a gradient-based 

local search technique to their hybrid genetic search. Also Chelouah and Siarry (2003) 

combined continuous genetic algorithms with Nelder-Mead simplex algorithms (Nelder 

and Mead, 1965). However, few hybrid methods address multimodal optimization. 

2 Methodology 

This section introduces a new two-stage hybrid niche algorithm outlined in Figure 

39. A sequential niche technique performs global search. Newton, Quasi-Newton or 

simplex algorithms are deployed to precisely locate multiple solutions. Newton-based local 
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search may be used when derivative information of the cost function is available. When 

derivative information is not available or the search space is ill-conditioned, the Nelder-

Mead downhill simplex method may serve as the local optimizer. In the first stage, GA 

iterations proceed until the population of candidate solutions converges into a regional 

cluster. An event defining a new niche is identified, once the majority of individuals 

coalesce around the best individual inside the cluster within a niche radius. Starting from 

the rough solution called best-in-cluster (BIC), the algorithm switches to a local optimizer 

to precisely locate the extremum in the second stage. The distance of the precisely 

calculated extremum with respect to rough BIC defines the niche radius. Specifically, the 

niche radius is proportional to the Euclidean distance between the local extremum and BIC. 

The precise local extremum together with the newly computed niche radius completes the 

definition of a new niche. The procedure continues to search for additional extrema. Once 

again returning to a new genetic search stage, a new population sample is generated 

randomly. 
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Figure 39: Flowchart of the two-stage hybrid sequential niche algorithm. Genetic search 

of stage1 runs until termination condition is satisfied. When the majority of 

the individuals coalesce around the best-in-cluster, stage 2 activates a local 

optimizer. Taking the BIC solution as the initial guess, the local gradient-

based method converges to the precise local minimum S. The niche radius is 

adapted according to the distance between BIC and the solution S.  
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If the precise solution S is new, a novel niche is registered. If the precise solution has 

already been identified, the radius of its niche is augmented to block an expanding area of 

attraction. Thus, niche radii are dynamically adjusted, which ensures locating all solutions 

even when their distribution is not uniform. The proposed technique requires no a-priori 

guesses for the number and distribution of solutions. The algorithm terminates after a preset 

generation or solution count has been reached. A detailed description of the new algorithm 

follows in next subsections.  

2.1 Population size 

We start the hybrid methods with a random ensemble of individual candidate 

solutions or initial guesses. In classical methods, the population size should be augmented 

by a factor corresponding to the expected solution multiplicity (Goldberg, 1989). In 

sequential niche techniques, the entire population is devoted to searching only one local 

extremum at a time, thus being less vulnerable to distraction of multiple extrema. Thus, the 

population size in our algorithm does not require an increase corresponding to the solution 

multiplicity, although the existence of more extrema will incur a longer sequence to locate 

them all. 

2.2 Derating functions and modified fitness  

The main feature of sequential niche techniques aims at avoiding re-exploring the 

niche regions already detected in previous stages. To implement this feature, the fitness 

function is modified by incorporating a penalty barring the area of attraction of previous 

niches. The modified fitness function M(x) is composed of original fitness fit(x) multiplied 

by a penalty implemented by a dynamically adjusted derating function G(x, Sj) as in eq 

(48). 
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The vector, x, encodes the chromosome of an individual. F(x) is the scalar cost 

function. Fmax represents an upper bound of possible objective function values. A derating 

function, G(x, Sj), penalizing vicinity of the current individual, x, to previously detected 

extrema, Sj. In eq (49), Sj is the jth solution found with its niche radius, rj. The Euclidian 

distance between Sj and x is d. 
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d r
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Accordingly, the derating function value of individuals located within an existing 

niche is zero leading to a modified fitness of zero. Individuals with zero fitness are not 

reproduced in natural selection. 

2.3 Natural selection, mating, and mutation 

In the natural selection step, individuals with superior fitness values are chosen to 

produce competitive offspring for the next generation. Individuals with low fitness are 

unlikely to reproduce and tend to disappear. Specifically, zero fitness will prevent 

individuals from reproducing or being selected into the next generation. The chromosome 

vectors of offspring, ' ''

c c
,x x , are computed by combining the parameter values of a pair of 

parents, xa, and xb, according to the arithmetic crossover formula with one random variable,

 , given in eq (50). 

'

c a b
(1 )  ,  0 1      x x x  

c

''

a b
(1 ) ,  0 1      x x x  

(50) 
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Mutations. In each reproduction cycle, we choose a given number of individuals for 

mutation corresponding to a fixed mutation ratio. This adjustable parameter was set to 5% 

in the case studies. A single trait corresponding to the kth component of a individual selected 

for mutation is altered according to the random event given in eq (51).  

 

 

k k k
'

k

k k k

min , 0

max , 0
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 
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  

 
     
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x x x x
x

x x x x
 (51) 

Here,
'

k
x  is kth trait of mutant 

'
x randomly perturbed from the kth trait of original 

individual. k

up
x refers to an upper bound, k

low
x to a lower bound of permissible trait values. 

 is random scalar number between -1 and 1. Mutations help expand the stochastic search 

into unexplored areas of the search space. 

2.4 Niche Detection and precise extremum location  

In the two-stage hybrid algorithm, coarse genetic search is followed by deterministic 

local search. The local optimizer is activated once candidate solutions of the genetic stage 

coalesce around a cluster. The condition for detecting a new cluster involves the 

computation of the population density in the region. Clustering has occurred when a given 

fraction  of the entire population Npop is contained with an r-neighborhood around the 

currently best candidate solution (xBIC). The best-in-class (BIC) will also play a role in 

dynamic niche radius adaptation. The r-neighborhood is established with the help of the 

distance function sh(d,i).  
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(52) 

Here, m is a region membership counter. The fraction of population,  was set to 0.6 

in the case studies presented in this chapter. The parameter rc refers to the cluster radius. If 

condition (52) is satisfied, the population has clustered around the currently best individual. 

In addition, the niche detection criterion triggers the hybrid method to switch to a local 

optimizer. Local deterministic optimization is used to rapidly compute the precise 

extremum coordinates inside the cluster. In the case studies, we report the performance of 

the steepest descent method. Alternatively, Newton, Quasi-Newton, Trust Region (Tang et 

al., 2005; Zhang et al. 2007) or Nelder Mead Simplex algorithm could be used for local 

deterministic search. 

2.5 Automatic niche radius adjustment  

Deb and Goldberg (1989) suggested setting a fixed niche radius, r, as a function of 

the degrees of freedom, n, and the number of expected solutions, p as in eq (53). 

 
2


n

n
r

p
 (53) 

This rule requires a-priori knowledge of the number of solutions and can be expected 

to work properly when extrema are evenly spread throughout the whole search space. Often 

it is impossible to anticipate the number and distribution of multiple solutions. 

Consequently, eq (53) is impractical in many real world applications. Ideally, every niche 

should have different size depending on the topology of the neighborhood. Fixed niche 

radius, r, can fail to detect multiple extrema when they are close to each other or cause 
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unnecessarily long computations. A serious problem associated with fixed niche radius 

strategies especially in hybrid search is illustrated in Figure 40. The example addresses a 

one dimensional optimization problem with the objective function given in eq (54). 

min ( ) 12 (3sin )

0 10

F x x x

x

  

 
 (54) 

This example has the global minimum S1 and one local minimum S2 in the range of 

0 10 x . Several fixed niche radii –unity, andwere tested. In the first run, 

individuals converge to point B1 by genetic search. Once clustering occurs according to 

criterion (52), the local search is launched to find the exact solution S1. The niche 1 

corresponding to the fixed niche radius around S1 is shown in grey. In the next run, 

individuals coming to lie inside 1 are penalized. Unfortunately, the fixed niche radius is 

too small so that new clustering occurs near the niche boundary about points B2 or B3. Using 

these B2 or B3 clusters as starting points, the same solution S1, is repeatedly re-discovered 

without advancing the overall progress. The fixed radius algorithm would repeat this futile 

pattern until exhausting the maximum iteration counter without ever locating the second 

local minimum S2. The fixed radius strategy also fails when using radii in the range of 

r</2 or r>3/2. The fixed radius strategy only succeeds when the exact half period,  

between local minima is chosen. However, exact knowledge about the precise distance 

between solutions is not available in general, so that fixed radius strategies are often 

inadequate. Fixed niche radius strategies fail to locate multiple minima especially when 

using hybrid algorithms as illustrated in this example. 
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Figure 40: Example demonstrating difficulty with fixed radius strategies in hybrid genetic 

algorithms. If fixed radius is used with hybrid genetic algorithm, the local 

solution S2 can not be found, because genetic search repeatedly clusters close 

to niche around B3 or B2. This problem is known as trapping. 

 

2.5.1 Variable Niche Radius 

To overcome this problem, we developed a variable niche radius strategy. It 

adaptively determines the niche radius as a function of the distance between the best-in-

cluster (BIC) and the precise extremum. We found this method to be simple, yet more 

effective than previous strategies like cooling (Jelasity, 1998), dynamic niche clustering 

(Gan and Warwick, 2001) or Covariance Matrix Adaptation Evolution Strategy (Shir and 

Back, 2006). Furthermore, it is can be effectively integrated into a hybrid schemes, which 

cannot be done with prior techniques. 



 120 

In our algorithm, the niche radius is determined by the distance between the best-in-

cluster, B, and local extremum, S. Around the local extremum, S, the scalar r defines the 

spatial extension of the niche. In order to account for ill-conditioned regions in the vicinity 

of the extrema, we suggest two types of niche shapes. When the optimal region is 

symmetric with the optimum located in the center of the optimal region as depicted in 

Figure 41a, we recommend a hyper-spherical model for the niche area of attraction. 

Formally this symmetry condition would be satisfied for fitness functions with condition 

numbers of their Hessian close to unity. Accordingly, the size of niche radius is given in 

eq (55),  

  r S B  (55) 

where   is default minimum niche radius preventing zero radii in case B and S coincide. 

If a subsequent search converges to the same extremum, S, the niche radius is expanded as 

depicted in Figure 41b. The adaptation automatically enlarges the niche region to prevent 

repeated clustering. 

Asymmetric optimal regions occur in cases of Hessians with large differences in their 

eigenvalues. For these problems, we propose a hyper-rectangular box to approximate the 

niche’s area of attraction. The length of each side rectangle is computed according to eq 

(56)-(57), 

k k k

k k

k









   

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if B S

r
 (56) 

'k

k k
k k k
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








  



 (57) 
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where Sk is the kth trait of the extremum S, Bk is the kth trait of best-in-cluster B. The scalar  

k


r measures the length of left side of kth box dimension, while 

k


r  is the length of right side 

of kth box dimension. Figure 41c illustrates the hyper-rectangular niche area with highly 

asymmetric topology and off-center local extremum.  

The update of the rectangular niche region requires a maximum operator when the 

same extremum is found from in a subsequent search stage. In case of a large cluster 

converging to the same niche, the sides of the hyper box are expanded so that the largest 

dimensions of sides ever found are taken into consideration. This operation is implemented 

in eq (58). 

new,k 1,k 2,k new,k 1,k 2,k
max( , ), max( , )

     
 r r r r r r  (58) 

A new niche box extension 3 takes maximum of the side lengths corresponding to 

the points 2 and 1 as depicted in Figure 41d. The hyper-rectangular strategy also requires 

an adjusted derating function given in eq (59). The hyper-rectangular niches lead to smaller 

niche areas when compared to the hyper-spherical approach, but is safer for ill-conditioned 

problems. 

j,k j,k

j

0 k
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a) b) 

  

c) d) 

Figure 41: Two different niche types. a) In hyper-spherical type, the niche radius size is   r B S  is best-in-cluster (BIC) found 

by the genetic algorithm, and S is a real solution found by a local optimizer starting from  b) In hyper-rectangular type, 

only one length side of rectangular is decided from BIC c) If same solution S is found from different initial point B2, niche 

radius r is augmented to rnew. d) In the hyper rectangle strategy, the niche size is updated by taking each maximum length 

side. 
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We solved the previously problematic example using the two variable niche size 

methods. Figure 42 shows how the hybrid sequential niche algorithm determines the global 

optimum S1 and local optimum S2 without the user specifying the niche radius. We use a 

hyper-spherical niche type because this geometry of optimal region is not skewed. After 

finding the solution S1 from B1, niche 1 is set as depicted in Figure 42a. In next two runs, 

the same solution S1 is found again from B2 or B3. The niche area is updated from 1 to 3 

through these runs as shown in Figure 42b, c. Finally, S2 is found from B4. However, like 

all numerical methods, adjustable parameters like the minimal radius parameter or the 

fraction of the population clustering  are required. In the following case studies, we 

recommend for a range of one to ten percent of the variable range, in example above 

and clustering parameter of = 0.6. 
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a) b) 

 
 

c) d) 

 Figure 42: The example of using variable radius size in hybrid genetic algorithm. a) The 

first solution, S1 is found from B1 b, c) Niches are updated from N1 to N2, from 

N2 to N3. d) Finally, S2 can be found from B4. 
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3 Benchmark test cases 

In this section, several test functions -Himmelblau (H) and Grienwank (G), 

Bohachevsky (B), modified Vincent (V), and Ackley (A) functions are used to verify our 

algorithm’s efficiency and robustness. These functions were frequently tested in many 

papers and considered challenging to find all extreme points. These problems have 

unconstrained multimodal objective functions. Mathematical formulations of the test 

functions are given in Table 16, topology of the search spaces are depicted in Figure 43 

(H), Figure 44(G), Figure 45(B), Figure 46(V), and Figure 47(A). Functions H and G have 

several maxima/minima with the same objective function value, so the extrema are equally 

good. The functions, B, V, and A have many local minima, but possess a unique global 

minimum. Our algorithm is also compared with our implementation of Beasley’s 

sequential niche technique. In our hybrid algorithm, steepest descent method is deployed 

as a local optimizer. 
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Table 16: Test functions 
 Name Function  Range 
H Himmelblau 2 2 2 2

1 2 1 2
Η( ) 200 ( 11) ( 7)      x x x x x  

 
2

6, 6  
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2 2
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1
( ) cos 1

4000


 
    
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n
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i ii
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i
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n
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11

1

( ) ( 2 0.3cos(3 )

0.4 cos(4 ) 0.7)




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V x x x

n
  0.25,10

n
 

A Ackley 
2

1

1

1
( ) 20 exp 0.2

1
exp 0.2 cos(2 ) 20





 
      

 

 
     

 





n

ii

n

ii

x x
n

x e
n

 

 10,10
n
 

 

 

 

Figure 43: Himmelblau’s function (H). It has four maximum-S1 (3.58,-1.86), S2 

(3.0,2.0), S3 (-2.815,3.125), and S4 (-3.78,-3.28). 
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Figure 44: Two-dimensional Grienwank’s function (G). It has 17 equal minima in 

rage of  10,10
n
. 

 

 

Figure 45: One-dimensional Bohachevsky’s function (B). It has 5 minima range of -

10<x<10 and search space is asymmetric. 
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Figure 46: Two-dimensional modified Vincent’s function (V). It has one global minimum 

and 35 local minima in rage of  0.25,10
n
. 
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a) 

 

b) 

Figure 47: Ackley’s function (A), a) n=1 b) n=2, This function has one global minimum 

and 21 local minima. 
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3.1 Results 

In the simulation experiments, the range of the search space, the dimensionality of 

the problem, and the population size were varied. We solved each case study twenty 

different times; the values in  

Table 18 reports the averages of twenty trials. We systematically evaluated the 

performance of each stochastic optimization algorithm in terms of speed (how quickly that 

algorithm completes for the same levels of accuracy), success rate (what proportion of runs 

finds all expected optima) and consistency (how much variations in the previous three 

criteria can be expected from one run to the next).  

Performance-Speed. Our algorithm was compared to Beasley’s sequential niche 

technique. Both algorithms were implemented in Object Pascal (Codegear). We tested the 

performance of both algorithms on problem H with four maxima shown in Figure 43 (Deb 

and Goldberg 1989). The prior sequential niche technique took 306 iterations for finding 

all four maxima with average calculation time of 531 msec. Our hybrid sequential niche 

algorithm took only 6.2 msec which is eighty eight times faster than the prior niche GA. 

We also tested the two-dimensional G with 17 equal and narrowly spaced minima. 

Beasley’s niche technique required a population size of 800. The novel hybrid niche 

algorithm on the other hand only required a population size of 20 individuals, still leading 

to a performance increase of 1.6. In this case, the hybrid exhibits less dramatic performance 

increase, because the sequential search is through, but consumes time. Beasley’s niche 

technique attacks all solutions indiscriminately leading to excessive failure rates. Hence, 

speed without reliability is insufficient for design optimization.  

Success rates. Despite a population size of at least 800, Beasley’s technique on 

problem H typically detected only three solutions, failing to detect at least one solution. 
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The averages success rate defined as finding all solutions was only 50%. When using 

smaller population sizes, its success rate fell as low as zero. In contrast, our algorithm 

required a population size of only 20 to find all four solutions in every trial. This result 

corresponds to a success rate of almost 100% with reasonable computational time. A 

summary of the comparative simulations is reported in Table 18.  

We conducted more thorough tests according to the challenging test problems listed 

in Table 17 and Table 18. The prior method had a success rate of close to zero, so that the 

performance could not be compared in a meaningful way. In all tests, success rate of our 

novel hybrid method was almost 100%. We first chose hyper-spherical niche shape. If the 

success rate was not perfect in after several runs, we also experimented with the 

hyper-rectangular niche shape. Case 5 and case 6 best demonstrate the differences between 

spherical and rectangular niche adjustment strategy. With the spherical approach in the 

two-dimensional problem B, the success rate was only 60% to locate all solutions. The 

hyper-rectangular approach never failed to detect all extrema. We recommend hyper-

rectangle niche adjustment for cases with insufficient information about the geometry of 

the search space. However, spherical niche radius adjustment strategy is generally faster 

than the hyper-rectangular approach.   



132 

 

Table 17: Results of Beasley’s sequential niche technique 

No F/n Population 

size  

Iteration/maximum Niche 

shape 

Time 

(msec) 

No of solution found/desired Success rate 

1 H/2 800 306/2,000 sphere 531 3.1/4 50% 

2 G/2 800 977/2,000 sphere 977 17/17 100% 

3 B/1 400 2,000/2,000 sphere  1,156 1/5 0% 

4 B/2 800 2,000/2,000 sphere 3,687 1/25 0% 

6 V/1 400 2,000/2,000 sphere 1,437 2.5/6 0% 

7 V/2 800 3,000/3,000 sphere 18,543 6/36 0% 

8 A/1 400 2,000/2,000 sphere 1,406 1/21 0% 

 

Table 18: Results of hybrid sequential niche algorithm 

No F/n Population 

size  

Iteration 

/maximum 

Niche 

shape 

Time(msec) No of solutions found/desired Success rate 

1 H/2 20 25/1,000 sphere 6.2 4/4 100% 

2 G/2 20 151/1,000 sphere 616 17/17 100% 

3 G/10 100 3,000/3,000 sphere 32,984 203/- - 

4 B/1 20 73/1,000 sphere 98 5/5  

5 B/2 40 1,097/2,000 sphere 1,770 24.1/25 60% 

6 B/2 40 758/2,000 rectangle 3,500 25/25 100% 

7 B/10 100 3,000/3,000 rectangle 17,015 196/- - 

8 V/1 20 84/1,000 sphere 343 6/6 100% 

9 V/2 40 7,811/1,0000 sphere 73,344 36/36 100% 

10 A/1 20 211/1,000 sphere 187 21/21 100% 

11 A/2 40 21,533/30,000 sphere 117,453 441/441 100% 
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4 Realistic chemical engineering applications with solution multiplicity 

Two large-scale applications should further demonstrate the suitability of the novel 

optimization method for chemical engineering problems. Non-isothermal catalyst pellets 

are known to exhibit multiple steady states. We wish to find all solutions of steady state 

non-isothermal concentration profiles in the catalytic pellet using hybrid sequential niche 

algorithm. The second example demonstrates a large distributed inversion problem to 

determine unknown transport and kinetic parameters with solution multiplicity.  

4.1 The concentration and temperature profile of catalytic pellet. 

For non-isothermal condition, the dimensionless concentration profile, y, in a porous 

catalytic pellet can be written as in eq (60). The independent variable x is the dimensionless 

pellet radius. 

𝑑2𝑦

𝑑𝑥2
+

2

𝑥

𝑑𝑦

𝑑𝑥
= ∅2𝑦𝑒𝑥𝑝 (𝛾𝛽

1 − 𝑦

1 + 𝛽(1 − 𝑦)
) 

(60) 

The dimensionless variables, Thiele modulus, f , activation energy, heat of reaction, 

are defined in eq (61). Detailed parameter values and equations can be found elsewhere 

(Kulkarni et al., 2008). 

𝛾 =
𝐸𝑎

𝑅𝑇
, 𝛽 =

𝐶𝑠∆𝐻𝐷

𝐾𝑇𝑠
, ∅ = 𝑅√𝑘𝑜/𝐷 

(61) 

For the same parameter values  and  multiple profiles may satisfy the transport 

and reaction equations in the catalyst pellet at steady state. Discretization via orthogonal 

collocation over finite elements converts the non-linear partial differential equation in (60) 

into the nonlinear algebraic system in (62)-(63): 

𝐴𝑦 + 𝐺(𝑦) = 0  (62) 
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B y = c  (63) 

In this non-linear algebraic system, y is the vector of dimensionless concentrations 

at the collocation nodes. Eq (62) is the transport and reaction equations suitably discretized 

at internal nodes of each finite element domain. Eq. (63) implements boundary conditions 

x = 0, x = 1, as well as C0 and C1-continuity conditions at finite element boundaries. This 

case study uses four elements, j, with five nodes, i, in each segment. The nonlinear vector 

function (y)G  given in eq (64).  

 
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




 
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  
 

G  

(64) 

The objective of this problem is to find all solutions of the steady state pellet profiles. 

This task is accomplished by detecting all minima of the residual error function associated 

with eqs (62) and (63).  

System in (62)-(63) is a multi-dimensional problem with solution multiplicity which 

we solved with a hybrid niche algorithm combined with Newton-type method to accelerate 

the local optimization. Inside certain parameter ranges for the dimensionless parameters- 

f ,g ,b , we obtained different concentration profiles as expected. Figure 48 depicts typical 

results with several sets of parameters f , g , b . The average calculation time was about 

33.98sec; which is quite reasonable. The same problem was also tackled with a 

deterministic global terrain method developed by Lucia et al. (2008) with comparative CPU 

time. More details on tackling the challenge of solution multiplicity in pellet reactors can 

be found elsewhere (Kulkarni et al., 2008). 
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a = 10 = 0.4,  = 10. b = 30 = 0.4,  = 1 

 
 

c = 20 = 0.4,  = 0.6. d = 30 = 0.4,  = 0.6 

  
e = 40 = 0.2,  = 0.6 f = 40 = 0.3,  = 0.5 

Figure 48: Pellet concentration profiles evaluated by OCFE with hybrid sequential niche 

algorithms, where x is the dimensionless pellet radius and y is the dimensionless 

concentration in eq (60). For parameters sets in frame a) and b), our algorithm 

verified only one solution exists. The algorithm found three solutions for the 

parameters and conditions of the examples depicted in frame c-f. More details 

about these cases are described elsewhere (Kulkarni et al., 2008). 
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4.2 Determination of reaction kinetics in catalytic reactors 

This inversion problem aims at quantifying unknown micro-scale chemical kinetic 

and transport phenomena inside catalytic pellets based on only macroscopic measurements 

in the reactor bulk. Specifically, we determine all possible solutions of the reaction rate, km 

and diffusivity, D of catalytic pellet reactor with the novel hybrid method. Solution 

multiplicity is due to the non-linearity in the pellet kinetics as discussed above as well as 

measurement errors at the macro-scale (Zhang et al., 2007). Multiple solutions are found 

frequently in kinetic inversion problem of distributed systems due to experimental data 

errors. These transport equations involve an objective function minimizing weighted 

difference between measurements as in eq (65) subject to the distributed transport model 

with partial differential equation constraints given in eqs (66)-(68).  

1

, , ,

ˆ ˆ
min ( )

ˆ ˆ
 


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  : Darcy’s law (66) 

1
( )


   

A A A
uC D C r J    Mass balance (67) 

1
( )


    

g p e A
C uT k T r H J   Energy balance (68) 

where C is concentration, T is temperature, Ĉ  is measured concentration, and T̂  is 

measured temperature. These partial differential equation constraints are discretized by 

finite volume approach. A more detailed description of the discretization and parameters 

values can be found elsewhere (Zhang et al., 2007). 

This problem was solved using the hybrid sequential niche algorithm with 

parameters: population size=10, selection ratio=0.5, and mutation ratio=0.05. To reduce 
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the problem dimensionality, the objective function (65) was evaluated as the difference 

between concentration and temperature measurement and the simulated concentration and 

temperature fields. The simulation used a candidate parameter set to solve the discretization 

equations, while the hybrid sequential niche search was conducted in the reduced unknown 

parameter space of km and diffusivity, D. For this inversion problem, two distinct solutions 

were found in 468 msec on Pentium IV with a 3.06GHz processor. Figure 49 shows the 

sequential progress of the variable niche method. First, coalescence occurred around 

solution S1. Typically, 12 iteration steps located solution S1 precisely. The niche radius was 

determined based on the cluster dimensions. The penalty terms of the rating function 

prevent the search in the vicinity of the first solution. The algorithm coalesced close to a 

region around S2. At this point, a steepest descent method was launched to exactly locate 

the second solution S2. The optimal parameter sets identified were for S1 (km =0.731×10-

41/s, D= 0.400×10-4m2/s), and for S2 (km =0.732×10-41/s, D= 0.799×10-4m2/s). The two 

solutions were embedded in niches with different niche radii, r1=0.05, r2=0.08. For 

comparison, we also solved this problem with Beasley’s sequential method. With his 

method, a population size of at least 400 was required to locate both solutions reliably with 

computational time of 136 sec. When an only local optimizer is used for finding solutions, 

only one solution could be obtained, this solution depends strongly on an initial guess 

(Zhang et al., 2007). 
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a) b) 

  
c) d) 

  
e) f) 

Figure 49: Snapshots of individual distributions in pellet reactor inversion problem. a)  

Iteration 1: ten individuals are generated randomly. b) Iteration 6: every 

individual coalesces to point (0.36, 0.72) c) from point (0.36, 0.72), the 

solution S1 (0.40, 0.73) was obtained using a local optimizer. Then niche was 

set. d) Iteration 7; population is reinitialized to find the next solution, e) 

Iteration 15: every individual coalesces to point (0.76, 0.75). f) Finally, another 

solution S2 (0.80, 0.73) was obtained.  
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5 Conclusions and future works 

Limitations: In the basic implementation of algorithm, we produced new random 

samples of each population whenever a niche is identified. This strategy has been found to 

be robust, but may be improved by reusing the information obtained from prior candidate 

solutions. The idea implies a second pool of individuals in addition to the normal 

population. This pool would collect individuals outside solution clusters, rather than 

discarding them. Once a new niche has been identified, these outlier samples in special 

pool could be re-used to generate a new initial generation inexpensively. In some cases, we 

found this strategy to produce more uniform search at faster performance. To make this 

modification more robust, further work is needed in the future. 

Since our algorithm relies on finite precision arithmetic and addresses non-

polynomial hard problems, global convergence guarantee cannot be given rigorously but 

only in a statistical sense. In addition, the saddle points often pose a challenge in global 

optimization. However, in our algorithm, saddles are typically not recognized as extremum 

points, because the candidate population in the vicinity of saddle has both inferior and 

superior individual. Therefore, to the hybrid algorithms, such a region does not look like a 

solution cluster. The genetic search typically passes this region instead of inadvertently 

recognizing it as an extremum.  

Like any numerical algorithms, the proposed hybrid sequential niche algorithm 

requires adjustable tuning parameters. These tuning parameters are population size, the 

number of maximum iterations, size of default niche, and niche shape.  
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Nomenclature (Chapter V) 

B best-in-cluster solution 

C Concentration of reactant 

Ĉ  measured concentration of reactant 

d Distance 

D Diffusivity  

Ea Activation energy 

fit Fitness 

F object function value 

Fmax maximum value of objective function 

G derating function 

H heat of reaction 

M niche membership count 

M(x) modified fitness 

Npop population size 

n number of traits in individual 

p number of solution 

r niche radius 

rA reaction rate 

R catalytic pellet radius 

S extremum, solution 

T Temperature 

T̂  measured temperature 

x dimensionless radius of pellet 

X Individual 

xk the kth trait of an individual x 

y dimensionless concentration in pellet 

 

Greek symbols 

 default niche radius 

 dimensionless heat of reaction 

 scalar for detecting optimal region 

 thiele modulus 

  dimensionless activation energy 
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APPENDIX A- MATHEMATICAL MODELS OF 
ISOMERIZATION PROCESS 

APPENDIX A provides detailed dynamic models of the isomerization flowsheet used 

to perform the case studies described in Chapter III. Sections 1-4 summarize the variables 

and constant definitions, as well as the parameter values used in the studies. 

1 DIB column 

The DIB column is used for separating iC4 from mixed stream. For this unit, tray by 

tray balances with hold up and equilibrium were solved. A constant  model is used. This 

column is controlled by changing the reflux ratio(r) and vapor ratio(s).  The column is 

controlled by changing reflux ratio (r) and vapor ratio (s). The number of differential 

equations is NT and the number of state variables is 10+4NT. The mathematical model is 

illustrated in eqs (A1)-(A17).  
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Figure A1: DIB unit 
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The liquid and vapor flowrates throughout DIB column are determined by several 

algebraic equations, (A8)-(A17). 

Liquid phase: 

   

 1

R R
q r F q r F

B
r s

    


 
 

(A8) 

R rD  (A9) 

1
 L R  (A10) 

2
L R Fq   (A11) 

3 R R
L R Fq F q    (A12) 

Vapor phase: 
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R R
V V F q F q      (A15) 

 2
1  V V F q    (A16) 

3
V V  (A17) 

 

2 Feed Effluent Heat exchanger  

This unit is a typical shell-and tube exchanger. The heat of the output stream from 

the reactor and input stream to the reactor is exchanged in this unit, as shown in Figure A2. 

For the performance evaluation, we consider the steady-state model, neglecting the 

dynamics of the heat exchanger. 

 

Figure A2: Heat exchanger 
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(A18) 

3 Purge Distillation column 

This unit is used to eliminate the heaviest compound (iC5) from the main stream, 

which is vaporized and directed to the reactor. Five percent of the input feed is eliminated 

at the bottom of this unit. Like the DIB column, a tray-by-tray model and a constant-

relative-violability (α) model is used. Reflux ratio is used to control this unit. 

 

Figure A3: Purge column unit 
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Vapor phase: 
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V sB  (A29) 

 1
R

V V F q    (A30) 

S
V V  (A31) 

4 Discretized plug flow reactor model  

In this unit, nC4 is converted to iC4. This is the first-order irreversible exothermic 

reaction. To simplify the partial differential model, we discretized the reactor. The reactor 



 147 

temperature and pressure are controlled by the input feed temperature. Mathematical 

models are illustrated in eqs (A32)-(A34). 

 

 

Figure A4: Discretized plug flow reactor 
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APPENDIX B- INTRODUCTION TO GLOBAL 
TERRAIN METHOD 

Summary 

The purpose of this report is to implement and test the global terrain method using 

object oriented programming code written in C++ and Matlab to test the effectiveness of 

the method in finding extrema. The methodology is based upon the notion of intelligent 

movement along the ridges and valleys of a particular function. The movement 

encompasses a trust region method for downhill movement, and a Newton-like method in 

addition to a sequential quadratic programming corrector step for uphill movement. This 

method allows for the determination of all solution points (i.e. minimum, maximum, and 

saddle points) of the objective function. Several case studies involving theoretical and 

practical chemical engineering applications were run in which all-possible solutions were 

obtained. 

1 Global Terrain Method 

Lucia and Yang have also developed a deterministic global optimization technique 

known as the global terrain method that is based off a method from several decades ago 

(Lucia and Yang, 2002). Lucia’s method is a robust and novel technique of finding all 

solution points of a least-squares objective function. The method is focused on the 

intelligent movement from one solution to another along valleys and ridges of a least-

squares environment.  
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Figure B.1: Connectedness of solution points for a nonlinear continuous stirred tank 

reactor. (Lucia and Yang, 2002)  

As shown in Figure B.1, solution points are “connected” to one another through 

valleys and ridges. This connectedness holds true regardless of the dimension of the 

function. The main focus of the global terrain method is to exploit this connectedness of 

the least-squares landscape in order to find all physically meaningful solutions to the 

objective function by following the terrain from point to point. It is easiest to imagine the 

valleys and ridges as “lines with special properties” and following a terrain path as tracing 

along these “lines”. The main assumptions that the global terrain method makes are: 

 Solution and singular points are smoothly connected 

 The terrain (i.e. valleys, ridges, ledges, etc.) provide this connectedness 

 The terrain is composed of a collection of constrained extrema over a set of level 

curves 

 The terrain can be characterized as solutions to eigenvector problems 

 Newton-like vectors naturally flow along the terrain 
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In order to appreciate the global terrain method, the governing equations must be 

explained. 

2 Methodology 

2.1 Governing Equations 

Suppose F is a vector function defined on the set of all real numbers by Eqn. (B.1), 

and the least-squares function is FTF. Eqn. (B.1) shows that F is a set of n functions set 

equal to zero. The global terrain method is an equation solving technique because it solves 

for the solutions to Eqn. (A.1). 

1
0

0
n

f

F

f

 
 


 
  

  B.1 

The terrain (i.e. valleys, ridges, ledges, etc.) of the least-squares function can then be 

defined by V, to a set of general nonlinearly constrained optimization problems. 

Min

. . - 0, L

T

x

T

g g
V

s t F F L L

  
  

    

  B.2 

where g = 2JTF is defined as the gradient of the least-squares objective function (derivation 

in Sect. 7.1.1), J is the Jacobian of F, and L is a level curve of the least-squares function 

while L is the collection of such L. Eqn. (B.2) is the backbone of the global terrain method, 

and is vital to implement the technique. Two conditions must be satisfied for the technique 

to work. The first being that FTF=L is satisfied the second being that Eqn. (B.3) is satisfied. 

 𝑀𝑔 − 𝜆𝑔 = 0  B.3 

where M is defined by M=JTJ + ΣHiFi , while Hi is the Hessian of Fi, and λ is a Lagrange 

multiplier involved with the level constraint L. 
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Eqn. (B.2) is proved by introducing Karush Kuhn Turcker conditions. The 

Lagrangian function of Eqn. (B.1) is then defined by Eqn. (B.4), and its gradient defined 

as Eqn. (B.5). 

𝐿(𝑥, 𝜆) =  𝑔𝑇𝑔 − 2𝜆𝐹𝑇𝐹  B.4 

 

𝜕𝐿(𝑥, 𝜆)

𝜕𝑥
= 𝛻𝑔𝑇𝑔 − 2𝜆𝛻𝐹𝑇𝐹 = 0 B.5 

2𝑀𝑔 − 2𝜆𝑔 = 0 
 

𝑀𝑔 − 𝜆𝑔 = 0 
 

2.2 Movement Between Stationary Points 

As Lucia showed in his paper, stationary points (i.e. minima, maxima, saddle points) 

are connected to one another through the valleys of the least-squares function. If these 

valleys are traced out, it is possible to find where all these solution points are located. The 

global terrain method uses this tracing feature by moving both up and down the valleys. To 

initiate movement, the eigendirection of the Hessian matrix is necessary in order to follow 

the direction of the largest curvature ridges. These movements are described in the 

following subsections. 

2.2.1 Initial Movement 

A crucial aspect of the global terrain method is the effective calculation of 

eigenvalues and eigenvectors of the objective function. These eigenvectors allow for the 

determination of the direction of steps to take between solution points. Analytically, 

eigenvalues are determined by solving for the determinant of Eqn. (B.6), where λ is the 

eigenvalue. Once λ is obtained, the eigenvectors are easily determined, and will direct the 

path from one solution point to another. 

(𝐴 − 𝜆𝐼) =  0  B.6 



 152 

At any stationary point, the direction of the valley is discovered from the 

eigendirection of the Hessian matrix of the least squares function. Subsequent movement 

is then determined using this eigen-information of the objective functions. Figure B.2a 

shows the Hessian eigendirection at a stationary point (i.e. energy function). Locally, the 

eigendirection of the Hessian points towards the valley and the eigenvector is the answer 

to Eqn. (B.3). Figure B.2b also shows the eigendirections of the Hessian on the least-

squares terrain.  

  
Figure B.2a: Energy function  of Hessian 

matrix at the minimum point 

Figure B.2b: Eigendirection of Hessian 

matrix at the minimum point 

 

From these graphs it is apparent that the eigendirection of the Hessian is directing the 

valley. It is for this reason that the eigendirection of the Hessian is used to initiate 

movement. 

All eigenvalues are either positive or negative, and the sign of the eigenvalue is 

crucial. The eigendirection associated with a positive value is uphill (the value of FTF at x 

is less than the value of FTF at x + Δx), whereas negative values are downhill. Downhill 

movement from a maximum point or saddle point to another solution point occurs along 

the negative curvature. The magnitude of the step in this negative eigendirection is,  

𝛼 = (−2𝐹𝑇𝐹 𝜉⁄ )
1
2          B.7 
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where  is the most negative eigenvalue of the Hessian matrix of the least-squares function. 

Uphill movement is initialized in the eigendirection corresponding with a positive 

eigenvalue. 

2.2.2 Downhill Movement 

Downhill movement occurs at a local maximum point or possibly a saddle point. The 

initial point (i.e. maximum or saddle point) is of greater value than its surrounding points, 

or level curves, and the downhill movement goes in a direction of decreasing value of the 

level curves. A trust-region method is used for the downhill movement. This method 

encompasses a Newton method along with a steepest descent direction method. The main 

advantage of this method is that it can be used when Jacobians and Hessians are singular. 

A scalar, , is the radius of the maximum allowable change in variables (i.e. |p|≤ ). This 

change is the step size, denoted by p, and is shown in Eqn. (B.8), 

𝑝 = −(𝐽𝑇 ∙ 𝐹 + 𝜇𝐼)−1 ∙ 𝐽𝑇 ∙ 𝑓(𝑥𝑘)    B.8 

where f is the least-squares function, μ is the nonnegative Kuhn Tucker multiplier, and xk
 

is the starting location. 

2.2.3 Uphill Movement 

Uphill movement is initiated at either a minimum point or a saddle point. This is 

because the level curves surrounding the initial point are of greater value than the starting 

point. The uphill movement will move from a level curve of lesser value to one of greater 

value. A different method is needed for uphill travel because the trust region method will 

only find locations of lesser value than the current location. Uphill movement is composed 

of two parts, a predictor step, and a corrector step. The predictor step predicts the next 

ridge’s location, but in a nonlinear function, the ridge is rarely exactly where it is predicted 

to be. Depending on the step size, the difference between the correct and actual location of 
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the ridge could be enough to initiate a corrector step. The corrector step will move the point 

back onto the ridge. A Newton-like method is used for the predictor step, and a SQP method 

is implemented for the corrector step. The initial movement is still produced using the 

eigendirection, but the predictor/corrector steps will follow initial movement until another 

solution is found or the boundary is found. 

A detailed visualization of the predictor and corrector step is depicted in Figure B.3. 

The movement begins from the ridge point P1, which lies at the maximum curvature on the 

level set L1. At P1, the Newton direction is computed to the next ridge point, P2. However, 

P2 does not lie exactly on L2, so a corrector step is necessary. The corrector step maximizes 

the curvature, and the solution of the corrector step is C2, which is an optimal ridge point 

on L2. Through this sequence the next solution point, S2, can be found. Details of the two 

steps aforementioned will be represented in the next subsections. 

 

 
Figure B.3: Illustration of uphill predictor-corrector step 
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2.2.4 Predictor Step 

The uphill Newton-like step vector field is, 

∆𝑧𝑁 = 𝑱−1𝑭  B.9 

 where z is a vector of unknown variables.  

A suitable increase in size of the uphill movement αp B is, 

𝛼𝑝 = min {‖𝑱−1𝑭‖, 2𝜀|(𝑱𝑇𝑭)𝑇∆𝑵|/ |∆𝑁
𝑇 (∑𝐹𝑖𝐻𝑖) ∆𝑁|}  B.10 

where ΔNB is the normalized uphill Newton-like direction and given by  and ε is some 

tolerance. Uphill predictor steps are computed from 

∆𝑧𝑝 = 𝛼𝑝∆𝑧𝑁   B.11 

2.2.5 Corrector Step 

The uphill Newton-like step follows the terrain fairly well, but it can drift off course 

due to the nonlinearity of the objective function. In order to account for this drift, and return 

the step back to a level curve, Eqn. (B.12) is solved. In order to accomplish this, a sequential 

quadratic programming (SQP) method is used by iteratively solving, 

Min  𝑔𝑇𝐻∆𝑐 +
1

2
∆𝑐

𝑇𝑀∆𝑐    

Such that 𝑔𝑇∆𝑐= −(𝐹𝑇𝐹 − 𝐿) B.12 

where M is the Hessian matrix of the Lagrangian function, λ is a Lagrange multiplier,  and 

the remaining variables depend on z. Boundaries can be applied easily to Eqn. (B.12). The 

size of the corrector steps, Δc, can be controlled by forcing improvement in the gradient 

norm through line searching or trust region methods, and thus, 

∆𝑧𝑐 = 𝛼𝑐∆𝑧𝑁 B.13 

Due to gradient directions being orthogonal to the tangent of level curves, and are 

only exactly collinear in valleys or on ridges, a criterion for implementing the corrector 

step is given by inequality condition, (B.14). 

cos 𝜃 =∆𝑔
𝑇∆𝑁< 𝛩  B.14 
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In (B.14), q  is the angle between the normalized gradient g
D  and the normalized 

Newton-like step. Θ is a number close to 1, and usually 0.95 will suffice. 

2.3 Saddle Detection 

Condition (B.15) is a general criterion for the termination of uphill movement. When 

the criterion is met the movement is terminated and the point is dubbed a ‘nearby’ singular 

point. 

∆𝑁
𝑇  𝐽𝑇𝐽 ≪ ∆𝑁

𝑇 (∑𝐹𝑖𝐻𝑖) ∆𝑁   B.15 

When the uphill movement determines where this ‘nearby’ singular point is located 

the algorithm logic switches back to ‘equation-solving’ to look for the actual singular point 

using an acceleration technique. Either quadratic acceleration, Krylov subspace methods 

such as a conjugate gradient, or null space rotation techniques are used. The uphill 

exploration only provides a ‘good’ initial guess for the determination of solution points. 

2.4 Termination 

The termination of the global terrain method is the most controversial aspect of the 

technique because it excludes some of the eigendirections. Lucia suggested that a total of 

only four directions (i.e. ± most negative eigendirection and ± least positive eigendirection) 

would be investigated. The algorithm terminates in each of those directions when it either 

collides with a boundary or discovers another solution point. When a collision occurs, a 

previously discovered point is returned to and a new direction is explored. Once all the 

possible directions for all stationary points are explored, the program terminates. 
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3 Whole procedure of Global Terrain method  

A flowchart of global terrain method’s algorithm is displayed below as Figure B.4. 

This figure depicts the logic used in the algorithm and shows how the global terrain method 

works overall. 

 
Figure B.4: Flowchart of the global terrain method’s algorithm 
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4 Applications 

In this section are several case studies that tested the global terrain method in 

theoretical and chemical engineering applications. Additional examples can be found in 

Section 6.4. 

4.1 Theoretical Applications 

4.1.1 Example 1 – Nonlinear Equations 

This example shows how the global terrain method can be used to solve a system of 

nonlinear equations. The set of equations is,  

𝐹 = (
𝑓1(𝑥1, 𝑥2)

𝑓2(𝑥1, 𝑥2)
) = (

𝑥1
2 + 𝑥2

2 − 2

𝑒𝑥1−1 + 𝑥2
3 − 2

)  
B.16 

And the feasible region is, 

1

2

1.5 1.8

1.2 1.35

x

x

- < <

- < <
 

B.17 

As shown in Fig. 6, the system has 3 minimum points (M), 4 saddle points(S) and 

one maximum point(X). The objective of this case is to find all of these stationary points 

and saddle points using global terrain method. 
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Figure B.5: 3D Contour plot of Eqn. (16) 

 

Step 1: Calculating Jacobian and Hessian Matrix 

First, the Jacobian and Hessian matrices of F must be calculated. By the definition 

the Jacobian matrix of this example is, 
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[
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And the Hessian matrices are 

𝐻1 =

[
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2 ]
 
 
 
 

= [
2 0
0 2

] 

B.19 

𝐻2 =

[
 
 
 
 
𝜕2𝑓2

𝜕𝑥1
2

𝜕2𝑓2
𝜕𝑥1𝑥2

𝜕2𝑓2
𝜕𝑥2𝑥1

𝜕2𝑓2
𝜕𝑥𝑛

2 ]
 
 
 
 

= [
𝑒𝑥1−1 0

0 6𝑥2
] 

B.20 
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Step 2: Finding the first stationary point from the starting point 

The starting point, S0 of this example is (1,1.12). We have to find the closet minimum 

point from starting point using Newton method or some other root solving method. In 

Matlab, this is calculated using the function ‘fsolve’,  

options=optimset('Display','off','LargeScale','off'); 

[x,fvel,flag]=fsolve(@UserFunction,x_initial,options); 

 

where x_initial is the starting point and “UserFunction”  is implementation code of F. 

Thus the definition of “UserFunction” in this example is, 

function f=UserFunction(x)  % set of F 

r(1)=x(1)^2+x(2)^2-2; %f1 

r(2)=exp(x(1)-1)+x(2)^3-2; %f2 

f=r'; 

 

From the starting point (1,1.12) , the first stationary point, S1 (1.0000, 1.0000) was 

found. 

Step 3: Uphill movement from S1 

Eigenvalues of the second order approximation of the least square function at the 

point S1, are λ1=0.9377, λ2=17.0623 and each eigenvectors are V1(-0.8649,0.5019), 

V2(0.5019,0.8649). Four directions are to be explored: +V1,-V1,+V2,-V2. All eigenvalues 

are positive, so only uphill movement is done in this point S1 (All positive eigenvalue at 

some point means that this point is minimum point).   

The result of exploration of each direction is, 
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Table B.1: Direction of exploration from S1 and result  

 

With the directions +- V1, V2 we found near the saddle points which satisfy Eqn. 

(B.15). But these points are not the actual saddle points. At these points we found the real 

saddle points using this Matlab code, 

[x_saddle,fvel,flag]=fsolve(@UserResidualGridentFunction,x,opt

ions); 

 

where x is ‘near the saddle point’, ‘UserResidualGridentFunction’ is the gradient of least 

square function. The real saddle points are S2 (0.1117,1.2275) for +V1, S3(1.4435,0.3598) 

for –V1. 

Eigenvalue Eigendirection Result 

0.9377 

+V1(-0.8649,0.5019) 
Near Saddle Point 

(0.1277,1.2261) 

-V1(0.8649,-0.5019) 
Near Saddle Point 

(1.4388,0.3785) 

17.0623 
+V2(0.5019,0.8649) Boundary Collision 

-V2(-0.5019,-0.8649) Boundary Collision 
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Figure B.6: Predictor and corrector step for Example 1 

 

Figure B.6 shows the predictor step and corrector step. For the predictor step, a 

Newton-like method is used and for the corrector step, a SQP method is used. In Matlab 

code, the function ‘fmincon’ is used to implement the corrector step.  

options=optimset('Display','off','LargeScale','off'); 

 A=[]; 

 b=[]; 

 Aeq=[]; 

 beq=[]; 

 lb=[]; 

 ub=[]; 

 Residual_Vector=UserFunction(x); 

 L=Residual_Vector'*Residual_Vector; 

xc=fmincon(@UserObjectFunction,x,A,b,Aeq,beq,lb,ub,@UserConstr

ainFunction,options,L); 

 

Where UserObjectFuction is the function which returns the value of gTg at the point x. 

Step 4. Finding a extrima point from saddle point S2 
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S2(0.1117,1.2275) found from S1 is a saddle point. The eigenvalues at this point are 

λ1 = -0.8400, λ2 = 27.6290. Like Step 3, it was explored for 4 directions. But this point has 

all negative eigenvalues, so only downhill movement was done. The results are shown in 

Table B.2. 

Table B.2: Direction of exploration from S2 and result  

eigenvalue direction result 

-0.8400 
+V1(-0.9964,0.0849) Minimum (-0.7137,1.2209) 

-V1(0.9964,-0.0849) Minimum (1.0000,1.0000) 

27.6290 
+V2(0.0849,0.9964) Boundary Collision 

-V2(-0.0849,-0.9964) Boundary Collision 

 

With +V1, a minimum point is found. The trust region method was used for downhill 

movement. To implement this in Matlab, we used the function ‘fsolve’. Before using the 

function ‘fsolve’, initial movement must be done. Figure B.7 shows initial movement step 

and next secant method step. 

 
Figure B.7: Downhill movement of Example 1 
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Summary of results  

In these ways as explained above, we got 3 minimum points, 4 saddle points and 1 

maximum point. Figure B.8 shows the sequence of the algorithms progress and solution 

coordinate. From S1, S2 and S3 were found. S2 found S4 and S3 found S5. From S4, S6 was 

found and from S5, S7 was found. S8 maximum point was found using connectedness with 

S7. Table A.3 shows coordinates of each point and its corresponding eigenvalue. For a 

minimum point, the eigenvalues are positive, for saddle point one is negative and the other 

is positive, and a maximum point has only negative eigenvalues. Figure B.9 shows a 

computational tree of solutions and eigendirections. 

 
Figure B.8: Connectedness of stationary points for Example 1 
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Table B.3: The results of example 1 

No Position Eigenvalue Solution Type 

S1 1.0000,1.0000 0.9377,17.0623 Minimum 

S2 0.1117,1.2275 -0.8400,27.6290 Saddle 

S3 1.4435,0.3598 -0.4130,11.2293 Saddle 

S4 -0.7137,1.2209 1.7733,26.2553 Minimum 

S5 1.4851,0.0000 0.4109,11.2609 Minimum 

S6 -0.1776,-0.5780 -3.6840,5.6652 Saddle 

S7 -1.3919,0.0000 -0.1254,7.4576 Saddle 

S8 -0.1360,0.0000 -4.3250,-3.9630 Maximum 

 

 

 

 
Figure B.9: Computational tree for Example 1 
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Numerical derivative method 

We also used numerical derivative method to examine whether the global Terrain 

Method can function with less accurate Jacobian and Hessian information. The result of 

this was the same as the analytical method but calculation time (CPU time = 107.6548 s) 

was 2.2 times longer than the analytical method (CPU time = 10.2961 s).  

The code for implementing the Jacobian matrix is, 

function [J]=jacobian(func,x) 

% computes the Jacobian of a function 

n=length(x); 

fx=feval(func,x); 

eps=1.e-8; % could be made better 

xperturb=x; 

for i=1:n 

xperturb(i)=xperturb(i)+eps; 

J(:,i)=(feval(func,xperturb)-fx)/eps; 

xperturb(i)=x(i); 

end 

 

 

And the code for the Hessain is, 

function [H1,H2]=UserHessian(x) 

alpha=0.0001; 

J1=UserGridentFunction([x(1)+alpha,x(2)]); 

J2=UserGridentFunction([x(1)-alpha,x(2)]); 

J3=UserGridentFunction([x(1),x(2)+alpha]); 

J4=UserGridentFunction([x(1),x(2)-alpha]); 

 

H1(1,1)=(J1(1,1)-J2(1,1))/2/alpha; 

H1(1,2)=(J1(1,2)-J2(1,2))/2/alpha; 

H1(2,1)=H1(1,2); 

H1(2,2)=(J3(1,2)-J4(1,2))/2/alpha; 
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H2(1,1)=(J1(2,1)-J2(2,1))/2/alpha; 

H2(1,2)=(J3(2,1)-J4(2,1))/2/alpha; 

H2(2,1)=H2(1,2); 

H2(2,2)=(J3(2,2)-J4(2,2))/2/alpha; 

 

Figure B.10 shows the difference of step points between the trajectory of the 

analytical method and the numerical method. This trajectory is from S1 to S3. There is only 

a very small difference between both methods. Because the result was the same, we know 

that this difference does not critically affect finding solutions. 

 
Figure B.10: Difference of pathways between analytical and numerical derivative 

method in example1 

4.1.2 Example 2 – Polynomial Complex Roots 

This case study shows how the Global Terrain Method can be used to find roots to a 

polynomial. Consider the Eqn. (B.21), which has the roots 1, 2+j, and 2-j. 

3 2
5 9 5 0x x x- + - =  B.21 

If the roots are assumed to have the form x + yj, then Eqn. (B.22) must also be true. 

( ) ( ) ( )
3 2

3 2 2 2 2 3

5 9 5 0

( 3 5 5 9 5) (3 10 9 ) 0

x yj x yj x yj

x xy x y x x y y xy y j

+ - + + + - =

- - + + - + - - + =
 

B.22 
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In order for Eqn. (B.22) to be zero, the real and imaginary parts of the root must be 

equal to zero. This allows for the definition of F as Eqn. set (B.23), and the corresponding 

Jacobian and Hessians as follows. 

𝐹 = (
𝑥3 − 3𝑥𝑦2 − 5𝑥2 + 5𝑦2 + 9𝑥 − 5 = 0

3𝑥2𝑦 − 𝑦3 − 10𝑥𝑦 + 9𝑦 = 0
) 

B.23 

 

2 2

2 2

3 10 3 9 10 6

10 6 3 10 3 9

x x y y xy
J

y xy x x y

    
  

    

 
B.24 

1

6 10 6

6 6 10

x y
H

y x

  
  

  
 

B.25 

2

6 10 6

10 6 6

y x
H

x y

  
  

  
 

B.26 

Using equations B.23-B.26 with the global terrain method starting at point (0.6, 0), 

the following contour plot in Figure B.11 shows the results.  

 
Figure B.11: Contour plot containing results for example 2 
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Table 4 shows the positions for all results, and the minimum values obtained 

coincided with the expected results. The total CPU computational time was 4.2744 

seconds. 

Table B.4: Results of example 2 

No Position Eigenvalue Solution Type 

S1 1.0000,0.0000 4.0000,4.0000 Minimum 

S2 1.6667,-0.4714 -2.1773,2.1773 Saddle 

S3 1.6667,0.4714 -2.1773,2.1773 Saddle 

S4 2.0000,-1.0000 8.0000,8.0000 Minimum 

S5 2.0000,1.0000 8.0000,8.0000 Minimum 

 

1.1 Chemical Engineering Applications 

4.1.3 Example 3 – Nonlinear Continuous Stirred Tank Reactor  

This example was obtained from Lucia’s paper (Lucia and Yang, 2002). System 

(B.27) contains equations that describe a nonlinear continuous stirred tank reactor with 

lumped parameters. 

1

2

( , ) 120 75 (1 ) 0

( , ) (873 ) 11( 300) 0

0.12 exp[12581( 298) / (298 )]

F x T x k x

F x T x T T

k T T

= - - =

= - - - =

= -

 B.27 

k = 0.12exp [12581(T-298)/(298T)] The Jacobian and Hessians are defined 

below. 

2

12581( 298) 12581
120 75 75 ( 1)

298 298

873 11

T
k k x

J T T

T x

  
     

   
    

 B.28 
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1,11

1,12 2

1,21 1,12

2 2

1,22 2

2

1,11 1,12

1

1,21 1,22

0

12581( 298) 12581
75

298 298

12581( 298) 12581( 298)
( 1)

149 149
75

12581( 298) 12581( 298)
( 1)

298 298

H

T
H k

T T

H H

T T
x

T T
H k

T T
x

T T

H H
H

H H



 
   

 



   
   

  
   
    
  







 



 

B.29 

 

2

0 1

1 0
H

 
  

 
 B.30 

 

The conversion bounds are 0 < x < 1, the temperature (in Kelvin) range is 298 < T < 

450, and the starting point is (0.5, 330). Figure B.12 displays the results of example 3 using 

a contour plot. 
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Figure B.12: Contour plot containing results of example 3 

 

The results for this example agreed with Lucia’s reported values, as shown in Table 

B.5. The total CPU computational time was 9.4069 seconds. 

Table B.5: Comparison of Lucia’s results to our results 

 Lucia’s Results Ex. 3 Results 

 
No. Position Eigenvalue Position Eigenvalue 

S1 0.094594,304.6772 2.10713, 0.0946,304.6772 2.1071,343486.7730 
Local 

Minimum 

S2 0.774548,331.5069 -92.7533, 0.7745,331.5069 -92.7333,874274.3390 Saddle 

S3 0.963868,346.1637 
Not 

specified! 
0.9639,346.1637 98.2769,11307855.7208 Solution 
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4.1.4 Example 4 – Catalytic Pellet Reactor 

Non-isothermal pellets are known to exhibit multiple steady state solutions we would 

like to obtain. In this case, we wish to find all solutions of steady state non-isothermal 

concentrations and temperature in the catalytic pellet. The pellets can be treated as a porous 

media, where reactant diffuses axially along the reactor, and also radially into the pellets. 

As we focus our attention on solving pellets shown in Figure B.13, catalytic pellets are 

porous to allow diffusion of reactant, consequently creating a concentration gradient with 

respect to the radius. 

 
Figure B.13: Expanded view of a fixed-bed pellet reactor 

 

Developing mathematical model 

Isothermal pellets only present mass transfer within the solid and is modeled by Eqn. 

(B.31),   

2 2

2

2
0A A A

dC dC C

d r r dr De
+ - =  B.31 

where De is diffusivity coefficient of the pellet. 

The boundary conditions are 

𝐶𝐴|𝑟=𝑅 = 𝐶𝑆,
𝑑𝐶𝐴

𝑑𝑟
|𝑟=0 = 0  B.32 
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For non-isothermal condition the temperature profile is also developed with 

concentration profile.  

𝑑2𝜑

𝑑𝜃2
+

2

𝜃

𝑑𝜑

𝑑𝜃
− 𝛷2𝑒𝑥𝑝 [𝛾 (1 −

1

𝜁
)]𝜑 = 0   B.33 

𝑑2𝜁

𝑑𝜃2
+

2

𝜃

𝑑𝜁

𝑑𝜃
− 𝛽𝑒𝑥𝑝 [𝛾 (1 −

1

𝜁
)]𝜑 = 0  

ref

A

C

C
 ,

R

r
 , 

ref

T

T
  , 

RT

E
a ,   

a is a dimensionless variable that accounts for reference reaction rate coefficient. 

From here on, we will directly indicate reference conditions to be surface conditions, which 

are indicated by subscript s. R is the radius of the pellet. The boundary conditions for the 

dimensionless equations are: 

 
1

1
s

T

T



  ,  B.34 

 
1

1
s

C

C



  ,  B.35 

Damkohler has pointed out that there is a relationship between the reactant 

concentrations and the temperatures at any point within the pellet. 

∆𝑇 = 𝑇 − 𝑇𝑆 = −
𝐻𝐷

𝐾
(𝐶𝑆 − 𝐶) B. 36 

So, expressing the mass diffusion equation is with a single variable is shown below 

in Eqn. (B.37). 

𝑑2𝑦

𝑑𝑥2
+

2𝑑𝑦

𝑥𝑑𝑥
= 𝜙2𝑦 𝑒𝑥𝑝 (𝛾𝛽

1 − 𝑦

1 + 𝛽(1 − 𝑦)
)  B.37 

, , ( / ) , ,a s

o

s s

E C HD C r
R k D y x

RT KT C R
g b f= = = = =   

 

s
Hk







0

0
d

d 



 

 
 

 

0

0
d

d 



 

 
 

 
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The parameters g  and β each have a convenient physical significance. g  expresses 

the sensitivity of the reaction rate to temperature and β is the maximum temperature 

variation which could exist within the particle relative to the boundary temperature. 

To solve these equations numerically, a collocation method using a Lagrangian 

polynomial is implored. The definition of this method is,  

𝐶𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒(𝑥) = ∑𝑙𝑗𝜙𝑗(𝑥)  

𝑛

𝑗=1

 

 

B.38 

To discretize the differential Eqn. (B.37) and boundary condition (B.41) a 

Lagarangian polynomial is used, 

i

0

( ) ( ) y
m

i

i

y x l x


  
0

    ( )
N

j

i

j i j
j i

r r
with l x

r r






  B.39 

Its first order derivative and second order derivative are: 

1
0 0

( ( ))( )
'( ) ( )

i

N N

i

i ix x
i i

d l rdy r
y r y l r y

dr dr
 

     B.40 

, 11

22

''

2 2

0 0 0

( ( ))
''( ) ( ) ''

i x

N N N

i

i i i ix x
i i i

d l rd y
y r y l r y l y

dr dr
  

       B.41 

We set five nodes [0, 0.25, 0.5, 0.75, 1] and from Eqn. (B.31), Eqn. (B.36) and Eqn. 

(B.38), 1 linear equation and 3 nonlinear equations are obtained. 

The concentration function approximated by  

 

∑𝑙𝑖
′′(𝑥𝑖)𝑦𝑖 +

2

𝑥𝑖

𝑚

𝑖=0

∑𝑙𝑖
′(𝑥𝑖)𝑦𝑖

𝑚

𝑖=0

= 𝜙2 (∑𝑙𝑖(𝑥𝑖)𝑦𝑖

𝑚

𝑖=0

)exp [𝛾𝛽
1 − ∑ 𝑙𝑖(𝑥𝑖)𝑦𝑖

𝑚
𝑖=0

1 + 𝛽(1 − ∑ 𝑙𝑖(𝑥𝑖)𝑦𝑖
𝑚
𝑖=0 )

] 

B.42 

 

Also with boundary condition defined by Eqn. (B.43). 
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1

1

0

m

x

y

dy

dx




, B.43 

When i=1…N, N-1 equations which also have N-1 variables (yi) are obtained from 

Eqn. (B.42) and Eqn. (B.43).  

Isothermal case 

For the isothermal case, system (B.44) is obtained from Eqn. (B.42) and Eqn. (B.43). 

To get this equations, the node N=5 is used and the node values are (0, 0.25, 0.5, 0.75, 1). 

1 1 2 3 4

2 2

2 1 2 2 3 4

2 2

3 2 3 3 4

4 1 2 3

-8.3333 16.0000 12.0000 5.3333 1.0000 

6.6667 53.3333 1.0000 56.0000 -10.6667 1.3333 

10.6667 - 40.0000 1.0000 32.0000 2.6667 

2.2222 10.6667 8.0000 17.777

f x x x x

f x x x x x

f x x x x

f x x x

= + - + -

= - - F + +

= - F + -

= - + - - 2 2

4 2
8 1.0000 17.3333x x- F +

 B.44 

We solved Eqn. (B.44) using the global terrain method. It found one minimum 

solution at (0.9206, 0.9253, 0.9397, 0.9643). Figure B.14 shows concentration profile of 

the isothermal condition. One result is also obtained solving Eqn. (B.44) analytically. We 

know that there is some difference, but trend is same. 

 
Figure B.14: Concentration and temperature profile in pellet 

 

Non-isothermal case with two nodes 
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For non-isothermal case, temperature and concentration profiles must be solved 

simultaneously. In this case, two kinds of nodes are used: [0, 0.5, 1] and [0, 0.25, 0.5, 0.75, 

1].  Each set of main equations is shown as Eqn. (B.45) and Eqn. (B.46). 

𝑓1 = −3.0000𝑥1 + 4.0000𝑥2 − 1.0000                             

𝑓2 = −8.0000𝑥2 + 8.0000 − 𝜙2𝑥2exp (
𝛾𝛽(1 − 𝑥2)

1 + 𝛽(1 − 𝑥2)
) 

B.45 

 

𝑓1 = −8.3333𝑥1 + 16.0000𝑥2 − 12.0000𝑥3 + 5.3333𝑥4

− 1.0000 

𝑓2 = 6.6667𝑥1 − 53.3333𝑥2 + 56.0000𝑥3 − 10.6667𝑥4 + 1.3333

− 𝜙2𝑥2exp(
𝛾𝛽(1 − 𝑥2)

1 + 𝛽(1 − 𝑥2)
) 

𝑓3 = 10.6667𝑥2 − 40.000𝑥3 + 32.0000𝑥4 − 2.6667

− 𝜙2𝑥3exp(
𝛾𝛽(1 − 𝑥3)

1 + 𝛽(1 − 𝑥3)
) 

𝑓4 = −2.2222𝑥1 + 10.6667𝑥2 − 8.0000𝑥3 − 17.7778𝑥4 + 17.3333

− 𝜙2𝑥4exp(
𝛾𝛽(1 − 𝑥4)

1 + 𝛽(1 − 𝑥4)
) 

 

B.46 

The value of parameters are β = 0.2, 𝛾 = 30, and 𝜙 = 0.7314. These values came from 

Weisz and Hicks (1962).   

In case of three nodes, the result is in Table B.6. In this table, two minima points and 

two saddles were obtained. Another minimum point S5 was obtained, But S5 is not the 

answer because it is out of feasible region. 

Table B.6: The results of non-isothermal case N=3, β = 0.2, 𝛾 = 30, and 𝜙 = 0.7314 

No Position Eigenvalue Solution Type 

S1 0.8433,0.8825 3.4761,35.0685 Minimum 

S2 0.6001,0.7001 -4.3721,19.7687 Saddle 

S3 0.3636,0.5227 3.6113,35.7228 Local Minimum 

S4 0.0630,0.2972 -44.2738,11.7030 Saddle 

S5 -0.0963,0.1778 8.4466,269.2281 Out of Range 

The contour plot of this case is shown in Figure B.15. 
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Figure B.15: Connectedness of stationary points for example 4(N=3), β = 0.2, 𝛾 = 30, 

and 𝜙 = 0.7314 

Concentration and temperature profiles are shown in Figure B.16. 

  
Figure B.16: Concentration and Temperature profile in pellet (N=3), β = 0.2, 𝛾 = 30, 

and 𝜙 = 0.7314 

 

Non-isothermal case with five nodes 

When the amount of nodes is equal to five, the result is shown in Table B.7, 

Table B.7: Results of non-isothermal case N=5, β = 0.2, 𝛾 = 30, and 𝜙 = 0.7314 

No Position Eigenvalue 
Solution 

Type 

S1 0.8574,0.8684,0.8990,0.9449 10.0694,79.5217,1063.2216,7838.6649 Minimum 
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S2 0.3305,0.4100,0.5765,0.7827 -0.4258,72.6108,883.7917,6802.8926 Saddle 

S3 0.3136,0.3949,0.5666,0.7786 0.4374,72.5834,883.6059,6808.1188 Minimum 

 

And the Concentration and Temperature profiles are shown in Figure B.17. 

  
Figure B.17: Concentration and Temperature profile in pellet (N= 5) β = 0.2, 𝛾 = 30, and 𝜙 = 

0.7314 

 

Another result for different values of β = 0.4, 𝛾 = 30, and 𝜙 = 0.430 are in Table B.8. 

Concentration and temperature profiles are illustrated in Figure B.18. 

Table B.8: Results of non-isothermal case N=5, β = 0.4, 𝛾 = 30, and 𝜙 = 0.430   

No Position Eigenvalue 
Solution 

Type 

S1 0.5338,0.6271,0.7836,0.9032 19.1965,266.4771,768.5611,5006.1343 Minimum 

S2 0.7465,0.7804,0.8384,0.9116 -17.3244,68.8776,893.4418,6728.4457 Saddle 

S3 0.9578,0.9608,0.9695,0.9830 14.4848,85.1176,1115.9223,8055.2649 Minimum 

 

 



 179 

  
Figure B.18: Concentration and Temperature profile in pellet (N=5) β = 0.2, 𝛾 = 30, and 𝜙 = 0.7314   

 

Weisz and Hicks (1962) said that multiple solutions can be found when β ≥ 5. Using 

the global terrain method, we found these multiple solutions. 

 

Numerical derivative method 

With a numerical derivative like with Example 1, we got the same results with the 

analytical derivative method. Table B.9 shows the results of the numerical derivative 

method. And in this case, calculation times of two methods are not quite different. This 

proves that we can use numerical derivative method in global terrain method. 

Table B.9 Results of non-isothermal case using numerical derivative, N=5, β = 0.4, 𝛾 = 

30, and 𝜙 = 0.430   

No Position Eigenvalue 
Solution 

Type 

S1 0.5338,0.6271,0.7836,0.9032 19.1965,266.4771,768.5611,5006.1343 Minimum 

S2 0.7465,0.7804,0.8384,0.9116 -17.3244,68.8776,893.4418,6728.4457 Saddle 

S3 0.9578,0.9608,0.9695,0.9830 14.4848,85.1176,1115.9223,8055.2649 Minimum 
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5 Conclusion 

The global terrain method proposed by Lucia and Yang was studied in this paper.  

This method was devised as a way to find the stationary points of a function through the 

use of a least-squares landscape. The method uses the ledges, ridges, and valleys of the 

least-squares landscape in order to travel from one stationary point to another. An uphill 

step from a minimum point uses a Newton-like step in conjunction with a sequential 

quadratic programming corrector step to find a saddle or maximum point. From these 

saddle and maximum points, a trust region method is used to find other minima. 

This method was able to solve systems of nonlinear equations and solve for the real 

and imaginary roots of a polynomial function in a short amount of CPU computational 

time. A chemical engineering case involving a nonlinear continuous stirred tank reactor 

was also studied. All three of these case studies resulted in the determination of all 

stationary points on the least squares function. The results show that the global terrain 

method is able to solve small dimensional problems reliably and quickly. 
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