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SUMMARY

Services like “Uber” and “Lyft” have become widespread in large cities for everyday mobil-
ity. This is due to the ease of requesting a ride (you can simply download the mobile app and
request a driver on the fly from where you are currently located to your desired destination)
and to the cheapness of these services.

Recently, “Uber” and “Lyft” have embraced ride sharing opportunities: a passenger who re-
quests a ride may decide to save a certain amount of money at the price of sharing his/her ride
with someone else (which would delay his/her arrival at destination).

For what concerns passengers matching, these services attempt to optimize savings at a global
level. But a possible scenario is that a passenger A is matched to passenger B, while he/she
would have preferred being matched to passenger C, who, in turn, would have preferred A as
ride sharing partner as well.

This introduces the concept of “fairness” in ride sharing: if a particular passenger A has not
been matched to his/her top preferred passenger B, this means that passenger B preferred to
be matched to some other C,; and so on recursively.

Fairness is addressed by issuing the optimum plan (i.e., without considering fair shared trips
but only total savings at a global level) and, at the same time, applying a compensation scheme
which derives from the fair plan: in this way, if a passenger has to pay a higher fare with the
optimum plan with respect to the price which would be fairer, then he/she receives a discount

according to his/her savings if the fair plan would have been issued instead.



SUMMARY (continued)

In this thesis, we compare the optimum and fair ride sharing plans in different scenarios (new
requests are matched to empty taxis or to taxis with passengers on board which will have
to dynamically change its route) in order to understand the % redistribution of money that
is necessary to apply such a compensation scheme, when fares are based on overall distance

traveled.

xi



CHAPTER 1

INTRODUCTION

Ridesharing services have become more and more important for urban mobility, especially
in big cities, because they represent a valid solution to issues such as air pollution, fuel con-
sumption, traffic congestion.

Moreover, due to the widespread of smart phones, nowadays it is simple for a passenger to
request a ride, wherever he/she is and for whenever he/she desires.

If ridesharing were exploited, there would be a decrease in the impact of the cited issues. As a
consequence, since traffic would be less significant, then passengers would benefit from delays
reduction, which were caused by this problem.

In general, in the scientific literature there are two different directions by which ridesharing
can be addressed: optimizing some criteria such as distance traveled and travel time; providing
approaches to find, for a passenger, a good partner in ridesharing in the least time possible in
order to deal with real time requests.

In this thesis, we will focus on the criterion of “total saving” for the passengers.

Typically, within the context of “Uber Pool” and “Lyft Line” ridesharing services, it is possible
that a passenger A is matched to passenger B, even if he/she may prefer being matched to
passenger C because this will provide a higher saving: this is due to the fact that “Uber” and
“Lyft” may be optimizing the matching problem at a global level, instead of considering the

single passenger.



This introduces the concept of “fairness”: if a particular passenger A has not been matched
to his/her top preferred passenger B, this means that passenger B preferred to be matched to

some other C, and so on recursively.

1.1 Motivations and contribution

As we can see in the examples presented in section 1.6, “fair” and “optimum” ridesharing
plans can be different and, currently, little has been done to analyze the difference in savings
between the two plans.

Hence, the contribution of this thesis is to evaluate the “fair” plan over the “optimum” plan
and to quantify the % of money which is required to be redistributed, since the optimum plan
will be eventually executed but a compensation scheme derived from the fair plan is applied.
We will consider fares based on distance traveled, thus maximizing (i.e., being “fair” to) the
savings in terms of money is equivalent to maximizing (i.e., being “fair” to) the savings in terms
of distance traveled (as we will show in section 4.1).

We will consider different scenarios in which ridesharing plans are applied: this requires a

process of standardization of how shared trips are represented.

1.2 Requests pooling

Typically in the literature, requests for ridesharing are considered with queuing based for-
mulations ([1]), thus vehicles are matched to requests as the latter arrive in real-time.
Another option, which is the one followed in this thesis, is to group together requests issued for

a specific time interval into a “pool”.



Pool (definition): it is a set of requests characterized by a time interval which ranges
from “start pool time” to “end pool time” (e.g., if pool size is 5 minutes, then a possible pool
starts at “10:00:00” and ends at “10:04:59”): all the requests which have been issued for a pick

up within this interval (e.g., pick up time is at “10:02:00”) are added to this set.

Moreover, if in the previous pool (e.g., which starts at “9:55:00” and ends at “9:59:59”)
there are some requests which are not assigned to any vehicle, then they are retained for the
next pool (even if they have been issued before); otherwise, all other requests which have been
assigned to some vehicle are removed from the pool.

In a pool, if two or more requests are assigned to the same vehicle, they will form a “trip”.

1.3 Static and dynamic model

There are two possible approaches to deal with requests: static and dynamic model.

Within the static model, requests which specify a pick up time within the same range inter-
val are pooled together and then assigned to empty vehicles. Hence, vehicles which are already
processing some other requests are not taken into account for this assignment (i.e., their initial
route cannot be modified).
A possible scenario for this model is the following. A person’s flight has landed at 10am, but
he/she needs a ride to go from the airport (hub) to his/her destination: what the passenger
can do is to register to a specific pool (e.g., “10:30-10:35” pool) so that there is time to pick

up his/her checked baggage. Below is a figure which represents this scenario by combining two



requests (the extension to the combination of more than two requests is straightforward):

R1 i 'l
X &
Ai Hub R2 —
|rp0rt u . r D2 __|
R3

Pool

Figure 1: Static model example

In Figure 1, requests R1 and R2 are matched together and assigned to an empty vehicle
which drops R1 first (D1 is the destination of R1) and then drops R2 (D2 is the destination of
R2).

Within the dynamic model, new requests can be combined together and then assigned to a
vehicle which may be still driving some other request, thus a new route has to be computed in
order to satisfy all the requests involved.

This is a common scenario in big cities where people request a taxi from various pick up loca-

tions and, thus, vehicles route dynamically change.



Below is a figure which represents new request arrival and vehicle re-routing:

Figure 2: Dynamic model example

In Figure 2, the initial route of the vehicle is displayed with red dots (in the direction of
the arrow), but since a new request is issued and is matched to this vehicle, then a re-route
which includes pick up and drop off for the request is necessary: the updated route is shown
with green dots and “D” represents the drop off point of the request.

In this thesis, for the comparison between the “fair” and “optimum” plans, we consider the
static model alone and a combination of static and dynamic model: requests can register to a

particular pool but can be assigned to already existing trips processed by some vehicle.



1.4 Ridesharing graph

Each pool of requests can be represented as a weighted graph (as also done in [2], [3]), where
a node represents a request and an edge between two requests represents a potential shared
trip. To each shared trip is attached a weight which symbolizes the “saving” the trip provides.

See Figure 3 below for a graphical example.

Figure 3: A ridesharing graph

If more than two requests can be combined together, then we have a ridesharing hyper-
graph: nodes still represent requests and hyper-edges represent a potential shared trip among

the connected (two or more) requests.

In the case of the dynamic model, a non-empty vehicle can be assigned to a potential shared



trip, thus the requests it is still processing (i.e., requests on board) are represented as nodes

and connected by a (hyper) edge to the shared trip.

1.5 Fairness in ridesharing

In this section we introduce the concept of “fairness” in ridesharing, but in order to un-
derstand this notion, it is clearer to start from the concept of “unfairness”. We report the

definitions as conceived in [2].

Unfairness (definition): “given a ride sharing graph RSG(V,E), a ride sharing plan (rsp)
R is unfair to a request v; € V' if: 1) there exists another request v; € V and the edge e; ; € E
is not in R; and 2) v; and v; both incur a higher individual saving if ridesharing with each other

than with their partners in R”.

Fairness (definition): “an rsp F is fair if it is not unfair to any request”.

In order to comply with the definition of “fairness”, there are two different options to com-
pute the individual saving in a shared trip (i.e., the amount of money saved by a particular
request when ridesharing in this trip): total saving originated by shared trip (which is the
weight applied to the edge connecting different requests) may be either evenly split among the

single requests involved or unevenly split with a specific technique.



Evenly split (definition): total saving of a shared trip is equally split among the requests
involved; the resulting plan will be “fair” to the single edge (shared trip) with respect to all the

others.

Unevenly split (definition): total saving of a shared trip is not equally split among the
requests involved; the resulting plan will be “fair” to the single request with respect to all the

others.

A possible approach to deal with unevenly split savings is to distribute “total saving” with
respect to the increase in the distance traveled, compared to the shortest path.
For instance, given two combinable requests A and B, assume that destination of A is n; miles
away along the shortest path, and in the joint path it travels m; miles. For B, assume that the

corresponding figures are ny and msy.

Let:
mq
xTr =
n
ma
y =
n2

[

Where “x” (resp. “y”) represents the increase in miles traveled for request A (resp. B) with

respect to its shortest path.



Thus, the following are the fractions of the overall saving for the joint trip to be assigned to

the two requests:

Saving(A) = i * Total Saving
z+y

Saving(B) = :/_ * Total Saving
rTy

It is worth noting that, as devised in [2], both the “fair” and the “optimum” plans have to
be computed; the “optimum” plan will be eventually issued but, since it may be “unfair” to
some request, a compensation scheme derived from the “fair” plan is applied.

In this thesis, with respect to all the above definitions, we assume for simplicity that there is
no tie in the ridesharing graph. More specifically, within the context of evenly split savings, no
edge (i.e., shared trip) in the ridesharing graph can provide the same saving; within the context
of unevenly split savings, no request can have the same individual saving when participating to
different shared trips (i.e., request must have a strictly ordered list of preferences in ridesharing
partners).

This is due to the fact that no sufficient study has been conducted towards this direction of a
“fair” approach to break the ties, which would require extensive analysis supported by thorough

experiments.

1.6 Ridesharing graph matching

Given a ridesharing graph as defined in section 1.4, it is possible to produce a ridesharing

plan by finding a matching in the ridesharing graph (i.e., a set of edges without common nodes).
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Hence, within our context, this means that no request (node) can participate in more than one

shared trip (edge): it can be either unmatched (i.e., no ridesharing) or matched only once.

1.6.1 Maximum weight matching

This type of matching produces the optimum ridesharing plan, which maximizes total sav-
ings at a global level and does not take into consideration “fairness” to requests.
In Figure 4, four requests participate in ridesharing and the edges selected with this matching

are colored in green: total saving is 15$.

R1

7
’ R3

Figure 4: Maximum weight matching of a ridesharing graph
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1.6.2 Evenly split fair matching

If total saving for a shared trip is evenly split among the involved requests, then a “fair”

matching would be the following (edges selected for the matching are colored in green):

R1

(4.5, 4.58]
$6°2 ‘$5°2]

[3.5$, 3.59]

R2

Figure 5: Evenly split fair matching of a ridesharing graph

On each edge (A, B) between requests A and B, a label which encloses two values in square
brackets is applied: the value closest to request A (resp. request B) indicates the individual
saving of request A (resp. request B) in this shared trip.

We can see that requests R1 and R2 both prefer being matched with each other because this
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results in higher saving for them (4.58) with respect to the other options. Moreover, R3 (resp.
R4) would prefer having R1 (resp. R2) as partner in ridesharing, but since it would be unfair
to R1 (resp. R2) to participate in some other shared trip, then it is fair to combine R3 and R4
together.

It is worth noting that, with the same ridesharing graph, the (evenly split) “fair” plan is different
from the “optimum” plan (Figure 4): in this case, total saving is 14$.

1.6.3 Unevenly split fair matching

If total saving for a shared trip is split unevenly among the involved requests, then a “fair”

matching would be the following (green edges represent the edges in the solution):

[4.5$, 4.5%]
$6°¢ ‘gc°T]

138, 49]
R2

Figure 6: Unevenly split fair matching of a ridesharing graph
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Same notation used for Figure 5 holds here.
We can see that R1 and R4 are partners in ridesharing since they both prefer being matched
with each other; R2 would prefer ridesharing with R1, but this would be unfair to R1, thus it
is eventually matched with R3.
It is worth noting that, with the same ridesharing graph, the (unevenly split) “fair” plan is
different from the “fair” plan with the assumption of splitting evenly the savings among the
requests (Figure 5). Moreover, it is also noteworthy that a ridesharing plan with unevenly split

savings may not be always possible, which means that Nash equilibria cannot be found:

Figure 7: Unevenly split fair matching of a ridesharing graph with no solution
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Same notation used for Figure 5 holds here.
Given the ridesharing graph shown in Figure 7, consider a plan which matches R1-R4 and R2-
R3; this plan is unfair to R1, because both R1 and R3 would save more if partnering together
with respect to what they save with their partners in this plan. Similarly, if R2 or R3 is matched

to R4 rather than R1, the plan would be unfair to the partner of R4.

1.7 Related work

As far as static model is concerned, [4] devises an unweighted ridesharing graph and pro-
vides experimental results in Manhattan area which supports the idea that, even with a static
implementation and only merging two requests at a time, huge benefits derive in terms of %
shared trips. It is also shown that if a weight (e.g., total travel time) is applied to each edge of
the ridesharing graph, then it is possible to minimize overall travel time.

In addition, also [5] considers the static case, but with requests originating from the same
hub (“LaGuardia” airport) and with destination in New York City, still adopting an un-
weighted ridesharing graph. They proposed an approach which combines multiple drop-off
points ridesharing and slugging (i.e., walking for the purpose of ridesharing): they demon-
strated that this combination reduces the total number of trips to 25%-40%.

In regard to dynamic model, [3] proposes an any-time optimal approach which is capable to
find the optimum solution to the problem of minimizing travel delays, but due to time needs,
a suboptimal solution is found. They consider ridesharing for any vehicle capacity: results in

terms of % shared trips are shown for vehicles with 2, 4 and 10 passenger seats.
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1.8 Thesis structure

The following chapters of this thesis are organized as follows:
e Chapter 2 - Data organization, which describes the database schemas and how they can
be effectively used for taxi ridesharing purposes, addressing optimization issues;

e Chapter 8 - Ridesharing algorithms, which presents the algorithm for both the optimum

plan and the fair plan in specific case studies;

o Chapter 4 - Experiments settings, which includes the settings for the experiments and

states any assumption made;

o Chapter 5 - Results analysis, which shows plots aiming at comparing the algorithms

presented in chapter 3 with respect to the settings provided in chapter 4;

e Chapter 6 - Conclusions and future work, which concludes this thesis and provides some

perspective for future works.



CHAPTER 2

DATA ORGANIZATION

2.1 Overview

The DBMS which has been employed is “PostgreSQL 9.6” with “PostGIS” spatial exten-
sion, in order to allow geometrical types and purposefully represent “road intersections” and
“road segments” in geographic longitude and latitude coordinates.

We show in Figure 8 the Entity-Relationship diagram for our database: rectangles indicate
entities; entity attributes are listed inside the rectangle (primary key is underlined); edges in-
dicate relations; given an edge between “X” and “Y” entities, multiplicity of “Y” is indicated

at “X” endpoint and vice-versa.

Schemas description is provided:

e Road Intersection: indicates the intersection between two streets and is represented by a
point in the space (longitude and latitude coordinates), stored in the attribute “geom”;

spatial indices are created on “ID” (B-tree) and on “geom” (GiST);

e Road Segment: is a fraction of a street and connects two adjacent “road intersections”;
is labeled with “travel time” (minutes to drive from “source intersection” to “target

intersection”) and “distance miles” (to compute distance saved in trips); is represented

16



Distance Table

-travel time: double
-distance miles: double
-shortest path[ |: Road Intersection

1.

+target_|ntersection

Taxi Schedule
. *
0.1/ 1D bigint | *taxi_schedule 7 iD- bigint -
-capacity: int | 1 1 _* |-is: timestamp
0.1 0.*
+source | intersection
+to| pickup +schedule_jntersection
+on_bgard 1
L~ | Road Intersection| 1
+pickup_intersection _ID- bigint
1 |-geom: geometry L
1 1
0.* 0. 0..*
Request
-ID: bigint : ) N . .
“request date&time: timestamp +dropoff_intersection source_intersection

-pick up date&time: imestamp
-passengers: int

-willingness to rideshare: double
-max delay tolerated: double

0.*

+target |ntersection

l-.i

Road Segment

1.*

Figure 8: ER diagram

-1D: bigint

-travel time: double
-distance miles: double
-geom: geometry

by a line in the space, stored in the attribute “geom”; together with “Road Intersection”

schema, represents “Road Network”;

e Distance Table: “source intersection” and “target intersection” represent the primary key;

stores the records related to the shortest path between any two “road intersections” in

the road network; overall “travel time”, overall “distance miles” and all hops in “shortest

path” are retained;
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e Request: contains information about request issued time and actual pick up time; can be
either “on board” or “to pick up” for only one vehicle or not assigned at all; “pick up
intersection” and “drop off intersection” are assigned based on a mapping from actual
locations to existing “road intersections”; “willingness to rideshare” indicates the proba-
bility for the request to participate in ridesharing; “maximum delay tolerated” indicates
the fraction of the time to get to destination without ridesharing (i.e., the shortest path)
such that the request will participate in ridesharing only if, in the shared trip, request drop

off is delayed by at most this fraction; spatial index on “request date&time” (B-Tree);

e Taxi: represents a vehicle in the system; can have “requests” either already on board
or to pick up; its current location is represented by the first record in its “schedule”,
thus, for later computations aimed at checking constraints satisfiability, the interval be-
tween “current time” and “timestamp” associated to the first record in “schedule” is also

considered;

e Schedule: is a weak entity for “Taxi” and is considered a separate entity (instead of being
a relationship between “Taxi” and “Road Intersection”) because “timestamp” is a funda-
mental attribute, since each taxi cannot be located in two different “road intersections” at
the same time; thus, contains, for each “Taxi”, its route through the “road intersections”
ordered by related “timestamp”; every time a new pool starts, it is possible to delete
records for old schedules (i.e., a “taxi” has already traversed some “road intersections”,

thus it is not necessary to keep that information anymore).
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2.2 Road network: tailoring OSM data

“Open Street Map” (OSM) project aims at creating maps of the world with individual con-
tribution and free employment of the available data.
But, for our purposes, it is not possible to employ OSM data as they are: we need to refine
them in order to retrieve, in particular, “road intersections” and “road segments” for a specific
region.
First of all, it is worth noting that, for each street, OSM provides an ordered set of nodes which
belong to that street: these nodes can be either intersections or not.
The approach which has been followed here is to check, for any node belonging to a street, if it
belongs also to some other street: if this is the case, then that node is a road intersection.
Moreover, in this way bridges and underpasses are properly handled: OSM takes into consid-
eration, beyond longitude and latitude, also altitude and therefore would not regard streets at
different levels as intersected.
After retrieving all the road intersections, we need to connect them with road segments in order
to generate a full road network. Thus, streets are first split into single edges which connect two
adjacent nodes (either intersections or not); after that, consecutive edges are merged together
into a road segment in order to connect two adjacent road intersections.
It is worth noting that this process retains the information related to travel time and distance
in miles: travel time (respectively, distance in miles) of a road segment is equal to the sum of
travel times (respectively, distances in miles) of each combined edge.

Moreover, the constructed road network is portable: “road intersections” and “road segments”
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tables can be exported in any format and computations on the graph can be performed with
any preferred implementation.

As a consequence, distance table construction for a given road network can be performed with
any shortest path computation implementation. Here we show the road networks constructed

and used for the static model (sections 3.1-3.2) and for the dynamic model (section 3.3):

Figure 9: Static model: New York City road network
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Figure 10: Dynamic model: Manhattan road network

2.3 SQL queries

The following queries can be executed with “PostgreSQL 9.6” and performance is sped up

by creating proper indexes as suggested in section 2.1.

2.3.1 Longitude/latitude coordinates to road intersection mapping

Each request has actual pick up and drop off coordinates, expressed in longitude and lati-
tude: for our purposes, we would like to map pick up and drop off locations to existing “road
intersections”.

Thus, given longitude “x_long” and latitude “y_lat” coordinates in the space, it is possible to

map this geometric point to the closest “road intersection”:
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TABLE I: SQL QUERY: MAPPING LONGITUDE/LATITUDE COORDINATES TO ROAD
INTERSECTION

SELECT id

FROM road_intersections

ORDER BY geom <-> st_setsrid(st_makepoint(x_long, y_lat), 4326)
LIMIT 1;

In particular, “< — >” geometric operator means “distance between” two geometries. But
there exist different spatial reference systems (e.g., Cartesian and Geographic coordinate sys-
tems) in which distance calculation is different: distance between two points on a plane is
different than distance between the same two points on a spheroid (e.g. the Earth). Thus,
we need to set our spatial reference system to geographic coordinate system (“st_setsrid” func-
tion), which employs longitude and latitude: in particular, this reference system is identified
by “4326” value.

In addition, “st_makepoint” function creates a point in the specified reference system with co-
ordinates “x_long” and “y_lat”.
As a result, the above SQL query orders road intersections by increasing distance to the new

point generated: only the first one (i.e., the closest road intersection) is retrieved.

2.3.2 Pool of requests retrieval

At the beginning of a new pool, requests which have been issued within this time in-

terval need to be gathered together and efficiently retrieved from the database. Thus, with
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an index based on “request_date&time”, given a pool which spans from “start_pool_time” to

“end_pool_time”:

TABLE II: SQL QUERY: RETRIEVE REQUESTS FOR A SPECIFIC POOL

SELECT *

FROM requests

WHERE request_datetime >= ‘start_pool_time’
AND request_datetime < ‘end_pool_time’;

2.3.3 Distance table look up

This is the most frequent query which is executed either to check constraints satisfiability
or to update the schedule of a taxi. In order to retrieve the information related to the shortest
path between two road intersections (respectively identified by “source_id” and “target_id”), we

have:

TABLE III: SQL QUERY: DISTANCE TABLE LOOK UP

SELECT =*
FROM distance_table
WHERE source = ‘source_id’ AND target = ‘target_id’;
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For what concerns the static model context, our distance table stores only the distance
between the considered hub node and any other intersection (i.e., “source_id” is the ID of the
considered hub node); in addition, the information needed is: time and miles to travel to reach
destination from the hub node.

As opposed to the static model, for the dynamic model our distance table stores information
between any two intersections; this information includes: time and miles to travel to reach
destination from source; ordered sequence of hops (i.e., intersections) in the shortest path to

destination.



CHAPTER 3

RIDESHARING ALGORITHMS

The idea is to provide a degree of commonality among the algorithms which produce an
optimum and a fair ridesharing plan, and this can be achieved with the standardization of the
ridesharing graph.

These algorithms can be applied to two different models:

e Static: new taxi requests are grouped together in a pool of fixed size (e.g., 5 minutes) and

merged rides are generated taking into account only pending requests in that pool;

e Dynamic: new taxi requests are attempted to be merged to already existing taxi rides,

otherwise a new taxi driver will be dispatched.

In order to outline the case studies oriented to the comparison between the optimum plan
and the fair plan, it is necessary to understand whether they are the same or not in the un-
weighted ridesharing graph case: if they are, there is nothing to compare and we can move
directly to the weighted case. In the following, we prove that this is actually the case.

In the case of an unweighted ridesharing graph (RSG), “fairness” definition (described in sec-
tion 1.5) does not have to be modified if we assume to apply the same weight to each edge: each
request can be merged to any of its neighboring requests, because all the ridesharing options

result in the same total saving.
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The following is the theorem we want to prove.

Theorem: in the case of an unweighted RSG, the optimum ridesharing plan is also fair.

(Proof)

In order to prove this theorem, it is useful to prove first that any ridesharing plan constructed
with Algorithm NE4.1 ([2] and reported in section 3.1.2) is fair.

In fact, since all edges have the same weight, step 2.a) of the algorithm can be seen as “pick a
random edge in the remaining RSG”, which results in any random ridesharing plan.

Since Theorem 2 (“for an evenly split RSG, the rsp F computed by Algorithm NE4.1 is fair”)
in [2] has been proven, then we can infer that any random ridesharing plan constructed from
an unweighted RSG, with Algorithm NE4.1, is fair.

By proving this, the optimum plan is only one among all the random ridesharing plans, and

since all of them are fair, it follows that the optimum plan is also fair.

In the following subsections, ridesharing algorithms for each case study are presented.

3.1 Static model: combination of at most two requests originating in single hub

In this case, only requests which are picked up in a specific location are considered to be
merged: ridesharing is allowed to combine only two requests at a time and the resulting trip

will be assigned to an empty taxi located in the same hub.
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Since, in this case study, only two requests can be merged at a time, the resulting ridesharing

graph will be an undirected weighted graph.

3.1.1 Optimum matching algorithm

The optimum plan can be computed with any maximum weight matching: edges in the final
solution maximize the sum of weights in the ridesharing graph while considering the constraint
that no request is incident to more than one edge present in the solution.

Below is the pseudo-code of the algorithm:

TABLE IV: STATIC MODEL (MERGING AT MOST TWO REQUESTS): MAXIMUM
WEIGHT MATCHING ALGORITHM

Input: Ridesharing graph RSG = (R, T)
Output: The set S of (either combined or not) requests

1. S=R

2. Build a maximum weight matching M4, on RSG
3. for each T} ; in M4, do

4. S =SU{Ri;}; S =5\ {R; R;}

5. return S

The set S is initialized with the set R of all the requests in a pool. Thus, given a ridesharing
graph RSG with requests in R as nodes and edges 7T} ; in T (an edge T; ; exists if requests R; and

R; can be combined) to which a weight is applied, then it is possible to compute a maximum
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weight matching M, on RSG. For any edge T; j in M4z, the combined trip R; ; is included
in the solution S, whereas the single requests R; and RR; are excluded.

As suggested in [4], Edmonds matching algorithm ([6]) for the weighted case has been employed
and it yields O(n%log n) time complexity.

In particular, “Lemon” C++ library has been used because it provides an implementation of

the aforementioned maximum weight matching algorithm.

3.1.2  Evenly split fair matching algorithm

In this case, finding Nash equilibria, given a ridesharing graph RSG with no edges labeled
with the same weight, is always possible (as demonstrated in [2]).
A fair ridesharing plan is computed iteratively by combining two requests at a time connected
by the heaviest edge in RSG, and removing them from RSG (along with their outgoing edges),
until there are still edges available in RSG.
This is meaningful because if we split the weight of the edges in an even way, then the heaviest
edge T; ; implies that request R; prefers being matched with request R; and vice versa: the
same holds for the following iterations.

Thus, the fair rsp F is computed with the following algorithm (NE4.1 in [2] and reported here):
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TABLE V: STATIC MODEL (MERGING AT MOST TWO REQUESTS): EVENLY SPLIT
FAIR MATCHING ALGORITHM

Input: Ridesharing graph RSG = (R, T)
Output: Ridesharing plan rsp F

1. F=1{}

2. while there are still edges in RSG do

(a) Retrieve the heaviest edge T;; in the remaining
RSG

(b) F = F U T;;; Remove requests R; and R; and
their incident edges from RSG

Time complexity of the above algorithm is O(n log n), where n is the number of nodes in
RSG (see [7]).

3.1.3 Unevenly split fair matching algorithm

If weight on each edge of the ridesharing graph RSG is not split evenly, then the algorithm
devised in the previous section does not work anymore, because it is not necessarily fair within
this context.

To each pair of combinable requests is applied a weight (total savings), but different fractions
are related to the single request involved: this fraction is called “individual saving”.

In this case, [2] introduces an algorithm to compute a fair ridesharing plan, which will use the
solution found to the “Stable Roommates Problem” (SRP). It has been used an implemen-

tation which employs constraint programming and whose documentation can be found in [8];
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in particular, it solves an extended SRP: “SRP with incomplete lists”, which means that the
ridesharing graph does not have to be complete and, therefore, requests do not have to specify
a preference for an unconnected request.

The algorithm works as follows. Each request R; in RSG sorts its neighbors (possible partners
in the ridesharing plan) by individual saving in descending order; a solution to the SRP is found
in O(n?), where n is the number of requests (see [9]).

It is worth noting that, as shown in section 1.6.3, a solution to the SRP cannot always be found.
Thus, if there is no solution for the algorithm, then the optimum plan payment scheme will be

issued.

TABLE VI: STATIC MODEL (MERGING AT MOST TWO REQUESTS): UNEVENLY
SPLIT FAIR MATCHING ALGORITHM

Input: Ridesharing graph RSG = (R, T)
Output: The set S of (either combined or not) requests

1.S=R

2. Build a SRP Mgrp on RSG

3. if Mggrp has no solution

4. Apply maximum weight algorithm (Table IV)
5. else

6. for each T; ; in Msrp do

7. S=SU{R;i;}; S=S\{R, R;}

8

return S
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3.2 Static model: combination of “k” requests originating in single hub

In this case, only requests which are picked up in a specific location are considered to be
merged: ridesharing is allowed to combine “k” requests at a time (with “k” between 2 and taxi
maximum capacity) and the resulting trip will be assigned to an empty taxi located in the same
hub.

Since, in this case study, even more than two requests can be merged at a time, the resulting

ridesharing graph will be an undirected weighted hyper-graph.

3.2.1 Optimum matching algorithm

Optimum matching in a hyper-graph is a NP-complete problem, but there are some approx-
imations mentioned in [4] which are solvable in polynomial time. However, any approximation
(even if closer to the exact optimum solution) may not be enough to understand the real dif-
ference between the optimum and the fair plans.

Since our aim is to compare the fair plan to the exact optimum plan, a naive approach is to try
any combination of edges in the ridesharing hyper-graph and, among the feasible combinations,
check which one provides the highest weighted matching. By “feasible combination” we mean
that no request appears in more than a single hyper-edge present in the combination.

The main issue of this approach is that it is time and memory consuming. Thus, a cleverer
approach is required to retrieve the same results while saving both time and memory.

This approach employs a “branch and bound” technique and is inspired to the solution to

“Graph-Constrained Coalition Formation” (GCCF) problem given in [10] and [11]. Hyper-
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edges can be seen as single “coalitions” of requests they connect, whose value is “total savings”:

the objective is to find the coalition of hyper-edges which maximizes “total savings”.

3.2.2 Evenly split fair matching algorithm

Also in this case, finding Nash equilibria, given a ridesharing hyper-graph RSH with no
edges labeled with the same weight, is always possible (as demonstrated in [2]).
A ridesharing plan F is fair if there is no hyper-edge in the ridesharing hyper-graph, absent in
the solution, in which all the incident requests would have a higher individual saving than in
F. Since hyper-edge total saving is evenly split among the related requests, then the individual
saving is computed as total saving divided by the number of incident requests.
A fair rsp is computed equivalently as stated in 3.1.2.: hyper-edges are sorted by individual
saving in decreasing order and, iteratively, the heaviest hyper-edge in the remaining RSH is
selected and its related requests are removed from RSH (along with their outgoing hyper-
edges), until there are still hyper-edges available in RSH.
This is meaningful because if we split the weight of the hyper-edges in an even way, then the
heaviest hyper-edge ¢ in T (in terms of individual saving) implies that all the related requests
prefer being matched with each other: the same holds for the following iterations.
It is worth noting that, at some iteration of step 2.a, it is possible that the algorithm will select
a hyper-edge whose total weight is lower than another hyper-edge still present in RSH: this is
because its individual saving is higher due to a lower number of incident requests. This scenario
cannot happen in 3.1.2, instead.

Thus, the fair rsp F is computed with the following algorithm:
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TABLE VII: STATIC MODEL (MERGING MORE THAN TWO REQUESTS): EVENLY
SPLIT FAIR MATCHING ALGORITHM

Input: Ridesharing hyper-graph RSH = (R, T)
Output: Ridesharing plan rsp F

1. F=1{}

2. while there are still hyper-edges in RSH do

(a) Retrieve the edge t with the highest individual
saving in the remaining RSH

(b) F =F U {t}; Remove requests connected to ¢ and
their incident edges from RSH

3.2.3 Unevenly split fair matching algorithm

If we split the weight of hyper-edges in the ridesharing hyper-graph in an uneven way,
then the problem of finding a fair rsp, if there exists one, becomes NP-complete: this can be
demonstrated by reduction from “Stable roommates problem with triple rooms” (3D-SR); see
[12] for demonstration.

Thus, some approximations should be devised to deal with this approach.

However, as shown in section 5.1, within the context of combining only two requests at a time
originating from a single hub, there is not a valuable difference between the evenly split and
the unevenly split fair plans: as a consequence, it is reasonable to compare the optimum plan
to the evenly split fair plan only, because it is computationally tractable, whereas the unevenly

split case is intractable.
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3.3 Dynamic model: requests assignment to already existing rides

In this case, new requests are combined to already existing rides: these taxis can be either
already processing some other requests (i.e., they already have passengers on board) or be

empty; in the former option, taxi schedule is required to be re-routed.

3.3.1 Optimum matching algorithm

This algorithm is an adaptation of the one devised in [3].
Due to limited computational budget for real time analysis, [3] provides some heuristics, in
order to make this problem tractable, such as: filtering the number of edges in the RV graph;
setting a time out for each vehicle considered in the RTV graph construction. These two graphs
will be accurately described shortly.
Moreover, since it satisfies the any-time property, then the algorithm increments an initial solu-
tion and thus provides a suboptimal solution: if there were enough time, then it is guaranteed
that the optimum solution would be found.
However, our main interest is to compare the fair plan to the exact optimum plan; as a result,
no heuristic will be employed in order to retrieve the optimum solution.
Given a pool of requests and a set of vehicles with their current state, it is first checked which
requests can be pair-wise combined (i.e., there exists a virtual vehicle, located in one of the two
requests pick up intersection, which can process both requests while satisfying the maximum
delay tolerated constraint); then, actual vehicles are considered and checked if they can process
a single request from the pool. Thus, in the graph (called RV graph), vehicles and requests

are the nodes, whereas an edge between two requests means that they can be combined and an
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edge between a vehicle and a request means that the vehicle can process the request.

The resulting graph is further examined by analyzing its cliques: each complete sub-graph
which contains a vehicle is a potential trip and is checked whether it is feasible indeed.

Newly formed trips are then assigned to vehicles with respect to the optimum solution provided
by an ILP problem, as later described.

Thus, the algorithm follows three steps.

e Pairwise request-vehicle RV graph construction

RV graph gives an overview of which requests can be merged and assigned to which
vehicle.

In this graph, each request in the current pool is a node, and each vehicle is also a node.
An edge is drawn between two requests A and B if a virtual vehicle, located in either
A’s or B’s pick up location, can process them both while satisfying the maximum delay
tolerated constraint.

An edge is drawn between a request r and a vehicle v if v can pick up r at its origin
location while satisfying the constraints of vehicle capacity and maximum delay tolerated

for r and any other request still on board.
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W1 Va2

Figure 11: Dynamic model: RV graph example

In Figure 11 we provide an example of RV graph: it shows a combination of four requests
and two vehicles.

In order to retain only the most promising vehicles and pruning certain edges for later
faster computations, “Dual Side Taxi Searching” idea (which has been devised in [13])
is followed: for each request, we consider only those vehicles which are currently close
enough to its pick up intersection and will be close enough to its drop off intersection.
Current location of a vehicle is tracked as described in section 2.1: we retain only the
future route of a vehicle, thus current location is the earliest record in the schedule.
Analogously, given a timestamp ts at which a request is expecting to be dropped off

(computed upon the shortest time from its pick up to drop off intersections), a vehicle
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future location at ts is its location immediately non-after ts as given in the schedule.
Thus, before checking which vehicles can satisfy delay constraints for their on board
requests and for a new request r, it is useful to first select only those vehicles which are
currently in a specific location from which they can pick up request r while satisfying
the constraint of maximum delay tolerated; secondly, within this set of vehicles, we only
retain those whose future location at the earliest drop off time of request r (computed
based on the shortest time to arrive at its destination) can reach request r destination
within the maximum delay tolerated. For instance, assume we have a request r issued
at “10:00:00” and its earliest drop off time (shortest time to destination) is “10:10:00”.
A vehicle v can be checked if it is connected to request r if: from its current location at
“10:00:00” it can pick up 7 within maximum delay tolerated, and; from its future location
at “10:10:00” it can reach the destination of r within maximum delay tolerated.

[}

The process of adding an edge between any two requests takes O(n2log(i2)), where “n” is

733}
1

the number of requests and is the number of road intersections: for each combination

of two requests, an edge is decided to connect them in O(log(i?)) time, that is the indexed

[1355)

“2” rows. In particular, in our case, “i

access time to the distance table which contains
for Manhattan is 3,933.
The process of adding an edge between a vehicle v and a request 7 takes O(m n log(i?)),

W
1

where “m” is the number of vehicles ,”n” is the number of requests and is the number
of road intersections (same reasoning for logarithmic look up applies). Moreover, vehicle

capacity is assumed to be a small constant, so considering permutations of the schedule
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for a vehicle is bounded and small with respect to the number of vehicles and requests.
Thus, the overall time complexity, assuming that vehicles are higher in quantity than
requests are, is O(m n log(i?)). This is the worst case when all the vehicles are close
enough (i.e., are selected with the aforementioned concept of “Dual Side Taxi Searching”)
to all requests in the pool.

In order to improve overall performance, we have parallelized among the requests, to check
whether two distinct requests can be combined, and among the vehicles, to compute which

requests a vehicle can process.

Request-trip-vehicle RTV graph construction

The second step of the algorithm is to explore the cliques of the RV graph, that is,
complete subgraphs of the RV graph such that one of their nodes is a vehicle.

First of all, all feasible trips have to be listed.

Each clique represents a potential trip T, that is a set of new requests which either may
or may not be processed by the vehicle in the clique. Since this step can be exponential
in the worst case, it is possible to specify a timeout per each vehicle to explore its related
cliques (i.e., 0.2 seconds), which leads to sub-optimality of the solution but removes longer
trips.

This step proceeds incrementally by adding to the set of feasible trips all the single requests
with their incident vehicles; after that, trips of size 2 are considered: if two requests can
be combined together, then we can check which vehicles can process them both while

satisfying capacity and delay constraints. After that, from this initial set of trips, it is
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possible to generate feasible trips of size “k”, where “k” is less than or equal to vehicle
capacity; for a given vehicle, there exists a potential trip of size “k” if all of its sub-trips
of size “k-1” are actually feasible: for this potential trip, then, it is checked whether
the given vehicle can process it and, at the same time, can satisfy capacity and delay
constraints. It is worth noting that a request r may appear in multiple feasible trips: the
constraint for which r can appear at most once in the optimal plan is formalized in the
ILP of next step.

Thus, in the RTV graph, there are three type of nodes: requests, trips, vehicles. Beyond
the previously computed trips, also a “null” trip is added in order to specify the case in
which a request cannot be processed by any vehicle.

There is an edge between a request r and a trip T if T contains r; each request r is then
connected to the “null” trip.

There is an edge between a trip T (“null” trip is not considered) and a vehicle v if v can
process T and on board requests while satisfying capacity and delay constraints.
Moreover, for each of the edges between trips and vehicles, we retain information about
the new schedule and, also, a weight is applied: “total savings” if trip T were assigned to
vehicle v: if multiple routes can satisfy the constraints, then the one with highest total
savings is chosen.

This is different than what stated in [3], because, in this reference, the authors’ aim is to

minimize the sum of delays (which is the weight they are considering).
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Figure 12: Dynamic model: RTV graph example

In Figure 12 we can see a possible result drawn from RV graph displayed in Figure 11;
cliques in the RV graph which resulted in not being feasible are: R1-R2-R3-V1 and R2-
R3-V1.

As we can see, on the left part of the graph, the four requests are connected to the trips

(plus the “null” trip) which contain them. Moreover, between each trip and related ve-
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hicle there is a “total saving” applied: assuming that V1 is empty, while V2 is not, we
can notice that some assignments (e.g. trip {R1} to V1) provide no saving: this is due
to the fact that, since V1 is empty and R1 is assigned to this vehicle, there is no benefit
deriving from ridesharing.

In order to improve overall performance, we have parallelized among the vehicles to com-

pute all the feasible trips which can be processed by the same vehicle.

Optimal assignment

This last step, given the RTV graph with feasible trips and related vehicles, computes an
optimal assignment of vehicles to trips: this is formalized as an Integer Linear Program
(ILP).

This optimization problem is fed with an initial solution which can be computed greedily
as follows. First of all, we sort the edges in the RT'V graph between trips and vehicles in
decreasing order. After that, it is possible to select these sorted edges from the heaviest
to the lightest and insert them in the greedy solution if both hold: trip does not contain
requests which have already been added to the greedy solution; vehicle is not already
assigned in the greedy solution.

Here we provide the ILP formulation:
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TABLE VIII: DYNAMIC MODEL: ILP FORMULATION

L. Initial guess: > .4y
2. D optim = arg)r(naxC(X),
where C(X) = > cij&;+ >, ChoXk

3. s.t. Z €, < 1, ij ey
iy
4. Z €5+ Xk = 1, Vrp € R

i€Zl jeIl

733}
1

There are two binary variables in the ILP problem: ¢; ; is set to 1 if trip is assigned to
vehicle “j”7, 0 otherwise; xj is set to 1 if, in the solution, there is no trip which contains
request “k” that has been assigned to any vehicle, 0 otherwise.

Costs ¢; j are applied to ¢; ; and they represent the weight of the edge of the RTV graph

3N

and vehicle “j”; negative costs cgy are applied to xj in order to

733
1

which connects trip
penalize ignored requests. We denote the set of variables as X.

In the above formulation: £y indicates the set of indexes {i, j} such that an edge between

[1355)

trip “i” and vehicle “j” exists; “n” is the number of requests; I]V indicates the indexes “i
for which an edge between trip “i” and vehicle “j” exists; I,f‘ indicates the indexes “i” for
which an edge between request “k” and trip “i” exists; IiT indicates the indexes “j” for

[733))
1

which an edge between trip and vehicle “j” exists.

Constraints of this ILP problem are: each vehicle can be assigned to at most one trip;
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each request can be either assigned to a vehicle or not assigned at all.

Figure 13: Dynamic model: optimal assignment example
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In Figure 13 we present the solution to the problem shown in Figure 12.

In [3], the aim is to minimize the sum of delays, while in our case we want to maximize
total savings; the objective function is modified accordingly: since we provide different
costs, the only modification to apply is that the problem is now a maximization problem.
It is worth noting that a penalty cxo (negative value) has to be assigned in order to force

s
1

to vehicle

the ILP to prefer a solution which assigns a trip ‘7

with related cost ¢; ;
equals to 0.
In order to solve this problem, we have employed “Mosek” solver whose ILP optimization

is inherently parallelized.

3.3.2 Evenly split fair matching algorithm

Given the RTV graph constructed as explained in section 3.3.1, only its sub-graph containing
trips, vehicles and their edges needs to be analyzed (that we will call TV graph).
First of all, it is useful to prove the equivalence between the aforementioned sub-graph and
the hyper-graph used for the evenly split fair matching algorithm for combining more than two
requests (section 3.2.2).
What we would like to have is a hyper-graph with requests as nodes and that its hyper-edges
represent a trip (among the connected requests); weight on the hyper-edge is “total savings”

for the related trip assigned to a specific vehicle.
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Figure 14: Dynamic model: TV graph standardization to ridesharing graph

Figure 14 graphically shows this translation for one edge of the TV graph.

Starting from one edge of the TV graph (Figure 14.a), it is possible to split each vehicle into
n nodes, where n is the number of requests on board (Figure 14.b); at the same time, it is
possible to split each trip into m nodes, where m is the number of combined requests for that
trip. Finally, all these split nodes are connected by a hyper-edge with the same weight as stored
in the RTV graph (Figure 14.c).

Thus, it is easy to check that from the TV graph representation it is possible to derive the
ridesharing hyper-graph.

As a result, the algorithm to compute an evenly split fair plan is equivalent to the one devised

in section 3.2.2.: edges of TV graph are sorted by individual saving in decreasing order and,
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iteratively, the heaviest edge in the remaining TV graph is selected and both the related vehicle
and all the trips containing requests of the selected trip are removed from TV graph (along
with their incident edges), until there are still edges available in TV graph.

Notice that individual saving is computed taking into account also requests on board of the

vehicle.

TABLE IX: DYNAMIC MODEL: EVENLY SPLIT FAIR MATCHING ALGORITHM

Input: RTV sub-graph TV = (TUV, E)
Output: Ridesharing plan rsp F

1. F={}
2. while there are still edges in TV do

(a) Retrieve the edge t with the highest individual
saving in the remaining TV graph

(b) F = F U {t}; remove trips containing requests in
t and vehicle related to ¢ and their incident edges
from TV graph

3.3.3 Unevenly split fair matching algorithm

After we translate the TV graph into a ridesharing hyper-graph (as shown in Figure 14),
then we can split the weight of hyper-edges in an uneven way.

But the problem of finding a fair rsp, if there exists one, becomes NP-complete as already stated
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in section 3.2.3. Thus, some approximations should be devised to deal with this approach.
However, in section 5.3, we present results related to the comparison between evenly and un-
evenly split savings when only two requests can be processed by a vehicle at the same time.
The algorithm used in this context is the same as the one devised in section 3.1.3.

We have noticed, analogously to what shown in section 5.1 for the static model, that there
is not a valuable difference between the evenly split and the unevenly split fair plans: as a
consequence, it is reasonable to compare the optimum plan to the evenly split fair plan only,

because it is computationally tractable, whereas the unevenly split case is intractable.



CHAPTER 4

EXPERIMENTS SETTINGS

In this section, how experiments have been set up is explained.
Firstly, general settings which are common to all the experiments are presented.
Secondly, we describe the specific settings related to static model experiments (single source
cases for both combining at most two requests at a time and for more than two requests at a
time).
Thirdly, we describe the specific settings related to dynamic model experiments.

4.1 General settings

New York City road network is extracted from “Open Street Map” data and only road
intersections are retained. Thus, it is useful to generate road segments, connecting two different
road intersections, which hold cumulative information (e.g., distance in miles and in time) of
the streets they are a union of. The result is a directed graph with road intersections as nodes
and road segments as edges.

With respect to “travel times”, each road segment is first assigned a travel time with respect to
the maximum speed on that type of road. In order to have a more realistic idea of the actual

speed, as suggested in [5], a congestion fraction cf is applied to the maximum speed (c¢f range
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is (0.0, 1.0]), if we assume that the congestion fraction is the same for every road segment.

Thus, driving time on a road segment is given by:

road segment length

Driving time = -
mazimum speed on road segment x cf

We define a request r with the following tuple: pick up location, drop off location, request time
(at which request is issued), latest acceptable pick up time, effective pick up time, expected drop
off time, earliest possible time at which drop off location can be reached, number of passengers.
Our aim is to provide results which are not related to a specific payment scheme, thus we apply
to each merged trip a cost function that represents “miles saved”.

The aforementioned cost function will be translated into dollars ($) so that it is possible to
compute “total saving” for a merged trip: in this translation, we will consider only “cost per
mile” fares for a NYC cab (2.508/mile), without taking into account initial charge or slow traf-
fic surcharges. See [14] for further information: passengers pay 0.50$ for each 1/5 mile, so the
overall cost per mile is 2.50$.

The raw translation from “total miles traveled” to “total savings” has been proven to be effec-

tive: below we provide the proof.

Translation Mileage-Savings

Definitions:

smy, = total amount of money saved if requests were merged
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m, = total amount of money if requests were not merged
C = cost/mile
sd,, = total mileage saved if requests were merged

d,, = total mileage if requests were not merged

(Proof)

sm C % sd sd
mo_ T = = = % mileage reduction

% fare reduction = P

The proof is guided by the fact that a cost C' per mile has to be applied in order to compute a

taxi trip fare, and this cost is assumed to be constant if fare is distance-based.

Direct consequence of the translation from “% reduction in mileage” to “% reduction in
fare” is that we can conduct experiments with respect to distance traveled abstracting from
fares, if they are assumed to be computed with constant cost per mile.

For the experiments, New York City taxi requests dataset has been employed. It stores over
four years of taxi operations in NYC. For each trip, it provides, among the others: pick up
and drop off locations; pick up and drop off times; passengers on board; actual travel time and
distance. See reference [15] for more detailed information about this dataset.

Since, in the aforementioned dataset, date and time at which a request is issued is not present
(but only time at which that request has been picked up), then we assume that “request date
and time” is the same as “pick up date and time”.

Origins and destinations of a single request are mapped to the closest road intersection in

the road network considered: requests from database which have the same mapped origin and
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destination are filtered out.
Taxi capacity is normally set to 4 passenger seats, unless differently specified. As a consequence,
requests can be combined if the sum of their passengers is less than or equal to taxi capacity.

4.2 Static model settings

The NYC road network of the area considered is a directed graph which consists of 59,792
intersections and 72,557 road segments; see Figure 9 to visualize the area of NYC which has
been analyzed: it includes Manhattan and surroundings, with LaGuardia airport as well.

For this case study, only requests originating in LaGuardia airport are considered.

In order to speed up the experiments, the shortest path between LaGuardia road intersection
and any other road intersection is pre-computed and stored into a distance table: shortest path
between any two other road intersections is computed at run time.

It is assumed that taxi fleet in LaGuardia can always satisfy the demand of requests and all of
them are empty.

In this case study, total distance saved for a combination of n requests is given by:

Total distance saved = (Y,  milesg,;) — argmin(milesy, ;),
i={1,..,n} J

where milessp; indicates the miles to be traveled by request i from LaGuardia airport to its
destination, following the shortest path, and miles,,;, ; indicates total miles to be traveled with
trip combination j (given m possible combinations): we choose the shortest combination in
miles in order to maximize distance saved for that trip.

Results presented in sections 5.1 (combination of at most two requests) take into account pools

of requests issued in 2013 (each day from 7am to midnight) from LaGuardia to the previously
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defined NYC area. Overall, there have been analyzed about two millions requests.

For what concerns the combination of more than two requests at a time, 100 random pools of
requests issued in 2013 have been analyzed.

For these experiments, we consider the following parameters: willingness to ride share (passen-
gers willingness to take part into ride sharing); maximum delay tolerated (devised as a fraction
of the shortest time to arrive at destination, given by the shortest path from LaGuardia); pool
size.

We consider pools of requests of varying size (i.e., 5 to 10 minutes) in which all new requests are
included. For instance, if the pool size is 5 minutes, then all the new requests issued between
“11:00:00” and “11:04:59” will be placed in the same pool.

It is worth noting that, since maximum delay tolerated is only a fraction of the shortest time
to arrive at destination, then two or more requests can be checked if they can be combined
regardless of the congestion fraction used. A proof for the simple case of the combination of
two requests (which can be easily extended to more than two requests) follows.

If we consider two requests A and B originating in LaGuardia and for which request A is

dropped off first, then it is necessary to check the maximum delay constraint on request B only:

*

t1ac,D(A) + tD(A),D(B) — tLaG,D(B) < tLac,D(B) © Maz delay tolerated,

where D(A) (resp. D(B)) indicates drop off intersection for request A (resp. request B) and ¢; ;

(1332

“i” to intersection “j”.

indicates the actual time (considering traffic) from intersection

Now, we can make the same congestion fraction ¢f (computed in some way) explicit to all times:



93

ftrac,p(a) + ftpa),p(B) — ftrac,p(B) < Jtrac,p(B) * maz delay tolerated

cf - cf ’

(1343

where ft;; indicates the fastest time (i.e., considering maximum speed) from intersection “i
to intersection “j”.
As we can notice, it is possible to eliminate the congestion fraction and the inequality will still

hold even if only maximum speed is used.

4.3 Dynamic model settings

The full Manhattan road network is a directed graph which consists of 3,933 road intersec-
tions and 8,400 road segments; only the following road classes have been taken into account:
primary, secondary, tertiary, residential, unclassified, road, living street. Other classes have
been filtered out because they are rarely related to trips pickup and drop off ([4]). See Fig-
ure 10 to visualize the area of interest.

The aforementioned road network is also strongly connected: from each road intersection, it is
possible to reach any other intersection. This is because we want to avoid scenarios in which
vehicles are stuck in limited areas of the network or requests cannot be satisfied because there
does not exist a path for vehicles to pick them up.

For this case study, only requests originating and terminating in Manhattan are considered. In
particular, we have considered a full simulation on date January 25th 2013, from 10am to noon
(enough to reach a steady state): it is a Friday, thus a weekday but also close to the weekend,
in order to have a clearer idea of the trend. Moreover, in this time span, about 40,000 requests
have been issued.

According to what reported in [16], in NYC the average number of passengers per request is
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1.3: thus, we assume that each request involves one passenger only.

Requests which cannot be processed within maximum delay tolerated from the time they have
been issued are then ignored and removed from the pool of requests to be processed.

In order to speed up the experiments, the shortest path and travel time between any two road
intersections in Manhattan are pre-computed and stored in a look up table.

Vehicles are initialized as empty and with a random location at a specific road intersection.
During the simulation, if it occurs that a vehicle v is not assigned to any request and does not
have any passengers on board, then it is issued a schedule from its current road intersection to
a random road intersection.

Considering a trip T which can be assigned to a vehicle v, “total distance saved” for the trip is

given by:

Total distance saved = miles;, — (Y milesgy,) — arg min(milesy, ;),
reT J

where miles;, indicates the miles for initial route of vehicle v (due to on board requests),
milessp r indicates the shortest path miles for request r, miles,, ; indicates the miles for new
route combination j: if there are multiple feasible combinations which satisfy all the requests
involved, then the one which provides the shortest updated route (and, thus, the largest total
distance saved) is chosen.
Notice that, for the initial and the updated routes, we do not consider miles traveled when
vehicle is empty because those miles would have been traveled in any case to pick up a new
request.

For the experiments, we have used a congestion fraction of 0.7, which means that there is a
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little less than medium traffic in Manhattan. Moreover, we have analyzed pools of 30 seconds
because, in Manhattan, on average there about 167 requests each 30 seconds (in the two hours

interval considered) and, thus, it is a considerable number.



CHAPTER 5

RESULTS ANALYSIS

After the optimum and fair plans are computed, we can issue them both separately to
analyze the differences between them in terms of distance traveled (that is equivalent to total
savings), assuming that no compensation scheme is applied to the optimum plan.

Following the structure of chapter 3, we will analyze the static model case first (both for
combining at most two requests at a time and for combining more than two requests at a time)

and then the dynamic model.

5.1 Static model: combination of at most two requests originating in single hub

5.1.1 Comparison between optimum and evenly split fair plans

The comparison in % mileage reduction between the optimum plan and the evenly split fair
plan is investigated with respect to the variation of willingness to ride share, maximum delay
tolerated and pool size (in minutes). In the end, ridesharing graph samples for the two plans

are provided to highlight the differences.

e Willingness to ride share
In Figure 15, it is possible to visualize the % mileage reduction with the optimum plan
with pool size equals to 5 minutes and maximum delay tolerated equals to 10%, studying

the results to the variation of willingness to ride share. We can notice that % mileage
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reduction increases almost linearly as willingness to ride share increases.
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Figure 15: Static model: % mileage reduction with the optimum plan (willingness to ride share)

Figure 16 provides a direct comparison between the optimum and the evenly split fair
plans with respect to willingness to ride share: it presents how often the increase in terms

of % mileage reduction of the optimum plan with respect to the evenly split fair plan is
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less than 5%, between 5% and 15%, more than 15%. There may also be no increase in
the two plans, thus we distinguish the existence of a solution that is exactly the same
(“No Increase” in the plot) and the non-existence of a solution (“Not applicable” in the
plot), which means that the analyzed ridesharing graph had an empty set of edges (i.e.,

no request in the pool could have been merged).
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Figure 16: Static model: optimum plan % increase over the fair plan (willingness to ride share)
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e Maximum delay tolerated
In Figure 17, it is possible to visualize the % mileage reduction with the optimum plan
with pool size equals to 5 minutes and willingness to ride share equals to 90%, studying the
results to the variation of maximum delay tolerated. Also in this case, as for willingness
to ride share variation, % mileage reduction grows almost linearly when maximum delay

tolerated increases.
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Figure 17: Static model: % mileage reduction with the optimum plan (maximum delay toler-
ated)
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Figure 18: Static model: optimum plan % increase over the fair plan (maximum delay tolerated)

Equivalently to what shown by Figure 16 for willingness to ride share, Figure 18 provides a
comparison between the optimum and the evenly split fair plans with respect to maximum
delay tolerated: it presents how often the increase in terms of % mileage reduction of the
optimum plan with respect to the evenly split fair plan is less than 5%, between 5% and
15%, more than 15%. There may also be no increase in the two plans, thus we distinguish

the existence of a solution that is exactly the same (“No Increase” in the plot) and the
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non-existence of a solution (“Not applicable” in the plot), which means that the analyzed
ridesharing graph had an empty set of edges (no request in the pool could have been
merged).

e Pool size
In Figure 19, we visualize the % mileage reduction in the optimum plan compared to

no-ridesharing, as a function of the pool size; willingness to ride share equals to 90% and

maximum delay tolerated equals to 10%.
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Figure 19: Static model: % mileage reduction with the optimum plan (pool size)
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Figure 20: Static model: optimum plan % increase over the fair plan (pool size)

Figure 20 provides a comparison between the optimum and the evenly split fair plans with
respect to pool size: it presents how often the increase in terms of % mileage reduction
of the optimum plan with respect to the evenly split fair plan is less than 5%, between

5% and 15%, more than 15%. There may also be no increase in the two plans, thus we
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distinguish the existence of a solution that is exactly the same (“No Increase” in the plot)
and the non-existence of a solution (“Not applicable” in the plot), which means that the
analyzed ridesharing graph had an empty set of edges (no request in the pool could have

been merged).

Ride sharing graphs

We illustrate, for some ridesharing graphs (RSGs), the maximum weight matching and
the (evenly split) fair matching.

The settings for the RSGs are: willingness to rideshare = 90%; maximum delay tolerated
= 10%; pool size = 5 minutes.

In a visual representation of an RSG: nodes are identified by request IDs; edges are labeled
with a weight which represents the distance saved if the two related requests were merged;
edges which belong to the solution provided by a specific algorithm are colored in red.

In the following pages, we show two cases:

1. The optimum and the evenly split fair plans provide the same solution;

2. The optimum plan provides a greater % reduction with respect to the evenly split

fair plan.
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15t case: the optimum and the (evenly split) fair plans are the same. In this case, the

RSG is disconnected and consists of 4 components.

ém 0896 7g387 00001 0901| 00001 0891} : 00001 0908

29156 2356

0 Y Y
00001 ? 217 00001 _us/uq 00001 %| 00001 1_:1?

N N

00001 0895k 24218 .,u\num 0907]

_/
—~

00001088 : 00001 0890|

_/ _/

Figure 21: Static model: optimum and evenly split fair plans provide the same solution
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274 case: the optimum plan provides a solution with higher distance saved (62.3522) than

the evenly split fair plan does (54.7702). Their respective % mileage reductions are 31.1%

and 28.05%. In this case, the RSG is disconnected and there are two components.
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Figure 22: Static model: optimum fair plan provides greater % reduction than the evenly split
fair plan
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Figure 23: Static model: evenly split fair plan provides smaller % reduction than the optimum
plan

5.1.2 Comparison between evenly and unevenly split fair plans

After comparing the optimum and evenly split fair plans, we have conducted other experi-
ments aimed at comparing the evenly and unevenly split fair matching algorithms.
The difference between the unevenly and evenly split fair plans is calculated by considering the
amount of money (or, in our case, miles traveled effectively) each request will have to pay in the
two cases: a positive value means that each request will pay, in total, less with the evenly split

fair plan; a negative value means that each request will pay, in total, less with the unevenly
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split fair plan.

But in order to draw significant conclusions on the difference in payment scheme between the
two plans, it is more appropriate to analyze what fraction of total miles traveled without ride
sharing this difference constitutes.

Thus, this is the formula for each analyzed pool:

milesys pp — milesesp

% difference = * 100%,

milesy,

where miles,sf, indicates the miles traveled with the unevenly split fair plan, milessy,
indicates the miles traveled with the evenly split fair plan and miles,, indicates the miles
traveled without ride sharing.
% difference between the evenly split and unevenly split fair plans is investigated with respect to
the variation of willingness to ride share, maximum delay tolerated and pool size (in minutes).
Also, since the unevenly split fair plan may not exist, the trend of how often this occurs is
presented. In the end, ridesharing graph samples for the two plans are provided to highlight

the differences.

e Willingness to ride share
In Figure 24 the comparison between evenly and unevenly split fair plans, with respect
to willingness to ride share, is provided: % average difference and standard deviation are
presented.
According to what standard deviation in Figure 24 outlines, % difference can be at most

at around 1.6%: this is negligible and supports the idea that, for experiments in section
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5.2, it is worth comparing the optimum plan to the evenly split fair plan only (which is

tractable with respect to the unevenly split fair plan computation).
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Figure 24: Static model: comparison between unevenly and evenly split fair plans (willingness
to ride share)

Since a solution to the SRP (used to compute the unevenly split fair plan) may not always

be retrieved, the % of this case occurrences is presented with respect to willingness to
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ride share (Figure 25).
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Figure 25: Static model: % no solution to the SRP (willingness to ride share)

As we can observe, % of no solution to the SRP increases exponentially as willingness to

rideshare increases.
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In Figure 26 the comparison between evenly and unevenly split fair plans, with respect to

maximum delay tolerated, is provided: % average difference and standard deviation are

presented. According to what standard deviation in Figure 26 outlines, % difference can

be at most at around 1.8%: this is negligible and supports the idea that, for experiments

in section 5.2, it is worth comparing the optimum plan to the evenly split fair plan only

(which is tractable with respect to the unevenly split fair plan computation).
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Figure 26: Static model: comparison between unevenly and evenly split fair plans (maximum

delay tolerated)
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Since a solution to the SRP (used to compute the unevenly split fair plan) may not always
be retrieved, the % of this case occurrences is presented with respect to maximum delay

tolerated (Figure 27).
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Figure 27: Static model: % no solution to the SRP (maximum delay tolerated)
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As we can observe, % of no solution to the SRP increases almost linearly as maximum

delay tolerated increases.

e Pool size
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Figure 28: Static model: comparison between unevenly and evenly split fair plans (pool size)

In Figure 28 the comparison between evenly and unevenly split fair plans, with respect

to pool size, is provided: % average difference and standard deviation are presented.
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According to what standard deviation in Figure 28 outlines, % difference can be at most
at around 1.6%: this is negligible and, along with the equivalent plots with respect to
willingness to ride share and maximum delay tolerated, supports the idea that, for ex-
periments in section 5.2, it is worth comparing the optimum plan to the evenly split fair

plan only (which is tractable with respect to the unevenly split fair plan computation).
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Figure 29: Static model: % no solution to the SRP (pool size)
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Since a solution to the SRP (used to compute the unevenly split fair plan) may not
always be retrieved, the % of this case occurrences is presented with respect to pool size
(Figure 29).

As we can observe, % of no solution to the SRP increases almost linearly as pool size

increases.

Ride sharing graphs

We illustrate, for some ridesharing graphs (RSGs), the evenly and unevenly split fair
matching. The settings are: willingness to rideshare = 90%; maximum delay tolerated =
10%; pool size = 5 minutes.

In a RSG: nodes are identified by request IDs; edges which belong to the solution provided
by a specific algorithm are colored in red.

For the evenly split fair RSG, edges are labeled with a weight which represents the distance
saved if the two related requests were merged. For the unevenly split fair RSG, directed
edges are used only for clarity purposes. An edge going from node A to node B is labeled
with “X-Y” which indicates that “X” is the distance saved by request A if the edge were
taken and that “Y” is the distance saved by request B if the edge were taken. It is worth
noting that the sum between “X” and “Y” corresponds to the weight assigned to the same

edge in the evenly split fair RSG.
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1% case: the evenly split fair plan provides a solution with higher distance saved (38.2609)
than the unevenly split fair plan does (30.1579). Their respective % mileage reductions

are 30.197% and 23.803%. In this case, the RSG is disconnected and there are two

components.
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Figure 30: Static model: evenly split fair plan provides greater % reduction than the unevenly
split fair plan
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Figure 31: Static model: unevenly split fair plan provides smaller % reduction than the evenly
split fair plan
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2" case: the unevenly split fair plan provides a solution with higher distance saved

(35.614) than the evenly split fair plan does (28.7601). Their respective % mileage reduc-
tions are 22.196% and 17.925%. In this case, the RSG is disconnected and there are two

components.
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Figure 32: Static model: evenly split fair plan provides smaller % reduction than the unevenly
split fair plan
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Figure 33: Static model: unevenly split fair plan provides greater % reduction than the evenly
split fair plan

In the examples provided, we can notice that the uneven splits of the distance saved for a
shared trip are almost even. This implies that the assumption of split evenly the distance
saved among the involved requests is effective, at least within this context. As a result, it
is reasonable to conduct experiments for combining more than two requests with respect

to the evenly split fair plan only (section 5.2).
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5.2 Static model: combination of “k” requests originating in single hub

So far, we have presented the results regarding the comparison between the optimum and
(evenly and unevenly split) fair plans, but in the case where only two requests may be merged
at a time.

Thus, in this section we analyze the case in which more than two requests can be processed by
the same taxi, within the static model context, considering the variation of maximum number
of passengers allowed on board.

It is worth noting that if a taxi can have 4 passengers on board, this does not mean that it is
possible to combine any four requests: each request is related to a particular number of pas-
sengers, thus a taxi can process at the same time requests whose overall number of passengers
is 4 (and it is four requests in the worst case).

In Figure 34, we visualize the % mileage reduction in the optimum plan compared to no-
ridesharing, as a function of the maximum number of passengers; willingness to ride share

equals to 90%, maximum delay tolerated equals to 10% and pools of 5 minutes are considered.
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Figure 34: Static model (combine more than two requests): % mileage reduction with the
optimum plan

Figure 35 compares the optimum and the evenly split fair plans with respect to maximum
number of passengers: it presents how often the increase in terms of % mileage reduction of
the optimum plan with respect to the evenly split fair plan is less than 5%, between 5% and
15%, more than 15%. There may also be no increase in the two plans, thus we distinguish the
existence of a solution that is exactly the same (“No Increase” in the plot) and the non-existence
of a solution (“Not applicable” in the plot), which means that the analyzed ridesharing graph

had an empty set of edges (no request in the pool could have been merged).
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Figure 35: Static model (combine more than two requests): optimum plan % increase over the

fair plan

It is interesting to compare the results shown in Figure 34 and Figure 35 to those related

to combining at most two requests at a time (Figure 15 and Figure 16), with the following

settings: maximum number of passengers is 4; willingness to ride share is 90%; maximum delay

tolerated is 10%; pool size is 5 minutes.

We can notice that there is no clear difference between merging at most two requests at a time

and merging as many requests a taxi can process: important benefits for the static model can

be reached even with the option of merging at most two requests.
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5.3 Dynamic model: requests assignment to already existing rides

5.3.1 Comparison between optimum and evenly split fair plans

In this section we analyze the benefits of ridesharing within the dynamic model (in which
requests may be assigned to a taxi with some passengers on board) with respect to total savings.
We have considered the variation of maximum delay tolerated; constants are the following:

willingness to rideshare is 90%; pool size is 30 seconds; overall number of taxis is 5,000.
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Figure 36: Dynamic model: % mileage reduction with the optimum plan (maximum delay
tolerated)
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In Figure 36, we can notice that, as maximum delay tolerated increases, then more opportu-
nities for ridesharing are possible and, as a result, more miles (and therefore dollars) are saved
and with huge benefits with respect to the static model. In fact, in Figure 17 we can see that,
for instance, with maximum delay tolerated set to 20%, we have that % mileage reduction is

about 38%, while in the dynamic model (Figure 36) it is about 62%.
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Figure 37: Dynamic model: optimum plan % increase over the fair plan (maximum delay

tolerated)
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Figure 37 provides a direct comparison between the optimum and the evenly split fair plans:
it presents how often the increase in terms of % mileage reduction of the optimum plan with
respect to the evenly split fair plan is less than 5%, between 5% and 15%, more than 15%, or

there is no increase (i.e., they both provide the same solution).

As we can notice, the evenly split fair plan almost never provides the same solution as
the optimum plan does: in particular, the latter often increases % mileage reduction between
5%-15% with respect to the former.

It is worth noting that, even if increasing maximum delay tolerated improves opportunities for
ridesharing, this results into longer trips and more requests being processed at the same time:
thus, new requests may not find a close vehicle to process them as well. In Figure 38 we show

this trend by considering the variation of maximum delay tolerated.
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Figure 38: Dynamic model: % serviced requests with the optimum plan (maximum delay
tolerated)

We have investigated whether those not serviced requests would bring a considerable increase
in the % mileage reduction: thus, we have increased the number of vehicles to 6,000 and 7,000.
In Figure 39, we can see that % reduction is almost the same in the three cases analyzed;
Figure 40 shows that this holds also for the evenly split fair plan.
In Figure 41 we show that % serviced requests effectively increases as we provide more vehicles

for the simulation.
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Figure 41: Dynamic model: % serviced requests with the optimum plan (fleet size)

As a result, increasing the number of vehicles will straightforwardly increase the % of sat-
isfied requests, but this does not improve overall % mileage reduction.

5.3.2 Comparison between evenly and unevenly split fair plans

We compare the evenly and unevenly split fair plans with the same metrics described in
section 5.1.2.
We have analyzed the case in which only two requests can be merged and processed by the
same vehicle at the same time: for this reason, we have increased fleet size to 7,500 in order to

satisfy the demand.
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Figure 42: Dynamic model: comparison between unevenly and evenly split fair plans

In Figure 42 the comparison between evenly and unevenly split fair plans, with respect to
maximum delay tolerated, is provided: % average difference and standard deviation are pre-
sented.

According to what standard deviation in Figure 42 outlines, % difference can be at most at
around 7%: there is not a clear difference with respect to what presented in section 5.1.2. As a
consequence, it is worth comparing the optimum plan to the evenly split fair plan only (which
is tractable with respect to the unevenly split fair plan computation), also within the dynamic

model.
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Since a solution to the SRP (used to compute the unevenly split fair plan) may not always be
retrieved, the % of this case occurrences is presented with respect to maximum delay tolerated

(Figure 43).
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Figure 43: Dynamic model: % no solution to the SRP

As we can see, % no solution occurrences increases as the pools become larger (by increasing

maximum delay tolerated).



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

We have introduced the concept of “fairness” in ride sharing. Savings for a passenger may
be either evenly or unevenly split with respect to total saving the shared trip he/she participates
in provides.

We have demonstrated with experiments that, in both the static and dynamic models, the two
splits do not provide very different results in terms of total savings. As a consequence, the
even split is preferred since the algorithm which deals with it is greedy and can be applied also
to the case of combining more than two requests at a time. Moreover, the unevenly split fair
matching algorithm is NP-complete in the case of combining more than two requests, but also
in the easier case of combining at most two requests, a solution is not guaranteed.

With respect to the evenly split fair plan, we have studied the % redistribution of money
required, since the optimum plan will always be issued eventually. We have discovered that in
the static model almost all the times a redistribution of money is needed, in particular more
than 5% and between 0% (excluded) and 5% are the ranges which occur more often and are
equally probable (Figure 16, Figure 18, Figure 20); in the dynamic model, the redistribution of
money lies in the 5%-15% range almost all the times (Figure 40) this means that, within this

model, on average, more money needs to be redistributed compared to the static model.
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6.2 Future work

Here we provide some options for future works.

First of all, in this thesis we have analyzed taxi fares which are computed on distance traveled
only: thus, it is interesting to consider some other metrics (e.g., time traveled).

Another work can be to implement a new mobile application which allows to rank requests in a
pool in order to provide a fair assignment. This can be done either manually or automatically:
in the former case, “Uber” or “Lyft” can make pools of requests public, thus passengers can
provide a list of preferences with respect to other passengers present in the pool (taking into
account travel delay but also the characteristics of the other passengers); in the latter case, pools
of requests are not public, but when submitting a ride sharing request, a passenger can specify a
quantitative value for various parameters in order to compute an overall weight which takes into
account, for example, money saved, travel time delay, the ride sharing partner characteristics.
Thus, fairness in ridesharing has been devised only with respect to money saved, but this
definition can be extended to some other parameters which contribute in computing the overall

weight for a shared trip.
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