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SUMMARY 
 

Chicago has 24 beaches used for recreational swimming from May to September.  

Beaches are monitored daily for E. coli using the Colilert IDEXX culture method. The 24-

hour interval between sampling and obtaining results for the Colilert method presents a 

significant limitation in the utility of the monitoring for protecting the public’s health. 

Precipitation has been shown to elevate microbial concentrations in recreational 

swimming waters. The goal of this research is to predict the need for beach notification 

(swim bans or beach advisories) using prior-day Escherichia coli (E. coli) concentration 

(measured by culture) and precipitation information.     

Beach monitoring data have been provided by the Chicago Park District (CPD) and 

precipitation data obtained from the National Climatic Data Center. Eight logistic 

regression models were used to measure the association between precipitation and beach 

notifications. Precipitation variables consisted of cumulative rain over 12 and 24 periods, 

and the presence of wet conditions defined by greater than or equal to 5 mm of 

precipitation over 12 and 24 hour periods. The prior day’s culture results were also 

considered with the presence of wet or dry conditions to predict a swim advisory or 

closure.  

During the time interval of 2003 to 2011 there were a total of 12,806 monitoring 

observations used to guide decision making. Presence of wet conditions was associated 

with elevated concentrations at 11 of 21 locations. After considering the previous day’s 

culture results with the presence of rain, this association grew stronger. Not all Chicago  
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SUMMARY (continued) 

beaches are affected uniformly by precipitation. Prior day culture results and precipitation 

information can be used to issue a beach notification without additional testing.
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I.  INTRODUCTION 
 

A. Background 

Chicago has 24 beaches that are used for recreational swimming from late May to 

early September.  Traditionally the water quality of these beaches has been monitored for 

Escherichia coli (E. coli) using the Colilert™ culture method. This method has a 24-hour 

interval between sample collection and culture result. Most importantly, from a public 

health perspective, the time-lag may allow the beach to remain open even when the 

concentration is above Chicago’s threshold value of E. coli (1000 MPN/100 mL) that 

triggers swim bans. Alternatively, the time-lag may result in a swim ban for the next day, 

when the E. coli concentration is actually below the standard. This problem could be 

reduced if more rapid methods for the analysis of indicator bacteria concentrations, such as 

quantitative polymerase chain reaction, were available. More rapid methods would allow a 

beach manager to issue an advisory or swim ban just several hours after the water sample 

was taken.  

Statistical models, however, can predict water quality in the absence of frequent 

water quality measurements.  Such models include a number of factors that affect the 

magnitude and variability of bacterial concentrations, including: rainfall, sunlight, tide, 

waves, wind, temperature of water, and biological bacterial sources (Boehm et al., 2008). 

Beginning in May 2012, the Chicago Park District (CPD) will use “real-time” models of E. 

coli to issue beach advisories. These models can provide beach managers an accurate and 

cost-effective solution for determining beach water quality rapidly and efficiently (Nevers 

et al., 2010) 
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In this study rainfall will be explored as the main predictor of E. coli concentrations 

at Chicago Lake Michigan beaches. Rainfall has been found repeatedly to be the most 

important factor that is positively associated with increased bacterial concentrations in 

recreational beach waters (Ackerman et al., 2003; Olyphant et al., 2004; Kleinheinz et al., 

2009). Qualitative rainfall information (such as the presence or absence of a 

thunderstorm), and quantitative information (cumulative rain) is available immediately 

and can be utilized to trigger health warnings. For example, if a beach is open and a 

significant rain event occurs, a health warning or swim ban could be issued without water 

quality testing.   

B. Study Objectives 

• Explore the relationship between rainfall and E. coli concentrations at 

Chicago beaches. This could potentially identify Chicago beaches that are at 

risk of elevated microbial concentrations due to rainfall. 

• Develop a predictive model for determining the need for beach advisories 

and closures using (1) rainfall information and (2) the status of the beach the 

previous day (open versus swim advisory versus swim ban). 
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II.  LITERATURE REVIEW 
 

A. Public Health and Water Quality at Beaches: Rationale for a Regulatory 

Framework 

Water-based recreation can expose individuals to a variety of pathogenic 

microorganisms. These waterborne pathogens are capable of causing illness, though the 

likelihood of illness depends upon the dose received and physical condition of the person 

exposed. During the late 1940s and early 1950s the United States Public Health Service 

(USPHS) conducted an epidemiologic study at several US beaches and found that swimmers 

were at significant health risk relative to non-swimmers, regardless of the levels of bacteria 

found in the water (Stevenson, 1953). This study, however, did not result in the 

promulgation of water quality criteria.  

Studies initiated in 1972 by the United States Environmental Protection Agency at 

marine and fresh water bathing beaches affirmed that sewage-contaminated waters pose a 

health risk for bathers, and found that E. coli and Enterococci concentrations were most 

strongly correlated with swimming-associated health effects (Pearson ρ=.80 and ρ=.74, 

respectively). Based on these studies, EPA published criteria for bathing recreational 

waters in 1986 (EPA 1986). For freshwater, the EPA criteria is based on a statistically 

sufficient number of samples and the geometric mean for bacterial densities should not 

exceed 126 CFU per 100 ml for E. coli or 33 CFU per 100 ml for Enterococci. The criteria 

also said that no sample should exceed a one-sided confidence limit based on the frequency 

of use per location. For example, a designated bathing beach should follow a 75% C.L. and 

for a beach with infrequent use a 95% C.L. should be followed (EPA 1986). 
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B. Rainfall Effects on Beach Water Quality 

There are two mechanisms that enable rainfall to impact recreational water quality.  

The first occurs when there is enough rainfall to cause an overflow of combined storm 

water/sewer systems—excess flow that cannot be treated is then bypassed to receiving 

waters. The second mechanism is land-based flow that is directed to a body of water.  

Storm water from land-based flow can be contaminated with fecal indicator bacteria from 

environmental reservoirs, animals, or leaking sewage (Boehm et al. 2008). 

A study published in 2003 by Ackerman and Weisberg explored the relationship 

between rainfall and beach bacterial concentrations at Santa Monica Bay beaches by using 

hourly rain data and beach bacterial data from 1995 through 2000. The relationship 

between rainfall volume and beach bacterial concentrations was evaluated by calculating 

the percentage of beaches that exceeded water quality standards as a function of rainfall 

amount. In order to assess the effects of a rainfall event, events were categorized by rainfall 

volume and days since the rain event. The researchers concluded that storms producing 6 

mm or more of rainfall consistently degraded water quality enough to justify the issuance 

of public health warnings. 

Moving from coastal waters to inland lakes, Sampson et al. (2006) assessed rainfall 

effects on E. coli levels at 15 Lake Superior beaches. During 2003 and 2004, water samples 

were collected from the 15 beaches within 24-hours after a rainfall of at least 6 mm. The 

researchers were not able to detect a significant relationship between rainfall amount and 

bacterial concentrations. They attributed these results to the fact that the beaches were 

located in a rural setting as opposed to an urban setting.   
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In urban areas, runoff from yards, sewage overflows, and sewage discharges during 

the rain events may increase the total number of microbes at the beach. Rural areas have 

an increased natural buffer capacity due to increased green spaces, intact wetlands, and 

buffer areas along riparian areas. These conditions may not be present in urban areas that 

possess complex storm water conveyance systems. Kleinheinz et al. (2009) studied this 

relationship at eight beaches located in Door County, Wisconsin. Similar to the Sampson et 

al. study previously mentioned, water samples were collected from beaches after rainfall 

events of 5 mm occurred during the previous 24-hour period. In addition to beach water 

samples, storm water samples were taken from outfall pipes that were adjacent to beaches 

that were sampled. Results indicated that six of the eight study locations showed significant 

impacts on the beach water E. coli concentrations as a result of rain events greater than 5 

mm within a 24-hour period. They also found that the significance and duration of rainfall 

impacts to be variable between study locations. 

The Sampson et al. and Kleinheinz et al. studies both suggested that each beach 

should be examined on its own regard with respect to rain impacts on E. coli 

concentrations in beach water. This is due to differences in E. coli source and drainage 

characteristics of different beaches. Chicago beaches are primarily affected by land-based 

flow. There are storm water outfalls spread throughout the Chicago lakeshore that drain 

very local drainage basins. However the majority of storm water is directed into the 

combined sewer system and later treated at a wastewater facility. 
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III.      METHODS 

 

A. Study Approach 

The objectives of this study were to (1) explore the relationship between rainfall 

and E. coli concentrations at Chicago beaches and to (2) develop a predictive model to 

determine swim advisories and swim bans based on precipitation data and prior day beach 

water quality status. To accomplish the study’s first objective, E. coli concentrations will be 

compared during wet and dry conditions. I hypothesize that E. coli concentrations at 

beaches will be higher during wet conditions versus dry conditions. The second objective 

will be met by generating several logistic regression models to produce the odds of a swim 

advisory or swim ban of occurring based on precipitation during 12- and 24-hour periods 

and the previous day beach water quality status (open, swim advisory, swim ban). Models 

including the status of swimming for the previous day will also be utilized in order to 

explore whether or not it has an effect on the next day’s swimming status combined with 

cumulative precipitation variables. I hypothesize that rainfall affected beaches will reveal 

increased odds of a swim advisory or swim ban occurring. 

 
B. Study Setting 

There are 20 monitoring locations that Chicago beaches along the Lake Michigan 

shoreline. Figure 1 indicates the monitoring locations. 
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Figure 1. Map of 20 monitoring locations. 
 
 
 
 
 
There are storm water outfalls located along Chicago’s shoreline. These outfalls 

often drain adjacent parks and portions of Lake Shore Drive. During rain events, outfalls 

are considered point sources for storm water pollution and surface runoff as a non-point 

source. An example of one study location, Calumet, and its catchment area is shown in 

figures 2 and 3. 
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Figure 2. The map above is of Calumet Park beach and it displays three color-coded 
catchment areas. There are two color-coded dots that represent storm outfalls. The 

map was provided by the Chicago Park District. 
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Figure 3.  Southern outfall at Calumet Park Beach. 
 

 
 
 
 

C. Escherichia coli Monitoring Data 
 

Escherichia coli density data were provided by the CPD for 20 monitoring locations 

(Figure 1) during 2003–2011. Data were collected as specified in the EPA’s 2000 (BEACH 

Act). 

 The CPD monitors a total of 21 locations representing 26 beaches along the Lake 

Michigan and Chicago shoreline. For the purpose of this research the CPD provided E. Coli 

monitoring data for beaches during the years 2003 to 2011. 

 Briefly, during the regular swim season, (late May to early September) water 

samples for E. coli analysis were collected during the weekdays, and on weekend days 
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when further monitoring was warranted by elevated E. coli densities during the week.  

Beaches were typically sampled between 6:00 a.m. and 12:00 p.m. Sampling time was not 

recorded for the majority of samples. A common sampling time of 9:00 a.m. was applied to 

all samples and this reflects the average of sample times that were recorded.  

Escherichia coli concentrations were enumerated by culture methods, resulting in 

units of colony forming units (CFU) per 100 mL of sample for 2003–2004 and most 

probable number (MPN) per 100 mL of sample for 2005–2011. The Colilert® method was 

used to calculate MPN/100 mL of undiluted sample and has a limit of detection of 0 to 

greater than 2419.6 MPN/100 mL. All monitoring results equaling 0 MPN/100 mL were 

replaced by 1 in order to permit log10 transformation; results equaling greater than 2419.6 

MPN/100 mL were replaced by 2420. 

 Not every beach was monitored throughout the study period.  For example, Leone 

and Loyola beaches were sampled separately in the beginning, but are now represented by 

a single sample since they are very close to each other. Since two beaches are represented 

by a single sample, the two beaches are referred to as the Leone/Loyola monitoring 

location. Similarly, monitoring efforts at Jarvis and Fargo beaches were combined due to 

close proximity. 

D. Precipitation Data 

 Hourly precipitation data were obtained from the Chicago Midway International 

Airport weather station through the NCDC. Data from this weather station were used 

because, of the Chicago weather stations provided by the NCDC, Chicago Midway 

International Airport was closest to the shoreline and therefore the beaches. The 
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precipitation detection limit at this station is 0.254 mm (0.01”) per hour. All lagged 

precipitation variables are referenced to 9:00 a.m., to coincide with the average sampling 

time. 

E. Statistical Methods 

Data were managed and analyzed with SAS 9.2® and Microsoft Excel®. The E. coli 

monitoring data and precipitation data were merged together by date. The first statistical 

step was to determine the distribution of the E. coli data. The E. coli data’s hypothesized 

log-normal distribution was tested using the Kolmogrov-Smirnov (K-S) goodness of fit test.  

The assumptions for the K-S test are that the sample is a random sample and the 

hypothesized distribution is continuous. 

To identify beaches that are affected by rainfall, I defined wet or dry conditions for 

each sample collected and tested the difference in the median E. coli densities for wet 

versus dry conditions at each location. Each monitoring location was analyzed separately 

using wet and dry conditions. A dry condition was defined by precipitation less than 2.5 

mm per 12 hours prior to sample collection and a wet condition greater than or equal to 

2.5 mm per 12 hours prior to sample collection. This definition was selected because the 

2009 Kleinheinz et al. study observed a change in microbial water quality immediately to 

12 hours. The definition for a wet condition in Kleinheinz’s study was a rain event of 5 mm 

for a 24-hour period.   

The second objective of the study was to develop a predictive model for swim 

advisories and swim bans. At first, simple linear regression was explored for the predictive 

modeling but since the distribution of both the E. coli and log10 transformed E. coli 

concentrations were non-normal, logistic regression was utilized. Logistic regression does 
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not have a distribution assumption. The odds of either a swim advisory or swim ban 

occurring will be used to generate a predictive model. There were a total of eight different 

logistic regression models completed for each monitoring location. We considered two 

cumulative precipitation variables, P12 (12-hour cumulative precipitation) and P24 (24-hour 

cumulative precipitation) to predict the event, swim advisory or swim ban (Equation 1). 

Then, in the next model, we utilized a threshold of 5 mm of precipitation during the 12 and 

24 hours prior to sampling and the results of the previous day’s E. coli monitoring 

(Equation 2).  

 

Equation 1.  ln �
p(event)

1-p(event)
�  = β0+ β1(Cumulative precipitation variable ) 

 

Equation 2.  ln �
p(event)

1-p(event)
�  = β0+ β1(Wet versus Dry variable) 

+ β2(Previous day swim advisory status)+ β3(Previous day swim ban status) 

 
 
 
Similar to equation 1, equation 2 separately predicts the log odds of a swim advisory 

or a swim ban occurring. However equation 2 utilizes a dichotomous precipitation variable.  

We considered two dichotomous precipitation variables that define wet or dry conditions 

bound on rainfall in 12 and 24 hours prior to sample collection, respectively. Equation 2 

also differs from Equation 1 by including two dichotomous variables representing the 

swimming status of the previous day. If the previous day’s sample resulted in a swim 

advisory then a “1” was given for previous day swim advisory, if the swim advisory did not 

occur then a “0” was assigned and similarly for previous day swim ban status.  
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IV.      RESULTS 

 

A. Distribution of Escherichia coli Concentrations 
 
The histogram in Figure 4 displays a normal distribution for log10 transformed E. coli 

concentrations. However after completing the K-S Test of Normality, the log10 transformed 

values were significantly non-normal, with a p less than .01. While the D statistic was 

reduced from 0.3240 to 0.0279 after completing the log10 transformation, but since 0.0279 

is greater than the critical test statistic for n=13,924, the distribution was determined to be 

non-normal. 

 
 
 
 

   
Figure 4.  Histogram of E. coli concentrations for 20 monitoring locations in 2003–2011. 

*Yellow flag is equivalent to the swim advisory threshold of 235 CFU/100 mL.  
**Red flag is equivalent to swim ban threshold of 1000 CFU/100 mL. 
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B. Comparison of Escherichia Coli Concentrations during Dry and Wet Conditions 

The null hypothesis that the medians are equal was rejected at 10 of 20 locations 

(Table I). The alternative hypothesis that the population medians are not equal during wet 

or dry conditions is accepted for the following locations: 31st Street, Calumet, 

Hollywood/Osterman, Humboldt, Jackson/63rd, Montrose Ave, North Ave, Oak, Ohio, 

Rainbow, and South Shore.
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TABLE I 
 

SUMMARY OF E. COLI RESULTS FOR BEACHES DURING WET AND DRY CONDITIONS  

Location 

Dry Conditions Wet Conditions Kruskal-
Wallis Test 

n 
Geometric 

mean 
(CFU/100mL) 

Central 95% 
Range 

(CFU/100mL) 
n 

Geometric 
mean 

(CFU/100mL) 

Central 95% 
Range 

(CFU/100mL) 
p-value 

12th 616 45 2–1250 63 60 2–2308 0.0975 
31st 624 69 2–2054 62 107 5–2418 0.0298 
41st/Oakwood 196 23 1–387 29 29 1–1062 0.8047 
57th 616 54 2–1724 62 81 3–2320 0.0757 
Calumet 617 59 2–1891 64 120 4–3500 0.0016 
Foster 610 43 1–1343 60 60 2–2263 0.0585 
Hartigan 128 22 1–525 16 13 0–1043 0.4611 
Hollywood/Osterman 611 45 2–1275 61 76 3–1963 0.0056 
Howard 606 25 1–788 60 32 1–980 0.2796 
Jackson/63rd 625 102 3–3222 67 295 17–5162 <0.0001 
Jarvis/Fargo 607 26 1–796 61 40 2–1010 0.0336 
Juneway 606 26 1–825 60 32 1–1188 0.3173 
Leone/Loyola 613 32 1–924 60 43 1–1218 0.1639 
Montrose 613 72 3–1803 63 170 7–3985 <0.0001 
North Ave 612 34 1–843 62 60 3–1118 0.001 
Oak 610 32 1–790 60 58 4–844 0.0045 
Ohio 606 32 1–757 61 65 2–1917 0.0004 
Rainbow 619 71 3–1869 64 148 5–4306 0.0001 
Rogers 609 28 1–818 59 36 1–1057 0.2336 
South Shore 616 65 2–1738 65 123 6–2373 0.0082 
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The relationship between wet conditions and densities of E. coli varied among the 

20 monitoring locations in the study. Table I demonstrates that 85% of the study locations 

appeared to have elevated concentrations during wet conditions while 15% of the locations 

appeared to have higher concentrations during dry conditions. More importantly, 50% of 

the locations had statistically significant higher concentrations during wet conditions while 

the other 50% of the locations displayed no significant difference in concentrations during 

wet and dry conditions when α=.05. 

 

C. Geographical Relationship between Rainfall and Escherichica coli 

Concentrations 

Dividing the beaches into North and South groups using the Chicago River as the 

dividing line (between Oak St. and 12th St.) reveals that the Southern locations experienced 

larger increases in concentrations during wet conditions when only considering the 

statistically significant locations (Figure 5). For example, the maximum E. coli 

concentration at a south side beach increased by nearly 240 MPN/100 mL when the 

conditions were wet. The north grouping includes Hollywood/Osterman, North Ave, 

Montrose Ave, Oak St, and Ohio St Beaches while the south group contains 31st, 

Jackson/63rd, South Shore, Rainbow, and Calumet Park Beaches. Due to Humboldt Park’s 

unique property of being an inland pond it was excluded from this comparison.   
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Figure 5.  Difference in geometric mean, minimum, and maximum E. coli concentrations 
during wet and dry conditions and between north side and south side beaches.   

 
 
 
 
 

D. Beach Action in Relation to Rain as a Continuous Variable  

1. Logistic regression with cumulative amount of precipitation (in mm) as 
the predictor for the odds ratio of swim advisories or swim bans 
occurring 

 

Twelve-hour cumulative precipitation is associated with an increase in the odds 

ratio (OR) of a swim advisory at seven of 20 locations with 95% statistical significance 

(Table II). The ORs are small, but significant at the seven locations and should be 

interpreted as a percent increase in the OR per mm of precipitation during the 12-hour 

period prior to sample collection. Twenty-four hour cumulative precipitation is associated 

with an increase in the OR of a swim advisory at 9 of 20 locations with 95% statistical 

significance (Table II). Since 24-hour cumulative precipitation was used to produce the 
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ORs, they can be interpreted as percent increase in the OR of a swim advisory occurring per 

mm of precipitation during the 24-hour period prior to sample collection. 

 
 
 
 

TABLE II 
 

ODDS RATIOS FOR A SWIM ADVISORY OCCURRING PER MM OF RAIN DURING 12-HR AND 
24-HR PERIODS PRIOR TO THE APPROXIMATE SAMPLING  

Location 

12-Hour Cumulative 
Precipitation 

24-Hour Cumulative 
Precipitation 

Odds Ratio 
95% Wald 
Confidence 

Limit 
Odds Ratio 95% Wald 

Confidence Limit 
12th 1.025 0.996–1.056 1.017 0.994–1.039 
31st 1.031 1.003–1.060 1.015 0.995–1.036 
41st/Oakwood 1.011 0.985–1.039 1.007 0.984–1.031 
57th 1.023 0.994–1.053 1.004 0.982–1.028 
Calumet 1.034 1.006–1.064 1.021 1.000–1.041 
Foster 1.029 0.999–1.059 1.025 1.004–1.047 
Hartigan 0.990 0.910–1.078 0.993 0.928–1.062 
Hollywood/Osterman 1.029 1.000–1.060 1.027 1.006–1.049 
Howard 1.027 0.995–1.060 1.026 1.002–1.050 
Jackson/63rd 1.056 1.023–1.089 1.048 1.026–1.070 
Jarvis/Fargo 1.018 0.985–1.052 1.026 1.004–1.049 
Juneway 1.023 0.990–1.057 1.018 0.993–1.043 
Leone/Loyola 1.018 0.986–1.052 1.023 1.001–1.046 
Montrose 1.049 1.018–1.081 1.036 1.015–1.057 
North Ave 1.018 0.984–1.052 1.018 0.993–1.042 
Oak 0.998 0.955–1.043 1.013 0.988–1.040 
Ohio 1.034 1.003–1.066 1.023 0.999–1.047 
Rainbow 1.039 1.010–1.069 1.027 1.007–1.047 
Rogers 1.024 0.991–1.058 1.022 0.998–1.047 
South Shore 1.030 1.002–1.060 1.027 1.007–1.048 
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Twelve-hour cumulative precipitation is associated with an increase in the OR of 

exceeding the swim ban threshold at five out 20 (25%) locations with a 95% statistical 

significance (Table III).  Locations listed from high to low increases in odds of a swim ban 

occurring: Montrose Avenue Beach (5.6% per mm of rain), Jackson/63rd Street Beach 

(5.4% per mm of rain), Calumet Beach (4.5% per mm of rain), 12th Street Beach (4.2% per 

mm of rain), and Rainbow Beach (3.9% per mm of rain). 

Twenty-four hour cumulative precipitation is associated with an increase in the OR 

of a swim ban at three out 21 locations with a 95% statistical significance (Table III).  

Locations listed from high to low increases in odds of swim ban occurring: Montrose 

Avenue Beach (4.5% per mm of rain), Jackson/63rd Street Beach (4.2% per mm of rain), 

and Calumet Beach (2.8% per mm of rain). 
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TABLE III 
 

ODDS RATIOS FOR A SWIM BAN OCCURRING WITH 12IHR AND 24IHR CUMULATIVE RAIN 
IN MM AS THE PREDICTING VARIABLE. 

Location 
12-Hour Cumulative Precipitation 

24-Hour Cumulative 
Precipitation 

Odds Ratio 95% Wald 
Confidence Limit 

Odds 
Ratio 95% Wald 

Confidence Limit 
12th 1.042 1.003–1.081 1.020 0.985–1.056 
31st 0.994 0.941–1.050 0.976 0.930–1.024 
41st/Oakwood 1.004 0.934–1.080 1.002 0.939–1.069 
57th 1.035 0.998–1.073 1.016 0.984–1.049 
Calumet 1.045 1.011–1.081 1.028 1.001–1.056 
Foster 1.007 0.953–1.065 1.030 0.999–1.061 
Hartigan 1.008 0.948–1.071 1.008 0.966–1.052 
Hollywood/Osterman 1.018 0.971–1.067 1.026 0.995–1.058 
Howard 0.985 0.888–1.093 1.011 0.962–1.063 
Jackson/63rd 1.054 1.023–1.086 1.042 1.020–1.065 
Jarvis/Fargo 0.993 0.907–1.087 1.024 0.983–1.066 
Juneway 1.028 0.980–1.079 1.033 0.999–1.069 
Leone/Loyola 1.016 0.965–1.070 1.026 0.994–1.060 
Montrose 1.056 1.022–1.092 1.045 1.020–1.071 
North Ave 0.994 0.918–1.076 1.025 0.988–1.063 
Oak 0.946 0.819–1.093 1.004 0.956–1.054 
Ohio 1.024 0.970–1.080 1.033 0.997–1.070 
Rainbow 1.039 1.005–1.074 1.020 0.991–1.050 
Rogers 1.006 0.934–1.083 1.016 0.972–1.063 
South Shore 1.022 0.978–1.069 1.016 0.981–1.052 

 
 
 
 
 
 
 
 
 
 
 



21 
 

2. Logistic regression with dichotomous precipitation variables and the 
previous day’s beach status 

 

At 12th Street Beach, the presence of rain greater than or equal to 5 mm during 12- 

and 24-hour periods was not associated with a significant increase in the OR.  The presence 

of a previous day swim advisory and previous day swim ban was associated with elevated 

ORs for predicting a swim advisory. For the 12-hour model, previous day swim advisory 

had a 95% significant OR of 2.596, while the previous day swim ban had a 95% significant 

OR of 3.729. The 24-hour model was similar with previous day swim advisory producing a 

95% significant OR of 2.596, and previous day swim ban had a 95% significant OR of 3.558. 

The models with swim ban as the event did not produce significant results according to 

α=.05 (Table IV). 
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TABLE IV 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT 12TH STREET WITH WET 
VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS  

 
12th Street Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

1.863 0.964–3.601 1.445 0.423–4.932 

Previous Day 
Swim Advisory 2.596 1.472–4.577 1.642 0.553–4.879 

Previous Day 
Swim Ban 3.729 1.649–8.433 2.286 0.515–10.154 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

2.01 1.215–3.324 0.676 0.201–2.274 

Previous Day 
Swim Advisory 2.596 1.471–4.581 1.721 0.581–5.100 

Previous Day 
Swim Ban 3.558 1.565–8.088 2.348 0.527–10.450 

 
 
 
 
 

For the 12-hour swim advisory model the presence of wet conditions increased the 

OR to 2.890, when there was a previous day swim advisory the OR equaled 2.138, and 

when there was a previous day swim advisory the OR for a swim advisory occurring was 

4.284. In the presence of wet conditions, the 24-hour model was associated with a 95% 

significant OR of 2.192. When the prior day was a swim advisory the OR equaled 2.100 and 

when the prior day was a swim ban the OR equaled 4.111 (Table V). 
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TABLE V 

 
ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT 31ST STREET WITH WET 
VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS 

31st Street Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

2.890 1.646–5.073 1.161 0.403–3.346 

Previous Day 
Swim Advisory 2.138 1.333–3.430 1.457 0.660–3.216 

Previous Day 
Swim Ban 4.284 2.355–7.795 2.020 0.758–5.379 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 
24-Hour Wet 

versus Dry 
Conditions 

2.192 1.406–3.417 1.184 0.541–2.591 

Previous Day 
Swim Advisory 2.100 1.310–3.368 1.448 0.656–3.199 

Previous Day 
Swim Ban 4.111 2.258–7.484 2.007 0.754–5.343 

 

 

Table VI representing 41st Street/Oakwood Beach contains several significant 

parameters. In the case of predicting a swim advisory, the presence of wet conditions in a 

12-hour period was associated with an elevated OR equaling 6.297 and the prior day swim 

advisory with an OR of 15.738. In the 24-hour model wet conditions were associated with 

an OR of 4.361. 
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TABLE VI 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT 41ST/OAKWOOD STREET WITH 
WET VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS 

41st Street/Oakwood Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds 
Ratio 

95% Wald 
Confidence Limit 

Odds 
Ratio 

95% Wald 
Confidence Limit 

 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

6.297 1.946–20.372 5.269 0.462 

Previous Day 
Swim Advisory 1.661 0.183–15.055 <0.001 <0.001>999.999 

Previous Day 
Swim Ban 15.738 1.300–190.485 <0.001 <0.001–>999.1000 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

4.361 1.432–13.277 3.447 0.305–38.941 

Previous Day 
Swim Advisory 1.401 0.157–12.497 <0.001 <0.001–>999.999 

Previous Day 
Swim Ban 8.913 0.657–120.954 <0.001 <0.001–>999.999 

 

 

In the scenario of predicting a swim advisory at the 57th Street Beach, wet 

conditions, previous day swim advisory and swim ban contained significant ORs. In the 12-

hour model, wet conditions had an OR of 1.960, whereas the presence of a previous day 

swim advisory had an OR of 2.584 and previous day swim ban with an OR of 3.017. In the 

24-hour model, previous day swim advisory had an OR of 2.556 while previous day swim 

ban had an OR of 2.997. In the next model, wet conditions were associated with swim bans 

with an OR of 2.556. A previous day swim ban was significant for 12- and 24-hour models, 

with OR’s of 6.111 and 6.037 respectively (Table VII). 
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TABLE VII 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT 57TH STREET WITH WET 
VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS 

57th Street Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

1.960 1.051–3.653 2.556 1.011–6.458 

Previous Day 
Swim Advisory 2.584 1.556–4.294 2.319 0.975–5.520 

Previous Day 
Swim Ban 3.017 1.480–6.149 6.111 2.459–15.185 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

1.508 0.916–2.482 1.624 0.721–3.659 

Previous Day 
Swim Advisory 2.556 1.540–4.245 2.293 0.965–5.449 

Previous Day 
Swim Ban 2.997 1.472–6.102 6.037 2.439–14.947 

 

 
 
 
 
 

At Calumet, all three parameters in both 12- and 24-hour models were associated 

with elevated ORs for a swim advisory occurring. For the 12-hour model, wet conditions 

contributed to an OR of 3.519, previous day swim advisory OR=2.256, and previous day 

swim ban OR=4.194.  For the 24-hour model, wet conditions OR=2.631, previous day swim 

advisory OR=2.252, and previous day swim ban OR=3.969. Wet conditions during 12- and 

24-hour periods were associated with elevated ORs for a swim ban even with ORs of 5.057 
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and 2.810 respectively. Prior day swim ban was also associated with a swim in the 12- and 

24-hour models with ORs of 2.722 and 2.628 (Table VIII). 

 
 
 

 
TABLE VIII 

 
ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT CALUMET WITH WET VERSUS 

DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS
Calumet Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

3.519 2.038–6.078 5.057 2.462–10.387 

Previous Day 
Swim Advisory 2.256 1.412–3.604 1.349 0.575–3.163 

Previous Day 
Swim Ban 4.194 2.243–7.840 2.722 1.050–7.056 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 
24-Hour Wet 

versus Dry 
Conditions 

2.631 1.698–4.077 2.810 1.445–5.464 

Previous Day 
Swim Advisory 2.252 1.410–3.595 1.362 0.585–3.168 

Previous Day 
Swim Ban 3.969 2.121–7.428 2.628 1.025–6.737 

 
 
 
 
 

At Foster Avenue, wet conditions were associated with swim advisories during 12- 

and 24-hour periods with ORs of 2.210 and 2.215. The presence of either a previous day 

swim advisory or ban was associated with elevated ORs for both a swim advisory and swim 
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ban. In the 12-hour model with swim advisory as the event, previous day swim advisory 

OR=3.313 and previous day swim ban OR=4.239. Similarly in the 24-hour model with swim 

advisory as the event, previous day swim advisory OR=3.328 and previous day swim ban 

OR=4.051. With swim ban as the event, 12-hour model previous day swim advisory 

OR=3.157 and previous day swim advisory OR=6.863. For the 24-hour wet conditions 

OR=1.154, previous day swim advisory OR=3.180 and previous day swim ban OR=6.520 

(Table IX). 

 
 
 
 

TABLE IX 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT FOSTER AVENUE WITH WET 
VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS 

Foster Avenue Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

2.210 1.138–4.289 1.482 0.431–5.097 

Previous Day 
Swim Advisory 3.313 1.884–5.826 3.157 1.233–8.082 

Previous Day 
Swim Ban 4.239 1.929–9.316 6.836 2.395–19.515 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

2.215 1.334–3.679 2.596 1.154–5.841 

Previous Day 
Swim Advisory 3.328 1.888–5.864 3.180 1.236–8.183 

Previous Day 
Swim Ban 4.051 1.835–8.946 6.520 2.259–18.816 
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At Hartigan, previous day swim ban was associated with elevated OR’s when swim 

advisory was the event. The 12-hour model had an OR=34.679 and 24-hour model had an 

OR=40.938 (Table X). 

 
 
 
 

TABLE X 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT HARTIGAN WITH WET VERSUS 
DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

Hartigan Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds 
Ratio 

95% Wald 
Confidence Limit 

Odds 
Ratio 

95% Wald 
Confidence Limit 

 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

1.263 .087–18.274 12.857 0.763–216.708 

Previous Day 
Swim Advisory 9.741 0.904–104.94 <0.001 <0.001–>999.999 

Previous Day 
Swim Ban 34.679 1.546–778.139 <0.001 <0.001–>999.1000 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

0.866 0.066–11.396 7.818 0.472–129.484 

Previous Day 
Swim Advisory 9.4 0.870–101.510 <0.001 <0.001–>999.999 

Previous Day 
Swim Ban 40.938 1.846–884.233 <0.001 <0.001–>999.999 

 
 
 
 
 

 In the 12-hour model for Hollywood/Osterman, wet conditions was associated with 

a swim advisory with an OR of 2.512 and previous day swim advisory was associated with 
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a swim advisory by an of OR=2.601. Twenty-four hour wet conditions was represented by 

an OR=2.628, and previous day swim advisory was associated with an OR of 2.504. In the 

event of a swim ban, previous day swim advisory in the 12-hour model OR=2.639 and 

previous day swim ban OR=4.207. In the 24-hour model, wet conditions OR=2.366 and 

previous day swim ban OR=4.088 (Table XI). 

 
 
 
 

TABLE XI 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT HOLLYWOOD/OSTERMAN 
WITH WET VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS 

PREDICTORS
Hollywood / Osterman Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

2.512 1.342–4.699 1.879 0.633–5.577 

Previous Day 
Swim Advisory 2.601 1.477–4.581 2.639 1.044–6.672 

Previous Day 
Swim Ban 2.065 0.868–4.917 4.207 1.370–12.922 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

2.628 1.625–4.251 2.366 1.068–5.244 

Previous Day 
Swim Advisory 2.504 1.416 - 4.428 2.535 0.999 - 6.434 

Previous Day 
Swim Ban 2.01 0.839–4.814 4.088 1.323–12.634 
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At Howard Beach, the significant associations found were in models where swim 

advisory was the event.  For the 12-hour model, wet conditions OR=2.440, previous day 

swim advisory OR=4.007, and previous day swim ban OR=3.737.  In the 24-hour model the 

wet condition OR=2.057, previous day swim advisory OR=3.966, and previous day swim 

ban OR=3.413 (Table XII). 

 
 
 
 

TABLE XII  
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT HOWARD WITH WET VERSUS 
DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

Howard Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

2.44 1.169–5.0091 1.857 0.414–8.324 

Previous Day 
Swim Advisory 4.007 2.076–7.737 3.096 0.863–11.107 

Previous Day 
Swim Ban 3.737 1.185–11.783 3.446 0.428–27.775 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

2.057 1.143–3.704 2.656 0.923–7.649 

Previous Day 
Swim Advisory 3.966 2.054–7.658 3.113 0.865–11.207 

Previous Day 
Swim Ban 3.413 1.077–10.813 3.048 0.373–24.934 
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There is a strong association between 12- and 24-hour wet conditions and previous 

day’s statuses with either a swim advisory or ban occurring at Jackson/63rd Street Beach.  

In the swim advisory 12-hour model, wet conditions OR=4.472, previous day swim 

advisory OR=3.081, and previous day swim ban OR=8.999. In the swim advisory 24-hour 

model, wet conditions OR=3.549, previous day swim advisory OR=2.932, and previous day 

swim ban OR=9.304. While in the swim ban 12-hour model, wet conditions OR=3.597, 

previous day swim advisory OR=2.463, and previous day swim ban OR=4.445. Lastly, in the 

swim ban 24-hour model, wet conditions OR=3.197, previous day swim advisory 

OR=2.321, and previous day swim ban OR=4.575 (Table XIII). 
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TABLE XIII 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT JACKSON/63RD WITH WET 
VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

Jackson / 63rd Street Beach 

Parameter 

Swim Advisory versus No Swim 
Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

4.472 2.601–7.689 3.597 1.930–6.701 

Previous Day 
Swim Advisory 3.081 2.128–4.462 2.463 1.440–4.214 

Previous Day 
Swim Ban 8.999 5.464–14.821 4.445 2.436–8.108 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

3.549 2.354–5.349 3.197 1.905–5.364 

Previous Day 
Swim Advisory 2.932 2.020–4.257 2.321 1.353–3.983 

Previous Day 
Swim Ban 9.304 5.636–15.357 4.575 2.504–8.360 

 

 

At the Jarvis/Fargo sampling location and in the swim advisory 12-hour model, 

previous day swim advisory OR=4.985 and previous day swim ban OR=7.347. In the swim 

advisory 24-hour model, wet conditions OR=2.505, previous day swim advisory OR=5.130 

while previous day swim ban OR=7.272. In the swim ban 12-hour model, previous day 

swim advisory OR=4.796 and the previous day swim ban OR=8.988. For the swim ban 24-
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hour model, wet conditions OR=3.615, previous day swim advisory OR=4.925 and previous 

day swim ban OR=9.123 (Table XIV). 

 
 
 
 

TABLE XIV 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT JARVIS/FARGO WITH WET 
VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

Jarvis / Fargo Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

2.076 0.960–4.492 1.896 0.416–8.652 

Previous Day 
Swim Advisory 4.985 2.639–9.418 4.796 1.496–15.377 

Previous Day 
Swim Ban 7.347 2.647–20.393 8.988 1.839–43.941 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

2.505 1.407–4.460 3.615 1.306–10.007 

Previous Day 
Swim Advisory 5.13 2.701–9.743 4.925 1.520–15.957 

Previous Day 
Swim Ban 7.272 2.597–20.361 9.123 1.836–45.318 

 
 
 
 

At Juneway, the 12-hour swim advisory model had significant associations with wet 

conditions with an OR=2.153, previous day swim advisory with an OR=3.336, and previous 

day swim ban with an OR=3.875. In the 24-hour swim advisory model wet conditions had 
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an OR=2.203, previous day swim advisory OR=3.443, and previous day swim ban 

OR=3.809. The 12-hour swim ban model was associated with wet conditions with an 

OR=3.464 and with previous day swim ban, OR=5.061. Similarly in the 24-hour swim ban 

model wet conditions had an OR=4.243 and previous day swim ban OR=4.904 (Table XV). 

 

 
 
 

TABLE XV 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT JUNEWAY WITH WET VERSUS 
DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

Juneway Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

2.153 1.006–4.610 3.464 1.122–10.696 

Previous Day 
Swim Advisory 3.336 1.631–6.823 2.9 0.817–10.296 

Previous Day 
Swim Ban 3.875 1.376–10.910 5.061 1.081–23.685 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 
24-Hour Wet 

versus Dry 
Conditions 

2.203 1.225–3.964 4.243 1.722–10.453 

Previous Day 
Swim Advisory 3.443 1.678–7.063 3.126 0.871–11.222 

Previous Day 
Swim Ban 3.809 1.347–10.775 4.904 1.029–23.372 
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At Leone/Loyola, the 12-hour swim advisory model had significant association with 

wet conditions at an OR=2.172, previous day swim advisory OR=2.923, and previous day 

swim ban OR=3.477. For the 24-hour swim advisory model, wet conditions OR=2.110, 

previous day swim advisory OR=2.868, and previous day swim ban OR=3.326.  In the swim 

ban model 24-hour wet conditions were significant with an OR=3.100 (Table XVI). 

 
 
 
 

TABLE XVI 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT LEONE/LOYOLA WITH WET 
VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

Leone / Loyola Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

2.172 1.049–4.496 2.785 0.922–8.409 

Previous Day 
Swim Advisory 2.923 1.474–5.796 2.092 0.603–7.257 

Previous Day 
Swim Ban 3.477 1.345–8.989 3.324 0.732–15.093 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 
24-Hour Wet 

versus Dry 
Conditions 

2.11 1.207–3.689 3.1 1.312–7.322 

Previous Day 
Swim Advisory 2.868 1.444–5.696 2.02 0.580–7.037 

Previous Day 
Swim Ban 3.326 1.282–8.629 3.079 0.673–14.092 
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The swim advisory 12-hour model for Montrose Beach produced a wet conditions 

OR=4.099, a previous day swim advisory OR=2.322, and a previous day swim ban 

OR=2.449. The swim advisory 24-hour model created a wet conditions OR=3.444, a 

previous day swim advisory OR=2.193, and a previous day swim ban OR=2.397.  In the 

swim ban models, wet conditions generated significant OR’s in the 12-hour model with an 

OR=4.165 and the 24-hour model with an OR=4.496. Previous day swim advisory was 

associated with swim bans in both 12 and 24-hour models with OR’s of 2.361 and 2.168 

(Table XVII). 
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TABLE XVII 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT MONTROSE AVENUE WITH 
WET VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

Montrose Avenue Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

4.099 2.391–7.025 4.165 1.943–8.929 

Previous Day 
Swim Advisory 2.322 1.481–3.640 2.361 1.143–4.880 

Previous Day 
Swim Ban 2.449 1.257–4.769 1.918 0.633–5.815 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 
24-Hour Wet 

versus Dry 
Conditions 

3.444 2.261–5.246 4.496 2.389–8.462 

Previous Day 
Swim Advisory 2.193 1.394–3.451 2.168 1.041–4.512 

Previous Day 
Swim Ban 2.397 1.228–4.679 1.824 0.598–5.566 

 

 
 

 

At North Avenue Beach, the 12-hour swim advisory model was associated with wet 

conditions with an OR=2.585, previous day swim advisory OR=2.306, and previous day 

swim ban OR=4.717. In the 24-hour swim advisory wet conditions OR=2.420, previous day 

swim advisory OR=2.350, and previous day swim ban OR=4.481. Previous day swim 

advisory was associated with swim bans in the 12-hour model with an OR=3.204. In the 24-
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hour swim ban model, wet conditions were associated with an OR=4.071 and previous day 

swim advisory OR=3.284 (Table XVIII).  

 
 
 
 

TABLE XVIII 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT NORTH AVENUE WITH WET 
VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

North Avenue Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

2.585 1.303–5.129 1.92 0.551–6.685 

Previous Day 
Swim Advisory 2.306 1.111–4.786 3.204 1.046–9.811 

Previous Day 
Swim Ban 4.717 1.873–11.878 4.014 0.875–18.420 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

2.42 1.403–4.175 4.071 1.727–9.601 

Previous Day 
Swim Advisory 2.35 1.131–4.885 3.284 1.058–10.197 

Previous Day 
Swim Ban 4.481 1.769–11.348 3.588 0.760–16.938 

 

 

 

At Oak Street Beach, the 12-hour swim advisory model concluded significant OR’s 

with the previous day swim advisory OR=2.463 and previous day swim ban OR=5.068.  The 
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24-hour was associated with wet conditions with an OR=2.199, previous day swim 

advisory OR=2.573, and previous day swim ban OR=4.920.  In the swim ban models, the 

previous day swim advisory was associated with elevated OR’s, the 12-hour OR=4.415 and 

the 24-hour OR=4.586 (Table XIX). 

 
 
 
 

TABLE XIX  
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT OAK STREET WITH WET 
VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

Oak Street Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

1.788 0.809–3.950 0.644 0.085–4.886 

Previous Day 
Swim Advisory 2.463 1.148–5.285 4.415 1.571–12.404 

Previous Day 
Swim Ban 5.068 2.019–12.718 1.883 0.241–14.726 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

2.199 1.235–3.914 1.426 0.474–4.291 

Previous Day 
Swim Advisory 2.573 1.194–5.543 4.586 1.626–12.931 

Previous Day 
Swim Ban 4.92 1.947–12.430 1.881 0.240–14.719 
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At Ohio Street Beach, the 12-hour swim advisory model was associated with wet 

conditions with an OR=3.193 and previous day swim advisory OR=3.279.  In the 24-hour 

swim advisory, wet conditions OR=2.170 and previous day swim advisory OR=3.290.  

Finally wet conditions were associated with swim bans in the 24-hour model and had an 

OR=2.784 (Table XX). 

 
 

 

TABLE XX 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT OHIO STREET WITH WET 
VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

Ohio Street Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

3.193 1.652–6.170 2.422 0.686–8.552 

Previous Day 
Swim Advisory 3.279 1.698–6.332 1.483 0.332–6.618 

Previous Day 
Swim Ban 2.849 0.910–8.923 2.384 0.299–18.983 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

2.17 1.246–3.782 2.784 1.042–7.438 

Previous Day 
Swim Advisory 3.29 1.710–6.328 1.438 0.322–6.434 

Previous Day 
Swim Ban 2.675 0.856–8.357 2.124 0.263–17.139 

 

 



41 
 

At Rainbow Beach, the presence of wet conditions was significant in all four models.  

In the swim advisory models, the 12-hour OR=3.429 and 24-hour OR=2.522.  In the swim 

ban models, the 12-hour OR=4.042 and the 24-hour OR=2.880.  Previous day swim 

advisory was associated with swim advisories in the 12-hour model, OR=1.808, and the 24-

hour model, OR=1.853 (Table XXI). 

 
 
 
 

TABLE XXI 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT RAINBOW WITH WET VERSUS 
DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

Rainbow Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

3.429 2.003–5.869 4.042 1.899–8.600 

Previous Day 
Swim Advisory 1.808 1.134–2.880 0.681 0.259–1.788 

Previous Day 
Swim Ban 2.048 1.045–4.013 0.784 0.182–3.369 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

2.522 1.646–3.866 2.880 1.495–5.551 

Previous Day 
Swim Advisory 1.853 1.166–2.944 0.718 0.275–1.871 

Previous Day 
Swim Ban 1.939 0.988–3.808 0.723 0.168–3.106 
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At Rogers Beach, when swim advisory was modeled, the 12-hour previous day swim 

advisory OR=3.124 and the previous day swim ban OR=6.157. The 24-hour model wet 

conditions OR=1.872, previous day swim advisory OR=3.027, and the previous day swim 

ban OR=5.962. Previous day swim advisory was positively associated with an elevated 

odds of a swim ban occurring, 12-hour model OR=4.390. In the 24-hour swim ban model, 

wet conditions OR=3.072 and previous day swim advisory OR=4.121 (Table XXII). 

 
 
 
 

TABLE XXII 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT ROGERS WITH WET VERSUS 
DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

Rogers Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 95% Wald 
Confidence Limit Odds Ratio 95% Wald 

Confidence Limit 
 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

12-Hour Wet 
versus Dry 
Conditions 

2.150 1.000–4.622 2.800 0.783–10.019 

Previous Day 
Swim Advisory 3.124 1.533–6.367 4.390 1.390–13.864 

Previous Day 
Swim Ban 6.157 2.248–16.861 3.310 0.410–26.719 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

1.872 1.026–3.414 3.072 1.133–8.325 

Previous Day 
Swim Advisory 3.027 1.484–6.176 4.121 1.297–13.097 

Previous Day 
Swim Ban 5.962 2.173–16.354 3.097 0.380–25.218 
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At South Shore Beach, the presence of a wet conditions contributed to higher odds 

of a swim advisory occurring, the 12-hour model produced an OR=2.422 and the 24-hour 

model OR=2.414. The previous day swim advisory was significant in all models, 12- and 24-

hour swim advisory model ORs were 2.035 and 2.086. In the 12- and 24-hour swim ban 

models ORs were 3.710 and 3.756 (Table XXIII). 

 
 
 
 

TABLE XXIII 
 

ODDS OF SWIM ADVISORY OR SWIM BAN OCCURRING AT SOUTH SHORE WITH WET 
VERSUS DRY CONDITIONS AND PREVIOUS DAY’S BEACH STATUS AS PREDICTORS

South Shore Beach 

Parameter 

Swim Advisory versus No 
Swim Advisory Swim Ban versus No Swim Ban 

Odds Ratio 
95% Wald 
Confidence 

Limit 
Odds Ratio 95% Wald 

Confidence Limit 

 12-hour (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 
12-Hour Wet 

versus Dry 
Conditions 

2.422 1.387–4.231 1.689 0.565–5.046 

Previous Day 
Swim Advisory 2.035 1.297–3.193 3.710 1.772–7.767 

Previous Day 
Swim Ban 2.074 0.934–4.608 <0.001 <0.001–>999.999 

24-hour  (Wet ≥ 5 mm of rain, Dry < 5 mm of rain) 

24-Hour Wet 
versus Dry 
Conditions 

2.414 1.560–3.735 1.733 0.727–4.127 

Previous Day 
Swim Advisory 2.086 1.327–3.277 3.756 1.795–7.860 

Previous Day 
Swim Ban 2.101 0.943–4.684 <0.001 <0.001–>999.999 
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E. Precipitation Results 

Cumulative percentages of precipitation for hourly, 12-hour, and 24-hour periods as 

recorded by the National Oceanic and Atmospheric Administration (NOAA) Midway 

International Airport’s weather station are displayed in figure 6.  Approximately 16% of 

12-hour precipitation events were greater than 5 mm of rain while 25% of 24-hour 

precipitation events were greater than 5 mm. 

 
 
 
 

 

Figure 6. Cumulative percentages for different precipitation periods. 
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F. Interpreting Logistic Regression for Beach Management 

 In efforts to develop a simple predictive model for issuing public health warnings, 

two different paths were explored.  The first model utilized cumulative precipitation over 

12 and 24 hours, while the second model took into consideration the previous day’s beach 

status and whether or not 5 mm of rain fell during 12 or 24 hours (equation 1 and 2). The 

results from the first model can be interpreted as a percent increase in odds of an event 

occurring per mm of rain. Figure 12 and figure 13 display beaches where 12- and 24-hour 

cumulative precipitation was a significant factor in predicting either a swim advisory or 

swim ban. 

 There were a total of 12 beaches where either 12- or 24-hour cumulative 

precipitation was significant for predicting a swim advisory. Jackson/63rd St Beach 

recorded an increase in the odds of a swim advisory of occurring by 5.6% per mm of 

precipitation during the prior 12 hours. The next two largest increases were observed at 

Montrose Ave Beach with 4.9% per mm of rain and Rainbow Beach with 3.9% per mm of 

rain. When both the 12- and 24-hour cumulative precipitation variables were significant at 

one location, the OR associated with the 12-hour variable appeared to be higher than the 

OR associated with the 24-hour variable (Figure 7). 

 

 

 



46 
 

 

Figure 7. Predicting swim advisories with cumulative precipitation. 
 

 
 
 
 
There were a total of five beaches where either 12- or 24-hour cumulative 

precipitation was significant for predicting a swim ban. Montrose Ave Beach recorded an 

increase in odds of a swim ban of occurring by 5.6% per mm of precipitation during the 

prior 12 hours. The next two highest increases occurred at Jackson/63rd St Beach with 

5.4% per mm of rain and Calumet Park Beach with 4.5% per mm of rain. Also similar to 

figure 7, the ORs associated with 12-hour cumulative precipitation were higher than the 

ORs associated with the 24-hour cumulative precipitation (Figure 8). 
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Figure 8. Predicting Swim Bans with Cumulative Precipitation. 
 
 
 
 
 
In order to use the results from Model 1 in a predictive model, first we must know 

the probability of each beach status from occurring. Using Jackson/63rd St Beach as an 

example, when there is no precipitation, the probability of the beach being open is 67.2%, 

the probability of having a swim advisory is 26.0%, and the probability of having a swim 

ban is 7.8%. After knowing the probability of an event occurring, we can multiply that by 

the OR resulting in a new probability considering the effect of rain determined from 

Equation 1. Table XXIV and figure 9 provide an example of Jackson/63rd St Beach and how 

with each millimeter of rain, the probability of a swim advisory or ban increases. 
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TABLE XXIV 
 

PROBABILITY OF SWIM ADVISORY OR SWIM BAN OF OCCURRING WHEN USING 12-HOUR 
CUMULATIVE PRECIPITATION AT JACKSON/63RD ST. BEACH

Location: Jackson/63rd St. Beach 

Rain (mm) Probability of 
Swim Advisory 

Probability of 
Swim Ban 

0 26.0% 7.8% 
1 27.5% 8.2% 
2 28.9% 8.6% 
3 30.4% 9.1% 
4 31.8% 9.5% 
5 33.3% 9.9% 
6 34.7% 10.3% 
7 36.2% 10.7% 
8 37.6% 11.2% 
9 39.1% 11.6% 

10 40.6% 12.0% 
20 55.1% 16.2% 
30 69.7% 20.4% 
40 84.2% 24.6% 

 
 
 
 
 

 

Figure 9. Interpretation of Predictive Model 1. 

 

 

 

Example: 

Probability of swim advisory after 5 mm of rain = (0.26) x 
[(1.056 – 1.0) x 5 + 1)] = 0.333 or 33.3% 
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The example predictive model above for Jackson/63rd St. Beach was created using 

information obtained from logistic regression (Equation 1) and calculating the probabilities 

of a swim advisory or swim ban from occurring at Jackson/63rd St. Beach when there was 

zero 12-hour cumulative precipitation.  This table can be used as a predictive model if a 

beach management decision was made to issue a warning when the probability of a swim 

advisory occurring was greater than 70%.  Then, based on Table XXIV, whenever the 12-

hour cumulative precipitation exceeded 30mm a swim advisory would be implemented at 

Jackson/63rd St. Beach.  When trying to predict a swim ban, the same approach may not 

produce high enough probabilities to warrant a swim ban at the Jackson/63rd St. Beach. 

Using cumulative precipitation is one way to develop a simple predictive model, 

however using a dichotomous rain variable and the prior day E. coli monitoring sample 

may simplify the model further compared to issuing a warning based on a specific 

threshold of rain.   

G. Predicting Swim Advisories and Swim Bans using a Dichotomous Precipitation 

Variable and Previous Day Beach Status 

The second model in this research uses a dichotomous precipitation variable over 

12 and 24 hours while also considering the prior day beach status. Interpreting the results 

from this model may be more intuitive as you only consider the presence or absence of 5 

mm of precipitation over the last 12- or 24-hour period and whether or not the prior day E. 

coli results warranted a swim advisory or swim ban.  

The ORs from the second model often increased in magnitude when there were wet 

conditions and a prior day swim advisory or swim ban. However it is hard to equate the 
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need for a swim advisory or swim ban from an OR. Instead, by tabulating frequencies for 

each model parameter and event, probabilities of a swim advisory or swim ban of 

occurring can be generated.  Table XV shows an example of the resulting probabilities at 

Jackson/63rd St. Beach. Hypothetically a beach manager could issue an advisory if the 

probability of an advisory of occurring is greater than 70%. In this case, an advisory would 

be issued when the prior day beach status was a swim ban and there was greater than or 

equal to 5 mm of precipitation in the last 12 hours. This example would predict an 88% 

chance of a swim advisory occurring (Figure 10).   

 
 
 
 

TABLE XXV  
 

PROBABILITY OF A SWIM ADVISORY OR SWM BAN OCCURRING AT JACKSON/63RD ST. 
BEACH FOR EACH MODEL PARAMETER

Parameter 
< 5 mm of rain (12-Hour) ≥ 5 mm of rain (12-Hour) 

N Open Advisory Swim 
ban N Open Advisory Swim 

ban 

Prior day open 395 291 (74%) 70 
(18%) 

34 
(9%) 42 21 

(50%) 
14 

(33%) 
7 

(17%) 

Prior day 
advisory 152 92 (61%) 42 

(28%) 
18 

(12%) 17 5 
(29%) 5 (29%) 7 

(41%) 

Prior day ban 78 27 (35%) 34 
(44%) 

17 
(22%) 8 1 

(13%) 4 (50%) 3 
(38%) 
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Figure 10. Interpretation of Predictive Model 2. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example:  

88% = 50% (Probability of Swim Advisory when there was a 
prior day ban and ≥5 mm of rain) + 38% (Probability of Swim 
Ban when there was a prior day ban and ≥5 mm of rain) 
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V. DISCUSSION 

 

A. Summary of Findings 

The effects of rainfall on E. coli concentrations at Chicago beaches are not uniform 

throughout the 21 study locations. Eighteen of 21 of locations experienced higher E. coli 

concentrations after rainfall, while 11 of 21 of locations experienced statistically significant 

higher concentrations after rainfall greater than or equal to 5 mm during 12 hours (Table 

I). The magnitude of increase in E. coli concentrations during wet conditions differed 

among the 11 locations that were significantly impacted. Higher concentrations occurred at 

south side locations compared to north side locations. Then by comparing beaches that 

were significantly impacted in the south to the north reveals that southern beaches 

generally had higher E. coli concentrations and larger increases in E. coli concentrations 

during wet conditions.   

The second objective of this study was to develop a predictive model for issuing 

swim advisories or swim bans by using information that is readily available such as 

precipitation data and the prior day beach’s culture results. In the first model cumulative 

precipitation during 12- and 24-hour periods was utilized to predict the odds of either a 

swim advisory or swim ban occurring (Equation 1). Figure 7 shows that eight of 21 of the 

beaches were significantly impacted by 12-hour cumulative precipitation while 10 of 21 of 

the locations were impacted by 24-hour cumulative precipitation.  When 12- and 24-hour 

cumulative precipitation both impacted a beach, 12-hour precipitation consistently had a 

larger impact towards the odds of a swim advisory occurring.  When predicting swim bans 

12-hr cumulative precipitation was significant at five out of 21 locations while 24-hr 
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cumulative precipitation was significant at three locations.  Cumulative precipitation over 

12 hours was associated with higher ORs than 24-hr cumulative precipitation.  

The second model used a dichotomous precipitation variable over 12- and 24-hour 

periods in combination with the presence or absence of a prior day swim advisory or swim 

ban in order to measure their association with swim advisories and swim bans (Equation 

2).  An increased odds of a swim advisory occurring was predicted for the 16 out of 21 

locations when using the 12-hour dichotomous precipitation variable and at 19 out of 21 

locations using the 24-hour variable. Increased odds of a swim ban occurred at four out of 

21 locations when using the 12-hour dichotomous precipitation variable and at six out of 

21 locations when using the 24-hour dichotomous precipitation.   

B. Implications for Beach Management 

The results from this study give insight to beach managers on potential 

interventions that would combat fecal indicator bacteria contamination of Chicago’s 

recreational waters and an approach for improving public notification of contaminated 

waters.   

One potential explanation for the difference observed between north side and south 

side beaches is that there are designated dog beaches at north side beaches and none at the 

south side beaches. The presence of a designated dog beach encourages pet owners to 

bring their dogs to the beach and may reduce the size of the gull population at that beach, 

ultimately reducing the E. coli concentrations in the sand and near-shore water. A study 

conducted in Racine, Wisconsin utilized trained border collies in a gull harassment 

intervention with hopes of reducing the gull population and E. coli concentrations. The 
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intervention was very successful as it reduced the bird population at the study site by 98% 

and water quality dramatically improved following the reduction in gulls (Converse et al., 

2012). Chicago’s designated dog beaches would have a smaller impact since they are 

generally placed at one side of beach and are separated from the general beach by a fence 

whereas the border collies were free to harass gulls across the entire beach. Chicago could 

implement the resource-intensive gull harassment program or introduce more designated 

dog beaches throughout the south side locations. 

Another beach characteristic that has previously been identified to cause higher E. 

coli concentrations is the physical orientation and use of breakwaters. Breakwaters are 

necessary to prevent erosion and to preserve the sandy beaches along the heavily 

developed Chicago shoreline. In some cases, breakwaters may help trap regional 

contamination or help retain local contamination by creating an embayment.  It is 

important to increase circulation in these types of waters, as it would enhance the dilution 

of bacteria and other pollutants (Whitman et al., 2001). In 2011, the CPD was awarded a 

grant by the EPA to construct a culvert through the pier on the south end of Jackson/63rd 

St Beach.  This culvert will improve water circulation at Jackson/63rd St and should 

therefore reduce E. coli concentrations (EPA 2011). If this intervention proves successful, 

similar culverts should be installed where embayment conditions exist.  

Using cumulative rain as the primary predictor for swim advisories may be a tool to 

issue protective swim advisories at beaches where precipitation heavily impacts bacterial 

concentrations. Evidence also suggests that cumulative precipitation alone cannot predict 

the need to issue a swim ban.  For example, if 30 mm of rain falls within 12 hours, model 1 

suggests there is a near 77% chance that the E. coli concentration will be above the 



55 
 

threshold for issuing a swim advisory while there is only a 22% likelihood that the 

concentration is above the threshold for issuing a swim ban (Table XXIV). During our study, 

30 mm of precipitation fell during the 12-hour period for 10% of the time (Figure 6). 

In another simplistic approach, using a dichotomous precipitation variable and the 

prior day’s culture results can improve public notification of swim advisories but perhaps 

not swim bans. Evidence from Table XXV suggests that given wet conditions during 12- and 

24-hour periods in combination with the prior day’s culture results greater than 1000 

CFU/100 mL, there is a probability of 83.3% to 87.5% that the culture results from the day 

in question would yield a high enough concentration to issue a swim advisory. Using data 

that are easily attainable on the morning that beach notification decisions are made, a 

beach manager can confidently issue a protective swim advisory until monitoring results 

are received the next day. 

C. Findings in Context 

To date, there has been only one other comprehensive assessment of E. coli 

concentrations for all of Chicago beaches. Whitman and Nevers (2008) obtained E. coli 

monitoring data from the CPD for the years 2000–2005. Their objectives were to relate E. 

coli concentrations among beaches along the Chicago coastline and to characterize spatial 

and temporal patterns of E. coli concentrations. When comparing descriptive statistics, the 

geometric means for E. coli concentrations from the 2000–2005 study are similar to results 

in this study. Their study identified Jackson/63rd St Beach to have the highest geometric 

mean at 140.0 MPN/100 mL with Montrose Beach having the second highest concentration 

on average at 76.7 MPN/100 mL. We also identified the same two beaches of having the 
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highest geometric means for E. coli concentrations during wet and dry conditions. The 

beaches with the lowest geometric mean concentrations in their study were Ohio, Rogers, 

Jarvis/Fargo, Hartigan, and 49th St Beach. Although 49th St Beach was excluded from this 

dataset, Ohio, Rogers, Jarvis/Fargo, and Hartigan appeared to have some of lowest 

geometric mean concentrations during wet and dry conditions (Table I). Empirical 

modeling using several hydrometerological parameters were significantly correlated with 

E. coli concentrations during 2000–2004, including wind speed, air temperature, and 

cumulative rainfall. The authors tested both 4-hour and 24-hour cumulative precipitation 

variables but only 4-hour cumulative precipitation was significant in predicting E. coli 

concentrations (Nevers et al., 2005). The 4-hour variable was insignificant when there 

were north winds present. Their model also directly predicted E. coli concentrations where 

ours did not; this makes it difficult to compare the precipitation variables used in each 

study. Even though other hydrometerological parameters are significant in predicting E. 

coli concentrations; this study aims to simplify the naturally complex system in order to 

better protect public health. 

There have been a number of studies assessing the relationship between rainfall 

and beach bacterial concentrations in both salt and freshwater environments. In Southern 

California, this relationship supported the use of a rain-based beach water quality warning 

system as storms larger than 6 mm consistently led to a mean fecal coliform greater than 

400/100 mL. Storms with less than 2.5 mm of rain had an approximate mean fecal coliform 

at 100/100 mL. The runoff sources in Los Angeles County are independent storm water 

systems like those found along the Chicago shoreline and are not combined sewage 

overflows. Southern California’s climate may increase the effect that rain has on beach 
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water quality. Long dry periods allow for the accumulation of land-based contaminants 

until rain washes them through the storm water conveyance systems and into coastal 

waters, this is also known as the first flush effect (Ackerman et al., 2003). The first flush 

effect relationship may not be as strong in Chicago since the climate is humid and rainfall is 

not concentrated in any one season. When heavy rainfall does occur, storm water is 

directed to the combined sewer system and conveyed to a water treatment plant. Small 

drainage systems along the lakeshore direct rains back to Lake Michigan and can 

potentially impact beaches through the first flush effect.   

A study assessing the effects of rainfall on E. coli levels at 15 Lake Superior beaches 

was not able to display the positive correlation between rainfall and increased bacterial 

concentrations. There were several possible reasons why there wasn’t a positive 

correlation; one is that during 2003–2004, Ashland, Wisconsin only received about 77% of 

their normal annual precipitation. Another reason, and this is repeatedly stressed 

throughout recreational water quality modeling literature, is that each beach must be 

treated as a separate entity since individual characteristics of a beach may influence 

bacterial concentrations (Sampson et al., 2006). Rainfall effects were not assessed by 

correlation; rather the comparisons of geometric means during wet and dry conditions 

were utilized. Ten of the 21 study locations did not demonstrate a statistical significant 

higher or lower E. coli concentration during wet and dry conditions (Table I). The beaches 

that did not demonstrate a difference during wet and dry conditions may have distinct local 

land uses that serve as a natural buffer to storm water runoff. 

Moving closer to Chicago, a study conducted at Lake Michigan beaches in Door 

County, Wisconsin found that rainfall greater than 5 mm over a 24-hour period 
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significantly impacted E. coli concentrations in beach water at six of the eight locations 

where E. coli concentrations increased by a range of 85–500 MPN/100 mL. Also, the 

significance and duration of this impact was highly beach specific (Kleinheinz et al., 2009).  

Results indicate that the rainfall impact is not uniform across beaches in Chicago, 

consistent to findings of Kleinheinz et al. The logistic regression results from Equation 2 do 

give insight towards the relative significance of the rainfall impacts among Chicago beaches 

but does not characterize the duration of this impact. 

D. Limitations of Study 

The limitations associated with this study are mostly limited to the precipitation 

and E. coli monitoring data. The limitation presented by the precipitation data in this study 

is the use of one weather station. Using one station can inaccurately extrapolate rainfall 

measurements from one location to the 21 locations used in this study. The study sites 

range in distances from 8.3 to 16.5 miles from the Chicago Midway International Airport 

weather station. 

The E. coli monitoring data provided by the CPD represents one of the biggest 

strengths of the study but is accompanied by several limiting factors.  There are two 

limitations intrinsic to the monitoring data. First, factors such as sampling depth, sample 

storage during transport, and laboratory practices can introduce error that is not well 

understood in this study. Samples taken from shallow depths will produce higher 

concentrations than samples collected from deeper depths (Kleinheinz et al., 2006).  

Improper sample storage or laboratory practices can lead to higher E. coli concentrations.  

In general, poor quality control can produce both inaccurate and imprecise results.  
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However, water samplers have been trained to be consistent in the location and depth of 

sample collection. The next limitation is that two different analyses were used to 

enumerate E. coli. Membrane filtration was utilized during 2003–2004 and the Colilert® 

method was used during 2005–2011. The use of different enumeration analyses should 

have minimal impact since both methods produce comparable results (Yakub et al., 2002).  

The next limitation was introduced after setting all sample times to 9:00 a.m. This was 

done since sample times were not consistently recorded in the monitoring data. When 

sample times were recorded they ranged from 7:00–11:00 a.m. Applying one sample time 

to all samples can consequently misclassify wet and dry conditions, potentially leading to 

weakened associations. 

There were several limitations concerning the statistical methods used in this study.  

It was challenging to interpret ORs for predicting swim advisories and bans relative to 

models that predict E. coli concentrations directly. The wet and dry conditions defined in 

the study were arbitrary. 
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VI.     CONCLUSION 

 

On average, precipitation negatively impacts E. coli concentrations at Chicago 

beaches. This impact was not uniform across all beaches. In fact, beaches located south of 

the Chicago River observed greater E. coli concentration differences during wet and dry 

conditions compared to beaches north of the Chicago River. This finding helps prioritize 

where future interventions should be explored in order to have the greatest impact 

towards better recreational water quality.   

Developing an accurate predictive model to issue proactive swim warnings and bans 

would highly benefit beach managers. Study objective two attempted that while only using 

precipitation information and the results from the previous day’s E. coli culture tests. Of the 

two proposed models, model two would be more practical for implementation. Before 

implementation, further work is needed in refining and cross validating the suggested 

predictive models. Analyzing various precipitation thresholds and rain periods can 

potentially improve model two.  
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