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SUMMARY

I studied three dimensional structural problems of biological systems as they related to two aspects of

genetic information: protein design and folding chromatins.

I studied the problem of constructing the fitness landscape of inverse protein folding. Fitness landscapes

have broad implications in molecular evolution, cellular epigenetic state, and protein design. Computa-

tional inverse protein folding, or protein design, aims to generate amino acid sequences that fold into an a

priori determined structural fold for engineering novel or enhanced biochemical structures. For this task, a

function describing the fitness landscape of sequences is critical to identify correct ones that fold into the

desired structure. In this study, I showed that nonlinear fitness functions for protein design can be signif-

icantly improved relative to those published in the scientific literature. Using a rectangular kernel with a

basis set of proteins and decoys chosen a priori, I obtained a simplified nonlinear kernel function via a finite

Newton method. The full landscape for a large number of protein folds was captured using only 480 native

proteins and 3,200 non-protein decoys. A blind test of a simplified version of sequence design was carried

out to simultaneously discriminate 428 native sequences not homologous to any training proteins from 11

million challenging protein-like decoys. This simplified fitness function correctly classified 408 native se-

quences (20 misclassifications, 95% correct rate), which outperformed several other statistical linear scoring

function and optimized linear functions. The performance was also comparable with results obtained from

a far more complex nonlinear fitness function with > 5,000 terms. The results further suggested that for

the task of global sequence design of 428 selected proteins, the search space of protein shape and sequence

can be effectively parametrized with just about 3,680 carefully chosen basis set of proteins and decoys. In

xiv



SUMMARY (Continued)

addition, I showed that the overall landscape was not overly sensitive to the specific choice of this set. These

results may be generalized to construct other fitness landscapes.

The portion of this study related to chromatin folding was based on the data obtained from the Chro-

mosome Conformation Capture (3C)-based technologies, which are used to detect pairs of loci located on

the same chromosome or on different chromosomes that are in close spatial proximity. There are biases

which may affect the 3C-based experimental procedure, including the non-alternative primer design and

the distance between restriction sites. To overcome such biases, I developed a general novel constrained

self-avoiding chromatin (C-SAC) model to remove non-specific physical interactions. I further developed

a sequential importance sampling algorithm to rebuild 3D chromatin structures on 5C experiments, which

are derived from 3C technology. I applied this approach to the ENCODE region ENm008 α-globin gene

domain on human chromosome 16 for the lymphoblastoid cell (GM12878) and the chronic myelogenous

leukemia cell (K562). I successfully removed non-specific physical interactions from the 5C reads for both

two cells by our random ensemble generated by C-SAC model. My results showed that α-globin gene do-

main is a compact globule in the GM12878 cell, and it is formed by two separate domains in the K562

cell. My studies show that we can not only recover most of 5C indicated proximity interactions, but can

also discover new proximity interactions which are not captured in the 5C experiments. Specifically C-SAC

model can recover 77% of the known interactions after comparing with the results from independent ChIA-

PET measurements. Based on the ensemble of the reconstructed 3D conformations, a novel mechanism was

proposed, which may explain why the α-globin gene is inactive in the GM12878 cell but is active in the

K562 cell.
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In chapter 2, I will discuss the problem of protein design. In chapter 3, the studies of chromatin

structures will be discussed.
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CHAPTER 1

INTRODUCTION

1.1 DNA is a carrier of hereditary information of the cell

DNA (deoxyribonucleic acid) carries hereditary information of the cell. In the reproductive process of

living cells, the parent cells’ DNA is replicated and passed to the next generation. The DNA molecule stores

genetic information in every living cell that determines the characteristics of a species as a whole as well as

the individuals within each species.

The famous Hershey-Chase experiment conducted by Alfred Hershey and Martha Chase in 1952 pro-

vided the evidence for the role of DNA as carrier of genetic information (Hershey and Chase, 1952). Bac-

teriophages, the viruses that attack bacteria, consist of a protein coat surrounding a DNA core. During

the process of infection, the radioactive protein coat of the bacteriophage was shown to remain outside of

the bacteria cell, while the bacteriophage injected their radioactive genetic material, DNA, into the bacteria

cells. Once inside the bacteria cells, the bacteriophage gene directs the synthesis of new bacteriophage and

assembles more offspring of bacteriophages. This piece of evidence, together with Avery-MacLeod-McCarty

experiment (Avery et al., 1944), firmly concluded that DNA is the agent of heredity.

DNA consists of two long polynucleotide chains, or strands. Each of DNA chains is composed of four

type of nucleotide subunits: adenine (A), cytosine (C), guanine (G) and thymine (T). These four subunits

in a DNA chain are covalently linked together by sugars and phosphates. Another complementary chain

follows base-pairing rules: A is always paired with T, C is always paired with G. These two polynucleotide

1
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chains running anti-parallel are held together by hydrogen-bonding between the bases on the different chains

and interwined to form a double helix structure (Watson and Crick, 1953). This double helix structure of

DNA allows it to carry information and to be faithfully duplicated and provides a mechanism of heredity.

1.2 DNA and Protein

Gene are short segments of DNA which contain the information to manufacture specific proteins.

There are two important steps to process genetic information. The first step is transcription. The DNA

double helix unwound, and RNA (ribonucleic acid) is synthesized from the beginning of the gene to the

end of the gene by using one of DNA strands as the template. RNA is chemically similar to DNA except

it contains a different sugar in its nucleotides and contains the closely related nitrogenous base uracil (U)

instead of thymine (T). In contrast to double helix structure DNA, RNA is generally single stranded. In the

transcription stage, the RNA based on the DNA template is called mRNA (messenger RNA). The second

step is translation. The mRNA is transported out of the cell nucleus, and is moved into the cytoplasm in

eukaryotes. The ribosome, a large and complex molecular machine, with the aid of tRNA (transfer RNA),

recognizes the information encoded in the mRNA codons, and carries the proper amino acids to synthesize

the coded protein. Each mRNA codon is constituted by a group of three base pairs and corresponds to a

particular amino acid. The mRNA sequence is used as a template in units of three base pairs to assemble the

chain of amino acids to form a protein. Different mRNA codons may be used to encode the same amino

acid. There are three stop codons to guide ribosome to stop translation.

1.3 Protein Structure

There are four distinct levels of protein structure in the protein folding process.
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The amino acid sequence constitutes the primary level of the protein structure. A protein molecule is

made from a long chain of amino acid sequence. The backbone of the polypeptide chain is built by the

formation of peptide bonds between amino acids. To form peptide bonds, different amino acids are linked

together between their carboxylic acid groups and amino groups. The dipeptide molecule has a free amino

end (N-terminal end) and a free carboxylic acid end (C-terminal end) such that it can be reiteratively linked

to form peptide bonds and finally form polypeptide chains. The length of the gene that codes the protein

determines the length of the polypeptide chain ranging from less than 50 amino acids to more than 10,000

amino acids.

The secondary structure refers to regular local stable sub-structures which includes the α-helix and

the β -strand conformations commonly found in folded proteins. In the α-helix conformation, hydrogen

bond interactions between the carbonyl oxygens and the nitrogens are in adjacent peptide bonds. The large

amount of intra-helix hydrogen bonds between peptide bonds is a major contribution to stabilize the α-

helix structures. The side-chain groups are on the outside of the α-helix and perpendicular to the α-helix

axis. The β -strands are only stable when hydrogen bonds link two parallel or anti-parallel peptide bond

segments.

The tertiary structure refers to three dimensional structure of a single protein molecule. The folding is

driven by non-specific hydrophobic interactions. Dipole interactions with water molecules of the solvent

lead to spatial arrangements in which hydrophobic amino acids are on the inside of the structure and residues

with polar groups are on the outer surface. Hydrophobic interactions play a central role in determining the

shape of a protein.
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Multiple-subunit proteins possess a quaternary structure, which is a combination of two or more chains

to form a complete unit. For example, hemoglobin contains four polypeptide subunits: two α-globin

polypeptide chains and two β -globin polypeptide chains.

The order of amino acid sequence determines the protein three-dimensional structure. A protein gen-

erally folds into a single stable conformation in which the free energy is minimized, and this structure is

critical fro a given protein’s biological activity.

1.4 DNA and Chromatin

DNA as a hereditary agent, combined together with associated proteins, is highly folded in the nu-

cleus. Chromosomes (chromatins) are the structures which can pack very long double stranded helix DNA

molecules into. In a haploid human cell, there are 23 chromosomes, including about 3.2 billion base pairs

long and containing about 20,000-25,000 distinct protein-coding genes. The fully extended length about

2 m of human DNA is confined into the only 5-20 µm in diameter cell nucleus. It is similar to folding

40 km of extremely fine thread into a tennis ball. DNA, bounded and folded by specialized proteins, can

generate a series of coils and loops that provide increasingly higher levels of organization and prevent DNA

from becoming a unmanageable tangle. Meanwhile, chromosome also allows DNA to remain accessible to

all the enzymes and proteins to replicate it, repair it, and direct it to express genes.

During the interphase stage of cell, DNA is less tightly packed than DNA in the mitosis stage. So the

DNA in interphase stage is highly packed but less condensed. While the chromatin is a lower order of DNA

organization, chromosomes are higher order of DNA organization. During interphase, the chromatins are

extended in the nucleus and cannot be easily distinguished with a light microscope. When the cell reaches

mitotic phase, the DNA coils up and is tightly compacted, therefore it can be easily visualized.
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Interphase chromosome contains both condensed (heterochromatin) and more extended forms of chro-

matin (euchromatin). Some of the DNA folds into heterochromatin and does not contain any genes. Het-

erochromatin is usually localized to the periphery of the nucleus. Euchromatin is rich of genes, compact,

and often under active transcription (International Human Genome Sequencing Consortium, 2004).

1.5 Chromatin Structure

Histones, the most abundant proteins in chromatin, are small, positively charged proteins of five major

types: H1, H2A, H2B, H3, and H4. All histones have a high percentage of arginine (Arg) and lysine (Lys).

These positively charged amino acids give the histones a net positive charge which attracts the negative

charges on the phosphates of DNA such that DNA can tightly interact with histones.

DNA wraps around the histones to form nucleosomes. The nucleosome is a basic unit in eukaryotes

consisting of a segment of DNA wrapped 1.65 times around an octamer of histone proteins core (two of

each H2A, H2B, H3, and H4). The fifth type of histone, H1, binds to the linker region of DNA where the

DNA joins and leaves the octamer and help to lock the DNA into place. Then nucleosomes fold to form a

dense, tightly packed structure and make up a fiber with a 30 nm diameter.

The 30 nm fiber is folded into a series of loops, and these loops are further packed and folded to produce

a 250-nm-wide fiber. This compact fiber undergoes at least one more level of packing to finally form the

mitotic chromosome.

1.6 Central dogma of molecular biology

The famous central dogma of molecular biology was stated by Francis Crick (Crick, 1958; Crick, 1970).

The general transfer is one of which can occur in all cells:

• DNA→ DNA
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• DNA→ RNA

• RNA→ protein

Chromatin

DNA

mRNA

Protein

Nucleus

Cytoplasm

Transcription

Traslation

Ribosome

Figure 1: The general principle of genetic information flow in eukaryotes. The DNA self-copy is not shown.

In the eukaryotes, chromatin carries DNA, DNA can be cloned by itself, DAN transcript to mRNA, and

mRNA will eventually produce protein.

The central dogma of molecular biology is the general principle of genetic information flows which

applies to both prokaryotes and eukaryotes. In eukaryotes, chromatin carries DNA. DNA is copied and
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then is transcripted to mRNA in the nucleus, and mRNA will be transported to cytoplasm and eventually

translated into protein with the aid of ribosomes and tRNA (Figure 1).

Gene regulation can occur at any of the stages leading from DNA to protein in eukaryotes. Chro-

matin unwinding DNA is regulated by chromatin remodeling. DNA transcription to mRNA is regulated

by transcription, splicing and processing. mRNA translation to protein is regulated by transportation and

translation. The final product protein may also be regulated by protein modifications. Under these complex

and delicate regulation mechanisms, genes can be expressed at various level at specific time, in different cell

types, and in response to complex environment.

1.7 Living creature lives in three dimensional space

As Stephen Hawking said, we can only live in the three dimensional space (Hawking, 1996). Two

dimensional space is too simple to have capacity to accommodate our body. For example, if a two dimen-

sional creature eats something like an apple into its body, its digestive system will have to form a passage

throughout its body. Then the two dimensional creature will be divided into two separate parts and it will

be difficult to digest any food. This also impossible to live in more than three dimensional space. The grav-

itational force between two bodies would decrease much more rapidly with distance in higher than three

dimensional space, and the earth would either be thrown away from or toward the sun. We would either

freeze or be burned up. Studying three dimensional structure is therefore very important.

In my thesis work, I studied three dimensional structures at the two ends of general genetic information

flow. The first portion of this work involved studying factors influencing the ultimate product of the gene

expression: protein. The other component researched in this work was genetic information carrier via

chromatin modifications and regulation.
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1.8 Protein design

The three-dimensional structure of protein allows for diverse functions. For example, an essential el-

ement of cellular metabolism is that hemoglobin and myoglobin proteins transport oxygen to cells via

structural rearrangement. Structural proteins, such as collagen and keratin, comprise a large proportion of

the skin, connective tissue, and hair of organisms. Immunoglobuline proteins, produced by plasma cells

in response to an immunogen, is essential in the immune system of vertebrates. Histones, which bind to

DNA in eukaryotic organisms, combine with transcription factors to regulate gene expression. Many re-

searchers focus on predicting protein structure from amino acid sequence (Becker et al., 2006; Qian et al.,

2007; Jagielska et al., 2008; Zhu et al., 2008). The inverse problem is also equally important. It can be

stated as follows: given a protein structural template, can we identify the protein sequences that would fold

into this structural template. This problem represents a major ongoing challenge in computational biology

research and bioinformatics.

This problem was first formulated 30 years ago (Drexler, 1981; PABO, 1983). Also known as the

inverse protein folding problem, it addresses the fundamental problem of designing proteins to facilitate

engineering of enhanced or novel biochemical functions. Protein design has been the focus of intense

theoretical, computational, and experimental studies (Desmet et al., 1992; Yue and Dill, 1992; Shakhnovich

and Gutin, 1993; Li et al., 1996; Deutsch and Kurosky, 1996; Dahiyat and Mayo, 1997; Kleinberg, 1999;

Hill et al., 2000; Siegel et al., 2010)

A key component for designing protein is a fitness function: it detects whether a solution has been

found, and guides the search of viable sequences. An ideal fitness function can characterize the properties

of fitness landscape of many proteins simultaneously. Such a fitness function would be useful for designing
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novel proteins and novel functions, and for studying the global evolution of protein structure and protein

functions.

Many protein design studies employ a linear fitness function in the form of weighted linear sum of pair-

wise contacts, sometimes with additional solvation terms derived from exposed surface area (Shakhnovich

and Gutin, 1993; Deutsch and Kurosky, 1996; Yue and Dill, 1992). Such functions can be obtained from

statistical analysis of a database of protein structures (Miyazawa and Jernigan, 1985), by perceptron learn-

ing/linear programming (Vendruscolo et al., 2000; Tobi et al., 2000; Wagner et al., 2004), or by gradient

descent (Bastolla et al., 2000; Bastolla et al., 2001). Another approach is to use a force field modeled after

those used in molecular mechanics simulation (Dahiyat and Mayo, 1997). Often these fitness functions

have their roots in protein folding studies. However, they do not provide global characterization of fit-

ness landscapes for protein design. They also often have poor performance in blind tests when challenged

with the task of simultaneously designing many different proteins (Hu et al., 2004), or are unsuitable for

high-throughput testing.

A promising alternative approach is to use a nonlinear function to capture the complex design fitness

landscape. In a recent study, a nonlinear Gaussian kernel function was constructed by maximizing soft

margins between native proteins and decoy non-proteins (Hu et al., 2004). This fitness function significantly

outperforms linear functions in a blind test of identifying 201 native proteins from 3 million challenging

protein-like decoys.

However, it is parametrized by about 350 native proteins and 4700 non-protein decoys and its form

is rather complex. This makes the evaluation of the fitness of a candidate sequence demanding. Although

obtaining a good answer at high computational cost is acceptable for some tasks, it is difficult to incorporate
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this type of a complex function in a search algorithm. It is also difficult to characterize landscape properties

of protein sequence design using a complex function.

In Chapter 2 , I will discuss the challenge of protein design problem by the reduced support vector

machine approach.

1.9 Chromatin structure

DNA is not naked in vivo but associated with basic proteins, the histones, to form a nucleoprotein

complex named “chromatin”. Chromatin inevitably holds a significant part of the regulatory information

encoded in the nucleus, sometimes collectively referred to as “epigenetic” information. After more than 30

years of intense experimental and modeling efforts, chromatin structure remains one of the major unsolved

problems in molecular biology (Widom, 1989; van Holde and Zlatanova, 1996; van Holde and Zlatanova,

2007).

The highly folded three-dimensional chromatin structure, a carrier of genetic material, also plays a

essential gene regulation role while it is unwound. Chromosomal rearrangements underlie a variety of

malignant cancers and congenital diseases. For example, aggressive mature B cell lymphomas often carry

translocations involving the immunoglobulin heavy chain (IgH) locus which coupled to C-MYC (Hoffman

et al., 2012). Most of the common mutation groups (over 75%) among the known cancer genes in somatic

cells involve chromosomal translocations that creates a chimeric gene or apposes a gene to the regulatory

elements of another gene (Futreal et al., 2004). Therefore it is important to predict the chromatin structure

to shed some light on how gene regulation happened during in the chromatin remodeling.

Since the development of the 3C technology (Dekker et al., 2002), chromatin interaction data is con-

sidered to be employed to model the 3D chromatin structure. And its high-throughput modifications that
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include several related methods: 4C (Duan et al., 2010; Zhao et al., 2006; Simonis et al., 2006; Schoenfelder

et al., 2010), 5C (Dostie et al., 2006), Hi-C (Lieberman-Aiden et al., 2009), and ChIA-PET (Fullwood et

al., 2009). These 3C-based methods use formaldehyde cross-linking to capture interacting loci. It is fol-

lowed by DNA fragmentation and after which ligation on cut DNA is performed to obtain unique ligation

products from interacting loci. Combining these methods with pair-end sequencing for PCR amplification

and next generation sequencing techniques have enabled of determination of long-range interactions on a

locus or genome-wide scale (Sachs et al., 1995; Bohn and Heermann, 2010; Rippe, 2001).

In recent decade, new approaches to model 3D genomes and genomic domain structures have been

developed. All these approaches have in common that, to the largest possible satisfy the experimental

interaction data, they developed diverse experiments (3C, 4C, 5C, HiC) (Duan et al., 2010; Fraser et al.,

2009; Jhunjhunwala et al., 2008) and computation to build 3D chromatin structure (Baù et al., 2010)

The chromatin is highly dynamic in these methods, therefore these static 3D models represent different

substantial in the reflection of the overall trends for chromatin folding and particular path of chromatin

fiber in a given cell (Baù et al., 2010). These models did not provide accurate structures and cannot be

applied to larger genomic segments.

I will discuss this problem based on the partial 5C experimental data to deduce the three dimensional

structure of the α-globin gene domain for two different cell types in chapter 3.



CHAPTER 2

PROTEIN DESIGN

2.1 Introduction

Protein design has been the focus of many experimental, theoretical, and computational studies (Desmet

et al., 1992; Yue and Dill, 1992; Shakhnovich and Gutin, 1993; Li et al., 1996; Deutsch and Kurosky,

1996; Dahiyat and Mayo, 1997; Kleinberg, 1999; Hill et al., 2000; Siegel et al., 2010). Despite sig-

nificant challenges, important progresses have been made, with profound implications in biotechnology

and biomedicine (Bolon and Mayo, 2001; Röthlisberger et al., 2008; Jiang et al., 2008; Lazar et al.,

2006; Joachimiak et al., 2006; Shifman et al., 2006).

Here we studied the problem of designing a protein sequence that is compatible with an a priori specified

three-dimensional template protein fold. This problem was first formulated 30 years ago (Drexler, 1981;

PABO, 1983). Also known as the inverse protein folding problem, it addresses the fundamental problem of

designing proteins to facilitate engineering of enhanced or novel biochemical functions.

A key component for designing a protein sequence is a fitness function: it can detect if a solution has

been found, and can also guide the search of viable sequences. An ideal fitness function can characterize the

properties of fitness landscapes for many proteins simultaneously. Such a fitness function would be useful

1THIS CHAPTER TEXT, FIGURES, AND TABLES ARE SUBMITTED TO THE JOURNAL PLOS ONE,
IT IS UNDER REVIEW PROCESS. THE COPYRIGHT PERMISSION IS NOT REQUIRED. PLEASE SEE
THE APPENDICES.
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for designing novel proteins and novel functions, as well as for studying the global evolution of protein

structure and protein functions.

The development of a fitness function for protein design is closely related to the development of

a scoring function for protein structure predictions, protein folding, and protein-protein/ligand dock-

ing (Huang and Zou, 2006; Huang and Zou, 2008; Huang et al., 2010; Wagner et al., 2004; Májek and

Elber, 2009; Ravikant and Elber, 2010). There are many different approaches in constructing the fitness

function. Several studies employ a linear fitness function in the form of weighted linear sum of pair-

wise contacts, with sometimes additional solvation terms derived from exposed surface area (Yue and Dill,

1992; Shakhnovich and Gutin, 1993; Deutsch and Kurosky, 1996). Such functions can be obtained from

statistical analysis of a database of protein structures (Miyazawa and Jernigan, 1985), or from perceptron

learning/linear programming (Wagner et al., 2004; Vendruscolo et al., 2000; Tobi et al., 2000), or by gradi-

ent descent (Bastolla et al., 2000; Bastolla et al., 2001). Another approach is to use a force field such as those

used in molecular dynamics simulations (Dahiyat and Mayo, 1997; Jacak et al., 2012; Pokala and Handel,

2005; Liang and Grishin, 2004). However these functions often do not provide global characterization of

the overall fitness landscape for protein design. They also often have poor performance in blind test when

challenged with the task of simultaneously designing many different proteins (Hu et al., 2004), or they are

so complex that they cannot be used in high-throughput testing. Inaccurate fitness functions would lead to

low success rates in protein design (Li et al., 2013).

A promising alternative approach is to use nonlinear function to capture the complex design fitness

landscape. In the study of (Hu et al., 2004), a nonlinear Gaussian kernel function was constructed by

maximizing soft margins between native proteins and decoy non-proteins. This fitness function significantly
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outperforms linear functions in a blind test of identifying 201 native proteins from 3 million challenging

protein-like decoys (Hu et al., 2004). However, it is parametrized by about 350 native proteins and 4,700

non-protein decoys and its form is rather complex. It is computationally expensive to make the evaluation

of the fitness of a candidate sequence. Although obtaining a good answer at high computational cost is

acceptable for some tasks, it is difficult to incorporate this type of complex function in a search algorithm.

It is also difficult to characterize global landscape properties of protein sequence design using a complex

function.

In this study, we showed how to significantly improve nonlinear function for characterizing fitness

landscape of protein design. Using a rectangular kernel with proteins and decoys chosen a priori, we obtained

a nonlinear kernel function via a finite Newton method. The total number of native proteins and decoy

conformations included in the function was reduced to about 3,680. In the blind test of sequence design

to discriminate 428 native sequences from 11 million challenging protein-like decoy sequences, this fitness

function misclassified only 20 native sequences (correct rate 95%), which far outperformed (Miyazawa

and Jernigan, 1996) (87 misclassification, correct rate 57%) and linear optimal functions (Tobi et al., 2000;

Bastolla et al., 2001) (44–58 misclassification, correct rate 78%–71%) both of which were tested on a smaller

scale to discriminate 201 native sequence from 3 million challenging protein-like decoy sequences. It is also

comparable to the results of 18 misclassifications (correct rate 91%) using far more complex nonlinear fitness

function with > 5,000 terms (Hu et al., 2004).

This paper is organized as follows. We first describe our model and theory for sequence design. We then

discuss computational details. Results of a blind tests are then presented. We conclude with discussion and

remarks.
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2.2 Model and Theory

We use a d-dimensional vector ccc ∈ Rd to represent both the sequence and structure of a protein

(Mintseris and Weng, 2003). One possible choice is the vector of the number count of non-bonded pairwise

contacts of each of the
(20+2−1

2

)
= 210 contact types (Miyazawa and Jernigan, 1985) between the 20 types

of amino acid residues in a protein structure. Given a protein amino acid sequence aaa and its structure sss, the

contact vector ccc is largely determined by the contact definition f : (sss,aaa) 7→ Rd .

2.2.1 Inequality criterion.

In protein design, the native amino acid sequence aaa of a protein should have better fitness score on the

native structure sss of this protein than any other competing sequences taken from proteins of different fold.

This leads to the requirement that the native sequence aaaN mounted on its native structure sssN should have

the best fitness score (lowest “energy”) compared to a set of decoys D = {D|cccD = f (sssN ,aaaD) for all aaaD}

derived from mounting unrelated alternative sequences aaaD on the native protein structure sssN :

H(cccN)< H(cccD) for all D ∈D , (2.1)

where cccD = f (sssN ,aaaD) is the contact vector of a decoy sequence aaaD mounted on its native protein structure

sssN , and cccN = f (sssN ,aaaN) is the contact vector of a native sequence aaaN from the set of native training proteins

N mounted on the native structure sssN . Here D is a set of sequence decoys mounted on native protein

structures. H(cccN) and H(cccD) are the energy score for native sequence structure pair and for non-native

sequence structure pair, respectively. Equivalently, the native sequence will have the highest probability to
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fit into its native structure, and other sequences will have lower probability. This is the same principle

described in (Shakhnovich and Gutin, 1993; Li et al., 1996; Deutsch and Kurosky, 1996).

A commonly used form for fitness function H(ccc) is the weighted linear sum of pairwise contacts

(Miyazawa and Jernigan, 1985; Tobi et al., 2000; Tanaka and Scheraga, 1976; Vendruscolo and Domany,

1998; Lu and Skolnick, 2001):

H(ccc) = www · ccc, (2.2)

where “·” represents inner product of two vectors. For this linear function, the basic requirement for protein

fitness is then:

www · (cccN− cccD)< 0. (2.3)

We can further require that the difference in fitness must be greater than a constant d > 0:

www · (cccN− cccD)+d < 0. (2.4)

2.2.2 Relation to support vector machines.

There may exist multiple www′s if P is not empty. We can use the formulation of a support vector machine

to find some weight vector www. Let all vectors cccN ∈ Rd form a native training set and all vectors cccD ∈ Rd

form a decoy training set. Each vector in the native training set is labeled as−1 and each vector in the decoy
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training set is labeled as +1. Then solving the following support vector machine problem will provide an

optimal solution to inequalities (Equation 2.3) :

Minimize 1
2‖www‖2

subject to www · cccN +b≤−1

www · cccD +b≥ 1.

(2.5)

Note that a solution of the above problem satisfies the system of inequalities (Equation 2.3), since subtracting

the second inequality from the first inequality in the constraint conditions of (Equation 2.5) will give us

www · (cccN− cccD)≤−2 < 0.

2.2.3 Nonlinear fitness function.

A fundamental reason for this failure is that the functional form of linear sum of pairwise interaction is

too simplistic. We can obtain a nonlinear fitness function for sequence design using an alternative functional

form (Hu et al., 2004):

H(ccc) = ∑
D∈D

αDK(ccc,cccD)− ∑
N∈N

αNK(ccc,cccN)+b, (2.6)

where αD ≥ 0 and αN ≥ 0 are coefficients to be determined. This functional form is reminiscent of the

linear fitness function H(ccc) = www ·ccc, which can be written alternatively as an expansion around positive and

negative contact vectors, as used in perceptron learning: www =−∑N∈N αNcccN +∑D∈D αDcccD. A convenient

kernel function K is:

K(ccci,ccc j) = e−γ||ccci−ccc j||2 for any vectors ccci and ccc j ∈N ∪D , (2.7)
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where γ is a constant. The fitness function H(ccc) can be written compactly as:

H(ccc) = ∑
D∈D

αDe−γ||ccc−cccD||2− ∑
N∈N

αNe−γ||ccc−cccN ||2 +b = K(ccc,A)Dsααα +b, (2.8)

where A is the matrix of training data: A = (cccT
1 , · · · ,cccT

|D |,ccc
T
|D |+1, · · · ,cccT

|D |+|N |)
T , and the entry K(ccc,ccc j)

of K(ccc,A) is e−γ||ccc−ccc j||2 . Ds is the diagonal matrix with +1 and−1 along its diagonal representing the mem-

bership class of each point Ai = cccT
i . Here ααα is the coefficient vector: ααα =(α1, · · · ,α|D |,α|D |+1, · · · ,α|D |+N |)T .

Intuitively, the fitness landscape has smooth Gaussian hills of height αD centered on location cccD of

decoy contact vector D ∈ D . The depth of smooth Gaussian cones αN is located on the center of native

contact vectors cccN (N ∈N ). For contact vector cccN of native proteins, the corresponding value of fitness

function is set to −1, and for contact vector cccD of decoys, the corresponding value of fitness function is set

to +1.

2.2.4 Optimal nonlinear fitness function.

To obtain such a nonlinear function, our goal is to find a set of parameters {αD,αN} such that, for

native proteins, the values of the fitness function of H(ccc) close to −1, for decoys, the values of the fitness

function of H(ccc) close to +1.First, we note that we have implicitly mapped each protein and decoy from

Rd ,d = 210 to another high dimensional space where the scalar product of a pair of mapped points can

be efficiently calculated by the kernel function K(., .). Second, we look for a hyperplane such that the

hyperplane has equal distance between the closest native proteins and the closest decoys. Such a hyperplane

has good performance in discrimination (Vapnik, 1999). It can be found using support vector machine
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by obtaining the parameters {αD} and {αN} from solving the following primal form of the quadratic

programming problem:

min
ααα∈Rm

+, b∈R, ξξξ∈Rm

C
2

eee ·ξξξ +
1
2

ααα ·ααα

subject to Ds(K(A,A)Dsααα +beee)+ξξξ ≥ eee

ξξξ ≥ 000,

(2.9)

where m is the total number of training points: m = |D |+ |N |, C is a regularizing constant that limits

the influence of each misclassified conformation (Vapnik, 1999; Burges, 1998; Schölkopf, 2002; Vapnik

and Chervonenkis, 1974), and the m×m diagonal matrix of signs Ds with +1 or −1 along its diagonal

indicating the membership of each point Ai in the classes +1 or−1; and eee is an m-vector with 1 at each entry.

The variable ξi is a measurement of error for each input vector with respect to the solution: ξi = 1+yiH(ccci),

where yi =−1 if i is a native protein, and yi =+1 if i is a decoy.

2.2.5 Rectangle kernel and reduced support vector machine (RSVM).

The use of nonlinear kernels on large datasets typically demands a prohibiting size of the computer

memory in solving the potentially enormous unconstrained optimization problem and the use of large data

set not only need costly storage and expensive time to evaluate new contact vector ccc. To attack these difficult

problems, the reduced support vector machines (RSVM) (Lee and Mangasarian, 2001) use a very small

random subset of the training set to build a rectangular kernel matrix, instead of using the conventional

m×m kernel matrix K(A,A) in (Equation 2.9).

This model can achieve about 10% improvement on test accuracy over conventional support vector

machine with random data sets of sizes between 1−5% of the original data (Lee and Mangasarian, 2001).
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The small subset can be regarded as a basis set in our study. Suppose that the number of contact vectors in

our basis set is m̄, with m̄�m. We denote Ā as an m̄×d matrix, and each contact vector from the basis set

is represented by a row vector of Ā. The resulting kernel matrix K(A, Ā) from A and Ā has size m× m̄. Each

entry of this rectangular kernel matrix is calculated by K(ccci, c̄cc j), where cccT
i and c̄ccT

j are rows from A and Ā

respectively. The RSVM is formulated as the following quadratic program:

min
ᾱαα∈Rm̄

+, b∈R, ξξξ∈Rm̄

C
2

ξξξ ·ξξξ +
1
2
(ᾱαα · ᾱαα +b2)

subject to Ds(K(A, Ā)D̄sᾱαα +beee)+ξξξ ≥ eee

ξξξ ≥ 000,

(2.10)

where D̄s is the m̄× m̄ diagonal matrix with +1 or −1 along its diagonal, indicating the membership of

each point Āi in the classes +1 or −1; and eee is an m-vector with 1 at each entry. As shown in (Lee and

Mangasarian, 2001), the zero level set surface of the fitness function is given by

H(ccc) = K(ccc, Ā)D̄sᾱαα +b = ∑
cccD∈Ā

ᾱDe−γ‖ccc−cccD‖2− ∑
cccN∈Ā

ᾱNe−γ‖ccc−cccN‖2
+b = 0, (2.11)

where (ᾱαα,b) ∈ Rm̄+1 is the unique solution to (Equation 2.10). This surface discriminates native proteins

against from decoys. Besides the rectangular kernel matrix, the use of 2-norm for the error ξξξ and an extra

term b2 in the objective function of (Equation 2.10) distinguish this from the conventional support vector

machine formulation.
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2.2.6 Smooth Newton method.

In order to solve equation (Equation 2.10) efficiently, an equivalent unconstrained nonlinear program

based on the implicit Lagrangian formulation of (Equation 2.10) was proposed in (Fung and Mangasarian,

2003), which can be solved using a fast Newton method. We modified the implicit Lagrangian formulation

and obtain the unconstrained nonlinear program for the unbalanced RSVM in equation (Equation 2.10).

The Lagrangian dual of (Equation 2.10) is now (Mangasarian, 1994):

min
ᾱαα∈Rm̄

+

1
2

ᾱαα · (Q+ D̄s(K(A, Ā)T K(A, Ā)+ eeeeeeT D̄s)ᾱαα− eee · ᾱαα, (2.12)

where Q = I/C ∈ Rm̄×m̄, and I ∈ Rm̄×m̄ is unit matrix. Note that Rm̄
+ is the set of nonnegative m̄-vectors.

Following (Fung and Mangasarian, 2003), an equivalent unconstrained piecewise quadratic minimization

problem of the above positively constrained optimization can be derived as follows:

min
ᾱαα∈Rm̄

L(ᾱαα)

= min
ᾱαα∈Rm̄

1
2

ᾱαα ·Qᾱαα− eee · ᾱαα +
1
2

β (‖(−βᾱαα +Qᾱαα− eee)+‖2−‖Qᾱαα− eee‖2).

(2.13)

Here, β is a sufficiently large but finite positive parameter to ensure that the matrix β I −Q is positive

definite, where I ∈ Rm̄×m̄ is a unit matrix, and the plus function (·)+ replaces negative components of a

vector by zeros. This unconstrained piecewise quadratic problem can be solved by a Newton method in

a finite number of steps (Fung and Mangasarian, 2003). Newton method requires the information of the
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gradient vector5L(ᾱαα)∈Rm̄ and the generalized Hessian ∂ 2L(ᾱαα)∈Rm̄×m̄ of L(ᾱαα) at each iteration. They

can be calculated using the following formulae (Fung and Mangasarian, 2003):

5L(ᾱαα) = (Qᾱαα− eee)+ 1
β
(Q−β I)((Q−β I)− eee)+− 1

β
Q(Qᾱαα− eee)

= (β I−Q)
β

((Qᾱαα− eee)− ((Q−β I)ᾱαα− eee)+),
(2.14)

and

∂
2L(ᾱαα) =

β I−Q
β

(Q+diag((Q−β I)ᾱαα− eee)∗(β I−Q)), (2.15)

where diag(·) denotes a diagonal matrix and (ααα)∗ denotes the step function, i.e., (αi)∗ = 1 if αi > 0; and

(αi)∗ = 0 if αi ≤ 0.

The main step of Newton method is to solve iteratively the system of linear equations

−5L(ᾱαα i)+∂
2L(ᾱαα i)(ᾱαα i+1− ᾱαα

i) = 000, (2.16)

for the unknown vector ᾱαα
i+1.

We present below the algorithm, whose convergence was proved in (Fung and Mangasarian, 2003). We

denote ∂ 2L(ᾱαα i)−1 as the inverse of the Hessian ∂ 2L(ᾱαα i).

Start with any ᾱαα
0 ∈ Rm̄. For i = 0,1...:

(i) Stop if5L(ᾱαα i−∂ 2L(ᾱαα i)−15L(ᾱαα i)) = 0.



23

(ii) ᾱαα
i+1 = ᾱαα

i−λi∂
2L(ᾱαα i)−15L(ᾱαα i) = ᾱαα

i +λidddi, where λi = max{1, 1
2 ,

1
4 , · · ·} is the Armijo stepsize

(Nocedal and Wright, 1999) such that

L(ᾱαα i)−L(ᾱαα i +λidddi)≥−δλi5L(ᾱαα i) ·dddi, (2.17)

for some δ ∈ (0, 1
2), and dddi is the Newton direction

dddi = ᾱαα
i+1− ᾱαα

i =−∂
2L(ᾱαα i)−15L(ᾱαα i), (2.18)

obtained by solving (Equation 2.16).

(iii) i = i+1. Go to (i) .

2.3 Computational Experiments

2.3.1 Determination of count vector by alpha shape.

Since protein molecules are formed by thousands of atoms, their shapes are complex. In this study, we

use the count vector ccc of pairwise contact interactions derived from the edge simplexes of the alpha shape of

a protein structure, where only nearest neighbor atoms in physical contacts are identified. The advantages

of this approach are elaborated in (Li et al., 2003). We refer to references (Edelsbrunner, 1993; Liang et al.,

1998) for further theoretical and computational details.
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2.3.2 Relationship between number of contacts and length of protein.

We found that there is a relationship between the number of total contacts of a protein and the length

of the protein. A linear regression on the relationship between the number of total contacts and the length

of the protein gives the following equation,

Ncontacts = 3.090 ·Lprotein−76.182, (2.19)

where Ncontacts is the number of contacts for a protein, and Lprotein is the number of the protein residues.

To eliminate the influence of the length of protein, we normalize the number of contacts for each type of

pair-wise contact of a protein using Equation 2.19.

2.3.3 Generating sequence decoys by threading.

We followed Maiorov and Crippen (Maiorov and Crippen, 1992) and used gapless threading to generate

a large number of decoys for a simplified test of protein design. We threaded the sequence of a larger protein

through the structure of a smaller protein, and obtained sequence decoys by mounting a fragment of the

native sequence from the large protein to the full structure of the small protein. We therefore had a set of

sequence decoys (sssN ,aaaD) for each native protein (sssN ,aaaN) (Fig 2). Because all native contacts were retained,

such sequence decoys are quite challenging. This is unlike folding decoys generated by gapless threading

(Hu et al., 2004).

2.3.4 Dataset.

We used a list of 1,515 protein chains compiled from the PISCES server (Wang and Dunbrack, 2003).

Protein chains in this data set have pairwise sequence identity < 20%, With its structural resolution by
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... ...... ...

... ...... ...

Figure 2: Decoy generation by gapless threading. Sequence decoys can be generated by threading the

sequence of a larger protein to the structure of an unrelated smaller protein.

crystallography and has a resolution ≤ 1.6 Å, and the R-factor ≤ 0.25. We removed incomplete proteins

(i.e. those with missing residues), and proteins with uncertain residues (those denoted as ASX, GLX, XLE,

and XAA). We further removed proteins with less than 46 and more than 500 amino acids. In addition,

we removed protein chains with more than 30% extensive inter-chain contacts. The remaining set of 1,228

proteins are then randomly divided into two sets. One set includes 800 proteins and the other one includes

428 proteins. Using the sequence threading method, we generated 36,823,837 non-protein decoys, together

with 800 native proteins as the training set, and 11,144,381 decoy non-proteins with 428 native proteins as

the test set.
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2.3.5 Selection of matrix A for iterative training.

We used only a subset of the 36 million decoys and native structures so they will fit into the computer

memory during training. These structures formed the data matrix A, which will be used to construct the

kernel matrix K(A, Ā). We used a heuristic iterative approach to construct the matrix A and Ā during each

iteration.

Initially, we randomly selected 10 decoys from the set of decoys D j for each of the j-th native protein.

We have then m ≈ 8,000 decoys for the 800 native proteins. We further chose only 1 decoy from the

selected 10 decoys for each native protein j. These 800 decoys were combined with the 800 native proteins

to form the initial matrix A. The contact vectors of a subset of 480 native proteins (60% of the original 800

proteins) and 320 decoys (40% of the 800 selected decoys) were then randomly chosen to form Ā. An initial

fitness function H(ccc) was then obtained using A and Ā. The fitness values of all 36 million decoys and the

800 native proteins were then evaluated using H(ccc). We futher used two iterative strategies to improve

upon the fitness function H(ccc).

[ Strategy 1] In the i-th iteration, we selected the subset of misclassified decoys from D j associated

with the j-th native protein and sorted them by their fitness value in descending order, so the missclassified

decoys with least violation, namely, the negative but smallest absolute values in H(ccc), would be on the top

of the list. If there were less than 10 misclassified decoys, we added top decoys that were misclassified in the

previous iteration for this native protein, if they exist, such that each native protein would have 10 decoys.

A new version of the matrix A was then constructed using these 8,000 decoys and the corresponding

800 native proteins. To obtain the updated Ā, From these 8,800 contact vectors, we randomly selected 480

native proteins (60%) and 3,200 unpaired decoy non-proteins (40%) to form Ā.
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The iterative training process was then repeated until there was no improvement in the classification of

the 36 million decoys and the 800 native proteins from the training set. Typically, the number of iterations

was about 10. In subsequent studies, we experimented with different percentage of selected decoys, ranging

from 10% to 100% to examine the effect of the size of Ā on the effectiveness of the fitness function H(ccc).

[ Strategy 2] In the i-th iteration, we selected the top 10 correctly classified decoys sorted by their fitness

value in ascending order for each native protein, namely, those correctly classified decoy with positive but

smallest absolute values are selected. These contact vectors of 8,000 selected decoys were combined with the

800 native proteins to form the new data matrix A.

To construct Ā, we first selected the most challenging native proteins by taking the top 80 correctly

classified native proteins (10%) sorted by their fitness value in descending order, namely, those that were

negative but with the smallest absolute values in H(ccc). We then randomly took 400 native proteins (50%)

from the rest of the native protein set, so altogether we had 480 native proteins (60%). Similarly, we selected

the top one decoy that was most challenging from the 10 chosen decoys in A for each native protein, namely,

the top decoy that is correctly classified with positive but smallest value of H(ccc). We then randomly selected

3 decoys for each native protein from the remaining decoys in A to obtain 3,200 decoy non-proteins (40%).

The matrix Ā was then constructed from the selected 480 native proteins and 3,200 decoy non-proteins.

The iterative training process was repeated until there was no improvement in classification of the 36 million

decoys and 800 native proteins in the training set. Typically, the number of iterations was about 5.

In subsequent studies, we experimented with different choice of challenging native proteins. The se-

lection ranges from the top 10% to 60% most challenging native proteins. The choice of the challenging
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decoys was also varied, where we experimented with choosing the top one to the top four most challenging

decoys for each native protein, while the number randomly selected decoys varied from three to zero.

2.3.6 Learning parameters.

There were two important parameters: the constant γ in the kernel function e−γ||ccci−ccc‖2
, and the cost

factors C, which was used during training so errors on positive examples were adjusted to outweigh errors on

negative examples. Our experimentation showed that γ = 5.0× 10−5 and C = 1.0× 104 were reasonable

choices.

2.3.7 Timing information.

The algorithm was implemented in the C language. It called Lapack(Anderson et al., 1999) and used

LU decomposition to solve the system of linear equations. It also called an SVD routine to determine the

2-norm of a matrix for calculating β = 1.1(1/C + ||DA− eee||22). Once matrices A and Ā were specified,

the fitness function H(ccc) could be derived in about 2 hours and 10 minutes on a 2 Dual Core AMD

Opteron(tm) Processors of 1,800 MHz with 4 Gb memory for an A of size 8,800× 210 and an Ā of size

3,680× 210. The evaluation of the fitness of 14 million decoys took 2 hours and 10 minutes using 144

CPUs of a Linux cluster (2 Dual Core AMD Opteron(tm) Processors of 1.8 GHz with 2 Gb memory for

each node). Because of the large size of the data set, the bottleneck in computation is disk IO.

2.3.8 Fβ score.

We use the Fβ score to measure the performance of fitness function in classification. The Fβ score is

defined as

Fβ = (1+β 2)
Precision×Recall

β 2×Precision+Recall
(2.20)
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where Precision = T P/(T P+FP) and Recall = T P/(T P+FN). T P is true positive, FP is false

positive, and FN is false negative. Since the imbalanced data set between the native proteins and the decoys,

we put more weight on small size of native proteins, therefore we set β = 10. The Fβ score is calculated for

two different strategies on both training set and test set.

Comparing these two strategies by Fβ score, we found the strategy 2 (table TABLE III) has better

performance than the strategy 1 (table TABLE II). In strategy 2, We may select the fitness function of

preselecting top 1 decoys and top 50% native proteins as best candidate function to classify native proteins

and decoys.

2.4 Results

2.4.1 Performance in discrimination.

We used the set of 428 natives proteins and 11,144,381 decoys for testing the designed fitness function.

We took the sequence aaa as the predicted sequence such that ccc = f (sssN ,aaa) has the best fitness value.

Sequence decoys obtained by gapless threading were quite challenging, since all native contacts of the

protein structures were maintained, and decoy sequences were from real proteins. In a previous study,

we showed that no linear fitness function can be found that would succeed in the challenging task of

identifying all 440 native sequences in the training set (Hu et al., 2004). Because we are unaware of any other

development of design fitness functions amenable for high-throughput tests, and frequently no distinctions

were made between protein folding potential and protein design fitness function, we compared our fitness

function with several well-established scoring functions developed for protein folding.

Here we succeeded in obtaining a simplified nonlinear fitness function for protein design that are capable

of discriminating 796 of the 800 native sequences (Table TABLE I). It also succeeded in correctly identifying
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Number of misclassifications

Method Training set Test set

800/36M 440/14M 428/11M 201/3M

Nonlinear function 4/988 NA 20/218 NA

Tobi et. al. NA 192/39,583 NA 44/53,137

Bastolla et. al. NA 134/47,750 NA 58/29,309

Miyazawa & Jernigan NA 173/229,549 NA 87/80,716

TABLE I: The number of misclassifications using simplified nonlinear fitness function, optimal linear scor-

ing functions taken as reported in (Tobi et al., 2000; Bastolla et al., 2001), and Miyazawa-Jernigan statistical

potential (Miyazawa and Jernigan, 1996) for both native proteins and decoys (separated by “/”) in the test

set and the training set. The simplified nonlinear function is formed using a basis set of 3,680 (480 native

+ 3,200 decoy) contact vectors derived using strategy 2.
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95% (408 out of 428) of the native sequences in the independent test set. Results for other methods were

taken from literature obtained using much smaller and less challenging data set. Overall, the performance

of our method was better than results obtained using optimal linear scoring function taken as reported in

(Tobi et al., 2000) and in (Bastolla et al., 2001), which succeeded in identifying 78% (157 out of 201) and

71% (143 out of 201) of the test set, respectively. Our results are also better than the Miyazawa-Jernigan

statistical potential (Miyazawa and Jernigan, 1996) (success rate 58%, 113 out of 201). This performance

is also comparable with a more complex nonlinear fitness function, with > 5,000 terms reported in (Hu et

al., 2004), which succeeded with a correct rate of 91% (183 out of 201).

2.4.2 Effect of the size of the basis set Ā using strategy 1.

The matrix Ā contains both proteins and decoys from A and its size is important in discrimination of

native proteins from decoys. In our fitness function, Gaussian kernels centered around these selected contact

vectors were used as basis set to interpolate the global landscape of protein design.

We examined the effects of different sizes of Ā using strategy 1. For a data matrix A consisting of

800 native proteins and 8,000 sequence decoys derived following the procedure described earlier, we tested

different choice of Ā on the performance of discrimination. With the data matrix A, we fixed the selection

of the 480 native proteins (60%), and experimented with random selection of different number of decoys,

ranging from 800 (10%) to 8,000 (100%) to form different Ās.

The results of classifying both the training set of 800 native proteins with 36 million decoys and the test

set of 428 native proteins with 11 million decoys are shown in Table TABLE II. When 60% (480) native

proteins and 100% (8,000) decoys are included, there were only 5 native proteins misclassified in the test

set and 24 native proteins in the training set.
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2.4.3 Effect of the size of the pre-selection of dataset using strategy 2

We now then explored the effects of different choices in constructing matrix Ā using strategy 2. We

varied our selection of the most challenging native proteins from the top 10% to 60%, and varied selection

of the most challenging decoys from the top one to the top four decoys for each native protein, as described

earlier. Results are shown in Table TABLE III. We found that the performance of the discrimination of both

the training set and test set had change when either native proteins selection rate was changed from 10% to

60%, or decoys selection rate is changed from the top 1 to the top 4. Overall, these results suggest that for

the blind test developed here, a fitness function with good discrimination can be achieved with about 480

native proteins and 3,200 decoys, along with 400 pre-selected native proteins and 800 pre-selected top-1

decoys. Our final fitness function used in Table TABLE I was constructed using a basis set of 3,680 contact

vectors. We also observed that the average number of iterations was about 5 using strategy 2, which is much

faster than strategy 1.

2.5 Discussion

In this study, we have developed a simplified nonlinear kernel function for fitness landscape of protein

design using a rectangular kernel and a fast Newton method. The results in a blind test are encouraging.

They suggest that for a simplified task of simultaneously designing 428 proteins from a set of 11 million

decoys, the search space of protein shape and sequence can be effectively parametrized with just about 3,680

basis set of contact vectors. It is likely that the choice of matrix A is important. We showed that once A

is carefully chosen, the overall design landscape is not overly sensitive to the specific choice of the basis set

contact vectors for Ā.
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The native protein list in both training and test set come from the PISCES server, which has the lowest

pair-wise identity (20%), finer resolution cutoff (1.6 Å) , and lower R-factor cutoff (0.25). This native

dataset is better than previous studies conducted on a (Hu et al., 2004) dataset derived from the WHATIF

database, which has looser constraints: pair-wise sequence identity < 30%, resolution cutoff < 2.1 Å, and R-

factor cutoff < 2.1. We compared our results with classic studies of Tobi et. al. (Tobi et al., 2000), Bastolla et.

al. (Bastolla et al., 2001) and Miyazawa and Jernigan (Miyazawa and Jernigan, 1996). Although the training

set and test set are different, we observed that our simplified nonlinear function can detect 95% (208) native

proteins from 11 million decoys and only misclassified 218 decoys as native proteins, which outperformed

Tobi et. al. (Tobi et al., 2000) (78% correct rate for native proteins, 53,137 misclassification for decoys),

Bastolla et al. (Bolon and Mayo, 2001) (71% correct rate for native proteins, 29,309 misclassification for

decoys), and Miyazawa and Jernigan (Miyazawa and Jernigan, 1996) methods (57% correct rate for native

proteins, 80,716 misclassification for decoys) on much smaller blind test set of 201 native proteins and 3

million decoys.

As protein length is linearly correlated with the total number of contacts, we found that length correc-

tions were important for improving the fitness function.

We developed two strategies to search for improving fitness landscapes. Strategy 1 mostly uses misclas-

sified decoys in the next iteration of construction of matrix A. On average, 10 iteration is necessary to arrive

at a good fitness function, which had excellent performance of only 5 misclassifications for the training data

set. The misclassification rate in the test set is comparable to other fitness functions (Tobi et al., 2000; Bas-

tolla et al., 2001; Miyazawa and Jernigan, 1996). Strategy 2 selected the most challenging decoys by the

fitness value landscape in the matrix A for the next iteration. We pre-selected certain percentage of the
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number of native proteins and certain number of decoys before generating the basis set matrix Ā. Overall,

strategy 2 performs better than strategy 1, not only in reducing both native proteins and decoys misclassifi-

cations in the blind test set, but also in speeding up the search process in deriving the final fitness function

with the number of iterations reduced from 10 to 5. With Strategy 2, the updated fitness landscape is only

adjusted by challenging decoys, it can identify the most challenging decoys and native proteins, leading to

improvement in the fitness landscape in the next iteration.

Our final fitness landscape can correctly classify most of the native proteins, except 4 proteins (1ft5

chain A, 1gk9 chain A, 2p0s chain A, 2qud chain A) in the training set and 20 proteins in the test set

( TABLE IV). Among misclassified proteins, 4 of which have > 20% contacts due to inter chain interactions.

In addition, 14 misclassified proteins have metal ions and organic compounds bound that provide additional

conformation stability. The covalent bonds between these organic compounds, metal ions and the rest of

the protein are not reflected in the protein description. It is likely that substantial or strong contacts with

other protein chains, DNA, or co-factors alter the conformation of the protein. The conformations of these

proteins may be different upon removal of these contacts. Altogether, 21 of the 24 misclassified proteins

have explanations, and the fitness function truly failed only for 3 proteins.

The representation of protein structures will likely have important effects on the success of protein de-

sign. The approach of reduced nonlinear function is general and applicable when alternative representations

of protein structures are used, e.g., adding solvation terms, including higher-order interactions.



35

2.6 Conclusion

We showed that a simplified nonlinear fitness function for protein design can be can be obtained using a

simplified nonlinear kernel function via a finite Newton method. We used a rectangular kernel with a basis

set of native proteins and decoys chosen a priori.

We succeeded in predicting 408 out of the 428 (95%) native proteins and misclassified only 218 out

of 11 million decoys in a large blind test set. It should be noted that the test sets used were different, as

other method were based on relatively small (201 native proteins and 3 million decoys) blind test sets. Our

result outperformed statical linear scoring function ( 87 out of the 201 misclassifications, 57% correct rate)

and optimized linear function (between 44 and 58 misclassifications out of the 201, 78% and 71% correct

rate). The performance was also comparable with results obtained from a far more complex nonlinear

fitness function with > 5,000 terms (18 misclassifications, 91% correct rate). Our results further suggest

that for the task of global sequence design of 428 selected proteins, the search space of protein shape and

sequence can be effectively parametrized with just about 3,680 carefully chosen basis set of native proteins

and non-native protein decoys.

The rectangle kernel matrix with a finite Newton method works well in constructing fitness landscapes.

In addition, we showed that the overall landscape is not overly sensitive to the specific choice of dataset.

Overall, our strategy of reduced kernel can be generalized to constructing other types of fitness functions.
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Number of misclassifications

Select native proteins Select decoys Iteration Training set Test set

rate rate 800/36M Fβ 428/11M Fβ

60% 0% 4 21/1,374 0.958 26/387 0.931

60% 10% 5 14/922 0.972 24/216 0.940

60% 20% 6 16/902 0.969 28/250 0.930

60% 30% 6 10/1,037 0.975 29/304 0.926

60% 40% 10 16/812 0.970 27/199 0.933

60% 50% 10 13/1,112 0.971 25/269 0.936

60% 60% 12 15/802 0.972 27/237 0.932

60% 70% 9 13/947 0.973 24/256 0.939

60% 80% 8 11/1,078 0.973 28/278 0.929

60% 90% 9 12/690 0.977 27/170 0.934

60% 100% 5 5/2,681 0.962 24/609 0.931

TABLE II: Effects of the size of basis set Ā on performance of discrimination using strategy 1. The number

of misclassifications of both native proteins and decoys (separated by “/”) in both training set and test set

are listed.
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Number of misclassification

Pre-select native proteins Pre-select decoys Iteration Training set Test set

top top 800/36M Fβ 428/11M Fβ

0% 1 6 8/1,010 0.978 25/212 0.938

10% 1 5 5/997 0.982 24/242 0.939

20% 1 6 9/625 0.981 26/174 0.936

30% 1 6 9/689 0.980 24/211 0.940

40% 1 6 8/869 0.980 25/218 0.937

50% 1 5 4/988 0.983 20/218 0.949

60% 1 5 6/1,039 0.980 24/280 0.938

10% 1 5 5/997 0.982 24/242 0.939

10% 2 5 6/1,270 0.977 22/372 0.941

10% 3 7 9/934 0.978 22/247 0.944

10% 4 5 5/1,071 0.981 24/210 0.944

TABLE III: Test results using different size both for the pre-selected native proteins, which changes from

10% to 60% while fixing the pre-selected decoys top 1, and the pre-selected decoys changes from the top

1 to the top 4 while fixing pre-selected native proteins 10% using strategy 2. Misclassifications in two tests

using different numbers of native proteins and decoys are listed (see text for details).
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CHAPTER 3

CHROMATIN STRUCTURE

3.1 Introduction

Interactions among different parts of chromosomes are a fundamental component of any physical model

of gene and genome regulation. It is well-known that genes are widely dispersed linearly along chromatin.

Gene regulation is not only controlled by linear proximity, but also by long-distance interactions (Gibcus

and Dekker, 2013). Recent studies suggested that functional elements that are far away from each other on a

linear scale cooperate to regulate gene expression by engaging in long-range chromatin looping interactions

(van Heyningen and Hill, 2008). However, how these distal functional elements are assembled inside the

nucleus is still unknown. Understanding the spatial organization of chromatin is a key to gain understanding

of the mechanism of gene activities, nuclear functions, and maintenance of epigenetic of cells (Fraser and

Bickmore, 2007). Developing a generic approach to determine the spatial organization of chromatin is

essential for identification of long-range relationships between genes and their distant regulatory elements.

Recently, the development of chromosome conformation capture (3C) technologies (Dekker et al.,

2002; Hagège et al., 2007; Abou El Hassan and Bremner, 2009) give us capability to study the three-

dimensional structure of chromosome. and its high-throughput modifications (Simonis et al., 2006; Zhao

et al., 2006; Würtele and Chartrand, 2006; Lomvardas et al., 2006; Ling et al., 2006; Bantignies et al.,

2011; Dostie et al., 2006; Umbarger et al., 2011; Lieberman-Aiden et al., 2009; Duan et al., 2010; Tanizawa

et al., 2010; Kalhor et al., 2012; Horike et al., 2005; Fullwood et al., 2009; Tiwari and Baylin, 2009;

39
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Schoenfelder et al., 2010). Dekker et al. use 3C methods (Dekker et al., 2002): formaldehyde cross-linking,

fragment DNA, ligation proximity loci, and with next generation sequencing technologies equipped us to

map interactions (Duan et al., 2010; Lieberman-Aiden et al., 2009). 3C-based assays are much powerful in

that it can discover chromatin loops on chromosome conformation.

Output of 3C-based methods could be used to estimate the overall 3D folding of chromatin. This idea

is based on the hypothesis that the interaction frequency of a pair of loci, is inversely related to the average

spatial distance between them.

Recently, several new approaches have been developed that remove biases in the 3C-assay contact maps

(Baù et al., 2010; Yaffe and Tanay, 2011; Hu et al., 2012) by using a more deterministic approach for

3D modeling of genomes and genomic domains (Duan et al., 2010; Fraser et al., 2009; Jhunjhunwala

et al., 2008; Baù et al., 2010). All these approaches have in common that, to the largest possible satisfy

the experimental interaction data, they developed diverse experiments (3C, 4C, 5C, HiC) (Duan et al.,

2010; Fraser et al., 2009; Jhunjhunwala et al., 2008) and computation to build 3D chromatin structure

(Baù et al., 2010). One important caveat of all these methods is that they ignore the importance of non-

specific physical interactions. In eukaryotic cells, chromatin is contained within the nuclues and most

of polymer theory does not consider this confinement effect (Lieberman-Aiden et al., 2009; Bohn et al.,

2007; Barbieri et al., 2012). Consequently the non-specific interactions arising from confinement effect are

omitted. Another important caveat of all models is inefficient sampling and expensive calculations based on

simplifying assumptions such as fractal structure (Lieberman-Aiden et al., 2009), random loop connections

(Heermann et al., 2012), or extensive simulation based on the 3C-assay data by assuming harmonic force
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between loci (Baù et al., 2010; Duan et al., 2010). All these approaches are time consuming, and do not

satisfy all the experimental constraints that would reflect real chromatin structures.

To overcome such biases and limitations, we developed a two steps approach that removes the non-

significant interactions from 5C experiments and then construct a physical model that satisfy the constraints

from significant interactions. In the 5C experiments (Baù et al., 2010) on a 500 kilo base (kb) α-globin

gene domain located near the left telomere of human chromosome 16 , Baù et al. used HindIII, a type II

site-specific deoxyribonuclease restriction enzyme which cleaves palindromic DNA sequence AAGCTT, to

cleave chromatin segment. They designed 30 forward and 25 reverse primers for paired-end sequencing at

the end of the HindIII sites to detect long range interactions between two targeted sets of genomic loci on

both GM12878 and K562 cells. An interaction can only happen between a reverse and forward primer.

We applied this approach to determine the higher order spatial organization and we developed differential

activation mechanism of a 500 kilo base (kb) α-globin gene domain based on the frequency matrix data

captured by the 5C experiments.

3.2 Physical model

We modeled chromatin fiber chain as a self-avoiding polymer consisting of beads that represent fiber

and its persistence length property.

Bystricky et al. did measurement on the chromatin persistence length, found that chromatin persistence

length = 170−220 nm, mass density ≈ 110−150 bp/nm (Bystricky et al., 2004).

There are also several studies suggesting that the persistence length of a chromatin is much lower than

170 nm (Langowski and Heermann, 2007; Dekker, 2008). In our model, we used 30 nm chromatin fiber

diameter and 150 nm persistence length as our model parameters.
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A canonical 30 nm chromatin fiber has a mass density of 11 nm/kb (Dekker, 2008). Each 30 nm bead

contains 2727 bp DNA. As a result, we represented the chromatin fiber as a self-avoiding walk polymer

chain that consists of beads and each bead has a diameter of 30 nm.

3.2.1 Obtaining significant interactions

We pursued a multistage data cleaning procedure. Our first step was to remove the biases from the 5C

data, and second step was removing random interactions from the data using a reference state.

3.2.1.1 Removing bias: short segments

The length of fragment is too long or too short will cause biase (Naumova et al., 2012). In this study,

we eliminate HindIII segments which are less than 2727 bp long, which is equivalent to a 30 nm diameter

sphere. Therefore, we removed 11 forward HindIII segments and 2 reverse HindIII segments from Baù et

al. 5C data (Baù et al., 2010). 19 forward HindIII segments and 23 reverse HindIII segments were kept.

3.2.1.2 Removing bias: proximity effects

To overcome proximity effects, we ignoreed the interactions between neighboring segments. For in-

stance, forward primer segment 1 has interaction frequency 5823 with reverse primer segment 2 in GM12878

cell, and 13686 in K562 cell. These interaction frequencies were discarded in both GM12878 and K562

cells to avoid bias. 5 proximity events were removed ( F1-R2, F10-R10, F11-R11, F24-R23, F28-R24,

F30-R25).

3.2.1.3 Removing bias: random model

3.2.1.3.1 From 5C data to polymer chain

For 500 kb α-globin gene domain chromatin fiber, we divided the chromatin fiber into different length

segments separated by 42 HindIII primer sites. Each primer site was represented by a bead and the distances
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between beads were approximately set to the persistence length. In some case, HindIII segments were smaller

than persistence length. In that case, the distance between beads were the size of that HindIII segments.

There were also cases where a HindIII segment was larger than the persistence length. In that case, we

created virtual primer sites such that divide the HindIII segment into small pieces by persistence length.

In the circos diagram, the inner thinest blue ring with bars represents the final division, the long black bar

denotes real primer sites and the short grey bar stands for virtual sites (Figure. 7 B). Therefore there are a

total of 54 sites along the chromatin fiber, meaning that the polymer chain is represented by 54 beads. As a

result, we grew a self-avoiding polymer within a sphere equivalent to the cell nucleus to create our reference

state.

3.2.1.3.2 Nucleus size

To estimate the diameter of the sphere that α-globin gene domain chromatin fiber would occupy, we

proportioned it to that of the whole human genome chromosome. The lymphoblast cell size varies from

10 to 20 µm (Rozenberg, 2002). A nucleus occupies about 10% of the total cell volume in a eucaryotic

cell (Alberts et al., 2007). the nucleus size from 4
3 π(D

2 )
3× 10% = 4

3 π(d
2 )

3, where D is the diameter of

cell which ranged from 10 to 20 µm, therefore nucleus diameter of 4.64 to 9.28 µm. Also, the human

entire genome has 6 billion pair of bases in diploid cells, (Chromosome size source: National Center for

Biotechnology Information. Human Reference Sequence from Build 33 of the Human Genome released

April 14, 2003). Therefore for 500 kb α-globin domain, we have
4
3 π( d

2 )
3

6,000,000,000 =
4
3 π( dα

2 )3

500,000 , where dα is the

diameter of the sphere that 500 kb α-globin gene domain chromatin fiber diameter would occupy. Finally

dα ranged from 203 to 405 nm, here we adopt dα = 330 nm.
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3.2.1.3.3 Refrence state

We used a three-dimensional self-avoiding walk polymer model to represent a chromatin conformation.

A length-n chromatin conformation was represented by a connected chain xxxn = (x1,x2, . . . ,xn), where the

ith node of the conformation is located at the site xi = (xi1,xi2,xi3) in the three-dimensional space and each

chain was connected by varies length of segment.

For α-globin gene domain chromatin conformations, the nodes position should satisfy some constraints.

In our C-SAC model, these nodes are limited inside the 330 nm sphere with self-avoiding, distance, and

loop constraints. At the beginning, the starting node randomly grows inside the 330 nm sphere. Second,

Euclidean distance between neighbouring nodes xi and xi+1 must be same as the physical model derived.

Third, the direction of the vector xi+1− xi should be uniformly distributed in the three-dimension space.

In this study, we used the Yershova (Yershova et al., 2010) method to generate 640 uniform deterministic

sample nodes over the rotation group SO(3) in three-dimension space. To mimic the rod segment, we

interpolated a certain number beads of diameter 30 nm between xi and xi+1, for example, if the length of

xi+3 and xi+4 is 150 nm, then there would be four beads of diameter 30 nm between these 2 nodes. Fourth,

we enforce the self-avoiding constraint. Any candidate node was not permitted to be closer than 30 nm with

the partial chain represented by 30 nm beads (Figure 3). Fifth, we restricted that none of the nodes can go

outside of the 330 nm sphere which is α-globin gene domain volume size.

3.2.1.3.4 Sequential Importance Sampling for reference state

In reality, exhaustive enumeration of all three-dimensional self-avoiding walk polymers to discover geo-

metrically complexity and interesting features is computationally impossible, especially for long chain poly-

mers, because the number of possible self-avoiding walk polymers increases exponentially with chain length.
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Figure 3
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Figure 3 (previous page): Illustration of the bead rod self-avoiding walking model. We have one partial chain

including consecutive connected segments Si,Si+1,Si+2, and corresponding nodes xi,xi+1,xi+2,xi+3. The

segment Si,Si+1,Si+2 length is 70, 140 and 90 individually. Each segment is evenly interpolated with some

certain 30 nm balls, Si is inserted one 30 nm ball between xi and xi+1, Si+1 is inserted three 30 nm balls

between xi+1 and xi+2, while Si+2 is inserted two 30 nm balls between xi+2 and xi+3. The next segment Si+3

connected by node xi+3 is 150 nm. Given the location of xi+3, for example, we have uniformly distributed

160 candidate nodes on a sphere of radius 150 nm satisfying the segment distance 150 nm restriction. We

randomly pick one candidate node which has no conflicts with previous nodes, including the interpolated

balls. Then we continue interpolation of four 30 nm balls on segment Si+3. For clarity, we only show a

diagram of partial segments from Si to Si+3, ignoring the previous segments between S1 and Si. The blue

balls represent one partial chain, each ball diameter is 30 nm. The first three balls include xi and xi+1 nodes

represent segment Si, Si+1 and Si+2 are represented by five and four 30 nm balls respectively. The green and

red balls represent candidate nodes with a distance 150 nm with node xi+3.
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(previous page continue): For clarity in this cartoon, we do not show all 160 candidate nodes, we clip one

plane of the sphere of radius 150 nm, take a inside view of sphere to show the relationship between the

candidate nodes and previous segments represented by 30 nm balls. The grey lines indicate the segments

between candidate nodes and node xi+3 which have length 150 nm. There are two red 30 nm balls have

collided with the middle interpolated ball of the segment Si+1. In our bead rod self-avoiding walking model,

we do not consider these red balls conflicting with previous partial chain, therefore we random pickup one

node xi+4 among the 158 candidate nodes as the segment Si+3 other end, then interpolate 30 nm balls on

the segment Si+3. We iteratively grow the next segment from the newly partial chain end by above method.

The chain including all nodes and segments is inside one pre-defined sphere as well. In our calculation for

the α-globin gene domain, we uniformly generate 640 candidate nodes on certain sphere depending on the

growing segment length to randomly pick one to grow the chain. These random growing chain are always

located inside one 330 nm sphere.
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Monte Carlo methods are often used to generate samples from all possible conformations to gain estima-

tion of feature statistics from these generated samples. When chain length becomes large, however, the

direct generation of self-avoiding walk polymers with rejecting method from the uniform distribution of

all possible self-avoiding walk polymers becomes difficult. In two dimensional lattice space, for instance,

the success rate σN of generating self-avoiding walk polymers decreases exponentially along the number of

monomer N, σN ≈ ZN/(4×3N−1). ZN is the normalized constant, which is the total number of different

self-avoiding walk polymers with N monomers. For N = 20, this rate is approximately σ ≈ 21.6%, while

for N = 48, this number decreases to 0.79% (Liu, 2008). The success rate σN will become very low in the

three-dimensional bead rod self-avoiding walk polymer model. To conquer this attrition problem, Rosen-

bluth and Rosenbluth introduced biased sampling method to correct the bias samples by weighting them,

and satisfy the uniform distribution of the polymers when growing one chain (Rosenbluth and Rosenbluth,

1955). The essential idea of the method is to iteratively grow one more monomer for a t-polymer chain

after t−1 successive steps with self-avoiding walk, until reaching the desired length t = n. The position of

the tth monomer is influenced by the current t−1 polymer chain conformation. If there are nt candidate

positions (i.e. unoccupied placements) for the tth monomer, we randomly selected any one of the nt sites.

Nevertheless, there is a limitation of the resulting samples that is biased to more compact conformations

and does not strictly conform to the uniform distribution. We assigned a weight to adjust for this bias. The

weight was recursively set as wt = ntwt−1 in the Rosenbluth chain growth method. Then we could obtain

any statistics from these weighted samples.

Liu and Chen (Liu and Chen, 1995) extended the Rosenbluth biased sample growth method (Rosen-

bluth and Rosenbluth, 1955) by setting up a general framework of Sequential Importance Sampling (SIS)
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method. More flexible and effective algorithms can be established from this framework. The SIS chain

growth strategy (Liu and Chen, 1995; Liu, 2008) is being wildly used, and it is successful when ap-

plied to proteins structure studies (Liang et al., 2002; Lin et al., 2008). In the context of growing poly-

mer chain, SIS can be formulated as follows. Let (x1, . . . ,xt) be the position of the t monomers in

a chain of length t. Let π1(x1),π2(x1,x2), . . . ,πt(x1, . . . ,xt) be a sequence of target distributions with

π(x1, . . . ,xn) = πn(x1, . . . ,xn) being the final target distribution from which we wish to draw an infer-

ence from. Let gt+1(xt+1|x1, . . . ,xt) be a sequence of trial distributions which indicates the growing of the

polymer chain. Then we have:

The configurations of successfully generated polymers ensemble {(x( j)
1 , . . . ,x( j)

n )}m
j=1 and their associ-

ated weights {w( j)
n }m

j=1 can be used to estimate any properties of the polymer chains, such as radius of

gyration, compactness, and local environment. The objective inference µh = Eπ [h(x1, . . . ,xn)] is estimated

with

µ̂h =
∑

m
j=1 w( j)

n ·h(x( j)
1 , . . . ,x( j)

n )

∑
m
j=1 w( j)

n

, (3.1)

for any integrable function h of interests.

The Rosenbluth method (Rosenbluth and Rosenbluth, 1955) is a special case of SIS. Its target distribu-

tions πt(x1, . . . ,xt) is the uniform distribution of all self-avoiding walking polymer chains of length t. Its

sampling distribution gt+1(xt+1|x1, . . . ,xt) is the uniform distribution among all nt+1(x1, . . . ,xt) unoccu-

pied neighbouring sites of the last monomer xt , and the weight function is

w(x1, . . . ,xt ,xt+1) = w(x1, . . . ,xt) ·nt+1(x1, . . . ,xt).
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Algorithm 1 Sequential Important Sampling algorithm for random model

1: Draw x( j)
1 , j = 1, . . . ,m from g1(x1)

2: Set the incremental weight w( j)
1 = π1(x

( j)
1 )/g1(x

( j)
1 )

3: for t = 1→ n−1 do

4: for j = 1→ m do

// Sampling for the (t +1)th monomer for the jth sample

5: Draw position x( j)
t+1 from gt+1(xt+1|x( j)

1 , . . . ,x( j)
t )

// Compute the incremental weight

6: u( j)
t+1←

πt+1(x
( j),...,x( j)

t+1
1 )

πt(x
( j)
1 , . . . ,x( j)

t ) ·gt+1(x
( j)
t+1|x

( j)
1 , . . . ,x( j)

t )

7: w( j)
t+1← u( j)

t+1 ·w
j
t

8: end for

9: Resampling

10: end for
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When there is no candidate positions for the (t + 1)th monomer to grow, the number of unoccupied

neighbouring sites nt+1 = 0. In this case, we cannot continue to grow the chain one monomer by one

monomer. We then discard the whole partial chain and regrow one new polymer chain. In the case of the

Rosenbluth method, no resampling is used. We generate 100,000 random bead rod self-avoiding walking

polymer chains as one ensemble.

3.3 Significant interactions for GM12878 and K562 cells

3.3.1 Remove non-specific interaction from 5C data

We remove the non-specific interactions from 5C data by using the random ensemble including 100,000

random polymer chains generated by using sequential importance sampling interaction frequencies among

primer sites in 5C data both for GM12878 and K562 cells are mapped to the node-node interaction in

physical model. We define the propensity propi j of node i and node j to be in spacial contact, and this is

modeled as an odds ratio. We have

propi j =
qi j

qR
i j
, , (3.2)

where the probability qi j =
ni j

n
is the probability of node i and node j to be in contact in real chromatin

fibers as measured in the 5C experiment. ni j is the interaction frequency between nodes i and j among

all experimental tests, and n is the total number of interaction frequencies in a cell type. The random

probability qR
i j =

∑k wkI(i, j)
∑i ∑ j ∑k wkI(i, j)

is the probability of node i and node j to be in contact in the reference

state. wk is the weight of kth chain in the ensemble, and I(i, j) is a indicator function when node i and j

has contact is 1 in distance threshold dc = 84 nm, otherwise 0.
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3.3.2 p-value

To test if the interaction between node i and node j is significant, we compare how many times ex-

perimental qi j less than bootstrapped qR
i j by bootstrapping 1000 times of 100,000 random chains with

replacement. Where qR
i jm

=
∑k′ wk′I(i, j)

∑i ∑ j ∑k′ wk′I(i, j)
, and wk′ is the weight of k′th random chain from the mth

bootstrapped 100,000 samples with replacement. The probability pi j of an interaction is:

pi j =
∑

M
m=1 I(qi j < qR

i jm
)

M
, (3.3)

where M = 1000, and I(·) is a indicator function when condition is satisfied is 1, otherwise 0. Then False

Discovery Rate (FDR) control is employed to correct multiple comparisons in these multiple hypothesis test.

Considering the genomic distance between primer sites has effect in final interaction frequency, we employed

FDR control on the groups where the genomic separation between nodes are K, where K = j− i is constant.

For each constant K, sort pi j ascendantly to get new p-value set {p(m)
i j }, such that p(1)i j 6 p(2)i j 6 · · ·6 p(m)

i j

are ordered, where m is the total number of the set {K|K = j− i, i and j is the node index of the α-globin

gene domain chain of physical model }. Then we use Hochberg adjustment method (Hochberg, 1988) to

adjust p-value p(m)
i j ,

p̃(l)i j =


p(m)

i j for l = m,

min(p̃(l+1)
i j , m

l p(l)i j ) for l = m−1, . . . ,1.
(3.4)

When the entire family of tests is considered, and the adjusted p-value is less than a significance level

α = 5%, we reject the null hypothesis. After the FDR is used for different K = 1 . . .53 nodes in the
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separation set, we obtain 132 and 83 significant interactions for GM12878 and K562 individually out of

total 426 interactions.

3.3.3 Mapping significant interactions to distance

We map the minimum of the propensity corresponding to the distance threshold dc = 84 nm, the

maximum of the propensity correspond to the collision distance µ = 30 nm, and assume the propensity

propi j versus spatial distance between i and j follows half Gaussian distribution,

propi j

max propi j
= exp

−(di j−µ)2

2σ2 ,and di j > µ. (3.5)

where σ = dc−µ√
2log

max propi j
min propi j

. Therefore from the Equation 3.5, we have the entry di j of the distance matrix D

between node i and node j, which has significant interaction as,

di j = µ +

√
2σ2 log

max propi j

propi j
,and propi j > 0. (3.6)

3.4 Growth model for α-globin gene domain

3.4.1 SIS algorithm to reconstruct 3D conformation of α-globin gene domain

In this study, we propose Sequential Importance Sampling algorithm for reconstructing the 3D confor-

mation of the α-globin gene domain based on the physical model and distance matrix. Besides generating

3D structures, we can also obtain physical properties of the α-globin gene domain ensembles.

Without loss of generality, one can get conformations by minimizing an error function measuring devi-

ation in distance from the distance matrix constraints.



54

E (xxx(k)n ) =

∑
(i, j)∈P

xxx(k)n

∣∣‖ xi− x j ‖ −di, j
∣∣

∑
(i, j)∈P

xxx(k)n

di, j
, (3.7)

where P
xxx(k)n

= {(i, j)| significant contact node pair i and j exist in the kth conformation xxx(k)n } contains

significant contact node pairs of kth conformation xxx(k)n and significant contact pair i and j has corresponding

distance is di j in which the distance constraints are partial and incomplete in the 5C data. Our objective is

to generate a set of conformations satisfying all distance constraints and following certain target distribution

π(xxx(k)n ),

π(xxx(k)n ) = exp(−E (xxx(k)n )) (3.8)

Let xxxt = (x1, . . . ,xt) be a vector for the partial chain node positions from node 1 to node t. The joint

trial distribution for a partial chain xxxt is

gt(xxxt) = g1(xxx1)g2(x2|xxx1) . . .gt(xt |xxxt−1).

where gt(xt |xxxt−1) is trial distribution in that given the previous nodes positions condition {xxxt−1|x1, . . . ,xt−1},

the possible positions xt with different probabilities for the node t may retain.

Following the principle of importance sampling (Marshall, 1956; Liang et al., 2002; Liu, 2008), We

assign a weight which is given by

w(xxx(k)n ) = π(xxx(k)n )/gn(xxx
(k)
n )
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to each conformation sample xxx(k), k = 1, . . . ,m, where gn(xxx(k)) is the full chain trial distribution. There-

fore we can estimate the expected mean value of the physical properties of the chromatin.

Eπ(h(xxxn))' ∑
m
k=1 w(xxx(k)n ) ·h(xxx(k)n )

∑
m
k=1 w(xxx(k)n )

,

To maintain the samples diversity, we generate sample conformations by adopting the Fearnhead et al.

framework (Fearnhead and Clifford, 2003). In Algorithm 2, we set mt as the number of samples in the tth

iteration and mmax = max(mt).

3.4.2 Priority score β
(l)
t

Constructing a high quality priority scores β
(l)
t is a crucial step in algorithm 2, which works as the

trial distribution gt(xt |xxxt−1) to guide the growth of the partial chains xxxt−1 towards more profitable regions

and satisfies the target distribution, such that the full chain will eventually obey all the distance constrains.

We developed a priority score consisting of three components: growth potential from collision constraints,

growth potential from distance constraints and growth potential from distance loop consideration. The last

two potential components of the priority score incorporate the distance information of future nodes.

3.4.3 Growth potential from collision constraint

Due to 30 nm chromatin fiber in the model, this growth potential function penalizes the violation of

the lower bound constraint 30 nm,

f1(xt) = ∑
Bxxxt−1

h1(xt ,Bxxxt−1 ,r0), (3.9)
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Algorithm 2 Sequential Importance Sampling algorithm for growing model

1: Set m1 = 1, w(1)
1 = 1.0 and place the first residue at fixed x(1)1

2: for t = 2→ n do

3: Lt = 0

// Lt : number of length t chains that can be obtained from samples obtained at step t−1.

4: for sample j = 1→ mt−1 do

5: Find all of the valid sites x(i, j)t , i = 1, · · · , l( j)
t for placing xt next to partial chain xxx( j)

t−1

// l( j)
t = number of available sites to place xt next to partial chain xxx( j)

t−1.

6: Generate l( j)
t number of t-length chain x̃xx(Lt+i)

t = (xxx( j)
t−1,x

(i, j)
t )

7: w̃(Lt+i)
t = w( j)

t−1

// Temporary weights for uniform distribution.

8: Lt = Lt + l( j)
t

9: if Lt ≤ mmax then

10: Let mt = Lt and {(xxx( j)
t ,w( j)

t )}mt
j=1 = {(x̃xx

(l)
t , w̃(l)

t )}Lt
l=1

11: else

12: Let mt = mmax

13: for l = 1→ Lt do
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Algorithm 2 Sequential Importance Sampling algorithm for growing model (continued)

14: Assign a priority score β
(l)
t for chain x̃xx(l)t according to the constraints

15: Find constant c such that ∑
Lt
l=1 min{cβ

(l)
t ,1}= mmax

// by binary search.

16: end for

17: Draw r from uniform distribution U [0,1)

18: for j = 1→ mmax do

19: Find integer J j such that ∑
J j−1
l=1 min{cβ

(l)
t ,1}< r j ≤ ∑

J j
l=1 min{cβ

(l)
t ,1}

20: Select sample xxx( j)
t = x̃xx(J j)

t

21: Set weight w( j)
t = w̃(J j)

t · (γ(J j)
t /β

(J j)
t )

22: end for

23: end if

24: end for

25: end for

26: for j = 1→ mn do

27: Calculate importance weight w(xxx( j)
n ) ∝ w( j)

n π(xxx( j)
n )

28: end for
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where h1 is the loss function to measure the violation of constraint of xt with its previous partial chain

Bxxxt−1 , which not only include the previous nodes {x1, . . . ,xt−1}, but also the middle balls interpolating each

segment between two end nodes xi and xi+1, where i from 1 to t−1, according to our bead rod self-avoiding

walking polymer model. And

h1(xt ,Bxxxt−1 ,r0) = I(||xt − x̃i||< r0),any x̃i ∈ Bxxxt−1 ,

where I(·) is a indicator function, such that h1(xt ,Bxxxt−1 ,r0)= 0, when ||xt− x̃i||> r0, and h1(xt ,Bxxxt−1 ,r0)=

1, when ||xt− x̃i||6 r0, here r0 = 30 nm. The more violation of the 30 nm lower bound distance constraints,

the bigger the value of f1(xt) will be.

3.4.4 Growth potential from distance constraints

Given a partial chain xxxt−1, if the position of a current node t (xt /∈ xxxt−1) is strongly constrained, the

node t should be restricted in a small limited spatial region. We generate a number of uniformly distributed

candidate nodes xt which have distance dt−1,t with node xt−1 in three dimensional space. We have growth

potential from distance constraints f2(xt) to encourage xt to satisfy the distance constrains.

f2(xt) = h2((‖ xi1− xt ‖, . . . ,‖ xiK − xt ‖),(di1,t , . . . ,diK ,t)), (3.10)

where ik ∈ Pt = {i | node i ∈ { node of partial chain xxxt−1}, node i has significant contact with node t} , K

is the number of nodes that have existing significant contacts with node xt in the partial chain xxxt−1, and

dik,t is the distance matrix D element between significant contact node pair ik and t. h2 is the loss function

to measure the similarity between node positions and distant constraints.
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h2((‖ xi1− xt ‖, . . . ,‖ xiK − xt ‖),(di1,t , . . . ,diK ,t)) =

∑
ik∈Pt

|‖ xik − xt ‖ −dik,t |

∑
ik∈Pt

dik,t
,

3.4.5 Growth potential from loop constraints

For the node growth inside the loops, especially for some node t without any significant interaction pairs

with the partial chain xxxt−1, we have to impose distance constrains to enforce the node t to follow the triangle

distance inequality rule. We propose the potential function from the loop constrains f3(xt) to punish the

node t from going far away,

f3(xt) = h3(xt ,Ot), (3.11)

where Ot = {(tik , t jk) | significant interaction node pair tik and t jk exist and tik < t < t jk}, and as before, h3

is a loss function to measure the triangle inequality,

h3(xt ,Ot) = ∑
(tik ,t jk )∈Ot

I(
∣∣∣‖ xt − xtik

‖ −dt jk ,tik

∣∣∣> t jk−1

∑
l=t

dl,l+1), (3.12)

which punishes the violation of triangle inequality. dl,l+1 is the length of segment between node l and l+1,

l from t up to t jk − 1, and I(·) is a indicator function such that when the distance of node t between the

node tik greater than the sum of the rest segment length between the node t and the node t jk , which means

the position xt will not satisfy the distance constraint, then value is 1, otherwise the value is 0.

3.4.6 Combined priority score

The combined priority score β
(l)
t for chain x̃xx(l)t is set as
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Figure 4: Growth potential from loop constraints. For simplicity, in the cartoon, there is only one loop

constraint connected between node 1 and node 7 (dashed line) and the distance is d1,7. The partial chain is

xxx4 represented by blue, and node colored by dark blue. The current growing node 5 (green) and the future

nodes 6 and 7 (orange). The grey line indicates the rod segments that will potentially be placed. The loop

constraint applies on node 5 is the deviation of ‖ x5−x1 ‖ and d1,7 should less than the summation of length

of segments S5 and S6. Especially, when growing to the candidate node 6, the partial chain xxx5 is already

determined, then the loop constraint is exactly the triangle inequality rule, |‖ x6− x1 ‖ −d1,7| should less

than d6,7.
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β
(l)
t = exp

[
−ρ1 f1(x̃t

(l))+ρ2 f2(x̃t
(l))+ρ3 f3(x̃t

(l))

τt

]
(3.13)

where ρ1,ρ2, and ρ3 are coefficients of the three growth potential functions (growth potential from collision

constrains, growth function from distance constrains and growth potential from loop constrains), τt is a

temperature like variable. In this study, we set ρ1 = ρ2 = ρ3 = τt = 1.

3.4.7 Target score γ
(l)
t

The target score γ
(l)
t for chain x̃xx(l)t is set as

γ
(l)
t = exp

[
−ρ1 f1(x̃t

(l))+ρ2 f2(x̃t
(l))

τ ′t

]
, (3.14)

where ρ1 and ρ2 are coefficients of the two growth potential functions, and same as those of the priority

score β
(l)
t . τ ′t is a temperature like variable, and τ ′t =

1
2 τt . It is different from the random model, where we

assume the uniform distribution, while we try to rebuild the 3D structure conforming to the experimental

observation, i.e. distance constrains, and self-avoiding walk in growth model.

Figure 5 is one of example to show how we grow the chromatin polymer chain one step by one step

according to the potential functions Equation 3.9, Equation 3.10, Equation 3.11 and target score Equa-

tion 3.14.

3.5 Calculation Details

3.5.1 Root mean square deviation (RMSD) of distance

RMSD(cccm,cccn) =

√
∑

l
k=1 ||ck

m− ck
n||2

l
, (3.15)
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Figure 5
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Figure 5 (previous page): Illustration of growing α-globin gene domain. We grow the α-globin gene domain

under the potential functions Equation 3.9, Equation 3.10, Equation 3.11 and target score Equation 3.14.

This figure shows the example how we grow the polymer chain. Our model contains 54 sites for the α-globin

gene domain. Between two consecutive nodes, various number nodes are filled such that the bead-string

polymer chain is formed. In each growth step, we randomly generate the next site, assign its growth value,

then select it according to its probability. We color the chain from blue to red to clearly visualize how the

α-globin gene polymer chain grows from the beginning to the end. Each step is numbered serially to show

the growth procedure.

where cccm = {disti j|i j pair is the significant interactions} is the all significant contacts distance collection

of mth predicted conformation, l is the total number of significant interactions and ck
m is the kth distance

element in the set cccm.

3.5.2 Probability qpred
i j of interactions between i and j in predicted model

qpred
i j =

∑k′ wk′I(i, j)
∑i ∑ j ∑k′ wk′I(i, j)

, (3.16)

where I(i, j) is indicator function, if the distance between monomer i and j in the k′th conformation less

than the threshold dc, I(i, j) = 1, otherwise 0. k′ is range from 1 to 10,000 conformations for the GM12878

cell or the K562 cell.
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3.5.3 Propensity Proppred
i j of interaction between i and j in predicted model

Proppred
i j =

qpred
i j

qR
i j

=

∑k′ wk′ I(i, j)
∑i ∑ j ∑k′ wk′ I(i, j)

∑k wkI(i, j)
∑i ∑ j ∑k wkI(i, j)

, (3.17)

where I(i, j) is indicator function, if the distance between monomer i and j in the k′th conformation less

than the threshold dc, I(i, j) = 1, otherwise 0. k is range from 1 to 100,000 conformations for the random

model we generated. k′ is range from 1 to 10,000 predicted conformations for the GM12878 cell or the

K562 cell.

3.5.4 Percentage Ppred
i j of interacting between i and j in predicted model

Ppred
i j =

∑k′ wk′I(i, j)
∑k′ wk′

(3.18)

where Ppred
i j is to measure the frequency of the interaction between monomers i and j in the whole predicted

ensemble of conformations.

3.5.5 Contact index CIi of monomer i in the predicted model

CIi = ∑
j∈S

Ppred
i j = ∑

j∈S

∑k′ wk′I(i, j)
wk′

, (3.19)

where CIi is the contact index of monomer i to measure the monomer i contact propensity in the predicted

model. High CIi indicates higher propensity with other monomers. S is a set of monomers { j| j is any one

of the monomer of the physical model and j 6= i} in the physical model.
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3.5.6 Alpha shape

Alpha shape is a subset of delaunay triangulation, which can represent the geometry more accurately and

can capture contact interactions (Edelsbrunner, 1987). In addition, no fictitious contacts will be introduced

between two monomers when there is a third intervening monomer (Li et al., 2003).

In this study, we treat the segment ends as 30 nm sphere, and the probe sphere diameter is 54 nm ( dc

= 84 nm = 54 nm + 30 nm ).

3.5.7 Probability of local monomer interactions by alpha shape

For discovering local monomer interaction environment, we calculate three types of connections by

alpha shape to detect interactions between i and j. (1) Triplet connection, in which monomer k direct con-

nect both monomer i and j when monomer i and j has connection: (2) k-connection, in which monomer

k only connect with monomer i or j when monomer i and j has connection: (3) Intercept connection, in

which monomer k connect both monomer i and j when monomer i and j do not connect each other.

3.5.8 Triplet connection

Lktriplet
i− j =

∑l∈Etriplet
i− j ,k∈Striplet

i− j
wl

∑k ∑l∈Etriplet
i− j ,k∈Striplet

i− j
wl

(3.20)

The probability Lktriplet
i− j describes the frequency with which some k monomer connect two monomers

i and j, when monomer i and j has connection. Striplet
i− j = {k|i ↔ j, i ↔ k, j ↔ k} , and Etriplet

i− j =

{chain| satisfy Striplet
i− j }
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Figure 6: Alpha shape diagram. This is a simple two dimensional alpha shape representation. (A) In the two

dimensional space, there are total 8 spheres with the same radii r, marked with lowercase letter a to h, the

center colored as red points and the sphere is colored light blue. Violet dashed line split the region in this

voronoi diagram, with each region contain only one center of the sphere. Each violet dashed line vertically

evenly divided the segment connected by two centers of the spheres. Any point of each dashed line has same

distance with the centers which it divide. The dual formation is the delaunay triangulation represented by an

orange color in this figure. (B) Alpha shape is a subset of delaunay triangulation colored by cyan, containing

segment ab,bc,ce,de, f e,ge,cg,gh (tow spheres are overlapped) and one triangle ceg (three spheres are

overlapped). (C) With the radius of spheres increasing, the alpha shape has more additional segments f g

and triangular e f g. If the radius of spheres expand to infinity, all spheres are overlapped, the alpha shape

will become the delaunay triangulation (orange segment and triangle area in (A)). If the radius of spheres

decrease close to zero, no any spheres overlapping, then there is no alpha shape.
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3.5.9 k connection

3.5.9.1 k connection with i

Lk−i
i− j =

∑l∈E−i
i− j,k∈S−i

i− j
wl

∑k ∑l∈E−i
i− j,k∈S−i

i− j
wl

(3.21)

Where the probability Lk−i
i− j detects how often k monomer connect only monomer i , when monomer i

and j has connection. S−i
i− j = {k|i↔ j,k↔ i,k = j} and E−i

i− j = {chain| satisfy S−i
i− j}.

3.5.9.2 k connection with j

Lk j−
i− j =

∑l∈E j−
i− j,k∈S j−

i− j
wl

∑k ∑l∈E j−
i− j,k∈S j−

i− j
wl

(3.22)

Where the probability Lk j−
i− j detects how often k monomer connect only monomer j , when monomer i

and j has connection. S j−
i− j = {k|i↔ j, i = k, j↔ k} and E j−

i− j = {chain| satisfy S j−
i− j}

3.5.10 intercept connection

Lkintercept
i− j =

∑l∈E intercept
i− j ,k∈Sintercept

i− j
wl

∑k ∑l∈E intercept
i− j ,k∈Sintercept

i− j
wl

(3.23)

Where the probability Lkintercept
i− j detect how often k monomer intercept monomer i and j , when monomer

i and j has no connection. Sintercept
i− j = {k|i = j, i↔ k,k↔ j}E intercept

i− j = {chain| satisfy Sintercept
i− j }

3.5.11 Density-based algorithm

In this study, we adapted a density-based clustering method (Ester et al., 1996) to cluster 10,000 con-

formations for both GM12878 and K562 cells separately.
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In the clustering conformations for the GM12878 and K562 cell, we measure the RMSD (Equa-

tion 3.15) for each pair conformation, then use traditional density-based algorithms to cluster the GM12878

and K562 cells conformations. If the conformation has at least 5 neighbouring conformations for which

RMSD is less than 34 nm, we treat this conformation as one cluster of core conformations, otherwise this

will be a border conformation or a noise conformation.

We also use density-based algorithms to cluster which monomer have more neighbouring monomers

surrounding. We measure the percentage Ppred
i j of interactions in the predicted conformations (Equa-

tion 3.16), the higher value of Ppred
i j , the more likely it is to be connected between monomer i and j in

the predicted conformations, therefore we query neighbour monomers by the condition of greater than

some certain probability of interactions in the predicted conformations Ppred
i j .

3.6 Results

Our approach for generating 3D structure of α globin gene domain as an interacting, self-avoiding

polymer chain from a derivation of the 5C interaction frequency matrix includes three steps with several sub-

steps: (1) data translation into monomer interactions and obtaining the significant interactions by removing

random interactions from 5C data, (2) translating the significant interactions into distance constraints and

model building by sequential importance sampling, (3) ensemble analysis of the candidate 3D structures

and proposing a mechanism for the activation of α-globin gene in K562 cells.

The following sections describe the results of each of these key steps in our approach to 3D structure

determination of α-globin gene domain located in human chromosome 16.
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3.6.1 From 5C data to polymer chain and obtaining the significant 5C interactions

3.6.1.1 5C analysis of α-globin gene domain

5C, described previously (Dostie et al., 2006; Umbarger et al., 2011), uses highly multiplexed ligation-

mediated amplification to detect sets of 3C ligation products. We used the 5C data that was obtained by

Baú et al. (Baù et al., 2010) specifically for the 500-kb α-globin gene domain of human chromosome 16

using HindIII restriction enzyme. The position of each ligation product is determined by designing forward

and reverse primer sequences, where interactions are only possible between reverse and forward primer sites.

According to their experiments, in total, there are 30 forward primers and 25 reverse primers, which were

capable of detecting 750 unique pairwise chromatin interactions (Baù et al., 2010).

Due to the distribution of HindIII restriction sites and non-alternating design of the primers, the re-

sulting interaction matrix is partial and biased. It is a very challenging task to predict the full 3D structure

of α-globin gene domain from this partial and biased data. Our aim is to construct a general framework to

build up a pipeline to get as much information as possible from partial 5C interaction frequencies and utilize

it to discover known long range interactions, as well as to uncover interactions that cannot be discovered by

5C assay due to the design of the experiments.

3.6.1.2 Physical model

We build up a physical model as our basis to study the α-globin gene domain structure based on the 5C

data. In our model, a canonical 30 nm chromatin fiber diameter, the mass density of 11 nm/kb (Bystricky

et al., 2004; Dekker, 2008), and the persistence length of 150 nm (Wedemann and Langowski, 2002) are

used. We discard short HindIII segments, which are less than 2727 bp which is equivalent to a 30 nm

sphere. To correct proximity events, we ignored the interactions between consequent segments. We mapped
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the segments that are longer than persistence length on to several monomers. By doing this, the 500 kb α-

globin gene domain is split into 53 consecutive segments that have varying lengths and 54 distinctive sites.

Then the 5C contact frequencies are mapped on the monomers where the primers of each HindIII segments

are located. In total, we end up having 54 primer sites and each primer site corresponds to a monomer in

our polymer chain. Figure 7A shows the location of genes on α-globin gene domain along with the primer

locations and their corresponding numbering.

3.6.1.3 Random model and removal of non-significant interactions

In order to remove the expected interactions from the experimental data, we created a population of

random C-SAC chains, as described in detail before (Gürsoy et al., 2014). Based on our physical model,

we sequentially grow each monomer (primer site) randomly as a self-avoiding walk, until we reach the total

length of 500 kb in a confined space of nucleus. A population of 100,000 properly weighted random chains

is generated and the p-value of each 5C interaction frequency is calculated by bootstrapping. After the

FDR adjustment, 132 out of 425 and 83 out of 367 interactions remained significant for GM12878 and

K562 cells, respectively. In Figure 7B, you can see the circos diagram of α-globin gene domain with the

interactions that are obtained from 5C experiment for both GM12878 and K562 cell lines. Figure 7C shows

the interactions after removing the background from 5C experiment. We, then, adjusted the frequencies of

the significant interactions by calculating their propensity, prop(i, j) = observed/expected.

Notably, novel long-range interactions were identified after cleaning the data from random interactions.

For example, in both cell lines, while α-globin gene almost equally interacts with a locus called LUC7L,

the interaction between α-globin gene and distant upstream regulatory element HS48 is only significant in

K562 cell line (Figure 7D). Similarly, in both cell lines, α-globin gene interacts with upstream regulatory
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Figure 7 (previous page): Mapping of primer sites onto C-SAC model chain and removal of non-specific

interactions.

(A) Linear diagram of the 500 Kbp α-globin gene domain. The first vertical line depicts the coordinates of

the genomic regions. The α-globin gene is highlighted in red, and other genes are in dark blue. The second

vertical line represents 5C HindIII segments (Baù et al., 2010). The forward strand is in light blue, and

the reverse strand is in dark blue. Primer sites are marked by arrows. The third vertical line represents the

position of the each primer site on model chain with their corresponding node index.

(B) Circos diagram of 500 Kbp α-globin gene domain with all interactions obtained from unprocessed

5C frequency data (Baù et al., 2010). The rings are the circos version of the first and third vertical line

of (A). Red curves represent spatial interactions between HindIII primer sites. Dark red curves represent

interactions between the α-globin gene and the rest of the HindIII primer sites.

(C) Significant interactions of the α-globin gene domain for the GM12878 and K562 cells, respectively.

Out of 750 original 5C interactions, there are 132 significant interactions in the GM12878 cell and 83

significant interactions in the K562 cell after removal of non-specific interactions.

(D) The overall probability of a primer site to interact with other primer sites for the GM12878 cell (red)

and for the K562 cell (blue) are shown. The overall probability of random interactions are shown in grey.

(E) The probability of interactions of between α-globin gene and another primer site. The probability of

significant interactions in the GM12878 cell (red) and the K562 cell (blue) are shown. The probability of

random interactions are in grey.
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elements HS40 and HS48 (Figure 7D). However, the probability of these interactions is more than 3 fold

higher in active K562 cells than in inactive GM12878 cells. Similar results were experimentally observed

from an independent 3C study earlier (Dekker et al., 2002). It is also remarkable that, the total number of

significant interactions observed for α-globin gene is greater than the total number of interactions in the

random population in active K562 cells, though it is lower than the total number of interactions in the

random population in inactive GM12878 cell line (Figure 7E).

3.6.2 From significant interactions to spatial distance constraints and chain growth

After calculating the propensity for the significant interactions, we assume that the relationship between

propensity and the spatial distance between two primer sites follows a half-Gaussian distribution. We calcu-

lated the spatial distances between monomers and constructed our distance constraints (See SI). We employ

the Sequential Importance Sampling (Liang et al., 2002; Lin et al., 2008; Liu, 2008) approach to grow the

polymer chain for α-globin gene domain by using the distance constraints we estimated from 5C interaction

frequencies. We generated 10,000 conformations for the GM12878 and K562 cell individually by properly

weighting them. The highest weighted chains in both populations are the ones that satisfy the most distance

constraints.

3.6.3 3D structure of α-globin gene domain in GM12878 and K562 cells

Our Importance Sampling Algorithm generated 10,000 3D models for α-globin gene domain by search-

ing for a spatial arrangement of all primer sites that minimized the violation of the imposed distance con-

straints for each cell type. Although, any chain that violates the excluded-volume effect, had been discarded

regardless. The highest weighted chains for both GM12878 and K562 cells represent the 5C frequency

data best and are shown in Figure 8A. The main difference between two cell lines is the α-globin gene is a



74

95.0%

0.7%

0.5%

0.4%

0.3%

0.0.

0.0.0.

0.0.0.

0.0.0.

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

cluster 1

cluster 2

cluster 3

cluster 4

cluster 55

4

5

3

4

2

3

2

45%

7%

2%

2%

2%

A B C

GM12878

K562

Figure 8: Representative three-dimensional chromatin structures of the α-globin gene domain in the

GM12878 and the K562 cells and clustering.

(A) The genomic coordinates change from blue at the beginning to red at the end of the α-globin gene

domain. The α-globin gene domain has only one domain and is more compact in the GM12878 cell. In

the K562 cell, the α-globin gene domain has two distinct domains, which forms more extended structure.

compact conformation and there is only one chromatin domain formed in GM12878 cell, while it is more

in open conformation and is formed by two distinct domains in K562 cells.

To assess the difference between cell lines in detail, we performed a structural alignment between struc-

tures based on similarly positioned primer sites (triangle in Figure 8A). While the primer sites 13 (HS40/48),

18 and 35 are clustered together in both cell lines, it seems like primer site 3 is in direct interaction with this
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Figure 8 (previous page): (B) Close up views of selected primer sites (3, 10/(MPG), 13/(HS48 / HS40),

18/(HS10 / HBZ/HS8), 21/(HBM/HBA2/HBA1 / HBQ1), 35/(AXIN1)) and their orientation in the α-

globin gene domain for both GM12878 and K562 cells. The orientation of 3, 18, 21 are superimposed in

both cell lines for clear comparison. There is a significant rearrangement of the position of the genes in the

α-globin gene domain. The primer sites 10, 13, 35 are located to the left side of primer sites 18 and 21,

which are close to the primer site 3 in the GM12878 cell, while the same group is located on the right side

of primer sites 18 and 21, which is far away from the site 3 in the K562 cell. Primer site 3 and 13 are much

closer to each other in the GM12878 cell than in the K562 cell.

(C) The ensemble of 10,000 modeled three-dimensional structures of the α-globin gene domain in both

the GM12878 cell and the K562 cell form clusters. There are 5 main structured clusters for the GM12878

cell excluding the ones that contain less than 1.5% of the population. 45% of the population forms the

largest cluster. There are 5 main structured clusters for the K562 cell excluding the ones that contain less

than 0.3% of the population. 95% of the population are contained in the largest cluster. The conformation

of α-globin gene domain is less fluctuating in the K562 cell. In contrast, there is a lot of diversity in the

GM12878 cell conformations.
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cluster only in GM12878 cell. Furthermore, primer 10 is in direct interaction with primer 13 (HS40/48)

and primer 21 (α-globin gene) only in K562 cell. The primer site 3 is very close to primer site 13 (HS40/48)

in GM12878 cell, while it is far away from 13 in K562 cell. Primer 13 (HS40/48) is upstream regulatory

element and the interaction between 13 and 21 (α-globin gene) is necessary for the activation of the cell

(Vernimmen et al., 2009). Although primer 13 is in direct interaction with primer 21 in both cell lines,

it interacts with primer 3 only in inactive GM12878 cell. This extra interaction of primer 13 might be

competing with the interaction between primer 13 (HS40/48) and 21 (α-globin gene), which is necessary

for the activation of the cell in the active GM12878 cell.

10,000 model chains are clustered according to their structural similarities. The model chromatin

chains for GM12878 cell are clustered in total of 487 different conformations (Figure 8). The only most

populated cluster contained 45% of the entire population. Strikingly, models obtained for K562 cells formed

more static sets of solutions, with a total of 92 clusters, including the top cluster spanning the 95% of the

population.

3.6.4 Models reproduce known long-range interactions

We determined whether the 3D models reflected the known long-range interactions. We calculated

all interactions from the spatial distances between primer sites from a weighted ensemble of 10,000 model

chains for both GM12878 and K562 cells. There are a total of 460 significant interactions for the GM12878

cell. 120 of 460 significant interactions exist in the 5C frequency matrix. Only 12 interaction from the 5C

measurements cannot be satisfied simultaneously with other 5C constraints (Figure 10A). There are a total

426 significant interactions in the K562 cell. 80 of them exist in the 5C interaction matrix and only 3

interactions from 5C measurements cannot be captured by our model (Figure 10A). The weighted distance
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Figure 9 (previous page): Spatially clustered primer sites and proposed model conformations of the α-globin

gene domain for both GM12878 and K562 cells.

(A). Contact index, namely, is the propensity of a site to make interactions with other primer sites, for both

GM12878 and K562 cells. The condition to form a spatial cluster is (1) at least 60% of the chains will

have the specific i−j interaction and (2) each i will have at least 7 spatial neighbors. The clustered primer

sites are colored in red and blue for the GM12878 and K562 cells, respectively. Solid triangles are core sites

satisfying both conditions, the colored circles are boundary sites that are not in the core but are directly

connected to the core sites. One tight cluster exists for both the GM12878 and K562 cells. The primer sites

3 and 13 are the core primer sites surrounded by boundary sites 7, 8, 9, 10, 12, 14, 17, 18, 21 and 35 in

the GM12878 cell. In the K562 cell, the only core primer site 13 is spatially surrounded by boundary sites

9, 10, 17, 18, 21, 34, 35, and 36.

(B). Model conformation of the α-globin gene domain in the GM12878 and K562 cells. We constructed a

three dimensional model for the α-globin gene domain based on the averaged pairwise distances in predicted

conformations, and their spatial clustering. We use one continuous tube chain to represent the 30 nm

chromatin fiber of the α-globin gene domain, circles where on the tube are clustered primer sites. It is

obvious that the three-dimensional conformation is more extended in the K562 cell than in the GM12878

cell.
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matrices and the circos diagrams of the interactions in the model chains (Figure 10B-C) also suggest a two

domain structure for K562 cell and one single domain structure for GM12878 cell. This is consistent with

the circos diagrams of the significant 5C interactions from Figure 7C. We also predicted 340 and 346 new

interactions for GM12878 and K562 cells, respectively.

3.6.5 Validation by ChIA-PET data

We checked the results from an independent method, ChIA-PET (Li et al., 2010), to validate a particular

aspect of our 3D models for α-globin gene domain. According to ChIA-PET study on K562 cell, there are

13 CTCF-mediated interactions in the α-globin gene domain(Figure 11A). 10 among these 13 interactions

exist in our 10,000 populations. Among these 10 correctly predicted CTCF-mediated interactions, only

2 of them exist in the 5C interaction matrix, 8 of them are our newly predicted interactions, which also

shows the predictive power of our model. Only 3 ChIA-PET measured CTCF-mediated interactions are

undetected. We further investigated why our model could not catch these 8 ChIA-PET interactions. Among

them, the 5C frequency is 0 between primer 8 and 40, meaning there is no spatial proximity between these

primers according to 5C study, which contradicts with ChIA-PET. There is no primer designed for site

11 in the 5C study, hence there is no spatial constraint on this particular site. Therefore it is not possible

to detect an interaction between site 11 and 40. We also missed the interaction between site 9 and 40.

However, according to Broad Institute CTCF enrichment data (Bernstein et al., 2005; Bernstein et al.,

2006; Mikkelsen et al., 2007), there is no CTCF binding site on site 9. That’s why, it is not clear whether

site 9 can have significant CTCF-mediated interactions with any other site.
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Figure 10 (previous page): Spatial interactions in the α-globin gene domain including both directly measured

5C contacts and newly predicted contacts from spatial constraints of the C-SAC models.

(A) Significant interactions among the primer sites in the α-globin gene domain for both GM12878 and

K562 cells. All interactions are calculated from the spatial distances between primer sites from weighted

ensemble of 10,000 reconstructed structures of α-globin gene domain. There are a total of 460 significant

interactions for the GM12878 cell, 120 (91%) of which exist in the 5C measurements, and 340 are newly

predicted interactions. 12 (9%) interactions from the 5C measurements cannot be satisfied simultaneously

with other 5C constraints. There are a total of 426 significant interactions for the K562 cell, 80 (96%) of

which exist in the 5C measurements, 346 are newly predicted interactions. 3 (4%) interactions from the 5C

measurement cannot be satisfied simultaneously with other 5C constraints.

(B) Heat map of significant interaction contributions among primer sites in the constructed α-globin gene

domain for both the GM12878 and the K562 cells. The contribution of i−j interactions in percentage is

color coded. After non-specific interactions are removed based on our random C-SAC model, the formation

of domains can be clearly seen. In the GM12878 cell, α-globin gene domain exist as a single domain, while

in the K562 cell, it has two separate domains.

(C) Circos diagram to illustrate the interactions shown in the heat maps. Darker color in the curved links

indicate interactions observed in majority of constructed 3D models. The percentage of contribution are

color coded.
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Figure 11 (previous page): Comparison between predicted CTCF mediated interactions based on 5C mea-

surements and independently detected interactions based on ChIA-PET technique (Li et al., 2010). The

Venn diagram on the left shows that the coverage of predicted interactions accounting for 10 of the 13

ChIA-PET measured CTCF interactions. The circos diagram shows the CTCF interactions detected by

ChIA-PET technique in the α-globin gene domain of the K562 cell, the inner grey ring is based on the

Broad institute CTCF enrichment data. The red solid curves between primer sites are ChIA-PET detected

CTCF mediated interactions. The grey dashed curves are miss-predicted interactions.

Our predicted significant interactions recover 10 (77%) of ChIA-PET detected CTCF mediated interac-

tions. Only 2 of them are also observed in the 5C measurements. That is, 8 interactions confirmed by

ChIA-PET and are predicted from our constructed three-dimensional C-SAC model. Only 3 measured

CTCF interactions are undetected. Among them, the 5C frequency is 0 between primer site 8 and 40,

meaning there should be no spatial interactions between them according to 5C study, which contradicts

with ChIA-PET data. There is no primer in the 5C study for site 11, hence there is no spatial constraint on

this primer site from 5C measurements. Therefore it is not possible to detect interaction between 11 and

40. For primer site 9, the Broad institute CTCF enrichment data shows that there is no CTCF site on this

primer site. Therefore it is not clear whether site 9 can have significant CTCF mediated interactions.
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3.6.6 Proposed mechanism for the activation of α-globin gene domain

The major difference between the cell lines GM12878 and K562 is the expression level of the α-globin

gene (Baù et al., 2010). K562 cell express high level of α-globin gene compared to GM12878 cells. Previous

3C studies suggested that the differential activation of the gene is regulated by the spatial proximity between

the α-globin gene and its upstream functional elements HS48, HS46 and HS40 (Baù et al., 2010). After

obtaining a population of 10,000 weighted model structures, we calculated how the primers are clustered in

3D space based on their spatial distances for both GM12878 and K562 cells (Figure 9). The corresponding

spatial clusters are very similar in both cell lines. However, there exist extra primer sites in the spatial cluster

of GM12878. The main difference between the clusters of two cell lines is the spatial location of primer

site 3. In GM12878 cells, primer site 3 is in the core of the spatial cluster along with the primer site 13

(HS40/48), while it is far away from primer site 13 in K562 cells.

We further propose a mechanism for the differential activation of α-globin gene domain in different cell

lines according to spatial distances between genes and regulatory elements from the population of model

structures.

In GM12878 cells, interaction between primer site 3 and 13 (HS40/48) competes with the interaction

between primer site 13 (HS40/48) and 21 (α-globin gene). In contrast, in K562 cells, primer sites 13 and 21

are in direct interaction without competing with any other interactions and primer site 3 is far away from 13.

This agrees with Vernimmen et al. observation in which kicking HS40 element will dramatically decrease

the active α-globin gene expression level (Vernimmen et al., 2009). This could mean, in the compact

GM12878 cell, HS40 (primer site 13) tightly interacts with the primer site 3 and other sites, so that it is

not easily accessed by other proteins and cannot be expressed easily. For extended K562 cell conformation,
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HS40 (primer site 13) is easily accessed by other proteins, which may express the α-globin gene in a high

level. Another main difference is that the α-globin gene domain can be represented by a main structure in

K562 cells, while its conformation is fluctuating in GM12878 cells as was previously described clustering

analysis. Diverse conformational space in GM12878 model chains and a unique conformation for K562

cell could reflect the difference between the activation mechanism of α-globin gene. Since the active K562

cell is in a unique conformational state, it might be easier for the cell to maintain the necessary long-range

interactions for the gene activation. The fluctuating nature of GM12878 may result in instability to hold

the interactions between the α-globin gene and its distant regulatory elements.

3.7 Discussion

Some research groups have proposed theoretical polymer models to calculate the scaling property of

chromatin folding. Bohn et al. developed a loop model for random attraction with random probability

and explained leveling off scaling property at large genomic distance (Bohn et al., 2007). Lieberman-

Aiden et al. developed a fractal model to show that chromatin structure follow a scale property without

knots (Lieberman-Aiden et al., 2009). Barbieri et al. developed a strings and binders switch model which

can recapture the scaling property of chromatin folding (Barbieri et al., 2012). Since the adventure of

high throughput 3C-assay approach which can detect the frequency of the spatial proximity of loci on the

chromatin, various chromatin models were proposed to study the chromatin structure. Most research groups

try to inverse the frequency of loci spatial proximity to distance, and apply the Monte Carlo approach

to study chromatin structure from small domain scale (Baù et al., 2010) to genome wide scale (Duan

et al., 2010; Tanizawa et al., 2010). For the theoretical polymer model, they only discuss the general

scaling property of chromatin folding, and they did not consider the scaling property under confinement
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volume. For other models using 3C-assay frequency matrix, all studies have ignored the random non-

physical interactions under the confined volume, although some research groups have tried to correction the

bias of the 3C-assay experiments (Yaffe and Tanay, 2011; Hu et al., 2012). Our C-SAC model considers

these important factors, randomly generates conformations in certain confined volume, then we can remove

the random non-physical interaction to determine real spatial proximity interactions.

Baú et al. also proposed one model to study α-globin gene domain for both GM12878 and K562 cells

(Baù et al., 2010). Their model proportions the primer site lengths to the different size of ball, balls have

spring interaction if the 5C frequency between the corresponding primer segments, then apply Monte Carlo

simulation to get clustered conformations. Baú’s model may not catch up the right interactions between

longer segments and smaller segments and may not be efficient. Our C-SAC model not only removes the

non-physical interactions but also can quickly generate more accurate conformations so that we can study

the mechanism of gene regulation through the generated structures.

Vernimmen et al. found that α-globin has a strong correlation with upstream segment HS40 by deleting

and ectopically reinserting HS40 element in the α-globin gene domain (Vernimmen et al., 2009). Our C-

SAC growing model also reveals this relation between HS40 and α-globin gene. Comparing with Baú’s

model, we not only propose α-globin gene domain in the K562 cell structure, but also in the GM12878

cell structure and we propose a potential mechanism for α-globin gene express is active in the K562 cell and

silence in the GM12878 cell.

Our C-SAC model is robust and efficient to rebuild chromatin structures. The C-SAC random model

may properly generate random conformation under the confined volume so that the real spatial proximity

will stand out. The C-SAC growing model can efficiently and quickly produce the chromatin conformation
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following to the 3C-assay experiment, and discover new spatial proximity which 3C-assay can not report.

The C-SAC model is also flexibility as long as we can put more constraints (CTCF frequency matrix,

CHIA-PET frequency matrix, etc.) on the guidance function, then we may get more accurate picture of the

target chromatin structures. The C-SAC is also dependent on the chromatin physical properties: persistence

length, mass density, confined volume and predefined connection distance threshold. The C-SAC model

gave a way to enlighten us on the mechanism of gene regulation.

The C-SAC model cannot only apply to small chromatin domains, but also on genome wide scale due

to its efficiency. In the future, we plan to apply our C-SAC model on the multiple chromosome chains to

study genome wide properties.

3.8 Conclusion

The 5C experiments for capturing the pairwise DNA interactions reveals chromosomal architecture and

gene regulation in a detailed way. The correct biological interpretation of the outcome of the experiments

relies on extensive three-dimensional modeling of the chromatin as the experiments are limited to restriction

enzyme sites. We have presented an algorithm for the analysis of the 5C interaction frequencies and recon-

struction of the full three-dimensional structure of the chromatin and identified main chromosomal players

that are involved in gene activation. Analysis of the 5C interaction frequencies that were corrected by our

structural random model demonstrates how to eliminate the background noise and provides reproducible

insights into chromosomal architecture.

We showed that given the correct experimental constraints, our algorithm is capable of fully satisfying

the experimental data and the differential activation of α-globin gene in different cell lines can be captured

by structural details obtained from this model. Using this approach, we were able to predict the existing
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CTCF-mediated interactions that were not captured by 5C (Baù et al., 2010), but validated by an indepen-

dent study ChIA-PET (Li et al., 2010). The data also showed that all the known long-range interactions

by 5C can be represented in our ensemble model chromatin chains. We also applied global clustering for

the analysis of the reconstructed chromatin structures to decipher the structural differences between chro-

mosomal architecture of active and inactive cell lines. This approach demonstrated one cluster representing

a static conformational state of chromosomal architecture in active cell lines, and a fluctuating conforma-

tional landscape of chromosomal architecture in inactive cell lines. The more detailed, local clustering of

the primer locations according to their spatial positioning also revealed a structural difference between cell

lines, where the accessibility of regulatory elements were blocked by parts of the chromatin in inactive cell

lines.

The approach we propose here is general and can facilitate the determination of chromatin structure

by use of any type of 3C-based data, aiming at the prediction of chromosomal structures at a genome

level. Although our approach can generate a large ensemble of chromatin chains that satisfy almost all

experimental constraints, there still exists uncertainty in the physical parameters used in the current C-SAC

model, including persistence length, chromatin fiber diameter, and mass density. These issues will likely be

resolved when chromosomal properties are better understood and the C-SAC algorithm is further developed.
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