
Neural Network-based -Adaptive Dynamic Programming

and -Optimal Control for Nonlinear Systems

BY

NING JIN
B.S., East China Normal University, China, 1984
M.S., East China Normal University, China, 1987

Ph.D (in Math), East China Normal University, China, 1990

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2011

Chicago, Illinois

Defense Committee:

Derong Liu, Chair and Advisor
Natasha Devroye
Sudip K. Mazumder
Dan Schonfeld
Houshang Darabi, Mechanical and Industrial Engineering

ACKNOWLEDGMENTS

I would like to express my sincere and profound thanks to my adviser,

Professor Derong Liu, for his patient guidance and constant encouragement

during my years of study at the University of Illinois. It is his consistent

support and rigorous supervision which help me make steady progress in the

Ph.D. study. Working with Professor Liu has been a highly rewarding and

extremely enjoyable experience.

I am very grateful to Dr. Houshang Darabi, Dr. Natasha Devroye, Dr.

Sudip K. Mazumder and Dr. Dan Schonfeld for serving on my Ph.D. dis-

sertation committee and for their valuable time, support, comments and

suggestions.

Finally, I would like to thank all my officemates Mr. Ting Huang, Mr.

Zhuo Wang, Ms. Shu Wang, Ms. Yingying Ma, Mr. Nan Xu, Dr. Sanqing

Hu, Dr. Xiaoxu Xiong, Dr. Ying Cai, Dr. Chonghui Song, Dr. Dan Meng,

Dr. Qi Kang, Dr. Zhigang Liu, Mr. Le Liu, Ms. Na Dong, Ms. Yang Zhang,

Professor Xiaofeng Lin, Professor Guowei Yang, and Professor Peifeng Niu

for helpful discussions.

NJ

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Dynamic Programming and the Curse of Dimensionality . . . 1
1.2 The -Adaptive Dynamic Programming 6
1.3 Iterative Algorithm . 8
1.4 A New Class of Wavelet Neural Networks 9
1.5 Summary . 10

2 THE -ADAPTIVE DYNAMIC PROGRAMMING FORDISCRETE-
TIME SYSTEM WITHOUT DISCOUNT FACTOR IN ITS PER-
FORMANCE COST . 11
2.1 Introduction . 12
2.2 Problem Statement . 14
2.3 The Limit of J∗k . 22

2.4 The -optimal Cost V ∗ and the Function K (x) 28

2.5 The -Adaptive Dynamic Programming for Discrete-Time Sys-
tem using Neural Networks 40

2.6 Numerical Experiments . 46
2.7 Conclusions . 62

3 THE -ADAPTIVE DYNAMIC PROGRAMMING FORDISCRETE-
TIME SYSTEM WITH DISCOUNT FACTOR IN ITS PERFOR-
MANCE COST . 64
3.1 Introduction . 64
3.2 Problem Statement . 65
3.3 The -Optimal Cost V ∗ and the -Adaptive Dynamic Program-

ming Algorithm . 69
3.4 Numerical Experiments . 73
3.5 Conclusions . 78

4 DYNAMIC PROGRAMMING FOR DESCRETE-TIME SYSTEM
WITH QUADRATIC UTILITY . 80
4.1 Problem Statement . 81
4.2 Neuro-Optimal Control Based on Iterative Adaptive Dynamic

Programming Algorithm . 83

iii

TABLE OF CONTANTS (continued)

4.3 Numerical Experiments . 94
4.4 Conclusions . 101

5 WAVELET BASIS FUNCTION NEURAL NETWORKS FOR SE-
QUENTIAL LEARNING . 102
5.1 Introduction . 102
5.2 Multiresolution Approximation and Wavelets 104
5.3 Wavelet Base Function Neural Networks and Sequential Learn-

ing . 107
5.4 Numerical Experiments . 111
5.5 Conclusions . 118

6 CONCLUDING REMARKS. 119

CITED LITERATURE . 122

VITA. 127

CHAPTER PAGE

iv

LIST OF FIGURES

FIGURE PAGE

2.1 V ∗ for system xk+1 = xk + uk with utility U(x, u) = x2+ u2
and = 0.15. 36

2.2 Ĵ(x) for x ∈ [−5, 5] . 48

2.3 µ̂(x) for x ∈ [−5, 5] . 49

2.4 K̂(x) for x ∈ [−5, 5] . 50

2.5 Trajectories starting from x0 = 4 51

2.6 Ball and beam experiment 52

2.7 Ĵ(r, 0, 0) for L = 0, . . . , 550000 56

2.8 Ĵ(r, 0, 0.4) for L = 0, . . . , 550000 57

2.9 µ̂(r, 0, 0) for L = 5000, 10000, . . . , 550000 58

2.10 µ̂(r, 0, 0.4) for L = 5000, 10000, . . . , 550000 59

2.11 K̂(x, y, z) for L = 550000 60

2.12 Trajectories starting from r = 0.45m. 61

3.1 Ĵ(x), x ∈ [−15, 15] . 74

3.2 µ̂(x), x ∈ [−15, 15] . 75

3.3 K̂, x ∈ [−15, 15] . 76

3.4 Trajectories starting from x0 = 12.5 77

4.1 The structure diagram of the iterative GDHP algorithm . . 90

4.2 The convergence processes of the cost function and its deriv-
ative of the iterative GDHP algorithm 95

4.3 The state trajectory x . 96

4.4 The control input u . 96

v

LIST OF FIGURES (continued)

4.5 The state trajectory x . 97

4.6 The control input u . 98

4.7 The convergence processes of the cost function and its deriv-
ative of the iterative GDHP algorithm 99

4.8 The state trajectories x1 and x2 100

4.9 The control input u . 100

5.1 f(x) and f̂(x) . 113

5.2 Comparison of mean square errors 114

5.3 Comparison of training time 116

5.4 Comparison of numbers of neurons 117

FIGURE PAGE

vi

LIST OF ABBREVIATIONS

ACD Adaptive Critic Design

ADP Adaptive Dynamic Programming

ADPDN() -ADP for Discrete-time Systems using Neural Network

GDHP Globalized Dual Heuristic Programming

HDP Heuristic Dynamic Programming

HJB Hamilton-Jacobi-Bellman

MRA Multiresolution Approximation

MRAN Minimal Resource Allocation Networks

NN Neural Network

RAN Resource Allocation Network

RANEKF RAN via Extended Kalman Filter

RBFNN Radial Basis Function Neural Network

RL Reinforcement Learning

RLS Reinforcement Learning System

SLWBF Sequential Learning of WBFNN

WBFNN Wavelet Basis Function Neural Network

WNN Wavelet Neural Network

vii

SUMMARY

Optimal control and dynamic programming for complex dynamical sys-

tems is difficult due to two reasons. The first is the so called “curse of di-

mensionality”: one has to find a series of control actions that must be taken

in sequence. This sequence will lead to the optimal performance index, but

the total cost of these actions will be unknown until the end of the sequence.

Thus, the time expense and the space expense will be huge during the dy-

namic programming process. The second is the accuracy of the calculation.

When an approximation of the optimal performance index is obtained, it is

possible that the approximation is even “more optimal” than the optimal

performance index. And then, unfortunately, this “over optimal” approxi-

mation will provide a control sequence which will possibly drive the system

to run unstably.

The aim of our work is to overcome these two difficulties. We start by

considering the “over optimal” problem. We introduce a novel -optimal

performance index function V ∗(·) as an approximation of the optimal per-
formance index fuction. The associated -optimal controller µ∗(·) can always
control the system state to approach the equilibrium state stably, while the

performance index is close to the optmal performance index within an error

bound according to . An numerical algorithm to find the -optimal con-

troller is suggested and simulated experiments are performed to explore the

behavior of the algorithm. The experiment results show that the algorithm

works well. The algorithm can find a good approximation of the -optimal

controller.

In the first stage of our work, we study the nonlinear discrete-time sys-

tems while there is no discount in the performance index, i.e., the discount

viii

SUMMARY (continued)

factor in the performance cost is 1. We define a novel -optimal performance

cost function V ∗(·) based on the optimal performance cost functions J∗k (·),
k = 1, 2, · · · . According to the Bellman’s principle of optimality, the optimal
performance cost functions J∗k (·) satisfy the Bellman equation. The opti-
mal control sequence v∗k(x) will be obtained by solving the Bellman equation

backforward. The process to solve v∗k(x) from the Bellman equation is called

dynamic programming. In our work, we show that our -optimal performance

cost function V ∗(·) also satisfis the Bellman equation. A method similar to
dynamic programming can be applied on V ∗(·) so that a -optimal controller

µ∗ can be obtained from the Bellman equation of V ∗(·). The associated
-optimal controller µ∗(·) can always control the state to approach the equi-
librium state, while the performance cost is close to the greatest lower bound

of all performance cost within an error bound according to . We call this

method the -adaptive dynamic programming method. Since only one perfor-

mance cost function is used in -adaptive dynamic programming, -adaptive

dynamic programming is helpful to overcome the curse of dimensionality.

After the theory of -adaptive dynamic programming is established, a

numerical algorithm for the -adaptive dynamic programming is designed.

Neural networks are applied to be the approximate structures of the associ-

ated system model, performance cost function, the controller, et al. These

neural networks are trained according to the running of the plant and the

Bellman equation. The algorithm will provide a sequence of approximations

of the -optimal performance cost function V ∗(·). The associated controllers
can always control the state to approach the equilibrium state, while the

performance cost is approaching the -optimal performance cost. Examples

of simulation are studied. The results of simulation show that our -adaptive

dynamic programming can provide the stability when the performance cost

ix

SUMMARY (continued)

function is close to the optimal performance cost function.

After we established the -adaptive dynamic programming theory for sys-

tem without discount factor in the performance cost function, we began to

study the more general case. We study the nonlinear discrete-time systems

that have a discount factor 0 < γ ≤ 1 in their performance index functions.
This case seems more complex than the case without discount factor (i.e.,

the discount factor is 1). However, it is fortunate that the concepts and re-

sults of -optimal control can be generalize to this more general case. The

-optimal performance cost function V ∗(·) is defined which will approach the
least upper bound J∗∞(·) of the optimal performance cost functions J∗k (·),
k = 1, 2, · · · , when → 0. V ∗(·) also satisfies the Bellman equation in this
case. Consequenctly, we obtain a generalized -optimal control and dynamic

programming theory. An admissible controller can be obtained by solving

the Bellman equation of V ∗(·) so that the system state will attend to the

equilibrium state under the control of this controller. Similar to the case

without discount factor, we provide an implementation of the adaptive dy-

namic programming method for the case with discount factor. We design

a numerical algorithm for the -adaptive dynamic programming. The al-

gorithm is similar to that in case without discount factor. It will provide a

sequence of approximations of the -optimal performance cost function V ∗(·).
A simulated experiment is provided and it showes the algorithm runs well. A

stable controller is obtained which provides an -optimal performance cost.

The previous results on -optimal dynamic programming provide stable

controllers in the sense of -optimality. By using a single performance cost

function in -adaptive dynamic programming, -adaptive dynamic program-

ming is also helpful to overcome the curse of dimensionality. However, the

x

SUMMARY (continued)

time expense of the -optimal dynamic programming algorithm is still big.

In the third part of this thesis, certain restriction is set on the system so

that fast algorithms can be found. It is assumed that the utility function of

system is a positive definite quadratic function. Under this assumption, the

iterative adaptive dynamic programming (ADP) algorithm using globalized

dual heuristic programming (GDHP) technique is introduced to obtain the

optimal controller with convergence analysis in terms of cost function and

control law. In order to implement the iterative algorithm, a neural net-

work is constructed first to identify the unknown nonlinear system. Then,

based on the learned system model, two other neural networks are used as

parametric structures to facilitate the implementation of the iterative algo-

rithm, which aims at approximating at each iteration the cost function and

the control law, respectively. A simulation example is provided to verify the

effectiveness of the presented ADP algorithm using GDHP technique.

The last part of this thesis is about wavelet neural networks. In the nu-

merical simulations in our research on dynamic programming, we use neural

networks to approximate the functions, such as the performance cost func-

tion and the oprimal controller. The neural networks will be trained from

sequences of input-output data. So the generalization ability of the neural

networks is important for our purpose. Radial basis function neural networks

(RBFNNs) and wavelet neural networks (WNNs) are well known neural net-

works that have good generalization ability. In a RBFNN, a function f(x) is

approximated as f̂(x) = iwiφ
x−ai
bi

, where φ(r) is the basis function.

In a WNN, a function f(x) is approximated as f̂(x) = iwiφ
x−ai
bi

, where

φ(x) is the basis function coming from wavelet theory — the scaling function,

the wavelet function, or the basis function of continuous wavelet transform.

WNNs can approximate functions more accurately and they have better gen-

xi

SUMMARY (continued)

eralization property than RBFNNs. But all the existing training algorithms

of WNNs are not especially for sequential learning and the orthogonal prop-

erties of wavelets have not been used in these algorithms. Hence we designed

a wavelet basis function neural networks (WBFNNs) for sequential learning.

Both the scaling function φ and the wavelet function ψ are used as basis

functions in WBFNN. Functions φ and ψ are orthogonal to each other. In

a wavelet decomposition of a function, they will give approximations in dif-

ferent level of details, i.e., coarse and fine approximations, respectively. A

sequential learning algorithm is produced from the orthogonal properties of

multiresolution approximation and Mallat’s formula of wavelet decomposi-

tion.

xii

1 INTRODUCTION

1.1 Dynamic Programming and the Curse of Dimensionality

Dynamic programming is a very useful tool in solving optimization and opti-

mal control problems. However, it is often computationally untenable to run

true dynamic programming due to the backward numerical process required

for its solution, i.e., as a result of the well-known “curse of dimensional-

ity” [5, 11]. One has to find a series of control actions that must be taken

in sequence. This sequence will give the optimal performance index, but

the total cost of those actions is unknown until the end of that sequence.

For continuous-time systems, if the optimal performance index J∗ is known,

the optimal control law u∗ can be obtained by applying J∗ as a Lyapunov

function for the system. Under some good analytic conditions on system

function and utility function, the optimal cost function is the solution of

the Hamilton-Jacobi-Bellman (HJB) equation [5]. However, the theoretical

solution of the HJB equation is very difficult to obtain, except for systems

satisfying some very good conditions, such as linear systems with quadratic

utility when the target is zero. For discrete-time systems, this problem be-

comes even more difficult. In the discrete-time case, the optimal performance

index function and optimal controller are variant in each step. We have to

consider a sequence of functions for dynamic programming.

Over the years, progress has been made to circumvent the “curse of di-

mensionality” by building a system, called “critic”, to approximate the cost

function in dynamic programming (cf. [3, 27, 32, 35, 36, 42, 43, 44, 45]). The

idea is to approximate the dynamic programming solutions by using function

approximation structures to approximate the optimal cost function and the

1

2

optimal controller.

In 1994, Saridis and Wang [35] studied the nonlinear stochastic systems

described by

dx = F (x, t)dt+B(x, t)udt+G(x, t)dw, (1.1.1)

where x ∈ Rn is a vector of state of the stochastic system, u ∈ Rm is a control
vector and w ∈ Rk is a separable Wiener process. F (·, ·), B(·, ·) and G(·, ·)
are measurable functions. The performance index of the system (1.1.1) is

given by

J(x0; t0, u) =E
+∞

t0

U(x, t) + u 2 dt

+ φ(x(T), T) : x(t0) = x0 ,

where U(·, ·) and φ(·) are nonnegative functions. For a given initial condition
x(t0) = x0, the optimal control law u

∗ and the associated optimal cost J∗

satisfy

J∗(x0; t0) ≡ J(x0; t0, u∗) = inf
u
J(x0; t0, u).

If it is assumed that the optimal control law u∗ exists and if the corresponding

cost function J∗ is sufficiently smooth, then u∗ and J∗ may be found by

solving Hamilton-Jacobi-Bellman (HJB) equation

∂J∗

∂t
+minu

1

2
tr GGT

∂

∂x

∂J∗

∂x

T

+

∂J∗

∂x

T

[F +Bu] + U(x, t) + u 2 = 0,

J∗(x(T), T) = φ(x(T), T).

(1.1.2)

Except in the case of linear quadratic Gaussian control (see [47]), an analyti-

cal solution of the Hamilton-Jacobi-Bellman for solving the optimal stochas-

tic control problem cannot be obtained in general when the system (1.1.1) is

3

nonlinear. Instead of solving the Hamilton-Jacobi-Bellman equation (1.1.2),

Saridis and Wang [35] introduced the following equation

∂V

∂t
+
1

2
tr GGT

∂

∂x

∂V

∂x

T

+
∂V

∂x

T

(F +Bu)

+ U(x, t) + u 2 = ∇V. (1.1.3)

An upper bound V ∗ and a lower bound V∗ of the optimal cost J∗ are found

by solving equation (1.1.3). Then a control law u(x) can be obtained by

applying V ∗ (or V∗) as Lyapunov function for the system. This leads to

the so-called “suboptimal control” of the system. It was proved that such

controls are stable for infinite-time approximative optimal control problems.

The benefit of the suboptimal control is that the bound V of the optimal

cost J∗ can be approximated by an iterative process. Starting from certain

chosen stable controller u0 and the associated performance index function

V0, let

ui = −1
2
BTVi−1, i = 1, 2, . . . , (1.1.4)

put u = ui in (1.1.3) and get the solution Vi from

∂Vi
∂t
+
1

2
tr GGT

∂

∂x

∂Vi
∂x

T

+
∂Vi
∂x

T

(F +Bui)

+U(x, t) + ui
2 = ∇Vi. (1.1.5)

Then repeatedly applying (1.1.4) and (1.1.5), one will get sequences of func-

tions {ui} and {Vi}. The sequence {Vi} will converges to the bound V ∗
(or V∗) of the cost function J∗. Consequently, {ui} will approximate the
suboptimal control sequence. Suboptimal control works well and gives good

control results. The sequences {Vi} and {ui} are obtainable by computation

4

and they approximate the suboptimal cost and the suboptimal control law,

respectively.

Meanwhile, a neural network-based approach for approximate dynamic

programming has been developed in the literature. There are several syn-

onyms used including “Adaptive Critic Designs” (ACD), “Approximative

Dynamic Programming”, “Neural Dynamic Programming”, “Reinforcement

Learning” (RL), and so on. In the early 1970’s, Werbos set up the basic strat-

egy for ACD (cf. [41, 45, 46] for details). A typical design of ACDs consists

of three modules-Critic, Model, and Action. They are neural networks used

to approximate the optimal cost function, the plant to be controlled, and the

optimal controller, respectively. These three parts combined together form

a “Reinforcement Learning System” (RLS) or an ACD. In ACDs, neural

networks are designed to approximate the cost function J , to simulate the

derivative of J , and to estimate the solution of Hamilton-Jacobi-Bellman

equation. They can achieve good approximation most of the time.

In 2002, Murray et al. [18, 27] studied the (deterministic) continuous-time

stabilizable systems

dx

dt
= F (x) +B(x)u, x(t0) = x0, (1.1.6)

with the cost function

J =
+∞

t0

U(x, u)dt,

where U(x, u) = q(x) + uT r(x)u is a nonnegative function and r(x) > 0.

Similar to [35], an iterative process is proposed to find the control law. But

this time the optimal cost and optimal control law are approximated. In this

case, the Hamilton-Jacobi-Bellman equation can be simplified to

u∗(x) = −1
2
r−1(x)BT (x)

dJ∗(x)
dx

T

. (1.1.7)

5

Starting from any stable Lyapunov function J0 (or alternatively, starting

from an arbitrary stable controller u0, cf. [18]) and replacing J
∗ by Ji, (1.1.7)

becomes

ui(x) = −1
2
r−1(x)BT (x)

dJi(x)

dx

T

, (1.1.8)

where Ji =
+∞

t0

U(xi−1, ui−1)dt is the cost of the trajectory xi−1(t) of plant

(1.1.6) under the input u(t) = ui−1(t). The sequences {Ji} and {ui} will
converge to the optimal cost function J∗ and the optimal control u∗, respec-

tively. By applying radial basis function approximation, no prior information

on F (x) and B(x) are required in the algorithm. Thus their algorithm is an

adaptive algorithm.

In 2007, Al-Tamimi and Lewis [2] studied the (deterministic) discrete-

time stabilizable systems

xk+1 = f(xk) + g(xk)uk, (1.1.9)

with the cost function

J(xk) =
+∞

i=k

xTi Qxi + u
T
i Rui , (1.1.10)

whereQ ∈ Rn×n andR ∈ Rm×m are positive definite matrices. Similar to [35],
an iterative process, which is referred as Heuristic Dynamic Programming

(HDP, cf. [43]), is proposed to find the optimal control law. Starting from

V0(x) ≡ 0, define ui(xk) = −1
2
R−1g(xk)T

∂Vi(xk+1)

∂xk+1
,

Vi+1(xk) = x
T
kQxk + u

T
i (xk)Rui(xk) + Vi(xk+1),

(1.1.11)

6

where xk+1 = f(xk) + f(xk)ui(xk). In [2], it was proved that {Vi} is a
nondecreasing sequence and bounded, and hence converges to V ∗. It was

claimed that the limit V ∗ is the optimal cost and satisfies the HJB equation

V ∗(x) = min
u

xTQx+ uTRu+ V ∗(f(x) + g(x)u) , (1.1.12)

and the sequence {ui} converges to the optimal controller u∗, which is given
by

u∗(x) = argmin
u

xTQx+ uTRu+ V ∗(f(x) + g(x)u) . (1.1.13)

Under the control of u∗, the system will converge to the equilibrium state as

a limit when time k →∞, with the optimal cost V ∗.

1.2 The -Adaptive Dynamic Programming

In this thesis, the optimal control of nonlinear discrete-time systems is con-

sidered. While there is no discount factor in the performance cost, i.e., the

discount factor in the performance cost is just 1, a novel -optimal perfor-

mance cost function V ∗(·) was introduced to approximate the optimal cost
fuction. The associated -optimal controller µ∗(·) can always control the
state to approach the equilibrium state, while the performance cost is close

to the greatest lower bound of all performance cost within an error bound

according to . An algorithm to find the -optimal controller was suggested

and numerical experiments were performed to explore the behavior of the

algorithm. The experiment results shown that the algorithm works well. It

can find a good approximation of the -optimal controller.

The method by using -optimal performance cost and -optimal controller

to approximate the optimal control is refered as -adaptive dynamic program-

ming method. Since only one performance cost function is used in -adaptive

7

dynamic programming, -adaptive dynamic programming is helpful to over-

come the curse of dimensionality.

Before the establish of -adaptive dynamic progrmming, the behavior of

the greatest lower bound of all performance cost of the system has been stud-

ied. For a general nonlinear discrete-time system with any positive utility

function, it is proved that limk→∞ J∗k(x) = J
∗
∞(x), where J

∗
k (x) is the great-

est lower bound of all performance costs of the system starting from x and

reaching the target in k steps, and J∗∞(x) is greatest lower bound of all per-

formance cost of the system starting from x and reaching the target in (any)

finite steps. Similar results have been proved by A. Al-Tamimi and F. Lewis

(2007[2]) when the system is affine and the unitlity is quadratic. The result

proved in this thesis is for more general system. Forthermore, it was found

that J∗∞(x) cannot guarantee an admissible controller to drive the system

to approach the equilibrium state. This is another reason why an -optimal

performance cost is introduced.

After we established the -adaptive dynamic programming theory for sys-

tem without discount factor in the performance cost function, we began to

study the more general case. We study the nonlinear discrete-time systems

that have a discount factor 0 < γ ≤ 1 in their performance index functions.
This case seems more complex than the case with out discount factor (i.e.,

the discount factor is 1). However, it is fortunate that the concepts and re-

sults of -optimal control can be generalize to this more general case. The

-optimal performance cost function V ∗(·) is defined which will approach to
the least upper bound J∗∞(·) of the optimal performance cost functions J∗k (·),
k = 1, 2, · · · when → 0. V ∗(·) also satisfies the Bellman equation in this
case. Consequenctly, we obtain a generalized -optimal control and dynamic

8

programming theory. An admissible controller can be obtained by solving

the Bellman equation of V ∗(·) so that the system state will attend to the

equilibrium state under the control of this controller. Similar with the case

without discount factor, we introduce the adaptive dynamic programming

method for the case with discount factor. We design a numerical algorithm

for the -dynamic programming. The algorithm is similar to that in case

without discount factor. It will provide a sequence of approximations of the

-optimal performance cost function V ∗(·). A simulated experiment is pro-
vided and it showes the algorithm runs well. A stable controller is obtained

which provides an -optimal performance cost.

1.3 Iterative Algorithm

The previous results on -optimal dynamic programming provide stable con-

trollers in the sence of -optimal. By using one performance cost function

in -adaptive dynamic programming, -adaptive dynamic programming is

also helpful to overcome the curse of dimensionality. However, the time ex-

pense of the -optimal dynamic programming algorithm is still big. In the

third part of this thesis, certain restriction is set on the system so that some

fast algorithm can be found. It is assumed that the utility function of sys-

tem is a positive definite quadratic function. Under this assumption, the

iterative adaptive dynamic programming (ADP) algorithm using globalized

dual heuristic programming (GDHP) technique is introduced to obtain the

optimal controller with convergence analysis in terms of cost function and

control law. This method can be considered as a geralization of the work of

A. Al-Tamimi and F. Lewis (2007[2]) on affine systems with positive definite

quadratic utility. In order to implement the iterative algorithm, a neural net-

9

work is constructed first to identify the unknown nonlinear system. Then,

based on the learned system model, two other neural networks are used as

parametric structures to facilitate the implementation of the iterative algo-

rithm, which aims at approximating at each iteration the cost function and

the control law, respectively. A simulation example is provided to verify

the effectiveness of the presented optimal control scheme dynamic program-

ming (ADP) algorithm using globalized dual heuristic programming (GDHP)

technique is introduced.

1.4 A New Class of Wavelet Neural Networks

The last part of this thesis is about wavelet neural networks. In the nu-

merical simulations in our research on dynamic programming, we use neural

network to approximate the functions, such as the performance cost func-

tion and the oprimal controller. The neural networks will be trained from

sequences of input-output data. So the generalization ability of the neural

networks is important for our purpose. Radial basis function neural networks

(RBFNNs) and wavelet neural networks (WNNs) are well known neural net-

works that have good generalization ability. In a RBFNN, a function f(x)

is approximated as f̂(x) = iwiφ
x−ai
bi

, where φ(r) is the basis func-

tion. In a WNN, a function f(x) is approximated as f̂(x) = iwiφ
x−ai
bi

,

where φ(x) is the basis function coming from wavelet theory ([10, 26]) — the

scaling function, the wavelet function, or the basis function of continuous

wavelet transform. WNNs can approximate functions more accurately and

they have better generalization property than RBFNNs. But all the existing

training algorithms of WNNs are not especially for sequential learning and

the orthogonal properties of wavelets have not been used in these algorithms.

10

Hence we designed a wavelet basis function neural networks (WBFNNs) for

sequential learning. Both the scaling function φ and the wavelet function

ψ are used as basis functions in WBFNN. Functions φ and ψ are orthogo-

nal to each other. In a wavelet decomposition of a function, they will give

approximations in different level of details, i.e., coarse and fine approxima-

tions, respectively. A sequential learning algorithm is produced from the

orthogonal properties of multiresolution approximation and Mallat’s formula

of wavelet decomposition ([10, 26]).

1.5 Summary

The Thesis has 6 chapters. In Chapter 2, the results of -adaptive dynamic

programming for discrete-time system when the performance cost has no

discount factor will be discussed. In Chapter 3, we will generalize the results

in Chapter 2 to descrete-time system when the performance cost has discount

factor 0 < γ ≤ 1. In Chapter 4, an iterative algorithm is designed for

adaptive dynamic programming under the restriction that the utility of the

system is a positive definite quadratic form. Chapter 5 is refer to the wavelet

neural networks. Finally, Chapter 6 is the conclution.

2 THE -ADAPTIVE DYNAMIC PROGRAMMING FOR

DISCRETE-TIME SYSTEM WITHOUT DISCOUNT

FACTOR IN ITS PERFORMANCE COST

In this Chapter, we give a brief introduction of the -optimal control and

-adaptive dynamic programming. All the results in this Chapter have been

published in the paper “Adaptive dynamic programming for finite-horizon

optimal control of discrete-time nonlinear systems with -error bound” [38].

Dynamic programming for complex dynamical systems is difficult due to

the “curse of dimensionality”: one has to find a series of control actions that

must be taken in sequence. This sequence will lead to the optimal perfor-

mance index, but the total cost of these actions will be unknown until the

end of that sequence. In this chapter, we present our work on dynamic pro-

gramming for nonlinear discrete-time systems using neural networks, which

is referred as adaptive dynamic programming with an error bound accord-

ing to or -adaptive dynamic programming. A single controller, called the

-optimal controller µ∗(·), which is determined by an -optimal performance

index function V ∗(·), is utilized to approximate the optimal controller. The
-optimal controller µ∗(·) can always control the state to approach the tar-
get state, while the performance index is close to the greatest lower bound

of all performance indices within an error according to . An algorithm for

finding the -optimal controller is presented and numerical experiments are

also given to illustrate the applicability of the algorithm.

11

12

2.1 Introduction

In this chapter, we study dynamic programming of deterministic nonlinear,

discrete-time, time-invariant systems given by

xk+1 = F (xk, uk), k = 0, 1, 2, (2.1.1)

There is no special requirement for the system function F except that F is

continuous, the origin is an equilibrium point of the system, and the system

is controllable near the origin. The control target is the origin and we will try

to drive the system to reach the target in finite but unknown time steps, i.e.,

we will study optimal control problems with finite-horizon and unspecified

terminal time.

The optimal controller of a discrete-time system may be different at dif-

ferent control steps. To obtain the optimal trajectory {xi} from an initial

state x0, one has to find a series of control actions which will act in sequence

and each obeys a different control law. In this chapter, after some discussion

about the limiting behavior of optimal performance index, we introduce an

algorithm based on the idea of -optimal control (see Section 2.4 for details).

Only one control law µ∗(·) will be required to obtain an -optimal control

sequence. The system state will reach the target under this control law.

In Section 2.2, we give some statements of the optimal control problem

for discrete-time systems. We recall some details about dynamic program-

ming which will be useful in this chapter. Simple systems are studied as

illustrations in remarks and examples of Sections 2.2 and 2.4. In Section

2.3, we prove that the optimal performance indexes J∗k for different control

steps k form a nonincreasing sequence (see Theorem 2.1). The limit of J∗k
as k → ∞ equals the infimum J∗∞ of all performance indexes and satisfies

13

Bellman’s principle of optimality (see (2.3.3) of Theorem 2.2). However, one

cannot guarantee that J∗∞ will give an admissible controller. When the op-

timal cost J∗∞(x) is applied, the associated control law v∗∞(x) may not be

admissible (see Example 2.3). In Section 2.4, we introduce the functions

K (x) and V ∗. V ∗ is an approximation of J∗∞ with error less than such

that V ∗ ≥ J∗∞ ≥ V ∗ − . The value of K (x) gives the length of optimal

control sequence starting from x with cost V ∗. We prove that V ∗, asso-

ciated with K , satisfies some relationships similar to Bellman’s principle

(see Corollary 2.1 and formulas (2.4.11)—(2.4.16)). The associated controller

µ∗(x) is admissible and will be used as the only controller in all steps of an

-optimal control sequence. The difference between the performance index

under µ∗ and the infimum cost J∗∞ is given in Theorem 2.6. According to the

results in Section 2.4, we establish our algorithm of adaptive dynamic pro-

gramming with an error bound according to , i.e., the -adaptive dynamic

programming for discrete-time systems using neural networks (ADPDN())

in Section 2.5. In the algorithm ADPDN(), three neural networks Ĵ , µ̂ and

K̂ are trained to approximate V ∗, µ∗ and K , respectively. Numerical exper-

iments are given in Section 2.6 to evaluate the performance of the algorithm

ADPDN(). We apply our algorithm ADPDN() to a nonlinear unstable

system xk+1 = xk + sin(xk + uk) with utility function U(x, u) = |x| + u2.
We also apply our algorithm ADPDN() to the ball and beam experiment.

Our algorithm performs well in the experiments. We conclude the present

chapter in Section 2.7.

14

2.2 Problem Statement

In this chapter, we will study deterministic discrete-time systems

xk+1 = F (xk, uk), k = 0, 1, 2, . . . , (2.2.1)

where xk ∈ Rn is the state and uk ∈ Rm is the control. The system function

F (x, u) is continuous and F (0, 0) = 0. Hence x = 0 is an equilibrium state

of the system (2.2.1) under control u = 0. The control target is the origin

x = 0. We will study optimal control problems for (2.2.1) with finite-horizon

and unspecified terminal time.

Suppose that system (2.2.1) has a utility function U(x, u), U(x, u) ≥ 0
for any (x, u) and U(0, 0) = 0. Then the performance index for a state x

under the control sequence u = (u0, u1, . . . , uN−1) is defined as

J(x, u) =
N−1

k=0

U(xk, uk), (2.2.2)

where x0 = x, and xk = F (xk−1, uk−1) for k = 1, 2, . . . ,N .

Let x be an initial state and u = (u0, u1, . . . , uN−1) be a finite sequence

of controls. Then system (2.2.1) gives a trajectory starting from x: x0 = x,

x1 = F (x0, u0), x2 = F (x1, u1), . . . , xN = F (xN−1, uN−1). We call the

number of elements in the control sequence u the length of u and denote

it as |u|. Then |u| = N . For convenience, we say that the length of the

associated trajectory x0, x1, . . . , xN is also N . We denote the final state of

the trajectory as xN(x, u), i.e., xN (x, u) = xN .

An initial state x0 = x is called controllable if there exists a control

sequence u such that xN(x, u) = 0, while the control sequence u is called an

15

admissible control sequence of x. Let

Ax = {u : xN (x, u) = 0} (2.2.3)

be the set of all admissible control sequences of x. Let

A(k)x = {u : xN(x, u) = 0, |u| = k} (2.2.4)

be the set of all admissible control sequences of x with length k. Then

Ax = ∪1≤k<∞A(k)x . By this notation, a state x is controllable if and only if
Ax = ∅.

We assume that F (x, u) satisfies the following condition.

(C2.1) The system (2.2.1) is controllable in an open neighborhood of x = 0.

According to condition (C2.1), there exists a positive number M > 0, when-

ever x ≤M , one can always find a control sequence u such that xN (x, u) =
0, where · is a vector norm. Hence, if x ≤M , then Ax = ∅.

For any given initial state x, the objective of optimal control is to find

an admissible control sequence u ∈ Ax to minimize the performance index
J(x, u). The optimal control sequence u ∈ Ax has finite length. However,
before it is determined, we do not know its length. This kind of optimal

problems is called finite-horizon problems with unspecified terminal time [8].

Before studying this kind of problems, we start by considering the finite-

horizon problem with fixed terminal time k, for every k = 1, 2, Let

J∗k (x) = min J(x, u) : u ∈ A(k)x , k = 1, 2, (2.2.5)

Then J∗k (x) is the optimal cost among all trajectories starting from x with

length k and ending at the origin. Bellman’s principle of optimality can be

16

described by,

J∗k (x) = minu U(x, u) + J∗k−1(F (x, u)) . (2.2.6)

Now, define the law of control sequence of length k by

v∗k(x) = argmin J(x, u) : u ∈ A(k)x , (2.2.7)

and define the law of single control vector by

v∗k(x) = argminu U(x, u) + J∗k−1(F (x, u)) . (2.2.8)

Then we have

J∗k (x) = J(x, v
∗
k(x)),

J∗k (x) = U(x, v
∗
k(x)) + J

∗
k−1(F (x, v

∗
k(x))).

(2.2.9)

It is easy to see that Bellman’s principle of optimality (2.2.6) is equivalent

to

v∗k(x) = (v
∗
k(x), v

∗
k−1(F (x, v

∗
k(x))). (2.2.10)

Consequently, we have

v∗k(x) = (v
∗
k(x0), v

∗
k−1(x1), . . . , v

∗
1(xk−1)), (2.2.11)

where x0 = x and xj+1 = F (xj , v
∗
k−j(xj)) for j = 0, 1, . . . , k−1. In particular,

v∗k(x) is the first component of the control sequence v
∗
k(x).

The first step of dynamic programming is to determine the function v∗1(·).
For any given state vector x, the control vector v∗1(x) is the solution of the

following minimization problem

min
u
U(x, u) subject to F (x, u) = 0. (2.2.12)

17

The associated performance index is

J∗1 (x) = U(x, v
∗
1(x)).

After the functions v∗1(·) and J∗1 (·) have been determined, we can determine
v∗j (·) and J∗j (·), for j = 2, 3, . . . , k, by applying formulas (2.2.6) and (2.2.8).
Then we can determine v∗k(x0) = (v

∗
k(x0), v

∗
k−1(x1), . . . , v

∗
1(xk−1)) as follows.

Applying v∗k(·) to x0 gets u∗0 = v∗k(x0). Applying u
∗
0 to the system (2.2.1)

gets x1 = F (x0, u
∗
0). Then applying v

∗
k−1(·) to x1 gets u∗1 = v∗k−1(x1), and

applying u∗1 to the system gets x2 = F (x1, u
∗
1). Repeat this process, we get

the optimal control sequence v∗k(x0) = {u∗0, u∗1, . . . , u∗k−1}.

But then we have to face the problem of “curse of dimensionality”. We

have to calculate and record all the functions J∗j (·) and v∗j (·), j = 1, 2, . . . , k,
even though only one control trajectory is desired. In general, J∗j (·) and
J∗l (·) are different functions when j = l. Similarly, v∗j (·) and v∗l (·) are dif-
ferent functions when j = l. In most real world applications, large k is

necessary. But for large k, the computation and storage requirements are

huge, especially when the dimension n of the problem is large.

Example 2.1

Consider the linear system described by

xk+1 = xk + uk,

where xk ∈ R and uk ∈ R, with quadratic utility function U(x, u) = u2. To
find v∗1(x), look at (2.2.12). Now it becomes

min
u
u2 subject to x+ u = 0.

18

So v∗1(x) = −x and J∗1 (x) = x2. Assume that we have already obtained

J∗k−1(x) = Qk−1x
2. Then by (2.2.8),

v∗k(x) = argminu{u2 +Qk−1(x+ u)2}. (2.2.13)

To find the minimum, take derivative of the function on the right-hand side

of (2.2.13). Then, we obtain 2u+ 2Qk−1(x+ u) = 0, which leads to

v∗k(x) = −
Qk−1

1 +Qk−1
x.

Consequently, from (2.2.9)

J∗k(x) = − Qk−1x
1 +Qk−1

2

+Qk−1 x− Qk−1x
1 +Qk−1

2

= − Qk−1
1 +Qk−1

2

+Qk−1 1− Qk−1
1 +Qk−1

2

x2

=
Q2k−1

(1 +Qk−1)2
+

Qk−1
(1 +Qk−1)2

x2

=
Qk−1

1 +Qk−1
x2.

Thus, we know that the optimal control and optimal performance index have

the form v∗k(x) = −αkx and J∗k (x) = Qkx2. The coefficients αk and Qk satisfy
Q1 = α1 = 1,

Qk = αk =
Qk−1

1 +Qk−1
, for k = 2, 3, 4,

It is easy to verify that for k = 1, 2, 3, . . . , Qk = αk = 1/k, and we have

v∗k(x) = −
1

k
x and J∗k (x) =

1

k
x2. (2.2.14)

To determine the optimal control sequence for a given initial state x0, with the

assumption that the length of control sequence is K, one needs to calculate

19

the value of control signals by formula (2.2.14). Applying u∗0 = v∗K(x0) =

−x0/K in the first step of control, we get x1 = x0 + u
∗
0 = (K − 1)x0/K.

Subsequently, we get xk+1 = xk + u
∗
k = (K − k − 1)x0/K, where u∗k =

v∗K−k(xk) = −xk/(K − k) = −x0/K for k = 1, 2, . . . , K − 1. To store the
controller, we can either save all the coefficients Qk and αk, k = 1, 2, . . . ,K,

in storage, or calculate them via formulas Qk = αk = 1/k every time when

they are needed.

In Example 2.1, the system is linear, the utility is quadratic, and the

functions in (2.2.14) are simple. But nonetheless, (2.2.14) indicates that

formulas for functions J∗k (·) and v∗k(·) will change when k changes its value.
In general, the calculation and the form of the functions J∗k(·) and v∗k(·)
are much more complex. It will be very difficult to find similar formulas

like (2.2.14). To avoid calculating and recording the sequences of functions

v∗k(·) and J∗k(·), one can use the method for infinite-horizon problems (cf.
[19, 21, 22, 45] and their references). In infinite-horizon problems, instead of

control sequences with finite length, control sequences with infinite length are

studied. The definition of admissible control sequence will be changed so that

it will drive the state asymptotically to the target with finite performance

index (cf. [1, 4]). One hopes that the state will approach the target in some

“infinite future”. For an infinite-horizon problem, there is only one optimal

performance index. It does not depend on the length of the control sequence,

since all control sequences have the same length: ∞. But the performance
index will be a summation of infinite number of terms. It is the limit of an

infinite series. As for limits of infinite series, we have to consider whether

the series J(x, u) = ∞
k=0 U(xi, ui) converges. If the limit exists, whether the

greatest lower bound inf J(x, u) is reachable, and whether inf J(x, u) satisfies

the HJB equation.

20

In [2], for system (1.1.9) with infinite-horizon performance index (1.1.10),

a nondecreasing sequence of performance index {Vi} is introduced to approxi-
mate a function V ∗, which satisfies the HJB equation (1.1.12). A controller u∗

can be obtained from V ∗ by solving the HJB equation (see (1.1.12)). u∗ can

be considered as the optimal controller of the system, it will drive the state to

the target when time k →∞. However, if one wants to control the state to
reach the target in some finite time, the controller u∗ may not be enough. In

many cases, u∗ can only make the state approach the target asymptotically.

The state may never reach the target in any finite time. Moreover, when

the positive-definite condition on the matrices Q and R of the performance

index (1.1.10) does not hold, u∗ may even be a non-admissible controller.

The following example is an illustration.

Example 2.2

Consider Example 2.1 again. But this time, we consider the infinite-horizon

problem.

Let x0 be any non-zero initial state and u = (u0, u1, . . .) be any sequence

of controls with infinite length. The trajectory starting from x0 under the

control of u is: x0, x1 = x0+ u0, . . . , xk = x0+
k−1
i=0 ui, The associated

performance index is J(x0, u) =
∞
i=0 u

2
i . In this case, u is admissible if and

only if ∞
i=0 ui = −x0 and ∞

i=0 u
2
i <∞.

For any positive integer k = 1, 2, . . . , let û(k) be the control sequence such

that the first k-entries are all −x0/k and the others are all zero, i.e.,

û(k) = − x0
k
, . . . ,−x0

k
k

, 0, 0,

21

Then û(k) is admissible and

J(x0, û
(k)) =

1

k
x20.

Thus, for k = 1, 2, 3, . . . ,

inf
u
J(x0, u) ≤ J(x0, û(k)) = 1

k
x20.

Let k →∞, we have

inf
u
J(x0, u) = 0. (2.2.15)

Now we know that the greatest lower bound of performance indexes is

infu J(x0, u) = 0. But for any admissible control sequence u, J(x0, u) > 0,

i.e., the greatest lower bound inf J(x, u) cannot be reached by any admissible

control sequence. On the other hand, the control sequence associated with

infu J(x0, u) = 0 is just ũ = (0, 0, . . .) which cannot make x0 move to the

target 0 at all.

The system in Example 2.2 is a very simple one. For many systems,

especially for nonlinear systems, it may not always be true that there exists an

admissible control sequence û such that the performance index J(x0, û) equals

the greatest lower bound infu J(x0, u). On the other hand, if u
∗ is the control

sequence determined using infu J(x0, u) as the Lyapunov function, it may not

always be true that u∗ is an admissible control sequence. Therefore, when

we try to find a single optimal cost and a single optimal controller for infinite

horizon problems, we have to face the problem whether this single optimal

cost can be reached by an admissible control sequence and whether this single

optimal controller is an admissible controller. Unfortunately, the infimum

infu J(x0, u) is not a feasible one, although it is the greatest lower bound of all

22

performance indexes. When one tries to control a system by approximating

infu J(x0, u), a non-admissible controller may be obtained sometimes. In the

rest of this chapter, we will introduce an “ -optimal cost function” V ∗(·)
associated with an “ -optimal controller” µ∗(·) which will always give an
admissible control sequence µ∗(x0) for any controllable initial state x0, with

a performance index within an error bound according to from the infimum

infu J(x0, u).

2.3 The Limit of J∗k

In this section, we will consider finite-horizon problems with unspecified ter-

minal time. We go back to the system (2.2.1) with performance index (2.2.2).

Recall that the law of optimal control sequence v∗k(·) of length k, the law of
optimal control v∗k(·), and the associated optimal performance index J∗k sat-
isfy (2.2.6)—(2.2.11).

For any state vector x, define

J∗∞(x) = inf{J(x, u) : u ∈ Ax}. (2.3.1)

Then we can consider J∗∞(x) to be the “optimal” performance index starting

from x under all admissible control sequences of any length, i.e., J∗∞(x) will

be the “optimal” performance index starting from x for the finite-horizon

problem with unspecified terminal time. It is possible that there is no ad-

missible control sequence u ∈ Ax such that the equality J∗∞(x) = J(x, u)

holds. However, we can prove that J∗∞(x) is the limit of J
∗
k (x).

Theorem 2.1 Let x be an arbitrary state vector. Suppose that there is a

positive integer p such that A(p)x = ∅. Then for any k > p, A(k)x = ∅, J∗k(x) ≤

23

J∗p (x), and

lim
k→∞

J∗k(x) = J
∗
∞(x). (2.3.2)

Proof. First, let us show that for any admissible control sequence u with

length p, we can assign an admissible control sequence û with length k such

that J(x, u) = J(x, û), if k > p. Suppose that u = (u0, u1, ..., up−1) ∈
A(p)x , |u| = p and xN(x, u) = 0. The trajectory starting from x under the

control of u is x0 = x, x1 = F (x0, u0), ..., xp = F (xp−1, up−1) = 0. By

adding k − p 0’s to the end of sequence u, we define a control sequence
û = (u, 0, 0, ..., 0). Obviously |û| = k. The trajectory starting from x under

the control of û is x0 = x, x1 = F (x0, u0), ..., xp = F (xp−1, up−1) = 0,

xp+1 = ... = xk = F (0, 0) = 0. So û is admissible. Furthermore, J(x, û) =

U(x0, u0)+ · · ·+U(xp−1, up−1)+U(xp, up)+ · · ·+U(xk−1, uk−1) = U(x0, u0)+
· · ·+U(xp−1, up−1)+U(0, 0)+· · ·+U(0, 0) = U(x0, u0)+· · ·+U(xp−1, up−1) =
J(x, u).

Now we can prove that A(k)x = ∅ if k > p. By the assumption of this

theorem, A(p)x = ∅. So there exists at least one u ∈ A(p)x . Then we can have
û as constructed above such that û ∈ A(k)x . Thus A(k)x = ∅ for k > p.

Fix k to be an arbitrary integer larger than p. We will prove that J∗k(x) ≤
J∗p (x). As shown above, for every control sequence u ∈ A(p)x , û is a control
sequence in A(k)x . Hence {û : u ∈ A(p)x } ⊆ A(k)x . Therefore, we have

J∗k(x) = min{J(x, u) : u ∈ A(k)x }
≤ min{J(x, û) : u ∈ A(p)x }
= min{J(x, u) : u ∈ A(p)x } = J∗p (x).

24

We have shown that the sequence {J∗k (x) : k ≥ p} is nonincreasing. Be-
sides, J∗k (x) ≥ 0 for each k. So limk→∞ J∗k (x) exists and it is a finite non-
negative number.

Finally, we will prove that limk→∞ J∗k (x) equals J
∗
∞(x). Since J

∗
∞(x) =

infu{J(x, u)} ≤ J∗k (x) for any k, we have J∗∞(x) ≤ limk→∞ J∗k(x). For any
> 0, there exists ν such that J(x, ν) ≤ J∗∞(x) + . Suppose that |ν| = q.
Then limk→∞ J∗k (x) ≤ J∗q (x) ≤ J(x, ν) ≤ J∗∞(x) + . Since is chosen

arbitrarily, we have J∗∞(x) = limk→∞ J∗k (x).

Now let us consider what will happen when we make k → ∞ in (2.2.6).

The left-hand side is simply J∗∞(x). But for the right-hand side, it is not

obvious to see since the minimum will be reached at different u for different

k. However, the following result can be proved.

Theorem 2.2 Let x be an arbitrary state vector. Suppose that there is a

positive integer p such that A(p)x = ∅. Then

J∗∞(x) = inf
u
{U(x, u) + J∗∞(F (x, u))}. (2.3.3)

Proof. For any u and k > p, by Bellman’s principle of optimality (2.2.6),

J∗k (x) ≤ U(x, u) + J∗k−1(F (x, u)).

By the definition of J∗∞(x), J
∗
∞(x) ≤ J∗k(x). So for any k > p,

J∗∞(x) ≤ U(x, u) + J∗k−1(F (x, u)). (2.3.4)

Let k →∞ in (2.3.4), then

J∗∞(x) ≤ U(x, u) + J∗∞(F (x, u)).

25

So

J∗∞(x) ≤ inf
u
{U(x, u) + J∗∞(F (x, u))}. (2.3.5)

Let > 0 be an arbitrary positive number. Since {J∗k} is nonincreasing and
limk→∞ J∗k(x) = J

∗
∞(x), there exists a positive integer K such that

J∗K(x)− ≤ J∗∞(x) ≤ J∗K(x).

Let u∗0 = v
∗
K(x) = argminu{U(x, u) + J∗K−1(F (x, u))}. Then

J∗K(x) = U(x, u
∗
0) + J

∗
K−1(F (x, u

∗
0)).

Hence

J∗∞(x) ≥ U(x, u∗0) + J∗K−1(F (x, u∗0))−
≥ U(x, u∗0) + J∗∞(F (x, u∗0))− .

≥ inf
u
{U(x, u) + J∗∞(F (x, u))}− .

Since is arbitrary, we have

J∗∞(x) ≥ inf
u
{U(x, u) + J∗∞(F (x, u))}. (2.3.6)

Combining (2.3.5) and (2.3.6) we have

J∗∞(x) = inf
u
{U(x, u) + J∗∞(F (x, u))},

which proves the theorem.

Equation (2.3.3) is similar to (2.2.6). But in (2.3.3), there is only one per-

formance index function J∗∞(x), while (2.2.6) holds for a sequence of functions

J∗k(x), k = 1, 2,

In Theorems 2.1 and 2.2, we have the assumption that A(p)x = ∅. If

A(p)x = ∅ for some p is not satisfied for any x, these two theorems will be

26

meaningless. Now let us look at this condition. We will study the case when

A(p)x = ∅ for some p and the function J∗∞(·) can be defined at x.

By Section II, Ax = ∪1≤k<∞A(k)x . So A(p)x = ∅ for some p if and only if
Ax = ∅. If Ax = ∅, then there exists at least one control sequence u with
finite length such that the trajectory starting from x under the control of

u will reach the target in final step, i.e., xN (x, u) = 0. On the other hand,

if Ax = ∅, then the trajectory starting from x under any arbitrary control

sequence of finite length will never reach the target. So {x : Ax = ∅} is the
set of all controllable states and {x : Ax = ∅} is the set of all uncontrollable
states. Moreover, J∗∞(x) is well defined if and only if x is controllable.

Let T 0 = {0}. For k = 1, 2, . . . , define

T k = {x ∈ Rn| ∃u ∈ Rm s.t. F (x, u) ∈ T k−1}. (2.3.7)

Since T 0 = {0} and F (0, 0) = 0, we know that 0 ∈ T 1. Hence T 0 ⊆ T 1.
Assume that T k−1 ⊆ T k. If x ∈ T k, then F (x, u) ∈ T k−1 for some u. Hence
F (x, u) ∈ T k. So x ∈ T k+1 by (2.3.7). Thus T k ⊆ T k+1. By the principle of
induction, we have

{0} = T 0 ⊆ T 1 ⊆ · · · ⊆ T k−1 ⊆ T k ⊆ · · · .

By condition (C2.1), the system is controllable in a neighborhood of the

origin. So there exists a non-zero controllable state x0 = 0. There always

exists a control sequence u = (u0, u1, . . . , uN−1) such that xN−1 = 0 and

xN = 0, where xi+1 = F (xi, ui) for i = 0, . . . , N − 1. Obviously, xN−1 ∈ T 1.
Thus, T 1 ⊇ {0} and T 1 = {0}, i.e., T 1 ⊃ {0}. So T k ⊇ T 1 ⊃ {0} when
k > 1.

Now, T 0 = {0} is the target. Let x ∈ T 1. Then there exists a control

27

vector u such that F (x, u) = 0, which implies that u ∈ A(1)x . Thus, A(1)x = ∅
for any x ∈ T 1. Assume that A(k−1)x = ∅ for any x ∈ T k−1. Let x ∈ T k. Then
there exists a control vector u such that F (x, u) ∈ T k−1. Hence A(k−1)F (x,u) = ∅
by assumption. Let u1 ∈ A(k−1)F (x,u). Then (u, u1) will control the state x to 0

and has length k, i.e., (u, u1) ∈ A(k)x . Therefore, for any k, A(k)x = ∅ if x ∈ T k.

On the other hand, suppose that x is a state such that A(k)x = ∅. Let
u = (u0, . . . , uk−1) ∈ A(k)x . Then we have the trajectory starting from x under
the control of u given by x0 = x, x1 = F (x0, u0), . . . , xk = F (xk−1, uk−1).

Since u is admissible, xk = 0. Then it is easy to see that xk ∈ T 0, xk−1 ∈ T 1,
. . . , x = x0 ∈ T k.

Therefore, we have proved the following results.

Theorem 2.3

(i) {0} = T 0 ⊂ T 1 ⊆ · · · ⊆ T k−1 ⊆ T k ⊆ · · · , i.e., if k < k then T k is
a subset of T k , and T k contains at least one non-trivial state vector
when k > 0.

(ii) For any k, x ∈ T k ⇔ A(k)x = ∅ ⇔ J∗k (·) can be defined at x.

(iii) Let T∞ = ∪∞k=1T k. Then x ∈ T∞ ⇔ Ax = ∅ ⇔ J∗∞(·) can be defined at
x ⇔ x is controllable.

(iv) If J∗k (·) can be defined at x, then J∗p (·) can be defined at x for every
p > k.

(v) J∗∞(·) can be defined at x if and only there exists k such that J∗k (·) can
be defined at x.

28

2.4 The -optimal Cost V ∗ and the Function K (x)

In the previous section, we proved that the infimum

J∗∞(x) = inf
u
{J(x, u), u ∈ Ax}

is the limit of J∗k(x) when k →∞. We proved that J∗∞(x) satisfies Bellman’s
equation (2.3.3) and J∗∞(x) has definition for every controllable state x ∈ T∞.
One can consider J∗∞(x) as the optimal performance index because it is really

the infimum of all possible performance indexes under admissible control

sequences.

One possible natural strategy for optimal control is to find a control

sequence such that the associated performance index is just J∗∞(x). But

unfortunately, J∗∞(x) may not be achievable. In many cases, one cannot

find the equality J∗∞(x) = J∗k(x) for any k. That is, for any control se-

quence u with finite length, the performance index starting from x under

the control of u is larger than, not equal to, J∗∞(x). On the other hand, by

solving (2.3.3), one can assign a control vector v∗∞(x) to x and then give a

control sequence v∗∞(x) = (v∗∞(x0), v
∗
∞(x1), . . . , v

∗
∞(xk), . . .), where x0 = x,

x1 = F (x0, v
∗
∞(x0)), . . . , xk = F (xk−1, v

∗
∞(xk−1)), In general, v

∗
∞(x) has

infinite length. That is, the controller by solving (2.3.3) cannot control the

state to reach the target in finite steps.

Furthermore, v∗∞(x) may not even be admissible in some cases (see Ex-

ample 2.3 for an illustration of this situation). Even if v∗∞(x) is admissible,

it may also be abused in real world applications since one often has to obtain

v∗∞(x) from an approximation Ĵ of J∗∞, not from J∗∞ itself. If it happens to

have the inequality Ĵ(x) < J∗∞(x) which is caused by computational errors,

the control obtained from Ĵ will not be admissible, since J∗∞ is the greatest

29

lower bound of all performance indexes with respect to all admissible control

sequences and thus Ĵ is not a performance index function any more.

Example 2.3

Look at Examples 2.1 and 2.2 again. We will examine whether the control

sequence v∗∞(·) is admissible. The system is xk+1 = xk+uk and the utility is
U(x, u) = u2. We have obtained that J∗k (x) = x

2/k and v∗k(x) = −x/k (see
(2.2.14)). In this simple case, we have T 1 = T 2 = . . . = T∞ = R. We have
infu J(x, u) = 0 in (2.2.15). So we obtain

J∗∞(x) = inf
u
J(x, u) = 0 for all x ∈ R.

We can also get J∗∞(x) according to Theorem 2.1 by

J∗∞(x) = lim
k→∞

J∗k (x) = 0.

Now, (2.3.3) becomes

0 = min
u
{u2 + 0}.

This gives v∗∞(x) = 0 and

v∗∞(x) = (0, 0, . . .). (2.4.1)

This is just ũ in Example 2.2. Starting from an initial state x, the trajectory

under the control of (2.4.1) is

x0 = x, x1 = x, . . . , xk = x, (2.4.2)

In sequence (2.4.2), xk = x for every k. So limk→∞ xk = x = 0 if x = 0. The

trajectory does not converge to the target. Thus we can claim that in this

example, the control sequence obtained by solving Bellman’s equation (2.3.3)

30

according to J∗∞(x) is not an admissible control sequence. In this example, the

greatest lower bound of all performance indexes is 0. Therefore, in this case,

the optimal control sequence is not admissible according to the definition in

(2.2.3) and (2.2.4) since no control sequence can drive the system state to

the origin with zero cost. Thus, the optimal performance index J∗∞(x) in this

example cannot be realized by any admissible control sequence.

We will consider an alternative for the optimal control of discrete-time

systems. The simplest way is to fix the length of control sequence. Preset

a positive integer K and then use J∗K(x) as an approximation of J
∗
∞(x).

When K is large enough, J∗K(x) will be a good approximation of J
∗
∞(x).

But the convergence of limk→∞ J∗k (x) = J∗∞(x) may not be uniformly. For

a fixed K, the error of the approximation J∗K(x) − J∗∞(x) maybe very large
when x is large. For example, look at Examples 2.1 and 2.2. We have that

J∗K(x) = x2/K, J∗∞(x) = 0 and the error is J∗K(x) − J∗∞(x) = x2/K. It is

obvious that J∗K(x) − J∗∞(x) = O(x2) → ∞ when |x| → ∞. The error will
be very large when x is far away from the origin.

Hence, we will introduce our method for dynamic programming with the

consideration of the length of control sequences. For different x, we will use

different K for the length of optimal control sequence. For a given error

bound according to > 0, the number K will be chosen so that the error

between J∗∞(x) and J
∗
K(x) is bounded with a bound according to .

Definition 2.1 Let x ∈ T∞ be a controllable state vector. Let > 0 be a

positive number. The approximate length of optimal control with respect to

is defined as

K (x) = min{k : |J∗k (x)− J∗∞(x)| ≤ }.

31

Given a positive number , for any state vector x, the number K (x)

gives a suitable length of control sequence for optimal control starting from

x. For x ∈ T∞, since limk→∞ J∗k(x) = J∗∞(x), we can alway find k such

that |J∗k(x) − J∗∞(x)| ≤ . So {k : |J∗k (x) − J∗∞(x)| ≤ } = ∅ and K (x)

is well defined. The optimal control sequence with this length will give a

performance index which is close enough to the “theoretical optimal cost”

J∗∞(x). The performance index will be slightly larger than J
∗
∞(x), but less

than J∗∞(x)+ , which can be achieved by a control sequence with length K .

A control sequence with shorter length cannot lead to a performance index

close enough to J∗∞(x). Meanwhile, a control sequence with longer length

will not be necessary if one considers K (x) to be enough.

Definition 2.2 Let x ∈ T∞ be a controllable state vector and be a positive

number. For k = 1, 2, . . . , define the set

T ()k = {x ∈ T∞ : K (x) ≤ k}.

When x ∈ T ()k , to find the optimal control sequence which has perfor-
mance index less than or equal to J∗∞(x) + , one only needs to consider the

control sequences u with length |u| ≤ k. The sets T ()k has the following

properties.

Theorem 2.4 Let > 0 and k = 1, 2, Then,

(i) x ∈ T ()k if and only if J∗k(x) ≤ J∗∞(x) + ;

32

(ii) T ()k ⊆ T k;

(iii) T ()k ⊆ T ()k+1;

(iv) ∪kT ()k = T∞;

(v) If > δ > 0, then T ()k ⊇ T (δ)k .

Proof. (i) Let x ∈ T ()k . By Definition 2.2, K (x) ≤ k. Let p = K (x). Then

p ≤ k and by Definition 2.1, |J∗p (x) − J∗∞(x)| ≤ . So J∗p (x) ≤ J∗∞(x) + .

By Theorem 2.1 J∗k (x) ≤ J∗p (x) ≤ J∗∞(x) + . On the other hand, if J∗k (x) ≤
J∗∞(x) + , then |J∗k(x)− J∗∞(x)| ≤ . So K (x) = min{p : |J∗p (x)− J∗∞(x)| ≤
} ≤ k. Therefore, x ∈ T ()k .

(ii) When x ∈ T ()k , K (x) ≤ k. So J∗k(·) has definition at x. Thus x ∈ T k.
Hence T ()k ⊆ T k.

(iii) When x ∈ T ()k , K (x) ≤ k < k + 1. So x ∈ T ()k+1. Thus T ()k ⊆ T ()k+1.

(iv) Obviously ∪kT ()k ⊆ T∞ since T ()k are subsets of T∞. For any x ∈ T∞,
let p = K (x). Then x ∈ T ()p . So x ∈ ∪kT ()k . Hence T∞ ⊆ ∪kT ()k ⊆ T∞,
and thus ∪kT ()k = T∞.

(v) When x ∈ T (δ)k , J∗k (x) ≤ J∗∞(x) + δ by part (i) of this theorem.

Clearly, J∗k (x) ≤ J∗∞(x)+ since δ < . This implies that x ∈ T ()k . Therefore
T ()k ⊇ T (δ)k .

According to Theorem 2.4(i), T ()k is just the region where J∗k is close

to J∗∞ with error less than . This region is a subset of T k, see Theorem
2.4(ii). As stated in Theorem 2.4(iii), when k is large, the set T ()k is also

large. That means, when k is large, we have large region where we can

33

use J∗k(x) as the approximation of J
∗
∞ under certain error. On the other

hand, we claim that for large x, we have to choose long control sequence

to approximate the optimal control. Theorem 2.4(iv) means that for every

controllable state x ∈ T∞, we can always find a suitable length k of control
sequence to approximate the optimal control. The size of the set T ()k depends

on the value of . Smaller value of gives smaller set T ()k ; see Theorem 2.4(v).

Theorem 2.5 Let x ∈ T ()k and u∗ = v∗k(x). Then F (x, u
∗) ∈ T ()k−1. In other

words, if K (x) = k, then K (F (x, u∗)) ≤ k − 1.

Proof. Since x ∈ T ()k , by Theorem 2.4(i) we know that

J∗k (x) ≤ J∗∞(x) + . (2.4.3)

By (2.2.6) and (2.2.7),

J∗k(x) = U(x, u
∗) + J∗k−1(F (x, u

∗)). (2.4.4)

From (2.4.3) and (2.4.4), we have

J∗k−1(F (x, u
∗)) = J∗k(x)− U(x, u∗)
≤ J∗∞(x) + − U(x, u∗). (2.4.5)

By Theorem 2.2,

J∗∞(x) ≤ U(x, u∗) + J∗∞(F (x, u∗)). (2.4.6)

Putting (2.4.6) into (2.4.5) we obtain

J∗k−1(F (x, u
∗)) ≤ J∗∞(F (x, u∗)) + .

By Theorem 2.4(i) again, F (x, u∗) ∈ T ()k−1.

34

When K (x) = k, we know that x ∈ T ()k . Hence F (x, u∗) ∈ T ()k−1. Thus
K (F (x, u∗)) ≤ k − 1. The theorem is proved.

According to Theorem 2.5, the optimal controller v∗k(·) has a property
that it will drive a state vector from T ()k to T ()k−1. So, when we want to find
the optimal control for state x ∈ T ()k via Bellman’s principle of optimality

(2.2.6), the minimum on the right-hand side will only need to be chosen from

those costs with u such that F (x, u) ∈ T ()k−1. In Section II, we have defined
admissible control sequences to be those which can drive a state to the origin.

Now, we can define an admissible control vector, i.e., a single control vector,

not a control sequence. For a controllable state x ∈ T ()k , a control vector u
is called an admissible control vector of x if F (x, u) ∈ T ()k−1. Let

Π ,k
x = {u : F (x, u) ∈ T ()k−1}, x ∈ T ()k , (2.4.7)

be the set of all admissible control vector of x. Then we have the following

result:

Corollary 2.1 If x ∈ T ()k , then

J∗k (x) = min
u∈Π ,k

x

{U(x, u) + J∗k−1(F (x, u))}, (2.4.8)

and

v∗k(x) = arg min
u∈Π ,k

x

{U(x, u) + J∗k−1(F (x, u))}.

Equation (2.4.8) looks quite similar to (2.2.6). But there are some impor-

tant differences. First, the state x belongs to the set T ()k in (2.4.8), while in

(2.2.6), x is any controllable state, i.e., x ∈ T∞. Because T ()k is smaller than

35

T∞, less computation are needed in solving (2.4.8). Second, when we take the
minimum, we choose u from Π ,k

x in (2.4.8). But in (2.2.6), we have to choose

u from the whole space Rm. Again, the set Π ,k
x is smaller and will lead to less

computation. Of course, as clarified earlier, the control vector u in (2.2.6)

has to be chosen so that u will be part of an admissible control sequence,

i.e., there must be some u1, u2, . . . , uk−1 such that (u, u1, . . . , uk−1) ∈ Akx.
Unfortunately, this is very difficult to do in real applications. However, in

(2.4.8), u ∈ Π ,k
x . This can be done by choosing u such that F (x, u) ∈ T ()k−1,

i.e., K (F (x, u)) ≤ k − 1. This is also not very easy, but at least it can be
operated. Besides, when we try to find the optimal control, we only need

to solve (2.4.8) for those x ∈ T ()k \ T ()k−1, i.e., those x such that K (x) = k,

which will reduce the computation further more.

For any x ∈ T∞, suppose that K (x) = k. Then J∗k (x) is an approxima-

tion of J∗∞(x) with error less than . Thus we define the -optimal cost V ∗

as

V ∗(x) =

 J∗k(x), if x = 0 and K (x) = k,
k = 1, 2, . . . ;

0, if x = 0.
(2.4.9)

According to V ∗(x), we denote the associated controller by µ∗(·) and call it
the -optimal control vector:

µ∗(x) =

 v∗k(x), if x = 0 and K (x) = k,
k = 1, 2, . . . ;

0, if x = 0.
(2.4.10)

Both V ∗(x) and µ∗(x) are piecewise functions. When x ∈ T ()k \T ()k−1, V ∗(x) =
J∗k(x) and µ

∗(x) = v∗k(x). See Fig. 2.1 for an illustration.

By using k = K (x) in Corollary 2.1, we obtain that for x ∈ T∞, if

36

−2 −1 0 1 2
0

2

4

6

8

x

P
er

fo
rm

an
ce

in
de

x

J ∗
1

J ∗
2

J ∗
3

(a) J∗k for k = 1, 2, 3.

−2 −1 0 1 2
0

2

4

6

x

P
er

fo
rm

an
ce

in
de

x

V ∗
ε

J ∗
∞

(b) V ∗ and J∗∞.

Figure 2.1: V ∗ for system xk+1 = xk + uk with utility U(x, u) = x
2 + u2 and

= 0.15.
It is easy to verify that J∗1 (x) = 2x2, J∗2 (x) = 5x2/3, J∗3 (x) = 13x2/8, and J∗∞(x) = (1 +

√
5)x2/2. The

function V ∗(x) is a piecewise function. V ∗(x) = 2x2 if |x| ≤ 0.6267, V ∗(x) = 5x2/3 if 0.6267 < |x| ≤
1.7562, and V ∗(x) = 13x2/8 if 1.7562 < |x| ≤ 4.6404.

k = K (x) > 0, then

V ∗(x) = min
u∈Π ,k

x

{U(x, u) + V ∗(F (x, u))}, (2.4.11)

and

µ∗(x) = arg min
u∈Π ,k

x

{U(x, u) + V ∗(F (x, u))}. (2.4.12)

The minimum is taken according to all u ∈ Π ,k
x , where k = K (x) > 0, i.e.,

37

x ∈ T ()k ,

Π ,k
x = {u : F (x, u) ∈ T ()k−1}
= {u : K (F (x, u)) ≤ k − 1}. (2.4.13)

In particular, if K (x) = 1,

Π ,1
x = {u : F (x, u) = 0}, (2.4.14)

V ∗(x) = min
u∈Π ,1

x

{U(x, u)} = J∗1 (x), (2.4.15)

and

µ∗(x) = arg min
u∈Π ,1

x

{U(x, u)} = v∗1(x). (2.4.16)

Equation (2.4.11) is quite similar to (2.3.3). But in (2.3.3), the right-hand

side is the infimum, while in (2.4.11), the right-hand side is minimum. The

infimum cannot always be reached. On one hand, for any admissible control

sequence u, the equality J(x, u) = J∗∞(x) may not hold. On the other hand,

if ũ is a control sequence such that J(x, ũ) = J∗∞(x), then ũ may not be

admissible. The trajectory under the control of ũ may not converge to the

target at all, which has been illustrated in Examples 2.2 and 4.1. However,

the minimum means that it can be reached. V ∗(x) is just J∗k (x) for some

k: k = K (x). The control sequence v∗k(x) is admissible. It will drive the

associated trajectory to the target {0} in k steps and J(x, v∗k(x)) = V ∗(x).

Now we know that the -optimal cost V ∗(x) satisfies (2.4.11) (if K (x) >

1) and (2.4.15) (if K (x) = 1). We also know that the -optimal controller

µ∗(x) satisfies (2.4.12). Let us consider what will happen if we use µ∗(x) to

control the system. We have the following result.

38

Theorem 2.6 Let x ∈ T∞ be an arbitrary controllable state. Define

µ∗(x) = (µ∗(x0), µ∗(x1), . . . , µ∗(xj), . . .), (2.4.17)

where x0 = x and xj+1 = F (xj, µ
∗(xj)) for j = 0, 1, If K (x) = k > 0,

then xj = 0 and µ
∗(xj) = 0 for all j ≥ k, and the performance index satisfies

J(x, µ∗(x)) ≤ J∗∞(x) + max(k − 1, 1) .

Proof. IfK (x) = 1, then x ∈ T ()1 and µ∗(x) = v∗1(x). So x1 = F (x, v
∗
1(x)) =

0. Hence the trajectory starting from x0 = x under the control of µ
∗(x) is

x0 = x, 0, 0, . . . , while µ
∗(x) = (v∗1(x), 0, 0, . . .). The performance index is

J(x, µ∗(x)) = U(x, v∗1(x)) + 0 + . . . = J
∗
1 (x).

Since x ∈ T ()1 , J∗1 (x) ≤ J∗∞(x)+ . Thus J(x, µ∗(x)) ≤ J∗∞(x)+ . The result

of the theorem is proved in this case.

If K (x) = 2, then x ∈ T ()2 and µ∗(x) = v∗2(x). So x1 = F (x, v∗2(x)) ∈
T ()1 (by Theorem 2.5) and µ∗(x1) = v∗1(x1). Consequently, the trajectory

starting from x0 = x under the control of µ
∗(x) is x0 = x, x1, 0, 0, . . . , while

µ∗(x) = (v∗2(x), v
∗
1(x1), 0, 0, . . .). The performance index is

J(x, µ∗(x)) = U(x, v∗2(x)) + U(x1, v
∗
1(x1)) + 0 + . . .

= J∗2 (x).

Since x ∈ T ()2 , J∗2 (x) ≤ J∗∞(x)+ . Thus J(x, µ∗(x)) ≤ J∗∞(x)+ . The result

of the theorem is proved in this case.

Let L > 2. Assume that the result of the theorem is true when K (x) <

L. Now let us consider the case K (x) = L. In this case, x ∈ T ()L and

39

µ∗(x) = v∗L(x) (see (2.4.10)). So x1 = F (x, v
∗
L(x)) ∈ T ()L−1 (by Theorem 2.5),

and hence K (x1) ≤ L− 1. Now

µ∗(x) = (µ∗(x0), µ∗(x1), . . . , µ∗(xj), . . .),

= (v∗L(x0), µ
∗(x1)),

where x0 = x, xj+1 = F (xj , µ
∗(xj)) for j = 0, 1, . . . , and

µ∗(x1) = (µ∗(x1), µ∗(x2), . . . , µ∗(xj), . . .).

Obviously (x1, x2, . . . , xj , . . .) is the trajectory starting from x1 under the

control of µ∗(x1). Since K (x1) ≤ L − 1 < L, by the induction assumption,
the result of the theorem holds for x1. So xj = 0 and µ∗(xj) = 0 for all

j − 1 ≥ L− 1, and the performance index

J(x1, µ
∗(x1)) ≤ J∗∞(x1) + (L− 2) .

Now we have xj = 0 and µ
∗(xj) = 0 for all j ≥ L, and the performance index

J(x0, µ
∗(x0)) = U(x0, v∗K(x0)) + J(x1, µ

∗(x1))

≤ U(x0, v∗K(x0)) + J∗∞(x1) + (L− 2)
≤ U(x0, v∗K(x0)) + J∗K−1(x1) + (L− 2)
= J∗K(x0) + (L− 2)
≤ J∗∞(x0) + (L− 1) .

Hence the result of the theorem holds when K (x) = L. Therefore, by

principle of induction, the result of the theorem holds for any x ∈ T∞.

According to Theorem 2.6, the control sequence µ∗(x) is an admissible

control sequence. If K (x) = k, the system will go to the target at most in k

steps under the control of µ∗(·) = v∗k(·). In this case, the performance index

40

J(x, µ∗(x)) is an approximation of J∗∞(x), with error less than max(k−1, 1) .
Besides, according to (2.4.17), the control sequence µ∗(x) can be calculated

using the single control law µ∗(·). In the next section, we will introduce
our new method for dynamic programming of discrete-time systems. The

-optimal cost V ∗(·) and -optimal controller µ∗(·) will be employed as alter-
natives for the optimal cost and optimal controller.

2.5 The -Adaptive Dynamic Programming for Discrete-Time

System using Neural Networks

In this section, we will introduce a numerical algorithm of -adaptive dynamic

programming for discrete-time systems. A neural network Ĵ will be used to

approximate the -optimal cost V ∗, i.e., it will approximate J∗k (x) if K (x) =

k, where > 0 determines an error bound. At the same time, a neural

network µ̂ will be used to approximate the -optimal controller µ∗. A third

network in our algorithm is K̂, which is used to approximate K .

For initialization, consider the problem

J∗1 (x) = min
u
U(x, u) subject to F (x, u) = 0. (2.5.1)

The set of x such that (2.5.1) has solutions is just T 1. When x ∈ T 1, consider
the equation F (x, u) = 0. If there is only one solution to this equation, the

solution is just v∗1(x) since it is the only choice. If there are more than one

solutions, we will choose the one which minimizes the cost. Suppose that

u = f (i)(x), i ∈ I, are all the implicit functions defined by F (x, u) = 0,

where I is a suitable index set. Then

J∗1 (x) = mini∈I{U(x, f (i)(x))} = U(x, v∗1(x)),
v∗1(x) = f

(i0)(x),
(2.5.2)

41

where i0 is the index such that f
(i0)(x) minimizes U(x, f (i)(x)). Then we will

initialize the networks according to

K̂(x) =
1, if x ∈ T 1, x = 0,
0, otherwise,

Ĵ(x) =
J∗1 (x), if x ∈ T 1,
0, otherwise,

µ̂(x) =
v∗1(x), if x ∈ T 1,
0, otherwise.

(2.5.3)

After that, the networks Ĵ and µ̂ will be updated from measured data

according to the formulas (2.4.11) and (2.4.12). According to (2.4.13), if

K (F (x, u)) = k, then K (x) ≥ k + 1. So we will update K̂ by

K̂(x) = K̂(F (x, µ̂(x)) + 1. (2.5.4)

For every state x ∈ Rn, the integer k = K (x) indicates that the optimal

performance index will be realized (with an error bound determined by) in

just k steps. If K (x) is infinite, then x is uncontrollable. In other words, if

K (x) = k then J∗k (x) is an approximation to the optimal performance index

J∗∞(x), and if K (x) = +∞, then the optimal cost cannot be reached in finite
steps. As defined earlier, if K (x) ≤ k then x ∈ T ()k .

As a numerical algorithm, we only consider bounded regions and finite

control steps. We use a number maxK to represent the upper bound of

control steps. The total number of steps of the system to reach the target

from any initial state is restricted to k ≤ maxK. In other words, for an initial
state x, if one cannot control the system to reach the target within maxK

steps starting from x, then x will be considered to be uncontrollable.

The following gives the algorithm ADPDN() for -adaptive dynamic pro-

gramming.

42

Algorithm ADPDN() (-adaptive dynamic programming for discrete time

systems using neural networks)

A00 Initialization. Solve problem (2.5.1) to determine the set T 1 and the
functions J∗1 (x) and v

∗
1(x). Then train K̂(x), Ĵ(x) and µ̂(x) according

to (2.5.3)

A01 Choose randomly an array of initial states x0 = (x
(1)
0 , x

(2)
0 , . . . , x

(p)
0)

from the entire state space.

A02 For k = 1, 2, . . . ,maxK, do A03—A06.

A03 Run the system from the array of states x0 under the control of µ̂.

Record the resultant array of states x1 = (x
(1)
1 , x

(2)
1 , . . . , x

(p)
1). For i =

1, 2, . . . , p, calculate the associated costs C
(i)
1 = U(x

(i)
0 , µ̂(x

(i)
0))+Ĵ(x

(i)
1).

Record each k
(i)
0 = K̂(x(i)0) and k

(i)
1 = K̂(x(i)1).

A04 Update Ĵ and K̂. For each i = 1, . . . , p,

if x
(i)
0 ∈ T 1 and J∗1 (x(i)0) ≤ C(i)1 + then K̂(x

(i)
0) =

0, if x
(i)
0 = 0,

1, if x
(i)
0 = 0,

Ĵ(x
(i)
0) = J

∗
1 (x

(i)
0),

elseif k
(i)
1 ≤ max(k(i)0 − 1, 1) then

K̂(x
(i)
0) = k

(i)
1 + 1,

Ĵ(x
(i)
0) = C

(i)
1 .

endif

43

A05 Update µ̂. For each i = 1, . . . , p,

if x
(i)
0 ∈ T 1 and J∗1 (x(i)0) ≤ Ĵ(x(i)0) + then

µ̂(x
(i)
0) = v

∗
1(x

(i)
0),

else
µ̂(x

(i)
0) = argminu{U(x(i)0 , u) + Ĵ(F (x(i)0 , u)) :

K̂(F (x
(i)
0 , u)) ≤ max(K̂(x(i)0)− 1, 1)},

endif

A06 Let x0 = x1.

A07 Go to A02 until the process converges.

At the beginning of the algorithm ADPDN(), in A00, the problem (2.5.1)

is solved according to (2.5.2). The functions J∗1 , v
∗
1 and the set T 1 are de-

termined. Then, the neural networks K̂, Ĵ and µ̂ are initialized according

to (2.5.3). Thus, for x ∈ T ()1 , we have K̂(x) = K (x), Ĵ(x) = V ∗(x), and

µ̂(x) = µ∗(x). Furthermore, according to A04, the values of K̂, Ĵ and µ̂

for x ∈ T ()1 will not change during the training of the network. The final

outputs of the ADPDN() algorithm are the three neural networks, K̂, Ĵ and

µ̂,. They will approximate K , V ∗ and µ∗, respectively.

From A01 to A07, there are two levels of loops. The outer loop, starting

from A01 and ending at A07, will give initial states x0 and then go into

the inner loop. The inner loop runs the system maxK steps. As we have

mentioned before, for an initial state x, if one cannot control the system to

reach the target within maxK steps starting from x, then we will consider x

to be uncontrollable.

44

The body of the inner loop, from A03 to A05, will run the system from

x0 under the control of µ̂ and update the networks according to the results.

There are two different ways to adjust the networks. When x
(i)
0 ∈ T 1 and

J∗1 (x
(i)
0) ≤ C(i)1 + , one will consider x

(i)
0 ∈ T ()1 and update the networks by

(2.5.3). Otherwise, the condition k
(i)
1 ≤ max(k(i)0 − 1, 1) implies that x(i)1 is

one step closer to the target x = 0, and one will update networks by (2.4.11),

(2.4.12) and (2.5.4).

The initial states x0 are chosen randomly in A01. Suppose that the

associated random probability density function is non-vanished everywhere.

Then we can assume that all the states will be explored. So we know that

the resulting networks tend to satisfy the formulas (2.4.11)—(2.4.16) for all

state vectors x. Since K̂(x) = K (x), Ĵ(x) = V ∗(x), and µ̂(x) = µ∗(x) for

x ∈ T ()1 , we conclude that the limit of K̂, Ĵ , and µ̂ will approximate the
values K , V ∗, and µ∗, respectively.

The network K̂, which is an approximation of K , is very important in

the algorithm ADPDN(). It is applied to check whether a state x
(i)
0 belongs

to T ()1 or T ()k for k > 1. It also indicates the region where optimal control

exists, and how long a state will spend to get to the target under the control

of an optimal controller v∗k(·). For a state x, if K̂(x) > maxK then we can

consider x to be uncontrollable. If K̂(x) ≤ maxK, then K̂(x) is an estimate
of the number of control steps to drive x to the target.

Our ADPDN() algorithm can also allow the use of a neural network F̂ for

approximating the system function F . F̂ is usually trained off-line. Starting

from an initial state, it will try to reach the target. If it cannot find the way

in maxK steps, it will go back to the starting position and explore again. At

the beginning, the algorithm may not find the optimal controller. It may not

45

even drive the state along a right path to the target. But after some times

of running, it will know how to reach the target. Then it will try to find a

way with smaller cost. When it has enough experience, it will find a good

approximation to the optimal controller.

The algorithm ADPDN() can be applied to both linear and nonlinear

systems. We only need that F and U are continuous functions and satisfy

the conditions that F (0, 0) = 0, U(x, u) ≥ 0, U(0, 0) = 0, and (C2.1) holds.
But some details of the algorithm ADPDN() will be adjusted according

to different F and U . In A00, we have to solve the problem (2.5.1). We

need to find all the implicit functions of F (x, u) = 0. This can be done

by either analytic method or numerical method, depending on the function

F (x, u). In A05, we have to find argminu[U(x, u)+ Ĵ(F (x, u))]. For different

F and U , and different kind of network Ĵ , one can use different methods to

solve this minimization problem. For example, if F (x, u) = a(x) + b(x)u,

U(x, u) = x2 + u2, and a radial basis function neural network (RBFNN) is

used with Ĵ(x) = i ωiφ(x − bi 2/ai), then one can find the minimum by

solving equation

∂

∂u
[U(x, u) + Ĵ(w)] = 2u+ Ĵ (w)b(x) = 0,

where w = F (x, u). Therefore

u = −1
2
b(x)

i

ωiφ (w − bi 2/ai),

which is similar to the iterative formula in [2, 18, 27, 35] (see (1.1.4), (1.1.8)

and (1.1.11)). In the next section, numerical experiments using RBFNNs

will be provided. Our algorithm works well in all these experiments. We

note that other kinds of neural network structures such as backpropagation

neural networks as well as recurrent neural networks can also be employed

for our numerical experiments.

46

2.6 Numerical Experiments

To evaluate the performance of algorithm ADPDN(), we select two non-

linear unstable systems with non-quadratic utility functions for numerical

experiments. The program is written in MATLAB and running on a Dell

Dimension 8300 PC with Windows XP and Pentium IV processor.

Example 2.4

We consider the system

xk+1 = F (xk, uk) = xk + sin(xk + uk), (2.6.1)

where xk, uk ∈ R, and k = 0, 1, 2, The utility function is U(x, u) =

|x| + u2. Since F (0, 0) = 0, x = 0 is an equilibrium state of system (2.6.1).

But since (∂F/∂x)(0, 0) = 2 > 1, (2.6.1) is unstable at x = 0.

We choose the value of = 0.01. The region of states considered here is

|x| ≤ 5 and the number of control steps is restricted to 10. The size of the
set of initial states x0 (A01 of the algorithm) will be 50 each time, i.e., at

the beginning of the each inner loop iteration, we choose randomly 50 initial

states.

The neural networks K̂, Ĵ and µ̂ will be trained from the observations

while the algorithm is running. We expect that they have the ability to keep

the old feature when they are trained by some new data. For this purpose,

radial basis function neural networks are adopted. Each network will be a

linear combination of functions iwiφ(x−ci /ρi), where wi are the weights
of neurons, φ(r) is the basis function, ci is the center and ρi is the width of

each neuron. For K̂, φ(r) = 1 if −1 < r ≤ 1 and φ(r) = 0 elsewhere. For

47

Ĵ and µ̂, φ(r) = exp(−r2). The number of neurons, and the centers and
widths of all neurons will be obtained through training. The value of the

width ρi will go from 2 down to 0.001 after training. The updating rule

is the resource allocation network via extended Kalman filter (RANEKF)

algorithm [15], [37] for RBFNNs.

Since F (x, u) = x+sin(x+u), the implicit functions according to F (x, u) =

0 are

u = f (i)(x) = 2iπ + sin−1(−x)− x,

and

u = g(i)(x) = (2i+ 1)π − sin−1(−x)− x,

where −1 ≤ x ≤ 1, and i = 0,±1,±2, It is easy to see that T 1 = [−1, 1]
and J∗1 (x) = min{U(x, u) : F (x, u) = 0}

= |x|+ (−x+ sin−1(−x))2,
v∗1(x) = −x+ sin−1(−x),

for x ∈ T 1. Since the value of sin(x+ u) is between −1 an 1, one can easily
determine that T k = [−k, k] for any k = 1, 2,

In A05 of the algorithm ADPDN(), we need to solve argminu[U(x, u) +

Ĵ(F (x, u))]. Now U(x, u) = |x| + u2, F (x, u) = x + sin(x + u). So the

minimization problem becomes

min
u
{|x|+ u2 + Ĵ(w)}, (2.6.2)

where w = x+ sin(x+ u). Since sin(·) is a periodic function with period 2π,
we know that the minimum of (2.6.2) will be reached when u ∈ (−π.π].

We perform our ADPDN() algorithm and save K̂, Ĵ , and µ̂ at the end

of each outer loop iteration, i.e., save them in A06 of the algorithm. Then

48

−5 −2.5 0 2.5 5
0

15

30

x

Ĵ
(x

)

L=1000

L=200

L=50

L=1

(a) L = 1, 50, 200, 1000

−5 −2.5 0 2.5 5
0

15

30

x

Ĵ
(x

)

(b) L = 1500, . . . , 2000

Figure 2.2: Ĵ(x) for x ∈ [−5, 5]

we obtain sequences of K̂, Ĵ , and µ̂. They will approximate K (x), V ∗(x),

and µ∗(x), respectively. Denote the number of iterations of the outer loop by

L. We run the algorithm till L = 2000 and it took about 20 minutes. The

resulting networks K̂, Ĵ and µ̂ have 93, 3539 and 6210 neurons, respectively.

Figs. 2.2 and 2.3 are graphs of Ĵ(x) and µ̂(x), respectively. In Figs. 2.2(a)

and 2.3(a), L = 1, 50, 200, 1000. Figs. 2.2(b) and 2.3(b) are the graphs of Ĵ(x)

and µ̂(x) when 1500 ≤ L ≤ 2000, which are almost the same for different L.
They are approximations of V ∗(x) and µ∗(x), respectively. Obviously, both

V ∗(x) and µ∗(x) are piecewise functions.

49

−5 −2.5 0 2.5 5
−3

−2

−1

0

1

2

3

x

µ̂
(x

)

L=1000
L=200
L=50
L=1

(a) L = 1, 50, 200, 1000

−5 −2.5 0 2.5 5
−3

−2

−1

0

1

2

3

x

µ̂
(x

)

(b) L = 1500, . . . , 2000

Figure 2.3: µ̂(x) for x ∈ [−5, 5]

Fig. 2.4 is the graph of K̂. In Fig. 2.4(a), L = 1, 20, 200. Fig. 2.4(b) is

the final result of K̂ when L = 2000, which is just K or very close to it.

When |x| is small, K̂(x) is small, i.e., fewer number of steps of controls is
needed to drive x to the target, and when |x| is large, more steps are needed
to control the system to the target.

Fig. 2.5 is the trajectory starting from initial state x0 = 4 under the

control law µ̂. In Fig. 2.5(a), L = 10, 20, . . . , 200. When L ≤ 70, the

trajectory cannot reach the target in 10 steps. When L ≥ 80, the trajectory
can reach the target in 10 steps. Fig. 2.5(b) is the trajectory starting from

x0 = 4 for 1500 ≤ L ≤ 2000. They are all so close to each other that they

50

−5 −2.5 0 2.5 5
0

2

4

6

8

x

K̂
(x

)

L=1

L=20

L=200

(a) L = 1, 20, 200

−5 −2.5 0 2.5 5
0

2

4

6

8

x

K̂
(x

)

(b) L = 2000

Figure 2.4: K̂(x) for x ∈ [−5, 5]

seem to be just one trajectory. Hence, when L ≥ 1500, the trajectory will
arrive at the target in 6 steps and will be quite close to the optimal trajectory.

Example 2.5

Now we consider the ball and beam experiment. A ball is placed on a beam;

see Fig. 2.6. The beam is allowed to roll with about 2 degrees of freedom

along the length of the beam. A lever arm is attached to the beam at one

end. A servo gear is attached to the other end of the arm. When the servo

gear turns by an angle θ, the lever changes the angle of the beam by α.

51

0 2 4 6 8 10
0

1

2

3

4

5

k

x
k

(a) L = 1, 20, . . . , 200

0 2 4 6 8 10
0

1

2

3

4

5

k

x
k

(b) L = 1500, . . . , 2000

Figure 2.5: Trajectories starting from x0 = 4

When the angle α is changed, gravity causes the ball to roll along the beam.

A controller will be designed by controlling the gear of this system so that

the ball goes to the middle of the beam.

Here, we assume that the ball rolls without slipping, and friction between

the beam and ball is negligible. The second derivative of the input θ will

affect the second derivative of r. However, we will ignore this contribution

since it is very small. The equation of motion for the ball is then given by

the following equation

M

R2
+m r̈ +mg sinα−mr(α̇)2 = 0, (2.6.3)

52

α

θ

r

d

Gear

Ball

Lever arm

L

Beam

Figure 2.6: Ball and beam experiment

where m = 0.1 kg is the mass of the ball, R = 0.015 m is the radius of

the ball, d = 0.03 m is the radius of the lever gear, g = 9.8 m/s2 is the

gravitational acceleration, L = 1.0 m is the length of the beam, M = 10−5

kgm2 is the ball’s moment of inertia, and r is the ball position coordinate,

|r| ≤ 0.5, and r = 0 is at the middle of the beam. The beam angle α can be

expressed in terms of the servo gear angle θ as

α ≈ 2d
L
θ.

We assume that |θ| ≤ π/4 ≈ 0.7854 (consequently, the range of values of α is
|α| ≤ 0.06π/4 ≈ 2.7◦). We will use u = θ as the control signal of this system.

53

Given the time step t, let ri = r(i t), ṙi = ṙ(i t), r̈i = r̈(i t),

αi = α(i t), and θi = θ(i t). Discretize (2.6.3) by
ṙi =

ri − ri−1
t

,

r̈i =
ri+1 − 2ri + ri−1

t2
,

α̇i =
αi − αi−1

t
.

Then (2.6.3) becomes

ri+1 = 2ri − ri−1 − mg t2R2

M +mR2
sinαi +

mR2

M +mR2
ri(αi − αi−1)2. (2.6.4)

Now define xi = ri, yi = ri − ri−1, and zi = θi−1. Let

P =
mg t2R2

M +mR2

and

Q =
4d2mR2

L2(M +mR2)
.

Then
xi+1 = xi + yi − P sin 2d

L
θi +Qxi(θi − zi)2,

yi+1 = yi − P sin 2d

L
θi +Qxi(θi − zi)2,

zi+1 = θi.

(2.6.5)

(2.6.5) gives a nonlinear system. The state vector is (xi, yi, zi)
T ∈ R3 and

the control signal is ui = θi ∈ R.

The control target here is xi = yi = zi = 0. The utility U(0, 0, 0, 0) = 0

and U(x, y, z, θ) = 1 for (x, y, z, θ) = 0. Thus the optimal control is the

control which can make the ball go to the middle of the beam the fastest.

54

The region of states we considered here is |x| ≤ 0.5, |y| ≤ 0.15, and

|z| ≤ 0.8. The maximal time of control is restricted to 4 seconds. Since the
state-control space has dimension 4 in this experiment, the size of the radial

basis function neural network will be very large if t is small. Considered

both the accuracy and the time expense, we choose t = 0.1 and we set

= 0.002. Then the maximal control steps maxK will be 40. The size of x0

(in A01 of the algorithm) is chosen as 500 each time, i.e., at the beginning

of each inner loop iteration, we choose randomly 500 initial states.

With the values of the given parameters, we obtain P = 0.067846 and

Q = 0.0024923. The ADPDN() algorithm runs until it reaches L = 550000

for outer loops, which takes about 27 hours of running time. It is important

to note that after a short while of running the program (when L reaches

40000), we were able to achieve a solution which moves the ball to the center

of the beam. At that time, the controller is not optimized yet in the sense

that it can only drive the state to the target but it may not be the fastest.

If we continue to run our algorithm, after a long time (27 hours, when L =

550000), our algorithm seems to converge to the real optimal controller of

the problem which can drive the state to the target with minimum amount

of time. It is also important to note that our goal in these experiments is to

show that controllers obtained using our ADPDN algorithm do show gradual

improvement through learning and they do converge to a controller that can

do the job very well in the end. Further reduction in the total amount of time

needed to obtain such a controller is under way by optimizing the choice of

neural network structures and training algorithms. We save K̂, Ĵ , and µ̂ at

the end of each outer loop iteration. Then we obtain sequences of K̂, Ĵ , and

µ̂ for L = 1, 2, . . . , 550000. They will approximate K (x, y, z), V ∗(x, y, z),

and µ∗(x, y, z), respectively. When L = 550000, the sizes of Ĵ , K̂ and µ̂ are

55

about 1.2× 107, 3.46× 108, and 3.24× 108, respectively. During the running
of our program, the peak memory is about 2G.

Figs. 2.7 and 2.8 show Ĵ(x, y, z) for (x, y, z) = (r, 0, 0) and (x, y, z) =

(r, 0, 0.4), where −0.5 ≤ r ≤ 0.5. The states (r, 0, 0) and (r, 0, 0.4) mean

the ball is at position r with velocity zero while the beam is in horizontal

position or has an angle 0.4(2d/L) ≈ 0.024 (≈ 1.375◦), respectively. Figs.
2.9 and 2.10 show µ̂(x, y, z) for (x, y, z) = (r, 0, 0) and (x, y, z) = (r, 0, 0.4),

where −0.5 ≤ r ≤ 0.5. When L = 550000, both Ĵ(x, y, z) and µ̂(x, y, z) are
very close to their limits, V ∗(x, y, z) and µ∗(x, y, z), respectively. The curves

of µ̂ seem quite smooth, although one can believe there must be some small

variations, which is caused by = 0.02. As for Ĵ , by Theorem 4.3, the error

between Ĵ and J∗∞ will be less than (k − 1) ≤ 32 ∗ 0.02 = 0.64. The errors
can be observed from Figs. 2.7(c) and 2.8(c).

Fig. 2.11 shows the graph of K̂(x, y, z) when L = 550000 for (x, y, z) =

(r, 0, 0) and (x, y, z) = (r, 0, 0.4), where −0.5 ≤ r ≤ 0.5. From Fig. 2.11(a)

we can see that K̂(x, y, z) ≤ 32 for all (x, y, z) = (r, 0, 0), −0.5 ≤ r ≤ 0.5. So
the controller µ̂ will move the ball to the middle of the beam in a maximum

of 32 steps, i.e., in 3.2 seconds, if the ball is placed on the beam initially at

rest while the beam is in horizontal state, i.e., the initial state is (r, 0, 0). If

the beam has an angle 0.4 at the beginning, the time to drive the ball to the

middle will be slightly different, as shown in Fig. 2.11(b).

Consider the initial state (x0, y0, z0) = (0.45, 0, 0). From the value of

K̂(0.45, 0, 0) we know that the -optimal control will drive the ball to the

middle in less than 30 steps, i.e., 3 seconds. Fig. 2.12 is the graph of the

trajectory starting from the initial state (0.45, 0, 0). When L < 30000, the

trajectory is totally out of order. The ball rolls on the beam left and right and

56

−0.5 0 0.5
0

100

200

r

Ĵ
(r

,0
,0

)

(a) Ĵ(r, 0, 0) for L = 1, 2, . . . , 7

−0.5 0 0.5
0

20

40

r

Ĵ
(r

,0
,0

)

(b) Ĵ(r, 0, 0) for L = 1000, 2000, . . . , 550000

−0.5 0 0.5
0

10

20

30

40

r

Ĵ
(r

,0
,0

)

(c) Ĵ(r, 0, 0) for L = 550000

Figure 2.7: Ĵ(r, 0, 0) for L = 0, . . . , 550000

57

−0.5 0 0.5
0

100

200

r

Ĵ
(r

,0
,0

.4
)

(a) Ĵ(r, 0, 0.4) for L = 1, 2, . . . , 7

−0.5 0 0.5
0

20

40

r

Ĵ
(r

,0
,0

.4
)

(b) Ĵ(r, 0, 0.4) for L = 1000, 2000, . . . , 550000

−0.5 0 0.5
0

10

20

30

40

r

Ĵ
(r

,0
,0

.4
)

(c) Ĵ(r, 0, 0.4) for L = 550000

Figure 2.8: Ĵ(r, 0, 0.4) for L = 0, . . . , 550000

58

−0.5 0 0.5
−1

−0.5

0

0.5

1

r

µ̂
(r

,0
,0

)

(a) µ̂(r, 0, 0) for L = 5000, 10000, . . . , 300000

−0.5 0 0.5
−1

−0.5

0

0.5

1

r

µ̂
(r

,0
,0

)

(b) µ̂(r, 0, 0) for L = 350000, 400000, . . . , 550000

−0.5 0 0.5

−0.5

0

0.5

r

µ̂
(r

,0
,0

)

(c) µ̂(r, 0, 0) for L = 550000

Figure 2.9: µ̂(r, 0, 0) for L = 5000, 10000, . . . , 550000

59

−0.5 0 0.5
−1

−0.5

0

0.5

1

r

µ̂
(r

,0
,0

.4
)

(a) µ̂(r, 0, 0.4) for L = 5000, 10000, . . . , 300000

−0.5 0 0.5
−1

−0.5

0

0.5

1

r

µ̂
(r

,0
,0

.4
)

(b) µ̂(r, 0, 0.4) for L = 350000, 400000, . . . , 550000

−0.5 0 0.5

−0.5

0

0.5

r

µ̂
(r

,0
,0

.4
)

(c) µ̂(r, 0, 0.4) for L = 550000

Figure 2.10: µ̂(r, 0, 0.4) for L = 5000, 10000, . . . , 550000

60

−0.5 0 0.5
0

10

20

30

40

r

K̂
(r

,0
,0

)

(a) K̂(r, 0, 0)

−0.5 0 0.5
0

10

20

30

40

r

K̂
(r

,0
,0

.4
)

(b) K̂(r, 0, 0.4)

Figure 2.11: K̂(x, y, z) for L = 550000

61

0 5 10 15 20 25 30
−0.5

0

0.5

k

r

(a) L = 1000, 2000, . . . , 30000

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

r

k

(b) L = 50000, 100000, . . . , 550000

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

r

k

(c) L = 550000

Figure 2.12: Trajectories starting from r = 0.45m.

62

cannot stay at the middle. When L ≥ 50000, the ball will go to the middle
of the beam and stay there for a while occasionally. When L ≥ 450000, the
trajectory can always reach the target. The ball can reach the middle faster

when L is larger. When L = 550000, the trajectory is very smooth and it is

a good approximation of the optimal trajectory.

2.7 Conclusions

In dynamic programming of discrete-time systems, one has to consider se-

quences of functions J∗k and v
∗
k. This is the cause of “curse of dimensional-

ity”. In this chapter, after introducing functions K , V ∗, and µ∗, we estab-

lished our algorithm ADPDN(). Only one controller is trained in algorithm

ADPDN(). Besides the critic Ĵ and the action µ̂, which are approxima-

tions of V ∗ and µ∗, respectively, a network K̂ is used in the algorithm to

approximate the function K . K will give the region where the states are

controllable and will indicate how long the -optimal control sequence will

be. When K (x) = k, we have V ∗(x) = J∗k (x) and µ
∗(x) = v∗k(x). So V

∗ and

µ∗ are piecewise functions. But the most important fact is, V ∗ (and µ∗) is

really a single function, not a sequence of functions. Thus, in our algorithm

ADPDN(), instead of considering sequences of functions J∗k and v
∗
k, we will

only deal with functions V ∗ and µ∗. Furthermore, µ∗ is always an admissi-

ble controller, even though v∗∞ may not be admissible. Hence, by using V
∗

to replace functions J∗k , we reduce the curse of dimensionality while we can

control the system. By choosing a suitable value of , we can achieve adap-

tive dynamic programming with a bounded error, i.e., -adaptive dynamic

programming with desired accuracy.

63

The functions V ∗(x) and µ∗(x) satisfy (2.4.11) and (2.4.12). When K (x)

> 1, they have the same form as the HJB equation. However, when K (x) =

1, V ∗(x) and µ∗(x) satisfy (2.4.15) and (2.4.16), which will be solved from

the problem min{U(x, u) : F (x, u) = 0}.

At the beginning of our ADPDN() algorithm, it may not find the optimal

control strategy. It may not even drive the state along the right path to the

target. But after a few rounds of running, it will know how to reach the

target. When it has enough experience, it will find a good approximation to

the optimal controller.

In the numerical experiments, algorithm ADPDN() is applied to nonlin-

ear unstable discrete-time systems with non-quadratic utility functions. The

algorithm ADPDN() works well on these systems. The -optimal controllers

are found by algorithm ADPDN().

3 THE -ADAPTIVE DYNAMIC PROGRAMMING FOR

DISCRETE-TIME SYSTEM WITH DISCOUNT FACTOR

IN ITS PERFORMANCE COST

In this Chapter, we study the -optimal control and -adaptive dynamic pro-

gramming for the systems with discount factor in their performance cost

functions. It is a generalization of the results of Chapter 2. All the results

in this Chapter have been published in the papers “Discrete-time -adaptive

dynamic programming algorithm using neural networks” ([13]) and. “Adap-

tive dynamic programming algorithm for discrete-time systems with -error

bound and discount factor in the performance cost” ([14]).

3.1 Introduction

In this chapter, we study dynamic programming of discrete-time, time -

invariant systems given by

xk+1 = F (xk, uk), k = 0, 1, 2, . . . ,

where the system functions F is continuous and the origin is an equilibrium

point of the system. There will be a discount factor γ, 0 < γ ≤ 1, in the
performance cost of the system. The control target is the origin and we will

try to drive the system to reach the target in finite but unspecified number

of steps. We will generalize the results and algorithm of Chapter 2 to the

case with discount factor 0 < γ ≤ 1.

In Section 3.2, we give some statements of the optimal control problem

for discrete-time systems. We recall some details about dynamic program-

ming which will be useful in this chapter. Then we show that the optimal

64

65

performance indexes J∗k for different control steps k form a nonincreasing se-

quence. The limit of J∗k as k →∞ equals the infimum J∗∞ of all performance

indexes and satisfies Bellman’s principle of optimality. In Section 3.3, we

introduce the functions K (x) and V ∗. V ∗ is an approximation of J∗∞ with

error less than such that V ∗ ≥ J∗∞ ≥ V ∗ − . The value of K (x) gives the

length of optimal control sequence starting from x with cost V ∗. The asso-

ciated controller µ∗(x) is admissible and will be used as the only controller

in all steps of an -optimal control sequence. Then we establish our algo-

rithm of adaptive dynamic programming with an error bound according to

or -adaptive dynamic programming for discrete-time systems using neural

networks (ADPDN()). Numerical experiments are given in Section 3.4 to

evaluate the performance of the algorithm ADPDN(). We apply our algo-

rithm ADPDN() to a nonlinear unstable system xk+1 = xk + sin(xk + uk)

with utility function U(x, u) = |x|+ u2 and the discount factor γ = 0.5. Our
algorithm performs well in the experiments. We conclude the present chapter

in Section 3.5.

3.2 Problem Statement

In this chapter, we will study the discrete-time systems

xk+1 = F (xk, uk), k = 0, 1, 2, . . . , (3.2.1)

where xk ∈ Rn is the state and uk ∈ Rm is the control. The system function

F (x, u) is continuous and F (0, 0) = 0. Hence x = 0 is an equilibrium state

of the system (3.2.1) under control u = 0.

Let x be an initial state and u = (u0, u1, ..., uN−1) be a sequence of

controls. Then system (3.2.1) gives a trajectory starting from x: x0 = x,

66

x1 = F (x0, u0), x2 = F (x1, u1), . . . , xN = F (xN−1, uN−1). We call the num-

ber of elements in control sequence u the length of u and denote it as |u|.
Then |u| = N . For convenience, we also say that the length of the associated
trajectory x0, x1, . . . , xN is N . We denote the final state of the trajectory

as x(e)(x, u), i.e., x(e)(x, u) = xN .

The control target is the origin x = 0. For an initial state x0 = x, a control

sequence u is called an admissible control sequence of x if xN (x, u) = 0. Let

Ax = {u : xN(x, u) = 0} be the set of all admissible control sequences of x.
Let A(k)x = {u : xN(x, u) = 0, |u| = k} be the set of all admissible control
sequences of x with length k. Then Ax = ∪1≤k<∞A(k)x .

Suppose that system (3.2.1) has a utility function U(x, u), U(x, u) ≥ 0 for
any (x, u). Assume that U(x, u) is continuous and U(0, 0) = 0. Suppose γ is

a discount factor, 0 < γ ≤ 1. Then the performance cost with discount factor
γ from a starting state x under the control sequence u = (u0, u1, ..., uN−1) is

defined as

J(x, u) =
N−1

k=0

γkU(xk, uk), (3.2.2)

where x0 = x, and xk = F (xk−1, uk−1) for k = 1, 2, ...,N .

For any given initial state x, the aim of optimal control is to find an

admissible control sequence u ∈ Ax to minimize the performance cost J(x, u).
For k = 1, 2, ..., let

J∗k(x) = minu∈A(k)x
{J(x, u)}.

Then J∗k(x) is the optimal performance cost among all of the trajectories

starting from x with length k and ending at the origin. By Bellman’s principle

67

of optimality,

J∗k (x) = minu{U(x, u) + γJ∗k−1(F (x, u))}. (3.2.3)

Now, define a control sequence

v∗k(x) = argminu{J(x, u)}, (3.2.4)

and define a single control vector

v∗k(x) = argminu{U(x, u) + γJ∗k−1(F (x, u))}. (3.2.5)

Then we have

J∗k (x) = J(x, v
∗
k(x)),

J∗k (x) = U(x, v
∗
k(x)) + γJ∗k−1(F (x, v

∗
k(x))).

(3.2.6)

It is easy to see that Bellman’s principle of optimality (3.2.4) is equivalent

to

v∗k(x) = (v
∗
k(x), v

∗
k−1(F (x, v

∗
k(x))). (3.2.7)

Consequently, we have

v∗k(x) = (v
∗
k(x0), v

∗
k−1(x1), ..., v

∗
1(xk−1)), (3.2.8)

where x0 = x and xj+1 = F (xj, v
∗
k−j(xj)) for j = 0, 1, ..., k − 1.

Dynamic programming is solved by determining v∗k(x0). The first step is

to determine the function v∗1(·). For any given state vector x, v∗1(x) is the
optimal solution of the following problem

min
u
U(x, u) subject to F (x, u) = 0. (3.2.9)

The associated cost is

J∗1 (x) = U(x, v
∗
1(x)).

68

After the functions v∗1(·) and J∗1 (·) have been determined, we can determine
v∗j (·) and J∗j (·) for j = 2, 3, ..., k by applying formulas (3.2.4) and (3.2.6).

Then we can determine v∗k(x0) = (v∗k(x0), v
∗
k−1(x1), ..., v

∗
1(xk−1)). Applying

v∗k(·) to x0 gets v∗0 = v∗k(x0). Applying v
∗
0 to the system (3.2.1) gets x1 =

F (x0, u
∗
0). Then applying v

∗
k−1(·) to x1 gets v∗1 = v∗k−1(x1), and applying v∗1

to the system gets x2 = F (x1, u
∗
1). Repeat this process, we get the optimal

control sequence v∗k(x0) = {u∗0, u∗1, ..., u∗N−1}.

But then we have to face to the problem of “curse of dimensionality”. We

have to record all the functions v∗j (·), j = 1, 2, ..., k, even only one control

trajectory is wanted. In most real world applications, big k is necessary. But

for big k, the storage required is huge. There are also lots of calculation

needed to find all the v∗j (·)’s.

One way to avoid the problem of curse of dimensionality is try to find

J∗∞(x) = min
u
{J(x, u)}

and then use

v∗∞(x) = argmin
u
{J(x, u)}

as the unique controller. But in most cases, the trajectories under the control

of v∗∞ can not reach the target in finite steps. They are only asymptotic

convergence or even not convergence. However, the following fact is easy to

observe.

Fact 3.1 Let > 0 be an arbitrary positive number. For each k = 1, 2, · · · ,
there is a region T ()k such that

J∗∞(x) ≤ J∗k(x) ≤ J∗∞(x) + if x ∈ T ()k . (3.2.10)

69

The Fact 3.1 means that if a state x is inside the region T ()k , then the
optimal trajectory which reach the target in k steps will have a performance

cost close to the optimal cost with an error bound . In the following section,

we will develop an -adaptive dynamic programming algorithm based on the

Fact 3.1.

3.3 The -Optimal Cost V ∗ and the -Adaptive Dynamic Prog-

ramming Algorithm

Define

V ∗(x) = J∗k (x), if x ∈ T ()k \ T ()k−1, (3.3.1)

and

µ∗(x) = v∗k(x), if x ∈ T ()k \ T ()k−1, (3.3.2)

where k = 1, 2, Then V ∗ and µ∗ are piecewise functions. For a state

x ∈ T ()k \ T ()k−1, if we apply controller µ∗(·) on it, then in fact it is v∗k(x)
applied. We denote the next state by x1, i.e. x1 = F (x, v∗k(x)). Ac-

cording to the discussion on the previous section (see (3.2.8)), v∗k(x) =

(v∗k(x0), v
∗
k−1(x1), ..., v

∗
1(xk−1)) is an optimal control with length k for the

initial state x0 = x. Thus, (v
∗
k−1(x1), ..., v

∗
1(xk−1)) must be an optimal con-

trol with length k − 1 for the initial state x1. Hence x1 ∈ T ()k−1. Repeat this
process, using controller µ∗(·) to control the state x1 to get x2, and then x3,
..., and so on. Finally, we know that the controller µ∗(·) can always drive a
state towards the target. Furthermore, we can rewrite the formulas (3.2.3)

and (3.2.5) as

V ∗(x) = minu{U(x, u) + γV ∗(F (x, u))}, (3.3.3)

µ∗(x) = argminu{U(x, u) + γV ∗(F (x, u))}. (3.3.4)

70

(3.3.4) gives the way to obtain µ∗ from V ∗. In particular, when x ∈ T ()1 ,
µ∗(x) = v∗1(x) is the optimal solution of the problem (3.2.9) and V ∗(x) =

J∗1 (x) = U(x, v
∗
1(x)).

Now we will introduce a numerical algorithm of -approximative dynamic

programming for discrete-time systems. Two neural networks Ĵ and µ̂ will

be used to approximate the -optimal cost V ∗ and -optimal controller µ∗,

respectively. In other words, Ĵ will approximate J∗k (x) and µ̂ will approxi-

mate v∗k(x) if x ∈ T ()k . To indicate whether x ∈ T ()k , we introduce the third
neural network K̂. The value of K̂(x) is k if and only if x ∈ T ()k .

As a numerical algorithm, we only consider bounded regions and finite

control steps. We use a number maxK to express the upper bound of the

control steps. The total number of steps of the system to reach the target

from any initial state is restricted to k ≤ maxK. In other words, for an initial
state x, if one cannot control the system to reach the target within maxK

steps starting from x, then x will be considered to be uncontrollable.

The following is the algorithm ADPDN(), -adaptive dynamic program-

ming for discrete-time systems using neural networks. Roughly speaking, the

idea of this algorithm is that for an initial state close to the target, a short

control sequence will be applied, and for an initial state far away from the

target, a long control sequence will be used.

Algorithm ADPDN() (-adaptive dynamic programming for discrete time

systems using neural networks)

B00 Initialization. Solve problem (3.2.9) to determine the functions J∗1 (x)

71

and v∗1(x). Then let Ĵ(x) = J
∗
1 (x), µ̂(x) = v

∗
1(x), and

K̂(x) =
0, if x = 0,
1, otherwise.

B01 Choose randomly an array of initial states x0 = (x
(1)
0 , x

(2)
0 , . . . , x

(r)
0)

from the entire state space.

B02 For k = 1, 2, . . . ,maxK, do B03—B06.

B03 Run the system from the array of initial states x0 under the control

of µ̂. Record the resultant array of state x1 = (x
(1)
1 , x

(2)
1 , . . . , x

(r)
1).

Calculate the associated costs C
(i)
1 = U(x

(i)
0 , µ̂(x

(i)
0))+γĴ(x

(i)
1). Record

each k
(i)
0 = K̂(x

(i)
0) and k

(i)
1 = K̂(x

(i)
1).

B04 Update Ĵ and K̂. For each i = 1, . . . , r,

if J∗1 (x
(i)
0) ≤ C(i)1 + then

Ĵ(x(i)0) = J
∗
1 (x

(i)
0),

K̂(x
(i)
0) =

0, if x
(i)
0 = 0,

1, if x
(i)
0 = 0,

else if k
(i)
1 ≤ max(k(i)0 − 1, 1) then

Ĵ(x(i)0) = C
(i)
1 ,

K̂(x
(i)
0) = k

(i)
1 + 1,

endif

B05 Update µ̂. For each i = 1, . . . , r,

if J∗1 (x
(i)
0) ≤ Ĵ(x(i)0) + then

µ̂(x
(i)
0) = v

∗
1(x

(i)
0),

72

else
µ̂(x

(i)
0) = argminu{U(x(i)0 , u) + γĴ(F (x

(i)
0 , u));

K̂(F (x
(i)
0 , u)) ≤ max(K̂(x(i)0)− 1, 1)},

endif

B06 Let x0 = x1.

B07 Go to B01 until the process converges.

From lines B01 to B07, there are two levels of loops. The outer loop,

starting on line B01 and ending on line B07, will give initial states x0 and

then go into the inner loop. The inner loop run the system maxK steps. As

we have mentioned before, for an initial state x, if one cannot control the

system to reach the target within maxK steps starting from x, then we will

consider x to be uncontrollable.

The body of the inner loop, from line B03 to B05, will run the system from

x0 under the control of µ̂ and update the networks according to the results.

There are two different ways to adjust the networks. When J∗1 (x
(i)
0) ≤ C(i)1 + ,

one will consider x
(i)
0 ∈ T ()1 and V ∗(x0(i)) = J∗1 (x0(i)). Otherwise, the

condition k
(i)
1 ≤ max(k

(i)
0 − 1, 1) implies that x(i)1 is one step closer to the

target x = 0. Then Ĵ and µ̂ will satisfy the formulas (3.3.3) and (3.3.4), and

the system will go to the target one more steps from x0 than from x1.

The initial state x0 is chosen randomly on line B01. Suppose that the

associated random probability density function is non-vanished everywhere.

Then we can assume that all the states will be explored. So we know that

the resulting networks tend to satisfy the formulas (3.3.3) and (3.3.4) for all

state vector x. The limit of Ĵ and µ̂ will approximate the optimal ones V ∗

and µ∗, respectively.

73

The network K̂ is very important in algorithm ADPDN(). It is used

to check whether a state x
(i)
0 belongs to T ()1 or T ()k for k > 1. It will also

determine when a state can be controlled to reach the final target by finite

control step.

The final outputs of the algorithm ADPDN() are three neural networks.

Ĵ and µ̂ give the approximation to -optimal cost V ∗ and the associated -

optimal controller µ∗, respectively. Meanwhile, K̂ indicates the region where

optimal control exists and how long it will go for controlling x to reach

the target. For a state x, if K̂(x) = maxK then we can consider x to be

uncontrollable. If K̂(x) < maxK, then K̂(x) is an estimate of the number of

control steps to drive x to the target. Before applying the controller µ̂, use

K̂ to check whether the initial state is controllable. Then use µ̂ as controller

to control it.

3.4 Numerical Experiments

To evaluate the performance of the algorithm ADPDN(), we select a nonlin-

ear unstable system with non-quadric utility for numerical experiment. We

consider the system

xk+1 = F (xk, uk) = xk + sin(xk + uk), (3.4.1)

where xk, uk ∈ R, and k = 0, 1, 2, The utility function is U(x, u) = |x|+
u2. The discount factor is γ = 0.5. Since F (0, 0) = 0, 0 is an equilibrium state

of system (3.4.1). But (3.4.1) is unstable at x = 0, since (∂F/∂x)(0, 0) =

2 > 1.

We choose the value of error bound to be = 0.1. The region of states

considered here is |x| ≤ 15 and the number of control steps is restricted to

74

−15 −10 −5 0 5 10 15
0

10

20

30

40

x

Ĵ
(x

)

L = 1000

L = 200

L = 50

L = 1

(a) L = 1, 50, 200, 1000

−15 −10 −5 0 5 10 15
0

10

20

30

40

x

Ĵ
(x

)

(b) L = 1500, ..., 2000

Figure 3.1: Ĵ(x), x ∈ [−15, 15]

20. The size of the set of initial states x0 (line B04 of the algorithm) will be

5 each time, i.e., at the beginning of the each inner loop iteration, we choose

50 initial states randomly.

The neural networks K̂, Ĵ and µ̂ will be trained from the observation

while the algorithm is running. We expect that they will have the ability

to keep the old feature when they are trained by some new data. For this

purpose, radial basis function neural networks are adopted. Each network

will be a linear combination iwiφ(x − ci /ρi), where wi are weights of
neurons, φ(r) = exp(−r2) is the basis function, ci is the center and ρi is the

75

−15 −10 −5 0 5 10 15
−4

−2

0

2

4

x

µ̂
(x

)

L = 1000

L = 200

L = 50

L = 1

(a) L = 1, 50, 200, 1000

−15 −10 −5 0 5 10 15
−4

−2

0

2

4

x

µ̂
(x

)

(b) L = 1500, ..., 2000

Figure 3.2: µ̂(x), x ∈ [−15, 15]

width of each neuron.

Since F (x, u) = x+sin(x+u), the implicit functions according to F (x, u) =

0 are

u(x) = f (i)(x) = 2iπ + sin−1(−x)− x,

and

u(x) = g(i)(x) = (2i+ 1)π − sin−1(−x)− x,

where −1 ≤ x ≤ 1, and i = 0,±1,±2, It is easy to see that T 1 = [−1, 1]

76

−15 −10 −5 0 5 10 15
0

4

8

12

16

20

x

K̂
(x

)

L = 1
L = 20
L = 100

(a) L = 1, 20, 200

−15 −10 −5 0 5 10 15
0

4

8

12

16

20

x

K̂
(x

)

(b) L = 2000

Figure 3.3: K̂, x ∈ [−15, 15]

and J∗1 (x) = min{U(x, u) : F (x, u) = 0}
= |x|+ (−x+ sin−1(−x))2,

v∗1(x) = −x+ sin−1(−x),
for x ∈ T 1. Since the value of sin(x+ u) is between −1 an 1, one can easily
to find that T k = [−k, k] for any k = 1, 2,

On line B05 of algorithm ADPDN(), we need to find argminu[U(x, u) +

γĴ(w)], where w = F̂ (x, u). Now U(x, u) = |x|+u2, F (x, u) = x+sin(x+u).

77

0 6 12 18
0

5

10

15

k

x
k

(a) L = 10, 20, ..., 200

0 6 12 18
0

5

10

15

k

x
k

(b) L = 1500, ..., 2000

Figure 3.4: Trajectories starting from x0 = 12.5

So we will find the minimum

min
u
{|x|+ u2 + γĴ(w)}, (3.4.2)

where w = x + sin(x + u). Since sin is a period function with periodic 2π,

we know that the minimum of (3.4.2) will be reached only when u ∈ [−π.π].

We perform our ADPDN() algorithm and save Ĵ , K̂ and µ̂ at the end of

each outer loop iteration, i.e., save them in line B07 of the algorithm. Denote

the number of iterations of the outer loop by L. Then we obtain sequences

of Ĵ , K̂ and µ̂ for L = 1, 2, · · · . They will approximate V ∗(x), K()(x) and

78

µ∗(x), respectively.

Figs. 3.1 and 3.2 are graphs of Ĵ(x) and µ̂(x), respectively. In Fig.

3.1(a), L = 1, 100, 200, 500, 1000. In Fig. 3.2(a), L = 1, 50, 200, 1000. Figs.

3.1(b) and 3.2(b) are the graphs of Ĵ(x) and µ̂(x) when 1500 ≤ L ≤ 2000.
They are almost same for different L. They are approximations of V ∗(x)

and µ∗(x), respectively. In fact, if we set the convergent threshold to be

Ĵold − Ĵnew 2 < 0.001, the algorithm will stop when L = 1437. Obviously,

both V ∗(x) and µ∗(x) are piecewise functions.

Fig. 3.3 is the graph K̂. In Fig. 3.3(a), L = 1, 20, 200. Fig. 3.3(b)

is the final result of K̂ when L = 2000, which can be considered as K().

When |x| is small, K̂(x) is small, i.e., less steps of controls are needed to
drive x to the target, and when |x| is big, more steps are needed to control
the system to the target. Fig. 3.4 is the trajectory starting from initial state

x0 = 12.5 under the control law µ̂. In Fig. 3.4(a), L = 10, 20, ..., 200. When

L ≤ 70, the trajectory cannot reach the target in 10 steps. When L ≥ 80,
the trajectory can reach the target in 10 steps. Fig. 3.4(b) are the trajectory

starting from x0 = 12.5 for 1500 ≤ L ≤ 2000. They are all so close that they
seem to be just one trajectory. Hence, when L ≥ 1500, the trajectory will
arrive the target in 6 steps and will be quite close to the optimal trajectory.

3.5 Conclusions

In dynamic programming of discrete-time systems, one has to consider se-

quences of functions J∗k and v
∗
k. This is the reason of “curse of dimension-

ality”. In this chapter, after introducing functions V ∗ and µ∗, we estab-

lish our algorithm ADPDN(). Only one controller is trained in algorithm

79

ADPDN(). Besides the critic Ĵ and action µ̂, a network K̂ is used in the

algorithm. K̂ will give the region where the states are controllable and will

indicate how long the -optimal control sequence will be. When K̂(x) = k,

we have V ∗(x) = J∗k (x) and µ
∗(x) = v∗k(x). So V

∗ and µ∗ are piecewise

functions. But the most important fact is, V ∗ (or µ∗) is really one function,

not a sequence of functions. Thus, in our algorithm ADPDN(), instead

of considering the sequences of functions J∗k and v
∗
k, we will only deal with

the functions V ∗ and µ∗. Furthermore, µ∗ is an admissible controller, even

though v∗∞ may be not admissible. Hence, by using V
∗ to replace functions

J∗k , we reduce the curse of dimensionality while we can control the system.

And by choosing suitable value of , we can achieve -approximative dynamic

programming with the desired accuracy.

The functions µ∗(x) and V ∗(x) satisfy the equations (3.3.3) and (3.3.4).

When K̂(x) > 1, they have the same form with HJB equation. However,

when K̂(x) = 1, µ∗(x) and V ∗(x) satisfy (3.2.9), will be solved from the

problem min{U(x, u) : F (x, u) = 0}.

In the numerical experiments, algorithm ADPDN() is applied to a non-

linear unstable discrete-time system with non-quadratic utility, and the as-

sociated discount factor in the performance cost is γ = 1
2
. The algorithm

ADPDN() works well on this system. The -optimal controller is found very

successfully by algorithm ADPDN().

4 DYNAMIC PROGRAMMING FOR DESCRETE-TIME

SYSTEM WITH QUADRATIC UTILITY

In Chapter 2 and Chapter 3, we introduced our -adaptive dynamic program-

ming for discrete-time systems and designed the algorithm ADPDN(). In

ADPDN(), Since only one performance cost function is used in -adaptive

dynamic programming, -adaptive dynamic programming is helpful to over-

come the curse of dimensionality. However, the time expense of ADPDN()

is still big. In this Chapter, we will introduce an iterative algorithm for dy-

namic programming which will run faster than ADPDN(), providing that

the utility function of the system is a positive definite quadratic form. All

the results in this Chapter have been written in the papers “Neural-network-

based optimal control for a class of unknown discrete-time nonlinear systems

using globalized dual heuristic programming” ([23]) and “Optimal control

of unknown nonaffine nonlinear discrete-time systems based on adaptive dy-

namic programming” ([39]).

In this chapter we generalize our -adaptive dynamic programming to

discrete-time systems with discount factor 0 < γ ≤ 1 in the performance

cost. Then, an iterative adaptive dynamic programming (ADP) algorithm is

introduced to solve the -adaptive optimal control problem with convergence

analysis. As a condition to realize the iterative algorithm, the utility function

is restricted to be a quadratic function in this chapter. The implementation

of the iterative algorithm via globalized dual heuristic programming (GDHP)

technique is presented by using three neural networks, which will approxi-

mate at each iteration the cost function, the control law, and the unknown

nonlinear system, respectively

80

81

4.1 Problem Statement

Firstly, we give a brief description of our problem. The statements in this

section are similar with those in section 2.2 but we have to consider the

discount factor γ in the associated equations and formulas here.

Consider the system

xk+1 = F (xk, uk), k = 0, 1, 2, . . . , (4.1.1)

where xk ∈ Rn is the state and uk ∈ Rm is the control. The system function

F (x, u) is continuous and F (0, 0) = 0. Hence x = 0 is an equilibrium state

of the system (4.1.1) under control u = 0.

Definition 4.1 A nonlinear dynamical system is said to be stabilizable on

an open set Ω ⊂ Rn which contained 0 as an interior point, if for any initial
condition x0 ∈ Ω, there exists a control sequence u0, u1, · · · , ui ∈ Rm, i =
0, 1, · · · , such that the state xk → 0 as k →∞.

It is desired to find the control law u(x) which minimizes the infinite

horizon cost function given by

J(xk) =
∞

p=k

γp−kU(xp, up), (4.1.2)

whereγ is the discount factor with 0 < γ ≤ 1, U is the utility function given
by

U(x, u) = xTQx+ uTRu, (4.1.3)

and Q and R are positive definite matrices.

82

For optimal control problems, the designed feedback control must not

only stabilize the system on Ω, but also guarantee that (4.1.2) has finite

value, i.e., the control must be admissible.

Definition 4.2 A control law u(x) of system (4.1.1) is said to be admissible

with respect to performance cost (4.1.2) on Ω if u(x) is continuous on Ω,

u(0) = 0, u stabilizes (4.1.1) on Ω, and for any x0 ∈ Ω, J(x0) is finite.

Note that equation (4.1.2) can be written as

J(xk) = x
T
kQxk + u

T
kRuk + γ

∞

p=k+1

γp−k−1U(xp, up)

= xTkQxk + u
T
kRuk + γJ(xk+1). (4.1.4)

According to Bellman’s optimality principle, the optimal cost function

J∗(xk) satisfies the HJB equation

J∗(xk) = minuk {U(xk, uk) + γJ∗(xk+1)} . (4.1.5)

Besides, the optimal control law u∗ can be derived from the gradient of

the right-hand side of (4.1.5) with respect to uk as

∂(xTkQxk + u
T
kRuk)

∂uk
+ γ

∂xk+1
∂uk

T
∂J∗(xk+1)
∂xk+1

= 0. (4.1.6)

Then, we have

u∗(xk) = −γ
2
R−1

∂xk+1
∂uk

T
∂J∗(xk+1)
∂xk+1

. (4.1.7)

By substituting (4.1.7) into (4.1.5), the HJB equation becomes

J∗(xk) = xTkQxk +
γ2

4

∂J∗(xk+1)
∂xk+1

T
∂xk+1
∂uk

R−1

× ∂xk+1
∂uk

T
∂J∗(xk+1)
∂xk+1

+ γJ∗(xk+1), (4.1.8)

83

where J∗(xk) is the optimal cost function corresponding to the optimal con-

trol law u∗(xk).

Noticed that when we dealing with the linear quadratic regulator prob-

lems, the HJB equation reduces to the Riccati equation which can be effi-

ciently solved. For the general nonlinear case, however, it is considerably

difficult to cope with the HJB equation directly. However, by the assump-

tion that the utility function U(x, u) is a quadratic form, we can develop

an iterative ADP algorithm to solve it in next section, basing on Bellman’s

optimality principle.

4.2 Neuro-Optimal Control Based on Iterative Adaptive

Dynamic Programming Algorithm

Now we begin the derivation of our iterative ADP algorithm. Firstly, we

start with the initial cost function V0(·) = 0 and obtain the law of single

control vector v0(xk) as follows:

v0(xk) = argmin
uk
{xTkQxk + uTkRuk + γV0(xk+1)}. (4.2.1)

Then we update the cost function as

V1(xk) = min
uk
{xTkQxk + uTkRuk + γV0(F (xk, uk)))}

= xTkQxk + v
T
0 (xk)Rv0(xk). (4.2.2)

Next, for i = 1, 2, · · · , the algorithm iterates according to

vi(xk) = argmin
uk
{xTkQxk + uTkRuk + γVi(xk+1)}

= −γ
2
R−1

∂xk+1
∂uk

T
∂Vi(xk+1)

∂xk+1
. (4.2.3)

84

and

Vi+1(xk) = min
uk
{xTkQxk + uTkRuk + γVi(xk+1)}

= xTkQxk + v
T
i (xk)Rvi(xk) + γVi(F (xk, vi(xk))). (4.2.4)

In the above recurrent iteration, i is the iteration index, while k is the time

index. The cost function and control law are updated until they converge to

the optimal ones. In the following part, we will present the convergence proof

of the iteration between (4.2.3) and (4.2.4) with the cost function Vi → J∗

and the control law vi → u∗ as i→∞.

Lemma 4.1 Let {µi} be an arbitrary sequence of control laws and {vi} be
the control laws as in (4.2.3). Define Vi as in (4.2.4) and Λi be

Λi+1(xk) = x
T
kQxk + µ

T
i (xk)R??i(xk) + γΛi(F (xk, µi(xk))). (4.2.5)

If V0(·) = Λ0(·) = 0, then Vi+1(x) ≤ Λi+1(x), ∀i.

Proof. It can be derived by noticing that Vi+1 is the result of minimizing

the right-hand side of (4.2.4) with respect to the control input uk, while Λi+1

is a result of an arbitrary control input.

Lemma 4.2 Let the sequence {Vi} be defined as in (4.2.4). If the system is

controllable, there is an upper bound Y such that 0 ≤ Vi(xk) ≤ Y , ∀i.

Proof. Let η(xk) be any admissible control input, and let V0(·) = Z0(·) = 0,
where Vi is updated as in (4.2.4) and Zi is updated by

Zi+1(xk) = x
T
kQxk + ηT (xk)Rη(xk) + γZi(xk+1). (4.2.6)

85

Noticing the difference between Zi and Zi+1 is

Zi+1(xk)− Zi(xk) = γ(Zi(xk+1)− Zi−1(xk+1))
= γ2(Zi−1(xk+2)− Zi−2(xk+2))
= γ3(Zi−2(xk+3)− Zi−3(xk+3))
...

= γi(Z1(xk+i)− Z0(xk+i))
= γiZ1(xk+i), (4.2.7)

we can obtain

Zi+1(xk) = γiZ1(xk+i) + Zi(xk)

= γiZ1(xk+i) + γi−1Z1(xk+i−1) + Zi−1(xk)

· · ·
= γiZ1(xk+i) + γi−1Z1(xk+i−1) + γi−2Z1(xk+i−2)

+ · · ·+ γZ1(xk+1) + Z1(xk), (4.2.8)

and therefore,

Zi+1(xk) =
i

j=0

γjZ1(xk+j)

=
i

j=0

γj(xTk+jQxk+j + ηT (xk+j)Rη(xk+j))

≤
∞

j=0

γj(xTk+jQxk+j + ηT (xk+j)Rη(xk+j)). (4.2.9)

Since that η(xk) is an admissible control input, i.e., xk → 0 as k → ∞, we
have

Zi+1(xk) ≤
∞

j=0

γjZ1(xk+j) ≤ Y, ∀i. (4.2.10)

86

By using Lemma 4.1, we get

Vi+1(xk) ≤ Zi+1(xk) ≤ Y, ∀i, (4.2.11)

and so complete the proof.

Basing on Lemma 4.1 and Lemma 4.2, we now present the convergence

proof of the cost function sequence.

Theorem 4.1 Define the sequence {Vi} as in (4.2.4) with V0(·) = 0, and the
control law sequence {vi} as in (4.2.3). Then, we can conclude that {Vi} is
a nondecreasing sequence satisfying Vi+1 ≥ Vi, ∀i.

Proof. Define a new sequence as

Φi+1(xk) = x
T
kQxk + v

T
i+1(xk)Rvi+1(xk) + γΦi(xk+1) (4.2.12)

with Φ0(·) = V0(·) = 0. Now, we will show that Φi(xk) ≤ Vi+1(xk).

First, we prove that it holds for i = 0. Since

V1(xk)− Φ0(xk) = xTkQxk + vT0 (xk)Rv0(xk) ≥ 0, (4.2.13)

we have

V1(xk) ≥ Φ0(xk). (4.2.14)

Second, we assume that it holds for i−1, i.e., Vi(xk) ≥ Φi−1(xk), ∀xk. Then,
for i, from (4.2.4) and (4.2.12), we get

Vi+1(xk)− Φi(xk) = γ (Vi(xk+1)− Φi−1(xk+1)) ≥ 0, (4.2.15)

87

i.e.,

Vi+1(xk) ≥ Φi(xk). (4.2.16)

Thus, (4.2.16) is true for any i by mathematical induction.

Furthermore, according to Lemma 4.1, we know that Vi(xk) ≤ Φi(xk).

Combining with (4.2.16), we have

Vi+1(xk) ≥ Φi(xk) ≥ Vi(xk) (4.2.17)

and complete the proof.

According to Lemma 4.2 and Theorem 4.1, we can obtain that {Vi} is a
monotonically nondecreasing sequence with an upper bound, and therefore,

its limit exists. Here, we define it as limi→1Vi(xk) = V∞(xk) and present the

following theorem.

Theorem 4.2 Let the cost function sequence {Vi} be defined as in (4.2.4).
Then, its limit satisfies

V∞(xk) = min
uk
{xTkQxk + uTkRuk + γV∞(xk+1)}. (4.2.18)

Proof. For any uk and i, according to (4.2.4), we can derive

Vi(xk) ≤ xTkQxk + uTkRuk + γVi−1(xk+1). (4.2.19)

Combining with

Vi(xk) ≤ V∞(xk), ∀i, (4.2.20)

88

which is obtained from (4.2.17), we have

Vi(xk) ≤ xTkQxk + uTkRuk + γV∞(xk+1), ∀i. (4.2.21)

Let i→∞, we can obtain

V∞(xk) ≤ xTkQxk + uTkRuk + γV∞(x+ k + 1). (4.2.22)

Note that in the above equation, uk is chosen arbitrarily, thus, it implies that

V∞(xk) ≤ min
uk

xTkQxk + u
T
kRuk + γV∞(xk+1) . (4.2.23)

On the other hand, since the cost function sequence satisfies

Vi(xk) = min
uk

xTkQxk + u
T
kRuk + γVi−1(xk+1) (4.2.24)

for any i, considering (4.2.20), we have

V∞(xk) ≥ min
uk

xTkQxk + u
T
kRuk + γVi−1(xk+1) , ∀i. (4.2.25)

Let i→∞, we can get

V∞(xk) ≥ min
uk

xTkQxk + u
T
kRuk + γV∞(xk+1) . (4.2.26)

Basing on (4.2.23) and (4.2.26), we can conclude that (4.2.18) is true.

Remark 4.1 We have just proved that the cost function V∞(xk) satisfies the

HJB equation. Thus it is the optimal cost function. Accordingly, we say that

the cost function sequence converges to the optimal one which is the solution

of HJB equation, i.e., limi→∞ Vi(xk) = J∗(xk). Then, according to (4.1.7)

and (4.2.3), we can conclude that the corresponding control law sequence also

converges to the optimal one, i.e., vi → u∗ as i→∞.

89

Now let us introduce a neural network realization of the iterative ADP

algorithm via GDHP technique based on the formulas (4.2.1)-(4.2.4).

For carrying out the iterative ADP algorithm, we need to use neural

networks as the function approximation structure to approximate both vi(xk)

and Vi(xk).

Let the number of hidden layer neurons be denoted by l, the weight matrix

between the input layer and hidden layer be denoted by ν, and the weight

matrix between the hidden layer and output layer be denoted by ω. Then,

the output of three-layer NN is formulated as

F̂ (X, ν,ω) = ωTσ νTX , (4.2.27)

where σ νTX ∈ Rl, [σ(z)]q = (ezq − e−zq)/(ezq + e−zq), q = 1, 2, · · · , l, are
the activation functions.

Now, we implement the iterative ADP algorithm via GDHP technique.

It consists of model network, critic network and action network, which are

all chosen as three-layer feedforward NNs. The whole structure diagram is

shown in Fig. 4.1, where

DER =
∂x̂k+1
∂xk

+
∂x̂k+1
∂ν̂i(xk)

∂ν̂i(xk)

∂xk

T

. (4.2.28)

In order to avoid the requirement of knowing F (xk, uk), we should train

the model network before carrying out the main iterative process. For given

xk and ν̂i(xk), we can obtain the output of the model network as

x̂k+1 = ωTmσ νTm xTk ν̂
T
i (xk)

T
. (4.2.29)

90

Figure 4.1: The structure diagram of the iterative GDHP algorithm

wherem indicate the neural network for approximating the model. We define

the error function of the model network as

emk = x̂k+1 − xk+1. (4.2.30)

The weights of model network are updated to minimize the following perfor-

mance measure:

Emk =
1

2
eTmkemk. (4.2.31)

Using the gradient-based adaptation rule, the weighs can be updated as

ωm(j + 1) = ωm(j)− αm
∂Emk
∂ωm(j)

, (4.2.32)

νm(j + 1) = νm(j)− αm
∂Emk
∂νm(j)

, (4.2.33)

where αm > 0 is the learning rate of the model network, and j is the iterative

step for updating the weight parameters.

91

The weights of model network are kept unchanged after the training

process is finished.

The critic network is used to approximate both Vi(xk) and its derivative

∂Vi(xk)/∂xk, which is denoted as λi(xk). The input of critic network is xk,

while the output is given by

V̂i(xk)

λ̂i(xk)
=

ω1Tci
ω2Tci

σ(νTcixk) = ωTciσ(ν
T
cixk), (4.2.34)

where ωci = [ω
1
ciω

2
ci]. Hence, we have

V̂i(xk) = ω1Tci σ(ν
T
cixk) (4.2.35)

and

λ̂i(xk) = ω2Tci σ(ν
T
cixk). (4.2.36)

The target functions can be written as

Vi+1(xk) = x
T
kQxk + v

T
i (xk)Rvi(xk) + γV̂i(x̂k+1) (4.2.37)

and

λi+1(xk) =
∂ xTkQxk + v

T
i (xk)Rvi(xk)

∂xk
+ γ

∂V̂i(x̂k+1)

∂xk

= 2Qxk + 2
∂vi(xk)

∂xk

T

Rvi(xk)

+ γ
∂x̂k+1
∂xk

+
∂x̂k+1
∂v̂i(xk)

∂v̂i(xk)

∂xk

T

λ̂i(x̂k+1) (4.2.38)

Then, the error functions can be defined as

e1cik = V̂i(xk)− Vi+1(xk) (4.2.39)

92

and

e2cik = λ̂i(xk)− λi+1(xk). (4.2.40)

The objective function to be minimized for critic network is

Ecik = (1− θ)E1cik + θE2cik, (4.2.41)

where

E1cik =
1

2
e1Tcike

1
cik (4.2.42)

and

E2cik =
1

2
e2Tcike

2
cik. (4.2.43)

The weight update rule for the critic network is also gradient-based adapta-

tion given by

ωci(j + 1) = ωci(j)− αc (1− θ)
∂E1cik
∂ωci(j)

+ θ
∂E2cik
∂ωci(j)

, (4.2.44)

νci(j + 1) = νci(j)− αc (1− θ)
∂E1cik
∂νci(j)

+ θ
∂E2cik
∂νci(j)

, (4.2.45)

where αc > 0 is the learning rate of the critic network, j is the inner-loop

iterative step for updating the weight parameters, and 0 ≤ θ ≤ 1 is a para-
meter that adjusts how HDP and DHP are combined in GDHP. When θ = 0,

the training of the critic network reduces to a pure HDP, while θ = 1 does

the same for DHP.

In action network, xk is used as the input and the output is

v̂i(xk) = ωTai νTaixk . (4.2.46)

93

The target control input is given by

vi(xk) = −γ
2
R−1

∂x̂k+1
∂uk

T
∂V̂i(x̂k+1)

∂x̂k+1
. (4.2.47)

The error function of the action network can be defined as

eaik = v̂i(xk)− vi(xk). (4.2.48)

The weights of action network are updated to minimize

Eaik =
1

2
eTaikeaik. (4.2.49)

Similarly, the weight update algorithm is

ωai(j + 1) = ωai(j)− αa
∂Eaik
∂ωai(j)

, (4.2.50)

νai(j + 1) = νai(j)− αa
∂Eaik
∂νai(j)

, (4.2.51)

where αa > 0 is the learning rate of the action network, and j is the inner-loop

iterative step for updating the weight parameters.

Remark 4.2 According to Remark 4.1, Vi → J∗ as i→∞. Since λi(xk) =
∂Vi(xk)/∂xk, we can conclude that the sequence {λi} is also convergent with
λi → λ∗ as i→∞.

Remark 4.3 Since we cannot implement the iteration until i→∞ in practi-

cal applications, we should run the algorithm with a prespecified accuracy to

test the convergence of the cost function sequence. When |Vi+1(xk)−Vi(xk)| <
, we consider the cost function sequence has converged sufficiently and stop

running the iterative GDHP algorithm.

94

4.3 Numerical Experiments

In this section, two examples are provided to demonstrate the effectiveness

of the iterative GDHP algorithm.

Example 4.3.1

Consider the following nonlinear system:

xk+1 = xk + sin(xk + uk), (4.3.1)

where xk ∈ R, uk ∈ R, k = 1, 2, · · · . The utility function is chosen as

U(xk, uk) = x
T
k xk + u

T
k uk. It can be seen that xk = 0 is an equilibrium state

of system (4.3.1). However, the system is unstable at this equilibrium, since

(∂xk+1/∂xk)|(0,0) = 2 > 1.

We choose three-layer feedforward NN as model network, critic network

and action network with the structures 2-8-1, 1-8-2, and 1-8-1, respectively,

and implement the algorithm at time instant k = 0. The initial weights

of the three NNs are all set to be random in [−1, 1]. Note that the model
network should be trained firstly. We train the model network for 100 time

steps using 500 data samples under the learning rate αm = 0.1. After the

model network is trained, its weights are kept unchanged. Then, let the

discount factor γ = 1 and the adjusting parameter θ = 0.5, we train the critic

network and action network for 120 iterations (i.e., for i = 1, 2, · · · , 120) with
2000 training steps for each iteration to make sure that the given accuracy

= 10−6 is reached. In the training process, the learning rate αc = αa = 0.05.

The convergence processes of the cost function and its derivative of GDHP

algorithm are shown in Fig. 4.2, for k = 0 and x0 = 1.5. We can see that

95

Figure 4.2: The convergence processes of the cost function and its derivative
of the iterative GDHP algorithm

the iterative cost function sequence does converge to the optimal value quite

rapidly, which also indicates the validity of the iterative GDHP algorithm.

For the same problem, the iterative GDHP algorithm takes about 16 seconds

while HDP takes about 117 seconds before satisfactory results are obtained.

Moreover, in order to make comparison with DHP algorithm, we also

present the controller designed by DHP algorithm. Then, for given initial

state x0 = 1.5, we apply the optimal control laws designed by GDHP and

DHP techniques to the system for 15 time steps, respectively, and obtain

the state curves as shown in Fig. 4.3. The corresponding control curves

are shown in Fig. 4.4. It can be seen from the simulation results that the

controller derived by GDHP algorithm has better performance than DHP

algorithm.

96

Figure 4.3: The state trajectory x

Figure 4.4: The control input u

97

Figure 4.5: The state trajectory x

To show the discount factor has evident impact on our iterative algo-

rithm, in this case, we choose the discount factor γ = 0.9 and set the other

parameters the same as above. Then, we train the critic network and action

network for 80 training cycles and find that the given accuracy = 10−6 has

been reached, which demonstrates that smaller discount factor can insure

quicker convergence of the cost function sequence. Next, we will show the

discrepancy of the state and control curves under different iterations to prove

the usefulness of the iterative algorithm. For the same initial state x0 = 1.5,

we apply different control laws to the controlled plant for 15 time steps and

obtain the simulation results as follows. The state curves are shown in Fig.

4.5, and the corresponding control inputs are shown in Fig. 4.6. From the

simulation results, we can see that the closed-loop system is divergent when

using the control law obtained in the first iteration. However, the system

responses become better and better as the iteration numbers increasing from

98

Figure 4.6: The control input u

3 to 80. Besides, the responses basically remain unchanged when the itera-

tion number is larger than 5, which verifies the effectiveness of the proposed

iterative GDHP algorithm.

Example 4.3.2

Consider the nonlinear discrete-time system given by

xk+1 =
−x1kx2k

1.5x2k + sin(x
2
2k + uk)

(4.3.2)

where xk = [x1kx2k]
T ∈ R2, uk ∈ R, k = 1, 2, · · · . The utility function is also

set as U(xk, uk) = x
T
k xk + u

T
k uk.

In this example, we also choose three-layer feedforward NN as model

network, critic network and action network, but with the structures 3-8-2, 2-

8-3, 2-8-1, respectively. Here, we train the critic network and action network

99

Figure 4.7: The convergence processes of the cost function and its derivative
of the iterative GDHP algorithm

for 50 training cycles when keeping other parameters the same as the above

example. The convergence processes of the cost function and its derivative

of the iterative GDHP algorithm are shown in Fig. 4.7, which verify the

statements of Theorems 4.1-4.2 and Remarks 4.1-4.2. Furthermore, for given

initial state x10 = 0.5 and x20 = −1, we apply the optimal control law
designed by the iterative GDHP algorithm to system (4.3.2) for 25 time

steps, and obtain the state curves and the corresponding control curve are

shown in Fig. 4.8 and Fig. 4.9, respectively. These simulation results verify

the excellent performance of the controller derived by the iterative GDHP

algorithm.

100

Figure 4.8: The state trajectories x1 and x2

Figure 4.9: The control input u

101

4.4 Conclusions

In this chapter, an effective iterative ADP algorithm with convergence analy-

sis is given to design the near optimal controller for unknown nonaffine non-

linear discrete-time systems with discount factor in the cost function. The

GDHP technique is introduced to implement the algorithm. Three NNs are

used as parametric structures to approximate the cost function, the control

law and identify the unknown nonlinear system, respectively. The simulation

studies demonstrated the validity of the proposed optimal control scheme.

5 WAVELET BASIS FUNCTION NEURAL NETWORKS FOR

SEQUENTIAL LEARNING

In this Chapter, we develop the wavelet basis function neural networks

(WBFNNs). It is analogous to radial basis function neural networks

(RBFNNs) and to wavelet neural networks (WNNs). In WBFNN, both the

scaling function and the wavelet function of a multiresolution approxima-

tion (MRA) are adopted as the basis to approximate functions. A sequential

learning algorithm for WBFNNs is presented and compared to the sequential

learning algorithm of RBFNNs. The results of the experiments show that

WBFNNs have better generalization property and require shorter training

time than RBFNNs. All the results in this Chapter have been published in

the paper “Wavelet basis function neural networks for sequential learning”

([12]).

5.1 Introduction

Radial basis function neural networks (RBFNNs) are used to approximate

complex functions directly from the input-output data with a simple topo-

logical structure ([7, 9, 29, 30, 31, 37]). RBFNNs have good generalization

ability as compared to the multilayer feedforward networks. In a RBFNN, a

function f(x) is approximated as

f̂(x) =
i

wiφ
x− ai
bi

, (5.1.1)

where φ(r) is the basis function. The most common used basis function is

the Gaussian function exp(−r2/2). In sequential learning, a neural network
is trained to approximate a function while a series of training sample pairs

102

103

are randomly drawn and presented to the network. The sample pairs are

learned by the network one by one. There are several different sequential

learning algorithms for RBFNNs ([9, 15, 16, 24, 25, 28, 33, 34]).

Wavelet neural networks (WNNs) are also used to approximate functions

by a single basis function ([6, 17, 20, 40, 48, 49]). In a WNN, a function f(x)

is approximated as

f̂(x) =
i

wiφ
x− ai
bi

, (5.1.2)

where φ(x) is the basis function coming from wavelet theory ([10, 26]) — the

scaling function, the wavelet function, or the basis function of continuous

wavelet transform. WNNs can approximate functions more accurately and

they have better generalization property than RBFNNs. But all the existing

training algorithms are not especially for sequential learning and the orthog-

onal properties of wavelets have not been used in these algorithms.

In this chapter, we study the wavelet basis function neural networks

(WBFNNs) for sequential learning. Both the scaling function φ and the

wavelet function ψ are used as basis functions in WBFNN. Functions φ and

ψ are orthogonal to each other. In a wavelet decomposition of a function,

they will give approximations in different level of details, i.e., coarse and fine

approximations, respectively. In a WBFNN, a function f(x) is approximated

as

f̂(x) =
i

αiφ
x− ai
bi

+
i

βiψ
x− ci
di

. (5.1.3)

A sequential learning algorithm is produced from the orthogonal properties

of multiresolution approximation and Mallat’s formula of wavelet decompo-

sition ([10, 26]).

104

The chapter is organized as follows. Section 5.2 gives a brief review of

wavelet theory. Section 5.3 presents the definition of WBFNNs and provides

a sequential learning algorithm for WBFNNs. Section 5.4 shows quantita-

tive performance comparisons between the sequential learning algorithm of

WBFNNs and RBFNNs. Section 5.5 summarizes the conclusion.

5.2 Multiresolution Approximation and Wavelets

In this section a brief review of the wavelets theory is given (cf. [10, 26] for

details). A wavelet basis is constructed with a multiresolution approximation

(MRA) of function space. An MRA presents a way to approximate functions

in multiple resolutions. Recall that the inner product of functions f and

g ∈ L2 is defined as f, g = f(x)g(x)dx. An MRA of the function space

L2 is a doubly infinite nested sequence of subspaces of L2

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

with properties

(S2.1) ∪jVj is dense in L2, i.e., limj Vj = L2.

(S2.2) ∩jVj = {0}.

(S2.3) f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1 for all j ∈ Z.

(S2.4) f(x) ∈ Vj ⇐⇒ f(x− 2−jk) ∈ Vj for all j, k ∈ Z.

(S2.5) There exists a function φ ∈ L2 so that {φ(x − k) : k ∈ Z} forms an
orthonormal basis of V0. The function φ is called the scaling function

of the MRA {Vj}.

105

(S2.6) Let φkj (x) = 2
j/2φ(2jx − k) for j, k ∈ Z. Then for any fixed integer

j ∈ Z, the set of functions {φkj : k ∈ Z} is an orthonormal basis of Vj.

(S2.7) Let W0 be the orthogonal complement of V0 in V1, i.e., W0⊥V0 and
V1 = V0 ⊕W0, where the symbol ⊕ denotes the orthogonal direct sum
of function spaces. Then there exists a function ψ ∈ W0 such that

φ,ψ = 0, ψ = 1, and {ψ(x− k) : k ∈ Z} is an orthonormal basis of
W0. ψ is called the wavelet function of the MRA {Vj}.

(S2.8) Let ψkj (x) = 2
j/2ψ(2jx−k) for j, k ∈ Z. LetWj = Span{ψkj : k ∈ Z}.

Then the set of functions {ψkj : k ∈ Z} is an orthonormal basis of Wj ,

Wj⊥Vj and Vj+1 = Vj ⊕Wj .

(S2.9) For any J,H ∈ Z, J < H, we have

VH = VJ ⊕WJ ⊕WJ+1 ⊕ · · ·⊕WH−1.

Furthermore,

L2 = lim
H→∞

VH = VJ ⊕ (⊕∞k=JWk).

(S2.10) For any f(x) ∈ L2 and any integer j ∈ Z, there exists a unique
function Pjf ∈ Vj such that f −Pjf⊥Vj . Pjf is called the approxima-
tion of f at resolution level j. We have limj→∞ Pjf = f.

(S2.11) For any f(x) ∈ L2 and any integer j ∈ Z, there exists a unique
function Qjf ∈Wj such that f −Qjf⊥Wj. Qjf is called the deviation

of f at resolution level j. We have Pjf +Qjf = Pj+1f . Consequently,

for any J,H ∈ Z,
PHf = PJf +

J≤k<H
Qkf.

106

(S2.12) Let f ∈ L2. Since Pjf ∈ Vj and {φkj : k ∈ Z} is an orthonormal
basis of Vj , we have

Pjf =
k

Cj,kφ
k
j ,

where

Cj,k = f,φkj . (5.2.1)

(S2.13) Let f ∈ L2. Since Qjf ∈ Wj and {ψkj : k ∈ Z} is an orthonormal
basis of Wj , we have

Qjf =
k

Dj,kψ
k
j ,

where

Dj,k = f,ψkj . (5.2.2)

(S2.14) Let f ∈ L2. For any given J,H ∈ Z, we have the approximation

f(x) ≈
k∈Z

CJ,kφ
k
J(x) +

H

j=J k∈Z
Dj,kψ

k
j (x). (5.2.3)

(5.2.3) is called the wavelet approximation of f with resolutions from J to

H. It is also called the wavelet decomposition of f with resolutions from

J to H. The coefficients Cj,k and Dj,k in (5.2.3) can be calculated by the

inner product given in (S2.12) and (S2.13). But in numerical computation,

it will take a long time to obtain all these coefficients by inner products.

Fortunately, there is a fast algorithm, i.e., the “fast wavelet decomposition”

of Mallat and Daubechies.

For the scaling function φ and the associated wavelet function ψ of an

MRA {Vj}, we know that V0 ⊂ V1 and W0 ⊂ V1. Hence φ and ψ can be

107

written in terms of the basis {φk1} of V1. For k ∈ Z, define

hk = φ(x),φk1(x) ,
gk = ψ(x),φk1(x) .

(5.2.4)

Then
gk = (−1)k−1h1−k,

s hshs−2k = δ0k,

and

φ(x) = k∈Z hkφ
k
1(x),

ψ(x) = k∈Z gkφ
k
1(x).

(5.2.5)

It was proved that in the wavelet decomposition (5.2.3), the weights Cj,k and

Dj,k of different resolution levels have the following relationship:

Cj−1,m = k∈Z hk−2mCj,k,
Dj−1,m = k∈Z gk−2mCj,k.

(5.2.6)

Formula (5.2.6) is the so called fast wavelet decomposition algorithm of Mallat

and Daubechies. It describes the way to obtain the coefficients Cj,k and Dj,k

for lower resolution level from the coefficients with higher resolution level.

Now we have two ways to obtain the coefficients Cj,k and Dj,k in the wavelet

decomposition (5.2.3). We can calculate all the Cj,k andDj,k by inner product

according to (5.2.1) and (5.2.2). We can also obtain Cj,k and Dj,k by fast

wavelet decomposition (5.2.6), in case we have already had the values of Cj,k

and Dj,k for some higher resolution level.

5.3 Wavelet Base Function Neural Networks and Sequential

Learning

WBFNN is analogous to both RBFNN and WNN. Same with the WNNs,

the structure of WBFNNs is based on the theory of wavelets. Instead of one

108

basis function, both the scaling function and the wavelet function of a mul-

tiresolution approximation are used as basis functions in a WBFNN. Besides,

we use not only the ability of wavelets to approximate functions, but also the

orthogonal properties and the relationships between the approximations of

different resolution levels. Similar to RBFNNs, WBFNNs can be employed

for sequential learning, but WBFNNs can be trained faster, perform more

accurately, and have better generalization properties.

The structure of WBFNNs are based on the approximation (5.2.3). J

and H are given to indicate the minimum and maximum of the resolution

levels. There are two types of neurons in aWBFNN, equipped with activation

function φkj and ψ
k
j , respectively.

For purpose of real world application, we assume that the domain X

of the function f(x) is finite. Suppose X = [Xmin, Xmax]. We will choose

Daubechies’ wavelets with compact support as the basis. The Daubechies’

wavelets have the following properties.

(S3.1) Suppose that the scaling function φ and wavelet function ψ form a

Daubechies’ wavelet. Let hk be the coefficients defined in (5.2.4). Then

there is a positive integer Ks such that hk = 0 only when k = 0, . . . , Ks.

Furthermore, the support sets of φ and ψ are supp φ = [0, Ks) and

supp ψ = [1−Ks, 1), respectively.

(S3.2) For j, k ∈ Z,
supp φkj = [2

−jk, 2−j(k +Ks)),
supp ψkj = [2

−j(k + 1−Ks), 2
−j(k + 1)),

supp φkj ∩ supp ψkj = [2−jk, 2−j(k + 1)).

When J is small enough, we have X ⊆ [2−Jk0, 2−J(k0 + 1)) for certain

109

choice of k0. We only need consider those neurons with X ∩ supp φkj = ∅ or
X ∩ supp ψkj = ∅. So the neurons of resolution level J in the network are
φk0−kJ and ψk0+kJ for 0 ≤ k ≤ Ks−1. We call these neurons the root neurons.
All the other neurons are ψkj (x) for J < j ≤ H.

The neurons φkj and ψ
k
j which will fire on an input x only if x is inside the

interval supp φkj = [2
−jk, 2−j(k+Ks)) or supp ψ

k
j = [2

−j(k+1−Ks), 2
−j(k+

1)). The length of these intervals are 2−jKs. During the training of the

network, for a training sample pair (xi, yi), we need to adjust the root neurons

and those neurons such that

xi ∈ [2−j(k + 1−Ks), 2
−j(k + 1)). (5.3.1)

It is easy to see that (5.3.1) is equivalent to

2jxi − 1 < k ≤ 2jxi +Ks − 1. (5.3.2)

Hence the output of the whole network is

f̂(x) =
Ks−1

k=0

kφ
k0−k
J (x) + wJ,k0+kψ

k0+k
J (x)

+

H

j=J+1

2jx+Ks−1

k= 2jx

wj,kkψ
k
j (x),

=
Ks−1

k=0

kφ
k0−k
J (x) +

H

j=J

2jx+Ks−1

k= 2jx

wj,kkψ
k
j (x), (5.3.3)

where K means the biggest integer not bigger than K. For each j, the

number of k satisfying (5.3.2) is always Ks. Hence, since we limit that J ≤
j ≤ H, for each input x (or training sample (xi, yi)), at most (H − J + 2)Ks

neurons will fire (or be adjusted during the training).

110

A WBFNN will grow during the training. It starts with root neurons

φk0−kJ , 0 ≤ k < Ks, and sequentially increases (or decreases, when some ex-

isting neurons have very small significance) the number of neurons until the

approximation error is sufficiently small. The growth of neurons will depend

on the error of the approximation, the position of existing neurons, and the

resolution level of existing neurons. To adjust the weights of neurons, we

use the formulas (5.2.1), (5.2.2), and (5.2.6). Now we give our growing and

pruning algorithm for sequential learning of WBFNNs. Given emin to be the

minimal error of the approximation and given δmin to be the minimal signifi-

cance of the neurons. The network is initialized as f̂(x) = Ks−1
k=0 kφ

k0−k
J (x),

with k = 0. The sequence of sample pairs {(xi, yi)} are chosen randomly
with respect to certain probability distribution.

SLWBF Algorithm (Sequential Learning of Wavelet Basis Function neural

networks)

A01 For each pair (xi, yi), do Steps A02—A03.

A02 Compute the overall network output

f̂(xi) =
k

kφ
k0−k
J (xi) +

j,k

wj,kψ
k
j (xi).

Find the error e = yi − f̂(xi).

A03 If |e| > emin then do steps A04—A08

A04 Find the maximal resolution level H1 of existing neurons which will fire

at xi. If H1 < H then H1 = H1 + 1.

A05 Define the error function

E(x) = max{0, 1− 2H1 |x− xi|}e.

111

A06 From j = H1 to j = J , compute

Cj,k =
E(x),φkH1 , if j = H1,

s∈Z hs−2k Cj+1,s if J ≤ j < H1,

Dj,k =
E(x),ψkH1 , if j = H1,

s∈Z gs−2k Cj+1,s, if J ≤ j < H1,

where 2jxi − 1 < k ≤ 2jxi +Ks − 1.

A07 Adjust the weights by k = k + CJ,k0−k and wj,k = wj,k + Dj,k.

A08 If |wj,k| ≥ δmin and there is no neuron with activation function ψ
k
j , add

a neuron wj,kψ
k
j .

If |wj,k| < δmin and the neuron wj,kψ
k
j exists, prune this neuron.

The parameters emin, δmin and H determine the accuracy of the algorithm.

Smaller emin and δmin give better approximation while larger H gives smaller

errors.

5.4 Numerical Experiments

In this section, numerical experiments are performed for the SLWBF algo-

rithm. The experiments run in a Dell Optiplex 745 computer using MAT-

LAB. As a comparison of our WBFNNs and SLWBF algorithm, we choose se-

quential learning algorithm “minimal resource allocation networks” (MRAN)

[37] of RBFNNs. In [37], MRAN algorithm was compared with some other se-

quential learning algorithms of RBFNNs, such as the resource allocation net-

work (RAN) [28] and the resource allocation network via extended Kalman

filter (RANEKF) [15], and so on. The results in [37] show that MRAN has

better performance in terms of generalization, network size, and training

112

speed, whenever the input data are uniformly or not-uniformly distributed.

Let

f(x) =
max{1− x/2, sin(x4/50)}, if 0 ≤ x ≤ 2;
sin(x4/50), if 2 < x ≤ 10. (5.4.1)

Fig. 5.1(a) is the graph of f(x). We will approximate f(x) by RBFNNs and

WBFNNs, respectively, while the training data are generated under uniform

distribution or Gaussian distribution N(4, 1.252).

In each case, 10000 training pairs (xi, yi) (i = 1, · · · , 10000) are taken
from the range X = [0, 10] under according probability distribution. For

testing the resulting neural networks, we use 1000 data which uniformly

distributed in the same range x ∈ [0, 10]. In the performance of SLWBF
algorithm, the wavelet adopted is Haar wavelet, which is the wavelet with

the smallest support among Daubechies’ wavelets. For Haar wavelet, the

parameterKs = 2. Hence both the structure of WBFNNs and the calculation

of algorithm SLWBF are very simple in this case.

Fig. 5.1(b)—(e) show the resulting approximation f̂(x) after presenting

10000 training pairs. Fig. 5.1(b) is the approximation by RBFNN and the

training sequence obeys uniform distribution. Fig. 5.1(c) is the approxima-

tion by WBFNN and the training sequence also obeys uniform distribution.

In (d) and (e) of Fig. 5.1, the training data sequences obey Gaussian distrib-

ution N(4, 1.252) and the network is a RBFNN in (d) and a WBFNN in (e).

The results show that WBFNNs give better approximation than RBFNNs.

Fig. 5.2 gives the comparison of approximation mean square error
10

0
(f(x) − f̂(x))2dx/10. In Fig. 5.2(a), the training data obey uniform

distribution and in Fig. 5.2(b), the training data obey Gaussian distribu-

tion. In both cases of uniform distributed and Gaussian distributed samples,

113

0 5 10
−1

0

1

(a) f(x)

0 5 10
−1

0

1

0 5 10
−1

0

1

(b) RBF & uniform distribution (c) WBF & uniform distribution

0 5 10
−1

0

1

0 5 10
−1

0

1

(d) RBF & Gaussian distribution (e) WBF & Gaussian distribution

Figure 5.1: f(x) and f̂(x)

114

0 2 4 6 8 10

1

2

Number of training samples (×1000)

T
ra

in
in

g
M

S
E

WBF

RBF

(a) Training data with uniform distribution

0 2 4 6 8 10

1

2

Number of training samples (×1000)

T
ra

in
in

g
M

S
E

WBF

RBF

(b) Training data with Gaussian distribution

Figure 5.2: Comparison of mean square errors

115

WBFNNs perform better approximation and converge earlier.

Fig. 5.3 is the comparison of training time for RBFNNs and WBFNNs.

We can see that the training time of WBFNNs algorithm is linear and the

time of RBFNNs algorithm looks like a square function. This is because

in the MRAN algorithm, extended Kalman filter is applied to justify the

parameters of neurons, whose training time is proportional to the square of

the number of neurons; while in the SLWBF algorithm, the time to learn

from a single training data is fixed.

Fig. 5.4 is the comparison of the number of neurons. At the beginning,

RBFNNs have less neurons than WBFNNs. But finally, RBFNNs have more

neurons. We can see that at the beginning of the training, SLWBF algorithm

requires more neurons while it gives higher accuracy in the approximation

and faster converge speed. In the end, RBFNNs require more neurons but

still provide less accuracy in the approximation.

According to the performance comparison results, WBFNNs have better

approximation accuracy. When the training data obey uniform distribution,

although WBFNNs and RBFNNs give similar approximation errors after all

10000 training samples have been applied, WBFNNs converge faster. When

the training data obey normal distribution, WBFNNs give smaller errors.

Hence we know that WBFNNs have better generalization than RBFNNs

have. In both cases, WBFNNs can give better approximation of functions

from fewer training data pairs. The time to train a WBFNN is proportional

to the number of training data pairs. But the time for training a RBFNN is

nonlinear and will grow faster when the number of training data grows. For

the size of the network, RBFNNs have fewer neurons at the beginning and

finally, RBFNNs have more neurons than WBFNNs have.

116

0 2 4 6 8 10
0

2000

4000

6000

8000

Number of training samples (×1000)

T
ra

in
in

g
tim

e
(s

ec
on

ds
)

WBF

RBF

(a) Training data have uniform distribution

0 2 4 6 8 10
0

500

1000

1500

Number of training samples (×1000)

T
ra

in
in

g
tim

e
(s

ec
on

ds
)

WBF

RBF

(b) Training data have Gaussian distribution

Figure 5.3: Comparison of training time

117

0 2 4 6 8 10

100

200

Number of training samples (×1000)

N
um

be
r

of
 n

eu
ro

ns

WBF

RBF

(a) Training data have uniform distribution

0 2 4 6 8 10

100

Number of training samples (×1000)

N
um

be
r

of
 n

eu
ro

ns

WBF

RBF

(b) Training data have Gaussian distribution

Figure 5.4: Comparison of numbers of neurons

118

5.5 Conclusions

In this chapter, a new kind of neural networks, WBFNN is defined. A sequen-

tial learning algorithm called SLWBF algorithm is presented for WBFNNs.

WBFNN is a development of both RBFNN and WNN. Both the scaling func-

tion and wavelet function of an MRA are applied to construct a WBFNN.

Since wavelets have the ability to approximate functions in multiresolution,

WBFNN can give better approximation of functions with better generaliza-

tion.

Performance of the algorithm SLWBF has been compared with the al-

gorithm MRAN. The training sequences coming from both uniform and

Gaussian distributions are used for numerical experiments. The results indi-

cate that WBFNNs give more accurate approximation, faster converge, and

less training time, while they require smaller size of networks. Furthermore,

SLWBF gives better generalization performance especially when the input

data are not uniformly distributed.

119

6 CONCLUDING REMARKS

In this dissertation, we addressed three research topics.

We start our research by studying optimal control and dynamic program-

ming. Optimal control and dynamic programming for complex dynamical

systems is difficult due to the “curse of dimensionality” and the “over op-

timal” problem. The aim of our work is to overcome these two difficulties.

We introduce a novel -optimal performance index function V ∗(·) as an ap-
proximation of the optimal performance index function. The associated -

optimal controller µ∗(·) can always control the system state to approach the

equilibrium state stably, while the performance index is close to the optimal

performance index within an error bound according to . We call this method

to be the -adaptive dynamic programming method. Since only one perfor-

mance cost function is used in -adaptive dynamic programming, -adaptive

dynamic programming is helpful to overcome the curse of dimensionality. In

Chapter 2, we establish the -adaptive dynamic programming theory for the

nonlinear discrete-time systems with no discount factor in the performance

index, i.e., the discount factor in the performance cost is γ = 1. In Chapter

3, we generalize our results of the -adaptive dynamic programming to the

systems with discount factor 0 < γ ≤ 1 in the performance index. Numerical
simulations have been performed in both Chapter 2 and Chapter 3. The

results of the simulations show that our -adaptive dynamic programming

method works well in both cases of γ = 1 and 0 < γ ≤ 1.

The results on -optimal dynamic programming provide stable controllers

in the sense of -optimal. By using a single performance cost function in -

adaptive dynamic programming, -adaptive dynamic programming is also

120

helpful to overcome the curse of dimensionality. However, the time expense

of the -optimal dynamic programming algorithm is still big. Thus, we turn

to our second topic that we will design an algorithm for the dynamic pro-

gramming which runs faster. We set certain restriction on the system. It is

assumed that the utility function of system is a positive definite quadratic

function. Under this assumption, an iterative adaptive dynamic program-

ming (ADP) algorithm using globalized dual heuristic programming (GDHP)

technique is introduced to obtain the optimal controller with convergence

analysis in terms of cost function and control law. In order to implement

the iterative algorithm, a neural network is constructed first to identify the

unknown nonlinear system. Then, based on the learned system model, two

other neural networks are used as parametric structures to facilitate the im-

plementation of the iterative algorithm, which aims at approximating at each

iteration the cost function and the control law, respectively. A simulation

example is provided to verify the effectiveness of the presented optimal con-

trol scheme dynamic programming (ADP) algorithm using globalized dual

heuristic programming (GDHP) technique is introduced.

The last part of this thesis is about wavelet neural network. In the nu-

merical simulations in our research on dynamic programming, we use neural

network to approximate the functions, such as the performance cost func-

tion and the optimal controller. The neural networks will be trained from

sequences of input-output data. So the generalization ability of the neural

networks is important for our purpose. Radial basis function neural networks

(RBFNNs) and wavelet neural networks (WNNs) are well known neural net-

works that have good generalization ability. Hence we designed a wavelet

basis function neural networks (WBFNNs) for sequential learning. Both the

scaling function φ and the wavelet function ψ are used as basis functions in

121

WBFNN. Functions φ and ψ are orthogonal to each other. In a wavelet de-

composition of a function, they will give approximations in different level of

details, i.e., coarse and fine approximations, respectively. A sequential learn-

ing algorithm is produced from the orthogonal properties of multiresolution

approximation and Mallat’s formula of wavelet decomposition.

CITED LITERATURE

[1] M. Abu-Khalaf and F. Lewis, “Nearly optimal control laws for non-
linear systems with saturating actuators using a neural network HJB
approach,” Automatica, vol. 41, no. 5, pp. 779—791, May 2005.

[2] A. Al-Tamimi and F. Lewis “Discrete-time nonlinear HJB solution us-
ing approximate dynamic programming: convergence proof,” Proc.
IEEE International Symposium on Approximate Dynamic Program-
ming and Reinforcement Learning, Honolulu, HI, Apr. 2007, pp. 38—43.

[3] S. N. Balakrishnan and V. Biega, “Adaptive-critic-based neural net-
works for aircraft optimal control,” J. Guidance, Control, and Dynam-
ics, vol. 19, pp. 893—898, July-Aug. 1996.

[4] R. Beard, G. Saridis, and J. Wen, “Galerkin approximations of the
generalized Hamilton-Jacobi-Bellman equation,” Automatica, vol. 33,
no. 12, pp. 2159—2177, Dec. 1997.

[5] R. E. Bellman, Dynamic Programming, Princeton, NJ: Princeton Uni-
versity Press, 1957.

[6] S. A. Billings and H. Wei, “A new class of wavelet networks for nonlin-
ear system identification,” IEEE Trans. Neural Networks, vol. 16, no.
4, pp. 862—874, July 2005.

[7] D. S. Broomhead and D. Lowe, “Multivariable functional interpolation
and adaptive networks,” Complex Syst., vol. 2, pp. 321—355, 1988.

[8] A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization,
Estimation, and Control, New York, NY: Hemisphere-Wiley, 1975.

[9] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” IEEE Trans.
Neural Networks, vol. 2, no. 2, pp. 302—309, Mar. 1991.

[10] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Con-
ference Series in Applied Mathematics, Philadelphia: SIAM Press, vol.
61, 1992.

[11] S. E. Dreyfus and A. M. Law, The Art and Theory of Dynamic Pro-
gramming, New York, NY: Academic Press, 1977.

[12] N. Jin and D. Liu, “Wavelet basis function neural networks for se-
quential learning,” IEEE Trans. Neural Networks, Vol. 19, No. 3, pp.
523-528, 2008.

122

CITED LITERATURE (continued) 123

[13] N. Jin and D. Liu, “Discrete-time -Adaptive dynamic programming
algorithm using neural networks,” Proceedings of IEEE International
Symposium on Intelligent Control 2008 (ISIC 2008), San Antonio, TX,
Sept. 2008, pp.1085-1090.

[14] N. Jin, D. Liu, and Y. Ma, “Adaptive dynamic programming algorithm
for discrete-time systems with -error bound and discount factor in the
performance cost,” Proceedings of IEEE International Conference on
Networking, Sensing and Control, 2009 (ICNSC ’09), Okayama, Japan,
March 2009, pp. 189 - 194.

[15] V. Kadirkamanathan and M. Niranjan, “A function estimation ap-
proach to sequential learning with neural networks,” Neural Comput.,
vol. 5, no. 6, pp. 954—975, Nov. 1993.

[16] N. B. Karayiannis and G. W. Mi, “Growing radial basis neural net-
works: Merging supervised and unsupervised learning with network
growth techniques,” IEEE Trans. Neural Networks, vol. 8, no. 6, pp.
1492—1506, Nov. 1997.

[17] H. R. Karimi, B. Moshiri, B. Lohmann, and P. J. Maralani, “Haar
wavelet-based approach for optimal control of second-order linear sys-
tems in time domain,” J. Dyna. & Control Sys., vol. 11, no. 2, pp.
237—252, Apr. 2005.

[18] G. G. Lendaris, C. Cox, R. Seaks, and J. Murray, “A radial basis func-
tion implementation of the adaptive dynamic programming algorithm,”
Proc. 45th Midwest Symposium on Circuits and Systems, Tulsa, OK,
Aug. 2002, vol. 2, pp. II338—II341.

[19] F. L. Lewis and V. L. Syrmos, Optimal Control, John Wiley, New York,
1995.

[20] Y. Lin and F. Wang, “Modular structure of fuzzy system modeling
using wavelet networks,” Proc. 2005 IEEE Networking, Sensing and
Control, Tuscon, AZ, Mar. 2005, pp. 671—676.

[21] D. Liu, “Approximate dynamic programming for self-learning control,”
ACTA Automatica Sinica, vol. 31, no. 1, pp. 13—18, Jan. 2005.

[22] D. Liu, “Neural network-based adaptive critic designs for self-learning
control,” Proceedings of the 9th International Conference on Neural
Information Processing, Singapore, Nov. 2002, pp.1252-1256. (Invited
paper)

[23] D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based
optimal control for a class of unknown discrete-time nonlinear systems

CITED LITERATURE (continued) 124

using gobalized dual heuristic programming,” submitted for publica-
tion.

[24] Y. Lu, N. Sundararajan, and P. Saratchandran, “A sequential learning
scheme for function approximation using minimal radial basis function
(RBF) neural networks,” Neural Comput., vol. 9, no. 2, pp. 461—478,
1997.

[25] Y. Lu, N. Sundararajan, and P. Saratchandran, “Performance evalua-
tion of a sequential minimal radial basis function (RBF) neural network
learning algorithm,” IEEE Trans. Neural Networks, vol. 9, no. 2, pp.
308—318, Mar. 1998.

[26] S. Mallat, “Multiresolution approximation and wavelet orthonomal
bases of L2,” Trans. Amer. Mat. Soc., vol. 315, pp. 69—87, 1989.

[27] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive
dynamic programming,” IEEE Trans. Syst., Man, Cybern. - Part C:
App & Reviews, vol. 32, no. 2, pp. 140—153, May 2002.

[28] J. Platt, “A resource-allocating network for function interpolation,”
Neural Comput., vol. 3, no. 2, pp. 213—225, 1991.

[29] T. Poggio and F. Girosi, “Networks for approximation and learning,”
Proceedings of the IEEE, vol. 78, no. 9, pp. 1481—1497, Sept. 1990.

[30] M. J. D. Powell, “Radial basis functions for multivariable interpolation:
A review,” Algorithms for Approximation, J. C. Mason and M. G. Cox,
Eds., Oxford: Clarendon Press, 1987, pp. 143—167.

[31] M. J. D. Powell, “Radial basis functions approximations to polynomi-
als,” Proc. 12th Biennial Numerical Analysis Conf., Dundee, Scotland,
June 1987, pp. 223—241.

[32] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE
Trans. Neural Networks, vol. 8, pp. 997—1007, Sept. 1997.

[33] A. Roy, S. Govil, and R. Miranda, “A neural-network learning theory
and a polynomial time RBF algorithm,” IEEE Trans. Neural Networks,
vol. 8, no. 6, pp. 1301—1313, Nov. 1997.

[34] M. Salmerón, J. Ortega, C. G. Puntonet, A. Prieto, and I. Rojas, “SSA,
SVD, QR-cp, and RBF model reduction,” Lecture Notes in Comput.
Sci., Berlin: Springer, vol. 2415, pp. 589—594, 2002.

[35] G. N. Saridis and F.-Y. Wang, “Suboptimal control of nonlinear sto-
chastic systems,” Control-Theory and Advanced Technology, vol. 10,
no. 4, pp. 847—871, 1994.

CITED LITERATURE (continued) 125

[36] J. Si and Y.-T. Wang, “On-line learning control by association and
reinforcement,” IEEE Trans. Neural Networks, vol. 12, pp. 264—276,
Mar. 2001.

[37] N. Sundararajan, P. Saratchandran, and Y. Lu, Radial Basis Function
Neural Networks with Sequential Learning: MRAN and Its Applica-
tions, Singapore: World Scientific, 1999.

[38] F. Wang, N. Jin, D. Liu, and Q. Wei, “Adaptive dynamic programming
for finite-horizon optimal control of discrete-time nonlinear systems
with -error bound,” IEEE Trans. Neural Networks, vol. 22, no. 1, pp.
24—36, 2011.

[39] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of
unknown nonaffine nonlinear discrete-time systems based on adaptive
dynamic programming,” submitted for publication.

[40] F. Wang and H. Kim, “Implementing adaptive fuzzy logic controllers
with neural networks: A design paradigm,” Journal of Intelligent and
Fuzzy Systems, vol. 3, no. 2, pp. 165—180, 1995.

[41] P. J. Werbos, “Advanced forecasting methods for global crisis warning
and models of intelligence,” General Systems Yearbook, vol. 22, pp.
25—38, 1977.

[42] P. J. Werbos, “Stable adaptive control using new critic designs,” Mar.
1998 [Online]. Available: http://xxx.lanl.gov/abs/adap-org/9810001.

[43] P. J. Werbos, “Approximate dynamic programming for real-time con-
trol and neural modeling,” Handbook of Intelligent Control: Neural,
Fuzzy, and Adaptive Approaches (Chapter 13), D. A. White and D. A.
Sofge, Eds., New York, NY: Van Nostrand Reinhold, 1992.

[44] P. J. Werbos, “A menu of designs for reinforcement learning over time,”
Neural Networks for Control (Chapter 3), W. T. Miller, R. S. Sutton,
and P. J. Werbos, Eds., The MIT Press, Cambridge, MA, 1990.

[45] P. J. Werbos, “Building and understanding adaptive systems: A statis-
tical/numerical approach to factory automation and brain research,”
IEEE Trans. Syst., Man, Cybern., vol. 17, pp. 7—20, Jan./Feb. 1987.

[46] P. J. Werbos, Beyond Regression: New Tools for Prediction and Analy-
sis in the Behavioral Sciences, PhD. Thesis, Harvard Univ., Cam-
bridge, MA, 1974.

[47] W. M. Wonham, “Random differential equations in control theory,”
Probabilistic Methods in Applied Mathematics, A. T. Bharucha-Reid,
Ed. New York: Academic Press, 1970.

CITED LITERATURE (continued) 126

[48] J. Zhang, G. G. Walter, Y. Miao, and W. N. W. Lee, “Wavelet neural
networks for function learning,” IEEE Trans. Signal Processing, vol.
43, no. 6, pp. 1485—1497, June 1995.

[49] Q. Zhang and A. Benveniste, “Wavelet networks,” IEEE Trans. Neural
Networks, vol. 3, no. 6, pp. 889—898, Nov. 1992.

VITA

NAME: Ning Jin

EDUCATION: Ph.D., Electrical and Computer Engineering, University
of Illinois at Chicago, Chicago, Illinois, 2011.

Ph.D., Mathematics, East China Normal University, China,
1990.

M.S., Mathematics, East China Normal University, China,
1987.

B.S., Mathematics, East China Normal University, China,
1984.

TEACHING: Department of Mathematics, Nanjing University, China,
1992-2001.

Department of Electrical and Computer Engineering, Uni-
versity of Illinois at Chicago, Chicago, Illinois, Fall 2011.

EXPERIENCE: Department of Computer Science, Hong Kong Baptist
University, Hong Kong, 2001.

Department of Mathematics, Statistics and Computer
Science, University of Illinois at Chicago, Chicago, Illi-
nois, 2002-2004.

PUBLICATIONS: Feiyao Wang, Ning Jin, Derong Liu, and Qinglai Wei,
“Adaptive dynamic programming for finite-horizon op-
timal control of discrete-time nonlinear systems with -
error bound,” IEEE Trans. Neural Networks, vol. 22,
no. 1, pp. 24—36, 2011.

Ning Jin, Derong Liu, and Yingying Ma, “Adaptive dy-
namic programming algorithm for discrete-time systems
with -error bound and discount factor in the perfor-
mance cost,” Proceedings of IEEE International Confer-
ence on Networking, Sensing and Control, 2009 (ICNSC
’09), Okayama, Japan, March 2009, pp. 189 - 194.

127

VITA (continued) 128

Zhongyu Pang, Derong Liu, Ning Jin, and Zou Wang,
“A Monte Carlo particle model associated with neural
networks for tracking problems,” IEEE Transactions on
Circuits and Systems-I, vol 55, no. 11, pp. 3421-3429,
2008.

Ning Jin and D. Liu, “Discrete-time -adaptive dynamic
programming algorithm using neural networks,” Proceed-
ings of IEEE International Symposium on Intelligent Con-
trol 2008 (ISIC 2008), San Antonio, TX, Sept. 2008,
pp.1085-1090.

Derong Liu, Ning Jin, “ -Adaptive Dynamic Program-
ming for discrete-time systems,” IJCNN 2008, Hong Kong,
China, June 1-6, 2008, pp. 1417-1424.

Ting Huang, Derong Liu, Hossein Javaherian and Ning
Jin, “Neuro sliding mode control of the engine torque,”
Proceedings of the 17th World Congress of The Inter-
national Federation of Automatic Control, Seoul, Korea,
July 6-11, 2008, pp. 9453-9458.

Ning Jin and Derong Liu, “Wavelet basis function neural
networks for sequential learning,” IEEE Transactions on
Neural Networks, vol. 19, No. 3, pp. 523-528, 2008.

Ning Jin, Derong Liu, Zhongyu Pang and Ting Huang,
“Wavelet basis function neural networks,” International
Joint Conference on Neural Networks (IJCNN2007), Or-
lando, Florida, Aug. 2007, pp. 500—505.

Zhongyu Pang, Derong Liu, Ning Jin and Zhuo Wang,
“Neural network strategy for sampling of particle filters
on the tracking problem,” Proceeding of International
Joint Conference on Neural Networks (IJCNN2007), Or-
lando, Florida, Aug. 2007, pp. 254—259.

Ning Jin, Derong Liu, Ting Huang and Zhongyu Pang,
“Discrete-time approximate dynamic programming us-
ing wavelet basis function neural networks,” Proceeding
of IEEE International Symposium on Approximate Dy-
namic Programming and Reinforcement Learning, April
1-5, 2007, Hawaii, pp. 135—143.

VITA (continued) 129

Derong Liu and Ning Jin, “Finite Horizon Discrete-Time
Approximate Dynamic Programming,” On Proceeding of
21st IEEE International Symposium on Intelligent Con-
trol, Munich, Germany, Oct. 4-6, 2006, pp. 446—451.

Ding Wang, Derong Liu, Qinglai Wei, Dongbing Zhao,
and Ning Jin, “Optimal control of unknown nonaffine
nonlinear discrete-time systems based on adaptive dy-
namic programming,” submitted for publication.

Derong Liu, Ding Wang, Dongbing Zhao, Qinglai Wei,
and Ning Jin, “Neural-network-based optimal control for
a class of unknown discrete-time nonlinear systems us-
ing gobalized dual heuristic programming,” submitted for
publication.

