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SUMMARY

Missing data are common in survey sampling. Such loss creates a spectrum of inferential

problems, depending on the type of missingness. In this thesis, a method to analyze survey data

with potentially non-ignorable covariates is proposed. The approach is particularly developed

to address the limitations in current routines of the standard statistical packages when, simul-

taneously, the model of interest has a mixture of categorical and continuous missing covariates,

the analysis needs to incorporate the sampling design under different assumptions about its

functional form, and there is a demand for manageable computation time in practical sense.

Essentially, the proposed method is a modification of the Expectation-Maximization (EM)

algorithm, particularly the E-step, where the missing elements of data are first augmented,

before the estimation continues using the conditional probability of the missing variables given

the observed data as the weight. The algorithm proceeds as a full likelihood procedure if the

sampling probability function is known for all observations, but it becomes a quasi-likelihood

approach when the quantity of survey weight is instead the only available information about

sample selection.

There are three classes of survey data considered during the development, which include

those of which none (Case 1), all (Case 2), or some (Case 3) of the covariates are observable

outside the samples. Two situations are further defined on each of them, that is, whether the

functional form of sample selection is known (Situation 1) or unknown (Situation 2). Given

its construction, the proposed method, termed the augmentation assisted EM algorithm or

xi



SUMMARY (Continued)

simply the augmentation method, retains the desirable properties of the maximum likelihood

estimates, while flexible enough to handle both continuous and categorical missing covariates,

and can adapt the use of survey weight to improve inference.

The simulation studies indicates that the proposed method performs reliably well across all

classes of survey data. In terms of unbiasedness, it is competitive with and may occasionally

outperform the multiple imputation by chained equations (MICE), a well-known technique in

multiple imputation. Efficiency of its estimates are also comparable to MICE. In the real data

application using the dataset from the Indonesia Demographic and Health Survey of 2012,

the proposed method successfully estimates the demographic, health, and birth-related factors

associated with the infant mortality. Most importantly, it is able to improve the results of

complete case analyses by both correcting the magnitude of effect size and increasing the power

of analysis to detect the variable significance.

xii



CHAPTER 1

INTRODUCTION

Data with missing values are common in surveys and observational studies. The loss may

occur in various stages. For instance, the data may not be collected for the selected households

because they are in geographically challenging areas, or the residents are not at home, have

moved and cannot be located. At individual level, information of certain variables may be

missing because the eligible person is unable, unavailable, or refuse to respond. In the surveys

with interviewer-administered questionnaire, data loss can be experienced when the interviewer

mistakenly passes the question or fail to record the answer. It is also possible that the data were

collected but are then lost due to error during data entry. Incompleteness of information can also

be a natural consequence of the instrument or research design. Many studies use questionnaires

where not all the questions or items in it are applicable to the subjects of interest. The sampling

selection itself may be regarded as a part of design that causes missing data.

Missing data create a spectrum of inferential problems. They could be limited to a com-

promised precision or power of the study, which might not be serious, particularly when it has

been anticipated in the design. However, if the missing fraction is substantial and not properly

anticipated, then the effects on inference may no longer be trivial. In fact, even with a relatively

small number of incomplete observations there is already a risk of inaccurate or biased estimates

when the mechanism of which the values missing of a variable is related to the variable itself.
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The implication of this type of missing data is that there can be systematic differences between

the subjects with and without missing values.

Ideally, variables with missing values not by study design are remedied through retrieval

of the information from the original sources or subjects. This is of course impractical in most

settings. Furthermore, the data analysts may not be part of the former research team and do

not have access to the data managers, let alone the study subjects. Such situation has prompted

the development of techniques for dealing with incomplete data. Complete-case analysis is the

most traditional approach, which remains as an option for modeling missing data because of

its availability in all standard statistical software, and the fact that it produces unbiased pa-

rameter estimates for the class of missing-data mechanism called missing completely at random

(MCAR)(1). The more advanced strategies are generally fall in one of the following: multiple

imputation, weighted estimating equations, Bayesian, and maximum likelihood methods(2; 3).

Earlier works of these methodologies are polarized on data with missing variables at random

(MAR). Their use in data with missing variables not at random (MNAR), also termed non-

ignorable missingness, remains an active research area in the missing data literature.

Development of the proposed method in this dissertation is motivated by the data from the

Indonesia Demographic and Health Survey (IDHS) of 2012. This survey is a complex multistage

probability sampling study designed to provide a number of demographic statistics related to

population health. These include fertility and childhood mortality rates, level of contraceptive

knowledge and practice, key child health indicators (level of immunization, prevalence and

treatment of diarrhea and several childhood diseases, and child feeding practices), coverage



3

of maternity care services, men’s involvement in reproductive health, data on awareness of

AIDS/STI, and determinants of maternal and child health (4). Sample sizes were calculated

with the objective of providing reliable estimates at national, provincial, and urban/rural levels.

The primary sampling units were the census blocks formed during the 2010 population census.

At the first stage of sampling, the census blocks were stratified into provinces and urban/rural

areas. Allocation for each stratum was not proportional to the population size; a minimum of

43 census blocks was imposed for individual province. There were in total 1,840 census blocks

allocated for the 33 provinces: 874 in urban areas and 966 in rural areas. Complete listing

and mapping of households was then conducted in the selected census blocks. The second stage

sampling comprises a systematic selection of the households from each block, for a total of 21,850

households in the urban areas and 24,150 in the rural areas, or an average of 25 households per

census block survey wide. All women age 15-49 and never-married men age 15-24 on the selected

households were eligible for interview. In addition, eight of the 25 households were subsequently

sampled in a systematic fashion to find currently married men age 15-49 eligible for interview.

The survey used separate questionnaires for household, woman’s, currently married man’s, and

never-married man’s interviews. Overall, the IDHS 2012 had a very high response rate. Of

44,302 households which occupied a house (there were originally 46,024 households selected,

but not all houses occupied), 43,852 (99%) were able to complete the interview. Within the

interviewed households, 45,607 of 47,533 eligible women (96%) completed their interview. The

response rate for the interview of currently married men was also high at 92%. In general, the

rural areas had a higher response rate than the urban areas.
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Childhood mortality data were collected through the complete birth history of live births

among the eligible women in the selected households. Of 45,607 women who provided data

during the study, 32,129 had ever given birth (15,262 had the delivery within the five years

before the survey). The information asked includes child’s birth order, gender, birth year and

month, survival status, and if relevant, age at death (in days for children died in the first

month of life, in months for those died before the second birthday, and in years for children

died at later ages). For live births in the preceding five years, the study recorded the data

on maternity: previous and succeeding birth intervals, antenatal care, any complication during

pregnancy and at birth, delivery attendant, child’s birth size and weight, place of birth, maternal

age when the child was born, postnatal care, and breastfeeding. Further investigation was

conducted on children who were born in the last five years and still alive at the time of survey

to obtain health histories, such as the immunization status, the presence and treatment of major

childhood illnesses (diarrhea, acute respiratory infection, and fever) in the last two weeks, and

child’s nutrition. There are 83,650 live births observed in the 2012 IDHS, where 18,021 of

them preceded the survey by five years or less. The data are accessible in the public domain

www.dhsprogram.com. This website, in particular, provides separate datasets for all live births

and those that took place in five years before the survey. They are respectively named the birth

and children datasets. The variable names of these two sets of data are identical. Nevertheless,

the birth dataset in general does not contain the information related to maternity and child’s

health histories. IDHS provides the sampling weight for each sample in the datasets.
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TABLE I
MISSING OBSERVATIONS IN SELECTED VARIABLES OF THE INDONESIA

DEMOGRAPHIC AND HEALTH SURVEY (IDHS) OF 2012 DATASETS

Variable nobs nmis ( %)

Household Level (n = 43,852)
Major source of drinking water 43,830 22 ( 0.1)
Type of toilet facility in the household 43,821 31 ( 0.1)
Frequency household members smoke inside the house 43,821 31 ( 0.1)
Any member has electricity 43,793 59 ( 0.1)
Any member has a car 43,769 83 ( 0.2)
Time taken to the source for drinking water 43,320 532 ( 1.2)
Presence of water at hand washing place 33,434 10,418 (23.8)
Location of source for water 24,678 19,174 (43.7)

Woman Level (n = 45,607)
Ever had a terminated pregnancy 45,602 5 ( 0.0)
Age of the respondent at first birth 32,129 13,478 (29.6)
Ever had complications during pregnancy 15,206 30,401 (66.7)

Birth in the Preceding 10 Years (n = 36,484)
Mother has any postpartum problem 36,463 21 ( 0.1)
Preceding birth interval 23,909 12,575 (34.5)

Birth in the Preceding 5 Years (n = 18,021)
Birth assistance: health professional 17,886 135 ( 0.7)
Place of delivery 17,855 166 ( 0.9)
Delivery by Caesarean section 17,847 174 ( 1.0)
Size of child as reported subjectively by the mother 17,293 728 ( 4.0)
Problem at time of birth: prolonged labor 15,227 2,794 (15.5)
Problem at time of birth: vaginal bleeding 15,210 2,811 (15.6)
Problem at time of birth: convulsion 15,209 2,812 (15.6)
Prenatal care: health professional 15,203 2,818 (15.6)
Problem at time of birth: fever and foul smelling vagi-

nal discharge 15,183 2,838 (15.7)
Problem at time of birth: water broke > 6 hrs before

delivery 15,167 2,854 (15.8)
Birth weight (kg) 15,124 2,897 (16.1)
Total antenatal visits during pregnancy 15,121 2,900 (16.1)

Continued on next page
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TABLE I (Continued)
MISSING OBSERVATIONS IN SELECTED VARIABLES OF THE

INDONESIA DEMOGRAPHIC AND HEALTH SURVEY (IDHS) OF 2012
DATASETS

Variable nobs nmis ( %)

Postnatal check within 2 months 15,075 2,946 (16.3)
Timing of first antenatal check (month) 14,475 3,546 (19.7)
Place baby first checked 9,762 8,259 (45.8)
Postnatal attendant 9,723 8,298 (46.0)
Timing of first postnatal check 9,438 8,583 (47.6)

Birth in the Preceding 5 Years and Alive (n = 17,367)
Received POLIO 1 17,288 79 ( 0.5)
Received BCG 17,285 82 ( 0.5)
Received MEASLES 17,243 124 ( 0.7)
Had cough in last 2 weeks 17,230 137 ( 0.8)
Received DPT 1 17,221 146 ( 0.8)
Had fever in last 2 weeks 17,211 156 ( 0.9)
Had diarrhea in last 2 weeks 17,207 160 ( 0.9)
Ever had vaccination 12,166 5,201 (29.9)
Had cough with short, rapid breaths in last 2 weeks 5,935 11,432 (65.8)
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Survival outcome of a child is fully recorded in the IDHS 2012 data. A total of 654 (3.6

percent) children reportedly died. There are a number of variables in the IDHS 2012 data that

may be related to the survival or death of the children, and thus are potential covariates for

regression models. They are a mixture of categorical and continuous variables, and include

those about birth history, child’s health, and household characteristics. Some of these potential

variables, however, are subject to missing values with a varying degree. Table I shows a few of

them based on their level or nature of data collection. The missingness is broad spectrum, from

much less than 1% to more than 60%. Figure 1 presents the pattern of the missing variables

at household level. Not surprisingly, the patterns are arbitrary. It is fair to consider that the

missingness of these potential covariates might not be ignorable. Intuitively, for instance, a

missing response on the child’s vaccination status could be determined by some of the house-

hold characteristics. Information on postnatal care, as another example, may also be lost due

to some other variables regarding birth histories, maternal education, and household character-

istics. These are just educated guess until we undertake a formal investigation. They, however,

emphasize the need to not only deal with the missing variables when analyzing the survival or

death status of children using a survey dataset as that of the IDHS 2012, but also to take into

account the possibility that such missingness is not ignorable.

Another problem in survey data analysis, particularly for the datasets of large scale or

national surveys, is in accommodating the sampling design. It is very common that such surveys

are implemented through a complex survey scheme, which is exactly the case of the IDHS 2012.

If the functional form of sample selection is known and such information is available for all
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target individuals, then the solution is quite straightforward; the analysis may be accomplished

in a traditional model based fashion. This is, of course, difficult to expect in a real data

scenario. However, many surveys provide the sample weight of all samples. As a consequence,

the standard statistical software packages such as Stata, SAS, and R are increasingly equipped

themselves with routines for survey analysis that allow the application of sample weight into

the models. The area where they appear to require further improvement is in the analysis of

survey data of which the model of interest is hampered by non-ignorable missing variables,

particularly when they are a mixture of categorical and continuous variables.

The aforementioned backgrounds provide the rationale for this thesis research. In particu-

lar, I am interested in developing a method that may address the lack of statistical routines in

the standard packages for handling situations where the model of interest has a mixture of cat-

egorical and continuous missing covariates, and the analysis needs to incorporate the sampling

design under different assumptions about its functional form. An important consideration is

given to an approach that is computationally manageable for practical application. The organi-

zation of this thesis is as follows. Chapter 2 reviews missing data literature and the approaches

for modeling data from surveys. The idea is to present the variety of existing methods, the

problems they addressed, and the areas yet explored and thus eligible for further improvement

or refinement. A brief discussion about the models for count data closes Chapter 2. Develop-

ment of the proposed methods is the core of Chapter 3. Three classes of survey data are defined

based on whether the missing covariates are all, partially, or not at all observable among the

non-samples. Implementation of the proposed method on each class of survey data is simulated
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in Chapter 4. Chapter 5 then demonstrates its application on a real dataset. Finally, Chapter

6 concludes this thesis.
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Figure 1. Patterns of Missing Variables in the Household Level Data, the IDHS of 2012
(n = 43,852)



CHAPTER 2

LITERATURE REVIEW

We are often interested with the relationship of a vector of a random variable Y with a

matrix of covariates X in the population. Suppose that in the population

Y ,X ∼ f(y | x;β)f(x;α)

holds, where the lower cases indicate the realization of the upper cases, and β and α are vectors

of model parameters. Clearly, β are the parameters of interest and α are nuisance parameters.

We thus consider a population F with N subjects. It may not always be feasible to census

F . Instead, we take a sample of size n and perform the estimation of (Yi, Xi) relationship,

i = 1, · · · , N. Let us denote the event where subject i is selected during the sampling as Ii = 1,

and otherwise Ii = 0. Accordingly, n =
∑N
i=1 Ii. In addition, let Rik = 1; k = 1, · · · , K indicates

that the covariate Xk is observed on subject i, and Rik = 0 indicates Xik is missing. This implies

Xi = (Xi,obs,Xi,mis), where Xi,obs represent the observed part of Xi, and Xi,mis the missing part.

Throughout this chapter bold letters such as Y and X denote a vector or a matrix, depending

on the context. Unless otherwise stated, subjects are considered independent and Yi is always

observed within the samples.

There are two technical parts that have to be dealt with in the analysis of survey data with

missing covariates. The first is how to handle the incomplete observations, which come not

11
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only from the covariates with missing values but also the outcome as a consequence of survey

selection. The second part is about incorporation of the sampling mechanism into parameters

estimation. Various approaches on each of the issues have appeared in statistics literature. I will

review a few of them in the following sections. To facilitate the discussion, I fix the assumption of

sampling mechanism to be a simple random when I address the statistical methods for missing

data. This assumption is changed when the presentation switches to the role of sampling

weights in the analysis of survey data. For the purpose of continuation, however, I maintain the

notation I develop throughout the chapter even as I refer to the reviewed studies. Accordingly,

the presented expressions are in general not identical to the original papers, but are so in spirit.

The rest of this chapter is organized as follows. Section 1 contains the discussion about

estimation methods for data with incomplete observations from a simple random sampling. A

concise introduction of missing data classification will open this section. The methods that will

be reviewed include complete-case analysis, multiple imputation, Bayesian methods, weighted

estimating equations, and maximum likelihood procedures. Assumption about the sample

selection is then relaxed in Section 2, as I discuss the importance of sampling weights in survey

data. I also present the settings where sampling probability is ignorable or informative, followed

by the review of approaches for incorporating sampling weights in the inference process. In

Section 3, I present the models for count data. Information of infant mortality in survey data

is often available as counts, thus explains the need of this section.
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2.1 Taxonomy of Missing Data Mechanisms

It is important to classify the types of missing-data mechanism, because different mecha-

nisms require different methods to handle. Rubin (1) and Little and Rubin (5) described three

different mechanisms of missing data based on the conditional distribution of Ri given Yi and

Xi. They are: missing completely at random (MCAR), missing at random (MAR), and missing

not at random (MNAR). Data are MCAR if the missing data probability Pr{ri | yi, xi} = Pr{ri}

for all yi and all xi. That is, MCAR is the case where the distribution of Ri does not depend on

the values of either Yi or Xi; the observed data are simply a random sample of all the data. On

the other hand, data are MAR if Pr{ri | yi, xi} = Pr{ri | yi, xi,obs} for all xi,mis. One may note

that MCAR is a special case of MAR, just like the situations where Pr{ri | yi, xi} = Pr{ri | yi}

for all xi, or when Pr{ri | yi, xi} = Pr{ri | xi,obs} for all yi and xi,mis. Lastly, data are regarded

MNAR if the distribution of Ri depend on {Di : Di ⊆ (Yi,Xi),Xi,mis ∈ Di}.

Another common classification of data with incomplete observations is based on whether

the law governing missingness can be ignored or not in statistical inference. Using the chapter

example, if data are MCAR or MAR then likelihood-based inference of the parameters (β,α) of

the joint distribution (Yi,Xi) does not require incorporation of the model for Ri. The asymptotic

theory guarantees that the parameter estimates will still be unbiased, provided that certain

regularity conditions are met. This advantage is unfortunately not shared by data with MNAR.

Any analysis involving data with this type of missingness has to account for the missing-data

mechanism in order to avoid bias. Hence, MNAR is non-ignorable missing data. This thesis
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uses the terms MNAR and non-ignorable missing data interchangeably to refer to the cases

where the model for missingness has to be incorporated in parameters estimation.

Most but not all MCAR can be tested. However, MAR and MNAR are in general hardly

verifiable. The treatment of missing data in practice is thus a delicate balance between sci-

ence and art. Historically, MCAR is an attractive assumption as it allows the use of simpler

approaches for statistical inferences, in particular complete-case analysis. Yet with the accu-

mulated knowledge of missing data techniques and ever-increasing computing power nowadays,

there is a tendency in the statistical communities to use it as the last instead of first resort.

On the other hand, MAR is a more realistic assumption than MCAR. Its use is greatly facili-

tated by the common practice of major statistical software packages to set MAR as the default

setting for missing-data procedures. The safest assumption is of course MNAR. However, its

implementation is plagued by the issue of parameters identifiability.

Little (3), Glynn and Laird (6), Little and Rubin (5), Ibrahim, Chen, Lipsitz and Herring

(2), Chen, Ibrahim, Chen, and Senchaudhuri (7), and White and Carlin (8) discusses the use

of complete-case analysis in data with missing covariates. In this approach, only subjects with

complete information on Yi and all Xi are used in the modeling. Those with any missing value

are discarded. It is a primitive method for the purpose, yet has the appeals of availability in

any standard statistical package, simplicity of implementation, and most importantly, ability to

produce valid inference if the missingness is MCAR, or MAR where the missing-data mechanism
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depends only on the regressors. Following the examples from Chen et al. (7), let us write the

complete-case analysis as a conditional inference given Ri = 1 = (1, 1, · · · , 1) ′. For MCAR,

f(yi, xi | ri = 1;α,β,γ) =
f(ri = 1;α)f(yi | xi;β)f(xi;γ)

f(ri = 1;α)
∫ ∫
f(yi | xi;β)f(xi;γ)dyidxi

= f(yi | xi;β)f(xi;γ),

provided that α,β, and γ are distinct. When data are MAR and the missingness mechanism

depends only on X,

f(yi, xi | ri = 1;α,β,γ) =
f(ri = 1 | xi;α)f(yi | xi;β)f(xi;γ)∫

f(ri = 1 | xi;α)
∫
f(yi | xi;β)f(xi;γ)dyidxi

= f(yi | xi;β)
f(ri = 1 | xi;α)f(xi;γ)∫
f(ri = 1 | xi;α)f(xi;γ)dxi

,

(2.1)

which implies that the estimates for β are unbiased or asymptotically consistent under cer-

tain regularity conditions. This property of complete-case analysis is not shared by any other

method, thus reserves its importance in missing data analysis.

Complete-case analysis, however, is a biased procedure for other cases of MAR and for

MNAR. In addition, it wastes the subjects with incomplete information that may lead to a

substantial reduction in power. This risk increases as the number of X’s becomes greater,

since even a sparse pattern of missing X’s can result in a number of incomplete cases that is

not trivial. Little (3) suggested that the way to avoid such a risk is either dropping X’s with

large proportion of missing values or opting for other methods that incorporates subjects with

incomplete information. Despite its limitations, complete-case analysis is frequently used as a

valuable benchmark for other missing data procedures.
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2.2 Analysis of Data with Missing Covariates

2.2.1 Multiple Imputation

Rubin (1; 9; 10; 11) first proposed multiple imputations in the late 1970s, and ever since

then, it has become the most popular technique for dealing with missing data. There is a

plethora of literature discussing its underlying theory and general examples, including those of

Rubin and Schenker (12) and Rubin (1; 9; 11). Implementation of multiple imputation for data

with missing covariates was explored in the studies by Little (3), Van Buuren and Groothuis-

Oudshoorn (13), Raghunatan, Lepkowski, Van Hoewyk, and Solenberger (14), Rubin (11),

Ibrahim, Chen, Lipsitz, and Herring (2), and by Little and Rubin (5). The idea of multiple

imputation is to create M > 1 ”complete” datasets by imputing the missing data, then analyze

each m = 1, · · · ,M dataset as if they were complete data. The estimates θ̂
′
= (α̂ ′, β̂

′
, γ̂ ′) are

simply 1
M

∑M
m=1 θ̂m. Rubin(1; 9; 11) showed that the variance estimate

V̂[θ̂] = V̂W +

(
1+

1

M

)
V̂B,

where V̂W = 1
M

∑M
m=1 V̂m[θ̂] and V̂B =

∑M
m=1(θ̂m − θ̂)(θ̂m − θ̂) ′. Large-sample inference

for θ in multiple imputation is based on setting (θ̂ − θ)(V̂[θ̂])−1 ∼ t with degrees of freedom

(M− 1)(1+ M
M+1V̂W(V̂B)

−1).

There are thus two models to deal with in multiple imputation: imputation model and

analysis model. The latter is performed after each missing values has been filled. Rubin (11),

Nielsen (15), and Little and Rubin (5) differentiated proper to improper imputation when
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obtaining θ̂ on the m-th replication. They argued that improper imputation would result

in biased or inconsistent estimators in large-sample inference. A typical example for improper

imputation is the use of θ̂ from complete-case analysis. Proper imputation, in contrast, is based

on Bayesian predictive distribution that integrates out parameters. It thus requires specification

of priors for θ to get the posterior distribution ϕ(θ | y, xobs, r). The predictive distribution of

the missing values, assuming non-ignorable missingness, is

f(xi,mis | yi, xi,obs, ri) ∝
∫
f(xi,mis | yi, xi,obs, ri;θ)ϕ(θ | y, xobs, r)dθ. (2.2)

The pathway to obtain ϕ(θ | y, xobs, r) is presented in the next subsection about Bayesian

methods. Of course it is clear, multiple imputation is a Bayesian approach in spirit. Rubin (11)

and Little and Rubin (5) showed that proper imputation yields asymptotically valid inferences

with the estimators have nice large-sample properties. At the downside, proper imputation in

general requires intensive computation.

Various approaches for performing multiple imputation have appeared in the literature.

Among them, the multiple imputation by chained equations (MICE) due to van Buuren and

Groothuis-Oudshoorn (16; 17; 18; 19; 20) is one of the most adopted methods in recent years

and it increasingly becomes the mainstream imputation approach. The general idea of MICE

is to handle incomplete multivariate data by fully conditional specification (FCS) (19; 20). In

particular, it iterates imputations over a series of conditional densities, one for each variable with

missing values. After imputations completed, MICE proceeds through steps common to any
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approach in this class of missing data procedure, which include simultaneous analysis of each

imputed dataset using the same statistical method, and pooling of the results to estimate the

quantities of scientific interest. Van Buuren and Groothuis-Oudshoorn (16) show that FCS has

been implemented to certain extent in the previous studies (21; 20; 14; 22; 23; 24; 25; 19) using

different names, such as stochastic relaxation, sequential regressions, ordered pseudo-Gibbs

sampler, partially incompatible Monte Carlo Markov Chain, and iterated univariate imputation.

The primary attraction of MICE is its easy application and tremendous flexibility, especially

when compared to imputation by joint modeling (26; 27). However, MICE is vulnerable to

incompatible model specification. Consequently, it is difficult to find the theory to support its

use. One solution for this problem is proposed by Chen and colleagues (28).

Regardless of how it is performed, multiple imputation remains a powerful and extremely

general method. It also has the wealth of literature in various applications, a luxury not always

shared by the competing methods. Moreover, it is available in virtually every software package

that carries features for missing data management. If the potential user or analyst is different

from the person who would do imputation, such as that in database construction, then multiple

imputation is almost the prescribed method as it allows end users to analyze the multiply

imputed data using ordinary complete-data procedures. This by no means implies that one

should use multiple imputation in all missing data problems. Like any statistical procedure, it

can only be applied after some careful thoughts. Classical multiple imputation, for instance, may

pose challenges when it comes to data with substantial collection of variables having incomplete

observations. As listed by van Buuren and Groothuis-Oudshoorn (13), the challenges include the



19

selection of sensible imputation regressors particularly when the dataset is large, dealing with

imputation cascade, treatment of variables with different measures (continuous and categories),

accounting for the sampling design, handling optimal imputation model that may be non-linear,

avoiding imputation-order hazard in data where the order might be meaningful, and addressing

incompatibility issues between the imputation and analysis models. The traditional solution for

multivariate data imputation is to assume a multivariate normal distribution (27). Schafer (26)

then obtained the algorithm for multivariate continuous, categorical, and mixed data. Later,

van Buuren and Groothuis-Oudshoorn (16; 17; 18; 19; 20) introduced MICE to address most of

the problems they listed for multivariate data imputation. Yet the potential conflict between

the imputation model and the analysis model continues to be a major obstacle (29). For MICE,

the imputation models may themselves be incompatible. In addition, the variance of proper

imputation is not consistent in conventional sense. To get full efficiency in multiple imputation,

one has to impute and analyze an infinite replicates of datasets; something that will never

be achievable. Another caveat is that the nature of imputation process makes this procedure

produces different results for one dataset. Allison (30) also noted that when compared to

maximum likelihood approach, multiple imputation entails far more decisions, which include

the choice of iterative algorithm, imputation model for each incomplete variable, number of

data replications, total iterations, prior distribution, incorporation of interactions and non-

linearities, and the methods for multivariate testing. If computation is feasible, likelihood

approach is clearly a better alternative than multiple imputation.
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2.2.2 Bayesian Methods

Earlier application of Bayesian methods on missing data centered on incomplete dependent

variables (31; 32; 9; 33; 34; 35). Its implementation in data with missing covariates was presented

in Little (3), Ibrahim, Chen, Lipsitz, and Herring (2), Huang, Chen, and Ibrahim (36), and

Mason, Richardson, Plewis, and Best (37). A ’full’ Bayesian approach requires the specification

of priors on all the parameters and the conditional distributions of missing covariates given

the observed values and the parameters. Inference for the parameters then proceeds through

sampling from their posterior distribution, for instance, with Gibbs sampler (38; 39; 40; 41; 2;

36). As a concrete example, let us note that by re-expressing θ in Equation 2.2 as (α,β,γ)

and assuming the model f(ri | yi, xi;γ) for Ri, then ϑ(α,β,γ | y, xobs, r) is proportional to

{
n∏
i=1

∫
f(yi | xi;β)f(xi;α)f(ri | yi, xi;γ)dxi,mis

}
ϕ(α,β,γ).

One can set f(xi;α) = f(xi,mis | xi,obs;α) such as that of Ibrahim, Chen, Lipsitz, and Her-

ring (2), or keep it as a ’prior’ covariates model as discussed in Mason, Richardson, Plewis,

and Best (37). The joint prior distribution ϕ(α,β,γ) can be proper or improper, but the

latter should be avoided if feasible. Once the prior and covariate models are set, a sample

from the posterior distribution via Gibbs sampler is obtained by drawing the samples con-

secutively from f(xi,mis | yi, xi,obs, ri;α,β,γ), ϕ(α |, yi, xi, ri;β,γ), ϕ(β | yi, xi, ri;α,γ), and

ϕ(γ | yi, xi, ri;α,β). Hence, compared to the non-missing data situations that involve sampling

from the posterior distribution of each parameter, Bayesian methods with missing covariates
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using Gibbs sampler require only an additional step of sampling from the predictive distribution

of the missing values.

Bayesian methods are powerful and general tools for dealing with missing covariates. Any

additional problem, for instance, non-ignorable instead of ignorable missingness mechanism, can

be accommodated without the need of new techniques for inference. However, implementation of

this class of missing-data methods requires determination of priors, which in certain cases is far

from straightforward. The trick is to find a prior distribution that is computationally convenient

while keeping the results not radically change with a different set of priors. Huang, Chen, and

Ibrahim (42) showed that in certain settings of non-ignorable missing covariates, improper

uniform priors may lead to a joint posterior that will always be improper. Ibrahim, Chen,

Lipsitz, and Herring (2) suggested informative prior using historical data for MAR covariates in

generalized linear models (GLMs). Such information may not be available in surveys. Another

potential problem in practice may occur when one deals with large data having substantial

missing covariates while the marginal posterior distribution of parameters has a non-explicit

expression (3). In this case, complexity of the likelihood function requires approximation either

by numerical integration or stochastic simulation (such as Monte Carlo Markov Chain or MCMC

sampling), and it brings the same issue of ensuring that the computation is manageable.

2.2.3 Weighted Estimating Equations

A class of semiparametric approaches for handling missing data based on inverse-probability

weighted estimating equations was proposed by Robins, Rotnitzky, and Zhao (43; 44). The

methods were generalized by Robins and Ritov (45). Robins and Rotnitzky (46), Bang and
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Robins (47), Lunceford and Davidian (48), Kang and Schafer (49), and Chen and Zhou (50)

then developed ’doubly-robust’ weighted estimating equations for missing-data analysis, which

only required either the missingness mechanism or the score vector of the response model to

be correctly specified. Robins, Rotnitzky, and Zhao (51), Rotnitzky and Robins (52), Robins

and Rotnitzky (44; 46), Zhao, Lipsitz, and Lew (53), Rotnitzky, Robins, and Scharfstein (54),

Lipsitz, Ibrahim, and Zao (55), Scharfstein, Rotnitzky, and Robins (56), Robins, Rotnitzky,

and Scharfstein (57), Parzen, Lipsitz, Ibrahim, and Lipshultz (58), Scharfstein and Irizarry

(59), Herring and Ibrahim (60), and Seaman and White (61) explored the use of the weighted

estimating equations for missing covariates.

In principle, weighted estimating equations use the inverse of the probability of missingness

to weight the score vector of the model relating the response Y to explanatory variables X.

Let us assume here that there is only one missing covariate pattern in the data. Hence, the

missing indicator becomes a scalar Ri. Its realization ri = 1 means xi are fully observed, and

ri = 0 refers to the situation where the elements of xi with potential missing values are all not

observed. A natural choice of the distribution of Ri, letting it to be dependent on both Yi and

Xi, is Bernoulli with πi = f(ri = 1 | yi, xi;γ). To obtain β̂ in weighted estimating equations is

to solve U(β̂) = 0, where assuming πi is known, the simplest form of these methods is (43)

U(β) =

n∑
i=1

ri
πi

{
∂

∂β
log f(yi | xi;β)

}
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based on the previous specification of the conditional distribution of Yi. For generalized linear

models (GLMs) (62; 2), the term inside the curly brackets is equal to dw−1
i (yi − µi), where

d = ∂µi/∂β, µi = E[yi | xi;β], and wi = V [yi | xi;β]. The expression for doubly-robust

weighted estimating equations have several alternatives (49), including in particular (43; 51; 52)

UDR(β) =

n∑
i=1

[
ri
πi

{
∂

∂β
log f(yi | xi;β)

}
+ (1−

ri
πi

)

{
E

[
∂

∂β
log f(yi | xi;β)

∣∣∣yi, xi,obs;α,β

]}]
,

where the expectation here is with respect to the missing covariates given the observed data and

the parameters. Recall that we assume in this paragraph only one pattern of missing data (ri

is a scalar). A consistent variance estimate of β̂ in weighted estimating equations is normally

obtained through a robust sandwich estimator, for instance, as shown in Ibrahim, Chen, Lipsitz,

and Herring (2).

More relaxed settings (that is, not requiring full specification of the complete-data likeli-

hood) and asymptotic consistency of the estimators when the missingness mechanism is cor-

rectly specified make weighted estimating estimations an attractive approach for missing-data

analysis. However, weighted estimating estimations are notorious for being less efficient than

likelihood-based methods when the distributional assumptions of the likelihood are satisfied.

The methods are also prone to bias for finite samples. Ibrahim, Chen, Lipsitz, and Herring (2)

found that in small samples, doubly-robust weighted estimating equations yielded large finite-

sample variances. Parzen, Lipsitz, Ibrahim, and Lipshultz (58) warned the need of a sufficient

amount of missing data for obtaining the estimates of πi with acceptable precision. Kang and
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Schafer (49) noted that methods with inverse probabilities as weights were sensitive to misspec-

ification of the model of missingness mechanism when some πi are small, irrespective of whether

the methods were doubly robust or not. They also showed that when both response model and

missingness-mechanism model were incorrectly specified, inverse-probability weighting methods

were biased procedures. The requirement for specifying and estimating the model of missing-

data mechanism is practically difficult, unless the covariates X are either always observed or

always missing (58).

2.2.4 Maximum Likelihood

Missing data analysis using maximum likelihood has the longest history among all proce-

dures for this purpose, and yet continues to be an active area of research. Afifi and Elashoff

(63) traced the studies back to Wilks (64). Anderson (65) introduced the concept of likelihood

factorization for certain patterns of missing data to obtain maximum likelihood solutions in

closed forms. Dempster, Laird, and Rubin (66) proposed the Expectation-Maximization (EM)

algorithm for deriving maximum likelihood estimates of data with missing values based on the

complete-data likelihood. Gourieroux and Montfort (67) used Anderson’s technique for linear

regression with missing covariates. Little and Schluchter (68) suggested an approach using

EM algorithm for mixed categorical and continuous variables with missing data and applied

it to linear and logistic regressions. Schluchter and Jackson (69) presented EM algorithm for

survival analysis with missing categorical covariates. Ibrahim (70), Lipsitz and Ibrahim (71),

Ibrahim, Lipsitz, and Chen (72), Lipsitz, Ibrahim, and Zhao (55), Lipsitz, Ibrahim, Chen, and

Peterson (73), and Ibrahim, Lipsitz, and Horton (74) discussed EM algorithm in GLMs with
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missing covariates. Chen and Fienberg (75), Fuchs (76), and Vach (77) also addressed about

missing covariates in GLMs. On the other hand, Pepe and Fleming (78), Reilly and Pepe (79),

Lawless, Kalbfleisch, and Wild (80), and Tang, Little, and Raghunathan (81) explored the use

of quasi-likelihood methods in nonlinear regression with missing covariates.

Factorization of the data likelihood forms the basis of maximum likelihood methods on vir-

tually all studies in the recent years. The trick is to get a closed form of the observed data

likelihood in the presence of missing data. Schafer (26) and Little and Rubin (5) discussed at

length the missing data settings where the observed data likelihood could be analyzed using

conventional complete-data procedures. They showed that these settings involved alternative

reparameterizations of certain models with ignorable missingness mechanism and monotone

patterns of missing data. Ibrahim, Chen, Lipsitz, and Herring (2) argued, however, that the

standard complete-data techniques for models like GLMs with nonmonotone pattern of missing-

ness would be difficult, because it might require approximations of high-dimensional intergrals.

An attractive and popular alternative for general patterns of missing data is the expectation-

maximization (EM) algorithm by Dempster, Laird, and Rubin (66). This iterative optimization

procedure works by augmenting incomplete data to accommodate unobserved or latent vari-

ables. The term ”data augmentation” itself was introduced by Tanner and Wong (82; 83) when

they proposed the idea of inserting a sampling or imputation step prior to optimization in the

EM algorithm. In contrast to Dempster, Laird, and Rubin, data augmentation of Tanner and

Wong is a stochastic algorithm, since they optimized the posterior density instead of only the

likelihood function. Gelfand and Smith (38) suggested several approaches for the sampling step
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of the data augmentation algorithm, including the use of Gibbs sampler by Geman and Geman

(84). Wei and Tanner (85) then formalized the implementation of stochastic sampling to assist

the EM algorithm. They named their method the Monte Carlo EM algorithm. Ibrahim (70)

utilized the idea of Wei and Tanner to devise a general method for estimation of data with

missing covariates in GLMs. Gilks and Wild (39) and Gilks, Best, and Tan (41) introduced

the application of adaptive rejection sampling for the Gibbs sampler, which was later used by

Ibrahim, Lipsitz, and Chen (72), and Ibrahim, Chen, Lipsitz, and Herring (2) to handle the

continuous covariates with incomplete observations of their proposed models.

Let us briefly explore the maximum likelihood methods, in particular, those proposed by

Ibrahim and his colleagues in Ibrahim (70), Ibrahim, Lipsitz, and Chen (72), and Ibrahim,

Chen, Lipsitz, and Herring (2). Suppose that in n observations drawn through a simple random

sampling from a population, the response Y are completely observed and the covariates X are

partially missing where the missingness is dependent on the values of both Y and X. Data from

each subject i = 1, · · · , n are assumed to be independent. β are the parameters of interest,

while α and γ act as nuisance parameters. All parameters are assumed to be distinct. The

joint distribution of Y, X, and the missing data indicators R for subject i in the complete data

is thus

f(yi, xi, ri;α,β,γ) = f(xi;α)f(yi | xi;β)f(ri | yi, xi;γ).

It is not trivial to model the marginal density of X, as they in general can consist of continuous

and categorical variables with missing data. Little and Schluchter (68) used a multinomial

model for the categorical variables and then applied a multivariate normal model for the con-
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ditional distribution of the continuous variables given the observed pattern of the categorical

variables. Ibrahim, Lipsitz, and Chen (72), however, argued that within parametric approaches

the indexing parameters for X would be nuisance and, therefore, it would be critical to reduce

the number of these nuisance parameters. Inferences in data with large fraction of missing

values and substantial amount of nuisance parameters would be computationally burdensome

and inefficient. As an alternative strategy, Lipsitz and Ibrahim (71) proposed a product of

one-dimensional conditional distributions to model the joint distribution of X. Ibrahim, Lip-

sitz, and Chen (72) then suggested to model the missing data mechanism in a similar fashion.

They listed several advantages of this strategy, including reduction of nuisance parameters of

the missing data mechanism, increased flexibility in model specification, good approximation

to the ’standard’ log-linear model, provision of a natural way for incorporating the dependency

of missingness of a covariate on the missingness of another missing covariate, and facilitation

of the E-step of the EM algorithm by the construction of scheme for efficient sampling from

the conditional distribution of missing covariates given the observed data. Ibrahim, Lipsitz,

and Chen (72) also noted that the proposed joint distribution of the missing data mechanism

would be log-concave in γ, because each of the one-dimensional conditional model was a logistic

regression and, hence, rik being log-concave in γ. Log-concavity helps reduce the burden of

computation of the EM algorithm.

The observed-data likelihood with the presence of nonignorable missing covariates becomes

L (θ) =

n∏
i=1

C∏
c=1

{∫
f(yi, xi, ri;α,β,γ)dxi,mis

}I{ri=c}
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where θ ′ = (α ′,β ′,γ ′), and I{ri=c} = 1 if the missing data for subject i conforms to pattern

c = 1, · · · , C and equals 0 otherwise. The integral sign becomes summation for the missing

categorical covariates. The Q function in the E-step of the EM algorithm (66; 72) for subject

i and ri = c can be written as

Qi(θ | θ(t)) =E
[
`(α; xi) | yi, xi,obs, ri = c;θ

(t)
]
+

E
[
`(β;yi | xi) | yi, xi,obs, ri = c;θ

(t)
]
+

E
[
`(γ; ri | yi, xi) | yi, xi,obs, ri = c;θ

(t)
]
,

`(.) being the log-likelihood function.

In terms of the asymptotic variance of θ̂, Ibrahim (70) recommended to use of the observed

information matrix by Louis (86), where

I (θ̂) = −

n∑
i=1

C∑
c=1

I{ri=c}E

[
∂2

∂θ∂θ ′
`(θ;yi, xi, ri)

∣∣∣∣yi, xi,obs, ri; θ̂

]

−

n∑
i=1

C∑
c=1

I{ri=c}E

[{ ∂
∂θ
`(θ;yi, xi, ri)

}{ ∂
∂θ
`(θ;yi, xi, ri)

} ′∣∣∣∣yi, xi,obs, ri; θ̂

]

+

{ n∑
i=1

C∑
c=1

I{ri=c}E

[
∂

∂θ
`(θ;yi, xi, ri)

∣∣∣∣yi, xi,obs, ri; θ̂

]

E

[
∂

∂θ
`(θ;yi, xi, ri)

∣∣∣∣yi, xi,obs, ri; θ̂

] ′}
.

(2.3)

The quantities for θ̂ can be obtained from the estimates at convergence.

Ibrahim et al.’s approach, however, can easily run to estimability issue when the model

for missing data mechanism (and also for the missing covariates) becomes too large. Ibrahim,
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Lipsitz, and Chen (72) acknowledged this problem and warned the importance of proper choice

for functions of (Y,X) to be included in R | Y,X, and cautious selection of interaction terms or

other higher order terms that would be added on the model. They were yet to provide either

solution or an ad hoc workaround that would ensure the model identifiable. Another concern for

the joint modeling via a product of one-dimensional conditional distributions is the requirement

of a particular ordering for the variables with incomplete observations (87; 13; 16). The real data

complexity may turn out to be against such a condition. Furthermore, the number of possible

orderings grows substantially as the dimension of partially observed variables increases. Bartlett

et al. (87) had noted that very few applied statisticians used Ibrahim et al.’s method thus far,

and they hypothesized it to be attributable to this ordering problem. One additional issue,

though minor, is that application of the approach was primarily studied under a simple random

draw assumption. General sampling schemes, such as those applied in survey studies, may

require some adjustments that have not been addressed in the previous works. For instance,

the outcome is clearly subject to missing data due to sampling and thus the management of

incomplete observations has to be extended to the outcome as well. Despite such problems,

Ibrahim et al.’s approach is fairly straightforward to implement. If the models are correctly

specified and meet certain regularity conditions, the estimates possess many attractive limiting

properties of the maximum likelihood estimators, such as consistency and efficiency.
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2.3 Sampling Design in Inferences using Survey Data

2.3.1 Spectrum of Opinions on the Role of Sampling Weights

Sampling is a special case of missing data. In particular, the values of some units or

subjects are missing by design. A frequently challenging question in the analysis of sampling

data is whether the study design should be accounted for. Sampling weights are routinely

included in data from major surveys. The samples are weighted to compensate for unequal

inclusion probabilities with respect to the target population. While their role in descriptive

population quantities (such as means, proportions, totals) is generally accepted, implementation

of sampling weights in analytical inference is a subject of controversy and confusion among

theorists and practitioners (88; 89). Pfeffermann (89) discussed in depth the differing positions

of statisticians on this issue. He proposed the classification into survey or design-based, model-

based, and robust model-based statisticians.

At one extreme, survey statisticians tend to consider it impractical to fit models that ap-

propriately approximate the true population models. This is due to the large heterogeneity of

populations in practice and the complexity of designs that were often used to draw samples.

They consequently focus their inferences on finding the finite population quantities θF for

the model parameters. They also incorporate the sampling weights into every survey analysis.

The advantages of this approach are the interpretability of the estimates and the robustness

of the relationship between the survey variables. That is, the estimated quantities do not lose

their meaning despite the models fail. Consistency of the estimates using such an approach is

emphasized at the perspective of study design. Classical examples for this class of inferences
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include the works by Kish and Frankel (90), Jonrup and Rennermalm (91), and Shah, Holt,

and Folsom (92). Further discussion on the theories and applications can be found in Little

(88), Skinner, Holt, and Smith (93), and Fuller (94).

On the other extreme, model-based statisticians refer to the group who is faithful to the

philosophical purpose of inference of approximating the true parameters θ of the population.

The models developed during the inference process are in such a way that they would apply to

populations more general than the fixed population giving rise to the sample. Statisticians of

this group concentrate on the correct specification of the models and the conditions that ensure

the models hold. The estimates of the model parameters are hypothetical in nature, meaning

that they are the quantities that would be observed had the model holds and the conditions

satisfied. From this perspective, it becomes irrelevant to incorporate sampling weights (95; 96).

If the model holds, the weights have no role but complicating the inference. An obvious strength

of this approach is the optimal properties of the model parameter estimates. Unbiasedness of

the estimates is the ultimate goal. Consistency is judged with respect to the assumed population

model. Casella and Berger (97), Lehmann (98), and Kasprzyk, Duncan, Kalton, and Singh (99)

provide detailed discussion on the theoretical and empirical results of model-based inferences.

The third group of inferential approach for survey data, according to Pfeffermann (89), is

represented by theorists and practitioners who equally weigh the model unbiasedness and design

consistency. They consider the model parameters as the ultimate parameters of interest, but at

the same time they are also concerned about preserving the robustness of the inference. In order

to achieve that, a model is first postulated under the condition U(Y ,X;θ) = 0, where U(.) is a
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real valued function. The solution θ̂ = T(Y ,X) is the corresponding finite population quantities

for θ under the estimation rule R[(Y ,X) → θ]. In contrast to the model-based statisticians

who focus on finding an optimal estimators under the model, however, the interest here is on

obtaining the estimators based on sample, t(n), that are design-consistent for the population

estimator T (N). That is, limn→∞,N→∞ Pr{|t(n) − T (N)| ≥ ε} = 0, ε > 0. The advantages of

this approach are two sided. First, if the model is correctly specified, then as the population

size increases t will converge to θ. Second, if the model is unfortunately misspecified, any finite

population values such as T and their corresponding sample quantities t are still real entity

that have actual interpretation. See for example Binder (100), Godambe and Thompson (101),

Little (88), Kreiger and Pfeffermann (102), and Breckling, Chambers, Dorfman, et al. (103).

2.3.2 Conditions Requiring Inclusion of Sampling Design

Let Zi, i = 1, · · · , N, be a vector of design variables for subject i that may include in-

formation such as cluster or stratum indicators, other grouping variables, and quantitative

characteristics such as measures of size of sampling units. It is reasonable to expand the model

developed in the beginning of this chapter such that it becomes f(yi, xi, zi;β,α,ψ) = f(yi |

xi, zi;β)f(xi;α)f(zi;ψ), under the assumption that xi ⊥ zi. In contrast to the settings on the

section about missing data, Xi are allowed to be fully observed for all i. We assume that each i

is independent. Suppose that a sample S of size n is drawn from the population F under the

sampling scheme pi ≡ Pr{i ∈ S }. The objective is to estimate β. Let Ii be the sampling indi-
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cator such that Ii = 1 for i ∈ S and Ii = 0 otherwise. The joint distribution of (Ii, Yi,Xi,Zi)

is [
pif(yi, xi, zi;β,α,ψ)

]Ii[ ∫
(1− pi)f(yi, xi, zi;β,α,ψ)dyi

]1−Ii
(2.4)

where {β,α,ψ,δ} are assumed to be distinct parameters.

We consider two important situations as discussed in Rubin (1; 9), Little (104), Sugden and

Smith (105), Kish (106), Pfeffermann (89), and Chambers, Dorfman, and Wang (107): First,

pi = Pr{I | Y ,Z} (2.5)

and second,

pi = Pr{I|Z}, or alternatively,

Pr{YS |YS̄ ,X,Z, I} = Pr{YS |YS̄ ,X,Z}

(2.6)

where I = (I1, · · · , IN) ′, Y = (Y1, · · · , YN) ′, Z = (Z1, · · · ,ZN) ′, YS = {(i, Yi) : i ∈ S }, and S̄

represents the units that are not in S . In the first situation, the sampling design is ’informative’.

The unobserved values of Y among the non-sampled subjects, in Rubin’s terminology (1), are

MNAR. An unbiased inference on β thus requires the inclusion of sampling design. By contrast,

the probability of a subject being selected into S for the second situation leads to MAR Yi

within the non-sampled subjects. Survey statisticians refer to this as ’ignorable’ sampling

scheme (89; 107). As (1 − pi) becomes outside the integration, the inference on β proceeds

safely without the need for inclusion of the sampling design. We note, however, that the
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independence of Yi and Ii in the second situation are conditional on Zi, the design variables.

In other words, the sampling design is ignorable for estimating β if the model include all the

design variables. A more theoretical treatment of the conditions under which the sampling

design is ignorable or informative is provided in Rubin (1), Little (104), and Sugden and Smith

(105).

It is generally a complicated task, unfortunately, to satisfy the ignorability conditions in

data from complex surveys. The number of design variables often follows the multistage nature

of samples selection. On the one hand, it becomes less likely for the analyst who is not the

sampler to know the values of all the design variables for all subjects in the population. On the

other hand, even when the design information is fully known and available, the variables may be

too many to handle. Alexander (108) reminds the formidable consequences in the derivation, fit,

and validation of the models when one include all the relevant design variables. Thus in either

way, the idea of incorporating all the design variables into the model seems rather ambitious

than practical.

The impracticality of a complete inclusion of the design information within the models brings

another problem. It has been shown that such an incomplete incorporation may seriously impact

the inferences (93). Similar effects have also been demonstrated in the misspecification of the

distribution for the survey variables given the design variables. There are indeed cases where

the use of partial design information is sufficient to avoid biased inferences. Sugden and Smith

(105) define the conditions for which ignorability holds in these cases. They first propose a set of

adequate summary of Zi for any i ∈ S , namely DS = {(i,D(Zi)) : i ∈ S } with realization dS ,
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such that the relation I ⊥ Z | DS = dS holds for all i ∈ S . Note that I is a vector and Z is a

matrix. The design information DS may be obtained from any known quantities or functions

of Z, knowledge of the sampling design, and if they are available, the values of the sampling

probability. Accordingly, the forms of DS are dependent on the information available to the

analyst. If it consists of a single variable then DS is a vector, otherwise a matrix. The above

condition allows the conditional distribution of Ii | Zi on the second situation we discussed

previously to be replaced with Ii | D(Zi) for all i ∈ S . If such condition is not satisfied,

the authors suggested that the design may still be ignorable for inferences on β if for all β

and all i ∈ S , Y ⊥ Z | DS ;β. All formulation in their paper are based on the assumption

that the analyst of survey data is not the sampler, and thus the discussion does not cover the

non-sampled units.

A replacement of the relevant design variables with a proxy variable containing partial design

information gives rise to the need of testing whether the design is indeed ignorable given the

available design information. Pfeffermann (89) explores such tests and concludes that they may

either give inconclusive results or indicate that the conditions for ignorability are not met. In

the end, he concludes that sampling weights should be used for model based inferences as they

can protect against bias due to informative designs. He also adds that the sampling weights

can play a critical role in protecting against model specification.

2.3.3 Strategies to Incorporate Sampling Design in Inferences

It becomes evident from the preceding discussion that incorporation of the sampling design

in the inference process may be the best alternative for the analysts of survey data who them-
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selves are not the samplers. The key argument is the practical difficulties of verifying whether

the ignorability of sampling design is satisfied given the limitation of information within the

samples. Fortunately, we have a rich literature addressing the strategies to include sampling

designs in the inferences. I use some of them in the following description. It includes the strate-

gies frequently implemented in practice, which are categorized into: modifications at estimators,

model, and estimating functions levels.

2.3.3.1 Modifications at Estimators Level

There are certain cases where the model-based estimators have explicit expressions. For

example, in a linear regression model f(Y |X;β) where Y and β are vectors, and X is a matrix, β̂ =∑N
i=1(xix

′
i)

−1
∑N
i=1 xiyi is the least square estimator for β. It is also β̂F since it produces the

census estimates or the finite population quantities for the population F (compare this to the

definition from Binder (100), Godambe and Thompson (101), Little (88), and Pfeffermann (89).

One can modify this estimator using the method by Horvitz and Thompson (109), such that

β̂
w
S =

∑N
i=1(wixix

′
i)

−1
∑N
i=1wixiyi, which is also equals to

∑n
i=1(1/pi)(xix

′
i)

−1
∑n
i=1(1/pi)xiyi,

provides the weighted sample quantities for S . The theory of linear models has shown that

β̂ is unbiased for β. In addition, as n and N become sufficiently large, the probability that

β̂
w
S and βF are different subsides, thus the design consistency. Pfeffermann (89) indicates that

this class of approach for incorporating sampling design in general produces design-consistent

estimators for the finite population quantities. Further examples of this strategy are available

in Kish and Frankel (90), Shah, Holt, and Folson (92), Nathan and Holt (110), Dumouchel and

Duncan (111), and Fuller (94).
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The drawbacks of this otherwise convenient strategy are the fact that not every estimator

has an explicit expression, and also the possibility of more than one design-consistent estimators

for the same estimands. The later problem has been discussed, for instance, in Pfeffermann and

Holmes (112), Little (88), and Pfeffermann (89). Suggested treatments have been proposed in

Nathan and Holt (110), Pfeffermann and Holmes (112) and Rao, Kovar and Mantel (113).

2.3.3.2 Modifications at Model Level

Another strategy to account for the sampling design in the inference process is making

it part of the model. This idea can be accomplished in several ways, such as by taking the

inclusion probability as a covariate, weighting the distribution with the inclusion probabilities,

or modifying the model parameters to include the sampling design.

Suppose that the inclusion probability pi is available for all N units and it is deemed

too complicated to model Y given Z. Additionally, there is a vector a = a(Z) such that

Pr{I|Z} = Pr{I|a} for all i, where I is the vector of sampling indicator as it was defined previously,

and Z is the matrix of design variables. Then following Rubin (114), a is an ’adequate’ summary

of Z. Rubin indicates two consequences of this property. First, there cannot be any adequate

summary of Z that is coarser than p = (p1, · · · , pN), because pi = Pr{Ii = 1|zi} = Pr{Ii = 1|ai}

and thus p must be a function of a, and a cannot be coarser than p. Second, by Bayes

theorem Pr{YS |YS̄ ,a, I} = Pr{YS |YS̄ ,a}. Though Rubin admits that p is the coarsest possible

adequate summary of Z, even too coarse, he argues that it gives advantages in specifying realistic

models for Pr{Y |a}; the coarser the summary a, the simpler in general the task of specifying

the models. Of course, the specification can be expanded to Pr{Y |X,a} as the model developed
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in this chapter. Other than the coarseness of p, another problem with this approach is the

requirement to have information of the inclusion probability for all i ∈ N. Sugden and Smith

(105) provide remedies for these limitations, which have been discussed in previous section. In

essence, they define the conditions of which DS can be an adequate summary of Z for any

i ∈ S . It is also important to note that the models with the inclusion probabilities as covariates

do not necessarily produce design-consistent estimators (89).

Model-level modifications can also be implemented when the available information is limited

to the n sampled units. In this case, one needs to specify (115; 116)

f(yi, xi|Ii = 1;δ,β,α) =
f(Ii = 1|yi, xi;δ)f(yi, xi;β,α)∫∫

f(Ii = 1|yi, xi;δ)f(yi, xi;β,α)dyidxi
,

where δ, β, and α are assumed to be distinct vector parameters. Notice that the integration is

effectively only for YS and XS . Specification of f(Ii = 1|yi, xi;δ) may be performed empirically

using the sample inclusion probabilities and the observed measurements. It is suggested that δ

are either empirically estimated or fixed based on external estimates (89). Examples of the use

of this method are provided in Patil and Rao (115), and Krieger and Pfeffermann (102). As

it was with the models with the inclusion probabilities as covariates, the resulting estimators

of the models with weighted distribution are not necessarily design consistent for their finite

population quantities (89).

Little (88) suggests the methods to take account for sampling design in the case of sim-

ple stratified sampling through a modification of the model parameters. The idea is based
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on Bayesian inference about the variables given the observed data using the posterior predic-

tive distribution. To be more concrete, one defines f(y, x|yS , xS ) =
∏J
j=1

∫∏Nj
i=1 f(yij, xij;θj)

ϕ(θj;yS , xS )dθj, where i and j respectively index units and strata, J is the number of strata,

and Nj the number of population units in stratum j. The function f(yijxij;θj) is equal to

f(yij|xij;θj1)f(xij;θj2)ϕ(θj). Let θj2 = (υj,νj), where υj = (υj1, · · · ,υjK) are the location

parameters for stratum Xij, and νj the dispersion or shape parameters. For fixed stratum-

effect models, ϕ(υj) ∝ C, a constant, while for random stratum-effect models ϕ(υj) =
∫∫∏J

j=1

ϕ(υj|υ,ω)dυdω. Little (88) shows that the estimators using this approach are design-consistent

for their counterpart finite population quantities and unbiased for θ. Development of his mod-

els in the referred paper, however, focuses on the linear regression coefficients. There is also

no extension to arbitrary sampling design. The simulations show that in small samples, the

inferences can be very sensitive to the assumption of the priors. Nevertheless, there have been

studies of the same spirit conducted by DuMouchel and Duncan (111) and Alexander (108),

though their estimators do not necessarily design consistent.

2.3.3.3 Modifications at Estimating Functions Level

Godambe and Thompson (101) introduce a general method of obtaining design-consistent

estimators by modification at the estimating functions level. To fix the idea, we consider again

the vector Y and the matrix X as defined previously and assume that they are generated from
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f(y, x;θ) = ξ(θ). Let us denote the estimating function for the unknown parameters θ based

on the finite population values of Y and X as g = g(Y ,X;θ). To be model unbiased,

Eξ[g(Y ,X;θ(ξ))] = 0, (2.7)

where Eξ denotes expectation under the model ξ(θ). In addition, the estimating function

g∗ = g∗(Y ,X;θ) is also optimal if, under appropriate regularity conditions, it minimizes among

unbiased g {
Eξ[∂g/∂θ]

−1Eξ[gg
′]Eξ[∂g/∂θ]

−1

}
θ=θ(ξ)

. (2.8)

If g∗ is optimal, then g∗ = 0 is the optimal estimating equation and the solution for θ is the

optimal estimates. Godambe and Thompson (101) indicate that for the finite population F

with N units, the solution θF (ξ) of g∗(Y ,X;θF (ξ)) = 0 can be both ’estimates’ of θ when

all N components of (Y ,X) are known, and ’parameters’ for F when not all components are

known.

Optimality of g∗ may include the cases where it is of linear form. Suppose that all (Yi,Xi),

i = 1, · · · , N, are independent, then there exists a real-valued estimating function in the form

of (101)
N∑
i=1

U(yi, xi;θ) (2.9)



41

where Eξ[U(Yi,Xi;θ(ξ))] = 0. Alternatively, the estimating function may be linear in U =

(U1, · · · ,UN), Ui = U(yi, xi;θ), such that

N∑
i=1

U(yi, xi;θ)ϕi(θ), (2.10)

ϕi(θ) being arbitrary real functions of θ. Since Eξ[Ui] = 0, both Equation 2.9 and Equation 2.10

are model unbiased. If g∗ minimizes Equation 2.8 in the form of Equation 2.9 for g = g∗, then

g∗ is referred to as optimal; if it is in the form of Equation 2.10, g∗ is termed ’linearly optimal’.

Godambe and Thompson (101) provide the sufficient condition for g∗ to be linearly optimal.

The importance of linearly optimal g∗ comes in place when we consider the sample S instead

of the finite population F . Let the sample S of size n be drawn from the finite population

F based on a sampling design pi = f(Ii = 1|zi; δ), where as before Ii is the sampling indicator,

Zi either a scalar or a vector of design variables that in general may include Yi and/or Xi, and

δ can be a scalar or a vector of either fixed or unknown design parameters. For example, a

sample selection using probability proportional to size approach with Z as the size variable, has

pi = nzi/Nz̄. We denote ρ(δ) = p = (p1, · · · , pN) ′, and (YS ,XS ) = {(i, Yi,Xi) : i ∈ S }. The

function h(YS ,XS ;θ) is design unbiased if

Eρ[h(YS ,XS ;θ)] =

N∑
i=1

U(yi, xi;θ), (2.11)
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where Eρ represents expectation with respect to the design ρ(δ). An optimal choice for h =

h(YS ,XS ;θ) is h∗ = h∗(YS ,XS ;θ), which minimizes

{
EξEρ[∂h/∂θ]

−1EξEρ[hh
′]EξEρ[∂h/∂θ]

−1

}
θ=θ(ξ)

. (2.12)

The solution for θ from h∗, denoted θ̂S , is thus optimal for θF , which itself is the solution for

θ from g∗. Godambe and Thompson (101) demonstrate that

h∗ =

n∑
i=1

U(yi, xi;θ)

pi
=

N∑
i=1

wiU(yi, xi;θ), (2.13)

where wi = Ii/pi. We note here that under certain regularity conditions, U(yi, xi;θ) =

∂
∂θ log f(yi, xi;θ), the score function. Consequently, Equation 2.13 becomes a pseudo likeli-

hood approach. Pfeffermann (89) indicates that for some regularity conditions the estimating

function h∗ meets the condition

EξEρ

[[
h∗ −

∂

∂θ
log f(yi, xi;θ)

][
h∗ −

∂

∂θ
log f(yi, xi;θ)

] ′]
≤

EξEρ

[[
h−

∂

∂θ
log f(yi, xi;θ)

][
h−

∂

∂θ
log f(yi, xi;θ)

] ′]
,

which theoretically justifies the application of the pseudo likelihood approach in cases where it

produces the optimal estimating equation. The pseudo likelihood approach has been studied

by many, for examples, Binder (100), Chambless and Boyle (117), Fuller (118; 94), Kreiger and

Pfeffermann (102), Breckling, Chambers, Dorfman, et al. (103), and Chambers, Dorfman, and
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Wang (107). Recently, Skinner and Mason (119) propose wiqiU(yi, xi;θ) for Equation 2.13,

where qi = q(xi) being an arbitrary function. This newer approach has the appeal of improving

estimation efficiency.

2.4 Models for Count Data

2.4.1 Traditional Approaches

Suppose that the data (Yi,Xi), i = 1, · · · , N are independent, where Xi = (Xi1, . . . ,XiP)
′.

Let us assume that the data are collected through simple random sampling and there is no

missing values among the samples. In the spirit of the generalized linear model (GLM), due to

Nelder and Wedderburn (120), let

f(yi | xi; θi, φ) = exp

[
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

]
, (2.14)

where functions ai(.), b(.) and c(.) are known. The interest is on estimating the canonical

parameter θi, such that the dispersion parameter φ is considered a nuisance. Setting θi as

log λi = x
′
iβ, ai(φ) as unity, b(θi) = e

x ′iβ, and c(yi, φ) = − log(yi!), one obtains the conditional

distribution of Yi as Poisson with parameter λi = eηi > 0. The log-likelihood function is

accordingly

`(β | Y,X) =

n∑
i=1

[yix
′
iβ− ex

′
iβ − log(yi!)], (2.15)

Y = (Y1, · · · , YN) ′, X = (X1, · · · ,XN)
′. A standard approach to solve the GLM estimating

equations for Equation 2.15 is the iteratively weighted least squares (IWLS) algorithm. In
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particular, one creates Z with elements Zi = η̂i +
Yi−λ̂i
λ̂i

, ηi = x ′iβ, such that E [Z] = η and

V [Z] = diag{λ̂i}, and regresses Z on X using IWLS with weight W = {V [Z]}−1.

2.4.2 Overdispersion and Excess Zeros Model

The conventional Poisson model may require adjustment because of the restriction E [Yi |

Xi] = E [Yi | Xi] = λi. Count data in practice might violate this equidispersion property, often in

the form of much larger conditional variance than the mean (overdispersion). A simple remedy

is the quasi-likelihood method (121). To take advantage of it, one introduces a dispersion

parameter φ and sets V [Yi | Xi] = φλi, then revises the weight matrix of IWLS. The estimates

are typically similar to Poisson GLM, but the standard errors tend to be larger. A caveat of

the approach is that one no longer assumes any distribution for the data. If in fact the counts

are Poisson distributed, the quasi-likelihood method can give less efficient estimates then the

maximum likelihood solution.

A more involved but distributional solution for circumventing overdispersion is the appli-

cation of the mixed (also called multilevel or hierarchical) models. In this context, the models

can be expressed, for instance, as

f(yi | xi; λi) =

∫
f(yi | xi; λi)ϕ(λi;η)dηi, or (2.16a)

=

∫
f(yi | xi; λi, εi)ϕ(εi)dεi (2.16b)

where εi may be a vector. Thus, given η or εi, the observed data follow a certain distribution,

but the random term is not observed. For many instances, the conditional distribution of yi
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in Equation 2.16a or Equation 2.16b is set to be Poisson, but the random term is specified to

follow another reasonable distribution, for instance, Gamma, Inverse-Gaussian, or Log-Normal

(62; 122; 123). An interesting result is obtained for the Poisson-Gamma model. One writes

Yi | Xi ∼ Poisson(λ∗i );

λ∗i ∼ Gamma(shape = κi, scale = νi); κi > 0, νi > 0

such that

f(yi | Xi; λi) =
1

y!Γ(κ)νκi

∫
λ
∗(yi+κ−1)
i e

−λ∗i (1+
1
νi

)
dλ∗i

Setting E(λ∗i ) = λi and κi = κ, which implies νi = λi/κ, leads to a familiar expression

Γ(yi + κ)

yi!Γ(κ)

(
λi

λi + κ

)yi( κ

λi + κ

)κ
(2.17)

since it is a Negative-Binomial (NB) model with parameters κ and πi =
λi
λi+κ

. Note that this

result can also be achieved through explicitly setting λ∗i = λiεi, and assume that εi is Gamma

distributed with E [εi] = 1 and V [εi] = 1/ν. The NB model is a well-known extension of the

Poisson model to address overdispersed count data (62). Accordingly, while E [Yi | Xi] = λi,

V [Yi | Xi] = λi +
λ2i
κ . The ML estimates (MLE) of the NB regression can be solved using the

numerical procedures for GLMs.
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Overdispersed count data might be caused by or exist with excess number of zero observa-

tions. To deal with excessive zero counts, Lambert (124) suggests a zero-inflated Poisson (ZIP)

regression, where Y is considered to come from two distributions

Yi ∼ 0 with probability ξi

Yi ∼ Poisson(λi) with probability 1− ξi.

And accordingly,

P(Yi = 0) = ξi + (1− ξi)e
−λi

P(Yi > 0) = (1− ξi)e
−λi
λ
yi
i

yi!
.

The relationship between Yi and the covariates Xi = (b ′i, c
′
i)
′ is specified using the GLM canon-

ical links, such that λi = e
X ′iβi and ξi = (1+ e−c ′iγi)−1. Suppose that ξ and λ are related, then

Lambert suggests the parameterization ξi = (1 + λζi )
−1, where ζ ∈ R. Solutions for the ZIP

MLEs are derived, for instance, using the EM algorithm, due to Dempster, Laird, and Rubin

(66).

2.4.3 Nested Data Structure

Count data in many applications are nested. For example, the data for children may be

nested within mothers or households, which in turn also a part of larger clusters. Hierarchical

structure typically introduces correlation among the observations within the same cluster. The

most widely used methods to handle correlated counts due to nested structure are the mixed
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models. Expanding Equation 2.16b to accommodate ni counts on the i-th cluster in the sample

and assuming conditional independence across clusters, one has

f(yi | xi;λi) =

∫ ni∏
j=1

f(yij | xij; λij, εi)ϕ(εi)dεi, (2.18)

where in this case xi = (x ′i1, . . . ,x
′
ini

) ′.

An example of setting for Equation 2.18 is the Poisson-Log Normal model. In particular, let

θij = λijhi, where λij = exp(x ′ijβ) and hi = exp(εi), and set the distribution of εi as Gaussian

with mean µ = −σ2/2 and variance σ2. Accordingly,

f(yi | xi;λi) =

∫∞
−∞
(

ni∏
j=1

e−θij(θij)
yij

yij!

)
exp(−ε2i/2σ

2)√
2π

dεi.



CHAPTER 3

METHODOLOGY

3.1 Notation

A finite population F with N subjects is assumed to be the setting of a research interested

in estimation of the characteristic Y based on its relationship with X = (X1, · · · , XP). The subset

S of F is then drawn under the sampling selection probability pi = Pr{i ∈ S }, i = 1, · · · , N

where each i is considered independent, and the observed (Yi,Xi) are measured among the

subjects in S . Let Ii = 1 denotes i ∈ S and Ii = 0 otherwise, such that the sample size

n =
∑N
i=1 Ii. Except for the sampling indicator I that is always in upper case, throughout the

chapter the small cases represent the realization of the upper cases unless otherwise stated.

Both the density and probability mass are denoted with f(.) for those including the variables

and ϕ(.) for the functions only showing the parameters. Unknown parameters are expressed

in Greek letters. The notations E [.] and V [.] are reserved for expectation and variance. An

explanation may accompany bold letters to indicate as to whether they refer to a vector or a

matrix.

The review of available studies in the previous chapter have covered the most influential

procedures for missing data management and several theoretical approaches for incorporating

sampling design into the parameters estimation. We are now ready to develop the models of

interest, which are focused around survey data with missing covariates, and obtain the possible

48
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solutions for parameters estimation in such presence of incomplete observations. Both survey

selection and partially observed covariates are missing data problems, but it is important to

recognize them as separate entities because the former is governed by sampling design while

the latter is likely caused by non-responses or entry errors.

This chapter is structured as the following. Sections 2 and 3 introduce the models for survey

sampling without and with missing covariates in certain practical situations. The assumptions

about sampling design and missing data mechanisms are considered along with their conse-

quences in the model likelihood. There are in particular three major classes of survey data with

non-ignorable missing covariates that become the focus of model development: first, data with

covariates observable only among samples; second, those of which covariates information avail-

able in both samples and non-samples; and third, the hybrid class where some covariates are

observable on all subjects regardless of sampling status, but the rest are only available among

samples. In Section 4, the parameters estimation is formulated. The discussion includes general

strategies to computation and the form of variance estimators. Section 5 provides details of

computation algorithms.

3.2 Survey Sampling without Missing Covariates

Let the joint distribution between the random variables Yi and Xi be f(yi | xi;β)f(xi;α).

We further assume that it is reasonable to model the covariates vector Xi as a product of

one-dimensional conditional distributions. Specifically,

f(xi;α) =

{
P∏
p=2

f(xip | x
−
ip;αp)

}
f(xi1;α1), (3.1)
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where x−ip = (xi(p−1), xi(p−2), . . . , xi1). In terms of the sampling model pi, two situations are

considered:

Situation 1 There is enough evidence to suggest pi = f(Ii = 1|x
(D)
i ;δ), where x

(D)
i are part of

Xi that constitute the design variables. Hence Xi = (x
(D)
i , x

(D−)
i ), where superscript D−

denoting complement of D.

Situation 2 The functional form of pi is not known for all i, but the quantities for pi are

available for i ∈ S .

One of the following cases may happen in the survey sampling for estimating the character-

istics of Y based on (Y,X) relationship.

Case 1. Only Xi for those i with Ii = 1 (or, i ∈ S ) are observable.

By treating the sampling as a missing data problem, this case corresponds to missing both

outcome and covariates. The likelihood function f(I,Y ,X;γ,β,α), assuming each i indepen-

dent, is equals to

N∏
i=1

{
pif(yi | xi;β)f(xi;α)

}Ii{∫ ∫
(1− pi)f(yi | xi;β)f(xi;α)dyidxi

}1−Ii
, (3.2)

which leads to the log-likelihood score for β

N∑
i=1

{
Ii
∂

∂β
log f(yi | xi;β) +

(1− Ii)

∫ ∫
(1− pi)

∂
∂β log f(yi | xi;β)f(yi | xi;β)f(xi;α)dyidxi∫ ∫
(1− pi)f(yi | xi;β)f(xi;α)dyidxi

}
.

(3.3)
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Under Situation 1 of pi, however, Equation 3.2 reduces to

N∏
i=1

{
pif(yi | xi;β)f(xi;α)

}Ii{∫
(1− pi)f(xi;α)dxi

}1−Ii

and thus the second part of the log-likelihood score for β in Equation 3.3 is a zero function.

This is not necessarily the case for Situation 2. When the functional form of pi is not known

for i such that Ii = 0, the second part of Equation 3.3 cannot be computed. To circumvent this

problem, an alternative approach such as weighting can be used. In particular, the second part

of Equation 3.3 is approximated by

N∑
i=1

Ii(1− pi)

pi

∂

∂β
log f(yi | xi;β),

which leads to the simple weighting form

N∑
i=1

Ii
pi

∂

∂β
log f(yi | xi;β). (3.4)

Case 2. Xi, i = 1, · · · , N are all observable.

This case corresponds to missing outcome. The likelihood function is different from that of

Case 1 in terms of the expression for Ii = 0. In particular, the likelihood becomes

N∏
i=1

{
pif(yi | xi;β)f(xi;α)

}Ii{
f(xi;α)

∫
(1− pi)f(yi | xi;β)dyi

}1−Ii
,
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Similarly with Case 1, nevertheless, the log-likelihood score for β in Case 2 Situation 1 is only

computed for samples (Ii = 1) as the score is zero for non-samples (Ii = 0). For Situation 2,

the log-likelihood score for β can be approximated using the weighting approach of Equation 3.4.

Case 3. Some of the components of X, namely Xi1, are in Case 1, while the rest, Xi2, are

in case 2.

In the missing-data perspective, one has missing outcome and partial covariates if the data

from survey sampling turn out to be this case. Hence, the likelihood function is

N∏
i=1

{
pif(yi | xi;β)f(xi;α)

}Ii{∫ ∫
(1− pi)f(yi | xi;β)f(xi;α)dyidxi1

}1−Ii
.

The log-likelihood score for β is thus zero for Ii = 0 under Situation 1, and under Situation 2

it can be computed using the form of Equation 3.4.

3.3 Survey Sampling with Missing Covariates

Suppose that aside from the missing data problem due to the probability sampling, K ≤ P

elements of X are also subject to missing values. Let Xi,obs represents the observed part of Xi

and Xi,mis the missing part. Subscript k = 1, · · · , K indexes the missing data indicator Rik in

Ri. We will also use the subscript ”(p)” for Ri to conveniently indicate the pth element of Xi

it refers to. Thus, Ri(p) = 1 denotes Xip is observed, and Ri(p) = 0 indicates Xip is missing. To

accommodate the missing data pattern, let I{ri=c} = 1 denotes the missing data for subject i

conforms to pattern c ∈ {1, · · · , C} and I{ri=c} = 0 otherwise. We consider a functional form for
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the missing data mechanism that resembles the joint model of covariates in Equation 3.1. This

leads to

f(ri | yi, xi;γ) =

{
K∏
k=2

f(rik | r
−
ik, yi, xi;γk)

}
f(ri1 | yi, xi;γ1), (3.5)

r−ik = (ri(k−1), ri(k−2), . . . , ri1). Manifestation of these additional assumptions to the previous

likelihood functions is described below.

3.3.1 Case 1: Covariates Observed only among Samples

We suppose now that Xi are only observed among i ∈ S and Xi∈S = (Xi,obs,Xi,miss)
′,

where the missing data mechanisms are assumed to be non-ignorable. The likelihood function as

expressed by Equation 3.2 has to be modified for accommodating the missing data mechanisms.

With each i is independent to each other, L (θ) = f(I,R,Y ,X;δ,γ,β,α) is equals to

N∏
i=1

{
C∏
c=1

[ ∫
pif(ri | yi, xi;γ)f(yi | xi;β)f(xi;α)dxi,mis

]I{ri=c}}Ii
×{∫∫

(1− pi)f(yi | xi;β)f(xi;α)dyidxi

}1−Ii
,

(3.6)

which, under the assumption that all the parameters are distinct, gives rise to the following

log-likelihood score function for β under Situation 1

N∑
i=1

Ii

C∑
c=1

I{ri=c}

∫
∂

∂β
log f(yi | xi;β)f(xi,miss | Ii = 1, ri, yi, xi,obs)dxi,obs

=

n∑
i=1

C∑
c=1

I{ri=c}E

[
∂

∂β
log f(yi | xi;β) | ri, yi, xi,obs

]
.

(3.7)
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When the functional form of pi is not known (Situation 2), the log-likelihood score function is

weighted by the survey weights Ii/pi such that it becomes

N∑
i=1

Ii
pi

C∑
c=1

I{ri=c}E

[
∂

∂β
log f(yi | xi;β) | Ii = 1, ri, yi, xi,obs

]
. (3.8)

3.3.2 Case 2: Covariates Observed on Both Samples and Non-Samples

Let Xi are observable for all i = 1, · · · , N, but also subject to missing values. The likelihood

function is therefore

N∏
i=1

{
C∏
c=1

[ ∫
pif(ri | yi, xi;γ)f(yi | xi;β)f(xi;α)dxi,mis

]I{ri=c}}Ii
×{

C∏
c=1

[ ∫∫
(1− pi)f(ri | yi, xi;γ)f(yi | xi;β)f(xi;α)dyidxi,mis

]I{ri=c}}1−Ii
.

(3.9)

The structure of this likelihood requires that both samples (Ii = 1) and non-samples (Ii = 0)

contribute the log-likelihood score for β. Under Situation 1, ∂
∂β`(θ), θ

′ = (δ ′,γ ′,β ′,α ′), is

equal to

N∑
i=1

[{
Ii

C∑
c=1

I{ri=c}E

[
∂

∂β
log f(yi | xi;β) | II = 1, ri, yi, xi,obs

]}

+

{
(1− Ii)

C∑
c=1

I{ri=c}E

[
∂

∂β
log f(yi | xi;β) | Ii = 0, ri, xi,obs

]}]
,

(3.10)

and under Situation 2, it is Equation 3.8.
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3.3.3 Case 3: Covariates are A Mixture of Case 1 and Case 2

We consider, on the other hand, the case of which the components X
(1)
i of X are in Case 1,

while the rest X
(2)
i are in Case 2. In addition, some or all Xi are subject to missing values. The

likelihood function is thus

N∏
i=1

{
C∏
c=1

[ ∫
pif(ri | yi, xi;γ)f(yi | xi;β)f(xi;α)dxi,mis

]I{ri=c}}Ii
×{

C∏
c=1

[ ∫∫∫
(1− pi)f(ri | yi, xi;γ)f(yi | xi;β)f(xi;α)dyidx

(1)
i dx

(2)
i,miss

]I{ri=c}}1−Ii
.

(3.11)

The log-likelihood score for β under Situation 1 looks similar to Equation 3.10, except that the

second term is

(1− Ii)

C∑
c=1

I{ri=c}E

[
∂

∂β
log f(yi | xi;β) | Ii = 0, ri, x

(2)
i,obs

]
. (3.12)

The score function for Situation 2 is again Equation 3.8.

3.4 Parameters Estimation

It is obvious from Equation 3.7, Equation 3.8, Equation 3.10, and Equation 3.12 that solution

for the parameters of interest β in the presence of non-ignorable missing covariates has to be

derived through modeling the joint distribution f(I,R,Y ,X;δ,γ,β,α) either in the form of

Equation 3.6, Equation 3.9, or Equation 3.11. I obtain in this section the maximum likelihood

estimators (MLEs) for θ ′ = (δ,γ,β,α) ′. The solutions do not in general have a closed form,

and thus, one needs to apply iterative methods. Assuming certain regularity conditions hold, I

use the EM algorithm (66) in a fashion nearly analogous to Ibrahim et al. (2; 70; 72), Lipsitz

et al. (71; 73), and Wei and Tanner (85) to find the solution for θ.
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Let Z ≡ (I,R,Y ,X) with realization z. Hence, zi = (Ii, r
′
i, yi, x

′
i)
′. We will also use zi;Ii∈{0,1}

to denote zi with Ii ∈ {0, 1}, and zi,obs;Ii=1 = (Ii = 1, r
′
i, yi, x

′
i,obs)

′. Suppose that the functional

form of pi is f(Ii = 1|x
(D)
i ;δ) (Situation 1), then the E-step of the EM algorithm computes

Q(θ | θ(t)), t denoting iteration, which equals to

Case 1:
∑N
i=1

{
Ii
∑C
c=1 I{ri=c}E

[
`(θ; zi;Ii=1) | zi,obs;Ii=1;θ

(t)
]

+ (1− Ii)E
[
`(δ,α; Ii = 0, xi) | Ii = 0;θ

(t)
]}

Case 2:
∑N
i=1

{
Ii
∑C
c=1 I{ri=c}E

[
`(θ; zi;Ii=1) | zi,obs;Ii=1;θ

(t)
]

+ (1− Ii)
∑C
c=1 I{ri=c}E

[
`(θ; zi;Ii=0) | Ii = 0, ri, xi,obs;θ

(t)
]}

Case 3:
∑N
i=1

{
Ii
∑C
c=1 I{ri=c}E

[
`(θ; zi;Ii=1) | zi,obs;Ii=1;θ

(t)
]

+ (1− Ii)
∑C
c=1 I{ri=c}E

[
`(θ; zi;Ii=0) | Ii = 0, ri, x

(2)
i,obs;θ

(t)
]}
.

(3.13)

Assuming δ,γ,β, and α are distinct,

`(θ; zi) = `(δ; Ii, x
(D)
i ) + `(γ; ri, yi, xi) + `(β;yi, xi) + `(α; xi), (3.14)

where the adjustment for less parameters like `(δ,α; Ii = 0, xi) in Case 1 is straightforward.

We further denote the components of Z that are subject to missing values as V = (Y ,X) with

realization v. Accordingly, vi,obs denote the observed part of v in individual i, and vi,mis the
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missing part. Expectation of (Equation 3.14) with respect to the conditional distribution of

the missing variables, that is, the Q function of (Equation 3.13), has the following general form

∫
`(θ; zi)f(vi,mis | zi,obs;θ)dvi,mis =

∫
`(θ; zi)

f(zi;θ)∫
f(zi;θ)dvi,mis

dvi,mis, (3.15)

zi = (Ii, r
′
i, v
′
i)
′, and zi,obs = (Ii, r

′
i, v
′
i,obs)

′. To perform the integration in Equation 3.15 when

vi,mis are all continuous, Tanner and Wong (82), followed by Wei and Tanner (85), and Gelfand

and Smith (38) suggested the use of Monte Carlo based sampling. Theoretical details and

proof of convergence for this approach is provided in Tanner and Wong’s article. For the same

situation in GLMs where vi,mis ≡ xi,mis (that is, only the covariates that have incomplete

observations), Ibrahim and Weisberg (125) utilized a Gaussian quadrature. Ibrahim (70) also

introduced what he called the EM algorithm by the method of weight to handle Equation 3.15 in

GLMs of which the elements of vi,mis consist only of categorical xmis. His approaches involved

data augmentation using all possible values of the variables with missingness. Extension of

Ibrahim’s method to GLMs with mixed categorical and continuous xi,mis is discussed by Lipsitz

et al. (71; 73) and Ibrahim et al. (72; 2).

Maximization of Q(θ | θ(t)) in the M-step can be performed using, for instance, the Newton-

Raphson technique, where

θ̂
(t+1)

= θ̂
(t)

−

{[
∂2

∂θ∂θ ′
Q(θ)

]−1
∂

∂θ
Q(θ)

}
θ=θ̂

(t)
. (3.16)
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The E-step and M-step are then repeated until convergence. Further details of how I approach

the EM algorithm computation are described in the next section.

Implementation of the EM algorithm when the functional form of pi is not known (Situa-

tion 2) follows the same principal as it is under Situation 1. The basic difference is that the

computation of Q function only entails the data where Ii = 1, that is, zi;Ii=1 in the current

notation.

3.5 Variance Formula

I derive the estimated covariance matrix for θ̂ under Situation 1 through the Louis’ method

(86) shown in Equation 2.3. This method has been recommended in several studies of missing

covariates where the parameters are estimated within ML framework (70; 72; 74; 2). Suppose

that θ̂ is the estimate of θ at the convergence of the EM algorithm. Let `(θ; zi) be the simplified

form of the log-likelihood of fully observed data for Case 1, 2, and 3 under Situation 1, and zi,obs

the relevant observed parts of zi. Application of the Louis’ method involves the computation

of the information matrix for θ̂, where

I (θ̂) =

−

N∑
i=1

E

[
∂2

∂θ∂θ ′
`(θ; zi)

∣∣∣∣zi,obs; θ̂

]

−

N∑
i=1

E

[{ ∂
∂θ
`(θ; zi)

}{ ∂
∂θ
`(θ; zi)

} ′∣∣∣∣zi,obs; θ̂

]

+

{ N∑
i=1

E

[
∂

∂θ
`(θ; zi)

∣∣∣∣zi,obs; θ̂

]
E

[
∂

∂θ
`(θ; zi)

∣∣∣∣zi,obs; θ̂

] ′}
.

(3.17)
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An adjustment of Equation 3.17 is needed under Situation 2. To see this, let τ = (γ ′,β ′,α ′) ′,

that is, θ minus the parameters for the sampling design δ shown for Situation 1. Suppose that

τw is the solution of
N∑
i=1

Ii
pi

∂

∂τ
`(τ; zi) = 0. (3.18)

Godambe and Thompson (101) showed that τw is consistent for τ if E
[
Ii
pi

∂
∂τ`(τ; zi)

]
= 0, where

the expectation is with respect to both the sampling design and the model. Under certain

regularity conditions, the expansion of Equation 3.18 to the second term of Taylor series leads

to

√
N(τw − τ) =

[
1

N

N∑
i=1

Ii
pi

∂2

∂τ∂τ ′
`(τ; zi)

]−1[
1√
N

N∑
i=1

Ii
pi

∂

∂τ
`(τ; zi)

]
.

Therefore, assuming the finite population correction (FPC) =
√

N−n
N−1 can be ignored, the asymp-

totic covariance of τw can be consistently estimated by

Ĵ−1V̂ Ĵ−1, (3.19)

nothing that Ĵ =
∑N
i=1

Ii
pi

∂2

∂τ∂τ ′ `(τ; zi), setting τ = τ̂, and V̂ is derived from setting τ = τ̂ for V

where
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V ≡ V

[ N∑
i=1

Ii
pi

∂

∂τ
`(τ; zi)

]

=

N∑
i=1

V

[
Ii
pi

∂

∂τ
`(τ; zi)

]
, due to independence assumption

=

N∑
i=1

{
Eτ

[
Vδ

[
Ii
pi

∂

∂τ
`(τ; zi)

]]
+ Vτ

[
Eδ

[
Ii
pi

∂

∂τ
`(τ; zi)

]]}

=

N∑
i=1

{
Eτ

[
pi(1− pi)

p2i

[ ∂
∂τ
`(τ; zi)

][ ∂
∂τ
`(τ; zi)

] ′]
+ Vτ

[
∂

∂τ
`(τ; zi)

]}

=

N∑
i=1

{
1

pi
Eτ

[[ ∂
∂τ
`(τ; zi)

][ ∂
∂τ
`(τ; zi)

] ′]}
,

(3.20)

where Eτ and Vτ denote the expectation and variance, respectively, with respect to the model

f(zi;τ), and Eδ and Vδ respectively denote the expectation and variance with respect to

the sampling design. Note that with the presence of missing values, the Hessian matrix[
∂
∂τ`(τ; zi)

][
∂
∂τ`(τ; zi)

] ′
becomes the Louis information matrix (similar to Equation 3.17, ex-

cept for the components δ). Also,
∑N
i=1

1
pi

in the survey sample is estimated by
∑N
i=1

Ii
p2i

, as

Eδ[Ii] = pi.

Equation 3.20, however, assumes that there is neither stratification nor clustering. In

what follows, I provide the variance estimator accommodating a complex survey design. The

general form of the covariance estimate is still Equation 3.19, and for all sampling designs

Ĵ =
∑N
i=1

Ii
pi

∂2

∂τ∂τ ′ `(τ; zi). The difference is in the expression for V̂. Suppose that the samples
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are drawn from H strata, where each stratum h = 1, · · · , H has Jh clusters. At observation i

of cluster j =, 1, · · · , Jh in stratum h, let

Uijh =
Iijh

pijh
Eτ

[
∂

∂τ
`(τ; zijh)

]
,

and at cluster j

Djh =

njh∑
i=1

Uijh −

∑njh
i=1

∑Jh
j=1Uijh

Jh
.

Therefore, the expression for V̂ can be obtained by setting τ = τ̂ for V(CS) where

V(CS) =

H∑
h=1

∑Jh
j=1DjhD

′
jh

Jh − 1
, (3.21)

and CS stands for ”complex survey”.

3.6 Computation Algorithm

I now devise the algorithm for computing the parameter estimates. This computation

extends Ibrahim et al.’s (72; 2) and Lipsitz et al.’s (71; 73) approach for handling Xmis to the

settings where the missing variables V may include both Y and X. Such approach has an appeal

of allowing certain flexibility in missing data management when the incomplete multivariate

dataset is a mixture of continuous and categorical variables. In particular, one specifies the

joint distribution as a product of univariate densities. The goal is to reduce possible nuisance

parameters (70; 72; 2), and also by breaking the problem of joint modeling into a series of

univariate models, it enables the functional specification of each variable to proceed based on
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the corresponding type of the variable (continuous, categorical, ordered categorical) (87). Since

f(vi,mis | zi,obs;θ
(t)) is basically the weight of `(θ; zi) in Equation 3.15, Ibrahim named this

approach the EM algorithm by the method of weight (70). However, his proposal is actually an

extension of data augmentation technique by Tanner and Wong (82). The principal difference

is that he modified Tanner and Wong’s weight 1/m, m is the number of imputed values for

vi,mis, with f(vi,mis | zi,obs;θ
(t)), and use the exact values of the incomplete variables to augment

data.

Let us keep all notations we already have from the early parts of this chapter. The proposed

algorithm then proceeds as follows:

1. Start with initial values θ(0).

At iteration t:

2. Augment data using:

– All possible or most likely values if categorical or finite discrete

– Gauss-Hermite quadrature nodes if continuous

3. E-step: Estimate Q(θ|θ(t)) by

N∑
i=1

J∑
j=1

`(θ; zi)f(vi,mis(j) | zi,obs;θ
(t)) (3.22)
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if all vi = (vi,obs, vi,mis) are categorical or finite discrete, where j indexes the pattern of

vi,mis; or, by

1√
π

N∑
i=1

Q∑
q1=1

· · ·
Q∑

qH=1

`(θ; z∗iq)f(aiq1 , · · · , aiqH | zi,obs;θ
(t))wiq1 · · ·wiqH , (3.23)

if all vi are continuous, where vi,mis is in a transformed form v∗i , and z∗iq = (z
′
i,obs, v

∗ ′
iq)
′,

v∗iq = (v∗iq1 , · · · , v
∗
iqH

) ′, v∗iqh = µvih +
√
2σvihaq, h = 1, · · · , H, µvih and σvih are the mode

and scale for vih, wiqh = w(aiqh); aiqh and w(aiqh) are the abscissas and weights of the

Hermite polynomial; or by

1√
π

N∑
i=1

J∑
j=1

Q∑
q1=1

· · ·
Q∑

qH=1

`(θ; z∗∗iq )f(v
(cat)
i,mis(j), aiq1 , · · · , aiqH | zi,obs;θ

(t))wiq1 · · ·wiqH ,

(3.24)

z∗∗iq = (z
′
i,obs, v

(cat) ′

i(j) , v
(cont)∗ ′
iq ) ′, v

(cont)∗
iq = (v∗iq1 , · · · , v

∗
iqH

) ′, if vi are a mixture of continuous

and categorical (or finite discrete) variables.

4. M-step: Maximize Q(θ|θ(t)) to obtain θ̂
(t+1)

using Equation 3.16.

5. Repeat Steps 2 to 4 until convergence.

There are a few notes to complement the application of this computation algorithm. For

categorical or finite discrete variables, ideally one uses all possible values. That may, however,

pose a challenge in cases where the missing variable is assumed to follow a Poisson distribution,

as the possible values run from 0 to∞. One may then restrict the augmentation to those values

around the mode and ignore others of which the empirical probability is acceptably low. My
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observation during the simulation studies indicates that such a decision lead to fairly satisfy-

ing results with a good trade off between computational cost and accuracy of the estimated

parameters. It is recommended that one takes all integers within the range of values served

as the investigator’s choice of lower and upper bounds to be used for augmentation. Another

note is regarding continuous variables. An adaptive or non-adaptive Gaussian quadrature may

be used. For the latter, a choice between 5 − 10 nodes appear to provide acceptable accuracy

in my simulations. The other option for imputing incomplete continuous variables is to use a

Gibbs sampler or any Monte Carlo based sampling (71; 73; 72; 2). In general, their application

demands a more expensive computation than Gaussian quadrature because of the need to as-

sure independent random draws from the joint distribution. However, if it is computationally

feasible to use Gibbs sampler for sampling vi,mis from their conditional distribution given zi,obs

— that is, not only for continuous xi,mis as suggested in Ibrahim et al. (72; 2) and Lipsitz et

al. (71; 73) — then that will add substantial flexibility to this algorithm.



CHAPTER 4

SIMULATION STUDIES

Survey dataset with missing variables is unique with respect to the structure of missingness.

It represents the settings where there are both sample and variable selections. That is, the

elements of data matrix are missing row wise and column wise. In this chapter, I simulate

several datasets having a certain scenario of sample selection and missing variables as described

in Chapter 3 to evaluate the performance of the proposed method. The term ”observable” is

used extensively throughout the chapter to refer to the conditions where an element in data

matrix is not subject to row wise missingness. That is, the presence or absence of the element is

independent of sample selection. It may at the same time be subject to column wise missingness

or variable selection. To emphasize the focus of the proposed method development, I attach

these conditions into the variables; thus, the variable is either observable or not observable

(sample selection issue), missing or not missing (variable selection issue).

The simulation studies are presented in the following order: Section 1 provides the general

setup of all simulations, which include the generation of variables of interest, sample selection,

and missing covariate mechanisms; Section 2 describes the computation of parameter estimates

based on the proposed and the competing methods, and how they will be compared; Section 3

depicts the simulations for Case 2 of the Chapter 3 formulation, that is, survey data with non-

ignorable missing covariates of which the covariates are observable on both samples and non-

samples; Section 4 entails the simulation studies of survey data having one part of the covariates

65
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observed only among samples, while the other part observable regardless of sampling status but

subject to non-ignorable missingness (Case 3); Section 5 demonstrates the performance of the

proposed method for the case of survey data with non-ignorable missing covariates that are

observed strictly among samples (Case 1); And finally, Section 6 discusses the overall findings

and the limitations of the proposed method and simulation setting.

4.1 Simulation Setup and Notation

We consider a hypothetical population F having N < ∞ individuals at certain time

point. Data for the outcome Y and the covariates of interest X2, · · · , X8 are generated us-

ing the models demonstrated in Table II. Y is thought as a health-related outcome of non-

negative discrete nature. Another variable, X1, is also created to be one of the dominant

sources of sampling variation. Overall, Table II shows that the covariates X1, · · · , X8 are a

mixture of categorical and continuous variables. The conditional distribution of Y, X5, · · · , X8

is in the class of the generalized linear models (GLM), with a link function that represents

the most natural choice in health and medical studies. These include log-link for Poisson,

identity-link for Gaussian, and logit-link for binary dependent variables. The parameters of

X1, · · · , X5 are set to be µ(X1) = 50, σ2(X1) = 25, π(X2) = 0.5, λ(X3) = 2, µ(X4) = 5, σ2(X4) = 1,

α = (α0, · · · , α4) ′ = (−1, 1,−1, 1) ′, and σ2(X5) = 1. The GLM parameters of Y, X6, X7, X8, how-

ever, are determined in a less straightforward way. Their quantities are derived by first fixing

the expected values λ(Y) = 0.35, π(X6) = 0.7, π(X7) = 0.7, and π(X8) = 0.4. Then, with brute

force, it is found that β = 0.1×(1,−1,−1,−1,−1,−1,−1, 1) ′, γ = 0.1412139×(1,−1,−1, 1, 1) ′,

ι = (−0.25, 0.25, 0.2, 0.25,−0.25, 0.15) ′, and κ = (−0.25, 0.1× (−1,−1, 1,−1,−1,−1)) ′, respec-
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tively, produce an empirical average for Y, X6, X7, X8 that is reasonably close to their expected

value. One advantage of setting the categorical GLM parameters this way is the avoidance

of unwanted quantities, like a proportion close to 0 or 1 in the binomial models. I use the

same technique later to create the sampling fraction and missing data proportion that meet the

simulation interests.

Selection of the sample set S from F is simulated conditional on X1, X2, and X8 under a

binomial GLM model, that is, for observation i = 1, · · · , N,

logit f(Ii = 1|xi1, xi2, xi5;δ) = δ0 + δ1Xi1 + δ2Xi2 + δ3Xi5, (4.1)

where Ii = 1 indicates observation i ∈ S , while Ii = 0 is otherwise. Thus the sample size n =∑N
i=1 Ii. One may notice that the covariates of Ii consist of both completely and incompletely

observed variables (see Table II). Each subject i is treated as independent to one another.

In simulating Case 1 of the Chapter 3 formulation, π(I|X1,X2,X5) ≡ E
[
I|x1, x2, x5;δ

]
is set to be

0.01, while for Case 2 and Case 3, it is 0.7. The latter sampling fraction is chosen primarily for

computational convenience. That of Case 1, however, is generated to reasonably represents a

traditional survey, where the sampling fraction is much smaller than the actual population size.

Applying a similar technique to that for obtaining the GLM parameters of Y, X6, X7, and X8, I

choose δ = (−0.1,−0.1, 0.1, 0.2) ′ in the Case 1 simulation, and (−0.5, 0.1,−1,−1) ′ in the Case

2 and Case 3 simulations. Two situations are then devised for the Case 1 simulation following

the model development in the Methodology chapter: First, the true sampling model is known
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and all information to compute the conditional probability are available. Second, the functional

form of f(Ii = 1|xi1, xi2, xi5;δ) as shown in Equation 4.1 is not known for all i, but its quantity

pi is available among the samples. In the studies of Case 2 and Case 3, the functional form of

sample selection is always assumed known. There is no need to replicate the second situation

of sampling information in the simulation of Case 2 and Case 3, since the log-likelihood score

for the parameters of interest β is identical to that of Case 1, which is Equation 3.8.

The covariates X5, · · · , X8 are then subjected to non-ignorable missing data. Let R =

(R5, · · · ,R8) indicate their missingness, where Rk is a missing indicator vector for the corre-

sponding Xk, k = 5, · · · , 8, Rik = 1 represents the situation when Xik are observed for individual

i, and Rik = 0 otherwise. R are generated for each i based on the following relational forms

Ri5 ∼ Bernoulli
(
πi(R5|X2,··· ,X8,Y) = expit(ζ0 + ζ1Xi2 + · · ·+ ζ7Xi8 + ζ8Yi)

)
Ri6 ∼ Bernoulli

(
πi(R6|X2,··· ,X8,Y,R5) = expit(ν0 + ν1Xi2 + · · ·+ ν7Xi8 + ν8Yi + ν9Ri5)

)
Ri7 ∼ Bernoulli

(
πi(R7|X2,··· ,X8,Y,R5,R6) = expit(υ0 + υ1Xi2 + · · ·+ υ7Xi8 + υ8Yi+

υ9Ri5 + υ10Ri6)
)

Ri8 ∼ Bernoulli
(
πi(R8|X2,··· ,X8,Y,R5,R6,R7) = expit(ω0 +ω1Xi2 + · · ·+ω7Xi8 +ω8Yi+

ω9Ri5 +ω10Ri6 +ω11Ri7)
)
.

(4.2)

To produce the missing proportions displayed in Table II, π(Rk) are fixed accordingly, such

that the GLM parameters ζ ′ = (ζ0, · · · , ζ8), ν ′ = (ν0, · · · , ν9), υ ′ = (υ0, · · · , υ10), and ω ′ =

(ω0, · · · ,ω11) are 0.5245125×(−1, 1,−1, 1,−1,−1, 1, 1, 1), 0.177842×(1, 1, 1, 1, 1,−1, 1, 1, 1, 1),
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0.1400954× (−1, 1, 1, 1, 1,−1,−1, 1, 1, 1, 1), and 0.1× (−1,−1,−1, 1, 1,−1, 1, 1,−1,−1, 1, 1), re-

spectively.

As it is already obvious, the notations follow those of the previous chapters, where small

cases represent the realization of upper cases, except for the sampling indicator I that is always

in upper case. Also, the density and probability mass are both denoted with f(.) and the

unknown parameters in Greek letters. E [.] and V [.] are respectively representing expectation

and variance. Depending on the context, bold letters may indicate a vector or matrix.

4.2 Likelihood and Computation

Let f(Ii,Ri, Yi,Xi;θ) be the joint distribution for observation i of the simulated data, where

R ′i = (Ri5, · · · , Ri8), X ′i = (Xi1, · · · , Xi8), θ ′ = (θ ′X,β
′,θ ′R,δ

′), θ ′X = (µ(X1), σ
2
(X1)
, π(X2), λ(X3),

µ(X4), σ
2
(X4)
, α ′,γ ′, ι ′,κ ′), and θ ′R = (ζ ′,ν ′,υ ′,ω ′). Following Table II, Equation 4.1, and

Equation 4.2, for the full dataset f(Ii,Ri, Yi,Xi;θ) equals to Equation 4.3. Under the indepen-

dence of i, the likelihood L (θ) =
∏N
i=1Li(θ) =

∏N
i=1 f(Ii,Ri, Yi,Xi;θ). And based on Section

3.3 of Chapter 3, the likelihood becomes Equation 3.6 for Case 1, Equation 3.9 for Case 2,

and Equation 3.11 for Case 3, with an important exception that the notation for α and γ

in those expressions is replaced here with θ ′X, and θ ′R, respectively. If the relation expressed

by Equation 4.1 is assumed unknown, a full likelihood estimation is not feasible. However,

when additionally the quantities pi is available for all i, a quasi-likelihood approach using sur-

vey weight such as Equation 3.8 can be computed. I generate this situation, which is termed

Situation 2 in Chapter 3, during the simulation of Case 1.
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(
Yi!Xi3!(2π)

3
2σ(X1)σ(X4)σ(X5|X2,··· ,X4)

)−1

exp

{
−
1

2

[
(Xi1 − µ(X1))

2

σ2(X1)
+

(Xi4 − µ(X4))
2

σ2(X4)

+
(Xi5 − (α0 + α1X2 + · · ·+ α3X4))2

σ2(X5|X2,··· ,X4)

]
+ Xi2 log(π(X2)) + (1− Xi2) log(1− π(X2))

+ Xi6(γ0 + γ1Xi2 + · · ·+ γ4Xi5) + Xi7(ι0 + ι1Xi2 + · · ·+ ι5Xi6) + Xi8(κ0 + κ1Xi2 + · · ·+ κ6Xi7)

− log(1+ exp(γ0 + γ1Xi2 + · · ·+ γ4Xi5)) − log(1+ exp(ι0 + ι1Xi2 + · · ·+ ι5Xi6))

− log(1+ exp(κ0 + κ1Xi2 + · · ·+ κ6Xi7)) + Yi(β0 + β1Xi2 + · · ·+ β7Xi8)

− exp(β0 + β1Xi2 + · · ·+ β7Xi8) + Ri5(ζ0 + ζ1Xi2 + · · ·+ ζ7Xi8 + ζ8Yi)

+ Ri6(ν0 + ν1Xi2 + · · ·+ ν7Xi8 + ν8Yi + ν9Ri5) + Ri7(υ0 + υ1Xi2 + · · ·+ υ7Xi8

+ υ8Yi + υ9Ri5 + υ10Ri6) + Ri8(ω0 +ω1Xi2 + · · ·+ω7Xi8 +ω8Yi +ω9Ri5 +ω10Ri6 +ω11Ri7)

− log(1+ exp(ζ0 + ζ1Xi2 + · · ·+ ζ7Xi8 + ζ8Yi)) − log(ν0 + ν1Xi2 + · · ·+ ν7Xi8 + ν8Yi + ν9Ri5))

− log(υ0 + υ1Xi2 + · · ·+ υ7Xi8 + υ8Yi + υ9Ri5 + υ10Ri6))

− log(ω0 +ω1Xi2 + · · ·+ω7Xi8 +ω8Yi +ω9Ri5 +ω10Ri6 +ω11Ri7))

+ Ii(δ0 + δ1Xi1 + δ2Xi2 + δ3Xi5) − log(1+ exp(δ0 + δ1Xi1 + δ2Xi2 + δ3Xi5))

}
.

(4.3)

The parameters are estimated through

n∑
i=1

C∑
c=1

1

pi
I{ri=c}E

[
∂

∂θ
log f(Ii,Ri, Yi,Xi;θ) | Ii = 1, ri, yi, xi,obs

]
. (4.4)

where C is the total patterns of missing data in the ith observation.
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TABLE II
SETUP OF SIMULATION VARIABLES

Non-Samples Observable
Variable Type Distribution Parameters Missinga,b Case 1d Case 2e Case 3f

X1 Continuous Normal µ(X1), σ
2
(X1)

0% No Yes Yes

X2 Categorical Binary π(X2) 0% No Yes Yes

X3 Categorical Poisson λ(X3) 0% No Yes Yes

X4 Continuous Normal µ(X4), σ
2
(X4)

0% No Yes Yes

X5 Continuous Normal µ(X5|X2,··· ,X4) = α0 + α1X2 + · · ·+ α3X4, σ
2
(X5|X2,··· ,X4) 40% No Yes Yes

X6 Categorical Binary π(X6|X2,··· ,X5) = expit(γ0 + γ1X2 + · · ·+ γ4X5) 10% No Yes Yes

X7 Categorical Binary π(X7|X2,··· ,X6) = expit(ι0 + ι1X2 + · · ·+ ι5X6) 20% No Yes Noc

X8 Categorical Binary π(X8|X2,··· ,X7) = expit(κ0 + κ1X2 + · · ·+ κ6X7) 35% No Yes Noc

Y Categorical Poisson λ(Y|X2,··· ,X8) = exp(β0 + β1X2 + · · ·+ β7X8) 30%(0%b) No No No

a Approximate proportion, except for 0%, which is an exact value.
b For Case 1: missing among samples.
c The actual missing proportion for X7 and X8 is larger in Case 3 due to this.
d Case 1: survey data with non-ignorable missing covariates, data observable only among samples.
e Case 2: survey data with non-ignorable missing covariates, all covariates observable on samples and non-samples.
f Case 3: survey data with non-ignorable missing covariates, some covariates observable on samples and non-samples.
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The likelihood-based estimation of the parameters follows the augmentation assisted EM

algorithm outlined in Section 3.6 of Chapter 3. I refer to it as the augmentation method from

this point forward. To augment data row with any missing element, I use the two possible values

for the binary variables, and five nodes of Gauss-Hermite quadrature with their corresponding

weights for the continuous variable. Preliminary trials with similarly simulated data indicate

that five nodes of Gauss-Hermite quadrature keeps the computation time manageable for an

acceptable level of accuracy. If the missing element is the count variable Y, I augment the obser-

vation with Ymis =(0, 1, 2, 3). Given the expected value of Y as I created it, that is, λ(Y) = 0.35,

the probability mass function of Y equals any value larger than 3 is about zero at 3 decimals.

The function Q(θ | θ(t)) at iteration t is Equation 3.13, with notational adjustment, when

the sampling form is assumed known; it is Equation 4.4 for the survey weighted analysis, with

θ = θ(t). The algorithm estimates Q(θ | θ(t)) in the E-step via Equation 3.22, Equation 3.23,

and Equation 3.24, respectively, for missing variables of categorical, continuous, and mixture

natures. In the M-step, it maximizes θ using Equation 3.16. For the convergence criterion, I opt

for
∥∥θ(t+1)XYI −θ

(t)
XYI

∥∥2 < 10−3, where θXYI are the parameters of I, Y, X1, · · · , X8 in θ. Preliminary

trials show that the differences in terms of δ,β, and θX, that is, the parameters of I, Y, X1, · · · , X8

between the above criterion and using the whole estimates
∥∥θ(t+1) −θ(t)∥∥2 < 10−3 are as small

as two decimals or less, but slightly unstable for θR. However, the required iteration for con-

vergence in the latter criterion is greater by a factor of about 102 or more. As a comparison,

Stubbendick and Ibrahim (126) who also applied Ibrahim et al.’s approach (70; 72; 127) used

only the parameters of interest
∥∥β(t+5) − β(t)

∥∥2 < 10−2 for convergence.
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Another computation of the parameter estimates is performed through a slight modification

of the augmentation method. Here, I modify the E-step by removing one or some components

of the weight f(vi,mis | zi,obs;θ) in Equation 3.15 which relate to constant values in the missing

part of data. For instance, the value of Ri8 = 0 for all i where Xi8 is missing. Hence, assuming

Equation 4.1 is known and only X8 that is missing for the ith observation, the numerator of

the weight f(xi8 | Ii, ri, yi, xi1, · · · , xi7;θ
(t)) at the jth augmentation of i is

f(Ii | xi1, xi2, xi5(j);δ
(t))× f(ri7 | ri6, ri5, yi, xi(2−8)(j);υ

(t))×

f(ri6 | ri5, yi, xi(2−8)(j);ν
(t))× f(ri5 | yi, xi(2−8)(j); ζ

(t))× f(yi | xi(2−8)(j);β
(t))×

f(xi8(j) | xi2, · · · , xi7;κ
(t))× f(xi7 | xi2, · · · , xi6; ι(t))×

f(xi6 | xi2, · · · , xi5;γ(t))× f(xi5 | xi2, · · · , xi4;α(t))

(4.5)

where xi(2−8)(j) = xi2, · · · , xi7, xi8(j). That is, the term f(ri8 | ri7, ri6, xi5, yi, xi(2−8)(j);ω
(t)) dis-

appears from the weight. Accordingly, the computation for Xi8,mis, and in general for each

of Vi,mis ∈ {Xi,mis, Yi,mis}, works under MAR assumption. The algorithm, however, still uses

the joint distribution containing the missing data mechanisms, which differentiates it from an

approach assuming ignorable missingness. A justification for this modification is that constant

values add no information to the estimation. In fact, when the constant values are quite domi-

nant, the estimated parameters can be very unstable because of the potentially flat likelihood.

Thus, the modified version of the proposed method is created to circumvent the identifiability

problem. Moreover, it gives a computational advantage in the speed of convergence. This ad

hoc approach is not new; the multiple imputation by chained equations (MICE) (13; 16), for
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instance, does the same thing. I termed such computational modification the augmentation-

constant removed (CR) method, as a reference of what it does. The comparison with the

proposed method is clearly aimed at evaluating the trade off between a slight violation of

non-ignorable assumption and the accuracy of the estimates.

I compare the estimated parameters from the proposed method and its computational vari-

ant with those based on the full case and the complete case analyses. Since standard statistical

packages still default to the complete case method when encountering data with missingness, the

comparison has a non-trivial meaning. Besides, it can serve as a sensitivity analysis concerning

a more complicated model of missing data, given that the underlying assumption of a complete

case analysis is MCAR. The comparison with the full case analysis involves all parameters. It

only, however, covers the parameters of the outcome and covariate models with the complete

case analysis. This should be reasonable since in practice it is unlikely we model the missing

data mechanism when we resort to a complete case analysis. Furthermore, fitting a regression

model for the missing data mechanism when {Xi : Xi ∈ S } hardly results in convergence, as

Rik = 1 for all {i, k : i ∈ S , k = 5, · · · , 8}.

Multiple imputation is arguably the most prescribed approach for missing data in the re-

cent literature. I thus additionally compute the estimates by multiply imputing the simulated

datasets. In particular, I use MICE, which is also known as the fully conditional specifications

(FCS) method (13; 16). MICE consists of imputation and analysis steps. The first step is ini-

tialized by a simple random draw from the incomplete variables to replace the missing values.

The sequence of imputation can be arbitrary. At iteration s = 1, · · · , S, the dataset is mul-
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tiplied into J replicates, and for each j = 1, · · · , J, successive draws are implemented through

Gibbs sampler. At the analysis step, MICE proceeds by analyzing each imputed datasets using

the model of interest. Then, the estimates are obtained using Rubin’s rule (11).

There are N = 100,000 observations on each simulated data of Case 1, and N = 1,000

observations on those of Case 2 and Case 3. Every simulation run is replicated M = 1,000

times. Information on the estimation error, defined as (θ− θ̂m), m = 1, · · · ,M, where the hat

differentiates the estimated from the true θ, is collected within each run in terms of observed,

squared, and absolute values. Thereafter, the quantity of the empirical bias
∑M
m=1(θ− θ̂m)/M,

mean squared error (MSE)
∑M
m=1(θ − θ̂m)

2/M, and median absolute error (MAE), are com-

puted and reported. The asymptotic standard error (ASE) for each estimated parameter is also

calculated. For the proposed method and its alternative, the ASE is derived from inverting

Equation 3.17 if the functional form of sample selection is assumed known, or through Equa-

tion 3.20 otherwise. All analyses are conducted using the R statistical software version 3.3.3. I

use the R package mice for application of MICE, leaving everything at its default settings. This

includes an imputation based on predictive mean matching for numeric variables and logistic

regression for binary variables. Count variable Y is considered as numeric in mice. By default,

mice uses a total of five for both data replicates and maximum iteration during the imputation

step. Convergence in mice is assessed visually, as suggested by its creators (16). Finally, I also

implement the survey library in R for the survey weighted analyses of the full and complete

cases in the Case 1 Situation 2 simulations. To my best knowledge, mice does not yet imple-
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ment survey weighting in its programming. Hence, I exclude MICE in the evaluation for Case

1 Situation 2 to keep a fair comparison with the other methods.

4.3 Simulation of Case 2 Survey

It is likely, though not typical, that in some survey settings the covariates are observable

for all elements of the population. One instance would be a survey of a particular outcome

among a small, well-defined community, where cost or some other concern prohibits the use of

census. The outcome can be mortality or morbidity of a recent outbreak, and other current

status of individuals, which is normally not known prior to the survey. On the other hand,

covariates information that includes demographic and socioeconomic characteristics, as well as

risk factors, may have been parts of the regular registration in the local administration offices

or clinics. Certainly, they are subject to missing values for various of reasons, including those

associated with the missingness itself. Such class of survey cases, which is classified as Case

2 in the previous chapter formulation, thus represents the mildest setting of survey data with

non-ignorable missing covariates because some information of the non-samples is not subject

to sample selection (that is, ”observable”).

Overall, the augmentation method needs a median of 79 (first quartile Q1 = 37, third

quartile Q3 = 194) iterations to achieve convergence in the Case 2 simulation. Not surprisingly,

the augmentation-CR method requires fewer iterations, with the median 16 ((Q1, Q3) = (14,

17)). The actual missing proportion of Y, X5, · · · , X8 is nicely close to the simulation setup,

where the rounded average N̄Ymis
= 304 (30%), N̄X5,mis

= 410 (41%), N̄X6,mis
= 107 (11%),

N̄X7,mis
= 207 (21%), and N̄X8,mis

= 377 (38%). Note that I use the notation N since the
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numbers involve all observations. Based on the setup, n̄ = N̄Yobs = 696 is the average sample

size in the simulation. To analyze the relationship between Y and X2, · · · , X8 utilizing the

complete cases, each simulated data only has an average of about 181 observations. This is a

loss of approximately 82% of data.

Table III and Figure 2 show the simulation results for the parameters of interest β. The

augmentation method appears to have a smaller bias than the other methods except the full

case analysis, which serves as a reference. MICE performs fine, but it tends to have a larger

absolute bias than the augmentation method. Their estimated β are, however, about equally

efficient. In a stark contrast, the complete case analysis generally performs the worst, having a

bias than can be substantial and extremely lacking in efficiency.

Table IV compares the results for the parameters of the missing covariate models across the

competing techniques. With the full case analysis as an exception, performance of the augmen-

tation method remains well in comparison to the others. Its modification, the augmentation-CR

method seems to be either as good as the augmentation method, or somewhere between the

augmentation method and MICE. Efficiency wise, however, there is barely any gain the pro-

posed method has over MICE. As a side note, the current R package mice to the best knowledge

does not include an estimate of the linear regression residual; hence, σ̂2(X5) is not computed

for MICE in all simulations. On the other hand, R produces such estimate in both lm and

glm environments, but without an estimated standard error. Accordingly, the table cell for

the asymptotic standard error (ASE) of σ2(X5) is also empty for the analyses utilizing those

environments, which include the full and complete case analyses.
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There are several things worth mentioning with regard to the parameter estimates of the

missing data mechanism in this Case 2 simulation (Table V). First of all, the proposed method

still in general provides the least biased estimates among the three competing approaches us-

ing the incomplete data (MICE, the augmentation-CR, and the augmentation methods). Its

estimated parameters also tend to be the closest ones to those of a full case analysis. Such

argument, however, does not necessarily apply to the GLM parameter representing the partial

relationship between the missing data indicator and its corresponding missing covariate. For

instance, all simulation measures (bias, MSE, MAE, and ASE) for ω7, the parameter of the

(R8, X8) relationship adjusted for the effect of other variables in the R8 model, are worse in

the augmentation method than either MICE or the augmentation-CR method. A fairly similar

problem is noted for ν5 and υ6, which are the parameters relating (R6, X6) and (R7, X7), respec-

tively, even though the bias of the augmentation method for υ6 is relatively smaller than both

MICE and the augmentation-CR method. The root of this problem is intuitively clear. All

X6, X7, X8 are designed simulation wise as correlated binary variables, with a missing proportion

on each ranging between 10% and 35%. Accordingly, the risk of considerable constant values

in the augmented data is high during the estimation of their missing data mechanism, which

leads to a relatively flat likelihood and identifiability issue. Such problem does not present

in MICE and the modified, augmentation-CR method, because their algorithm avoids dealing

with constant values. Nevertheless, if the missing covariate is continuously distributed such as

X5, then the issue seems to be slightly resolved. Table V shows that ζ4, the GLM parameter
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for the (R5, X5) relationship, is fairly well estimated by the augmentation method. In fact, its

estimate appears to be slightly better than MICE.

All missing data methods, including the complete case analysis, demonstrate comparable

results when it comes to the estimates of the sample selection mechanism (Table VI). Such

finding should not come as a surprise, given that the affected variable Y is by simulation design

not part of the model for I. That is, I and Y are conditionally independent and thus the

missingness is MAR. In such situation, it is well known that even standard statistical methods

are able to produce valid estimates (see Equation 2.1).

4.4 Simulation of Case 3 Survey

An extension of the survey settings illustrated in the previous section is when the covariates

set is only partially observable among the non-samples. Take for instance, current income of

household head, months of pregnancy and the accumulated antenatal care, number of ongoing

postnatal visits following a recent delivery, any medical problem in the previous two weeks, and

other health or socioeconomic status that is very dynamic in nature. It is understandable if

they are not part of the population record, and only available through specific purpose surveys.

On the other hand, the more static demographic variables, such as household wealth index,

total children at the end of the year, the primary source of drinking water, the average doctor

visits for certain time point, and other similar examples, may be maintained by the local

authorities or health providers for the whole population, although they are probably missing

for some individuals or households. These are just to emphasize that such case of survey data

is possible, and can be realistic for a small, well-defined population.
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TABLE III
SIMULATION RESULTS FOR THE PARAMETERS OF INTEREST, CASE 2 (M = 1,000 REPLICATIONS;

N = 1,000 OBSERVATIONS)

Full Case Complete Case MICE Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE(ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)

β0 = 0.10 -0.02 0.09 0.20 ( 0.29) 0.20 0.42 0.45 ( 0.65) -0.01 0.13 0.24( 0.36) -0.01 0.11 0.23 ( 0.34) -0.04 0.12 0.24 ( 0.34)

β1 = -0.10 0.00 0.01 0.08 ( 0.12) -0.06 0.06 0.16 ( 0.25) -0.04 0.02 0.10( 0.15) -0.05 0.02 0.09 ( 0.14) -0.01 0.02 0.09 ( 0.14)

β2 = -0.10 0.00 0.00 0.04 ( 0.06) 0.04 0.02 0.10 ( 0.14) 0.03 0.01 0.06( 0.09) 0.04 0.01 0.06 ( 0.08) 0.01 0.01 0.06 ( 0.08)

β3 = -0.10 0.00 0.01 0.05 ( 0.07) -0.05 0.03 0.11 ( 0.16) -0.03 0.01 0.07( 0.10) -0.04 0.01 0.07 ( 0.09) -0.01 0.01 0.06 ( 0.09)

β4 = -0.10 0.00 0.00 0.03 ( 0.05) 0.05 0.02 0.09 ( 0.12) 0.04 0.01 0.06( 0.08) 0.04 0.01 0.06 ( 0.07) 0.01 0.01 0.05 ( 0.07)

β5 = -0.10 0.00 0.01 0.07 ( 0.11) 0.06 0.06 0.16 ( 0.23) -0.01 0.02 0.09( 0.14) -0.01 0.02 0.09 ( 0.13) 0.00 0.02 0.09 ( 0.13)

β6 = -0.10 0.00 0.01 0.08 ( 0.12) -0.04 0.07 0.19 ( 0.27) 0.02 0.03 0.11( 0.17) 0.02 0.03 0.11 ( 0.15) 0.01 0.03 0.11 ( 0.15)

β7 = 0.10 0.00 0.01 0.07 ( 0.10) -0.05 0.05 0.15 ( 0.22) 0.01 0.03 0.12( 0.17) 0.01 0.03 0.11 ( 0.16) 0.01 0.03 0.11 ( 0.16)

a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error.
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Figure 2. Distribution of Errors in the Parameters of Interest on Case 2 Simulation
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TABLE IV
SIMULATION RESULTS FOR THE COVARIATES PARAMETERS, CASE 2 (M = 1,000 REPLICATIONS;

N = 1,000 OBSERVATIONS)

Full Case Complete Case MICE Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)

α0 = -1.00 0.00 0.03 0.12 ( 0.17) -0.19 0.08 0.21 ( 0.21) -0.12 0.06 0.17 ( 0.21) -0.16 0.07 0.18 ( 0.20) -0.04 0.05 0.15 ( 0.20)
α1 = 1.00 0.00 0.00 0.04 ( 0.06) 0.00 0.01 0.05 ( 0.08) 0.01 0.01 0.05 ( 0.08) 0.01 0.01 0.05 ( 0.07) 0.01 0.01 0.05 ( 0.07)
α2 = -1.00 0.00 0.00 0.02 ( 0.02) 0.01 0.00 0.02 ( 0.03) 0.00 0.00 0.02 ( 0.03) 0.00 0.00 0.02 ( 0.03) 0.00 0.00 0.02 ( 0.03)
α3 = 1.00 0.00 0.00 0.02 ( 0.03) -0.01 0.00 0.03 ( 0.04) -0.01 0.00 0.03 ( 0.04) 0.00 0.00 0.03 ( 0.04) 0.00 0.00 0.03 ( 0.04)
σ2X5

= 1.00 0.00 0.00 0.03 ( . ) -0.06 0.01 0.07 ( . ) . . . ( . ) -0.07 0.01 0.07 ( 0.05) -0.07 0.01 0.07 ( 0.06)
γ0 = 0.14 -0.02 0.14 0.26 ( 0.38) -0.30 0.37 0.41 ( 0.52) -0.10 0.19 0.29 ( 0.42) -0.10 0.18 0.28 ( 0.42) -0.13 0.22 0.32 ( 0.41)
γ1 = -0.14 0.00 0.02 0.10 ( 0.16) 0.05 0.05 0.15 ( 0.21) 0.05 0.03 0.13 ( 0.18) 0.04 0.03 0.13 ( 0.18) 0.02 0.03 0.12 ( 0.17)
γ2 = -0.14 0.00 0.01 0.06 ( 0.09) -0.05 0.02 0.09 ( 0.12) -0.04 0.01 0.08 ( 0.11) -0.04 0.01 0.08 ( 0.11) 0.00 0.01 0.07 ( 0.10)
γ3 = 0.14 0.01 0.01 0.07 ( 0.10) 0.06 0.02 0.10 ( 0.14) 0.05 0.02 0.09 ( 0.12) 0.05 0.02 0.09 ( 0.12) 0.02 0.02 0.08 ( 0.12)
γ4 = 0.14 0.00 0.01 0.05 ( 0.07) -0.06 0.01 0.08 ( 0.10) -0.04 0.01 0.08 ( 0.10) -0.04 0.01 0.07 ( 0.09) -0.01 0.01 0.06 ( 0.09)
ι0 = -0.25 0.00 0.16 0.26 ( 0.41) 0.19 0.50 0.47 ( 0.67) -0.01 0.23 0.30 ( 0.48) -0.03 0.21 0.30 ( 0.47) -0.02 0.30 0.35 ( 0.46)
ι1 = 0.25 0.00 0.03 0.11 ( 0.16) -0.04 0.07 0.18 ( 0.27) -0.03 0.05 0.14 ( 0.20) -0.03 0.04 0.13 ( 0.20) -0.01 0.04 0.13 ( 0.19)
ι2 = 0.20 0.00 0.01 0.06 ( 0.09) 0.06 0.03 0.12 ( 0.16) 0.04 0.02 0.09 ( 0.13) 0.04 0.02 0.10 ( 0.13) 0.01 0.02 0.09 ( 0.12)
ι3 = 0.25 0.00 0.01 0.07 ( 0.10) -0.05 0.03 0.12 ( 0.17) -0.04 0.02 0.10 ( 0.14) -0.04 0.02 0.10 ( 0.14) -0.01 0.02 0.09 ( 0.13)
ι4 = -0.25 0.00 0.01 0.05 ( 0.07) 0.05 0.02 0.10 ( 0.12) 0.04 0.02 0.09 ( 0.12) 0.04 0.01 0.08 ( 0.11) 0.02 0.01 0.07 ( 0.11)
ι5 = 0.15 0.00 0.03 0.11 ( 0.16) 0.05 0.07 0.18 ( 0.25) -0.02 0.04 0.13 ( 0.20) -0.02 0.04 0.13 ( 0.19) -0.01 0.04 0.14 ( 0.19)
κ0 = -0.25 -0.01 0.15 0.26 ( 0.37) 0.40 0.75 0.56 ( 0.75) 0.08 0.27 0.35 ( 0.51) 0.07 0.26 0.34 ( 0.48) 0.15 0.29 0.36 ( 0.48)
κ1 = -0.10 0.00 0.02 0.09 ( 0.15) -0.06 0.09 0.19 ( 0.29) -0.05 0.04 0.13 ( 0.21) -0.04 0.04 0.13 ( 0.20) 0.00 0.04 0.12 ( 0.19)
κ2 = -0.10 0.00 0.01 0.05 ( 0.08) 0.05 0.03 0.12 ( 0.16) 0.05 0.02 0.09 ( 0.13) 0.04 0.02 0.09 ( 0.12) 0.02 0.01 0.08 ( 0.12)
κ3 = 0.10 0.00 0.01 0.06 ( 0.09) -0.06 0.04 0.13 ( 0.18) -0.05 0.02 0.10 ( 0.14) -0.04 0.02 0.10 ( 0.13) -0.02 0.02 0.09 ( 0.13)
κ4 = -0.10 0.00 0.00 0.05 ( 0.07) 0.05 0.02 0.10 ( 0.13) 0.05 0.02 0.09 ( 0.12) 0.04 0.01 0.07 ( 0.11) 0.00 0.01 0.07 ( 0.10)
κ5 = -0.10 -0.01 0.02 0.10 ( 0.14) 0.06 0.08 0.20 ( 0.27) -0.01 0.04 0.13 ( 0.20) -0.01 0.04 0.13 ( 0.19) 0.01 0.04 0.12 ( 0.19)
κ6 = -0.10 0.00 0.02 0.10 ( 0.15) -0.06 0.11 0.22 ( 0.30) 0.02 0.05 0.15 ( 0.21) 0.01 0.05 0.14 ( 0.21) 0.00 0.05 0.14 ( 0.20)
a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error; { . }, not estimated.
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TABLE V
SIMULATION RESULTS FOR THE PARAMETERS OF MISSING DATA MECHANISM, CASE 2 (M =

1,000 REPLICATIONS; N = 1,000 OBSERVATIONS)

Full Case MICE Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)

ζ0 = -0.52 -0.01 0.18 0.29 ( 0.41) 0.33 0.30 0.39 ( 0.43) 0.29 0.27 0.37 ( 0.42) 0.03 0.21 0.31 ( 0.43)
ζ1 = 0.52 0.01 0.02 0.11 ( 0.16) -0.43 0.21 0.43 ( 0.17) -0.40 0.18 0.40 ( 0.17) -0.11 0.05 0.15 ( 0.18)
ζ2 = -0.52 0.00 0.01 0.06 ( 0.09) 0.42 0.18 0.43 ( 0.11) 0.39 0.16 0.39 ( 0.11) 0.11 0.03 0.13 ( 0.12)
ζ3 = 0.52 0.00 0.01 0.07 ( 0.10) -0.43 0.19 0.43 ( 0.12) -0.40 0.16 0.40 ( 0.12) -0.11 0.04 0.12 ( 0.13)
ζ4 = -0.52 0.00 0.01 0.05 ( 0.07) 0.44 0.19 0.44 ( 0.10) 0.40 0.16 0.40 ( 0.10) 0.11 0.03 0.12 ( 0.11)
ζ5 = -0.52 0.00 0.03 0.11 ( 0.16) -0.04 0.03 0.12 ( 0.17) -0.04 0.03 0.12 ( 0.16) -0.01 0.03 0.12 ( 0.17)
ζ6 = 0.52 0.01 0.03 0.11 ( 0.16) 0.10 0.05 0.15 ( 0.18) 0.08 0.04 0.14 ( 0.17) 0.03 0.04 0.13 ( 0.18)
ζ7 = 0.52 0.01 0.02 0.10 ( 0.14) 0.03 0.04 0.13 ( 0.19) 0.03 0.03 0.12 ( 0.18) 0.02 0.03 0.12 ( 0.18)
ζ8 = 0.52 0.01 0.02 0.09 ( 0.12) 0.02 0.02 0.11 ( 0.16) 0.03 0.02 0.10 ( 0.15) 0.02 0.02 0.10 ( 0.15)
ν0 = 0.18 0.01 0.39 0.43 ( 0.61) -0.03 0.43 0.45 ( 0.66) -0.05 0.41 0.42 ( 0.73) -0.14 0.61 0.51 ( 0.84)
ν1 = 0.18 0.01 0.06 0.16 ( 0.24) 0.01 0.07 0.18 ( 0.26) 0.01 0.07 0.18 ( 0.26) 0.02 0.07 0.18 ( 0.26)
ν2 = 0.18 0.00 0.02 0.09 ( 0.13) 0.02 0.03 0.11 ( 0.17) 0.01 0.03 0.11 ( 0.16) 0.02 0.03 0.11 ( 0.16)
ν3 = 0.18 0.01 0.02 0.11 ( 0.15) -0.01 0.04 0.13 ( 0.18) 0.00 0.03 0.12 ( 0.18) -0.01 0.04 0.12 ( 0.18)
ν4 = 0.18 0.00 0.01 0.07 ( 0.11) 0.01 0.02 0.10 ( 0.15) 0.00 0.02 0.09 ( 0.14) 0.00 0.02 0.09 ( 0.14)
ν5 = -0.18 -0.03 0.05 0.15 ( 0.24) 0.17 0.04 0.17 ( 0.35) 0.18 0.04 0.19 ( 0.65) 0.35 0.82 0.39 ( 0.81)
ν6 = 0.18 -0.01 0.06 0.17 ( 0.24) 0.00 0.09 0.19 ( 0.28) -0.01 0.08 0.18 ( 0.28) -0.02 0.08 0.19 ( 0.28)
ν7 = 0.18 0.02 0.05 0.15 ( 0.22) 0.02 0.09 0.20 ( 0.30) 0.03 0.09 0.19 ( 0.29) 0.02 0.09 0.20 ( 0.29)
ν8 = 0.18 0.01 0.03 0.12 ( 0.18) 0.01 0.04 0.14 ( 0.21) 0.02 0.04 0.13 ( 0.21) 0.02 0.04 0.14 ( 0.21)
ν9 = 0.18 0.00 0.05 0.16 ( 0.23) -0.05 0.05 0.15 ( 0.23) -0.05 0.05 0.16 ( 0.23) 0.03 0.06 0.17 ( 0.24)
υ0 = -0.14 -0.01 0.27 0.36 ( 0.50) -0.02 0.28 0.35 ( 0.53) -0.03 0.27 0.34 ( 0.54) 0.08 0.56 0.40 ( 1.06)
υ1 = 0.14 0.00 0.03 0.12 ( 0.18) 0.00 0.04 0.13 ( 0.20) 0.00 0.04 0.13 ( 0.19) 0.00 0.04 0.13 ( 0.20)
υ2 = 0.14 0.01 0.01 0.07 ( 0.10) 0.00 0.02 0.08 ( 0.13) 0.00 0.01 0.08 ( 0.12) 0.00 0.02 0.08 ( 0.12)
υ3 = 0.14 0.00 0.01 0.08 ( 0.12) 0.00 0.02 0.09 ( 0.14) 0.00 0.02 0.09 ( 0.13) 0.00 0.02 0.09 ( 0.14)
υ4 = 0.14 0.00 0.01 0.05 ( 0.08) 0.01 0.01 0.07 ( 0.11) 0.01 0.01 0.07 ( 0.11) 0.01 0.01 0.08 ( 0.11)
υ5 = -0.14 -0.01 0.03 0.12 ( 0.18) -0.01 0.04 0.14 ( 0.20) -0.01 0.04 0.13 ( 0.19) -0.02 0.04 0.14 ( 0.20)
υ6 = -0.14 -0.01 0.03 0.12 ( 0.19) 0.15 0.03 0.15 ( 0.28) 0.15 0.03 0.15 ( 0.39) 0.04 0.96 0.45 ( 1.00)
υ7 = 0.14 0.01 0.03 0.12 ( 0.17) 0.01 0.05 0.15 ( 0.23) 0.01 0.05 0.15 ( 0.22) 0.01 0.05 0.14 ( 0.22)
υ8 = 0.14 0.01 0.02 0.09 ( 0.14) 0.01 0.02 0.10 ( 0.16) 0.01 0.02 0.10 ( 0.15) 0.01 0.03 0.11 ( 0.16)

Continued on next page
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TABLE V (Continued)

SIMULATION RESULTS FOR THE PARAMETERS OF MISSING DATA MECHANISM, CASE 2 (M = 1,000
REPLICATIONS; N = 1,000 OBSERVATIONS)

Full Case MICE Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)
υ9 = 0.14 0.00 0.03 0.12 ( 0.17) -0.08 0.04 0.13 ( 0.17) -0.07 0.04 0.13 ( 0.18) -0.03 0.04 0.14 ( 0.18)
υ10 = 0.14 -0.01 0.06 0.16 ( 0.25) -0.01 0.06 0.17 ( 0.25) -0.01 0.06 0.16 ( 0.25) 0.00 0.06 0.17 ( 0.26)
ω0 = -0.10 0.03 0.19 0.28 ( 0.44) 0.10 0.21 0.31 ( 0.46) 0.10 0.20 0.30 ( 0.45) 0.14 0.22 0.31 ( 0.45)
ω1 = -0.10 0.00 0.02 0.11 ( 0.15) -0.01 0.03 0.11 ( 0.16) -0.01 0.03 0.11 ( 0.16) -0.02 0.03 0.11 ( 0.16)
ω2 = -0.10 0.00 0.01 0.05 ( 0.08) 0.01 0.01 0.07 ( 0.10) 0.00 0.01 0.06 ( 0.10) 0.00 0.01 0.07 ( 0.10)
ω3 = 0.10 -0.01 0.01 0.06 ( 0.10) -0.01 0.01 0.07 ( 0.11) -0.01 0.01 0.07 ( 0.11) 0.00 0.01 0.07 ( 0.11)
ω4 = 0.10 0.00 0.00 0.05 ( 0.07) 0.01 0.01 0.06 ( 0.09) 0.00 0.01 0.05 ( 0.09) 0.00 0.01 0.05 ( 0.09)
ω5 = -0.10 0.00 0.02 0.10 ( 0.15) 0.01 0.03 0.11 ( 0.16) 0.00 0.03 0.11 ( 0.16) 0.00 0.03 0.11 ( 0.16)
ω6 = 0.10 0.00 0.02 0.11 ( 0.16) -0.01 0.03 0.12 ( 0.18) -0.01 0.03 0.12 ( 0.18) -0.02 0.03 0.12 ( 0.18)
ω7 = 0.10 0.00 0.02 0.09 ( 0.14) -0.10 0.01 0.10 ( 0.21) -0.10 0.01 0.10 ( 0.22) -0.31 0.21 0.35 ( 0.23)
ω8 = -0.10 0.00 0.01 0.08 ( 0.11) 0.00 0.02 0.09 ( 0.13) 0.00 0.02 0.09 ( 0.13) 0.00 0.02 0.09 ( 0.13)
ω9 = -0.10 0.00 0.02 0.10 ( 0.15) -0.03 0.02 0.10 ( 0.15) -0.03 0.02 0.10 ( 0.15) 0.03 0.02 0.11 ( 0.15)
ω10 = 0.10 0.00 0.05 0.15 ( 0.22) 0.01 0.05 0.14 ( 0.22) 0.01 0.05 0.15 ( 0.22) 0.03 0.05 0.15 ( 0.22)
ω11 = 0.10 0.00 0.03 0.12 ( 0.17) 0.00 0.03 0.12 ( 0.17) 0.00 0.03 0.12 ( 0.17) 0.01 0.03 0.12 ( 0.17)
a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error.

TABLE VI
SIMULATION RESULTS FOR THE PARAMETERS OF SAMPLE SELECTION MECHANISM, CASE 2

(M = 1,000 REPLICATIONS; N = 1,000 OBSERVATIONS)

Full Case Complete Case MICE Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)

δ0 = -0.50 -0.02 0.89 0.63 ( 0.92) 0.01 1.68 0.89 ( 1.24) -0.08 0.91 0.65 ( 0.95) -0.15 0.96 0.69 ( 0.95) -0.05 0.96 0.68 ( 0.95)
δ1 = 0.10 0.00 0.00 0.01 ( 0.02) 0.00 0.00 0.02 ( 0.03) 0.00 0.00 0.01 ( 0.02) 0.00 0.00 0.01 ( 0.02) 0.00 0.00 0.01 ( 0.02)
δ2 = -1.00 -0.01 0.03 0.12 ( 0.19) -0.02 0.07 0.17 ( 0.25) 0.03 0.04 0.13 ( 0.19) 0.00 0.04 0.13 ( 0.19) 0.00 0.04 0.13 ( 0.19)
δ3 = -1.00 -0.01 0.01 0.05 ( 0.07) -0.02 0.01 0.07 ( 0.10) 0.03 0.01 0.06 ( 0.08) -0.01 0.01 0.06 ( 0.08) -0.02 0.01 0.06 ( 0.08)
a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error.



85

TABLE VII
SIMULATION RESULTS FOR THE PARAMETERS OF INTEREST, CASE 3 (M = 1,000 REPLICATIONS;

N = 1,000 OBSERVATIONS)

Full Case Complete Case MICE Augmentation
Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)
β0 = 0.10 -0.02 0.08 0.20 ( 0.29) 0.20 0.48 0.48 ( 0.65) 0.01 0.12 0.23 ( 0.36) -0.03 0.11 0.23 ( 0.34)
β1 = -0.10 0.00 0.01 0.07 ( 0.12) -0.06 0.07 0.17 ( 0.26) -0.04 0.02 0.09 ( 0.15) -0.01 0.02 0.09 ( 0.14)
β2 = -0.10 0.00 0.00 0.04 ( 0.06) 0.04 0.02 0.09 ( 0.14) 0.04 0.01 0.06 ( 0.09) 0.01 0.01 0.05 ( 0.08)
β3 = -0.10 0.00 0.01 0.05 ( 0.07) -0.05 0.03 0.12 ( 0.16) -0.04 0.01 0.07 ( 0.10) -0.01 0.01 0.06 ( 0.09)
β4 = -0.10 0.00 0.00 0.04 ( 0.05) 0.05 0.02 0.09 ( 0.12) 0.04 0.01 0.07 ( 0.08) 0.01 0.01 0.05 ( 0.07)
β5 = -0.10 0.00 0.01 0.07 ( 0.11) 0.06 0.06 0.16 ( 0.24) -0.01 0.02 0.09 ( 0.14) 0.01 0.02 0.09 ( 0.13)
β6 = -0.10 0.00 0.01 0.08 ( 0.12) -0.03 0.08 0.19 ( 0.27) 0.01 0.03 0.11 ( 0.17) 0.01 0.03 0.11 ( 0.15)
β7 = 0.10 -0.01 0.01 0.07 ( 0.10) -0.07 0.05 0.15 ( 0.23) 0.00 0.03 0.11 ( 0.17) 0.00 0.02 0.11 ( 0.16)
a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error.
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Figure 3. Distribution of Errors in the Parameters of Interest on Case 3 Simulation
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TABLE VIII
SIMULATION RESULTS FOR THE COVARIATES PARAMETERS, CASE 3 (M = 1,000 REPLICATIONS;

N = 1,000 OBSERVATIONS)

Full Case Complete Case MICE Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)

α0 = -1.00 0.00 0.03 0.12 ( 0.17) -0.20 0.09 0.22 ( 0.21) -0.15 0.07 0.18 ( 0.22) -0.05 0.05 0.14 ( 0.20)
α1 = 1.00 0.00 0.00 0.04 ( 0.06) -0.01 0.01 0.05 ( 0.08) 0.00 0.01 0.06 ( 0.08) 0.00 0.01 0.05 ( 0.07)
α2 = -1.00 0.00 0.00 0.02 ( 0.02) 0.01 0.00 0.02 ( 0.03) 0.00 0.00 0.02 ( 0.03) 0.00 0.00 0.02 ( 0.03)
α3 = 1.00 0.00 0.00 0.02 ( 0.03) 0.00 0.00 0.03 ( 0.04) -0.01 0.00 0.03 ( 0.04) 0.00 0.00 0.03 ( 0.04)
σ2X5

= 1.00 0.00 0.00 0.03 ( . ) -0.07 0.01 0.07 ( . ) . . . ( . ) -0.07 0.01 0.07 ( 0.06)
γ0 = 0.14 -0.02 0.14 0.26 ( 0.38) -0.33 0.40 0.42 ( 0.52) -0.10 0.19 0.28 ( 0.42) -0.12 0.22 0.32 ( 0.41)
γ1 = -0.14 -0.01 0.03 0.11 ( 0.16) 0.06 0.05 0.14 ( 0.21) 0.05 0.04 0.13 ( 0.18) 0.02 0.03 0.12 ( 0.17)
γ2 = -0.14 0.00 0.01 0.05 ( 0.09) -0.06 0.02 0.09 ( 0.12) -0.05 0.02 0.08 ( 0.11) -0.01 0.01 0.07 ( 0.10)
γ3 = 0.14 0.01 0.01 0.07 ( 0.10) 0.07 0.03 0.11 ( 0.14) 0.06 0.02 0.10 ( 0.12) 0.03 0.02 0.08 ( 0.12)
γ4 = 0.14 0.00 0.01 0.05 ( 0.07) -0.06 0.01 0.08 ( 0.10) -0.05 0.01 0.08 ( 0.10) -0.01 0.01 0.07 ( 0.09)
ι0 = -0.25 -0.01 0.16 0.27 ( 0.41) 0.11 0.69 0.54 ( 0.83) -0.02 0.39 0.43 ( 0.62) -0.04 0.44 0.44 ( 0.57)
ι1 = 0.25 0.00 0.03 0.11 ( 0.16) -0.03 0.11 0.21 ( 0.33) -0.04 0.07 0.18 ( 0.26) -0.01 0.06 0.17 ( 0.24)
ι2 = 0.20 0.01 0.01 0.06 ( 0.09) 0.07 0.04 0.14 ( 0.19) 0.04 0.03 0.12 ( 0.17) 0.01 0.03 0.11 ( 0.15)
ι3 = 0.25 0.00 0.01 0.07 ( 0.10) -0.04 0.05 0.15 ( 0.21) -0.04 0.04 0.13 ( 0.19) -0.01 0.03 0.12 ( 0.17)
ι4 = -0.25 0.00 0.01 0.05 ( 0.07) 0.05 0.03 0.11 ( 0.16) 0.05 0.03 0.11 ( 0.16) 0.01 0.02 0.10 ( 0.14)
ι5 = 0.15 0.00 0.03 0.11 ( 0.16) 0.07 0.10 0.21 ( 0.31) -0.02 0.06 0.16 ( 0.25) -0.01 0.05 0.16 ( 0.23)
κ0 = -0.25 -0.01 0.14 0.25 ( 0.37) 0.36 0.99 0.70 ( 0.92) 0.06 0.41 0.41 ( 0.63) 0.16 0.42 0.41 ( 0.58)
κ1 = -0.10 0.00 0.02 0.10 ( 0.15) -0.08 0.13 0.23 ( 0.35) -0.06 0.07 0.17 ( 0.25) -0.02 0.06 0.15 ( 0.23)
κ2 = -0.10 0.00 0.01 0.06 ( 0.08) 0.06 0.04 0.14 ( 0.19) 0.05 0.03 0.11 ( 0.16) 0.02 0.02 0.10 ( 0.14)
κ3 = 0.10 0.00 0.01 0.06 ( 0.09) -0.06 0.06 0.16 ( 0.23) -0.05 0.03 0.12 ( 0.18) -0.02 0.03 0.11 ( 0.16)
κ4 = -0.10 0.00 0.00 0.04 ( 0.07) 0.05 0.03 0.12 ( 0.17) 0.05 0.02 0.10 ( 0.15) 0.00 0.02 0.09 ( 0.13)
κ5 = -0.10 0.00 0.02 0.09 ( 0.14) 0.08 0.11 0.22 ( 0.33) 0.00 0.06 0.15 ( 0.25) 0.02 0.06 0.15 ( 0.23)
κ6 = -0.10 0.00 0.02 0.10 ( 0.15) -0.06 0.16 0.27 ( 0.39) 0.03 0.08 0.19 ( 0.29) 0.00 0.07 0.17 ( 0.26)
a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error.
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TABLE IX
SIMULATION RESULTS FOR THE PARAMETERS OF MISSING DATA

MECHANISM, CASE 3 (M = 1,000 REPLICATIONS; N = 1,000 OBSERVATIONS)

Full Case MICE Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)

ζ0 = -0.52 0.00 0.16 0.25 ( 0.41) 0.39 0.33 0.41 ( 0.45) 0.04 0.20 0.28 ( 0.44)
ζ1 = 0.52 0.01 0.02 0.10 ( 0.16) -0.47 0.24 0.47 ( 0.18) -0.11 0.06 0.15 ( 0.18)
ζ2 = -0.52 -0.01 0.01 0.06 ( 0.09) 0.46 0.22 0.46 ( 0.12) 0.11 0.04 0.12 ( 0.12)
ζ3 = 0.52 0.01 0.01 0.07 ( 0.10) -0.47 0.23 0.47 ( 0.13) -0.11 0.04 0.13 ( 0.13)
ζ4 = -0.52 -0.01 0.01 0.05 ( 0.07) 0.48 0.23 0.48 ( 0.11) 0.12 0.04 0.12 ( 0.11)
ζ5 = -0.52 -0.02 0.02 0.11 ( 0.16) -0.05 0.03 0.12 ( 0.17) -0.02 0.03 0.12 ( 0.17)
ζ6 = 0.52 0.01 0.02 0.11 ( 0.16) 0.11 0.07 0.18 ( 0.24) 0.04 0.06 0.16 ( 0.22)
ζ7 = 0.52 0.00 0.02 0.11 ( 0.14) 0.02 0.06 0.17 ( 0.24) 0.02 0.05 0.15 ( 0.22)
ζ8 = 0.52 0.01 0.02 0.09 ( 0.12) 0.02 0.02 0.10 ( 0.15) 0.02 0.02 0.10 ( 0.15)
ν0 = 0.18 0.04 0.39 0.41 ( 0.61) 0.03 0.44 0.42 ( 0.68) -0.08 0.64 0.50 ( 0.83)
ν1 = 0.18 0.00 0.06 0.16 ( 0.24) 0.01 0.07 0.17 ( 0.26) 0.01 0.07 0.17 ( 0.26)
ν2 = 0.18 0.01 0.02 0.09 ( 0.13) 0.02 0.03 0.11 ( 0.17) 0.03 0.03 0.10 ( 0.17)
ν3 = 0.18 -0.01 0.02 0.10 ( 0.15) -0.01 0.03 0.12 ( 0.19) -0.02 0.03 0.12 ( 0.18)
ν4 = 0.18 0.00 0.01 0.07 ( 0.11) 0.00 0.02 0.10 ( 0.15) 0.00 0.02 0.10 ( 0.15)
ν5 = -0.18 -0.01 0.06 0.17 ( 0.24) 0.18 0.04 0.18 ( 0.35) 0.33 0.88 0.40 ( 0.82)
ν6 = 0.18 -0.01 0.05 0.16 ( 0.24) -0.01 0.13 0.25 ( 0.35) -0.03 0.12 0.24 ( 0.33)
ν7 = 0.18 0.00 0.05 0.15 ( 0.22) 0.02 0.13 0.23 ( 0.37) 0.02 0.12 0.23 ( 0.34)
ν8 = 0.18 0.01 0.03 0.12 ( 0.18) 0.02 0.04 0.14 ( 0.21) 0.02 0.05 0.14 ( 0.21)
ν9 = 0.18 -0.01 0.05 0.16 ( 0.23) -0.07 0.06 0.16 ( 0.23) 0.01 0.07 0.17 ( 0.24)
υ0 = -0.14 0.01 0.25 0.35 ( 0.50) 0.00 0.41 0.41 ( 0.64) 0.14 0.79 0.50 ( 1.81)
υ1 = 0.14 0.01 0.03 0.13 ( 0.18) 0.00 0.05 0.16 ( 0.23) 0.00 0.05 0.15 ( 0.23)
υ2 = 0.14 0.00 0.01 0.07 ( 0.10) -0.01 0.02 0.09 ( 0.15) -0.01 0.02 0.10 ( 0.14)
υ3 = 0.14 0.01 0.01 0.08 ( 0.12) 0.00 0.03 0.11 ( 0.16) 0.00 0.03 0.11 ( 0.16)
υ4 = 0.14 0.00 0.01 0.05 ( 0.08) 0.00 0.02 0.09 ( 0.14) 0.01 0.02 0.09 ( 0.13)
υ5 = -0.14 0.00 0.03 0.12 ( 0.18) 0.00 0.05 0.16 ( 0.23) -0.01 0.06 0.17 ( 0.23)
υ6 = -0.14 -0.01 0.04 0.13 ( 0.19) 0.16 0.04 0.17 ( 0.34) -0.02 1.14 0.46 ( 1.77)
υ7 = 0.14 0.00 0.03 0.11 ( 0.17) 0.00 0.07 0.18 ( 0.28) 0.00 0.07 0.16 ( 0.26)
υ8 = 0.14 0.01 0.02 0.08 ( 0.13) 0.01 0.02 0.10 ( 0.16) 0.01 0.02 0.10 ( 0.16)
υ9 = 0.14 -0.01 0.03 0.12 ( 0.17) -0.08 0.05 0.16 ( 0.21) -0.03 0.06 0.16 ( 0.21)
υ10 = 0.14 -0.01 0.07 0.16 ( 0.25) -0.01 0.09 0.19 ( 0.30) 0.00 0.10 0.19 ( 0.30)
ω0 = -0.10 -0.01 0.20 0.30 ( 0.44) 0.07 0.30 0.37 ( 0.56) 0.12 0.30 0.35 ( 0.53)
ω1 = -0.10 0.00 0.02 0.10 ( 0.15) 0.00 0.03 0.12 ( 0.20) -0.01 0.03 0.12 ( 0.19)
ω2 = -0.10 0.00 0.01 0.06 ( 0.08) -0.01 0.01 0.08 ( 0.12) -0.01 0.01 0.08 ( 0.12)
ω3 = 0.10 0.00 0.01 0.07 ( 0.10) 0.01 0.02 0.09 ( 0.14) 0.01 0.02 0.09 ( 0.13)
ω4 = 0.10 0.00 0.00 0.05 ( 0.07) -0.01 0.01 0.08 ( 0.12) -0.01 0.01 0.07 ( 0.11)
ω5 = -0.10 0.01 0.02 0.10 ( 0.15) 0.01 0.04 0.13 ( 0.20) 0.00 0.04 0.12 ( 0.19)
ω6 = 0.10 0.00 0.02 0.10 ( 0.16) -0.02 0.05 0.14 ( 0.23) -0.03 0.05 0.15 ( 0.22)
ω7 = 0.10 0.00 0.02 0.09 ( 0.14) -0.10 0.02 0.10 ( 0.26) -0.36 0.20 0.36 ( 0.26)
ω8 = -0.10 0.00 0.01 0.07 ( 0.11) 0.00 0.02 0.08 ( 0.13) 0.00 0.02 0.08 ( 0.13)

Continued on next page
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TABLE IX (Continued)
SIMULATION RESULTS FOR THE PARAMETERS OF MISSING DATA MECHANISM,

CASE 3 (M = 1,000 REPLICATIONS; N = 1,000 OBSERVATIONS)

Full Case MICE Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)
ω9 = -0.10 -0.01 0.02 0.10 ( 0.15) -0.04 0.03 0.12 ( 0.18) 0.03 0.03 0.12 ( 0.18)
ω10 = 0.10 0.00 0.04 0.14 ( 0.22) 0.01 0.07 0.18 ( 0.26) 0.03 0.07 0.18 ( 0.26)
ω11 = 0.10 0.01 0.03 0.11 ( 0.17) 0.01 0.04 0.13 ( 0.20) 0.03 0.04 0.13 ( 0.20)
a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error.
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TABLE X
SIMULATION RESULTS FOR THE PARAMETERS OF SAMPLE SELECTION MECHANISM, CASE 3

(M = 1,000 REPLICATIONS; N = 1,000 OBSERVATIONS)

Full Case Complete Case MICE Augmentation
Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)
δ0 = -0.50 -0.01 0.86 0.63 ( 0.92) -0.03 1.59 0.84 ( 1.24) -0.11 0.88 0.66 ( 0.96) -0.05 0.89 0.65 ( 0.95)
δ1 = 0.10 0.00 0.00 0.01 ( 0.02) 0.00 0.00 0.02 ( 0.03) 0.00 0.00 0.01 ( 0.02) 0.00 0.00 0.01 ( 0.02)
δ2 = -1.00 -0.01 0.03 0.13 ( 0.19) -0.02 0.06 0.17 ( 0.25) 0.01 0.04 0.13 ( 0.19) -0.01 0.04 0.14 ( 0.19)
δ3 = -1.00 -0.01 0.01 0.05 ( 0.07) -0.02 0.01 0.07 ( 0.10) 0.02 0.01 0.06 ( 0.08) -0.02 0.01 0.06 ( 0.08)
a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error.
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It appears, nonetheless, that the additional complexity in the Case 3 simulation has no effect

on the speed of convergence of the proposed method relative to the Case 2 simulation. The

median iteration is 72 ((Q1, Q3) = (35, 200)). Such distribution completely overlaps that of

the previous simulation. In evaluating the performance of the proposed method here, I decide

not to compare it with the augmentation-CR method. Despite having no convergence issue

in the preliminary trials, implementation of this modified algorithm almost always results in a

Louis information matrix as in Equation 3.17 which is not positive definite for some parameters.

With regard to the fraction of missing values, I observe that the actual proportion generally

follows the simulation setup, except for X7 and X8. Of course, this is mainly caused by their

extra constraint of being non-observable (Table II). The rounded average N̄Ymis
= 305 (31%),

N̄X5,mis
= 410 (41%), and N̄X6,mis

= 107 (11%). Meanwhile, N̄X7,mis
= 459 (46%), and N̄X8,mis

=

586 (59%), which are in extreme contrast to their setup value, 20% and 35%, respectively.

The average sample size of this simulation is n̄ = 695 after rounding to the closest integer.

Overall, only an average of 180 from the originally 1000 observations available for a complete

case analysis of Y and X2, · · · , X8 relationship.

The properties of the estimated parameters for the outcome model (Table VII and Figure 3),

the missing covariates distribution (Table VIII), the missing data mechanism (Table IX), and

the sampling probability (Table X) within the Case 3 simulation are largely similar to those

exhibited in the previous simulation. The proposed method overall tends to perform slightly

better than MICE, and is substantially superior to a complete case analysis. This latter ap-

proach should be avoided at all cost when estimating the parameters of interest in such case
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of survey data, particularly if it is feasible to implement a missing data technique like the

augmentation method; the estimates of a complete case analysis are very unstable (Table VII

and Figure 3), clearly due to both the non-ignorability of missingness and an extreme loss of

data with incomplete observations. As in the Case 2 simulation, however, the estimates for the

missing data mechanism based on the proposed method are not quite good for the parameters

attached to the corresponding missing covariates, particularly if the covariates are binary.

4.5 Simulation of Case 1 Survey

Traditional surveys are commonly conducted on the population of size much larger than

the total samples. This is particularly true for national surveys and a number of periodical

cross-sectional studies. Typically, the data from these surveys are only observed among the

samples. It is almost impossible to get any information about the non-samples given both the

geographical coverage of the survey and an immense population size. The sampling information

may sometimes be made available for public to access. However, the chance is much higher

that such details are provided to a limited description. For what it is worth, simulation of data

from these survey settings is critical for testing the proposed method, because they represent

the majority of survey application in the real world.

4.5.1 Situation 1: Sampling Mechanism is Known

On average, the sample size for each simulation based on Case 1 Situation 1 scenario is

about n̄ = 1283. The empirical missing observations among the samples, rounded to the

nearest integer, are n̄Ymis
= 0 (0%), n̄X5,mis

= 568 (44%), n̄X6,mis
= 125 (10%), n̄X7,mis

= 246

(19%), and n̄X8,mis
= 446 (35%). Two important things to note here. First, I use the notation
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n instead of N to refer to the use of sample size as the denominator for obtaining the actual

fraction of missing values; in the preceding scenarios, the denominator was all observations in the

simulated data. Second, all analyses concerning the incompletely observed data (complete case,

MICE, augmentation-CR, and augmentation methods) use the sampled part of the simulated

dataset, n; however, the full case analysis is implemented on all observations N. The reason

for this choice is Equation 3.7 as provided in the Methodology chapter. To elaborate, the

models shown in Table II, Equation 4.1, and Equation 4.2 under Case 1 gives rise to the joint

likelihood analog to Equation 3.6 (with notational adjustment), which in terms of estimating

the parameters of interest β, only requires the sampled part of N. For the analysis of the

relationship between Y and X2, · · · , X8 using complete cases, the study has an average of 344

observations per simulation run, or approximately 27% of samples. There is more variability

in the distribution of total iterations before convergence in the proposed method (median 51,

(Q1, Q3) = (11, 232)) as compared to the previous scenarios. It is obviously not so with the

augmentation-CR method, its modification. The latter still requires a median of 16 ((Q1, Q3)

= (14, 17)) iterations to converge, which is basically identical to its distribution in the Case

2 simulation (recall that the augmentation-CR method was not implemented in the Case 3

simulation).

I observe in this simulation that the augmentation method maintains its superiority over

an analysis based on complete cases for the estimates of β (Table XI and Figure 4) and those

of the missing covariates distribution (Table XII). It also competes well with MICE in all

estimates, including the estimated parameters of the missing data mechanism (Table XIII),
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and occasionally the augmentation method produces a better estimate than MICE. The issues

with the GLM parameters relating Rk and the corresponding missing covariate Xk, however,

remains. Removal of the weight component with constant values, which is the approach applied

on the augmentation-CR method, appears to circumvent this problem. This alternative version

of the proposed method has the benefit of producing fairly stable estimates in all fitted models

of the current simulation. Its results are in general closer to MICE than the augmentation

method. The parameters of the sample selection are not estimated here, because other than

the full case analysis, the computation only involves the sampled portion of the simulated

dataset for the reason explained above.

4.5.2 Situation 2: Sampling Mechanism is Not Known

The sample size for each run on the Case 1 Situation 2 simulation averages almost equal

to Case 1 Situation 1, where here n̄ = 1282. Such a similarity also extends to the empirical

fraction of missing data: n̄Ymis
= 0 (0%), n̄X5,mis

= 569 (44%), n̄X6,mis
= 125 (10%), n̄X7,mis

=

246 (19%), and n̄X8,mis
= 446 (35%). Note that the calculation of these missing proportions

follows the same fashion as the previous simulation. In contrast to the Case 1 Situation 1

simulation, however, all analyses (including the full case analysis) utilize the sampled part

of the simulated dataset, n. The decision to restrict the full case analysis only to samples

is to avoid redundancy. Without this restriction, the results will very likely duplicate those

of Case 1 Situation 1 regardless of it being reruns using the simulated data of the present

simulation, because of a large N. Besides, opting for n increases the comparability with the
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rest of implemented methods. There are approximately 343 observations, on average, available

for a complete case analysis of the relationship between Y and X2, · · · , X8.

Computation wise, this simulation case seems relatively more straightforward for the pro-

posed method to accomplish. Overall, it only needs a median of 13 (Q1, Q3) = (10, 77))

iterations for convergence. One may notice that across all simulation cases, this is also the

scenario of which the iteration variability of the augmentation method is the least. The speed

of convergence of its alternative algorithm, the augmentation-CR method, is interestingly not

affected at all. It still completes its estimation by a median of 16 ((Q1, Q3) = (15, 18)) itera-

tions; these numbers are almost identical to the rest of the implemented scenarios. Note that,

as stated in Section 4.2, MICE is excluded from the comparison because the current version of

R package mice does not allow for estimation using survey weight.

Table XIV and Figure 5 show the simulation results for the parameters of interest. The

estimates of all non-full case methods appear to be slightly biased either downward or up-

ward (Figure 5). Those of the proposed method, however, remain fairly close to zero for all

β̂. Table XV demonstrates the estimated parameters of the missing covariates distribution.

Table XVI shows that the proposed method struggles to estimate particularly ζ0, · · · , ζ4, ν5,

and ω7. For the rest of the R parameters, nevertheless, the estimates from the augmentation

method are generally stable.
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TABLE XI
SIMULATION RESULTS FOR THE PARAMETERS OF INTEREST, CASE 1 SITUATION 1 (M = 1,000

REPLICATIONS; N = 100,000 OBSERVATIONS; n̄ = 1,283 SAMPLED OBSERVATIONS)

Full Case Complete Case MICE Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE(ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)

β0 = 0.10 0.00 0.00 0.02 ( 0.03) 0.24 0.29 0.40 ( 0.50) 0.01 0.08 0.19( 0.28) 0.01 0.08 0.19 ( 0.28) 0.00 0.08 0.19 ( 0.28)

β1 = -0.10 0.00 0.00 0.01 ( 0.01) -0.05 0.04 0.13 ( 0.19) -0.05 0.02 0.08( 0.11) -0.05 0.02 0.08 ( 0.11) -0.05 0.01 0.08 ( 0.11)

β2 = -0.10 0.00 0.00 0.00 ( 0.01) 0.05 0.01 0.08 ( 0.11) 0.05 0.01 0.06( 0.07) 0.05 0.01 0.06 ( 0.07) 0.05 0.01 0.06 ( 0.07)

β3 = -0.10 0.00 0.00 0.00 ( 0.01) -0.06 0.02 0.09 ( 0.12) -0.05 0.01 0.06( 0.08) -0.05 0.01 0.06 ( 0.08) -0.05 0.01 0.06 ( 0.08)

β4 = -0.10 0.00 0.00 0.00 ( 0.01) 0.06 0.01 0.07 ( 0.09) 0.05 0.01 0.06( 0.06) 0.05 0.01 0.06 ( 0.06) 0.05 0.01 0.06 ( 0.06)

β5 = -0.10 0.00 0.00 0.01 ( 0.01) 0.06 0.03 0.13 ( 0.18) -0.01 0.01 0.07( 0.11) -0.01 0.01 0.07 ( 0.11) 0.00 0.01 0.07 ( 0.11)

β6 = -0.10 0.00 0.00 0.01 ( 0.01) -0.04 0.04 0.13 ( 0.19) 0.02 0.01 0.08( 0.12) 0.02 0.01 0.08 ( 0.11) 0.02 0.01 0.08 ( 0.11)

β7 = 0.10 0.00 0.00 0.01 ( 0.01) -0.06 0.03 0.11 ( 0.17) 0.01 0.02 0.08( 0.13) 0.01 0.02 0.08 ( 0.12) 0.02 0.02 0.08 ( 0.12)

a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error.
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Figure 4. Distribution of Errors in the Parameters of Interest on Case 1 Situation 1 Simulation



98

TABLE XII
SIMULATION RESULTS FOR THE COVARIATES PARAMETERS, CASE 1 SITUATION 1 (M = 1,000

REPLICATIONS; N = 100,000 OBSERVATIONS; n̄ = 1,283 SAMPLED OBSERVATIONS)

Full Case Complete Case MICE Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)

α0 = -1.00 0.00 0.00 0.01 ( 0.02) -0.01 0.04 0.14 ( 0.20) 0.03 0.05 0.15 ( 0.21) 0.01 0.04 0.14 ( 0.19) 0.02 0.05 0.15 ( 0.19)
α1 = 1.00 0.00 0.00 0.00 ( 0.01) 0.00 0.01 0.05 ( 0.07) -0.01 0.01 0.05 ( 0.08) 0.00 0.01 0.05 ( 0.07) 0.00 0.01 0.05 ( 0.07)
α2 = -1.00 0.00 0.00 0.00 ( 0.00) 0.01 0.00 0.02 ( 0.03) 0.01 0.00 0.02 ( 0.03) 0.01 0.00 0.02 ( 0.03) 0.01 0.00 0.02 ( 0.03)
α3 = 1.00 0.00 0.00 0.00 ( 0.00) -0.01 0.00 0.03 ( 0.04) -0.01 0.00 0.03 ( 0.04) -0.01 0.00 0.02 ( 0.03) -0.01 0.00 0.03 ( 0.03)
σ2X5

= 1.00 0.00 0.00 0.00 ( . ) -0.07 0.01 0.07 ( . ) . . . ( . ) -0.07 0.01 0.07 ( 0.05) -0.07 0.01 0.07 ( 0.05)
γ0 = 0.14 0.00 0.00 0.03 ( 0.04) -0.30 0.34 0.39 ( 0.49) -0.08 0.16 0.27 ( 0.39) -0.09 0.16 0.26 ( 0.39) -0.15 0.20 0.29 ( 0.38)
γ1 = -0.14 0.00 0.00 0.01 ( 0.02) 0.05 0.04 0.14 ( 0.20) 0.06 0.03 0.12 ( 0.17) 0.06 0.03 0.12 ( 0.16) 0.06 0.03 0.12 ( 0.16)
γ2 = -0.14 0.00 0.00 0.01 ( 0.01) -0.05 0.01 0.08 ( 0.11) -0.06 0.01 0.08 ( 0.11) -0.06 0.01 0.08 ( 0.10) -0.05 0.01 0.07 ( 0.10)
γ3 = 0.14 0.00 0.00 0.01 ( 0.01) 0.07 0.02 0.10 ( 0.12) 0.06 0.02 0.09 ( 0.11) 0.07 0.02 0.09 ( 0.11) 0.07 0.02 0.09 ( 0.11)
γ4 = 0.14 0.00 0.00 0.00 ( 0.01) -0.06 0.01 0.07 ( 0.09) -0.06 0.01 0.08 ( 0.09) -0.06 0.01 0.07 ( 0.09) -0.05 0.01 0.07 ( 0.09)
ι0 = -0.25 0.00 0.00 0.03 ( 0.04) 0.16 0.41 0.41 ( 0.59) -0.05 0.19 0.30 ( 0.42) -0.05 0.18 0.29 ( 0.41) -0.02 0.24 0.31 ( 0.41)
ι1 = 0.25 0.00 0.00 0.01 ( 0.02) -0.05 0.06 0.17 ( 0.23) -0.05 0.03 0.13 ( 0.18) -0.05 0.03 0.12 ( 0.17) -0.06 0.03 0.12 ( 0.17)
ι2 = 0.20 0.00 0.00 0.01 ( 0.01) 0.07 0.02 0.11 ( 0.14) 0.06 0.02 0.09 ( 0.12) 0.06 0.02 0.09 ( 0.11) 0.06 0.02 0.09 ( 0.11)
ι3 = 0.25 0.00 0.00 0.01 ( 0.01) -0.05 0.03 0.11 ( 0.15) -0.05 0.02 0.10 ( 0.13) -0.05 0.02 0.09 ( 0.12) -0.05 0.02 0.10 ( 0.12)
ι4 = -0.25 0.00 0.00 0.00 ( 0.01) 0.06 0.01 0.08 ( 0.11) 0.06 0.01 0.08 ( 0.11) 0.06 0.01 0.08 ( 0.10) 0.06 0.01 0.08 ( 0.10)
ι5 = 0.15 0.00 0.00 0.01 ( 0.02) 0.06 0.06 0.16 ( 0.22) -0.02 0.03 0.12 ( 0.17) -0.03 0.03 0.12 ( 0.17) -0.02 0.03 0.12 ( 0.16)
κ0 = -0.25 0.00 0.00 0.03 ( 0.04) 0.41 0.64 0.57 ( 0.67) 0.07 0.21 0.30 ( 0.45) 0.08 0.20 0.32 ( 0.43) 0.20 0.25 0.34 ( 0.43)
κ1 = -0.10 0.00 0.00 0.01 ( 0.01) -0.06 0.06 0.17 ( 0.25) -0.06 0.04 0.13 ( 0.18) -0.06 0.03 0.12 ( 0.17) -0.05 0.03 0.13 ( 0.17)
κ2 = -0.10 0.00 0.00 0.01 ( 0.01) 0.06 0.03 0.11 ( 0.15) 0.06 0.02 0.10 ( 0.12) 0.07 0.02 0.10 ( 0.11) 0.07 0.02 0.10 ( 0.11)
κ3 = 0.10 0.00 0.00 0.01 ( 0.01) -0.07 0.03 0.12 ( 0.16) -0.06 0.02 0.10 ( 0.13) -0.07 0.02 0.09 ( 0.12) -0.07 0.02 0.10 ( 0.12)
κ4 = -0.10 0.00 0.00 0.00 ( 0.01) 0.06 0.02 0.09 ( 0.12) 0.06 0.01 0.08 ( 0.10) 0.06 0.01 0.08 ( 0.10) 0.05 0.01 0.08 ( 0.10)
κ5 = -0.10 0.00 0.00 0.01 ( 0.01) 0.06 0.07 0.18 ( 0.24) -0.01 0.03 0.12 ( 0.18) -0.01 0.03 0.11 ( 0.17) 0.00 0.03 0.12 ( 0.17)
κ6 = -0.10 0.00 0.00 0.01 ( 0.01) -0.06 0.07 0.18 ( 0.25) 0.03 0.03 0.12 ( 0.18) 0.03 0.03 0.11 ( 0.17) 0.02 0.03 0.11 ( 0.17)
a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error; { . }, not estimated.
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TABLE XIII
SIMULATION RESULTS FOR THE PARAMETERS OF MISSING DATA MECHANISM, CASE 1
SITUATION 1 (M = 1,000 REPLICATIONS; N = 100,000 OBSERVATIONS; n̄ = 1,283 SAMPLED

OBSERVATIONS)

Full Case MICE Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)

ζ0 = -0.52 0.00 0.00 0.03 ( 0.04) 0.33 0.24 0.37 ( 0.37) 0.34 0.24 0.37 ( 0.37) 0.30 0.23 0.34 ( 0.37)
ζ1 = 0.52 0.00 0.00 0.01 ( 0.02) -0.52 0.29 0.52 ( 0.15) -0.53 0.30 0.53 ( 0.15) -0.51 0.29 0.50 ( 0.15)
ζ2 = -0.52 0.00 0.00 0.01 ( 0.01) 0.51 0.26 0.51 ( 0.10) 0.51 0.27 0.51 ( 0.10) 0.50 0.26 0.49 ( 0.10)
ζ3 = 0.52 0.00 0.00 0.01 ( 0.01) -0.52 0.27 0.52 ( 0.11) -0.52 0.28 0.52 ( 0.11) -0.50 0.27 0.50 ( 0.11)
ζ4 = -0.52 0.00 0.00 0.01 ( 0.01) 0.52 0.28 0.53 ( 0.09) 0.53 0.28 0.53 ( 0.09) 0.51 0.28 0.52 ( 0.09)
ζ5 = -0.52 0.00 0.00 0.01 ( 0.02) -0.04 0.02 0.10 ( 0.15) -0.04 0.02 0.10 ( 0.15) -0.04 0.02 0.10 ( 0.15)
ζ6 = 0.52 0.00 0.00 0.01 ( 0.02) 0.11 0.03 0.13 ( 0.15) 0.11 0.03 0.13 ( 0.14) 0.10 0.03 0.12 ( 0.14)
ζ7 = 0.52 0.00 0.00 0.01 ( 0.01) 0.02 0.03 0.11 ( 0.16) 0.03 0.03 0.11 ( 0.15) 0.03 0.03 0.11 ( 0.15)
ζ8 = 0.52 0.00 0.00 0.01 ( 0.01) 0.03 0.01 0.07 ( 0.11) 0.03 0.01 0.07 ( 0.11) 0.03 0.01 0.08 ( 0.11)
ν0 = 0.18 0.00 0.00 0.04 ( 0.06) 0.00 0.34 0.39 ( 0.61) -0.02 0.33 0.41 ( 0.70) -0.10 0.50 0.44 ( 0.81)
ν1 = 0.18 0.00 0.00 0.02 ( 0.02) 0.00 0.06 0.16 ( 0.24) 0.00 0.06 0.16 ( 0.24) 0.00 0.06 0.16 ( 0.24)
ν2 = 0.18 0.00 0.00 0.01 ( 0.01) 0.01 0.03 0.11 ( 0.16) 0.01 0.03 0.11 ( 0.16) 0.03 0.03 0.11 ( 0.16)
ν3 = 0.18 0.00 0.00 0.01 ( 0.01) -0.01 0.03 0.11 ( 0.17) -0.01 0.03 0.10 ( 0.17) -0.02 0.03 0.11 ( 0.17)
ν4 = 0.18 0.00 0.00 0.01 ( 0.01) 0.01 0.02 0.10 ( 0.15) 0.00 0.02 0.09 ( 0.14) 0.00 0.02 0.09 ( 0.14)
ν5 = -0.18 0.00 0.00 0.02 ( 0.02) 0.17 0.04 0.17 ( 0.33) 0.18 0.04 0.19 ( 0.64) 0.41 0.77 0.32 ( 0.85)
ν6 = 0.18 0.00 0.00 0.02 ( 0.02) 0.00 0.06 0.17 ( 0.25) 0.00 0.06 0.16 ( 0.24) -0.02 0.06 0.16 ( 0.24)
ν7 = 0.18 0.00 0.00 0.01 ( 0.02) 0.00 0.07 0.18 ( 0.27) 0.01 0.07 0.18 ( 0.26) 0.00 0.07 0.18 ( 0.26)
ν8 = 0.18 0.00 0.00 0.01 ( 0.02) 0.01 0.03 0.12 ( 0.17) 0.01 0.03 0.12 ( 0.17) 0.01 0.03 0.12 ( 0.17)
ν9 = 0.18 0.00 0.00 0.01 ( 0.02) -0.07 0.05 0.15 ( 0.21) -0.07 0.05 0.15 ( 0.21) -0.03 0.05 0.15 ( 0.22)
υ0 = -0.14 0.00 0.00 0.03 ( 0.05) 0.00 0.23 0.33 ( 0.49) 0.00 0.23 0.33 ( 0.50) 0.11 0.38 0.37 ( 0.75)
υ1 = 0.14 0.00 0.00 0.01 ( 0.02) 0.00 0.03 0.13 ( 0.18) 0.00 0.03 0.12 ( 0.18) 0.00 0.03 0.12 ( 0.18)
υ2 = 0.14 0.00 0.00 0.01 ( 0.01) -0.01 0.01 0.08 ( 0.12) -0.01 0.01 0.08 ( 0.12) -0.01 0.02 0.08 ( 0.12)
υ3 = 0.14 0.00 0.00 0.01 ( 0.01) 0.00 0.02 0.08 ( 0.13) 0.00 0.02 0.08 ( 0.13) 0.00 0.02 0.08 ( 0.13)
υ4 = 0.14 0.00 0.00 0.01 ( 0.01) 0.00 0.01 0.07 ( 0.11) 0.00 0.01 0.07 ( 0.10) 0.00 0.01 0.07 ( 0.10)
υ5 = -0.14 0.00 0.00 0.01 ( 0.02) -0.01 0.03 0.12 ( 0.18) -0.01 0.03 0.12 ( 0.18) -0.01 0.03 0.12 ( 0.18)
υ6 = -0.14 0.00 0.00 0.01 ( 0.02) 0.15 0.03 0.15 ( 0.24) 0.14 0.02 0.14 ( 0.36) 0.04 0.59 0.21 ( 0.68)
υ7 = 0.14 0.00 0.00 0.01 ( 0.02) 0.01 0.04 0.14 ( 0.20) 0.02 0.04 0.14 ( 0.19) 0.01 0.04 0.14 ( 0.19)

Continued on next page
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TABLE XIII (Continued)

SIMULATION RESULTS FOR THE PARAMETERS OF MISSING DATA MECHANISM, CASE 1 SITUATION 1 (M = 1,000
REPLICATIONS; N = 100,000 OBSERVATIONS; n̄ = 1,283 SAMPLED OBSERVATIONS)

Full Case MICE Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)
υ8 = 0.14 0.00 0.00 0.01 ( 0.01) 0.02 0.02 0.08 ( 0.13) 0.02 0.02 0.08 ( 0.13) 0.02 0.02 0.08 ( 0.13)
υ9 = 0.14 0.00 0.00 0.01 ( 0.02) -0.09 0.03 0.12 ( 0.15) -0.09 0.03 0.12 ( 0.16) -0.08 0.04 0.13 ( 0.16)
υ10 = 0.14 0.00 0.00 0.02 ( 0.02) -0.01 0.06 0.16 ( 0.24) -0.01 0.06 0.16 ( 0.24) 0.00 0.06 0.17 ( 0.24)
ω0 = -0.10 0.00 0.00 0.03 ( 0.04) 0.08 0.17 0.30 ( 0.42) 0.08 0.17 0.29 ( 0.42) 0.16 0.20 0.29 ( 0.42)
ω1 = -0.10 0.00 0.00 0.01 ( 0.01) -0.01 0.02 0.10 ( 0.15) -0.01 0.02 0.10 ( 0.15) -0.02 0.02 0.10 ( 0.15)
ω2 = -0.10 0.00 0.00 0.01 ( 0.01) 0.00 0.01 0.06 ( 0.10) 0.00 0.01 0.06 ( 0.09) 0.00 0.01 0.06 ( 0.09)
ω3 = 0.10 0.00 0.00 0.01 ( 0.01) 0.00 0.01 0.07 ( 0.10) 0.00 0.01 0.07 ( 0.10) 0.01 0.01 0.07 ( 0.10)
ω4 = 0.10 0.00 0.00 0.00 ( 0.01) 0.00 0.01 0.06 ( 0.09) 0.00 0.01 0.05 ( 0.08) 0.00 0.01 0.06 ( 0.08)
ω5 = -0.10 0.00 0.00 0.01 ( 0.01) -0.01 0.02 0.11 ( 0.15) -0.01 0.02 0.11 ( 0.15) -0.01 0.02 0.11 ( 0.15)
ω6 = 0.10 0.00 0.00 0.01 ( 0.02) 0.01 0.02 0.10 ( 0.15) 0.01 0.02 0.10 ( 0.15) 0.00 0.02 0.10 ( 0.15)
ω7 = 0.10 0.00 0.00 0.01 ( 0.01) -0.10 0.01 0.10 ( 0.19) -0.10 0.01 0.10 ( 0.21) -0.36 0.19 0.37 ( 0.21)
ω8 = -0.10 0.00 0.00 0.01 ( 0.01) 0.00 0.01 0.07 ( 0.10) 0.00 0.01 0.07 ( 0.10) 0.00 0.01 0.07 ( 0.10)
ω9 = -0.10 0.00 0.00 0.01 ( 0.01) -0.03 0.02 0.08 ( 0.13) -0.03 0.02 0.08 ( 0.13) 0.00 0.02 0.09 ( 0.13)
ω10 = 0.10 0.00 0.00 0.01 ( 0.02) 0.00 0.04 0.14 ( 0.20) 0.00 0.04 0.14 ( 0.20) 0.02 0.04 0.14 ( 0.21)
ω11 = 0.10 0.00 0.00 0.01 ( 0.02) 0.00 0.02 0.11 ( 0.15) 0.00 0.02 0.11 ( 0.15) 0.01 0.03 0.11 ( 0.16)
a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error.
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TABLE XIV
SIMULATION RESULTS FOR THE PARAMETERS OF INTEREST, CASE 1 SITUATION 2 (M = 1,000

REPLICATIONS; N = 100,000 OBSERVATIONS; n̄ = 1,282 SAMPLED OBSERVATIONS)

Full Case Complete Case Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE(ASE) Bias MSE MAE (ASE)

β0 = 0.10 0.00 0.11 0.22 ( 0.32) 0.27 0.43 0.45 ( 0.56) 0.04 0.11 0.22( 0.06) 0.03 0.11 0.22 ( 0.06)

β1 = -0.10 -0.01 0.02 0.08 ( 0.13) -0.06 0.06 0.17 ( 0.21) -0.06 0.02 0.09( 0.04) -0.05 0.02 0.09 ( 0.04)

β2 = -0.10 0.00 0.01 0.05 ( 0.07) 0.04 0.02 0.10 ( 0.12) 0.05 0.01 0.07( 0.13) 0.04 0.01 0.07 ( 0.13)

β3 = -0.10 0.00 0.01 0.05 ( 0.08) -0.06 0.02 0.10 ( 0.14) -0.06 0.01 0.07( 0.31) -0.05 0.01 0.07 ( 0.31)

β4 = -0.10 0.00 0.00 0.04 ( 0.06) 0.05 0.01 0.07 ( 0.10) 0.05 0.01 0.06( 0.20) 0.05 0.01 0.06 ( 0.20)

β5 = -0.10 0.01 0.01 0.08 ( 0.13) 0.07 0.05 0.15 ( 0.21) 0.00 0.02 0.08( 0.05) 0.00 0.02 0.08 ( 0.05)

β6 = -0.10 0.00 0.02 0.08 ( 0.12) -0.04 0.05 0.15 ( 0.21) 0.02 0.02 0.09( 0.05) 0.02 0.02 0.09 ( 0.05)

β7 = 0.10 0.00 0.01 0.08 ( 0.12) -0.06 0.04 0.14 ( 0.19) 0.01 0.02 0.09( 0.05) 0.01 0.02 0.09 ( 0.05)

a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error.
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Figure 5. Distribution of Errors in the Parameters of Interest on Case 1 Situation 2 Simulation
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TABLE XV
SIMULATION RESULTS FOR THE COVARIATES PARAMETERS, CASE 1 SITUATION 2 (M = 1,000

REPLICATIONS; N = 100,000 OBSERVATIONS; n̄ = 1,282 SAMPLED OBSERVATIONS)

Full Case Complete Case Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)

α0 = -1.00 0.00 0.04 0.14 ( 0.19) -0.20 0.11 0.23 ( 0.25) -0.18 0.10 0.22 ( 0.13) -0.15 0.09 0.21 ( 0.13)
α1 = 1.00 0.00 0.00 0.05 ( 0.07) -0.01 0.01 0.06 ( 0.09) -0.01 0.01 0.06 ( 0.10) 0.00 0.01 0.06 ( 0.10)
α2 = -1.00 0.00 0.00 0.02 ( 0.03) 0.01 0.00 0.03 ( 0.03) 0.01 0.00 0.03 ( 0.28) 0.01 0.00 0.03 ( 0.28)
α3 = 1.00 0.00 0.00 0.02 ( 0.04) -0.01 0.00 0.03 ( 0.05) -0.01 0.00 0.03 ( 0.70) -0.01 0.00 0.03 ( 0.70)
σ2X5

= 1.00 0.00 0.00 0.03 ( . ) -0.02 0.01 0.05 ( . ) -0.02 0.01 0.05 ( 0.09) -0.02 0.01 0.05 ( 0.09)
γ0 = 0.14 -0.01 0.19 0.30 ( 0.44) -0.28 0.45 0.45 ( 0.59) -0.09 0.24 0.34 ( 0.05) -0.14 0.27 0.36 ( 0.05)
γ1 = -0.14 -0.01 0.03 0.12 ( 0.18) 0.05 0.06 0.16 ( 0.24) 0.06 0.05 0.14 ( 0.03) 0.05 0.05 0.14 ( 0.03)
γ2 = -0.14 0.00 0.01 0.07 ( 0.10) -0.06 0.02 0.09 ( 0.13) -0.06 0.02 0.08 ( 0.10) -0.05 0.02 0.09 ( 0.10)
γ3 = 0.14 0.00 0.01 0.07 ( 0.11) 0.07 0.03 0.11 ( 0.15) 0.07 0.02 0.10 ( 0.23) 0.06 0.02 0.10 ( 0.24)
γ4 = 0.14 0.00 0.01 0.06 ( 0.08) -0.06 0.02 0.09 ( 0.11) -0.06 0.02 0.08 ( 0.15) -0.05 0.02 0.09 ( 0.15)
ι0 = -0.25 0.02 0.19 0.30 ( 0.43) 0.18 0.58 0.51 ( 0.70) -0.02 0.25 0.35 ( 0.05) 0.01 0.31 0.39 ( 0.05)
ι1 = 0.25 0.00 0.03 0.10 ( 0.17) -0.05 0.08 0.19 ( 0.27) -0.05 0.04 0.14 ( 0.04) -0.05 0.04 0.14 ( 0.04)
ι2 = 0.20 0.00 0.01 0.07 ( 0.10) 0.06 0.03 0.12 ( 0.16) 0.05 0.02 0.10 ( 0.09) 0.04 0.02 0.10 ( 0.09)
ι3 = 0.25 0.00 0.01 0.07 ( 0.11) -0.05 0.04 0.13 ( 0.18) -0.05 0.02 0.11 ( 0.26) -0.04 0.02 0.11 ( 0.26)
ι4 = -0.25 0.00 0.01 0.05 ( 0.08) 0.05 0.02 0.09 ( 0.13) 0.05 0.02 0.09 ( 0.19) 0.04 0.02 0.09 ( 0.19)
ι5 = 0.15 0.00 0.03 0.12 ( 0.17) 0.06 0.08 0.18 ( 0.27) -0.02 0.04 0.13 ( 0.04) -0.01 0.04 0.13 ( 0.04)
κ0 = -0.25 0.00 0.18 0.29 ( 0.41) 0.41 0.86 0.64 ( 0.80) 0.09 0.30 0.36 ( 0.06) 0.20 0.33 0.38 ( 0.06)
κ1 = -0.10 0.01 0.03 0.11 ( 0.16) -0.06 0.10 0.20 ( 0.30) -0.06 0.05 0.14 ( 0.04) -0.04 0.05 0.14 ( 0.05)
κ2 = -0.10 0.00 0.01 0.06 ( 0.09) 0.06 0.04 0.13 ( 0.17) 0.06 0.03 0.11 ( 0.14) 0.06 0.03 0.11 ( 0.14)
κ3 = 0.10 0.00 0.01 0.07 ( 0.10) -0.07 0.05 0.15 ( 0.19) -0.07 0.03 0.11 ( 0.32) -0.06 0.03 0.11 ( 0.32)
κ4 = -0.10 0.00 0.01 0.05 ( 0.07) 0.05 0.03 0.11 ( 0.14) 0.06 0.02 0.10 ( 0.21) 0.05 0.02 0.10 ( 0.21)
κ5 = -0.10 0.00 0.03 0.10 ( 0.16) 0.06 0.09 0.20 ( 0.29) -0.01 0.04 0.14 ( 0.05) 0.00 0.04 0.14 ( 0.05)
κ6 = -0.10 0.00 0.02 0.10 ( 0.15) -0.06 0.09 0.21 ( 0.30) 0.02 0.04 0.14 ( 0.05) 0.01 0.04 0.14 ( 0.05)
a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error; { . }, not estimated.
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TABLE XVI
SIMULATION RESULTS FOR THE PARAMETERS OF MISSING DATA

MECHANISM, CASE 1 SITUATION 2 (M = 1,000 REPLICATIONS; N = 100,000
OBSERVATIONS; n̄ = 1,282 SAMPLED OBSERVATIONS)

Full Case Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)

ζ0 = -0.52 -0.02 0.20 0.30 ( 0.45) 0.42 0.36 0.45 ( 0.05) 0.31 0.31 0.39 ( 0.05)
ζ1 = 0.52 0.01 0.03 0.11 ( 0.17) -0.53 0.30 0.52 ( 0.04) -0.44 0.24 0.46 ( 0.04)
ζ2 = -0.52 -0.01 0.01 0.07 ( 0.10) 0.51 0.27 0.51 ( 0.10) 0.43 0.22 0.47 ( 0.10)
ζ3 = 0.52 0.01 0.01 0.07 ( 0.11) -0.52 0.28 0.52 ( 0.25) -0.43 0.22 0.47 ( 0.25)
ζ4 = -0.52 -0.01 0.01 0.06 ( 0.08) 0.53 0.28 0.53 ( 0.17) 0.44 0.23 0.50 ( 0.17)
ζ5 = -0.52 0.00 0.03 0.12 ( 0.17) -0.04 0.03 0.12 ( 0.04) -0.03 0.03 0.12 ( 0.04)
ζ6 = 0.52 0.01 0.03 0.11 ( 0.16) 0.11 0.04 0.13 ( 0.04) 0.08 0.04 0.13 ( 0.04)
ζ7 = 0.52 0.01 0.02 0.11 ( 0.15) 0.03 0.04 0.13 ( 0.03) 0.03 0.04 0.13 ( 0.03)
ζ8 = 0.52 0.01 0.02 0.09 ( 0.13) 0.03 0.02 0.10 ( 0.03) 0.02 0.02 0.10 ( 0.03)
ν0 = 0.18 0.03 0.48 0.49 ( 0.69) -0.01 0.51 0.49 ( 0.03) -0.12 0.63 0.54 ( 0.03)
ν1 = 0.18 0.00 0.07 0.17 ( 0.26) 0.00 0.08 0.19 ( 0.02) 0.00 0.09 0.19 ( 0.02)
ν2 = 0.18 0.00 0.02 0.10 ( 0.15) 0.02 0.04 0.13 ( 0.06) 0.03 0.04 0.13 ( 0.06)
ν3 = 0.18 0.01 0.03 0.11 ( 0.17) -0.01 0.04 0.13 ( 0.15) -0.01 0.04 0.14 ( 0.15)
ν4 = 0.18 0.00 0.02 0.08 ( 0.12) 0.00 0.03 0.12 ( 0.10) 0.00 0.03 0.12 ( 0.10)
ν5 = -0.18 -0.02 0.08 0.19 ( 0.27) 0.17 0.04 0.19 ( 0.04) 0.39 0.61 0.30 ( 0.04)
ν6 = 0.18 -0.01 0.06 0.18 ( 0.25) 0.00 0.09 0.20 ( 0.02) -0.02 0.09 0.20 ( 0.02)
ν7 = 0.18 -0.01 0.06 0.16 ( 0.24) 0.00 0.11 0.21 ( 0.02) 0.00 0.11 0.21 ( 0.02)
ν8 = 0.18 0.02 0.05 0.14 ( 0.21) 0.02 0.05 0.14 ( 0.02) 0.02 0.05 0.14 ( 0.02)
ν9 = 0.18 0.01 0.06 0.17 ( 0.25) -0.06 0.06 0.17 ( 0.02) -0.01 0.06 0.16 ( 0.02)
υ0 = -0.14 0.01 0.32 0.38 ( 0.56) 0.01 0.34 0.40 ( 0.04) 0.12 0.57 0.42 ( 0.04)
υ1 = 0.14 0.00 0.04 0.13 ( 0.20) -0.01 0.05 0.14 ( 0.03) -0.01 0.05 0.15 ( 0.03)
υ2 = 0.14 0.00 0.01 0.08 ( 0.11) 0.00 0.02 0.10 ( 0.08) 0.00 0.02 0.10 ( 0.08)
υ3 = 0.14 0.00 0.02 0.09 ( 0.13) -0.01 0.02 0.11 ( 0.20) -0.01 0.03 0.12 ( 0.20)
υ4 = 0.14 0.00 0.01 0.06 ( 0.09) 0.01 0.02 0.09 ( 0.13) 0.01 0.02 0.09 ( 0.13)
υ5 = -0.14 -0.01 0.04 0.13 ( 0.21) -0.01 0.05 0.15 ( 0.03) -0.01 0.05 0.15 ( 0.03)
υ6 = -0.14 -0.01 0.04 0.13 ( 0.20) 0.15 0.03 0.14 ( 0.04) 0.02 0.72 0.19 ( 0.04)
υ7 = 0.14 0.00 0.04 0.13 ( 0.18) 0.01 0.06 0.17 ( 0.03) 0.00 0.06 0.17 ( 0.03)
υ8 = 0.14 0.02 0.03 0.11 ( 0.15) 0.02 0.03 0.11 ( 0.03) 0.02 0.03 0.11 ( 0.03)
υ9 = 0.14 0.00 0.04 0.13 ( 0.19) -0.08 0.04 0.14 ( 0.03) -0.06 0.05 0.15 ( 0.03)
υ10 = 0.14 -0.01 0.09 0.17 ( 0.28) -0.01 0.09 0.17 ( 0.04) 0.00 0.09 0.18 ( 0.04)
ω0 = -0.10 0.03 0.25 0.31 ( 0.49) 0.12 0.27 0.35 ( 0.05) 0.19 0.30 0.37 ( 0.05)
ω1 = -0.10 0.00 0.03 0.11 ( 0.16) 0.00 0.03 0.12 ( 0.03) -0.01 0.03 0.12 ( 0.03)
ω2 = -0.10 0.00 0.01 0.07 ( 0.09) 0.00 0.01 0.08 ( 0.10) -0.01 0.01 0.08 ( 0.10)
ω3 = 0.10 0.00 0.01 0.07 ( 0.11) 0.00 0.02 0.08 ( 0.24) 0.00 0.02 0.08 ( 0.24)
ω4 = 0.10 0.00 0.01 0.05 ( 0.08) 0.00 0.01 0.07 ( 0.16) 0.00 0.01 0.07 ( 0.16)
ω5 = -0.10 -0.01 0.03 0.12 ( 0.17) -0.01 0.03 0.12 ( 0.04) -0.01 0.03 0.12 ( 0.04)
ω6 = 0.10 0.00 0.03 0.11 ( 0.16) -0.01 0.04 0.13 ( 0.04) -0.02 0.04 0.13 ( 0.04)
ω7 = 0.10 0.00 0.02 0.10 ( 0.15) -0.10 0.01 0.10 ( 0.04) -0.34 0.18 0.35 ( 0.04)

Continued on next page
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TABLE XVI (Continued)
SIMULATION RESULTS FOR THE PARAMETERS OF MISSING DATA MECHANISM,
CASE 1 SITUATION 2 (M = 1,000 REPLICATIONS; N = 100,000 OBSERVATIONS; n̄ =

1,282 SAMPLED OBSERVATIONS)

Full Case Augmentation-CR Augmentation

Parameter Bias MSE MAE (ASE) Bias MSE MAE (ASE) Bias MSE MAE (ASE)
ω8 = -0.10 0.00 0.02 0.08 ( 0.12) 0.00 0.02 0.07 ( 0.03) 0.01 0.02 0.08 ( 0.03)
ω9 = -0.10 0.00 0.03 0.11 ( 0.16) -0.03 0.03 0.11 ( 0.03) 0.01 0.03 0.11 ( 0.03)
ω10 = 0.10 -0.01 0.06 0.16 ( 0.24) 0.00 0.06 0.16 ( 0.04) 0.02 0.06 0.16 ( 0.04)
ω11 = 0.10 0.00 0.03 0.12 ( 0.18) 0.00 0.03 0.12 ( 0.04) 0.01 0.04 0.13 ( 0.04)
a MSE, mean squared error; MAE, median absolute error; ASE, asymptotic standard error.
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Figure 6. Distribution of Errors in the Parameters of Interest on All Survey Cases for the Augmentation Method
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Figure 6 sums up the results using the proposed method in terms of the parameters β on all

simulated cases. Those of Case 2 and 3 are the least biased estimates. In Case 1, the estimates

seem to behave reasonably, although not as good as in the previous two survey classes.

4.6 Discussion

I present in this chapter the simulation studies of survey data with non-ignorable missing

covariates. Three classes of survey data are defined: those of which none (Case 1), all (Case

2), or some (Case 3) of the covariates are observable outside the samples. For Case 1, two

situations regarding data analyst’s knowledge of sampling design are devised and simulated.

These includes such situations where the functional form of sample selection is known (Situation

1) and when it is not(Situation 2). The purpose of these exercises is to evaluate the performance

of the proposed method, which concerns a procedure for analyzing survey data with missing

covariates based on the likelihood approach. This procedure, termed the augmentation assisted

EM algorithm, or simply the augmentation method, is argued to have the desirable properties

of the maximum likelihood estimation, while flexible enough to handle both continuous and

categorical missing covariates, and can adapt the use of survey weight to improve inference.

Overall, the proposed method indicates a reliable performance throughout all classes of

survey data that are evaluated. In terms of unbiasedness of β̂, the estimated parameters of

interest, it tends to produce a bias closer to zero than the multiple imputation technique MICE

particularly in Case 2 and Case 3, and is generally far superior to a complete case analysis.

The same is true for the nuisance parameters. Note, however, that it may be unusual for

practitioners to apply MICE for estimating the whole ”true” parameters of a joint missing
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data likelihood; MICE is conceptually opposing the joint likelihood approach (13; 19; 17), and

its algorithm proceeds by creating parameters for the fully conditional models that may not

correspond to the true parameters in the joint distribution of the missing data. I use MICE

for computing the nuisance parameters merely for a comparison purpose. The efficiency of

the proposed method appears to be comparable with MICE, but of course, extremely better

than a complete case analysis. These findings are a good showcase of the relative benefits from

applying the proposed method on a survey dataset in the presence of potentially non-ignorable

missing covariates. One of the possible reasons for the good behavior of the proposed method

is related to its implementation of a maximum likelihood approach. Another is the use of

an artificially complete dataset obtained through augmentation, which facilitates a convenient

application of the EM algorithm. In addition, a correct specification of the joint missing data

likelihood during the simulation may also eventually be instrumental to the proposed method

achieving good results.

It is open for argument that after all, the proposed method in these simulation studies

does not really show its edge against the established MICE. But this is a classic debate of

choosing between maximum likelihood versus multiple imputation. Both are acknowledged

to have attractive statistical properties (30). As I put forth in the literature review, however,

MICE is in general vulnerable to models incompatibility and thus, it lacks the theory to support

its use. Like any multiple imputation method, it also entails far more analysis decisions, such

as the choice of iterative algorithm, imputation model for each incomplete variable, number

of data replications, total iterations, and prior distribution. The proposed method, on the
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other hand, is built on a well-known theoretical basis and fairly straightforward to implement.

Moreover, given the same set of data, the proposed method will produce an identical result;

this will not necessarily be the case for MICE.

An area where the proposed method seems to struggle with is the estimation of param-

eters with the variable consisting of constant values. Under the non-ignorable missingness

framework, this relates to the model for the missing data mechanism. In particular, while the

missing covariate is augmented with all or most likely values, its missing data indicator remains

constant (in the notation of this chapter, Rik = 0). To circumvent this problem, I make a slight

modification in the algorithm. There is no change in assumption of the joint distribution for

the non-ignorable missing data; however, the weight component containing the missing data

mechanism for the corresponding missing covariate is selectively removed from the conditional

distribution of missing covariate given the observed data (that is, the missing data weight, see

Equation 4.5 for example) during the iteration of the EM algorithm. This approach, which I

named the augmentation-CR method, appears to address the issue well. The estimates based

on this modification for Case 1 and Case 2 are quite promising, sitting between the augmen-

tation method itself and MICE with regard to performance. Most importantly, it achieves

convergence substantially faster than the augmentation method, where the gain is relatively

stable across the cases it was tested. It thus is a good option when computation time is of great

concern. Unfortunately, the augmentation-CR method lacks the ability of obtaining a valid

variance estimate via Louis method (86) in the simulation of Case 3. Perhaps an alternative
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procedure using, for instance, bootstrap or other techniques, may help solving such variance

estimation problem in the future.

Several aspects of the presented studies may limit the generalizability of the results. To begin

with, a simulation is what the word suggests. It is artificial and may not necessarily represent

the real world scenario. I partly address this concern in the next chapter, by extending the

application of the proposed method and its competing approaches into a real survey datasets and

re-contrasting the performance. Another limitation is that, despite the number of replications,

these simulation studies can not cover all possible scenarios for each case and situation of survey

data with non-ignorable missing covariates. What I try to accomplish is establishing the relative

benefits of the proposed method for some sensible and likely scenarios of survey data in the

real world settings, particularly within the realm of health care, public health, and medicine.

This explains the selection of variables and their distribution in the simulation studies. Finally,

the findings are obtained under the constraint that the joint distribution of the missing data

is correctly specified. This is probably an unrealistic assumption, but not impossible in the

analysis of survey data.



CHAPTER 5

REAL DATA APPLICATION: HOUSEHOLD DETERMINANTS OF

INFANT MORTALITY IN INDONESIA

I demonstrate in this chapter the application of the proposed augmentation method for

handling missing data on an actual survey dataset. Data of the Indonesia Demographic and

Health Survey (IDHS) of 2012, as mentioned in Chapter 1, motivate the proposed method and

thus I use them for this illustration. The analysis also has a secondary objective of identifying

the household-level determinants of infant mortality in Indonesia.

Infant mortality refers to the death of a child before one year of age (or, less than exact

12 months) (4). It can be further specified into perinatal (death of fetus in 22 weeks gestation

to birth, or newborn during the first seven days postpartum), neonatal (death within 28 days

after birth), or post-neonatal (death between 29 days and exact age 1) mortality, depending on

the study objective and data quality. The occurrence of infant mortality is well documented

in children with infections (such as acute respiratory infection and diarrhea) (128), premature

birth and low birth weight (128; 129), complications during delivery (128), and tight birth

spacing (130; 131). Household socioeconomic status has been also suggested to be a determinant

(132; 133; 134; 135). Infant mortality is an important indicator for monitoring public health

programs and policies (4).

At the Millennium Summit of 2000, 191 members of the United Nations (UN) and at least 22

international organizations committed to achieve the Millennium Development Goals (MDGs)

111
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by 2015. Goal 4, which was the reduction of child mortality, had fostered the global effort to

achieve the set objective of reducing child mortality rates, including infant mortality, by two-

thirds between 1990 and 2015. As of 2016, the UN has replaced MDGs with the Sustainable

Development Goals (SDGs). Goal 3 of SDGs is about ensuring healthy lives and promoting

well-being for all at all ages, where one of the targets is to end preventable deaths of newborns

and children under 5 years of age by 2030.

The Republic of Indonesia is an archipelago country with approximately 17,000 islands. It

lies between Asia and Australia, bounded in the north by the South China Sea and the Pacific

Ocean, in the east by the Pacific Ocean, and in the south and west by the Indian Ocean. Over

80 percent of the country’s territory is water, leaving a total land area of about 1.9 million

square kilometers. Indonesia has a tropical climate with two seasons throughout the year: the

dry season in May to October, and the rainy season in November to April. Administratively,

this country is divided into provinces. Each province has districts and municipalities. Below

them, there are subdistricts, which in turn are also divided into villages. In 2012, Indonesia

consisted of 33 provinces, 399 districts and 98 municipalities, 6,793 subdistricts, and 79,075

villages. The population size was 237.6 million in the 2010 Census, making Indonesia the fourth

most populous country after the Peoples Republic of China, India, and the United States of

America. An estimated 118.3 million (50 %) of the population lived in urban areas. The average

annual growth rate of population between 2000 and 2010 was 1.44 %. Nationally in 2010, the

population density was 124 persons per square kilometer.
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Over the years, there have been seven national surveys conducted in Indonesia under the

auspices of the Demographic and Health Surveys program. These include the National In-

donesia Contraceptive Prevalence Survey of 1987, and the Indonesia Demographic and Health

Survey (IDHS) of 1991, 1994, 1997, 2002-03, 2007, and 2012. Originally, the surveys only

covered ever-married women aged 15-49. Since 2002-2003, however, IDHS started to sample

currently married men aged 15-54, and never-married women and men aged 15-24. Then in

the IDHS of 2012, the survey included all women aged 15-49 regardless of the marital status.

The childhood mortality rates, which include the infant (and all its sub-classifications), the

child (12-59 months), and the under-five (from birth to 59 months) mortality rates, have been

computed and reported since the IDHS of 1991.

The infant mortality rate in the five-year period preceding the survey as recorded by the

IDHSs show a gradual decline from 68 deaths per 1,000 live births in the IDHS of 1991 to 32

deaths per 1,000 live births in the IDHS of 2012. While this reduction seems descent, the rate

barely moves in the last three IDHSs: 35, 34, and 32 deaths per 1,000 live births, respectively,

in the IDHS of 2002-2003, 2007, and 2012. The target of MDGs Goal 4, in particular, was 23

deaths per 1,000 live births by 2015. A stagnant reduction in the recent years is acknowledged in

the 2012 IDHS report (4). It is suggested that the knowledge about the factors associated with

infant mortality has to be updated such that a further mortality reduction can be satisfactorily

achieved.

The choice of household level in this analysis is almost heuristic. However, there are several

reasons that may justify its use instead of the individual child level. First, the IDHS sampled
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households; all births within the selected household are simply included. Accordingly, it is safer

to assume independence at the household level than at the individual child level. Second, the

information about wealth index, access to water sources and sanitation facilities, and residence,

to name a few, which have been suggested as the determinants of childhood mortality in the

previous studies (134; 135), are household measurements in IDHS, and thus, it is more natural

to do the analysis at the household level. Third, a number of individual-level variables that may

be used as proxies for the leading causes of infant mortality, including any presence of upper

respiratory tract infection and diarrhea, and vaccination history (135; 128), are only collected

among living children in the IDHS. Aggregation of these events into the households will certainly

allow a convenient use of such information. And perhaps the most compelling reason, which is

related to the second and third, is the structure of the IDHS of 2012 data. Information about

each child was recorded in varying details in the original datasets. Survival status and age

at death (if applicable), for instance, were collected for all live births, but the data related to

pregnancy and delivery of a child was only available for children born in the last five years.

Meanwhile, certain pieces of information such as the presence of any infection and vaccination

history were by design limited to children born in the last five years who were still alive at the

time of survey. Thus, it is quite complicated to take advantage of all relevant information about

infant mortality in the IDHS of 2012 data if the analysis is set on the individual child level.

Presentation of this chapter follows the following organization. Section 2 describes the

overview of the methodology used for analysis, which includes the variables, assumption of

the outcome, the covariates, and the missing data models, and the competing techniques for
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analyzing the missing data. Section 3 presents the results. And finally, Section 4 discusses

the results with respect to the performance of the proposed methods, and the determinants of

infant mortality in Indonesia.

5.1 Methods

There were 43,852 households sampled in the IDHS of 2012. Of them, 29,648 households had

a record of at least one live birth. The analysis, however, was restricted on the 22,809 households

of which the child was born in the last 10 years prior to the survey. I opted for this study

population following the IDHS recommendation. In their report (4), the investigators of the

IDHS of 2012 recommended using a 10-year period preceding the survey for analysis involving

stratification by covariates, to ensure the stability of infant mortality estimates; without any

stratification, they suggested it fine to use a shorter, 5-year period preceding the survey.

The outcome of interest was the number of children died before their first birthday within the

household. Thus, a count variable. For covariates, a list of potential variables were considered

based on their relevance and the findings of the previous studies (134; 135; 128). Appendix A

shows these variables together with their description that include, if applicable, the approach

to aggregate them into the household level. Selection of covariates for the outcome was then

conducted in a stepwise forward fashion. While significance of the variables and both AIC and

BIC values were important factors, the ultimate goal of the covariates selection was obtaining

the most parsimonious model that still allowed illustration of the proposed method (that is,

some of the covariates, preferably consisted of both continuous and categorical variables, were

subject to missing observations), and was able to represent three domains of interest, which
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were household characteristics, health-related factors, and birth history. Table XVII shows the

selected covariates. Two of them, preceding birth interval and baby weight at birth, were missing

in 27.8% and 43.8%, respectively, of the households. It is quite reasonable to assume that their

missingness was non-ignorable. For instance, the households might fail to keep a record and

thus to report the birth weight when they thought it was usual or normal weight. This is

very likely in home deliveries or births by a non-skilled attendant, which are still prevalent in

Indonesia. On the other hand, it would not be surprising if the households held the information

about the unusual or abnormal birth weight due to fear of humiliation. In terms of preceding

birth intervals, the value of 0 was missing by design for the household having single births and

twins. Also, a few households might have a problem to recall it because the births were too far

apart.

It is obvious that the missing data in this analysis fits the description of Case 1 in Chapter 3.

That is, information about the outcome and covariates is available only for the samples, while

the values of some covariates among these samples are also subject to presumably non-ignorable

missingness. The likelihood-based inference of the outcome and covariates relationship, there-

fore, needs to follow Equation 3.6.



117

TABLE XVII
LIST OF COVARIATES IN THE OUTCOME MODEL

Variable Short Description Type Distribution nobs nmis ( %)

Residence Residence: urban, rural Categorical Binomial 22,809 0 ( 0.0)

Wealth index Category of wealth index:
poorest, poorer, middle,
richer, richest

Categorical Multinomial 22,809 0 ( 0.0)

Median children Median of total children ever
born to each woman in the
household

Categorical Poisson 22,809 0 ( 0.0)

Children ≤ 5 yr Total children aged 5 or less
in the household

Categorical Poisson 22,809 0 ( 0.0)

Diarrhea/URTIa Any child with diarrhea or
URTI in past 2 weeks: yes, no

Categorical Binomial 22,809 0 ( 0.0)

Vaccination Any child with any vaccina-
tion: yes, no

Categorical Binomial 22,809 0 ( 0.0)

Preceding birth Median preceding birth inter-
val of children in the house-
hold (in log-scale)

Continuous Normal 16,478 6,331 (27.8)

Baby weight Mean weight at birth of chil-
dren in the household, cate-
gorized as: normal, abnormal
(small/large)

Categorical Binomial 12,809 10,000 (43.8)

a URTI, upper respiratory tract infection.



118

I considered a Poisson GLM for modeling the outcome yi = the number of infant deaths in

household i given the covariates Xi and the unknown quantities β = (β0, ..., β8)
′. X included

all the variables in Table XVII. Hence,

log
(
E[yi|xi;β]

)
=β0 + β1residencei + β2wealth indexi + β3total childreni+

β4total under5i + β5diarrhea URTIi + β6vaccinationi+

β7preceding birthi + β8baby weighti

(5.1)

where residencei ∈ {urban, rural}, baby weighti =∈ {abnormal, normal}, and β2 = (β21, β22,

β23, β24)
′ were the parameters of the dummy variables created for each category of wealth index

minus the reference (poorest), which consisted of poorer, middle, richer, and richest categories.

A sequence of one-dimensional conditional distributions was then constructed for the joint

distribution of the missing covariates. In particular, I conditioned them on the other covariates

that were fully observed among the samples. Thus,

f(xmis,i | xobs,i;α) =

f(baby weighti | preceding birthi, residencei,wealth indexi, total childreni,

total under5i, diarrhea URTIi, vaccinationi;α2) ×

f(preceding birthi | residencei,wealth indexi, total childreni,

total under5i, diarrhea URTIi, vaccinationi;α1).

(5.2)
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The distributional assumption for baby weight and preceding birth (in log-scale) as stated

in Table XVII was used to specify the conditional distributions, each with its canonical link

function in GLM (logit for binomial, identity for Gaussian).

Let R = (R1,R2) be an indicator matrix of the two missing covariates. Rik = 1 represents

the situation when Xik are observed for household i while Rik = 0 otherwise, and k = 1, 2

respectively indexes preceding birth and baby weight. Following Equation 3.5, I structured

the joint distribution of the missing data mechanism also as a sequence of one-dimensional

conditional distributions and depending on both the outcome and covariates. Hence,

f(ri | yi, xi;γ) =

f(ri2 | ri1, yi, baby weighti, preceding birthi, residencei,wealth indexi, total childreni,

total under5i, diarrhea URTIi, vaccinationi;γ2) ×

f(ri1 | yi, baby weighti, preceding birthi, residencei,wealth indexi, total childreni,

total under5i, diarrhea URTIi, vaccinationi;γ1).

(5.3)

There were two approaches taken with regard to the sample selection model pi ≡ Pr{i ∈ S },

where S denoting the sample set. First, assuming the information about sampling mechanism

in the IDHS of 2012 report was complete, I set

pi = f(Ii = 1|residencei, provincei;δ),
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where Ii = 1 indicating the household i ∈ S . Second, I supposed that I decided instead to rely

on the weight variable wi (sampling weighted approach), which was available for all i ∈ S in

the IDHS, based on the argument that only the original investigators knew the true functional

form of pi. The first approach operated under Situation 1 in the model development of Chapter

3, while the second was analog to Situation 2 of the same chapter. In both approaches, as

demonstrated by Equation 3.7 and Equation 3.8, estimation of the parameters of interest β may

proceed without the need of modeling pi. However, because the IDHS report clearly mentioned

urban/rural classification of the household’s residence as part of the sampling stratification (and

thus, it should be part of the IDHS weight model), the variable residence in Table XVII was

removed from the covariates in the second approach.

The likelihood-based estimation of the parameters was conducted using the data augmen-

tation algorithm outlined in Section 3.6 of Chapter 3. Its computational modification, the

augmentation-CR method, where the component with constant values is removed from the joint

distribution during estimation, was also implemented for comparison. The convergence criterion

for both augmentation algorithms was set as
∥∥θ(t+1)XY −θ

(t)
XY

∥∥2 < 10−3, where θ ′XY = (α ′,β ′), and

t was the iteration index. A stricter convergence criterion tended to increase the computation

time exponentially but subtly improved the estimates. Separate estimates were obtained for

the two assumptions of sample selection mechanism as mentioned above. Additionally, I per-

formed a complete-case analysis in both sampling assumptions, and MICE estimation for the

models where the sample selection was assumed known. It should be noted that the underlying

assumption of the missing data mechanism is MCAR in the complete-case analysis, and MAR
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in MICE. I conducted all data analyses in the R statistical software. For MICE, I used the

default settings of the mice library in R. This package, however, has yet provided a practical

way of using survey weight.

I also run sensitivity analyses in the likelihood-based inference to evaluate my specification of

the missing covariate distribution and the missing data mechanism against several alternatives.

This is important since there was no guarantee that the parametric forms I used were correct,

and they would not be testable using the data. To check the sensitivity of the joint modeling

scheme to the specification of the missing covariates distribution, I fixed the missing data

mechanism as it is shown in Equation 5.3 and varied the missing covariates model as follows:

XM1 : f(baby weighti | residencei,wealth indexi, total childreni,

total under5i, diarrhea URTIi, vaccinationi;α
∗
2) ×

f(preceding birthi | residencei,wealth indexi, total childreni,

total under5i, diarrhea URTIi, vaccinationi;α
∗
1)

XM2 : f(baby weighti | preceding birthi, residencei,wealth indexi,

total under5i, vaccinationi;α
∗
2) ×

f(preceding birthi | residencei,wealth indexi,

total under5i, vaccinationi;α
∗
1)

XM3 : f(baby weighti | preceding birthi,wealth indexi;α
∗
2) ×

f(preceding birthi | wealth indexi;α
∗
1).
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On the other hand, the sensitivity with regard to the specification of the missing data mechanism

was evaluated by fixing the covariates distribution in the form of Equation 5.2, while the missing

data mechanism was re-parametrized into one of the following

RM1 : f(ri2 | ri1, yi, residencei,wealth indexi, total childreni,

total under5i, diarrhea URTIi, vaccinationi;γ
∗
2) ×

f(ri1 | yi, residencei,wealth indexi, total childreni,

total under5i, diarrhea URTIi, vaccinationi;γ
∗
1)

RM2 : f(ri2 | yi, baby weighti, preceding birthi, residencei,wealth indexi,

total childreni, total under5i, diarrhea URTIi, vaccinationi;γ
∗
2) ×

f(ri1 | yi, baby weighti, preceding birthi, residencei,wealth indexi,

total childreni, total under5i, diarrhea URTIi, vaccinationi;γ
∗
1)

RM3 : f(ri1 | ri2, yi, baby weighti, preceding birthi, residencei,wealth indexi,

total childreni, total under5i, diarrhea URTIi, vaccinationi;γ
∗
2) ×

f(ri2 | yi, baby weighti, preceding birthi, residencei,wealth indexi,

total childreni, total under5i, diarrhea URTIi, vaccinationi;γ
∗
1)

RM4 : f(ri2 | ri1, yi, baby weighti, preceding birthi;γ
∗
2) ×

f(ri1 | yi, baby weighti, preceding birthi;γ
∗
1)

RM5 : f(ri2 | ri1, yi, baby weighti;γ
∗
2) × f(ri1 | yi, preceding birthi;γ

∗
1).
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Throughout the sensitivity analyses, the outcome model remained as that in Equation 5.1. Note

again that for the second approach of the sample selection mechanism (that is, the sampling

weighted modeling), the variable residence was removed from the joint distribution.

5.2 Results

Table XVIII shows the Poisson regression estimates of the log relative prevalence of infant

mortality using the complete case, MICE, the augmentation, and the augmentation-CR meth-

ods. In terms of computation, the augmentation-CR method needed much less iterations to

converge than the augmentation method: 15 versus 81. There were quite notable differences be-

tween the complete case estimates and those of the other methods. And though they generally

agreed to each other with regard to the variables significance, the estimates from the augmen-

tation method were still distinct from the augmentation-CR and MICE estimates, suggesting

that the non-ignorable assumption might have its justification.

The variables median children, total kids aged 5 or less, vaccination, preceding birth, and

baby weight were highly significant in all analyses. All methods also confirmed the significance

of residence. Contrasting with the category poorest as the reference, only the category richest

of the variable wealth index was significant in all analyses. The complete case analysis found no

significance on the other categories, but they were at least marginally significant in the other

method; MICE even determined that the contrast richer versus poorest was significant. The

augmentation method indicated a highly significant effect of the presence of diarrhea or upper

respiratory tract infection (URTI) on infant mortality, which was confirmed by MICE and the

augmentation-CR method, but was failed to detect by the complete case analysis. For every
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additional child aged 5 or less in the household, the augmentation method estimated that there

was on average a 0.262 (SE 0.039, p < 0.001) point reduction in the log relative prevalence of

infant mortality; this estimate was close to that of the augmentation-CR method (-0.258, SE

0.039, p < 0.001) and MICE (-0.247, SE 0.040, p < 0.001), but was appreciably different from

the complete case estimate (-0.932, SE 0.063, p < 0.001). For the two variables with missing

observations, the augmentation method also produced estimates that were different from the

complete case analysis: their absolute effect difference was about 0.185 and 0.495, respectively,

for preceding birth and baby weight.

Table XIX shows the survey weighted Poisson regression estimates using the complete case

and the two augmentation methods. As it was before, the augmentation-CR method required

fewer iterations than the augmentation method to converge, that is, 23 versus 67. Overall, the

conclusion about which variable was significant in the analyses assuming the sample selection

mechanism known did not change almost at all. The only difference was now all methods agreed

that none of the contrasts for the variable wealth index, except for richest versus poorest, was

significant. Another thing was the estimates in the survey weighted analyses tended to be higher

in magnitude. In a way, the survey weighted modeling can be considered as a sensitivity analysis

for a more complicated approach involving a joint distribution of the sampling probabilitiy and

the missing data model.

The apparent differences between the results of the complete case analysis and the other

methods in both inferences assuming the sample selection mechanism known and not known

raised a strong doubt about an MCAR assumption. On the other hand, the fairly distinct
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estimates of the augmentation method provided a substantial support for the non-ignorable

assumption. What still required caution was the parametric specifications of the augmentation

method, particularly of the missing data and covariates models.

Tables XXII-XXV reveal the findings from the sensitivity analyses. For the missing data

mechanism, the Poisson regression estimates seemed quite robust against the different specifi-

cations (Table XX and Table XXI). Significance of the variables did not change at all across the

alternative parameterizations, whether the sample selection was assumed known or not. The

estimated direction of effect on infant mortality was identical for all variables in both inferences,

and their magnitude of effect was reasonably close in each scenario of the sample selection. In

addition, the estimated standard errors barely changed. A similar situation was noted when

the missing data mechanism was fixed and the covariates model was varied (Table XXII and

Table XXIII). There was no change in conclusion regarding the significance of the variables

over the different specifications of the missing covariates models. This brings some confident in

interpreting the analysis results using the augmentation method.

5.3 Discussion

Survey samples are commonly selected according to the values of some potential covariates

in regression analysis. For instance, the IDHS of 2012 implements a sampling design that

involves a stratification by province and urban/rural area, and the analysis demonstrated in

this chapter uses the residential urban/rural classification of household as a covariate for the

regression model. If sample selection is only related to the covariates values, then the standard

regression methods produce valid estimates. However, this assumes a correct specification of the
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sampling probability, which in turn requires appropriate knowledge about the survey design.

Alternatively, one uses the survey weight. Standard methods may no longer be valid when

the survey data also have missing variables. To deal with such circumstances, I propose the

augmentation method, which works by augmenting the missing elements with all or certain

set of possible values, and weight the augmented data using the conditional probability of the

missing given the observed variables. This method is flexible to the missing data mechanisms,

including non-ignorable missingness. Illustration in this chapter shows that the augmentation

method is able to improve the analysis of infant mortality in Indonesia using the dataset from

the IDHS of 2012, where some of the covariates are missing most likely in a non-ignorable

fashion.

A clear gain of the augmentation method as compared to the complete case analysis is an

increased efficiency. Such an improvement proved to be substantial for the current illustration,

as it changes the significance of a variable in the outcome model. The proposed method may

have also avoided bias introduced by analyzing only the complete observations. The benchmark

method for this demonstration and one of the most popular algorithms for missing data in the

literature, MICE, produces estimated effects of the covariates that are closer to the augmenta-

tion method than the complete case analysis, which may confirm the accuracy of this proposed

method. It is important to note that in simulation studies the augmentation method competes

well with MICE. Hence, its application on survey data such as the IDHS of 2012 may overall

lead to improvement in both bias and efficiency.
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There are caveats in this real data application. First, it assumes that the functional forms

of missing data mechanisms and covariates distribution are correctly specified. Sensitivity

analyses are performed to partly address this issue by varying the parameters of the missing

data mechanisms and the missing covariate distribution. Nevertheless, verification of the models

may still require further measures, such as application of different models for the outcome,

which is a topic for future research. Second, the probability of missingness is conditioned on

the potentially missing covariates, causing the method prone to identifiability problem. This

also deserves further studies. Third, the illustrated dataset has a fully observed outcome and

a set of auxiliary variables without missing covariates, which may not hold for survey data

in general. The proposed method, however, can be readily extend to models without these

conditions.

Limitations of the study with respect to subject matter include those inherent to survey

data. Retrospective information, such as birth history in the IDHS of 2012, is notorious for its

susceptibility to recall errors. Naturally, human has a better memory for recent than distant

events. To minimize misreporting of child deaths due to recall errors, investigators of the survey

encourage a time period in the recent past where the problem of biased mortality estimates

tend to be less serious than that in a more distant past. Another limitation is that the IDHS

of 2012 only collected data on women aged 15-49 and were still living at the time of survey.

Thus, no information is available for children of those who had died. The report (4), however,

claims that the resulting bias in mortality estimates should be negligible since the difference

of fertility rates between surviving and non-surviving women in Indonesia is statistically low.
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Meanwhile, women aged 50 or older at the time of survey who gave birth during the period

under consideration (for the current illustration, ten years preceding the survey) could not

report the child’s survival status. This provides another reason to limit the time period for

mortality analysis, because as the coverage extends further into the past, censoring of survival

information becomes more severe. As a rule of thumb, the investigators of the IDHS recommend

a period of no longer than 15 years prior to the survey. They also caution not to utilize an

interval shorter than five years. The low fertility levels of this country have led to relatively

few cases of infant mortality. Accordingly, an estimate based on a very short interval tends to

be unstable.
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TABLE XVIII
POISSON REGRESSION ESTIMATES OF LOG RELATIVE PREVALENCE OF INFANT MORTALITY

AMONG HOUSEHOLDS IN INDONESIA, IDHS OF 2012

Complete Case MICE Augmentation-CR Augmentation

Variable Est SE p-value Est SE p-value Est SE p-value Est SE p-value

Intercept 4.488 0.264 <0.001 2.371 0.276 <0.001 2.697 0.217 <0.001 2.759 0.218 <0.001
Rural residence 0.227 0.089 0.011 0.151 0.069 0.029 0.157 0.067 0.019 0.162 0.067 0.016
Wealth Index: Poorest (reference)

Poorer -0.101 0.115 0.379 -0.154 0.083 0.064 -0.123 0.079 0.121 -0.134 0.079 0.089
Middle 0.020 0.119 0.870 -0.172 0.091 0.059 -0.155 0.089 0.083 -0.166 0.089 0.061
Richer 0.089 0.126 0.478 -0.207 0.101 0.041 -0.167 0.099 0.091 -0.181 0.098 0.065
Richest -0.356 0.158 0.024 -0.576 0.122 <0.001 -0.561 0.122 <0.001 -0.576 0.122 <0.001

Median children 0.149 0.024 <0.001 0.174 0.016 <0.001 0.185 0.014 <0.001 0.185 0.014 <0.001
Children ≤ 5 yr -0.932 0.063 <0.001 -0.247 0.040 <0.001 -0.258 0.039 <0.001 -0.262 0.039 <0.001
Diarrhea/URTI 0.004 0.081 0.965 0.384 0.071 <0.001 0.368 0.068 <0.001 0.356 0.068 <0.001
Vaccination -1.220 0.105 <0.001 -1.006 0.094 <0.001 -0.968 0.094 <0.001 -0.979 0.094 <0.001
Preceding birth -1.426 0.066 <0.001 -1.180 0.059 <0.001 -1.239 0.051 <0.001 -1.241 0.051 <0.001
Normal baby weight -0.659 0.108 <0.001 -0.960 0.123 <0.001 -1.136 0.095 <0.001 -1.154 0.096 <0.001

NOTE: CR, constant removed; Est, estimate; SE, standard error; URTI, upper respiratory tract infection.
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TABLE XIX
SURVEY-WEIGHTED POISSON REGRESSION ESTIMATES OF LOG RELATIVE

PREVALENCE OF INFANT MORTALITY AMONG HOUSEHOLDS IN
INDONESIA, IDHS OF 2012

Complete Case Augmentation-CRa Augmentation

Variable Est SE p-value Est SE p-value Est SE p-value

Intercept 5.224 0.408 <0.001 3.042 0.311 <0.001 3.149 0.311 <0.001

Wealth Index: Poorest (reference)

Poorer -0.007 0.147 0.960 -0.025 0.109 0.816 -0.040 0.109 0.714

Middle 0.083 0.151 0.582 -0.036 0.130 0.784 -0.051 0.130 0.694

Richer 0.150 0.160 0.350 -0.014 0.135 0.916 -0.035 0.135 0.797

Richest -0.477 0.218 0.029 -0.474 0.151 0.002 -0.497 0.151 0.001

Median children 0.138 0.036 <0.001 0.209 0.018 <0.001 0.208 0.018 <0.001

Children ≤ 5 yr -1.090 0.109 <0.001 -0.314 0.056 <0.001 -0.323 0.056 <0.001

Diarrhea/URTI 0.142 0.112 0.207 0.544 0.106 <0.001 0.521 0.106 <0.001

Vaccination -1.184 0.138 <0.001 -0.923 0.132 <0.001 -0.938 0.132 <0.001

Preceding birth -1.505 0.100 <0.001 -1.312 0.079 <0.001 -1.316 0.079 <0.001

Normal baby weight -0.860 0.144 <0.001 -1.322 0.077 <0.001 -1.356 0.084 <0.001

a CR, constant removed; Est, estimate; SE, standard error; URTI, upper respiratory tract
infection.
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TABLE XX
AUGMENTATION ESTIMATES (STANDARD ERRORS) FOR LOG RELATIVE PREVALENCE OF

INFANT MORTALITY USING SEVERAL ALTERNATIVES OF MISSING DATA MODEL

Variable RMused RM1 RM2 RM3 RM4 RM5

Intercept 2.759(0.218)*** 2.697(0.216)*** 2.798(0.218)*** 2.724(0.217)*** 2.860(0.213)*** 2.851(0.213)***

Rural residence 0.162(0.067)* 0.157(0.067)* 0.163(0.067)* 0.160(0.067)* 0.158(0.067)* 0.159(0.067)*

Wealth Index: Poorest (ref)

Poorer -0.134(0.079) -0.120(0.079) -0.137(0.079) -0.129(0.079) -0.117(0.079) -0.118(0.079)

Middle -0.166(0.089) -0.152(0.089) -0.170(0.089) -0.161(0.089) -0.148(0.089) -0.151(0.089)

Richer -0.181(0.098) -0.162(0.099) -0.185(0.098) -0.174(0.098) -0.159(0.098) -0.162(0.098)

Richest -0.576(0.122)*** -0.557(0.122)*** -0.581(0.122)*** -0.569(0.122)*** -0.565(0.122)*** -0.568(0.122)***

Median children 0.185(0.014)*** 0.187(0.014)*** 0.183(0.014)*** 0.186(0.014)*** 0.163(0.014)*** 0.161(0.014)***

Children ≤ 5 yr -0.262(0.039)*** -0.256(0.039)*** -0.264(0.039)*** -0.260(0.039)*** -0.260(0.039)*** -0.260(0.039)***

Diarrhea/URTI 0.356(0.068)*** 0.369(0.068)*** 0.353(0.068)*** 0.362(0.068)*** 0.405(0.069)*** 0.403(0.069)***

Vaccination -0.979(0.094)*** -0.962(0.094)*** -0.983(0.094)*** -0.975(0.094)*** -0.931(0.095)*** -0.936(0.095)***

Preceding birth -1.241(0.051)*** -1.247(0.051)*** -1.245(0.050)*** -1.241(0.051)*** -1.285(0.049)*** -1.284(0.049)***

Normal baby weight -1.154(0.096)*** -1.120(0.095)*** -1.156(0.097)*** -1.144(0.096)*** -1.038(0.093)*** -1.023(0.094)***

NOTE: * p < 0.05, ** p < 0.01, *** p < 0.001; ref, reference; URTI, upper respiratory tract infection.
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TABLE XXI
AUGMENTATION ESTIMATES (STANDARD ERRORS) FOR SURVEY-WEIGHTED LOG RELATIVE

PREVALENCE OF INFANT MORTALITY USING SEVERAL ALTERNATIVES OF MISSING DATA
MODEL

Variable RMused RM1 RM2 RM3 RM4 RM5

Intercept 3.149(0.311)*** 3.059(0.310)*** 3.202(0.310)*** 3.131(0.311)*** 3.193(0.302)*** 3.186(0.302)***

Wealth Index: Poorest (ref)

Poorer -0.040(0.109) -0.020(0.109) -0.044(0.110) -0.040(0.110) -0.010(0.109) -0.011(0.109)

Middle -0.051(0.130) -0.031(0.130) -0.055(0.130) -0.050(0.130) -0.021(0.129) -0.022(0.129)

Richer -0.035(0.135) -0.009(0.135) -0.039(0.135) -0.035(0.135) 0.007(0.136) 0.004(0.136)

Richest -0.497(0.151)** -0.467(0.151)** -0.504(0.151)*** -0.497(0.151)** -0.464(0.151)** -0.466(0.151)**

Median children 0.208(0.018)*** 0.210(0.018)*** 0.206(0.018)*** 0.210(0.018)*** 0.186(0.019)*** 0.184(0.019)***

Children ≤ 5 yr -0.323(0.056)*** -0.313(0.055)*** -0.325(0.056)*** -0.321(0.056)*** -0.305(0.055)*** -0.303(0.055)***

Diarrhea/URTI 0.521(0.106)*** 0.546(0.106)*** 0.514(0.106)*** 0.520(0.106)*** 0.592(0.107)*** 0.590(0.107)***

Vaccination -0.938(0.132)*** -0.915(0.132)*** -0.943(0.131)*** -0.940(0.132)*** -0.885(0.132)*** -0.890(0.132)***

Preceding birth -1.316(0.079)*** -1.323(0.079)*** -1.321(0.079)*** -1.315(0.080)*** -1.358(0.076)*** -1.358(0.076)***

Normal baby weight -1.356(0.084)*** -1.314(0.076)*** -1.362(0.086)*** -1.352(0.083)*** -1.248(0.073)*** -1.231(0.073)***

NOTE: * p < 0.05, ** p < 0.01, *** p < 0.001; ref, reference; URTI, upper respiratory tract infection.
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TABLE XXII
AUGMENTATION ESTIMATES (STANDARD ERRORS) FOR LOG RELATIVE

PREVALENCE OF INFANT MORTALITY USING SEVERAL ALTERNATIVES OF
COVARIATE MODEL

Variable XMused XM1 XM2 XM3

Intercept 2.851(0.213)*** 2.684(0.216)*** 2.512(0.217)*** 2.477(0.215)***
Rural residence 0.159(0.067)* 0.160(0.067)* 0.156(0.067)* 0.146(0.067)*
Wealth Index: Poorest (ref)

Poorer -0.118(0.079) -0.134(0.079) -0.133(0.079) -0.136(0.079)
Middle -0.151(0.089) -0.166(0.089) -0.164(0.089) -0.163(0.089)
Richer -0.162(0.098) -0.180(0.098) -0.177(0.098) -0.179(0.098)
Richest -0.568(0.122)*** -0.574(0.122)*** -0.567(0.122)*** -0.568(0.122)***

Median children 0.161(0.014)*** 0.185(0.014)*** 0.201(0.013)*** 0.205(0.013)***
Children ≤ 5 yr -0.260(0.039)*** -0.258(0.039)*** -0.253(0.039)*** -0.236(0.039)***
Diarrhea/URTI 0.403(0.069)*** 0.361(0.068)*** 0.340(0.068)*** 0.339(0.068)***
Vaccination -0.936(0.095)*** -0.977(0.094)*** -0.979(0.094)*** -1.039(0.094)***
Preceding birth -1.284(0.049)*** -1.232(0.051)*** -1.197(0.051)*** -1.192(0.051)***
Normal baby weight -1.023(0.094)*** -1.120(0.097)*** -1.155(0.096)*** -1.156(0.097)***

NOTE: * p < 0.05, ** p < 0.01, *** p < 0.001; ref, reference; URTI, upper respiratory
tract infection.

TABLE XXIII
AUGMENTATION ESTIMATES (STANDARD ERRORS) FOR

SURVEY-WEIGHTED LOG RELATIVE PREVALENCE OF INFANT MORTALITY
USING SEVERAL ALTERNATIVES OF COVARIATES MODEL

Variable XMused XM1 XM2 XM3

Intercept 3.149(0.311)*** 3.151(0.311)*** 2.844(0.316)*** 2.827(0.312)***
Wealth Index: Poorest (ref)

Poorer -0.040(0.109) -0.040(0.109) -0.039(0.110) -0.038(0.110)
Middle -0.051(0.130) -0.051(0.130) -0.045(0.131) -0.041(0.132)
Richer -0.035(0.135) -0.034(0.135) -0.028(0.134) -0.030(0.134)
Richest -0.497(0.151)** -0.497(0.151)** -0.481(0.151)** -0.479(0.151)**

Median children 0.208(0.018)*** 0.208(0.018)*** 0.229(0.017)*** 0.232(0.017)***
Children ≤ 5 yr -0.323(0.056)*** -0.323(0.056)*** -0.312(0.056)*** -0.294(0.056)***
Diarrhea/URTI 0.521(0.106)*** 0.521(0.106)*** 0.504(0.106)*** 0.503(0.106)***
Vaccination -0.938(0.132)*** -0.937(0.132)*** -0.933(0.133)*** -0.991(0.132)***
Preceding birth -1.316(0.079)*** -1.317(0.079)*** -1.264(0.081)*** -1.262(0.081)***
Normal baby weight -1.356(0.084)*** -1.357(0.084)*** -1.362(0.082)*** -1.371(0.084)***

NOTE: * p < 0.05, ** p < 0.01, *** p < 0.001; ref, reference; URTI, upper respiratory
tract infection.



CHAPTER 6

CONCLUSION AND REMARKS

6.1 Conclusion

I propose here a method to analyze survey data where the primary interest is modeling

a count outcome with potentially non-ignorable covariates. The method is particularly devel-

oped to address the limitations in standard routines of the major statistical software when

the following situations are encountered simultaneously: the model of interest has a mixture

of categorical and continuous missing covariates, the analysis needs to incorporate the sam-

pling design under different assumptions about its functional form, and there is a demand for

manageable computation time in practical sense. To meet this objective, I modify the EM

algorithm by inserting a step to augment the missing elements of data, and then weighting the

E-step with the conditional probability of the missing variables given the observed data. The

algorithm proceeds as a full likelihood procedure if the sampling probability function is known

for all observations, but it becomes a quasi-likelihood approach when instead the quantity of

survey weight is the only available information about sample selection. Thus, the proposed

method from the perspective of survey analysis may be considered as both model and design

based inference. There are three classes of survey data considered during the development,

which include those of which none (Case 1), all (Case 2), or some (Case 3) of the covariates are

observable outside the samples. Two situations are further defined on each of them, that is,

134
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whether the functional form of sample selection is known (Situation 1) or unknown (Situation

2). Given its construction, the proposed method, termed the augmentation assisted EM algo-

rithm or simply the augmentation method, retains the desirable properties of the maximum

likelihood estimates, while flexible enough to handle both continuous and categorical missing

covariates, and can adapt the use of survey weight to improve inference.

The simulation studies indicates that the proposed method performs reliably well across all

classes of survey data. In terms of unbiasedness, it is competitive with and may occasionally

outperform the multiple imputation technique MICE. Efficiency of its estimates are also compa-

rable to MICE. In the real data application using the dataset from the Indonesia Demographic

and Health Survey of 2012, the proposed method successfully estimates the demographic, health,

and birth-related factors associated with the infant mortality. Most importantly, it is able to

improve the results of complete case analyses by both correcting the magnitude of effect size

and increasing the power of analysis to detect the variable significance. Sensitivity analyses

confirm the stability of the proposed method findings.

Therefore, it can be concluded that the proposed method is a useful option for survey data

analysis where the modeling is complicated by the presence of potentially non-ignorable missing

covariates. As it has been stated earlier, the method has a particular value when along with

the mixed nature of the missing covariates, the investigator needs to account for the sampling

process, as it may be related to the covariates with missingness. And although this will also

depend on the analyst’s programming skill and the capacity of the statistical software, the

proposed method is relatively less time consuming, because there is no need for stochastic
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sampling in its computation. Such choice in turn differentiates this proposed method from

the data augmentation technique by Tanner and Wong (82). I note, in addition, that they

implicitly limit their original development to continuous variables. This method also bears

resemblance to the missing data approach promoted by Ibrahim et al. (70; 72; 2) and Lipsitz

et al. (71; 73). I have acknowledged this in the Methodology chapter. What makes the present

algorithm distinct from Ibrahim et al.’s and Lipsitz et al.’s approach is that it considers the

incorporation of sampling information from various classes of survey data.

6.2 Remarks

Applied statisticians and survey analysts may find this proposed method very useful when

dealing with missingness in a variety of survey data. The method is developed with such

investigator background in mind. It is also hoped that the findings can enrich the literature

of missing data, computational statistics, and survey analysis with respect to the addressed

issues. As the propensity for dual model and design based inference becomes more mainstream

in the statistics community, the proposed method may also provide leverage to connect the two

schools of thought.

National surveys have become an increasingly crucial source of public health data. In the

past, their extensive use might have been hampered by the question about their data quality,

the cross-sectional nature of information, a limited computing power, a lack of understanding on

how to properly handle survey data, restricted routines, and computational intensity of survey

analysis in the standard software. Yet by time all these problems seem to gradually disappear.

In fact, with the accumulation of experience among the survey administrators, continuously
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tested instruments, steadily improved and standardized procedures for data collection, along

with the traditional benefits such as wide geographical coverage and large sample size, national

surveys have grown to be the ultimate data source for many health measures. Moreover, these

surveys are normally administered by the government agencies. Hence, they are often available

for public use at no cost. Their accessibility is further accentuated by the worldwide spread of

internet, even in the most remote places on earth. It becomes, therefore, an important task to

facilitate the researchers taking the most advantages from large survey data.

Several issues, however, require further research. Identification of the parameters for missing

data mechanisms remains a big concern. If the proportion of missing data is really large, it is

perhaps not a bad idea to resort to MAR assumption. That will lead to a certain degree of

bias, but it has less problem of computation convergence. Otherwise, one may need to use other

techniques. Meanwhile, augmentation of a missing count variable using the ”most likely” values

may not always be convenient to implement. For instance, in a Poisson distributed variable

with an expected rate sufficiently far from zero, such values will cover a range that could be too

cumbersome for the algorithm to tackle. A more capable fashion of selecting the values is thus

necessary to devise. It is also advisable to improve the flexibility of the algorithm for augmenting

different types of variables without intensifying computation. A Gibbs sampler or any Monte

Carlo based sampling (71; 73; 72; 2) are great options, but their use for missing variables

consisted of categorical and continuous mixture is still an active research area. For continuous

variables, their application in general demands a more expensive computation than Gaussian

quadrature due to the need of assuring independent random draws from the joint posterior
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predictive distribution. During the method development, I have actually considered the use of

a quasi Gibbs sampler as implemented in MICE (or, the fully conditional specification approach)

to facilitate the augmentation of the missing observations. Such quasi-Gibbs sampler procedure

is relatively more flexible for various types of variables. But its use will separate the data

augmentation and the maximization into two different steps. To produce valid estimates, I need

multiple runs of EM algorithm. It is critical to recall that MICE still lacks the theory supporting

its application. Finally, the proposed method relies on inverting Louis information matrix to

obtain the variance estimates. Unfortunately, the matrix may not always be invertible for some

parameters in the joint missing data model. Louis method also requires an additional step in

the algorithm for computing the expected of squared first derivative of the Q function given

the observed data. In the future, it might be worth considering to resort to some alternative

methods such as bootstrapping or other approaches that do not need matrix inversion.
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APPENDIX

LIST OF VARIABLES CONSIDERED FOR COVARIATES IN THE REAL

DATA APPLICATION

Variable Description Level Base

Household Characteristics

Region (province) Region of residence in which the house-
hold resides. There were 33 provinces:
Aceh, North Sumatera, West Sumat-
era, Riau, Jambi, South Sumatera,
Bengkulu, Lampung, Bangka Belitung,
Riau Islands, Jakarta, West Java,
Central Java, Yogyakarta, East Java,
Banten, Bali, West Nusa Tenggara,
East Nusa Tenggara, West Kaliman-
tan, Central Kalimantan, South Kali-
mantan, East Kalimantan, North Su-
lawesi, Central Sulawesi, South Su-
lawesi, Southeast Sulawesi, Gorontalo,
West Sulawesi, Maluku, North Maluku,
West Papua, Papua.

Household All household

Residence Type of place of residence where the
household resides: urban or rural.

Household All household

Total members Total number of household members
based on the number of entries in the
household data.

Household All household

Total de jure members The number of household members that
usually lived in the household.

Household All household

Total de facto members The number of household members that
slept in the household the previous
night, including visitors.

Household All household

Total women 15-49 Total number of women aged between
15 and 49.

Household All household

Total children aged 5 or
less

Number of children resident in the
household and aged 5 and under. Vis-
iting children are not included.

Household All household

Continued on next page
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APPENDIX (Continued)

Variable Description Level Base

Median children ever born Median number of children ever born
among women aged 15-49 with any
birth in the household.

Woman Women 15-49
with any birth

Mean maternal age at first
birth

Mean age at first birth of women aged
15-49 with any birth in the household.

Woman Women 15-49
with any birth

Median living children Median number of living children of
women aged 15-49 with any birth in the
household.

Woman Women 15-49
with any birth

Mode of mother’s educa-
tion

The mode of educational attainment of
women aged 15-49 with any birth in the
household. Categorized into the follow-
ing: None, incomplete primary, com-
plete primary, incomplete secondary,
complete secondary, higher education.

Woman Women 15-49
with any birth

Wealth index category A composite measure of a household’s
cumulative living standard. The wealth
index is calculated using easy-to-collect
data on a households ownership of se-
lected assets, such as televisions and
bicycles; materials used for housing
construction; and types of water ac-
cess and sanitation facilities. Gener-
ated using principal components anal-
ysis, the wealth index first placed indi-
vidual households on a continuous scale
of relative wealth. IDHS then sepa-
rated all interviewed households into
five wealth quintiles : poorest, poorer,
middle, richer, richest.

Household All household

Wealth index score Wealth index factor score (5 decimals) Household All household

Health-related Factors

Drinking water Major source of drinking water for
members of the household. Cat-
egorized into: tap water, well,
spring/river/lake/pond, rainwater,
bottled water, refill water, and other.

Household All household

Continued on next page
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APPENDIX (Continued)

Variable Description Level Base

Time to water source Time taken to get to the water source
for drinking water. Households with
drinking water either piped to, or avail-
able from a well in, the residence, yard
or plot or who use rainwater or bottled
water, had time set to 0.

Household All household

Place to wash hands Place where household members wash
their hands: observed, not observed.

Household All household

Water source Location of source for water: in own
dwelling, in own yard/plot, or else-
where.

Household All household

Toilet facility Type of toilet facility in the household:
private/shared/public WC, pit latrine,
open area, other.

Household All household

Access to electricity Whether the household has electricity. Household All household
Own transportation vehi-
cle

Whether the household has any of
these: a bicycle, a motorcycle, or a car.

Household All household

Any child with diarrhea in
past 2 weeks

Whether any child aged 5 or less in the
household had diarrhea within the last
two weeks.

Child Living children
born in the last
5 years

Any child with fever in
past 2 weeks

Whether any child aged 5 or less in the
household had fever within the last two
weeks.

Child Living children
born in the last
5 years

Any child with a cough in
past 2 weeks

Whether any child aged 5 or less in the
household had suffered from a cough in
the last two weeks.

Child Living children
born in the last
5 years

Any child with a cough
with rapid breathing in
past 2 weeks

Whether any child aged 5 or less in
the household had suffered from rapid
breathing when he/she had the cough
in the past two weeks.

Child Living children
born in the last
5 years

Any child with diarrhea or
URTI in past 2 weeks

Whether any child in the household had
diarrhea, fever, or suffered from a cough
with or without rapid breathing in the
last two weeks.

Child Living children
born in the last
5 years

Mode of contraception use The mode of contraception use among
women 15-49 in the household: ever
vs never. Contraception was defined
broadly as the use of anything or at-
tempt to delay or avoid getting preg-
nant.

Woman All women 15-49

Continued on next page
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Variable Description Level Base

Mode of contraceptive
method

The mode of the current contraceptive
method used by women 15-49 in the
household, categorized as either a mod-
ern method, a traditional method, or a
folkloric method.

Woman All women 15-49

Proportion of children
with complete vaccination

Proportion of living children born in the
last 5 years within the household with a
complete schedule of the country’s basic
vaccination for children, which included
BCG, polio 0-3, DPT 1-3, and measles
vaccination.

Child Living children
born in the last
5 years

Mode of children with
complete vaccination

A binary mode (yes/no) of whether the
living children born in the last 5 years
within the household had a complete
schedule of the country’s basic vaccina-
tion for children, which included BCG,
polio 0-3, DPT 1-3, and measles vacci-
nation.

Child Living children
born in the last
5 years

Proportion of children
with any vaccination

Proportion of living children born in
the last 5 years within the household
who ever had any of the basic vacci-
nation (BCG, polio 0-3, DPT 1-3, and
measles).

Child Living children
born in the last
5 years

Mode of children with any
vaccination

A binary mode of whether the living
children born in the last 5 years within
the household ever had any of the basic
vaccination (BCG, polio 0-3, DPT 1-3,
and measles).

Child Living children
born in the last
5 years

Members smoking in
house

Frequency of household members smoke
inside the house

Household All household

Birth History

Median preceding birth
interval

Median difference in months between
the current birth and the previous birth
of children born in the last 5 years
within the household, counting twins as
one birth.

Child Children born in
the last 5 years

Proportion of women ever
had pregnancy complica-
tion

Proportion of women 15-59 in the
household ever had complications dur-
ing pregnancy.

Woman All women 15-49

Continued on next page
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Variable Description Level Base

Proportion of women ever
had terminated pregnancy

Proportion of women 15-59 in the
household ever had a pregnancy that
was terminated in a miscarriage, abor-
tion, or still birth, that is, did not result
in a live birth.

Woman All women 15-49

Proportion of births with
ANC by SBA

Proportion of births in the last 5 years
that had antenatal care (ANC) by a
skilled birth attendant (SBA). SBA in-
cluded doctor, obstetrician, nurse, mid-
wife, or village midwife.

Child Children born in
the last 5 years

Median timing of first
ANC

Median months between the start of the
pregnancy and the first antenatal visit
for the pregnancies related to any birth
in the last 5 years within the household.

Child Children born in
the last 5 years

Median number of ANC Median number of ANC during preg-
nancy of those led to any birth in the
last 5 years within the household.

Child Children born in
the last 5 years

Proportion of births deliv-
ered by SBA

Proportion of births in the last 5 years
within the household that were assisted
by either doctor, obstetrician, nurse,
midwife, or village midwife.

Child Children born in
the last 5 years

Mode of delivery place Most common place of delivery of chil-
dren born in the last 5 years within
the household, categorized into: public
hospital/clinic, private hospital/clinic,
home, or other.

Child Children born in
the last 5 years

Proportion of births by C-
section

Proportion of children born in the last
5 years by caesarian section

Child Children born in
the last 5 years

Proportion of births with
PNC

Proportion of children born in the last
5 years with postnatal check within 2
months

Child Children born in
the last 5 years

Proportion of births with
PNC by SBA

Proportion of children born in the last
5 years with postnatal checkup per-
formed by medical personnel.

Child Children born in
the last 5 years

Mode of PNC place Most common place of postnatal
checkup among children born in the last
5 years. This variable was grouped into
4 categories: home, public sector, pri-
vate sector, and other.

Child Children born in
the last 5 years

Mode of perceived child
size

Most common category of size of child
reported subjectively by the mother
among children born in the last 5 years.

Child Children born in
the last 5 years

Mean of child weight
(grams)

Mean weight at birth of children born
in the last 5 years, given in gram metric.

Child Children born in
the last 5 years

Continued on next page
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Variable Description Level Base

Proportion of births with
any problem during preg-
nancy

Proportion of births of children in the
household where the mother had any
problem during pregnancy. The prob-
lems probed including wrong position
baby, faint, breathlessness, and tired-
ness.

Child All children

Proportion of births with
any problem during la-
bor/delivery

Proportion of births of children in the
household where the mother had any
problem during labor/delivery. The
problems probed including water broke
too soon, fever, long labor, faint, con-
vulsions, and placenta did not come
out.

Child All children

Proportion of births with
any problem after birth

Proportion of births of children in
the household where the mother had
any problem after giving birth/during
seclusion. The problems probed in-
cluding excessive bleeding, convulsions,
fever, foul-smelling discharge, sore
breast, and sadness/depression.

Child All children

Proportion of births with
any issue on time of birth

Proportion of births in the last 5 years
within the household where the mother
had any problem in time of birth. The
problems probed including prolonged
labor, fever and foul smelling vaginal
discharge, convulsions, and water broke
> 6 hours before delivery.

Child Children born in
the last 5 years
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