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SUMMARY

Transcriptional regulation in eukaryotes is the process in which different cells regulate the

expression of genes. It is extremely complex and the adequate regulation of genes at precise

times is what makes many cellular processes viable. Additionally, errors or disruptions in the

transcriptional machinery can often compromise the livelihood of the cell or cause disease. In

the past few years, novel genomic techniques have been developed to probe the regulatory

mechanisms of genes. These techniques include next-generation sequencing, for example, to

determine the exact location of DNA-bound regulatory proteins and sophisticated methylation

arrays among others. Here we describe a set of computational methods that approach the

process of gene regulation from three different research perspectives. Firstly, we explore the

standard view of transcription factors binding directly to DNA to promote or repress the ex-

pression of genes. The understanding of transcription regulation is enhanced when considering

how microRNAs regulate genes at a post-transcriptional phase. Secondly, we analyze how other

epigenetic factors, such as DNA methylation, can affect gene expression. Thirdly, we delve into

a more complex scenario within the nucleus of the cell where we consider gene regulation as the

product, not only of epigenetics or acting transcription factors, but also of the three-dimensional

conformation of chromosomes.

The significance of our work is based on the fact that it provides an encompassing view of the

complex nature of gene regulation. Because of constant advances in experimental genomics there

is a need to develop new analysis methods to cope with the ever increasing volume of biological

xviii



SUMMARY (Continued)

data that are generated. The deliverables from each of the research aims mentioned above will

include, in addition to sound mathematical formulations of how to model the problems, a set

of generic (executable) tools from which other researchers can benefit.

xix



CHAPTER 1

INTRODUCTION

1.1 Motivation

This thesis traces how our thoughts and knowledge evolved while exploring mechanisms

that regulate gene expression. The organization of this document follows the chronological

order of the research questions we have addressed. Each chapter builds on its predecessor by

strengthening our understanding of statistical methods and by tackling on more challenging

problems. The degree to which a problem is more challenging is not only related to its algo-

rithmic complexity, but to the biological knowledge and the bioinformatics technologies that

are required to master it.

We start by exploring algorithms to perform DNA sequence analysis in search of regions with

high similarity to a query sequence. These topics are normally covered in Computer Science

courses due to their algorithmic nature and potential for optimization. In this context, a simple

and mechanistic understanding of how transcription factors work inside the cell will suffice to

get a student with Computer Science background –like this humble writer– to get started in

bioinformatics. That is precisely why this topic was the first one we embarked on.

Sequence analysis can provide useful predictions of where a transcription factor may bind

but, without any biological context, these predictions are too inflexible and possibly unrealistic.

Binding of a transcription factor to the promoter of a gene may only occur under specific

1
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conditions and it may not always trigger the expression/repression of the gene. As a result of

this, and in order to improve our predictions we took into consideration gene expression profiles

obtained from microarray experiments. Microarrays, as a technology, have been instrumental

in studying how gene expression varies in response to stimuli or in the presence of disease.

Therefore, a natural evolution of our work was to take our predictions derived from sequence

analysis and square them with true biological signals. In addition to having to master the

technology (i.e., microarray analysis), we decided to build a probabilistic framework that would

benefit from vast amounts of publicly available expression data. In true machine-learning

fashion, we developed a predictor of transcription factors and microRNAs as potential regulators

of genes in molecular pathways.

Another biological mechanism that affects gene expression is DNA methylation. DNA

methylation is known to regulate genes in a cell, even after cell differentiation. In recent years,

new microarrays were developed to detect methylation at a genome-wide scale. These new

technologies probe hundreds of thousands of potential methylation sites, resulting in almost a

10-fold increase in volume of data when compared to traditional microarrays. Thus, a natural

progression to better understand gene regulation is to combine the analysis of traditional gene

microarrays with that of DNA methylation arrays. To that effect, we developed a mathematical

model that equates the expression of a gene with the level of methylation at different sites over-

lapping with the gene. In order to make our model accessible to other researchers, we developed

a software product that implements the model and which we intend to make freely available.
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Finally, expanding our knowledge about gene regulation will not be possible without a good

understanding of the spatial conformation of DNA in the cell. We now know that genes located

close to each other in three dimensional space are more likely to share the same expression

status: either active or inactive. In the active state, for example, closely co-located genes in 3D

space can easily share transcription factors or other elements of the transcription machinery.

Likewise, the inactive state of some genes may be the result of a specific DNA conformation

that prevents transcription factors from accessing the genes. It is precisely the description of

the algorithms we developed to process chromosome conformation data that brings this thesis

to its conclusion.

1.2 Thesis outline

Chapter 2 discusses the fundamentals behind the use of sequence analysis to predict bind-

ing sites of transcription factors. The first part of the chapter provides a review of the com-

ponents involved in sequence analysis, finalizing with a description of our contribution and the

methods that we developed.

The contents of this chapter are based on the following publications:

• D. Roqueiro, J. Frasor and Y. Dai. “bindSDb: A Binding-information Spatial

Database”. Bioinformatics and Biomedicine Workshops (BIBMW), 2010 IEEE In-

ternational Conference, pp.573-578 (2010) doi: 10.1109/BIBMW.2010.5703864.

• P. Yin, D. Roqueiro, L. Huang, J.K. Owen, A. Xie, A. Navarro, D. Monsivais,

J.S. Coon V, J.J. Kim, Y. Dai, S. E. Bulun. “Genome-Wide Progesterone Receptor

Binding: Cell Type-Specific and Shared Mechanisms in T47D Breast Cancer Cells
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and Primary Leiomyoma Cells”. PLoS ONE, 7(1) (2012): e29021.

doi:10.1371/journal.pone.0029021.

• W. Mu, D. Roqueiro, Y. Dai. “A Local Genetic Algorithm for the Identification

of Condition-Specific MicroRNA-Gene Modules”. Scientific World Journal (2013).

doi:10.1155/2013/197406.

In Chapter 3 we present a probabilistic framework that ranks transcription factors and

microRNAs, within specific molecular pathways, based on their effect on gene regulation. Our

results show that the framework is useful at providing predictions that are based on disease-

specific conditions.

The contents of this chapter are based on the following publications:

• L. Huang, D. Roqueiro, Y. Dai. “Analyzing mRNA and microRNA co-expression

profiles to identify pathways and their potential regulators in ER+ and ER- breast tu-

mors”. Engineering in Medicine and Biology Society, EMBC, 2011 Annual Interna-

tional Conference of the IEEE, pp.932-935 (2011) doi: 10.1109/IEMBS.2011.6090210

• D. Roqueiro, L. Huang, Y. Dai. “Identifying Transcription Factors and microR-

NAs as Key Regulators of Pathways Using Bayesian Inference on Known Pathway

Structures”. Proteome Science (2012) doi:10.1186/1477-5956-10-S1-S15.

In Chapter 4, when we focus on DNA methylation, we develop a methodology aimed at

reducing the dimensionality of the data. Our methodology was implemented as a software

product that provides the researcher with a smaller but more reliable set of hypotheses to test
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in which a group of methylated sites appears to have a strong effect on the expression of a gene.

We expect that when our tool is used in the context of a specific disease, it can provide a list of

methylated prioritized sites that can be studied as potential biological markers for the disease.

The contents of this chapter are based on the following publication and submission:

• H. Hu, D. Roqueiro, Y. Dai. “Prioritizing predicted cis-regulatory elements for

co-expressed gene sets based on Lasso regression models”. Engineering in Medicine

and Biology Society, EMBC, 2011 Annual International Conference of the IEEE,

pp.6853-6856 (2011) doi:10.1109/IEMBS.2011.6091690.

• D. Roqueiro, M.T. Dyson, S.E. Bulun and Y. Dai. “me-mRNA-pipe: A pipeline

for the integrative analysis of methylation and mRNA data”. In submission.

In Chapter 5, we adopt the encompassing view that gene expression, as well as DNA

methylation, are affected by the three-dimensional conformation of chromosomes. Our goal

is to reliably detect and quantify long-range chromatin interactions in the nucleus. This is a

first step towards the ultimate goal of understanding how the 3-dimensional conformation of

chromosomes affects the expression of genes. The chapter starts by addressing the methods

to transform raw experimental data –representing chromatin interactions– into a coherent and

noise-free visual representation of those interactions. The chapter then concludes by presenting

a methodology to reliably compare interaction data from two different cells. Although our

focus will be on one specific locus dedicated to the production of immunoglobulins, we lay

the algorithmic foundations to approach these problems in a generic way and leave the more

ambitious goal of correlating DNA interactions with gene expression as my future work.



CHAPTER 2

PREDICTING BINDING SITES OF TRANSCRIPTION FACTORS

THROUGH SEQUENCE ANALYSIS.

2.1 Introduction

In Chapter 1, we indicated that transcription factors (TFs) are regulators of gene expression.

Simply put, TFs are proteins whose regulating activity is performed by either:

• Binding directly to DNA in the regulatory region of genes.

• Recruiting other proteins to form larger protein complexes, which will ultimately bind to

DNA.

Depending on the outcome of their regulatory activity we can classify TFs as activators and

repressors. Generally, activators initiate transcription by interacting with the basal transcrip-

tion machinery in the promoter of a gene. They can bind to DNA directly or indirectly through

another co-activator. Repressors, on the other hand, can negatively affect gene expression by

competing with an activator for the same binding location (Lewin et al., 2011).

The previous definition provides a simple, yet powerful, model of how TFs regulate genes.

In all fairness, there are many other well-known mechanisms through which activators and

repressors affect gene expression. One such mechanism is the recruitment of proteins that

modify the conformation of chromatin making it more or less suitable for transcription activity

6
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(Lewin et al., 2011). As a side note, we have developed computational methods to identify

changes in chromatin conformation and these methods are the subject of Chapter 5.

In regards to our analysis of TFs, although direct binding to DNA is not necessary for a

protein to be considered a transcription factor, the remaining of this chapter will focus on a

subset of TFs that are known to bind directly to DNA and whose binding patterns have been

experimentally determined. A binding pattern is a representation of the DNA sequence to which

a TF is known to bind. These patterns, also known as motifs, are computed by analyzing many

experimentally obtained transcription factor binding sites (TFBSs) of the same TF.

Motifs are normally modeled using a position weight matrix (PWM). We describe what

a PWM is and how it is calculated in the next section. Then, the remainder of the chapter

focuses on how to use PWMs to identify putative TFBSs in DNA sequences.

2.2 Preliminaries

In order to find a probabilistic representation of TFBSs, as it was mentioned before, the

PWM of a TF is computed using a set of experimentally confirmed binding sites. After the sites

to which the TF binds have been aligned, the next step consists in obtaining a position frequency

matrix (PFM). A PFM is a matrix where the rows represent one of four DNA nucleotides:

adenine, cytosine, guanine and thymine = {A, C, T, G}, and the columns are the positions of

the binding site. The matrix indicates, for row i and column j, the frequency of nucleotidei

at positionj . Figure 1(b) shows a PFM for the TF Progesterone receptor derived from 20

experimentally obtained TFBSs shown in Figure 1(a) (source: TRANSFAC ver. 2010.1).
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Sequence

GTTTGTACAG

TTAAGAACAG

TTAAGAACAG

GCTAGAACAT

GAGGGGAGAA

AAAAGGACTC

GAGTGAACAG

AAGAGGACAT

GAAAGAACAC

CAAAGGACAG

GAAAGGACAT

AGTAGAACAT

GAGAGGACAT

GTGGGAACAT

GCTGGAACAA

AACGGGACAA

TTTTGAACAC

GACAGAACAC

(a) Binding sites

1 2 3 4 5 6 7 8 9 10

A 4 11 7 12 0 11 20 0 19 3
C 2 2 2 0 0 0 0 19 0 5
T 10 1 6 4 20 7 0 1 0 6
G 4 6 5 4 0 2 0 0 1 6

(b) PFM obtained from the binding sites

(c) Sequence logo

Figure 1. PFM of progesterone response element, half-site (TRANSFAC Id: V$PR Q2)

Figure 1(c), known as sequence logo, is a derivative of the PFM and a visual representation

of motifs that has been widely adopted in the literature. The heights of nucleotides at each

position in the logo are proportional to the sequence conservation of nucleotides at that position.

The sequence conservation at position j is measured as (Schneider and Stephens, 1990):
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Rseq(j) = 2−


−

∑

x∈{A,C,T,G}
f̂(x, j)log2f̂(x, j)


 (2.1)

where the first term (number 2) represents the maximum uncertainty = log24 because we have

4 nucleotides; f̂(x, j) is the normalized frequency of nucleotide x at position j computed as

f̂(x, j) = f(x,j)
N where N is the number of binding sites and f(x, j) is the frequency obtained

from the PFM for nucleotide x at position j. Once Rseq(j) has been obtained for every j,

the height of a letter in the sequence logo is computed as f̂(x, j)Rseq(j). The sequence logo

in Figure 1(c) was obtained with WebLogo (Crooks et al., 2004).

2.2.1 Obtaining a PWM

At this point we have all the information we need to compute a PWM. In simple terms,

a PWM characterizes the binding affinity of a transcription factor in the same way the PFM

does, except that the frequencies are converted to log-scale.

We proceed by computing an estimate of the corrected probability of seeing nucleotide x at

position j (Wasserman and Sandelin, 2004):

p̂(x, j) =
f(x, j) + p · C

N + C
(2.2)

where f(x, j) is obtained from the PFM for nucleotide x at position j; p is the background

probability of nucleotide x and is assumed to be uniform in all 4 nucleotides (i.e., p = 0.25);

N is the number of binding sites used to compute the PFM; C is a pseudo-count that corrects
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for nucleotides not present at certain positions. In our case we use C =
√
N (Wasserman and

Sandelin, 2004).

It is clear from Equation 2.2 that the corrected probability p̂(x, j) is not conceptually dif-

ferent from simply using p(x, j) = f(x,j)
N . Finally, the weights in the PWM are computed for

each nucleotide x at position j as (Wasserman and Sandelin, 2004):

PWM(x, j) = log2
p̂(x, j)

p
(2.3)

where, p̂(x, j) is the corrected probability described in Equation 2.2 for x at position j and p =

0.25. The equation determines the weight of the nucleotide based on the corrected probability

and how much it deviates from the background probability.

The PWM corresponding to the PFM in Figure 1 is shown in Table I. Note, for example,

how the matrix assigns negative weights in position 9 to any nucleotide different from A. This

is because almost all binding sites, as shown in Figure 1(a), have an A in that position.

2.2.2 Scoring a sequence with a PWM

The weights in a PWM are used to determine a similarity score between a sequence S

and the PWM. Say that S = [s1, s2, . . . , sn] is of length n, where n is the number of columns

in the PWM (n = 10 in the examples above). The score of S will be the sum of the individual

scores of the nucleotides sj with j = 1, 2, . . . , n. In formal terms, the similarity score of S is

defined in Equation 2.4 as (Wasserman and Sandelin, 2004):
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TABLE I

PWM COMPUTED FOR HALF-SITE OF PROGESTERONE RESPONSE ELEMENT
(TRANSFAC ID: V$PR Q2)

1 2 3 4 5 6 7 8 9 10

A -0.257 0.986 0.408 1.100 -2.452 0.986 1.787 -2.452 1.717 -0.571
C -0.972 -0.972 -0.972 -2.452 -2.452 -2.452 -2.452 1.717 -2.452 0.000
T 0.862 -1.530 0.218 -0.257 1.787 0.408 -2.452 -1.530 -2.452 0.218
G -0.257 0.218 0.000 -0.257 -2.452 -0.972 -2.452 -2.452 -1.530 0.218

scoreS =

n∑

j=1

PWM(sj , j) (2.4)

where sj determines the row in the PWM (if sj = A, then row=1, and so forth) and j is the

column.

Because PWMs represent the binding affinity of TFs, they are used to scan DNA sequences

in order to predict putative TFBSs. The idea behind this is that if we have a hight similarity

score between a short genomic segment and the PWM of TFk, we can make a prediction that

TFk may bind to that genomic segment. We call this a putative TFBS of TFk because we do

not have any experimental validation that TFk binds to that location.

2.2.3 Motivation to use PWMs

There are hundreds of PWMs stored in private and publicly available databases. An example

of the former is TRANSFAC (Matys et al., 2006) and, of the latter, is JASPAR (Bryne et al.,

2008). The trove of data in these databases has spurred the development of many algorithms
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that attempt to find TFBSs which are over-represented in sets of DNA sequences. The idea

behind this kind of evaluation derives from the analysis of gene expression microarrays in which

sets of genes that have similar expression profiles are assumed to be co-regulated. In order to

make sense of these sets of co-regulated genes, a common strategy is to analyze their promoter

regions hoping to identify if some TFs may bind to them and, as a consequence, be responsible

of their regulation. There are many tools that attempt to predict TFBSs in DNA sequences

using PWMs and they are described below.

The Transcription Element Listening System (TELiS) (Cole et al., 2005) detects transcription-

factor binding motifs (TFBMs) that are over-represented in the promoter region of a group of

genes submitted as a query by the user. This is achieved by differentiating the genes as up- and

down-regulated and by utilizing a pre-compiled set of matrices. These matrices store the fre-

quency with which each specific TFBM is detected in each promoter. Different sets of matrices

are obtained when the underlying algorithm (MatInspector) (Quandt et al., 1995) is invoked

at three different stringency levels of .80, .90, and .95. The definitions of the TFBMs used

in TELiS were obtained from JASPAR and from the original free version of TRANSFAC v3.2

(Wingender et al., 1996).

Another system recently developed is SMART (Systematic Motif Analysis Retrieval Tool)

(Veerla et al., 2010). SMART downloads RefSeq annotations from the UCSC Genome Browser

(Fujita et al., 2010) into a local MySQL database in addition to the DNA sequences of pro-

moter regions. It then proceeds to scan the sequences looking for TFBSs using matrices from
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TRANSFAC. This produces TFBS/promoter databases that contain all genes annotated in the

UCSC Genome Browser in addition to the location of the predicted TFBS.

Other similar tools include oPOSSUM (Ho Sui et al., 2007), PAP (Chang et al., 2007),

TOUCAN2 (Aerts et al., 2005) and the Genomatix suite (Cartharius et al., 2005). The results

provided by these tools, including the results from SMART, are ultimately used to identify

clusters of TFBSs that co-occur in a set of DNA sequences.

As useful as the above mentioned tools are, they report groups of TFs found to be over-

represented in a set of DNA sequences. Here we want to tackle a different problem. The

question we want to address is: Given a PWM representing one TF, can we assign a measure

of confidence to a similarity score of a single (putative) TFBS?

2.3 Predicting TFBSs in the promoter regions of genes

If you recall from the previous section, we described how to compute a similarity score

between a PWM and a short DNA sequence (of the same width as the PWM). What we are

proposing now is to scan the entire promoter region of a gene with a PWM, and to report hits

for the locations where the similarity scores are high. This, in turn, implies that the TF may

bind at those locations. The main questions we will address in this section are:

• What similarity score can be used as a threshold to report a hit?

• Can we assign a measure of confidence, in the form of a p-value, to a similarity score?

If the width of the PWM is w, we will scan the promoter using a sliding window of width

w with a step of 1 bp. Figure 2 depicts this process.
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Figure 2. Using a sliding window to scan a DNA sequence with a PWM.

For each substring of length w in the promoter, we will obtain a similarity score. The issue

at hand is: which of these scores are high enough to be considered hits? Our goal in predicting

a TFBS is to assign a measure of statistical significance to a similarity score. Thus, we can

report hits when the scores have a statistically significant p-value (say, p ≤ 0.01). In essence, we

are shifting the problem of finding a “cold” threshold (for the similarity score) to the problem

of finding a “warm” threshold based on a p-value and to which we can assign some probabilistic

interpretation.

Finding a p-value for the score of a PWM in a sequence has proven to be an elusive problem.

In fact, it has been shown to be NP-hard (Touzet and Varré, 2007). As a result of this, many

databases and tools simply rely on score-thresholds given to the weighted matching algorithm

of choice. For example: TELiS, SMART and oPOSSUM require a score-threshold input by the

user. In other scenarios (Thijs et al., 2004), a p-value for a match can be found when comparing
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the similarity scores to the appropriate background. And this leads us to our next question:

What is an appropriate background?

2.3.1 Background model

In addition to the tools described at the end of section 2.2.3, there is a different category of

algorithms that also attempt to find over-represented TFBSs in a set of DNA sequences but do

not rely on pre-compiled PWMs. They are called de novo motif discovery methods because they

attempt to discover hidden motifs in the sequences. What is interesting about these methods

is that they are able to assign p-values to the discovered motifs by modelling them against a

random background. Therefore, an analysis of what types of background are used by these

methods seems pertinent and will help us identify an appropriate background for our problem.

MEME (Bailey and Elkan, 1994) is a very sophisticated and widely used algorithm that

uses as random background a single nucleotide frequency distribution computed from the input

sequences. In contrast, BioProspector (Liu et al., 2001) models random DNA sequences with

Markov models of different order (0 to 3). These higher order background models have been

shown to yield better motif discovery results (Thijs et al., 2001). Moreover, algorithms with

seemingly unrelated applications, such as gene discovery, rely on Markov models of higher order

to identify genes in DNA sequences. One such example is Glimmer 2.0 (Delcher et al., 1999)

which uses up to 8th-order Markov chains to identify microbial genes.

But what exactly is a kth-order Markov chain? And how is it applied to a DNA sequence?
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2.3.1.1 Markov chains

Using a Markov chain as a model to generate DNA sequences implies that the probability

of a nucleotide at position i of the sequence depends solely on the nucleotides at positions

1 . . . i − 1. The number of positions before i that we need to explore determines the order

of the Markov chain. Formally, if we have a DNA sequence S = [s1, s2, . . . , sn] where each

nucleotide si ∈ {A, C, T, G}, a kth-order Markov chain is defined as:

P (xn = sn|xn−1 = sn−1, . . . , x1 = s1) = P (xn = sn|xn−1 = sn−1, . . . , xn−k = sn−k) (2.5)

where xi represents the nucleotide at position i and si is the label of the nucleotide. We can see

in Equation 2.5 that the value of the nucleotide at position n only depends on its k predecessors.

In the case when k = 0 we assume nucleotides are independent of each other and their

occurrence in a sequence S is determined by their frequency in S. On the other hand, when

k = 1 we are asserting that P (xi = si|xi−1 = si−1) and the nucleotide at position i depends only

on the previous position. This dependency is captured in the form of a transition probability.

Given the fact that we have 4 nucleotides, and we can transition from any one of them to the

others, we will need 16 transition probabilities to model a DNA sequence with a Markov chain

of order 1. Figure 3 illustrates such a model.
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Figure 3. Markov chain of order 1 for DNA

2.3.2 Creating random DNA sequences with a Markov model of order 2

For our random background, we decided to use a Markov chain of order 2. In particular, we

created a model for each promoter of a gene. For gene k, the model was created in the following

way:

1. Obtain the genomic coordinates of the transcription start site (TSS) of gene k.

2. Obtain the DNA sequence of the region flanked by 1 Kb before and 1 Kb after the

TSS of gene k. If the gene is in the negative strand, reverse complement the sequence.

3. Analyze the nucleotide composition of the sequence and create a background model

Mk using a Markov process of order 2.

4. Use Mk to create 100 random sequences of the same length as the original one.
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The reason why we chose to create a model Mk for each gene k, is the result of analyzing

the promoter regions of all genes in the human genome (±1 Kb from the TSS). We took a

random sample of 2,144 genes and for each promoter region we determined the frequency of

the 16 possible dinucleotides: AA, AC, AT,. . ., GG. Under the assumption of a uniform random

distribution, we would expect to see all frequencies = 1
16 = 0.0625. But as it can be seen in

the boxplot at the top of Figure 4, there is a large divergence between the frequencies. Many

of them have a median value (center line in the boxes) close to 0.0625, but others have a much

larger/lower median. The minimum and maximum frequencies are 0.1% and 27.06% for CG and

CC respectively.

The bottom part of Figure 4 shows similar results but from a different perspective: rows

are genes and the columns are the frequencies of each dinucleotide in the promoter of the gene.

The rows were rearranged using hierarchical clustering, and the dendogram in the left of the

heatmap shows how the genes cluster at different levels. It is interesting to see that there

are two main clusters: a) top part of the heatmap, with genes whose promoters have larger

concentrations of CC, CG, GC and GG, and b) the bottom part where the frequencies of these

dinucleotides is less than expected by chance.

The CG dinucleotides are also referred to as CpGs where the “p” is a phosphodiester bond

and they are present with a very low frequency in a substantial portion of the genes analyzed.

This is an important result because long stretches of CpGs –known as CpG islands– are known

to be associated to 72% of gene promoters (Saxonov et al., 2006). If you believe there is an

ambiguity when referring to long stretches of CpGs it is because there is no objective measure
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Figure 4. Distribution of dinucleotides in promoters of a random set of 2,144 genes. (top)
Boxplot with overall distributions; (bottom) Heatmap with hierarchical clustering, each row of

the heatmap is the promoter of a gene.
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for what constitutes a CpG island. This has been a source of controversy in the literature

and here we wanted to accentuate its ambiguous nature. Setting that aside, CpG islands have

received notoriety because they are known to resist DNA methylation –the addition of a methyl

group to a cytosine– and DNA methylation has strong effects in gene expression (Deaton and

Bird, 2011). The importance of CpG islands and methylation in the promoter of genes is the

topic of Chapter 4. There we describe a methodology we developed that attempts to show the

value in deviating from the classical approach to methylation analysis, focusing on other areas

of genes and not just the promoter.

The entire analysis described above was performed with genomic information downloaded

from the UCSC Genome Browser (Kent et al., 2002; Fujita et al., 2010), RefSeq track for the

Feb. 2009 (hg19) human assembly. Of a total of 35,954 RefSeq genes, there were 26,517 different

TSSs. This is because many genes have different alternative splicings but share the same TSS.

For each of these TSSs we executed the steps mentioned at the beginning of this section.

The output of those steps was a model Mk for each gene k. A graphical representation of

a Markov model of order 2 would be convoluted and not as easy to understand as the model

depicted in Figure 3. On the other hand, the transition probabilities are easy to represent in

matrix form and Table II shows the matrix obtained from the promoter of the gene KCTD17

potassium channel tetramerization domain containing 17 (RefSeq Id: NM 024681).

From the table we see that, for example, the probability of seeing a C after the dinucleotide

GC is 0.431 and each row in the transition matrix adds up to 1. After the model Mk is derived

using the promoter of gene k, we use it to generate random sequences against which we can
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TABLE II

TRANSITION MATRIX CORRESPONDING TO MARKOV MODEL OF ORDER 2
(REFSEQ ID: NM 024681)

A C T G

AA 0.324 0.190 0.143 0.343
AC 0.236 0.340 0.255 0.170
AT 0.188 0.219 0.172 0.422
AG 0.224 0.259 0.150 0.367
CA 0.174 0.273 0.174 0.380
CC 0.192 0.344 0.277 0.188
CT 0.089 0.357 0.204 0.350
CG 0.157 0.306 0.083 0.455
TA 0.257 0.270 0.125 0.349
TC 0.171 0.335 0.220 0.274
TG 0.136 0.333 0.136 0.395
TT 0.280 0.236 0.108 0.376
GA 0.250 0.273 0.205 0.273
GC 0.192 0.431 0.254 0.123
GT 0.103 0.485 0.206 0.206
GG 0.234 0.234 0.172 0.359

evaluate the p-value of similarity scores of different PWMs. This is discussed in detail in the

next section.

2.4 Proposed methods

2.4.1 Computing p-values for similarity scores

As we mentioned before, exact computation of p-values for similarity scores obtained using

PWMs is NP-hard (Touzet and Varré, 2007). For a PWM of width w, a näıve approach will

enumerate 4w possible sequences of width w, obtain a similarity score for each of them, and
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then compare the distribution of these scores to the score for which we want to compute the

p-value.

Because exhaustive enumeration is unfeasible for large w, several approximation algorithms

have been developed. A tree-based approach (using tries) (da Fonseca et al., 2008) extends

an algorithm based on a branch-and-bound method to obtain p-values (Bejerano, 2003). It

avoids full enumeration by setting bounds to word prefixes and, therefore, efficiently computes

p-values. A different approach (Touzet and Varré, 2007), utilizes discretized score distributions

and an iterative approach at estimating the p-values. An implementation of this algorithm is

publicly available 1.

In our work, we will take a different approach at approximating p-values. Before describing

the steps to compute the p-values, let’s summarize all the data we have at our disposal:

• DNA sequence Sk corresponding to the promoter of gene k (± 1 Kb around the

TSS). Length of Sk is 2 Kb.

• Mk: Markov model of order 2 computed from Sk.

• 100 random DNA sequences Rik with i = 1, . . . , 100 created using the model Mk. All

Rik have the same length as Sk.

• PWMq representing the binding affinity of TFq. Width of PWMq is w.

• A similarity score t computed with PWMq for a subsequence of Sk = {sm, sm+1, . . . , sm+w−1}.

An empirical p-value is computed in the following way:

1URL: http://bioinfo.lifl.fr/TFM/TFMpvalue/
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1. Sample N words without replacement, of length w from Rik, i = 1, . . . , 100.

2. For each sampled word j, use PWMq to compute a similarity score tj

3. Compute the p-value for t as:

pt =

∑N
j=1 1(tj ≥ t)

N
(2.6)

where 1(·) is the indicator function.

Because of the random nature of the sequences created using the Mk model of each pro-

moter, the same similarity score t computed with the same PWMq may have different p-values

in different promoters. In other words, the set of scores with a p-value less than, say, 0.01

may differ between promoters. An example of this is illustrated in Figure 5 and Figure 6.

Both figures show the distribution of similarity scores –and their respective p-values– of the

PWM V$PAX4 02 corresponding to the TF PAX4 (Paired box gene 4). The difference between

the figures is that the distribution of scores were obtained from two different promoters. Fig-

ure 5 was obtained from the promoter of the gene FUT8 (Fucosyltransferase 8; RefSeq Id:

NM 004480) whereas Figure 6 was obtained from the promoter of THY1 (Thy-1 cell surface

antigen; RefSeq Id: NM 006288). This clearly shows that different promoters, due to their

nucleotide composition, give rise to different similarity score distributions and, thus, different

p-value distributions.

Additionally, the figures mark with a red line the similarity score threshold with a p-value

of 0.01. Because of the positive skew in Figure 5(a), we reach a p-value of 0.01 with a smaller
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similarity score (score of 0.855 in FUT8 vs. 0.989 in THY1). This distinction is important

because if we were to apply the same threshold to all genes we will have no control over the

false positive rate at predicting TFBSs.

(a) Histogram of similarity scores
(bin size = 0.001)

(b) P-values assigned to (bins of)
similarity scores

Figure 5. Similarity scores and p-values for PAX4 (TRANSFAC Id: V$PAX4 02), in the
promoter of the gene FUT8.

To compute all the similarity scores mentioned above we used Match (Kel et al., 2003) as

our weighted matching algorithm.

2.4.2 Predicting TFBSs in ChIP-Seq data

Let me start by stating that I am aware the title of this section may resemble an oxymoron.

The reason of the apparent contradiction is that chromatin immunoprecipitation followed
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(a) Histogram of similarity scores
(bin size = 0.001)

(b) P-values assigned to (bins of)
similarity scores

Figure 6. Similarity scores and p-values for PAX4 (TRANSFAC Id: V$PAX4 02), in the
promoter of the gene THY1.

by sequencing (ChIP-Seq) has become the de facto technology to determine binding sites

of TFs (ENCODE, 2012). ChIP-Seq maps at a genome-wide level in vivo interactions between

DNA-binding proteins, including TFs. Because of its high-throughput nature, ChIP-Seq can

provide the location of hundreds of thousands of TFBSs at an approximate 100-bp resolution.

The method can be summarized in the following way: a) the chromatin immunoprecipitation

component (ChIP) rescues DNA sites where a specific TF is bound using an antibody for the

TF; b) these DNA sites are then sequenced (the Seq component in ChIP-Seq), c) mapped to a

reference genome and d) their enrichment is quantified (Johnson et al., 2007).

This begs the following question: “What TFBSs are we trying to predict in experimentally

confirmed TFBSs?” In this section we address the issue of predicting the binding sites of TFk
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in ChIP-Seq data obtained for TFq. Our goal is to predict which TFk may be co-located

in the experimentally confirmed binding sites of another TFq. Co-location is important in

TFs because the transcriptional machinery normally requires a multitude of TFs to be present

before transcription can take place. Additionally, we need to make a distinction between direct

binding and indirect binding of a TF. ChIP-Seq will report sites where a TF binds directly

to DNA as well as other sites where the TF binds to another protein or TF which in turn

binds to DNA (indirect binding). The latter case will also imply co-location and the rest of the

chapter details the method we propose to predict co-location of TFs based on ChIP-Seq data.

2.4.3 Background model

In section 2.3 we described a background model for gene promoters based on a Markov

chain of order 2. Here we want to create a different background model to determine if the

enrichment of a TF in ChIP-Seq data is statistically significant. We formally state the problem

as:

• We have a set of DNA sequences S = {S1, S2, . . . , SN} where each Si represents a binding

site, reported by ChIP-Seq, of TFq. We do not know if these binding sites represent a

direct or indirect binding of TFq. In addition to having the DNA sequences, we have the

genomic coordinates (start, end) of each Si.

• Create a background set of DNA sequences B = {B1, B2, . . . , BN} where each Bi has the

same length as Si, for i = 1 . . . N .

• With a PWM representing TFk scan the original sequences in S and the background B

searching for putative TFBSs of TFk.



27

• Determine if there is a statistically significant enrichment of putative TFBSs of TFk in

one set over the other.

Because S are true binding sites of TFq, if we find that a large proportion of these sites

have putative TFBFs of TFk, but TFk is only present in a small proportion of the background

sites in B, we may conclude that TFk is statistically enriched in S compared to B. As a result

of this, we will predict that TFk is co-located with TFq. Figure 7 illustrates this analysis with

an example of enrichment of TFk in S.

The background model for this problem consists of true DNA segments obtained from

the vicinity of each Si (within a random distance of 1 to 10 kb up- or down-stream and not

overlapping with any Sj where j = 1 . . . i − 1, i + 1, . . . N . This background set is ultimately

used to determine a p-value of the enrichment of putative TFBSs of TFk.

2.4.4 Computing p-values to determine enrichment

Each PWM from TRANSFAC is then scanned in S and B using the Match algorithm and

a set of similarity score thresholds provided by TRANSFAC named “Minimize False Positive”.

These thresholds, as computed by the manufacturer for each PWM, indicate the scores upon

which a hit may be called. The choice of using true DNA sequences for our background set, as

opposed to synthetic ones, was based on our goal to have a better model of binding affinity for

PWMs.

For each PWM, the proportion of nucleotides from the true binding sites that contained a

reported hit of that PWM was obtained and compared with the proportion of nucleotides in

background sites that also contained a hit. For a large sample size, the central limit theorem
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(a) Predicted TFBSs of TFk in true
binding sites of TFq

(b) Predicted TFBSs of TFk in random
background

Figure 7. Enrichment of predicted TFBSs of TFk (blue rectangles) between true binding sites
of TFq (grey lines depicting DNA sequences obtained from ChIP-Seq) and the random

background (brown lines, of the same length as the true binding sites).

indicates that the distribution of the sample proportion is approximately normally distributed.

Therefore, a z-score was computed for a PWM according to:

z =
p̂t − p̂b√
p̂b(1−p̂b)

L

(2.7)

where p̂t is the proportion of nucleotides from true binding sites in which the PWM scored a

hit; p̂b is the same proportion but for nucleotides in the background sites; and L is the total

number of nucleotides (L =
∑N

i=1 length(Si) where Si is interchangeable with Bi as they have

the same length).

The proportion of nucleotides (p̂t or p̂b) is determined based on the width w of the PWM

and the number of hits reported for it. For example, if N = 10 and all Si have a length of 100
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nucleotides, then we have L = 1, 000; assume PWMk has a width w = 20 and 30 non-overlapping

hits are reported in S using Match. Then, the proportion p̂t = 30·w
L = 30·20

1,000 = 0.6

Based on the z-score of each PWM, a p-value is computed and later adjusted for multiple

hypotheses testing using the Bonferroni correction.

2.5 Conclusion

This chapter presented the principles of sequence analysis and it provided an overview of

the necessary elements to compute a similarity score between a PWM and a DNA sequence.

We presented a method to compute p-values based on similarity scores obtained in the

promoter region of a gene. A background model that followed a Markov chain of order 2 was

created for each promoter. This enabled us to compute p-values for different similarity scores,

giving the scores a much needed measure of confidence.

We concluded our analysis by computing p-values for similarity scores obtained from ChIP-

Seq data. Here our goal was to determine if a TFk may be co-located in the experimentally

confirmed binding sites of another TFq.

These methods are a good starting point at predicting binding sites for TFs in a single

gene, in contrast to the methods described in the introduction of this chapter that found over-

represented TFs in a group of genes. Nevertheless, our predictions lack certain flexibility and

are not sustained by biological data. This means, for example, that if we predict TFk binding

to the promoter of gene g, two of the main questions that may arise are:

• Will TFk bind to the promoter of gene g in all tissues?
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• Or most importantly, even if TFk binds to the promoter of gene g, can we quantify the

effect this binding has in regulating gene g?

The next chapter addresses these questions and attempts to improve the quality of our

sequenced-based predictions.



CHAPTER 3

BAYESIAN INFERENCE TO IDENTIFY TRANSCRIPTION FACTORS

AND MICRORNAS AS REGULATORS OF PATHWAYS.

3.1 Introduction

In the previous chapter we introduced algorithmic approaches to predict transcription factor

binding sites (TFBSs) based solely on sequence analysis. We used position weight matrices

(PWMs) from a licensed release of TRANSFAC ver. 2010.1 (Matys et al., 2006). Additionally,

appropriate random backgrounds were created to assign measures of statistical significance to

similarity scores obtained from scanning DNA sequences with PWMs.

Here we pick up where we left in the previous chapter, in particular, when it comes to the

predictions of TFBSs in the promoter of genes. Despite the fact that we took precautions to

compute p-values for our predictions –or even using thresholds set by the manufacturer that

claim to minimize false positives– we cannot ignore the fact that these are sequenced-based

predictions. As such, some of these predictions may constitute false positives.

Our goal is to integrate the information of these putative TFBSs with expression data ob-

tained from multiple microarray studies. We will focus on a narrow subset of transcription

factors (TFs) for which we can find a relationship between the expression levels of the TF and

the expression levels of the genes it targets. Our methodology is based on Bayesian inference,

particularly, it uses a Bayesian network as a probabilistic framework to describe causal rela-

31
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tionships. In addition to the predictions we obtained for TFs from the previous chapter, we

will also include in our model predictions of genes as potential targets of microRNAs. TFs

and microRNAs are well-known regulators of gene expression. The former bind directly to the

regulatory regions of genes in the nucleus whereas the latter regulate the expression of genes

at a post-transcriptional phase in the cytoplasm. Although they have different mechanisms of

regulation, evidence suggests that TFs and microRNAs regulate target genes in a coordinated

way (Martinez and Walhout, 2009).

To determine if a microRNA may target a gene, the state of the art algorithms search

for partial complementarity at the 3’ untranslated region (UTR) of the gene (Krek et al.,

2005; Friedman et al., 2009). In essence, these methods are sequence-based, although they do

not rely on PWMs as discussed in Chapter 2.

Our methodology will integrate TF and microRNA target predictions in the context of

a disease like breast cancer for which there is an abundance of publicly available expression

data. To that effect, we use mRNA and microRNA expression data generated from eight breast

tumor studies (Boersma et al., 2008; Desmedt et al., 2008; Miller et al., 2005; Minn et al.,

2005; Sotiriou et al., 2006; Wang et al., 2005; Buffa et al., 2011; Enerly et al., 2011). The

patients in these studies were divided into two groups: estrogen receptor positive (ER+) and

estrogen receptor negative (ER-). ER+ and ER- tumors display different molecular patterns in

terms of cell differentiation, proliferation, survival, invasion and angiogenesis. Understanding

the distinct molecular mechanisms in tumors with different ER status will provide insight into

potential novel targets for breast cancer treatment (Osborne and Schiff, 2011).
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It is important to note that our framework is generic enough in that in can be fed multiple

datasets of mRNA and microRNA expression data as long as two different phenotypes are

available.

3.2 Preliminaries

In order to facilitate the elucidation of the regulatory mechanisms of TFs and microRNAs,

several databases have been released based on the analysis of sequence information. Backes

et al. (Backes et al., 2010) have compiled a dictionary on microRNAs and their putative

pathways based on the enrichment of the predicted microRNA targets for each pathway in the

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2010). MIR@NT@N

(Le Bechec et al., 2011) is a database that stores predicted interactions between: a) a TF and

its target genes (including microRNAs) and b) microRNAs and their predicted target genes.

These databases facilitate the retrieval of regulatory interactions based on a query list as input

but the expression data of mRNA and microRNA are not effectively explored. The analysis tool

mirConnX (Huang et al., 2011a) allows the input of concurrent microRNA and mRNA profiling

data for an integrative analysis. The targets of TFs and microRNAs are selected based on the

association strength between the regulator and its target.

In all the above mentioned work, the analysis of the interactions is focused solely on direct

targets. In this project we propose a novel integrative method to analyze microRNA and mRNA

expression data in conjunction with sequence-based predicted regulators and the structures of

existing molecular pathways. We combine all this information into Bayesian networks, which
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allow the prediction of pathway regulators, not only based on direct targets but also by inference

of the most probable effect of the regulators on other downstream genes.

Bayesian networks (Pearl, 1985) have been extensively used for the reconstruction of gene

networks based on microarray expression data. In this context the goal was the inference

of interactions and statistical dependencies among genes. These dependencies were, in turn,

used to learn the dynamic structure of a regulatory network (Friedman et al., 2000). This

methodology has been the foundation for numerous algorithmic approaches. In all these cases,

the Bayesian network (BN) –or its more generic dynamic counterpart (DBN)– were used as

tools to reverse engineer the gene network, i.e., the interactions between genes were inferred

from observational data.

3.3 Proposed method

In this work we do not focus on the task of learning the structure of the BN from expression

data. Our goal is to use a known network structure, describing interactions between genes and

proteins, for Bayesian inference. The network structure can be any experimentally confirmed

interaction network (for example, pathways obtained from KEGG (Kanehisa et al., 2010) or

from the Pathway Interaction Database (Schaefer et al., 2009)). Due to the fact that only some

TFs and no microRNAs are included in the above mentioned pathways, we must extend the

pathways to contain TFs and microRNAs that are predicted to target nodes in the pathway.

We further compute conditional probabilities between the nodes in the extended network using

expression data, with the ultimate goal of building a BN for each individual pathway. Finally,

these BNs receive as evidence a list of differentially expressed genes and provide as output a
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ranked list of TFs and microRNAs that best explain the expression level of genes in the network.

As a result of this, the output TFs and microRNAs are hypothesized to be putative regulators

of the pathway.

We started by discretizing the expression data of mRNAs and microRNAs from ER+ and

ER- tumor microarray profiles. We subsequently obtained the known structure of 34 KEGG

pathways and pre-processed them to guarantee that: a) there were no cycles and b) all nodes in

the pathway had expression data. For nodes that passed the pre-processing step we proceeded

to obtain lists of TFs and microRNAs that are predicted to target the nodes. We then ranked

the TFs and microRNAs based on their ability to predict the expression level of a target gene.

We obtained one ranking list per gene and expanded the pathways to include the top 5 TFs and

the top 3 microRNAs for each gene in a pathway. Finally, a BN was created for each extended

pathway. Inference was performed by entering, as evidence, the statuses (discrete values) of

differentially expressed genes in the pathway. The inference process was performed twice with

evidence derived for one phenotype and later with evidence derived from the other phenotype.

The marginal probabilities were approximated for all unobserved nodes. From these, the TFs

or microRNAs with the largest difference in marginal probabilities between phenotypes were

considered the most probable regulators of expression in the pathway. An overview of the entire

methodology is illustrated in Figure 8.
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Figure 8. Flowchart of the methodology.
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3.3.1 Pre-processing of raw microarray data and data discretization

The raw data from eight studies of estrogen receptor positive (ER+) and estrogen receptor

negative (ER-) breast tumors (Boersma et al., 2008; Desmedt et al., 2008; Miller et al., 2005;

Minn et al., 2005; Sotiriou et al., 2006; Wang et al., 2005; Buffa et al., 2011; Enerly et al., 2011)

were downloaded from the Gene Expression Omnibus (GEO) (Edgar et al., 2002). Table III

provides details about the source of the data and the number of samples for each type of tumor.

The first six studies contain only mRNA expression profiles whereas the last two (Buffa and

Enerly) have concurrent mRNA and microRNA expression profiles on ER+/ER- breast tumors.

Herein, we will refer to the datasets using the name provided in Table III.

TABLE III

ANALYZED ER+/ER- EXPRESSION DATASETS

Number of samples
Name Source ER+ ER-

Boersma (mRNA) GSE5847 (Boersma et al., 2008) 41 52
Desmedt (mRNA) GSE7390 (Desmedt et al., 2008) 107 51
Miller (mRNA) GSE3494 (Miller et al., 2005) 213 34
Minn (mRNA) GSE2603 (Minn et al., 2005) 57 42
Sotiriou (mRNA) GSE2990 (Sotiriou et al., 2006) 74 24
Wang (mRNA) GSE2034 (Wang et al., 2005) 209 77

Buffa (mRNA) GSE22219 (Buffa et al., 2011) 122 79
Buffa (microRNA) GSE22216 (Buffa et al., 2011) 122 79
Enerly (mRNA) GSE19783 (Enerly et al., 2011) 60 35
Enerly (microRNA) GSE19536 (Enerly et al., 2011) 60 35
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One of the important aspects of our data integration methodology is the fact that different

data sources are supported. The case study presented in this chapter illustrates the use of

microarray platforms from different manufacturers. Table IV provides details of these platforms.

TABLE IV

PLATFORM DETAILS OF ER+/ER- EXPRESSION DATASETS

Dataset Platform Probe mapping

Boersma

Affymetrix Human Genome U133A Array
(HG-U133A)

Custom CDF

Desmedt
Miller
Minn
Sotiriou
Wang

Buffa Illumina HumanRef-8 v1.0 expression beadchip
Manufacturer’s

annotation
Buffa (miR) Illumina Human v1 MicroRNA expression beadchip
Enerly Agilent Whole Human Genome Microarray, 4×44K
Enerly (miR) Agilent Human miRNA Microarray (V2) Kit, 8×15K

A custom Chip Description File (CDF) was used to find a unique mapping between probesets

and Entrez IDs in the first six datasets. The Affymetrix microarrays used in these studies

relied, at the time of their creation, on probes defined upon earlier genome and transcriptome

annotations. These annotations differ significantly from our current knowledge, therefore for

our analysis we used a custom CDF that conforms to the latest genome and transcriptome
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available information: custom CDF HGU133A Hs ENTREZG version 13.0 released on July 2010

(Dai et al., 2005). For the Agilent and Illumina microarrays, their proprietary annotation files

were used.

3.3.2 Data normalization

Data normalization of each dataset forced its microarrays to have the same empirical distri-

bution of intensities. The Robust Multichip Averaging algorithm (RMA) (Irizarry et al., 2003)

with quantile normalization was used for normalization of the Affymetrix microarrays. Addi-

tionally, to minimize the noise level in the subsequent task of data discretization, Affymetrix

detection calls were used only for Affymetrix data to identify probesets with low or no level of

expression.

The raw microRNA data from Enerly were normalized with the RMA algorithm using the

AgiMicroRna package (Lopez-Romero, 2011). The mRNA data in the Enerly study as well as

the mRNA and microRNA data in the Buffa study were already normalized by the authors.

There was a very large variability in the Affymetrix microarrays. This can be seen in Figure 9

(first column) where the densities of expression values for the microarrays are plotted as curves.

The second column shows the same curves after normalization. The third column shows, for one

randomly chosen microarray in the study, how the normalized density curve changes shape when

only the expression values of probesets marked as “Present” (P) or “Marginal” (M) are used.

This is due to the fact that probesets marked as “Absent” (A) may still have an expression value

different from zero. By using P/M calls we followed best practices recommended for Affymetrix

microarrays and obtained more reliable data to input to our system.
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Figure 9. Density of expression data in mRNA datasets.
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Figure 10 shows the density curves of the normalized expression values in Buffa and Enerly.

The first column of the figure has the mRNA data while the second column has the microRNA

data.

Gene expression analysis was performed using R with packages from Bioconductor (Gen-

tleman et al., 2004).

mRNA microRNA

Buffa

Enerly

Figure 10. Density of normalized expression data in combined mRNA-microRNA datasets.

3.3.3 Differential expression analysis

Each dataset was analyzed independently to obtain lists of differentially expressed genes

between ER+ and ER- samples. These differentially expressed genes were used in two different

contexts:
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• Differentially expressed genes in the first six datasets were used to determine the most

appropriate discretization method. (Data discretization is discussed in Section 3.3.4)

• Differentially expressed genes in the Buffa and Enerly datasets were used as evidence

in the Bayesian inference process. (Evidence in the inference process is discussed in

Section 3.3.11)

The differential expression analysis was performed on all normalized microarrays. For

Affymetrix, a probeset in a study was discarded if it was not marked as “Present” or “Marginal”

in more than 85% of the samples, or if the coefficient of variability (CV) of the expression values

of the probeset was less than 50% across samples. The limma package (Smyth, 2004) with the

Benjamini-Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995)

were used for differential expression analysis. The adjusted p-value threshold was set to 0.05.

For the Agilent mRNA chips, the normalized expression data were downloaded from GEO

and only the probes with unique Entrez IDs were kept. For the Agilent microRNA data, the

probes with a detection signal of less than 10% of the samples or not associated with H.sapiens

were discarded.

The normalized expression data of Illumina mRNA chips were downloaded from GEO and

those probes with unique Entrez IDs were retained. Probes with a CV of less than 20% were

filtered out. For the Illumina microRNA chips, only probes associated with H.sapiens were

retained. The differential expression analyses were performed with limma as described above.

The remainder of this section provides technical details about the process we followed to

obtain differentially expressed genes in each microarray platform. We close this analysis by
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comparing lists of differentially expressed genes obtained in different datasets to show that they

do not overlap well.

For Affymetrix (all mRNA data)

1. Use the Wilcoxon signed rank-based gene expression presence/absence detection al-

gorithm from the affy package in R Bioconductor. [function mas5calls]

2. Discard probesets not marked as “Present” or “Marginal” in 85% of samples.

3. Obtain coefficient of variability (CV) for probesets. If σ is the standard deviation

and µ is the mean, CV = σ
µ .

4. Discard probesets with CV < 0.5 across samples

5. Differential expression using limma package in R Bioconductor [functions lmFit and

eBayes]

6. Adjust p-values using Benjamini-Hochberg correction [function topTable]

7. Report probesets with adjusted p-value < 0.05

For Agilent (mRNA)

1. Discard probes that are not associated to an Entrez ID(s)

2. Keep the probe with maximum variance across all samples if a gene has multiple

probes

3. Follow steps 5 through 7 for the Affymetrix data

For Agilent (microRNA)
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1. Discard probes with detection signal in less than 10% of the samples or not associated

with H.sapiens

2. Follow steps 5 through 7 of the Affymetrix data

For Illumina

1. Discard probes that are not associated to an Entrez ID(s)

2. Keep the probe with maximum variance across all samples if a gene has multiple

probes

3. Discard probes with CV < 0.20 across samples

4. Follow steps 5 through 7 of the Affymetrix data

Table V summarizes the steps mentioned above and shows the different number of probesets

that remained after each processing step. The column “Original” lists the number of probe-

set/probes after removing those not associated to an Entrez ID. The column “Filtering method”

indicates how the probes were further filtered.
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TABLE V

NUMBER OF MRNA PROBESETS RETAINED AT EACH FILTERING STAGE

Number of probeset/probes
Dataset Original After P/M Filtering After Differentially

calls method* filtering expressed

Boersma 12,133 5,245 1 2,604 690
Desmedt 12,133 6,227 1 3,095 1,672
Miller 12,133 5,932 1 2,952 1,521
Minn 12,133 5,639 1 2,805 1,481
Sotiriou 12,133 6,355 1 3,160 1,341
Wang 12,133 5,753 1 2,859 1,834

Buffa 24,385 – 2,4 12,501 4,723
Buffa (miR) 735 – 2,5 488 150
Enerly 41,094 – 2 17,117 3,808
Enerly (miR) 729 – 3 498 60

*Filtering method (key):

1. Discard probesets with CV < 0.5 across samples

2. For genes with multiple probes, only the probe with maximum
variance across all samples was kept.

3. Probes with detection signal in less than 10% of the samples or
probes not associated with H.sapiens were discarded.

4. Discard probesets with CV < 0.2 across samples.

5. microRNA probes not associated with H.sapiens were discarded

3.3.3.1 Overlap among lists of differentially expressed genes

We identified discrepancies when analyzing the lists of differentially expressed genes that

were obtained from each dataset. Although the patients in these different studies were divided
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according to two distinct phenotypes such as ER+ and ER- the differentially expressed genes

across studies did not have a large overlap.

For each dataset we ranked the genes according to an ascending order of adjusted p-value.

We examined the overlap across multiple datasets for all the differentially expressed genes as

well as the overlap for the top 100-ranked genes, 200-ranked genes, and other top rankings.

Additionally, we wanted to determine if a gene was reported with a different status in two

datasets, e.g.: as down-regulated in ER+ samples of one dataset and reported as up-regulated

in ER+ of a different dataset. Table VI shows the details.

TABLE VI

OVERLAP OF DIFFERENTIALLY EXPRESSED GENES

Overlap of 6 Overlap of Buffa and Enerly
Affymetrix datasets mRNA datasets

All genes 150 2,172
Different status 0 4
Ranking < 100 4 36
Ranking < 200 7 70
Ranking < 500 37 197
Ranking < 1,000 116 421
Ranking < 2,000 150 907

It can be seen that only 4 genes overlap when taking the top 100-ranked differentially

expressed genes in the first 6 Affymetrix datasets. This was a clear sign, early on, that our
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integrative analysis could not simply rely on differentially expressed genes. As was mentioned

before, for our Bayesian inference we used all genes in the microarrays regardless if they were

differentially expressed or not. The information about differentially expressed genes in each of

the six Affymetrix datasets was nonetheless useful as it will be illustrated in Section 3.3.4.

When comparing the Buffa and Enerly datasets, there were 907 genes that overlapped among

the top 2,000-ranked differentially expressed genes. These 907 genes were used as evidence for

the BN inference process.

In these two datasets there are four differentially expressed genes with opposed expression

statuses. This means the genes were classified as up-regulated in Buffa and down-regulated in

Enerly, or vice versa. Because of their contradictory behavior, these four genes were discarded

from our analysis and are detailed in Table VII.

TABLE VII

GENES WITH OPPOSITE DIFFERENTIAL EXPRESSION STATUS IN AGILENT AND
ILLUMINA MICROARRAYS

Entrez ID Gene symbol and description
ER+ status ER+ status

in Buffa in Enerly

10270 AKAP8 A kinase (PRKA) anchor protein 8 up down
29964 PRICKLE4 prickle homolog 4 down up

128178 EDARADD EDAR-associated death domain up down
374655 ZNF710 zinc finger protein 710 up down
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3.3.4 Discretization of expression data

In a BN, the nodes must have distinct (and finite) discrete states. This required a dis-

cretization method to convert the microarray expression data into discrete values to be fed to

the BN. We used five states to discretize the expression values of all genes and microRNAs,

namely 1=very low, 2=medium low, 3=medium, 4=medium high and 5=very high.

From Section 3.3.3.1 it became clear that we could not base our integrative methodology

solely on differentially expressed genes as they have very little overlap between datasets. We

needed to use all the genes and microRNAs for which we were able to obtain expression data.

In fact, in order to integrate all eight datasets we had to follow two steps:

1. Determine what genes/microRNAs were common to all eight datasets.

2. Because BNs require discrete states for their nodes, we had to identify a method to convert

the expression data obtained from a microarray into discrete values.

3.3.4.1 Genes common to all datasets

The common genes between the first six datasets and the mRNA-Buffa and mRNA-Enerly

datasets were kept. The first six datasets, all of them of the same microarray platform, had

12,025 unique Entrez IDs. The mRNA-Buffa and mRNA-Enerly datasets had 15,627 and 17,177

unique genes respectively. A total of 10,722 unique Entrez IDs were common across all mRNA

datasets. The microRNA-Buffa and microRNA-Enerly datasets had 510 and 498 microRNAs

respectively with 308 microRNAs that overlapped between both datasets.
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3.3.4.2 Discretization methods

In order to determine the best discretization method for our microarray data, we analyzed

three discretization algorithms:

1. Sigma-mu (σ and µ)

2. Quantile distribution

3. Partition Around Medoids (PAM)

Figure 11 illustrates the overall approach to data discretization. In the figure we see that

the expression data of all the M microarrays in a given dataset are discretized one by one.

Figure 11. Data discretization overview.
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3.3.4.3 Sigma-mu (σ and µ)

This method is based on the mean (µ) and standard deviation (σ) of all the expression

values in microarrayj . The expression level of a gene/microRNA was compared against how

many standard deviations away from the mean it was. The five discrete values were assigned

as: very low and very high (≥2σ from µ); medium low and medium high (≥1σ and <2σ from

µ); and medium (<1σ from µ). The pseudocode describing this method is shown in Algorithm

1.

3.3.4.4 Quantile distribution

The density function of the expression values in a microarray was used to obtain estimates

of the intervals that accumulated 20%, 40%, 60%, 80% and 100% of the expression values. The

sample quantiles were estimated in the following way (Hyndman and Fan, 1996):

1. Sort in ascending order the N expression values in microarrayj , {x1,x2, ...,xN}

2. To estimate the quantile breakpoint Q̂p for a given probability p, compute the index k to

the list of sorted values as:

k̂ = p(N − 1) + 1

k = bk̂c

and finally compute the quantile estimate using interpolation

Q̂p = xk + (k̂ − k)(xk+1 − xk)
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The pseudocode describing this process is shown in Algorithm 2. As shown in the algo-

rithm, the discrete value corresponding to a given expression value is the quantile in which the
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expression value belongs. Quantile 1 [0% to 20%) was assigned a discrete value of very low.

Quantile 2 [20% to 40%) received a discrete value of medium low ; all the way to quantile 5

[80% to 100%] which was assigned a discrete value of very high. The quantile estimation was

implemented using the function quantile from the R package stats.

3.3.4.5 Partition Around Medoids (PAM)

The expression values of all the genes in microarrayj were clustered into 5 clusters using

the Partition Around Medoids (PAM) algorithm. The lowest cluster (1) contained genes whose

expression values were in the lowest range of expression level. The remaining clusters, 2 through

5 contained genes with higher expression values than those in the previous cluster. Therefore,

genes whose expression values were clustered in the lowest and highest end of the spectrum

(clusters 1 and 5) were discretized as very low and very high respectively. Genes in clusters 2

and 4 were discretized as medium low and medium high. Genes in the remaining cluster (3)

were discretized as medium.

For its implementation, we used the function pam from the R package cluster.

Note on discretization of Affymetrix microarrays: Regardless of the discretization

method used, the above processes were applied only to probesets marked as either “Present” or

“Marginal” (P/M). Probesets marked as “Absent” were always given a discrete value of very

low. This is shown in Algorithm 1, lines 12 and 13, where the mean and standard deviations

are only computed for genes marked as P/M. Line 29 in Algorithm 1 and line 33 in Algorithm

2 show how genes marked as “Absent” are imputed a discrete value of very low.
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3.3.5 Evaluation of discretization methods

Data discretization has a strong effect over the conditional probabilities assigned to each

node in a BN. Therefore, we conducted a comparison of the three discretization algorithms de-

scribed above (Sections 3.3.4.3 through 3.3.4.5) to determine the one that was most appropriate

to our study.

We compared the discrete values obtained from each method to identify the one that created

the largest contrast between the two phenotypes in the data (ER+ vs. ER- in this case). To

detect this contrast, we used as reference the genes which we had determined to be differen-

tially expressed in each dataset. In theory, if a gene is differentially expressed in a dataset, it

means that the expression values of the gene in the ER+ samples are different from the ex-

pression values of the same gene in ER- samples. Consider the following example, for datasetd

we have M samples (microarrays). The first s samples correspond to patients categorized as

ER+. The remaining M − s samples correspond to ER- patients. Therefore, if genek is differ-

entially expressed in datasetd we can expect the discrete values of genek in samples [1...s] to be

“significantly different” to the discrete values of the same gene in samples [s+ 1...M ].

To quantify that difference for a given genek, we used the unweighted pair-group method

arithmetic averages (UPGMA) between ER+ and ER- samples:

∆genek =
1

|ER+ ||ER− |
∑

x∈ER+

∑

y∈ER−
dist(x, y). (3.1)

where:
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• genek must be differentially expressed in datasetd

• ER+ and ER- are the samples for each phenotype

• the distance measure dist(x, y) = |x − y| , with x and y being discrete values between 1

and 5.

In summary, all the discrete values of genek in ER+ samples were compared against the

discrete values of genek in ER- samples. This process was repeated for all the differentially

expressed genes in datasetd, summing up the ∆genek for all k.

3.3.5.1 Evaluation criteria

Our requirements for a good discretization algorithm were the following:

For differentially expressed genes:

1. The sum of all ∆genek should be large: we wanted a discretization algorithm that

maximized the distance between discrete values of different phenotypes.

2. The number of genes that get the same discrete value in both phenotypes should be

minimized. For example, we wanted to avoid as much as possible a case where genek

was given a discrete value of, say very high, in all M microarrays of datasetd. This is

an important consideration because even if a gene was determined to be differentially

expressed in our analysis, the difference in expression values between phenotypes can

be subtle enough that the discretization method could potentially generate the same

discrete values for both phenotypes.
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Conversely, the same requirements (with opposite criteria) were used for genes that were

not differentially expressed.

For the rest of the genes (not differentially expressed):

1. The sum of all ∆genek should be low: in this case, it had to be lower than the value

obtained for differentially expressed genes.

2. The number of genes with the same discrete value in both phenotypes should be

maximized: it is fair to say that if the gene is not differentially expressed, there

should not be much variation between phenotypes.

3.3.5.2 Evaluation results

Table VIII contains the results of the metrics mentioned above for differentially expressed

genes. The sum of all ∆genek per dataset was divided by the number of genes to obtain an

average UPGMA ∆genek. The column same is the count of genes for which the discrete values

were the same across all samples of both phenotypes. The column diff indicates the count of

genes for which at least one discrete value was different between phenotypes. The addition of

same + diff, in each dataset, is equal to the number of differentially expressed genes in that

dataset (see Table V in 3.3.3).

When comparing the counts of same vs. diff obtained for differentially expressed genes we

can see that PAM outperformed the other two methods. This was of outmost importance to

us because the differentially expressed genes in Buffa and Enerly will later be used as evidence

in the BN inference. Figure 12 shows these counts as percentages.
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TABLE VIII

DISTANCE METRICS FOR DIFFERENTIALLY EXPRESSED GENES

PAM Sigma-mu Quantile

Dataset ∆genek same diff ∆genek same diff ∆genek same diff

Boersma 1.013 0 690 0.373 41 649 0.780 17 673
Desmedt 1.219 0 1,672 0.372 50 1,622 0.811 10 1,662
Miller 0.967 0 1,521 0.356 50 1,471 0.763 29 1,492
Minn 0.929 0 1,481 0.420 60 1,421 0.836 14 1,467
Sotiriou 1.099 0 1,341 0.347 116 1,225 0.718 39 1,302
Wang 0.954 0 1,834 0.353 42 1,792 0.766 23 1,811
Buffa 1.007 1 4,722 0.195 840 3,883 0.528 115 4,608
Enerly 1.098 0 3,808 0.207 1,130 2,678 0.492 338 3,470
Buffa (miR) 0.650 14 136 0.118 58 92 0.313 22 128
Enerly (miR) 0.912 0 60 0.131 36 24 0.469 10 50

PAM

Sigma-mu

Quantiles

Figure 12. Same vs. different discrete values in differentially expressed genes.
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Computing the values ∆genek, same and diff for differentially expressed genes was straight-

forward. But obtaining these values for the rest of the genes required taking random samples

of non-differentially expressed genes, computing the sum of all ∆genek, obtaining the counts

same and diff and repeating the process for 100 iterations to average the results. For each

dataset the sample size r differed based on the number of differentially expressed genes in it.

For example, in the Boersma dataset r = 690 (see Table V).

After 100 iterations, the counts were averaged and the results for non-differentially expressed

genes can be found in Table IX.

For non-differentially expressed genes, the Quantiles method performed better than the

other two. Because the genes were not differentially expressed, we expected to see a higher

value for same and a smaller value for diff. Figure 13 shows the results for the non-differentially

expressed genes.
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TABLE IX

DISTANCE METRICS FOR NON-DIFFERENTIALLY EXPRESSED GENES

PAM Sigma-mu Quantile

Dataset ∆genek same diff ∆genek same diff ∆genek same diff

Boersma 0.570 143.5 546.5 0.326 173.1 516.9 0.386 221.9 468.1
Desmedt 0.700 218.9 1,453.1 0.304 309.6 1,362.4 0.343 478.8 1,193.2
Miller 0.546 260.5 1,260.5 0.283 366.1 1,154.9 0.342 466.4 1,054.6
Minn 0.487 287.7 1,193.3 0.341 287.0 1,194.0 0.382 441.2 1,039.8
Sotiriou 0.690 209.2 1,131.8 0.298 332.4 1,008.6 0.360 416.5 924.5
Wang 0.517 279.6 1,554.4 0.314 349.0 1,485.0 0.352 525.5 1,308.5
Buffa 0.772 0.0 4,723.0 0.167 844.7 3,878.3 0.402 125.3 4,597.7
Enerly 0.858 0.3 3,807.7 0.175 1,156.7 2,651.3 0.346 354.6 3,453.4
Buffa(miR) 0.534 16.5 133.5 0.124 45.1 104.9 0.285 15.5 134.5
Enerly(miR)0.853 0.1 59.9 0.079 43.5 16.5 0.365 6.4 53.6

PAM

Sigma-mu

Quantiles

Figure 13. Same vs. different discrete values in randomly chosen non-differentially expressed
genes.
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Surprisingly, Sigma-mu performed very poorly in both cases. When looking at the shape

of the density functions in Figure 9 (third column, normalized values after keeping only P/M

probesets), our intuition suggested that this method would be appropriate. But under close

examination we can see there is a positive skew in those density functions which, although not

as prominent as in Figure 10, it makes this discretization method perform badly in comparison

to PAM and Quantiles.

3.3.6 Structure pre-processing of KEGG pathways

The KEGG database provides experimental knowledge in many forms, one of them be-

ing molecular networks called KEGG pathway maps. For our work, the pathway maps were

analyzed as networks, with directed edges between the nodes representing a known interac-

tion. The pathways analyzed were related to signaling (KEGG Ids 04010-04350) and cancer

(05200-05223).

The structure of a pathway including nodes and edges was used as the backbone of a BN.

Before the BN could be constructed, a pre-processing step was implemented on the pathway.

This pre-processing yielded a new network, based on the original pathway, with the following

properties:

• No cycles: The KEGG pathway was transformed into a directed acyclic graph (DAG).

Edges that created a loop were discarded.

• Nodes with expression data: The Entrez ID of each node in the pathway was checked

against the list of genes that had expression data (10,722 Entrez IDs from our microarray
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analysis, see Section 3.3.4.1). Nodes with no expression data were removed. The parents

and children (if any) of a removed node were updated to include new edges linking them.

• Limited types of interactions: Only the following interactions annotated in a KEGG path-

way were taken into consideration: a) gene expression relations: expression, repression

and indirect effect ; and b) protein-protein interactions: activation, inhibition and indirect

effect.

The package KEGGgraph (Zhang and Wiemann, 2009) in Bioconductor was used to parse

the raw KEGG Markup Language files.

3.3.7 The predicted targets of TFs and microRNAs

Since our goal in implementing a BN for a known pathway is the identification of the set

of TFs and microRNAs that are putative regulators of nodes in the pathway, the new network

obtained from the previous pre-processing step needed to be expanded to include the TFs and

microRNAs that are predicted to target the nodes in the pathway. We followed two different

approaches to determine which TFs and microRNAs may target a node in the pre-processed

network:

1. TF target prediction: bindSDb (Roqueiro et al., 2010) is a database we developed

to store experimentally proven and predicted transcription factor binding sites. For the

prediction portion, the database returns a set of TFs that are predicted to bind to the

promoter region of a gene based on sequence analysis. It uses the Match (Kel et al.,

2003) algorithm to determine if a TF may bind to the promoter of the gene. Each TF
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was represented by one or more position weight matrices from TRANSFAC (ver. 2010.1)

(Matys et al., 2006). In our work, for each gene in a pathway, or protein encoded by a gene,

we obtained from bindSDb all the TFs that are predicted to bind to the promoter region

of the gene (in our case defined as ±2 Kb from the transcription start site). Additionally,

we obtained from TRANSFAC the information about the genes that encode the predicted

TFs (when available). In this way, each gene in the pathway will be associated with a set

of genes whose protein products, i.e., TFs, are predicted to target the gene. If one of the

predicted TFs was already present in the pathway, then it was not included as a putative

regulator of the gene.

2. microRNA target prediction: All predictions of microRNAs targeting genes were

obtained from the TargetScan Human release 6.0 (Friedman et al., 2009). TargetScan is a

microRNA target prediction algorithm that searches highly conserved 3’UTR targets for

8-mer and 7-mer sites matching the seed region of microRNAs. We downloaded target

predictions for 677 microRNA families, as defined by TargetScan, and obtained a total of

54,479 unique pairs between microRNA family and target gene.

3.3.8 Pre-selection of TFs and microRNAs

From the previous step we obtain a list of predicted TFs and microRNAs targeting each

individual gene in a pathway. Ideally, we would expand the pathways by adding incoming edges

to a gene from every TF and microRNA predicted to target the gene. Unfortunately, because

of the large number of TFs and microRNAs that may target a gene, this is infeasible. As an
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example, Table X shows the number of TFs and microRNAs that are predicted to target the

genes of three signaling pathways.

TABLE X

NUMBER OF TFS AND MICRORNAS TARGETING GENES IN A PATHWAY

KEGG Id Pathway name
TFs per node microRNAs per node

Average Max. Average Max.

4010 MAPK signaling pathway 95.3 165 10.7 54
4150 mTOR signaling pathway 90.3 152 17.1 59
4115 p53 signaling pathway 91.8 151 14.2 59

For a complete list of pathways and statistics of the number of nodes targeted by TFs and/or

microRNAs, refer to the Appendix, Table XXXIII.

If a node in a BN has more than 100 parents, we simply cannot maintain its conditional

probability table (such a table will consist of more than 5100 entries). Therefore, it is necessary

to limit the number of regulators for each gene. To that respect, we used an improved version

of a machine learning approach we previously implemented (Huang et al., 2011b) to obtain

a ranking of the TFs and microRNAs that are predicted to target each gene. Based on this

ranking, for each gene we chose the top 5 TFs and the top 3 microRNAs and added them to

the BN.
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Two classifiers were created using the random forest (RF) classification algorithm (Breiman,

2001) on each gene of a pathway. One classifier was based on the expression levels of the

associated TFs and, the other, of the microRNAs. For each classifier, the values of the predictor

variables were the discretized expression levels of the TFs (mRNAs of the encoding genes) or

microRNAs. Our ultimate goal was not to find a classifier to predict the expression level of

genes but to use RF to measure the importance of each predictor variable. In this manner, for

each gene, a group of TFs and microRNAs that could differentiate the expression level of the

gene across different microarrays were obtained.

The layout of the input data to RF is shown in Figure 14. More specifically, the supervised

learning predictor for geneg is defined as Tg = (yi,xi) with i = 1 to M , where M is the total

number of microarrays used in the classifier. For TFs, M = 980 (the first six studies listed

in Table III) and for microRNAs, M = 296 (Buffa and Enerly). The multiclass response vector

y contains the M discrete expression levels of geneg in the microarrays. Each vector xi has

values for k predictor variables (TFs or microRNAs that target geneg), that is, xij for j =

1 to k contains the discrete expression value of predictor j in microarray i. The values were

coded according to the data discretization step: from 1 through 5, where 1 = very low and 5 =

very high. For each gene, an ensemble of 2,000 trees (for TFs) and 500 trees (for microRNAs)

was created. One third of the variables were randomly chosen at each tree level and one third

of the samples were left as out of bag. Variable importance was determined after performing

permutations on the trees to assess the change in their predicting power. Each variable was
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assigned a mean decrease of accuracy score and the ranking of predictor variables for the gene

was based on this score. The analysis was implemented with the R package randomForest.

Figure 14. Data layout for random forest classification.

3.3.9 Pathway extension

At this stage, we have all the required information to create a BN for a pathway. The

modified pathway obtained after pre-processing in 3.3.6 was extended to accommodate the TFs

and microRNAs ranked in Section 3.3.8.

Our RF analysis output two variable importance rankings for each gene: one for the TFs

and one for the microRNAs. These rankings list the TFs and microRNAs in decreasing order of

the variable importance score assigned to each of them. An extended pathway was then created

in the following way:
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• For each node g in the pre-processed pathway:

1. Create nodes representing the top 5 TFs, as reported by RF, that target gene g.

Add directed edges from these nodes to g

2. Create nodes with the top 3 microRNAs targeting g as reported by RF. Add directed

edges to g

The top 5 TFs and top 3 microRNAs were only considered if their variable importance

score was greater than zero. Also note that the same TF may target more than one gene in the

pathway. Therefore, the node for the TF was added just once with multiple edges going from

this node to different target genes. The same consideration applied to the microRNAs. This

newly merged pathway was then fed to the BN process.

3.3.10 Construction of the Bayesian network

Simply put, a BN can be characterized as (Kwisthout, 2011; Jensen and Nielsen, 2007):

• A directed acyclic graph G = (V,E) where V is a set of variables and E is a set of directed

edges between the variables.

• Each variable in V has a finite set of mutually exclusive states.

• For each variable B with parents A1, A2, ..., Ap there is a set of parameter probabilities in

the form of conditional probability tables (CPTs) that capture P (B|A1, A2, ..., Ap).

The first two items have been addressed in previous sections (pre-processing of KEGG

pathways and data discretization). The creation of the CPT for a given node in the pathway

was implemented in the following way:
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1. For nodes with no parents, the CPT was basically a vector representing the prior of the

node. It was computed by obtaining the frequencies of each discrete value across all the

appropriate microarrays (TFs and genes used the first six datasets of Table III, whereas

microRNAs used the Enerly and Buffa datasets).

2. For a node with parents A1, A2, ..., Ap, the CPT reflected the probability of all possible

combinations of states between the node and its parents. The probability of each possible

combination was obtained by counting in all appropriate microarrays and then dividing

by the total number of observations. A high-dimensional matrix C of 5-by-5-by...(p+1)-

times was used to compute the CPT. The matrix C was initialized with 1s to assume

that each possible combination of states was possible. Then, for each microarray, the

discrete expression values of the node and its parents were obtained as a vector v =

[vA1 , vA2 , ..., vAp , vnode]. The contents of matrix C at the cell C[vA1 , vA2 , ..., vAp , vnode]

were then incremented by one. At the end, each position of C was divided by the sum

of all elements in C. The matter of what set of microarrays to use was resolved in the

following way:

• If any of the node’s parents A1, A2, ..., Ap was a microRNA, the Buffa and Enerly

datasets were used

• Otherwise, the first six datasets listed in Table III were used.

This distinction was absolutely necessary. In order to compute the CPT of a node that had

at least one microRNA as parent, we needed to process microarrays that had both expression
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values for genes/TFs as well as microRNAs. Evidently, because of the number of samples listed

in Table III, the CPTs of nodes with a microRNA targeting them were created from fewer

observations than nodes whose parents were only TFs or other pathway nodes.

3.3.11 Evidence and inference

An important aspect of a BN is the evidence, i.e., the values assigned to observed nodes.

For evidence we used 907 differentially expressed genes between ER+ and ER- samples of the

mRNA-Buffa and mRNA-Enerly datasets. These 907 genes were the result of the overlap of the

top 2000-ranked differentially expressed genes in each of the two datasets as shown in Table VI.

Only those differentially expressed genes that were part of a pathway (not as TFs but as KEGG

pathway nodes) were used as evidence.

Once the BN for a pathway was created, we conducted two rounds of inference. The CPTs

in our BN were created using all the data from ER+ and ER- samples. Therefore, in order to

identify a contrast between these two phenotypes we subjected the same BN to two different

sets of evidence corresponding to two scenarios. In scenario #1, the evidence value assigned to a

differentially expressed gene was the median of all the discrete values of that gene corresponding

to ER+ samples. Conversely, in scenario #2, the evidence was formed by obtaining the medians

of the discrete values in ER- samples.
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Regardless of which of the two scenarios we are analyzing, for a BN with variablesX1, X2, ..., Xn+s

where the evidence e = [Xn+1, Xn+2, ..., Xn+s] and the values of variables X1, X2, ..., Xn are

unobserved, we would like to obtain P (X1, X2, ..., Xn|e). This joint probability is defined as:

P (X1, X2, ..., Xn+s) =
n+s∏

i=1

P (Xi|parents(Xi)). (3.2)

Because the size of the CPT for each variable Xi is exponential on the number of parents of

Xi, this computation is prohibitive for large networks. To complicate matters further, we want

an answer to the question: what is the probability of Xi = x given the evidence e? This requires

the marginalization of Xi from equation Equation 3.2. Since exact inference is computationally

infeasible, we have to find an approximation to the marginal probability P (Xi|e). In our work,

this was achieved by using a Gibbs sampler. The marginal probabilities for all unobserved

nodes were sampled at a rate proportional to Q × the number of nodes in the BN, with Q

= 250. The BN creation, Gibbs sampler, inference engine and marginalization of nodes were

implemented with the Bayes Net toolbox for Matlab (Murphy, 2001).

To summarize, each BN was given two different sets of evidence corresponding to two sce-

narios. In scenario #1, the evidence was the discrete values in ER+ samples of the differentially

expressed genes. After providing the BN with the evidence, we ran the inference process and

approximated the marginals for all unobserved nodes. We repeated this process for scenario

#2, but this time we used as evidence the discrete values in ER- samples.
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3.3.12 Approximation of marginal probability for Bayesian inference

In order to empirically determine the value of Q, i.e., the number of samples to draw while

using the Gibbs sampler in the estimation of the marginals, we proceeded to create two toy

BNs of 16 and 36 nodes. The 16-node network was based on three nodes from the MAPK

signaling pathway. These three nodes were subjected to all the steps in our methodology:

pathway preprocessing, prediction of target TFs and microRNAs, RF classification and variable

importance and, finally, pathway extension. The three pathway nodes (in green) with the TFs

(squares) and microRNAs (triangles) that target them are shown in Figure 15(a).

Figure 15. (a) Toy BN of 16 nodes and (b) its error in approximating marginals using Gibbs
sampler.
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The 16- and 36-node networks were small enough that the full joint probabilities could

be computed precisely. Therefore, all marginals were computed in an exact manner. We

then approximated the marginals using a Gibbs sampler and the approximation error was

determined for different number of iterations of the sampler. For the 16-node BN it can be

seen in Figure 15(b) that there is little oscillation of the error, and that after 4,000 samples

the error stays below 0.05. Our empirical Q = 4,000 / 16 = 250 was used to determine how

many samples had to be taken per node. A similar analysis was done with the 36-node network

arriving to a similar value of Q. For the 36-node network we continued testing the number of

samples up to 50,000 to show how the approximation error continues to decrease (See Figure 59

in the Appendix).

3.4 Results of the inference process using breast cancer data

We have systematically constructed BNs for all the 34 KEGG pathways based on the pro-

cedures described in the previous sections. The numbers of nodes and edges in the original

pathways and the number of nodes and edges in the expanded Bayesian networks are provided

in the Appendix, Table XXXIII.

We present our inference results in an attempt at uncovering the relationships among TFs,

microRNAs and pathway genes that are associated with ER+ and ER- breast tumors.

As detailed in section 3.3.11, each BN of a pathway was given two different sets of evidence

corresponding to two scenarios. In scenario #1, the evidence was the discrete values in ER+

samples of the differentially expressed genes. After providing the BN with the evidence we ran

the inference process and approximated the marginals for all unobserved nodes. In scenario
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#2, the same inference process was performed and the marginals were approximated. In this

case, the evidence used was the discrete values in ER- samples of differentially expressed genes.

In addition to these two scenarios, we created two BNs for each pathway: one BN using the

first 6 datasets + Buffa and another using the first 6 datasets + Enerly. Although many nodes

in each BN had the same CPTs, those nodes that had a microRNA as parent had their CPTs

derived from a different dataset (either Buffa or Enerly respectively).

Our goal in creating these two BNs was to provide further validation to our predictions. If

our inference process reports a TF or microRNA as a highly probable regulator, and this result

coincides in both the Buffa- and Enerly-derived BNs, it provides greater confirmation that our

prediction is plausible. Figure 16 depicts the flowchart of the analysis to create two BNs on

which to run inference using the ER+ and ER- scenarios.
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Figure 16. Inference process to generate results.

When analyzing the marginals we obtained, we decided to focus on nodes that fulfilled any

of the following two conditions:

• the node’s marginals had one state with a probability larger than 0.8 in scenario #1 and

lower than 0.8 in scenario #2 (or vice versa).
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• at least one of the nodes marginals for one state had a 2-fold variation in probability

between scenario #1 and scenario #2, with the resulting probability being larger than

0.5.

There is no particular reason why we chose these threshold values. They are in fact very

stringent and served the purpose of providing a reduced set of results that were easy to manually

validate against the true KEGG pathway structure.

3.4.1 Results for the Cell Cycle pathway

In the cell cycle pathway (KEGG Id 04110) we had 9 differentially expressed genes that were

obtained from our differential expression analysis. One of those genes, CCND1 (Cyclin D1), was

over-expressed in ER+ samples. Being over-expressed in ER+ means that the expression level

of CCND1 in ER+ samples was larger than that in ER- samples, in a statistically significant

way. Figure 17(left) shows a subset of nodes in the BN created for the cell cycle pathway. In the

figure, CCND1 is marked in red to indicate that it is differentially expressed. Figure 17(right)

shows how the discrete value of CCND1 in scenario #1, when the discrete value corresponding

to ER+ is used as evidence, is larger than the discrete value in scenario #2, when the dis-

crete value corresponding to ER- is used instead. It goes from very low in #2 to medium in

#1. Figure 17(right) also shows the marginals for the rest of the nodes in Figure 17(left) when

the 6 datasets + Buffa were used to create the BN (Table XXXIV in the Appendix shows the

marginals for the 6 datasets + Enerly). These marginals, for each scenario, indicate the most

probable state in which the expression of a gene, TF or microRNA might be, based on the

evidence entered in that scenario.
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Figure 17. (left) Selected nodes from the merged cell cycle pathway. The original nodes in the
pathway are in green. The TFs (squares) and microRNAs (triangles) that target them are

also included. The differentially expressed gene CCND1 is marked in red and the TF TFE3
(putative regulator) is in light blue. According to the pathway definition in KEGG, SMAD3
promotes the expression of CDKN2B and CDKN2B inhibits CCND1 and CDK4. According

to our analysis, CCND1 was over-expressed in ER+ samples. (right) de: the gene is
differentially expressed and was used as evidence. The dotted line separates the nodes

between those reported using our selection criteria (top part of the table) and others included
only to illustrate that their marginals did not change much between scenarios.

When inspecting the TFs: NFIB, STAT6 and SREBF1 that from sequence analysis and RF

we have predicted to target CCND1 directly, we realize that their marginals are very similar

in both scenarios. Because we know that the expression of CCND1 changed between scenarios

#2 and #1, we are looking for a TF or microRNA that may also have changed between those
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scenarios and that may help explain the change in expression for CCND1. Neither of the TFs or

microRNAs that target CCND1 have a significant change in their marginals between scenarios

and this is why they are not depicted in Figure 17(left).

The TF TFE3 (transcription factor binding to IGHM enhancer 3) may provide a better

explanation of why CCND1 is differentially expressed, even if TFE3 does not target CCND1

directly. In Figure 17(left) TFE3 is in light blue and targets SMAD3. Between scenarios #2

and #1 we can see – Figure 17(right)– that there is more certainty in scenario #1 that SMAD3

is at a lower state (a combined very low and medium low of 0.29+0.39=0.68). This implies a

lower level of expression in that scenario (vs. 0.21+0.31=0.52 in scenario #2). The marginals

have a moderate change from higher expression states in scenario #2 to lower states in #1. This

transition is much sharper for Enerly (See Table XXXIV in the Appendix). In the Cell cycle

pathway, SMAD3 promotes the expression of CDKN2B, which in turn regulates the expression

of CCND1 and CDK4 by inhibiting them. Our BN simply keeps directed edges between nodes

but is not aware of the semantics of each edge (inhibition, expression, and so forth). Nevertheless

our results adjust very well to the semantics of the pathway. When SMAD3 switches to a lower

state (from scenario #2 to #1), CDNK2B has also a sharp decrease of expression to a very low

state (with an increase of certainty from 0.48 in scenario #2 to 0.99 in scenario #1). Therefore,

with a high chance of having low expression of CDKN2B, we also have a high chance of not

inhibiting neither CCND1 nor CDK4 and this results in an increase in their expression levels

(for CCND1, from very low in scenario #2 to medium in #1; and for CDK4 it goes from a
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somewhat uncertain state of expression in scenario #2 to a 0.82 certainty of having medium

high expression level in scenario #1).

Upon reviewing the TFs that are predicted to target SMAD3, we see that TFE3 is the only

one with a marked contrast between scenarios. In scenario #2 there is 0.65 probability that its

expression is medium high but this probability decreases to a 0.31 (more than 2-fold decrease)

in scenario #1. This sharp decrease occurs because in scenario #1 there is more certainty

of TFE3 being in a medium state of expression (0.69 vs. 0.31 in scenario #2). We therefore

hypothesize that the transcription factor TFE3 is a key regulator in the Cell cycle pathway when

comparing ER- and ER+ samples. We are not implying by any means that TFE3 affects directly

the expression of SMAD3 but there is a clear relationship between their changes in expression

levels and this allows us to postulate TFE3 as a regulator in the pathway. In fact, TFE3 is

a well-known transcription factor (Beckmann et al., 1990) and there is ample evidence of its

synergizing effects with SMAD3 to enhance Transformer Growth Factor β (TGF-β) dependent

transcription (Hua et al., 1999; Hua et al., 2000).

3.4.2 Results for the p53 signaling pathway

The analysis of the p53 signaling pathway (KEGG Id 04115) provides an example of how to

identify a regulator based on direct interactions between the regulator and genes in the pathway.

For this pathway, our differential expression analysis reported 8 differentially expressed genes.

Very few TFs passed our selection criteria and only one of them overlapped between the Buffa

and Enerly datasets. This is the case of STAT5B known as signal transducer and activator

of transcription 5B. STAT5B was predicted to target only 2 genes in this pathway: IGFBP3
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(insulin-like growth factor binding protein 3) and PERP (p53 apoptosis effector related to

PMP-22). These two genes are located in different parts of the pathway and are not directly

related to each other.

The marginals corresponding to IGFBP3 do not seem to have much of a variation between

our two scenarios (Table XXXV below and Table XI in the Appendix). In contrast, PERP

is differentially expressed (down-regulated) in ER+ samples, i.e., scenario #1. We can see

that the TF STAT5B shifts its marginal probability of being in a somewhat uncertain state of

medium low expression in scenario #2 to a more certain state in scenario #1 (medium low =

0.84). This shift is accompanied, in scenario #1, by a decrement of the marginal corresponding

to the lowest level of expression (very low) which can be interpreted as a subtle increase of

expression of STAT5B in scenario #1 with respect to scenario #2.

TABLE XI

SELECTED MARGINALS FOR THE P53 SIGNALING PATHWAY (6 DATASETS +
ENERLY)

Node
Marginals

Scenario #1 Scenario #2
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STAT5B 0.16 0.84 0.24 0.73 0.02
PERP (de) (de)
IGFBP3 0.23 0.23 0.2 0.14 0.21 0.2 0.2 0.23 0.15 0.21



79

STAT5 is one of the seven members of the STAT (signal transducers and activators of tran-

scription) family of TFs and mediates the responses of cytokines, growth factors and hormones

(Basham et al., 2008). It has been shown that STAT5 regulates apoptosis in a wide range of

tumor cells (Longley and Johnston, 2007). STAT5A and STAT5B are different proteins encoded

by different genes.

PERP, a p53 transcriptional target, is induced specifically during apoptosis but not cell

cycle arrest. Down-regulation of PERP is associated with the aggressive, monosomy 3-type of

uveal melanoma (UM) (Davies et al., 2011). It has not been proven that PERP is a direct target

of STAT5B (Basham et al., 2008). But through our Bayesian inference process we were able

to determine that STAT5B (by interacting with PERP) might be a key regulator in the p53

signaling pathway. This result was validated by two BNs constructed with different datasets

(Buffa and Enerly).

3.4.3 Results for the MAPK signaling pathway

In addition to the results mentioned in the previous section, here we detail other findings

obtained for a different pathway: the MAPK signaling pathway (KEGG Id 04010), which are

also related to the TF STAT5B mentioned before.

As it was the case for the p53 signaling pathway, here we also had the chance to identify

a regulator based on direct interactions between the regulator and genes in the pathway. We

had 15 differentially expressed genes reported for this pathway. Here too, our strict selection

criteria yielded few TFs (only 5 in Enerly). Yet, one of them, STAT5B might be considered a

regulator for this pathway based on our results.
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We predicted 6 target genes of STAT5B: MAP3K12, NFKB2, RRAS2, FGF23, MAPK10

and PTPRR. These genes had no edges connecting them directly in the pathway. The marginals

corresponding to the last 3 genes do not vary much between scenarios #1 and #2 (below the

dotted line in Table XII and Table XXXVI in the Appendix). In contrast, the first 3 genes do

show a difference between the scenarios and MAP3K12 is in fact differentially expressed and

up-regulated in ER+ samples. The TF STAT5B shifts its certainty of being in state medium

low in scenario #2 to a more uncertain state in scenario #1. In scenario #1 we see a slight

increment in the marginals corresponding to higher levels of expression with respect to scenario

#2. The fact that STAT5B may slightly increase its expression in scenario #1 provides a better

explanation of why NFKB2 and RRAS2 also have a shift in marginals towards higher expression

states from scenario #2 to #1. Therefore, we postulate that STAT5B is a potential regulator

of the MAPK signaling pathway in breast cancer when comparing ER+ and ER- patients.

Because STAT5B showed to be of importance in two different pathways, this reinforces our

hypothesis that STAT5B is a key regulator in breast cancer patients.
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TABLE XII

SELECTED MARGINALS FOR THE MAPK SIGNALING PATHWAY (6 DATASETS +
ENERLY)

Node
Marginals

Scenario #1 Scenario #2
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STAT5B 0.22 0.64 0.09 0.03 0.01 0.1 0.88 0.01 0.01
MAP3K12 (de) (de)
NFKB2 0.18 0.22 0.22 0.2 0.18 0.74 0.09 0.06 0.06 0.05
RRAS2 0.4 0.14 0.16 0.14 0.16 0.78 0.07 0.06 0.06 0.04
PTPRR 0.27 0.17 0.2 0.21 0.15 0.17 0.18 0.18 0.23 0.24
FGF23 0.15 0.24 0.18 0.2 0.23 0.19 0.2 0.19 0.2 0.21
MAPK10 0.17 0.22 0.23 0.22 0.16 0.18 0.15 0.24 0.2 0.23

3.5 Conclusions

We proposed an integrative bioinformatics methodology that combines: a) the TFs and

microRNAs that are predicted to target pathway genes, with b) microarray expression profiles

of mRNA and microRNA, in conjunction with c) the known structure of molecular pathways.

All these elements were integrated into a probabilistic framework (BN) that was used to make

inferences about key TFs and microRNAs as regulators of the pathway. Using the procedures

described in this chapter, one can systematically construct a BN for each individual pathway of

interest. We have utilized 8 microarray expression datasets of mRNA and microRNA on ER+

and ER- breast tumors to demonstrate how to use the differentially expressed genes as evidence

in order to infer key regulators in the constructed BNs.
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Another important use of our framework is to propose hypotheses about the expression levels

of TFs or microRNAs and their effect on genes. We foresee the researcher posing questions of

the form: “What would the expression level of genes g1 and g2 be if microRNA3 is expressed

at a very high level?”

Several technical issues deserve further investigation. When making inference about the

expression level of a gene, TF or microRNA, we would ideally want to obtain the most probable

explanation (MPE) given the evidence at hand. This evidence can be tangible, i.e., obtained

from a microarray experiment, or, as it was mentioned before, it can be a set of hypotheses that

interest us. In either case, an exact solution to the MPE problem in Bayesian inference has

proven to be elusive due to the fact that approximating the MPE or finding the k-th MPE are

both NP-hard problems (Jensen and Nielsen, 2007). Thus, in this work we have decided to use

the marginals as a proxy for MPE. In turn, we approximated the marginals for the unobserved

nodes using a stochastic sampling algorithm (Gibbs sampler). A possible way to improve our

methodology will be to thoroughly examine different importance sampling algorithms that will

minimize the variance between the drawn samples and the target distribution (Cheng and

Druzdzel, 2000).

Finally, a self-imposed limitation of our model was the removal of edges that would create

cycles in the network. Another possible step towards improving our probabilistic framework is

to use a dynamic Bayesian network (DBN), which allows for cycles, and that better reflects the

positive feedback present in many molecular pathways.



CHAPTER 4

A COMPUTATION PIPELINE FOR THE INTEGRATIVE ANALYSIS OF

METHYLATION AND MRNA DATA.

4.1 Introduction

Cytosine-guanine dinucleotides (CpGs=5’-CG-3’) throughout our genome are chemically

tagged with methyl groups, which serve to regulate gene expression both globally and locally

(Suzuki and Bird, 2008). CpG sites do not occur as frequently across the genome of vertebrates

as expected from the proportion of C and G base pairs. CpG sites are only present at 1
5 of their

expected number although in certain genomic regions their density reaches up to 10 times of

what is observed in the rest of the genome (Lewin et al., 2011). These regions are called CpG

islands and there are approximately 29,000 of them in the human genome. Transcription of

genes can be affected by methylation of CpG sites in two different ways:

• a methylated CpG site that corresponds with the binding site of a transcription factor

(TF) may prevent binding of the TF.

• methylated CpG sites may facilitate the binding of repressors.

The rapid evolution of techniques to study this epigenetic mark now allow us to analyze

genome-wide CpG methylation sites, but we are pressed by the need to discern the biological

information conveyed from not only their magnitude of change, but also their positional context

within the genome. Growing evidence suggests that CpG islands escape methylation, while more

83
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isolated CpGs within the genome are more variably methylated (Greally, 2013). Additionally,

genomic loci showing cell- and tissue-specific patterns of differential methylation are more often

found in regions with reduced CpG density, supporting the notion that methylation of CpG sites

outside of the classical CpG islands play an important role in the regulation of gene expression

(Pollard et al., 2009).

4.2 Preliminaries

It becomes imperative then to find analysis pipelines with the ability to seemlessly integrate

methylation and mRNA data. However, existing bioinformatics tools, such as the R packages

lumi (Du et al., 2008), IMA (Wang et al., 2012) and SWAN (Maksimovic et al., 2012), focus on the

differential methylation analysis of individual CpGs in the Illumina 27K/450K high resolution

methylation arrays. COHCAP (Warden et al., 2013), a more recently released pipeline for the

integrative analysis of methylation and gene expression data, addresses the possible involvement

of multiple CpGs in gene regulation by taking the average methylation levels of differentially

methylated CpG probes in the proximity of a CpG island. Due to aggregation, the positional

effect on gene regulation of individually methylated CpGs may become obscure in this approach.

Here we present a workflow named me-mRNA-pipe to:

• Comprehensively examine the relationship between phenotypes and positional methyla-

tion levels of CpGs

• Further evaluate the potential association of changes in gene expression with a combina-

tion of CpG methylation levels.
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We address these two main questions in order to provide results that are considered more

biologically relevant. Our tool is applicable to the analysis of several widely used methylation

arrays in addition to various types of genome-wide gene expression arrays.

The majority of the work that focuses on finding a linkage between methylation and gene ex-

pression uses regression methods, machine learning strategies or a combination of both. Cheng

and Gerstein (Cheng and Gerstein, 2011) use support vector regression to identify how methy-

lation of histones in the proximity of transcription start sites and transcription end sites affect

the expression of genes. Their regression model attempts to predict the expression of genes

based on the amount of methylation in their sites of interest. Another approach, more closely

related to the one we propose, is the one described by Sun and Wang (Sun and Wang, 2012).

The authors analyze DNA methylation data obtained from the promoter regions of genes and

correlate it with the expression levels of the genes. They apply penalized logistic regression

concurrently on all genes and their methylated promoters.

As the technology to measure methylation improves and researchers have access to more

sophisticated experimental tools, there is a pressing need for bioinformatics methods that can

help identify what CpG sites are most responsible in affecting the expression of certain genes.

4.3 General features

The analysis pipeline we developed can process three possible types of expression data:

• Raw microarray data files

• Standard Matrix-series files downloaded from the Gene Expression Omnibus (GEO) (Edgar

et al., 2002)
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• Data exported from third-party tools.

Currently, me-mRNA-pipe can only process a limited number of mRNA and methylation

array platforms from raw data but a much wider variety of microarrays can be imported from

GEO or other external tools. The software provides the flexibility to process user-defined

microarray platforms as long as they are accompanied by an appropriate platform definition

file. These and other detailed specifications can be found in a user manual that was created

for the pipeline (not included in this document). Once the data have been imported into the

pipeline, its overall execution can be divided into four major steps:

• Descriptive statistics and plots: At this stage of the pipeline, methylation and mRNA

data are processed separately. The microarray samples are displayed in a) 2-dimensional

plots using the first two components of a principal component analysis (PCA) and b)

dendrograms with hierarchical clustering. These give the user a quality control measure

in terms of how well the samples cluster between the phenotypes. Additionally, density

plots are provided for all samples to assess the effect of normalization.

In the case of methylation, the beta values are used for these analyses whereas, for mRNA,

the expression values from the probes are considered. Lists of differentially expressed

probes and differentially methylated CpGs can be input from an external source, or can

be computed by the pipeline.

• Associating differentially expressed genes and differentially methylated CpGs: Using plat-

form definition files, the differentially expressed mRNA probes are converted to differen-
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tially expressed transcripts with unique RefSeq Ids. If more than one transcript for the

same gene is differentially expressed, the transcript with the smallest adjusted p-value

is selected. The genomic coordinates of these transcripts are then used to determine

the overlap with differentially methylated CpGs. The overlap between CpGs and genes

lays out the basis for the integrative analysis conducted by the pipeline. Based on their

genomic coordinates, CpGs are grouped by location. A location of a CpG can be with

respect to the gene with which it overlaps, or with respect to a known CpG island, or a

user-defined location. These locations are normally obtained from the microarray manu-

facturer’s manifest.

• Interactions of CpGs with phenotypes and other positional statistics: The first part of the

integrative analysis determines interactions between differentially methylated CpGs and

the phenotypes of the differentially expressed genes. We conduct, per gene, a two-factor

ANOVA analysis of the beta values of the CpGs associated with the gene. One factor

of the analysis is the phenotype and the other is the CpG location. This allows us to

rank differentially expressed genes based on the p-values of the interactions from their

overlapping CpGs (Supplementary Methods).

Another view at how CpGs relate to expression values is obtained from the correlation

analysis implemented in the pipeline. In this analysis, Spearman correlation coefficients

are computed between the expression values of a gene and the beta values of its CpGs.

After the coefficients have been calculated for all CpGs and genes, Fisher’s exact tests are
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conducted to determine if the proportion of positively and negatively correlated coeffi-

cients at specific locations is the same as the global proportion (Supplementary Methods).

• Modeling gene expression with CpG beta values: For a gene with multiple overlapping

CpGs, we model the expression value of the gene with the beta values of the individual

CpGs using multiple linear regression. Additionally, when the number of CpGs is large

we use a LASSO penalized regression model (Tibshirani, 2011) which aims at determining

a subset of CpGs that are “the most important” in explaining the expression levels of the

gene.

4.3.1 Methylation microarrays

The pipeline benefits from the whole-genome coverage of Illumina’s and NimbleGen’s high

resolution methylation arrays:

• HumanMethylation450 BeadChip array (450K): genome-wide coverage of different gene

regions and CpG islands. It covers 99% of RefSeq genes.

• HumanMethylation27 BeadChip array (27K): targets CpG sites located in the proximal

promoter regions of more than 14,000 genes and more than 100 microRNAs.

• NimbleGen 385K Human RefSeq promoter array: covers the distal and proximal promot-

ers of 100% RefSeq genes. Probes in the promoter region are separated by 100 bp.

Details about the coverage of the Illumina arrays can be found in Table XIII (Illumina, 2012)

and Table XIV (Illumina, 2010). Other platforms can be supported by creating the appropriate

platform definition files.
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TABLE XIII

COVERAGE OF THE ILLUMINA HUMANMETHYLATION450 BEADCHIP ARRAY

Location Genes mapped Percentage of genes covered

Coding protein TSS1500 17,820 94%
TSS200 14,895 79%
5’UTR 13,865 78%
1stExon 15,127 80%
Body 17,071 97%
3’UTR 13,042 72%

Non-coding RNA TSS1500 2,672 88%
(microRNA) TSS200 1,967 65%

Body 2,345 77%

Location Islands mapped Percentage of islands covered

CpG Island North Shelf 23,896 86%
North Shore 25,770 93%
Island 26,153 94%
South Shore 25,614 92%
South Shelf 23,968 86%

4.3.2 Illumina 450K methylation array

This array has 482,421 cytosine probes throughout the entire human genome. Each CpG

can have three different location contexts: a) location with respect to a gene, b) location with

respect to a CpG island and c) custom (user-defined) location.

Location by gene Although some probes are located in gene desert areas, the probes that

overlap with a known gene have a similar layout to the one depicted in Figure 18.

The CpG probe locations with respect to a gene have been categorized by the manufacturer

as: TSS1500, TSS200, 5’UTR, 1stExon, Body and 3’UTR, where:
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TABLE XIV

COVERAGE OF THE ILLUMINA HUMANMETHYLATION27 BEADCHIP ARRAY

Genes mapped Average coverage
(in number of sites)

RefSeq genes 14,475 1.9
Hot spots in cancer genes 144 7.6
Cancer-related targets 982 1.9
microRNA promoters 110 2.3

Figure 18. Location by gene: CpG probes –marked as circles with sticks– that overlap with a
gene

• TSS is the transcription start site of a gene and the numbers 1500 and 200 refer to the

maximum number of base pairs from the TSS.

• UTR is an untranslated region at the 5’ end or 3’ end of the coding region of a gene.

• 1stExon refers to the first exon of a gene.

• Body is the remainder, including the introns and exons after the first exon and up to the

start of the 3’UTR.
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Location by CpG island In addition to (possibly) overlapping with the promoter of a

gene or with its coding region, a CpG probe will always have a location with respect to a known

CpG island. This allows the same CpG probe, for example, to be in the promoter of a gene

(say, gene location = TSS200) and within the boundaries of a CpG island (say, cpg location =

Island). It is this richness of location information that me-mRNA-pipe exploits. Figure 19 shows

the different locations of a CpG with respect to an island.

Figure 19. Location by CpG island: CpG probes overlapping or in the vicinity of an island.

The locations with respect to a CpG island provided by the manufacturer are: N Shelf,

N Shore, Island, S Shore, S Shelf and Open sea.

• N Shore and S Shore are the neighboring regions of the CpG island for up to 2 Kb. The

prefixes “North” or “South” refer to the 5’ end and 3’ end of the chromosome respectively.

• The Shelf (also “North” and “South”) is the neighboring region of the shore that extends

up to 4 Kb away from the CpG island.
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• Open sea is used when the CpG is more than 4 Kb away from a CpG island.

Custom location The previous two locations are implemented in the pipeline as defined

by the manufacturer. A third type of location can be customized by the user and, by default in

this platform, has been set to a more compact version of the location by CpG island. Previously,

the shores and shelves were characterized as “North” or “South”. But this distinction between

“North” and “South” referred to the 5’ end and 3’ end of the chromosome respectively. The

distinction loses its true meaning if we wish to integrate a location by CpG island with a location

by gene because genes have an orientation and are either located in the + or - strand. Therefore

the third type of location we devised combines shore and shelves (distance of 4 Kb from an

island) and does not distinguish between north and south. Figure 20 illustrates this type of

location.

Figure 20. Custom location: Location relative to a CpG island with combined shores/shelves
and no distinction about orientation.
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4.3.3 Illumina 27K methylation array

It contains 27,578 CpG probes present in the vicinity of the TSSs of genes and 90% of these

probes are also included in the 450K array described before. The types of location for this

platform are described below and illustrated in Figure 21.

Location by gene Possible locations are: TSS200 for CpGs located up to 200 bp upstream

of a TSS; or TSS1500 if the distance is greater than 200 bp and less than 1,500 bp upstream

from the TSS.

Location by CpG island The locations are: Island if the CpG overlaps with a CpG island;

or Open sea if it does not overlap with a known island.

Custom location Provides more granularity than the locations by gene. Possible locations

are TSS200, TSS600, TSS1000 and TSS1500 depending on their distance to the TSS.

(a) Location by gene. (b) Location by CpG island.

Figure 21. Location of CpGs in the Illumina 27K array. As it was the case in the 450K
platform, the same CpG can have a location by gene and by CpG island.
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4.3.4 NimbleGen 385K Human RefSeq promoter array

This array has 711,794 cytosine probes throughout the promoters of all known RefSeq genes.

The three types of locations a CpG can have refer to the TSS of the closest gene.

Location by gene #1 Locations are divided into upstream and downstream from the

TSS and have the prefix “UP ” and “DOWN ” respectively. The suffix indicates the distance

to the TSS. For example, UP TSS200 and DOWN TSS200 refer to CpGs located 200 bp up-

stream/downstream of a TSS respectively; UP TSS1Kb and DOWN TSS1Kb if the distance is

greater than 200 bp and less than or equal to 1,000 bp upstream/downstream; and similarly

for the rest. Figure 22 shows all these locations.

Location by gene #2 Uses the same distances as the in the previous case but no distinction

is made if the CpG is upstream or downstream from the TSS. The locations are: TSS200,

TSS1Kb, TSS2Kb and TSS10Kb.

Location by gene #3 Provides a more compact view of the previous case, dividing the

CpGs in proximal or distal to the TSS. Possible locations are TSS2Kb and TSS10Kb.

Analysis results based on the Illumina 27K and 450K methylation arrays have revealed

that a differentially expressed gene can be associated with multiple differentially methylated

CpG probes. Among these probes, some may be hyper-methylated and others may be hypo-

methylated, a phenomenon that can be explained by the existence of statistical interactions

between the phenotypes and the locations of these CpGs. One of the objectives of our pipeline

is the detection of such interactions. Another objective is to find, for a given gene, a subset of
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Figure 22. Location by gene #1: CpG probes –marked as circles with sticks– that overlap
with a gene

differentially methylated CpGs that can best explain the observed expression level of the gene.

The identified CpGs can serve as unique epigenetic fingerprints related to gene expression.

Our pipeline consists of four major modules: i) Data pre-preprocessing, ii) Generation of

descriptive statistics and plots; iii) Detection of interactions of CpGs with phenotypes and other

positional statistics; and iv) Modeling of gene expression using CpG beta values. A flowchart

of the pipeline is shown in Figure 23.
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Figure 23. Execution flowchart of me-mRNA-pipe
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4.4 Proposed method

This section provides the details about the methods implemented in me-mRNA-pipe.

4.4.1 Notation

The following notational conventions are adopted for the rest of this chapter:

• β : indicates the methylation level of a CpG. It is called beta value and is described in

the next section.

• ρ : represents a correlation coefficient, either Spearman’s or Pearson’s.

• Other Greek letters stand for values/parameters that will be computed or estimated by

me-mRNA-pipe.

• In an equation with a superscript k in the LHS, k refers to a particular gene. In the same

equation, all references to k in the RHS will be omitted as it is clear from the context

that the arguments refer to gene k. For example:

ϕk = ψ + ω

where ϕk is a value associated to gene k and our goal is to determine ψ and ω. The

equation is per gene, therefore ψ and ω are specific to gene k and the superscript k is

omitted.

4.4.2 Beta values to measure methylation levels

me-mRNA-pipe measures methylation of a CpG using beta values. Equation 4.1 shows how

a beta value is computed at the ith CpG:
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βi =
max(Mi, 0)

max(Mi, 0) + max(Ui, 0) + α
, (4.1)

where Mi and Ui refer to the signal intensity of the methylated and unmethylated probes

assayed for CpGi. It is important to note that, in its original definition by Illumina (Bibikova

et al., 2006), Equation 4.1 was βi = max(Mi,0)
|Mi|+|Ui|+α where α = 100 and the absolute values in the

denominator corrected for negative signal after background correction.

4.4.3 Data pre-processing

The data import module of the pipeline allows the user to conduct differential expression

and/or differential methylation analyses. When data are imported from GEO, the user may run

the pipeline with the lists of differentially expressed genes and differentially methylated CpGs

that the authors of the original study obtained. Knowing that this is not always possible, the

user can opt to conduct differential analysis with me-mRNA-pipe.

4.4.3.1 Differential expression of mRNA probes

There are two methods to determine differential expression of mRNAs:

• Fold change: For each mRNA probe, a ratio of the mean expression values in both

phenotypes is obtained. If the data were flagged as log2 transformed in the configuration

file, then a log2-fold change is computed. Probes with a fold change greater than a

threshold (also set in the configuration file) are considered to be differentially expressed.

This is only recommended when the sample size is very small.
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• Moderated t-statistic controlling for false discovery rate (FDR): The limma package in

R/Bioconductor (Smyth, 2004) is used to obtain, for each probe, an adjusted p-value of

the difference in expression between phenotypes. The p-values are adjusted for multiple

hypothesis testing to control the FDR with the Benjamini-Hochberg algorithm (Benjamini

and Hochberg, 1995). Probes with an adjusted p-value less than a threshold set in the

configuration file are reported.

4.4.3.2 Differential methylation of CpG probes

There are three methods to determine differential methylation of CpGs:

• ∆beta: The mean beta values of each CpG probe in both phenotypes are compared

against each other. If the absolute difference is greater than a threshold, the CpG is

considered to be differentially methylated.

• Fold change: For each CpG, a ratio of the mean beta values in the phenotypes is obtained.

If the ratio (fold change) is greater than a threshold set in the configuration file, the CpG

is reported.

• Moderated t-statistic controlling for false discovery rate (FDR): The same approach pre-

viously described for mRNAs but applied in this case to the beta values of CpGs.

• Combination of the filters: Any combination of the previous conditions has to be met in

order to report the CpG as differentially methylated.
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4.4.4 ANOVA analysis

The ANOVA analysis is conducted on the beta values of differentially methylated CpGs

associated to a differentially expressed gene. The two-factor model is described in Equation 4.2,

where βkpq is the beta value of a CpG associated to gene k; µ is an unknown constant; φp is

the phenotype effect for phenotype p = 1, 2 –only two phenotypes are considered; τq indicates

the location effect for location q = 1, 2, . . . , Q when considering Q possible locations of a CpG

overlapping with a gene/island; (φτ)pq is the interaction effect between the phenotype p and

location q; and finally, εpq models other sources of variation in beta values that arise neither

from the phenotype nor from the location of the CpG.

βkpq = µ+ φp + τq + (φτ)pq + εpq, (4.2)

For each gene k, its CpGs are tested for the following null hypotheses:

1. Hτ
0 = the variation in beta values does not depend on the location of the CpG, i.e., τq = 0

for q = 1, 2, . . . , Q

2. H
(φτ)
0 = there is no interaction between CpG locations and phenotypes, i.e., (φτ)pq = 0

for all possible combinations of p = 1, 2 and q = 1, 2, . . . , Q

The alternative hypothesis in 1. is that some τq 6= 0, which implies that the variation in beta

values is also a product of the CpG’s genomic location. Similarly, the alternative hypothesis

in 2. is ∃ p, q | (φτ)pq 6= 0, which means there is at least one combination of phenotype and

location that accounts for the variability of beta values.
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It is important to note that we are not interested in testing φp = 0 for p = 1, 2 because we

already know that the CpGs are differentially methylated between the phenotypes.

The pipeline provides the p-values for all these hypotheses tests. All genes are then ranked

based on the p-value obtained from the hypothesis test about the interaction (φτ)pq of phenotype

and CpG location.

4.4.5 Correlation analysis

The previous analysis focuses solely on the variation of beta values between the phenotypes.

From now on we turn our attention at how CpGs relate to gene expression values. The pipeline

conducts a correlation analysis in which a Pearson’s correlation coefficient ρkY,Bj
is computed

between the expression values of gene k and the beta values of an overlapping CpG j. The

vector Y is defined as Y = [y1, y2, . . . , yN ] and contains the expression values of gene k across

all N samples. Similarly, Bj = [β1,j , β2,j , . . . , βN,j ] are the beta values of CpG j in all samples.

A value of ρkj > 0 indicates a positive correlation between gene k and CpG j, i.e., if the gene is

over-expressed in one phenotype, the CpG is hyper-methylated in that phenotype as well. The

converse is also true: under-expression in one phenotype corresponds to hypo-methylation in

the same phenotype. Alternatively, when ρkj < 0 we have over-expression and hypo-methylation

or under-expression and hyper-methylation relative to the phenotypes.

After the correlation coefficients are calculated for all CpGs and genes, we can determine

if the proportion of positively and negatively correlated coefficients at a specific location is the

same as the global proportion. The main question we want to address is: “Are there more

positively (or negatively) correlated CpGs at location loc than in the rest of the locations?”.
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In order to answer this generic question, the pipeline conducts a Fisher’s exact test at each

location to determine if the proportion of positively and negatively correlated coefficients at

location = loc is the same as the proportion for all other locations 6= loc. To run the test a

contingency matrix is created for each location loc as shown in Figure 24.

Number of CpGs
with negative correlation with positive correlation

(ρ < 0) (ρ > 0)

Location = loc n1 n2
Other locations n3 n4

Figure 24. Contingency matrix used for Fisher’s exact test.

The three types of locations considered in this analysis are the ones described in sec-

tions 4.3.2 , 4.3.3 and 4.3.4. For each location type there are different location values, e.g.: if

we consider location by gene in the 450K platform, we have loc ∈ {TSS1500, TSS200, 5’UTR,

1stExon, Body, 3’UTR}.

Correlation density plots: In addition to the previous analysis, a distribution of corre-

lation coefficients is obtained for each location loc. For all the CpGs that fall in location loc,

their correlation coefficients are binned, from -1.0 to 1.0, with bins of size 0.01. A normalized

frequency is obtained at each bin by dividing the count of CpGs in the bin by the total num-
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ber of CpGs. Finally, a smoothing spline is fit to the normalized frequencies thus obtaining a

density curve. An example of this plot can be found in Figure 30, section 4.5.3.

4.4.6 Multiple linear regression

To establish the effect of how CpG methylation influences gene expression, a multiple regres-

sion analysis is implemented in the pipeline. This model attempts to find a linear relationship

between the expression values of a gene and the beta values of the CpGs that overlap with the

gene. Equation 4.3 models this relationship.

yki = γ0 +

m∑

j=1

βijγj + εi, with i = 1, 2, . . . , N, (4.3)

where γk = (γ0, γ1, ..., γm) are the regression coefficients; N is the number of samples; m is the

number of differentially methylated probes associated to gene k; yki is the expression value of

gene k in sample i; βij is the beta value of CpG j in sample i; and εi is a variable with normal

distribution N (0, σ2).

For each gene k we conduct a hypothesis test under the null hypothesis that γj = 0 for

j = 0, 1, 2, . . . ,m. This is equivalent to stating that the beta values of the CpGs in a gene

(independent variables) do not explain the expression level of the gene (dependent variable).

On the other hand, the alternative hypothesis states that some γj 6= 0 and this implies that

the beta values of some CpGs can explain the expression values of the gene in a linear fashion.

P -values are obtained for each coefficient γj of gene k and for the gene itself. The fitness of the

linear regression model for the gene is measured with an F-test. Genes with an F-test p-value

< 0.05 are reported.
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4.4.7 LASSO regression

Similarly to the linear regression model mentioned above, the LASSO method (least absolute

shrinkage and selection operator) (Tibshirani, 2011) is used to conduct a regression analysis

on beta values with respect to gene expression values. As shown in the next equation, if for

gene k we have m differentially methylated sites, then the LASSO penalized regression can be

formulated in Lagrangian form (Hastie et al., 2009) as in Equation 4.4:

α̂k = argmin
αk

{1

2

N∑

i=1

(yi − α0 −
m∑

j=1

βijαj)
2 + λ

m∑

j=1

|αj |}, (4.4)

where α̂k is the set of parameters we want to determine for gene k; λ ≥ 0 is the penalty

parameter to be determined based on cross-validation; and the rest of the parameters are the

same as in multiple linear regression.

The intuition behind Equation 4.4 comes from understanding the two forces at play in the

equation. On the one hand, the term 1
2

∑N
i=1(yi − α0 −

∑m
j=1 βijαj)

2 wants to make use of all

the coefficients αk = (α0, α1..., αm) in order to find a fit that minimizes the distance between

the true expression value yi and the predicted value α0 +
∑m

j=1 βijαj . On the other hand, the

penalty term λ
∑m

j=1 |αj | will attempt to truncate to zero as many αs as possible in order to

minimize the entire equation. If the optimal solution to Equation 4.4 contains a coefficient

αj = 0, it implies that the jth CpG and its beta values (βij with i = 1, 2, . . . , N) are not strong

predictors of the expression of the gene. Thus, the LASSO regression reduces the number of

CpGs that is needed to consider for each gene.
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4.4.8 Packages used

All the analyses and statistical tests implemented in me-mRNA-pipe were developed in R. The

limma package (Smyth, 2004) is used for the differential expression/methylation analysis. The

ANOVA analysis, Fisher’s exact test and the multiple linear regression (linear fitting models)

are based on functions in the stats package. The LASSO implementation is based on the

glmnet package (Friedman et al., 2010).

4.5 Results for the Illumina 450K platform: a case study

We obtained a publicly available dataset from a study of how DNA methylation regulates

lineage-specifying genes in the human vascular system (Brönneke et al., 2012). The study, which

we will refer in this document as Brönneke’s study, analyzed two different types of dermal cells:

• LEC: lymphatic endothelial cells (10 samples)

• BEC: blood endothelial cells (6 samples)

These types of cell were considered as the different phenotypes when running me-mRNA-pipe.

The results presented in this section constitute an independent re-analysis of the data and are

intended to show the output obtained from the pipeline when invoked on a dataset downloaded

from GEO.

Brönneke’s study (GEO Series GSE34487) jointly analyzed mRNA expression and methyla-

tion in LEC and BEC. For the analysis of mRNA expression profiles the Whole Human Genome

Microarray 4×44K chip (from Agilent) was used. The analysis of the DNA methylation data

was performed using the Illumina 450K array described in section 4.3.2.
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During the execution of me-mRNA-pipe, a pre-processing step analyzes the methylation and

mRNA data separately. This pre-processing step creates plots that are useful at assessing the

quality of the data. The pre-processing is followed by an integrative analysis of the methylation

and mRNA profiles. The genomic locations of the probes in each array –as defined by the

manufacturer– are used to determine the association between mRNA transcripts and CpG

dinucleotides. It is important to note that me-mRNA-pipe does not require the mRNA and

methylation platforms to be from the same manufacturer and the analysis of Brönneke’s data

illustrates this principle.

The remainder of this section shows the results obtained by running me-mRNA-pipe on the

datasets from Brönneke’s study downloaded from GEO as Series Matrix files.

4.5.1 Data pre-processing

The pipeline runs a separate pre-processing on the mRNA and methylation samples as a

quality control step. Firstly, a hierarchical clustering is performed on the samples followed by

a principal component analysis (PCA). As annotated by Brönneke in GEO, the phenotypes of

each sample are shown in Table XV. The column sample Id was manually added to link the

mRNA and methylation samples.

The hierarchical clustering shows how closely the samples of each phenotype cluster together.

The first two principal components of the PCA are used to plot the samples in two-dimensional

space. Figure 25 illustrates this for the methylation data.
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TABLE XV

PHENOTYPE INFORMATION FOR METHYLATION AND MRNA SAMPLES IN
BRÖNNEKE ET AL. (GEO SERIES GSE34487).

Methylation data mRNA data
Illumina 450K array Agilent Human Genome 4×44K array

Sample Id GEO Id Phenotype Sample Id GEO Id Phenotype

BEC1 GSM849975 BEC BEC1 GSM812764 BEC
BEC2 GSM849977 BEC BEC2 GSM812765 BEC
BEC3 GSM849988 BEC BEC3 GSM812766 BEC
BEC4 GSM849989 BEC BEC4 GSM812767 BEC
BEC5 GSM849979 BEC BEC5 GSM812768 BEC
BEC6 GSM849984 BEC BEC6 GSM812769 BEC
LEC1 GSM849974 LEC LEC1 GSM812754 LEC
LEC2 GSM849976 LEC LEC2 GSM812755 LEC
LEC3 GSM849980 LEC LEC3 GSM812756 LEC
LEC4 GSM849978 LEC LEC4 GSM812757 LEC
LEC5 GSM849983 LEC LEC5 GSM812758 LEC
LEC6 GSM849981 LEC LEC6 GSM812759 LEC
LEC7 GSM849982 LEC LEC7 GSM812760 LEC
LEC8 GSM849986 LEC LEC8 GSM812761 LEC
LEC9 GSM849985 LEC LEC9 GSM812762 LEC
LEC10 GSM849987 LEC LEC10 GSM812763 LEC

(a) Hierarchical clustering of samples (b) PCA of samples

Figure 25. Pre-processing of methylation data
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As it can be seen in Figure 25(a), the hierarchical clustering and PCA of the beta values

show the samples grouped by phenotype as expected. These plots are useful in identifying a

sample outlier. If, for example, a sample of phenotype 1 clusters closer to samples of phenotype

2, or if it is in a cluster of its own, this is normally a sign of experimental errors and that it

may be necessary to remove the sample from further analysis.

The first principal component of the PCA in Figure 25(b) explains 41% of the variation in

the data and is enough to discriminate the BEC (red) from LEC (blue) samples. The second

principal component explains only 10% of the variation and it does not seem to differentiate

samples in LEC. On the other hand, the second principal component shows one sample of

BEC as a potential outlier (GEO id = GSM849989). Because we are running this analysis for

illustration purposes in this reanalysis all samples were included.

Another important quality assessment that needs to be performed on the data is to guar-

antee the samples are normalized. Generally, datasets of studies downloaded from GEO were

normalized by their authors. The pipeline generates density plots of both mRNA expression

values and methylation beta values. Figure 26 shows the density of mRNA expression values

(a) in mRNA samples and of CpG values (b) in methylation samples.

From Figure 26 we can infer that:

• all samples are normalized since their curves have almost identical overlap

• in (b), the bimodal nature of the curves shows that there are more CpGs with beta values

close to zero than there are close to one.
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(a) mRNA expression (b) Methylation, beta values

Figure 26. Density of mRNA and methylation probes in Brönneke’s dataset.

In our reanalysis, mRNA probes were considered to be differentially expressed if the log2-

fold change between phenotypes was greater than 0.6. This is equivalent to more than a 1.5-fold

difference in mRNA levels between phenotypes. Similarly, DNA methylation probes were con-

sidered to be differentially methylated if the difference in beta values (∆beta) was greater than

0.1. The pipeline provides other methods to compute differential expression/methylation but

the best results will be obtained when the user obtains the original lists of differentially methy-

lated CpGs and differentially expressed genes. Figure 27(a) shows a summary of the number of

differentially expressed mRNAs, the number of differentially methylated CpGs and their over-

lap computed by me-mRNA-pipe. A scatter plot of all the beta values in both phenotypes is

shown in Figure 27(b).
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Count %

Differentially Methylated CpGs (DMCpG) 50,437
Differentially Expressed RefSeqIds (DER) 1,574
. DMCpGs that overlap with at least one DER 5,285 10.5%
. DERs that overlap with at least one DMCpG 1,173 74.5%

(a) Summary of differentially expressed mRNAs
and CpGs

(b) Beta values of CpGs in both
phenotypes. Differentially

methylated CpGs are colored in red.

Figure 27. Differential expression/methylation.

4.5.2 ANOVA analysis

The integrative portion of the analysis is based on differentially expressed genes that are

associated, i.e., overlap with differentially methylated CpGs. In particular, the ANOVA anal-

ysis as described in Equation 4.2 attempts to determine if there is a statistically significant

interaction between the location of a CpG and the phenotype.

When applying Equation 4.2 to Brönneke’s study we have βkpq as the beta value of a CpG

associated to gene k; φp is the phenotype effect for phenotype p = {BEC, LEC}, τq is the

location effect for location q = {TSS1500, TSS200, 5’UTR, 1stExon, Body, 3’UTR} when

considering the possible values of location by gene as defined in the Illumina 450K array, and
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(φτ)pq is the interaction effect between phenotype and location for every possible pair pq =

{(TSS1500, BEC), (TSS1500, LEC), (TSS200, BEC), . . ., (3’UTR, LEC)}.

The ANOVA tests are conducted on a per-gene basis and they rank all genes based on the

p-values obtained from the interaction test (φτ)pq. The top K genes and bottom K genes are

reported to the user. Because we only analyze genes that are differentially expressed, both the

top and bottom sets are significant and deserve attention. On the one hand, the set of top K

genes is comprised by genes whose overlapping CpGs have a statistically significant interaction

between the phenotype effect and location effect. On the other hand, the bottom K are genes

where this interaction is very unlikely to be present (p-value ' 1.0) and methylation patterns

are consistent across different locations in the genes. Brönneke’s dataset was analyzed with

K = 20.

Figure 28 shows the contrast in median beta values of CpGs that overlap with all differ-

entially expressed genes and with the set of top 20 genes with smallest p-values reported by

our test (9.2e-155 < p-value < 2.1e-18). In Figure 28(a) we see that beta values in LEC are

equal or slightly larger than the beta values in BEC, for all locations except for the 3’UTR

region. When we focus on the top 20 genes and their CpGs, Figure 28(b), we can see that

the methylation levels of LEC are markedly higher in the promoter region and up to the first

exon. In particular, methylation levels in BEC seem to decrease in the proximity of the TSS

whereas in LEC we see an increase from the distal promoter (TSS1500) to the vicinity of the

TSS (TSS200).
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(a) All differentially expressed genes (b) Top 20 genes ranked by ANOVA

Figure 28. Median CpG beta value per phenotype at different locations

In search for a biological interpretation of these interactions, we conducted GO term and

pathway enrichment analysis using an external tool. The list of top 20 genes output by the

pipeline was submitted to DAVID (Database for Annotation, Visualization and Integrated

Discovery) (Huang et al., 2008). We identified that the proteins encoded by these genes have

a statistically significant enrichment of Pleckstrin homology (PH) domains in two different

databases: InterPro (Hunter et al., 2012) and SMART (Schultz et al., 1998). PH domains

are known to recruit proteins to different membranes, thus mediating protein-phospholipid

interactions and interacting with signal transduction pathways. The results of the enrichment

are shown in Table XVI.
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TABLE XVI

FUNCTIONAL ANNOTATION OF TOP 20 GENES FROM THE ANOVA TEST.

Id Term Category p-value

IPR011993 Pleckstrin homology-like domain InterPro 5.0e-3
SM00233 PH, Pleckstrin homology domain SMART 6.9e-3

The table shows terms with a false discovery rate (FDR) of less than 20%. There are multiple

other GO terms with an enrichment p-value < 0.05 that did not meet our FDR criterion but

which are meaningful and may accentuate the importance of this subset of genes. Some of these

terms are: GO:0040008-regulation of growth (p = 1.1e-2); GO:0042981-regulation of apoptosis

(p = 2.1e-2) and GO:0048538-thymus development (p = 3.0e-2).

Finally, to stress the importance of the ANOVA analysis, we want to relate our results to the

ones obtained by Brönneke et al. In their work, the authors used Ingenuity Pathway Analysis to

build a top-score network that contained 24 genes. Of these 24 genes, 5 of them were identified

by our ANOVA analysis as having interactions between phenotypes and CpG locations (p-value

< 0.05), and 2 of them are in our list of top 20 genes. The genes are: AEBP1, ELK3, IL7,

PROX1 and TBX1 (with two statiscally significant transcripts NM 080646 and NM 080647).

It is important to note that these 5 genes were selected solely because of interactions present in

the CpGs associated to them. So far we have not used gene expression data in any meaningful

way. The following sections address this issue.
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4.5.3 Correlation analysis

This analysis is the first step at integrating gene expression and methylation data. Here

we consider the correlation of beta values with respect to gene expression. As described in

section 4.4.5, we have N expression values [y1, y2, . . . , yN ] for gene k. Similarly, for the j th

CpG that overlaps with gene k we will have N beta values [β1,j , β2,j , . . . , βN,j ] corresponding

to matching methylation samples. In Brönneke’s dataset N=16 and for each gene k and CpGj

we compute a correlation coefficient ρkj .

When we group these correlation coefficients by the location of the CpG we can determine if

there is a statistically significant difference between coefficients in one location versus the other.

We can phrase the previous statement as a question: “Are there more positively/negatively

correlated CpGs at location loc than in the rest of the locations?”. In order to answer this, the

pipeline creates contingency matrices like the one shown in Figure 24 and then runs a Fisher’s

exact test for each location.

To add one more level of complexity we have three types of locations, i.e.: location by gene,

location by CpG island and custom location, each of them with different location values (see

sections 4.3.2 , 4.3.3 and 4.3.4). By repeating Fisher’s exact test on these locations, we can

determine which type of location provides a richer view of how methylation correlates with gene

expression. Figure 29 shows the results of these tests in Brönneke’s dataset.

It is clear that the location by CpG island in Figure 29(b) and its more compact version,

the custom location, in Figure 29(c), have few locations where there are statistically significant

differences in correlation coefficients. On the other hand, when looking at the location by
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Location p-value

TSS1500 0.001034
TSS200 0.000011
5’UTR 0.000036
1stExon ∼ 0.0
Body ∼ 0.0
3’UTR 0.000009

(a) Location by gene

Location p-value

N Shelf 0.731691
N Shore 0.912680
Island 0.760824
S Shore 0.001777
S Shelf 0.259031
Open sea 0.019594

(b) Location by CpG island

Location p-value

Island 0.760824
Shore 0.008399
Open sea 0.019594

(c) Custom location

Figure 29. Results of Fisher’s exact test for different types of locations. Significance level
α = 0.01

gene, Figure 29(a), we see that all locations are significant. The importance of this finding

cannot be overstated. One of our goals in developing me-mRNA-pipe is to help shift the focus

of methylation analysis from a CpG island-centered context to a gene-oriented perspective. In

this scenario, individually methylated CpGs –distant from an island– can still have an effect on

gene expression if they are located in the right regions of a gene.

Knowing of the importance of the location by gene, we can create density plots of correlation

coefficients at each of its locations (Figure 30).

From the figure we observe that all locations have a larger number of negatively correlated

CpGs, except for the 3’UTR region. The curve for 3’UTR (magenta-pink) shows a higher

density of positively correlated CpGs. It is important to note that our results about the positive

correlation of CpGs in the 3’UTR region coincide with findings reported by Brönneke et al. The

authors mention in their paper: “...3’UTR appeared to be hypermethylated in upregulated genes

and hypomethylated in downregulated genes.” They continue to explain why this finding in the
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3’UTR region is important: “...It has been proposed that methylation in the 3’UTR may play a

role in suppression of antisense transcripts, regulation of polyadenylation, and termination of

transcription, respectively...”

Figure 30. Density of correlation coefficients (location by gene).

This is an important validation of the results obtained by me-mRNA-pipe, especially since

we conducted an independent reanalysis of Brönneke’s data. The next two sections provide

details of the regression analysis implemented in the pipeline, which we believe are the most

novel and salient features offered by me-mRNA-pipe.
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4.5.4 Multiple linear regression

With the ANOVA analysis we identified important genes simply by analyzing the variation

of the beta values of overlapping CpGs. Important as this is, the analysis is limited to genes that

have overlapping CpGs at different locations. For example, one of the differentially expressed

genes in our analysis is LAMA5 (laminin, alpha 5). Laminins are a family of extracellular

glycoproteins that are hypothesized to ...“mediate the attachment, migration, and organization

of cells into tissues during embryonic development by interacting with other extracellular matrix

components...” (Maglott et al., 2005). In the context of our analysis, LAMA5 is an important

gene which, in addition to being differentially expressed, has four differentially methylated CpGs

that overlap with its coding region. Due to the fact that these four CpGs are located in the same

location (location by gene = Body), the ANOVA analysis is unable to identify any interaction

between location and phenotype. To address this issue, we decided to explore the relationship

between the expression values of genes and the beta values of the CpGs that overlap with them

using regression analysis as described in section 4.4.6. Here we are interested in modeling the

expression of genes with a linear combination of the beta values of their overlapping CpGs. The

model was described in Equation 4.3.

Figure 31 shows the first 35Kb of LAMA5 (RefSeq Id: NM 005560) obtained from the UCSC

Genome Browser (Kent et al., 2002; Fujita et al., 2010). The figure also shows the location of

its four overlapping CpGs. LAMA5 is 58,248 bp long, located in chr20 complement(60,884,121-

60,942,368) and therefore transcribed in the 3’-5’ direction.
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Figure 31. Genomic location of LAMA5 (NM 005560) and its overlapping CpGs.

As an example, we will illustrate the steps me-mRNA-pipe takes to determine if Equation 4.3

is a reliable model for the gene and its CpGs. Table XVII contains the expression values of the

gene and the beta values of the CpGs across all samples (the CpGs are listed, from left to right,

in order of their proximity to the TSS).

We can infer from Table XVII that LAMA5 is over-expressed in BEC (the average expression

value in BEC samples is greater than the average expression value in LEC, 10.37 > 8.99 re-

spectively). When considering the average beta values per phenotype, we have cg01059881 and

cg03055693 hyper-methylated in BEC whereas cg02605258 and cg18668449 are hypo-methylated

in BEC. The question we want to address is: Do these CpGs contribute statistically to the ob-

served difference in expression levels of LAMA5 between BEC and LEC? And if they do, how

can we measure their contribution?

me-mRNA-pipe conducts a multiple regression analysis on all differentially expressed genes

and the differentially expressed CpGs with which they overlap. For each gene, the input to the
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TABLE XVII

EXPRESSION VALUES OF LAMA5 (NM 005560) AND BETA VALUES OF ITS
ASSOCIATED CPGS IN ALL SAMPLES.

yLAMA5
i βij

Sample Id Gene expression cg02605258 cg01059881 cg18668449 cg03055693

BEC1 10.247423 0.674306 0.574543 0.553044 0.778331
BEC2 10.493272 0.734266 0.726371 0.590922 0.694452
BEC3 10.238017 0.492988 0.763868 0.527128 0.846899
BEC4 10.601016 0.616107 0.642293 0.618739 0.798540
BEC5 10.322472 0.705888 0.584753 0.643651 0.804295
BEC6 10.297545 0.769251 0.585207 0.727116 0.866327

LEC1 9.039718 0.892263 0.501706 0.766910 0.667069
LEC2 9.001532 0.861426 0.466992 0.755265 0.664860
LEC3 8.795813 0.797434 0.581737 0.726024 0.648924
LEC4 9.912273 0.843690 0.412705 0.787442 0.771526
LEC5 9.720359 0.847242 0.361803 0.757306 0.758610
LEC6 8.972494 0.849028 0.519599 0.756435 0.743085
LEC7 8.628658 0.847183 0.534746 0.737375 0.529687
LEC8 8.753028 0.834574 0.533669 0.766279 0.631078
LEC9 8.368857 0.838693 0.398298 0.762841 0.679842
LEC10 8.671963 0.849822 0.462896 0.730885 0.714444

analysis is a table similar to Table XVII. In the case of LAMA5, the p-value obtained from

the multiple regression linear analysis was statistically significant (F-statistic = 8.173 and p =

2.6e-3). The intercept and coefficients of the CpGs are shown in Equation 4.5 and Table XVIII.

yLAMA5
i = 5.71 + 2.70 cg02605258i + 1.66 cg01059881i − 5.05 cg18668449i + 6.00 cg03055693i

(4.5)
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TABLE XVIII

COEFFICIENTS AND P-VALUES OF MULTIPLE LINEAR REGRESSION FOR LAMA5.

Coefficients t-statistic
Name Value Value t p-value

γ0 intercept 5.7050 1.490 0.1644
γ1 cg02605258 2.6998 0.816 0.4318
γ2 cg01059881 1.6550 0.823 0.4280
γ3 cg18668449 -5.0545 -1.364 0.1999
γ4 cg03055693 5.9915 3.169 0.0089

where yLAMA5
i is the expression value of LAMA5 in sample i and the cg id i represents the beta

value of the CpG in sample i. It is important to note that the final goal of this analysis is not

to obtain an equation like Equation 4.5. We do not want to predict the expression values of

LAMA5. Nonetheless, we want to know if such an equation is valid and, through the coefficients

in the equation, we can infer interesting properties of the CpGs that overlap with the gene. For

example:

• From Table XVII, we inferred that LAMA5 is over-expressed in BEC

• CpGs cg01059881 and cg03055693 are hyper-methylated in BEC. Their coefficients in Equa-

tion 4.5 are positive, therefore the higher their methylation in BEC, the higher the ex-

pression of LAMA5.

• CpGs cg02605258 and cg18668449 are hypo-methylated in BEC. cg02605258 has a positive

coefficient whereas cg18668449 has a negative coefficient. This seems conflicting at first
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and we cannot arrive at any conclusion. In the following section –using LASSO regression–

this apparent contradiction is resolved.

The multiple linear regression analysis is conducted on a gene-by-gene basis and me-mRNA-pipe

creates output results in the form of plots and text files for each gene. The coefficients and

p-values in Table XVIII were obtained from one of these text files. Among other results, there

is a group of regression diagnostic plots that are worth mentioning. These regression plots

inform the user about potential violations of the model assumptions, for example: when errors

have unequal variance, and/or are non-normally distributed. They can also provide information

about possible outliers.

To conclude this analysis, we would like to again compare our results to the ones reported

by Brönneke et al. Of the 24 genes the authors reported in their top-score network, 16 of them

have regression p-values (from F-test) less than 0.05. This is important as it stresses the point

that for the majority of the relevant genes reported by Brönneke et al. the linear regression

between beta values and gene expression values is statistically significant. Table XIX lists the

16 genes with their respective p-values.

4.5.5 LASSO regression

Through multiple linear regression we were able to identify genes with overlapping CpGs

whose beta values are good descriptors of mRNA expression values. Yet, as it was shown for

LAMA5, sometimes we can find CpGs whose regression coefficients convey conflicting informa-

tion. Therefore, we want an answer to the following question: “If the differentially expressed
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TABLE XIX

GENES FROM TOP-SCORE NETWORK IN BRÖNNEKE ET AL. WHOSE REGRESSION
IS STATISTICALLY SIGNIFICANT.

Gene symbol RefSeq Id
Number of
associated

CpGs

Regression
F-statistic
p-value

AEBP1 NM 001129 3 2.2e-4
BATF NM 006399 2 8.6e-4
CD36 NM 001001547 4 2.9e-4
ELK3 NM 005230 4 2.9e-2
FABP5 NM 001444 2 6.6e-4
IL7 NM 000880 7 4.4e-3
ITGA10 NM 003637 1 3.9e-4
MAF NM 001031804 2 ∼ 0.0
MRC2 NM 006039 3 2.0e-2
NID1 NM 002508 4 5.2e-3
PROX1 NM 002763 11 8.3e-3
RELN NM 005045 6 5.3e-3
RTKN NM 033046 5 8.0e-3
SLC2A12 NM 145176 3 6.5e-4
TFPI NM 001032281 4 1.6e-4
TFPI NM 006287 4 2.6e-3
VAV3 NM 006113 5 2.5e-3

gene k overlaps with m differentially methylated CpGs, which group of s < m CpGs can be

prioritized and still be good predictors of the expression of gene k?”

In a generic way, Figure 32 illustrates this problem. We will have n differentially expressed

genes, from gene1 through genen. These genes will be over- or under-expressed in one phenotype

(BEC in our case). For gene k, some of the CpGs will be hypo-methylated and others will be

hyper-methylated. By prioritizing these CpGs using LASSO regression, i.e., keeping the CpGs
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that best predict the expression of the gene, we not only reduce the complexity of the problem,

but also obtain a better picture of the regions in the gene where methylation has a stronger

effect in differential expression.

Figure 32. Differentially methylated sites associated to differentially expressed genes.
Blue/red arrow: down/up-regulated gene in phenotype 1 compared to phenotype 2; blue/red

methylation site: hypo/hyper-methylated.

For Brönneke’s data, and as it was the case for multiple linear regression, the yi and βij

values are like the ones described in Table XVII. In fact, when we apply LASSO regression

on the gene LAMA5 we obtain the solution listed in Table XX. In order to obtain the values

in Table XX, we have to solve Equation 4.4 in iterative steps:

• Estimate a value for λ

• Minimize the equation using the estimated λ
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TABLE XX

SOLUTION TO LASSO REGRESSION FOR LAMA5.

Parameters Value

λ Obtained from cross-validation 0.0514

α̂k

α0 intercept 7.8129
α1 cg02605258 0.0000
α2 cg01059881 0.6961
α3 cg18668449 -2.9290
α4 cg03055693 4.6441

This iteration is performed by doing leave-one-out cross-validation until a set of values

{λ, α̂k} that minimizes the equation is found. Figure 33(a), with natural log values of λ in

the X-axis, shows the iterative process and the number of coefficients (top of the figure) that

are selected by LASSO at each λ. The λ that minimizes the mean cross-validated error is

0.0514 and is marked by a vertical line at ln(0.0514) = −2.9681. The second vertical line

in Figure 33(a) is at ln(λ) = ln(0.3010) = −1.2006 and indicates the largest value of λ that

yields a mean cross-validated error less than one standard deviation from the minimum. On

the other hand, Figure 33(b) marks the values the coefficients take for the λ that minimizes the

mean cross-validated error with a vertical line at λ = 0.0514. It is clear from this figure that

as λ→ 0 the penalty term in Equation 4.4 becomes zero and we obtain a standard solution to

multiple linear regression (see the values the coefficients take in the Y-axis, in the left part of

the Figure 33(b), and compare them to Equation 4.5). Conversely, as λ→ 1 the penalty term

puts a higher weight on the equation and all coefficients are set to zero. The key to this method
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is to strike a balance and to find a subset of the CpGs, not too large and not too small, that

best explains the expression levels of the gene.

(a) Number of coefficients chosen at
each λ value (leave-one-out

cross-validation)

(b) Values of coefficients –not
including intercept– after
minimization at each λ

Figure 33. Iterative minimization of LASSO equation for LAMA5.

When multiple linear regression was applied on LAMA5, we found that cg02605258 and

cg18668449 have regression coefficients with opposite signs despite both of them being hypo-

methylated in BEC. Nevertheless, in Table XX we can see that LASSO regression assigned

a zero coefficient to cg02605258. The final model “dropped” cg02605258 and kept the three
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other CpGs. The coefficients for the remaining CpGs have the same sign as in multiple linear

regression and they provide the following interpretation of the results (extended from multiple

linear regression):

• We know LAMA5 is over-expressed in BEC

• We also know that cg01059881 and cg03055693 are hyper-methylated in BEC. Their

positive coefficients in Table XX imply that higher levels of methylation in BEC produce

higher expression of LAMA5.

• From our LASSO results, we exclude cg02605258 from subsequent analysis.

• Finally, we know cg18668449 is hypo-methylated in BEC. The negative coefficient in

cg18668449 means that a lower level of methylation in that position begets a higher

expression of LAMA5.

Figure 34 shows the strong correlation (Pearson’s correlation coefficient ρ = 0.856) between

the known expression values of LAMA5 (column yLAMA5
i in Table XVII) and the predicted

values using the coefficients obtained from LASSO in Table XX.

To complement the analysis of Figure 34 and for illustration purposes, we decided to re-

run multiple linear regression of LAMA5 but only on the coefficients selected by the LASSO

method (this filtered re-execution is not currently supported by the pipeline). The results shown

in Table XXI can now be compared to the original results in Table XVIII. Without cg02605258,

the linear model for LAMA5 has a much better fit with a more significant p-value (F-statistic

= 10.98 and p = 9.3e-4).
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Figure 34. Predicted vs. observed values for LAMA5. Prediction based on the three
coefficients obtained from LASSO regression.

TABLE XXI

COEFFICIENTS AND P-VALUES OF MULTIPLE LINEAR REGRESSION FOR LAMA5
AFTER FILTERING CPG WITH LASSO.

Coefficients t-statistic
Name Value Value t p-value

γ0 intercept 7.2853 2.236 0.0451
γ1 cg01059881 1.0631 0.575 0.5760
γ2 cg18668449 -2.9439 -1.125 0.2827
γ3 cg03055693 5.1127 3.336 0.0059

In conclusion, the LASSO penalized regression method is useful at identifying CpGs that

contribute poorly to the differences in mRNA expression levels. After excluding these CpGs
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from further analysis we have shown that the predictability of the linear model increases sig-

nificantly. This allows the user to focus on a smaller set of CpGs, which with additional

experimentation, can be tested for their role in regulation of gene expression.

4.6 Conclusion

We have developed me-mRNA-pipe, a software tool that integrates the analysis of mRNA

and methylation microarray data. The execution of the pipeline is fully customizable through

configuration files and creates graphic plots, summary statistics and tab-separated text reports

that can be easily imported into spreadsheets.

We expect that the output generated by me-mRNA-pipe will provide the user with an en-

compassing view of how methylation affects gene expression. The pipeline uncovers statistically

significant interactions of beta values between phenotypes and CpG locations, in addition to ex-

ploring the correlations between CpGs at specific locations and gene expression. The regression

analysis assumes a linear model of beta values with gene expression and therefore reports those

genes where this relationship holds with statistical significance. Finally, the LASSO penalized

regression allows the user to focus on a smaller set of CpGs per gene –and their locations with

respect to the gene– to further analyze the potentially regulatory role of these CpGs. 1

1Refer to the Appendix to see the Results for the Illumina 27K platform.



CHAPTER 5

A NORMALIZATION PROCEDURE FOR THE ANALYSIS OF

CHROMOSOME CONFORMATION DATA.

5.1 Introduction

As it was shown in previous chapters, our goal has been to develop methods that will help

us gain a better understanding of how genes are regulated. Therefore, it seems of utmost

importance to complete this journey by delving into the complex interplay between chromatin

conformation and gene regulation. Chromosomes show a non-random spatial organization in

the nucleus. These conformations act as scaffolds that regulate genome functions and epigenetic

inheritance in different cell states. There are well documented cases of enhancers that affect

the expression of distantly located genes, sometimes in different chromosomes. This is achieved

through direct interaction of the enhancer and the promoter of the target gene (West and

Fraser, 2005). With this in mind, we can view the genome as a three-dimensional entity where

chromosomes occupy certain “territories” and gene regulation is affected by physical interactions

between genes and regulatory elements located in the same territory.

This chapter addresses all the technical hurdles we faced and the methods we developed in

order to obtain a reliable picture of how chromosomes fold under specific conditions.

129
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5.2 Preliminaries

From a historical perspective, the first high-throughput technology used for the analysis of

chromosome conformation was “Chromosome Conformation Capture”, known as 3C (Dekker

et al., 2002). Prior to the advent of 3C, microscopy-based technologies such as the fluorescence

in-situ hybridization method (FISH) have been used to identify interactions between different

genomic loci. 3C has the advantage that it can reveal these genomic interactions at a very

high resolution without the adverse effects that FISH treatment could have on chromosome

structure (Dekker et al., 2002). The goal of 3C is to find segments of DNA that are physically

in contact with each other through DNA-bound proteins. This is achieved by subjecting nuclei

to a crosslinking reagent, such as formaldehyde, which fixes proteins interacting with other

proteins and with DNA. These fixed interactions have to undergo four more chemical reactions

in order to be quantified: i) they are first digested with a restriction enzyme, ii) followed by a

process of ligation, iii) then the cross-linking is reversed and finally iv) quantification of ligated

products is done through PCR.

Over the years, 3C was improved with other technologies known as 4C (Circular Chromo-

some Conformation Capture) (Zhao et al., 2006) and 5C (Chromosome Conformation Capture

Carbon Copy) (Dostie et al., 2006). These techniques are very effective at identifying interac-

tions between pre-determined genomic segments, where by pre-determined we mean that the

set of loci to investigate must be chosen in advance. This limitation was overcome with the

introduction of Hi-C (Lieberman-Aiden et al., 2009) which can identify chromatin interactions

in a genome-wide scale. Even if Hi-C does not require an a priori specification of the genomic



131

region of interest, a technique like 5C is extensively used when the goal is to investigate a spe-

cific genomic region at a very high resolution. Because the methods in the rest of this chapter

focus on the 5C technology, its main steps are illustrated in Figure 35. Please refer to the

Appendix, Figure 65 for details about Hi-C.

Figure 35. An overview of the steps in 5C.

For this project, we will use the mouse as our model organism. We are particularly interested

in finding the DNA interactions that occur within one of the three loci that are responsible for
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the production of immunoglobulins in B cells. Immunoglobulins (Ig) are highly specialized

proteins that are used to recognize antigens from bacteria, viruses and other disease-causing

organisms (Murphy, 2011). B cells generate immunoglobulins for a large range of antigen

specificities and their production requires well-orchestrated DNA recombinations within very

specific genomic regions. A group of helper proteins facilitates the recombination process by

bringing sections of DNA close to each other and thus creating DNA interactions. Our goal is to

detect these interactions and to describe what genomic locations are more likely to interact with

each other. Of the three loci where immunoglobulins are produced –listed in Table XXII– we

will focus on Igh between the coordinates listed in the last two columns of the table. Collectively,

immunoglobulins, are also known as antibodies and in the rest of this chapter the terms will be

used interchangeably.

TABLE XXII

IMMUNOGLOBULIN LOCI COORDINATES IN MOUSE.

NCBI definition Coordinates of our study
Locus Chr Entrez ID Start End Start End

Igl (λ) 16 111519 19,026,858 19,260,844 – –
Igk (κ) 6 111507 67,555,636 70,726,754 – –
Igh (Heavy) 12 243469 113,258,768 116,009,954 114,353,686 117,349,200
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5.3 Characteristics of the 5C data to analyze interactions in Igh locus

In addition to reliably quantifying the interactions that take place in the Igh locus, we

wanted to develop a methodology that will allow us to compare interactions detected in different

cell types. To that effect, we used experimental data obtained by Dr. Amy Kenter’s Lab in the

Department of Microbiology and Immunology at the University of Illinois-Chicago (publication

is in preparation). The experiments focused on analyzing long range DNA interactions in two

cell types: pro-B cells and mouse embryonic fibroblasts (MEF).

• pro-B cells: B-lymphocytes (B cells) produce immunoglobulins in response to an antigen.

Pro-B cells, in turn, are B cells at the earliest stage in the cell’s life cycle (Murphy, 2011).

The reason why pro-B cells are interesting is because they undergo intense gene rearrange-

ment necessary to produce immunoglobulins. And, needless to say, this rearrangement

requires DNA interactions to take place at the specific sites where the rearrangement will

occur.

• MEF cells: Fibroblasts are a type of cell that forms connecting tissue in animals. Fibrob-

lasts are dispersed throughout the body and, in response to an injury, they proliferate

and secrete a collagenous extracellular matrix rich in type I and II collagen to repair the

wound (Alberts et al., 2002).

Because pro-B cells are involved in the production of immunoglobulins and MEF cells are

not, by quantifying the interactions in the Igh locus for both cells we expect to determine what

DNA interactions are pro-B specific and, thus, gain a better insight into the genomic regions

within Igh that are involved in gene rearrangement.
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The experimental data at our disposal consists of the following:

• pro-B: two biological replicates. For each replicate, an independent 5C experiment was

conducted using a 5C primer design that probes interactions in two different locations:

– Igh locus: our region of interest.

– Gene desert in chromosome 5: used as an internal control.

• MEF: also two biological replicates. For each replicate, the primer design is the same as

in pro-B, covering the same genomic regions:

– Igh locus

– Gene desert in chromosome 5, also used as internal control.

As it will become clear later in Section 5.7.2, the gene desert will be important in determining

a scaling factor that will enable us to compare the different cell types. The following sections

explain the type of data we had to handle and the technical steps we had to follow to be able

to reliably quantify interactions.

5.4 Pre-processing of raw 5C data

The first step before quantifying interactions is the pre-processing of the raw sequencing

data. If you recall in Figure 35, the output from 5C is a dataset with paired-end reads that need

to be sequenced. After the data are sequenced, they constitute the input to our pipeline and,

as with any ordinary dataset, it requires pre-processing. The pre-processing stage is dominated

by the mapping of paired-end reads –obtained from the sequencer– to a reference genome.
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Because all our experimental data were obtained from mouse cells, our reference genome is the

mouse genome assembly mm9, July 2007, NCBI Build 37.

The reads are normally referred to as next-generation sequencing (NGS) data. In order to

better understand the complexity and technicalities involved in processing reads, we will go

step-by-step addressing the following questions:

• What are the characteristics of a raw read in an NGS file?

• How is the quality of a read measured? And how is this quality measure used?

• Are there any areas in the Igh locus where reads cannot be mapped reliably?

• If the answer to the previous question is yes, can we create a “virtual genome” to improve

the chances of mapping all our reads?

5.4.1 Next-generation sequencing data

The sequencing that takes place is called paired-end sequencing and consists of sequencing

each side of an interaction independently of the other (in the direction of the arrows shown

in Figure 35). After they are sequenced, the two reads, one for each end, are stored in different

files and the pairing is maintained by a unique identification the sequencer gives to them. Each

of these files will have a format similar to the one described in Figure 36.
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@HWI-EAS348:12:FC:1:1:2201:3496 1:N:0:

TAATACGACTCACTATAGCCATAAATTACTGAAGGGCTTAAG

+

GGGGGFHHHGHEHGBGGGGGH@HHGHH<GHBGG@GFEHHHHD

@HWI-EAS348:12:FC:1:1:2201:11118 1:N:0:

TATTAACCCTCACTAAAGGGAGCACAGCCTGATAAACACCTT

+

GGGGGGGGGGGGGGGGGGGGG8GG2-;/843;.>9EE#####

Figure 36. Two sample reads in a FASTQ.

The format of this file is known as FASTQ (FASTA sequence and its Quality scores). Nor-

mally, the information about a read is grouped in 4 consecutive lines, where each line represents:

• Line 1: Starts with the ’@’ character, followed by a unique identifier created by the

sequencer. In the case of paired-end reads, the last number in the identifier will be

different. For example, let’s assume the file p1.fastq contains all the reads of the

first pair in paired-end sequencing. File p2.fastq contains all the reads of the second

pair. If the identifier of a read in p1.fastq is @HWI-EAS348:12:FC:1:1:2201:3496

1:N:0: as shown in the first line of Figure 36, then there will be a read in p2.fastq

with the identifier @HWI-EAS348:12:FC:1:1:2201:3496 1:N:1: (or any other digit

different from 0). Normally, in addition to the identifier, FASTQ files with paired-end

reads preserve the ordering of the reads so that the first read in p1.fastq is paired
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with the first read in p2.fastq, and so forth. In this case, the identifier provides an

extra level of quality control to make sure the reads match.

• Line 2: The nucleotides called by the sequencer.

• Line 3: Starts with the ’+’ character, normally followed by the same identifier as

in Line 1. Because the identifier in Line 3 is optional, some FASTQ files only contain

the ’+’.

• Line 4: Indicates the quality scores of the nucleotides in Line 2 (they have a one-to-

one correspondence). Each quality score is represented by an ASCII character and

their values depend on the sequencer machine. The following section discusses the

quality scores in detail.

One final note, in Figure 36, we see marked in blue the tail that corresponds to a forward

primer (T7) and in red the reverse complement of the tail of a reverse primer (T3c). These are

the tails attached to the primers illustrated in Figure 35.

5.4.2 Quality scores assigned to reads

Each nucleotide in a read has a quality score associated to it. This score, known as Phred

score, is a measure of the certainty with which the sequencer made the call for a particular base.

Although the newer Illumina sequencers can assign Phred scores between 2 and 62, FASTQ files

currently have a maximum score of 40. In order to represent these scores as a printable ASCII

character, the scores are offset by 33. For example, a quality score designated by the character

# in the second read of Figure 36 corresponds to a Phred score of 2 = 35 - 33 = ASCII code(#)

- 33. Similarly, the quality score assigned to the character H is 39.
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The relationship between a Phred quality score QPhred and the probability p that the base

call is incorrect is modeled by the following equations (Cock et al., 2010):

QPhred = −10log10(p)

or equivalently for p

p = 10−
QPhred

10

Therefore, following the previous example, for a value of QPhred = 2 –in the low end of

quality scores– we have p = 0.316. That is, there is a chance of almost 1 in 3 that the base call

is incorrect. Likewise, for QPhred = 39 –in the high end of quality scores– we have p = 0.0001

(a much smaller chance of 1 in 10,000 that the call is incorrect).

The quality scores are indispensable when mapping the reads to the reference genome.

Almost all mapping algorithms allow for minor discrepancies (insertions/deletions) between

the read and the reference genome. For example, if the mapper is unable to map exactly the

sequence AACTGGA, it will try to map variations of it with possible insertions (e.g.: AAC·TGGA)

or deletions (e.g.: AA//CTGGA) These discrepancies are weighted based on the quality score of

the nucleotides. Nucleotides with very high quality scores are expected to match exactly when

mapped, whereas nucleotides with low scores are assumed to arise from an incorrect call and

are seldom matched. As a result of this, reads containing a large number of nucleotides with

low quality are normally discarded by the mapper.
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5.4.3 Mappability of restriction fragments in Igh

As mentioned earlier, a key component in the detection of DNA interactions using 5C is

the sequencing of reads and their posterior mapping to a reference genome. If the quality of

sequencing is poor or if the paired-end reads cannot be mapped uniquely to the genome, then

the interactions captured through the chemical process will not be reported.

We decided to analyze all the restriction fragments in the mouse genome to determine their

mappability. For each fragment, we created artificial reads of lengths 75, 100 and 150 bp. The

reads spanned the entire fragment with a sliding window of 1 bp, depicted in Figure 37(a).

We then attempted to map the reads to the mouse genome (mm9) using Bowtie as mapper

(Langmead et al., 2009). Reads that mapped to more than one location within the fragment

or to different fragments were discarded. The mappability index of each fragment was defined

by the formula in Figure 37(b):

We computed the mappability index for the entire Igh locus in a similar way as described

above. Table XXIII contains the results.

TABLE XXIII

MAPPABILITY OF RESTRICTION FRAGMENTS IN THE IGH LOCUS.

Before alignment Aligned Failed
Read length # Reads # Reads % # Reads %

75 2,685,667 2,337,776 87.0% 347,891 13.0%
100 2,667,428 2,426,730 91.0% 240,698 9.0%
150 2,631,233 2,489,554 94.6% 141,679 5.4%
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(a) Generation of virtual reads (step +1 bp)

mappability(fragi) =
# mapped reads tofragi

# reads fromfragi
.

(b) Mappability score of restriction fragment i

Figure 37. Computation of mappability scores for restriction fragments.

Unfortunately, for reads of length = 75 bp, it would be impossible to recover all interactions

in the locus. This is due to the fact that this locus contains regions with large number of

repeats. DNA interactions on which these regions are involved will not be successfully detected

if we attempt to map the reads directly to the genome. On the other hand, and as expected,

when we consider reads of longer length the mappability improves. A read of 150 bp can be

generated by the new Illumina HiSeq 2500/1500 sequencer, although currently the majority of

the data available were generated with the more common length of 75 bp.

The above mentioned mappability scores give us an idea of the best case scenario in which

a read, with perfect quality, is mapped back to the genome. In our particular case, after

removing the forward and reverse tails, we only have reads of 22 bp to map. Additionally,
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instead of looking at the entire restriction fragment, we should focus on the fragment ends

where the primers are located. If for reads of 75 bp we had an overall mappability of 87%, for

22 bp we will surely have a much lower mappability. Our intuition is confirmed in Section 5.4.5

where we perform a first attempt at mapping our 5C data to the entire mouse genome.

5.4.4 Trimmed FASTQ reads

Before mapping the paired-end reads to the mouse genome we need to remove the forward

and reverse tails. This process is known as trimming and consists of altering the FASTQ files

by removing nucleotides from Line 2 and their matching quality scores in Line 4. A trimmed

version of the FASTQ file in Figure 36 is depicted in Figure 38.

@HWI-EAS348:12:FC:1:1:2201:3496 1:N:0:

ATAAATTACTGAAGGGCTTAAG

+

H@HHGHH<GHBGG@GFEHHHHD

@HWI-EAS348:12:FC:1:1:2201:11118 1:N:0:

AGCACAGCCTGATAAACACCTT

+

G8GG2-;/843;.>9EE#####

Figure 38. Trimmed version of the reads in Figure 36 (forward/reverse tails were removed) .
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In general, trimming is performed to remove a barcode of length k or other chemically

added sequence of DNA nucleotides (e.g.: the forward and reverse tails in our 5C data). In this

case, k nucleotides are removed from all sequences regardless of their quality. Another common

approach to trimming consists in removing from each read a variable number of nucleotides

depending on their quality. Because of technical characteristics of the sequencing technology,

the 5’end of a read (left portion) will have better quality scores than the 3’end (Shendure and

Ji, 2008; Mardis, 2008). Variable trimming will, therefore, remove more nucleotides from the

3’end (right portion).

Going back to our 5C data, we had to assess if the quality of our reads warranted the use

of variable trimming, especially in the 3’end of reads. To that effect, we analyzed the original

FASTQ files and quantified the QPhred scores at each position: from 1 to 42. We created, per

replicate, boxplots of these scores and Figure 39 shows the results for pro-B replicate 1. Refer

to Figure 66 in the Appendix for results in MEF.
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Figure 39. Quality scores of nucleotides (length of read = 42) in reads of pro-B replicate 1.

Although, as expected, there is a decay in quality towards the 3’end, the median QPhred at

nucleotide 42 is 37 (mean = 29.8). In light of these high quality scores, we did not implement

quality trimming. We simply trimmed 20 nucleotides from the 5’end to remove the forward

and reverse tails as depicted in Figure 38. These trimmed dataset constitutes the reads that

will be mapped to the genome. The question we address in the next two sections is: What is

the best reference genome against which the reads should be mapped?
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5.4.5 Mapping trimmed reads to the mouse genome

The trimmed FASTQ files were then mapped to the mouse genome (mm9) using Bowtie.

Each paired-end (PE) was mapped independently of the other. Reads that mapped to more

than one location were discarded as they would create ambiguous interpretations. Table XXIV

shows the results from the mapping.

TABLE XXIV

MAPPING READS TO THE MOUSE GENOME (MM9).

Number of reads

Cell Replicate Original
Mapped

%
Mapped

%
PE1 PE2

pro-B
1 25,175,204 5,966,854 24% 5,874,280 23%
2 25,919,640 5,753,016 22% 5,857,633 23%

MEF
1 26,537,062 7,014,551 25% 7,098,591 27%
2 24,766,329 6,728,370 27% 6,953,853 28%

We can therefore conclude that our mapping was very ineffective (∼ 22-28% of successfully

mapped reads). As we anticipated from the analysis of mappability scores in Section 5.4.3,

reads that are mapped directly to the Igh locus would yield poor results. If you recall, in that

section we tested the smallest read length of 75 bp assuming perfect quality scores. Here we
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are attempting to map reads of 22 bp of length obtained from the 3’end of the read, i.e., with

lower quality scores. It is clear from these results that we need a better mapping approach.

5.4.6 Mapping trimmed reads to a “virtual” genome

Instead of mapping the reads to the entire mouse genome, we can make use of our under-

standing of the 5C experiment and map the reads to a “virtual” genome created from the 5C

primers. Bowtie provides a tool (bowtie-build) to construct indexes of any genome. The

index is what Bowtie uses to efficiently map reads. We used the sequence information of all the

5C primers designed for our experiment and bowtie-build to construct a virtual genome of

these primers. Reads mapped to the virtual genome could only map to a known primer, thus

removing any spurious DNA sequences captured by 5C. Additionally, we required reads to map

to only one primer, discarding any reads with multiple mappings.

Because we have the genomic coordinates of each 5C primer, after a read is successfully

mapped to our newly created genome, we can tell exactly the genomic location to which the

read mapped. Table XXV shows the results obtained from mapping to our virtual genome.

Each end of a paired-end read was mapped independently of the other and their results are

shown in the columns “Mapped PE1” and “Mapped PE2” of Table XXV. Reads where both

ends mapped successfully, went through an extra filtering stage that required one end to map

to a forward primer and the other end to a reverse primer. Very few cases were found where

both mapped ends mapped to two forward (or reverse) primers serving this as a validation of

the correctness of the 5C experiment.
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TABLE XXV

MAPPING STATISTICS.

Number of reads

Cell Replicate Original
Mapped

%
Mapped

% Matched %
PE1 PE2

pro-B
1 25,175,204 23,034,072 92% 22,593,323 90% 21,424,015 85%
2 25,919,640 23,420,680 90% 23,024,139 89% 21,964,806 85%

MEF
1 26,537,062 24,939,514 94% 24,651,205 93% 23,858,581 90%
2 24,766,329 23,358,067 94% 23,151,825 94% 22,332,216 90%

Due to its high mapping yield, this is the mapping strategy we adopted and the results of

our analysis are based on this mapping methodology. After the reads are mapped to the virtual

genome and filtered as mentioned above, the next step consists in matching the paired-end

reads. If only one end of the paired-end can be successfully mapped, then the entire pair is

discarded. Matching pairs are then quantified by creating a matrix Mprimer ∈ NF×R where

F and R are the numbers of forward and reverse primers respectively. If a matched pair is of

the form (fwdi, revj) where the first element corresponds to forward primer i and the second

element is reverse primer j, we increment by one the count at Mprimer[i, j]. After processing

all matched pairs, Mprimer contains the total number of interactions between all forward and

reverse primers.

Obtaining the matrix Mprimer is the end of our pre-processing stage and it is the input to

all the downstream analysis steps detailed in Sections 5.7–5.10.
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5.5 Example to illustrate visualization methods

Before delving into the details of the methods we have developed, we would like to take a brief

detour to discuss different visualization techniques we implemented to interpret interactions in

5C data. We want to walk you through a toy example that summarizes the topics discussed

in Section 5.4 and that will help you better understand the peculiarities of these data. By the

end of this section we expect you to be more familiarized with the terminology and to have an

intuition for the need of the algorithms we propose later on.

We start by defining a genomic area of interest in a chromosome. We want to capture DNA

interactions that occur between the genomic coordinates 1 and 3000. Figure 40(a) depicts this

region. The horizontal green line represents the chromosome and the ticks are the restriction

enzyme sites (e.g. HindIII sites). Restriction enzymes are proteins that cut DNA at specific

sites and the ticks in the figure symbolize these sites. For example, HindIII is a restriction

enzyme that recognizes the pattern 5’-AAGCTT-3’ and cleaves DNA between the first and second

adenine. The segment of DNA in between two restriction sites is called a restriction fragment.

In Figure 35 we saw two restriction fragments interacting via two proteins. The interaction

in the figure occurs (approximately) in the middle of the fragments. In reality, an interaction

can take place at any position but because of limitations with the technology, we can only

identify the interacting fragments through their primers (marked in blue and red in Figure 35).

That is to say, the granularity of this method is at the restriction fragment level.
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In addition to the restriction fragments, Figure 40(a) shows the location of forward (F)

and reverse (R) primers. Their alternating pattern was designed to allow for the detection of

a dense matrix of interactions throughout the genomic region of interest (Dostie et al., 2006).

Not all restriction fragments have a primer associated to them and this can mean: a) we

are not interested in detecting interactions that involve those fragments or b) we cannot create

a primer for the fragments due to the presence of repeats. In Figure 40(a), the fragments with

no primer are labeled as “--”.

The two tables in Figure 40(b) and Figure 40(c) provide details about the forward and

reverse primers respectively. Moreover, they also indicate the restriction fragments the primers

recognize. We adopted the convention of starting a fragment +1 bp from the preceding restric-

tion enzyme site.

We assume an intermediate process, not shown in the figure, that reads a FASTQ file con-

taining paired-end reads, maps them to a virtual genome created with the DNA sequences of

the primers, and quantifies all the interactions detected between any pair of forward-reverse

primers. The output of this process is the matrix Mprimer which we described in Section 5.4.6.

This matrix has as many rows and columns as there are forward and reverse primers respec-

tively. Following our example, Figure 40(c) shows Mprimer with the number of interactions we

assume to have detected between the primers.
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5.5.1 Visualizing raw contact maps

A first attempt at visualizing these data is shown in Figure 41(a), which is basically a

heatmap of the matrix in Figure 40(c). It is called a primer contact map because it shows

the interactions between the primers without consideration of their spatial location in the

genome, only their relative ordering. The Y-axis represents the forward primers, with one tick

per primer. Similarly, the X-axis shows the reverse primers. The topmost left corner of the

heatmap is its origin, i.e.: interaction of the first forward and first reverse primers.

(a) Primer contact map (no genomic scale,
asymmetric)

(b) Fragment contact map (with genomic
locations, symmetric)

Figure 41. Raw contact maps used to illustrate visualization methods (data from matrix
in Figure 40(c).
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An immediate improvement to the primer contact map is the fragment contact map

in Figure 43(b). This heatmap shows the same interactions from the primer contact map but

with respect to the restriction fragments where the primers fall. Additionally, because the X

and Y axis represent genomic coordinates, the fragment contact map shows true interactions

between genomic regions. For example, from the matrix in Figure 40(c), forward primer 1 (F1)

interacts with reverse primer 10 (R10) a total of 30 times. F1 falls in fragment frag 401 that

spans from location 2 to 100 (Figure 40(b)). Similarly, R10 is in fragment frag 415 which goes

from location 2,401 to 2,700. With the origin of the heatmap in the topmost left corner, the

interaction between these two fragments can be found in the X-axis between 2 and 100 and in

the Y-axis between 2,401 and 3,000 (or vice versa since the heatmap is symmetric).

The color grey in the figure means there are no primers in those locations and, therefore, no

interactions can be detected. This is referenced as “Not present” in the key to the right of the

heatmap. The most important feature of the fragment contact map is its ability to show these

regions without primers. It provides a quick view of the density of primers and their interactions

in different regions. In the bottommost right corner of the map, from location 2,000 to 3,000

we can see a larger density of primers, reflected by the fragments with interactions in that area.

On the other hand, the center of our heatmap (from 1,400 to 2,000) is grey due to a lack of

primers.

5.5.2 Visualizing binned contact maps

The most salient feature of the fragment contact map can also be one of its caveats. If

our genomic region of interest is large, say in the order of several megabases and our density
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of primers is low, the fragment contact map will be almost entirely grey. There will be a few

scattered colored points indicating the fragments where the primers fall but the interactions

will be hard to visualize and the map will not convey useful information. The solution to this

problem is to bin the data creating binned contact maps. Two parameters are needed to

create a binned contact map: a) the bin size and b) the step size.

Binning consists in applying two sliding windows of the same size. One window will be

referred to as the “Forward window” and it is used to recognize the presence of forward primers.

The other will be the “Reverse window” and it will recognize reverse primers. Let’s assume we

want to bin our data using a bin size of 300 bp (window size) and a bin step of 10 bp. Before we

begin to slide the windows, we need to create an empty square matrix Mbinned ∈ Rn×n where

n = d length regionbin step e. Following our example from Figure 40, we have length region = 3, 000

and we are assuming bin step = 10, so our matrix Mbinned will have 100 rows and columns.

Mbinned is defined in the domain of real numbers because, as it will become clear in the next

paragraph, binning can create non-integer counts for the interactions.

The process of binning begins when the center of both windows is at the beginning of our

genomic region of interest, i.e.: location 1 bp. For the moment, ignore the fact that half of

the window is outside our region. Any forward primers, in the region overlapping with the

Forward window, are retained. Likewise, reverse primers that overlap with the Reverse window

are kept. If we only have one forward and one reverse primer, then we simply obtain the count

of interactions from the matrix Mprimer (see sample matrix in Figure 40(d)). This value is then

stored in the matrix Mbinned, in the row and column corresponding to the position of the bins
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(row=1 and column=1 when the program starts). If we have more than one forward and/or

reverse primers overlapping with the windows, we obtain the individual counts of interactions

between each forward-reverse primer pair and we compute the mean. Then, as before, this

value is stored in Mbinned. It is this step than can create non-integer counts of interactions

between two bins.

In the next iteration we move the Reverse window bin step base pairs to the right and

repeat the process. Once the Reverse window has been slid to the end of the region, we reset

its position to the beginning and we slide the Forward window bin step base pairs to the right.

The binning process ends when the Forward window reaches the end of the region.

Mbinned[i, j] will contain the number of interactions found at the intersection of bin i and

bin j. Because the 5C interactions have no directionality, if we have c interactions between

bins i and j, then we also have c interactions between bins j and i. Figure 42 illustrates the

methodology of binning.

The reason why the windows have to be centered at each of the bins is because the algorithm

will otherwise “shift interactions” to the left. An example of the binned heatmap we were

discussing before can be found in Figure 43(a). In order to create more contrast between the

colors, the color assigned to the largest range of interactions was changed from red in Figure 41

to dark red in Figure 43.

It is interesting to compare Figure 41(b), which showed the restriction fragments, to Fig-

ure 43(a), which shows the binned interactions. Due to the fact that the sliding windows grab

interactions from neighboring sites, the amount of grey in binned contact maps is less than in



154

Figure 42. Example of a sliding window when creating a binned contact map (bin size=300,
bin step=20).

fragment contact maps. This of course, has some pros and cons. On the bright side, when

our region of interest is large, a binned contact map is easier to understand than a fragment

contact map because it accentuates the areas where the larger number of interactions occur.

Conversely, and this is its main drawback, a binned contact map “predicts” interactions where

none exist. The binning step is equivalent to smoothing the data and this the reason why there

is less grey in Figure 43(a).

If we repeat the binning using a wider window (bin size = 600) and longer step (bin step =

20), we will obtain the binned contact map shown in Figure 43(b). This time, only the center

region appears to lack any interaction information and the more demarked interacting regions

found in Figure 43(a) become more spread out.

Because of its advantages in helping to visualize the data, and despite its shortcomings at

creating “fictitious” interactions, the binned contact maps have become a de facto standard in
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(a) Bin size=300 bp, bin step=10 bp (b) Bin size=600 bp, bin step=10 bp

Figure 43. Binned contact maps illustratrating visualization of interactions (data from matrix
in Figure 40(c).

visualizing long range chromatin interactions (Lajoie et al., 2009; Wang et al., 2011; Sanyal et

al., 2012).

5.6 Primer design in Igh locus

Now we return to our 5C experiment to explore the coverage of the primers in the Igh

locus and in the gene desert of chr5. The location of the primers for both loci were defined in

Dr. Kenter’s lab. The primers follow an alternating pattern (Dostie et al., 2006) as illustrated

in Figure 40(a) and were designed using the web tool My5C (Lajoie et al., 2009).
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The Igh locus contains 112 and 113 forward and reverse primers respectively. Because

primers capture the interactions of the restriction fragments to which they belong, we obtained

the minimum and maximum genomic coordinates of the restriction fragments covered by the

primers. Table XXVI summarizes this information for Igh and the gene desert in chr5.

TABLE XXVI

NUMBER OF 5C PRIMERS AND CHARACTERISTICS OF THE RESTRICTION
FRAGMENTS THEY COVER.

Primer Coordinates of fragments covered
Locus Type Count Min. Max. Span

Igh (chr12)
Forward 112 114,341,250 117,346,617 ∼ 3 Mb.
Reverse 113 114,339,371 117,349,198

Gene desert (chr5)
Forward 24 133,181,426 133,463,499 ∼ 290 Kb.
Reverse 25 133,174,212 133,464,772

The area of the Igh locus on which we will focus is 3 megabases wide. Of the total of

225 restriction fragments covered by either a forward or reverse primer, we obtained some

statistics about their lengths and of the gaps between them. With respect to the fragments’

length Table XXVII summarizes these findings and Figure 44 shows their distribution. Refer

to the Appendix, Figure 67 for a histogram with the lengths of fragments in chr5.
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TABLE XXVII

CHARACTERISTICS OF RESTRICTION FRAGMENTS IN OUR 5C EXPERIMENT.
Frag. length Frag. length

Frag. (< 10 Kb) (> 10 Kb)
Locus Primer count Median µ σ Max. Count Max.

Igh (chr12)
Forward 112 2,688 3,386 2,259 9,658 6 20,182
Reverse 113 2,731 3,318 2,068 9,827 6 13,858

Gene desert (chr5)
Forward 24 4,303 4,542 2,588 9,982 1 12,971
Reverse 25 3,567 4,134 2,830 9,939 2 12,952

Figure 44. Length of restriction fragments covered by a primer (forward or reverse) in the Igh
locus (chr12). Bin size=500 bp.
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The length of the fragments is of particular importance as it may have an effect on the

efficiency of ligation (the third step described in Figure 35). In fact, this is one of several

experimental biases that have been found to occur in Hi-C experiments (Yaffe and Tanay,

2011) and in 5C experiments (Sanyal et al., 2012). Figure 45 illustrates this case.

Figure 45. Possible 5C experimental bias with respect to length of fragments during ligation.

The ligation of two restriction fragments whose lengths are similar is more favorable than

when one fragment is much longer than the other. In our case, the minimum length of a fragment

with a forward primer is 305 bp whereas the maximum fragment length with a reverse primer

is 13,858 bp. Similarly, the minimum fragment length (reverse) is 601 bp while the maximum

fragment length (forward) is 20,182 bp. Nevertheless, because of the conditions on which the

5C experiment was conducted and the experimental protocol observed, we do not believe the

differences in fragment length have the potential of masking true interactions. As a result of it,

this potential source of bias was not considered in posterior analysis steps.
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In addition to analyzing the length of fragments, an interesting metric is the length of the

gaps between the fragments. This can be used as a measure of how sparsely located the primers

are. To determine the gaps, we grouped together all primers in a locus and obtained statistics

of the gaps between a forward and reverse primer. Because of their alternating nature, the gaps

represent the distances between any two neighbors. Table XXVIII lists the gap statistics.

TABLE XXVIII

CHARACTERISTICS OF THE GAPS BETWEEN RESTRICTION FRAGMENTS IN OUR
5C EXPERIMENT.

Gap length
Locus Gap count Median µ σ Min. Max.

Igh (chr12) 224 1,005 9,583 18,530 0 142,700
Gene desert (chr5) 48 0 1,140 3,308 0 16,046

From the table, it seems that the distribution of primers in the gene desert is more compact

than in Igh. The median gap length in chr5 is 0 which means the fragments are contiguous. In

fact, 31 out of a total of 48 fragments with primers in chr5 are contiguous (65%). This should

be contrasted to Igh with only 90 out of 224 contiguous fragments (40%). The histograms with

the distributions of gaps in Igh and chr5 can be found in the Appendix (Figure 68 and Figure 69

respectively)
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To conclude our analysis of restriction fragments, we obtained an objective measure of

coverage in our genomic areas of interest. We computed a primer density by counting the

number of nucleotides in each restriction fragment containing a primer and normalizing with

the total number of nucleotides in the region. The normalized values were then binned with a

bin size of 100,000 bp and a density curve was obtained using Gaussian smoothing. Figure 46

shows the primer density in the Igh locus.

Figure 46. 5C primer density in the Igh locus (chr12).

It is clear from the picture that the beginning of the region is more densely packed with

primers than other regions in the locus. This is an important fact because not only will we be

able to detect more interactions in this area but also it will have an effect on our calculations
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of the overall expectated number of interactions. After a peak at the beginning of the Igh locus,

we see a decay in the density of coverage towards the end of the locus. Note the region with

almost no primers around 116,500,000 and recall from Table XXVIII the maximum gap length

of 142,700 bp.

In contrast to Igh, the gene desert in chr5 seems to maintain the same density of coverage

across its 290 Kb. This can be seen in Figure 47 (bin size=10,000 bp).

Figure 47. 5C primer density in the gene desert of chr5.

The fact that the gene desert is densely packed with primers is important and it leads us to

the next section, where we develop a methodology to use the interactions detected in the gene

desert to scale our 5C data.
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5.7 Using an internal control to normalize interactions in 5C

To recapitulate where we stand, from a processing point of view:

1. We have 5C data from 4 independent biological samples:

• 2 samples of pro-B cells

• 2 samples of MEF cells.

2. In each sample, interactions are probed in two different regions:

• Igh locus: our region of interest

• Gene desert in chr5: used as internal control

3. Goal: determine what interactions between primers i and j in Igh are different

between pro-B and MEF.

Keeping in mind that our ultimate goal is to compare interaction frequencies in different

cells, we must account for potentially random experimental variations that arise from the use

of the technology. Some of these experimental variations are (Fraser et al., 2012):

• Difference in cutting efficiency of the restriction enzymes: even for the same cell type,

minor conformation changes can render chromatin regions less accessible to the restriction

enzyme and this will affect their overall efficiency.

• Amount of 3C template used to generate the 5C library.

• Difference in total number of reads obtained from the sequencer.
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We are faced with the problem of comparing a signal in different biological samples, when

the true signal may be obscured by noise introduced from technical problems in the use of the

technology. Drawing a parallel with a different technology, issues like this one were detected

more than a decade ago at the early stages of microarray analysis. For example, when using

two-color microarrays, normalization was used to minimize biases associated to differences in

the fluorescence of dyes. Normalization methods were classified as (Yang et al., 2002): a) global

normalization when the two signals in the array –red (R) and green (G)– were corrected with a

constant factor so that R = kG where k was a globally obtained median of log-intensity; and b)

local normalization that corrected signals based on local spot intensity using linear methods

such as simple regression or non-linear methods such as LOWESS (Cleveland, 1979). Similarly,

the method of scale-normalization (Smyth and Speed, 2003) was a between-array-normalization

procedure to scale log-ratios of expression from a group of two-color cDNA arrays. This scaling

guaranteed that each array had the same median absolute deviation. In essence, all of these

methods aimed at putting the microarrays on the same playing field in order to compare gene

expression across samples.

Despite the fact that we are dealing with a different technology, our research question is

not different from the question the microarray methods tackled. We have a count of IproBi,j

interactions between primers i and j in pro-B and IMEF
i,j interactions between the same primers

in MEF. How can we scale these counts in order to be able to compare directly IproBi,j and

IMEF
i,j ?
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Not surprisingly, some methods that have been suggested to normalize 5C data, borrowed

on the ideas and methods developed for microarrays. A variation of global normalization is used

to normalize differences between two cell types in 3C experiments (Dekker, 2006). The method

suggests to use an internal control with a set of interactions assumed to be the same in both cells

e.g.: a housekeeping gene. A similar approach recommends to use gene deserts as internal

controls (Fraser et al., 2012) and assumes that the chromatin architecture of a gene desert will

not have significant changes between different cells. Both methods (Dekker, 2006; Fraser et al.,

2012) agree on using the internal control to derive a scaling factor which will then be used to

normalize the region of interest.

Other normalization methods take a different approach, for example, by computing a Z-score

between interacting primers i and j (Baù et al., 2011). The score is defined as Z-scoreij =
µ−fij
σ

where fij = log10(interactions between fragments i and j); µ and σ are the mean and standard

deviation of log10 frequencies in the interaction matrix. A different normalization technique

corrects interactions between primers i and j by computing two scaling coefficients cintrai and

cintraj based on the intra-chromosomal interaction efficiency of each of them individually (Sanyal

et al., 2012). Once these coefficients have been computed, the corrected frequency of interactions

between i and j is computed as f̂ij = fij · cintrai · cintraj . It is important to note that these last

two methods do not rely on an internal control.

The normalization procedure we propose is based on the use of a gene desert to scale the

data in the Igh locus, similarly to the first two methods described above (Dekker, 2006; Fraser

et al., 2012). If you recall, their key feature was to use an internal control to scale the data.
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Let us illustrate with an example how this idea of scaling works as it is at the core of the

normalization procedure propose by us.

5.7.1 Example of derivation of a scaling factor using a gene desert

We assume we have two different cell types: B and M . Both cells share the same primer

design and have F forward primers and R reverse primers defined in a gene desert. We will

then have P = F · R possible pairs of forward-reverse primers. We can enumerate all possible

pairs of primers p = 1, 2, . . . , P and we define Bp and Mp as the number of interactions for

the pair of primers p in cells B and M respectively. For each primer pair p, we compute a

log10-ratio np between the two cells as in (Dekker, 2006):

np = log10(
Bp

Mp
) with p = 1, 2, . . . , P

and then an average of all ratios:

navg =
1

P

P∑

p=1

np

Finally, the scaling factor between B and M is defined as:

n = 10navg

With numbers, let us assume we have 3 pairs of primers. Each pair of primers has the following

number of interactions per cell type:
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B1 = 13 B2 = 4 B3 = 15

M1 = 21 M2 = 7 M3 = 32

Then, we compute the scaling coefficient n = 0.5493837

Finally, we can correct the data in either of the following ways:

Mp · n
B1 = 13 B2 = 4 B3 = 15

M1 = 11.537058 M2 = 3.845686 M3 = 17.580278

Bp ·
1

n
B1 = 23.662879 B2 = 7.280886 B3 = 27.303322

M1 = 21 M2 = 7 M3 = 32

Ideally, bothB andM will have the exact number of interactions in the gene desert. This is be-

cause we are under the assumption that the gene desert acts as an internal control, maintaining

the same conformation in different cells. But because of the experimental biases we mentioned

at the beginning of Section 5.7, the number of interactions between the same pair of primers,

in different cells, may differ. In the example above, there seems to be a 2-fold difference in the

number of interactions between M and B. The coefficient n = 0.5493837 is used to correct

this difference.

A final step consists in applying the coefficient n to normalize interactions outside the gene

desert. When the coefficient is used in this context, we will effectively be correcting for biases
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in the data. This correction will allow us to compare interactions between cell types which, in

turn, was our original goal.

For our project, we implemented a similar mechanism to normalize 5C data in the Igh locus

using the gene desert in chr5. In the next section we first describe the characteristics of the

gene desert used in our experiment and then we proceed to describe our proposed normalization

method.

5.7.2 Gene desert in chromosome 5

The genomic region in chromosome 5 that spans from 133,179,972 to 133,464,774 is consid-

ered a gene desert and was used as an internal control. This region, which was covered by 24

forward and 25 reverse primers has neither genes, microRNAs nor ORF mRNAs. Table XXIX

summarizes all genomic elements that were checked for existence in the gene desert.

Because no known genomic elements were found in the region it can therefore be considered

a true gene desert. The predicted elements are listed in Table XXX and were not considered

relevant since there is no experimental validation about their existence or functional activity.
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TABLE XXIX

GENE DESERT CHR5:133,179,972-133,464,774

Genomic Element Name Description

RefSeq genes None found
Non-mouse RefSeq genes None found
Mammalian Gene Collection
Full ORF mRNAs

None found

Vega Protein Genes None found
Vega Pseudogenes None found
microRNAs from miRBase None found
TROMER Transcriptome
Database

None found

Intl. Knockout Gene Consor-
tium Gene

None found

Ensembl Gene Predictions ENSMUST00000157498 Predicted: RFAM and miRBase
tRNA Genes U101853-1 BLAT alignment (mm9)

U326585-1
U316042-1
U155315-1
U346204-1
U302262-1
U340601-1

TABLE XXX

DETAILS OF PREDICTED ELEMENTS

Name Definition Length (in bp)

ENSMUST00000157498 Non-coding RNA member of clan 7SK
found in metazoans

279

U101853-1 Stratagene mouse skin (#937313) cDNA
clone

386

U326585-1 DAY10 16 K05.x1 FH DAY10 501
U316042-1 Stratagene mouse Tcell #937311 445
U155315-1 Stratagene mouse Tcell #937311 479
U346204-1 P2T1L5 Plasmodium yoelii infected liver

tissues
134

U302262-1 AU259697 3’-directed mouse cDNA li-
brary

291

U340601-1 CJ309639 RIKEN full-length enriched
mouse cDNA library

431
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5.7.3 Binned contact map of the gene desert

Although there are no genomic elements in the gene desert, it may contain open chromatin

which will fold, loop and will interact with itself and other genomic regions. These interactions

will be captured by our 5C experiment. We want to determine the correctness of our assumption

that the structure of the gene desert does not differ significantly between pro-B and MEF.

Figure 48 shows the interactions found in the gene desert of chr5 for pro-B and MEF

(replicate 1). From visual inspection, the interactions in the cells seem to be very similar to

each other. In the next sections we quantitatively analyze these interactions.

(a) pro-B, chr5. (b) MEF, chr5.

Figure 48. Interactions captured in the gene desert of chr5 (replicate 1)
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5.7.4 Number of interactions in the gene desert

Although the locations where the interactions take place are almost the same in pro-B and

MEF, we can see from the keys next to the binned contact maps in Figure 48 that the magnitude

of the interactions in MEF seems to be larger than in pro-B. We performed a systematic analysis

by comparing the number of interactions between the same two primers i and j in pro-B versus

MEF. We restricted our analysis to primers located within a distance greater than 12 Kb and

less than 100 Kb from each other. The first condition (distance > 12 Kb) is used to filter out

proximity events. Portions of chromatin that are next to each other are more likely to interact

in a random fashion and will not be good candidates to use as reference in our normalization

process. The second condition (distance < 100 Kb) is imposed to avoid long-range interactions

which will be harder to consolidate.

The analysis was done on all possible combinations of replicates from pro-B and MEF. This

is because although the samples are labeled replicate 1 and replicate 2, there is no relationship

between replicate 1 in pro-B and, say, replicate 1 in MEF. The results for replicate 1 in both

cells are shown in Figure 49. Refer to the Appendix, Figure 70, Figure 71, Figure 72 for details

about the other combinations of replicates.

The left panel in Figure 49 shows the number of interactions between primers i and j in pro-B

(X-axis) versus MEF (Y-axis). For each pair of primers we have a different count of interactions

in pro-B and MEF. We analyzed the counts of the same pairs of primers between cell types and

found a strong correlation between them: Spearman correlation coefficient ρ = 0.781016 with

p-value=1.10e-19.
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Figure 49. Interactions in chr5, replicate 1

The right panel also compares the counts of interactions between the same primers in pro-B

and MEF. It is a boxplot of the log2 ratios of pro-B over MEF. For example, if for primer

pair (i, j) we have 70 interactions in pro-B and 100 interactions in MEF, the plot will show

log2(
70
100).
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The center panel is a box plot of the count of interactions in each cell type (not paired).

This, in addition to the skew towards negative values of the log2 ratios in the right panel,

indicates that the number of interactions in MEF is larger than in pro-B.

Table XXXI shows the results of the correlation analysis for all combinations of replicates.

TABLE XXXI

CORRELATION ANALYSIS OF PRIMERS IN GENE DESERT (ALL REPLICATES).

Correlation
Cell Replicate Cell Replicate coefficient p-value

pro-B

1

MEF

1 0.781 1.10e-19
2 1 0.772 5.02e-18
1 2 0.923 2.50e-38
2 2 0.880 1.42e-28

Based on the table, we conclude there is a very high level of agreement between primers in

the gene desert (p-value < 5.02e-18). This is very good news indeed, for in the next section we

will use a subset of these primers to compute our normalization coefficients.

5.7.5 Method to obtain normalizing factors, using a gene desert with multiple

replicates

In Section 5.7.1 we illustrated with an example an approach to normalize 5C data obtained

from two different cells (Dekker, 2006). Our motivation to normalize the 5C interaction counts
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was to be able to compare them between cells. The example of Section 5.7.1 was fairly simple

as we only had one replicate per cell. Here we propose a general method to obtain normalizing

factors when the 5C experiment consists of multiple replicates.

Firstly, let us assume that for cell B we have RB replicates, and for M we have RM

replicates. We define:

• C = {(x, y)|x ∈ {1, 2, . . . , RB}∧y ∈ {1, 2, . . . , RM}} is the set of all possible combinations

of replicates.

• an index set K ⊂ N, such that g : K → C is a particular enumeration of the elements in

C. This is equivalent to say that we have an indexed family (ck)k∈K .

• a function f(ck) = x where x ∈ {1, 2, . . . , RB} is the first element of the kth ordered-pair

in C.

• a function s(ck) = y where y ∈ {1, 2, . . . , RM} is the second element of the kth ordered-

pair in C.

Then, for a given pair p of primers (i, j) in the gene desert of chr5 we will have two interaction

counts: B
f(ck)
p and M

s(ck)
p , where B and M represent pro-B and MEF respectively; p is the

primer pair; and ck is a specific combination of replicates.

In our case, possible combinations are C = {(1, 1), (2, 2), (1, 2), (2, 1)}. As an example, if

k = 3 then ck = (1, 2) and we will have B
f((1,2))
p = B1

p and M
s((1,2))
p = M2

p for pro-B replicate

1 and MEF replicate 2 respectively.
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A normalizing factor for each combination of replicates can be computed as indicated

in Equation 5.1 (Quackenbush, 2002).

nk =

∑P
p=1B

f(ck)
p

∑P
p=1M

s(ck)
p

. (5.1)

Because our goal is to compare the Igh locus in pro-B and MEF, the normalizing factor

obtained from the gene desert will be used to normalize all the ratios rkp =
B

f(ck)
p

M
s(ck)
p

for all pairs of

primers p = {1, 2, . . . , PIgh} in the Igh locus of replicate combination k. We will use log2-ratios

to obtain a standard measure of how much the interactions in pro-B differ from those in MEF.

The following equations show how to obtain a corrected ratio r̂kp

r̂kp =
B
f(ck)
p

M
s(ck)
p

· 1

nk

log2(r̂kp) = log2(rkp)− log2(nk)

where log2(r̂kp) is the corrected log2-ratio of interactions between the cells for pair p and

replicate combination k. As it will be shown in the next section, the computation of these

factors needs to be done with primers that have the highest level of agreement between replicate

combinations. Therefore, we implement an iterative process that filters out pairs of primers from

the gene desert whose counts diverge between replicates. By keeping the most homogeneous

primers we are able to compute more reliable normalizing factors.
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5.7.6 Filtering primers in gene desert to improve the normalizing factors

We previously analyzed the gene desert for each combination of replicates separately and

obtained a normalizing factor. Using our index notation, for k = 1, ck = (1, 1) –replicate 1 of

pro-B and replicate 1 of MEF– we obtained a normalizing factor n1; for k = 2, ck = (2, 2) we

obtained n2, and so forth.

Ideally, we would expect the corrected ratio r̂kp to be very similar to the corrected ratio r̂qp,

both for primer pair p, where k, q ∈ K are different indices representing different combinations

of replicates (Quackenbush, 2002; Geller et al., 2003). In order to improve the readability of

the following equations, we assume k = 1 as the combination of replicates (1, 1) and q = 2 as

(2, 2). The equations apply to any other combination of replicates.

In formal terms, for all primer pairs p and combinations of replicates 1 and 2:

r̂1p =
B1
p

M1
p

· 1

n1
(5.2)

r̂2p =
B2
p

M2
p

· 1

n2
(5.3)

we expect

r̂1p
r̂2p

=
B1
p

n1M
1
p

·
n2M

2
p

B2
p

∼ 1

which is equivalent to

log2(
r̂1p
r̂2p

) ∼ 0

A scatter plot with these corrected ratios is shown in Figure 50(a). Some pairs of primers

do not seem to agree between the two replicates (marked in blue as outliers with more than two
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standard deviations from the rest). These are the primers in the gene desert that we postulate

should be excluded from the computation of the normalizing factors.

(a) Before running the iterative process. (b) After six iterations all outliers are removed

Figure 50. Corrected log2-ratios in chr5. Combination of replicates (1,1) and (2,2). Outliers
are marked in blue.

The algorithm we developed to filter pairs of primers used in the computation of normalizing

factors, consists of the following steps:
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1. For every possible combination of replicates k and q, compute log2-ratios of pro-B

over MEF.

2. Exclude primer pairs that are more than 2 standard deviations away from the rest.

3. Compute the normalizing factors and correct counts of remaining primers.

4. Repeat from 1. until there are no more primers to discard.

After six iterations of our algorithm, the pairs of primers that show consistency in both

combinations of replicates are marked in red and grouped around zero in Figure 50(b).

The normalizing factors we obtain after running the algorithm on all combinations of repli-

cates are shown in Table XXXII.

TABLE XXXII

NORMALIZING FACTORS OBTAINED FROM ALL COMBINATIONS OF REPLICATES
(WITH FILTERING).

Set Cell/replicate Cell/replicate Coefficient

1
pro-B1 MEF1 0.779544
pro-B2 MEF1 0.692332

2
pro-B1 MEF2 0.587048
pro-B2 MEF1 0.709502

3
pro-B1 MEF1 0.779544
pro-B2 MEF2 0.531143

4
pro-B1 MEF2 0.587162
pro-B2 MEF2 0.531143
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Finally, to compute the normalizing coefficient of a specific cell and replicate, we obtain an

average of the factors in Table XXXII that include that replicate. In this way, we obtain:

• Normalizing coefficient for MEF, rep. 1 = 0.7402305 = 0.779544+0.692332+0.709502+0.779544
4

• Normalizing coefficient for MEF, rep. 2 = 0.5591240 = 0.587048+0.531143+0.587162+0.531143
4

5.7.7 Normalizing counts and combining replicates in Igh locus

At this point, there is no further need to contemplate different combinations of replicates.

After all, the normalizing coefficients we obtained in the previous step are for each specific

replicate. Because our ultimate goal is to compare pro-B and MEF, in this section we describe

the steps we followed to combine the replicates of the same cell type.

Before combining the replicates, we computed a correlation of the interaction counts between

the replicates of each cell. Both, pro-B and MEF had high Spearman correlation coefficients:

ρ = 0.704 for pro-B and ρ = 0.885 for MEF and statistically significant p-values < 2.2e-

16. Figure 51 shows the scatter plots of the interactions of replicate 1 (X-axis) versus replicate

2 (Y-axis).

Based on the fact that there is a strong agreement between replicates, we decided to combine

them. To that effect, we started by computing an average of the corrected log2-ratios as shown

below.
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(a) In pro-B, replicate 1 vs. 2, ρ = 0.704 and p-value
< 2.2e-16

(b) In MEF, replicate 1 vs. 2, ρ = 0.885 and p-value
< 2.2e-16

Figure 51. Spearman correlation of interaction counts in both replicates of the same cell.

For every pair of primers p we have:

vp =
log2(r̂1p) + log2(r̂2p)

2

=
1

2
log2(r̂1p · r̂2p)

= log2(
√
r̂1p · r̂2p)

substituting from Equations 5.2 and 5.3

vp = log2(

√
B1
p

n1M
1
p

·
B2
p

n2M
2
p

)

= log2(

√
B1
pB

2
p

M1
pM

2
p

· 1

n1n2
)
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and the normalized average value for pair p is

vp = log2(

√
B1
pB

2
p

M1
pM

2
p

)− log2(
√
n1n2) (5.4)

In Equation 5.4 we see that the normalized average value vp for pair p is obtained by

computing the geometric mean of interactions in pro-B (
√
B1
pB

2
p) and MEF (

√
M1

pM
2
p) and

then correcting with the normalizing coefficients n1 and n2 computed for both replicates of

MEF in Section 5.7.6. Equation 5.4 generalizes very easily to an experiment with m replicates

where the normalized average value for the primer pair p is:

vp = log2


 m

√√√√
m∏

i=1

Bi
p

M i
p


− log2


 m

√√√√
m∏

i=1

ni


 (5.5)

There are a few special considerations with regards to Equation 5.5 that need to be made

in order to avoid singularities in the operations:

• If ∃ i ∈ {1, 2, . . .m} | Bi
p = 0 then set Bi

p = 0.01. The same applies to M i
p.

• ∀ i ∈ {1, 2, . . .m} | Bi
p = 0 ∧M i

p = 0 set vp = 0.

At the end of this step, we create two average-normalized matrices: MproB
norm and MMEF

norm

that will contain the normalized interaction counts of all pairs of primers, for the combined

replicates in pro-B and MEF respectively.

5.8 Visualizing normalized data

After implementing the methods described in the previous sections we were able to scale the

interactions in the Igh locus and to combine both replicates of each cell type. Here we obtain a
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first view of the binned contact maps for pro-B and MEF. In both cases, the data were binned

using a bin size=100 Kb and a bin step=10 Kb. Figure 52 shows the binned contact map of

the matrix MproB
norm computed before and Figure 53 does the same for the matrix MMEF

norm .

At first sight, both cells seem to have the same pattern of interactions. Yet, there are

noticeable differences that can be appreciated by looking more closely at the binned contact

maps. For example, the genomic region between the coordinates 114,455,800 and 114,459,771

(between the 2nd and 3rd ticks in the Y-axis, from the topmost left corner) corresponds to an

enhancer known as 3’ regulatory region (3’RR). This region has been well-characterized in the

mouse and it has been found to have a prominent role in the production of immunoglobulins

in B cells (Rouaud et al., 2013).

From a biological standpoint, we expect to see more interactions around that region in pro-B

than MEF, and the binned contact maps seems to validate it. Nevertheless, it is clear from

these figures that we need a different comparison approach to determine what interactions are

more prevalent in one cell than in the other.
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Figure 52. pro-B: binned contact map of Igh locus. Bin size=100 Kb, bin step=10 Kb
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Figure 53. MEF: binned contact map of Igh locus. Bin size=100 Kb, bin step=10 Kb
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5.9 Expected number of interactions

One final step before we can compare pro-B and MEF consists in removing the expected

interactions between any pair of primers i and j. The input to this step are the two matrices

MproB
norm and MMEF

norm computed at the end of Section 5.7.7. The computation of expected

interactions can be better explained as a noise reduction step that aims at keeping only the

true interactions between i and j, eliminating those that arise by chance. Of course, this is

easier said than done. The question we face is: What is a neutral reference state that can be

used to determine the expected number of interactions between any primers i and j?

In reality, there is no answer to the previous question and many researchers have attempted

to approximate the concept of expected through different methods. The most popular approach

creates a set of points P = {(x11, y11), (x12, y12), . . . , (xij , yij), . . . , (xFR, yFR)} where F if the

number of forward primers and R is the number of reverse primers; xij is the genomic distance

between primers i and j; and yij is the number of interactions between primers i and j. These

points are smoothed with a LOESS curve which in turn is used to predict the expected number

of interactions between i and j (Lajoie et al., 2009; Baù et al., 2011). A different approach

bases the calculation of expected contacts on the analysis of polymer models (Lieberman-Aiden

et al., 2009). In these models, it has been observed that the number of interactions between

two genomic regions decreases as the distance between the regions increases, thus following

a power law y = x−c where the coefficient c has been estimated to be approximately -1.08.

A recently released method to determine expected interactions models them using a Weibull
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distribution and implements the stochastic gradient descent method to learn the parameters of

the distribution from the data (Phillips-Cremins et al., 2013).

All of these methods make assumptions about the data and/or about the underlying struc-

ture of chromatin and, unfortunately, there is no objective set of measures that can be used to

determine which one is better.

For our analysis, we decided to estimate the expected interactions using LOESS smoothing

(Cleveland, 1979; Cleveland and Devlin, 1988). In its first iteration of the paper, the author

lays the foundations of the method (originally referred to as LOWESS for LOcally WEighted

Scatterplot Smoothing). The steps are (Cleveland, 1979):

1. For each xij define weights w(xij) using a weight function W which essentially gives

more weight to data points nearer to the point where the estimation will be done.

2. For a point q in P, compute a set of estimates γ = (γ0, γ1, ..., γd) which will be

parameters of a polynomial regression of degree d that minimize:

|P|∑

k=1

W (xq, xk)(yk − γ0 −
d∑

r=1

xkγr)
2 (5.6)

where q is our estimating point; and W (xq, xk) computes the weight between q and

any other point k in P.

3. Finally, the smoothed value is computed as:

ŷq = γ0 +
d∑

r=1

xrqγr (5.7)
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where γ = (γ0, γ1, ..., γd) are the optimally estimated parameters in Equation 5.6.

In the second iteration of their work (Cleveland and Devlin, 1988), the method was renamed

to LOESS for LOcally weighted regrESSion and the weight function W acquired a new pa-

rameter α. This parameter is used to determine the fraction of points –or span– in the vicinity

of the estimating point that will be used to compute the weight. The larger the α, the stronger

the smoothing effect of the overall function. A smaller α, on the other hand, forces the function

to use few neighboring points exacerbating the locality of the estimation and thus creating a

non-smooth curve that jitters between points.

We used LOESS with a second-degree polynomial (d = 2) and a fraction of points α = 0.1.

The LOESS curve computed for pro-B can be seen in Figure 54. Refer to the Appendix,

where Figure 73 shows a LOESS curve for MEF. For this analysis, we excluded primers whose

distance was less than 12 Kb as these are considered proximity events.

Figure 54 illustrates the behavior to which we alluded before when we briefly mentioned

polymer models: the larger the distance between primers, the smaller the number of interactions

we expect to find.

The LOESS curve was ultimately used to compute a new set of points P̂ = {(x11, ŷ11),

(x12, ŷ12), . . . , (xij , ŷij), . . . , (xFR, ŷFR)} where each ŷij represents the expected number of in-

teractions between primers i and j. We obtained two sets of points, one for pro-B and one for

MEF. With these sets of points we constructed two matrices containing the expected interac-

tions for every pair of primers as computed by LOESS: MproB
expected for pro-B and MMEF

expected for
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Figure 54. Interactions by distance in pro-B with LOESS curve (d = 2 and α = 0.1)

MEF. The binned expected interactions of MproB
expected can be seen in Figure 55. Refer to the

Appendix, Figure 74 for a similar binned contact map of MEF.

Upon closer inspection of Figure 55 reveals some interesting aspects about the expected

values in pro-B. Firstly, we see that the highest number of expected interactions cluster around

the diagonal. The diagonal –or its immediate neighborhood– represents the interactions between

proximal fragments. As was mentioned before, contiguous regions of chromatin are more likely

to interact with each other than with regions located far away. The farther we move from

the diagonal, the more prominent the decrease in expected interactions is. For example, two

fragments located around 114,441,024 (2nd tick in the X- and Y-axis, from topmost left) have
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Figure 55. pro-B: binned expected interactions in Igh locus using LOESS. Bin size=100 Kb,
bin step=10 Kb

an expected number of interactions that ranges between 571 and 6,266. Now, the expected

interactions between one of those fragments and another fragment at 115,781,024 (15th tick

from the left in the X-axis) is in the range of 84 to 101.



189

It is worth noting that, following the last example, as we move further to the right in the

X-axis we see that the number of expected interactions increases again. This is an artefact of

our 5C data and of the smoothing conducted by LOESS. It is simply saying that in our locus

of interest, due to the layout of primers and the interactions they capture, there is a higher

likelihood of finding long-range interactions of certain length (approximately, of 2.48 Mb long)

vs. other long-range interactions (approximately, of 1.86 Mb long).

5.10 Comparing interactions in pro-B versus MEF

Finally, we are ready to compare prob-B and MEF. We first subtracted MproB
expected from

MproB
norm and set to zero the negative counts (these represent the cases where the number of

observed interactions is less than the expected). We repeated this process for MEF and created

a binned contact map of pro-B over MEF with the log2-ratios of interactions. The binned

contact map in Figure 56 shows, in shades of blue, regions where there are more interactions in

MEF than pro-B. Conversely, shades of red show interactions that are more prevalent in pro-B

than MEF. White indicates either absence of primers or a log2-ratio close to zero.

We can decouple Figure 56 by looking separately at the interactions that are either prevalent

in pro-B or MEF. In order to achieve this we can set a threshold and retain only the interactions

in one cell that, when compared to the other cell, are above certain threshold.

In our analysis of the Igh locus, we set a threshold of 1.6 log2-fold change (equivalent to

a 3-fold difference in interaction counts) and reported the primers in pro-B that observed a

log2-fold change difference with respect to MEF greater than the threshold. The interactions

captured by these primers are then considered to be prevalent in pro-B. Figure 57 shows a
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Figure 56. Binned contact map of log2-ratios: pro-B vs. MEF.

binned contact map of the interactions prevalent in pro-B. Similarly, we repeated this analysis
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looking for interactions prevalent in MEF and Figure 58 shows these interactions on the same

scale as those in pro-B.

Figure 57. Binned contact map of interactions that are prevalent in pro-B, i.e., interactions of
primers with more than a 3-fold change difference in pro-B with respect to MEF. Bin

size=100 Kb, bin step=10 Kb
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Figure 58. Binned contact map of interactions that are prevalent in MEF, i.e., interactions of
primers with more than a 3-fold change difference in MEF with respect to pro-B. Bin

size=100 Kb, bin step=10 Kb
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The interactions reported in Figure 57 are of particular importance since they show the

genomic regions of the Igh locus that undergo gene rearrangement prior to the production of

immunoglobulins. These long-range interactions are pro-B specific and provide a clear picture

of the conformational structure of the locus in this type of cell.

5.11 Pipeline implementation

All the analyses conducted in this chapter were performed with an in-house pipeline de-

veloped in R and Python. The mapping of NGS data was done with Bowtie (Langmead et

al., 2009). The contact maps and other visualization tools were created using the R packages

lattice and gplots.

The source code of the pipeline was donated to the Research Resources Center at the

University of Illinois-Chicago with the sole purpose that future 5C projects conducted at the

university would benefit from the methods and algorithms we developed.

5.12 Conclusion

In this chapter we have focused on the development of methods and tools to manipulate

chromosome conformation data. Firstly, we provided technical details of the raw experimental

data that are generated by a 5C experiment. We illustrated with step-by-step examples the

characteristics of the visualization methods we developed. We showed in clear terms the meth-

ods to transform raw experimental data –representing chromatin interactions– into coherent

and noise-free visual representations of those interactions.

With the ultimate goal of comparing interaction data from two cell types: pro-B and MEF,

we proposed a normalization method to scale and combine the interactions in different repli-
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cates. Additionally, we implemented a noise reduction method based on LOESS smoothing to

eliminate interactions that would normally arise due to the proximity of primers.

Lastly, we combined all the pieces of the puzzle to obtain a binned contact map describing

the regions of the Igh locus where interactions are more prevalent in pro-B versus MEF, and

vice versa.



CHAPTER 6

DISCUSSION

In hopes of gaining a better understanding of how genes are regulated, the work we presented

has made use of different high-throughput technologies and has required the implementation of

different mathematical models and statistical methods. This integrative and multidisciplinary

approach has been the guiding compass of our research work.

Our analysis of chromosome conformation is an example of true multidisciplinary work.

Starting with the burdensome –yet essential– pre-processing of data, and all the way to the

creation of visualization tools for the results, it was the close collaboration with domain experts

that helped shape our proposed methods.

In regards to data integration, we illustrated an example of it with our probabilistic frame-

work to infer regulators of pathways. Here we combined seemingly disparate data sources

such as binding predictions of TFs and microRNAs, the structure of molecular pathways, and

mRNA/microRNA expression profiles. Each of these data sources attempted to predict the

mechanisms of gene regulation from different perspectives, but it was solely through data inte-

gration that our predictions became more grounded and less biased.

Another example that reflects our true integrative philosophy is the analysis pipeline we

developed for methylation and mRNA datasets. With the help of sound mathematical models

we were able to equate changes of gene expression with the amount of methylation located at

different regions of a gene.

195
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It is our personal belief that more methods based on data integration must be developed

in order to extract biologically relevant information from the ever increasing abundance of

biological data. Therein lies the greatest bioinformatics and machine learning challenge for the

future.
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Appendix A

SUPPLEMENTARY INFORMATION FROM CHAPTER 3

(a) (b)

Figure 59. (a) Toy BN of 36 nodes and (b) its error in approximating marginals using Gibbs
sampler.
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TABLE XXXIV

SELECTED MARGINALS FOR THE CELL CYCLE PATHWAY (6 DATASETS +
ENERLY)

Node
Marginals

Scenario #1 Scenario #2

v
er
y
lo
w

m
ed

iu
m

lo
w

m
ed

iu
m

m
ed

iu
m

h
ig
h

v
er
y
h
ig
h

v
er
y
lo
w

m
ed

iu
m

lo
w

m
ed

iu
m

m
ed

iu
m

h
ig
h

v
er
y
h
ig
h

SMAD3 0.14 0.81 0.05 0 0 0.2 0.63 0.08 0.03 0.06
CDKN2B 0.96 0.01 0.01 0.01 0.01 1 0 0 0 0
CCND1 (de) (de)
CDK4 0.01 0.01 0 0.97 0.02 0 0 0 0.68 0.32
TFE3 0.64 0.36 0.86 0.13 0.01
LMO2 0.02 0.92 0.06 0.02 0.93 0.06
ELK4 0.99 0.01 0.01 0.97 0.01 0.01 0.01
SREBF2 1.0 0.02 0.98
PAX4 1.0 1.0
NFIC 0.12 0.34 0.47 0.07 0.2 0.33 0.41 0.06
STAT6 0.07 0.94 0.08 0.91 0.01
SREBF1 0.01 0.99 0.01 0.01 0.99 0.01
NFIB 0.1 0.27 0.28 0.26 0.09 0.12 0.23 0.33 0.23 0.1
PPARA 0.98 0.01 0.01 1.0
hsa-mir-375 0.3 0.18 0.16 0.12 0.24 0.37 0.19 0.14 0.13 0.18
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TABLE XXXV

SELECTED MARGINALS FOR THE P53 SIGNALING PATHWAY (6 DATASETS +
BUFFA)

Node
Marginals

Scenario #1 Scenario #2

v
er
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w

m
ed

iu
m
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ed

iu
m

m
ed

iu
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h
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m

h
ig
h

v
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y
h
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h

STAT5B 0.24 0.74 0.02 0.01 0.12 0.88 0.01
PERP (de) (de)
IGFBP3 0.2 0.18 0.21 0.17 0.23 0.15 0.2 0.23 0.23 0.19

TABLE XXXVI

SELECTED MARGINALS FOR THE MAPK SIGNALING PATHWAY (6 DATASETS +
BUFFA)

Node
Marginals

Scenario #1 Scenario #2

v
er
y
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w

m
ed

iu
m
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w

m
ed

iu
m

m
ed

iu
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h
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w
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m

m
ed
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m

h
ig
h

v
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y
h
ig
h

STAT5B 0.35 0.53 0.08 0.04 0.01 0.23 0.68 0.05 0.04
MAP3K12 (de) (de)
NFKB2 0.18 0.21 0.2 0.23 0.18 0.24 0.16 0.18 0.19 0.22
RRAS2 0.17 0.2 0.2 0.23 0.2 0.83 0.03 0.1 0.03 0.02
PTPRR 0.18 0.15 0.24 0.23 0.19 0.17 0.19 0.23 0.2 0.2
FGF23 0.22 0.21 0.19 0.2 0.18 0.2 0.23 0.17 0.21 0.2
MAPK10 0.14 0.2 0.19 0.23 0.23 0.18 0.17 0.2 0.19 0.26
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SUPPLEMENTARY INFORMATION FROM CHAPTER 4

B.1 Results for the Illumina 27K platform: a case study

In order to illustrate a different set of results that can be obtained using me-mRNA-pipe,

we downloaded and processed another publicly available dataset that focused on the analysis

of methylation patterns in different tissues and different species (Pai et al., 2011). In Pai’s

study, the authors analyzed three types of tissue: heart (H), liver (L) and kidney (K) in two

species: humans (Hs) and chimpanzees (Pt). Their focus was to characterize how the observable

differences in DNA methylation between species affected the interspecies differences in gene

expression.

The methylation data were extracted from the same samples of a previous interspecies

mRNA study (Blekhman et al., 2008). For the analysis of methylation profiles, the Illumina 27K

array described in section 4.3.3 was used (GEO Series GSE37020). The analysis of the mRNA

expression data was performed using a custom multi-primate Nimblegen 388K microarray (GEO

Series GSE11560).

In contrast to the ambitious scope of the work in (Pai et al., 2011) and (Blekhman et al.,

2008), we limited our analysis to the human samples and focused on identifying relationships

between methylation and gene expression in the three different tissues. Due to the fact that

me-mRNA-pipe compares only two phenotypes at a time, it was executed three times to compare:
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i) kidney vs. heart, ii) kidney vs. liver, iii) heart vs. liver and three different output directories

were created for the three runs. It is important to note that in Pai’s study each sample had

two technical replicates. In the same way that the authors did not merge the replicates, in our

analysis we measured the contribution of each replicate independently of the other.

B.1.1 Data pre-processing

Our first step was to determine the quality of the data in all samples. We analyzed the

hierarchical clustering and PCA plots obtained from each run and identified two methylation

samples in kidney (HsK1a and HsK1b) that did not cluster together with samples of the same

tissue. This can be seen in Figure 60 where the two problematic samples cluster together at the

left of the figure, far from the other kidney samples. The PCA plots, before and after excluding

the samples, are shown in Figure 61(a) and Figure 61(b) respectively. It should be noted that

after excluding the two samples, the first principal component is able to explain 11% more of

the variance compared to when all samples were included.
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Figure 60. Hierarchical clustering of all samples in heart vs. kidney.
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(a) PCA of all samples (b) After excluding HsK1a and HsK1b

Figure 61. Pre-processing of methylation data using PCA to identify samples that should be
excluded from the analysis.

All methylation samples in Pai’s study and their matched mRNA samples are listed in Ta-

ble XXXVII. Only the samples of human tissues are shown in the table. Additionally, the two

samples above mentioned and which are excluded from further analysis are greyed out.
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TABLE XXXVII

PHENOTYPE INFORMATION FOR METHYLATION SAMPLES IN PAI’S STUDY AND
MRNA SAMPLES IN BLEKHMAN’S STUDY.

Methylation data mRNA data
Illumina 27K array Nimblegen custom multi-primate 388K array

Sample Id GEO Id Phenotype Sample Id GEO Id Phenotype

HsL1a GSM639308 LIVER HsL1a GSM291143 LIVER
HsL1b GSM639309 LIVER HsL1b GSM291260 LIVER
HsL2a GSM639310 LIVER HsL2a GSM291261 LIVER
HsL2b GSM639311 LIVER HsL2b GSM291262 LIVER
HsL3a GSM639312 LIVER HsL3a GSM291263 LIVER
HsL3b GSM639313 LIVER HsL3b GSM291266 LIVER
HsL4a GSM639314 LIVER HsL4a GSM291269 LIVER
HsL4b GSM639315 LIVER HsL4b GSM291270 LIVER
HsL5a GSM639316 LIVER HsL5a GSM291271 LIVER
HsL5b GSM639317 LIVER HsL5b GSM291272 LIVER
HsL6a GSM639318 LIVER HsL6a GSM291274 LIVER
HsL6b GSM639319 LIVER HsL6b GSM291279 LIVER
HsK1a GSM639332 KIDNEY HsK1a GSM291972 KIDNEY
HsK1b GSM639333 KIDNEY HsK1b GSM291973 KIDNEY
HsK2a GSM639334 KIDNEY HsK2a GSM291975 KIDNEY
HsK2b GSM639335 KIDNEY HsK2b GSM291976 KIDNEY
HsK3a GSM639336 KIDNEY HsK3a GSM291977 KIDNEY
HsK3b GSM639337 KIDNEY HsK3b GSM291978 KIDNEY
HsK4a GSM639338 KIDNEY HsK4a GSM291979 KIDNEY
HsK4b GSM639339 KIDNEY HsK4b GSM291980 KIDNEY
HsK5a GSM639340 KIDNEY HsK5a GSM291981 KIDNEY
HsK5b GSM639341 KIDNEY HsK5b GSM291982 KIDNEY
HsK6a GSM639342 KIDNEY HsK6a GSM291983 KIDNEY
HsK6b GSM639343 KIDNEY HsK6b GSM291984 KIDNEY
HsH1a GSM639355 HEART HsH1a GSM292009 HEART
HsH1b GSM639356 HEART HsH1b GSM292010 HEART
HsH2a GSM639357 HEART HsH2a GSM292011 HEART
HsH2b GSM639358 HEART HsH2b GSM292012 HEART
HsH3a GSM639359 HEART HsH3a GSM292013 HEART
HsH3b GSM639360 HEART HsH3b GSM292014 HEART
HsH4a GSM639361 HEART HsH4a GSM292015 HEART
HsH4b GSM639362 HEART HsH4b GSM292016 HEART
HsH5a GSM639363 HEART HsH5a GSM292017 HEART
HsH5b GSM639364 HEART HsH5b GSM292018 HEART
HsH6a GSM639365 HEART HsH6a GSM292019 HEART
HsH6b GSM639366 HEART HsH6b GSM292020 HEART
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In our analysis, mRNA probes were considered to be differentially expressed if the ad-

justed p-value of their difference between phenotypes was less than 0.01 (See section 4.4.3 for

more details). On the other hand, DNA methylation probes were considered to be differen-

tially methylated if the difference in beta values (∆beta) was greater than 0.1. Table XXXVIII

shows a summary of the number of differentially expressed mRNAs, the number of differentially

methylated CpGs and their overlap computed by me-mRNA-pipe.

TABLE XXXVIII

SUMMARY OF DIFFERENTIALLY METHYLATED CPGS AND THEIR OVERLAP
WITH DIFFERENTIALLY EXPRESSED GENES.

Tissue comparison
Kidney vs. Kidney vs. Heart vs.

Heart Liver Liver
count % count % count %

Number of differentially methylated CpGs (DMCpG) 3,161 3,708 4,503
Number of differentially expressed RefSeqIds (DER) 11,186 10,662 11,851
. DMCpGs that overlap with at least one DER 1,692 53.5% 1,986 53.6% 2,657 59.0%
. DERs that overlap with at least one DMCpG 1,398 12.5% 1,597 15.0% 2,115 17.8%

B.1.2 ANOVA analysis

Due to the fact that the Illumina 27K array has few CpGs in the promoter of genes, the

overlap between differentially methylated CpGs and differentially expressed genes does not

leave too much room for an extensive ANOVA analysis. If we refer to the heart vs. liver
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comparison, Figure 62 shows a large number of differentially expressed genes (> 1,500) having

only one differentially methylated CpG associated to them. From Table XXXVIII we have 2,115

differentially expressed genes that overlap with at least one differentially methylated CpG. Of

these genes, 1,892 (89.5%) have only one overlapping CpG or, when they have more than one,

they are in the same location. Even so, our ANOVA analysis reported some interesting results.

Figure 62. Histogram of the overlap of differentially methylated CpGs with differentially
expressed genes.
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As we did in Section 4.5.2, the top 20 genes from each tissue comparison were submitted to

DAVID in search of GO term enrichment. Table XXXIX shows the enriched elements with an

FDR < 10%.

The GO terms enriched in the kidney vs. liver analysis are particularly interesting since

they refer to inflammation and wound-healing response. In liver tissue, fibrosis is a response

to wounding that involves different cells and mediators to contain the injury and it has been

associated with hypermethylation of DNA (Friedman, 2008). Additionally, when an injury in

the liver occurs, growth factors are released in the extracellular space and the extracellular

matrix relays signals to cells that trigger a fibrogenic response (Schuppan et al., 2001).

What is notable about this analysis is that, from the perspective of mRNA expression, we

expect to find large differences in gene expression between the tissues (Blekhman et al., 2008).

Nevertheless, the ANOVA analysis extracts the differentially methylated CpGs associated with

these genes, compares their beta values in different tissues and identifies novel relationships

between the genes that arise from different methylation patterns.

B.1.3 Correlation analysis

Here, in a similar way to the analysis conducted in Section 4.5.3, we want to determine

if there are specific locations where the correlation between methylation and gene expression

is over- or under-represented. The two types of locations we considered were: a) location by

gene and b) custom location. The main difference between them is the level of granularity. In
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TABLE XXXIX

FUNCTIONAL ANNOTATION OF TOP 20 GENES FROM THE ANOVA TEST IN PAI’S
STUDY (HUMAN TISSUES).

Tissue comparison Id Term Category p-value
Kidney vs. Heart – None
Kidney vs. Liver GO:0002526 Acute inflammatory response GO BP 1.6e-4

GO:0048878 Chemical homeostasis GO BP 1.7e-4
GO:0009611 Response to wounding GO BP 2.0e-4
GO:0005576 Extracellular region GO CC 1.2e-4
GO:0004252 Serine-type endopeptidase activity GO MF 9.9e-4
GO:0008236 Serine-type peptidase activity GO MF 1.5e-3
GO:0017171 Serine hydrolase activity GO MF 1.5e-3

Heart vs. Liver GO:0008528 Peptide receptor activity, G-protein coupled GO MF 2.8e-4
GO:0042277 Peptide binding GO MF 1.5e-3

a) we only have two locations: TSS200 and TSS1500 whereas in b) we have TSS200, TSS600,

TSS1000 and TSS1500. See Section 4.3.3 for more details.

A Fisher’s exact test when using only two locations (TSS200 and TS1500) did not identify

significant differences between them in any of the three tissue comparisons. In contrast, when

testing on the custom locations, different regions showed a significant p-value (α = 0.01). Ta-

ble XL summarizes these results. In general, all custom locations have a two-fold difference

between negative and positive correlations. The locations reported by Fisher’s exact test con-

tain more correlation coefficients that are negative than positive but at a rate much smaller

than two-to-one. In the case of heart vs. liver, Figure 63(a) shows that there are no significant

differences between CpGs located less than 200 bp from the TSS (TSS200) and CpGs located

up to 1,500 bp from the TSS (TSS1500). If we want to have a more granular look at these

locations, we can consider the custom locations in which the TSS1500 group is partitioned
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into groups with smaller distances. Then we see in Figure 63(b) that TSS1500, the location

farthest from the TSS, now has a larger number of positively correlated coefficients. The last

row in Table XL shows that this difference is statistically significant.

TABLE XL

FISHER’S EXACT TEST OF CORRELATION COEFFICIENTS AT DIFFERENT GENE
LOCATIONS.

Tissue comparison Type of location
by gene p-value custom p-value

Kidney vs. Heart – – – –
Kidney vs. Liver – – TSS600 0.004075

TSS1000 0.000076
Heart vs. Liver – – TSS1500 0.009187
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(a) Location by gene (b) Custom location

Figure 63. Density of correlation coefficients for all locations in Heart vs. Liver.

B.1.4 Multiple linear regression

As we did in Section 4.5.4, for each gene we want to find a linear equation to model gene

expression with respect to the beta values of the CpGs associated to the gene. The multiple

regression analysis yields a p-value per gene and because in the Illumina 27K platform the

number of CpGs associated to a gene is much smaller than in the 450K platform, it is more

likely that the regression analysis will be statistically significant.

With that in mind, we focused on identifying genes for which a well-fitted linear equation

could be found in all tissue comparisons (p-value < 0.01). Our goal was to find differences

in methylation patterns between the tissues so we looked at genes with different regression
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coefficients in the three tissue comparisons (see User Manual for more details about temporary

files created by the pipeline that can be programmatically accessed). Among the many genes we

identified as having different methylation patterns between the tissues, we found the Potassium

voltage-gated channel, Isk-related family, member 3 (KCNE3).

KCNE3 is known to express weakly in the heart (Mazhari et al., 2002). Additionally, the

protein encoded by this gene “...is a type I membrane protein, and a beta subunit that assembles

with a potassium channel alpha-subunit to modulate the gating kinetics and enhance stability of

the multimeric complex. This gene is prominently expressed in the kidney...” (Maglott et al.,

2005). This can be seen in Table XLI where KCNE3 is always up-regulated in any comparison

involving kidney tissue. Table XLI shows the difference in expression levels of KCNE3 and of

methylation of its overlapping CpGs. Due to KCNE3’s prevalence of expression in the kidney,

we will focus only on the two tissue comparisons that involve kidney. Up- or down-regulation

refers to the first tissue compared to the second, e.g.: KCNE3 is up-regulated in kidney and,

therefore, down-regulated in liver. The same applies for hyper- and hypo-methylation. In the

kidney vs. heart comparison, only one CpG is differentially methylated.

We want to address the following question: “Does methylation of KCNE3 in kidney differ

substantially from methylation in heart and in liver?” By using the comparison between pairs

of tissues as proxy, we can identify different methylation patterns of KCNE3 in heart but not

in liver and vice versa.

Figure 64 shows the TSS of KCNE3 (RefSeq Id: NM 005472) obtained from the UCSC

Genome Browser. The figure also shows the location of the two CpGs in the proximity of the
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TABLE XLI

STATUS OF THE GENE KCNE3 AND ITS OVERLAPPING CPGS IN DIFFERENT
TISSUES.

Tissue comparison Gene status CpG status
KCNE3 cg02595219 cg23189044

Kidney vs. Liver up-regulated hypo-methylated hypo-methylated
Kidney vs. Heart up-regulated hypo-methylated –

TSS (it is transcribed in the 3’-5’ direction). The distances from the CpGs to the TSS are: 223

bp for cg02595219 and 424 bp for cg23189044.

Figure 64. Genomic location of KCNE3 (NM 005472) and its associated CpGs.

Using the model described in Equation 4.3 (Section 4.4.6) we obtained the coefficients and

p-values listed in Table XLII. Although the CpGs are located 647 bp apart from each other,

their contribution to the linear model seems to be conflicting. In particular, in kidney vs. liver,

cg02595219 has a negative coefficient and cg23189044 has a positive one, even when both of

them are hypo-methylated. In kidney vs. heart, only cg02595219 is differentially methylated
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and its negative coefficient is consistent with the kidney vs. liver analysis. This may indicate

that lower methylation at that location corresponds to an overall higher expression of the gene.

But what about cg23189044 and its positive coefficient?

How can we resolve the apparent contradiction of having positive and negative coefficients?

Can we assume that the CpGs with negative coefficients are the ones that have a stronger

effect upon gene expression in both tissue comparisons? We can base this hypothesis on the

well known fact that hyper-methylation in the promoter of genes is strongly correlated with

under-expression of the genes (Stein et al., 1982). But to get a definite answer to our question

we need to have a look at the LASSO regression results in the next section.

TABLE XLII

COEFFICIENTS AND P-VALUES OF MULTIPLE LINEAR REGRESSION FOR KCNE3.
Kidney vs. Liver Kidney vs. Heart

Coefficients Value p-value Value p-value
γ0 intercept 11.90 2.7e-18 12.99 3.4e-19
γ1 cg02595219 -5.81 0.1692 -17.63 5.5e-07
γ2 cg23189044 2.74 0.6635 – –

B.1.5 LASSO regression

We applied the LASSO method as described in Section 4.4.7 and Equation 4.4 and turned

our attention to KCNE3. In the previous section we left unanswered the question of which of
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the two CpGs in kidney vs. liver has a higher impact on the expression of the gene. The results

of LASSO regression shown in Table XLIII help us clarify this issue.

TABLE XLIII

SOLUTION TO LASSO REGRESSION FOR KCNE3.
Kidney vs. Liver Kidney vs. Heart

Parameters Value Value

α̂k
α0 intercept 11.8916 12.9777
α1 cg02595219 -3.9515 -17.5099
α2 cg23189044 0.0000 –

In the comparison of kidney vs. liver, we see a preference to keep the CpG that was given

a negative coefficient by our linear regression analysis (see Table XLII) while cg23189044 is

dropped from the model. This is an indication that the stronger effect in KCNE3 comes from

the CpG whose beta values have an inverse contribution to the expression level of the gene.

We previously suggested this, simply from analyzing the linear regression coefficients. But the

LASSO method, by prioritizing the CpGs that best explain the expression values of KCNE3,

provides a strong support to our hypothesis.

We repeated the multiple linear regression analysis of kidney vs. liver in KCNE3 excluding

cg23189044. There was no need to rerun the regression of kidney vs. heart because it only

had one CpG and LASSO preserved it. Table XLIV can be contrasted with Table XLII. When

both CpGs were considered, the linear model for KCNE3 attained a statistically significant
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fit (F-statistic = 13.12, p = 2.6e-4, adjusted R-squared (R̄2) = 0.5359) but after excluding

cg23189044, the linear model for KCNE3 has a much better fit and a more significant p-value

(F-statistic = 27.14, p = 4.3e-05, R̄2 = 0.5545).

TABLE XLIV

COEFFICIENTS AND P-VALUES OF MULTIPLE LINEAR REGRESSION FOR KCNE3
AFTER FILTERING CPG WITH LASSO.

Kidney vs. Liver
Coefficients Value p-value

γ0 intercept 11.93 2.47e-19
γ1 cg02595219 -4.05 4.25e-05
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SUPPLEMENTARY INFORMATION FROM CHAPTER 5

Figure 65. An overview of the steps in Hi-C.

Bowtie parameters: Each paired-end was mapped independently of the other. The following

syntax is used to map one paired-end. The same command has to be invoked for the other

paired-end.

bowtie -q -m 1 -k 1 -t --suppress 5,6,7

where
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-q : indicates format of input file is FASTQ.

-m 1 : Suppress all alignments for a read if more than 1 reportable alignment exists.

-k 1 : Report up to 1 valid alignment per read.

-t : Verbose mode, print time of each phase.

-suppress 5,6,7 : Verbose mode, suppress columns 5, 6 and 7 from output. Where

Column 5: Is the read sequence that was mapped/unmapped.

Column 6: Quality scores.

Column 7: A number indicating the number of alignments that were found (valid

only when -m X with X > 1)
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Figure 66. Quality scores of nucleotides (length of read = 42) in reads of MEF replicate 1.
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Figure 67. Gene desert in chromosome 5: length of restriction fragments covered by a primer
(forward or reverse). Bin size=500 bp.

Figure 68. Length of gaps between restriction fragments covered by a primer (forward or
reverse) in the Igh locus (chr12). Bin size=5,000 bp.
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Figure 69. Length of gaps between restriction fragments covered by a primer (forward or
reverse) in the gene desert of chr5. Bin size=500 bp.
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Figure 70. Interactions in chr5, pro-B rep. 1, MEF rep. 2
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Figure 71. Interactions in chr5, pro-B rep. 2, MEF rep. 1
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Figure 72. Interactions in chr5, pro-B rep. 2, MEF rep. 2
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Figure 73. Interactions by distance in MEF with LOESS curve
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Figure 74. Binned expected interactions in Igh locus in MEF (using LOESS). Bin size=100
Kb, bin step=10 Kb
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