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SUMMARY

In this work we consider how well a packing consisting of disks of two distinct radii can

cover the plane. The main result, which sharpens the best known upper bound on two-radius

packings where the ratio of the smaller radius to the larger is 0.7, is presented in Theorem 3.3.1.

The density of a planar packing of disks with unequal radii cannot exceed that of a packing of

congruent disks if the radii of the disks are sufficiently close. Between 1950 and 1970,“sufficiently

close” was sharpened from “nearly equal” to ratios of radii within the interval [0.742. . . , 1] (1)

(2) (3) (4). It is not yet known whether this interval can be extended.

We call the infimum of the ratio of the radii of the disks in a packing the homogeneity

of that packing. A universal upper bound on the density of a packing of unequal disks as a

function of homogeneity has been found (5), but this bound is usually not sharp. For two-

radius packings there are less than a dozen discrete values in the homogeneity interval (0,1)

where a sharp upper bound on the density of the packing has been found, usually where special

regularity features exist (6), (7), (8), (9). In this paper we work at a homogeneity where such

regularity conditions cannot be found.

The general heuristic when searching for an upper bound on density has been to partition the

underlying space (in this case the Euclidean plane) in a manner which allows global inferences to

be made from local bounds on density which depend on special characteristics of the partition.

Perhaps the most familiar way of partitioning the underlying space is by considering a lattice,

wherein each cell of the partition is congruent to the fundamental domain. Here we partition the

viii



SUMMARY (Continued)

plane by considering a Delaunay triangulation on the centers of the disks in a saturated packing.

The regularity conditions present in a Delaunay triangulation lead to geometric constraints on

dense triangles in the packing. These constraints, taken in conjunction with certain topological

properties of the triangulation, allow us to arrive at a global density bound.
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CHAPTER 1

STATEMENT OF PROBLEM AND HISTORY

A packing of disks in a convex subset of the plane is a non-overlapping arrangement of

disks in that subset. We define the density of a packing in a bounded set as the ratio of

the area of the intersection of the packing with the set to the area of the set. This definition

extends naturally to unbounded convex sets by considering a lim sup over the family of all

bounded convex subsets of the given convex set. The homogeneity of a packing of unequal

disks is the infimum of the ratio of the radii of any two disks in the packing. An upper bound

on the density of a planar packing of disks of a given homogeneity is sought.

In 1773 Joseph-Louis Lagrange proved in his study of quadratic forms (10) (11) that among

lattice packings of disks of equal size, the hexagonal lattice arrangement has maximal density.

This density is π√
12

.

In 1910, Axel Thue proved the general result that π√
12

is the greatest density attainable by

any arrangement of equal disks in the plane (12). Thue’s method was to partition the plane

into three classes of region (sectors concentric with a disk in the packing, triangular regions

which arise when disks in the packing are close enough to each other, and empty space) and

reason that in each of these types of region the density is bounded above by π√
12

.

In 1953, Laszlo Fejes Toth examined the question of finding the largest possible packing

density of incongruent disks (1), and showed that if the homogeneity of a packing is sufficiently

1
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Figure 1: Florian’s triangle

close to 1, the density of the packing cannot exceed π√
12

. His methods involved the following

elements: density is defined using a hexagonal region which grows to fill the plane; the hexagonal

region is decomposed into polygons associated with the disks in the packing; an appropriately

defined convex function is used to bound the density of each disk in its associated polygon; and

the fact that the average number of sides of the partitioning polygons is 6 is used in conjunction

with properties of convex functions to obtain the density bound.

In 1960, August Florian proved (5) that the density of a packing of unequal disks with

homogeneity h cannot exceed the density of an arrangement of three mutually tangent disks of

radii 1, h, and h in the triangle having the centers of these disks as its vertices (see Figure 1).

This work provides an upper bound over the entire interval of homogeneity; however, the bound

is usually not sharp.

In 1963, by examining local geometry and refining the methods of Fejes Toth, Florian (2)

extended the interval of homogeneity where the density of a packing cannot exceed π√
12

to

[0.906 . . . , 1].
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This interval was further extended to [0.742. . . , 1] by Gerd Blind in 1969 (3) and indepen-

dently by Gabor Fejes Toth in 1972 (4) following ideas of Karoly Boroczky mentioned in Laszlo

Fejes Toth’s Lagerungen. . . (13) and in private communication. The methods involve the use

of certain isoperimetric inequalities and convexity. The number 0.742. . . is constructed using

the function describing the area of a regular polygon inscribing a unit disk.

In 2002, Gerd Blind and Roswitha Blind generalized the method used in Laszlo Fejes Toth’s

proof from 1953, which required the use of a hexagonal region in the definition of density, to

one that only requires convexity (14). Where L. Fejes Toth used the Voronoi cells of centers of

the disks in the packing to decompose a hexagonal region of the plane, the decomposition of

the convex body in the Blinds’ work is done instead using the power lines of the disks within

it. This decomposition is better suited to packings of disks with different radii, since disks in

an unequal packing may not be properly contained in the Voronoi cells of their centers.

In a compact packing, each disk is tangent to a ring of disks, each of which is tangent

to its two cyclic neighbors. Thomas Kennedy showed in (9) that if we restrict our attention to

packings of disks with two distinct radii, there are only 9 homogeneities for which it is possible

to construct compact packings. All of these homogeneities lie outside the interval [0.742 . . . , 1].

In 2003, Aladar Heppes showed in (7) that the density realized in six compact packings are

maximal for their respective homogeneities, and asserted that the methods in his paper can be

used to show that the density of these compact packings are locally maximal with respect to

homogeneity, and furthermore, that at homogeneities 0.6 and 0.67, density is bounded above by

π√
12

. Heppes’ method involves fixing a packing of a given homogeneity, obtaining a triangulation
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of the plane, and then further decomposing the triangles of the triangulation in order to obtain

a decomposition of the plane into cells whose density does not exceed the target density (that of

the compact packing). Some empirical data supporting the assertions made in (7) is available

at a site maintained by Kennedy (15).

Given a discrete set of points V in the plane, the Voronoi cell (also called the Dirichlet

domain) of a point v ∈ V is the set of all points of the plane which are at least as close to v as

to any other point of V. In 1992, Wu-Yi Hsiang gave a simple proof of Thue’s theorem for disks

of equal radius (16) by appealing to the Voronoi decomposition of the plane associated with

the centers of the disks in the packing. In a packing of homogeneity 1, each disk is contained

in the Voronoi cell of its center. This fact, which is used in Hsiang’s paper, does not generally

hold for packings of unequal disks.

A Delaunay triangulation of the plane is a triangulation of the plane using a discrete

set of points as its vertices, with the additional property that the circumcircle of each triangle

contains no points of the vertex set in its interior. Figure 2 illustrates this property.

A Delaunay triangulation can be shown to contain the dual graph of the Voronoi decompo-

sition of its vertices, and so, it is perhaps not surprising to see techniques involving Delaunay

decompositions or a hybrid of Voronoi and Delaunay decompositions in packing research. See,

for instance, the work of Hales and Ferguson (17).

The size of the minimal angle in triangulations on a set of points V is maximized by a

Delaunay triangulation. Furthermore, it is possible to obtain a universal lower bound on the
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Figure 2: Delaunay triangles with their associated circumcircles in a packing of unit disks
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Figure 3: The superimposed Voronoi and Delaunay graphs of an irregular packing
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size of the smallest angle in Delaunay triangulations on the centers of disks in saturated (see

Definition 2.1.3) packings of a fixed homogeneity h, as we shall see in Section 2.2.

In 2010, Hai-Chau Chang and Lih-Chung Wang posted a simple proof of Thue’s theorem

(18) in which they consider a Delaunay triangulation on the centers of the disks in the packing

and bound the density of the packing in each triangle by appealing to the regularity features

of the triangulation. The technical details which are a prominent feature in all the other

papers mentioned in this introduction are entirely subsumed in the Delaunay triangulation,

and the proof is otherwise truly elementary. The argument in (18) makes tacit use of the fact

that no triangle in a Delaunay triangulation on the centers of disks in a saturated packing of

homogeneity 1 intersects a disk whose center is not a vertex of that triangle, except possibly in

a set of measure zero. This is not generally true in packings of unequal disks.

The methods of L. Fejes Toth(19), Florian(2), Blind(3), and G. Fejes Toth (4) make use of a

convex function taking as input the area of a regular polygon inscribed in a unit disk. In partic-

ular, Blind makes use of such a function to arrive at the leftmost endpoint of the homogeneity

interval [0.742. . . , 1] in which the density of a packing cannot exceed π√
12

. The quantized nature

of the inputs of such functions, as well as the shape of the plot of empirical data on known

packing densities for various homogeneities, suggests that the interval [0.742 . . . , 1] can be ex-

tended for the target density π√
12

, and that sharper upper density bounds may be attainable

throughout the interval (0,1), except at homogeneities which admit compact packings.



CHAPTER 2

PRELIMINARIES

2.1 Definitions and Preliminary Notions

Definition 2.1.1. A packing of disks in a convex subset of the plane is a non-overlapping

arrangement of disks contained in that subset.

Definition 2.1.2. Let P denote the set of all disks in a packing. Let Br be the disk of radius r

centered at the origin, and let |X| denote the area measure of the set X. We define the density

of P in a bounded set B:

ρ(P, B) :=
|P ∩B|
|B|

,

and the density of P in the plane:

ρ := lim sup
r→∞

|P ∩Br|
|Br|

.

Definition 2.1.3. A packing is said to be saturated if there is no room to add an additional

disk.

Definition 2.1.4. The homogeneity of a packing is the infimum of the ratio of radii of disks

in the packing.

7
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Whenever we refer to a packing of homogeneity h, we assume that the radius of the largest

disk in the packing is 1. A saturated disk packing of homogeneity h in the plane, therefore,

satisfies the following two conditions:

• The distance between any two centers of disks in the packing is at least 2h.

• Any point of the plane is at most distance 1 + h from the center of some disk in the

packing.

Definition 2.1.5. A triangulation of a discrete set of points V in the plane is a decomposition

of the convex hull of V into pairwise-disjoint open simplices such that the faces of each simplex

are also in the collection and the vertices are the points of V.

The closure of each 2-simplex in a triangulation is referred to as a triangle of the triangu-

lation.

Observation 2.1.6. The length of every edge of a triangle in a triangulation on the centers of

disks in a packing of homogeneity h is at least 2h.

Definition 2.1.7. A trangulation on a discrete set of points is called a Delaunay trianglu-

ation if no vertex is contained inside the circumcircle of any triangle of the triangulation.

A discrete set of points V in the plane admits a Delaunay triangulation if, for two positive

constants r and R it satisfies two properties:

• Every two distinct points of V are at least distance r apart.

• The distance of no point of the plane is more than R from some point of V .
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A proof of this fact due to P. Gruber appears in (20), following the work of Delone (aka

Delaunay) in (21) and Delone and Ryshkov in (22).

Notice that a saturated packing of disks in the plane satisfies both conditions above, and so

admits a Delaunay triangulation.

Lemma 2.1.8. The circumradius of every triangle in a Delaunay triangulation on a saturated

disk packing of homogeneity h in the plane is strictly less than 1 + h.

Proof. In a Delaunay triangulation, no vertex of the triangulation is properly contained in the

circumcircle of any triangle, and in a saturated packing of homogeneity h, every point of the

plane, in particular the circumcenter of any triangle, is at least distance 1 + h from the center

of some disk in the packing.

Notation 2.1.9. When we refer to an arbitrary triangle T , we assume its angles are labelled

α, β, and γ, at respective vertices A,B, and C, so that α ≥ β ≥ γ. The letters a, b, and c refer

to the lengths of the edges opposite α, β, and γ.

Definition 2.1.10. To each triangle T in a triangulation on the centers of disks in a packing

we assign a combinatorial type [rA, rB, rC ], where rA, rB, and rC are radii of the disks at

A,B, and C respectively.

Observation 2.1.11. Triangles in a two-radius packing of homogeneity h belong to one of the

eight combinatorial types [1, 1, 1], [1, 1, h], [1, h, 1], [h, 1, 1], [1, h, h], [h, 1, h], [h, h, 1], and [h, h, h].

The angles of a triangulation on the centers of disks in a packing cut each disk into sectors.

In a Delaunay triangulation on the centers of disks in a saturated packing of homogeneity h it
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is sometimes the case that a triangle intersects, in a set of positive measure, a sector belonging

to a disk whose center is not a vertex of that triangle. Informally, one may think of such an

intersection as the “overhanging lip” of a sector cut out by an adjacent triangle. To facilitate

computations and to associate each sector to a unique triangle, we make the following definition:

Definition 2.1.12. To each triangle T of combinatorial type [rA, rB, rC ] we associate a sector

area:

sa(T ) :=
1

2

(
αr2A + βr2B + γr2C

)
,

which is the sum of the areas of the sectors cut from the disks at the vertices of the triangle by

the angle at each vertex of the triangle.

Definition 2.1.13. Fix a target density ρ0. Let a triangle T have area |T | and sector area

sa(T ). We define the surfeit of T relative to ρ0 to be the quantity:

sf(T ) := sa(T )− ρ0|T |.

Informally, one may think of the surfeit of a triangle as a measure of the excess weight of

its sector area compared to a congruent triangle in which the packing has density ρ0.

Definition 2.1.14. Let W be a finite set of triangles which are pairwise disjoint or meet in at

most a set of measure zero. We define the surfeit of W to be:

sf(W ) :=
∑
T⊂W

sf(T )
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Informally, we may think of the surfeit of the entire triangulation of an infinite packing as

involving the upper sum (the lim sup of a sequence of partial sums) of a series. Showing that

the density of a packing is less than or equal to a target density is tantamount to showing that

this upper sum is non-positive. This is discussed in detail in the proof of Theorem 3.3.1.

In this paper it is often useful to consider families of similar triangles. A triangle T is

determined, up to similarity, by two angles, so we make the following definition:

Definition 2.1.15. When T is labeled as in 2.1.9, we call the tuple (β, γ) the similarity type

of T .

We may think of the similarity type of a triangle T as a point in the βγ-plane. Such a point

lies in the region bounded by the lines β = γ, β = π/2−γ/2, and the vertical line γ = 0. We will

see in Section 2.2 that a Delaunay triangulation imposes restrictions on the size of the smallest

angle of a triangle. As a result, when a Delaunay triangulation is in hand, this region may

be further restricted. It is useful to classify triangles by combinatorial type when restricting

similarity types in this way.

Definition 2.1.16. The permissible region for triangles of combinatorial type [rA, rB, rC ]

belonging to a Delaunay triangulation on the centers of disks in a two-radius packing of ho-

mogeneity h is the set of points in the βγ-plane corresponding to similarity types which do not

violate angle restrictions imposed by the Delaunay triangulation.

Definition 2.1.17. Let v be a vertex of a triangle in a triangulation. We define the star of v

to be the set of all triangles which have v as a vertex.
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Definition 2.1.18. The number of triangles in the star of a vertex v is called the valence of

the star of v, or, sometimes, the valence of v.

Naturally, if all triangles in a triangulation on a packing carry non-positive surfeit, the

density of that packing is bounded above by the target density. Usually this is too much to

hope for, so an alternative approach is to determine what types of triangles can carry positive

surfeit, and group them together with triangles of sufficiently negative surfeit so that the sum

of surfeits in each group is non-positive.

Informally, a heavy triangle is one which has positive or nearly positive surfeit. The precise

meaning of “heavy” is described in each chapter in which the word is used. Also informally,

we call a triangle thin when the length of one edge is significantly greater than that of the

other two. As we shall see in detail in Section 3.7, when a heavy Delaunay triangle is thin, its

circumradius is nearly maximal. As a result, the properties of the Delaunay triangulation allow

us to determine a lower bound on the area of the heavy-thin triangle’s long-edge neighbor. This

lower bound on the neighbor’s area gives an upper bound on neighbor’s surfeit. We then group

the heavy triangle with its lighter neighbor, and sometimes also with other nearby triangles,

and reallocate surfeit within this group. This gives rise to the notion of adjusted surfeit,

which we will make precise in Definition 3.2.8.

We will find that triangles of positive adjusted surfeit belong to only a few combinatorial

types, and within each of these combinatorial types, the similarity types of triangles of positive

adjusted surfeit are constrained to small regions of the βγ-plane. These observations are used
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to make deductions about the adjusted surfeit of stars in the triangulation, which are then used

to arrive at an upper bound on the density of the packing.
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2.2 Permissible Triangles

We seek upper bounds on density, so we may assume that the packings we consider are

saturated, and that a Delaunay triangulation on the centers of the disks in the packing is in

hand. It is then possible to obtain a lower bound on the size of the smallest angle in a triangle

of a given combinatorial type, and in a few cases it is also possible to obtain a sharper lower

bound on the second smallest angle as well. For instance, in a [1, 1, 1] triangle, the length of

each side, in particular the side of length c opposite the smallest angle γ is bounded below by

2. Letting r represent the circumradius of this triangle, we obtain the relation

sin γ

c
=

1

2r

which allows us to conclude that γ > sin−1( 1
1+h). The corresponding angle bounds for all

combinatorial types are summarized in Table I.

[1, 1, 1] γ ≤ β ≤ π
2 −

γ
2 sin−1( 1

1+h) < γ ≤ π
3

[1, 1, h] γ ≤ β ≤ π
2 −

γ
2 sin−1( 1

1+h) < γ ≤ π
3

[1, h, 1] sin−1( 1
1+h) < β ≤ π

2 −
γ
2

π
6 < γ ≤ π

3

[h, 1, 1] γ ≤ β ≤ π
2 −

γ
2

π
6 < γ ≤ π

3

[1, h, h] γ ≤ β ≤ π
2 −

γ
2

π
6 < γ ≤ π

3

[h, 1, h] γ ≤ β ≤ π
2 −

γ
2

π
6 < γ ≤ π

3

[h, h, 1] π
6 < β ≤ π

2 −
γ
2 sin−1( h

1+h) < γ ≤ π
3

[h, h, h] γ ≤ β ≤ π
2 −

γ
2 sin−1( h

1+h) < γ ≤ π
3

TABLE I: Angle constraints by combinatorial type.
The bounds apply to saturated packings of homogeneity h.
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2.2.1 A Surfeit Bounding Function

The area of any triangle T can be computed using an edge length and the sines of its angles

using the formula |T | = 1
2a

2 sinβ sin γ

sinα
, or the obvious modification of this formula where a

different edge length is used. Edge lengths are bounded below by the sum of the radii of the

disks at the endpoints, and α = π − (β + γ), so the function:

f[rA,rB ,rC ](β, γ) :=
1

2


πr2A − β(r2A − r2B)− γ(r2A − r2C)− ρ0 max



(rB + rC)2
sinβ sin γ

sin (β + γ)

(rA + rC)2
sin (β + γ) sin γ

sinβ

(rA + rB)2
sin (β + γ) sinβ

sin γ




gives an upper bound on the surfeit of a triangle of combinatorial type [rA, rB, rC ] relative to

the target density ρ0.

The first terms in f[rA,rB ,rC ] are simply the sector area associated with a triangle of combi-

natorial type [rA, rB, rC ] with similarity type (β, γ). The max function gives twice the area of

the smallest triangle of similarity type (β, γ) which admits disks of radii rA, rB, and rC at its

vertices so that the disks do not overlap.

The domain of f[rA,rB ,rC ] is the region of the βγ−plane corresponding to permissible triangles

of combinatorial type [rA, rB, rC ] as shown in Table I.
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2.3 Positive Surfeit Regions

In the works of Thue, L. Fejes Toth, Blind, Chang and Wang and others it was possible

to arrive at a decomposition of the plane in which no component had density greater than

the target density. Here, when ρ0 is chosen to be less than the Florian bound at a given

homogeneity, the surfeit of certain triangles will be positive; however, assigning the domain of

the f[rA,rB ,rC ] according to the information in Table I significantly constrains the geometry of

these positive-surfeit triangles.

For example, Figure 4 shows that a [1, 1, 0.7] triangle in a saturated two-radius packing of

homogeneity 0.7 cannot carry positive surfeit (the lower surface is the graph of the bounding

function and the upper plane represents surfeit 0). Figure 5 shows that a [0.7, 0.7, 0.7] triangle

carries positive surfeit only in a small region of the βγ-plane, which appears as a darker sliver

in the bottom portion of the graph.
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Figure 4: Surfeit bound for [1, 1, 0.7] triangles
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Figure 5: Surfeit bound for [0.7, 0.7, 0.7] triangles



CHAPTER 3

A NEW UPPER DENSITY BOUND FOR TWO-RADIUS PACKINGS OF

HOMOGENEITY 0.7

In this chapter we establish an upper bound of 0.909346 on the density of two-radius packings

of homogeneity 0.7, which is sharper than Florian’s bound of approximately 0.909347. We

assume each packing is saturated, and that a Delaunay triangulation on the centers of its disks

is in hand. When we say “triangle,” we mean a triangle of such a triangulation.

3.1 Constants and Definitions Used Only in This Chapter

For this chapter, we define:

• h := 0.7,

• ρ0 := 0.909346,

• s := 2.016× 10−6.

Definition 3.1.1. Surfeit means surfeit relative to ρ0.

Definition 3.1.2. We say a triangle is heavy if its surfeit is at least −6s.

As an aid to visualization, note the approximate numeric values some of the angle bounds

from Table I as they apply to triangles in this chapter: sin−1( 1
1+h) ≈ 0.6289 rad ≈ 36.03◦ and

sin−1( h
1+h) ≈ 0.4244 rad ≈ 24.32◦.

19
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3.2 Summary of the Argument

The overall structure of the argument leading to the main result of this chapter is presented

below. The technical results asserted as claims are proven later in this chapter.

Claim 3.2.1. A triangle of type [h, h, 1] has surfeit at most s.

Claim 3.2.2. A heavy triangle must be of type [h, h, 1], [1, h, h], or [h, h, h].

Claim 3.2.3. If a triangle of type [1, h, h] or [h, h, h] is heavy, then it is obtuse, and we can

compute, by type, a lower bound on circumradius and upper bounds on the sizes of each acute

angle. (Saturation gives an upper bound of 1 + h on the circumradius of any triangle.)

Corollary 3.2.4. As a result of Claim 3.2.3, we can also compute, by type, upper bounds on

the lengths of the two smallest edges and a lower bound on the length of the long edge of any

heavy [1, h, h] or [h, h, h] triangle.

Claim 3.2.5. The upper and lower bounds on edge lengths from Corollary 3.2.4 allow us to

conclude that if two heavy triangles of type [1, h, h] or [h, h, h] share an edge, that shared edge

must either be the long edge of both or a short edge of both.

Claim 3.2.6. If a triangle of type [1, h, h] or [h, h, h] is heavy, then the surfeit of its long-edge

adjacent neighbor is negative enough to compensate. More precisely, if y is the surfeit of the

neighbor D and if D has a total of n heavy [1, h, h] or [h, h, h] neighbors of surfeits x1, . . . , xn,

then y +
n∑
i=1

(xi + 7s) < −6s.

Corollary 3.2.7. If two heavy triangles of type [1, h, h] or [h, h, h] share an edge, that shared

edge cannot be the long edge of either.
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Definition 3.2.8. Let D be any triangle in a Delaunay triangulation on a saturated two-radius

packing of homogeneity h. Let nD be the number of triangles which share an edge with D and

also:

a) are of type [1, h, h] or [h, h, h],

b) are heavy, and

c) share their longest edge with D.

We define the adjusted surfeit of D as follows:

Case 1: If nD = 0 and D is not itself a heavy triangle of type [1, h, h] or [h, h, h], then we

define the adjusted surfeit of D to be equal to the surfeit of D.

Case 2: If D is a heavy triangle of type [1, h, h] or [h, h, h], then we define the adjusted

surfeit of D to be −7s.

Case 3: If nD > 0, name the triangles which share an edge with D and satisfy all three

conditions above T1, . . . , TnD , call their surfeits x1, . . . , xnD respectively, and let y be the surfeit

of D. The adjusted surfeit of D is defined to be y +
nD∑
i=1

(xi + 7s).

If D belongs to Case 3, we define the cluster of D to be the set {D,T1, . . . , TnD}.

Proposition 3.2.9. Adjusted surfeit is well-defined.

Proof. In order to show that the cases above comprise a partition of the triangulation, it suffices

to show that a triangle cannot simultaneously belong to Case 2 and Case 3. Let D be a heavy

triangle of type [1, h, h] or [h, h, h]. By Corollary 3.2.7, no two heavy triangles of type [1, h, h]

or [h, h, h] can share a long edge, so nD = 0.
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It is now possible to conclude the following:

Proposition 3.2.10. Any triangle of adjusted surfeit greater than −6s is of type [h, h, 1].

Proof. Let D be a triangle with adjusted surfeit greater than −6s, and consider the cases in

Definition 3.2.8. In Case 2 the assigned adjusted surfeit is −7s, and in Case 3 the assigned

adjusted surfeit is less than −6s by Claim 3.2.6, so the adjusted surfeit of D has been assigned

according to Case 1. This means that D is heavy, and is not of type [1, h, h] or [h, h, h]. By

Claim 3.2.2, D is of type [h, h, 1].

We extend the definition of adjusted surfeit to finite unions of triangles:

Definition 3.2.11. The adjusted surfeit of a finite union of triangles is the sum of the

adjusted surfeits of the triangles in the union.

Proposition 3.2.12. No triangle belongs to more than one cluster.

Proof. By construction, every cluster is identified by a unique triangle D for which nD > 0, and

heavy triangles T1, . . . , TnD which each share their longest edge with D. By Claim 3.2.6, D is

not heavy, and so cannot be a member of another cluster. By Claim 3.2.3, each of T1, . . . , TnD is

obtuse, and so has a unique longest edge and cannot be a heavy triangle in another cluster.

Lemma 3.2.13. The adjusted surfeit of a cluster is the same as its surfeit. The adjusted surfeit

of a triangle not belonging to a cluster is also the same as its surfeit.

Proof. Clusters arise only when the adjusted surfeit of some triangle D is assigned according

to Case 3 of Definition 3.2.8, and consist of at most 4 triangles D,T1, . . . , TnD with respective
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surfeits y, x1, . . . , xD. By Proposition 3.2.12, clusters are disjoint. Notice that the adjusted

surfeit of D is y +
nD∑
i=1

(xi + 7s) and the surfeit of each of the triangles T1, . . . , TnD is −7s.

We say that a collection of triangles intersects a set if any element of that collection intersects

the set.

Corollary 3.2.14. If X is a bounded set and W is defined as follows:

W := {clusters intersecting X} ∪ {triangles contained in X},

then, as a result of Observation 3.2.13 and Proposition 3.2.12, the surfeit of W is the same as

the adjusted surfeit of W .

Claim 3.2.15. No more than six [h, h, 1] triangles of adjusted surfeit greater than −6s may oc-

cur in any star, and no star may be composed entirely of triangles of this type. (See Proposition

3.8.1).

Corollary 3.2.16. No star in the packing has positive adjusted surfeit.

Proof. Since s is a positive quantity, it follows from Proposition 3.2.10 that only triangles of

type [h, h, 1] may make a positive contribution to the adjusted surfeit of a star. By Claim 3.2.15

no star may have more than 6 such triangles. The adjusted surfeit of a triangle of type [h, h, 1]

is assigned according to Case 1 of Definition 3.2.8 and is equal to its surfeit, which, by Claim

3.2.1, is at most s, so the contribution of triangles of positive adjusted surfeit to the surfeit of

any star is at most 6s. By Proposition 3.2.10, the adjusted surfeit of any triangle not of type
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[h, h, 1] is less that −6s, so, by Claim 3.2.15, every star must have at least one triangle with

adjusted surfeit less than −6s.

Observation 3.2.17. The diameter of every triangle is bounded above by 2(1 + h), so the

diameter of every cluster is bounded above by a constant depending only on h, as is the diameter

of every star.

Proposition 3.2.18. The area of every triangle is bounded below by a constant depending only

on h.

Proof. Choose a triangle T at will, let r be its circumradius, and label T as described in 3.1.

Then, |T | = 1

2
ab sin γ. The length of each edge is bounded below by 2h, and

sin γ =
c

2r
>

2h

2(1 + h)
.

Proposition 3.2.19. The set of absolute values of surfeits of triangles is bounded.

Proof. Let T be a triangle with associated sector area sa(T ). Then the surfeit of T is sa(T )− ρ0|T |.

The sector area of any triangle is bounded above by π/2, so we may take π/2 as a coarse upper

bound for the surfeit of T , and every triangle is inscribed in a circumcircle of radius less than

1 + h, so we may take −πρ0(1 + h)2 as a coarse lower bound on the surfeit of T .

Theorem 3.3.1, which states that the density of a two-radius packing of homogeneity h is

at most ρ0, follows:
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3.3 Proof of the Main Theorem

Theorem 3.3.1. The density of a two-radius packing of homogeneity h is at most ρ0.

Proof. Let P denote the set of all disks in the packing, and let Br be the disk of radius r

centered at the origin. Then the density ρ of the packing is:

ρ := lim sup
r→∞

|P ∩Br|
|Br|

.

All the disks meeting the boundary of Br are contained in the annulus Br+1\Br−1, so the

sum of their areas is at most linear in r. On the other hand, |Br| grows quadratically with r.

This means we may replace the numerator in the expression above with the sum of the areas

of disks meeting Br and write:

ρ = lim sup
r→∞

∑
D∩Br 6=∅

|D|

|Br|
.

Let T denote the set of all triangles in a Delaunay triangulation on this packing. The diameter

of each triangle of T is bounded above as noted in Observation 3.2.17, so all triangles carrying

sector area associated with a disk meeting ∂Br are contained in an annulus of bounded width.

The area of each triangle is bounded below as shown in Proposition 3.2.18, so the number of

these triangles is linear in r. This means we can replace the numerator of the expression above

with the sum of sector areas associated with triangles contained in Br, and the denominator
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with the total area of triangles contained in Br. If we let sa(T ) denote the sector area associated

with a triangle T , we may write:

ρ = lim sup
r→∞

∑
T⊂Br

sa(T )∑
T⊂Br

|T |
,

so

ρ− ρ0 = lim sup
r→∞

∑
T⊂Br

sa(T )− ρ0
∑

T⊂Br

|T |∑
T⊂Br

|T |
.

Let sf(T ) represent the surfeit of T . Since sf(T ) := sa(T )− ρ0|T |, we may write:

ρ− ρ0 = lim sup
r→∞

∑
T⊂Br

sf(T )∑
T⊂Br

|T |
.

Now define:

Wr := {triangles in clusters intersecting Br} ∪ {triangles contained in Br}.

Clusters are bounded in diameter (Observation 3.2.17), so triangles in Wr that are not

contained in Br are contained in an annulus of bounded width. The area of each triangle is

bounded below (Proposition 3.2.18), so the number of triangles in this annulus is at most linear

in r. Since the area of each triangle is also bounded above, the quantity

∑
T∈Wr

|T | −
∑
T⊂Br

|T |



27

is at most linear in r. Additionally, since the surfeit of each triangle is bounded in absolute

value (Proposition 3.2.19), the quantity

sf(Wr)−
∑
T⊂Br

sf(T )

is also at most linear in r. As a result, we may write:

ρ− ρ0 = lim sup
r→∞

sf(Wr)∑
T∈Wr

|T |
.

Let ajsf(Wr) denote the adjusted surfeit of Wr. By Corollary 3.2.14, ajsf(Wr) = sf(Wr), so

we may write:

ρ− ρ0 = lim sup
r→∞

ajsf(Wr)∑
T∈Wr

|T |
.

Let Vr be the disjoint union of all stars intersecting Br. Stars are bounded in diameter

as noted in Observation 3.2.17 and the area of each triangle is bounded below as shown in

Proposition 3.2.18, so Vr is a triple cover of Br except in a bounded neighborhood of ∂Br, and

the number of stars in this bounded neighborhood of ∂Br is linear in r. This means the quantity

ajsf(Wr)−
1

3

∑
S∈Vr

ajsf(S)
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is at most linear in r. We may write:

ρ− ρ0 = lim sup
r→∞

1
3

∑
S∈Vr

ajsf(S)∑
T∈Wr

|T |
.

By Corollary 3.2.16, every term in the numerator is non-positive, so the result follows.
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3.4 The Surfeit Bounding Function for Two Radius Packings

For two-radius packings it is possible to use a simpler form of the surfeit bounding function

described in 2.2.1. This is because of two facts: first, there are only two choices of radius;

second, since γ ≤ β ≤ π − (β + γ) < π − β, we have:

sin γ ≤ sinβ ≤ sin(β + γ).

As a result, at least one branch of f[rA,rB ,rC ] is never selected. For instance, when the combina-

torial type is [1, 1, 1], the third branch of the max function is always selected and the first two

may be ignored, so

f[1,1,1](β, γ) =
π

2
− 2ρ0

sin(β + γ) sinβ

sin γ
.

The boundary of the domain of f[rA,rB ,rC ] is piecewise smooth for every choice of rA, rB,

and rC . Where applicable, the curve dividing the branches of f[rA,rB ,rC ] in the βγ−plane is also

smooth, so it is possible to use calculus.
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3.5 Proof of Claim 3.2.1

Proposition 3.5.1. The surfeit of a triangle of type [h, h, 1] is at most s.

Proof. For a triangle of type [h, h, 1] the surfeit bounding function simplifies to:

f[h,h,1](β, γ) :=
1

2

h2π + (1− h2)γ − ρ0 max


(1 + h)2

(
sin (β + γ) sin γ

sinβ

)
(2h)2

(
sin (β + γ) sinβ

sin γ

)

 .

Let f1 and f2 represent the branches of f[h,h,1]. Then:

∂f1
∂β

=
1

2

ρ0(1 + h)2 sin2 γ

sin2 β

and

∂f2
∂γ

=
1

2

(
(1− h2) +

ρ0(2h)2 sin2 β

sin2 γ

)
,

so both f1 and 2 have non-zero gradient for permissible [h, h, 1] triangles. The extrema of f[h,h,1]

therefore occur either on the curve (1 + h) sin γ = 2h sinβ where f1 = f2, or on the boundary of

its domain. Along the curve where the branches of f[h,h,1] agree, the surfeit bounding function

may be parametrized by γ and expressed as follows:

f[h,h,1]

∣∣∣∣
(1+h) sin γ=2h sinβ

=
h2π

2
+

(1− h2)γ
2

− ρ0h(1 + h) sin

(
sin−1

(
1 + h

2h
sin γ

)
+ γ

)
.

This restriction of f[h,h,1] has positive second derivative for all permissible values of γ and attains

its maximum value, which is less than 2.016× 10−6, at γ = 2 sin−1(h/(1 + h)).
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The smooth components of the boundary of the domain of f[h,h,1], counterclockwise from

the point (sin−1( h
1+h), π6 ), are described below. The behavior of the bounding function on each

boundary component is also described.

• The vertical line γ = sin−1 h
1+h restricted to π

6 < β ≤ π
2 −

γ
2 . Here the bounding function

evaluates to the branch f2, is parametrizable in β, and is decreasing in β under this

parametrization.

• The line β = π/2 − γ/2 restricted to sin−1( h
1+h) < γ ≤ 2 sin−1(h/(1 + h)). Here the

bounding function evaluates to the branch f2, is parametrizable in γ, and is increasing in

γ under this parametrization.

• The line β = π/2 − γ/2 restricted to 2 sin−1(h/(1 + h)) ≤ γ ≤ π/3. Here the bounding

function evaluates to the branch f1, is parametrizable in γ, and is decreasing in γ under

this parametrization.

• The line β = γ restricted to π/6 ≤ γ ≤ π/3. Here the bounding function evaluates to

the branch f1, is parametrizable in γ, and has positive second derivative in γ under this

parametrization.

• The horizontal line β = π/6 restricted to sin−1( h
1+h) < γ ≤ sin−1( h

1+h). Here the bounding

function evaluates to the branch f1, is parametrizable in γ, and is decreasing in γ under

this parametrization.

Since f[h,h,1](sin
−1( h

1+h), π6 ) is less than −0.001, the result follows.
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3.6 Proof of Claim 3.2.2

In this section we show that types [1, 1, 1], [1, 1, h], [1, h, 1], [h, 1, 1], and [h, 1, h] admit no

heavy triangles. This establishes Claim 3.2.2 of section 3.2.

Proposition 3.6.1. The surfeit of a triangle of type [1, 1, 1] is bounded above by -0.0042.

Proof. The surfeit bounding function for triangles of type [1, 1, 1] may be simplified as described

in 3.4 and written:

f[1,1,1](β, γ) =
π

2
− 2ρ0

sin(β + γ) sinβ

sin γ
.

Since

∂f[1,1,1]

∂γ
= 2ρ0

sin2 β

sin2 γ
,

which is non-zero of the domain of f[1,1,1], this function does not attain its maximum on the

interior of its domain.

The permissible domain is enclosed by the curves

• β = γ for γ between sin−1(1/(1 + h)) and π/3,

• β =
π

2
− γ

2
for γ between sin−1(1/(1 + h)) and π

3 ,

• γ = sin−1(1/(1 + h)) for β between sin−1(1/(1 + h)) and π/2− (sin−1(1/(1 + h)))/2.

Straightforward analysis of the sort shown in Proposition 3.5.1 shows that f[1,1,1] attains its

maximum at (π/3, π/3) and is bounded above by -0.0042.

Proposition 3.6.2. The functions f[1,1,1] and f[1,1,h], which have the same domain, satisfy

f[1,1,1] > f[1,1,h], so the surfeit of a triangle of type [1, 1, h] is also bounded above by -0.0042.
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Proof. The bounding function f[1,1,h] simplifies to:

f[1,1,h](β, γ) =
π

2
− 1− h2

2
γ − 2ρ0

sin(β + γ) sinβ

sin γ
,

which is strictly less than f[1,1,1](β, γ).

Proposition 3.6.3. The surfeit of a triangle of type [1, h, 1] is bounded above by −0.0021.

Proof. The surfeit bounding function for triangles of type [1, h, 1] may be simplified as described

in 3.4 and written:

f[1,h,1](β, γ) :=
1

2

π − (1− h2)β − ρ0 max


(2)2

(
sin (β + γ) sin γ

sinβ

)
(1 + h)2

(
sin (β + γ) sinβ

sin γ

)
 .

For computation, define

f1(β, γ) :=
1

2

(
π − (1− h2)β − (2)2ρ0

(
sin (β + γ) sin γ

sinβ

))

and

f2(β, γ) =
1

2

(
π − (1− h2)β − (1 + h)2ρ0

(
sin (β + γ) sinβ

sin γ

))
.

On the permissible domain for [1, h, 1] triangles ∂f1
∂γ = 0 only when β = γ = π/3; however,

∂f1
∂β is non-zero here. Also, ∂f2

∂β is non-zero for permissible [1, h, 1] triangles. So f1 and f2 have

non-zero gradient on the domain of f[1,h,1].
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The restriction of f[1,h,1] to the curve 2 sin γ = (1+h) sinβ, where f1 = f2, is bounded above

by its value at (π6 , sin
−1( 1

1+h)), which is less than −0.0021.

The smooth components of the boundary of the domain of f[1,h,1], counterclockwise from

the point (π6 , sin
−1( 1

1+h)), are described below. The behavior of the bounding function on each

boundary component is also described.

• The vertical line γ = π/6 restricted to sin−1( 1
1+h) < β ≤ π

2 −
γ
2 . Here the bounding func-

tion is decreasing in β and is bounded above by −0.0021.

• The line β = π/2 − γ/2 restricted to π/6 < γ ≤ 2 sin−1((1 + h)/4). Here the bounding

function evaluates to the branch f2, is parametrizable in γ, is increasing in γ under this

parametrization and is bounded above by −0.117.

• The line β = π/2 − γ/2 restricted to 2 sin−1((1 + h)/4) ≤ γ ≤ π/3. Here the bounding

function evaluates to the branch f1, is parametrizable in γ, and is decreasing in γ under

this parametrization.

• The line β = γ restricted to sin−1(1/(1 + h)) ≤ γ ≤ π/3. Here the bounding function

evaluates to the branch f1, is parametrizable in γ, and has positive second derivative in

γ under this parametrization.

• The horizontal line β = sin−1(1/(1 + h)) restricted to π/6 < γ ≤ sin−1( 1
1+h). Here the

bounding function evaluates to the branch f1, is parametrizable in γ, and is decreasing in

γ under this parametrization.
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So, on the boundary of the permissible domain for [1, h, 1] triangles, f[1,h,1] attains its

maximum at (sin−1( 1
(1+h)),

π
6 ), and is bounded above by −0.0021.

Proposition 3.6.4. The surfeit of a triangle of type [h, 1, 1] is bounded above by −0.000073.

Proof. The function below gives an upper bound for the surfeit of [h, 1, 1] triangles:

f[h,1,1](β, γ) :=
1

2

h2π + (1− h2)(β + γ)− ρ0 max


(2)2

(
sinβ sin γ

sin (β + γ)

)
(1 + h)2

(
sin (β + γ) sinβ

sin γ

)
 .

An examination of the behavior of this function on the interior of its domain, on the bound-

ing curve separating its branches, and on its boundary shows it is bounded above by its value

at (cos−1(1/(1 + h)), cos−1(1/(1 + h))), which is less than −0.000073.

Proposition 3.6.5. The functions f[h,1,h] and f[h,1,1], which have the same domain, satisfy

f[h,1,1] > f[h,1,h], so the surfeit of a triangle of type [h, 1, h] is also bounded above by −0.000073.

Proof. The bounding function f[h,1,h] simplifies to:

f[h,1,h](β, γ) :=
1

2

(
h2π + (1− h2)(β + γ)− ρ0(1 + h)2

(
sin (β + γ) sinβ

sin γ

))
.

which is strictly less than f[h,1,1].
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3.7 Pair Analysis for heavy [1, h, h] and [h, h, h] triangles

In this section:

• Propositions 3.7.1 and 3.7.2 establish Claims 3.2.3 and 3.2.5.

• Propositions 3.7.6, 3.7.8, and 3.7.3 establish Claim 3.2.6 for heavy [1, h, h] triangles.

• Propositions 3.7.7, 3.7.9, and 3.7.4 establish the validity of Claim 3.2.6 for heavy [h, h, h]

triangles.

Proposition 3.7.1. In any permissible triangle of type [1, h, h] of surfeit greater than −6s,

each of the two smallest angles γ and β of are no larger than 0.628821 ≈ 36.0287◦, so such a

triangle is obtuse; each of the two shortest edges of such a triangle is no longer than 2; the long

edge of such a triangle is no shorter than 2.749; and the circumradius is at least 1.445.

Proof. The function below gives an upper bound for the surfeit of a [1, h, h] triangle:

f[1,h,h](β, γ) :=
1

2

(
π − (1− h2)(β + γ)− ρ0(1 + h)2

(
sin (β + γ) sinβ

sin γ

))
.

It is not hard to show using methods similar to those in the previous sections that if β + γ ≥ π/2

then f[1,h,h](β, γ) ≤ −6s. Suppose now that f[1,h,h](β, γ) > −6s. Then β + γ < π/2, which

means that sin (β + γ) > sin 2γ, so

(1− h2)γ +
ρ0
2

(1 + h)2 sin 2γ <
π

2
+ 6s

which means γ < 0.628821 ≈ 36.0287◦.
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To establish the upper bound for β, notice that the curve implicitly defined by f[1,h,h] = −6s

meets the permissible domain in a single connected component, is monotone increasing with

respect to γ, intersects the line γ = π/6 on the left and the line β = γ on the right. Since

f[1,h,h](π/6, π/6) > −6s, the region for which f[1,h,h] > −6s lies beneath this curve, so the upper

bound obtained for γ in the preceding paragraph may also be used as an upper bound for β.

Now let a, b and c represent respectively the lengths of the edges of such a triangle in

descending order of length. The circumradius r of any triangle is bounded above by 1 + h, so

the upper bound on the lengths of b are obtained from b = 2r sinβ and c = 2r sin γ.

We also have:

a =
sin(β + γ)

sin γ
c.

It is not hard to show, by the now-familiar method of searching for critical points on the

interior and boundary of a domain, that when β and γ are within the bounds established above,

sin(β + γ)/ sin γ is at least 1.6174. Since c is at least 1 + h, a is at least 2.749.

The lower bound on circumradius follows from r = c/2 sin γ.

Proposition 3.7.2. In any permissible triangle of type [h, h, h] of surfeit greater than −6s,

each of the two smallest angles γ and β of are no larger than 0.521281 ≈ 29.8672◦, so such a

triangle is obtuse; each of the two shortest edges of such a triangle is no longer than 1.6932; the

long edge of such a triangle is no shorter than 2.4281; and the circumradius is at least 1.405.
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Proof. The argument is very similar to that given in the previous proposition, except that the

length of the short edge of a triangle of type [h, h, h] is bounded below by 2h.

The function below gives an upper bound for the surfeit of a [h, h, h] triangle:

f[h,h,h](β, γ) :=
1

2

(
h2π − ρ0(2h)2

(
sin (β + γ) sinβ

sin γ

))
.

Once again, it’s not hard to show that if β + γ ≥ π/2 then f[h,h,h](β, γ) ≤ −6s. Suppose

now that f[h,h,h](β, γ) > −6s. Then β + γ < π/2, which means that sin (β + γ) > sin 2γ, so

ρ0
2

(2h)2 sin 2γ <
h2π

2
+ 6s

which means γ < 0.521281 ≈ 29.8672◦.

Also as in the previous proposition, we establish the upper bound for β by noting that the

curve implicitly defined by f[1,h,h] = −6s meets the permissible domain in a single connected

component, is monotone increasing with respect to γ for permissible values of β and γ, intersects

the line γ = sin−1 h
1+h on the left and the line β = γ on the right, and that f[1,h,h] > −6s beneath

this curve, so the upper bound obtained for γ in the preceding paragraph may also be used as

an upper bound for β.

Now let a, b and c represent respectively the lengths of the edges of such a triangle in

descending order of length. The circumradius r of any triangle is bounded above by 1 + h, so

the upper bound on the lengths of b are obtained from b = 2r sinβ and c = 2r sin γ.

We also have:
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a =
sin(β + γ)

sin γ
c.

When β and γ are within the bounds established above, an examination of critical points

in the interior and the boundary of this domain shows that sin(β + γ)/ sin γ is at least 1.7343.

Since c is at least 2h, a is at least 2.4281.

The lower bound on circumradius follows from r = c/2 sin γ.

Notice that the upper bounds on the lengths of short edges established above is less than

the lower bound on the lengths of the long edges. Claims 3.2.3 and 3.2.5 are now established.

The pair of propositions below establish upper bounds for the surfeit of [1, h, h] and [h, h, h]

triangles:

Proposition 3.7.3. The surfeit of a triangle of type [1, h, h] is bounded above by 0.1658.

Proof. The surfeit bounding function f[1,h,h] simplifies to:

f[1,h,h](β, γ) :=
1

2

(
π − (1− h2)(β + γ)− ρ0(1 + h)2

(
sin (β + γ) sinβ

sin γ

))
.

This function has non-zero gradient on its domain since

∂f[1,h,h]

∂β
= −(1− h2)− ρ0(1 + h)2

(
sin (2β + γ)

sin γ

)
< 0.

We note that f[1,h,h](π/6, π/6) is bounded above by 0.1658 and examine f[1,h,h] on its boundary

components, clockwise from (π/6, π/6):
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• The restriction of f[1,h,h] to γ = π/6 is decreasing in β.

• The restriction of f[1,h,h] to β = π/2− γ/2 is increasing in γ.

• The restriction of f[1,h,h] to β = γ has positive second derivative with respect to γ.

Since f[1,h,h](π/6, π/6) > f[1,h,h](π/3, π/3), the result follows.

Figure 6: Surfeit bound for [1, 0.7, 0.7] triangles
The graph of f[1,h,h] (the curved surface) lies mostly below 0 and attains its maximum at (π6 ,

π
6 ).
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Proposition 3.7.4. The surfeit of a triangle of type [h, h, h] is bounded above by 0.1009.

Proof. The surfeit bounding function f[h,h,h] simplifies to:

f[h,h,h](β, γ) :=
1

2

(
h2π − ρ0(2h)2

(
sin (β + γ) sinβ

sin γ

))
.

The reset of the argument follows exactly the same form as the proof of Proposotion 3.7.3:

This function has non-zero gradient on its domain since

∂f[1,h,h]

∂β
= −ρ0(2h)2

(
sin (2β + γ)

sin γ

)
< 0.

We note that f[1,h,h](sin
−1( h

1+h), sin−1( h
1+h)) is bounded above by 0.1009 and examine f[1,h,h]

on its boundary components, clockwise from (π/6, π/6):

• The restriction of f[1,h,h] to γ = sin−1( h
1+h) is decreasing in β.

• The restriction of f[1,h,h] to β = π/2− γ/2 is increasing in γ.

• The restriction of f[1,h,h] to β = γ has positive second derivative with respect to γ.

Since f[1,h,h](sin
−1( h

1+h), sin−1( h
1+h)) > f[1,h,h](π/3, π/3), the result follows.

To establish Claim 3.2.6 we consider four separate cases in which a heavy [1, h, h] or [h, h, h]

is adjacent along its long edge to a triangle with a disk of radius h or 1 at the opposing vertex.

Lemma 3.7.5. Suppose a point D lies outside the circumcircle of a triangle ABC. If ABC is

obtuse at A, and if D lies on the side of BC opposite to A, then the radius of the circumcircle

of DBC is greater than that of ABC.



42

Proof. Let ABC and D be given as in the statement of the lemma. Let L be the perpendicular

bisector of BC, and let H be that intersection of L with the circumcircle of ABC which lies

in the same half-plane as D relative to BC. Now consider the circumcircle of DBC. Since

D lies outside the circumcircle of ABC, so does the entire arc D̂BC, and in particular the

intersection of this arc with L, which we name H ′. So H ′ lies above H on L relative to BC. Let

η := ∠BHC and η′ := ∠BH ′C. Since H ′ lies above H, η′ < η, and since α is obtuse, η is acute,

so sin η′ < sin η. So, since the triangles BHC and BH ′C share the edge BC, the circumradius

of BH ′C is greater than the circumradius of BHC. The result follows from noting that H lies

on the circumcircle of ABC, and H ′ lies on the circumcircle of BDC.

Proposition 3.7.6. Let ABC be a [1, h, h] triangle of surfeit greater than −6s. Under our

labeling convention, BC is the longest edge of ABC. Let D′BC be the triangle sharing this

edge with ABC. If the disk centered at D′ is of radius h, then the surfeit of D′BC is no more

than −0.6004.

Proof. Consider a [1, h, h] triangle ABC of similarity type (β, γ) of surfeit greater than −6s.

Suppose that its long-edge adjacent neighbor D′BC has a disk of radius h at D′. Then D′ is

in the half-plane opposite to A relative to BC and satisfies the following two properties:

• |D′B| ≥ 2h,

• D′ lies on or outside the circumcircle of ABC.
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We seek an upper bound on the surfeit of D′BC. Since the sector area of D′BC is equal to

0.245π, this amounts to finding a lower bound on the area of D′BC, which in turn amounts to

minimizing the height of D′ relative to BC. We now construct a new point D as follows:

Consider the perpendicular bisector L of BC. If D′ and B are in opposite half-planes with

respect to L, let D0 be the symmetric point with respect to L, otherwise let D0 := D′. Now

construct the perpendicular from D0 to L and let D1 be the projection of D0 onto L. There

are three cases:

Case 1: The line segment D0D1 intersects neither the circumcircle of ABC nor the circle

of radius 2h centered at B. In this case, let D be that intersection of the circle of radius 2h

centered at B and the circumcircle of ABC which lies in the half-plane of D′ relative to BC.

Notice that D is no higher than D′ relative to BC, so |DBC| ≤ |D′BC|.

Case 2: The line segment D0D1 intersects the circumcircle of ABC, but not the circle of

radius 2h centered at B. In this case, again, let D be the intersection of the circle of radius 2h

centered at B and the circumcircle of ABC which lies in the half-plane of D′ relative to BC.

Once again, |DBC| ≤ |D′BC|.

Case 3: The line segment D0D1 intersects both the circumcircle of ABC and the circle of

radius 2h centered at B. In this case, let D be that intersection of D0D1 and the disk of radius

2h centered at B which lies outside the circumcircle of ABC. If two such points exist, pick the

one closer to L. In this case |DBC| = |D′BC|.

Now notice that D satisfies the following three properties:

• |BD| = 2h,
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• D lies on or outside the circumcircle of ABC,

• |DBC| ≤ |D′BC|

Let δ be the angle of DBC at D.

Figure 7: A heavy [1, h, h] triangle paired with an [h, h, h] triangle.
In this representation, D has been constructed following either Case 1 or Case 2. The

unlabelled vertex corresponds to a construction of D following Case 3.
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Since |BD| = 2h, the area of DBC is determined by the angle δ as shown below:

|BDC| = 1

2
|DB||DC| sin δ

= h (2h cos δ + |BC| cos θ) sin δ

= h

(
2h cos δ + |BC| cos

(
sin−1

(
2h

|BC|
sin δ

)))
sin δ

= h

2h cos δ + |BC|

√
1−

(
2h

|BC|
sin δ

)2
 sin δ

= h

(
2h cos δ +

√
|BC|2 − (2h sin δ)2

)
sin δ.

Now for β and γ bounded so that the surfeit of ABC is at least −6s, that is, subject to the

bounds established in Proposition 3.7.1, we have:

|BC| = |AB|sin(β + γ)

sin γ
≥ (1 + h)

sin(β + γ)

sin γ
> 2h

sin(β + γ)

sin γ
> 2.264

so

|BCD| > h2 sin 2δ + h sin δ
√

5.127− 1.96 sin2 δ.

In order to find a lower bound for the expression on the right hand side of the inequality

above, we seek upper and lower bounds on δ.

Let r and r′ denote the circumradii of ABC and DBC respectively. Then, since BC is

common to both triangles,
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δ = sin−1
( r
r′

sin(β + γ)
)
.

To find a lower bound for δ we note: sin(β + γ) is monotone increasing in both β and γ

when the surfeit of ABC is at least −6s; the circumradius of every triangle is bounded above

by 1 + h, so r′ < 1 + h; and

r =
|AB|
2 sin γ

>
1 + h

2 sin γ
,

so

δ > sin−1
(

sin(β + γ)

2 sin γ

)
> sin−1

(
sin(1.25762)

2 sin(0.628810)

)
> 0.94199 ≈ 53.97◦.

To establish an upper bound for δ we note that since D and ABC satisfy the conditions

of Lemma 3.7.5, r′ ≥ r. So δ is at most β + γ, which, by Proposition 3.7.1 is at most 1.25762

when the surfeit of ABC is at least −6s.

Analysis of the right hand side of the inequality

|BCD| > h2 sin 2δ + h sin δ
√

5.127− 1.96 sin2 δ

on the interval 0.94199 < δ < 1.25762 shows that |BCD| > 1.5066, which establishes the

result.

Proposition 3.7.7. Let ABC be an [h, h, h] triangle of surfeit greater than −6s having BC as

its longest edge. Let D′BC be the triangle sharing this edge with ABC. If the disk centered at

D′ is of radius h, then the surfeit of D′BC is no more than −0.6816.



47

Proof. The argument follows the structure of the proof of Proposition 3.7.6, with the difference

that the disk at A is of radius h.

Construct the point D exactly as in Proposition 3.7.6. As before, we have:

|BDC| = h

(
2h cos δ +

√
|BC|2 − (2h sin δ)2

)
sin δ;

with

|BC| = |AB|sin(β + γ)

sin γ
≥ 2h

sin(β + γ)

sin γ
.

Here β and γ are subject to the bounds established in Proposition 3.7.2. As a result,

sin(β + γ)

sin γ
> 1.73436.

This means

|BCD| > h2 sin 2δ + h sin δ
√

5.8957− 1.96 sin2 δ.

Now, as before, we find bounds on δ in order to analyze the behavior of the right hand side

of the inequality above. Following the form of Proposition 3.7.6, we let r and r′ denote the

circumradii of ABC and DBC respectively and compute:

δ = sin−1
( r
r′

sin(β + γ)
)
.
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Now, since the disk at A is of radius h

r =
|AB|
2 sin γ

>
h

sin γ
,

so

δ > sin−1
(

h

1 + h

sin(β + γ)

sin γ

)
> sin−1

(
h

1 + h
1.73436

)
> 0.7954 ≈ 45.57◦.

Now to establish an upper bound for δ we note that since D and ABC satisfy the conditions

of Lemma 3.7.5, r′ ≥ r. So δ is at most β + γ, which, by Proposition 3.7.2 is at most 1.0426

when the surfeit of ABC is at least −6s.

Analysis of the right hand side of the inequality

|BCD| > h2 sin 2δ + h sin δ
√

5.8957− 1.96 sin2 δ

on the interval 0.7954 < δ < 1.0426 shows that |BCD| > 1.5960. So,

sf(D′BC) = 0.245π − ρ0|D′BC| ≤ 0.245π − ρ0|DBC| < −0.6816.

Proposition 3.7.8. Let ABC be a [1, h, h] triangle of surfeit greater than −6s having BC as

its longest edge. Let D′BC be the triangle sharing this edge with ABC. If the disk centered at

D′ is of radius 1, then the surfeit of D′BC is no more than −0.9279.
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Proof. Suppose that D′BC is labelled so that the angle at D′ is called δ′. Notice now that the

sector area of D′BC is dependent on δ′. In particular,

sa(D′BC) =
1

2
(h2π + (1− h2)δ′)

which is an increasing function of δ′.

We construct D so that |DBC| ≤ |D′BC|, and the angle δ at D in the triangle DBC

satisfies δ ≥ δ′. Doing so will allow us to bound the surfeit of D′BC above by the quantity:

1

2
(h2π + (1− h2)δ)− ρ0|DBC|.

The construction of D is similar to the previous proposition, with the difference that here we

consider a circle of radius 1 + h centered at B.

Notice that since D′ is the center of a disk of radius 1, |D′B| ≥ 1+h. Also, by the Delaunay

condition, D′ lies on or outside the circumcircle of ABC.

Construct the perpendicular bisector L of BC. If D′ and B are in opposite half-planes with

respect to L, let D0 be the reflection of D′ with respect to L; otherwise, let D0 := D′. Now

construct a perpendicular from D0 to L, let D1 be the projection of D0 onto L, and consider

the line segment D0D1 There are three cases:

Case 1: D0D1 intersects neither the circumcircle of ABC nor the circle of radius 1 + h

centered at B. In this case, let D be the intersection of the circle of radius 1 + h centered at

B and the circumcircle of ABC which lies in the half-plane of D′ relative to BC. Notice that



50

D is no higher than D′ relative to BC, so |DBC| ≤ |D′BC|. It is not hard to show, using

Proposition 3.7.1, that D and B lie on the same side of L.

Case 2: D0D1 intersects the circumcircle of ABC, but not the circle of radius 1+h centered

at B. In this case, again, let D be the intersection of the circle of radius 1 + h centered at B

and the circumcircle of ABC which lies in the half-plane of D′ relative to BC. Once again,

|DBC| ≤ |D′BC|.

Case 3: D0D1 intersects both the circumcircle of ABC, and the circle of radius 1 + h

centered at B. In this case, let D be that intersection of the perpendicular and the disk of

radius 1 +h centered at B which lies outside the circumcircle of ABC. If two such points exist,

pick the one closer to L. In this case |DBC| = |D′BC|.

In DBC let δ be the angle at D.

In Case 1 and Case 2, since D′ is on or outside the circumcircle of ABC and D is on the

circumcircle of ABC and both are in the same half-plane relative to BC, and both δ′ and δ are

opposite BC, by Lemma 3.7.5 and the Law of Sines, δ ≥ δ′.

In Case 3, to show δ ≥ δ′, first note that both these angles are acute. This is because, by

reasoning similar to that of the previous paragraph, both are smaller in measure than an angle

δ1 with its vertex on the circumcircle of ABC, subtending the chord BC and in the half-plane

opposite to A. The angle at A is obtuse, so δ1 is acute. It’s enough, therefore, to show that

sin δ ≥ sin δ′.
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By construction, |D0BC| = |DBC|. Now |D0C| ≥ |DC| since C lies in the opposite half-

plane to both D0 and D relative to L. Furthermore, |DB| = 1 + h, also by construction, so

|D0B| ≥ |DB|. It follows that sin δ ≥ sin δ′.

The following properties are now satisfied:

• |BD| = 1 + h,

• D lies on or outside the circumcircle of ABC,

• |DBC| ≤ |D′BC|

• δ ≥ δ′

The rest of the argument runs similarly to the proof of Proposition 3.7.6:

Since |BD| = 1 + h, the area of DBC is determined by the angle δ as shown below:

|BDC| = 1

2
|DB||DC| sin δ

=
1

2
(1 + h) ((1 + h) cos δ + |BC| cos θ) sin δ

=
1

2
(1 + h)

(
(1 + h) cos δ + |BC| cos

(
sin−1

(
1 + h

|BC|
sin δ

)))
sin δ

=
1

2
(1 + h)

(1 + h) cos δ + |BC|

√
1−

(
1 + h

|BC|
sin δ

)2
 sin δ

=
1

2
(1 + h)

(
(1 + h) cos δ +

√
|BC|2 − ((1 + h) sin δ)2

)
sin δ.

Now,

|BC| = |AB|sin(β + γ)

sin γ
≥ (1 + h)

sin(β + γ)

sin γ
.
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Now, β and γ are subject to the bounds of Proposition 3.7.1, since the surfeit of ABC is at

least −6s, so:

sin(β + γ)

sin γ
> 1.617,

and

|BCD| > 1

2
(1 + h)2

(
cos δ +

√
1.6172 − sin2 δ

)
sin δ.

In order to find a lower bound for the expression on the right hand side of the inequality

above, we seek upper and lower bounds on δ.

As in Proposition 3.7.6, let r and r′ denote the circumradii of ABC and DBC respectively.

Then, since BC is common to both triangles,

δ = sin−1
( r
r′

sin(β + γ)
)
.

To find a lower bound for δ we note: sin(β + γ) is monotone increasing in both β and γ

when the surfeit of ABC is at least −6s; the circumradius of every triangle is bounded above

by 1 + h, so r′ < 1 + h; and

r =
|AB|
2 sin γ

>
1 + h

2 sin γ
,

so

δ > sin−1
(

sin(β + γ)

2 sin γ

)
> sin−1

(
1.617

2

)
> 0.94160 ≈ 53.95◦.
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To establish an upper bound for δ we note that since D and ABC satisfy the conditions

of Lemma 3.7.5, r′ ≥ r. So δ is at most β + γ, which, by Proposition 3.7.1 is at most 1.25762

when the surfeit of ABC is at least −6s.

Analysis of the right hand side of the inequality:

|BCD| > 1

2
(1 + h)2

(
cos δ +

√
1.6172 − sin2 δ

)
sin δ

on the interval 0.94199 < δ < 1.25762 shows that |BCD| > 2.219. Since δ is bounded above by

1.25762, and since the expression:

1

2
(h2π + (1− h2)δ)− ρ0|DBC|

gives an upper bound on the surfeit of D′BC, the result follows.

Proposition 3.7.9. Let ABC be an [h, h, h] triangle of surfeit greater than −6s having BC as

its longest edge. Let D′BC be the triangle sharing this edge with ABC. If the disk centered at

D′ is of radius 1, then the surfeit of D′BC is no more than −0.7820.

Proof. The argument is similar in form to the proof of Proposition 3.7.8. The only difference

is that the disk centered at A has radius h, so |AB| is bounded below by 2h instead of 1 + h.

Also, bounds on β and γ are obtained from Proposition 3.7.2 rather than Proposition 3.7.1.
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Figure 8: A heavy [h, h, h] triangle paired with a triangle with a 1 vertex.
Two possible constructions of D are depicted in this representation.

3.8 Proof of Claim 3.2.15

Proposition 3.8.1. No more than six heavy triangles of type [h, h, 1] may appear in any star,

and no star may consist only of such triangles.

Proof. In Proposition 3.5.1 it was established that f[h,h,1] attains its maximum value on the

boundary component β = π/2− γ/2 when γ = 2 sin−1( h
1+h) ≈ 0.848779.

Numeric analysis shows that f[h,h,1] is strictly less than −6s everywhere on its domain except

in the region bounded by γ = 0.848769, β = π/2 − γ/2, γ = 0.848803 and β = 1.14639, as

shown in the figure below.
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As a result, we may conclude that the angles of a heavy triangle of type [h, h, 1] are subject

to the following bounds:

• 0.848769 < γ < 0.848803

• 1.146394 < β < 1.146411

• 1.146378 < α < 1.146429.

Now a triangle of type [h, h, 1] belonging to a star with a 1 disk at the central vertex (a

1−star) must have its γ angle at the center of the star. In this case, the result follows from

noting that π − 7 ∗ 0.848769 < sin−1(h/(1 + h)), and that no permissible triangle may have an

angle less than sin−1(h/(1 + h)).

If a triangle of type [h, h, 1] belongs to a star with an h disk at the central vertex, then it

must have its β or α angle at the center of the star. It is easy to see that no combination of

values in the ranges established above for α and β add to 2π, and that no more than two such

triangles may belong to an h−star.
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Figure 9: The permissible region for heavy [h, h, 1] triangles.
The portion of the graph of f[h,h,1] depicted here is restricted to the domain established in the
proof of Proposition 3.8.1. The horizontal plane is at height −6s.



CHAPTER 4

FUTURE DIRECTION

A reasonable goal in extending the techniques of this thesis would be to establish π√
12

as an

upper bound for the density of two-radius packings for a single value of h outside the interval

[0.742 . . . , 1] (concretely, I consider h = 0.7), and to then show that the reasoning applies to a

neighborhood of the point. This chapter contains conjectures, partial results, and a description

of techniques used to this end. Additional work is needed on positive surfeit stars of valence 7

in order to establish the result.

An eventual goal of the research program is to extend the interval [0.742 . . . , 1] to its leftmost

limit. Further extensions to the research program could include establishing sharp bounds for

the density of two-radius planar packings on the entire interval of homogeneity, extending

the work to packings which comprise disks of arbitrary radius subject to a given homogeneity

bound, establishing density bounds in two-radius packings where the relative number of disks of

each radius is constrained, and extending the work to higher dimensions and spaces of nonzero

curvature.

4.1 Dense Stars

We classify a star by the radius of the disk centered at and the valence of its central vertex;

for instance, we may refer to an h star of valence 5. Since every triangle belongs to three

57
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distinct stars, in order to show that the surfeit of the triangulation is non-positive, it is enough

to show that the upper sum of the surfeits of all the stars in the triangulation is non-positive.

For a fixed homogeneity we define the quantity σn to mean the maximum possible surfeit of

a star of valence n. For a two-species packing of homogeneity 0.7, combinatorial considerations

in conjunction with analysis of the sort mentioned in the previous chapters lead us to conclude

that the only stars in the triangulation with positive or near positive surfeit have either valence

5 or 7 and belong to only a handful of combinatorial types. In fact, we show that σ6 = 0,

σ5 > 0 > σn for n < 5, and σ7 > σn for n > 7. Thus, since the average valence of a star in

the triangulation is 6, in order to show that the surfeit of the triangulation is non-positive, it

is enough to show that σ5 + σ7 ≤ 0. The bulk of the remaining work consists of finding upper

bounds for σ5 and σ7.

For a two-species packing of homogeneity 0.7, the 5-star in Figure 10 carries a positive

surfeit which is approximately, but not less than, 0.01056, so this quantity serves as a lower

bound on σ5. Similarly, the 7-star in Figure 11 witnesses a lower bound of −0.0183 . . . for σ7.

Consider now the process for determining σ5 in a packing of homogeneity 0.7:

Numerical analysis of the surfeit bounding function f in the neighborhood of local maxima

in the βγ-plane, pair-analysis for thin triangles, and computer-assisted matching of candidate

triangles allow us to conclude that the upper bound for σ5 is realized by a star comprising the

same triangle types as the ones shown in Figure 10.
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5 star with surfeit 0.0106

Figure 10: A dense 0.7-star of valence 5.
The central disk appears to be tangent to the five large disks dirrounding it, but, in fact, is
not. A simple calculation shows that the radius of a disk inscribing a regular pentagon of side
length 2 is approximately 1.701, slightly more than the sum of the radii at the endpoints of a
radial edge.
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This 7 star with 13 tangencies has surfeit -0.018307752
Disk 1 is not tangent to the center
It is the densent one known

Figure 11: A heavy 1-star of valence 7
This 1-star of valence 7 with 13 tangencies has an approximate surfeit of −0.01831. It is the
densest one known. The large disk on the right is tangent to its cyclic neighbors, but not to
the central disk.
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We represent the similarity type of a 5-star by a point in R10 (the coordinates represent

the interior angles of the triangulated polygon) and consider a perturbation of the star within

a neighborhood defined by appropriate bounds on the angles of the constituent triangles.

The following function of a vector ~θ in R10 gives an upper bound on the surfeit of a 5-star

with a central disk of radius 0.7 and radial disks of radius 1:

s(~θ) := 0.49π +
1

2

4∑
i=0

[
θ2i + θ2i+1 −

2π√
3

(
sin θ2i+1 sin θ2i+2

sin (θ2i+1 + θ2i+2)

)]

where θi is an interior angle of the triangulated pentagon and the indices are taken modulo 10.

Let 110 := (1, 1, . . . , 1) ∈ R10. Then ~θ0 := 3π
10110 represents the interior angles of a triangu-

lated regular 5-star.

A deformation of the star is represented by ~θ0 + ~x for some appropriately chosen vector

~x. We are interested in a perturbation of the star which results in an increase in surfeit from

that of the regular 5-star, so we may restrict ~x to a ball of some appropriately chosen radius r

about the origin. The value for r will be determined from constraints on the geometry of the

constituent triangles of the star.

By the Mean Value Theorem, for every x ∈ Br(0) there is a constant cx ∈ (0, 1) such that

s(~θ0 + ~x)− s(~θ0) = < ∇s(~θ0 + cx~x), ~x >,

and so

s(~θ0 + ~x) ≤ s(~θ0) +
∣∣∣< ∇s(~θ0 + cx~x), ~x >

∣∣∣ .
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Each coordinate of ∇s(~θ) is of the form k1 + k2
sin2θj

sin2(θi+θj)
for fixed constants k1 and k2. This

means that ∇s(~θ0) has all coordinates equal. Furthermore, since a vector ~θ := ~θ0 +~x represents

the similarity type of a triangulated 5-gon, we have
∑9

i=0 θi = 3π and
∑9

i=0 xi = 0. This means

that the perturbation vector ~x is orthogonal to ∇s(~θ0) and so < ∇s(~θ0), ~x > = 0. So we may

write:

s(~θ0 + ~x) ≤ s(~θ0) +
∣∣∣< ∇s(~θ0 + cx~x)−∇s(~θ0), ~x >

∣∣∣ ;
furthermore, by the Cauchy-Schwarz inequality,

∣∣∣< ∇s(~θ0 + cx~x)−∇s(~θ0), ~x >
∣∣∣ ≤ |x|

∣∣∣∇s(~θ0 + cx~x)−∇s(~θ0)
∣∣∣ ,

so, since s(~θ0) = 0.01056 . . . and x ∈ Br(0), we may conclude:

s(~θ0 + ~x) < 0.0106 + r
∣∣∣∇s(~θ0 + cx~x)−∇s(~θ0)

∣∣∣
for some cx ∈ (0, 1).

To choose r, we note that the surfeit of a triangle of type [0.7, 1, 1] is no more than 0.00329.

Thus, if any triangle in the perturbed 5-star has a surfeit less than−0.0026, the surfeit of the star

will be less than 0.01056, which is a lower bound for σ5. So we need only consider triangles with

surfeit greater than −0.0026. Examination of the bounding function f allows us to conclude

that the angles θi in the perturbation are subject to the bounds 3π
10 −0.0076 < θi <

3π
10 +0.0076,

so it is sufficient to choose r = 0.0241.
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Every coordinate of ∇s(~θ0 + cx~x)−∇s(~θ0) is of the form:

2π√
3

(sin
(
3π
10

)
sin
(
3π
5

))2

−

(
sin
(
3π
10 + cxxj

)
sin
(
3π
5 + cx(xi + xj)

))2
 ,

so, after some analysis, we are able to conclude that

r
∣∣∣∇s(~θ0 + cx~x)−∇s(~θ0)

∣∣∣ < 0.0043,

and we obtain an upper bound on σ5 of 0.0149. This is sharper than the upper bound of

0.01645 which is obtained by multiplying the maximum surfeit of a [0.7, 1, 1] triangle by 5. (We

conjecture that this upper bound can be improved, and that in fact the surfeit of the regular

5-star from the previous paragraphs is maximal.)

The main challenge that remains is to find an upper bound for σ7 that is at most −σ5,

since showing that σ5 +σ7 ≤ 0 will prove that every two-radius packing of homogeneity 0.7 has

density at most π√
12
.

The method described above for bounding σ5 benefits strongly from the symmetry present in

the regular 5-star. In the case of σ7, computer-aided combinatorial analysis of allowable triangle

types yields three combinatorial types of candidate star, none of which possess the strong

symmetry of a regular 5-star, and so computations become significantly more complicated. For

instance, it is not possible to appeal to the orthogonality of the perturbation vector, so in order
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to use the methods employed in bounding σ5, cumbersome modifications and correction terms

must be employed.

I have developed some numerical analysis and visualization software to inform and facilitate

the computations necessary for determining σ7. This software makes it possible to see the

effects of simple perturbations in real-time and to plot more complex perturbations. These

visualizations have so far led to computational efficiencies by dimension reduction through

imposing tangency constraints, and point to the likelihood that convexity may be used to

simplify computations further. See Figure 12 for an example of a perturbation slider-toy, and

Figure 13 for a plot of surfeit for a 7-star undergoing a two-dimensional perturbation.
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Figure 12: Perturbation slider-toy.
Manual perturbation is possible using the slider tools. The slider marked ”r” adjusts the radial
distance of the large disk at top-left from the origin, which coincides with the position of the
central disk’s center when both sliders are in their leftmost position. The slider marked ”h”
perturbs the top left disk by a rotation of its center relative to its starting position. The toy
maintains as many tangencies as possible under the perturbation, shifting the positions of the
other disks where necessary. Surfeit is calculated in real-time.
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Figure 13: Surfeit plot for a 7-star under a perturbation.
This figure shows a plot of surfeit for a 7-star under perturbation. The vertical height of the
surface is the surfeit of the 7-star. The domain is a polar neighborhood of the configuration
space of one of the outer disks of the 7-star as described in the caption of Figure 12.
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