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SUMMARY 

 

 

A time series is a collection of values made or recorded sequentially in time by live 

observations or sensors. Dynamic Time Warping (DTW) is an algorithm for measuring 

distance/similarity between two time series which may vary (i.e. warp) in timing. Throughout 

recent years, DTW has remained the most successful similarity measure in time series data mining 

(TSDM) because it is invariant to warping. DTW is applied in a variety of domains and problems. 

In particular, it has been successfully used in: robotics, bioacoustics, video games, computational 

photography, biometrics, medicine, music processing, bioinformatics, gesture recognition, 

metrology, image processing, seismology, entomology, anthropology, finance, etc. 

First-Nearest-Neighbor Dynamic Time Warping (1-NN DTW) is the most widely used 

classification method on time series, and serves as a benchmark when compared to emerging 

techniques.  Multiple recent studies show that for the problem of time series classification, 1-NN 

DTW is very hard to beat. 

With the increasing demand for time series classification on low-resource devices, and the 

widespread sensory implemented technologies including wearables, the need for a fast and 

accurate time series classifier has never been higher. Although 1-NN DTW attains accurate results, 

it has a demanding cost in processing time due to its quadratic complexity in the length of time 

series. The state-of-the-art implementation of 1-NN DTW improves the running time by applying 

lower bounding, and early abandoning techniques. Nevertheless, it still turns out to be inefficient 

in classifying long time series. 

The focus of this research is improving the efficiency of DTW while retaining its accuracy 

level on time series classification. 
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SUMMARY (continued) 

This thesis has three main contributions. The first and second contributions are the works that 

have been presented in the preliminary defense exam. The third will be presented in the final 

defense exam.  

The first contribution of this thesis is that, it proposes a new approximation method for 

reducing the length of the time series as the input of DTW. This method is called Control Chart 

Approximation (CCA). CCA representation approximates raw time series by transforming them 

into a set of segments with aggregated values and durations forming a reduced 3-dimensional 

vector. The CCA transformation attempts to reduce noise, dimensionality, and storage of time 

series, while retaining the significant features of the original time series.  

The second contribution of this thesis is extension of DTW in three dimension space as a 

distance measure for a 1-NN classifier. The method is called 1-Nearest Neighbor 3-Dimensional 

Dynamic Time Warping (1-NN 3D DTW). Our proposed methods, CCA and 1-NN 3D DTW, have 

focused on the reduction of data, while improving the processing time of 1-NN DTW on 

classification of long time series. 

Lower bounding techniques and early abandoning method are developed to further reduce the 

time complexity in the 3-dimensional space. Using 85 time series benchmark datasets from the 

University of California, Riverside (UCR) archive - including 28 long-length (>500 points) time 

series datasets - show up to two orders of magnitude performance gain in running time compared 

to the state-of-the-art 1-NN DTW implementation while remaining competitive in terms of 

accuracy. Using 1-NN 3D DTW, we can obtain competitive tradeoffs between time and accuracy, 

and significantly increase classification efficiency (speed) especially on long-length time series. 
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SUMMARY (continued) 

The third contribution consists of developing Blocked Dynamic Time Warping (BDTW), a 

new similarity measure which works on run-length encoded time series. BDTW algorithm utilizes 

the repetition of values in time series to calculate the exact DTW for two-valued time series, and 

to calculate a close approximation of DTW for more-than-two-valued time series with repetition 

of any values. 

By combining BDTW and Adaptive Piecewise Constant Approximation (APCA) method, a 

new DTW approximation method is proposed which works for all type of time series (with or 

without repetition of values). 

BDTW Upper Bound is proposed as a new upper bound instead of the ED for pruning unhopeful 

warping alignments of time series with high value repetition rate.  BDTW Lower Bound is also 

presented as a new lower bound for pruning unhopeful matches in similarity search of time series 

with high value repetition rate. 

It has been shown that BDTW a) significantly reduces the processing time of DTW calculation for 

time series with high value repetition b) combined with APCA, serves as a DTW approximation 

method that beats traditional DTW approximation based on Piecewise Aggregate Approximation 

(PAA)-DTW-Projection approach in accuracy. c) is extendable to Constrained warping and 

Constrained BDTW processing time is significantly less than Constrained DTW processing time 

for time series with high value repetition. 

The effectiveness of the BDTW and BDTW variations are shown on different applications, 

using the Almanac of Minutely Power dataset, the Refit Smart Homes dataset and 85 datasets in 

UCR time series classification archive. 
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1 INTRODUCTION 

 

In this chapter, time series classification, the contributions and the outline of this thesis are 

presented. Material from my own previously published work [73], 2017 IEEE, is reused in this 

chapter.  

1.1 Time Series Classification 

Over the past few years, substantial amounts of data have been collected and analyzed to assist 

in optimal decision making. This collection and analysis of large data sets has become a primary 

contributor towards the innovation and growth of the current and emerging markets. A significant 

portion of this collected data is in the form of time series. 

The exponentially increasing volume and complexity of time series is a result of emerging new 

sensing technologies (robot sensors, wearable sensors, smart meters, satellites, smart mobile 

phones, etc.), along with an influx of inexpensive storage. The key objective of time series analysis 

is to extract hidden insights from raw data. Time series classification is one of the most important 

tasks in time series analysis. There are varieties of time series classification techniques in the 

literature. Distance-based classification techniques such as 1-nearest neighbor require a similarity 

measure to calculate the distance (similarity) between two time series.  

Euclidian distance (ED) [1] and dynamic time warping (DTW) [2]-[5] are the most popular 

distance-measures for time series. 1-nearest neighbor ED (1-NN ED) is often used for fast 

classification of the time series of equal length. However, its accuracy is highly sensitive to noise 

and it cannot be used when the lengths of time series are different.  
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1-nearest neighbor DTW (1-NN DTW) classifier is one of the best distance-based classifiers in 

terms of accuracy [6],[7]. It has been successfully applied in a variety of domains and problems 

such as analyzing robots sensory signals [8],[25], medicine [5], astronomy, biometric data, 

geology, historical manuscripts, speech/music, gesture, signature, and fingerprint recognition. 1-

NN DTW can handle classification of time series of different length, and is typically used as a 

benchmark among time series classifiers [6]-[9]. The drawback of 1-NN DTW is its quadratic time 

complexity, which has reportedly undermined its usefulness in many use cases. Multiple research 

efforts would have used 1-NN DTW if it had not been too computationally expensive [9].  

The state-of-the-art implementation of 1-NN DTW [9] reduces the computational complexity by 

omitting square root calculations, by using lower bounding, and by applying early abandoning. 

However, it is still inefficient when classifying long and large time series.  

1.2 Contributions 

In this effort, first a new representation method is propose, called Control Chart Approximation 

(CCA), which transforms raw time series data, from the 2-dimensional space of time-values, to a 

sequence of segments each forming a tuple of (segment begin time, segment average of values, 

segment duration); with the durations being z-normalized across the training time series. The data 

reduction results in reduced noise, space, and length of the time series before classification.  An 

example of CCA transformation is presented in Figure 1. 

To perform nearest neighbor classification in this new data space, the 3-dimensional dynamic 

time warping (1-NN 3D DTW) is proposed, which is based on 1-NN DTW and works in 3-

dimensional space. We show that 1-NN 3D DTW significantly reduces the computation time of 

time series classification while still remaining competitive in terms of accuracy. The performance 

gain is much more significant on long time series, where the running time is orders of magnitude 
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faster than the state-of-the-art implementation of 1-NN DTW while scoring better or close in 

accuracy. 

Cylinder Bell   Funnel 

   

   
Figure. 1. Three classes of CBF time series dataset (Cylinder, Bell and Funnel): the raw data 

are shown in black, the segments are shown in red and CCA transformed time series in a 3-

dimensional space are shown in orange. 

 

Another contribution is introducing Blocked Dynamic Time Warping (BDTW), a new similarity 

measure which works on run-length encoded time series representation. BDTW utilizes repetitive 

values in time series to reduce DTW computation time and it can be used for the exact or 

approximation calculation of DTW. BDTW, has variations that provide an upper bound (BDTW 

UB) and a lower bound (BDTW LB) for DTW. BDTW UB is a close approximation of exact 

DTW, and it can be used as an approximation method. It is faster than traditional DTW for time 

series with high levels of values repetition. Moreover, BDTW can be combined with time series 

representation methods which provide constant segments to serve as an approximation method 

even for the time series without values repetition. We also show that in the exact DTW calculation, 
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for time series with high levels of repetitive values, BDTW UB and BDTW LB perform better 

than other popular upper and lower bounding techniques. 

 

 

1.3 Outline of This Thesis 

 

The rest of this research is organized as follows: In Chapter 2, background and related works 

are reviewed. Chapter 3, explains the time series representation and proposes a new representation 

technique called Control Chart Approximation. Chapter 4, explains 1-NN 3 Dimensional DTW, 

showcases two case studies, and compares the accuracy and running time of 1-NN 3D DTW 

against other state-of-the-art classifiers and its speed improvement techniques. Chapter 5 

introduces Blocked DTW with its variants and applications. Finally, Chapter 6 concludes the thesis 

and talks about future work. 
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2 LITERATURE REVIEW 
 

 

In this chapter, definitions, a review of time series classification models and review of 

Dynamic Time Warping are presented. Material from my own previously published work [73], 

2017 IEEE, is reused in this chapter.  

2.1 Definitions 
 

Definition 1. A time series, T (𝑡1, 𝑡2, … 𝑡𝑛), is a sequence of n real values recorded over time. 

Defining a similarity/distance measure between two time series is at the core of most time series 

data mining tasks.  

Definition 2. For two time series X (𝑥1, 𝑥2, … 𝑥𝑛) and Y (𝑦1, 𝑦2, … 𝑦𝑛), Euclidian distance is 

defined as 

𝐸𝐷(𝑋, 𝑌) = √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛

𝑖=1

2

 

Euclidean distance is the most basic and classic distance measure which is still competitive in 

some problems and domains [1]. Figure 2, illustrates an example of the Euclidean distance 

visualization  
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Figure 2.Visualization of Euclidean distance (linear alignment of the pair points)  between two 

time series in blue and orange 

Generally, raw time series contain various sorts of distortion and noise, which makes their 

comparison difficult. The common distortions and invariances are amplitude and offset invariance, 

local scaling (“warping”) invariance, uniform scaling invariance, phase invariance, occlusion 

invariance and complexity-invariant distortions [10],[11]. 

Some invariances can be addressed and fixed easily. For example, normalizing raw data for the 

time series X can be used to prevent amplitude and offset invariance for this time series.  

𝑍 − 𝑛𝑜𝑟𝑚(𝑋) = (𝑥1
′, 𝑥2

′, … , 𝑥𝑛
′) 

where 𝑥𝑖
′ =

𝑥𝑖−𝜇

𝜎
 , 𝜇 is the mean of 𝑋 and 𝜎 is the standard deviation of 𝑋. In addition, a variety of 

distance function and data representation techniques have been developed to prevent different 

invariances. DTW is the most prominent example which addresses the local scaling invariance [2]-

[5]. 
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2.2 A Review of Time Series Classification Models 

In [54] different time series classification methods and algorithm are categorized in 6 groups: 

Time Domain Distance Based Classifiers, Differential Distance Based Classifiers, Dictionary 

Based Classifiers, Shapelet Based Classifiers, Interval Based Classifiers and Ensemble classifiers.  

Here we briefly review these categories and their classification models but our focus is on 

DTW because multiple rigorous independent studies [6,54] show that for the problem of time 

series classification, 1-NN DTW is very hard to beat. 

Additionally, where NN-DTW can be beaten, it usually by a very insignificant margin, at 

the cost of enormous effort in coding or complexity of implementation, and a large time and space 

overhead. 

2.2.1 Time Domain Distance Based Classifiers 

Weighted DTW (WDTW) [16]: WDTW is a form of DTW that adds a weight to nearer 

neighbors. This weight depends on the difference of phases between a reference point and a query 

point. WDTW penalizes the points distances according to the phase difference.  

Time Warp Edit (TWE) [56]:TWE is an elastic distance matric that contains features of the 

longest common subsequence and DTW. It contains a stiffness parameter that controls the 

elasticity. This parameter allows TWE to be a middle ground between the stiff Euclidian distance 

and the flexible DTW. Similar to WDTW, the stiffness imposes a multiplicative penalty on the 

distance between points. If sequences do not match, a penalty of λ is applied.  

Move-Split-Merge (MSM) [57]: MSM distance offers a measure that is similar to common 

distance_based approaches, where dissimilarity/similarity is determined through Move and Split 

operations to transform a given time series. The MSM method offers increased robustness. 
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2.2.2 Differential Distance Based Classifiers 

Complexity Invariant Distance (CID) [11]: CID calculates complexity differences between 

two time series and uses it as a correction factor in the distance measures. The complexity is 

measured using the sum of squares of the first difference of time series. As the difference in 

complexity of time series increase, the distance also increases.  

Derivative DTW (DDDTW) [58]: The DD-DTW uses a weighted combination of original 

time series distances and first order differences in a nearest neighbor classification. These two 

distances are combined with a weighted parameter. This parameter is determined by conducting a 

leave-one-out cross validation on the training set.  

Derivative Transform Distance (DTDc) [59]: DTDc is an extension of DDDTW that uses 

DTW in conjuncture with derivatives.  

2.2.3 Dictionary Based Classifiers 

Bag of Patterns (BOP) [52]: BOP is a dictionary classifier that is constructed on the 

Symbolic Aggregate Approximation (SAX). This technique converts time series to sequence of 

letters. SAX reduces the length of a time series through Piecewise Aggregate Approximation 

(PAA). BOP works by applying SAX to a window of the time series to form a ‘word’. If 

consecutive windows contain the same word, the second is deemed unnecessary and discarded. 

The distribution of words is used to form a count histogram. To classify new series, a 1-NN 

Euclidean distance classifier is used on the histograms.  

Symbolic Aggregate Approximation – Vector Space Model (SAXVSM) [53]: SAXVSM 

creates word distributions over the classes and weights these by the term frequency / inverse 
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document frequency. 1-NN and word frequency distribution are used to predict the label of a new 

case.  

Bag of SFA Symbols (BOSS) [47]: BOSS uses windows to form words over a time series 

but in a different way than BOP and SAXVSM. Instead of PAA, BOSS uses a truncated Discrete 

Fourier Transform (DFT). The truncated series is discretized using a method called Multiple 

Coefficient Binning (MCB). BOSS includes a parameter that determines whether the subseries are 

normalized or not.  

DTW Features (DTWF) [60]: DTWF combines DTW distances and SAX histograms using 

a feature generation scheme.  

2.2.4 Shapelet Based Classifiers 

Shapelets are time series subsequences that are discriminatory of the membership to a 

class. Shapelets can be used as the splitting criterion when applying a decision tree for 

classification. 

Fast Shapelets (FS) [61]: FS is an extension of the decision tree shapelet that accelerates 

shapelet discovery. In FS a frequency count histogram is built using multiple random projections.  

Shapelet Transform Ensemble (ST) [46]: ST splits the shapelet discovery by finding the 

top k shapelets on each run. ST can be utilized using kNN, Naïve Bayes, decision tree, support 

vector machine, etc. Each classifier is assigned a weight based on the cross validation training 

accuracy.  

Learned Shapelets (LS) [55]: LS finds k shapelets using k-means clustering of candidates 

from the training data. A logistic loss function is the objective function according to a logistic 
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regression model for each class. The weights of the regression and shapelets are learned by the 

algorithm. A check is performed at certain intervals as to whether divergence has occurred.   

2.2.5 Interval Based Classifiers 

Interval Based Classifiers work based on extracting features from different intervals of 

each series. A problem that should be addressed in this approach is the huge dimension of the 

feature space. 

Time Series Forest (TSF) [62]: TSF overcomes this problem by implementing a random 

forest method and considering summary statistics of each interval as features.  

Time Series Bag of Features (TSBF) [49]: TSBF has multiple steps and is an extension of 

TSF.  

Learned Pattern Similarity (LPS) [63]: LPS was developed by the same group as TSF and 

TSBF. The main difference is that subseries become attributes instead of cases.  

2.2.6 Ensemble Classifier 

Elastic Ensemble (EE) [64]: EE is a collaboration of nearest neighbor classifiers that use 

elastic distance measures. EE is built on the fact that none of the individual classifiers significantly 

outperform DTW. However, it can be seen that by combing the predictions of 1-NN classifiers to 

create a voting system, DTW can be outperformed.  

Collective of Transformation Ensembles (COTE) [46]: COTE purposes a combination of 

classifiers from both the EE and ST domains. EE utilizes 35 classifiers and a voting system. 
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2.3 A Review of DTW 

 

DTW allows nonlinear pairing of points in two sequences (Figure 3). As a result, DTW allows 

the two compared time series to be of different lengths - which is a feature our proposed model 

relies on as we explain in the next section.  

 

Figure 3. Nonlinear re-aligning of the pairs of points in DTW between two time series in red and 

black 

 

DTW computes the minimum distance of two time series by dynamically matching the 

points in a non-linear fashion. To calculate the distance between the two time series of X 

(𝑥1, 𝑥2, … 𝑥𝑛) and Y (𝑦1, 𝑦2, … 𝑦𝑚) with corresponding length of 𝑁 and 𝑀, DTW finds the 

minimum Minkowski distance with 𝑙𝑝 norm over the allowed matching between points of the two 

time series. A n-by-m matrix can be constructed to cover all possible matching and alignments 

between points of 𝑥𝑖  and 𝑦𝑗. Each element (𝑖, 𝑗) of this matrix represents the distance between 𝑥𝑖 

and 𝑦𝑗 when aligned together, defined by: 𝑑(𝑥𝑖, 𝑦𝑗) =  ‖(𝑥𝑖 − 𝑦𝑗)‖
𝑝
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where ‖. ‖𝑝 represents the 𝑙𝑝 norm. For example, for p = 2, 𝑑(𝑥𝑖 , 𝑦𝑗)= |𝑥𝑖 − 𝑦𝑗|
2

.  

W is defined as a continuous path of elements in the matrix (alignments) from the beginning 

(𝑥1, 𝑦1) to the end (𝑥𝑛, 𝑦𝑚) of time series. Thus, W is the mapping path between X and Y with the 

length 𝐾.  

The 𝑙𝑡ℎ element of W is defined as 𝑤𝑙 = 𝑑(𝑖, 𝑗)𝑙; that is,   

𝑊 = 𝑤1, 𝑤2, … , 𝑤𝑙, … , 𝑤𝑘    

𝑚𝑎𝑥(𝑛, 𝑚) ≤ 𝐾 ≤ 𝑛 + 𝑚 − 1 

DTW finds permissible matching sequences and paths. Then it proceeds to find the optimal 

path with the minimum distance. Figure 4, shows a graphical example of warping matrix and the 

optimal warping path.  

 

  

Figure 4. Warping matrix and the optimal warping path for two time series in red and blue. 

Permissible n-by-m matching points, or alignment paths, are those that satisfy the following 

constrains [12]: 

Boundary conditions: The path should not skip a part at the beginning or ending of the sequence. 

The first and the last matches should be (𝑥1, 𝑦1) and (𝑥𝑛, 𝑦𝑚) meaning 𝑤1 = (1,1) and 𝑤𝐾 =

(𝑁, 𝑀). 
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Continuity conditions: There should be no jumps in the path. The previous step for each point 

(i, j) in the path must be (𝑖 − 1, 𝑗), (𝑖, 𝑗 − 1) or (𝑖 − 1, 𝑗 − 1).   

Monotonicity conditions: The warping path cannot go back in time. This means in each step of 

the warping path, i and j indexes stay the same or increase. Considering 𝑤𝑘 = (𝑎, 𝑏), we have 

𝑤𝑘−1 = (�́�, �́�) where 𝑎 − �́� ≫ 0 and 𝑏 − �́� ≫ 0.  

DTW must find the path which minimizes the warping distance: 

𝐷𝑇𝑊𝑝(𝑋, 𝑌) = 𝑚𝑖𝑛 { √∑ 𝑤𝑙

𝐾

𝑙=1

𝑝

} 

The optimal path can be calculated using dynamic programming with the following recursive 

equation: 

𝐷𝑇𝑊𝑝(𝑋, 𝑌) = √𝛾(𝑖, 𝑗)
𝑝

   

where γ(i, j) is calculated by: 𝛾(𝑖, 𝑗) = 

|𝑥𝑖 − 𝑦𝑗|
𝑝

+ 𝑚𝑖𝑛{𝛾(𝑖 − 1, 𝑗 − 1), 𝛾(𝑖, 𝑗 − 1), 𝛾(𝑖 − 1, 𝑗)} 

𝛾(0,0) = 0, 𝛾(0, ∞) = ∞, 𝛾(∞, 0) = ∞ 

(𝑖 = 1,2, . . . , 𝑛; 𝑗 = 1,2, … , 𝑚) 

The value of the bottom right matrix cell ( √𝛾(𝑁, 𝑀)
𝑝

) will contain the DTW distance of 𝑋 

and 𝑌. Figure 5, demonstrates an example of direct and cumulative distances in the DTW cost 

matrix. The optimal path is shown in pink cells and (setting p = 2), the DTW distance is the square 

root of 5.  
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5 3 2 2 4 

5 0 4 9 9 1 

6 1 9 16 16 4 

5 0 4 9 9 1 

4 1 1 4 4 0 

3 4 0 1 1 1 
 

 
5 3 2 2 4 

5 0 4 13 22 23 

6 1 9 20 29 26 

5 1 5 14 23 24 

4 2 2 6 10 10 

3 6 2 3 4 5 
 

(a) (b) 

Figure 5.  X={5,6,5,4,3},Y={5,3,2,2,4}. (a) shows the distance of aligned points of X and Y  and 

(b) shows the cumulative distance matrix. 

Several extensions of DTW have been proposed in the literature. Using the distance 

between derivatives instead of point to point distance was proposed in [13]-[15]. This method is 

called Derivative Dynamic Time Warping (DDTW). DDTW transforms the points of the time 

series to a higher level feature. For example, in [14] the transformation function for the point 𝑥𝑖 in 

time series X is given as 

𝑋𝐴(𝑑𝑖
𝑎) =

(𝑥𝑖 − 𝑥𝑖−1) + (
𝑥𝑖+1 − 𝑥𝑖−1

2 )

2
,   1 < 𝑖 < 𝑛 

where n is the length of the time series X. Since the first and the last transformations are not defined, 

it is considered that  𝑑1
𝑎 = 𝑑2

𝑎 and 𝑑𝑛
𝑎 = 𝑑𝑛−1

𝑎 . 

The relative importance of the different phases of each alignment is considered in [16]. 

This method is called Weighted Dynamic Time Warping (WDTW). In WDTW, the distance 

between the two points xi and yj is defined as: 

 𝑑𝑤(𝑥𝑖, 𝑦𝑗) =  ‖𝑤|𝑖−𝑗|(𝑥𝑖 − 𝑦𝑗)‖
𝑝
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where 𝑤 is a positive weight value between the two points xi and yj, and it is determined based on 

the phase difference|i − j|. In [16] a logistic weight function is proposed to calculate the 𝑤|𝑖−𝑗|. 

For a phase difference of 𝑧, the weighting is 

𝑤(𝑧) =
𝑤𝑚𝑎𝑥

1 + 𝑒−𝑔.(𝑧−
𝑛
2

)
 

where 𝑤𝑚𝑎𝑥is the upper bound of the weight, 𝑛 is the length of time series and 𝑔 is the penalty for 

large phase differences. Then the optimum distance between the two sequences is defined as: 

𝑊𝐷𝑇𝑊𝑝(𝑋, 𝑌) = √𝛾(𝑖, 𝑗)
𝑝

 

where γ(i, j) is calculated by  

𝛾(𝑖, 𝑗) = |𝑤|𝑖−𝑗|(𝑥𝑖 − 𝑦𝑗)|
𝑝

+ 𝑚𝑖𝑛{𝛾(𝑖 − 1, 𝑗 − 1), 𝛾(𝑖, 𝑗 − 1), 𝛾(𝑖 − 1, 𝑗)} 

In [17], the weighted DTW concept is combined with DDTW, and it is called Weighted 

Derivative Dynamic Time Warping (WDDTW). Different variations of DTW often outperform 

each other in different application domains. It has been shown that 1-NN DTW is one of the best 

distance-based classification techniques and exceptionally hard to beat [6]. 

2.4 Improving the Speed of DTW 
 

2.4.1 Global Warping Constraints 

 

The idea of warping constraints is to limit the wandering distance of the search paths by 

defining a band (warping scope) in the DTW warping matrix. This band does not necessarily 

retrieve the optimal path, but it is expected to provide a decent path. It is expected that a decent 

path is close to the matrix diagonal, and warping constraints are defined around the diagonal.  
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The Sakoe-Chiba band [2] and the Itakura Parallelogram [18] are the most common 

constraint methods. Global constraints speed up the calculations, however, the classification time 

and accuracy depends on a parameter (r), where r is the allowed range of warping from the 

diagonal of the matrix. Figure 6, shows a graphical example of constraints for the Sakoe-Chiba 

band and the Itakura Parallelogram. Cross validation on a training dataset is used to learn the best 

constraint (r). The classifier which uses 1-NN DTW with a learned warping constraint on cross 

validation increases accuracy in some problems [19], but training process is time expensive.  

  

Sakoe-Chiba band Itakura Parallelogram 

Figure 6. Example of global constraints 

2.4.2 Lower Bounding 

The idea of lower bounding is to do the expensive full calculation of optimal path in DTW 

matrix, only when it is absolutely unavoidable. Applying lower bound speeds up the nearest 

neighbor search by pruning off unhopeful candidates [6],[21]. LB- Kim, LB- Yi and LB- Keogh 

are the most common lower bound for time series classification which are graphically presented 

on an example for candidate 𝐶 and query 𝑄 time series in Figure 7. LB- Kim [22] is the total 

summation of the squared differences between the two sequences’ first (A), last (D), minimum (B) 

and maximum points (C). These distances are presented in Figure 7a. LB- Yi [24] is calculated as: 

r r 
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𝐿𝐵 − 𝑌𝑖(𝑄, 𝐶) = √∑ {

(𝑀𝑖𝑛𝑗=1
𝑚 (𝑄𝑗) − 𝐶𝑖)

2    𝑖𝑓 𝐶𝑖 < 𝑀𝑖𝑛𝑗=1
𝑚 (𝑄𝑗) 

(𝐶𝑖 − 𝑀𝑎𝑥𝑗=1
𝑚 (𝑄𝑗))2   𝑖𝑓 𝐶𝑖 > 𝑀𝑎𝑥𝑗=1

𝑚 (𝑄𝑗)

0                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛

𝑖=1

 

The sum of the squared length of gray lines in Figure 7b, represents LB- Yi. 

LB- Keogh bound is explained in details in [6],[22],[24]. LB- Keogh first defines 𝑈 and 𝐿 

as the upper and the lower bound of query time series as: 𝑈𝑖 = max (𝑞𝑖−𝑟: 𝑞𝑖+𝑟) and 𝐿𝑖 =

min (𝑞𝑖−𝑟: 𝑞𝑖+𝑟) where r is the window size. Then LB- Keogh is formulated as: 

𝐿𝐵 − 𝐾𝑒𝑜𝑔ℎ(𝑄, 𝐶) = √∑ {
(𝑐𝑖 − 𝑈𝑖)2   𝑖𝑓 𝑐𝑖 > 𝑈𝑖

(𝑐𝑖 − 𝐿𝑖)2   𝑖𝑓 𝑐𝑖 < 𝐿𝑖

0

𝑛

𝑖=1

 

The sum of the squared length of gray lines in Figure 7c, represents LB- Keogh.  

   

   
a) LB- Kim b) LB- Yi c) LB- Keogh 

 

Figure 7. Example of lower bounding techniques. 

 

A review and evaluation of lower bounding methods used for DTW is presented in [42]. 

2.4.3 Early Abandoning 

 

Early abandoning is another method to accelerate 1-NN DTW calculations (as well as the 

other distance based classifiers such as 1-NN ED). This is done by calculating partial distance 

A 

B 

C 

D 

C 
U 

L Q 

Max (Q) 

Min (Q) 
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accumulation for a candidate sequence, and comparing it to a threshold which is the best-so-far 

candidate. If partial accumulation goes beyond the threshold (best-so-far) at any time, the 

calculation is terminated, and the candidate is discarded. This technique reduces redundant 

calculations in the similarity search. Early abandoning was proposed and applied in [4] and [21] 

to accelerate the calculation of ED, as well as in [5] and [26], to speed up 1-NN DTW calculations. 

   

 (a)  (b) 

Figure 8. Early abandoning technique. (a) Early abandoning on ED and (b) Early abandoning 

on DTW. 

×: stop the calculations, partial distance accumulation exceeds best-so-far 

  

× 

 

× 
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3 TIME SERIES REPRESENTATION WITH CONTROL CHART 

APPROXIMATION 
 

In this chapter, Control Chart Approximation method is introduced. Material from my own 

previously published work [73], 2017 IEEE, is reused in this chapter.  

 

3.1 Introduction 

 

Each value in a time series can be considered as a dimension. Time series are typically high 

dimensional data (i.e. long length). Time series representations project points into a new space 

where it can be processed more efficiently. Time series representation techniques (also called 

dimensionality reduction techniques) aim to reduce the dimensionality (length) of time series by 

extracting features from the raw data. Time series representation should follow the following goals 

[21]: dimensionality reduction, storage reduction, noise removal, computational costs reduction, 

and minimizing information loss (the reconstruction error). A review of representation methods, 

as well as distance based classification techniques, is presented in [6]. Time series representation 

in the literature can be mainly divided into two groups of non-symbolic and symbolic 

representations. Some of the non-symbolic representation methods are listed in [6], including 

Discrete Fourier Transformation [27], Single Value Decomposition [28], Discrete Wavelet 

Transformation [29], Piecewise Aggregate Approximation (PAA) [30], Adaptive Piecewise 

Constant Approximation (APCA) [31], and Chebyshev polynomials [32]. Reference [33] lists 

some of the symbolic representation methods, including Shape Description Alphabet [34], 

Interactive Matching of Patterns with Advanced Constraints in Time Series Databases [35], 
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Clipping [36], Persist [37], Piecewise Vector Quantized Approximation [38], and Symbolic 

Aggregate Approximation (SAX) [39] and its extensions [40],[41].  

This work proposes a new numeric representation of time series denoted as the Control Chart 

Approximation (CCA). CCA is discussed in detail in Section 3.3. An example is presented in 

Figure 9, to compare CCA with PAA and APCA. Euclidean distance between the raw time series 

and the approximation is the reconstruction error (RE). In this example, it can be seen that after 

approximation with the same compression ratio (14 segments), CCA has the lowest RE. 

The output of CCA looks graphically similar to the output of PAA and APCA. A time series 

is divided into flat segments. In PAA, the length of the segments must be same, but APCA and 

CCA relax this constraint. The value of each segment is the mean of all the points which fall within 

that segment.  

 

(a) RR Lyrae Variables 

Class 

(b) Eclipsed Binaries 

Class 

(c) Cepheids Class 

Figure 9. Comparison of approximation methods and their reconstruction error. The raw data is 

in black and approximation is in red. 

 

 



 

21 
 

3.2 Related Work 
 

There have been multiple contributions which focus on the reduction of data 

dimensionality by obtaining constant segments approximation. Here, we review two popular 

methods which give the constant segments: Piecewise Aggregate Approximation (PAA), and 

Adaptive Piecewise Constant Approximation (APCA). 

3.2.1 Piecewise Aggregate Approximation 

 

Let n be the length of a time series X = x1, x2, …, xn, and w be the dimensionality of the 

transformed time series (1 ≤ w ≤ n). Essentially, to reduce the length of a time series from n to 

w, begin by dividing the time series into w equal length segments. The average value of the 

points that lie within each segment is calculated and stored into a vector.  

A time series X of length n can be represented with a w-dimensional vector  

X̅ = x̅1, x̅2, … , x̅w, where The ith element of this vector �̅� is calculated by: 

x̅i =
w

n
∑ xj

(
n
w

)i

j=
n
w

(i−1)+1

 

Note that when w = n, the transformed representation remains like the original time series, 

and when w = 1, the transformed sequence is the mean of the original time series.  

In PAA, ith segment can be considered as x̅i value being repeated 
n

w
 times on that segment. 

3.2.2 Adaptive Piecewise Constant Approximation 

 

Though PAA is a competitive time series transformation technique that has been proven 

with even the most complex transforms for indexing. Adaptive Piecewise Constant 
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Approximation (APCA) attempts to improve the performance quality of the PAA approximation 

by permitting the segments to have arbitrary lengths as opposed to fixed [5][6]. To achieve this, 

APCA stores two numbers: the value of the mean of all points in each segment as well as the 

length of the segment. For a time series T = {t1, t2, …, tn}, we can reduce its length via APCA, 

resulting in: 

T =v {<tv1,tr1 >, <tv2, tr2>, … , <tvw ,trw>}   tr0 = 0 

where tvi is the segmented average of the ith region, and tri is the right most data point of the ith 

region. Instead of applying the length of the segment, the location of its endpoint is stored. The 

length of each segment can still be calculated by the difference of each endpoint:  

Length of segment i = tri – tri-1 

In APCA, ith segment can be considered as tvi value, being repeated (𝑡𝑟𝑖 –  𝑡𝑟𝑖 − 1) times on 

that segment. 

3.2.3 Control Charts  

 

CCA uses control thresholds to detect the shifts in time series values. The idea is originated 

from control chart monitoring which used in statistical quality control. The control charts are 

frequently employed to monitor and regulate quality characteristics of a process that has been 

measured or recorded over time [17], and hence, are very similar to time series. The control chart’s 

center-line represents the mean value of the quality characteristic and the two horizontal lines 

above and below are known as the upper control limit (UCL) and the lower control limit (LCL), 

respectively. When recorded measurements are within the two control limits, the process is said to 

be in control. If a point ventures beyond the threshold of the control limits, it indicates that the 
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process mean has shifted, and may be out of control. Figure 10, displays an example of a control 

chart. 

 

Figure 10. Control chart 

Control limits are usually defined based on a fixed distance from the center-line. If we 

consider µ as mean of a specific quality characteristic, and 𝜎 as the standard deviation of it, then 

the center-line and control limits can be defined as following: 

𝐶𝑒𝑛𝑡𝑒𝑟 𝑙𝑖𝑛𝑒 = 𝜇 

𝑈𝐶𝐿 = 𝜇 + 𝐿𝜎 

𝐿𝐶𝐿 =  𝜇 − 𝐿𝜎 

where 𝐿 represents the distance (in the terms of standard deviation) between the control limits and 

the center line. These kinds of control charts are often referred to as a Shewhart control chart. 

Typically, three-sigma limits are employed (i.e., 𝐿 is usually set to 3). 

When data points are z-normalized - as it is the common practice for the time series data 

in order to prevent amplitude and offset invariance [11] - the center-line will be 0, and UCL and 

LCL will be 3 and −3, respectively. An example of a standardized control chart is presented in 

Figure 11. 
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Figure 11. Standardized control chart 

 

3.3  Control Chart Approximation: A time series representation 

 

In this section, we present Control Chart Approximation (CCA), our proposed numeric 

representation of time series. Given a time series, 𝑋 = (𝑥1, 𝑥2, … 𝑥𝑛), a CCA representation of 𝑋 

is made as follows: 

𝐶𝑋 = {(𝑡1, 𝑣1, 𝑢1), … , (𝑡𝑖, 𝑣𝑖 , 𝑢𝑖), … , (𝑡𝑘, 𝑣𝑘,, 𝑢𝑘)} 

𝑖 = 1,2, . . , 𝐾 

(3.1) 

where the tuple (𝑡𝑖, 𝑣𝑖 , 𝑢𝑖) defines the ith segment, 𝑡𝑖 is the start time, 𝑣𝑖 is the value, 𝑢𝑖 is the 

duration of the segment in the time series, and K is the total count of segments. 

Each segment contains a continuous sequence of data points in the time series whose values 

were falling into the same range (state). The segments embody the continuous state change of the 

time series values. Similar to control limits in control charts, certain thresholds need to be defined 

in order to detect such state changes over time. A segment starts when a data point passes a 

threshold and its time value marks the beginning of a new segment (𝑡𝑖). We call these special 

points - at the beginning and end of the segments - the jump points. The value 𝑣𝑖 of each segment 

is defined as the mean of the raw data points falling in that segment. The value and duration of 

each segment are defined as follows:  
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 𝑢𝑖 =  𝑡𝑖+1 −  𝑡𝑖 
 

(3.2) 

 

𝑣𝑖 =  (∑ 𝑥𝑗

𝑡𝑖+1

𝑗=𝑡𝑖

) /𝑢𝑖 
(3.3) 

 

Figure 12a, shows a standard control chart with ±3 /sigma control limits used to partition 

a time series into 4 states (A, B, C and D) and results in a CCA representation of the time series 

with 5 segments. In this example, the standard control limits of ±3 have been used, and the range 

between the two control limits have been divided to 2. For more exact approximations, the same 

concept can be used by dividing the space between two control limits into more partitions.   

 
a)  b)  

Figure 12. Time series approximation. The raw time series is presented in blue and its 

approximation in orange. 

This number of partitions between control limits in CCA is controlled by the parameter s, 

which is the distance between the thresholds within the upper and lower control limits.  

In Figure 12b, the distance between controls limits, s is set to 1, which creates 8 states. This 

results in a more accurate approximation, however, it increases the number of produced segments 

by 12 (17 segments). Algorithm 3.1, represents how CCA algorithm detects the jump points and 

produce the segments in detail.  
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The next step in CCA is normalizing the segments durations to have the same the scale as 

segments values. Thereby, each segment duration (𝑢𝑖) is z-normalized by relative to mean (𝜇𝑢) 

and standard deviation (𝜎𝑢) of all the segments durations. We denote the normalized duration of 

each segment as its waiting time(𝑤𝑖). 

 
𝑤𝑖 =  

(𝑢𝑖 − 𝜇𝑢)
𝜎𝑢

⁄  (3.4) 

 

 

Algorithm 3.1 The CCA algorithm with z-normalized Time Series X, control limit K and 

distance parameter s 

1. function Compute_CCA(X={𝑥1, … , 𝑥𝑛}, 𝐾, 𝑠) 

2.       j ← 1, 𝑡𝑗← 0 

3.      𝐶𝑋 ← ∅                                 

4.      if  𝑛 = 1   then return 𝐶𝑋={(0, 𝑥1, 1)}   
5.      end if 
6.      for i ← 1…n do 

7.            Find 𝑟𝑖 ∈ {(−∞, −𝐾], (−𝐾, −𝐾 + 𝑠], … , (… , 𝐾], (𝐾, ∞)}      such that 

            𝑥𝑖 ∈ 𝑟𝑖 

8.            if (𝑖 > 1 & 𝑟𝑖 ≠ 𝑟𝑖−1) or 𝑖 = 𝑛 then 

9.                  𝑡𝑗+1 ← 𝑖   # start of the (j+1)th segment 

10.                  𝑢𝑗= 𝑡𝑗+1 −  𝑡𝑗 

11.                  𝑣𝑗 = (∑ 𝑥𝑖)/
 𝑡𝑗+1

 𝑖=𝑡𝑗
 𝑢𝑗 

12.                  𝐶𝑋 ← 𝐶𝑋  ∪ ( 𝑡𝑗, 𝑣𝑗 ,  𝑢𝑗) 

13.            end if 

14.      end for 

15.      return 𝐶𝑋 

16.   end function 
 

The final result of CCA are sequential normalized segment values (v) and waiting times (w).  

𝐶𝑋 = {(𝑡1, 𝑣1, 𝑤1), … , (𝑡𝑖, 𝑣𝑖, 𝑤𝑖), … , (𝑡𝑘, 𝑣𝑘,, 𝑤𝑘)} (3.5) 

The graphical presentation of this output can be shown in 3-dimensional graphs. In Figure 

13, CCA time series representation is presented with two different s values.  In the upper left graph, 

the threshold distance parameter is set to 1 (s=1); it has created 5 segments. Then, the segments 

durations are normalized. The lower left graph shows the 3-dimensional representation of the final 



 

27 
 

CCA segments. In the upper right graph, the CCA representation of the same time series with s = 

0.5 shows 11 resulting segments. The lower right graph shows the final values after normalization 

in 3D space. 

  

  

 

 

a) s=1   b) s=0.5 

Figure 13. CCA examples (a)s=1 and (b) s=0.5. 

 

In CCA the value of s can vary from 3 to ε. The lower the s, the more states and, expectedly, 

more segments it will create over time. Table I, shows the corresponding s values for some desired 

number of states. 
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TABLE I. A SAMPLE OF S POSSIBLE VALUES AND THEIR CORRESPONDING NUMBER OF 

STATES 

Number of 

states 
s 

Number of 

states 
s 

4 3 11 0.67 

5 2 12 0.60 

6 1.5 13 0.55 

7 1.2 14 0.50 

8 1 15 0.46 

9 0.86 16 0.43 

10 0.75 … … 

 

When s is extremely small (ε), the smallest change in the value of each point compared to its 

predecessor will make that point a jump point. In this special case - with the exception of constant 

remaining points – every point in the time series will become a jump point, and the resulting CCA 

will be very close to, or the same as, the original time series. In the process of time series 

classification, the best choice of s is dependent on the structure of data. In order to find optimal s 

for a specific time series data, cross validation can be used to learn the best choice of s for that 

problem. 
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4 THREE DIMENSIONAL DTW DISTANCE 
 

In this chapter, 3 Dimensional Dynamic Time Warping (3D DTW), Lower Bounding and 

Early Abandoning on 3D DTW are presented. Material from my own previously published work 

[73], 2017 IEEE, is reused in this chapter.  

4.1 3D DTW Calculation 

 

Suppose we have two time series, 𝐶 and 𝑄, and we want to measure the distance of these 

time series after CCA representation (transformation). In order to calculate this distance, we 

propose a new version of DTW called 3 dimensional DTW (3D DTW) which is an adaptation of 

traditional DTW on more axis. Suppose the transformed time series are  

 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝐶 = {(𝑣1
𝑐, 𝑤1

𝑐), … , (𝑣𝑖
𝑐 , 𝑤𝑖

𝑐) … (𝑣𝑛
𝑐, 𝑤𝑛

𝑐)}     

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑄 = {(𝑣1
𝑞

, 𝑤1
𝑞

), … , (𝑣𝑗
𝑞

, 𝑤𝑗
𝑞

) … (𝑣𝑚
𝑞

, 𝑤𝑚
𝑞

)}     

 Note that we eliminated the 𝑡𝑖 values in the tuples, as they are not considered as a dimension 

for DTW calculation. Similar to conventional DTW, the segments are ordered along the matrix 

based on their occurrence in time, and time distance is inherent in DTW path calculation. Hence, 

we do not consider the starting time of each segment in the distance calculation.   

 Note that even if two time series are from the same problem, and if the lengths of the 

original time series are equal, after CCA transformation they will not necessarily have equal 

lengths (the same number of segments/steps).  

 First, we define a distance matrix between every two segment. Each element of the matrix 

is defined as: 
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 𝐷(𝑖, 𝑗) = (𝑣𝑖
𝑐 − 𝑣𝑗

𝑞)2 + (𝑤𝑖
𝑐 − 𝑤𝑗

𝑞)2,  where 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1, 𝑚] 

 Then, a matrix is constructed based on pairwise distance 𝐷(𝑖, 𝑗) of segments starting from 

γ(1,1) to 𝛾(𝑁, 𝑀) similar to conventional DTW. 

𝛾(𝑖, 𝑗) is calculated by:  

𝛾(𝑖, 𝑗) = (𝑣𝑖
𝑐 − 𝑣𝑗

𝑞)2 + (𝑤𝑖
𝑐 − 𝑤𝑗

𝑞)2 + 𝑚𝑖𝑛 {

𝛾(𝑖 − 1, 𝑗 − 1)

𝛾(𝑖, 𝑗 − 1)

𝛾(𝑖 − 1, 𝑗)
} 

𝛾(0,0) = 0, 𝛾(0, ∞) = ∞, 𝛾(∞, 0) = ∞ 

(𝑖 = 1,2, . . . , 𝑛; 𝑗 = 1,2, … , 𝑚) 

 

(4.1) 

 After calculating all elements of the matrix, the square root of the last element, 𝛾(𝑁, 𝑀) is 

the distance between transformed 𝐶 and 𝑄.  

 3D DTW follows the same conditions (i.e. Boundary conditions, Continuity and 

Monotonicity) and the same algorithm as regular DTW, but the distance matrix is changed 

according to the structure of the transformed time series. We demonstrate an example here in order 

to illustrate the technique clear. 

 Example 1: We randomly selected two time series from the Gun_Point train dataset from 

[43]. The original time series are shown in Figure 14. We are interested in calculating their 3D 

DTW distance after applying the CCA transformation. Setting s equal to 1, CCA results in the 

following segment list. Figure 15, shows these time series after the transformation in a 3-

dimensional space.  
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𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑄

= {(−0.56,1.28), (0.59, −0.67), (1.51, −0.76), (2.03, −0.09), (1.52, −0.67), (0.5, −0.81), (−0.6,1.81)} 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝐶

= {(−0.66,1.38), (0.48, −0.76), (1.66,0.71), (0.47, −0.67), (−0.63,1.43)}   

 

 

  

Figure 14. Original time series of C and Q. 

 

 Table II, shows the matrix for calculating the distance of two time series after CCA 

transformation, and the alignment between points. 

The first element 𝛾(1,1) in this matrix is calculated as: 

 𝛾(1,1) = (𝑣1
𝑐 − 𝑣1

𝑞)2 + (𝑤1
𝑐 − 𝑤1

𝑞)2 = ((−0.66) − (−0.56))2 + (1.38 − 1.28)2 which is 0.02. 

Then the first row is calculated as: 

C

Q 
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 𝛾(1, 𝑗) = (𝑣1
𝑐 − 𝑣𝑗

𝑞)
2

+ (𝑤1
𝑐 − 𝑤𝑗

𝑞)
2

+ 𝛾(1, 𝑗 − 1) 

𝑗 = 1,2, . . , 𝑚 

(4.2) 

For example, 

 𝛾(1,2) = (𝑣1
𝑐 − 𝑣2

𝑞)2 + (𝑤1
𝑐 − 𝑤2

𝑞)2 + 𝛾(1,1) = ((−0.66) − 0.59)2 + (1.38 −

(−0.67))2 +0.02, which is 5.750. 

Then, the first column is calculated as: 

 𝛾(𝑖, 1) = (𝑣𝑖
𝑐 − 𝑣1

𝑞)
2

+ (𝑤𝑖
𝑐 − 𝑤1

𝑞)
2

+ 𝛾(𝑖 − 1,1) (4.3) 

𝑖 = 1,2, . . , 𝑛 

For example, 

𝛾(2,1) = (𝑣2
𝑐 − 𝑣1

𝑞)2 + (𝑤2
𝑐 − 𝑤1

𝑞)2 + 𝛾(1,1) = (0.48 − (−0.56))2 + ((−0.76) −

1.28)2 +0.02, which is 5.280.  

The remaining matrix elements, from ([2], [2]) to ([5], [7]), are calculated using formula 4.1.  

For example, 

𝛾(2,2) = (𝑣2
𝑐 − 𝑣2

𝑞)2 + (𝑤2
𝑐 − 𝑤2

𝑞)2 + 𝑚𝑖𝑛{𝛾(1,1), 𝛾(2,1), 𝛾(1,2)} = (0.48 − 0.59)2 +

((−0.76) − (−0.67))2 + 𝑚𝑖𝑛{0.02,5.28,5.75}, which is 0.040. 

 The value of the last element of the matrix i.e.  𝛾(5,7), shows the squared distance between 

these transformed time series. The arrows in the matrix show the optimal selected path and the 

aligned points. The aligned points are connected together with gray dash lines in Figure 15.  
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TABLE II. 3D DTW COST MATRIX AFTER CCA TRANSFORMATION OF TIME SERIES 

 Q (-0.56,1.28) (0.59,-0.67) (1.51,-0.76) (2.03,-0.09) (1.52,-0.67) (0.5,-0.81) (-0.6,1.81) 

C step [1] [2] [3] [4] [5] [6] [7] 

(-0.66,1.38) [1] 
0.020 5.750 15.000 24.410 33.320 39.440 39.620 

(0.48,-0.76) [2] 5.280 0.040 1.090 3.950 5.040 5.040 12.810 

(1.66,0.71) [3] 10.530 3.090 2.240 1.880 3.800 7.480 11.370 

(0.47,-0.67) [4] 15.380 3.110 3.330 4.670 3.000 3.020 10.270 

(-0.63,1.43) [5] 15.400 8.970 12.450 12.740 12.000 9.260 3.160 

 

 One of the advantages of 3D DTW is that all of the speed improvement techniques (such 

as the squared distance, warping constrain, lower bounding, early abandoning, etc.) in regular 

DTW, as well as DTW extensions techniques (such as DDTW, WDTW, WDDTW, etc.), are 

applicable on 3D DTW after minor changes in the algorithm. In the following section, we show 

how to apply lower bounding and early abandoning in 3D DTW. 

 

Figure 15. CCA transformed time series of C (in blue) and Q (in orange) and their 3D DTW 

alignment 
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4.2 Lower Bounding on 3D DTW 
 

In order to demonstrate the lower bounding in 3D DTW, we start by applying LB -KIM for 

3D DTW. In traditional DTW, LB -KIM for two time series is the total summation of the squared 

differences between the two sequence’s first points(A), last points(D), minimum points (B) and 

maximum points (C). 

  In 3D DTW, LB -KIM is calculated based on the differences of the same points. The 

difference between the first and the last points can be calculated as: 

 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠: 

𝐴 = √(𝑣1
𝑐 − 𝑣1

𝑞)2 + (𝑤1
𝑐 − 𝑤1

𝑞)2
2

 

(4.4) 

 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠: 

𝐷 = √(𝑣𝑛
𝑐 − 𝑣𝑚

𝑞 )2 + (𝑤𝑛
𝑐 − 𝑤𝑚

𝑞 )2
2

 

(4.5) 

In Figure 16, the difference between the first points (A) and the last points (D) of the two 

sample transformed time series are shown. 

 

Figure 16. Difference between the first points (A) and the last points (D) of two sample 

transformed time series C and Q 

D 

A 

C 

Q 
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Before calculating the distance between the maximum and minimum points, we identify 

them. The maximum points and the minimum points should be calculated based on a reference. 

The reference is a line in which the waiting time and the value of all the points are zero. This 

reference line of the example is presented in Figure 16, as a green line. The distance of each point 

from the reference can be calculated as: 

 
𝐷(𝑇)𝑖 = √𝑡𝑣𝑖

2 + 𝑡𝑤𝑖

22

 (4.6) 

where 𝐷(𝑇)𝑖 is the distance to the reference for the ith point of the transformed time series, T, and 

𝑡𝑣𝑖
 and 𝑡𝑤𝑖

 are the values and waiting times of that point.  

In order to make it more visible in Figure 17, we rotated the Figure 16, graph in a way 

that the reference line looks like a point. The distance of each point to this point (where waiting 

time and value are zero) is the distance to the reference. For example, the distance between the 

second point of time series Q and the reference is shown in Figure 17.  

 

Figure 17. Distance of the second point of time series Q to the reference line. 

C 

Q 

𝐷(𝑄)2 
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Now, the distance of each point of a transformed time series to the reference can be 

calculated, and then the minimum and the maximum points can be identified based on these 

distances. Note, after detecting these minimum/maximum points, the lower bound of the difference 

between two minimum points (or two maximum points), is the difference between their distances 

to the reference. We need to prove that the difference between the distances, of each two points, 

to the reference is the lower bound of their direct distance. Here the difference between the 

distances, of each two points, to the reference is |𝑑1 − 𝑑2| and the direct distance is 

√(𝑣1 − 𝑣2)2 + (𝑤1 − 𝑤2)2 and we need to prove:  

|𝑑1 − 𝑑2| ≤ √(𝑣1 − 𝑣2)2 + (𝑤1 − 𝑤2)2 

where 𝑑1 and 𝑑2 are respectively the distance from point 1 (with value of  𝑣1 and waiting time of 

𝑤1) and the distance from point 2 (with value of  𝑣2 and waiting time of 𝑤2)  to the reference. 

(𝑑1− − 𝑑2)2 ≤ (𝑣1 − 𝑣2)2 + (𝑤1 − 𝑤2)2 

(√𝑣1
2 + 𝑤1

2 − √𝑣2
2 + 𝑤2

2)
2

≤ (𝑣1 − 𝑣2)2 + (𝑤1 − 𝑤2)2 

𝑣1
2𝑣2

2 + 𝑣1
2𝑤2

2 + 𝑤1
2𝑣2

2 + 𝑤1
2𝑤2

2 − 𝑣1
2𝑣2

2 − 𝑤1
2𝑤2

2 − 2𝑣1
2𝑣2

2𝑤1
2

𝑤2
2 ≥ 0 

(𝑣1𝑤2 − 𝑤1𝑣2)2 ≥ 0 

Therefore, we can calculate the lower bound of the distance between minimum points (as 

well as the lower bound of the distance between maximum points) by finding the difference 

between their distances to the reference: 
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 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑖𝑛𝑡𝑠: 

𝐵 = 𝑀𝑖𝑛𝑖=1
𝑛 (𝐷(𝐶)𝑖) − 𝑀𝑖𝑛𝑗=1

𝑚 (𝐷(𝑄)𝑗) 

(4.7) 

 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑖𝑛𝑡𝑠: 

𝐶 = 𝑀𝑎𝑥𝑖=1
𝑛 (𝐷(𝐶)𝑖) − 𝑀𝑎𝑥𝑗=1

𝑚 (𝐷(𝑄)𝑗) 

(4.8) 

Figure 18a and Figure. 18b show the distance between minimum points (B) and the distance 

between maximum points (C), respectively.  

 

  

(a) (b) 

Figure 18. (a) The distance between minimum points (B) and (b) the distance between maximum 

points (C). 

 

Lastly, the Kim- LB in 3D DTW, will be the summation of the squared values of these 

distances (A, B, C and D) from formula 4.4,4.5,4.6 and 4.7. Where A,B,C and D are the difference 

between the start points, the minimum points, maximum points and end points of the time series 

respectively. 

C

B 

C 
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Yi lower bound (Yi-LB) can also easily be simulated in 3D DTW using the distance to the 

reference. Yi-LB can be defined as: 

𝐿𝐵 − 𝑌𝑖 − 3𝐷(𝑄, 𝐶) = ∑ {

(𝑀𝑖𝑛𝑗=1
𝑚 (𝐷(𝑄)𝑗) − 𝐷(𝐶)𝑖)

2    𝑖𝑓 𝐷(𝐶)𝑖 < 𝑀𝑖𝑛𝑗=1
𝑚 (𝐷(𝑄)𝑗) 

(𝐷(𝐶)𝑖 − 𝑀𝑎𝑥𝑗=1
𝑚 (𝐷(𝑄)𝑗))2   𝑖𝑓 𝐷(𝐶)𝑖 > 𝑀𝑎𝑥𝑗=1

𝑚 (𝐷(𝑄)𝑗)

0                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛

𝑖=1

 (4.9) 

In Figure 19a, the red lines are the distance to reference for the points in 𝐶, which have less 

distance to reference than the minimum point in Q (the distance to reference of this point is shown 

in black line).  

Also, in Figure 19b, the red lines are the distance to reference for the points in 𝐶, which have 

greater distance to reference than the maximum point in Q (the distance to reference of this point 

is shown in black line).  

The summation squared of all these red lines represent the Yi lower bounding measure in 3D 

DTW.  

 

  

(a) (b) 

Figure 19. The black lines in a) and b) show the distance to reference of the minimum and the 

maximum points on Q, respectively and red lines in a) and b) show the distance to the reference 

of all points in C which are less than minimum point of Q and larger than 
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4.3 Early Abandoning on 3D DTW 

 

Early abandoning in 3D DTW works similar to Early abandoning in regular DTW [26]. The 

objective is to eliminate the search if the accumulative 3D distances between two CCA 

transformed time series is greater than a predefined threshold (best-so-far). Algorithm 3.2, shows 

how to calculate 3D DTW distance along with early abandoning.  

Algorithm 3.2 The 3D DTW algorithm with Early Abandoning  

 

1.  function 

3D_DTW(Q={(𝑣1
𝑞 , 𝑤1

𝑞), … , (𝑣𝑖
𝑞 , 𝑤𝑖

𝑞) … (𝑣1
𝑞 , 𝑤𝑛

𝑞)},C={(v1
c, w1

c), … , (vi
c, wi

c) … (vn
c , wn1

c )}, 

BSF: best so far (closest query)) 

2.      E[0,0] ← (𝑣𝑖
𝑐 − 𝑣𝑗

𝑞)2 + (𝑤𝑖
𝑐 − 𝑤𝑗

𝑞)2  # Initialize first cell 

3.      for j ← 1 … m do                                # Initialize first row 

4.          E[1,j] ← 𝐸[1, j − 1] + (𝑣1
𝑐 − 𝑣𝑗

𝑞)2 + (𝑤1
𝑐 − 𝑤𝑗

𝑞)2   

5.      end for 
6.      for i ← 1 … n do                                # Initialize first column 

7.          E[i,1] ← 𝐸[1, j − 1] + (𝑣𝑖
𝑐 − 𝑣1

𝑞)2 + (𝑤𝑖
𝑐 − 𝑤1

𝑞)2   
8.      end for 
9.      for i ← 1 … n do 

10.            for j ← 1 … m do 

11.               𝑘 ← min {

𝐸[𝑖 − 1, 𝑗 − 1]

𝐸[𝑖 − 1, 𝑗]        

𝐸[𝑖, 𝑗 − 1]        
          

12.             E[i,j] ← 𝑘 + (𝑣𝑖
𝑐 − 𝑣𝑗

𝑞)2 + (𝑤𝑖
𝑐 − 𝑤𝑗

𝑞)2 

13.             end for 
14.             min_cost←min(E[i,.]) 

15.             if min_cost > BSF then 

16.                  return ∞ 

17.             end if 

18.      end for 
19.      return E[m,n]  

20.   end function 
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4.4 Experiments and Results 

 

3D DTW performance is evaluated using the UCR public benchmark datasets archive [43]. 

In the UCR time series classification archive, there are 85 time series from different domains and 

problems. Each dataset in this archive comes in two parts, a train partition and a test partition. The 

train partition is used in the model building process, and the test partition is used for measuring 

the classification accuracy. In all time-series datasets, the data is z-normalized prior to the 

experiment to have a mean of 0 and variance of 1.  

In this experiment, we show the classification result with s=0.6 and show that even without 

prior knowledge about the structure of the data and suitable s candidates, 1-NN 3D DTW with a 

default value for s will work well in terms of accuracy and running time, especially on the long 

time series.  

Our webpage reports all raw numbers and contains the C++ source code for 1-NN 3D DTW. 

All experiments were performed on an Intel Xeon E5-2620 (2.00 GHz) machine with single core 

setting. All C++ codes were compiled with gcc-5.3 with –O3 optimization. We will show a 

comparison of 1-NN 3D DTW classifier to 1-NN ED, 1-NN DTW, BOSS VS [45], Random forest, 

SVM with a quadratic kernel, Naive Bayes classifier, and Random Forest.  

4.4.1  Case study  

For the purpose of the case study, two long and large time series datasets are selected from 

the UCR archive. The purpose is to demonstrate the very efficient running time of 1-NN 3D DTW 

classification, as well as its high accuracy on long time series. 



 

41 
 

4.4.1.1 Phoneme 

Phonemes are the smallest units of intelligible sound produced by a human being, and 

phonetic spelling is the sequence of phonemes that a word comprises. The original phoneme 

dataset is presented in [44], which has 370,000 phonemes and massive amounts of noise. It is one 

of the largest single-dimension time series classification dataset. The data in the original dataset 

are of un-equal length. Having as much as 39 classes, Phoneme time series are very challenging 

to classify. Three sample time series with different classes are randomly selected from the dataset, 

which are shown in Figure 20. The black graph shows the raw data, and the red graph shows the 

jump points and steps after CCA representation and data reduction. From the left graph to the right 

graph, respectively, 1024 points of the raw data are reduced to 160, 17 and 310 points (segments) 

by CCA transformation, respectively.  

 

(a) Sample 1 (b) Sample 2 (c) Sample 3 

 

Figure 20. Graphical presentation of 3 samples of Phoneme datasets with 3 different classes. . 

The raw data is presented in black line and the approximation in red line. 
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Figure 21. Phoneme classification accuracy comparison. 

The classification accuracy and process time of 1-NN-3D DTW are compared with state-

of-the-art implementation of 1-NN DTW and BOSS VS in Figure 21. 3D DTW has the highest 

accuracy with 25.2%. Classification of this problem by 1-NN DTW on a single core machine takes 

around 45 minutes, while 1-NN-3D DTW prediction is done in less than 5 minutes (close to BOSS 

VS) with better accuracy. 

4.4.1.2 Starlight curves 

StarLight curves is the largest dataset available in the UCR time series archive [43]. It 

contains 1000 train and 8236 test records with a length of 1024 in three types of classes (star 

objects): Eclipsed Binaries, Cepheid and RR Lyrae Variables.  

Figure 22, shows sample graphs in each class. The difficult part of classification is 

detecting RR Lyrae Variables from Cepheids due to their similar shapes. Since there is smooth 

change of values in this problem, the CCA representation is very effective, and it can significantly 

reduce the number of points after transformation. This will result faster classification process. 
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Figure 22, shows, from left to right, reduction of 1024 raw data points to 7, 19 and 12 points 

(segments) by CCA transformation respectively. Figure 23, compares the classification accuracy 

among classifiers. 1-NN 3D DTW accuracy is among the best scores and nearly the same as 1-NN 

DTW while significantly outperforming every other classifier in time.  

 

(a) RR Lyrae Variables  (b) Eclipsed Binaries  (c) Cepheids  

Figure 22. Graphical presentation of 3 samples of Starlight Curves datasets with 3 different 

classes. The raw data is presented in black line and the approximation in red line. 

 

 

Figure 23. Starlight curves classification accuracy comparison. 
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While the state-of-the-art 1-NN DTW takes 2 hours, and BOSS VS takes 3 minutes to 

process the classification of this problem, 1NN-3D DTW does the same job in less than 8 seconds 

on the same machine with the same accuracy. Whereas BOSS VS is among the fastest classifiers 

and is significantly faster than 1-NN DTW CV, 1-NN DTW, SVM and Random Forest [45], it is 

outperformed by 1NN 3D DTW by about 20 times. 

4.4.2 Classification Accuracy 

Figure 24, shows the comparison of 1-NN 3D DTW to 1-NN DTW classification accuracy 

for all datasets in the UCR archive. 1-NN DTW is frequently used as the benchmark for 

comparison [6]-[9]. In this figure, each point represents one dataset. The x-axis is the difference 

between 1-NN 3D DTW and 1-NN DTW classification accuracies, and the y-axis is the length of 

time series. The points on the right side of the y- axis are the datasets which 1-NN 3D DTW 

performs better, and the points on the left side of the y-axis are the datasets which 1-NN DTW 

does better in terms of classification accuracy.  
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Figure 24. Difference in accuracy between 1-NN 3D DTW and 1-NN DTW classification on all 

85 time series datasets in UCR archive with different time series lengths. 

 

Figure 24, shows that 1-NN 3D DTW performance in term of accuracy is competitive to 

1-NN DTW. The majority of datasets fall within a range of -10% to 10%.  However, the main 

advantage of our method is in accelerating the classification process rather than improving the 

accuracy.  

The classification time becomes a more significant factor for long time series, and it is 

where most current classifiers fall short. In many use cases a faster prediction is much more 

important than a non-significant increase in accuracy. For that reason, we are interested to see how 

our method works on long time series (500 points and above). There are 28 datasets in UCR archive 

with more than or equal to 500 lengths. Table III, shows the list of these datasets along with their 

lengths. 
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TABLE III. THE LIST OF LONG TIME SERIES DATASETS IN URC ARCHIVE 

Dataset name Length Dataset name Length 

BeetleFly 512 MALLAT 1024 

BirdChicken 512 NonInvasiveFatalECG1 750 

Car 577 NonInvasiveFatalECG2 750 

CinC_ECG_torso 1639 OliveOil 570 

Computers 720 Phoneme 1024 

Earthquakes 512 RefrigerationDevices 720 

FordA 500 ScreenType 720 

FordB 500 ShapeletSim 500 

HandOutlines 2709 ShapesAll 512 

Haptics 1092 SmallKitchenAppliances 720 

Herring 512 StarlightCurves 1024 

InlineSkate 1882 UWaveGestureLibraryAll 945 

LargeKitchenAppliances 720 Worms 900 

Lighting2 637 WormsTwoClass 900 

 

First, we compare the accuracy of 1-NN 3D DTW on long time series with 1-NN ED and 

1-NN DTW which are the most common time series classifiers. We also review the accuracy of 1-

NN ED Centroid and 1-NN DTW Centroid which are considered to be very fast classifiers. 
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a)  b) 

c) d) 

Figure 25. Pairwise classification accuracy comparison of 1-NN 3D DTW with 1-NN ED, 1-NN 

ED Centroid, 1-NN DTW and 1-NN DTW Centroid (8) on all long datasets 

 

Figure 25, shows pairwise classification accuracies comparison between 1-NN 3D DTW 

and (a) 1-NN ED, (b) 1-NN ED Centroid, (c) 1-NN DTW and (d) 1-NN DTW Centroid. Each long 

time series dataset is represented by one blue point. Each point under the straight red line indicates 

that 1-NN 3D DTW is more accurate. The 1-NN 3D DTW offers a significantly higher accuracy 
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than 1-NN ED, 1-NN ED Centroid and 1-NN DTW Centroid. Our 1-NN 3D DTW also 

outperforms the accuracy of 1-NN DTW for more than half of long time series datasets (15 win/13 

lose). In the next section, we show that 1-NN 3D DTW is orders of magnitude faster than 1-NN 

DTW.  

Figure 26, shows the pairwise accuracy comparison of 1-NN 3D DTW with Naïve base (a 

fast classifier), SVM (with a quadratic kernel), Random Forest (which is a tree based ensemble 

method) and the state-of-the-art BOSS VS classifier [45].  

The 1-NN 3D DTW classifier outperforms Naïve base, Random Forest, and SVM. On most 

long time series datasets, the accuracy difference of 1-NN 3D DTW to BOSS VS is within -15% 

to 10%. Note that there are many circumstances in which we would prefer to sacrifice some levels 

of accuracy for considerable speedup [31] [41]. The advantage of the 1-NN 3D DTW classifier is 

its efficient running time before its classification accuracy. 

Note that here we did not compare the accuracy of ensemble methods such as COTE [46], 

Elastic Ensemble (PROP) [7], BOSS [47] and Shotgun [48]. They might improve the accuracy but 

their outstanding accuracy is achieved at the cost of a very high classification time. For example, 

the COTE classifier is an ensemble of 35 different classifiers, and it has to run all of these 

classifiers first to predict a label.  

We also did not compare the accuracy of TSBF [49], Fast Shapelets [50], Logical Shapelets 

[51], Bag-of-Patterns [52] and SAX-VSM [53] because BOSS VS classifier outperforms 

significantly these classifiers significantly in time or accuracy. 
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a)  b)  

c)  

 

d) 

Figure 26. Pairwise classification accuracy comparison of 1-NN 3D DTW with Naïve Bayes, 

Random Forest, SVM Quadratic Kernel and BOSS VS on all long datasets. 

4.4.3 Classification Speed 

 

Figure 27, demonstrates the pairwise comparison of classification time of 1-NN 3D DTW 

with 1-NN DTW on all 85 time series in URC archive. Each point represents a classification time 
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(in seconds) of one time series dataset. The points above the straight blue line indicate less 

classification runtime in 1-NN 3D DTW compared to 1-NN DTW. 

As seen in Figure 27, 1-NN 3D DTW has a huge performance leap over 1-NN DTW in 

terms of time on all UCR time series datasets. It takes only around 45 minutes to classify all 85 

time series datasets by the 1-NN 3D DTW using 1 CPU core, whereas the same job takes more 

than 18 hours by the state-of-the-art 1-NN DTW implementation and also more than 1.2 hours by 

a single-core running BOSS VS classifier. 

Using 1-NN 3D DTW, 73 out of 85 datasets (86%) are classified in less than 10 seconds, 

and 80 out of 85 datasets (92%) are classified less than 1 minute. For the long time series datasets, 

using 1-NN 3D DTW, the classification of all datasets finishes roughly in 37 minutes.  

 

Figure 27. Pairwise classification time comparison of 1-NN 3D DTW with 1-NN DTW on all 85 

time series datasets. 
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Figure 28. Pairwise classification time comparison of 1-NN 3D DTW with 1-NN DTW and BOSS 

VS on all long datasets 

Using 1-NN DTW and BOSS VS the classification finishes approximately after 17 hours 

and 1 hour, respectively.  

On the trade-off between classification accuracy against processing time and 

computational cost, 1-NN 3D DTW performs reasonably well. On one hand, it is considerably 

more accurate than extremely fast classifiers (such as 1-NN ED, 1-NN ED Centroid, Naïve Bayes, 

etc.), and, on the other hand, it is significantly faster than extremely accurate classifiers (such as 

COTE Ensemble, Elastic Ensemble PROP, BOSS Ensemble, Shotgun Ensemble, etc.). 

The details of classification time comparison between 1-NN 3D DTW, 1-NN DTW, and 

BOSS VS on all long time series datasets are presented in Figure 28, 1-NN 3D DTW is 

significantly faster than 1-NN DTW with similar or better accuracy. It is orders of magnitude faster 

than 1-NN DTW in all long time series.  
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1-NN 3D DTW is faster than BOSS VS with a slightly declined accuracy. In all the long 

time series datasets, 1-NN 3D DTW is faster than BOSS VS except only three time series datasets 

(Phoneme, FordA and FordB). 

4.4.4 Texas Sharpshooter Plot 

 

Along with measuring the accuracy and time classification of 1-NN 3D DTW and 

comparing it to other methods, it is needed to predict ahead of time on which datasets and domains 

1-NN 3D DTW will reach superior classification accuracy results. The Texas sharpshooter plot 

[10] is the tool to predict if one method or the other is performing better in terms of classification 

accuracy. The goal is to predict the test classification accuracy for 1-NN 3D DTW and the 1-NN 

ED based on the classification accuracy on the training datasets.  

In order to create the Texas sharpshooter plot, we used the expected gain equation which 

is proposed in [10],[11].  

Expected gain =
1 − NN 3D DTW  accuracy 

1 − NN ED accuracy
 

We used 3- fold cross validation to calculate the classification accuracy on the train 

datasets. If the expected gain is greater than 1, we can assume that 1-NN 3D DTW will have a 

better result than 1-NN ED in the testing of that particular dataset too. In Figure 29, the comparison 

of the actual gain (based on the testing dataset) against the expected gain (based on the training 

dataset) of 1-NN 3D DTW and 1-NN ED is presented. 
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Figure 29. Expected accuracy gain of 1-NN 3D DTW/1-NN ED from train data compared to 

actual accuracy gain on test data for long datasets. 

 

There are 4 areas in this plot: 

– True Positive (TP): Where expected gain is greater than 1 and actual gain is also greater than 

1. It means we expected the better accuracy and we received the better accuracy. 16 out of 28 

datasets fall into this area. 

– False Negative (FN): Where expected gain is less than 1, but the actual gain is greater than 1. 

It means we expected worst accuracy, but we got the better accuracy. 1 out of 28 datasets falls into 

this area (Haptics). 

– True Negative (TN): Where expected gain and actual gain are both less than 1. It means we 

correctly expected that the accuracy would decrease. 10 out of 28 datasets fall into this area. 
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– False Positive (FP): Where expected gain is greater than 1, but the actual gain is less than 1. It 

means we wrongly expected the accuracy to improve, but it got worse. This is the bad area because 

we decided to use 1-NN 3D DTW based on the expected gain on the training but we lost accuracy 

in testing. There is only 1 out of 28 datasets which falls into this area (InlineSkate). 

Therefore, in general 1-NN 3D DTW enjoys a high level of predictability for the 

classification accuracy of long time series datasets. 

4.5 Finding Optimal Resolution Parameter  

 

The resolution of reduction is parameterized (s), and can be used to control the coarsening 

of the transformation, which influences the running time and accuracy. One challenge by applying 

the CCA is choosing the proper s for approximation. Our experiments with various range of s 

values over all the UCR datasets, could not verify a meaningful trend of accuracy relative to s 

consistent with all the datasets. This parameter can be selected according to the prior knowledge 

of the data, or by cross-validation. Cross validation can be efficient and effective when improving 

accuracy is of higher concern.  

The results showed that, on most time series, choosing an s value, which creates an even 

number of partitions (with the middle threshold falling on zero line), generally obtain better 

results in terms of accuracy. On a large scale, some particular s values were observed to perform 

better on average. In Figure 30, the effect of s values on the classification error rate for some 

example datasets is presented. 
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Figure 30. The effect of s values on some example datasets 
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5 BLOCKED DYNAMIC TIME WARPING 
 

Material from my own previously work [75], 2017 KAIS, is reused in this chapter. 

5.1 Introduction 
 

There are two approaches to deal with computational complexity of DTW (which is its 

main downside): Using approximation of DTW and utilizing pruning strategies in the exact DTW 

calculation.  

Diverse estimate and approximation strategies are produced to make DTW quicker while 

keeping its accuracy (precision) level. Utilizing constrained warping window in DTW matrix and 

applying DTW on reduced-dimension representation of the time series are examples of these 

approximation techniques.  

In 2016, AWarp (Warping Distance for Sparse Time Series) was presented which is viewed 

as another effective approximation technique. However, this technique is appropriate only for 

sparse time series. Sparse time series are an special type of time series which contain repetition of 

zeros alongside non-zero values [65].  

AWarp exploits repetition (runs) of zeros in time series, however there are many cases that 

repeated values in time series are non-zero. AWarp is not valuable any longer in these cases. Figure 

31, demonstrates a few cases of time series with no-zero values repetition from UCR time series 

archive [43].  

In this Chapter, Blocked Dynamic Time Warping (BDTW) is exhibited as another warping 

distance alongside its variations which deal with time series with runs of any values (zeros or non 

zeros).  
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Figure 31. Example of time series with values repetition 

 

Before using BDTW, time series should be Run Lengths encoded. Run Lengths encoding 

uses the repetition of values in time series and reduces the lengths (dimension) of time series. This 

is the reason which makes BDTW calculation faster than calculation of original DTW (based on 

the original length of time series). For binary-valued (and in fact any two-valued) time series with 

runs (repetition) of zero or non-zero values based on our experiments, BDTW results in the exact 

DTW distance. BDTW also obtains a lower bound and an upper bound for any-valued time series 

which has repetition of any values (zero or non-zero).  
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BDTW_UB, BDTW upper bound distance, is a close approximation of DTW distance. The 

more value repetition rate of a time series causes the more shrinkage of time series length after 

Run Lengths encoding. Therefore, when using BDTW, the higher value repetition rate of time 

series, causes the shorter processing time. Because the processing time depend on the length of 

time series. 

We can also combine BDTW with several time series representation methods such as PAA 

and APCA, to obtain a new approximation method which is applicable for time series with low 

rate of value repetitions or even without any value repetitions.  

5.2 Related Work 

 

5.2.1 Warping Distance for Sparse Time Series 

 

  The AWarp method was presented in 2016 as a new DTW approximation technique for 

sparse time series. Sparse time series include disproportionately-spread runs of zeroes and none-

zero values as observations. For sparse time series, AWarp introduces a lower bound and an upper 

bound of DTW distance. However, AWarp only woks on sparse time series and only takes 

advantage of repetition of zero but our proposed method, BDTW, utilizes repetition/runs of any 

values.  

The comparison of utilization of AWarp and BDTW is summarized in Table IV. AWarp 

and BDTW both (based on our experiments) result in the exact DTW distance for binary-valued 

time series. If a binary-valued time series has both repetition of zeros and ones, in AWarp, 

repetition of ones is not useful in reducing the calculation time of the exact DTW. However, 

BDTW exploits both the repetition (runs) of zeros and ones. In addition to binary-valued time 

series, any two-valued time series can be used with BDTW which again results in the exact DTW. 
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AWarp is helpful for more-than-two-valued time series with repetition (runs) of zeros but, BDTW 

is usable for more-than-two-valued time with repetition (runs) of any values. Combination of 

BDTW and APCA obtains an approximation method which can be used for all time series with or 

without value repetition. 

 

TABLE IV. THE COMPARISON OF THE APPLICATION OF AWARP AND BDTW 

Time series type Usable method Output 

Two valued- binary-with repetition of zeros AWarp BDTW exact DTW 

Two valued- binary-with repetition of ones - BDTW exact DTW 

Two valued-non binary-with repetition of any 

values - BDTW exact DTW 

More than two valued-with repetition of zeros AWarp BDTW 

DTW upper and lower 

bounds  

More than two valued-with repetition of any 

values - BDTW 

DTW upper and lower 

bounds  

More than two valued- without any values 

repetition - BDTW+APCA DTW approximation 

 

BDTW has another benefit over AWarp. BDTW is compatible with z-normalization of 

time series. After z-normalization of a sparse time series with repetition of zeros, zeros will change 

to non-zero values and AWarp would not be helpful anymore. One the other hand, BDTW in this 

case is still applicable after z-normalization because it works with repetition of none-zero values 

as well. This is an important issue since usually z-normalization is an essential stage in 

preprocessing for classification of time series to evade some invariance of time series such as 

amplitude and offset invariances. 

5.2.2 Using an Upper Bound to Speed up All-Pairwise DTW Matrix Calculation 

In 2016, PrunedDTW was introduced as a method to accelerate the calculation of exact 

DTW matrix [66]. PrunedDTW can be used in all-pairwise DTW calculation which is required in 

classification and clustering of time series. In PrunedDTW, Euclidean Distance (ED) is used as an 
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upper bound for pruning the cells inside DTW matrix which are considered as unhopeful 

alignments. The main idea of PrunedDTW comes from a basic observation: in each DTW matrix, 

a cell with relatively great value typically is not likely to be on the optimal pass. By considering a 

DTW upper bound and finding the cells which have higher than that upper bound, we can detect 

the other cells which have no chance of being on the optimal path and we can prune these cells in 

the process of DTW calculation and filling of DTW matrix.  

In one hand since the time complexity of ED is linear it does not impose much of time 

overload on DTW calculation. But on the other hand it is not a tight upper bound and its pruning 

power in DTW calculation is limited. 

5.2.3 PAA Based DTW Approximation 

Several approximation methods have been developed to address the problem of high time 

complexity of DTW [67-70,74].  One of these methods is based on combination of PAA and DTW 

[67]. This method is called Abstraction. The abstraction method is performed in 3 steps:  

1- Transforming time series to constant segments and reducing the resolution of time series 

using PAA.  

2- Applying DTW on a reduced resolution of time series and finding the optimal path on the 

abstraction level of the time series.  

3- Mapping the optimal path on the original time series and approximating the DTW distance. 

 

5.3 Blocked Dynamic Time Warping 

5.3.1 Time Series Encoding 

A time series Run Lengths encoding is defined by considering the repetitive values and 

their number of runs (the quantity of their repetition). In this encoding each repetitive value is 
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represented one time for each run along with its number of runs inside a parenthesis. This encoding 

reduces the length of time series with repetitive values. For instance, a time series T= 

{1,3,3,3,3,2,2,2,3,3,3,3,3,1,1,2,2,2,2,1}, after encoding is presented as 

TENC={1(1),3(4),2(3),3(5),1(2),2(4),1(1)}. In this example, we can see that the original length of time series 

after encoding changes from 20 to 7. Since in DTW algorithm the first values of two time series must be 

aligned together as well as the last values of time series, we should keep the first value and last value of the 

time series as single values (with one repetition). In order to do that if a time series starts with repetition 

(runs) of a value or ends with repetition (runs) of a value, we keep the first value (and last value) as one 

repetition and encode the rest of values. For instance, a time series A = {3,3,3,3,3,3,1,1,1,2,2,2,2,2,2,2}, 

after encoding is presented as Aenc ={3(1),3(5),1(3),2(6),2(1)}. 

Next, a measure is defined that represents the level of repetitiveness of time series. This measure 

is named repetitiveness rate (rr) or repetition rate. The repetitiveness rate indicates how frequent values are 

repeated in a time series. If the original length of a time series is 𝑙 and the length of time series after encoding 

is 𝑙′, the time series repetitiveness rate (trr) is defined as: 

𝑡𝑟𝑟 = (1 −
𝑙′

𝑙
) ∗ 100 (5.1) 

The repetitiveness rate (𝑟𝑟) can also be defined for a dataset. For a time series dataset with K instances (that 

ith time series has the length of 𝑙𝑖 and i is from 1 to K), the repetitiveness rate (𝑟𝑟) is defined as: 

𝑟𝑟 = (1 −
∑ 𝑙′

𝑖
𝐾
𝑖=1

∑ 𝑙𝑖
𝐾
𝑖=1

) ∗ 100 (5.2) 

If in a time series dataset, original length of all instances are equal (with length of n), the repetitiveness rate 

is defined as: 

𝑟𝑟 = (1 −
∑ 𝑙′

𝑖
𝐾
𝑖=1

𝐾𝑛
) ∗ 100 (5.3) 

A higher 𝑟𝑟 of a dataset, shows higher level of values repetition in that dataset. 
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5.3.2 Blocked Dynamic Time Warping Structure 

Definition 

In DTW matrix, each cell represents the alignment of values between two time series. Set of 

adjacent cells that represent the alignments of repetitive values in a DTW matrix is named a block. In Figure 

32a, an example traditional DTW matrix is shown and blocks are depicted with different colors in this 

matrix. In Figure 32b, a Blocked Dynamic Time Warping matrix is presented and each cell in this matrix 

corresponds with a block in the conventional DTW matrix.  

 1 0 0 1 0 1 1 1 0 

0 1 1 1 2 2 3 4 5 5 

1 1 2 2 1 2 2 2 2 3 

1 1 2 3 1 2 2 2 2 3 

1 1 2 3 1 2 2 2 2 3 

1 1 2 3 1 2 2 2 2 3 

0 2 1 1 2 1 2 3 3 2 

1 2 2 2 1 2 1 1 1 2 

0 3 2 2 2 1 2 2 2 1 

0 4 2 2 3 1 2 3 3 1 

0 5 2 2 3 1 2 3 4 1 

1 5 3 3 2 2 1 1 1 2 

a) Traditional DTW matrix     a) Blocked DTW matrix 

Figure 32. Traditional DTW matrix and Block DTW matrix for two binary time series (X and Y) 

 

The Blocked Dynamic Time Warping (BDTW) works on encoded time series. The input of BDTW 

algorithm (Algorithm 5.1) is two encoded time series and the optimal path is calculated based on them. 

Since for time series with repetition of values the length of encoded time series are less than length of 

original time series, the computational complexity of BDTW is less than traditional DTW. Given 𝑙𝑥 and 𝑙𝑦 

as the length of two time series, the traditional matrix will be a 𝑙𝑥  by 𝑙𝑦  matrix and a block in this matrix is 

represented by a cell in BDTW matrix. Assume value a is repeated A times in time series X and value b is 

repeated B time in time series Y, we would have  𝑎 (𝐴) as a point in encoded X and 𝑏 (𝐵) as a point in 

 1(1) 0(2) 1 0 1(3) 0(1) 

0(1) 1 1 2 2 5 5 

1(4) 1 3 1 2 2 3 

0(1) 2 1 2 1 3 2 

1(1) 2 2 1 2 1 2 

0(3) 5 2 3 1 4 1 

1(1) 5 3 2 2 1 2 
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encoded Y. The intersection of these two points in BDTW matrix represents the alignments within a block 

in the original DTW matrix.  

The structure of the BDTW matrix is presented in Figure 33. In this figure, the accumulative 

distance of the alignments between 𝑎 (𝐴) and 𝑏 (𝐵) is 𝐷𝑖,𝑗. 

  1 … 𝑗 … 𝑙𝑦  

 𝑦 → … … 𝑏 (𝐵) …  
1 … … … …   

… … … 𝐷𝑖−1,𝑗−1↘ 𝐷𝑖−1,𝑗↓   

𝑖 𝑎 (𝐴) … 𝐷𝑖,𝑗−1  → 𝐷𝑖,𝑗   
… …      

𝑙𝑥        

 𝑥 ↑      

Figure 33. The structure of the BDTW cost matrix 

 

 𝐷𝑖,𝑗 is calculated based on the Euclidean distance between 𝑎 (𝐴) and 𝑏 (𝐵) points, plus the 

minimum accumulative distance from previous cells which are from adjacent top cell (𝐷𝑖−1,𝑗), adjacent left 

cell (𝐷𝑖,𝑗−1) or adjacent diagonal cells (𝐷𝑖−1,𝑗−1). The distance between 𝑎 (𝐴) and 𝑏 (𝐵) points depends on 

the direction of the optimal path that enters the intersection cell. If the optimal path enters the cell 𝐷𝑖,𝑗 , 

from the top cell (𝐷𝑖−1,𝑗), the distance of block is equal to 𝐵 ∗ (𝑎 − 𝑏)2. If it enters from left cell (𝐷𝑖−1,𝑗), 

the distance of the block will be equal to 𝐴 ∗ (𝑎 − 𝑏)2 and if enters from the diagonal cell (𝐷𝑖−1,𝑗−1), the 

distance of the block will be equal to 𝑀𝑎𝑥(𝐴, 𝐵) ∗ (𝑎 − 𝑏)2. 

Finally 𝐷𝑖,𝑗 is calculated based on the path which obtains the minimum distance: 

 Top Left Diagonal 

𝐷𝑖,𝑗 = min {𝐷𝑖−1,𝑗 + A ∗ (𝑎 − 𝑏)2,       𝐷𝑖,𝑗−1 + 𝐵 ∗ (𝑎 − 𝑏)2,        𝐷𝑖−1,𝑗−1 + max(𝐴, 𝐵) ∗ (𝑎 − 𝑏)2} 
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5.3.3 Using BDTW for DTW Calculation of Different Time Series 

5.3.3.1 BDTW on Binary-Valued Time Series 

For binary (or any two-valued) time series, based on our experiments BDTW distance result is 

exactly same as DTW distance. 

Example: Given original time series X={0,1,1,1,1,0,1,0,0,0,1} with length of 11, and 

Y={1,0,0,1,0,1,1,1,0} with length of 9, begin by the transforming X and Y to encoded time series: 

XENC={0(1),1(4),0(1),1(1),0(3),1(1)} and YENC={1(1),0(2),1,0,1(3),0(1)} reducing both original time series to 

a length of 6. The encoded time series then fill the outer shell of the BDTW cost matrix. Next, apply the 

BDTW algorithm, the resulting matrix is represented in Figure 32b.  

The conventional DTW cost matrix is presented in Figure 32a. The values in the BDTW cost matrix are 

identical to the values of the corresponding blocks of the DTW matrix.  

Algorithm 5.1 Blocked_DTW_UB(series1, series2)  

Required: series1 & series2 ←reduced time series in a 2xn data frame. The first row of the data frame is 

the values of the reduced time series, the second row is the number of repetitions. 

Note: A and B represent the values of the points in the data reduced series, a and b are the number of 

times these values are repeated. 

Ensure: Output the distance d between series1 and series2 

  1: la ← length(series1), lb ← length(series2) 

  2: D(1:la, 1:lb) ←  ∞ 

  3: D1,1 ← (A1-B1)2 

  4: for i ← 1 to la  

  5: Di,1 ← Ai(ai-b1)2 

  6: end for 

  7: for j ← 1 to lb   

  8: D1,j ← Bj(a1-bj)2 

  9: end for 

10: for i ← 2 to la 

11: for j ← 2 to lb 

12:  top ← Di-1,j + Ai(ai-bj)2 

13:   diagonal ← Di-1,j-1 + max(Ai, Bj)(ai-bj)2 

14:   left ← Di,j-1 + Bj(ai-bj)2 

15:   Di,j ← min(top, diagonal, left) 

16:  end for 

17: end for 

18: return Dla,lb 



 

65 
 

5.3.3.2 BDTW on any-valued repetitive time series 

For two–valued time series (including binary-valued time series), in calculation of optimal path 

and distance in a block, the role of all repetitive values are identical and the paths do not come from the 

middle of repetitive values. However, it is not the case for more-than-two-valued repetitive time series. For 

example if a point in one encoded time series is 4(3), all (3 times repeated) values of 4, do not play the same 

role in the distance calculation of the related block. A value in the middle of run (repetitions) might change 

the direction of the path inside the block. 

 1 3 3 3 2 

1 0 4 8 12 13 

2 1 1 2 3 3 

1 1 5 5 6 4 

2 2 2 3 4 4 
 

 1(1) 3(3) 2(1) 

1(1) 0 12 13 

2(1) 1 3 3 

1(1) 1 7 4 

2(1) 2 4 4 
 

 

a) Traditional DTW matrix  b) Blocked DTW matrix 

Figure 34. Traditional DTW matrix 

Figure 34, displays a regular DTW matrix and a blocked DTW matrix that one of the input time 

series is more-than-two-valued repetitive series. In this example the bottom-right value (6) in the block on 

the 3rd row (the blue block) is not equal to the corresponding cell value in BDTW matrix (7). The reason is 

that all the repetitive values in a block do not necessarily have the identical role in calculation of the values 

of the cells. By following the cells value calculation in the traditional matrix we notice that the second value 

in repetitive values (second 3 in the repetition) affects the calculation of the value 6 in the bottom right of 

the blue block. The effect of inside repetitive values obtains the optimal path with minimum DTW distance 

and ignoring this effect in BDTW might cause to different block distance. Since this distance is not 

calculated based on the optimal path inside the block, it might be higher or equal to the optimal path 

distance. Because of this fact, BDTW for more-than-two-valued repetitive time series is an upper bound of 

DTW distance and the algorithm 5.1 can be referred as BDTW_ Upper Bound (BDTW_UB) for this type 

of time series. 
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Figure 35, shows a graphical comparison of DTW and BDTW_UB on an example. Two time series 

are selected form first 2 rows of “ElecticDevices” dataset (from UCR time series archive). These time series 

have value repetition and their length is 96. Therefore, traditional DTW matrix for these time series is a 96 

by 96 matrix (Figure 35a) and after performing the calculations based on traditional DTW algorithm, the 

exact DTW distance is 1.858176. 

After the encoding these time series their length shrink to 11. Therefore, BDTW matrix will be a 

11 by 11 matrix (Figure 35b) and after performing the calculations based on BDTW_UB algorithm, the 

BDTW distance is 1.858309. Note that as expected, this distance is higher than DTW but it is a very close 

approximation. For time series with high repetition rate, on one hand since BDTW shrinks the size of the 

cost matrix, it is faster than DTW (with less computational cost) and the distance calculated by this 

algorithm is a very close approximation of DTW distance. For time series without any repetitive values, 

BDTW algorithm obtains the same distance as traditional DTW. 
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Figure 35. Graphical comparison of DTW and BDTW UB alignments 
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Furthermore, it is possible to change the formula in BDTW algorithm to obtain a lower bound of 

DTW distance. If we change the formula in the cases that the path is coming from diagonal to 

min(𝐴, 𝐵) ∗ (𝑎 − 𝑏)2, it will guaranty that the bottom-right value of the block is less than or equal to exact 

DTW distance of that block. Therefore, by this formulation the total BDTW distance of the matrix is lower 

bound of exact DTW distance. Algorithm 5.2, which is referred as BDTW_ Lower Bound (BDTW_LB), 

considers this change in the formula and obtains a DTW lower bound distance for time series with repetition 

of values. 

Algorithm 5.2 Blocked_DTW_LB(series1, series2) 

Required: series1 & series2 ←reduced time series in a 2xn data frame. The first row of the data frame is 

the values of the reduced time series, the second row is the number of repetitions. 

Note: A and B represent the values of the points in the data reduced series, a and b are the number of 

times these values are repeated. 

Ensure: Output the distance d between series1 and series2 

  1: la ← length(series1), lb ← length(series2) 

  2: D(1:la, 1:lb) ← ∞ 

  3: D1,1 ← (A1-B1)2 

  4: for i ← 1 to la  

  5: Di,1 ← Ai(ai-b1)2 

  6: end for 

  7: for j ← 1 to lb   

  8: D1,j ← Bj(a1-bj)2 

  9: end for 

10: for i ← 2 to la 

11: for j ← 2 to lb 

12:  top ← Di-1,j + Ai(ai-bj)2 

13:   diagonal ← Di-1,j-1 + (min(Ai, Bj))(ai-bj)2 

14:   left ← Di,j-1 + Bj(ai-bj)2 

15:   Di,j ← min(top, diagonal , left) 

16:  end for 

17: end for 

18: return Dla,lb 
 

 

5.3.4 Constrained Blocked Dynamic Time Warping  

As discussed in Section 2.4.1, one of the approaches to accelerate DTW is using Constrained DTW. 

In this method a warping windows is defined by the user to limit the cells calculation in the DTW cost 

matrix. Although Constrained DTW does not necessarily obtains the optimal path and exact DTW distance, 
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it is still widely used for time series classification and clustering. Because it is faster than DTW and usually 

obtains close approximation of the exact DTW with usually same or better level of accuracy in time series 

classification. Constrained warping window can be applied in BDTW. Algorithm 5.3 shows the constrained 

BDTW. In this algorithm, first the input time series are encoded time series. Assuming ai and bj timestamps 

as tai and tbj, in the 12th line of the algorithm, |tai – tbj| is defined as the gap. In the 13th line of the algorithm 

if the gap is larger than a specific value (calculated based on defined warping window), the cell value would 

be set to infinity to avoid the warping path crossing the defined boundaries. 

When a cell in the BDTW matrix is considered to be within the boundary, we are assuming that all 

the corresponding traditional DTW are also inside that boundary. This is not always a correct assumption. 

This fact causes a possible difference between Constrained DTW and Constrained BDTW results (even 

with same warping window).  

Because of limiting the search area of warping path on reduced size BDTW matrix, Constrained 

BDTW calculation is both faster than Constrained DTW and also BDTW. It can be used as another 

approximation of DTW for time series with repetition of values.  

Figure 36, presents the graphical comparison of DTW, DTW Constrained and BDTW Constrained 

alignments. 

 
             

             

             

             

             

             

             

             

             

             

             

             

 

 
 

            

             

             

             

             

 
 

            

 

 
             

             

             

             

             

             

             

             

             

             

             

             

 

 
 

            

             

             

             

             

 
 

            

 

 

 

 
 

          

 

 

 

         

          

          

          

          

          

          

          

          

          

a) Traditional DTW b) Constrained DTW c) Constrained 

BDTW 

 

Figure 36. Graphical comparison of DTW, DTW Constrained and BDTW Constrained 

alignments 
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Note that Constrained BDTW (with any defined warping window) outputs an upper bound of DTW. 

The reason is that constrained BDTW obtains a warping path between two time series and any warping 

path between two time series is an upper bound of their optimal path (Constrained_BDTW>=DTW) 

   

Algorithm 3 Constrainted_BDTW(series1, series2, w) 

Required: series1 & series2 ←reduced time series in a 2xn data frame. The first row of the data frame is 

the values of the reduced time series, the second row is the number of repetitions. 

Note: A and B represent the values of the points in the data reduced series, a and b are the number of 

times these values are repeated. 

w ←warping windows 

Ensure: Output the distance d between series1 and series2 

  1: la ← length(series1), lb ← length(series2) 

  2: D(1:la, 1:lb) ← ∞ 

  3: D1,1 ← (A1-B1)2 

  4: for i ← 1 to la  

  5: Di,1 ← Ai(ai-b1)2 

  6: end for 

  7: for j ← 1 to lb   

  8: D1,j ← Bj(a1-bj)2 

  9: end for 

10: for i ← 2 to la 

11: for j ← 2 to lb 

12:  gap ← |tai – tbj| 

13:  if gap > w && (tbj-1 – tai > w || tai-1 – tbj > w) 

14:   Di,j ← ∞ 

15:  else 

16:   top ← Di-1,j + Ai(ai-bj)2 

17:    diagonal ← Di-1,j-1 + (min(Ai, Bj))(ai-bj)2 

18:    left ← Di,j-1 + Bj(ai-bj)2 

19:    Di,j ← min(top, diagonal , left) 

20:  end ifelse 

21:  end for 

22: end for 

23: return Dla,lb 
 

 

5.3.5 Using BDTW for DTW Approximation of Any-Valued Time Series 

In Section 5.3.3, BDTW is introduced as a close approximation of DTW which can 

significantly reduce DTW calculation for any-valued repetitive time series. But what about time 
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series without values repetition? In this section a new method is proposed to make it possible to 

use BDTW on time series with no values repetition. The idea is performing BDTW after applying 

a representation method on time series which produces constant segments of time series (i.e. PAA 

or APCA). 

The constant segments in PAA or also APCA representation in fact represent the repetition 

a values and the length of the segment represents the number of value repetition. Therefore BDTW 

is applicable on top of constant segments representation methods.  

In Section 5.4.3, it is shown that the APCA-BDTW approximation method beats the 

traditional approach of DTW approximation based on PAA-DTW-Projection. Note that by using 

BDTW after PAA or APCA, there is no need for projection step any more. Figure 38, shows the 

graphical comparison of approximation methods (PAA-DTW-Projection, PAA-BDTW, APCA-

BDTW).  

PAA PAA  APCA 

   
PAA-DTW 

       

 
 

 

      

       

       

       

       

       

       

+ 

Projection 

PAA-BDTW 
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Figure 37. Graphical comparison of approximation methods (PAA-DTW-Projection/PAA-

BDTW/APCA-BDTW) 
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Number of segments (the length of time series) after representation is controllable in PAA 

and APCA. It can be defined as the percentage of a time series length. The number of segments in 

PAA or APCA shows one minus the repetition rate in BDTW. For example if the original length 

of a time series is 200 and the number of segments is considered as 10%, then we would have 20 

segments. After encoding these transformed time series, the encoded time series length will also 

be 20 and the repetition rate is 90% (1-10%).  

The following formula can be used to measure the percentage of error for a distance 

approximation method: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐸𝑟𝑟𝑜𝑟 =
|𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑇𝑟𝑢𝑒 𝐷𝑇𝑊 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒|

𝑇𝑟𝑢𝑒 𝐷𝑇𝑊 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
∗ 100 (5.4) 

APCA–BDTW approximation performance (or PAA-BDTW performance) can be 

evaluated using this formula and compared with performance of other approximation techniques 

such as PAA-DTW-Projection.  

5.3.6 Using BDTW as a Pruning Technique to Calculate Exact DTW 

In addition to approximation methods in DTW calculation, pruning techniques are used to 

accelerate the calculation and obtaining the exact DTW distance. Using lower bounding and upper 

bounding for pruning unhopeful cells in the exact DTW calculation are two important methods in 

this category. 

5.3.6.1 Using BDTW_LB as a New Lower Bound  

In Section 2.4.2, Lower Bounding (LB) and important LB techniques (such as Kim, Yi and 

Keogh lower bounds) are presented. BDTW_LB can be considered as another lower bound 

technique. In a cases that a user prefers to have exact DTW distance (rather than an approximation) 

for time series with high level of repetition, BDTW_LB can be used to reduce the computation 
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time of the calculations.  Lower bounds performances can be evaluated based on their own 

computation time plus their pruning power. BDTW_LB’s computation complexity is quadratic on 

reduced time series length, however it is a very tight lower bound with high pruning power.  

5.3.6.2 Using BDTW_UB as a Upper Bound in PruneDTW   

Squared ED is the upper bound that PrunedDTW uses for pruning unhopeful alignments 

(cells) in the DTW matrix. BDTW_LB can be another alternative for an upper bound to be used 

in PrunedDTW algorithm. On one hand BDTW_LB has higher time complexity than ED, but on 

the other hand it has very tighter upper bound than ED. For the time series with high repetition 

rate, BDTW_LB pruning power will cover its high computation complexity.  

Figure 37, displays an example of pruning unhopeful cells in DTW matrix with different upper 

bounds. Figure 37c, uses the exact DTW as the upper bound for pruning. The exact DTW distance 

is unknown before filling the DTW matrix, but in this case we assume that this value is imaginary 

given to us before starting the calculations in DTW matrix.  Because of that sometimes the exact 

DTW distance as upper bound is called Oracle. Oracle upper bound obtains the highest possible 

pruning power in PrunedDTW. In this example BDTW_UB obtains much better pruning power 

than ED and almost same level of pruning as Oracle upper bound. 

 
  

a) UB: ED b) UB:BDTW c) UB:exact DTW 

Figure 38. An example of pruning unpromising alignments using different upper bounds (ED, 

BDTW and exact 
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5.4 Experiments and Results 

In this section, the performance of BDTW (and its variants) is evaluated on two case studies 

and also 85 benchmark datasets in UCR Archive [43]. Five different application areas of BDTW 

are evaluated in this section: Firstly, using BDTW_UB as an approximation method of DTW for 

time series with high value repetition. Secondly, using a constraint version of BDTW. Thirdly, 

using BDTW_UB on top of APCA or PAA representation methods to approximate DTW distance 

for any time series. Fourthly, using BDTW_LB as a tight lower bound for pruning the time series 

that could not be best match in order to accelerate searches. Fifthly, using BDTW_UB for pruning 

unhopeful warping alignments to speed up the all pairwise DTW matrix calculation. 

5.4.1 Case Study 1: Power Consumption Classification 

 

To illustrate the effectiveness of BDTW over AWap and traditional DTW methods, we use 

a case study to determine types of power consumption. The Almanac of Minutely Power dataset 

Version 2 (AMPds2) is utilized as the data source for this study. AMPds2 is a dataset made 

available by [71] to researches to test models, systems and algorithm on real world data. Available 

datasets have been pre-cleaned to provide comparable accuracy and speed results amongst 

different researchers. 

Over a two-year period, data points have been collected for a single house in Canada in 

AMPds2. These data points include information about electricity, water, and natural gas usage. 

For the propose of this study, only the data points related to electrical power consumption are used. 

Since this dataset contains information for a two-year period, each component can be broken into 

730 time series, one per day. This process is followed for the components of interest (B1E, B2E, 

BME, CDE, CWE, DNE, DWE, EBE, EQE, FGE, FRE, HPE, HTE, OFE, OUE, TVE, UTE, 
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WOE). These components correspond to different sources of electrical consumption such as dining 

room, furnace, outside, etc. Figure 39, shows the example of some of these time series. Note that 

since in some periods of time some components are not active, their power consumption are zero. 

Therefore time series commonly have repetition of zero and non-zero values and it makes sense to 

apply AWarp and BDTW on them. 

 

Figure 39. The example of some of electricity components time series 

Based on this information, the goal is to be able to determine the source of a series. For 

demonstration purposes, we limit our testing to 30 days’ worth of information for each component. 

The data is tested using Leave Out One Cross-Validation. The classification problem is run using 

BDTW, AWarp, DTW, Euclidian Distance, Constrained DTW, and Constrained BDTW. The 

result is presented in Table V.  
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TABLE V. THE COMPARISON OF ACCURACY AND PROCESSING TIME- POWER CONSUMPTION  

Method ED Time DTW  AWarp  BDTW  CDTW  CBDTW  

Accuracy 0.561 0.807 0.806 0.807 0.761 0.776 

Processing time in 

Seconds 51.959 8514.197 3237.528 877.575 936.562 307.496 

 

The result shows that ED accuracy (0.561) is much lower than BDTW accuracy (0.807). 

BDTW accuracy (0.807) is exactly same as DTW accuracy (0.807) and slightly better than AWarp 

(0.806). BDTW is roughly 10 times faster than DTW and 3.7 times faster than AWarp. The 

comparison of CDTW and CBDTW with the same percentage of warping window (10%), shows 

that CBDTW is almost 3 times faster than CDTW with slightly better accuracy. 

5.4.2 Case Study 2: Household Electrical Measurements 

To further show the performance and application of the BDTW method, we use data 

collected on household electrical measurements form [72]. This dataset contains information about 

the electrical usage of different appliances within 21 houses. For the purposes of this case study, 

we focus on two households, houses 3 and 8. To get extract the information for each household 

from the original data we use the supplied UNIX time to split the data into time that represent a 

full day. The data is collected on average each day consists of 10,800 data points, which represents 

one reading every eight seconds. For this study, we limited the data to the first 100 full days for 

each household and just the data that occurred between 5:00pm and 11:00pm (consumption peak 

hours).  

Using this subset of data, we aim to demonstrate the capabilities of BDTW for classifying a 

household in two different contexts, aggregate and freezer power consumption. Figure 40, shows 

two random time series of aggregate and freezer power consumption. This figure shows that for 
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aggregate time series we can see the repetition of values but all repetition values are non-zero. On 

the other hand in Freezer time series we see the repetition of zero and non-zero values. 

 

Figure 40. Two random time series of aggregate and freezer power consumption 

 

The classification problem is run using BDTW, AWarp, DTW, Euclidian Distance, 

Constrained DTW, and Constrained BDTW. The data is tested using Leave Out One Cross-

Validation. The result is presented in Table VI. In both cases (Aggregate and Freezer), the accuracy 

of DTW, AWarp and BDTW are equal and higher than accuracy of ED. Regarding the processing 

time for Aggregate case, since there is no repetition of zero values in time series AWarp is not 

useful. AWarp processing time (174.98s) is even higher than DTW processing time (143.85s). 

BDTW processing time is 57.41s, which means BDTW is 3 times faster than AWarp and 2.5 times 

faster than DTW. In Freezer case, since there is repetition of zero value in the time series (along 

with repetition of non-zero values), AWarp is to some extend useful in reduction of processing 

time. However since BDTW utilizes the repetition of any values (zero and non-zero values), it is 
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significantly faster than AWarp. BDTW is 48.5 times faster than DTW and 4 times faster than 

AWarp. The efficiency improvement of BDTW in Freezer case is more than Aggregate case, 

because the repetition rate of Freezer dataset (91.13%) is more than Aggregate repetition rate 

(49.87%). In both cases CBDTW also obtains similar or better accuracy than CDTW with less 

processing time. CBDTW is more than 2 times faster than CDTW in Aggregate case and 46.6 time 

faster than CDTW in Freezer case. 

TABLE VI. THE COMPARISON OF ACCURACY AND PROCESSING TIME-HOUSEHOLD 

ELECTRICAL MEASUREMENTS 

Dataset rr Method ED DTW AWarp BDTW CDTW CBDTW 

HOUSE3,8 

Aggregate  49.87% 

Accuracy 0.87 0.90 0.90 0.90 0.89 0.87 

Processing 

time 5.67 143.85 174.98 57.41 71.93 33.20 

HOUSE3,8 

Freezer  91.13% 

Accuracy 0.64 0.86 0.86 0.86 0.73 0.77 

Processing 

time 17.62 1394.8 117.23 28.76 697.42 14.95 

 

 

5.4.3 BDTW_UB as an Approximation Method of DTW 

 

Figure 41, shows the classification process time of DTW over BDTW based on different 

repetition rates (the x axes). Each point in this figure represents a dataset from UCR Archive [43] 

and this figure shows that the superiority of BDTW speed over DTW speed increases significantly 

when repetition rate decreases. When a dataset’s repetition rate is greater than 0.25 we can expect 

gain in process time. There are 14 datasets (listed in Table VII) with repetition rate of greater than 

0.25 that in all of them BDTW is faster than traditional DTW. The highest repetition rate is for 

“SmallKitchen Appliances” which BDTW is approximately 3.5 times faster than DTW. 
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TABLE VII. THE LIST OF DATASETS WITH SHORTER PROCESSING TIME USING BDTW 

Dataset name Repetition rate Speed up percentage 

SmallKitchenAppliances 86.4% 3529% 

LargeKitchenAppliances 81.6% 1914% 

ScreenType 77.5% 1421% 

Computers 70.9% 844% 

Earthquakes 68.1% 747% 

RefrigerationDevices 63.9% 505% 

ElectricDevices 57.6% 292% 

wafer 48.8% 206% 

FaceFour 47.2% 199% 

Two_Patterns 34.4% 151% 

uWaveGestureLibrary_Y 31.8% 148% 

uWaveGestureLibraryAll 28.2% 120% 

uWaveGestureLibrary_X 26.2% 139% 

uWaveGestureLibrary_Z 25.6% 132% 

 

Using a nonlinear exponential regression curve fitting method, the following equation can 

be used to estimate the processing time gain based on the repetition rate: 

 

𝑆𝑝𝑒𝑒𝑑 𝐺𝑎𝑖𝑛 = 𝑒4.6348∗(𝑟𝑒𝑝𝑒𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒)2
 

In Figure 42, the comparison BDTW and DTW in terms of classification accuracy is presented. 

This figure shows that BDTW is very close approximation of DTW. In many cases (63 out of 85) 

both methods result in same classification error. In some case (9 out of 85) BDTW classification 

error is slightly less than DTW and in 13 out of 85 datasets DTW has slightly less error.  

Using BDTW for time series with high repetition level (low repetition rate), will have almost same 

accuracy but shorter process time than traditional DTW. 



 

79 
 

 

Figure 41. Speed gain of BDTW for 85 time series datasets in UCR archive 

 

Figure 42. The comparison BDTW and DTW in terms of classification error for 85 time series 

datasets in UCR 

0%

500%

1000%

1500%

2000%

2500%

3000%

3500%

4000%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 100.0%

D
T

W
 p

ro
ce

ss
 t

im
e 

o
v
er

 B
D

T
W

 p
ro

ce
ss

 t
im

e 
%

Repetition Rate

Classification Time Comparison

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
D

T
W

_
U

B

DTW

Classification Error Comparison

DTW is more 

BDTW is more 

accurate



 

80 
 

5.4.4 CBDTW_LB: Constrained Block DTW Lower Bound 

In Table VIII, the classification accuracy of Constrained BDTW (CBDTW) is compared 

with classification accuracy of DTW, Constrained DTW (CDTW) and BDTW for 14 time series 

with high repetition rate in UCR Archive. This table shows that similar to BDTW, CBDTW is a 

close approximation of DTW and in many cases it performs same or better than BDTW (12 out 14 

datasets). 

In Table IX, the process time of DTW, Constrained DTW (with warping window of 10% 

of the length of time series), BDTW and Constrained BDTW (with warping window of 10% of 

the length of time series) for datasets with high repetition rate are compared. On average, 

Constrained BDTW is twice faster than BDTW.  

TABLE VIII. COMPARISON ACCURACY OF DTW, BDTW, CONSTRAINED DTW AND 

CONSTRAINED BDTW 

Dataset 
Repetition 

Rate 

Accuracy 

DTW CDTW BDTW CBDTW 

SmallKitchenAppliances 86.40% 64% 61% 64% 73% 

LargeKitchenAppliances 81.60% 79% 71% 80% 72% 

ScreenType 77.50% 40% 43% 39% 39% 

Computers 70.90% 70% 64% 69% 65% 

Earthquakes 68.10% 74% 74% 74% 74% 

RefrigerationDevices 63.90% 46% 46% 46% 51% 

ElectricDevices 57.60% 60% 62% 61% 64% 

wafer 48.80% 98% 98% 98% 100% 

FaceFour 47.20% 83% 83% 83% 88% 

Two-Patterns 34.40% 100% 100% 100% 100% 

uWaveGestureLibrary-Y 31.80% 63% 66% 63% 70% 

uWaveGestureLibraryAll 28.20% 89% 89% 91% 95% 

uWaveGestureLibrary-X 26.20% 73% 74% 73% 80% 

uWaveGestureLibrary-Z 25.60% 66% 67% 66% 70% 
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TABLE IX. COMPARISON PROCESSING TIME OF DTW, BDTW, CONSTRAINED DTW AND 

CONSTRAINED BDTW 

Dataset rr 
Processing time(s) 

CBDTW Speed-up 

ratio 

DTW CDTW BDTW CBDTW DTW CDTW BDTW 

SmallKitchenAppliances 86.40% 715.4 770.7 20.3 16 44.7 48.2 1.3 

LargeKitchenAppliances 81.60% 718.9 571.4 37.6 22.8 31.5 25.1 1.6 

ScreenType 77.50% 647.7 514.8 45.6 27.7 23.4 18.6 1.6 

Computers 70.90% 312.9 297.5 37.1 24.7 12.6 12 1.5 

Earthquakes 68.10% 124.7 118.5 16.7 11.1 11.2 10.6 1.5 

RefrigerationDevices 63.90% 758.7 1,016.3 150.2 86 8.8 11.8 1.7 

ElectricDevices 57.60% 6,172.2 4,568.5 2,111 1,087 5.7 4.2 1.9 

wafer 48.80% 1,120 375.4 543.5 278.5 4 1.3 2 

FaceFour 47.20% 2.7 3 1.4 0.5 5.3 5.9 2.7 

Two-Patterns 34.40% 724.8 317.4 478.5 195.1 3.7 1.6 2.5 

uWaveGestureLibrary-Y 31.80% 2,496 967.2 1,686 740.1 3.4 1.3 2.3 

uWaveGestureLibraryAll 28.20% 26,655 28,464 22,290 13,844 1.9 2.1 1.6 

uWaveGestureLibrary-X 26.20% 2,688 1,064.9 1,932 850.1 3.2 1.3 2.3 

uWaveGestureLibrary-Z 25.60% 2,335 925.1 1,774 780.6 3 1.2 2.3 

 

 

5.4.5 BDTW_UB and APCA as an Approximation Method for Any-Valued Time Series 

From each datasets in UCR Archive 20% of all-pairwise time series are randomly selected 

and for each time series pair, true DTW distance and approximation distances are calculated. To 

make the process time linear, for calculating DTW approximation we use √𝑛 as the number of 

segments in time series representation (where 𝑛 is the length of time series). Using formula 5.4, 

we calculate the error between exact DTW distance and approximation methods. The 

approximation methods that we compare are Abstraction (using PAA-DTW-Projection), PAA-

BDTW_UB and APCA-BDTW_UB. The result is presented in Figure 43. The x axes is the name 

of the datasets and the y axes is the mean of error. This figure shows that in most datasets PAA-

BDTW_UB and APCA-BDTW_UB outperform PAA-DTW based approximation method (i.e., 

Abstraction). 
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Figure 43. Comparison of approximation error between APCA BDTW and PAA-DTW-

Projection 

 

5.4.6 BDTW_LB: a New Lower Bound to Increase the Efficiency of DTW 

BDTW_LB can be used as lower bound to accelerate the similarity search when we want 

to have the exact DTW (not approximation). In Table X, the power of BDTW_LB in terms of 

speed up the process time of DTW is compared with Kim_LB and Yi_LB lower bounds on 6 

highest repetitive datasets in the UCR Archive. When speed up is less than 1, it means using lower 

bound does not help in reducing the classification process time.  

BDTW_LB performs better than both Kim_LB and Yi_LB in all of these 6 datasets with high 

repetition rate. Usually, as repetition rate of a dataset increases, BDTW_LB performance also 

increases. Note that Keogh lower bound is not compared here, because it only works on 
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constrained DTW but here we evaluate lower bound performance without warping windows 

constrain. 

TABLE X. COMPARISON THE EFFICIENCY OF BDTW LOWER BOUND WITH KIM AND YI LOWER 

BOUNDS 

Dataset 
Repetition 

Rate 

Speed-up ratio 

Kim_LB Yi_LB BDTW_LB 

SmallKitchenAppliances 86% 0.89 1.25 16.87 

LargeKitchenAppliances 82% 0.99 1.36 10.84 

ScreenType 78% 0.95 2.13 5.24 

Computers 71% 0.88 1.65 4.59 

Earthquakes 68% 0.67 0.59 2.32 

RefrigerationDevices 64% 0.88 1.03 2.25 

 

5.4.7 Using BDTW_UB to Speed up All-pairwise DTW Matrix Calculation 

PrunedDTW code is used to measure the performance of BDTW_UB as the applied upper 

bound for pruning unpromising alignments in all-pairwise DTW matrix calculation. In Figure 44, 

the processing time of DTW without pruning, DTW pruned by ED as the upper bound, DTW 

pruned by BDTW_UB as the upper bound and OracleDTW are compared on 6 datasets with high 

repetition rate. The OracleDTW is DTW pruned by the exact DTW distance as the upper bound. 

Note that even in practice we do not have exact DTW distance to use it as the upper bound for 

pruning, here we assume that it is imaginary given to us just to evaluate the highest possible 

pruning power. Therefore, OracleDTW presents the best possible performance of PrunedDTW 

using the optimal upper bound. 

This figure shows that for the high repetition rate problems, BDTW_UB outperformed 

DTW and also DTW pruned by ED. The higher repletion rate in a problem the better perforce of 

BDTW_UB. When repetition rate increases to more than 0.8, BDTW_UB’s performance gets very 

close to OracleDTW’s performance (the best possible performance of PruedDTW). 
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The process time of BDTW_UB is summation of two times: the time for calculating BDTW_UB 

distance and the time for pruning and calculating DTW matrix. Since BDTW_UB is a close 

approximation of exact DTW, its required time for pruning and matrix calculation is very close to 

OracleDTW. However the required time for calculating BDTW_UB distance is the overhead that 

adds to process time. When repetition rate is high enough this overhead will be justified in total 

process time because BDTW_UB distance calculation will be fast. 

Note that in some problems (for example ScreenType, Earthquakes and 

RefrigerationDevices) using ED as the upper bound for pruning does not help in reducing the 

process time. Because for these problems although ED is fast to calculate but, it does not provide 

a powerful pruning level. 

 

Figure 44. Comparison processing time to calculate the all-pairwise DTW distances using DTW 

without pruning. 
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6 CONCLUSION AND FUTURE WORKS 
 

6.1  Summary and Results  

This dissertation focuses on the time series classification and tries to speed up Dynamic 

Time Warping calculations by introducing a new time series representation (transformation) and 

two time series similarity measures which work on transformed time series. In this context, the 

contributions of this dissertation are as follows: 

Control Chart Approximation (CCA): CCA representation approximates and reduces the length 

of raw time series by creating a vector of segments with single values and waiting times. The 

output of CCA representation is the input of 1-NN 3D DTW classifier.  

3 Dimensional Dynamic Time Warping (3D DTW): 3D DTW is the version of traditional DTW 

in a 3 dimensional space. It is used to measure the distance between two transformed time series 

based on CCA representations. 

Using 85 time series, benchmark datasets from UCR archive, including 28 long time series 

datasets in an exhaustive evaluation, it is shown that 1-NN 3D DTW is orders of magnitude faster 

than the state-of-the-art implementation of 1-NN DTW. It has better or similar level of 

classification accuracy for long time series in the experiment. 

The trade-off between classification accuracy against processor time and computational cost, 

1-NN 3D DTW (in comparison to the state-of-the-art classifiers) is competitive and performs 

reasonably well. 

Almost all of 1-NN DTW extension methods for accuracy or efficiency improvements such 

as global warping constraints and weighting techniques, are also applicable on 1-NN 3D DTW. 
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Blocked Dynamic Time Warping (BDTW):  BDTW is a new similarity measure which works 

on run-length encoded time series representation. BDTW takes advantage of values repetition in 

time series to shrink the size of DTW matrix for a reduction of processing time. BDTW algorithms 

offer an upper bound and a lower bound of DTW. BDTW upper bound is a close approximation 

of exact DTW and significantly reduces the processing time of calculations on time series with 

high levels of values repetition. 

The Combination of BDTW upper bound and APCA provides a close approximation of 

DTW distance, even for time series with low levels of values repetition or without any value 

repetition. APCA-BDTW outperforms the approximation method based on PAA-DTW Projection. 

BDTW can also be used as a pruning technique to accelerate calculation of the exact DTW. 

BDTW lower bound can be used for pruning of unpromising candidates in similarity search and it 

performs better Kim and Yi lower bounds for time series with high levels of values repetition. 

BDTW upper bound can also be used for pruning of unpromising alignments in all-pairwise DTW 

calculation and performs better than ED (as the UB) for time series with high levels of values 

repetition. 

In Constrained BDTW Algorithm, a warping constraint is used to limit the search area in 

BDTW matrix and for time series with high repetition rates, Constrained BDTW is faster than 

Constrained DTW with similar or better accuracy. BDTW is also extendable to multidimensional 

time series warping.  

  



 

87 
 

6.2 Future Works  
 

Future improvements in speed and accuracy of time series analysis might be accomplished 

by the following proposed tasks:  

Learning the optimal parameter: Developing tuning methods for parameter s in CCA and 1-

NN 3D DTW, according to the target time series, could further improve the efficiency of this 

technique on some datasets. 

Multidimensional time series: Both 3D DTW and BDTW are extendable to multidimensional 

time series warping. Investigating the specification of multidimensional time series warping on 

these methods can be considered as the future work of this study. 

Time series analytics tasks: The focus of this study is time series classification (TSC). However, 

the application of the proposed similarity measures (3D DTW and BDTW) is not limited to TSC. 

These methods can also straightforwardly be used in time series clustering, motif discovery, or 

discord discovery (anomaly detection).  
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