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SUMMARY 

 In this work, we propose approaches for imputing continuous, binary, and mixed data by first 

mapping these data to normally distributed values and then applying multiple imputation so that 

distributional assumptions for the original data can be relaxed.  For continuous data, our technique 

incorporates transformations and back-transformations suggested by the Lurie and Goldberg (1998), and 

also involves calculating the marginal empirical cumulative distribution function (eCDF), instead of the 

cumulative distribution function of a specific distribution for each variable in the data.  Using eCDF 

values is the key step in allowing us to carry out the imputation procedure while allowing us to relax 

parametric assumptions for the original data.  For binary data, we employed methods presented in 

Emrich and Piedmonte (1991) and Demirtas and Doganay (2012) for generating multivariate binary data 

from an underlying normal distribution associated with tetrachoric correlations derived from the 

pairwise phi coefficients relating the variables of the binary data.  Dichotomizing these normally 

distributed data using quantiles has the same role as computing eCDF values in the case for continuous 

data in that it allows for back-transforming imputed values while relaxing specific parametric 

assumptions.  Additionally, our approach for imputing mixed data incorporating both the Lurie-

Goldberg algorithm and eCDF computation with continuous data and the use of an underlying 

multivariate normal distribution and quantiles used in dichotomizing with binary data.  Applying our 

method to simulated continuous data following the normal, t, or Gamma distributions and to simulated 

binary and mixed data led to promising results in both bivariate and multivariate cases.  The approach 

also performed well with real data sets obtained from the NYC HANES and Prostate SPORE (Grant #: 

P50 Ca 090386) databases, as well as for simulated data resembling these real data sets.  We conducted 

our simulation studies under assumptions of the MCAR mechanism.  We believe that this approach will 

be a useful tool for investigators analyzing data with significant missing information. 
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 In real data scenarios, the distribution of the data is often unknown.  Therefore, methods for 

imputing data which relax distributional or model assumptions may be of great interest to investigators.  

Here, we propose semi-parametric approaches allowing us to relax distributional assumptions when 

imputing continuous data, multinomial or loglinear model assumptions when imputing binary data, and 

general location model assumptions when imputing mixed continuous and binary data.  The 

nonparametric portion of our methods involves mapping data to normally distributed values via 

empirical cumulative distribution (eCDF) or quantile computation and the parametric portion involves 

multiple imputation under the normality assumption via joint modeling.  Applying our approaches to 

data generated under the MCAR mechanism and to real data from databases of the Northwestern 

University SPORE in Prostate Cancer (Grant #: P50 Ca 090386) and New York City Health and 

Nutrition Survey gave promising results. 
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1. INTRODUCTION 

 

One method currently employed by many investigators handling a substantial amount of missing 

data is multiple imputation.  Multiple imputation has been extensively studied under assumptions of data 

following the normal distribution (Little,1992 ; Little and Rubin, 2002; Rubin, 1987; Rubin, 1996; 

Schafer,1997; Schafer, 1999; Yuan and Bentler, 2000), as well as for data following other distributions 

(Demirtas, 2007;  Demirtas and Hedeker, 2007;  Demirtas, 2008; Demirtas et al., 2008; Demirtas and 

Hedeker, 2008; Gold and Bentler, 2000; Gold et al., 2003).  Nevertheless, the exact distribution of real 

data is not commonly known; thus, developing an imputation technique not dependent on the actual 

distribution of the original data is critical.  First, we propose a method employing one algorithm 

presented in Lurie and Goldberg (1998) and an application of the eCDF (empirical cumulative 

distribution function) to impute continuous data without positing any specific distributional assumptions 

directly on that data.  Our method involves mapping the data to normally distributed values, similar to 

those transformations in the Lurie-Goldberg algorithm, imputing missing values (Schafer, 1997), and 

then back-transforming the imputed data to the range of the originally observed data (Barton and 

Schruben, 1993).  Inclusion of principles from the Lurie-Goldberg algorithm in our method leads to the 

conservation of relationships among the variables in the data.  Furthermore, incorporating computation 

the eCDF values allows transformation and back-transformation without assuming specific marginal 

distributions.  

Next, we propose a method using the principles from generating binary data using a normal 

distribution, as described in Emrich and Piedmonte (1991) and Demirtas and Doganay (2012), to impute 

binary data.  We first impute the normally distributed values generated based on a mean of 0 and a 

correlation matrix based on pairwise tetrachoric correlation coefficients, where each coefficient is 
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computed from the distribution and phi coefficient associated with the observed data in the 

corresponding pair of binary variables. We then dichotomize the normally distributed values based on 

quantiles corresponding to probabilities obtained from the distribution of the observed binary data.  

Finally, we incorporate both proposed approaches given here for imputing continuous and binary data to 

impute mixed continuous and binary data.  Our approaches to impute continuous, binary, or mixed data 

can therefore aid analyses of data with significant missing information and relaxing assumptions about 

the specific parametric distribution that the observed data follow.
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2. MULTIPLE IMPUTATION 

 

2.1 Definition 

 

 Multiple imputation is an attractive approach for handling missing data.  It is preferred to ad hoc 

methods such as complete-case and available-case analyses when the amount of missing values is 

substantial, as the latter approaches may lead to inefficiency and bias in the data analysis (Schafer, 

1997).   We define multiple imputation as a Markov chain Monte Carlo (MCMC) technique replacing 

missing values with plausible values from a predictive distribution, such as a Bayesian predictive 

distribution of parameters given the observed data.   

 

2.2 Missing Data Mechanisms and Patterns 

  

There are three types of missing data mechanisms, namely: 

   a. MCAR (Missing Completely at Random) 

   b. MAR (Missing at Random) 

   c. MNAR (Missing Not at Random) 

To further explain these three mechanisms, we first introduce some conventionally used nomenclature, 

as discussed in Demirtas (2004).  We denote Ycom as the complete data set, Yobs as the values in the data 

set observed, and Ymis as the missing values in the data set.  We also define a vector R as an indicator for 

missingness, where 

         (2.2.1)
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for j = 1, . . . , n observations. 

Under MCAR, a special case of MAR, we assume that the probability of missingness does not depend 

on the observed or missing data, i.e.: 

     ( | , ; ) ( , )obs obs misP R r Y y y P R r        (2.2.2) 

where r and  yobs are realizations of R and Yobs, respectively, and   is the set of parameters for the 

conditional distribution of R given Ycom.  Under MAR, on the other hand, the missingness depends on 

only the observed data, such that: 

     ( | , ; ) ( | , )obs obs mis obs obsP R r Y y y P R r Y y       (2.2.3) 

Finally, for MNAR, the missingness may depend on both the missing and observed values.  We note that 

the MNAR mechanism is associated with non-ignorable missing data, since the probability of 

missingness depends on the missing values themselves (Rubin, 1987; Heitjan and Rubin, 1991; Glynn et 

al. 1993; Schafer and Olsen, 1998; Little and Rubin, 2002; Demirtas and Schafer, 2003; Demirtas, 2004; 

Demirtas, 2004; Demirtas, 2005). 

 We can also describe missing data in terms of patterns as univariate, monotone, and arbitrary.  

To define these patterns, we assume that we have a multivariate data set with k variables.  In the 

univariate pattern, k – 1 variables are completely observed, while one variable has missing entries.  In 

the monotone pattern, variables are ordered with respect to increasing fractions of missing information 

such that the (j+1)
th 

to the k
th 

variable have the same missing fraction as the j
th

 variable for j = 1, . . . , k, 

plus an additional amount of missingness.  Lastly, in the arbitrary pattern, missing values can occur in 

any of the k variables at any entry (Schafer and Graham, 2002). 
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2.3 Multiple Imputation, Likelihood Based Methods, and Single Imputation 

  

Several comparisons between multiple imputation and likelihood-based approaches, such as 

maximum likelihood, indicate the advantages of multiple imputation in situations with extensive missing 

data.  Multiple imputation and maximum likelihood both rely on large sample approximations, but 

multiple imputation also incorporates the missing data mechanism.  If values are missing at random, 

then multiple imputation and likelihood-based approaches tend to produce similar results under 

conditions outlined in Schafer (2003).  With non-ignorable missingness, however, parameter estimation 

might not only depend on the observed data.  Therefore, multiple imputation is a beneficial alternative 

for handling non-ignorable missing data (Collins et al., 2001; Schafer and Graham, 2002).   

 Multiple imputation provides more flexibility than maximum likelihood estimation due to the 

separation between the imputation and analysis components (Demirtas and Hedeker, 2008; Schafer and 

Graham, 2002).  Imputation models will prove satisfactory for analysis if the imputer considers potential 

models that the analyst might fit to the data.  Multiple imputation and maximum likelihood will lead to 

similar outcomes when the imputation and analysis models include the same parameters and are based 

on the same distributional assumptions.  Results will also be similar when the imputation model is more 

general, i.e., contains more parameters than the analysis model, albeit standard errors for parameter 

estimates from the multiple imputation approach will be somewhat larger.   

 Multiple imputation methods, as well as likelihood-based methods, further differ from ad hoc 

methods, as case deletion and single imputation, since they treat the missing data as random values to be 

averaged over, whereas ad hoc methods modify the incomplete data to mirror a complete data set 

(Collins et al., 2001; Schafer and Graham, 2002).  Multiple imputation is always preferred to single 

imputation, although single imputation may be acceptable when the fraction of data missing is less than 
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5% of the total data (Schafer, 1999).  Schafer and Olsen (1998) note the advantages of multiple 

imputation over ad hoc methods in terms of including data uncertainty in summary statistics.  Ad hoc 

methods do not account for such uncertainty and therefore can lead to distorted data distributions and 

relationships.  Approaches such as single imputation underestimate the true variability of the parameter 

estimate by ignoring this uncertainty, leading to overestimated precision, inflated Type I errors, 

artificially narrow confidence intervals, and overly optimistic p-values (Schafer and Olsen, 1998).   

Parameter estimation associated with multiple imputation involves averaging the Bayesian 

posterior distribution of our parameters over the conditional distribution of missing data given the 

observed data and can be described by the integral: 

          (2.3.1) 

We can derive the average estimate for the population quantity of interest, Q, as: 

           (2.3.2) 

where        is the quantity obtained from the single imputation j.  The total variance, T, of Q is given by: 

             (2.3.3) 

where 

           (2.3.4) 

is the average of the variance estimate for Q
(j)

 and 

             (2.3.5) 

Thus, U is the within-imputation variance and B is the between-imputation variance (Demirtas, 2004; 

Schafer and Olsen, 1998).  T is incorporated into the approximation 

             (2.3.6)  

where the degrees of freedom is: 
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             (2.3.7) 

 

When B >> U, the fraction of missing data, is large, the relative increase in variance due to 

nonresponse, 

             (2.3.8) 

is large, and the degrees of freedom is small, leading to inferential biases based on normal 

approximation.  To improve the validity of normal approximation, increasing the number of imputations 

is therefore recommended (Schafer, 1997; Schafer and Olsen, 1998). 

Rubin (1987) further derives the relative efficiency of a finite number of imputations, m, and an 

infinite number of imputations as:  

      1(1 / )m        (2.3.9) 

where is the fraction of missing information. This derivation is based on the variance of the estimate in 

question conditional on the observed data. With this equation, we can see that, for example, with m = 5 

imputations and 50% missing information, our relative efficiency is 1 1
(1 0.50 / 5) 91%

1.1

    and with 

m = 10 imputations and 50% missing information, our relative efficiency is 

1 1
(1 0.50 /10) 95%

1.05

   .  Thus, only five or ten imputations are sufficient for most analyses 

(Schafer, 1999).   Schafer (1997) notes the number of imputations as a reason why the efficiency of 

multiple imputation is less than that of likelihood based approaches, since likelihood based approaches 

do not require m > 1 simulations.  He also recommends estimates from maximum likelihood inference, 

for example, as a reference to be compared against estimates from simulation-based methods.  The 

relative efficiency over an infinite number of imputations in (2.3.9) then reflects the relative efficiency 

of multiple imputation over maximum likelihood (Collins et al., 2001).  Lastly, Schafer (1997) notes 
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that determining the number of simulations in a Markov Chain Monte Carlo process, such as multiple 

imputation, requires accounting for an initial burn-in period and minimizing and stabilizing the Monte 

Carlo error. 

 

2.4 Examples of Different Multiple Imputation Approaches 

 

 There are several examples of multiple imputation approaches for drawing values to fill in for 

missing data.  In Section 2.6, we will focus on the approaches involving EM (Expectation-

maximization) and data augmentation algorithms.  Other approaches include hot deck imputation, 

Bayesian bootstrap (BB), and approximate Bayesian bootstrap (Rubin and Schenker, 1991).  For 

example, hot deck imputation involves drawing values for imputation from the observed data with 

replacement with equal probability.  Rubin and Schenker (1991) state that this approach leads to 

underestimated variance, however.  The Bayesian or approximate Bayesian bootstrap approaches, on the 

other hand, are re-sampling algorithms where values are drawn from a population using probabilities 

based on an improper Dirichlet prior or a multinomial posterior distribution, respectively.  Modifications 

to the approximate Bayesian bootstrap method have been introduced, although simulation studies have 

shown that these modified approaches are not necessarily superior to the original approximate Bayesian 

bootstrap (Demirtas et al., 2007). 

 Barnes et al. (2006) discuss regression-based multiple imputation methods, such as Bayesian 

Least Squares (BLS), predictive mean matching (PMM), and local random residuals (LRR).  With 

Bayesian least squares, Bayesian regression is first used to derive a joint posterior distribution for the 

regression parameters.  Parameters drawn from this distribution are used to derive the mean and 

covariance of the normal distribution from which the imputed values are then drawn.  Predictive mean 
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matching is also based on predictive values from regression analyses, but now the missing responses are 

filled in with actually observed values whose corresponding predicted responses are closest in value to 

the predicted responses of the missing entries.  In local random residuals, values are selected from a pool 

of observed values closest to the predicted value for the missing entry.  The residual for the selected 

observed value (i.e., the difference between the predicted and true value for the observed data) is then 

obtained and added to the predicted value for the missing entry.   

 Two other important multiple imputation approaches include joint modeling and chained 

equations.  Joint modeling is based on the distribution: 

    P(Ymis|Yobs, X, R)       (2.4.1) 

 for the data matrix Y = {Ymis , Yobs} regressed on the matrix of covariates X and the R matrix containing 

the indicators of missingness in Y (Schafer, 1997).  This approach has been implemented for 

multivariate normal data, discrete data in loglinear models, and mixed data, containing both categorical 

and continuous data (Schafer, 1999).  Section 2.7 discusses the software packages written by Schafer 

(1997) used to implement these methods.  Schafer (1997) notes that joint modeling provides a channel 

via multiple imputation for handling missing non-normal data, as well as normal data.   

 With joint modeling, Schafer and Olsen (1998) and Schafer (1997) discuss the use of regression 

based on the multivariate normal distribution for continuous data and regression involving the loglinear 

model, covered here in Section 2.6, for categorical data.  For mixed data including both continuous and 

categorical variables, these works also suggest employing a general location model which incorporates 

both loglinear model and multivariate normal regression model components, likewise covered in Section 

2.6.  Lastly, a two-level linear regression model is implemented into the joint modeling approach when 

handling missing longitudinal data.  These types of models are imposed on the complete data in order to 

impute values for missing entries.  Schafer and Olsen (1998) mention that choosing a model for this 
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approach is nontrivial, even when the model itself is robust, as in the case of applying the multivariate 

normal model to transformed data.  For example, although a model under the normality assumption can 

be applied to ordinal or binary data, with the resulting imputed continuous values then rounded off to the 

nearest category, a loglinear model can be recommended as a preferable alternative. 

 Chained equations is a multiple imputation approach where each variable is imputed with a 

separate model conditional on all other variables.  Van Buuren et al. (1999) summarize the goal of their 

multiple imputation approach with respect to handling missing blood pressure values in their study 

relating mortality to blood pressure, age, sex, and several other health factors.  The authors first discuss 

applying linear regression imputation and including variables that would be used in complete-case 

analyses, variables that may have different distributions between observed and missing data, and 

variables explaining a substantial amount of variation in the variable to be imputed.  They subsequently 

recommend omitting variables with too many missing entries from the final imputation model.  The 

authors next review estimation of linear regression parameters in the imputation model and generation of 

new parameter estimates via drawing values from the derived posterior distribution of parameters.  They 

then introduce chained equations by presenting Gibbs sampling with the conditional distributions for 

each variable to be imputed individually.   

 Missing entries are first filled in using random draws from the marginal distributions of the 

observed data.  The first variable, Y1, say, is next imputed conditional on the observed data and all other 

imputed data.  The second variable, Y2, say, is consequently imputed using all other data including the 

most recently imputed  Y1 values and so on until all incomplete variables are imputed.  Van Buuren et al. 

(1999) note that this chained equation approach can also be extended to non-ignorable missing data  
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by adjusting the parameters of the distribution from which the imputed values are drawn by a constant . 

Van Buuren (2007) indicates how joint modeling and chained equations are related in some 

cases. For example, in the case of multivariate normal data, conditional densities constitute linear 

regression models with constant error variance and vice versa. Similarly, for binary data, there can be a 

logistic model for each variable as a response with the other variables as predictors.  Furthermore, 

comparisons between joint modeling and chained equations indicate some advantages of chained 

equations over joint modeling due to greater flexibility in creating complicated multivariate normal 

models.  Van Buuren et al. (1999) state another advantage of chain equations as requiring less iterations 

than other Monte Carlo Markov Chain techniques.   

 The chained equations approach nevertheless has some drawbacks if two conditional 

distributions, P(Y1 |Y2) and  P(Y2 |Y1),  for example, are incompatible, causing switching between isolated 

distributions, an outcome leading to ongoing research problems.  For example, the number of iterations 

sufficient to stabilize the posterior distribution is still to be determined, as regression switching absorbs 

the uncertainty in the predictors of the model. 

Many more approaches exist, including bootstrap approaches for drawing values from a 

frequentist perspective (Efron, 1994). As stated previously, we describe the incorporation of EM and 

DA into imputation methods under the multivariate normal distributional assumptions, discussed in 

Section 2.5. 
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2.5  Multiple Imputation under the Assumption of Normally Distributed Data 

 

 Multiple imputation methods are well-established under assumptions that the data following a 

normal distribution.  Schafer (1997) presents situations where multiple imputation methods conducted 

under the normality assumption can also applied to non-normal data.  Such situations involve 

transformations of the variables or linear functions conditional on normal residuals, where these latter 

functions can even be applied to discrete data.  Schafer (1997) reviews the maximum likelihood 

estimation of parameters  and for normally distributed data given by 

       (2.5.1) 

 

and 

 

      (2.5.2) 

 

for i = 1, . . . , n observations. 

 He then reviews the EM, or Expectation-Maximization, (Dempster et al., 1977) and data 

augmentation (DA) (Tanner and Wong, 1987) algorithms that are implemented into the multiple 

imputation.  The EM algorithm also has the attractive properties of providing good starting values and 

insight into convergence behavior (Demirtas, 2007; Demirtas et al., 2008).  This algorithm can be 

described in terms of computing the conditional expectation of the complete and sufficient statistic, T, 

for the data (E-step) and then maximizing this expectation (M-step).  For the multivariate normal 

distribution with ( , )   , T can be obtained via the maximum-likelihood estimation equations given 

in (2.5.1) and (2.5.2). 
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Next, data augmentation is performed.  The augmentation involves two steps: the I-step 

(imputation) and the P-step (posterior).  In the I-step, associated with drawing values ( 1)t

misY  , 

     ( 1) ( )~ ( | , )t t

mis mis obsY P Y Y       (2.5.3) 

we can generate each entry i for Y
t+1

 from the distribution given Yobs and the most current ( )t  

     ( 1) ( )

( ) ( ) ( )~ ( | , )t t

i mis i mis i obsy P y y       (2.5.4) 

The P-step involves the posterior distribution:  

     ( 1) ( 1)~ ( | , )t t

obs misP Y Y        (2.5.5) 

where the posterior distribution for ( 1)t   is updated using Yobs and ( 1)t

misY  .   

For a univariate sample, i.e., for 

     yi ~ N(

       (2.5.6) 

with i = 1, . . . , n observations, the posterior distributions would be given by 

          (2.5.7) 

and 

          (2.5.8) 

where          is a chi-square variate with n – 1 degrees of freedom (Schafer, 1999). 

Under the assumption that our data follow the multivariate normal distribution, we can use 

Bayesian inference to obtain  via the conditional distribution: 

     1

0| ~ ( , )N           (2.5.9) 

and via 

     1~ ( , )W m                  (2.5.10) 
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where 0 ,  , and  are fixed and known hyperparameters and W
-1

 is the inverse Wishart distribution.  

The two components of the Wishart and the inverted Wishart distributions are m and , noted as the 

degrees of freedom and scale, respectively.  The Wishart probability distribution function is proportional 

to: 

                      

           (2.5.11) 

 

and the inverted Wishart probability distribution function is proportional to: 

                  

           (2.5.12) 

 

for k number of variables.  When k = 1, the above equation reduces to the inverted chi-squared 

distribution, as expected. 

Incorporating what the data suggest in the form of the likelihood to the assumed prior, and 

obtaining the posterior via multiplying the prior and likelihood, we derive the posterior distributions: 

     1

0| , ~ ( ' , ( ') )Y N                   (2.5.13) 

and 

     1| ~ ( ', ')Y W m                  (2.5.14) 

where    
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These two steps are iterated until convergence in the parameter estimates is reached.  Schafer (1997) 

notes the parallels between the I-step and the E-step and between the P-step and the M-step of the EM 

algorithm in this aspect. 

 

 

2.6 Multiple Imputation for Categorical and Mixed Data 

 

 

 Aside from multiple imputation methods under the normality assumption, other approaches have 

been established to handle missing categorical or binary data and mixed data consisting of both 

categorical and continuous variables.  In Sections 2.4 and 2.5, approaches under the normality 

assumption were mentioned as a possible manner to impute values for ordinal and binary data.  Two 

other models available for imputation of categorical data include the saturated multinomial model and 

the loglinear model (Schafer, 1997; Schafer and Olsen, 1998).  The multinomial model is based on the 

probability distribution: 

1 2

1 2

1 2

!
( | ) ...

! !... !
Dx x x

D

D

n
P x

x x x
        (2.6.1) 

where  1 2, ,..., Dx x x x and dx  corresponds to the d
th

 cell of a contingency table.  Here, we assume that 

the parameter  follows a Dirichlet distribution: 

1 21 1 10
1 2

1 2

( )
( | ) ...

( ) ( )... ( )
D

D

D

P
  

    
  

  

  

   (2.6.2) 

The Dirichlet distribution is related to the standard gamma distribution by: 

11
( | )

( )

aP a e  


 


     (2.6.3) 

in that we can express a parameter d : 
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'' 1

, 1,2,...,d
d D

dd

d D







 


     (2.6.4) 

where  1 2,, ..., D     has a Dirichlet distribution with parameter  1 2,, ..., D    . 

As under the normality assumption, we can implement the EM and DA algorithms in the 

multiple imputation techniques for discrete and mixed data.  Further proceeding with the imputation 

method with respect to a Bayesian perspective, we can choose a prior depending on the nature of the 

data at hand.  For example, setting the hyperparameter of the Dirichlet distribution  to a constant c 

tends to determine the type of prior and how much information the prior with provide.  c = 0, 1, or 1/2, 

for instance, result in the improper, uniform, and Jeffrey's prior, respectively.  Likewise, a constant c > 1 

leads to a flattening prior, adding a constant of = c – 1 > 0 in each cell of a contingency table, which in 

turn leads to a more uniform distribution of  . Such a prior is often recommended when working with 

sparse data, where a substantial number of cells could have zero counts. 

 Schafer (1997) also reviews the loglinear model: 

M        (2.6.5) 

and  

log , 1,2,...,d d d D        (2.6.6) 

i.e., the logarithm of the parameter given in the multinomial distribution (2.6.1).  Here   is the r x 1 

parameter vector and M is the D x r design matrix determining the constraints for the model. An 

attractive feature of the loglinear model over the saturated multinomial model is that we can eliminate 

terms that may not prove necessary.  For example, given a model with three categorical variables, we 

can remove the three-way interaction or the three-way interaction and any two-way interactions deemed 

insignificant in a hierarchical model.  For estimating the parameters of this model, Schafer (1997) 
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discusses the replacing the M-step in the EM algorithm by the CM-step (i.e., conditional maximization), 

leading to the E-CM algorithm, and iterative proportional fitting (IPF).  The CM-step of the E-CM 

algorithm takes into account constraints imposed on the parameters of the restricted model.   

Additionally, iterative proportional fitting (IPF) is an iterative procedure by which the parameter of   is 

proportionally adjusted to satisfy a series of moment equations until the estimate of   is stabilized, 

given that the initial values used to set   satisfy the loglinear model constraints.  Bayesian iterative 

proportional fitting is introduced as an avenue for simulating random draws from a constrained Dirichlet 

prior, i.e., a prior employed to satisfy constraints imposed by the loglinear model which can be 

implemented in the imputation technique.  Namely, this approach is combined with data augmentation to 

form the hybrid data augmentation-Bayesian iterative proportional fitting (DABIF) approach. 

 We conclude this section by introducing the general location model (Schafer, 1997), which 

allows imputation of data including both continuous and categorical variables, where the categorical 

variables could be completely missing, the categorical variables and a subset of the continuous variables 

are missing, or a subset of categorical and a subset of continuous variables are missing.  Taking 

1,..., pW W  as the categorical variables and 1,..., qZ Z as the continuous variables in a data set of dimension 

( )n p q  , we define the general location model using: 

       (2.6.7) 

and  

| , , ~ ( , )i i d d dz u E N         (2.6.8) 

where { : }w w W   , dE  is a D-vector with 1 at position d and 0 elsewhere, d is a q-means vector 

for cell d, and  is a q q covariance matrix.  These quantities are computed for d = (1,…,D) cells in the 

contingency table corresponding to p categorical variables. 

| ~ ( , )w M n 
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 The estimation of parameters for such an unrestricted model, i.e., a model containing all possible 

parameters, involves both multinomial and normal distributions.  With data including cells having zero 

counts in the contingency table, this unrestricted model may not be practical unless the sample size is 

large, however.  In such circumstances, a general location model can be constructed incorporating the 

loglinear and normal models, such that restrictions are imposed upon parameters of the loglinear model 

and determine cell probabilities and the distribution of the continuous variables 1,..., qZ Z  conditional on 

the categorical variables 1,..., pW W  via: 

      Z U         (2.6.9) 

where U is an n D matrix with indicator variables for cell location 1,2,..., D and  is a D q matrix of 

means.  Namely, we can restrict   using 

        A                  (2.6.10) 

for a constant D r matrix A and some  .  Data having zero count cells can now be estimable depending 

on the rank of the matrix A.  The likelihood for this restricted model can be computed with the iterative 

proportional fitting approach discussed earlier.   

 With the unrestricted general location model, data is imputed using the EM and DA algorithms, 

where the multinomial and normal distributions are both considered in the P-step of the data 

augmentation algorithm, involving updating parameters of the multinomial distribution which follow the 

Dirichlet distribution, and updating mean and covariance parameters of the normal distribution which 

follow the multivariate normal and inverse Wishart distributions, respectively.  With the restricted 

general location model, the multiple imputation method is similar to that for imputation with the 

loglinear model, involving the E-CM and the DABIF hybrid algorithms. 
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2.7  Multiple Imputation Assessment 

 

 Several measures are available for assessing the validity of results obtained from imputed data.  

These measures include standardized bias (SB), percentage bias (PB), coverage rate (CR), root mean-

square-error (RMSE), and average width of the confidence interval (AW) (Demirtas and Hedeker, 2007; 

Demirtas et al., 2008; Demirtas and Hedeker, 2008) SB and PB, given by: 

 

      (2.7.1)  

 

and  

 

      (2.7.2) 

 

respectively, are used to examine the effect of bias on our estimate in either direction.  Any SB > 40% - 

50% or PB > 5% indicates that the relative magnitude of the absolute value in the bias measures to the 

estimate can have an adverse effect on the inferences of our estimate.  The coverage rate (CR) is the 

percentage of times the true parameter is encompassed by the confidence interval for the parameter 

estimate.  Collins et al. (2001) indicate that coverage rates below 90% imply poor coverage.  The root 

mean square error, RMSE, defined by: 

      (2.7.3) 

 evaluates both variance and bias and provides arguably the best assessment for combined precision and 
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accuracy.  Lastly, the average confidence interval width (AW) corresponds to the average difference 

between the lower and upper confidence limits across each set containing m > 1 multiply imputed data.  

Ideal accuracy and efficiency scenarios are characterized by high CR and narrow AW (Collins et al., 

2001; Demirtas and Hedeker, 2007), along with small bias and RMSE. 

 

2.8   Multiple Imputation Software 

  

In proceeding with the different imputation approaches, there are several software packages 

available, depending on which procedure is necessary (Horton and Kleinman, 2007; Schafer and 

Graham, 2002; Schafer and Olsen, 1998).    For instance, PROC MI and PROC MIANALYZE in SAS 

are used in implementing the MCMC approach for Gaussian, parsimonious Markov, regression, logistic, 

polytomous, and discriminant models.  ICE in Stata, MICE in R and S-plus, and IVEware (Imputation 

and Variance Software), run in SAS or independently, have been devoted to carrying out the chained 

equation approach (van Buuren et al., 1999).  Horton and Kleinman (2007) also describe packages such 

as the NORM, CAT, MIX, and PAN packages in R associated with the joint modeling approach 

discussed in Section 2.4 (Schafer, 1997; Schafer and Olsen, 1998) to handle missing multivariate 

normal, categorical, mixed, and longitudinal data, respectively.  We use the NORM package in our code, 

given in the appendix, in implementing our method.  Statistical software packages as SOLAS and SPSS 

also include programs for handling missing data via multiple imputation (Horton and Kleinman, 2007).
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3. LURIE-GOLDBERG ALGORITHM 

  

3.1  Lurie-Goldberg Introduction 

 

 Thus far, we have discussed multiple imputation, particularly, imputation under normality 

assumptions, as a computationally favorable approach for handling missing data.  Multiple imputation 

under the normality assumption is restrictive; incorporating these methods, nevertheless, with the Lurie 

and Goldberg (1998) algorithm can allow us to impute data following any distribution.  The Lurie and 

Goldberg (1998) algorithm involves a technique for generating multivariate random variables using 

partially specified distributions, meaning that they consider marginal distributions and pairwise 

correlations.  Their method does not require input of the joint distribution with potentially unknown 

information.  Simulation results show that parameter estimates and correlations for data generated 

through their method closely resemble those for the original data, indicating the benefits of this 

algorithm.  This method incorporates available data in determining relationships between several 

variables, without collecting more data which may be costly to obtain and allows for generation of data 

following any continuous, strictly increasing distribution function via a joint normal model. 

 

3.2 Advantages of the Lurie-Goldberg Algorithm Over Other Methods 

 

In their work, Lurie and Goldberg (1998) refer to the PIT, or probability integral transformation, 

method from Li and Hammond (1975) for generating random variables with non-normal probability 

distribution functions. Li and Hammond (1975) state that for two known probability distribution 
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functions, say fV(vi) and  fY(yi), there exists a set of monotone functions, such that: 

     ( ) ( ) ( )
i i

i i i

v y

V i i Y i i Y if v dv f y dy F y
 

       (3.2.1) 

for i = 1, . . ., n observations. 

Here, Fy(yi) is the cumulative distribution function.  If fV(vi) follows the standard normal distribution, 

then: 

     1 ( )
i

i

i
i Y i i

v

v
y F h v




  

    
    

     (3.2.2) 

Where is the standard normal probability distribution function and hi is the nonlinear transformation.  

If vi has unit variance, then (3.2.2) reduces to 

      1 ( )
ii Y i i iy F v h v          (3.2.3) 

where F
-1

 is the inverse cdf for the observed distribution of random variables y1 , . . ., yn.  Li and 

Hammond (1975) also use probability integral distribution function to derive pairwise correlations 

between any two variables in the data set.  These pairwise relationships make up the entries of a 

correlation coefficient matrix for the multivariate data.  They make note of the requirements for this 

matrix to be symmetric and positive semidefinite.  Given that the pairwise correlation for, say, yi and yj, 

is defined by: 

 

  
1

( ) ( ) ( , ) ,
i j i j

i j i j

i j

y y i i j j v v i j i j

y y y y

E y y
h v h v f v v dv dv

   

 

 

         (3.2.4) 

with 1 i j n   and employing (3.2.3), they show that the pairwise correlations can be expressed in 

terms of the  probability integral distribution function as: 
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   (3.2.5) 

 where with 
i jy y y   and 

i jv v v  . 

 Lurie and Goldberg (1998) note that this probability integral transformation method can be 

tedious, however, for large numbers of variables.  For example, with k variables, k(k -1) probability 

integral distribution functions would have to be performed.  Furthermore, the complex numerical 

integrations required by Li and Hammond (1975) for each transformation itself may become 

computationally expensive.  Lurie and Goldberg (1998) emphasize that their method eliminates the 

necessity of numerical integration, thus reducing time and power required for computations. 

 Lurie and Goldberg (1998) also discuss the advantage of their number generating method over 

the previous method presented in Vale and Maurelli (1983).  In their work, Vale and Maurelli (1983) 

exploit Fleishman's (1978) polynomials (Demirtas and Hedeker, 2008), such as: 

     (3.2.6) 

where X ~ N(0, 1) is a random variable.  The distribution of Y then depends on the constants a, b, c, and 

d.  Bivariate normal variables, as x1 and x2 for example, can be drawn and the coefficients (a, b, c, d), 

which can be computed via as set of nonlinear equations, are then used to transform these bivariate 

normal variables into the desired non-normal data (Vale and Maurelli, 1983).  Lurie and Goldberg 

(1998), however, point out that this polynomial method requires calculation of third and fourth 

moments, whereas their approach avoids such additional computations.  As a secondary point, Lurie and 

Goldberg (1998) also note that Vale and Maurelli's (1983) method cannot be applied to distributions 

with bounded support (e.g., Beta). 

 



24 

 

 

3.3 Logistics of the Lurie-Goldberg Algorithm 

 

  As noted in Section 3.1, the algorithm Lurie and Goldberg (1998) can be implemented in 

a multiple imputation context to relax restrictive normality assumptions by imposing them not directly 

on the data but on normally distributed values obtained from transformations of these data.   In the 

Lurie-Goldberg algorithm, the objective of the simulations is to minimize the distance: 

 

21
_ || * ||

2
ij

T

l

Minimize D  R LL       (3.3.1) 

 

where R* is the correlation matrix with entries containing pairwise correlation estimates from the 

observed data, L is the lower triangular matrix derived from the Cholesky decomposition of the 

correlation matrix associated with the generated data, and lij are the elements of L. If this correlation is 

non-positive semidefinite, a probable result when pairwise correlations are calculated separately for data 

with variables having different missing data patterns, then the Lurie-Goldberg algorithm can be used to 

generate a positive semidefinite matrix “closest” to the non-positive semidefinite correlation matrix at 

hand. Lurie and Goldberg (1998) first generate nk i.i.d. N(0,1) variables and arrange them in an n x k 

matrix, X.  They then multiply X to the transpose of L, obtaining: 

Y = XL
T                         

(3.3.2) 

 

Therefore, X  ~ N(0, I) and Y ~ N(0, R).  Next, they derive the standard normal CDF, or cumulative 

distribution function, for each entry in Y, yielding: 

( )U Y        (3.3.3) 

where   represents the standard normal CDF for each entry in Y. 



25 

 

 

Lastly, the authors present the generated data in the matrix V with entries: 

1( )ij j ijv F u        (3.3.4) 

where they use a separate 1

jF   function based on the marginal distribution of each jth variable in their 

data.  These entries are now in the same scale as their original data.  The updated correlation matrix, R = 

TLL , is then computed for the data of the newly generated V matrix.   Lurie and Goldberg (1998) re-

iterate their steps until their root mean square error, RMSE is less than some constant c, determined by 

the desired accuracy.  For example, the authors recommend setting c = 0.005 if two-digit accuracy is 

desired.  The RMSE is given by: 

4 /[ ( 1)]RMSE D k k        (3.3.5) 

where D is the squared norm of the absolute difference between the target and generated correlation 

matrices and k the number of variables in the data.  D can be expressed as in (3.3.1), involving Cholesky 

decomposition or can be expressed as: 

                                                         (3.3.6) 

 

where      and rij are the elements of R* and R, the target correlation matrix and the correlation matrix 

associated with the generated data, respectively, and R* may be positive semidefinite or non-positive 

semidefinite.  Lurie and Goldberg’s (1998) simulation results prove promising by the comparable 

parameter estimates between their original and generated data.  We summarize the algorithm presented 

here as: 

      X Y U V       (3.3.7) 
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4. EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION (eCDF) 

 

 The eCDF (empirical cumulative distribution function) values are defined for a real value x of a 

random variable X as the proportion of values less than x, as given in (4.1.1).  These values serve as an 

avenue for relating a probability to a certain data value without making any specific distributional 

assumptions.  Therefore, we could use eCDF calculations instead of information based on specific 

marginal distributions to obtain probabilities values involved in transformations and back-

transformations of data discussed in Lurie and Goldberg (1998).  

 

4.1 Computing the empirical Cumulative Distribution Function 

 

We have seen how the Lurie and Goldberg (1998) method can be implemented under any 

distributional assumption.  Since the specific distribution usually remains unknown, however, makes 

consideration of incorporating calculations of eCDF values instead of CDF values based on a specific 

distribution into our algorithm favorable.  We compute the eCDF using: 

1

1
( )

n

i

i

I X x
n 

      (4.1.1) 

Incorporation of this quantity is explained in Section 6.1. 

 

4.2  Back-transformation of empirical Cumulative Distribution Function Values 

 

We can also back-transform newly generated eCDF values to values within the range of the 

original data of interest via the method given in Barton and Schruben (1993).  In this approach, we 
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determine an interval,  ( ) ( 1)( ), ( )i j i jF y F y  , with two original eCDF values obtained from the observed 

data encompassing each new eCDF value 
( )i jCu for each ordered observation ( )i jy  in variable Yj,  j = 1, . . 

. ,k. Then, we calculate the difference between the new value and the lower end of the empirical 

cumulative distribution interval and divide this difference by the length of the interval, 

 ( ) ( 1)( ), ( )i j i jF y F y 
.  Next, we multiply the outcome from this division by the length of the 

corresponding interval for the original data values, i.e., ( 1) ( )( )i j i jy y  , and add this product to the lower 

original data value of the corresponding interval such that: 

  ( )

( )

( )1

( ) ( 1) ( )

( 1) ( )

( )
( )

( ) ( )

i j

i j

C i j

C i j i j i j

i j i j

u F y
F u y y y

F y F y








  


     (4.2.1) 

 

 
( )

1

i jCF u  thus maps the eCDF value in question to the scale of the original data.
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5.  GENERATING BINARY AND MIXED DATA 

 Here, we discuss generation of binary and mixed data using data following an underlying normal 

distribution.  We present this section as an introduction to imputing binary and mixed data, where data 

will be imputed under the normality assumption and then transformed into the desired binary values 

(Section 6.2) or mixed data (Section 6.3) via these described methods. 

 

5.1 Generating Binary Data from Normal Data 

 

Assuming that we have two binary variables, Y1 and Y2, we can compute a cross-tabulation of  

the data, as shown in Table I. 

 

Table I: CROSS-TABULATION OF BINARY VARIABLES Y1 AND Y2 

 

Y1 Y2 

 0 1 

0 n00 n01 

1 n10 n11 

 

 

 

Then, we can calculate the correlation coefficient, phi, a derivative of the Pearson correlation (Guilford, 

J., 1936) by: 

 

     (5.1.1)
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where phi can range from: 

 

             (5.1.2) 

 

 

We can obtain the tetrachoric correlation jk using: 

 

    (5.1.3) 

 

(Emrich and Piedmonte, 1991; Demirtas and Doganay, 2012) and generate a standard bivariate normal 

data set, Z, and covariance,               , and introduce the same fraction of missing entries in this data set 

as found in the original data set.  We can then introduce some probabilities involving Y1 and Y2 

pertaining to quantiles in the bivariate normal data which in turn allow for the preservation of the same 

proportions observed in the original binary data.  We will provide further description of these quantiles 

will discussed in Section 6.2 and how they help us define binary values from data imputed under the 

normality assumption. 

 

5.2 Tetrachoric and Polychoric Correlations 

 

 5.2.1  Definition of Tetrachoric and Polychoric Correlations 

 

Several works discuss the advantage of the tetrachoric and polychoric correlation over the 

Pearson correlation when estimating associations between binary and ordinal variables.  Here, the 

12

12

1

1
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tetrachoric correlation coefficient jk given in the previous equation (5.1.3) for Yj = I(Zj < z(pj)) is a 

special case of the polychoric correlation used with binary data  (Emrich and Piedmonte, 1991; Demirtas 

and Doganay, 2012).  The polychoric correlation coefficient can be defined for ordinal data, where: 

  

 

 

                       (5.2.1) 

 

 

and can be computed via maximum likelihood estimation with acceptable accuracy (Olsson, 1979). 

 

 5.2.2  Advantages of Tetrachoric and Polychoric Correlations 

 

A common notion is that obtaining the tetrachoric and polychoric correlations are less biased 

towards zero than calculating the Pearson correlation directly from underlying normally distributed 

variables, albeit their estimated standard errors may be slightly larger (Babakus et al., 1987; Butler et al., 

1987; Rigdon and Ferguson, 1991).  Simulations have also been conducted to examine the performance 

of these measures. Work by Babakus et al. (1987) show that the polychoric correlation produces better 

results in terms of precision and accuracy than computing the Pearson and Spearman correlations and 

Kendall's tau coefficient directly with ordinal data.  Rigdon and Ferguson (1991)  evaluate the 

performance of the polychoric correlation in combination with functions as unweighted least squares, 

weighted least squares, generalized least squares, and diagonally weighted least squares used in model 

fitting.  They note weighted least squares as optimal in combination with the polychoric correlation for 

1
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covariate estimation in models applied to ordinal data, leading to decreased bias in parameter estimation.  

Some drawbacks of this approach, however, involve a slightly higher rejection of the correct model in 

certain scenarios.  Questionable estimation via methods combined with the polychoric correlation could 

also arise when applied to small sample sizes or skewed data.   

Nevertheless, tetrachoric and polychoric correlations can still be favorable over other correlation 

measures and the odds ratio in terms of estimation.  For instance, the tetrachoric may be more practical 

to employ when examining associations of several binary variables (Le Cessie and Van Houwelinden, 

1994; Qu et al., 1995), where odds ratios, albeit not restricted to the (-1, 1) range and therefore easier to 

interpret, cannot be feasibly obtained due to difficulty associated with calculation of the full likelihood.  

Tetrachoric and polychoric correlations also can be applied to repeated measures data to measure within-

subject variation with respect to between-subject variation, thus serving as an equivalent to the intraclass 

correlation coefficient.  Qu et al. (1995) exemplify this use of the coefficient to estimate the correlation 

between the face and arms in a study involving a double-blinded randomized clinical trial examining the 

effects of TEC medication on premature skin aging caused by ultraviolet radiation.  They further show 

the validity of the polychoric correlation in measuring within-subject correlations in GEE models via 

simulation studies.  Thus, tetrachoric and polychoric correlations have been proven as a useful 

association measure in several cases involving binary and ordinal data. 
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 5.2.3  Software for Computing Tetrachoric and Polychoric Correlations 

 

 Several software packages include modules to compute tetrachoric and polychoric correlations.  

For example, in SAS, the PLCORR option is available for this computation in the TABLES statement of 

the FREQ procedure.  Alternatively, a %POLYCHOR macro can be downloaded from the SAS support 

website at http://support.sas.com/kb/25/010.html, based on the maximum likelihood approach given in 

Olsson (1979) and Drasgow (1986).  An R ‘polycor’ library includes a ‘polychor’ function written by 

John Fox for calculating tetrachoric and polychoric correlations also via maximum likelihood 

estimation.  Furthermore, the ‘phi2poly’ function in the R ‘psych’ (Revelle, 2011) employs the ‘polycor’ 

library and can be used compute tetrachoric correlations from the phi correlation coefficient for binary 

data.  We use this latter ‘phi2poly’ function in our method for imputing binary data.  Likewise a ‘r_tetra’ 

macro has been written by Dirk Enzmann computing the tetrachoric correlation can be executed in 

SPSS.  STATA also includes a tetrachoric command and a polychoric command by Stas Kolenikov for 

computing these correlations (Uebersax, 2011). 

 

5.3 Point-biserial Correlation 

 

 The point-biserial correlation allows investigators to measure the association between a 

continuous and binary variable, where the binary nature of the latter variable can be inherent, as in the 

case of sex or smoking status (Tate, 1954; Demirtas and Doganay, 2012) or can be derived from the 

dichotomization or a continuous variable.  This latter approach is sometimes favorable in clinical, 

psychological, or ecomomic settings where they provide easier interpretation of the data as in cases of 

defining obesity from BMI values (Demirtas and Doganay, 2012) or categorizing psychological data 

http://support.sas.com/kb/25/010.html
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collected on a continuous scale in order to predict juvenile delinquency (Farrington and Loeber, 2000).  

The point-biserial correlation can be defined as: 

 

   2 2

1 2

1 1 1 0

1

D D

D

Y Y

Y Y

 




 




      (5.3.1) 

where    is the mean of the continuous variable Y1 where the binary variable Y2D = 1,     

is the mean of the continuous variable Y1 where the binary variable Y2D = 0, and  the is variance of Y1.  

Furthermore, if the binary variable was derived via dichotomization from an inherently continuous 

variable, we can define the relationship between the correlation of two normally distributed variables 

and of two originally normally distributed variables, with one variable dichotomized as: 

  

             (5.3.2) 

where h is the ordinate of the normal curve at some point X such that: 

              

             (5.3.3) 

involving the N() distribution.  In Section 6.3, we show how an alternative expression of equation 

(5.3.2) relates to a multivariate normal data set that can then be imputed under the normality assumption.  

Since the point-biserial correlation is a product-moment coefficient, it can be computed between any 

continuous and binary variable using the command for calculating the Pearson correlation in any 

software package, as the 'cor' function in R, PROC CORR in SAS, the CORRELATION option in SPSS, 

and the 'corr' option in STATA. 
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5.4  Correlation Bounds 

 

Demirtas and Hedeker (2011) discuss correlation bounds spanning a range narrower than (-1, 1) 

as seen with the tetrachoric and point-biserial correlations in equations (5.1.2) and (5.3.2), respectively.  

In cases where these bounds are not easily computed in closed form, the authors recommend generating 

data with a large number of observations of the intended distribution in the same and opposing 

directions and then calculate the correlations, giving us the maximum correlation and anti-correlation, 

respectively.  Their simulation results support the validity of this method.  The authors encourage 

programmers to use this method to find correlation bounds that are otherwise difficult to obtain in closed 

form.  Furthermore, their method could be used to compute correlation matrices with pairwise elements 

derived from different sources (Lurie and Goldberg, 1998).  Demirtas and Hedeker (2011) conclude by 

emphasizing the importance of checking correlation bounds before proceeding with any simulation 

study.
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6.  PROPOSED SEMI-PARAMETRIC METHODS FOR IMPUTING DATA 

 

 We now present our approaches for imputing continuous, binary, and mixed data based on 

methods described in the previous sections.  We first apply the concept of multiple imputation under the 

normality assumption in Section 2.5, the Lurie-Goldberg algorithm in Section 3 and eCDF calculations 

in Section 4 to impute continuous data (Section 6.1).  Imputing binary data (Section 6.2) also employs 

multiple imputation under the normality assumption, as well as concepts of generating binary data from 

normal data where the tetrachoric correlation is a measure of association between variables (Sections 5.1 

and 5.2).  We conclude with imputing mixed data based on multiple imputation under the normality 

assumption and generating mixed data from normally distributed values and involving the point-biserial 

correlation (Section 5.3).  

 

6.1 Imputing Continuous Data 

 

Using our notation of Ycom for complete data, Yobs for observed data, and Ymis for missing data, we 

first introduce our proposal for imputing continuous data by incorporating aspects of multiple 

imputation under normality assumptions, the Lurie-Goldberg (1998) algorithm, and eCDF calculations.  

We first create a matrix, Ucom, containing the eCDF values for the observed data and missing entries for 

corresponding missing values in the data.  Next, we use the inverse function 1F   separately for each 

variable, where F is the marginal N(0,1) distribution function to obtain: 

* 1( )com comF Y U       (6.1.1) 

The covariance matrix of Y
*

com  is then the correlation matrix for Ycom.  The multiple imputation 
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method under the normality assumption is then applied, as in Schafer (1997), leading to: 

     * ~ ( , )imp imp imp

com N  Y       (6.1.2) 

where   'imp  0  and imp  are the mean-vector and variance-covariance matrix for the imputed data 

obtained via the EM and DA algorithms, respectively. *imp

comY  is then the matrix containing the imputed 

data as well as the observed transformed data.  We back-transform this data to obtain: 

*( )imp imp

com comFU Y       (6.1.3) 

with F being the cumulative distribution function based on the normal distribution with updated 

parameters.  We finally obtain our originally observed values and map the imputed values to the range 

of the original data using the method described in Section 4.2 from Barton and Schruben (1993).  

Defining a matrix imp

comY containing these values, we summarize our method with the following diagram: 

 

 

                      (6.1.4) 
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We re-iterate the steps (3) to (5) until the absolute difference between our generated correlations and the 

target correlation is less than the product of the target correlation multiplied by some constant cjk. 

i.e.,            (6.1.5) 

for each pairwise correlation between variables Yj and Yk, j = 1, . . ., p – 1, k = 2, . . . p in a data set with 

p variables, and and        are the pairwise correlations between variables Yj and Yk, respectively. 

The recommended range for cjk is (0.01, 0.05) and the choice of this constant depends on minimizing the 

bias and maximizing the coverage rate associated with each pairwise correlation coefficient. 

 Our algorithm can be compared to that found in Lurie and Goldberg (1998) in that a key 

component of it involves transformations of normally distributed variables.  In the case of Lurie and 

Goldberg (1998), however, all initial values are randomly drawn from a N(0,1) distribution, whereas 

normally distributed values are obtained via the inverse standard normal distribution function applied to 

eCDF values of the original data in our case.  Additionally, only imputed values used to fill in missing 

entries involve random draws in our case.  Furthermore, the Lurie and Goldberg (1998) algorithm 

employs the inverse functions of specific marginal distributions to transform their normally distributed 

data to data with variables following the desired distributions, but we map the CDF values based on the 

normal distribution onto the scale of the original data using the inverse function for eCDF values as 

described in Barton and Shruben (1993) allowing for nonparametric back-transformations of the data.  

Similarities and differences between the Lurie and Goldberg (1998) and our imputation method 

continuous data are presented in Table II. 

 

jk imp

jk
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Table II: SIMILARITIES AND DIFFERENCES INVOLVING METHODS FOR CONTINUOUS 

DATA 

 

 
Steps Lurie-Goldberg (1998) algorithm  LGMI (2011) algorithm 

1 Normally distributed data are generated via 

random draws from N(0,1) distribution and 

specified pairwise correlations are induced via 

Cholesky decomposition. 

Normally distributed values are obtained via calculating 

eCDF values for original data and then the inverse 

distribution function based on the N(0,1) distribution is 

applied to these eCDF values; pairwise correlations from 

the original data are preserved in this case. 

2  Multiple imputation via joint modeling under the 

normality assumption is applied to the multivariate 

normally distributed data. 

3 The inverse functions of specified marginal 

distributions are employed to map all generated 

values onto the scale of the final data set created. 

The inverse functions based on marginal eCDF values are 

employed to map only imputed values onto the scale of the 

final data set created. 

 

  

6.2 Imputing Binary Data 

 

With the binary data generation techniques described in Section 5.1, we proceed with computing 

quantiles that will allow us to create binary data from the imputed normal data.  First, we assume that we 

have two binary variables, Y1 and Y2, where some proportion of Y2, P(R2 = 0), is missing, we can 

compute a cross-tabulation of the data, as given in Table III. 
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Table III: CROSS-TABULATION WITH Y1 ANDY2, WHERE Y2 INCLUDES MISSING VALUES 

Y1 Y2 

 0 1 ? 

0 n00 n01 n0? 

1 n10 n11 n1? 

 

We then calculate 

 

            (6.2.1) 

 

 

and obtain corresponding quantiles given by 

 

          (6.2.2) 

 

With these quantiles, we can compute proportions based on the generated bivariate normal data with 

variables Z1 and Z2.   The number of observed entries should then be the same as the cell counts given in 

Table II. 

i.e., 

  

1 2

2 1 2 2 1 2

11 ( 1| 1) 1

*

21 ( 1| 1, 1) 2 21 ( 1| 0, 1) 2

( )

( ); ( )

P Y R

P Y Y R P Y Y R

q Q Z

q Q Z q Q Z
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(6.2.3) 

 

where R2 = 1, 0 for Z2 observed and missing, respectively. 

After obtaining quantiles determined to give us correct counts of the original correlated binary 

data, we proceed with imputing the normal data by applying the joint modeling approach discussed in 

Schafer (1997) to our bivariate normal data, Z, and obtain Zimp.  We then apply the previously 

determined quantiles based on the normal values corresponding to observed entries to obtain binary 

outcomes for the imputed values.  Namely, we use quantiles conditional on Y1 =1 to obtain outcomes for 

imputed Z values corresponding to entries where Y1 =1 and quantiles conditional on Y1 = 0 for imputed 

values corresponding to entries where Y1 = 0. 

This procedure can also be extended to bivariate data where both Y1 and Y2 have missing entries.  

Note that from the joint probability for Y1 = 1 and Y2 = 1 defined earlier, we can further define:  

 

     

(6.2.4) 

 

We can thus obtain binary outcomes from imputed Z1 and Z2 values for variables Y1 and Y2 using 

quantiles based on:  

                        (6.2.5) 

 

Again, quantiles are based on data corresponding to entries with both variables observed, i.e., R1 = 1 and 

R2 = 1. 

1 2 1 2 1 2 1 2

2 1 1 2 2 1 1 2

*

11 ( 1| 1, 1, 1) 1 11 ( 1| 0, 1, 1) 1

*

21 ( 1| 1, 1, 1) 2 21 ( 1| 0, 1, 1) 2

( ); ( )

( ); ( )

P Y Y R R P Y Y R R

P Y Y R R P Y Y R R

q Q Z q Q Z

q Q Z q Q Z
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We further extend our method to the multivariate case by basing our quantiles on probabilities: 

 

            (6.2.6) 

 

where yk  = 0,1, k = 1, . . . K > 3 and K is the number of variables in our data set. 

The conditional probabilities for all K variables can be derived from the joint probability:  

 

(6.2.7) 

 

Thus, quantiles can be obtained via: 

1 2 1 1 2Pr( 1| , ,..., , , ,..., ) ( )
k k kk Y Y Y Y R R R kq Q Z


      (6.2.8)  

leading to:  

1 2 1 1 2 1 2( 1| , ,..., , , ,..., ) ( | , ,..., )k k k k k kI Y Y Y Y R R R I Z q R R R       (6.2.9) 

for all combinations with          . 

Here, Z1, . . . , ZK comprise the normally distributed variables of a data set, Z, with mean 0, and 

covariance , where the elements are pairwise tetrachoric correlations derived from the pairwise phi 

correlations via Equation (5.1.3).  We then impute data pertaining to the multivariate normal data set, Z, 

and again dichotomize the newly imputed data for each variable k, k = 1,...,K via the quantiles obtained 

from Equations (6.2.8) and (6.2.9).   

After computing pairwise correlations for the newly imputed binary data, we check if the 

updated phi matrix containing these pairwise elements is positive definite and if the matrix is fairly close 

to the original phi matrix, i.e., if for each element, 
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         (6.2.10) 

for some constant cjk chosen to minimize standardized bias and maximize coverage rates. 

If the new phi matrix is non-positive definite, then we derive the 'nearest' positive definite phi 

matrix and compare the elements of this matrix to those of the original phi matrix.  This technique is 

summarized in the following diagram in (6.2.11), where steps (2) – (3) are re-iterated until the 

convergence criteria in (6.2.10) for all pairwise correlations are met. 

 

                (6.2.11) 

 

 As in Emrich and Piedmonte (1991) , we generate multivariate normally distributed data using 

tetrachoric pairwise correlations and dichotomize the normally distributed variables based on quantiles 

associated with previously obtained probabilities.  The tetrachoric corrlation is a special case of the 

Pearson correlation relating two normally distributed variables underlying two binary variables.  

Obtaining the tetrachoric correlations using pairwise phi correlations from the corresponding binary 

variables is preferable to obtaining the Pearson correlation directly from the generated normally 

distributed data underlying the binary variables in terms of precision and accuracy and lower bias when 

measuring associations of the variables, as discussed in Section 5.2.2.  Unlike Emrich and Piedmonte 

(1991), we also introduce missing values in the multivariate normally distributed variables, where the 

amount of missingness in each variable is equal to the amount of missingness in the corresponding 

original binary variable.   We then obtain quantiles using the variables with normally distributed data 

including missing entries and only dichotomize imputed data which are then used to fill in missing 

values in the original binary data.  We summarize comparisons between the two methods in Table IV 

below. 
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Table IV: SIMILARITIES AND DIFFERENCES INVOLVING METHODS FOR BINARY DATA 
 

 
Steps Emrich-Piedmonte (1991) algorithm  MI for binary data (2011) algorithm 

1 Multivariate normally distributed data  are 

generated using tetrachoric pairwise correlations. 

Multivariate normally distributed data are generated using 

tetrachoric pairwise correlations. 

2  Missing values are introduced in multivariate normally 

distributed data; the percentage of missing values is equal 

to the percentage of missing values in the original binary 

data. 

3 Quantiles associated with the multivariate normally 

distributed data are obtained based on probabilities 

involving the desired data. 

Quantiles associated with the multivariate normally 

distributed data after missing values are introduced are 

obtained based on probabilities involving the original data. 

4  Multiple imputation via joint modeling under the 

normality assumption is applied to the multivariate 

normally distributed data. 

5 Generated data are dichotomized with quantiles 

obtained in Step 3. 

Imputed data are dichotomized with quantiles obtained in 

Step 3. 

 

 

 

6.3 Imputing Mixed Data 

 

We could combine principles for imputing continuous data and binary data in order to impute 

mixed data.  We introduce this approach by starting with a bivariate example, where one variable, Y1, is 

continuous and the other variable, Y2 is binary.  Y1 can be transformed to a normally distributed variable 

via the eCDF approach given in the LGMI algorithm.  With Y2, we can first generate a random normal 

variable Z2 and then re-arrange the values of this variable such that entries corresponding to entries in 

the original binary variable Y2 = 0 are less than the quantile of the generated data based on the 

proportion of zeroes in Y2, defined by probability Pr(Y2 = 0) and values corresponding Y2 = 1 are greater 

than this quantile, i.e,        .  We then impose missing values in the normally distributed 

variable in the same positions of missing entries Y2.  The correlation associated with this new data set is 

the point-biserial correlation given as: 
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             (6.3.1) 

 

which is an alternative expression of equation (5.3.2). 

  We then impute this new normally distributed data set and transform them onto the original 

scale.  Y1 is back-transformed via the Barton and Schruben (1993) method and Y2 is transformed such 

that imputed values less than the previously described quantiles are coded as 0 and 1, otherwise.  We 

then compute the point-biserial correlation, ,     , of the imputed data set and compare this value to the 

original correlation. 

Next, we extend our method for imputing mixed data to multivariate data sets with k > 3 

variables, where p > 2 variables are binary.  Here, we again transform the continuous data via the eCDF 

approach given in the LGMI method.  With binary data, we first generate a multivariate normal data set 

associated with a tetrachoric correlation matrix derived from the pairwise phi correlation coefficients 

and delete entries corresponding to missing entries in the original binary data.  We then combine these 

variables with the variables related to the original continuous data.   After imputing the data, we back-

transform the continuous variables via the Barton and Schruben (1993) method and transform the 

imputed values in the original binary variables via quantiles.  These quantiles are based on the 

conditional probabilities defined as: 

1 1 1Pr( | ,..., , ,..., )r r r pY Y Y Y Y       (6.3.2) 

 

for r = 1, . . . p binary variables. 
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If we define:  

 

            (6.3.3) 

 

then we can create binary values in the variable Yr from the imputed values of Zr by applying (6.3.4). 

 

'( ( ))
r

r rp
I Z Q Z

                 (6.3.4) 

We summarize the steps for imputing multivariate mixed data as the diagram in equation (6.3.5).   

 

 

 (6.3.5) 

 

 

 

 

 

We re-iterate steps (4) to (9) until the convergence criteria with all pairwise correlations where the 

criteria are given in equation (6.3.6). 

imp

jk jk jkc  
      (6.3.6) 

where, for variables Yj and Yk, jk is the Pearson correlation when Yj and Yk are continuous, the phi 

coefficient when Yj and Yk are binary, and the point-biserial correlation when Yj is continuous and Yk is 

binary, and cjk is some constant chosen to optimize estimation of the correlation from the imputed data. 
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 As in Demirtas and Doganay (2012), we generate multivariate normally distributed data using 

tetrachoric pairwise correlations corresponding to the binary variables in our data set.  Instead of 

generating multivariate normally distributed values corresponding to continuous variables, however, we 

only map the existent values from the continuous variables to normally distributed data using eCDF 

computations and the inverse function of the N(0,1) distribution.  Additionally, we note that the 

continuous data is assumed to follow a normal distribution in Demirtas and Doganay (2012), whereas 

our imputation method assumes that the continuous data can follow any distribution.  Furthermore, the 

same amount of missingness is introduced in the normally distributed variables corresponding to the 

original binary variables as found in these original variables.  Quantiles associated with probabilities 

from the original data are obtained from these normally distributed variables with missing values.  

Multiple imputation under the normality assumption is then applied and back-transformation of 

variables in the data designated as continuous involve the CDF values of imputed data based on the 

normal distribution and the Barton and Schruben (1993) method and variables in the data designated as 

binary are dichotomized by the calculated quantiles.  These final steps differ from Demirtas and 

Doganay (2012) in that only imputed and not all generated values are back-transformed and again 

variables designed as continuous can follow any distribution and not only the normal distribution.  These 

comparisons are summarized in Table V. 
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Table V: SIMILARITIES AND DIFFERENCES INVOLVING METHODS FOR MIXED DATA 

 

 
Steps Demirtas-Doganay (2012) algorithm  MI for mixed data (2011) algorithm 

1 Pairwise phi correlations between binary variables, 

pairwise point-biserial correlations between binary 

and normally distributed variables, and pairwise 

Pearson correlations between normally distributed 

variables are computed. 

Continuous and binary variables are separated.  

Continuous variables are mapped to normally distributed 

values via eCDF computations and the inverse function 

of the N(0,1) distribution. 

2 Multivariate normally distributed data are generated 

using tetrachoric correlations associated with phi 

correlations, biserial correlations associated with  

point-biserial correlation, and Pearson correlations.  

(Note: phi, tetrachoric, point-biserial, and biserial 

correlations are special cases of the Pearson 

correlation). 

Multivariate normally distributed data are only generated 

for binary variables based on tetrachoric correlations.  

An amount of missingness is introduced in these data 

equal to the amount of missingness in the original binary 

variables. 

3 Quantiles associated with the multivariate normally 

distributed data are obtained based on probabilities 

for the binary variables. 

Quantiles associated with the multivariate normally 

distributed data after missing values are introduced are 

obtained based on probabilities for the original binary 

variables, 

4  The multivariate normally distributed data associated 

with both continuous and binary variables are combined 

and multiple imputation via joint modeling under the 

normality assumption is applied to the multivariate 

normally distributed data. 

5 Generated normally distributed data  of variables 

designated as binary are dichotomized by the 

obtained quantiles. 

Imputed normally distributed data  of variables 

designated as binary are dichotomized by the obtained 

quantiles. 

6 Generated normally distributed data  of variables 

designated as following the normal distribution are 

back-transformed via reverse centering and scaling. 

Imputed normally distributed data  of variables 

designated as continuous are back-transformed by 

obtaining their CDF values based on the normal 

distribution and mapping these CDF values onto the 

range of the original continuous data via the Barton and 

Schruben (1993) method. 

7 Normally distributed and binary variables are 

combined. 

Continuous and binary variables are combined. 
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7.  SIMULATIONS WITH GENERATED DATA 

 

7.1  Bivariate Continuous Data 

 

 In our first sets of simulations, we generated bivariate data under the assumption of the N(0,1),  

t3, and Gamma(1,1) distributions with 500 entries and imposed 50% missingness in the second variable 

via an MCAR mechanism.  Both variables in each bivariate data set followed the same distribution. 

Under the MCAR mechanism, 50% of entries were deleted from the second variable, Y2.  These data sets 

were also associated with Pearson correlations ranging from approximately -0.8 to 0.8. 

  Here, true Pearson correlations and means were obtained before missing values were introduced.  

We applied the LGMI algorithm to each generated data set, creating 10 imputed data sets at each of 100 

simulations run.  An imputation at each simulation was considered completed when the convergence 

criteria in equation (7.1.3) was satisfied or after 100 attempts. 

 

              (7.1.3) 

 

for  being the true correlation estimate,       , the correlation estimate associated with the imputed data 

set, and c12 being some constant chosen to minimize standardized bias and maximize coverage rate 

calculated after all 100 simulations were run. 

We also obtained the Pearson correlation for each imputed data set and then estimated the 

average correlation across the 10 imputed correlations at each simulation.  We then calculated the 

average estimate (AE), standardized bias (SB), root mean square error (RMSE), coverage rate (CR), and 

average width of confidence intervals (AW) using these 100 estimates.  Results involving pairwise 

12

imp

12 12 12 12

imp c   
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correlations from application of the Lurie-Goldberg multiple imputation algorithm to the N(0,1),  t3, and 

Gamma(1,1) distributed data are given in Tables VI, VII, and VIII, respectively.  True means for all 

generated data sets and AE values for Y2, 2, for the data set are given in Table IX.  Results from the 

naïve approach of imputing data directly via joint modeling under the normality assumption and from 

complete-case (CC) analyses are also shown.  Here, estimates for pairwise correlations from complete-

case analyses were less comparable to true pairwise correlations than those obtained from either 

imputation method, but were still reasonable. 

With the new LGMI approach for all three distributions, the average estimate of the Pearson 

correlation for each generated data set is comparable to that from the original data set.  The SB values 

are acceptable as they are all < 50%, the small RMSE values indicate quite good precision and accuracy, 

and the AW values furthermore are comparable to the 95% confidence interval widths of the true 

estimates.  The coverage rate approximates 95%, additionally showing the validity of the LGMI 

algorithm in the bivariate continuous case.  Likewise, we observe generally AE values of comparable 

to true 2 obtained from the generated data (Table IX) among all data sets associated with any 

distribution or pairwise correlation.  The naïve approach contrarily led to SB values > 50% and even SB 

values > 100% in several cases as well as CR estimates < 90% in several cases for t and Gamma 

distributed data as well as normally distributed data.  Also, AW values appear to be artificially narrower 

than expected.    Therefore, we observe that our approach could be a favorable alternative for imputing 

bivariate continuous data in MCAR cases.   
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Table VI: SIMULATION RESULTS FOR GENERATED N(0, 1) DATA 

 

 
New LGMI Approach 

Data generated under the MCAR mechanism (50% missing) 

 

Convergence Criteria 

Constant 

(Multiplied to  from 

generated data) 

Data Set True from 

generated data 

AE SB RMSE CR AW 

1 -0.8019 -0.8017 11.2524 0.0019 94.8498 0.14552 0.0125 

2 -0.7977 -0.7975 9.7569 0.0018 95.5888 0.14813 0.0125 

3 -0.3994 -0.3992 5.0815 0.0037 95.8267 0.335 0.0500 

4 -0.3977 -0.3973 11.6103 0.0038 96.1692 0.3353 0.0500 

5 0.4005 0.4014 22.2153 0.0039 95.8456 0.33434 0.0500 

6 0.4010 0.4019 25.5326 0.0037 95.7298 0.33413 0.0500 

7 0.7985 0.7979 35.9097 0.0018 95.3605 0.14795 0.0125 

8 0.7990 0.7998 42.7713 0.0020 94.9202 0.14672 0.0125 

Naïve Approach 

    

Data Set True from 

generated data 

AE SB RMSE CR AW CC Estimate 

1 -0.8019 -0.8028 47.4940 0.0001 92.0432 0.0514 -0.8100 

2 -0.7977 -0.7979 6.4270 0.0007 95.8449 0.0641 -08020 

3 -0.3994 -0.3988 25.7081 0.0007 98.0512 0.1480 -0.4019 

4 -0.3977 -0.3978 2.5724 0.0033 88.0019 0.1539 -0.3984 

5 0.4005 0.3986 45.7707 0.0035 87.8668 0.1535 0.3976 

6 0.4010 0.3994 61.2199 0.0025 93.4326 0.1492 0.4028 

7 0.7985 0.7982 68.5948 0.0012 92.7341 0.0642 0.8040 

8 0.7990 0.7989 8.5705 0.0011 92.8716 0.0640 0.8033 
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Table VII:  SIMULATION RESULTS FOR GENERATED t3  DATA 

 
 

New LGMI Approach 

Data generated under the MCAR mechanism (50% missing) 

 

Convergence 

Criteria Constant 

(Multiplied to  

from generated 

data) 

Data Set True from 

generated data 

AE SB RMSE CR AW 

1 -0.8156 -0.8149 33.2935 0.0021 94.9074 0.13715 0.0125 

2 -0.7768 -0.7764 22.6317 0.0016 96.1201 0.16116 0.0125 

3 -0.4036 -0.4034 4.6243 0.0037 95.7791 0.33376 0.0500 

4 -0.3963 -0.3952 29.7284 0.0038 95.8542 0.33602 0.0500 

5 0.3870 0.3878 24.9229 0.0035 96.1759 0.3381 0.0500 

6 0.4129 0.4113 37.8781 0.0044 95.2750 0.33124 0.0500 

7 0.7781 0.7779 12.1033 0.0019 95.4169 0.16025 0.0125 

8 0.8022 0.8018 22.6672 0.0018 94.8835 0.14549 0.0125 

Naïve Approach 

    

Data Set True from 

generated data 

AE SB RMSE CR AW CC Estimate 

1 -0.8156 -0.8183 161.6786 0.0024 89.4830 0.0586 -0.8188 

2 -0.7768 -0.7754 102.0512 0.0019 91.3718 0.0707 -0.7738 

3 -0.4036 -0.4041 1.7479 0.0026 90.9860 0.1508 -0.4076 

4 -0.3963 -0.4014 110.2944 0.0062 84.8766 0.1529 -0.4004 

5 0.3870 0.3874 24.2366 0.0015 95.5887 0.1504 0.3862 

6 0.4129 0.4119 36.2520 0.0027 90.6629 0.1499 0.4157 

7 0.7781 0.7767 73.4012 0.0018 90.2990 0.0704 0.7782 

8 0.8022 0.8035 91.1763 0.0018 90.7876 0.0514 0.8042 
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Table VIII: SIMULATION RESULTS FOR GENERATED GAMMA(1,1) DATA 

 

 
New LGMI Approach 

Data generated under the MCAR mechanism (50% missing) 

 

Convergence 

Criteria Constant 

(Multiplied to  

from generated 

data) 

Data Set True from 

generated data 

AE SB RMSE CR AW 

1 -0.8083 -0.8076 37.0654 0.0020 94.5748 0.1418 0.0125 

2 -0.7917 -0.7917 1.8075 0.0018 95.4725 0.1519 0.0125 

3 -0.4034 -0.4037 10.1429 0.0031 96.3221 0.3337 0.0500 

4 -0.4004 -0.4003 3.9241 0.0042 95.7923 0.3346 0.0500 

5 0.3823 0.3812 33.2641 0.0035 96.5697 0.3400 0.0500 

6 0.4048 0.4046 7.3126 0.0035 96.1474 0.3335 0.0500 

7 0.7838 0.7833 24.5795 0.0017 96.0341 0.1569 0.0125 

8 0.8132 0.8124 38.8164 0.0022 94.0330 0.1387 0.0125 

Naïve Approach 

    

Data Set True from 

generated data 

AE SB RMSE CR AW CC Estimate 

1 -0.8083 -0.8104 156.6513 0.0025 89.7548 0.0609 -0.8061 

2 -0.7917 -0.7910 69.8911 0.0014 92.5647 0.0664 -0.7894 

3 -0.4034 -0.4021 22.2986 0.0034 89.3146 0.1511 -0.4074 

4 -0.4004 -0.4005 13.5156 0.0028 90.5144 0.1514 -0.3959 

5 0.3823 0.3813 19.2015 0.0031 89.7804 0.1540 0.3842 

6 0.4048 0.4011 105.2134 0.0005 87.8566 0.1510 0.4023 

7 0.7838 0.7832 51.3690 0.0014 92.3429 0.0686 0.7796 

8 0.8132 0.8125 29.6884 0.0015 91.0094 0.0603 0.8127 
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Table IX: TRUE MEANS OF GENERATED DATA, COMPLETE-CASE (CC) ESTIMATES, AND 

AVERAGE ESTIMATES (AE) OF MEANS FOR THE IMPUTED VARABLE FOR Y2, FOR ALL 

GENERATED DATA SETS IN THE BIVARIATE CONTINUOUS CASE 

 

 
LGMI Approach 

 N(0,1) data generated 

under MCAR mechanism 

t3 data generated 

under MCAR mechanism 

Gamma(1,1) data generated 

under MCAR mechanism 

Data Set True  True  AEof True  True  AEof True  True  AEof 

1 -0.0066 -0.0682 -0.1372 -0.1218 0.1330 0.0961 1.0183 1.1094 1.0794 

2 -0.0261 0.0094 -0.0117 -0.0319 -0.0570 -0.0421 1.0249 1.0632 1.0343 

3 0.0492 -0.0980 -0.0811 0.0566 0.0173 -0.0341 1.0956 1.1090 1.0643 

4 0.1772 -0.2332 -0.2554 -0.0389 -0.0482 0.0325 1.0458 1.0555 1.0610 

5 -0.0971 -0.0099 -0.0024 0.0319 0.1721 0.1906 1.0570 1.0598 1.0624 

6 -0.1400 -0.2502 -0.2801 -0.0223 0.0334 0.0328 0.9995 1.0912 1.1065 

7 0.0308 0.1149 0.0750 -0.0610 -0.0321 -0.0608 1.0504 1.1353 1.0795 

8 0.1606 0.1474 0.1741 0.0162 0.0027 -0.0239 1.0040 1.1287 1.1446 

Estimates based on Naïve and Complete Case Approaches 

Data Set Naïve 

Approach 

 CC 

Approach 

Naïve 

Approach 

 CC 

Approach 

Naïve 

Approach 

 CC 

Approach 

1 0.0362  -0.0979 -0.0307  0.1492 1.0015  0.9992 

2 0.0426  -0.0351 0.1179  0.1102 1.0257  0.9723 

3 0.1030  0.0458 -0.1161  0.0603 0.9831  1.1028 

4 0.0560  -0.0502 -0.0728  -0.2276 0.9645  1.0520 

5 0.0690  -0.0283 -0.0859  -0.0258 1.0037  1.1178 

6 0.0354  -0.0111 -0.2030  0.0045 1.0076  1.0559 

7 0.0268  -0.0684 -0.1063  0.1426 0.9537  1.1280 

8 0.0628  0.0022 -0.3012  -0.0389 0.9280  1.2041 
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7.2 Multivariate Continuous Data 

 

In these simulations, we extend our LGMI algorithm to MCAR multivariate data with k = 3 

variables, Y1, Y2, and Y3, where Y1 is completely observed, 25% of Y2 is missing and 25% of Y3 is 

missing, such that 50% of data entries have observed values for all 3 variables and 50% of entries have a 

missing value in either Y2 or Y3, as shown in Figure 1, where shaded regions indicate entries with 

missing values.   

 

Figure 1: Plot showing three variables, Y1, Y2, and Y3 with Y2, and Y3 having missing entries (shaded 

areas). 

 

We first generated data under the N(0,1), t3, or Gamma(1,1) distribution with correlations approximating 

-0.8, -0.4, 0.4, or 0.8.  Each data set contained 200 variables and each variable of a particular data set 
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followed the same distribution.  True correlation and mean estimates were obtained  

before missingness was induced.  We imposed missingness under the MCAR mechanism, where we 

randomly selected a subset comprising 25% of the data set in which we deleted Y2 values and selected 

another subset of the data set in which we deleted Y3 values.  Therefore, 50% of entries in these data sets 

have a missing value in either Y2 or Y3. 

We applied each data set to our LGMI algorithm involving 1000 iterations of m = 10 

imputations.  Each imputation was completed after the convergence criteria were satisfied or after 100 

attempts at convergence were tried.  The convergence of this algorithm was determined in the absolute 

difference between all k(k – 1)/2, or 3, pairwise correlations of the applied data and of the imputed data  

were less than the pairwise correlations of the applied data multiplied by some constant cjk, j = 1,2, k = 

2,3, specified by the user, such that: 

              

       (7.2.1) 

 

In our simulations, convergence constants inputted into the algorithm were chosen for each data 

set to minimize standardized biases and maximize coverage rates.  Table X gives the results for six data 

sets, including three distributions and two correlation matrices.  Results give the true pairwise 

correlations, the pairwise correlations from the imputed data, the standardized bias (SB), root mean 

square error (RMSE), coverage rate (CR), and 95% confidence interval average width (AW) estimates 

for the correlations of the imputed data.  As with bivariate continuous data, our LGMI approach was 

associated with AE values comparable to the true estimates, SB values < 50%, small RMSE values 
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implying good precision and accuracy, CR values > 90%, and AW estimates comparable to confidence 

interval widths for the true pairwise correlations obtained from the generated data.  Table XI gives the 

results from applying the joint modeling approach under the normality assumption directly to the 

multivariate continuous data and the complete-case results. Here, we observed that pairwise correlation 

estimates obtained from complete-case analyses were less comparable of true pairwise correlations than 

those obtained from either imputation method, albeit still reasonable. 

Likewise, we observed SB values > 50% for pairwise correlations in some cases of normally, t, 

and Gamma distributed data, being more prominent given t and Gamma distributions.  Lastly, overly 

optimistic coverage rates of 100% computed could be associated with AW estimates considerably larger 

than the confidence interval widths for the original estimates.  Thus, we again infer that our method for 

imputing continuous data is a preferable alternative to the naïve approach of directly imputing data via 

joint modeling under the normality assumption. 
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Table X: RESULTS FROM APPLYING THE LGMI ALGORITHM TO MULTIVARIATE 

CONTINUOUS DATA GENERATED UNDER THE MCAR MECHANISM 

 

 

  

Data 

Distribution 

Coefficient Convergence 

constant 

True 

value 

AE SB RMSE CR AW 

N(0,1)  0.0075 0.8030 0.8028 11.27 0.00085 95.89 0.1008 

N(0,1)  0.0075 -0.7984 -0.7986 20.06 0.00091 95.79 0.1026 

N(0,1)  0.0075 -0.7831 -0.7825 42.01 0.00108 95.56 0.1098 

   True  True  True   AEof AEof

   0.0006 -0.0188 0.0370  -0.0507 0.0245 

N(0,1)  0.0325 0.4080 0.4087 28.07 0.00207 95.49 0.2344 

N(0,1)  0.0325 -0.4076 -0.4082 26.69 0.00216 95.55 0.2343 

N(0,1)  0.0325 -0.4087 -0.4081 17.65 0.00254 94.10 0.2356 

   True  True  True   AEof AEof

   -0.0537 -0.0357 0.0628  -0.0063 0.0834 

t3  0.0075 0.7859 0.7862 25.81 0.00094 95.65 0.1084 

t3  0.0075 -0.7981 -0.7977 27.97 0.00125 94.28 0.1035 

t3  0.0075 -0.8068 -0.8073 36.70 0.00127 93.49 0.0994 

   True  True  True   AEof AEof

   -0.0369 -0.0120 -0.0412  0.0014 -0.1031 

t3  0.0275 0.4072 0.4066 22.70 0.00204 95.80 0.2342 

t3  0.0275 -0.3969 -0.3962 26.35 0.00205 95.66 0.2371 

t3  0.0275 -0.3871 -0.3874 9.97 0.00264 94.10 0.2397 

   True  True  True   AEof AEof

   0.2760 0.2607 -0.1549  0.2631 -0.1703 

Gamma(1,1)  0.00925 0.7969 0.7962 39.21 0.00149 92.56 0.1048 

Gamma(1,1)  0.00925 -0.7936 -0.7934 7.22 0.00138 93.05 0.1059 

Gamma(1,1)  0.00925 -0.7845 -0.7844 6.06 0.00148 92.83 0.1100 

   True  True  True   AEof AEof

   0.8788 0.9863 1.1650  0.9770 1.1545 

Gamma(1,1)  0.026975 0.3978 0.3962 47.74 0.00289 94.32 0.2375 

Gamma(1,1)  0.026975 -0.4055 -0.4049 28.45 0.00180 96.25 0.2345 

Gamma(1,1)  0.026975 -0.4021 -0.4010 36.15 0.00238 95.23 0.2360 

   True  True  True   AEof AEof

   0.9584 1.1705 0.9068  1.1190 0.8668 
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Table XI: RESULTS FROM APPLYING THE NAÏVE APPROACH OF IMPUTING DATA TO 

MULTIVARIATE CONTINUOUS DATA GENERATED UNDER THE MCAR MECHANISM 

 

 
Data 

Distribution 

Coefficient True 

value 

AE SB RMSE CR AW Complete Case (CC) 

Analyses 

N(0,1)  0.8030 0.8018 77.46 0.00299 100.00 0.1439 0.8075  0.1266 

N(0,1)  -0.7984 -0.7943 185.17 0.00373 100.00 0.1486 -0.8073  0.0476 

N(0,1)  -0.7831 -0.7799 2.53 0.00180 100.00 0.1576 -0.8051   

  True  True  True   AEof AEof    

  0.0006 -0.0188 0.0370  0.0432 0.0504    

N(0,1)  0.4080 0.4105 10.72 0.00375 100.00 0.3289 0.4125  -0.0776 

N(0,1)  -0.4076 -0.4061 45.93 0.00358 100.00 0.3304 -0.3920  0.0089 

N(0,1)  -0.4087 -0.4081 17.65 0.00254 100.00 0.3304 -0.4187   

  True  True  True   AEof AEof    

  -0.0537 -0.0357 0.0628  -0.0765 -0.0813    

t3  0.7859 0.7930 141.92 0.0003 100.00 0.1494 0.7933  -0.0845 

t3  -0.7981 -0.8022 94.08 0.0027 100.00 0.1437 -0.7760  0.1462 

t3  -0.8068 -0.8105 22.75 0.0018 100.00 0.1383 -0.8282   

  True  True  True   AEof AEof    

  -0.0369 -0.0120 -0.0412  0.0093 0.0966    

t3  0.4072 0.4022 156.65 0.0008 100.00 0.3316 0.4102  0.2768 

t3  -0.3969 -0.4048 89.19 0.0057 100.00 0.3309 -0.4087  -0.0964 

t3  -0.3871 -0.3917 26.03 0.0053 100.00 0.3305 -0.3998   

  True  True  True   AEof AEof    

  0.2760 0.2607 -0.1549  0.3033 -0.0785    

Gamma(1,1)  0.7969 0.7951 90.57 0.0002 100.00 0.1481 0.8003  0.9040 

Gamma(1,1)  -0.7936 -0.7959 93.24 0.0022 100.00 0.1476 -0.8090  0.9161 

Gamma(1,1)  -0.7845 -0.7867 82.88 0.0022 100.00 0.1534 -0.7653   

  True  True  True   AEof AEof    

  0.8788 0.9863 1.1650  0.9233 0.8835    

Gamma(1,1)  0.3978 0.3965 31.64 0.0004 100.00 0.3332 0.3947  1.2595 

Gamma(1,1)  -0.4055 -0.4094 79.52 0.0046 100.00 0.3293 -0.4119  0.8644 

Gamma(1,1)  -0.4021 -0.3998 53.83 0.0038 100.00 0.3323 -0.3785   

  True  True  True   AEof AEof    

  0.9584 1.1705 0.9068  1.2464 0.8243    
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7.3 Bivariate Binary Case 

  

In examining our method for the imputing binary data described in Section 6.2 for the bivariate 

case with missing entries in the second variable, we created data sets with two binary variables and 500 

observations and either randomly deleted 250 entries in the second variable to introduce missing values 

under the MCAR mechanism with 50% missingness. 

 We applied our approach to create 10 imputed data sets for each generated data set at each of 

1000 simulations, assessing the performance by looking at the average estimate (AE), standardized bias 

(SB), root mean-square error (RMSE), coverage rate (CR), and average width (AW).  Original (true) 

proportions were obtained by calculating the means of the variables before missingness was imposed. 

True phi coefficients for the generated data involved in the imputation approach were also computed 

before introducing missing values.  Table XII includes results from our imputation approach, the naïve 

approach for imputing binary data, and complete-case analyses for these data. We then applied our 

method to bivariate data sets with both variables having missing entries per the approach described in 

6.2 for such cases.  Here, we imposed missing values in both variables under the MCAR mechanism by 

randomly deleting 25% entries in each variable.  Again, 1000 simulations involving 10 imputations each 

were run for each generated data set and results are presented in Table XIII from the three approaches 

tried.  Both tables indicate the validity of our method for different correlated binary data sets, as given 

by AE values comparable to the original estimates, SB values < 50%, small RMSE values indicating 

good precision and accuracy, CR values > 90%, and AW values comparable to confidence interval 

widths of the original pairwise phi coefficients.   

Generally, pairwise correlation estimates obtained from complete-case analysis and either 

imputation method were comparable to the true values in all examples.  Applying the joint modeling 
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approach for imputing binary values based on a multinomial or loglinear model assumption to all the 

data sets generated nevertheless led to SB values grossly exceeding 50% or CR values < 90% in several 

cases, a possible result of multinomial or loglinear model assumption violations.  These results thus 

suggest our method as a preferable alternative in imputing bivariate binary data. 
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Table XII: SIMULATION RESULTS FOR IMPUTING BIVARIATE BINARY DATA MISSING IN THE SECOND VARIABLE 

 

 
Results for New Approach Naïve Results CC Results 

True  -0.6810 True p1 0.4860 True  -0.6810 Imputed p2 Estimated 

AE -0.6807 True p2 0.5560 AE -0.6784 0.5685 -0.6800 

SB 20.2230 Imputed p2 0.5515 SB 38.5481  Estimated p2 

RMSE 0.0012 Convergence  RMSE 0.0036  0.5440 

CR 94.7196 Constant 0.00875 CR 83.0621   

AW 0.0950   AW 0.0987   

True  -0.3925 True p1 0.5260 True  -0.3925 Imputed p2 Estimated 

AE -0.3919 True p2 0.4760 AE -0.4107 0.4641 -0.4200 

SB 23.8818 Imputed p2 0.4784 SB 297.3799  Estimated p2 

RMSE 0.0022 Convergence  RMSE 0.0182  0.4880 

CR 93.1242 Constant  CR 68.6487   

AW 0.1506  0.01375 AW 0.1591   

True  0.3480 True p1 0.5000 True  0.3480 Imputed p2 Estimated 

AE 0.3495 True p2 0.4440 AE 0.3373 0.4382 0.3313 

SB 47.5660 Imputed p2 0.4464 SB 146.1941  Estimated p2 

RMSE 0.0028 Convergence  RMSE 0.0011  0.4400 

CR 91.7202 Constant 0.0175 CR 73.0652   

AW 0.1576   AW 0.1728   

True  0.8087 True p1 0.4680 True  0.8087 Imputed p2 Estimated 

AE 0.8086 True p2 0.4920 AE 0.8132 0.5083 0.8200 

SB 5.4819 Imputed p2 0.4967 SB 71.6534  Estimated p2 

RMSE 0.0012 Convergence  RMSE 0.0061  0.4960 

CR 92.0251 Constant 0.00875 CR 66.2257   

AW 0.0615   AW 0.0639   
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Table XIII: SIMULATION RESULTS FOR IMPUTING BIVARIATE BINARY DATA MISSING IN BOTH VARIABLES  

 
Results for New Approach Naïve Results CC Results 

True  -0.7099 True p1 0.5200 True  -0.7099 Imputed p1 Estimated 

AE -0.7102 Imputed p1 0.5346 AE -0.7049 0.5279 -0.7059 

SB 24.4278 True p2 0.5040 SB 130.94 Imputed p2 Estimated p1 

RMSE 0.0012 Imputed p2 0.4947 RMSE 0.0053 0.4954 0.5251 

CR 94.5486 Convergence  CR 80.9265  Estimated p2 

AW 0.0876 Constant 0.0075 AW 0.0917  0.5110 

True  -0.4085 True p1 0.4840 True  -0.4085 Imputed p1 Estimated 

AE -0.4094 Imputed p1 0.4942 AE -0.4087 0.5355 -0.4100 

SB 40.1080 True p2 0.4960 SB 5.5803 Imputed p2 Estimated p1 

RMSE 0.0019 Imputed p2 0.493 RMSE 0.0032 0.5154 0.4800 

CR 94.4952 Convergence  CR 88.0971  Estimated p2 

AW 0.1477 Constant 0.01275 AW 0.1523  0.4824 

True  0.4083 True p1 0.5200 True  0.4083 Imputed p1 Estimated 

AE 0.4078 Imputed p1 0.5165 E 0.4085 0.5487 0.4085 

S 15.4593 True p2 0.5280 SB 3.0333 Imputed p2 Estimated p1 

RMSE 0.0024 Imputed p2 0.5277 RMSE 0.0035 0.5225 0.5440 

CR 92.0796 Convergence  CR 87.0784  Estimated p2 

AW 0.1492 Constant 0.0175 AW 0.1522  0.5307 

True  0.7392 True p1 0.5260 True  0.7392 Imputed p1 Estimated 

AE 0.7390 Imputed p1 0.5156 AE 0.7391 0.5170 0.7300 

SB 14.3974 True p2 0.5000 SB 3.6963 Imputed p2 Estimated p1 

RMSE 0.0011 Imputed p2 0.4906 RMSE 0.0017 0.4854 0.5147 

CR 94.3719 Convergence  CR 91.0058  Estimated p2 

AW .0803 Constant 0.0075 AW 0.0808  0.4996 
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7.4 Multivariate Binary Case 

 

Testing our method in the multivariate case with k = 3 variables, we generated binary data sets 

with 100 entries and induced a 25% missingness pattern under the MCAR mechanism in each variable.  

Under this mechanism, entries were randomly deleted separately in each variable such that each entry 

could have missing values in one, two, or all three variables.  Applying our method for imputing binary 

data, we once more ran 1000 simulations, each involving m = 10 imputations and presented the results 

from these simulations in Table XIV for each generated data set, given our approach and the naïve 

approach of imputing data directly via joint modeling as well as complete-case (CC) analysis results.  As 

before, we calculated phi coefficients and true proportion estimates from before missingness was 

induced. Convergence for each simulation with our approach was achieved when the absolute difference 

between each of the original pairwise correlations and the pairwise correlations obtained from the 

imputed data was less than some constant cjk, with j = 1,2 and k = 2,3 such that             for all 

pairwise correlations.  As in the bivariate binary case, with our method, we observed AE values 

comparable to true estimates, SB values < 50%, small RMSE values associated with adequate precision 

and accuracy, CR estimates > 90%, and AW values comparable to confidence interval widths of true 

estimates for pairwise phi coefficients.  These results therefore show validity of the new method when 

applied to multivariate binary data missing under the MCAR mechanism.  Generally, pairwise 

correlation estimates obtained from complete-case analysis, the naïve imputation approach, and our 

semi-paramteric imputation method were comparable to the true values.  The naïve approach, however, 

led to SB values > 50%, RMSE estimates > 50%, and CR values < 90%, possibly due to multinomial or 

loglinear model assumption violations. Given these results, we again see that our method may be a 

preferable avenue for imputing binary data. 
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Table XIV: SIMULATION RESULTS FOR IMPUTING MULTIVARIATE BINARY DATA 

 

 
Results for New Approach 

Pairs Convergence Constant True  Imputed  SB RMSE CR AW 

(1,2) 0.025 0.7502 0.7495 20.5445 0.0029 93.2664 0.1769 

(1,3) 0.025 0.4275 0.4278 9.0098 0.0027 96.3341 0.3249 

(2,3) 0.05 0.2721 0.2692 36.5658 0.0067 90.6657 0.3755 

  True p1 True p2 True p3 Imputed p1 Imputed p2 Imputed p3 

  0.4900 0.4500 0.5200 0.4922 0.4636 0.5059 

Pairs Convergence Constant True  Imputed  SB RMSE CR AW 

(1,2) 0.0025 -0.7679 -0.7677 4.3744 0.0034 91.4058 0.1664 

(1,3) 0.025 0.4419 0.4414 11.6331 0.0035 95.1700 0.3211 

(2,3) 0.0325 -0.3793 -0.3786 12.9950 0.0042 94.4604 0.3419 

  True p1 True p2 True p3 Imputed p1 Imputed p2 Imputed p3 

  0.4500 0.4900 0.5200 0.4599 0.4766 0.5288 

 Naïve and Complete case (CC) results for MCAR case (Naïve case estimates compared to true estimates) 

Pairs  CC  Imputed  SB RMSE CR AW 

(1,2) 0.7087 0.7548 44.0284 0.0100 75.9132 0.1818 

(1,3) 0.4739 0.4715 287.0018 0.0464 67.0812 0.3356 

(2,3) 0.3281 0.2811 266.5011 0.0473 66.5150 0.4036 

 CC p1 CC p2 CC p3 Imputed p1 Imputed p2 Imputed p3 

 0.4861 0.5063 0.5405 0.4768 0.4586 0.5380 

Pairs CC  Imputed  SB RMSE CR AW 

(1,2) -0.7069 -0.7208 332.5671 0.0471 62.2276 0.2078 

(1,3) 0.4553 0.4315 57.6124 0.0167 73.7353 0.3577 

(2,3) -0.3754 -0.3963 63.1527 0.0163 75.6711 0.3534 

 CC p1 CC p2 CC p3 Imputed p1 Imputed p2 Imputed p3 

 0.4857 0.4805 0.5513 0.4622 0.5025 0.5290 
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7.5 Bivariate Mixed Case 

 

To test our method for imputing mixed data, we first generated bivariate data with one variable 

as continuous following a N(5,1), t3 or Gamma(1,1) distribution including 500 entries.  Correlations 

were induced by sorting specific proportions of both continuous and binary variables.  Imposing 

missingness under the MCAR mechanism was accomplished by randomly deleting 25% of entries in 

both variables such that 35% - 50% of entries in the data sets had missing values in the continuous 

variable, Y1, binary variable, Y2, or both variables.   

1000 simulations involving m = 10 imputations each involving our imputation method for mixed 

data were run and performance of this method as well as for the naïve method was assessed via SB, 

RMSE, CR, and AW for the pairwise point-biserial correlations for each generated data set.  Tables XV, 

XVI, and XVII give examples of favorable results with the new method associated with data sets having 

continuous variables following the normal, t, and Gamma distributions, respectively. Results involving 

the naïve approach of imputing data directly via joint modeling under the general local model and from 

complete-cases analyses are also shown.  True means of continuous variables, true estimates of 

probabilities for binary variables, and true pairwise point-biserial correlations were obtained before 

missingness was imposed. Assessment measures indicate the new method as satisfactory in imputing 

bivariate mixed data for several cases of data missing under the MCAR mechanism for different 

distributions associated with the continuous variable, while the naïve approach was associated with 

results involving SB values > 50%, with several of these values exceeding 100%, and certain CR 

estimates < 90%, particularly in data with the continuous variable following a t or Gamma distribution.  

Furthermore, AE values obtained from our imputation approach were more comparable to the true 

pairwise correlations than were average estimates from the naïve approach or from complete-case 
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analyses.  These results may indicate violations of distributional and general location model 

assumptions, in which case our approach for imputing mixed data may be an attractive alternative. 
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Table XV: SIMULATION RESULTS FOR IMPUTING BIVARIATE MIXED DATA INVOLVING A 

N(5,1) DISTRIBUTION FROM IMPUTATION APPROACHES AND COMPLETE CASE (CC) 

ANALYSES 

 

 
Results from New Approach Results from Naïve Approach 

        

True  -0.7014 True 1 4.9226 True  -0.7014 Imputed 1 4.9874 

AE -0.7011 True p2 0.4760 AE -0.7072 Imputed p2 0.5094 

SB 14.3375 Imputed 1 4.9410 SB 195.2356   

RMSE 0.0014 Imputed p2 0.4807 RMSE 0.0032   

CR 93.9152 Convergence 0.01 CR 90.3919   

AW 0.0901 Constant  AW 0.0885   

CC  -0.7177 CC 1 4.8974 CC p2 0.5360   

        

True  -0.3799 True 1 5.0317 True  -0.3799 Imputed 1 5.0100 

AE -0.3800 True p2 0.5520 AE -0.3803 Imputed p2 0.5193 

SB 3.6626 Imputed 1 5.0259 SB 24.1380   

RMSE 0.0014 Imputed p2 0.5494 RMSE 0.0016   

CR 95.7150 Convergence 0.01 CR 95.2425   

AW 0.1513 Constant  AW 0.1512   

CC  -0.4029 CC 1 5.0097 CC p2 0.5400   

        

True  0.4232 True 1 5.0481 True  0.4232 Imputed 1 5.0043 

AE 0.4239 True p2 0.5320 AE 0.4241 Imputed p2 0.4825 

SB 41.0072 Imputed 1 5.0498 SB 48.3352   

RMSE 0.0015 Imputed p2 0.4987 RMSE 0.0017   

CR 95.5342 Convergence 0.01 CR 95.1778   

AW 0.1451 Constant  AW 0.1450   

CC  0.4293 CC 1 5.0376 CC p2 0.4840   

        

True  0.7164 True 1 5.1496 True  0.7164 Imputed 1 5.0320 

AE 0.7161 True p2 0.4800 AE 0.7183 Imputed p2 0.4860 

SB 14.8059 Imputed 1 5.1531 SB 110.1816   

RMSE 0.0014 Imputed p2 0.4917 RMSE 0.0021   

CR 93.0934 Convergence 0.01 CR 92.9260   

AW 0.0864 Constant  AW 0.0857   

CC  -0.7177 CC 1 5.0804 CC p2 0.4840   
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Table XVI: SIMULATION RESULTS FOR IMPUTING BIVARIATE MIXED DATA INVOLVING A 

t3 DISTRIBUTION FROM IMPUTATION APPROACHES AND COMPLETE CASE (CC) 

ANALYSES 

 
Results from New Approach Results from Naïve Approach 

        

True  -0.6465 True 1 -0.0827 True  -0.6465 Imputed 1 0.0582 

AE -0.6470 True p2 0.4880 AE -0.6263 Imputed p2 0.4678 

SB 30.1371 Imputed 1 -0.0621 SB 465.3172   

RMSE 0.0016 Imputed p2 0.5060 RMSE 0.0202   

CR 93.5712 Convergence 0.01 CR 69.9672   

AW 0.1031 Constant  AW 0.1116   

CC  -0.6527 CC 1 0.0766 CC p2 0.4630   

        

True  -0.3761 True 1 -0.1206 True  -0.3761 Imputed 1 -0.0601 

AE -0.3756 True p2 0.4560 AE -0.3645 Imputed p2 0.4750 

SB 26.0926 Imputed 1 -0.1127 SB 212.1641   

RMSE 0.0015 Imputed p2 0.4553 RMSE 0.0117   

CR 95.7219 Convergence 0.01 CR 76.1424   

AW 0.1519 Constant  AW 0.1647   

CC  -0.3864 CC 1 -0.0399 CC p2 0.4770   

        

True  0.3272 True 1 -0.1285 True  0.3272 Imputed 1 0.1044 

AE 0.3273 True p2 0.4920 AE 0.3170 Imputed p2 0.4539 

SB 6.6861 Imputed 1 -0.1251 SB 152.5677   

RMSE 0.0014 Imputed p2 0.4898 RMSE 0.0107   

CR 96.1203 Convergence 0.01 CR 75.0604   

AW 0.1578 Constant  AW 0.1720   

CC  0.3259 CC 1 0.0878 CC p2 0.4530   

        

True  0.6500 True 1 -0.0446 True  0.6500 Imputed 1 0.0002 

AE 0.6504 True p2 0.4760 AE 0.6423 Imputed p2 0.4933 

SB 24.0721 Imputed 1 -0.0966 SB 387.1463   

RMSE 0.0014 Imputed p2 0.4539 RMSE 0.0008   

CR 94.1362 Convergence 0.01 CR 86.2967   

AW 0.1022 Constant  AW 0.1043   

CC  0.6558 CC 1 -0.0152 CC p2 0.4870   
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Table XVII: SIMULATION RESULTS FOR IMPUTING BIVARIATE MIXED DATA INVOLVING 

A GAMMA(1,1) DISTRIBUTION FROM IMPUTATION APPROACHES AND COMPLETE CASE 

(CC) ANALYSES 

 

 
Results from New Approach Results from Naïve Approach 

        

True  -0.6493 True 1 0.9801 True  -0.6493 Imputed 1 0.9637 

AE -0.6502 True p2 0.5400 AE -0.6349 Imputed p2 0.5053 

SB 46.5629 Imputed 1 0.9848 SB 579.0685   

RMSE 0.0016 Imputed p2 0.5346 RMSE 0.01442   

CR 93.9631 Convergence 0.01 CR 74.1656   

AW 0.1023 Constant  AW 0.1066   

CC  -0.6550 CC 1 0.9633 CC p2 0.491   

        

True  -0.3946 True 1 0.9122 True  -0.3946 Imputed 1 1.0561 

AE -0.3945 True p2 0.4280 AE -0.3828 Imputed p2 0.4690 

SB 8.6858 Imputed 1 0.9021 SB 404.6109   

RMSE 0.0014 Imputed p2 0.4455 RMSE 0.01182   

CR 95.8202 Convergence 0.01 CR 84.4113   

AW 0.1493 Constant  AW 0.1535   

CC  -0.3901 CC 1 1.0567 CC p2 0.4680   

        

True  0.4023 True 1 0.9315 True  0.4023 Imputed 1 0.9221 

AE 0.4026 True p2 0.5000 AE 0.3909 Imputed p2 0.4830 

SB 17.1405 Imputed 1 0.9286 SB 185.4703   

RMSE 0.0015 Imputed p2 0.5222 RMSE 0.0115   

CR 95.5386 Convergence 0.01 CR 76.6835   

AW 0.1482 Constant  AW 0.1602   

CC  0.4033 CC 1 0.9330 CC p2 0.4870   

        

True  0.6472 True 1 1.0071 True  0.6472 Imputed 1 1.0278 

AE 0.6467 True p2 0.5000 AE 0.6463 Imputed p2 0.4685 

SB 27.1875 Imputed 1 0.9672 SB 46.2167   

RMSE 0.0015 Imputed p2 0.4890 RMSE 0.0017   

CR 93.9777 Convergence 0.01 CR 93.1569   

AW 0.1031 Constant  AW 0.1036   

CC  0.6580 CC 1 0.9784 CC p2 0.4850   
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7.6 Multivariate Mixed Case 

 

We next tested our approach for multivariate mixed data by generating three types of data sets, each 

with 100 entries.  Namely, we considered a trivariate data with two continuous variables and one binary 

variable, a trivariate data with one continuous variable and two binary variables, and a four-variable data 

set with two continuous variables and two binary variables.  All the continuous variables in each 

particular generated data set followed the same distribution, which was either a normal, Gamma or 

mixture Gamma, or t distribution.  Correlations were induced via sorting specific proportions in each 

continuous and binary variable. For the trivariate data sets, we generated 25% missing entries via the 

MCAR mechanism in each variable.  Values were randomly deleted separately in each variable under 

the MCAR mechanism, leading to entries with missing values in one, two, or all three variables. In the 

4-variable case, with the first two variables, Y1 and Y2, as continuous and the last two variables, Y3 and 

Y4, as binary, we generated two situations, one with one continuous variable missing and one with one 

binary variable missing.  In the first situation, Y2 had 50% missing entries under the MCAR mechanism.  

The second situation involved Y4 with 50% missing entries under the MCAR mechanism.  Each MCAR 

case involved randomly deleting 50% of values in the variable to be imputed.   

Each data set generated included 100 entries and our method for imputing mixed data with 10 

imputations was applied to each data set at each of 1000 simulations.  All three pairwise correlations 

were evaluated for the trivariate cases and the three pairwise correlations involving the variable with 

missing data were evaluated in the 4-variable case.  True estimates of means of continuous and binary 

variables and all true pairwise correlations in each case were calculated before missingness was 

imposed.  Convergence was assessed at each imputation within each simulation when the absolute 

difference between each of the three pairwise correlations obtained from the imputed data and the 
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corresponding true pairwise correlations of the original data were less than some constants cjk, cjl, and 

ckl, based on the j
th

, k
th

,  and l
th

 variables involved. 

AE, SB, RMSE, CR, and AW values for pairwise correlations were evaluated.  Results are given 

in Tables XVIII and XIX for the trivariate cases and Tables XX and XXI for the 4-variable case from 

our method for imputing mixed data, the naïve approach of imputing mixed data, and complete-case 

(CC) analysis results.  Favorable results associated with our method were again indicated by AE values 

comparable to true estimates, SB values < 50%, small RMSE values indicating satisfactory precision 

and accuracy, CR values > 90%, and AW estimates comparable to the confidence interval widths for 

true estimates for pairwise correlations.  In contrast, the naïve approach involving the general location 

model led to SB values > 50% and RMSE values > 0.005, potentially indicating poor accuracy and 

precision.  Possibly poor accuracy and precision could potentially in turn indicate questionability in 

other assessment measures, such in the overly optimistic CR values of 100% observed.  Possible 

violations of general location model assumptions in these cases thus again makes our approach an 

attractive alternative for imputing mixed data.  AE values obtained from the new imputation method 

were most comparable to the true parameters.  
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Table XVIII:  IMPUTATION RESULTS FOR TRIVARIATE DATA WITH ALL VARIABLES 

HAVING MISSING ENTRIES (2 CONTINUOUS VARIABLES, 1 BINARY VARIABLE) GIVEN 

NEW AND NAÏVE IMPUTATION AND COMPLETE-CASE (CC) APPROACHES 

 

 
Order of Correlations: (Y1, Y2), (Y1, Y3), (Y2, Y3); Order of Means: Y1, Y2, Y3 

NEW METHOD 

TRUE 

Correlation 

Imputed 

Correlation 

SB RMSE CR AW TRUE Imputed Convergence 

    Means Means Constant 

N(5,1) results under MCAR mechanism 

-0.7690 -0.7696 14.0590 0.0035 91.0875 0.1653 5.0660 5.0441 0.0250 

0.3473 0.3469 14.4543 0.0021 97.3934 0.3481 5.0540 4.9917 0.0125 

-0.3330 -0.3312 38.2269 0.0038 95.2266 0.3546 0.4400 0.4519 0.0250 

         

t3 results under MCAR mechanism 

0.2446 0.2463 30.3369 0.0047 94.1530 0.3749 -0.0781 -0.1031 0.0325 

-0.5479 -0.5453 47.5926 0.0049 92.7539 0.2827 0.2999 0.2199 0.0325 

-0.4037 -0.4038 3.0272 0.0047 93.3736 0.3358 0.4900 0.4961 0.0325 

 

.75*Gamma(5,1) + .25*Gamma(1,1) results under MCAR mechanism 

-0.3350 -0.3355 9.6256 0.0038 95.1524 0.3534 0.8804 0.8907 0.0250 

-0.5228 -0.5216 25.4221 0.0039 94.1745 0.2917 3.7687 3.8261 0.0250 

0.4941 0.4929 29.6774 0.0031 95.5946 0.3021 0.5400 0.5495 0.01975 

         

NAÏVE METHOD 

 Imputed 

Correlation 

SB RMSE CR AW Imputed 

Means 

CC 

Correlation 

CC Means 

N(5,1) results under MCAR mechanism 

 -0.7553 213.8648 0.0148 100.00 0.1728 5.1327 -0.7380 5.1000 

 0.3360 178.5666 0.0143 100.00 0.3546 4.8311 0.3138 4.8050 

 -0.3206 213.8647 0.0105 100.00 0.3546 0.4973 -0.3262 0.4930 

         

t3 results under MCAR mechanism 

 0.2274 342.0662 0.0226 100.00 0.3738 -0.0458 0.1792 0.0920 

 -0.5440 85.3543 0.0073 100.00 0.2801 0.2167 -0.5652 0.2490 

 -0.4036 47.9696 0.0066 100.00 0.3315 0.5219 -0.3920 0.5310 

 

.75*Gamma(5,1) + .25*Gamma(1,1) results under MCAR mechanism 

 -0.3421 81.6665 0.0085 100.00 0.3493 3.9022 -0.3749 3.9200 

 -0.5142 68.0128 0.0084 100.00 0.2927 3.9402 -0.5038 4.0230 

 0.4863 40.9174 0.0008 100.00 0.3034 0.4786 0.4646 0.4860 
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Table XIX:  IMPUTATION RESULTS FOR TRIVARIATE DATA WITH ALL VARIABLES 

HAVING MISSING ENTRIES (1 CONTINUOUS VARIABLE, 2 BINARY VARIABLES) GIVEN 

NEW AND NAÏVE IMPUTATION AND COMPLETE-CASE (CC) APPROACHES 

 

 

Order of Correlations: (Y1, Y2), (Y1, Y3), (Y2, Y3); Order of Means: Y1, Y2, Y3 

NEW METHOD 

TRUE 

Correlation 

Imputed 

Correlation 

SB RMSE CR AW TRUE 

Means 

Imputed 

Means 

Convergence 

Constant 

N(5,1) results under MCAR mechanism 

-0.3968 -0.3948 36.2180 0.0044 94.0132 0.3377 5.0230 5.0494 0.0250 

-0.3999 -0.4001 4.9991 0.0040 94.3233 0.3357 0.5300 0.5287 0.0250 

0.2859 0.2869 18.7734 0.0042 94.3767 0.3663 0.4400 0.4340 0.0250 

         

t3 results under MCAR mechanism 

-0.2179 -0.2155 48.1378 0.0043 94.9570 0.3795 -0.0724 -0.0257 0.02500 

-0.3667 -0.3657 18.6737 0.0043 94.2560 0.3460 0.4800 0.4682 0.02675 

0.3126 0.3121 9.6684 0.0043 94.3174 0.3603 0.5400 0.5590 0.02675 

         

Gamma(5,1) results under MCAR mechanism 

-0.2991 -0.2975 27.0884 0.0047 93.5797 0.3648 5.4220 5.4124 0.0275 

-0.3703 -0.3676 48.3907 0.0048 93.9201 0.3459 0.5200 0.5288 0.0275 

0.2358 0.2382 42.6390 0.0049 93.8312 0.3769 0.5100 0.5098 0.0275 

NAÏVE METHOD 

 Imputed 

Correlation 

SB RMSE CR AW Imputed 

Means 

CC 

Correlation 

CC Means 

N(5,1) results under MCAR mechanism 

 -0.3880 163.7644 0.0123 100.00 0.3363 5.0831 -0.3529 5.1500 

 -0.3772 332.2770 0.0228 100.00 0.3392 0.5136 -0.3974 0.5160 

 0.3024 171.0045 0.0125 100.00 0.3588 0.5089 0.3046 0.5090 

         

t3 results under MCAR mechanism 

 -0.2185 19.5893 0.0062 100.00 0.3755 -0.1061 -0.2040 -0.1222 

 -0.3692 8.9038 0.0065 100.00 0.3418 0.4860 -0.3695 0.4930 

 0.3193 102.1634 0.0109 100.00 0.3549 0.5212 0.3453 0.5210 

         

Gamma(5,1) results under MCAR mechanism 

 -0.3086 115.0179 0.0096 100.00 0.3574 5.3651 -0.3191 5.4067 

 -0.3560 194.6836 0.0142 100.00 0.3454 0.5185 -0.3184 0.5200 

 0.2365 38.0662 0.0081 100.00 0.3724 0.5128 0.2194 0.5000 
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Table XX: IMPUTATION RESULTS FOR 4-VARIABLE WITH Y2 HAVING MISSING DATA  

(2 CONTINUOUS VARIABLES, 2 BINARY VARIABLES) UNDER THE MCAR MECHANISM 

GIVEN NEW, NAÏVE, AND COMPLETE-CASE (CC) APPROACHES 

 

 
NEW APPROACH 

N(5,1) results 

Pairs* TRUE 

Value 

Imputed 

Value 

SB RMSE CR AW Convergence Constant 

(Y1,Y2) -0.4600 -0.4599 1.9899 0.0037 94.6823 0.3152 0.0275 

(Y2,Y3) -0.5287 -0.5275 27.0068 0.0038 94.2454 0.2892 0.0275 

(Y2,Y4) 0.5718 0.5710 17.1174 0.0040 93.4073 0.2710 0.0275 

 True Means (Y1, Y2, Y3, Y4) Imputed Mean (Y2) 

 4.7692 5.1290 0.5000 0.4100 5.1079 

t3 results 

Pairs TRUE 

Value 

Imputed 

Value 

SB RMSE CR AW Convergence Constant 

(Y1,Y2) -0.4661 -0.4680 33.0556 0.0047 93.2653 0.3136 0.0275 

(Y2,Y3) -0.3644 -0.3656 22.6069 0.0042 94.2554 0.3461 0.0275 

(Y2,Y4) 0.1131 0.1129 3.4907 0.0044 94.5300 0.3929 0.0275 

 True Means (Y1, Y2, Y3, Y4) Imputed Mean (Y2) 

 0.0623 0.1988 0.5200 0.4700 0.1919 

Gamma(5,1) results 

Pairs TRUE 

Value 

Imputed 

Value 

SB RMSE CR AW Convergence Constant 

(Y1,Y2) -0.3237 -0.3242 10.6014 0.0041 94.6382 0.3570 0.0275 

(Y2,Y3) -0.5061 -0.5038 46.8724 0.0044 93.7595 0.2993 0.0275 

(Y2,Y4) 0.4787 0.4797 21.9528 0.0041 94.1715 0.3082 0.0275 

 True Means (Y1, Y2, Y3, Y4) Imputed Mean (Y2) 

 4.9002 4.7650 0.5100 0.4700 4.8727 

 
* Pairs of variables involved in correlations with imputed data 
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Table XX: IMPUTATION RESULTS FOR 4-VARIABLE WITH Y2 HAVING MISSING DATA  

(2 CONTINUOUS VARIABLES, 2 BINARY VARIABLES) UNDER THE MCAR MECHANISM 

GIVEN NEW, NAÏVE, AND COMPLETE-CASE (CC) APPROACHES (continued) 

 

 

 
NAÏVE APPROACH 

N(5,1) results 

Pairs* CC 

Value 

Imputed 

Value 

SB RMSE CR AW Imputed Mean (Y2) 

(Y1,Y2) -0.4571 -0.4459 193.5660 0.0144 100.00 0.3176 5.0302 

(Y2,Y3) -0.4939 -0.5356 72.0677 0.0078 100.00 0.2838 CC Mean (Y2) 

(Y2,Y4) 0.5317 0.5510 276.7278 0.0191 100.00 0.5510 5.0280 

t3 results 

Pairs* CC 

Value 

Imputed 

Value 

SB RMSE CR AW  

(Y1,Y2) -0.4315 -0.4571 102.0824 0.0103 100.00 0.3139 -0.0481 

(Y2,Y3) -0.3750 -0.3603 4.5608 0.0067 100.00 0.3443 CC Mean (Y2) 

(Y2,Y4) 0.1262 0.1199 109.6051 0.0113 100.00 0.3885 0.0103 

Gamma(5,1) results 

Pairs* CC 

Value 

Imputed 

Value 

SB RMSE CR AW Imputed Mean (Y2) 

(Y1,Y2) -0.3536 -0.3318 134.9465 0.0125 100.00 0.3517 4.8002 

(Y2,Y3) -0.4937 -0.5022 98.7755 0.0094 100.00 0.2972 CC Mean (Y2) 

(Y2,Y4) 0.4372 0.4740 67.9162 0.0083 100.00 0.3080 4.9744 

 
* Pairs of variables involved in correlations with imputed data 
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Table XXI: IMPUTATION RESULTS FOR 4-VARIABLE WITH Y4 HAVING MISSING DATA  

(2 CONTINUOUS VARIABLES, 2 BINARY VARIABLES) UNDER THE MCAR MECHANISM 

GIVEN NEW, NAÏVE, AND COMPLETE-CASE (CC) APPROACHES 

 

 
NEW APPROACH 

N(5,1) results 

Pairs* TRUE 

Value 

Imputed 

Value 

SB RMSE CR AW Convergence Constant 

(Y1,Y4) -0.2682 -0.2688 13.0201 0.0037 95.3095 0.3687 0.0250 

(Y2,Y4) 0.4727 0.4741 31.8377 0.0037 94.7260 0.3098 0.0250 

(Y3,Y4) -0.2000 -0.1981 40.4397 0.0040 95.2119 0.3816 0.0250 

 True Means (Y1, Y2, Y3, Y4) Imputed Mean (Y4) 

 5.0092 5.0667 0.5300 0.5700 0.5732 

t2 results 

Pairs TRUE 

Value 

Imputed 

Value 

SB RMSE CR AW Convergence Constant 

(Y1,Y4) -0.1838 -0.1848 19.5088 0.0043 94.6983 0.3840 0.0275 

(Y2,Y4) 0.2535 0.2526 16.2653 0.0044 94.3841 0.3733 0.0275 

(Y3,Y4) -0.1143 -0.1138 10.8272 0.0039 94.9647 0.3923 0.0275 

 True Means (Y1, Y2, Y3, Y4) Imputed Mean (Y4) 

 0.1479 -0.1563 0.5500 0.4600 0.4418 

Gamma(5,1) results 

Pairs TRUE 

Value 

Imputed 

Value 

SB RMSE CR AW Convergence Constant 

(Y1,Y4) -0.2725 -0.2717 15.6002 0.0040 95.0574 0.3683 0.0250 

(Y2,Y4) 0.4509 0.4520 22.7873 0.0037 94.6976 0.3179 0.0250 

(Y3,Y4) -0.1639 -0.1631 19.4543 0.0031 96.2999 0.3854 0.0250 

 True Means (Y1, Y2, Y3, Y4) Imputed Mean (Y4) 

 4.9826 4.9647 0.4700 0.4800 0.5250 

 
* Pairs of variables involved in correlations with imputed data 

  



77 

 

 

Table XXI: IMPUTATION RESULTS FOR 4-VARIABLE WITH Y4 HAVING MISSING DATA  

(2 CONTINUOUS VARIABLES, 2 BINARY VARIABLES) UNDER THE MCAR MECHANISM 

GIVEN NEW, NAÏVE, AND COMPLETE-CASE (CC) APPROACHES (continued) 

 

 
NAÏVE APPROACH 

N(5,1) results 

Pairs* CC 

Value 

Imputed 

Value 

SB RMSE CR AW Imputed Mean (Y4) 

(Y1,Y4) -0.3028 -0.2723 141.4935 0.0131 100.00 0.3654 0.5786 

(Y2,Y4) 0.4605 0.4721 25.5215 0.0072 100.00 0.3086 CC Mean (Y4) 

(Y3,Y4) -0.1775 -0.1982 19.6458 0.0073 100.00 0.3790 0.5700 

t3 results 

Pairs* CC 

Value 

Imputed 

Value 

SB RMSE CR AW Imputed Mean (Y4) 

(Y1,Y4) -0.2019 -0.1798 2.5228 0.0067 100.00 0.3813 0.4616 

(Y2,Y4) 0.2294 0.2475 31.4166 0.0064 100.00 0.3704 CC Mean (Y4) 

(Y3,Y4) -0.1256 -0.1207 157.7780 0.0114 100.00 0.3880 0.4800 

Gamma(5,1) results 

Pairs* CC 

Value 

Imputed 

Value 

SB RMSE CR AW Imputed Mean (Y4) 

(Y1,Y4) -0.2987 -0.2846 70.8607 0.0065 100.00 0.3625 0.4482 

(Y2,Y4) 0.4747 0.4540 53.7078 0.0068 100.00 0.3149 CC Mean (Y4) 

(Y3,Y4) -0.1697 -0.1660 87.8184 0.0073 100.00 0.3830 0.4400 

 
* Pairs of variables involved in correlations with imputed data 
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8.   SIMULATIONS DEVISED AROUND REAL DATA 

 

8.1 Description of Real Data 

 

To exemplify applications of our imputation methods to real data sets, we used subsets from the Prostate 

SPORE database and the NYC HANES database.  The Prostate SPORE database includes 3,452 men as of 2011 

and is part of the Specialized Program of Research Excellence in Prostate Cancer (Grant #: P50 Ca 090386), 

established in 2001.  The goal of this program is to enable collaboration between basic scientists, clinicians, and 

statisticians that would lead to new approaches for prostate cancer prevention, diagnosis, and treatment.  The 

database contains demographic, clinical, pathological, and other information from patients treated at Northwestern 

Memorial Hospital, NorthShore University Health System facilities, and the Jessie Brown VA Hospital.   

The NYC HANES (New York City Health and Nutrition Survey) study, with a database of 1999 subjects 

including 1168 women and 831 men, is modeled after NHANES (the National Health and Nutrition Survey) and 

involves a population-based cross-sectional design with data first collected in 2004.  Data involving demographic, 

clinical, and other information were collected via physical examination, laboratory tests, face-to-face interviews, 

and computer-assisted self-interviews.  NYC HANES was established to examine the prevalence of certain 

diseases and the effect of demographic variables and environmental factors on the prevalence rates.  This program 

was conducted by the New York City Department of Health and Mental Hygiene and supported by the National 

Center for Health Statistics. 

The following subsections focus on the scientific reasoning behind the variables used in 

examples of applying our semi-parametric methods for imputing continuous, binary, and mixed data.  

Namely, we describe the relationship of variables in the Prostate SPORE database for examples of 

bivariate continuous, multivariate continuous, bivariate mixed, and multivariate mixed cases, and of 

variables in the NYC HANES database for examples of bivariate continuous, bivariate binary, and 
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multivariate binary cases. 

 

8.1.1 Backround for Prostate SPORE Variables 

 

 The variables and their percentage of missing information used in the Prostate SPORE database 

include: percentage of the prostate gland with cancer (15.0%) prostate weight obtained from transrectal 

ultrasound (39.2% - 64.8%, depending on the data set), prostate weight obtained from digital rectal 

examination (4.4%), percentage of biopsy cores staining positive for cancer (17.0% - 19.0%, depending 

on the data set), biopsy Gleason score (0.0%), number of biopsy cores staining positive for cancer 

(24.5%), cancer present in seminal nodes of prostate gland (0.5%), cancer present in margins of prostate 

gland (0.0%), and cancer present in peripheral nerves of prostate gland (5.5%).  Invcstigators working in 

prostate cancer research have become interested in the association between these variables. For example, 

Loeb et al. (2005) and Iczkowski et al. (2011) discuss studies relating the percentage of cancer in the 

prostate gland and prostate size and weight obtained either by digital rectal examination or by transrectal 

ultrasound.  The correlations between biopsy-related variables, such as the percentage of biopsy cores 

staining positive for cancer and biopsy Gleason score, and variables obtained from radical 

prostatectomy, as percentage of the prostate gland positive for cancer, and presence of cancer in 

margins, seminal vesicles, and peripheral nerves obtained from the removed prostate, are also of great 

interest to investigators.  This interest relates to the biopsy being a preferable alternative to radical 

prostatectomy (Mazzuchelli et al., 2005; Montironi et al., 2008; Bill-Axelson et al., 2011). 
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8.1.2 Backround for NYC HANES Variables 

 

 Variables and their percentage of missing information in examples pertaining to the NYC 

HANES database involve: total cholesterol (0.0%) and triglyceride (26.8%) levels in women, indicators 

for entering the mainland US (45.9%), insurance offered at main job (40.6% - 42.0%, depending on the 

data set), private insurance (0.0%), and herpes I (12.0%) in women, and indicators for high blood 

pressure (3.5%) and entering the mainland US (47.1%) in men.   

 In the bivariate continuous case, we look at the correlations between total cholesterol and 

triglyceride, an important aspect of cardiovascular disease, in 1031 women; cardiovascular disease is a 

popular research field in women's health, since it is now considered the primary cause of mortality in 

women (Stampfer et al., 2000; McSweeney et al., 2003; Hsia et al., 2010).  Variables in the bivariate 

binary and multivariate binary cases involving the NYC HANES database are important in determining 

if insurance offered at the job is affected by the length of time after immigration in the US and if this 

insurance is the main source of private insurance in women.  Additionally, it could be of interest to see if 

women with particular afflictions, as infectious diseases, have access to insurance.  Another potential 

question for investigators could involve the association between the length of time after immigration in 

the US and health conditions, an example of which is given by our correlation between entering the 

mainland US after 1990 and high blood pressure in men from the NYC HANES database. 
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8.2 Bivariate Continuous Case 

 

 Descriptions of these data used in the bivariate continuous cases are summarized in the Table 

XXII and descriptive statistics are given in Table XXIII. 

 

Table XXII: DESCRIPTIONS OF BIVARIATE CONTINUOUS REAL DATA SETS USED 

 

 
Real 

Data Set 

Database Source N Variable 1 Variable 2 

1 NYC HANES 

(women) 

1031 Total Cholesterol 

(TC) 

Triglycerides 

(TG) 

2 PROSTATE 

SPORE 

755 Percent Cancer based on radical 

prostatectomy (PERCENTCA) 

Trans Ultrasound  Prostate 

Weight 

(TRUS) 

3 PROSTATE 

SPORE 

732 Digital Rectal Prostate Weight 

(DRE_PROSTATE_WT) 

Trans Ultrasound  Prostate 

Weight 

(TRUS_PROSTATE_WT) 
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Table XXIII: SUMMARY STATISTICS OF BIVARIATE CONTINUOUS REAL DATA SETS USED 

 

 
 NYC HANES data (N = 1031) 

Variable Mean SD Median Min. Max. Q25 Q75 NA's 

TC 194.70 38.27 191.00 87.00 351.00 167.00 218.00  

TR 109.70 62.63 91.00 31.00 445.00 67.00 134.00 276 

 PSPORE data (N = 755) 

Variable Mean SD Median Min. Max. Q25 Q75 NA's 

PERCENTCA 8.34 5.60 6.99 0.08 23.01 4.99 10.02  

TRUS_PROSTATE_WT 40.96 22.22 34.80 9.99 180.02 27.00 47.75 489 

 PSPORE data (N = 732) 

Variable Mean SD Median Min. Max. Q25 Q75 NA's 

DRE_PROSTATE_WT 34.96 13.74 35.00 9.00 103.00 30.00 40.00 33 

TRUS_PROSTATE_WT 42.42 18.76 36.00 17.10 180.00 28.00 49.00 296 

 

 

We applied the Lurie-Goldberg multiple imputation algorithm to each of these real data sets and to data 

generated under the MCAR mechanism which reflected the characteristics of the real data.   With these 

real data, we first applied the LGMI algorithm using m = 10 imputations at each of 1000 simulations and 

compared the average of the Pearson correlations obtained from the imputed data to the correlation for 

the original data via AE, SB, RMSE, CR, and AW values.  The convergence criterion was set as the 

difference between the average and original correlations being within 2.5% of the original correlation 

for each real data set applied.  These assessment measures show the validity of the LGMI algorithm in 

imputing real bivariate continuous data given AE values  comparable to original estimates, SB values < 

50%, small RMSE values from which we could infer adequate precision and accuracy, CR estimates > 

90%, and AW estimates comparable to 95% confidence interval widths of original estimates for all 

pairwise Pearson correlations (Table XXIV).  Furthermore, AE values of mean estimates from imputed 

data were comparable to original means given in Table XXIII. 

 We also generated 100 data sets having the same characteristics as the original data and applied 
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the  Lurie-Goldberg multiple imputation algorithm to set of these data sets using m = 10 imputations.  

We then calculated the mean, standard deviation, median, minimum, maximum, first quartile, and third 

quartile for each generated and imputed data set.  Missingness in these data sets was induced under the 

MCAR mechanism by randomly deleting a percentage of entries separately for each data set equal to the 

percentages of missing values in the respective variables of the original data.  
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Table XXIV: CHARACTERISTICS AND IMPUTATION RESULTS INCLUDING ASSESSMENT 

MEASURES FOR PAIRWISE CORRELATIONS INVOLVING NYC HANES AND PROSTATE 

SPORE BIVARIATE CONTINUOUS DATA 

 

 

 Data Set 1 

NYC HANES (Women) 

N = 1031 

Variable 1: TC; No. Missing: 0 (0.0%) 

Variable 2: TR; No. Missing: 276 (26.8%) 

Original  0.3474 Original 2 109.70 

AE 0.3475 Imputed 2 109.32 

SB 3.9296   

RMSE 0.0012   

CR 95.7997 Convergence  

AW 0.1101 Constant 0.0125 

Data Set 2    

Data Set 2 

PROSTATE SPORE 

N = 755 

Variable 1: PERCENTCA; No. Missing: 0 (0.0%) 

Variable 2: TRUS_PROSTATE_WT; No. Missing: 489 (64.8%) 

Original  -0.2808 Original 2 40.96 

AE -0.2811 Imputed 2 40.67 

SB 23.9679   

RMSE 0.0011   

CR 96.6458 Convergence  

AW 0.1148 Constant 0.0100 

Data Set 3    

Data Set 3 

PROSTATE SPORE 

N = 732 

Variable 1: TRUS_PROSTATE_WT; No. Missing: 33 (4.5%) 

Variable 2: DRE_PROSTATE_WT; No. Missing: 296 (40.4%) 

Original  0.5333 Original 1 34.96 

AE 0.5329 Imputed 1 34.85 

SB 34.7882 Original 2 42.42 

RMSE 0.0013 Imputed 2 42.05 

CR 94.4883 Convergence  

AW 0.0900 Constant 0.0175 
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Promising results were found with these simulated data created to resemble the original real data 

on average under the MCAR mechanism.  1000 simulations were run and at each simulation, a new data 

set reflecting the characteristics of the original NYC HANES data set or the first Prostate SPORE data 

set.  Tables XXV to XXVI give the ranges for the means, standard deviations, medians, minimums, 

maximums, first quartiles, and third quartiles for the generated data and average values of these 

quantities from 10 imputed data sets associated with each generated data set.  The ranges of the statistics 

of the generated data overlapped with the statistics obtained from the original data (Table XXIII).  The 

statistics for the imputed values are in turn comparable to those of the generated values, further 

indicating that the Lurie-Goldberg multiple imputation algorithm is a promising method for handling 

missing entries in certain types of continuous data. 
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Table XXV: SIMULATION RESULTS FOR GENERATED AND IMPUTED DATA BASED ON NYC HANES DATA SET 1 

Generated  Data from NYC HANES under the MCAR mechanism 

 Generated  

Mean.1 

Generated  

SD.1 

Generated  

Median.1 

Generated  

Min.1 

Generated  

Max.1 

Generated  

Q25.1 

Generated  

Q75.1 

Generatd 

 

Imputed    

 

Min. 193.9 37.9 188.4 1.2 308.1 165.1 213.7 0.3374 0.3212 

Q25 194.0 38.2 190.5 21.1 330.1 166.5 216.5 0.3412 0.3371 

Median 194.1 38.3 191.0 61.0 342.7 166.9 217.3 0.3459 0.3442 

Mean 194.1 38.3 191.0 58.2 337.3 166.9 217.6 0.3462 0.3452 

Q75 194.1 38.5 191.5 91.7 347.2 167.3 218.5 0.3508 0.3530 

Max. 194.2 38.9 193.8 113.9 350.9 168.9 220.5 0.3574 0.3740 

          

 Generated  

Mean.2 

Generated  

SD.2 

Generated  

Median.2 

Generated  

Min.2 

Generated  

Max.2 

Generated  

Q25.2 

Generated  

Q75.2 

  

Min. 106.4 57.7 88.3 0.6 360.0 64.5 126.7   

Q25 108.2 60.8 90.5 11.8 423.1 66.0 131.4   

Median 109.0 62.1 90.9 19.4 442.4 66.4 133.3   

Mean 109.1 62.1 91.4 20.3 427.8 66.4 133.1   

Q75 109.9 63.4 92.5 31.3 444.0 67.0 135.0   

Max. 111.7 66.4 95.1 37.6 445.0 68.5 140.3   

          

 Imputed    

Mean.2 

Imputed    

SD.2 

Imputed 

Median.2 

Imputed    

Min.2 

Imputed    

Max.2 

Imputed    

Q25.2 

Imputed    

Q75.2 

  

Min. 106.4 57.6 87.9 0.5 360.0 64.6 126.9   

Q25 108.1 60.5 90.4 9.9 423.1 65.9 131.0   

Median 109.0 61.7 91.1 16.7 442.4 66.4 133.0   

Mean 109.0 61.9 91.4 17.3 427.8 66.4 133.0   

Q75 109.9 63.4 92.5 26.3 444.0 67.0 134.9   

Max. 111.8 65.9 96.3 34.5 445.0 68.3 138.9   
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Table XXVI: SIMULATION RESULTS FOR GENERATED AND IMPUTED DATA BASED ON PROSTATE SPORE DATA SET 2  

Generated Data from Prostate SPORE under the MCAR mechanism 

 Generated 

Mean.1 

Generated 

SD.1 

Generated 

Median.1 

Generated 

Min.1 

Generated 

Max.1 

Generated 

Q25.1 

Generated 

Q75.1 

Generatd 

 

Imputed     

Min. 8.201 5.421 5.019 0.001 21.570 4.982 10.010 -0.2906 -0.3042 

Q25 8.293 5.552 6.953 0.028 22.990 4.985 10.020 -0.2846 -0.2863 

Median 8.326 5.597 6.992 0.059 23.000 4.985 10.020 -0.2801 -0.2789 

Mean 8.327 5.589 6.760 0.056 22.960 4.986 10.060 -0.2803 -0.2793 

Q75 8.358 5.623 7.002 0.086 23.010 4.986 10.020 -0.2756 -0.2720 

Max. 8.478 5.697 8.015 0.116 23.020 4.992 11.990 -0.2706 -0.2585 

          

 Generated 

Mean.2 

Generated 

SD.2 

Generated 

Median.2 

Generated 

Min.2 

Generated 

Max.2 

Generated 

Q25.2 

Generated 

Q75.2 

  

Min. 36.750 16.420 32.010 0.044 102.000 24.780 42.030   

Q25 39.970 19.830 34.000 2.919 126.100 26.940 46.890   

Median 40.420 21.130 34.490 6.180 143.600 27.000 47.010   

Mean 40.430 21.110 34.640 6.431 145.100 27.060 47.680   

Q75 40.950 22.450 35.380 10.001 165.500 27.030 48.590   

Max. 43.230 25.210 37.020 17.026 179.100 28.310 52.670   

          

 Imputed  

Mean.2 

Imputed  

SD.2 

Imputed  

Median.2 

Imputed  

Min.2 

Imputed  

Max.2 

Imputed  

Q25.2 

Imputed  

Q75.2 

  

Min. 36.630 16.140 32.310 0.019 102.000 24.780 41.630   

Q25 39.860 19.520 33.970 1.120 126.100 26.840 46.630   

Median 40.230 20.780 34.560 2.604 143.600 27.000 47.180   

Mean 40.260 20.770 34.620 2.940 145.100 27.030 47.610   

Q75 40.720 22.120 35.170 4.188 165.500 27.340 48.560   

Max. 43.010 24.630 36.920 10.025 179.100 28.300 52.780   
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8.3 Multivariate Continuous Case 

 

To examine the performance of the LGMI method on multivariate continuous real data, we 

considered a subset of 100 men from the Prostate SPORE database including variables for percent of 

biopsy cores staining positive for prostate cancer, percent of prostate cancer in the prostate gland 

removed via radical prostatectomy, and the Gleason score obtained from the prostate tissue biopsied.  

Information on the variables of these data are given in Table XXVII. 

 

 

 

Table XXVII: VARIABLES IN 100 MEN IN THE PROSTATE SPORE DATABASE USED IN THE 

LGMI APPLICATION TO MULTIVARIATE CONTINUOUS DATA 

 

 
Variable Label Number (Percent) Missing 

1 Percent Biopsy Cores Positive for Prostate Cancer 17 (17.0%) 

2 Percent Cancer in Prostate Gland 15 (15.0%) 

3 Biopsy Gleason Score 0 (0.0%) 

 

 

Applying the LGMI algorithm to this data set, we observe adequate performance of the LGMI 

algorithm, via AE values comparable to original pairwise correlation estimates, SB < 50%, small RMSE 

values indicating good precision and accuracy, CR > 90%, and AW estimates comparable to expected 

confidence interval widths for original estimates. 
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Table XXVIII: ORIGINAL ESTIMATES AND AVERAGE ESTIMATES AND ASSESSMENT 

MEASURES FROM THE LGMI APPLICATION TO MULTIVARIATE CONTINUOUS DATA 

FROM THE PROSTATE SPORE DATABASE 

 

 
Pairs Convergence 

Constant 

Original 

correlation 

Imputed 

correlation 

SB RMSE CR AW 

(1,2) 0.0425 0.4895 0.4911 39.8642 0.0033 95.024 0.3041 

(1,3) 0.0675 0.2384 0.2396 39.3788 0.0026 97.0299 0.3728 

(2,3) 0.075 0.3101 0.3111 23.2196 0.0037 95.1808 0.3596 

 Original 1 Original 2 Original 3 Imputed 1 Imputed 2 Imputed 3 

32.39 10.65 6.5 31.9 10.66 6.5 

 

 

We also created 1000 data sets with characteristics mimicking the original data and imposed 

missing values via the MCAR mechanism, by randomly deleting a percentage of entries in the first two 

variables equal to the respective percentages given in Table XXVII.  The LGMI algorithm was applied 

to each data set at each of 1000 simulations with m = 10 imputations.  Results given as summary 

statistics overlap quite well between the generated and imputed data (Table XXIX), further implying 

adequate performance of the LGMI application to multivariate continuous data.    
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Table XXIX: SUMMARY STATISTICS FOR GENERATED AND IMPUTED DATA INVOLVING 

THE LGMI APPLICATION MULTIVARIATE CONTINUOUS DATA FROM THE PROSTATE 

SPORE DATABASE (MCAR CASE) 

 

 
 Generated 

 

Generated 

 

Generated 

 

Imputed 

 

Imputed 

 

Imputed 

 

Min. 0.442 0.1791 0.266 0.4575 0.1976 0.2778 

Q25 0.4755 0.2159 0.2952 0.4756 0.2146 0.2948 

Median 0.4926 0.2321 0.3111 0.4921 0.2314 0.3097 

Mean 0.4918 0.2319 0.3115 0.4912 0.2307 0.3105 

Q75 0.5079 0.2484 0.3271 0.5073 0.2473 0.327 

Max. 0.5656 0.2844 0.3671 0.5224 0.2624 0.3425 

 Generated 

 

Generated 

 

Generated 

 

Imputed 

 

Imputed 

 

Imputed 

 

Min. 27.76 8.528 6.136 27.63 8.473 6.136 

Q25 31.39 10.543 6.425 31.48 10.632 6.425 

Median 32.38 11.128 6.49 32.43 11.151 6.49 

Mean 32.39 11.120 6.495 32.47 11.17 6.495 

Q75 33.38 11.661 6.566 33.49 11.706 6.566 

Max. 36.33 13.934 6.812 36.41 14.239 6.812 

 

   

 

8.4 Bivariate Binary Case 

 

To examine the performance of our method for imputing binary data on a real data set, we 

considered three data sets from the NYC HANES database, two pertaining to women (N = 1168) and 

one pertaining to men (N = 831).  The main characteristics of variables included in each data set are 

given in Table XXX.  Results were obtained from 1000 simulation runs involving 10 imputations at 

each run.  Assessment measures in Table XXX indicate that the method works fairly well when applied 

to these real data, with AE values from imputed data comparable to original estimates, SB values < 50%, 

small RMSE values indicating good precision and accuracy, CR estimates > 90%, and AW estimates 
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comparable to 95% confidence intervals of original estimates for pairwise correlation coefficients.   

1000 data sets were also generated reflecting the characteristics of the real data under the MCAR 

mechanism, where percentages of entries equal to the respective percentages given in the descriptions 

for the data sets in Table XXX were randomly deleted.  Results in Table XXXI again indicate adequate 

performance of the method, via sufficient overlapping of summary statistics.
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Table XXX: CHARACTERISTICS AND IMPUTATION RESULTS INCLUDING ASSESSMENT 

MEASURES FOR PAIRWISE CORRELATIONS INVOLVING NYC HANES BIVARIATE BINARY 

DATA 

 

 
Data Set 1 

NYC HANES (Women) 

N = 1168 

Variable 1: Entered Mainland US (After vs. Before 1990); 

No. Missing 536 (45.9%): 

Variable 2: Insurance offered at main job; 

No. Missing 474 (40.6%): 

Original  -0.2313 Original p 0.5111 

AE -0.2309 Imputed p 0.4888 

SB 18.6631 Original p2 0.5908 

RMSE 0.0018 Imputed p2 0.5596 

CR 94.9140 Convergence  

AW 0.1679 Constant 0.0125 

Data Set 2 

NYC HANES (Women) 

N = 1168 

Variable 1: Private Insurance; No. Missing: 0 (0.0%) 

Variable 2: Insurance at main job; No. Missing: 474 (40.6%) 

Original  0.3102 Original p 0.6447 

AE 0.3110 Imputed p . 

SB 47.0573 Original p2 0.5908 

RMSE 0.0016 Imputed p2 0.5442 

CR 95.8405 Convergence  

AW 0.1596 Constant 0.0100 

Data Set 3 

NYC HANES MEN; N = 831 

Variable 1: High Blood Pressure; No. Missing: 29 (3.5%): 

Variable 2: Entered Mainland US (After vs. Before 1990); 

No. Missing: 391 (47.1%): 

Original  -0.2337 Original p 0.2369 

AE -0.2335 Imputed p 0.2375 

SB 7.2563 Original p2 0.5750 

RMSE 0.0023 Imputed p2 0.5556 

CR 93.1430 Convergence  

AW 0.1689 Constant 0.0175 
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Table XXXI: SUMMARY STATISTICS FOR GENERATED AND IMPUTED DATA INVOLVING 

NYC HANES BIVARIATE BINARY DATA (MCAR CASE) 

 

 
 Entered Mainland US vs. Insurance offered at Main Job (Women) 

 Generated 

 

Generated 

p1 

Generated 

p2 

Imputed 

 

Imputed 

p1 

Imputed 

p2 

Min. -0.2500 0.4383 0.5389 -0.2977 0.4422 0.5247 

Q25 -0.2400 0.4842 0.5807 -0.2413 0.4857 0.5665 

Median -0.2300 0.4984 0.5922 -0.2314 0.4987 0.5769 

Mean -0.2323 0.4986 0.5932 -0.2327 0.4989 0.5770 

Q75 -0.2200 0.5111 0.6052 -0.2238 0.5115 0.5872 

Max. -0.2200 0.5712 0.6614 -0.2070 0.5564 0.6248 

 Private Insurance vs. Insurance offered at Main Job (Women) 

 Generated 

 

Generated 

p1 

Generated 

p2 

Imputed 

 

Imputed 

p1 

Imputed 

p2 

Min. 0.3000 0.6156 0.5231 0.2852 0.6156 0.5252 

Q25 0.3100 0.6498 0.5706 0.3055 0.6498 0.5696 

Median 0.3200 0.6601 0.5821 0.3137 0.6601 0.5813 

Mean 0.3135 0.6601 0.5825 0.3131 0.6601 0.5820 

Q75 0.3200 0.6695 0.5951 0.3211 0.6695 0.5949 

Max. 0.3200 0.7012 0.6398 0.3345 0.7012 0.6373 

 High Blood Pressure vs. Entered Mainland US  (Men) 

 Generated 

 

Generated 

p1 

Generated 

p2 

Imputed 

 

Imputed 

p1 

Imputed 

p2 

Min. -0.2500 0.2020 0.5068 -0.3061 0.2059 0.5002 

Q25 -0.2400 0.2394 0.5545 -0.2440 0.2444 0.5540 

Median -0.2300 0.2494 0.5705 -0.2344 0.2531 0.5693 

Mean -0.2343 0.2496 0.5692 -0.2348 0.2539 0.5685 

Q75 -0.2200 0.2594 0.5818 -0.2248 0.2644 0.5824 

Max. -0.2200 0.3142 0.6295 -0.1693 0.3171 0.6300 
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8.5 Multivariate Binary Case 

 

We next applied our method for imputing multivariate binary data to a subset of 200 women in 

the NYC HANES database including indicator variables for Herpes I, the offering of insurance at the 

workplace, and having private insurance.  Information for these variables is given in Table XXXII. 

 

Table XXXII: VARIABLES IN 200 WOMEN IN THE NYC HANES DATABASE USED IN THE 

APPLICATION FOR IMPUTING MULTIVARIATE BINARY DATA 

 

 
Variable Label Number (Percent) Missing 

1 Herpes I (yes vs. no) 12 (12.0%) 

2 Insurance Offered at Workplace (yes vs. no) 42 (42.0%) 

3 Private Insurance (yes vs. no) 0 (0.0%) 

 

 

Creating 10 imputed data sets via our method for imputing mixed data at each of 1000 simulations 

and examining assessment measures given in Table XXXIII, we again see adequate performance of the 

new approach, via AE values comparable to original pairwise phi coefficient estimates, SB estimates < 

50%, small RMSE values indicating adequate precision and accuracy, CR values > 90%, and AW 

estimates comparable to confidence interval widths for original estimates. 
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Table XXXIII: ORIGINAL ESTIMATES AND AVERAGE ESTIMATES AND ASSESSMENT 

MEASURES FROM THE IMPUTATION APPLICATION TO MULTIVARIATE BINARY DATA 

FROM THE NYC HANES (WOMEN) DATABASE 

 

 
Pairs Convergence 

Constant 
Original  Imputed 



SB RMSE CR AW 

(1,2) 0.0325 -0.1422 -0.1435 22.5165 0.0047 94.1559 0.3907 

(1,3) 0.0325 -0.1376 -0.1388 23.3595 0.0040 95.0411 0.3900 

(2,3) 0.0325 0.5131 0.5132 3.8314 0.0043 93.2211 0.2964 

 Original p1 Original p2 Original p3 Imputed p1 Imputed p2 Imputed p3 

0.77 0.55 0.68 0.76 0.47 0.68 

 

 

Similarly, satisfactory results were seen after generating 1000 data sets with characteristics 

mimicking those of the original data.  For these generated data, missing values were induced under the 

MCAR mechanism, again by randomly deleting percentages of entries equal to the percentages of 

missing values in the original data. Table XXXIV gives the summary statistics associated with these 

generated and corresponding imputed data sets, again with 10 data sets imputed at each of 1000 

simulations. Adequate performance of the imputation method is indicated by sufficient overlapping of 

the summary statistics. 
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Table XXXIV: SUMMARY STATISTICS FOR GENERATED AND IMPUTED DATA INVOLVING 

THE IMPUTATION APPLICATION TO MULTIVARIATE BINARY DATA FROM THE NYC 

HANES DATABASE (MCAR CASE – WOMEN) 

 

 
 Generated 

 

Generated 

 

Generated 

 

Imputed 

 

Imputed 

 

Imputed 

 

Min. -0.2007 -0.2022 0.4482 -0.2336 -0.2168 0.4069 

Q25 -0.1606 -0.1895 0.4711 -0.1549 -0.1929 0.4801 

Median -0.1273 -0.1724 0.4964 -0.1220 -0.1753 0.5079 

Mean -0.1314 -0.1665 0.5017 -0.1229 -0.1703 0.5106 

Q75 -0.1005 -0.1485 0.5297 -0.0933 -0.1511 0.5390 

Max. -0.0784 -0.0837 0.5720 -0.0183 -0.0791 0.6119 

 Generated 

p1 

Generated 

p2 

Generated 

p3 

Imputed 

p1 

Imputed 

p2 

Imputed 

p3 

Min. 0.6426 0.5017 0.5300 0.6460 0.4800 0.5300 

Q25 0.7751 0.5834 0.6538 0.7775 0.5725 0.6538 

Median 0.7966 0.6100 0.6850 0.8013 0.5965 0.6850 

Mean 0.7975 0.6098 0.6811 0.7992 0.5999 0.6811 

Q75 0.8288 0.6384 0.7150 0.8285 0.6335 0.7150 

Max. 0.9076 0.7067 0.7900 0.9120 0.7105 0.7900 
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8.6 Bivariate Mixed Case 

 

We first applied the method for imputing mixed data to a bivariate subset of 200 men from the 

Prostate SPORE database, including a continuous variable of total number of biopsy cores positively 

staining for prostate cancer and binary variables indicating presence or absence of prostate cancer in the 

seminal vesicle removed, in the margins of the prostate gland removed, or in the nerves near the 

removed prostate.  Table XXXV gives the characteristics of these data and also indicates the adequate 

performance of the method when applied to these data via assessment measures of AE values 

comparable to original estimates, SB estimates < 50%, small RMSE estimates associated with sufficient 

precision and accuracy, CR values > 90%, and AW estimates comparable to original pairwise 

correlation estimates. These assessment measures were obtained from 1000 simulations involving 10 

imputed data sets at each simulation. Creating 1000 simulated data sets with these characteristics via 

MCAR mechanisms involved random deleting a percentage of values equal to the percentage of missing 

entries in each respective variable of the original data.  The imputation method was then applied to each 

data set for m = 10 imputations. Here, we see that the range of summary statistics for the pairwise 

correlation estimates overlap quite well for data generated.    
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Table XXXV: CHARACTERISTICS AND IMPUTATION RESULTS INCLUDING ASSESSMENT 

MEASURES FOR PAIRWISE CORRELATIONS INVOLVING PROSTATE SPORE BIVARIATE 

MIXED DATA 

 

 
Data Set 1 

PROSTATE SPORE 

N = 200 

Variable 1: Biopsy cores positive for Cancer; No. Missing: 49 (24.5%): 

Variable 2: Seminal vesicle (Positive vs. negative); No. Missing: 1 (0.5%): 

Original  0.0909 Original  2.9678 

AE 0.0906 Imputed  2.9828 

SB 20.0823 Original p2 0.0452 

RMSE 0.0015 Imputed p2 0.0463 

CR 96.0800 Convergence  

AW 0.1753 Constant 0.0100 

Data Set 2 

PROSTATE SPORE 

N = 200 

Variable 1: Biopsy cores positive for Cancer; No. Missing: 49 (24.5%): 

Variable 2: Marginal nodes (Positive vs. negative); No. Missing: 0 (0.0%): 

Original  0.0960 Original  2.9678 

AE 0.0968 Imputed  2.9936 

SB 2.7382 Original p2 0.1700 

RMSE 0.0014 Imputed p2 . 

CR 96.2520 Convergence  

AW 0.1751 Constant 0.0100 

Data Set 3 

PROSTATE SPORE 

N =200 

Variable 1: Biopsy cores positive for Cancer; No. Missing: 49 (24.5%): 

Variable 2: Peripheral nerves (Positive vs. negative); 

No. Missing: 11 (5.5%): 

Original  0.270982 Original  2.9678 

AE 0.270980 Imputed  2.9700 

SB 0.0806 Original p2 0.6614 

RMSE 0.0015 Imputed p2 0.6593 

CR 95.7429 Convergence  

AW 0.1711 Constant 0.0100 
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Table XXXVI: SUMMARY STATISTICS FOR GENERATED AND IMPUTED DATA INVOLVING 

PROSTATE SPORE BIVARIATE MIXED DATA (MCAR CASE) 

 

 
 Positive Cores vs. Seminal Vesicle (+/-)  

 Generated 

 

Generated 

 

Generated 

p2 

Imputed 

 

Imputed 

 

Imputed 

p2 

Min. 0.0809 2.1970 0.0350 0.0623 1.6880 0.0320 

Q25 0.0855 2.8430 0.0450 0.0854 2.3650 0.0420 

Median 0.0902 3.0080 0.0500 0.0903 2.5330 0.0500 

Mean 0.0905 3.0040 0.0535 0.0905 2.5210 0.0525 

Q75 0.0956 3.1590 0.0600 0.0956 2.6770 0.0600 

Max. 0.1009 3.7630 0.1050 0.1064 3.3200 0.1060 

 Positive Cores vs. Marginal Nodes (+/-)  

 Generated 

 

Generated 

 

Generated 

p2 

Imputed 

 

Imputed 

 

Imputed 

p2 

Min. 0.0860 2.1820 0.0850 0.0811 1.6800 0.0840 

Q25 0.0904 2.8330 0.1537 0.0908 2.3660 0.1515 

Median 0.0955 3.0000 0.1700 0.0957 2.5210 0.1690 

Mean 0.0955 2.9980 0.1699 0.0958 2.5220 0.1690 

Q75 0.1002 3.1580 0.1850 0.1005 2.6810 0.1860 

Max. 0.1060 3.8200 0.2450 0.1097 3.3450 0.2460 

 Positive Cores vs. Peripheral Nerves (+/-)  

 Generated 

 

Generated 

 

Generated 

p2 

Imputed 

 

Imputed 

 

Imputed 

p2 

Min. 0.2610 2.3310 0.5556 0.2579 1.8460 0.5550 

Q25 0.2653 2.8300 0.6349 0.2662 2.3580 0.6331 

Median 0.2705 2.9970 0.6614 0.2711 2.5260 0.6584 

Mean 0.2707 2.9990 0.6587 0.2714 2.5240 0.6568 

Q75 0.2757 3.1550 0.6825 0.2765 2.6850 0.6804 

Max. 0.2810 3.6750 0.7513 0.2912 3.3270 0.7516 
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8.7 Multivariate Mixed Case 

 

In our final example, we investigated our imputation method for mixed data in the multivariate 

setting, by considering at a subset of 100 men from the Prostate SPORE database with two continuous 

variables, percent cancer in the prostate gland removed by radical prostatectomy and percent of biopsy 

needle cores staining positively for cancer, and one binary variable indicating the presence or absence of 

cancer in the marginal nodes.  Here, 19% of the entries in the second variable of percent cancer in the 

prostate gland were missing, as shown in the variable descriptions given in Table XXXVII.   

 

 

Table XXXVII: VARIABLES IN 100 MEN IN THE PROSTATE SPORE DATABASE USED IN THE 

IMPUTATION APPLICATION TO MULTIVARIATE MIXED DATA 

 

 
Variable Label Number (Percent) Missing 

1 Percent Cancer in Prostate Gland 0 (0.0%) 

2 Percent Biopsy Cores Positive for Prostate Cancer 19 (19.0%) 

3 Marginal nodes (positive vs. negative) 0 (0.0%) 

 

 

Table XXXVIII gives on assessment measures of AE values comparable to original estimates, SB values 

< 50%, RMSE values sufficiently small associated with adequate precision and accuracy, CR estimates 

> 90%, and AW values comparable to confidence interval widths of original estimates for pairwise 

correlations involving the variable with missing data.  From these results, we could therefore infer that 

our method performs adequately for this real multivariate mixed data set. 

 With generating 1000 data sets having characteristics of the original data and applying our method 

with 10 imputations to each data set at each of 1000 simulations, we also observe satisfactory results as 

indicated by the overlapping summary statistics.  Table XXXIX gives the results with missingness in the 
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generated data induced under the MCAR mechanism, created via randomly deleting 19% of entries in 

the second variable. With respect to overlapping summary statistics, we namely see comparable results 

between the means of generated and imputed data for Y2 and between the pairwise correlations involving 

Y2 associated with generated and imputed data. 
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Table XXXVIII: ORIGINAL ESTIMATES AND AVERAGE ESTIMATES AND ASSESSMENT 

MEASURES FROM THE IMPUTATION APPLICATION TO MULTIVARIATE MIXED DATA 

FROM THE PROSTATE SPORE DATABASE 

 

 
Pairs Convergence 

Constant 
Original  Imputed  SB RMSE CR AW 

(1,2) 0.0275 0.3366 0.3362 8.6253 0.0035 95.3717 0.3530 

(2,3) 0.0275 0.2640 0.2651 22.7556 0.0040 95.0477 0.3699 

 Original 

 

Original 

 

Original 

p1 
Imputed  

10.02 24.43 0.17 24.84 

 

 

 

 

 

Table XXXIX:  SUMMARY STATISTICS FOR GENERATED AND IMPUTED DATA INVOLVING 

THE IMPUTATION APPLICATION TO MULTIVARIATE MIXED DATA FROM THE PROSTATE 

SPORE DATABASE (MCAR CASE) 

 

 
 Generated 

 

Generated 

 

Generated 

 

Imputed 

 

Imputed 

 

Min. 0.3041 0.2924 0.2316 0.2765 0.2137 

Q25 0.3179 0.3081 0.2510 0.3303 0.2568 

Median 0.3338 0.3239 0.2660 0.3360 0.2623 

Mean 0.3344 0.3238 0.2657 0.3360 0.2623 

Q75 0.3498 0.3380 0.2810 0.3419 0.2678 

Max. 0.3690 0.3573 0.2965 0.3706 0.2829 

 Generated 

 

Generated 

 

Generated 

p3 

Imputed 

 

 

Min. 8.5830 22.4100 0.3500 22.1400  

Q25 10.1880 26.3500 0.4700 26.4600  

Median 10.7610 27.8100 0.5000 27.8700  

Mean 10.7560 27.7200 0.5033 27.8100  

Q75 11.2880 29.1000 0.5400 29.2500  

Max. 13.3920 36.2400 0.6500 36.4300  
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Through bivariate and multivariate real data examples, we have shown promising performance of 

our developed methods for imputing continuous, binary, and mixed data.  We thus recommend the 

presented methods for missingness under the MCAR mechanism.  Future work will involve extending 

our methods to data missing under any MAR mechanism. 

 

8.8 Advantages of Multiple Imputation over Complete-Case Analyses in Real Data Applications 

 

  

 

Although average estimates for our imputation methods are comparable to parameter estimates 

from complete-case analyses involving the real data presented in this chapter and in several cases of 

generated data presented in Chapter 7, multiple imputation can still be a preferable alternative to 

complete-case analyses for various reasons.  As discussed in Section 2.3, for example, multiple 

imputation allows us to account for variation is the missing data, leading to potentially greater validity 

with respect to inferences (Schafer and Olsen, 1998).  Multiple imputation also can be beneficial in that 

it can be used in fill in missing entries in unbalanced data.  This application can allow for analyses and 

variance component estimation involving repeated measures ANOVA models, for instance, that may not 

converge otherwise when applied to unbalanced data (Laird and Ware, 1982; Hedeker and Gibbons, 

2006).   Lastly, a substantial fraction of missing information can lead to complete-case analyses of a data 

set of notably smaller sample size, potentially associated with a loss of power (Schafer, 1999).  These 

situations therefore present examples involving real data applications, where we may choose multiple 

imputation rather than complete-case analyses even when parameter estimates obtained from the two 

approaches are comparable. 
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9.  CONCLUSION 

 

 In this work, we have developed semi-parametric approaches for imputing continuous, binary, 

and mixed data.  We have adopted principles of eCDF computation and the Lurie-Goldberg algorithm to 

impute continuous data (LGMI) and methods given in Emrich and Piedmonte (1991) and Demirtas and 

Doganay (2012) to impute binary data.  We combined approaches for imputing continuous and binary 

data to impute mixed data.  These discussed methods involve data transformations leading to values 

following the normal distribution that can be then imputed using joint modeling, constituting the 

parametric portion of our methods.  Back-transformations via the Barton and Schruben (1993) method 

for continuous data and use of quantiles for binary variables then constitute the nonparametric portion of 

our methods.  Simulations conducted on generated and real data indicate these techniques as promising 

in MCAR cases.  Future work will include extending these methods to MAR scenarios.  We therefore 

suggest the methods presented here as possible avenues for imputing data in situations where parametric 

assumptions need to be relaxed. 
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APPENDIX 

 

## Modified Lurie-Goldberg Code 

 

## function for computing the marginal eCDF values for all variables in data set x. 

 

 

## function obtaining lower triangular matrix from correlation matrix 

l.mat=function(mat){ 

 k=dim(mat)[1] 

 new.mat=matrix(0,k,k) 

 xmat=matrix(rep(1:k,k),k,k) 

 ymat=matrix(rep(1:k,each=k),k,k) 

 new.mat[ymat<xmat]=mat[ymat<xmat] 

 new.mat} 

 

## function obtaining vector of pairwise correlations from  

## correlation matrix 

pr.cor=function(mat){ 

l.vec=as.numeric(l.mat(mat)) 

l.vec[l.vec!=0] 

} 

 

## function extracting eCDF values from ecdf function 

ecdf.extract=function(y,x){ 

x2=apply(x,2,ecdf) 

x2[[y]](x[,y]) 

} 

## function for computing the marginal eCDF values for all variables in data set x. 

 

mv.ecdf=function(x){ 

k=dim(x)[2] 

k.mat=matrix(1:k,k,1) 

apply(k.mat,1,ecdf.extract, x=x) 

} 

 

 

## function implementing Barton and Schruben (1993) method 

bart.k=function(k, test.data, u.c, u.msg){ 

 

## selecting eCDF values from imputed data corresponding to Variable k missing     

## entries based on imputed data
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u.imp=u.c[is.na(test.data[,k])==TRUE,k] 

 

 

## selecting eCDF values corresponding to Variable k observed entries 

 

u.nonm=u.msg[is.na(test.data[,k])==FALSE,k]   

 

## determining number of missing and observed Variable k entries 

l.ui=length(u.imp) 

l.un=length(u.nonm) 

 

## determining the position where among observed eCDF values do  

## eCDF values of imputed data lie 

 

u.imp.mat=matrix(rep(u.imp, l.un), l.ui, l.un) 

u.nonm.mat=matrix(rep(u.nonm, each=l.ui), l.ui, l.un) 

cond.mat=matrix(as.numeric(u.imp.mat>u.nonm.mat), l.ui, l.un) 

posit=apply(cond.mat,1,sum) 

posit=cbind(posit, posit+1) 

 

## sorting the observed Variable k entries in the original data and the 

## corresponding observed eCDF values 

 

ys.nonm=sort(test.data[is.na(test.data[,k])==FALSE,k]) 

us.nonm=sort(u.msg[is.na(test.data[,k])==FALSE,k]) 

 

## determining values in the range of the given data, based on the  eCDF values 

## for the imputed data, as described in Barton and Schruben (1993) 

## by first determining conditions based on the relationship between the eCDF values of 

## the original and of the imputed data. 

 

cond.1=(1:l.ui)[u.imp>min(u.nonm)&u.imp<max(u.nonm)]    

cond.2=(1:l.ui)[u.imp<min(u.nonm)] 

cond.3=(1:l.ui)[u.imp>max(u.nonm)] 

 

## calculating values involving the range of the observed data and the fraction  

## involving the difference between the eCDF values of the imputed and original 

## data; these values will be added to the original data, as part of the back- 

## transformation technique described by Barton and Schruben (1993). 

 

add.term=1:l.ui 

add.11=(ys.nonm[posit[cond.1,2]]-ys.nonm[posit[cond.1,1]]) 

add.12=(u.imp[cond.1]-us.nonm[posit[cond.1,1]]) 
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add.13=(us.nonm[posit[cond.1,2]]-us.nonm[posit[cond.1,1]]) 

 

add.term[cond.1]=(ys.nonm[posit[cond.1,2]]-ys.nonm[posit[cond.1,1]])*(u.imp[cond.1]-

us.nonm[posit[cond.1,1]])/mean(us.nonm[posit[cond.1,2]]-us.nonm[posit[cond.1,1]]) 

add.term[cond.2]=min(ys.nonm)-abs(min(ys.nonm))*(1-(u.imp[cond.2]/min(u.nonm))) 

add.term[cond.3]=max(ys.nonm)*(u.imp[cond.3]/max(u.nonm)) 

 

## performing Barton and Schruben (1993) back-transformation. 

 

y.imp=1:l.ui 

y.imp[cond.1]=ys.nonm[posit[cond.1,1]]+add.term[cond.1] 

y.imp[cond.2]=add.term[cond.2] 

y.imp[cond.3]=add.term[cond.3] 

 

y.imp 

 

} 

 

 

 

## code for a function taking in a bivariate data set with missing entries in the second variable  

## and outputting a data set with imputed values in that variable 

 

## function for extracting the marginal eCDF values for a variable y in data set x. 

 

ecdf.extract=function(y,x){ 

x2=apply(x,2,ecdf) 

x2[[y]](x[,y]) 

} 

 

 

## function for computing the marginal eCDF values for all variables in data set x. 

 

mv.ecdf=function(x){ 

k=dim(x)[2] 

k.mat=matrix(1:k,k,1) 

apply(k.mat,1,ecdf.extract, x=x) 

} 

 

## function for computing the CDF values of a normally distributed variable based on N(xbar,S) 

## where mx and sdx are the average and standard error of the data, resp. 

 

new.pnorm=function(x){ 
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mx=mean(x) 

sdx=sd(x) 

pnorm(x, mx,sdx) 

} 

 

## calling library norm. 

library(norm) 

 

 

## function for proposed multiple imputation method incorporating 

## the Lurie-Goldberg algorithm taking the values: 

 

## test.data = data set with missing entries in the second variable  imputed. 

## r.targ = target correlation (if NULL, use correlations computed from observed data) 

## mn.targ = target means (if NULL, use correlations computed from observed data) 

## m.imp = the number of imputations to be specified 

 

## maxits = maximum number of iterations performed; the algorithm stops when 

## either the convergence criteria is met or the maximum number of iterations is reached. 

 

## gtol = a value multiplied to the correlation of the original data, i.e., the  

## target correlation, to establish the convergence criteria. 

 

## j.run = indicating jth simulation 

 

 new.LG.t=function(test.data, r.targ=NULL,mn.targ=NULL, m.imp, maxits=200,gtol, j.run){ 

 

## defining matrix to hold original and imputed values for m imputed data sets 

 

test.data3=matrix(0,dim(test.data)[1],m.imp*dim(test.data)[2]) 

 

## defining how many imputations in one simulation should be run 

 

for (m in 1:m.imp){ 

 

 

## determining number of pairwise correlations and means to be computed 

 

k=dim(test.data)[2] 

kk2=k*(k-1)/2; kk3=kk2+k 

if (is.null(mn.targ)==T){c.ind=numeric(kk2)} 

if (is.null(mn.targ)==F){c.ind=numeric(kk3)} 
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## computing Pearson correlation of original data 

 

if (is.null(r.targ)==T){r.target=cor(test.data, use="pairwise.complete.obs", method="pearson")} 

if (is.null(r.targ)==F){r.target=r.targ} 

 

## computing eCDF for given data 

 

u.msg=mv.ecdf(test.data) 

u.msg[u.msg==1]=round(1-10^-5,20) 

u.msg[u.msg==0]=round(10^-5,20) 

 

## obtaining standard normal quantiles for the eCDF values 

y.msg=qnorm(u.msg) 

 

## setting initial iteration to 0 

i=0 

 

 

 

## stopping criteria for LG algorithm 

  while (sum(c.ind) < length(c.ind) & i < maxits) {     

i=i+1 

 

## imputation procedures from R norm package. 

 

s <- prelim.norm(y.msg)   #do preliminary manipulations 

thetahat <- em.norm(s, showits=FALSE, criterion=0.00001)   #find the mle 

 

seed=sample(100:10^7,1)  #setting random number generator seed  

rngseed(seed)  

theta <- da.norm(s,thetahat,steps=20,showits=FALSE)  # take 20 steps   

y.c <- imp.norm(s,theta,y.msg)  #impute missing data under the MLE 

 

## obtaining normal eCDF values from imputed data  

u.c=apply(y.c,2,new.pnorm) 

 

x1=dim(test.data)[2] 

na.test=apply(is.na(test.data), 2, sum) 

na.test2=(1:x1)[as.numeric(na.test)>0] 

 

x2=matrix(na.test2,length(na.test2),1) 

 

## applying Barton and Schruben (1993) method to back-transformed eCDF values onto  



116 

 

 

APPENDIX (continued) 

 

## original scale of the observed data 

test2=apply(x2,1,bart.k,test.data=test.data, u.c=u.c, u.msg=u.msg) 

 

 

## imputing the data set 

test.data2=test.data 

test.data2[is.na(test.data)==T]=unlist(test2) 

 

 

## calculating the Pearson correlation for the imputed data set. 

 

## computing correlations for imputed data 

r.p1=cor(test.data2, method="pearson") 

 

## computing means for imputed data 

mn.p1=apply(test.data2,2,mean) 

 

## evaluating convergence criteria involving target correlations 

if (is.null(r.targ)==T){gtol.v=gtol[1:kk2]*l.mat(r.target)[l.mat(r.target)!=0]} 

if (is.null(r.targ)==F){gtol.v=gtol[1:kk2]*l.mat(r.targ)[l.mat(r.targ)!=0]} 

 

if (is.null(r.targ)==T){ 

c.ind=(abs(l.mat(r.p1)[l.mat(r.p1)!=0] - l.mat(r.target)[l.mat(r.target)!=0])<abs(gtol.v)) 

} 

 

if (is.null(r.targ)==F){ 

c.ind=(abs(l.mat(r.p1)[l.mat(r.p1)!=0] - l.mat(r.targ)[l.mat(r.targ)!=0])<abs(gtol.v)) 

} 

 

 

## evaluating convergence criteria involving target means 

 

if (is.null(mn.targ)==F){ 

c.ind1=(abs(l.mat(r.p1)[l.mat(r.p1)!=0] - l.mat(r.targ)[l.mat(r.targ)!=0])<abs(gtol.v[1:kk2])) 

c.ind2=(abs(mn.p1 - mn.targ)<abs(gtol[kk2b:kk3])) 

c.ind=c(c.ind1,c.ind2) 

 

} 

 

## printing the ith iteration, mth imputation, jth simulation run, and how may pairiwise 

## correlations meet the convergence criteria 
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print(paste("ith iteration: ",format(i), " --*-- mth imputation: ",format(m), " --*-- jth simulation run: 

",format(j.run),  " --*-- close pairs: ",format(sum(c.ind)), sep = "")) 

 

} 

 

## inputing m imputed data sets to be outputted into the previously defined matrix. 

 

test.data3[,((m-1)*dim(test.data)[2]+1):(m*dim(test.data)[2])]=data.matrix(test.data2) 

} 

 

## outputs m imputed data sets. 

 

test.data3 

} 

 

 

## Code for Inducing Correlations via Cholesky Decomposition 

 

## Inducing correlations in generated bivariate data via Cholesky decomposition (Demirtas,  

## personal communication). 

 

 

## setting up sample size and initial rho value 

 

n.size=100; rho=0.8 

 

 

## generating a data set with missing data associated with a correlation close to the initial rho  

## value 

new.rho=-.5; i=0 

 

while (abs(new.rho-rho)>.025) { 

 

## generating an initial bivariate normal data set  

 

library(MASS) 

mydata<-mvrnorm(100, c(0,0), diag(2)) 

 

## generating an initial bivariate gamma data set  

 

## mydata=cbind(rgamma(n.size,1,1), rgamma(n.size,1,1)) 

 

## generating an initial bivariate t-distributed data set with 3 df 
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## mydata=cbind(rt(n.size,3), rt(n.size,3)) 

 

 

i=i+1 

 

## imposing a correlation equal to the initial rho value via Cholesky decomposition 

 

corr<-matrix(c(1,rho, rho,1),2,2) 

 

 

mydata<-mydata%*%chol(corr) 

 

new.x1=mydata[,1]+runif(n.size) 

new.x2=mydata[,2]+runif(n.size) 

 

cor(mydata, method="pearson") 

 

## imposing 50% MCAR in generated data set 

 

test.mydata<-cbind(new.x1, new.x2) 

 

test.mydata[sample(1:n.size, (n.size/2)),2]<-NA 

 

## function to impose missingness in the second variable depends on the first variable. 

## quadratically (used after correlation is induced). 

 

mar.fxn=function(data.y, p.msg){ 

y1=data.y[,1] 

y2=data.y[,2] 

p.c=runif(100) 

 

y2[p.msg>p.c]=NA 

 

new.data=cbind(y1,y2) 

new.data 

 

} 

 

## function to impose missingness in the second variable depends on the first variable 

## quadratically (used after correlation is induced). 

 

mar.fxn2q=function(data.y1){ 
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data.yq=data.y1 

p.msg.e=exp(-.5+.2*data.yq[,1]+.125*data.yq[,1]^2)  ## quadratic MAR model. 

p.msg.q=p.msg.e/(1+p.msg.e) 

 

data.yq2=mar.fxn(data.yq, p.msg.q) 

data.yq2 

} 

 

 

## imposing 40% - 50% MAR in the generated data set based on the MAR linear model 

 

## test.mydata2=cbind(new.x1, new.x2) 

 

## test.mydata=mar.fxn2(test.mydata2) 

 

## imposing 40% - 50% MAR in the generated data set based on the MAR quadratic model 

 

## test.mydata2=cbind(new.x1, new.x2) 

 

## test.mydata=mar.fxn2q(test.mydata2) 

 

 

new.rho=cor(test.mydata,  use="pairwise.complete.obs", method="pearson")[2,1] 

print(i) 

} 

 

 

## reporting correlation associated with newly generated bivariate MCAR data  

new.rho;rho 
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## Code for Imputing Binary Data 

library(norm); library(psych) 

 

 

## function determining order of assignment of binary variables from underlying normally  

## distributed data based on quantiles for entries where two or more values had to be imputed 

new.value=function(xy, q.mix){ 

x=xy[1:2]; y=xy[3:4] 

x.use=sample(1:4,1) 

x[col.other[x.use]]=val.other[x.use] 

x[col.chosen[x.use]]=as.numeric(y[col.chosen[x.use]]<q.mix[x.use]) 

 

x 

} 

 

 

 

## function to tabulate frequencies of all possible combinations of outcomes 

## with binary variables 

 

bin.p=function(x){ 

r=x 

   n <- nrow(x) 

    p <- ncol(x) 

    nmis <- as.integer(apply(x, 2, sum)) 

    names(nmis) <- dimnames(x)[[2]] 

    mdp <- as.integer((r %*% (2^((1:ncol(x)) - 1))) + 1) 

    ro <- order(mdp) 

    x <- matrix(x[ro, ], n, p) 

    mdp <- mdp[ro] 

 

n.mdp=table(mdp) 

 

row.ind=as.numeric(names(n.mdp)) 

 

k=p 

 

ind.01=c(0,1) 

ir.01=NULL 

for (i in 1:k){ 

 

 ir.012=rep(rep(ind.01,each=2^(i-1)),2^(k-i)) 



121 

 

 

APPENDIX (continued) 

 

ir.01=c(ir.01, ir.012) 

 

} 

ir.01.mat=matrix(ir.01,2^k,k) 

ir.01.mat=cbind(ir.01.mat,0) 

ir.01.mat[row.ind,(k+1)]=n.mdp 

ir.01.mat 

} 

 

## function determining how many imputed values are there in an entry needing 

## binary assignments 

new.var=function(x){ 

 k=length(x) 

if (k==1){nx=x} 

if (k>1){ 

 nx=x[k] 

 for (j in (k-1):1){ 

 nx = nx+x[j]*10^(k-j)} 

} 

nx 

} 

 

 

## function for imputing multivariate binary data for each entry 

## of a multivariate binary data set 

## xz = entry with binary (x) and underlying normal imputed (z) values of an entry in the data set 

## y.o = data set with observed binary values 

## z.o = data set with underlying normally distributed values corresponding to observed binary ## 

values 

## tp = frequencies of all possible combinations of outcomes with binary variables 

 

mv.bin=function(xz, y.o=y.o, z.o=z.o,tp=tp){ 

 

 

 

## separating x and z from xz 

l.xz=length(xz) 

 

x=xz[1:(l.xz/2)] 

z=xz[(l.xz/2+1):l.xz] 

 

 

l.x=length(x) 
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## if an entry has any missing values 

if (sum(is.na(x))>0){ 

 

## determining observed and missing values within an entry 

x.obs.ind=(1:l.x)[is.na(x)==F] 

x.mis.ind=(1:l.x)[is.na(x)==T] 

 

## if entry has one missing value 

if (sum(is.na(x))==1){    

 

## determining binary value of imputed underlying normal value based on quantiles 

nx=new.var(x[x.obs.ind]) 

new2=apply(tp[,x.obs.ind],1,new.var) 

ny=apply(y.o[,x.obs.ind],1,new.var) 

z.ref=z.o[ny==nx,x.mis.ind] 

 

## determining probabilities based on frequencies of observed combinations of binary variables 

new2.tab=cbind(tp,new2) 

 

new.prob.set=new2.tab[(new2==nx),] 

prob.denom=sum(new2.tab[(new2==nx),dim(tp)[2]]) 

prob.num=new2.tab[(new2==nx),dim(tp)[2]][new2.tab[(new2==nx),x.mis.ind]==1] 

prob=prob.num/prob.denom 

 

## determining quantiles from probabilities based on frequencies of observed combinations of  

## binary variables 

q.prob=quantile(z.ref,prob, na.rm=T) 

 

x[x.mis.ind]=as.numeric(z[x.mis.ind]<q.prob) 

 

} 

 

## if entry has two missing values 

if (sum(is.na(x))==2){   

 

## determining probabilities based on frequencies of observed combinations of binary variables 

cnt=tp[,dim(tp)[2]] 

ltp=dim(tp)[1] 

prob.num=cnt[new.var(x[x.obs.ind])==apply(matrix(tp[,x.obs.ind],ltp,length(x.obs.ind)),1,new.var)] 

prob=prob.num/sum(prob.num) 

ntp=tp[new.var(x[x.obs.ind])==apply(matrix(tp[,x.obs.ind],ltp,length(x.obs.ind)),1,new.var),] 

p11=sum(prob[apply(ntp[,x.mis.ind],1, new.var)==11]) 

p10=sum(prob[apply(ntp[,x.mis.ind],1, new.var)==10]) 
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p01=sum(prob[apply(ntp[,x.mis.ind],1, new.var)==1]) 

p00=sum(prob[apply(ntp[,x.mis.ind],1, new.var)==0]) 

prob.10=p10/(p10+p00) 

prob.11=p11/(p11+p01) 

prob.20=p01/(p01+p00) 

prob.21=p11/(p11+p10) 

 

prob2=c(prob.10, prob.11, prob.20, prob.21) 

 

## determining quantiles from probabilities based on frequencies of observed combinations of  

## binary variables 

l.y=dim(y.o)[1]; l.o=length(x.obs.ind) 

z.o.sel=z.o[new.var(x[x.obs.ind])== apply(matrix(y.o[,x.obs.ind],l.y, l.o), 1,new.var),x.mis.ind] 

q.mix=c(quantile(z.o.sel[,1],prob.10), quantile(z.o.sel[,1],prob.11),  

quantile(z.o.sel[,2],prob.20), quantile(z.o.sel[,2],prob.21)) 

 

## determining binary value of imputed underlying normally distributed value based on quantiles 

x[x.mis.ind]=new.value(c(x[x.mis.ind],z[x.mis.ind]), q.mix=q.mix) 

 

} 

 

## if entry has more than two missing values 

if (sum(is.na(x))>2){  

 

## determining probabilities based on frequencies of observed combinations of binary variables 

lms=length(x.mis.ind) 

s.ms=sample(1:lms, lms) 

s.ms2=s.ms[1:2] 

cnt=tp[,dim(tp)[2]] 

prob=cnt/sum(cnt) 

p11=sum(prob[apply(tp[,s.ms2],1, new.var)==11]) 

p10=sum(prob[apply(tp[,s.ms2],1, new.var)==10]) 

p01=sum(prob[apply(tp[,s.ms2],1, new.var)==1]) 

p00=sum(prob[apply(tp[,s.ms2],1, new.var)==0]) 

prob.10=p10/(p10+p00) 

prob.11=p11/(p11+p01) 

prob.20=p01/(p01+p00) 

prob.21=p11/(p11+p10) 

 

## determining quantiles from probabilities based on frequencies of observed combinations of  

## binary variables 

z.o.sel=z.o[,s.ms2] 

y.o.sel1=y.o[,s.ms2[1]] 
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y.o.sel2=y.o[,s.ms2[2]] 

q.10=quantile(z.o.sel[y.o.sel2==0,1],prob.10) 

q.11=quantile(z.o.sel[y.o.sel2==1,1],prob.11) 

q.20=quantile(z.o.sel[y.o.sel1==0,2],prob.20) 

q.21=quantile(z.o.sel[y.o.sel1==1,2],prob.21) 

 

q.mix=c(q.10, q.11, q.20, q.21) 

 

## determining binary value of imputed underlying normally distributed value based on quantiles ## for 

first two variables with missing data 

new.xz=c(x[s.ms2], z[s.ms2]) 

new.x=new.value(new.xz, q.mix=q.mix)[1:2] 

new.s=s.ms2 

 

for (j in 3:lms){ 

 

## determining binary value of imputed underlying normally disributed value based on quantiles  

## for subsequent variables with missing data 

nv=new.var(new.x) 

new2=apply(tp[,new.s],1,new.var) 

ny=apply(y.o[,new.s],1,new.var) 

z.ref=z.o[ny==nv,s.ms[j]] 

 

cnt=tp[,dim(tp)[2]] 

prob.denom=sum(cnt[new2==nv]) 

prob.num=cnt[new2==nv&tp[,s.ms[j]]==1] 

prob=prob.num/prob.denom 

q.prob=quantile(z.ref, prob, na.rm=T) 

nx2=as.numeric(z[s.ms[j]]<q.prob) 

 

new.x=c(new.x, nx2) 

new.s=c(new.s,s.ms[j]) 

 

} 

 

x[s.ms]=new.x 

} 

} 

x 

} 

 

## setting up matrices for storing information on imputed data 

n.simul=1000; m.imp=10 
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APPENDIX (continued) 

 

imp.yds=matrix(0,dim(y)[1], dim(y)[2]) 

imp.phi12=matrix(0,n.simul,m.imp) 

imp.phi13=matrix(0,n.simul,m.imp) 

imp.phi23=matrix(0,n.simul,m.imp) 

imp.p1=matrix(0,n.simul,m.imp) 

imp.p2=matrix(0,n.simul,m.imp) 

imp.p3=matrix(0,n.simul,im.imp) 

 

for (j in 1:n.simul){ 

 

for (m in 1:m.imp){ 

 

i=0; abd.cc=rep(0,3); cc=rep(.05,3) 

 

while (i<100 & sum(abd.cc)<3){ 

i=i+1 

 

## imputing data based on joint modeling of normal data underlying binary data 

## imputation procedures from R norm package. 

s <- prelim.norm(nx22)   #do preliminary manipulations 

thetahat <- em.norm(s, showits=FALSE)   #find the mle 

rngseed(sample(10:1000,1))   #set random number generator seed 

zimp <- imp.norm(s,thetahat,nx22)  #impute missing data  

yz=cbind(bx3,zimp) 

 

tp=bin.p(bx3) 

y.o=bx3[apply(is.na(bx3),1,sum)==0,] 

z.o=nx22[apply(is.na(nx22),1,sum)==0,] 

 

 

## determining binary values from imputed underlying normally distrubed data 

y.imp=t(apply(yz,1,mv.bin,y.o=y.o, z.o=z.o,tp=tp)) 

imp.phi12a=phi(table(y.imp[,1],y.imp[,2]),digits=4) 

imp.phi13a=phi(table(y.imp[,1],y.imp[,3]),digits=4) 

imp.phi23a=phi(table(y.imp[,2],y.imp[,3]),digits=4) 

abd12=abs(imp.phi12a-phi12) 

abd13=abs(imp.phi13a-phi13) 

abd23=abs(imp.phi23a-phi23) 

abd=c(abd12,abd13,abd23) 

abd.cc=(abd<cc) 

 

 

## printing the ith iteration, mth imputation, jth simulation run, and how many pairwise 
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APPENDIX (continued) 

 

## correlations meet the convergence criteria 

print(paste("ith iteration: ",format(i), " --*-- mth imputation: ",format(m),  

" --*-- jth simulation run: ",format(j), 

" --*-- close pairs: ",format(sum(abd.cc)), sep = "")) 

 

} 

 

## storing imputed data correlations and proportions involving imputed binary data 

imp.yds[((j-1)*m.imp+(m-1)*dim(y)[2]+1):((j-1)*m.imp+(m-1)*dim(y)[2]+dim(y)[2]) 

imp.phi12[j,m]=imp.phi12a 

imp.phi13[j,m]=imp.phi13a 

imp.phi23[j,m]=imp.phi23a 

imp.p1[j,m]=mean(y.imp[,1]) 

imp.p2[j,m]=mean(y.imp[,2]) 

imp.p3[j,m]=mean(y.imp[,3]) 

 

} 

} 

 

 

## Code for Imputing Mixed Data 

 

## function for assigning binary values based on quantiles of underlying normally distributed 

## values. 

bind.fxn=function(x){ 

l.x=length(x) 

l.x2=l.x/2 

y=x[1:l.x2] 

z=x[(l.x2+1):l.x] 

p0=1-mean(y, na.rm=T) 

q.p0=quantile(z,p0, na.rm=T) 

z2=rep(NA,l.x2); z.o=as.numeric(na.omit(z)) 

ind.0=as.numeric(na.omit((1:l.x2)[y==0])) 

ind.1=as.numeric(na.omit((1:l.x2)[y==1])) 

z2[ind.0]=z.o[z.o<q.p0] 

z2[ind.1]=z.o[z.o>q.p0] 

z2 

} 

 

## function for imputing mixed data 

 

mv.mix.fxn=function(y,n,b, n2.init, cc, maxits=100, m.imp, j.simul){ 
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APPENDIX (continued) 

 

## determining conditional probabilities in binary variables that 

## will be used to compute quantiles of the underlying normal variables. 

y1=y[,1:n] 

y2=y[,((n+1):(n+b))] 

## determining entry positions of missing values 

m.ind=apply(is.na(y2),1,sum) 

m.ind2=(1:dim(y2)[1])[m.ind>0] 

y2.m=y2[m.ind2,] 

t.y2=table(y2[,1],y2[,2]) 

p.y2=c(t.y2[1]/sum(t.y2[1,]),t.y2[2]/sum(t.y2[2,]), 

t.y2[1]/sum(t.y2[,1]), t.y2/sum(t.y2[,2])) 

 

 

## computing eCDF values for continuous data 

e1a=mv.ecdf(y1) 

 

e1a[e1a==1]=round(1-10^-5,20) 

e1a[e1a==0]=round(10^-5,20) 

 

## obtaining N(0,1) values based on computed eCDF values 

n1=qnorm(e1a) 

 

## reordering values of underlying normal variables to correspond  to the binary variables 

n2=apply(n2.init,2,bind.fxn) 

n2.1=n2[,1]; n2.2=n2[,2] 

q.y2=c(quantile(n2.2[y2[,1]==0], p.y2[1], na.rm=T), 

quantile(n2.2[y2[,1]==1], p.y2[2], na.rm=T), 

quantile(n2.1[y2[,2]==0], p.y2, na.rm=T), 

quantile(n2.1[y2[,2]==1], p.y2[4], na.rm=T)) 

 

k=dim(y)[2]; n=dim(y)[1] 

 

## setting up matrices to store imputed data, their pairwise correlations, 

## means of imputed continuous variables, and proportions of imputed binary variables 

imp.yds=matrix(0,n,k*m*j) 

imp.cor2=matrix(0,j.simul,60) 

imp.m1=matrix(0,j.simul,10) 

imp.m2=matrix(0,j.simul,10) 

imp.p3=matrix(0,j.simul,10) 

imp.p4=matrix(0,j.simul,10) 
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APPENDIX (continued) 

 

 for (j in 1:j.simul){ 

 for (m in 1:m.imp){ 

 

## setting conditions for re-iteration 

 

abd.cc=numeric(6); i=0 

  while (sum(abd.cc)<6 & i < maxits) {     

 

i=i+1 

 

## imputing normal data underlying original continuous and binary variables 

## using the R norm package 

z.n=cbind(n1,n2) 

s <- prelim.norm(as.matrix(z.n))   #do preliminary manipulations 

thetahat <- em.norm(s, showits=FALSE)   #find the mle 

rngseed(sample(10:1000,1))   #set random number generator seed 

z.imp <- imp.norm(s,thetahat,as.matrix(z.n))  #impute missing data  

pz.imp=pnorm(z.imp) 

 

 

## back-transforming imputed normal data onto the scale of the original continuous 

## data via the Barton and Schruben (1993) method 

x1=dim(y1)[2] 

na.test=apply(is.na(y1), 2, sum) 

na.test2=(1:x1)[as.numeric(na.test)>0] 

x2=matrix(na.test2,length(na.test2),1) 

y.imp1.add=apply(x2,1,bart.k,test.data=y1, u.c=pz.imp, u.msg=as.matrix(e1a)) 

 

 

## back-transforming imputed normal data to binary data via quantiles 

z.imp2=z.imp[m.ind2,((n+1):(n+b))] 

y2.2=y2[m.ind2,] 

yz.imp2=cbind(y2.2, z.imp2) 

y.imp2.add=t(apply(yz.imp2,1,bin2,q.y2=q.y2)) 

 

y.imp2=y2 

y.imp2[m.ind2,]=y.imp2.add 

 

y.imp=cbind(y.imp1, y.imp2) 

 

 

## computing correlations of imputed data 

imp.cor.m=cor(y.imp,use='pairwise.complete.obs') 
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APPENDIX (continued) 

 

imp.cor=l.mat(imp.cor.m)[l.mat(imp.cor.m)!=0] 

abd=abs(imp.cor-init.cor) 

dc=sign(imp.cor-init.cor) 

abd.cc=(abd<cc) 

 

## printing the ith iteration, mth imputation, jth simulation run, and how many pairwise 

## correlations meet the convergence criteria 

print(paste("ith iteration: ",format(i), " --*-- mth imputation: ",format(m),  

" --*-- jth simulation run: ",format(j), 

  " --*-- close pairs: ",format(sum(abd.cc)),  

  " ** ",format(sign(dc[1])),  

  " ** ",format(sign(dc[4])),  

  " ** ",format(sign(dc[5])),  

sep = "")) 

 

 

 } 

 

 

## storing imputed data correlations and proportions involving imputed binary data 

imp.yds[((j-1)*m.imp+(m-1)*dim(y)[2]+1):((j-1)*m.imp+(m-1)*dim(y)[2]+dim(y)[2]) 

ik.dim=length(imp.cor) 

imp.cor2[j,(((m-1)*k.dim+1):(k.dim*m))]=imp.cor 

imp.m1[j,m]=mean(y.imp[,1]) 

imp.m2[j,m]=mean(y.imp[,2]) 

imp.p3[j,m]=mean(y.imp[,3]) 

imp.p4[j,m]=mean(y.imp[,4]) 

 

 } 

 

 } 

 

## outputting results 

print(list(imp.yds, imp.cor2, imp.m1, imp.m2, imp.p3,imp.p4)) 

 

}  
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