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SUMMARY 

 

Evaluating hospital performance is crucial for improving the quality of health care. 

Unfortunately, there is a lack of standardized methods for such evaluation. Most organizations 

evaluate hospitals at the individual measure level and the types of analysis range from ranking 

observed rates to more sophisticated hierarchical models. Individual measures or therapies are 

nested within therapeutic areas of care, called measure sets, such as acute myocardial infarction 

and heart failure. Moreover, evaluation of hospital quality is concentrated on these performance 

process measures and there has currently been no attempt to evaluate hospital quality of care 

based on hospital safety data. 

This study presents three methods using nonlinear mixed-effects models to evaluate 

hospitals using composite measures based on hospital performance measures that are defined as 

proportion measures. A proportion measure is a measure where the numerator is a subset of the 

denominator and the ratio can be expressed as a rate or proportion as opposed to a continuous 

measure such as time from entering the emergency room until admission to the hospital. The first 

approach utilizes a composite performance measure based on yearly as well as longitudinal data 

and uses a hierarchical mixed-effects logistic regression model. The parameters are estimated by 

both Empirical and Full Bayes methods. Measure of agreement between the estimates of the 

parameters obtained by the Full Bayes and Empirical Bayes models uses the concordance 

correlation coefficient (CCC).   

 



 

 

  xii 

 

SUMMARY (continued) 

 

The second method incorporates a hierarchical mixed-effects Poisson regression model to 

each type of data, i.e., hospital performance data and hospital patient safety data. Estimates 

obtained from the model utilizing the hospital performance data will be compared. For each data 

type, estimates are obtained by using an Empirical Bayes method and a Full Bayesian model and 

are compared with each other. 

The final method uses a bivariate mixed-effects hierarchical model that incorporates the 

correlation between hospital performance measure data and hospital safety data. An overall 

measure of quality is constructed based on the bivariate latent variable to form a quality of care 

measure. 

In conclusion, each of these methods is a reasonable way to measure hospital quality of 

care by utilizing aggregated publically available data. The arena of hospital performance 

measures is constantly changing and some measures used in this study are no longer active 

measures that are being collected. There are also new measures being developed that represent 

other types of measures, such as outcomes measures, along with measures being developed in 

other areas of hospitals care. Although the analysis presented here represents a snapshot of the 

measures currently available, the methods developed in this study are flexible to incorporate new 

measures and measure sets as they become available.   
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1. INTRODUCTION 

  

There are many types of data available and there is a constant need to consolidate data 

into a meaningful quantity that will help consumers to make educated decisions. The area of 

interest for this study is the area of quality of care in hospitals and healthcare organizations.  

With a plethora of data available on the internet provided by many government and private 

organizations, there is a need to consolidate data within a multitude of areas that will serve as a 

guide for consumers to help determine where to find the best hospitals, not only for certain 

medical conditions but overall. Additionally, new statistical methods incorporating and 

consolidating different data types will help hospitals to identify areas in need of quality 

improvement.  

 

1.1 Performance Measures 

 

Evaluation of hospital performance is an ongoing practice as hospitals strive to provide 

the best possible care for their patients in addition to meeting financial incentive 

programs. Effective implementation of evidence-based performance measures has become a 

critical success factor for healthcare providers to demonstrate meaningful improvements in 

clinical quality. Since the quality of hospital care is multidimensional and not directly 

measurable, multiple hospital performance measures are evaluated to ascertain quality of 

care. The quality of hospital care based on hospital performance measures has been focused 
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primarily on the individual therapy or process measure within a clinical area or measure set but 

not at the set level. Due to the lack of availability of more enriched data sets, current literature 

has been restricted to yearly “snapshots” of the data. Although access to quarterly performance 

data has been available since January 2007 from the Joint Commission, there is no analytical 

study evaluating hospital-level performance utilizing these quarterly data. Proper implementation 

of quarterly data will help evaluate the quality of hospital care not only at a static point in time, 

but also longitudinally. 

Financial incentives are available to hospitals that participate in various quality 

improvement initiatives. Insurers have implemented incentive programs for hospitals to achieve 

better performance [Kuhn, 2011]. For example, in 2006, the Centers for Medicare and Medicaid 

Services (CMS) proposed a market basket update of 2.1% for those hospitals that participate in 

reporting hospital quality data for their Annual Payment Update program whereas those hospitals 

that do not participate receive 2.0% less [CMS, 2011]. The incentive by the Joint Commission in 

reporting these quality improvement measures is part of their accreditation requirement. 

Reporting the data is not enough, as the CMS has instituted a value-based purchase plan that 

links their payment plan to the quality of clinical care where providers are rewarded for their 

delivery of high-quality clinical care consistent with their vision of providing “the right care for 

every person every time” [CMS, 2012]. In 2010, the CMS has increased the incentive rate even 

more for better quality in the four clinical areas of acute myocardial infarction (AMI), 

pneumonia (PN), heart failure (HF), and the surgical care improvement project (SCIP). 
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Furthermore, the CMS has plans for instituting additional payment incentives for rewarding 

hospitals that show improvement over time. 

The first national program that required hospitals to report nonstandardized performance 

measure was the Joint Commission's ORYX initiative that started in 1998. In 2002, hospitals 

were required to submit performance measure data to the Joint Commission as part of the ORYX 

initiative. In 2005, the Joint Commission and the CMS aligned together in defining, collecting 

and publishing these data. Currently, there are 57 performance measures collected by the Joint 

Commission with 31 of them being publicly reported. These publicly reported measures, which 

include the measures that define the AMI, HF, PN, and SCIP measure sets, have been endorsed 

by the National Quality Forum and adopted by the Hospital Quality Alliance and are used by 

various stakeholders to demonstrate quality of care to the public, purchasers, payers, and others 

[Casey, 2010; Williams et al., 2006].  

Profiling hospitals is constantly under scrutiny as hospital report cards and ratings are 

presented to the public. The US News and World Report and Consumer Reports publish hospital 

rankings to define America's “top” hospitals. Healthgrades, an independent healthcare ratings 

organization, publishes “America's 50 Best Hospitals” in addition to presenting a distinguished 

hospital award for quality excellence. The CMS reports their findings on the Hospital Compare 

website (http://www.hospitalcompare.gov); whereas the Joint Commission's Quality Check  

reports their version of quality performance ratings (http://www.qualitycheck.org).  Recently, the 

Joint Commission has defined a subset of their performance measures to be accountability 

measures that have the greatest impact on patient outcomes [Joint Commission, 2011]. With 

http://www.hospitalcompare.gov/
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these accountability measures, the Joint Commission instituted a hospital recognition program 

that rewards hospitals with an overall composite rate greater than 95%, including those 

accountability measures with fewer than 30 denominator cases. Additionally, hospitals must 

achieve a rate greater than 95% for each of the accountability measures for those measures that 

have at least 30 denominator cases [Joint Commission, 2011]. It is possible for a hospital to have 

a composite rate of greater than 95% but have no individual measures that have greater than 30 

cases. A hospital may have a rate of 95% on a subset of accountability measures with more than 

30 cases but have a composite rate below 95%. For example, suppose there are four 

accountability measures submitted by a hospital and that three of the measures have rates of 

29/30. Suppose the last measure has a denominator of 29 with rate of 0% (0/29). As this 

denominator is less than 30, it is not included in the measure level criteria. The overall composite 

rate will be 87/119, which is 73%, therefore this hospital will not be identified as a top performer 

by the Joint Commission.  

Hospitals are multifaceted in terms of patient care and services. Measures for a 

therapeutic area are used to assess quality of hospital care within that particular area. The 

composite measure based on multiple therapeutic areas is important to evaluate the overall 

performance of an individual hospital. Though the overall average composite score for each 

measure set weighted by the number of patients is a popular statistic used by insurers and pay-

for-performance providers for financial gains, this composite score ignores the correlation 

between measures and measure sets. Ignoring these correlations causes incorrect inference due to 

the improper estimation of the variance structure. Furthermore, adjustments for covariates, 
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missing data, and small sample sizes cannot be addressed with raw composite scores. Normand 

et al. [1997] present a hierarchical logistic regression model based on risk-adjusted outcome 

measures. O’Brien et al., [2007] present profiling utilizing composite measures. Teixeira-Pinto 

and Normand [2008] proposed a fully Bayesian latent variable model based on Landrum et al. 

[2000] for analyzing the performance measure rates using yearly data and determining hospital 

quality of care based on multiple related measures. Chassin [2010] has shown that trends in these 

hospital performance measures have been steadily increasing, on the average, over time, 

although, no formal statistical techniques are employed.   

 

1.2 Safety Measures 

 

Patient safety is one of many elements that help to determine hospital quality of care in 

addition to performance measures, outcome measures, and patient satisfaction. Each point in the 

process of patient care, from admission to discharge, presents a degree of inherent unsafety. 

Patient safety is of high concern for many healthcare organizations, many of which focus 

primarily on issues of patient safety. Those include the Joint Commission, the CMS, the National 

Patient Safety Foundation (NPSF), the World Health Organization (WHO), and the Centers for 

Disease Control and Prevention (CDC), to name a few. Although it is widely known that patient 

safety is a fundamental principle of healthcare that is vital for the success of healthcare 

institutions, there are some differences in which each organization defines patient safety. 
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The CDC has developed the National Healthcare Safety Network (NHSN), which is 

devoted primarily to provide healthcare organizations the means of tracking hospital acquired 

infections (HAI) in order to identify areas of improvement. Although the NHSN started with 

only 300 hospitals decades ago, the number of healthcare organizations has increased to more 

than 11,000 medical facilities and is still expected to continue growth in the future. Within the 

NHSN, the CDC tracks five surveillance modules to help healthcare organizations monitor 

various aspects of patient safety. Events associated with devices, procedures, and antimicrobial 

agents are the primary focus in the following modules: Device-associated module, procedure-

associated module, antimicrobial and resistance module, multidrug resistance organism and 

Clostridium difficile infection module, and vaccination module. 

The CDC estimates that 41,000 central line-associated bloodstream infections (CLABSI) 

occur within US hospitals each year [CDC, 2011]. These preventable infections increase hospital 

stay and cost in addition to adding additional risk of mortality. Proper techniques for inserting 

the central line and proper management can prevent CLABSI. These techniques are addressed in 

the CDC’s “Healthcare Infection Control Practices Advisory Committee (CDC/HIPAC) 

Guidelines for the Prevention of Intravascular Catheter-Related Infections, 2011” [O’Grady, 

2011]. 

Urinary tract infections (UTIs) represent more than 15% of infections reported by acute 

care hospitals [Hellinger et al., 2011]. These types of infections are the second most common 

type of HAI, tied with PN. These infections are mostly caused by instrumentation of the urinary 

tract. Each year, more than 13,000 deaths are associated with UTIs [Klevins et al., 2012]. 
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Complications stemming from catheter-associated urinary tract infections (CAUTI) are cystitis, 

pyelonephritis, gram-negative bacteremia, prostatitis, epididymitis, and orchitis in males, 

endocarditis, vertebral osteomyelitis, septic arthritis, endophthalmitis, and meningitis. These 

complications cause increased hospitalizations and costs in addition to mortality. Prevention of 

CAUTI is outlined in the CDC/HICPAC document “Guideline for Prevention of Catheter-

associated Urinary Tract Infection” [Gould et al., 2010]. 

Approximately 16 million operative procedures were performed in the United States in 

2010 as reported from the CDC in the “Data from the Hospital Discharge Survey.” In 2012, 

Magill et al. report surgical site infections (SSI) to be the most common HAI accounting for 31% 

of all HAIs among hospitalized patients [Yi et al., 2011]. The NHSN data for 2006–2008 (16,147 

SSIs following 849,659 operative procedures) showed an overall SSI rate of 1.9% [Awad, 2012]. 

While advances have been made in infection control practices, including improved operating 

room ventilation, sterilization methods, barriers, surgical technique, and availability of 

antimicrobial prophylaxis, SSIs remain a substantial cause of morbidity and an associated 

mortality rate of 3% has been attributed to them. Of this, 75% of the mortality rate has been 

directly related to the SSI [Kleven et al., 2007]. 

The WHO defines patient safety as the reduction of risk of unnecessary harm associated 

with healthcare to an acceptable minimum. The WHO defines areas of patient safety to be HAIs, 

medication errors, unsafe surgery, clinical handovers, and injection safety, and reports that 

infections acquired within hospitals worldwide affect approximately 1.4 million people at any 

given point of time. Additionally, the WHO is developing programs to address patient safety 
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issues that include the “High 5’s” project that identifies solutions to five patient safety issues in 

five countries for five years.  

In 1997, the NPSF was founded to act on behalf of the advancement of patient safety 

worldwide. According to the NPSF, patient safety is “the prevention of healthcare errors, and the 

elimination and mitigation of patient injury caused by healthcare errors.” Healthcare errors cause 

an unintended outcome from a defect in care to the patient and these errors can be caused by any 

member of the healthcare team at any point of contact to the patient. They consider the following 

areas with regard to patient safety: wrong site surgery, medication errors, HAIs, falls, 

readmissions, and diagnostic errors.   

In 2006, as part of the Affordable Care Act, the CMS published their final rule for 

implementation of Provider Preventable Condition, which includes hospital acquired conditions 

resulting from foreign objects retained after surgery, air embolism, blood incompatibility, stage 

III and IV pressure ulcers, falls and traumas, CAUTIs, SSIs, and deep vein thrombosis. Failure to 

follow this rule requires states to implement nonpayment policies to those organizations that do 

not establish Provider Preventable Conditions.   

Additionally, the CMS is focusing their efforts on preventable readmissions in the areas 

of HF, heart attack, and PN. It is estimated that for every five Medicare patients admitted into the 

hospital, one patient is readmitted within 30 days of discharge for the same diagnosis. This 

represents approximately 2.6 million seniors at a cost of more than $26 billion dollars each year. 

In 2012, the CMS proposed a rule to reduce preventable readmissions by 20% as compared to 

the 2010 baseline. 
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The Joint Commission, a national not-for-profit accreditation organization, has 

established accreditation standards, through which healthcare organizations can measure, assess, 

and improve performance to focus on providing safe and high-quality patient care.  Within these 

standards are the National Patient Safety Goals (NPSG), which evaluate hospital safety in the 

following areas: correct identification of patients; improvement of staff communication; safe use 

of medications; infection prevention; identification of patient safety risks; and prevention of 

surgical errors. Within the area of infection prevention the Joint Commission’s standards are 

concerned with hand hygiene, difficult-to-treat infections, central line infections, infections after 

surgery, and UTIs. 

Although each organization has slightly different definitions and areas of concentration 

that define patient safety, the most common element among the groups is HAIs. These are 

infections acquired by patients during the time of treatment or hospitalization. A patient may 

receive an infection in a variety of different settings ranging from hospital acute care or surgery 

units to outpatient clinics to long-term care facilities. Infections can be caused by, but are not 

limited to the use of medical devices such as ventilators and catheters, complications following 

surgical procedures, antibiotic overuse, or transmission between patients and healthcare 

providers.   

Among the top ten leading causes of death in the United States, HAIs result in 

approximately 1.7 million infections and 99,0000 associated deaths in 2002 [Kleven et al., 2007]. 

They are a particularly significant cause of morbidity and mortality in hospitals with a nearly 

ten-fold increase in hospitals stays for methicillin-resistant Staphylococcus aureus (MRSA) 
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infections since 1995 [Elixhauser and Steiner, 2007]. Three-quarters of all HAIs are composed of 

four main areas: UTI, SSIs, Blood stream infections, and PN. Currently the CDC reports that 

those organizations that are collecting HAI data and monitoring their facilities progress are 

showing reductions in HAIs [Malpiedi et al., 2013]. The CMS estimates that one in every 20 

patients will develop an infection as a result of their hospital care, resulting in $28 to $33 billion 

dollars annually of preventable healthcare expenditures. [CMS National Action Plan, 2009]  

 

1.3 Statement of the Problem  

 

Organizations such as the CMS, the Joint Commission, and Healthgrades have developed 

rating systems to evaluate how a hospital performs at a measure level, and only the Joint 

Commission has attempted to evaluate hospitals at a measure set or therapeutic area level. None 

of the organizations have developed a methodology that evaluates hospital quality across 

therapeutic areas, such as AMI, HF, PN, and SCIP. Determining which types of hospitals perform 

better or worse than other types of hospitals has not been determined across various therapeutic 

areas. Additionally, evaluation of hospital quality efforts has not been studied longitudinally. To 

date, there have been no publically reported papers or score cards statistically analyzing hospital 

performance measures over time to determine trends within a hospital to evaluate an individual 

hospital’s quality improvement efforts. 

Missing from the research are methods that evaluate hospital quality using hospital safety 

data. Statistical methods to analyze safety data have not yet been formalized. Furthermore, there 



 

 

  11 

 

have been no attempts in combining the hospital safety and performance data to create an overall 

hospital index of quality. Currently, evaluation of hospital quality has been analyzed using 

univariate methods and not multivariate methods. This study explores new statistical techniques 

by which to evaluate hospitals using univariate and bivariate methods. 

 

1.4 Purpose of the Study 

 

The purpose of this study is to develop statistical methods to evaluate hospital quality 

using multiple measure sets for static yearly data based on composite measures of each 

therapeutic area or measure set. Furthermore, I will develop a robust statistical technique for 

evaluating hospital improvement efforts longitudinally utilizing quarterly data. Additionally, I 

will evaluate hospital quality using Bayesian methods that utilize hospital performance measures 

and hospital safety measures and I will develop an overall hospital quality score based on a joint 

model. This model will incorporate multivariate methods to evaluate hospital quality of care. 

This study is organized in three parts. The first part assumes a hierarchical mixed-effects 

logistic regression model that identifies the top and bottom performing hospitals based on a 

latent variable using composite measures calculated from hospital performance measure data 

within a static year time frame. Additionally, I present a hierarchical mixed-effects longitudinal 

logistic regression model to identify those hospitals that show increasing or decreasing trends in 

quality of patient care over time. The parameters of each static and longitudinal regression model 

are estimated using a Full Bayes (FB) approach and an Empirical Bayes (EB) approach. Each 
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approach is compared using Linn’s CCC to determine the agreement of the parameter estimates 

between methods.  

The second part of the study uses two hierarchical mixed-effects Poisson regression 

models to evaluate hospital quality. The first model uses static yearly composite measures based 

on hospital performance measures. Parameter estimates of the latent variable from this model are 

compared to the estimates obtained from the hierarchical mixed-effects logistic regression model 

obtained in the first part of this study using Linn’s CCC. The second model uses static yearly 

hospital safety data. Estimates of the latent variable of both hierarchical mixed-effects Poisson 

regression models are compared using Linn’s CCC to determine if hospital quality can be 

evaluated by using either hospital performance measure data or hospital safety data. 

For the final part of this study, a dual purpose hierarchical mixed-effects model will be 

used incorporating a bivariate latent variable that incorporates both composite hospital 

performance measure yearly data and yearly safety data. Bivariate methods on the latent variable 

will be used to evaluate top-performing hospitals and to evaluate the correlation between both 

types of data.  

In this study, I focus on modeling these two aspects of patient safety and hospital 

performance measures and employ Bayesian techniques involving latent variables to study the 

underlying quality of patient safety and performance measures within an organization. Utilizing 

the bivariate model helps to determine an overall estimate of hospital performance based on both 

hospital performance measure data and hospital safety data and identifying the correlations 

between hospital performance measures and HAIs. 
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1.5 Significance of the Problem 

 

For this critically important problem, patients or consumers of healthcare have a choice 

on which hospitals or healthcare organizations they can visit. Even if patients are limited in their 

choice of hospitals due to their healthcare insurance plan, they should have proper data to make 

an educated choice on which hospital is best for them based on many factors such as disease, 

therapy, or insurance plan. As it exists today, there are so many different types of data and 

statistics reported that it is very difficult for the consumer to evaluate which hospital is the best 

for them.   

These hierarchical nonlinear mixed-effects statistical methods will have great impact on 

the hospital community. Deriving methods that are easy to implement will greatly help the 

consumer of hospital services to determine which organization is best for him or her. Having a 

single quantifiable number or rating will have direct impact on where patients choose to go for 

their hospital services.   

This work will also have great impact on the hospitals themselves. Chassin et al., [2010] 

has shown that measuring hospital quality invokes hospital improvement efforts. Once 

deficiencies are discovered, hospitals and healthcare organizations will administer efforts in 

order to improve their performance and outcomes.  

 

  



 

 

  14 

 

2. BAYES METHODS 

 

 

Bayesian statistics have been developing quickly over the past two decades. Bayesian 

theory differs from the classical statistical theory, the frequentist approach, in that the former 

applies prior distributions on the random effects whereas the latter does not assume a prior 

distribution on the random effects. These prior distributions are combined with the data 

likelihood to obtain the posterior distribution of the parameters of interest. Statistical inferences 

are based on the posterior distributions of the parameters of interest.  

The fundamental Bayesian approach is to specify a model to the observed data 𝒚 =

(𝑦1, 𝑦2, . . , 𝑦𝑛) given unknown vector of parameters θ in the form of a probability 

distribution 𝑓(𝒚|𝜽), which is the data likelihood given the parameter vector. I assume that θ is a 

quantity of interest with a prior distribution 𝑝(𝜽) and base all inferences concerning θ on the 

posterior distribution denoted by 

 

𝑝(𝜽|𝒚) =
𝑓(𝒚|𝜽)𝑝(𝜽)

ℎ(𝒚)
∝ 𝑓(𝒚|𝜽)𝑝(𝜽).                                            (2.1) 

 

Equation 2.1 is known as Bayes’ Theorem where 𝑝(𝜽|𝒚) is the posterior distribution of 

the parameter θ that differs by a constant, h(y), from the combination of the likelihood and the 

prior distribution, 𝑓(𝒚|𝜽)𝑝(𝜽). Thus, after observing the vector of data y, one can employ this 

rationale to combine the data information with the prior distribution to obtain the posterior 

distribution in order to make Bayesian inferences. 
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The introduction of a prior distribution introduces a subjective point of view to the 

Bayesian approach. However, Bayesian methods failed to become widely used data analysis 

tools until recently due to difficulties involved in the computation of the posterior distribution. 

Prior to 1990, a generalized approach was lacking for all problems although asymptotic results 

were available for specific problems that had conjugate prior and posterior distributions. 

Gelfand et al. [1990] implemented the Markov Chain Monte Carlo (MCMC) methods in 

the framework of Bayesian computation, that Bayesian methods regained the attention of the 

statistical community. Since then, Bayesian statistics have become fashionable and many related 

works appeared in the statistical literature. During the early 1990s, studies focused on 

implementing MCMC methods for different models including hierarchical and mixed-effects 

models [Gelman and Rubin, 1992; Gelfand et al., 1992; Gilks and Wild, 1992; Dellaportas and 

Smith, 1993]. Algorithms that allowed model averaging, selection, and exploration [Green, 1995; 

Dellaportas and Forster, 1999; Dellaportas et al., 2002; Sisson, 2005; Hans et al., 2007] 

continued to develop. 

These advances are an example of the rapid development of Bayesian statistics. However, 

Bayesian analysis did not gain wide popularity until the appearance of standard Bayesian 

analysis software based on MCMC. The first versions of Bayesian inference Using Gibbs 

Sampling (BUGS) software appeared in the late 1990s. In BUGS, the user only needs to specify 

the structural of the statistical model. The software then generates samples from the posterior 

distribution of the specified model using one of the MCMC methods, the Gibbs sampler. Since 

its first appearance, the BUGS software has become a popular tool in Bayesian methods and 
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demonstrated its value in the implementation of Bayesian models in numerous scientific fields. 

WinBUGS [Lunn et al., 2000] is a stand-alone software package developed by the BUGS project 

team (http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml). It features a graphical user interface 

and on-line monitoring and convergence diagnostics and can be called from other statistical 

software (such as from R using R2WinBUGS). The current version, WinBUGS 1.4.3, is 

available via the WinBUGS project Webpage (http://www.mrc-

bsu.cam.ac.uk/bugs/winbugs/contents.shtml). Currently, there are no plans to further develop 

WinBUGS, but there is another version called OpenBUGS that is an open-source version of the 

WinBUGS package where all future work on the BUGS project will be developed. OpenBUGS 

can be accessed at http://www.openbugs.net. 

 

2.1 Markov Chain Monte Carlo Method 

 

This section provides a brief introduction to the stochastic simulation methods for 

posterior sampling that are widely used in Bayesian analysis. The focus is on MCMC and, 

especially, the Gibbs sampler, which is the algorithm behind the computations in OpenBUGS. 

Detailed descriptions and applications of the methods can be found in Ntzoufras, [2009], Gilks et 

al. [1996], Givens and Hoeting [2005], and Gamerman and Lopes [2006]. Properly obtaining a 

sample from the posterior distribution has always been the main issue for Bayesian statisticians. 

With the exception of a few rare situations (usually when priors and posteriors are conjugate), it 

is difficult to obtain closed-form expressions of the posterior distributions, and one needs to rely 
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on numerical methods to obtain posterior samples. The MCMCs are a class of widely used 

methods that have been shown to be able to efficiently generate posterior samples. 

The Monte Carlo method is a computational technique that provides numerical solutions 

to problems using repeated random sampling. Monte Carlo methods compute probabilities 

heuristically as if they are actually happening by running stochastic simulations many times. A 

good example is approximation of the value of π: Using the idea of the Monte Carlo method, one 

can randomly draw uniform samples from the unit square and count the number of times samples 

are in the unit circle. That number divided by the sample size and multiplied by four is a good 

approximation of the value of π. 

Although traditional Monte Carlo methods are popular in many optimization and 

numerical integration problems where it is impossible to obtain a closed-form expression or 

infeasible to apply a deterministic algorithm, these methods mostly deal with unidimensional 

distributions. Monte Carlo methods cannot be used in all cases, especially when the problem 

involves sampling from posterior distributions, where traditional Monte Carlo methods show 

their limitations [Givens and Hoeting, 2005]. In contrast, simulation methods based on Markov 

chains, namely MCMC, are much more flexible and thus can deal with many problems, such as 

posterior sampling, that are beyond the traditional Monte Carlo methods. 

A Markov chain requires that the distribution of the random variable θ at time t + 1 given 

previous values of θ at all previous times only depends on the θ value at time t, and this 

distribution is independent of time t. That is 
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𝑓(𝜽(𝑡+1) |𝜽(1), 𝜽(2), … , 𝜽(𝑡)) = 𝑓(𝜽(𝑡+1)|𝜽(𝑡)).                                           (2.2) 

 

When the Markov chain is irreducible, aperiodic, and positive-recurrent, as t → ∞ the 

distribution of θ(t) converges to its equilibrium distribution, and this is independent of the initial 

values of the chain θ(1) [Gilks et al., 1996]. Metropolis et al. [1953] first introduced MCMC into 

physics in 1953. Hastings generalization of the Metropolis algorithm came in 1970 [Hastings, 

1970], and then Gemen and Gemen developed the Gibbs sampler in 1984 [Geman and Geman, 

1984]. By the late 1980s, MCMC methods were implemented in Bayesian methods [Tanner and 

Wong, 1987; Gelfand and Smith, 1990; Gelfand et al., 1990] and soon became the major 

computational tool in Bayesian inference. The main idea of MCMC methods is to construct a 

Markov chain whose equilibrium distribution is the target distribution (i.e., the chain converges 

to the target distribution). This separates MCMC from other common simulation methods that 

sample directly from the target distribution. Another distinction is that, in contrast to independent 

samples obtained from common simulations, samples from MCMC are dependent since they are 

from Markov chains. For the details of MCMC methods see Gilks et al. [1996]. 

In the Bayesian analysis context, the posterior distribution is the target and Markov 

chains need to be constructed so they converge to the posterior distribution. Additionally, these 

Markov chains must easily generate samples from the conditional distribution f(θ(t+1)|θ(t)). With 

these requirements satisfied, the following steps generate samples from the posterior distribution 

from which inferences can be drawn: 
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1. Set an initial value θ(0) for the Markov chain(s). 

2.  Generate N values (iterations) until the chain(s) reaches equilibrium. 

3.  Perform convergence diagnostics by examining the trace, density, and auto-

correlation plots. If the diagnostics fail, generate more samples. 

4.  Discard the first M observations (burn-in) and use the remainin N−M values as a 

posterior sample. 

5.  Obtain the summaries of the posterior sample, such as the mean, median, standard 

deviation, quantiles, and correlations. Make Bayesian inferences using these 

posterior summaries. 

 

2.2 Markov Chain Monte Carlo Algorithms 

 

Many MCMC algorithms have been developed since the introduction of the initial 

Metropolis algorithm in 1953 [Metropolis et al., 1953]. The Metropolis-Hastings algorithm, 

which Hastings [Hastings, 1970] developed based on the original Metropolis algorithm, and the 

Gibbs sampler [Geman and Geman, 1984], are the two most popular methods. Recent advances 

include the slice Gibbs sampler [Higdon, 1998; Damien et al., 1990; Neal, 2003], the reversible 

jump MCMC [Green, 1995], and perfect sampling [Propp and Wilson, 1996; Merller, 1999]. 

These variants are all based on the original algorithms and most of them deal with specific 

problems. In this section I provide brief introductions to the two major MCMC methods, the 

Metropolis-Hastings algorithms, and the Gibbs sampler. For details about MCMC methods, see 
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Gilks et al. [1996], Robert and Casella [2004], Givens and Hoeting [2005], and Gamerman and 

Lopes [2006].  

 

2.3 The Metropolis-Hastings Algorithm 

 

Metropolis first applied methods based on Markov chain simulations in physics 

[Metropolis et al., 1953]. In 1970, Hastings generalized the original algorithm and developed the 

Metropolis-Hastings algorithm [Hastings, 1970]. This algorithm has served as the basis for all 

MCMC methods. The idea behind the algorithm is that one generates candidates from a proposal 

distribution and updates the sample with a probability determined by the densities of the target 

and proposal distributions. The theory states that, regardless of the proposal distribution selected, 

the Metropolis-Hastings algorithm will converge to its equilibrium distribution. In practice, 

however, the choice of the proposal distribution is important since poorly chosen proposals will 

significantly slow down convergence. 

In the Bayesian framework, the posterior f(θ|y) is the target distribution. With a proposal 

distribution q(θ′|θ), the Metropolis-Hastings algorithm for Bayesian inference can be 

summarized as the following steps:  

1.  Set initial values θ(0). 

2.  For t = 1, ... , T repeat the following steps 

  (a) Set θ(t) = θ(t−1). 

  (b) Generate new candidate values for θ′ from q(θ′|θ). 
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  (c) Calculate probability α = 𝑚𝑖𝑛(1,
𝑓(𝜽′|𝑦)𝑞(𝜽|𝜽′)

𝑓(𝜽|𝑦)𝑞(𝜽′|𝜽)
). 

  (d) Update θ(t) = θ′ with probability α. 

 

 Since the normalizing constant f(y) in f(θ|y) cancels out, the probability α can be 

re-written as 

𝛼 =  𝑚𝑖𝑛(1,
𝑓(𝑦|𝜽′)𝑓(𝜽′)𝑞(𝜽|𝜽′)

𝑓(𝑦|𝜽)𝑓(𝜽)𝑞(𝜽′|𝜽)
)    

 

There are some special cases of the Metropolis-Hastings algorithm. Random-walk 

Metropolis uses a special proposal q(θ′|θ) = q(|θ′−θ|) instead of the symmetric proposal in the 

original algorithm, resulting in an acceptance probability 𝛼 =  𝑚𝑖𝑛(1,
𝑓(𝜽′|𝑦)

𝑓(𝜽|𝑦)
) that depends only 

on the posterior distribution. In the independence sampler, the proposal distribution does not 

depend on the previous state of the chain. This algorithm is efficient when the proposal is a good 

approximation to the posterior distribution. And in contrast to the random-walk Metropolis, 

where the optimal acceptance rate is around 0.25, the acceptance rate for independence sample 

must be high enough for the algorithm to be efficient. Component-wise Metropolis-Hastings, 

which is also called Metropolis within Gibbs, is an algorithm where the parameter vector is 

divided into subvectors that are updated sequentially using original Metropolis-Hastings 

procedures. The advantage of this algorithm is that it involves sampling from distributions of 

lower dimensions that are usually straightforward and computationally less intensive. 
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2.4 The Gibbs Sampler 

 

Geman and Geman developed the Gibbs sampler [Geman and Geman, 1984], which uses 

the full conditional distribution as the proposal. The Gibbs sampler is usually cited as a separated 

MCMC technique, due to its popularity, even though it is only a special case of the single-

component Metropolis-Hastings algorithm. The full conditional distribution f(θj |θ\j , y) is the 

distribution of the jth component of θ given current values of all other parameters and data. Such 

a proposal distribution results in acceptance probability of α = 1—i.e., the chain moves accepting 

all iterations. Since at each step random values are generated from univariate distributions, and 

frequently these distributions have a known and simple form, the computation is straightforward, 

and one can select methods from a wide variety of tools. The algorithm does become ineffective 

when the parameters are highly correlated or the parameter space is complicated. The algorithm 

can be summarized as follows: 

 

 1.  Set initial values θ(0). 

 2.  For t = 1, ... , T repeat the following steps 

  (a) Set θ(t) = θ(t−1). 

 (b) For j = 1, ... , d update θj from θj ∼ f(θj |θ\j , y). 

(c) Set θ(t) = θ where θ = (θ1, ..., θj , ..., θd). 
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2.5 Empirical Bayes Estimation 

 

In this section, the basic ideas and methods of the EB approach, without loss of 

generality, will be considered but can be extended to the models presented. For reasons of 

simplicity, in this section I only consider models with fixed and random effects. Estimation of 

model parameters with fixed covariates may be similarly conducted by including the 

corresponding covariate parameters in the coefficient vector β. The mixed-effects model for the 

ith hospital: 

 

𝒚𝒊  =  𝑿𝒊𝜷 +  𝒁𝒊𝜸𝒊  +  𝜺𝒊,                                                 (2.3) 

where  𝒚𝒊 is a vector of the outcome for the ith hospital, 𝜷 is a vector for the fixed-parameters, 𝜸𝒊 

is a vector of random effects for the ith hospital, 𝑿𝒊 and 𝒁𝒊 are design matrices of the fixed and 

random effects for the ith hospital , and 𝜺𝒊 is a vector of errors. 

 

Then the observation 𝒚𝒊 and random effects 𝜸𝒊 have joint normal distribution  

 

[
𝑦𝑖

𝛾𝑖
] ~ 𝑀𝑉𝑁 ([

𝑋𝑖𝛽
0

] , [
𝑍𝑖Σ𝛾𝑍𝑖

𝑇 + Σ𝑖 𝑍𝑖Σ𝛾

Σ𝛾𝑍𝑖
𝑇 Σ𝛾

]),                                (2.4) 

where the covariance matrix of the random effects is 𝛴𝛾 and 𝛴𝑖 is a block diagonal matrix of the 

error covariance matrices of all links. 
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Estimation of the model parameters is based on an expectation-maximization algorithm. 

In the E step, given the data and utilizing the current values of the other parameters, the 

“expected a posteriori” or EB estimates of the random effects as well as the conditional 

variances of the random effects are computed. In the M step, the maximum marginal likelihood 

(MML) estimates of the regression coefficients, error variances, and the variances of the random 

effects are obtained, given the current values of the random effects. The algorithm iterates 

between the EB and MML estimates until convergence.  

Two stochastic processes are taken into account when making EB inference, one for the 

data 𝑓(𝒚𝒊|𝜸𝒊), and the other one for the random effects 𝑔(𝜸𝒊). The posterior distribution of the 

random effects given data, 𝑔(𝜸𝒊  |𝒚𝒊), contains all information about 𝜸𝒊  available in 𝒚𝒊. Bayes 

theorem states: 

 

𝑔(𝜸𝒊|𝒚𝒊)  =
 𝑓(𝒚𝒊|𝜸𝒊)𝑔(𝜸𝒊)

ℎ(𝒚𝒊)
                                           (2.4) 

 

In the EB approach, estimates of the posterior mean 𝜸�̅�  and the covariance matrix 𝛴𝛾|𝒚𝒊 of 

the random effects are calculated. Since 𝜸𝒊 and 𝒚𝒊 are jointly normally distributed (2.4), the 

conditional distribution can be written as 

 

𝜸𝒊|𝒚𝑖  ~𝑁(𝛴𝛾𝒁𝒊
𝑻(𝒁𝒊𝛴𝛾𝒁𝒊

𝑻 +  𝛴𝑗)
−1

(𝒚𝑗 − 𝑿𝒊𝜷), 

𝛴𝛾 −  𝛴𝛾𝒁𝒊
𝑻

 (𝒁𝒊𝛴𝛾𝒁𝒊
𝑻 +  𝛴𝑖)

−1𝒁𝒊Σ𝛾).                                   (2.5) 
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The posterior mean provides the EB estimate of 𝜸𝒊 and the posterior covariance matrix 

provides the EB estimate of the uncertainty about 𝜸𝒊. Hence, the estimates are calculated as 

follows: 

�̃�𝑖 =  Σ𝛾𝒁𝒊
𝑻(𝒁𝒊𝛴𝛾𝒁𝒊

𝑻 +  𝛴𝑗)
−1

(𝒚𝑗 − 𝑿𝒊𝜷) 

             =  𝛴𝛾[𝛴𝛾 +  (𝒁𝒊
𝑻

 𝛴𝑖
−1

 𝒁𝒊)
−1]

−1

(𝒁𝒊
𝑻

 𝛴𝑖
−1𝒁𝒊)

−1𝒁𝒊
𝑻𝛴𝑖

−1(𝒚𝒊 − 𝑿𝒊𝜷) 

             =  𝑹(𝒁𝒊
𝑻

 𝒁𝒊)
−1𝒁𝒊

𝑻(𝒚𝒊 − 𝑿𝒊𝜷)  

and 

�̃�𝜸|𝒚𝒊  =  𝛴𝛾 −  𝛴𝛾𝒁𝒊
𝑻

 (𝒁𝒊𝛴𝛾𝒁𝒊
𝑻 +  𝛴𝑖)

−1

𝒁𝒊Σ𝛾) 

             =  (𝒁𝒊
𝑻𝛴𝑖

−1
 𝒁𝒊 +  𝛴𝛾

−1
 )−1

 

             =  (𝑰 −  𝑹)𝛴𝛾 , 

where 𝑹 =  𝛴𝛾[𝛴𝛾 +  (𝒁𝒊
𝑻

 𝛴𝑖
−1𝒁𝒊)

−1]
−1

.  
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3. DATA 

 

 

3.1 Hospital Performance Measure Data 

Hospital performance measure data focuses on binary process accountability measures 

within four measures sets based in the clinical areas of AMI, HF, PN, and SCIP. Process 

measures are those measures that determine whether or not the specific clinical therapy within a 

clinical area has been provided to the patient. Measures and therapies will be used 

interchangeably throughout this dissertation. Accountability measures are those measures that 

meet four criteria that produce the greatest impact on patient outcomes when hospitals 

demonstrate improvement. The first criteria for an accountability measure is that strong scientific 

research demonstrates that performing the evidence-based process of care improves health 

outcomes. The second criterion is proximity, in that performing the care process is closely 

connected to patient outcomes. The measure must accurately assess whether or not the care has 

actually been provided for the third criteria. The final criterion is that implementing the measure 

will have little or no chance of incurring adverse consequences. Table I shows the process 

measures that were active from January 1, 2010 to December 31, 2010. There are six process 

measures in AMI; four process measures in HF; PN includes six process measures, and SCIP 

includes five process measures, three which span seven surgical procedures: blood vessel 

surgery, colorectal surgeries, coronary artery bypass graft surgeries, hip replacement surgeries, 

hysterectomies, knee replacement surgeries, and open heart surgeries. Scientific evidence shows 

that providing care within each of these individual processes represents the best practice in the 
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treatment of each clinical area with higher rates representing better care.  The Joint Commission 

challenges hospitals to achieve an observed target rate of 95% or higher for each of these 

measures. 

The data were collected from Joint Commission accredited hospitals that were 

participating in the Joint Commission's ORYX initiative. Hospitals submitted aggregated 

monthly data for the measures between July 31, 2011 and July 31, 2013. The data submitted 

were subject to edit checks to ensure quality and consistency. Issues identified in data quality 

require hospitals to retransmit data to ensure data accuracy and quality. 

Performance measure data were obtained from the Joint Commission's Quality Check 

website (http://www.qualitycheck.org), which contains patient data aggregated quarterly and 

yearly at the hospital level but not at the patient level. Each Joint Commission accredited hospital 

submits patient level data to an intermediary organization called a Performance Measurement 

System (PMS). Approximately 50 PMS organizations service all Joint Commission accredited 

hospitals. Each PMS applies a measure specification algorithm to the patient level data based on 

the ICD-9-CM codes and determines whether the patient meets the measure requirements. The 

PMS then aggregates the number of patients eligible for each measure and the number of patients 

that received the therapy for each measure and sends monthly aggregate data to the Joint 

Commission. 

 

 

  

http://www.qualitycheck.org/
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TABLE I  

 ACTIVE HOSPITAL PROCESS MEASURES FROM 3Q12-2Q13 

Measure Set Measure ID Measure Name 

AMI AMI-1a Aspirin at Arrival 

 AMI-2a Aspirin Prescribed at Discharge 

 AMI-3a ACEI or ARB for LVSD 

 AMI-4 Smoking Cessation Counseling 

 AMI-5a Beta Blocker Prescribed at Discharge 

 AMI-7a Fibrinolytic Therapy Received within 30 Minutes of Hospital 

Arrival 

 AMI-8a Primary PCI Received within 90 Minutes of Hospital Arrival 

HF HF-1 Discharge Instructions 

 HF-2 Evaluation of LVS Function 

 HF-3a ACEI or ARB for LVSD 

 HF-4 Adult Smoking Cessation Advice/Counseling 

PN PN-2 Pneumococcal Vaccination 

 PN-3ba Blood Cultures Performed in the Emergency Department 

prior to Initial Antibiotic Received in Hospital 

 PN-4 Adult Smoking Cessation Advice/Counseling 

 PN-5ca Initial Antibiotic Received within 6 Hours of Hospital Arrival 

 PN-6aa Initial Antibiotic Selection for CAP in Immunocompetent—

ICU 

 PN-6ba Initial Antibiotic Selection for CAP in Immunocompetent— 

Non-ICU 

SCIP SCIP-Inf-1aa Prophylactic Antibiotic Received within 1 Hour prior to 

Surgical Incision—Overall Rate 

 SCIP-Inf-2aa Prophylactic Antibiotic Selection for Surgical Patients—

Overall Rate 

 SCIP-Inf-3aa Prophylactic Antibiotics Discontinued within 24 Hours after 

Surgery End Time—Overall Rate 

 SCIP-Inf-4a Cardiac Surgery Patients with Controlled 6 a.m.  

Postoperative Blood Glucose 

 SCIP-Inf-6a Surgery Patients with Appropriate Hair Removal 

a—an accountability measure 
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3.2 Hospital Performance Composite Measures 

 

I consider an overall yearly composite score for each of the four clinical areas (AMI, HF, 

PN, and SCIP) as defined by the opportunity model. Data are obtained quarterly and are 

analyzed yearly by combining all four quarters of data for patient discharges in the 12-month 

period from 3rd quarter of 2012 to 2nd quarter of 2013. For each process measure, a patient that 

meets the measure criteria has the opportunity to receive the appropriate measure defined 

therapy. For example, for the AMI measure aspirin at arrival, if a patient arrives at the hospital 

with a diagnosis of AMI and the patient is eligible to receive the therapy of taking an aspirin, the 

measure identifies if the patient did or did not receive the aspirin therapy. Thus, the composite 

measure in each clinical area shows the percentage of time that the appropriate therapies were 

provided. 

Computation of a composite measure in each clinical area is as follows. Let yijk be a 

binomial variable that represents the numbers of patients that received the kth therapy in the jth 

clinical area at the ith hospital. Let nijk be the number of eligible patients to receive the kth therapy 

in the jth clinical area at the ith hospital. Let Ji be the number of clinical areas submitted by the ith 

hospital ranging from 1 to 4 depending on the number of measure sets submitted. For example, if 

a hospital chose to submit only measures in AMI and PN, then Ji will be 2. Let the number of 

therapies in the jth clinical area denoted by Kij be 6 for AMI, 1 for HF, 4 for PN, and 5 for SCIP in 

the ith hospital. Let 𝑦𝑖.. = ∑ ∑ 𝑦𝑖𝑗𝑘
𝐾𝑖𝑗

𝑘
𝐽𝑖
𝑗  be the total number of times appropriate therapies were 

provided in all the clinical areas in the ith hospital. Similarly, let 𝑛𝑖.. = ∑ ∑ 𝑛𝑖𝑗𝑘
𝐾𝑖𝑗

𝑘
𝐽𝑖
𝑗 be the total 
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number of opportunities to provide appropriate therapies in all the clinical areas in the ith 

hospital. The observed overall composite rate of providing appropriate therapies in all clinical 

areas in the ith hospital is defined as 𝑝𝑖
𝑜𝑏𝑠 = yi…/ni. . 

 

3.3 Safety Data 

 

The CDC collects in their NHSN and provides the data to the CMS for public 

dissemination on the CMS Hospital Compare website 

(http://www.medicare.gov/hospitalcompare/search.html).  

The HAI measures are collected directly from hospitals through existing commercial 

infection control surveillance systems and electronic medical records. This system ensures timely 

data collection that also minimized data collection efforts that allows healthcare organizations to 

focus their attention on preventing HAIs. The HAI measures included along with the reporting 

time period are summarized in Table II. 

 

TABLE II  

HOSPITAL HEALTHCARE ACQUIRED INFECTION MEASURES 

HAI Measure Reporting Period 

CAUTI 7/1/2012–9/30/2013 

SSI:colon 7/1/2012–9/30/2013 

SSI: hysterectomy 7/1/2012–9/30/2013 

CLABSI 7/1/2012–9/30/2013 

MRSA 7/1/2012–9/30/2013 

C. difficile 7/1/2012–9/30/2013 

 

http://www.medicare.gov/hospitalcompare/search.html
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A CAUTI, as defined by the CDC, is a UTI where the indwelling urinary catheter was in 

place for more than two calendar days on the date of the event, with the day of device placement 

being Day 1 and an indwelling urinary catheter was in place on the date of the event for the day 

before. If an indwelling urinary catheter was in place for more than two calendar days and then 

removed, the UTI criteria must be fully met on the day of discontinuation or the next day. If a 

patient in transferred from one location to another and an infection is present within two calendar 

days, then the infection is associated with the transferring location. Device and patient days are 

used for denominators. Indwelling urinary catheter days, which are the number of patients with 

an indwelling urinary catheter device, are collected at the same time each day. The daily counts 

are summed and are used for the total for each month. When denominator data are available from 

electronic databases, these sources may be used as long as the counts are not substantially 

different (+/- 5%) from manually collected counts, validated for a minimum of three months. 

An SSI must occur within 30 days after any NHSN operative procedure, involves only 

skin and subcutaneous tissue of the incision, and the patient must have at least one of the 

following: purulent drainage from the superficial incision; organisms isolated from an aseptically 

obtained culture of fluid or tissue from the superficial incision; superficial incision that is 

deliberately opened by a surgeon and is culture-positive or not cultured and the patient has at 

least one of the following signs or symptoms (pain or tenderness, localized swelling, redness, or 

heat). A culture-negative finding does not meet this criteria; diagnosis of a superficial incisional 

SSI by the surgeon or attending physician or other designee. Denominator data are those patients 

that have had the procedures of colon surgery and hysterectomy, respectively.  
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A central venous catheter, known as a central line, is a tube or catheter that is placed in a 

large vein in the chest, neck, or groin in order to provide medication or fluids to patients or to 

collect blood for medical tests. Central lines are used to access a major vein that is close to the 

heart and can remain in a patient for a long period of time (weeks or months) and can be the 

source of serious infections. A CLABSI is a very serious infection that occurs when either a 

bacteria or virus enters the bloodstream through the central line. Strict protocols must be adhered 

to when inserting the line in order to maintain sterility of the central line and prevent CLABSI. 

Stringent infection control practices must be followed each time a healthcare provider checks the 

central line or changes the dressing around the central line. Patients who get a CLABSI often 

show signs of fever and redness or soreness around the central line. Preventative measures to 

reduce CLABSI include performing hand hygiene, applying appropriate skin antiseptic, ensuring 

the skin preparation agent has dried completely prior to insertion of the central line, using all 

maximal sterile barrier precautions (sterile gloves, sterile gown, cap, mask, and large sterile 

drape), following all recommended practices, washing hands or using alcohol-based hand rub 

before and after touching the central line once in place, and finally, removing the central line as 

soon as it is unnecessary.  

Methicillin-resistant Staphylococcus aureus, or MRSA, is a type of staph bacteria that is 

resistant to many antibiotics. In a hospital or nursing home, MRSA can cause severe problems 

such as bloodstream infections, PN, and SSIs. The spread of MRSA is typically caused by direct 

contact with an infected wound or contaminated hands of healthcare providers. People may also 

carry MRSA without having signs of infection and spread the bacteria to others and potentially 
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cause infection. Studies show that when healthcare providers follow CDC guidelines, then 

MRSA can be completely prevented. 

Clostridium difficile (C. difficile) is a bacterium that causes colitis, an inflammation in the 

colon. Those at risk of acquiring C. difficile include the elderly and patients that have other 

illnesses or conditions requiring long-term use of antibiotics. This bacterium is found in the feces 

and is transmitted if a patient touches items or surfaces that are contaminated and then touch 

their mouths or mucous membranes. Hand contact is the most common way that healthcare 

providers spread these bacteria to patients or other surfaces. The C. difficile bacterium can 

survive for long periods of time on surfaces. Symptoms include watery diarrhea (at least three 

bowel movements per day for two or more days), fever, loss of appetite, nausea, and abdominal 

pain and tenderness.  

The HAI measures are obtained from the NHSN data collection tool run by the CDC. 

Hospitals enter the required data into the data collection tool. Patients included in the HAI 

measures come from acute care hospitals and are adult, pediatric, neonatal, Medicare, and non-

Medicare patients. These measures show how infections are contracted in a hospital during the 

course of medical treatment, and are important because these infections can be prevented if the 

hospital follows established safe care guidelines.   
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4. HIERARCHICAL MIXED-EFFECTS LOGISTIC REGRESSION MODELS 

 

4.1 Binomial Regression Model 

 

Both the Joint Commission and the CMS have adopted the use of the opportunity model 

to define their composite measures in order to simplify multidimensional measures into a one-

dimensional score to summarize the overall hospital quality in a therapeutic area. This 

opportunity model was developed in 1998 by the Hospital Core Performance Measure Project, 

and was based on the assumption that whenever a patient meets the criteria for a measure 

population there exists an opportunity to provide the appropriate evidence-based intervention 

[CMS, 2005]. This model is currently used by the Joint Commission’s Quality Check for each 

hospital reported clinical area based on a moving 12-month time period to represent the most 

current practices of the hospital as determined by the most recent transmission of data. 

Additionally, the Joint Commission has recently instituted a hospital recognition program that 

utilizes an overall hospital composite measure using the opportunity model by combining all 

available accountability measures for a given calendar year. 

 

4.2 Static Year Analysis 

 

A mixed-effects or latent variable model is used for the observed measure rates to analyze 

the composite measure rate. Teixeira-Pinto and Normand suggest a two-parameter Normal-Ogive 

[1997] model based on Landrum et al. [2000] profiling healthcare providers, which replicates 
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item response theory (IRT) models used in psychological and educational testing [van der Linden 

et al., 1997; Alagumalai et al., 2005] based on a single clinical area. Cohen [2003] shows an 

education institution’s overall average proficiency is modeled utilizing a clustered IRT model 

where the latent variable is clustered with students within grades within different classrooms or 

schools. This clustered IRT model is extended to composite measures among multiple clinical 

areas within a hospital to get an overall measure of hospital quality while still retaining the 

unidimensional IRT model.  

In this model, the latent variable θi represents the quality of care in the ith hospital where 

larger values of θi are associated with a higher quality of care. Let αj be the fixed effect 

representing the overall mean rate for the jth clinical area on the logit scale; σj be a positive 

measure set-specific discrimination weight fixed effect. Let pij be the probability that the proper 

therapy was given within the jth clinical area for the ith hospital. I propose the following model:                                  

   

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝑔𝑖𝑗(𝛼, 𝜎, 𝛽, 𝜃),                            (4.1) 

where  

𝑔𝑖𝑗(𝛼, 𝜎, 𝛽, 𝜃) = 𝛼𝑗 + 𝜎𝑗 ∗ 𝜃𝑖 

and   σj > 0,   θi  ~ f(*), where f(*) is a prior probability distribution. 

Hence 

Pr(𝑦𝑖𝑗 = 1) = 𝑝𝑖𝑗 =
exp(𝑔𝑖𝑗(𝛼,𝜎,𝛽,𝜃))

1+exp(𝑔𝑖𝑗(𝛼,𝜎,𝛽,𝜃))
.    (4.2) 
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Composite measures should have larger values of σj for those therapeutic areas that are 

less homogeneous among the hospitals. I will consider two separate prior distributions for θi and 

compare the results between both estimates of θi. The first distribution f(*) will be a standard 

normal distribution, i.e., θi ~ N(0,1). In this instance, the latent score, θi, ranges from -∞ to ∞, 

where large negative values are indicative of poor quality of care, values of zero are indicative of 

average quality of care, and large positive values are indicative of high quality of care. Although 

assuming normality on the latent variable may be too restrictive, it solves the problem of the 

within-hospital correlation between the therapeutic areas. The second distribution f(*) is a 

rectangular distribution, that is, θi ~ Uniform(-a, a). The value of “a” will be determined by 

exploration with the corresponding data. With this second prior distribution, I assume the latent 

score to have equal probability across all where larger values of θi indicate superior hospital 

quality and lower values of θi suggest lower hospital quality. Due to the lack of patient-level 

data, the within patient variability cannot be estimated as only aggregate data are publically 

available at this point in time. It is not known whether a particular patient was eligible for one or 

more therapies within a measure set, or clinical area. 

I adopt an EB approach using model 4.1 utilizing marginal maximum likelihood methods 

to estimate model parameters. This approach is directly applied within the framework of PROC 

NLMIXED in SAS version 9.3 where EB estimates of the random effects are obtained in 

addition to maximum likelihood estimates of the fixed effects. Gaussian-Hermite quadrature is 

used for numerical integration of the likelihood over the random effects with nonadaptive scaling 

used for the quadrature. This means that the quadrature points are centered around the EB 
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estimates for the random effects but the current random effects variance matrix is used as the 

scale matrix. The optimization technique used within the scope of the EB model is Newton-

Raphson. All parameters within the EB method are assumed to be normally distributed with the 

additional constraint of σi > 0. 

I also adopt an FB approach with model 4.1 using the OpenBUGS package. The 

assumption of a half-normal distribution of σi, recommended by Gelman [2006] with small 

precision that represents vague prior information and constrains the parameter to be positive. For 

the other parameters, prior distributions are chosen to be N(0,100). Posterior means and posterior 

variances of θi are estimates of the quality of care and the variance. The parameter estimates are 

based on two chains of 5,000 iterations allowing for a 5,000 burn-in chain. Posterior predictive 

checking was incorporated to determine the model fit utilizing two separate chains with different 

starting values in addition to incorporating Gelman-Rubin convergence statistic.   

 

4.3  Agreement between Predicted Measures 

 

To compare the estimates 𝜃𝑖 obtained from each method and an overall observed rate, 

𝑝𝑖
𝑜𝑏𝑠, I incorporate Lin's [1989] CCC. In this case, the CCC measures the agreement between 𝜃𝑖

′𝑠 

obtained from each method as opposed to the Pearson correlation coefficient, which measures 

their relationship. The CCC is the Pearson correlation coefficient multiplied by a bias correction 

factor that measures the accuracy, or amount of deviation from a 45º line. Thus, the CCC takes 

values between -1 and 1 where the value of one indicates a high correlation that is achieved 



 

 

  38 

 

when the line between the observed and predicted values (also between different predicted 

values) passes through the origin making a 45º angle with the horizontal line. The CCC is a 

consistent estimator and it follows asymptotically a normal distribution [Lin, 1992]. The 

computation of CCC is simple and can be easily implemented. 

 

4.4 Classification of Hospitals 

 

Laird and Lewis [1989], Lockwood et al. [2002], and Shen and Louis [1998] propose 

various methods and estimators to rank hospitals, and Austin et al. [2001] show how each of 

these methods or ranking hospitals differs. Classification of hospitals is based on the estimate of 

quality of care score, Si, derived from the posterior distribution of θi, as opposed to ranking 

hospitals.   

Identification of high-performing hospitals needs to incorporate the variability of the 

estimate, as hospitals that have lower volume or lower opportunities for providing the proper 

therapy are more likely to be classified as high performers based on chance. I take into account 

this variability by using a predefined threshold by determining the probability that the estimate 

exceeds the 95th percentile as shown as follows: 

𝑃(𝑆𝑖 > 𝜂95) > 𝛾, 

where η95 is the 95th percentile of S𝑖 and γ is a predefined threshold. This guarantees that a 

hospital is classified as being a high-performing hospital when the true score is above η95 with a 

reasonable degree of certainty. Generally, γ is taken to be as high as 0.95. By design, this lowers 
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the number of hospitals that are classified as high performers to be less than 5% of the total. 

Thus, in order to identify exactly 5% of the hospitals as being high performers, the lower 

percentile of the score is used as a cutoff. Determining η95 such that 5% of the hospitals have a 

probability exceeding γ is identical to finding the threshold in which 5% of the γ100%-credible 

intervals of hospital performance lie above it. I use the symmetry of the credible intervals to 

determine the cutoff point. Note that the probability that 𝜃𝑖  lies above the lower bound of the ((2γ 

-1)x100)% credible intervals is γ. For example, if γ = 0.9, then the probability that  𝑆𝑖 exceeds the 

lower bound of its ((2 * 0.9 -1)x100)%=80% credible intervals is 0.9 since the probability of 

being in the credible interval is 0.8 and the probability of being above the upper bound of the 

credible interval is 0.1. Therefore, classification of hospitals as high performers is determined by 

identifying the 95th percentile of the lower bounds of the ((2γ -1)x100)% credible intervals.   

Classification of low-performing hospitals uses a similar approach except I determine 

𝑃(𝜃𝑖 < 𝜂01) > 𝛾 where η01 is the 1st percentile of 𝜃𝑖  and γ is a predefined threshold. Thus, I 

determine the 1st percentile of the upper bounds of the ((2γ -1)x100)% credible intervals. Using 

the previous example, probability that 𝑆𝑖 is below the upper bound of its ((2 * 0.9 -

1)x100)%=80% credible intervals is 0.9 since the probability of being in the credible interval is 

0.8 and the probability of being below the lower bound of the credible interval is 0.1. Therefore, 

classifying hospitals as low performers is determined by identifying the 1st percentile of the 

upper bound of the ((2γ -1)x100)% credible intervals. Each classification of either high or low 

performers based on 𝑆𝑖 is compared to classification based on the Joint Commission 

methodology.  
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4.5 Static Year Results 

 

In this section I discuss the results for the static year 3Q2012 to 2Q2013 utilizing all 

available data. There were a total of 2,957 hospitals that submitted data in at least one of the four 

measure sets. A majority of the hospitals had data in all four measure sets. The mean number of 

measure sets selected was 3.8 and the 25th percentile was 4. The majority of hospitals (2,480, 

83.9%) submitted data in all four of the measure sets. Eleven percent of the hospitals had data in 

only three measure sets, and 156 (5.3%) hospitals only submitted data in two or fewer measure 

sets (See Figure 1). 

 

 

 

 

  

Figure 1.  Distribution of the number of measure sets selected (N,%) 
      1=AMI, 2=HF, 3=PN, 4=SCIP 

 

69, 2.3% 87, 2.9%

321, 10.9%

2480, 83.9%

1 2 3 4
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Table III shows the individual accountability measure rates. For AMI, four of the six 

measures had average rates that exceeded 95% and two had rates below 90%. Although AMI-7a 

(See Table III) had the lowest average rate of 51.3%, only 222 (13.7%) organizations provide 

fibrinolytic therapy. Among those hospitals that provide fibrinolytic therapy, the mean number of 

patients eligible to receive the therapy is 3.5 with a median number of eligible patients being 1. 

Measures in the other sets are above 90% with the exception of PN-6a that have a mean rate of 

77.21%. Similar to AMI-7a, PN-6a has low denominator count with the mean number of patients 

eligible for this measure being 13.5 with a median of 11. As shown, rates within each measure 

can span the entire interval from 0% to 100% indicating that not all hospitals are performing at 

the desired threshold of 95%. 

For the AMI measure set, there were 2,633 hospitals that submitted data. The average 

number of denominator cases (sum of all AMI denominator cases for each hospital divided by 

2,633) for AMI was 1,240.9 with a median number of denominator cases being 699. There were 

230 (8.7%) hospitals with less than 30 patients for the AMI composite measures. 

There were 2,843 hospitals that submitted HF composite data. There were a mean number 

of 138.1 denominator cases among the hospitals with a median of 106 patients submitted for 

analysis. Heart Failure had the highest percentage of hospitals submitting data with less than 30 

cases with 483 (17.0%). 
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TABLE III 

DISTRIBUTION OF MEASURES OF A STATIC YEAR (3Q2012–2Q2013) 

 

 

The number of hospitals submitting PN data that were used in the PN composite measure 

was 2,865. The average number of patients per hospital that contributed to the PN composite 

Measure ID N Mean of 

Rates 

Max Q3 Median Q1 Min 

AMI-1 2,632 0.98373 1 1 1 0.99134 0 

AMI-2 2,595 0.98077 1 1 1 0.99091 0 

AMI-3 2,602 0.97905 1 1 1 0.98913 0 

AMI-5 1,371 0.93003 1 1 0.97059 0.92308 0 

AMI-7a 191 0.5319 1 1 0.66667 0 0 

AMI-8a 2,595 0.94821 1 1 0.99342 0.96667 0 

HF-3 2,843 0.96205 1 1 0.99115 0.95402 0 

PN-3b 2,554 0.91411 1 1 1 0.875 0 

PN-6a 2,862 0.96239 1 1 0.9759 0.95238 0.33333 

PN-6b 2,724 0.97725 1 1 1 0.975 0 

SCIP-Inf-1a 2,773 0.98151 1 1 0.99211 0.98206 0 

SCIP-Inf-2a 2,773 0.98484 1 0.99919 0.9932 0.9848 0 

SCIP-Inf-3a 2,773 0.97213 1 0.99451 0.98411 0.96855 0 

SCIP-Inf-4 1,023 0.96257 1 0.98726 0.97273 0.9505 0.59873 

SCIP-Inf-6 2,784 0.99804 1 1 1 1 0.33333 
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measure was 258.6 with a median of 220 patients. There were 64 (2.2%) hospitals that submitted 

less than 30 patients over the one year time frame for this composite measure. 

For the SCIP composite measure, there were 2,785 hospitals that submitted data 

contributing to the composite. This measure set had the lowest number of hospitals that 

submitted less than 30 denominator cases for the yearly time span with 26 (0.9%) hospitals. The 

mean number of patients included in the denominator was 3,391.1 with a median of 2,627 

patients. The SCIP measure set had the highest volume of patients among all four measure sets 

included in this analysis. 

 

 

TABLE IV 

OBSERVED MEASURE SET COMPOSITE AND OVERALL COMPOSITE RATES OF 

STATIC YEAR (3Q2012–2Q2013) 

Measure Set N Mean of 

 Rates 

Standard  

Deviation 

Max 90th 

Percentile 

Median 10th 

Percentile 

Min 

AMI 2,633 0.9720 0.0279 1.0000 1.0000 0.9924 0.9333 0.0000 

HF 2,843 0.9620 0.0508 1.0000 1.0000 0.9912 0.8888 0.0000 

PN 2,865 0.9630 0.0412 1.0000 1.0000 0.9758 0.9206 0.0000 

SCIP 2,785 0.9824 0.0193 1.0000 0.9977 0.9885 0.9660 0.5000 

Overall Composite 2,957 0.9770 0.0359 1.0000 0.9965 0.9866 0.9544 0.5366 

 

 

The accountability measures are combined to form a composite score for each of the 

measure sets and combined to form an overall composite score, as defined in section 3.2, for the 

hospital shown in Table IV. For all four measure sets, the average of the hospital rates is above 
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95%. By comparing Table III and Table IV there is a loss in the variability between the 

individual measures when a composite measure is calculated because those individual measures 

with low rates are averaged out when computing a composite measure. The minimum composite 

score for a hospital in the SCIP observed composite measure is 50%, whereas the individual 

measures had minimum rates of as low as 0%. This is also seen in the overall composite measure 

where the minimum observed hospital composite measure has increased to 53.66%, potentially 

over-inflating the true rate and losing the ability to detect areas of improvement at the measure 

level. 

 

TABLE V 

PEARSON CORRELATIONS BETWEEN MEASURE SET RATES 

 

 

 

 

  

 

 

 

 

 

 

Pearson Correlation Coefficients,  

Prob > |r| under H0: Rho=0 

N 

  AMI HF  PN SCIP 

AMI 1.00 

<.0001 

2,632 

   

HF 0.2830 

<.0001 

2,620 

1.00 

<.0001 

2,841 

  

PN 0.3705 

<.0001 

2,602 

0.3528 

<.0001 

2,809 

1.00 

<.0001 

2,865 

 

SCIP 0.3679 

<.0001 

2,517 

0.3531 

<.0001 

2,678 

0.4433 

<.0001 

2,694 

1.00 

<.0001 

2,784 
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Within each measure set, the Pearson Correlation coefficients are computed for the rates 

between each of the accountability measures. For AMI, the correlation coefficients range from 

0.18561 to 0.52435, whereas the coefficients ranged from 0.2698 to 0.40344 for PN. The 

correlation coefficients for SCIP ranged from 0.16247 to 0.46595. No correlations are computed 

for HF because there is only one accountability measure within that measure set. Table V shows 

a similar trend of correlations coefficients between the rates each of the four measure sets. The 

highest correlation is between SCIP and PN with a correlation coefficient of 0.4433 and the 

lowest correlation is between AMI and HF with a correlation coefficient of 0.2830. This suggests 

that there is very little correlation between clinical areas, even though they are statistically 

significant. 

The FB analysis of model 4.1 was performed in OpenBUGS. Convergence diagnostics 

calculated within OpenBUGS to determine the Gelman-Rubin convergence statistic (<1.1) 

justifies the burn-in choice. Figures 2 and 3, as an example, graphically show convergence of αi 

and σi for the model using a standard normal prior distribution of 𝜃𝑖. Both chains in the figures 

converge after 2,000 samples are taken. Similarly, for the model using the rectangular 

distribution for 𝜃𝑖, the convergence of σi occurred after approximately 1,000 more samples, as 

seen in Figure 4, than using the standard normal prior for 𝜃𝑖, As seen in these figures, the chain 

that started close to the posterior distribution converged quicker than the chain with initial values 

further away from the final posterior estimate. 

For each model with different assumptions of the prior distribution of 𝜃𝑖(standard normal 

and rectangular), the last 5,000 posterior samples of each chain were used for analysis. Each 
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model had a low ratio of Monte Carlo error to posterior standard deviation for each model 

parameter. Figure 5 shows the posterior density for αi with the standard normal prior for 𝜃𝑖 

whereas Figure 6 shows the posterior density for αi with the rectangular prior for 𝜃𝑖. Both 

densities are similar with estimates from the model using the standard normal prior for 𝜃𝑖 being 

slightly higher (see Table VII) than the estimates from the model using the rectangular 

distribution prior for 𝜃𝑖 with the percent change from the former model ranging from 7% to 9%. 

The DIC for this normal prior was 89,070.0 and the rectangular prior DIC was 89,586.1. 
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Figure 2. Diagnostic plots of αi with Normal prior of θi. 

                             1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 3.  Diagnostic plots of σi with Normal prior of 𝜽𝒊. 

                               1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 4. Diagnostic plots of σi with rectangular prior of 𝜽𝒊. 

                1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 5. Density plots of αi with Normal prior of 𝜽𝒊. 

                1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 6. Density plots of σi with Normal prior of 𝜽𝒊. 

                   1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 7. Density plots of σi with Normal prior of 𝜽𝒊. 

                1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 8. Density plots of σi with rectangular prior of 𝜽𝒊. 

                 1=AMI, 2=HF, 3=PN, 4=SCIP 

  



 

 

  52 

 

TABLE VI  

PARAMETER ESTIMATION USING FULL BAYES MODEL 

 BASED FOR STATIC DATA 

Parameter 

Full Bayes 

Estimate (95% Credible Interval) 

Normal Prior 𝜃𝑖 

Full Bayes 

Estimate (95% Credible Interval) 

Rectangular Prior 𝜃𝑖 

αAMI 4.7460 (4.6990, 4.7960) 4.3450 (4.2960, 4.3940) 

αHF 3.7960 (3.7510, 3.8440) 3.4510 (3.4060, 3.4950) 

αPN 3.6050 (3.5730, 3.6380) 3.3580 (3.3270, 3.3880) 

αSCIP 4.3790 (4.3440, 4.4170) 4.0680 (4.0310, 4.1040) 

σAMI 1.2530 (1.2140, 1.2910) 0.7577 (0.7421, 0.7740) 

σHF 1.0890 (1.0510, 1.1280) 0.6603 (0.6414, 0.6795) 

σPN 0.7751 (0.7501, 0.8014) 0.4651 (0.4529, 0.4778) 

σSCIP 0.9699 (0.6058, 0.6602) 0.5871 (0.5775, 0.5972) 

 

 

 

 

 

 Estimates of 𝜎𝑖 are presented in Table VI and the graphs of the posterior distributions for 

each therapeutic area are presented in Figures 6 and 8 for each model with different assumptions 

for the prior distribution of θi. As seen with estimates of αi, the estimates of σi are lower for the 

model with the rectangular prior distribution for θi than the estimates obtained from the model 

using the standard normal prior distribution of θi. The percent change of the estimates obtained in 

the model with the rectangular distribution and the estimates obtained from the model with the 

normal prior of θi is consistently 39% for each of the therapeutic areas. Regardless of the model, 

the amount of discrimination is consistent among the models, i.e., AMI has the highest amount 
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of discrimination with HF having the second amount of discrimination followed by SCIP and PN 

has the lowest amount of discrimination.   

 

 

TABLE VII  

PARAMETER ESTIMATION USING EMPIRICAL BAYES  

MODEL FOR STATIC DATA 

Parameter 

Empirical Bayes 

Estimate (95% CI) 

Normal Prior 𝜃𝑖 

αAMI 4.7289   (4.6897, 4.7681) 

αHF 3.7843   (3.7444, 3.8243) 

αPN 3.5993   (3.5717, 3.6269) 

αSCIP 4.3700   (4.3406, 4.3994) 

σAMI 0.9881   (0.9660, 1.0102) 

σHF 0.8699   (0.8443, 0.8955) 

σPN 0.6276   (0.6102, 0.6450) 

σSCIP 0.7720   (0.7569, 0.7871) 

 

 

 

Results of the EB analysis are presented in Table VII, which includes estimates and 95% 

confidence intervals. Estimates of αi obtained from the EB analysis are similar to the estimates 

found from FB analysis with normal prior for θi. Similar to the FB analysis, the estimates from 

the EB estimates for σi follow the same pattern with AMI having the largest estimate along with 
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the largest discrimination between the four measure sets with all measure-specific estimates 

being statistically significant based on the respective confidence intervals.   

Classification of hospitals is based on the posterior distribution of θi. Figure 9 shows the 

density plots of for each estimate of θi. The assumption that θi has a standard normal prior 

yielded a lower variance than the estimate of θi with a rectangular prior distribution which had 

the largest variance of all the estimates. The EB estimate of θi was in between the other 

estimates. 
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Figure 9. Density plot of 𝜽�̂� for each prior distribution. 

 

  

Using estimates of θi from the FB models to identify the top 5% of performing hospitals 

yielded 147 high-performing hospitals. The model assuming a normal prior distribution of θi 

yielded estimates that ranged from 1.47 to 3.21. The observed values of pi ranged from 99.69% 

to 100% and a mean overall observed rate of 99.87%. Denominator sizes for each of these 

observed measures ranged from 682 to 32,628 with a mean number of denominator cases being 

5,516. The lengths of the credible intervals obtained from the model with the normal prior 
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distribution assumption were statistically significantly smaller (p<.05) than the lengths of the 

credible intervals obtained from the model using the rectangular distribution as the prior 

distribution for θi.   

 

 

TABLE VIII  

CCC OF 𝜽�̂� 

 

𝜃�̂� 
 

Full Bayes 

𝜃�̂� 
Prior=N(0,1) 

Full Bayes 

𝜃�̂� 
Prior=U(-4,4) 

Empirical 

Bayes 𝜃�̂� 

Prior=N(0,1) 

Full Bayes 𝜃�̂� 

Prior=N(0,1) 

1.00   

Full Bayes  𝜃�̂� 

Prior=U(-4,4) 

0.6832 1.00  

Empirical Bayes  𝜃�̂� 0.9642 0.8866 1.00 

 

 

Estimates, 𝜃𝑖, are obtained from model 4.1 from each FB model utilizing the standard 

normal prior distribution and the rectangular distribution. Results of calculating Lin’s CCC 

between each FB and EB methods are displayed in Table VIII. The EB estimate and FB estimate 

using the standard normal prior have the highest CCC of 0.9642. Both estimates obtained from 

the FB model had the lowest CCC. Figure 10 shows plots comparing each estimate of θi. These 

plots show that the EB estimates were most similar when compared with the FB model with the 

standard normal prior of θi,, which is most likely due to the fact that the EB model automatically 

assumes a normal prior distribution for the random effects in SAS. Comparing both models that 
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assumed a normal prior distribution to the model that assumed a rectangular distribution shows 

that the estimates are similar in the center of the distribution, but get skewed at the tails. 

 

 

 

 

 
Figure 10. Plots of estimates of 𝜽𝒊.  
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 Each method classifies the top 5% of hospitals, i.e., 147 hospitals, as top-performing 

hospitals. When comparing the FB models with different priors, 144 of the same hospitals out of 

the 147 that were identified in the top 5%. There were three different hospitals that did not match 

the analysis depending on the prior distribution assumed for θi which totaled to six unique 

hospitals. The differences between the six hospitals was negligible when comparing the overall 

observed composite rates, pi. The observed composite rates of the three different hospitals 

identified as top performers from the model with the standard normal were 99.69%, 99.71%, and 

99.76%. The observed overall composite rates of the discrepant hospitals identified from the 

model with the rectangular distribution were 99.76%, 99.83%, and 99.85%. Figure 11 shows 

plots of each estimate of θi versus the overall observed composite rate pi along with the Loess 

line that fits the best locally weighted smoothed curve. In each of the plots, hospitals with low 

composite rates are associated with lower values of the estimate of θi. 
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Figure 11. Plots of estimates of 𝜽𝒊 versus observed rate 𝑷𝒊 with Loess line. 

 

 

Using the method to determine the hospitals performing in the lower 1% based on the 

estimates of θi from the FB model assuming the normal prior distribution yields 29 total 

hospitals. The mean overall observed rate, pi, of these 29 hospitals was 74.78% with a standard 

deviation of 8.75%, a minimum rate of 53.66% and a maximum rate of 85.68%. The 95th 

percentile of these 29 hospitals was 84.42% indicating that the majority of these hospitals would 

fall below the 85% rule based on Joint Commission standards for poor-performing hospitals.   
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Low-performing hospitals identified using the FB model with the rectangular distribution 

also had low overall observed rates. The mean rate of the 29 hospitals identified by this model 

was 76.44% with a standard deviation of 7.65%. The 95th percentile of these low-performing 

hospitals was 85.20% and the 90th percentile was 84.42%. The minimum and maximum rates in 

this group were the same as found in the model with the normal prior distribution.  

There were two hospitals identified as low performers in the model with the normal prior 

distribution that were not identified by the model using the rectangular prior distribution. 

Similarly there were two hospitals identified as low performers in the model that used the 

rectangular prior distribution of θi that were not identified in the model assuming a normal prior 

distribution of θi. Each of these four hospitals had rates below 90%. The hospital rates of the 

low-performing hospitals identified in the model with a normal prior that were not identified in 

the model with the rectangular prior were 54.54% and 62.50% with denominators of 22 and 32, 

respectively. Conversely, the overall observed rates of the low-performing hospitals identified in 

the model with the rectangular distribution but not identified in the model employing the normal 

prior distribution were 85.2% (ni=446) and 80.0%(ni=120).   

 

4.6 Results Using Complete Data 

 

Complete data are defined as those organizations that have submitted data in each of the 

four measure sets and have at least 30 denominator cases in each of the four composite measures. 

This section shows the results of the model after using complete data within the same framework 
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of model 4.1. This will show the sensitivity of using models to assess hospital quality with all 

types of data. The data used for this analysis consist of the same hospital performance measure 

data used in the previous section for each of the four measure sets or therapeutic areas of AMI, 

HF, PN, and SCIP. Composite measures are calculated in exactly the same manner as in the 

previous section.  

There were 2,113 hospitals that submitted data for all four measure sets and had at least 

30 denominator cases in each of the four therapeutic areas. Table IX shows the descriptive 

statistics for the measures used in the analysis. The rates for the complete data are similar to the 

rates seen in section 4.1. The AMI measure had the highest mean rate among the 2,133 hospitals 

with a rate of 98.16%, while HF and PN had similar rates of 97.00% and 97.06%, respectively. 

The major difference in the rates of the complete set when compared to the data without 

restrictions is the bottom part of the distribution. The minimum rates of hospitals using all the 

data for AMI, HF, and PN were 0.0 compared to the complete data that had rates of 54.05%.   
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TABLE IX  

OBSERVED MEASURE SET COMPOSITE AND OVERALL COMPOSITE RATES OF 

STATIC YEAR (3Q2012–2Q2013)—COMPLETE DATA 

Measure Set N Mean of 

Rates 

Standard 

Deviation 

Max 90th 

Percentile 

Median 10th 

Percentile 

Min 

AMI 2,133 0.9816 0.0328 1.0000 1.0000 0.9921 0.9545 0.5405 

HF 2,133 0.9700 0.0468 1.0000 1.0000 0.9884 0.9139 0.4736 

PN 2,133 0.9706 0.0338 1.0000 1.0000 0.9779 0.9380 0.5961 

SCIP 2,133 0.9843 0.0193 1.0000 0.9969 0.9889 0.9693 0.7333 

Overall 

Composite 

2,133 0.9831 0.0190 1.0000 0.9964 0.9879 0.9670 0.7742 

 

 

The correlations of each of the measure sets are displayed in Table X. Although all 

correlation coefficients are significantly different from zero, the measure set composite rates are 

not highly correlated with the highest correlation coefficient being 0.5195 between the PN and 

SCIP measure sets. The lowest correlation is between the HF and PN therapeutic areas with a 

correlation coefficient value of 0.3727. 
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TABLE X 

PEARSON CORRELATION COEFFICIENTS 

Pearson Correlation Coefficients, N = 2,113 

Prob > |r| under H0: Rho=0 

  AMI HF PN SCIP 

AMI 1    

HF 0.49058 

<.0001 

1   

PN 0.41759 

<.0001 

0.37267 

<.0001 

1  

SCIP 0.51155 

<.0001 

0.4049 

<.0001 

0.51951 

<.0001 

1 

 

 

Estimating convergence of model 4.1 with the complete data is achieved graphically. 

Figures 12 and 13 show the convergence of αi and σi, respectively, using a normal prior 

distribution of θi. Convergence of αi occurs for each measure set prior to 2,500 draws from the 

posterior distribution. Similarly for σi, convergence also occurs prior to 2,500 iterations of model 

4.1. Density plots of the posterior distribution of each αi and σi, are show in Figures 15 and 16. 

The DIC for the model with the normal prior is 71,815.6 whereas the DIC for the rectangular 

prior model is slightly lower at 69,102.5, indicating that the rectangular prior fits the data slightly 

better than the model using the normal prior distribution. 

  



 

 

  64 

 

 

iteration

0 2500 5000 7500

a
lp

h
a

[1
]

4
.0
6

.0
8

.0
1

2
.0

 

iteration

0 2500 5000 7500

a
lp

h
a

[2
]

2
.0
4

.0
6

.0
8

.0

iteration

0 2500 5000 7500

a
lp

h
a

[3
]

2
.0
4

.0
6

.0
8

.0

iteration

0 2500 5000 7500

a
lp

h
a

[4
]

4
.0

6
.0

8
.0

1
0

.0

 
Figure 12. Diagnostic plots of αi with Normal prior of 𝜽𝒊. 

                  1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 13. Diagnostic plots of σi with Normal prior of 𝜽𝒊. 

                  1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 14. Diagnostic plots of σi with rectangular prior of 𝜽𝒊. 

                  1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 15. Density plots of αi with Normal prior of 𝜽𝒊—complete data. 

                  1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 16. Density plots of σi with Normal prior of 𝜽𝒊—complete data. 

                  1=AMI, 2=HF, 3=PN, 4=SCIP 
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TABLE XI  

PARAMETER ESTIMATION USING FULL BAYES MODEL  

BASED ON COMPLETE STATIC DATA 

Parameter 

Full Bayes 

Estimate (95% Credible Interval) 

Normal Prior 𝜃𝑖 

Full Bayes 

Estimate (95% Credible Interval) 

Rectangular Prior 𝜃𝑖 

αAMI 4.8859 (4.8379, 4.9293) 4.4173 (4.3609, 4.4711) 

αHF 3.9339 (3.8850, 3.9811) 3.5089 (3.45297, 3.5614) 

αPN 3.6982 (3.6666, 3.7287) 3.4116 (3.37509, 3.4462) 

αSCIP 4.4793 (4.4420, 4.5125) 4.1039 (4.05989, 4.1455) 

σAMI 1.0885 (1.0487, 1.1282) 0.7253 (0.7083, 0.7422) 

σHF 0.9938 (0.9536, 1.0369) 0.6625 (0.6422, 0.6827) 

σPN 0.6672 (0.6391, 0.6953) 0.4377 (0.4238, 0.4518) 

CIP 0.8672 (0.8372, 0.8968) 0.5781 (0.5668, 0.5894) 

 

 

Estimates of the model parameters are based on 5,000 simulations after convergence is 

achieved for both chains and are shown in Table XI for the model assuming a standard normal 

prior distribution of θi and the model assuming a rectangular (-4,4) distribution of θi. Using a 

uniform (-4,4) distribution was used because it encompassed the same values of  θi obtained from 

the normal prior. Also, using a range greater than (-4,4) had issues with convergence of the 

estimates. As seen with the full data set, the direction of discrimination based on σi is in the same 

direction with AMI having the highest amount of discrimination and PN having the lowest 

amount of discrimination based on the model with the standard normal prior. Estimates of αi 

follow a similar trend with the largest of estimates being with AMI, then the next highest 
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estimate being for SCIP, with HF and PN having similar lower estimates. The estimates of αi and 

σi based on the model with the assumption of a rectangular distribution show similar patterns 

although the estimates obtained are slightly lower than the model assuming a normal prior 

distribution of θi. Parameter estimates from the EB model are presented in Table XII. All 

estimates are similar to those found in the FB models. The estimates for αi are very similar to 

those found in the FB model with the assumption of a normal prior distribution of θi. Estimates 

of σi fall between the estimates of the FB models although the trend of discrimination is the 

same. 

  

TABLE XII  

PARAMETER ESTIMATION USING EMPIRICAL BAYES MODEL FOR  

STATIC DATA—COMPLETE DATA 

Parameter 

Empirical Bayes 

Estimate (95% CI) 

Normal Prior 

αAMI 4.8672 (4.8263, 4.9082) 

αHF 3.9189 (3.875, 3.9629) 

αPN 3.6919 (3.6628, 3.721) 

αSCIP 4.4678 (4.4364, 4.4992) 

σAMI 0.8814 (0.859, 0.9039) 

σHF 0.8096 (0.7828, 0.8364) 

σPN 0.5488 (0.5302, 0.5674) 

σSCIP 0.7064 (0.6903, 0.7224) 
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Estimates of θi are obtained and a sample of posterior density plots of θi for four 

randomly selected hospitals is presented in Figures 17 and 18. The posterior densities for these 

hospitals are approximately normally distributed centered around the mean of each estimate. For 

hospital 1 in this sample, the mean value of 𝜃�̂� is 0.5098, the mean value of 𝜃�̂�for hospital 2 is 

0.229, the estimate for hospital 3 is 0.0223 and the mean value of the estimate is -0.3189. 

Estimates of θi with the rectangular prior distribution for the same hospitals are higher with 

values 1.4749, 0.9991, 0.6172, and 0.1492 for hospitals 1 through 4.  
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Figure 17. Density plots of 𝜽�̂� with Normal prior of 𝜽𝒊 for hospitals 1,2,3,4. 
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Figure 18. Density plots of 𝜽�̂� with rectangular prior of 𝜽𝒊 for hospitals 1,2,3,4. 

 

 

Evaluation of hospital quality is based on the estimates of θi obtained from each of the 

two FB models. The top-performing hospitals are based on the upper 5% of the posterior 

distribution of θi. The density plots of 𝜃�̂� obtained in each of the three models are graphically 

shown in Figure 19 and these figures show each to be approximately normally distributed. Both 

models that assumed a normal prior had a mean value of 𝜃�̂� to be close to 0 with standard 

deviations close to 1 and the mean of 𝜃�̂� obtained by the model with the rectangular distribution 

was close to 0.6 with a standard deviation of 1.5. The CCC between the 𝜃�̂� obtained from both 

FB models with normal and rectangular prior was 0.7908. The CCC of 𝜃�̂�obtained from the EB 

model and the FB model with the normal prior assumption was 0.9694 and the corresponding 

CCC of  𝜃�̂� between the EB and the FB model with the rectangular prior was 0.9349. 
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Each model identified 105 top-performing hospitals and both models had identified 101 

of the same hospitals in the upper 5% of the posterior distribution. There were four hospitals 

identified in each FB model (normal and rectangular prior) that differed. The mean observed 

value of pi of the top-performing hospitals identified in the model with the normal prior 

distribution was 0.9987 ranging from 0.9971 to 1.00 with  𝜃�̂� ranging from 1.59 to 3.32. From the 

model with the rectangular prior distribution, the mean observed value of pi was 0.9987 ranging 

from 0.9975 to 1.00 with 𝜃�̂� ranging from 3.27 to 3.88.   

 

 

 
Figure 19. Density plot of 𝜽�̂� for each prior distribution. 
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There were four hospitals identified as top performers from each FB model with differing 

prior distributions that did not match making a total of eight differing hospitals. Each of these 

eight hospitals had observed values of π close to the lower range of observed π identified above. 

Similarly, the values of 𝜃�̂�are on the boarder of the lower end of the top performers identified 

above.  

Low-performing hospitals were identified in a similar way. There were 21 hospitals 

identified as low performers based on 𝜃�̂�. The mean of 𝜃�̂� obtained from the rectangular prior 

distribution was -3.54 ranging from (-2.85, -3.99) with observed rate, pi, having a mean value of 

0.8574 ranging from (0.7742, 0.9141). From the model with the normal prior distribution 

assumption, 𝜃�̂�as a mean of -2.84 ranging from -2.33 to -3.51 with a mean observed pi of 0.8574 

distributed between 0.7742 and 0.9141. In this instance, the same hospitals were identified as 

low performers regardless of which prior distribution was assumed. 

 

4.7 Sensitivity of Models and Model Selection 

 

This section identifies the sensitivity of the models based on the identification of top-

performing hospitals and estimates obtained from both (normal and rectangular prior) FB 

models. As shown, the parameter estimates of αi are similar in each model. Estimates of σi are 

lower in the model with the complete data indicating a lower amount of discrimination. This is 

due to the nature of having complete data and not needing to account for missing data, which is 

expected. In comparing the identification of high- and low-performing hospitals, regardless of 
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which assumption on the prior distribution was made, the exact same hospitals identified in the 

complete data (section 4.2) were also identified as either top- or low-performing hospitals in the 

analysis using all the available data (section 4.1).  

Apart from evaluating models based on identification of top-performing hospitals there 

are differences for each of the different approaches. Under the FB approach, the assumption of 

the prior distribution for the latent variable has different effects on the model. Using a non-

normal distribution that has a wider variance affects the model fit. Larger variances on the prior 

increases the goodness of fit statistics based on the deviance function, which has an effect of 

potentially misclassifying hospitals, especially when evaluating poor-performing hospitals.   

Using the EB approach is similar to the FB approach with the assumption of the standard 

normal distribution for the prior of the latent variable. As of this writing, SAS is only capable of 

using the standard normal distribution on the prior in the calculation of the EB estimates. 

Although the EB confidence intervals for the parameter estimates were similar to the FB credible 

intervals and the identification of top-performing hospitals is similar, the interpretation of the EB 

estimates are slightly different. For the EB analysis, the interpretation of the latent variable is not 

based on probability but based on one-sided confidence intervals. That is, if an individual 

hospital is classified to be in the top 5% of all hospitals, then this is a true top-performing 

hospital with 95% confidence.   
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4.8 Longitudinal Analysis 

 

4.8.1 Composite Scores 

 

I consider a longitudinal latent variable model to determine the amount of improvement, 

or lack thereof, a hospital has displayed over time for eight time periods. A composite rate is 

calculated for each of the four measure sets using only accountability measures as defined in 

section 3.1 for each quarter starting in the third quarter of the year 2011 to the second quarter of 

2013. A hospital may have data in up to eight quarters for any given measure set and no 

restrictions on sample size is required. 

Similar to the definitions stated for the static analysis, yijkt is a binomial variable that 

represents the number of patients that receives the kth treatment in the jth therapeutic area at the ith 

hospital at the tth time point. Similarly, let nijkt be the number of eligible patients to receive the kth 

therapy in the jth clinical area at hospital i for the tth time period. The number of clinical areas is 

denoted by J i that ranges 1 to 4 clinical areas depending on the services provided by the ith 

hospital. Let the number of therapies in the jth clinical area denoted by Kij be 7 for AMI, 1 for HF, 

3 for PN, and 6 for SCIP in the ith hospital for the tth time period. Let 𝑦𝑖𝑡 = ∑ ∑ 𝑦𝑖𝑗𝑘𝑡
𝐾𝑖𝑗

𝑘
𝐽𝑖
𝑗  be the 

total number of times appropriate therapies were provided in all the clinical areas in the ith 

hospital in the tth time period. Similarly, let 𝑛𝑖𝑡 = ∑ ∑ 𝑛𝑖𝑗𝑘𝑡
𝐾𝑖𝑗

𝑘
𝐽𝑖
𝑗  be the total number of 

opportunities to provide appropriate therapies in all the clinical areas at time period t in the ith 

hospital. The overall observed composite rate of providing appropriate therapies in all clinical 

areas at time period t in the ith hospital is defined as 𝑝𝑖𝑡
𝑜𝑏𝑠 = yit/nit. 
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4.8.2 Longitudinal Regression Model 

 

I extend the yearly latent variable model to incorporate changes longitudinally. Within the 

framework of the new model, the latent variable θ0i represents the quality of care in the ith 

hospital where larger values of θ0i are associated with a higher quality of care. I introduce a new 

latent variable θ1i associated with the time effect to represent the quality of performance 

improvement over time where larger values of θ1i are associated with greater performance 

improvement efforts over time. Let  𝛼0𝑗 be the overall mean rate on the log-odds scale for the jth 

clinical area and 𝛼1𝑗be the average change from the overall rate at each time point (i.e., 𝛼0𝑗 is the 

average intercept and 𝛼1𝑗 is the average slope for the jth area on the log-odds scale); σ0j be a 

positive measure set-specific discrimination. Let pijt be the probability that the proper therapy 

was given within the jth clinical area at the ith hospital in the tth time period.   

The proposed longitudinal model is a random slope/random intercept model and is 

defined as follows: 

                            𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑡) = ℎ𝑖𝑗(𝛼, 𝜎, 𝛽, 𝜃, 𝑡),      (4.4.1) 

where  

ℎ𝑖𝑗(𝛼, 𝜎, 𝛽, 𝜃, 𝑡)  = (𝛼0𝑗 + 𝜎0𝑗𝜃0𝑖) + (𝛼1𝑗 + 𝜃1𝑖) ∗ 𝑡 

and  (
𝜎0𝑗

𝜎1𝑗
) >  (

0
0

)  and    

(
𝜃𝑗

𝜃𝑗𝑡
) ~ 𝑀𝑉𝑁((

0
0

) , (
1 0
0 1

)) . 

Hence 
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Pr(𝑦𝑖𝑗𝑡 = 1) = 𝑝𝑖𝑗𝑡 =
exp(ℎ𝑖𝑗(𝛼,𝜎,𝛽,𝜃,𝑡))

1+exp(ℎ𝑖𝑗(𝛼,𝜎,𝛽,𝜃,𝑡))
.     (4.4.2) 

 

4.8.3 Longitudinal Classification  

 

From the model 4.4.1, a measure of each hospital’s quality improvement effort for each 

measure set or clinical area is computed using the coefficients associated with the time variable, 

i.e. 𝛼1𝑗 + 𝜃1𝑖. In this situation the score 𝜃1�̂� is of interest, which is derived from the posterior 

distribution of 𝜃1𝑖. Assuming that national rates are positively increasing, i.e. 𝛼1𝑗 > 0, and if 

𝛼1𝑗 + 𝜃1𝑖 is less than 0, then the hospital is classified as having a decrease in their quality 

improvement initiates over time for the measure set j which implies that 𝜃1𝑖 must be a negative 

quantity. This is equivalent of computing 𝑃(𝛼1𝑗 + 𝜃1𝑖 < 0) > 𝜗 for each jth measure set for the 

ith hospital where ϑ is a predefined threshold related to the degree of certainty. Performing some 

simple math, 𝑃(𝜃1𝑖 < −𝛼1𝑗) > 𝜗 is obtained.  For example, if the threshold of certainty, ϑ, is 

decided to be 95%, a 90% credible interval of the posterior distribution of the score estimate, 𝑆1𝑖, 

is calculated based on 𝜃1𝑖 and compared to the upper bound of the credible interval to −𝛼1𝑗. If 

the upper bound is less than this quantity, then there is at least 95% of the distribution below this 

ratio and conclude that the hospital is declining in their quality initiatives for this measure set. 

Conversely, hospitals with ongoing quality improvement efforts will be identified by 

calculating 𝑃(𝑆1𝑖 > −𝛼1𝑗) > 𝜗.  Determining the lower 90% credible interval of the posterior 
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distribution of 𝜃𝑖1 and comparing that to −𝛼1𝑗 as before for each measure set will satisfy this 

probability taking ϑ to be 0.95. 

 

4.8.4 Longitudinal Results 

 

There were 2,977 hospitals included in the longitudinal study that had at least one quarter  

of data in the AMI, HF, PN, or SCIP measure sets with a total of 85,220 total quarterly data 

points. A majority (85.0%) of the hospitals had data in all four measure sets, while 302 (10.1%) 

hospitals had data in three measure sets with 77 (2.6%) of hospital had data in two measure sets 

and 66 (2.3%) of hospitals had longitudinal data in only one measure set.  

Descriptive statistics are displayed in Table XIII. All measure sets had minimum 

quarterly rates of 0.0, although the majority of these low rates had small denominators (<5) and 

all had maximum rates of 1.00 and all measure sets had average observe rates about 95%. All 

four measure sets show an average increase over time as shown in Figure 20. The AMI had the 

largest mean increase from the 3Q11 to 2Q13 with an average increase of 1.12% and PN had the 

lowest mean increase of 0.7% over the eight-quarter time interval. 
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TABLE XIII  

DESCRIPTIVE STATISTICS BY MEASURE SET OVER TIME 

 2011Q3 2011Q4 2012Q1 2012Q2 2012Q3 2012Q4 2013Q1 2013Q2 

AMI         

 -n 2,457 2,473 2,510 2,469 2,424 2,430 2,448 2,434 

-Mean 0.9665 0.9722 0.9703 0.9737 0.9759 0.9763 0.9765 0.9777 

-Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

-Median 0.9947 0.9954 0.9957 0.9966 0.9974 0.9970 0.9973 1.0000 

-Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

         

HF         

 -n 2,702 2,720 2,718 2,706 2,656 2,682 2,698 2,687 

-Mean 0.9586 0.9609 0.9570 0.9589 0.9621 0.9655 0.9630 0.9657 

-Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

-Median 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

-Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

         

PN         

 -n 2,803 2,813 2,819 2,820 2,764 2,773 2,784 2,788 

-Mean 0.9618 0.9600 0.9626 0.9651 0.9641 0.9649 0.9637 0.9633 

-Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

-Median 1.0000 0.9857 0.9833 1.0000 1.0000 1.0000 0.9828 1.0000 

-Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

         

SCIP         

 -n 2,697 2,697 2,724 2,731 2,686 2,694 2,700 2,713 

-Mean 0.9753 0.9761 0.9779 0.9788 0.9812 0.9814 0.9842 0.9846 

-Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

-Median 0.9830 0.9850 0.9861 0.9872 0.9881 0.9887 0.9908 0.9914 

-Min 0.5000 0.4643 0.3636 0.5000 0.7143 0.0000 0.6000 0.5000 
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Figure 20. Mean observed rates by measure set over time. 
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Parameters of model 4.4.1 are estimated by using an FB approach in OpenBUGS by 

using two chains with different initial values. Convergence after 2,500 burn-in samples of the 

variance parameter, σ0j, is assessed graphically in Figure 21. The random slope parameter, α1J, 

converges slower than the variance parameter and converges after 10,000 burn-in samples and is 

shown in Figure 22. Additional assessment is evaluated using the Gelman-Rubin statistic and 

convergence is shown for each estimated variance parameter in Figure 23.  
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Figure 21. Diagnostic plots of convergence for random intercept variance, σ0j. 
                  1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 22. Diagnostic plots of convergence for random slope α1j. 

                   1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 23. Gelman-Rubin statistics diagnostic plots of σ0i. 

                             1=AMI, 2=HF, 3=PN, 4=SCIP 

 

 

 

 

 

 
alpha1[1] sample: 10000

alpha1[1]

0.0 0.05 0.1P
(a

lp
h

a
1

[1
])

0
.0

4
0

.0

alpha1[1] sample: 10000

alpha1[1]

0.0 0.05 0.1P
(a

lp
h

a
1

[1
])

0
.0

4
0

.0

alpha1[3] sample: 10000

alpha1[3]

0.0 0.05 0.1P
(a

lp
h

a
1

[3
])

0
.0
2

0
.04

0
.0

alpha1[4] sample: 10000

alpha1[4]

0.05 0.1 0.15 0.2P
(a

lp
h

a
1

[4
])

0
.0

4
0

.0

 
Figure 24. Posterior distribution of α1J . 

                          1=AMI, 2=HF, 3=PN, 4=SCIP 
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TABLE XIV  

PARAMETER ESTIMATION USING FULL BAYES MODEL FOR 

 LONGITUDINAL DATA 

 Parameter Full Bayes 

Estimate (SD) 

Full Bayes 95% 

Credible Interval 

Fixed  α0AMI 4.316 (0.0262) (4.264, 4.369) 

Intercept α0HF 3.489 (0.0287) (3.489, 3.545) 

 α0PN 3.368 (0.0199) (3.329, 3.407) 

 α0SCIP 3.722 (0.0163) (3.689, 3.754) 

Fixed  α1AMI 0.0730 (0.0118) (0.0458, 0.0966) 

Slope α1HF 0.0552 (0.0122) (0.0278, 0.0794) 

 α1PN 0.0546 (0.0120) (0.0264, 0.0783) 

 α1SCIP 0.1123 (0.0116) (0.0842, 0.1351) 

Intercept σAMI 1.2280 (0.0254) (1.1850, 1.2730) 

Variance σHF 0.9895 (0.0210) (0.9488, 1.0320) 

 σPN 0.6723 (0.0149) (0.6432, 0.7011) 

 σSCIP 0.8269 (0.0142) (0.7987, 0.8550) 

 

 

Parameter estimates are computed from using 5,000 posterior draws from two chains 

after the 10,000 chain burn-in was achieved and is shown in Table XIV. The AMI had the 

highest amount of discrimination over time and SCIP had the lowest amount of discrimination 

over time. Positive values of each time factor indicates that, on average, hospitals are showing 

improvement over time. Posterior distribution of the random slope parameter α1J is shown in 

Figure 24 and shows each parameter estimate is approximately normal around the median 

parameter estimate. 



 

 

  86 

 

Classifying hospitals based on the top 5th percentile of the posterior distribution of θi1, I 

find 588 (19.8%) hospitals showing superior QI efforts over time in all measure sets submitted 

for analysis. The minimum �̂�𝑖𝑡 of these top performers in the first time period is 67.87% while 

the minimum overall observed proportion in the first time period is 59.85% coming from the 

same hospital. For the hospital with the minimum rate for this group, the predicted and observed 

rates in the last time period are 99.30% and 97.46%, respectfully. The observed average overall 

improvement of composite rates over the three-year period for these hospitals is 9.94% ranging 

from 1.78% to 38.79%. Similarly, the predicted overall average improvement is 8.58% ranging 

from 1.01% to 31.43%. 

There were 220 (7.4%) hospitals identified as having declining quality over the two-year 

period in at least one of the four measure sets. There were 74 hospitals with declining rates in all 

measure sets submitted, while 75 hospitals had declining rates in three out of the four measure 

sets.   
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5. HIERARCHICAL MIXED-EFFECTS POISSON REGRESSION MODELS 

 

Poisson regression models are a natural choice when modeling rates, in particular rates of 

infections and mortality, to name just two. The goal in this section is to estimate an unobserved 

measure of hospital safety in addition to modeling performance measures used in the binomial 

method section of this study by utilizing mixed-effects Poisson hierarchical model. One method 

of determining an estimator of hospital quality is through a latent variable model for the 

observed individual safety measures. Construction of hospital profiles using a 2-parameter 

Normal-Ogive model or multivariate probit model has been proposed by Landrum et al. [2000]. 

This approach of profiling hospitals is the same method used in IRT models performed in 

psychological and educational testing. Gibbons et al. [2010] propose FB and EB methods on 

adverse events surveillance data utilizing a mixed-effects Poisson regression model. For each of 

these methods, these models assume that the underlying measure, hospital safety, is reflected 

through the individual measures although each measure may have a separate weight in the final 

score depending on the ability of the measures to discriminate between hospitals. Independence 

between the measures is assumed conditional on the latent variable. 

 

5.1 The Poisson Regression Model  

 

The research in this section explores methods to utilize the notion of latent variable 

models to determine hospital quality in two ways. The first is a univariate method. This method 

is similar to the binomial method addressed in the previous section in that it is using a latent 
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variable model to determine hospital quality. Instead of using hospital performance measures, the 

model determines hospital quality based on HAI safety measures that have not been published in 

the literature at the time of this writing. The measures used are CAUTI, SSI:colon, 

SSI:hysterectomy, CLABSI, MRSA, and C. difficile.  

The second method employs a bivariate model to determine hospital quality. In the 

bivariate case, the model estimates hospital quality based on both hospital performance measures 

and HAI safety measures. From this model, two estimates based on both sets of data are obtained 

and an overall measure of hospital quality is constructed.   

 

5.2 Univariate Poisson Regression Model for Hospital Safety Data 

 

In this section, a univariate Poisson regression model was used to identify hospital quality 

based on HAI safety data. Each of the six measures is summarized and analyzed in the 

framework of a latent variable mixed-effects model. Graphical techniques will be used to 

determine convergence of the model, including the Gelman-Rubin statistics modified by Brooks 

and Gelman.   

Let yij be the numerator for the jth measure in the ith hospital and nij be the denominator 

for the jth measure in the ith hospital where j=1,…6. Let θi be the latent variable representing the 

underlying measure of hospital safety for the ith hospital. Within this framework, the Poisson 

model will be of the form as follows: 
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𝑦𝑖𝑗~𝑓(𝜇𝑖𝑗,𝑛𝑖𝑗) 

𝑔(𝜇𝑖𝑗) = 𝛼𝑗 + 𝜎𝑗𝜃𝑖        (5.1) 

                                                              𝑤ℎ𝑒𝑟𝑒 𝜎𝑗 > 0 𝑎𝑛𝑑   𝜃𝑖~𝑁(0,1) 

In this model 5.1, αj represents the baseline rate for the jth measure and σj represents the 

discrimination factor for the jth measure. The function f() represents the assumed distribution 

with corresponding link function g(). For the Poisson model the following is proposed: 

 

𝑦𝑖𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗,𝑛𝑖𝑗) 

𝑓(𝑦𝑖𝑗; 𝜇𝑖𝑗) =
exp (−𝜇𝑖𝑗)(𝜇𝑖𝑗

𝑦𝑖𝑗)

𝑦𝑖𝑗
 

𝑙𝑜𝑔(𝜇𝑖𝑗) = 𝛼𝑗 + 𝜎𝑗𝜃𝑖 + log (𝑛𝑖𝑗)                                          (5.2) 

 

The HAI measures should have larger values of σj for those therapeutic areas that are less 

homogeneous among the hospitals. Contrary from performance measure data where the direction 

of improvement was an increase in the rates and larger values of the latent variable were 

indicative of high quality of care, the direction of improvement for HAI data is a decrease in 

rates. Therefore, where large negative values of the latent score, θi that ranges from -∞ to ∞, are 

indicative of high quality of care, values of zero are indicative of average quality of care, and 

large positive values are indicative of poor quality of care. Although assuming normality on the 

latent variable may be too restrictive, it solves the problem of the within-hospital correlation 
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between the therapeutic areas. As previously stated, the current nature of available data for HAIs, 

the within patient variability cannot be estimated. 

The safety data were analyzed within the framework of an FB adaptation of model 5.1 

using the OpenBUGS software. Prior distributions of each 𝛼𝑗 assume a relatively flat N (0,100) 

and a standard normal, N (0,1) prior distribution on each 𝜃𝑗 . The prior distribution of σj is defined 

as with a half-normal distribution of σi, recommended by Gelman [2006] where small precision 

represents vague prior information and constrains the parameter to be positive. Posterior means 

and posterior variances of θi are estimates of the quality of care and the variance. The parameter 

estimates are based on a chain of 5,000 iterations allowing for a 5,000 burn-in chain.   

Posterior predictive checking was incorporated to determine the model fit by utilizing 

two separate chains with different starting values in addition to incorporating Gelman-Rubin 

convergence statistics and graphs. In this method, multiple chains are generated starting at over-

dispersed initial values, and convergence is assessed by comparing within- and between-chain 

variability over the second half of those chains. The number of chains generated is denoted by M 

and the length of each chain by 2T. The measure of posterior variability is the width of the 100 

(1 -α)% credible interval for the parameter of interest (in OpenBUGS, α=.2). From the final T 

iterations, the empirical credible interval for each chain is calculated. At each iteration, the 

average width of the intervals is computed across the M chains and denoted by W. Finally, the 

width B of the empirical credible interval is calculated based on all MT samples pooled together. 

The ratio R = B / W of pooled to average interval widths should be greater than 1 if the starting 

values are suitably over-dispersed; it will also tend to 1 as convergence is approached, and so 



 

 

  91 

 

one might assume convergence for practical purposes if, for example, R <1.05. Rather than 

calculating a single value of R, the behavior of R can be examined over iteration-time by 

performing the above-procedure repeatedly for an increasingly large fraction of the total iteration 

range, ending with all of the final T iterations contributing to the calculation as described above. 

Additionally, an EB adaptation of model 5.2 was used to analyze the safety data. 

Parameter estimates were obtained and compared with estimates obtained from the FB analysis. 

Additionally, estimates of θi will be obtained using the EB method and compared with estimates 

of θi from the FB model using Lin’s CCC to determine the agreement rate between both methods 

of estimating hospital quality. 

Model 5.1 was also implemented using the hospital performance measure data. Estimates 

of θi will be obtained from the FB approach and compared to the FB estimates obtained from 

model 4.1 and compared utilizing Lin’s CCC. 

 

5.3 Classification of Hospitals 

 

As mentioned previously in section 4.1.3, the classification of hospitals is based on the 

estimate of quality of care score, Si, derived from the posterior distribution of θi, as opposed to 

ranking hospitals. In this case where a decrease in rates is indicative of better performance which 

implies that lower values of Si denote higher quality of care, the lower end of the distribution is 

of particular interest. 
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Identification of high-performing hospitals needs to incorporate the variability of the 

estimate as hospitals that have lower volume or lower opportunities for providing the proper 

therapy are more likely to be classified as high performers based on chance. I take into account 

this variability by using a predefined threshold by determining the probability that the estimate 

falls below the 5th percentile as shown as follows: 

𝑃(𝑆𝑖 < 𝜂05) > 𝛾, 

where η05 is the 5th percentile of 𝜃𝑖 and γ is a predefined threshold. This guarantees that a 

hospital is classified as being a high-performing hospital when the true score is below η05 with a 

reasonable degree of certainty. Generally, γ is taken to be as high as 0.95. By design, this lowers 

the number of hospitals that are classified as high performers to be less than 5% of the total. 

Thus, in order to identify exactly 5% of the hospitals as being high performers, the upper 

percentile of the score is used as a cutoff. Determining η05 such that 5% of the hospitals have a 

probability exceeding γ is identical to finding the threshold in which 5% of the γ100%-credible 

intervals of hospital performance lie below it. The symmetry of the credible intervals is used to 

determine the cutoff point. Note that the probability that 𝜃𝑖  lies below the upper bound of the 

((2γ -1)x100)% credible intervals is γ. For example, if γ =.9, then the probability that 𝜃𝑖  is below 

the upper bound of its ((2 * 0.9 -1)x100)%=80% credible intervals is 0.9 since the probability of 

being in the credible interval is 0.8 and the probability of being above the upper bound of the 

credible interval is 0.1. Therefore, classification of hospitals as high performers is determined by 

identifying the 5th percentile of the upper bound of the ((2γ -1)x100)% credible intervals.   
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Classification of low-performing hospitals uses a similar approach as classifying high- 

performing hospitals except 𝑃(𝑆𝑖 > 𝜂99) > 𝛾 is determined where η99 is the 99th percentile of 

𝑆𝑖 and γ is a predefined threshold. Thus, the 1st percentile of the upper bounds of the ((2γ -

1)x100)% credible intervals is calculated. Using the previous example, probability that 𝑆𝑖 is 

above the lower bound of its ((2 0.9 -1)x100)%=80% credible intervals is 0.9 since the 

probability of being in the credible interval is 0.8 and the probability of being above the upper 

bound of the credible interval is 0.1. Therefore, classifying hospitals as low performers is 

determined by identifying the 99th percentile of the lower bound of the ((2γ -1)x100)% credible 

intervals.    

 

5.4 Results of Poisson Regression  

 

There were a total of 3,729 hospitals that had at least one HAI measure representing 

19,295 data points for analysis. The median number of HAI measures among the hospitals was 

six and the first quartile was five measures.  The lower 10% of hospitals had two or fewer HAI 

measures.  

Descriptive statistics for each of the safety measures across all hospitals reporting HAIs 

are shown in Table XV. The highest rate of infection is seen in colon surgeries with 0.0257, with 

one hospital having a rate of 1.0, whereas the MRSA infection rate was the lowest at 0.000042. 

Half of the hospitals reporting MRSA and SSI:Abdominal had zero infections in the one year 

time period. The mean number of observed infections was highest in the C. difficile group with 

13.9, and SSI:Abdominal had the lowest mean number of observed infections with 0.8 infections 
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per hospital. There were two separate hospitals that had an observed number of 303 infections, 

one hospital in CAUTI and one hospital in C. difficile. 

 

 

TABLE XV 

DESCRIPTIVE STATISTICS OF HAI MEASURE RATES  

AND NUMBER OF INFECTIONS 

Measure n Mean Standard 

Deviation 

Max Median Min 

Observed Rates       

 CAUTI 3,060 0.001466 0.001772 0.02564 0.001027 0 

 SSI:Colon 3,102 0.025727 0.042314 1.0 0.016103 0 

 SSI:Abdominal 2,989 0.007711 0.020646 0.5 0 0 

 CLABSI 3,066 0.000908 0.003843 0.2 0.000431 0 

 C. difficile 3,563 0.000517 0.000619 0.02273 0.000454 0 

 MRSA 3,515 0.000042 0.000098 0.00239 0 0 

       

Number of  

Infections 

      

 CAUTI 3,060 8.2307 19.1219 303 2 0 

 SSI:Colon 3,102 2.4752 3.9957 53 1 0 

 SSI:Abdominal 2,989 0.8073 1.6941 20 0 0 

 CLABSI 3,066 3.4775 7.3609 94 1 0 

 C. difficile 3,563 13.9722 23.2014 303 5 0 

 MRSA 3,515 1.398 3.0715 60 0 0 
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Figure 25 shows the convergence of αi for each of the safety measures for the two 

separate chains. Convergence for all the measures occurred relatively quickly in OpenBUGS 

within 1,000 chains. Similarly, Figure 26 shows the convergence of each value of σi. 
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Figure 25. Diagnostic plots of αi with Normal prior of 𝜽𝒊. 

                                  1=CAUTI, 2=SSI:Colon, 3=SSI:Abdominal, 
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Figure 26. Diagnostic plots of αi with Normal prior of 𝜽𝒊. 

                            4=CLABSI, 5=C. difficile, 6=MRSA  
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Figure 27. Diagnostic plots of σi with Normal prior of 𝜽𝒊. 

                            1=CAUTI, 2=SSI:Colon, 3=SSI:Abdominal, 
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Figure 28. Diagnostic plots of σi with Normal prior of 𝜽𝒊. 

                            4=CLABSI, 5=C. difficile, 6=MRSA 

 

 

 

 

Similar to the convergence of αi, σi converged relatively quickly as well within 1,000 

iterations. To further assure the convergence of σi, Figure 29 shows diagnostic plots of the 

Gelman-Rubin convergence statistics for each estimate of the variance for each measure. The red 

line represents the value of R, the pooled value of B is represented in blue and the average, W, is 
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shown in green. As shown with each disperse initial value, each chain is represented and not only 

does R converge to 1, but both B and W converges in stability.  Additionally, the Deviance 

Information Criteria (DIC) for this model was 70,738.0. 
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Figure 29. Gelman-Rubin statistics diagnostic plots of σi with Normal prior of 𝜽𝒊. 

                      1=CAUTI, 2=SSI:Colon, 3=SSI:Abdominal,  

                                  4=CLABSI, 5=C. difficile, 6=MRSA 

 

 

Parameter estimates obtained from the model are represented in Table XVI and the 

posterior distribution plots of each parameter, αi and σi, are shown in Figures 30 and 31, 
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respectively. Based on the FB implementation, each parameter has an approximately normal 

distribution and estimates are based on the final 5,000 iterations of the MCMC. Measure 

SSI:Colon had the largest estimate of αi with mean value -3.71, and MRSA had the lowest 

estimate with mean value of -9.87. The CLABSI and C. difficile measures had similar estimates 

of -7.11 and -7.51, respectively. The CAUTI measure had the largest discrimination, with 

parameter estimate of σi being 0.74. Both SSI measures had similar estimates of σi with mean 

posterior values of 0.23 for colon surgeries and 0.25 for abdominal surgeries. The remaining 

HAI measures had similar infection rates ranging from 0.33 to 0.37. Estimates obtained from the 

EB implementation of model 5.1 were similar to those obtained by the FB model. 
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TABLE XVI 

PARAMETER ESTIMATES OBTAINED FROM MODEL 5.1 

Parameter 

Full Bayes Estimate 

(95% Credible Interval) 

Empirical Bayes Estimate 

(95% Confidence Interval) 

α(CAUTI) -6.6964 (-6.7350, -6.6566) -6.6960 (-6.7361, -6.6559) 

α(SSI:Colon) 
-3.7083 (-3.7402, -3.6779) 

-3.7081 (-3.7393, -3.6769) 

α(SSI:Abdominal) -4.9264 (-4.9817, -4.8740) -4.9250 (-4.9785, -4.8716) 

α(CLABSI) -7.1051 (-7.1389, -7.0705) -7.1052 (-7.1395, -7.0709) 

α(C. difficile) -7.5108 (-7.5309, -7.4897) -7.5103 (-7.5311, -7.4896) 

α(MRSA) -9.8680 (-9.9097, -9.8273) -9.8668 (-9.9079, -9.8258) 

σ(CAUTI) 0.7408 (0.7064, 0.7740) 0.7393 (0.7048, 0.7739) 

σ(SSI:Colon) 0.2337 (0.2009, 0.2674) 0.2334 (0.1999, 0.2669) 

σ(SSI:Abdominal) 0.2548 (0.1999, 0.3110) 0.2533 (0.1984, 0.3082) 

σ(CLABSI) 0.3503 (0.3196, 0.3807) 0.3498 (0.319, 0.3807) 

σ(C. difficile) 
0.3747 (0.3555, 0.3945) 0.3737 (0.3539, 0.3934) 

σ(MRSA) 0.3357 (0.2978, 0.3754) 0.3343 (0.2951, 0.3735) 
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Figure 30. Posterior distribution of αi. 

                   1=CAUTI, 2=SSI:Colon, 3=SSI:Abdominal,  

                                    4=CLABSI, 5=C. difficile, 6=MRSA 
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Figure 31. Posterior distribution plots of σi. 

                   1=CAUTI, 2=SSI:Colon, 3=SSI:Abdominal,  

                                    4=CLABSI, 5=C. difficile, 6=MRSA 

 

 

Classification is based on determining the bottom 5% of the posterior distribution of θi. 

Figure 32 shows the normal and kernal density plots for the estimator of θi and indicates they are 

both approximately the same. Figure 33 shows the observed infections for each of the HAI 

measures versus the estimate θi. Lower values of 𝜃�̂� are associated with lower number of 

observed infections and higher values of 𝜃�̂� are based on larger number of observed infections.   
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Figure 32. Normal and kernal density plot of 𝜽𝒊.̂  
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Figure 33. Observed number of infections versus 𝜽𝒊. 

 

 

Based on the classification scheme defined above, there are 186 hospitals identified as 

high-performing hospitals. Of these 186 hospitals, 167 hospitals had data in all 6 HAI measures. 

There were 19 hospitals that had less than six measures. Ten of the 19 hospitals had data in five 

measures, one hospital had data four measures, one hospital had data in three measures, and 

seven hospitals that were identified as a top performer had data in two measures. The rates for 

the individual measures for the high-performing hospitals are displayed in Table XVII. All rates 
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in the high-performing hospitals are lower than the national rates, with MRSA having the lowest 

overall mean observed rate. The number of infections for high-performing hospitals is displayed 

in Figure 34 with the majority of hospitals having zero infections over the one-year time period 

and C. difficile being the only measure containing hospitals having a larger number of infections 

above 10 over the given time period.   

 

 

TABLE XVII 

HAI RATES OF HIGH-PERFORMING HOSPITALS 

Measure N Mean Max Median Min 

CAUTI 181 0.00026402 0.00182 0 0 

SSI:Colon 179 0.009744941 0.11905 0 0 

SSI:Abdominal 167 0.004373731 0.08333 0 0 

CLABSI 181 0.000412064 0.00524 0 0 

C. difficile 183 0.000178966 0.00076 0.000164 0 

MRSA 182 0.000025614 0.00021 0 0 
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Figure 34. Observed number of infections of high-performing hospitals. 

 

 

There were 37 hospitals identified as low-performing hospitals based on the method 

outlined in this study. There were two hospitals that submitted data for two measures, two 

hospitals that submitted data for three HAI measures, two hospitals that submitted data for five 

measures, and the remaining 31 hospitals sent data in all six of the HAI measures. Table XVIII 

shows the distribution of observed rates for low-performing hospitals. All rates in all the 

measures were higher than the national rates with both SSIs having the highest rates. Figure 35 
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shows the observed number of infections by the estimate of θi for hospitals identified as low-

performing hospitals. Catheter associated urinary tract infections and C. difficile contained the 

hospitals with the highest number of infections in the low-performing group among all the 

measures. 

 

TABLE XVIII  

HAI RATES OF LOW-PERFORMING HOSPITALS 

Measure N Mean Max Median Min 

CAUTI 35 0.006372 0.00991 0.006293 0.003038838 

SSI:Colon 34 0.045344 0.12 0.043407 0 

SSI:Abdominal 32 0.014438 0.09091 0.010262 0 

CLABSI 36 0.002076 0.00428 0.001893 0 

C. difficile 36 0.001111 0.00323 0.001063 0.000413234 

MRSA 33 0.000108 0.00033 0.000103 0 
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Figure 35. Observed number of infections of low-performing hospitals. 

 

 

Figure 36 plots the estimates from both EB and FB analyses and the correlation between 

both methods is almost 1. The CCC obtained has a value of 0.9996 indicating there is almost a 

100% agreement between both methods. 
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Figure 36. Plot of Empirical Bayes estimates versus Full Bayes estimates of 𝜽𝒊. 

 

 

With respect to identifying high and low performers, the Poisson model properly 

identified those hospitals with low number of observed infections in the high-performing group 

and the model identified hospitals with high numbers of infections as low-performing hospitals. 

The overall fit of the Poisson model had similar DIC when compared to models utilizing the 

binomial models. In conclusion, the Poisson model works well in identifying top performers 

utilizing only aggregated summary data. If patient level data were available, then more 

appropriate techniques would be able to be studied to verify the validity of the models. 
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5.5  Poisson Model Applied to Performance Measure Data 

 

Model 5.1 has been applied to hospital performance measure data using the FB method to 

estimate the model parameters. All hospital performance measure data was used as opposed to 

analyzing those hospitals that had complete data in all four measure sets. That is, all 2,957 

hospitals used in section 4.1.4 are included in the univariate Poisson model. 

Convergence of the Poisson model occurred before the 2,000 iterations as seen in the 

diagnostic convergence plots of σi displayed in Figure 37. Thus, the final 5,000 iterations from 

both chains of the MCMC procedure were used in calculating the parameter estimates displayed 

in Table XIX. The DIC computed for the Poisson model was 89,070.0 compared to 79,959.4 

using the binomial model. In this model, HF had the highest amount of discrimination and AMI 

had the lowest amount of discrimination. 
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TABLE XIX  

PARAMETER ESTIMATION USING FULL BAYES MODEL FOR STATIC DATA 

Parameter 

Full Bayes 

Estimate (95% Credible Interval) 

αAMI -0.0104 (0.0000, -0.0097) 

αHF -0.0280 (0.0000, -0.0259) 

αPN -0.0305 (0.0000, -0.0290) 

αSCIP -0.0135 (0.0000, -0.0131) 

σAMI 0.0022 (0.0000, 0.0033) 

σHF 0.0054 (0.0001, 0.0082) 

σPN 0.0039 (0.0001, 0.0060) 

σSCIP 0.0026 (0.0000, 0.0036) 

 

 

 

Estimates of θi are obtained from the model. Applying the same methodology for 

calculating high- and low-performing hospitals yields 147 high performers and 29 low 

performers. The high-performing group had an average observed rate, pi, of 99.57% ranging 

from 98.99% to 100% whereas the low-performing group had an average rate of 91.23% ranging 

from 78.43% to 97.52%.    

In comparing estimates of θi from both the binomial and the Poisson method, the 

correlation was 0.6479, which indicates a slight positive linear relationship. The density of both 

estimates are displayed in Figures 38 and 39.   



 

 

 113 

 

iteration

0 2500 5000 7500

s
ig

m
a

[1
]

0
.0
0

.2
0

.4
0

.6
0

.8

iteration

0 2500 5000 7500

s
ig

m
a

[2
]

0
.0

0
.5

1
.0

iteration

0 2500 5000 7500

s
ig

m
a

[3
]

0
.0

0
.5

1
.0

1
.5

iteration

0 2500 5000 7500

s
ig

m
a

[4
]

0
.0

0
.5

1
.0

1
.5

 
Figure 37. Diagnostic plots of σi. 

                      1=AMI, 2=HF, 3=PN, 4=SCIP 
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Figure 38. Density plot for binomial and Poisson estimates of θi. 
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Figure 39. Plot of estimates of θi from Poisson and binomial models. 
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Figure 40. Plot of the estimate of 𝜽𝒊 versus observed rate Pi.  

 

  

The Poisson estimates had a narrower curve with a smaller variance compared to the 

binomial estimates. As seen in the plot of the kernel density, the estimates obtained from the 

Poisson model are slightly skewed and fall below 1.0 ranging from -2.98 to 0.97, whereas 

estimates obtained from the binomial model had a more symmetrical bell shaped, normal, curve. 

Figure 40 shows the plots of each estimates of θi from each model with the Loess line, which is a 

local regression smoothing plot and shows there is slight agreement in the middle and tails but 
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not total agreement, as some hospitals with lower rates were not identified as low-performing 

hospitals by the Poisson method as confirmed by the calculation of the CCC with a value of 

0.229. One possible reason is that the restriction of the variance being the same as the mean is 

too restrictive for the binomial data that skewed towards 1. 

  



 

 

 118 

 

6. BIVARIATE MODEL 

 

In this section, hospital quality is estimated using a vector θ = (θ1, θ2,…, θk) that has a 

generalized multivariate normal distribution based on k different aspects of quality of care within 

the framework of a Poisson and binomial model. In this study, θ is will be bivariate normal 

where the first component is estimated based on hospital performance measure data and the 

second component is based on hospital safety data, i.e., HAIs. 

Let yij be the numerator for the jth measure in the ith hospital and nij be the denominator 

for the  jth measure in the ith hospital where j=1,..,6. Let θs be the latent variable representing the 

underlying quality measure of hospital safety. Similarly, for hospital performance measures, I 

assume j ranges from 1 to 4 in this study and let θpm be the latent variable representing the 

underlying quality measure of hospital performance measures. Under this framework, the 

assumption that the overall vector of hospital quality is represented by θi = (θpm, θs), are 

exchangeable to the joint distribution, and p(θpm, θs) is invariant to permutations of the indices 

for the ith hospital. This means that θi is an independent sample from a prior distribution with 

unknown parameter ϕ. In general, if there are k different measures of quality, then this yields the 

following hospital specific: 

𝑝(𝜽𝑖|𝜑) = ∏ 𝑝(𝜃𝑖𝑗|𝜑)

𝑘

𝑗

 

𝑝(𝜽𝑗) = ∫ [∏ 𝑝(𝜃𝑖𝑗|𝜑)

𝑘

𝑖

] 𝑝(𝜑)𝑑𝜑 

And the joint posterior distribution is  
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𝑝(𝜽𝑗 , 𝜑|𝑦𝑖𝑗) ∝ 𝑝(𝜽𝑗 , 𝜑)𝑝(𝑦𝑖𝑗|𝜽𝑗 , 𝜑). 

Within this framework, a two component bivariate regression model is used to determine the two 

estimates of hospital quality based on performance measures and hospital safety derived from 

HAIs. In general, the model will be of the form previously shown as follows: 

𝑦𝑖𝑗~𝑓(𝜇𝑖𝑗,𝑛𝑖𝑗) 

𝑔(𝜇𝑖𝑗) = 𝛼𝑗 + 𝜎𝑗𝜃𝑖        (5.3) 

                                                              𝑤ℎ𝑒𝑟𝑒 𝜎𝑗 > 0 𝑎𝑛𝑑   𝜃𝑖~𝑀𝑉𝑁(0, ∑). 

 

In this model 5.3, αi represents the baseline rate for the jth measure and σj represents the 

discrimination factor for the jth measure. The function f(*) represents the assumed distribution 

with corresponding link function g(). Based on previous sections, f(*) will be the binomial 

distribution for the performance measure data and f(*) will be the Poisson model for the safety 

data and will be as follows: 

 

For hospital safety data 

𝑦𝑖𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗,𝑛𝑖𝑗) 

𝑓(𝑦𝑖𝑗; 𝜇𝑖𝑗) =
exp (−𝜇𝑖𝑗)(𝜇𝑖𝑗

𝑦𝑖𝑗)

𝑦𝑖𝑗
 

𝑙𝑜𝑔(𝜇𝑖𝑗) = 𝛼𝑗 + 𝜎𝑗𝜃𝑖 + log (𝑛𝑖𝑗) 

where log(nij) is the offset term. 
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And for hospital performance measure data: 

𝑦𝑖𝑗~ 𝐵𝑖𝑛(𝑛𝑖𝑗, 𝑝𝑖𝑗) 

𝑓(𝑦𝑖𝑗; 𝑛𝑖𝑗 , 𝑝𝑖𝑗) = (
𝑛𝑖𝑗

𝑦𝑖𝑗
) 𝑝

𝑖𝑗

𝑦𝑖𝑗(1 − 𝑝𝑖𝑗)
𝑛𝑖𝑗−𝑦𝑖𝑗

 

𝑙𝑜𝑔(𝑝𝑖𝑗) = 𝛼𝑗 + 𝜎𝑗𝜃𝑖 

𝜃𝑖 = (
𝜃𝑝𝑚

𝜃𝑠
) ~𝑀𝑉𝑁 ((

0
0

) , ∑) 

where Σ is a Wishart distribution with hyperparameters analogous to precision. 

 A full Bayesian model was employed in OpenBUGS to obtain hospital estimates of using 

the same prior distributions on αi  and βi  as in the previous models in sections 5.1 and 5.2, and Σ 

will have a Wishart prior distribution with hyperparamenters associated with precision.  

 

6.1 Estimating Hospital Quality from the Bivariate Model 

 

For each hospital, estimates of  𝜽 = (𝜃𝑝𝑚, 𝜃𝑠), are obtained where 𝜃𝑠 represents the 

estimate of hospital safety quality based on the HAIs and 𝜃𝑝𝑚represents the estimate of hospital 

quality based on the hospitals’ ability to provide the appropriate treatment for performance 

measures. In general, 𝜽 can be a vector with k items depending on the number of valid estimates 

of hospital quality that can be extended to include additional hospital measures such as outcomes 

measures and physician measures.   
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For the bivariate model, the same methodology of identifying high-performing hospitals 

is adapted. The method in the bivariate case is as follows. First is to determine the credible 

region for each hospital by finding the points {𝜽�̂�: (�̂�𝑖 − 𝜽�̅�)
𝑇

Σ−1(𝜽�̂� − 𝜽�̅�) ≤ 𝜒1−𝛾
2 (𝑘)} where �̅�𝑖 

is the centroid of the ellipse and k=2 (Berger, 1980). For each hospitals define θmax = (max(θpm), 

max(θS)) and  θmin = (min(θpm), min(θS)). The lower bound of the credible region is defined as the 

point  �̂�𝑳𝑩 = 𝑎𝑟𝑔𝑚𝑖𝑛 (||�̂� − 𝜽𝑚𝑖𝑛||), and the upper bound of the credible region is defined as       

�̂�𝑼𝑩 = 𝑎𝑟𝑔𝑚𝑖𝑛(||�̂� − 𝜽𝑚𝑎𝑥||) (see Figure 41). From the lower bounds, a linear combination for 

each upper and lower bound is defined as 𝐿𝐵 = 𝒘𝑻�̂�𝑳𝑩 and the upper bound is defined as 𝑈𝐵 =

𝒘𝑻�̂�𝑼𝑩 where wT  is a row vector of weights that sum to 1. For this study, each estimate is 

weighted equally so the lower bound and upper bound are the mean of the individual terms of the 

lower and upper bounds. Thus, classification follows as previously mentioned.   
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Figure 41. Identification of upper and lower bounds of 𝜽𝒊. 

 

 

6.2 Results of the Bivariate Model 

 

This analysis consists of those hospitals that sent in data for both safety measures and 

hospital performance measures without any other constraints on the number of measures or 

sample sizes. There were 2,432 hospitals that had data in at least one measure set for the 

performance measure data and had data in at least one of the patient safety infection measures. 

The distribution of the data for each data grouping is presented in Table XX. For the 

performance measures, all of the measures sets had mean overall rates above 95% and SCIP had 

the highest overall rate with the lowest standard deviation. For the infection safety measures, 
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MRSA and C. difficile had the lowest mean rates and the SSI measures had the highest 

maximum rates of 0.33 each.  

 

 

TABLE XX 

SUMMARY STATISTICS OF THE RATES FOR BIVARIATE DATA 

Measure n Mean 

(Std) 

Max 

Rate 

90th 

Percentile 

 

Median 

 

10th 

Percentile 

 

Min 

 

Performance 

Measures 

       

   AMI 2,293 0.976 (0.0594) 1 1 0.99265 0.94118 0 

   HF 2,385 0.965 (0.0652) 1 1 0.99057 0.9 0 

   PN 2,374 0.968 (0.0416) 1 1 0.97727 0.93293 0.41176 

   SCIP 2,337 0.984 (0.0207) 1 0.99745  0.989 0.96862 0.66667 

        

Infection 

Measures 

       

  CAUTI 2,327 0.0016 

(0.0016) 

0.01613 0.00377 0.00121 0 0 

  SSI:Colon 2,330 0.0257 

(0.0316) 

0.33333 0.06122 0.01839 0 0 

  SSI:       

    Abdominal 

2,256 0.0080 

(0.0183) 

0.33333 0.02273 0 0 0 

  CLABSI 2,332 0.0010 

(0.0043) 

0.2 0.00222 0.00059 0 0 

  C. difficile 2,408 0.0006 

(0.0004) 

0.00765 0.00108 0.00054 0 0 

  MRSA 2,399 0.0001  

(0.0001) 

0.00095 0.00013 0.00002 0 0 
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Convergence results of model 5.3 are displayed in Figures 42–45. Each of the parameters 

for the performance measures converged much slower than the estimates of the α parameters for 

the safety measures. A similar pattern is also observed for the convergence of σi and Figure 46 

shows that both chains converge utilizing the Gelman-Rubin statistic. For each estimate, the ratio 

for each of the two chains converges to 1, indicating agreement and convergence. 

Density plots for each parameter estimate are presented in Figures 47 and 48. Plots of α 

show the estimates follow a normal distribution. Similarly, the estimates of σi also follow a 

normal distribution and those with lower amounts of discrimination near zero show a truncated 

normal distribution which follows the initial assumption. 
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Figure 42. Convergence plots for αi. 

                       1=AMI, 2=HF, 3=PN, 4=SCIP, 5=CAUTI  
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Figure 43. Convergence plots for αi. 

                               6=SSI:Colon, 7=SSI:Abdominal, 8=CLABSI, 9=C. difficile, 10=MRSA 
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Figure 44. Convergence plots for σi. 

                               1=AMI, 2=HF, 3=PN, 4=SCIP, 5=CAUTI 
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Figure 45. Convergence plots for σi. 

                               6=SSI:Colon, 7=SSI:Abdominal, 8=CLABSI, 9=C. difficile, 10=MRSA 
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Figure 46. Gelman-Rubin statistics diagnostic plots of σi. 

                              1=AMI, 2=HF, 3=PN, 4=SCIP, 5=CAUTI, 6=SSI:Colon,  

                                    7=SSI:Abdominal, 8=CLABSI, 9=C. difficile, 10=MRSA 
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Figure 47. Density plots for αi. 

                              1=AMI, 2=HF, 3=PN, 4=SCIP,5=CAUTI, 6=SSI:Colon,  

                                    7=SSI:Abdominal, 8=CLABSI, 9=C. difficile, 10=MRSA 
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Figure 48. Density plots for σi. 
                              1=AMI, 2=HF, 3=PN, 4=SCIP,5=CAUTI, 6=SSI:Colon,  

                                    7=SSI:Abdominal, 8=CLABSI, 9=C. difficile, 10=MRSA 
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TABLE XXI 

PARAMETER ESTIMATES AND CREDIBLE INTERVALS 

Measure 

α 

Full Bayes Estimate 

(95% Credible Interval) 

σ 

Full Bayes Estimate 

(95% Credible Interval) 

AMI 4.851 (4.796, 4.907) 1.211 (1.161, 1.257) 

HF 3.891 (3.834, 3.951) 1.107 (1.053, 1.161) 

PN 3.660 (3.626, 3.695) 0.637 (0.604, 0.669) 

SCIP 4.433 (4.397, 4.472) 0.863 (0.833, 0.891) 

CAUTI -6.621 (-6.665, -6.579) 0.728 (0.693, 0.767) 

SSI:Colon -3.710 (-3.744, -3.677) 0.261 (0.225, 0.298) 

SSI:Abdominal -4.914 (-4.971, -4.858) 0.267 (0.210, 0.325) 

CLABSI -7.068 (-7.104, -7.033) 0.337 (0.305, 0.370) 

C. difficile -7.445 (-7.466, -7.426) 0.319 (0.300, 0.338) 

MRSA -9.797 (-9.838, -9.757) 0.305 (0.266, 0.346) 

 

 

Parameter estimates with their 95% credible intervals are shown for each measure in 

Table XXI. Similar patterns with respect to αi are seen in the bivariate case as in the univariate 

case. For the performance measures, AMI had the largest estimate of α along with the largest 

credible interval, while PN had the lowest α estimate. For the safety measures, MRSA had the 

lowest parameter estimate of -9.797 for α while SSIs for colon surgeries had the highest α 

estimate of -3.71. With regard to the estimates of σi for the performance measures, AMI had the 

largest discrimination factor of 1.211 and HF had the second highest with a value of 1.107, 

whereas PN and SCIP had the lowest amount of discrimination with values of 0.637 and 0.863, 

respectively. For the safety measures, the CAUTI measure had the highest amount of 
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discrimination of 0.728, while the amount of discrimination of the remaining safety measures 

ranged from 0.261 to 0.337. The density of the posterior estimates for θpm and θs is presented in 

Figure 49, which shows both posterior distributions are approximately normal with mean 0 and 

standard deviation of 1. Figure 50 plots the mean posterior estimates for each hospital for θpm and 

θs. The correlation between the two estimates is -0.05397, which is significantly different from 0 

(p=.0078). Figure 51 shows the contour plots for each of the estimates of  θpm and θs and shows 

the highest density is centered around the origin. 

 

 

 

Figure 49. Posterior density graphs of θpm and θs. 
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Figure 50. Plots of mean posterior estimates of θpm and θs. 
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Figure 51. Contour plot of mean posterior estimates of θpm  and θs. 

 

 

Plots of θpm versus pij, the observed measure composite rates, are displayed in Figure 52, 

which shows increasing values of θpm for increasing observed rates for each measure set. The 

Loess line included in those plots also indicates that higher performing hospitals are indicative of 

higher values of θpm. Similarly, Figure 53 shows plots of θs versus the observed number of 

infections of the safety infection measures. Increased values of θs are associated with lower 

numbers of infections for each of the measures in this study, which indicates that higher-quality 

hospitals have lower infections and infection rates. 

 



 

 

 136 

 

 

Figure 52. Plots of estimates of θpm versus observed performance measure rates. 
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Figure 53. Plots of estimates of θs versus observed number of infections. 

 

 

There are 121 hospitals identified as top-performing hospitals based on the method 

outlined using the performance measure data and the infection safety data jointly. The mean 

value of the estimates of θpm is 1.58 that ranged from -0.39 to 2.79. The mean estimate of θs is 

0.97 with a range of -0.69 to 3.15. The mean of the mean of the estimates of θpm and θs for the 

top-performing hospitals is 1.28 that ranges from 0.806 to 2.24 with a standard deviation of 
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0.294. Mean rates on the four composite performance measures are 99.7% for AMI, 99.7% for 

HF, 98.7% for PN, and 99.7% for SCIP. For the safety infection measures, the observed number 

of infections for the high-performing hospitals is 0.59 (0.0047%) for SSI:Abdominal, 10.9 

(0.003%) for C. difficile, 2.89 (0.0006%) for CAUTI, 1.94 (0.0006%) for CLABSI, 1.46 

(0.0145%) for SSI:Colon, and 1.43 (0.00004%) for MRSA.  

Using the methodology described, there are 24 hospitals identified in the bottom 1% of 

the joint distribution. The mean estimate of θpm for these low-performing hospitals is -1.29, 

ranging from -.23 to -3.51, and the mean estimate for θs is -.72 with a maximum value of  -.32 

and a minimum value of -2.70. For the performance composite measures, the lower 1% of the 

hospitals identified had an mean AMI rate of 95.7% ranging from 66.7% to 100%, a mean HF 

rate of 90.0% ranging from 60% to 99.5%, a mean PN rate of 90.4% ranging from 60.0% to 

100%, and a mean SCIP rate of 94.5% ranging from 74.2% to 98.8%. The observed number of 

infections and average infection rate for the safety infection measures, is 3.45 (0.0147%) for 

SSI:Abdominal, 64.208(0.0009%) for C. difficile, 66.65 (0.005%) for CAUTI, 21.208 (0.002%) 

for CLABSI, 6.608 (0.048%) for SSI:Colon, and 8.28 (0.0001%) for MRSA.  
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7. DISCUSSION 

 

7.1 Binomial Regression Model  

 

As the world of hospital performance measurement evolves, innovative and robust 

statistical techniques are important, more than ever, in order to properly evaluate hospitals. The 

methods outlined in this study can be extended to other areas of interest such as education and 

behavioral sciences. Using static yearly data, the method outlined accurately models the overall 

composite hospital rate adjusting for the variation between the measure sets. The advantage of 

using composite measures relates to the cumulative effect of combining all opportunities within a 

measure set to an overall rate based on the accountability measures within the set. This enables 

better assessment of hospital care within a measure set for those hospitals with low patient 

volume in addition to giving a person a single number by which to assess those hospitals that are 

high performers. The exception is with HF because the composite measure for HF contains only 

one accountability measure. One issue involved with using composite rates is the loss of 

variation of individual measures within a measure set or therapeutic area. 

I explored three models to classify hospitals using yearly static data, an FB model with a 

standard normal distribution assumption on the latent variable, an FB model with a rectangular 

distribution assumption on the latent variable, and an EB model with a standard normal 

assumption on the latent variable. The two models (FB and EB) with the standard normal prior 

distribution yielded similar results. Classification of hospital quality using FB is based on 

probabilities of the posterior distribution of the latent variable. Classifying hospitals based on the 
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EB model is based on using confidence intervals, which is comparable to the FB method 

utilizing a large number of hospitals and data elements. Since FB methods are easy to compute 

with programs such as OpenBUGS, classifying hospitals based on probabilities is easy to 

interpret and preferred over EB methods. The model using the rectangular prior produces 

inferences that lend to misclassifying hospitals due to the larger variation, i.e., a larger DIC, and 

more work in assessing more appropriate parameters of the rectangular distribution is needed.  

Using the methods outlined in this study, I identify a fixed number of hospitals as being 

top-performing hospitals, i.e., the top 5% of all hospitals, as opposed to other organizations such 

as the Joint Commission that identify top performers based on a minimum threshold of raw 

observed rates. One limitation of using raw composite rates is that the variability between the 

measure sets is not taken into account, thus introducing higher error rates identifying top 

performers. This method takes this variability into account and gives a higher degree of 

confidence of correctly identifying top-performing hospitals. This methodology is extended to 

identify low-performing hospitals as well in order to provide motivation for improvement. As 

shown, hospitals with higher rates in the performance measures yielded higher latent scores and 

hospitals with lower performance measure rates are associated lower estimates of the latent 

score. 

Within the framework of the longitudinal analysis, hospitals with declining measure rates 

over a three-year period based on quarterly composite rates are identified. For each of the 

measure sets, an average increase in composite measure rates is observed over the three-year 

period of evaluation, with HF and PN having the most opportunity for improvement. One 
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limitation in this study is that not all hospitals had enough longitudinal data in all measure sets as 

some hospitals were represented by just one measure set. Another limitation is utilizing quarterly 

data where the number of opportunities was not enough to be included in the study. This 

methodology is important as a surveillance system to identify those hospitals that are not 

maintaining an acceptable level of quality. Additionally, the current methods show hospitals with 

superior quality improvement efforts over time. With this information, better hospital performers 

will be recognized so other hospitals in need of improvement can learn from their experiences to 

increase their rates to an acceptable level. 

 

7.2 Poisson Regression Model 

 

Using a Poisson regression model for the hospital performance measure data is not 

advisable when the binomial rates are close to 100%. The Poisson distribution is better used for 

data where the occurrence of the outcome is a rare event, i.e., close to zero. Therefore, 

identifying top-performing hospitals based on the Poisson model is not an effective choice of 

models with performance measure data. 

For the patient safety data, the Poisson model fits the data appropriately because 

infections rates are very low. Hospital safety infection data cannot be aggregated to a composite 

rate and therefore each measure is represented individually. Because of very small rates of 

infections among the hospitals used in this study, the assumptions of the Poisson model are a 

good choice to fit these data.   
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In this study, I have demonstrated that using a Poisson model is effective in identifying 

top-performing hospitals in the areas of patient safety. Those top-performing hospitals share 

characteristics of having a lower number of reported infections and therefore a lower rate of 

infections.  

 

7.3 Bivariate Model 

 

Using a bivariate model to jointly model both the performance measure data and the 

patient safety infection data is a unique and appropriate way to model the data and determine 

high- and low-performing hospitals. Using this FB method to model the performance measure 

data with a binomial model and to model the patient safety infection data with a Poisson model 

to determine the joint distribution of this scoring method is a robust approach and each of the 

observations is exchangeable. By extending the concept of credible intervals to credible regions, 

I was able to identify top-performing hospitals that have both high performance measure rates 

and low number of infections. Identifying low-performing hospitals based on the bottom one 

percentile revealed organizations with low-performance measure rates and a high number of 

infections, although there are some hospitals with high performance measure composite rates 

that were also identified as low performers.  
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7.4 Conclusion  

 

Model-based scoring methods offer more advantages than methods based on point 

estimates, as the former method borrows strength from other measure sets. The proposed 

methodology, in the binomial, Poisson, or bivariate regression models, accounts for hospital 

variation in order to make proper comparisons and categorizations of hospitals. Extending this 

method to a longitudinal setting offers similar results in identifying top performers in quality 

improvement efforts.  

As more data become available that represent increasing numbers of dimensions of 

hospital quality, the bivariate modeling approach presented in this study can be adapted to the 

multivariate case. Due to the exchangeability of the data, the FB approach is preferred. This final 

method presented accommodates the utilization of various distributions based on the data to 

determine an overall multivariate score which will enable a more accurate picture of hospital 

quality. 

 

7.5 Beyond This Study 

 

The work of identifying best hospital practices should not stop here. There are many 

different types of data that are collected by the hospitals and I am only scratching the surface of 

what is available. As healthcare organizations move into electronic medical records and new 

electronic measures (e-measures), more data will become available. Future work in modeling the 

data with extensions of the Poisson model such as the zero-inflation Poisson model, the over-
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dispersed Poisson model, and the negative binomial model will be further explored. Future 

exploration of different prior distributions on the latent variables and weighting schemes in 

construction of the composite measures is also required. Another area of research is to compare 

classifications based on composite measures to classification of hospitals using models at the 

measure level in order to determine if composite measures yield the same inferences. 
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APPENDIX A 

 

Sample of composite measure data and OpenBUGS code to fit the latent variable model. 

The complete data has 1,625 hospitals, each having four composite measures representing AMI, 

HF, PN, and SCIP. The variable sumnum refers to the number of time the appropriate therapy 

was provided within each therapeutic area; sumden refers to the total number of opportunities 

available to each therapeutic area; set refers the therapeutic area and hconum represents the 

hospital. 

Sample of Static Year (3Q2012–2Q2013) Data: 

sumnum[] sumden[] set[] hconum[] 

52 55 1 1 

31 32 2 1 

303 307 3 1 

673 688 4 1 

1456 1467 1 2 

288 288 2 2 

407 450 3 2 

2135 2163 4 2 

79 83 1 3 

42 43 2 3 

145 158 3 3 

444 467 4 3 
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APPENDIX A (continued) 

 

OpenBUGS Code – Static Year Analysis 

 

model { 

    for (i in 1:6500) { 

       sumnum[i]~ dbin(p[hconum[i],set[i]],sumden[i]) 

       logit(p[hconum[i],set[i]]) <- a[set[i]] +b[set[i]]*theta[hconum[i]]   } 

  for (j in 1:1625){ 

      theta[j] ~dnorm(0,1) 

   } 

   for (k in 1:4){ 

        a[k] ~dnorm(0,0.0001) 

        b[k] ~dnorm(0,0.0001)I(0,) 

   } 

        betabm ~dnorm(0,0.0001)  

        betaT  ~dnorm(0,0.0001)  

        betaBL ~dnorm(0,0.0001)  

        betaRural ~dnorm(0,0.0001)  

} 
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APPENDIX A (continued) 

 

SAS code - Static Year Analysis for EB analysis 

 

proc nlmixed data=analysis empirical; 

    parms alpha1=4 alpha2=4 alpha3=3 alpha4=3.5  beta1=1.2 beta2=1 beta3=1.2 beta4=2 ; 

 

    if set=1 then 

       eta = alpha1*measet1 + beta1*theta ; 

    if set=2 then 

       eta = alpha2*measet2 + beta2*theta ; 

    if set=3 then 

       eta = alpha3*measet3 + beta3*theta; 

  if set=4 then 

       eta = alpha4*measet4 + beta4*theta; 

 

  pij= exp(eta)/(1+exp(eta)); 

  bounds beta1,beta2,beta3,beta4>0; 

 

   model sumnum ~ binomial(sumden,pij); 

 

  random theta~normal(0,1) subject=hcoid out=thetaout; 

  predict pij out=predout;  

run; 
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APPENDIX B 

 

Sample of composite measure data and OpenBUGS code to fit the latent variable model. 

The complete data have 1,588 hospitals, each having four composite measures representing 

AMI, HF, PN, and SCIP. The variable sumnum refers to the number of time the appropriate 

therapy was provided within each therapeutic area; sumden refers to the total number of 

opportunities available to each therapeutic area; set refers the therapeutic area; t refers to the time 

period and hconum represents the hospital. 

 

Sample Longitudinal Data: 

 

sumnum[] sumden[] set[] t[] hconum[] 

85 89 3 1 1 

98 102 3 2 1 

88 89 3 3 1 

95 95 3 4 1 

91 94 3 5 1 

111 112 3 6 1 

88 90 3 7 1 

91 94 3 8 1 

78 80 3 9 1 

72 73 3 10 1 

69 69 3 11 1 

84 85 3 12 1 
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  APPENDIX B (continued) 

 

OpenBUGS Code – Longitudinal Analysis 

 

 

model { 

    for (i in 1:51672) { 

       sumnum[i]~ dbin(p[hconum[i],set[i],t[i]],sumden[i]) 

    

     logit(p[hconum[i],set[i],t[i]]) <- a[set[i]]+a2[set[i]]*t[i] +b[set[i]]*theta1[hconum[i]] 

+b2[set[i]]*theta2[hconum[i]]*t[i]  

   } 

  for (j in 1:1588){ 

      theta1[j] ~dnorm(0,1) 

      theta2[j] ~dnorm(0,1) 

   } 

   for (k in 1:4){ 

        a[k] ~dnorm(0,0.0001) 

        b[k] ~dnorm(0,0.0001)I(0,) 

        a2[k]~dnorm(0,0.0001) 

        b2[k]~dnorm(0,0.0001)I(0,) 

        

   } 

        betabm ~dnorm(0,0.0001)  

        betaT  ~dnorm(0,0.0001)  

        betaBL ~dnorm(0,0.0001)  

        betaRural ~dnorm(0,0.0001)   

 

} 
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  APPENDIX B (continued) 

 

 

SAS Code – Longitudinal Model 

 

proc nlmixed data=long2 tech=nrridge empirical; 

  parms alpha10=3.39 alpha20=2.5 alpha30=2.23 alpha40=2.77 

      alpha11=.1 alpha21=.09 alpha31=.105 alpha41=.115 

         beta10=.64 beta11=.091  gamma1=-.35 gamma2=.16 gamma3=.07 gamma4=.051 

         beta20=.65 beta21=.11 beta30=.53 beta31=.08 beta40=.70 beta41=.05; 

 

    if set=1 then 

       eta=alpha10*measet1+alpha11*measet1*t+beta10*theta1+      

              beta11*theta2*t; 

 

    if set=2 then 

       eta=alpha20*measet2+alpha21*measet2*t+beta20*theta1+  

              beta21*theta2*t; 

 

    if set=3 then 

       eta=alpha30*measet3+alpha31*measet3*t+beta30*theta1+ beta31*theta2*t; 

 

    if set=4 then 

       eta=alpha40*measet4+alpha41*measet4*t+beta40*theta1+  

              beta41*theta2*t; 

 

      pijt= exp(eta)/(1+exp(eta)); 

 

      bounds beta10,beta11,beta20,beta21,beta30,beta31,beta40,beta41>0; 

 

     model sumnum ~ binomial(sumden,pijt); 

      random theta1 theta2~normal([0,0],[1,0,1]) subject=hcoid out=thetaout; 

      predict pijt out=predout; 

 

run; 



 

 

 158 

 

APPENDIX C 

 

OpenBUGS code for the bivariate model. 

model { 

       for (i in 1:9389){ 

         obs[i]~ dbin(p[hospnum[i],meas[i]],den[i]) 

         logit(p[hospnum[i],meas[i]]) <- alpha[meas[i]] +              

                                                            sigma[meas[i]]*theta[hospnum[i],areacode[i]]  

           } 

 

       for (i in 9390:23441)  { 

              obs[i] ~ dpois(mu[hospnum[i],meas[i]]) 

             log(mu[hospnum[i],meas[i]]) <- alpha[meas[i]] +  

                                               sigma[meas[i]]*theta[hospnum[i],areacode[i]] + log(den[i]) 

             } 

 

        for (j in 1:2432) { 

                theta[j,1:2] ~ dmnorm(beta[],prec.sigma[,]) 

           } 

 

         for (k in 1:10)  { 

              alpha[k] ~ dnorm(0,0.0001) 

              sigma[k] ~ dnorm(0,0.0001)I(0,) 

             } 

 

beta[1] <-0 

 beta[2] <-0 

 

 

 prec.sigma[1:2,1:2] ~ dwish(Omega[,], 2)  

 Sigma[1:2,1:2] <- inverse(prec.sigma[,]) 

 

 Omega[1,1] <- 0.0001  

 Omega[2,2] <- 0.0001  

 Omega[1,2] <- 0  

 Omega[2,1] <- 0  

 

} 
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