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SUMMARY

The goal of this thesis is to investigate the application of fluid mechanics in forensic science in

bloodletting events such as blood spatter due to a gunshot. Bloodstain pattern analysis experts

often rely upon trace evidence and deductive reasoning to solve a crime but can sometimes ignore

standard scientific principles established in fluid mechanics. This can leave an uncomfortable

amount of uncertainty in the results of an analysis performed at a crime scene. Oftentimes,

the transgression committed during the crime scene reconstruction is rooted in a fundamental

misunderstanding of fluid mechanics. As such, this work is an attempt to bridge the gap between

the fluid mechanics and forensic science community by applying sound fluid mechanical theory

and principles to problems within forensic science.

There are several fundamental problems in forensic science that can be investigated and

explored using tools found in fluid mechanics. For instance, what effect does the non–Newtonian

behavior of blood have on atomization and the subsequent flight of blood droplets? What

physical mechanisms are present in the atomization of blood prompted by the impact of a bullet?

Can the original location of the victim and shooter be elucidated using only the information

present in patterns of bloodstains? For victims shot at close range, what is the effect of the

expanding muzzle gases resulting from the chemical reaction propelling the bullet on splashed

blood droplets? This thesis intends to answer all of these questions and subsequently expand

the field of fluid mechanics and forensic science simultaneously.
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SUMMARY (Continued)

The first part of this work is to investigate the rheology of blood. Standard measurements

with recognized techniques are utilized to determine the surface tension and shear viscosity of

swine blood. Swine blood is used as a substitute for human blood because it is biologically

similar and safer to work with. It’s found that blood reveals a power–law shear thinning

behavior in simple shear flow. Comparisons with data on elongational viscosity shows that

it can be up to three orders of magnitude higher than that of shear viscosity. Therefore, the

viscoelasticity of blood should not be ignored as the atomization and dripping processes present

in forensic science applications are affected.

The next chapter deals with a quantitative analysis of high–speed videos found in literature

on the atomization of blood due to a gunshot. The videos show a variety of target and bullet

types and are analyzed with particle image velocimetry and various image analysis tools. Av-

erage velocity histories, typical size and number ranges, blood spatter spray angles, and other

qualitative results are presented. It is shown that blood droplets traveling in the direction of

the bullet, termed forward spatter, are faster than those traveling in the direction opposite

of the bullet, termed backward spatter. Moreover, the blood droplets are seen to possess an

acceleration after leaving the target which indicates there is a collective aerodynamic affect,

similar to that which can be seen in a flock of geese flying in a V formation.

With this knowledge in mind, two backward blood spatter (spatter in the direction opposite

of bullet motion) models were developed. One, for an idealized case of a blunt, or cylindrical

bullet, and the other, for an idealized sharp, or conical bullet. The initial velocities and accel-

eration of the blood droplets are determined through impact–driven fluid mechanics and the
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SUMMARY (Continued)

resultant atomization is attributed to the Rayleigh–Taylor instability. This instability occurs

when a fluid of greater density, in this case blood, is accelerated towards one of lighter density,

i.e. air. The acceleration is found analytically from the specific solutions to the impact–driven

fluid mechanical problems, and then, the number of blood droplets and their respective sizes

are determined through the instability analysis. The flight of the blood droplets then entrains a

significant amount of surrounding air due to viscous suction and the two–phase flow diminishes

the aerodynamic drag of drops trailing the faster ones, thus resulting in the collective effect

occurring in reality. The drop trajectories are also affected by gravity and air drag forces.

The theoretical results are then compared with experimental data and the comparisons for the

distribution of stains with properties such as stain area and impact angle are found to be good.

Forward blood spatter (spatter in the direction of bullet motion) is tackled next and because

of a cascade of instabilities involved as compared to backwards spatter, a different atomization

model is appropriate. Here, a chaotic disintegrating model is used and the liquid target is

fragmented through the growth of lacunae due to the angular stretching of the target from

the motion of the bullet. Then, the target fractures into blood droplets which is predicted

through the framework of percolation theory. The viscoelasticity of blood is important for this

phenomena because the faster motion results in a build–up of elastic stresses which develop

in the blood droplet “tails” which connect the individual droplets to the liquid bulk in a web

of liquid. These droplet tails slow down the blood droplets until the connections undergo

brittle fracture at which point their motion is governed by the same principles as the blood

droplet trajectories in backward spatter. The model is generalized to accommodate bullets of
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SUMMARY (Continued)

any arbitrary shape and the distribution of the number of droplets and average stain area are

compared with experimental data. The results are shown to be good.

The importance of propagating muzzle gases from the chemical reaction of propelling the

bullet on backward spattered blood droplets is then investigated. There are several constituents

of the muzzle gases, propellant gases being one of them, and it is known that they form a tur-

bulent vortex ring. This turbulent vortex ring is shown to be self–similar and carry gunpowder

particles which leads to the deposition of gunshot residue. The results of the self–similar flow,

vorticity, and concentration of gunpowder fields are calculated. The equations of motion of the

trajectories of blood droplets are then modified to accommodate an interaction with the flow

field from the turbulent vortex ring. The changes in the final locations and distributions of the

number of stains and their respective stain areas are presented. It is found that muzzle gases

result in a large difference in the expected bloodstain pattern.

Finally, intact jets of blood are considered which is an important topic for bloodletting

events such as arterial gushing. A theoretical model for the intact jets of liquid is developed

which allows for a generalized coefficient of friction function to be used. This coefficient is

found empirically through experiments conducted in this work. The theoretically predicted

intact liquid jet trajectories match nearly perfectly with the experimental data.
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CHAPTER 1

INTRODUCTION

1.1 History of Bloodstain Pattern Analysis

The first comprehensive study of bloodstain pattern analysis (BPA) was conducted in 1895

by Eduard Piotrowski [10]. He attempted to determine how and where bloodstains form after

blunt trauma to the head, however, after his pioneering work, scientific interest in the topic

waned for several decades. Then, in 1939 BPA research slowly started to gain traction when

Victor Balthazard published a study on determining the angle of impact from a bloodstain [11],

the formula and methodology which he developed is still in use by police departments today. In

1944, LeMoyne Snyder published a widely read book describing many phenomenological aspects

of bloodstains and the proper way to analyze and get useful information from them [12], but

it was not until 1955, however, that many consider to be the establishment of modern day

BPA practices. It was at this time that BPA was first used in a court of law [13]. The case

surrounded the question of whether Dr. Sam Sheppard, a neurosurgeon, murdered his wife

Marilyn Reese. Dr. Sheppard was initially found guilty, but, on appeal, the forensic evidence

presented by Dr. Paul Kirk proved that Dr. Sheppard was innocent and the case solidified

the importance of BPA expert opinion in crime scenes. The field then scientifically progressed

through the work of experts such as Herbert Leon MacDonell who wrote an important book in

1971 [14], and formalized the science by establishing the International Association of Bloodstain

1
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Pattern Analysts (IABPA) in 1983. Scientific research in BPA steadily progressed, but in 2013,

it was noted by Dr. Daniel Attinger, et al. that there are many areas of BPA in which a

fundamental knowledge of physics is lacking [15]. The paper lists several avenues for fluid

mechanics to bridge that gap, and since then, there has been a plethora of research addressing

this issue [2–9,16–22].

1.2 Role of Fluid Mechanics

According to Ref. [15], there are many facets of fluid mechanics that can facilitate the growth

of BPA. An overview of the crossover between the two subjects is shown in that paper in Table

4c. In that table, there are a series of fluid mechanic and BPA topics where relations between the

two are drawn. Several important crossovers exist, namely in the physical properties of blood,

such as its rheology and surface tension. These properties can affect the resultant bloodstain

size, the cast–off pattern, and the formation of possible satellite droplets which allows inferences

such as impact conditions and the type of weapon. The atomization, or liquid jet/sheet breakup

of blood plays a critical role in the number of bloodstains and their resultant spatter pattern.

This has potential to link spatter patterns to specific classes of weapons. The trajectories

of blood droplets in flight is another big issue within BPA which fluid mechanics can digest,

because it contains the mathematical tools to include physical effects such as drag, gravity, and

aerodynamic drop–drop interactions. This allows final possible parameters such as the angle of

impact of a droplet and its final location to properly be determined.
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1.3 Thesis Objectives

As pointed out by Ref. [15], there are many aspects of BPA which can be improved upon

through the application of fluid mechanics. The objective of this thesis is to apply techniques

based upon fundamental fluid mechanics in an attempt to improve the understanding of BPA.

This is completed by developing a deeper understanding of the rheology of blood discussed

in Ch. 4. Then, the atomization process of blood spatter due to a gunshot is quantitatively

explored with particle image velocimetry (PIV) and image processing techniques in Ch. 5.

Using the knowledge gained from these two studies, two mathematical models were developed

for backward spattered blood spray due to a gunshot discussed in Ch. 6. Then, forward blood

spatter is modeled in Ch. 7 and the theoretical model is generalized to account for bullets of

arbitrary shape. The effect of muzzle gases on backward spattered blood droplets is explored in

Ch. 8. Finally, Ch. 9 describes a theoretical model to track the trajectories of intact jets of liquid

for any friction coefficient, and experiments with water jets were conducted and compared.



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Blood Rheology

(This section has been previously published in Rheologica Acta by Kolbasov, and Comiskey,

et al. 2016, in Ref. [1].)

Blood is one of the most common liquids with relevance to disciplines as varied as the food

industry, medicine, and forensics. It is a complex aqueous liquid that starts to coagulate as

soon as it flows out of the human body. Approximately half of the volume of blood consists of

particles such as red and white blood cells and an important property is the hematocrit, which

is the relative volume of red blood cells in that sample of blood [23,24].

Several properties of blood have been already characterized, for instance, the density of

blood, 1060 kg/m3, is close to that of water and blood is known to be a non–Newtonian fluid.

The shear viscosity of blood decreases with shear rate in simple–shear flow, i.e. blood is a shear–

thinning fluid. Moreover, blood viscosity also increases with a decrease in temperature and an

increasing hematocrit. Based on experimental measurements, correlations have been proposed

for the shear viscosity of blood which models the dependence upon hematocrit, shear rate, and

temperature [25]. Other empirical correlations are available, for instance in Ref. [26] based on

Casson’s equation, for shear rates from 2 to 105 s−1. Previous work has been addressed for the

shear–thinning aspects of blood rheology [25,26], as well as the viscoelastic properties [27–29].

4
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A detailed understanding of blood rheology is important in biology, where it plays a role in

the flow structure and affects viscous dissipation during circulation [27]. For instance, shear–

thinning effects are known to affect blood flow and wall shear stress in coronary arteries [30–32].

Similarly, blood rheology matters for forensic disciplines such as BPA, a discipline which the US

National Academies recently advocated for stronger scientific foundations, given the “complex

nature of fluid dynamics” [33]. Indeed, rheology affects most aspects of a violent crime or

accident, such as (a) the dripping process of blood, where viscosity and elasticity control the

final stages of drop formation [34]; (b) the breakup of jets [35,36] and sheets [35–37], especially

in the transition from dripping to jetting [38]; (c) the oscillations of drops during flight [39];

(d) the fate of droplets and jets upon impact [40–43]; and (e) the evaporation–driven flow in

drying bloodstains [44]. Understanding the rheology of blood is therefore important for crime

scene reconstruction and Ref. [15] provide values of shear rates relevant to BPA. Indeed, blood

flow will be significantly influenced by blood rheology in any situation where the Reynolds,

Deborah, or capillary numbers have finite values.

For polymer solutions, viscoelasticity is typically caused by coil–stretch transition of macro-

molecules, which happens in strong elongational flows [45]. For blood, there is no clear link

between its viscoelasticity and its microscopic or molecular structure, which explains the mostly

phenomenological rheological approach adopted in hemodynamics [46–49]. Recently, Ref. [28]

measured the relaxation time of blood with a custom–made capillary breakup extensional

rheometer resulting in values of 7.8 ± 0.6 and 1.5 ± 0.2 ms for human blood and blood plasma,

respectively, both at 37 ◦C. This result shows that whole blood and blood plasma can be
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viscoelastic. Viscoelasticity might influence blood spatters and bloodstain pattern analysis.

For instance, viscoelasticity influences the deformation, spreading, and atomization of drops

according to the data available in Refs. [50–56].

2.2 Bloodstain Pattern Analysis

(Parts of this section have been previously published in Physical Review Fluids by Comiskey,

et al. 2016, in Ref. [2].)

A blood spatter pattern is a collection of bloodstains produced by blood droplets from a

source location to a target surface. One of the main issues in forensic analysis of blood spatter

patterns is to determine where a blood spatter originates from. This serves the purpose in

crime scene reconstruction of determining the position of the source of blood. This type of

knowledge is expected by the analyst communities [33] as it provides a deeper understanding

of what occurred during the crime. The position of the source of blood is typically obtained

by backward reconstruction of the trajectories, from the target to the source. A sound fluid–

mechanical theory of drop atomization, trajectories, and drop impact would be relevant to the

interpretation of blood spatters resulting from gunshot wounds such as the infamous case of

Phil Spector, where the question arose if blood from backspatter could travel a distance of

approximately 1.8 m [57]. Using a model for the flight of blood droplets and the inspection of

bloodstains, the backward reconstruction of drop trajectories can be performed [15].

The terminology used for trajectory reconstruction can be described as follows; the area of

origin is the three–dimensional origin location and its projection onto a horizontal plane is the

area of convergence. The area of convergence corresponds to the projection of the trajectories
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on a horizontal plane. To determine the area of origin, BPA experts use the angle of impact

from several stains through visual inspection [15]. This angle is the acute angle at which a

blood drop impacts the deposition surface, e.g. a floor.

As stated in 1939 in Ref. [11], reconstructing trajectories is very difficult and still is today.

One method for trajectory reconstruction is the assumption that blood droplets travel in a

straight line [33]. This is called the trigonometric method or method of strings and is routinely

used in crime scene analysis [58–62] and was first used for crime scene reconstruction in the

1950’s [13]. The uncertainties associated with the inspection of blood stains for parameters

needed for the method of strings reconstruction is reviewed in Ref. [15]. The actual trajectories

are curved, due to the effect of gravity which is amplified by aerodynamic drag. Since gravity

and drag act, respectively, vertically and parallel to the trajectory, it is valid to assume that

the projection of the trajectories on a horizontal plane consists of straight lines. This justifies

the use of straight lines to determine the region of convergence.

However, the use of straight lines to predict the vertical position of the source, i.e. the

region of origin, involves a systematic error. For instance, Refs. [63, 64] report errors in the

determination of the region of origin. Similarly, Ref. [65] verifies experimentally that the method

of strings “[overestimates] the height of the point of origin and the error associated with this

technique is significant (50% on average)”.

2.3 Backward Blood Spatter

(This section has been previously published in Physical Review Fluids by Comiskey, et al.

2016, in Ref. [2].)
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BPA research has recently proposed methods to reconstruct curved trajectories, particularly

in backward blood spatter cases, that is blood spatter traveling in the direction opposite of bul-

let motion1. For example, Ref. [17] describes “a method of reconstructing the area of origin in

a nonlinear manner” and incorporates the effects of drag in trajectory calculations using prob-

ability densities. A statistical procedure based on aggregate statistics and the basic equations

of projectile motion have been shown to determine the area of origin of a blood spatter for

cases when the spatter is launched within a narrow range of polar angles [16]. Since ballistic

reconstruction involves the knowledge of impact velocity and drop size, recent BPA work has

focused on deducing that information by stain inspection, as proposed in Ref. [66]. The authors

of Ref. [19] reconstructed drop trajectories using ballistic calculations, considering gravity and

drag forces, and determined the region of origin with about four times higher accuracy than

under the assumption of straight trajectories.

It should be emphasized that none of the existing theories used for predictions of blood

trajectories address basic questions such as what the physical mechanism of drop formation in

blood spatter is and how it determines the drop size distribution and the initial velocities and

angles. Even though a drop size can be reconstructed from an available bloodstain, the initial

drop velocity and direction cannot be established this way, which adds additional unknowns

in any method of the prediction of drop trajectory. In fact, the key element of the problem

is in these initial conditions rather than in predicting trajectories, albeit the methods of pre-

1Frequently in BPA literature it is not specified that the trajectory reconstruction models are only valid for

backspatter, however, it is often the case that only backward spatter is in focus.



9

dicting trajectories should also be upgraded to account for the collective effect on the air drag

experienced by drops in dense clouds.

Spatter originates from blood at body temperature (∼ 37◦C), while drops typically travel

through colder air and impact a colder surface. The effect of cooling in flight and impact

has been investigated in other fields [67] but not in the context of BPA. This issue might be

important because the physical properties of blood vary considerably with temperature which

might affect in–flight atomization as well as drop spreading and splashing on impact. The

evaporation of drops during flight might be another issue and this would be most important

for small drops due to their large surface–to–volume ratios.

There are four additional obstacles to the ballistic reconstruction of blood drop trajectories.

Namely: (i) the area of drop origin can be different from the area of origin of blood spatter

because the process of drop generation can involve a sequence of topological changes (secondary,

tertiary, etc., atomization in flight) like the breakup of liquid sheets [68]. (ii) Air through which

blood drops fly is not always quiescent and sometimes it plays an active role in drop transport.

For instance, experiments involving respiration–caused blood spatter have demonstrated the

importance of understanding the role of the surrounding air [69], which helped carrying sub-

millimeter drops further away than occurs in still air. (iii) When spatters have a predominant

direction, such as for gunshot backspatter patterns, the trajectory reconstruction approach for

earlier drops requires one to account for the formation flight effect, important in spatters gener-

ated from a jet or stream of blood (arterial gushing, expectorate, or gunshot). For instance, in

situations when blood spatter is caused by a bullet entering a body, e.g. as in the case of Phil
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Spector allegedly murdering Lana Clarkson by a gunshot into her open mouth, multiple blood

drops issued at a high speed of the order of 10 m/s or more, formed a rapidly moving turbu-

lent two–phase jet entraining air. Similar situations are familiar in relation to sprinkler jets,

where it was shown that drop motion is dominated by the collective effect, which diminishes

the effect of air drag [70, 71]. (iv) Blood is a non–Newtonian liquid that is a suspension of red

and white blood cells and platelets in lymph. Blood is known to be a shear–thinning fluid that

can be described by the power–law model in simple shear flows. Also, viscoelastic properties of

blood were revealed experimentally in Ref. [28]. To what extent the non–Newtonian rheological

properties of blood affect blood spatter, especially the initial atomization stage, is currently

unknown.

2.4 Forward Blood Spatter

(This section has been previously published in Physical Review Fluids by Comiskey, et al.

2018, in Ref. [3].)

The physical mechanism of blood spatter generation has so far been studied in detail for

backward spatter, but not for forward spatter. These spatter pattern ejecta types are different

and may result in quite different spatter patterns [7]. In the latter work, it was revealed that

the maximum velocity of forward spattered drops is approximately two times higher than that

of their backward spattered counterparts. Moreover, it was found that there are more drops

generated in forward spatter and they are grouped in a more compact fashion in flight. These

physical facts have several consequences for the development of modeling methods. For instance,

the faster velocities may result in drops with larger deformations in flight, which can possibly
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render the common drag coefficient correlations, such as the Schiller–Naumann or Clift–Gauvin

correlations [15,72], inaccurate, or even trigger further atomization events. The effect of drops

cooling in flight has been studied before, such as in Ref. [73], but never in the context of BPA,

where the cooling from body temperature to ambient air might affect atomization, spreading,

splashing, etc.

There is essentially no scientific literature on the mechanisms of forward spatter pattern

formation, and this could be due to the difficult nature of the problem. It is clear, however,

that the damaged tissue ahead of the bullet is the material from which the forward spatter

ejecta originates [74]. Understanding the formation of forward blood spatters might help crime

scene reconstruction, supplementing information obtained from ballistic reconstruction of bullet

trajectories. The latter information is sometimes confusing or complex because bullets can travel

long distances without striking an object within the crime scene or might not even be recovered

at all. Thus, accurately determining the trajectory of the bullet is not always possible, especially

if there are multiple bullets involved throughout a crime scene. It may be a challenge to associate

a specific hole or bullet to a given forward spatter pattern. Combining the reconstruction of the

bullet and blood drop trajectories may yield the location of the victim. In addition, in cases

involving multiple shooters, forward spatter patterns in conjunction with bullet comparisons

may help identify which gun/shooter fired the fatal shot. Lastly, muzzle gases may have less of

an effect on forward spatter pattern distribution than on backward spatter.

2.5 Muzzle Gases

(This section has been submitted for publication by Comiskey and Yarin, 2019, in Ref. [4].)
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Vortex rings are formed by vorticity generated in fluid issued from a nozzle or an orifice, and

growing instabilities at the cores of such vortex rings can cause transition to turbulence [75,76].

The laminar–turbulent transition occurs in the range of the initial Reynolds number 103 ≤

Re0 ≤ 104, and turbulent vortex rings are observed at Re0 > 104, where Re0 = u0R0/ν

and u0, R0, and ν, are the initial velocity, radius, and kinematic viscosity of the turbulent

vortex ring, respectively [77]. The radius of a turbulent vortex ring increases linearly with its

propagation distance [76,77] which implies self–similar behavior. Self–similar scaling laws have

been recognized previously and validated by experimental data [77,78].

Muzzle exhaust flow, or muzzle gases, originating from the muzzle of a gun involves a cascade

of multiple complex phenomena and a thorough description of the structure is discussed in

Ref. [79]. The muzzle exhaust flow, which begins before the bullet exits the muzzle of the

barrel, results from an intense explosion of the propellant powder. This propels the bullet and

produces a spherical shock wave called the precursor blast wave, and its propagation can be

described by the theory of a strong explosion [80–82]. Then, the air ahead of the bullet is

rapidly accelerated to a supersonic speed resulting in the Prandtl–Meyer expansion fan at the

muzzle [83, 84]. The expansion fan is terminated by a normal shock called the Mach disk [85],

and a system of shocks exists between the Mach disk and the blast wave. The bullet then exits

the muzzle of the barrel and passes through the Mach disk. If the bullet is supersonic, it can

then overtake the precursor blast wave. Immediately after the bullet leaves the muzzle, the

propellant gas flow can exit and it forms a turbulent vortex ring which then propagates in the

direction of the bullet [85]. Unburnt propellant powder is carried by this turbulent vortex ring
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and when it is deposited on a surface is termed gunshot residue (GSR). The leading edge of

this propellant gas flow is called the contact surface.

Occurring simultaneously with the muzzle exhaust flow is a series of muzzle flashes which

are bright luminous zones due to a complex temperature distribution resulting from propellant

powder combustion [86]. First, there is a primary flash or muzzle glow which is of relatively low

luminosity and situated directly adjacent to the muzzle. Directly after the primary flash exists

a high intensity intermediate flash which is located further from the muzzle, thus resulting in

a dark region between the primary and intermediate flash. An incomplete combustion of the

in–bore propellant powder leaves combustible material to travel downstream which can produce

a secondary flash that releases an amount of energy comparable to that during the initial in–

bore combustion [86]. This occurs because of entrained propellant gases which recompress

when passing through a shockwave front and raise the temperature igniting the rest of the

combustible propellant [85–87]. This locally confined increase in gas pressure can also act to

reverse the pressure gradient in the flow field, and as such, the gas motion at this location is

decreased significantly, and in some cases, can be reversed entirely [87].

Thorough experimental investigations were conducted to determine gas velocity throughout

the entire muzzle exhaust flow process with a 7.62 mm caliber rifle [87]. It was observed that

the flow field within the Prandtl–Meyer expansion fan accelerates quickly and can attain a

maximum velocity of 2400 m/s. After the Mach disk, the flow rapidly decelerates to 150 m/s or

less. This was also confirmed in a separate experimental study in Ref. [88]. When the expansion

again commences downstream, the gas velocity is on the order of several hundred meters per
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second. With the same caliber rifle, temperature measurements for the three muzzle flashes

were conducted where it was found that the primary flash can reach temperatures of 1645 K,

the intermediate flash 1940 K, and the secondary flash 2500 K [86]. Pressure measurements

with the same 7.62 mm caliber rifle revealed subatmospheric pressure in the Prandtl–Meyer

expansion zone, and then a significant increase in pressure at the Mach disk [85]. The contact

surface (the propellant gas–air interface) had a peak pressure of 350 kPa, and it was noted that

the propellant gas flow is heavily dependent upon the muzzle exit pressure which is affected by

the type of propellant powder, gun, bullet, and atmospheric conditions.

The complex nature of the muzzle exhaust flow was found to follow several empirical laws

for the Mach disk, contact surface, and the precursor blast wave [85, 89, 90]. For example, it

was observed that the contact surface can reach a distance normalized by the muzzle diameter

of ∼ 100. It should be emphasized that this value does not indicate the maximum distance

reached because experimental limitations were met. Note also that the complex nature of the

formation of muzzle exhaust flow has been treated theoretically using crude approximations.

The basic unsteady nature of the initially reacting flow field means that simple approximations

such as a quasi–steady free submerged jet [87] could be inadequate, and previous numerical

simulations such as that in Ref. [90] could be inaccurate because the chemical kinetics of the

muzzle flash are not accounted for.

The propellant gas, which propagates downstream, is of great interest to crime scene in-

vestigators because it can help identify the distance of the shooter from the target and also

establish if an individual was at the crime scene [91, 92]. In order to determine the presence
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of GSR, any potential residue must be removed from the surface through a variety of common

collection techniques depending upon the deposition surface. The sample is then tested with

various methods such as atomic absorption spectrometry and scanning electron microscopy to

detect trace amounts of organic and inorganic GSR. The constituents of GSR originate from

various sources including the propellant powder, the primer (a section in the shell casing which

contains a highly explosive charge and is used to ensure proper ignition), the shell casing, and

the bullet resulting in a possibility of 48 organic compounds and 52 inorganic compounds which

may contribute to the composition of GSR [92].

The spatial distribution of GSR from the muzzle of a gun has been experimentally tested for

various scenarios in order to determine the maximum range the residue can reach. For example,

a target 1 m downrange contains easily detectable amounts of GSR [93]. If the target is moved

further downrange, to 7.62 m, there is still a detectable amount of GSR originating from four

weapons, a Ruger .22 caliber pistol, a Colt .32, and .45 caliber revolvers, and a Glock .45 caliber

pistol [94]. The maximum possible axial and lateral distance which GSR can reach was shown

to be 18 m, and 3 m, respectively, and the largest mass deposited was axially located at 13.5

m [95]. The distances at which GSR is deposited can be greatly affected by the surrounding

environment. An open environment resulted in ten times lower the amount of detectable GSR

as compared to a closed shooting range [96]. The concentration of particles in muzzle gases

was found to be on the order of 105 − 108 particles/cm3 [79]. These experiments show that

there is a wide range of final locations for GSR depending upon shooting conditions, the type

of ammunition, and the type of gun used.
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The furthest distance that propellant gases (and thus, GSR) can reach is important to crime

scene reconstruction in the case of the backward spattering of blood because the propellant gases

can deflect blood droplets flying toward the shooter [7, 97]. On the other hand, the blast wave

was not observed to have a significant effect on the blood droplets probably because it reaches

the wound earlier than the formation of blood droplets in backspatter [97]. A probabilistic

approach was proposed in Ref. [98] to determine a link between the distribution of GSR and

the shooter location, but the acquisition of the model parameters is difficult.

2.6 Intact Liquid Jets

(This section has been previously published in Experiments in Fluids by Comiskey, et al.

2018, in Ref. [5].)

Free liquid jets moving in air are a common phenomenon, since decorative fountains, fire

extinguishers, and different sprinklers are frequently seen in our everyday life. One of the first

studies attempting to better understand free liquid jets was sensibly related to large water jets

used to suppress fires [99]. This extensive work quantified friction loss in hoses, roughness of

various nozzles, effects due to back pressure, and even attempted to formulate a simple theory to

match the trajectories of large firefighting jets. Practical nozzle designs were further discussed

in Refs. [100–102], which Ref. [102] in particular, made additional theoretical predictions of jet

trajectories using a model based on projectile motion neglecting air resistance. Early work in

the field was dominated by experimental tests intended to design the best fire suppression or

agricultural systems [103]. It resulted in many practically important observations such as the
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optimal (determined by the maximum range reached by liquid) initial inclination angle of the

jet in the 30–40◦ range reported by Ref. [104] or 35◦ reported by Ref. [102].

Theoretically, the trajectories of liquid jets have often been predicted using the equations of

projectile motion, where air resistance is either neglected such as in Refs. [100,105] or empirically

accounted for as in Refs. [104,106]. This results in trajectories which form parabolic arcs [104,

106–108], even though the effect of the aerodynamic drag has been used to explain the difference

between theory and experiments [108]. For large sprinkler jets, it was found that air drag should

be accounted for as Ref. [70] showed in their numerical model of multiphase turbulent atomizing

jets. Recently, Ref. [109] developed a theoretical model which assumes the jet to be intact and

unaffected by air drag until a breakup point, at which the jet instantaneously becomes a droplet

train system whose motion is affected by air drag. Moreover, for the multiphase atomizing jets

relevant in agricultural and forensic applications, it was shown that the aerodynamic drag

experienced by individual drops is determined by their collective interaction similar to the

aerodynamic interaction of birds flying in V formation [7, 70,110].

Liquid in free liquid jets can either be Newtonian, such as water in decorative fountains

and sprinklers, or non–Newtonian as in fiber–forming processes [111, 112] and in intact jets of

blood which can form when a sharp object lacerates a main blood vessel [113–115]. The latter

situation is of particular interest here. The ejection of intact blood jets is called arterial gushing

and originates from a high–pressure location within the body such as the neck [113,115]. Such

phenomena can occur when knives or other cutting instruments are used as a murder weapon,

which, is on the rise. In the United States, knives or other cutting instruments accounted for
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12.9% of murders in 2005 and 13.1% in 2014, even though violent crime was down 16.2% during

that period [116,117].

The transition from dripping to an intact liquid jet can happen at a large enough outflow

velocity [118, 119]. As the outflow velocity increases, such jets break up due to the surface–

tension driven capillary instability, then, at a higher velocity, by the bending instability and the

atomization process, with the latter two mechanisms being driven by the dynamic interaction

with the surrounding air [35, 72, 118–125]. Free jets of non–Newtonian polymeric liquids in

many practically important applications are unaffected by these instabilities and stay intact

even though their velocities of motion relative to air are very high, for example, in fiber–

forming processes such as melt spinning, solution and melt blowing, etc. [111, 112, 118, 125].

Accordingly, in this latter group of works, the significant effect of the coefficient of friction

drag acting on elongated cylindrical bodies was in focus. It was established that it cannot

be described by the standard Blasius or Schultz–Grunow and other theoretical and empirical

correlations based on the boundary layer theory and dependent on the Reynolds number based

on the longitudinal length scale [126]. In the case of elongated cylindrical bodies, the boundary

layer thickness becomes larger than the cross–sectional diameter, and as a result, the average

friction coefficient is determined by the Reynolds number based on the diameter, Red, rather

than on the longitudinal scale. Accordingly, several semi–empirical and empirical correlations

for the friction coefficient of intact straight solid cylinders (wires) or liquid jets moving in air

were established in the 0.04 ≤ Red ≤ 400 range. For example, Ref. [127] proposed the expression

for the friction coefficient in the form of Cfd = 0.4Re−0.7
d , while Refs. [118,128] employed Cfd =
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0.65Re−0.81
d , where the dimensionless friction coefficient is defined as the friction force (traction)

T, rendered dimensionless by the product of the jet surface area S and the dynamic pressure

of the surrounding air ρaV
2
τ /2. Here, ρa is the air density and Vτ is the tangential velocity of

a liquid jet; in addition, the Reynolds number is defined as Red = 2aVτ/νa, with d = 2a being

the cross–sectional jet diameter (with the radius denoted as a), and νa being the kinematic

viscosity of air. Several other works in which a wire was either supported in a wind tunnel, or

was moving through air at rest resulted in the expressions of the type Cfd = γRe−βd , with γ in

the 0.23–1.78 range and β in the 0.62–0.81 range valid in different intervals of Red in the 5–

400 range [111,112]. The applicability of these expressions for the average friction coefficient of

curved intact free liquid jets arising in decorative fountains, sprinklers, and forensic applications

has never been examined. An ad hoc hypothesis of their applicability is questionable.

The internal geometry of the nozzle is one of the most fundamental components in the

formation of an intact free liquid jet. In such applications as decorative fountains and small

sprinklers, the nozzles are typically designed to provide a gradual transition toward the exit

and are operated with a backpressure which keeps the working fluid attached to the nozzle

walls. If the working fluid becomes detached from the nozzle walls, however, a constricted jet

can be created. Such a jet can travel distances further than normally obtained, because the

destabilizing effects from the nozzle walls are eliminated [129]. Such jet detachments appear on

sharp orifices and stiff nozzle generatrices, e.g. of the so–called Borda mouthpiece [130], and

result from an essentially inviscid flow kinematics (leading to vena contracta) supplemented by

the momentum balance in the form of the Bernoulli equation [131,132].



CHAPTER 3

RESEARCH OUTLINE

3.1 Blood Rheology

(Parts of this section have been previously published in Rheologica Acta by Kolbasov, and

Comiskey, et al. 2016, in Ref. [1].)

The physical properties of blood play an important role in crime scene investigation (CSI)

because they affect everything from bloodstain formation to the atomization of blood. As such,

the rheological behavior of blood should be investigated in the context of forensic science. To

accomplish this task, the rheology of swine blood in shear was experimentally investigated

and discussed in uniaxial elongation. As a substitute for human blood, swine blood was used

because it has physical properties which are comparable [68, 133, 134]. For example, red blood

cells in rouleaux at low shear rates are similar in swine blood and human blood, but that is not

the case in the blood of cattle or sheep [135–137]. Shear viscosity measurements were carried

out with a rotational and capillary viscometer, the results of which are discussed in Sec. 4.3

and ramifications for forensic science are mentioned in Sec. 4.4.

3.2 Atomization of Blood

(Parts of this section have been previously published in Forensic Science International by

Comiskey, et al. 2017, in Ref. [7].)

20
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Because the uncertainties of different BPA techniques can be significant, up to a 50% over-

estimation of the height of the origin of a blood spatter [68], a better understanding of the

mechanisms of blood droplet formation and flight is required. Such efforts would be signifi-

cantly facilitated by a thorough analysis of the available experiments data, one facet of which

is explored in Ch. 5 where high–speed videos taken by Ref. [138] are analyzed. It should be

emphasized, however, that some experimental simplifications do not necessarily reflect the real

crime scene situations. For example, oftentimes, human blood is substituted for swine blood

for safety reasons, and because of expected similarities in size and concentration of blood cells,

and in rheology [2], albeit it is definitely not a perfect substitute [133].

After a thorough experimental investigation, of the atomization of blood resulting from a

gunshot, it was determined that backward, and forward spattered blood behave quite differently.

As a result, the mathematical models required to describe the physical situation are inherently

different. The atomization of backward spattered blood is based off of the Rayleigh–Taylor

instability because dense blood droplets accelerated towards air adhere to this instability as

described in Sec. 6.5. This forms the basis of two mathematical models, one for idealized sharp

bullets as shown in Sec. 6.3, and another of an idealized blunt bullet in Sec. 6.4. Forward

spatter atomizes on a different time scale because of the added effect of the bullet resulting

in a cascade of instabilities and therefore, the blood target chaotically disintegrates which is

discussed in Sec. 7.3.1 for a single bullet type, and in Sec. 7.4.1 for a bullet of an arbitrary

shape.
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3.3 Bloodstain Pattern Prediction

(Parts of this section have been previously published in Physical Review Fluids by Comiskey,

et al. 2017, in Ref. [6].)

Once a cloud of blood drops is generated due to the atomization of a blood target from a

gunshot, its behavior in a sense is reminiscent of that of a sprinkler or diesel–engine jets studied

previously in Ref. [70, 71]. Such jets entrain significant volumes of air and the resulting two–

phase flow diminishes the aerodynamic drag of drops moving behind leading ones, similarly to

the V formation of a flying flock of birds [110]. Then, the prediction of drop trajectories in

such jets makes use of the initial drop sizes and initial velocities resulting from their respective

atomization model, accounting for gravity and air drag forces, with the latter being diminished

by drop–drop interactions through air mentioned above in Ref. [70]. It should be emphasized

that few other studies account for gravity and air drag (albeit without accounting for the drop–

drop interaction) to predict blood spatter patterns such as in Refs. [16, 17, 19], however, they

do not consider the physical mechanism of drop formation.

The prediction of these patterns gives the ability of BPA experts a powerful tool to determine

the events of a crime scene with minimal real–world input. The intent is that with a given

bloodstain pattern, the models and methods developed here for backward and forward spatter

allow the elucidation of the location of the bloodletting event and therefore the victim, and

possibly the shooter. These trajectory equations which allow for this are described in Sec. 6.6,

7.3.2, and 8.2.3.
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3.4 Effect of Muzzle Gases

(Parts of this section have been submitted for publication by Comiskey and Yarin, 2019, in

Ref. [4].)

Muzzle gases propagating in the direction of the bullet as a result of the chemical reaction

firing that bullet is of great interest to BPA experts because the resultant flow field can deflect

soaring blood droplets. In particular, a portion of the overall structure of the muzzle gases

called the propellant gases, are of utmost importance. This is because propellant gases form

a turbulent vortex ring and not only act to deflect blood droplets, but also disperse passive

admixture leading to GSR.

The present work aims to incorporate and quantify the effect of the turbulent vortex ring

on the backward spatter of blood. Note that prediction of blood stain area and location is

important in the framework of their further analysis in the hydrodynamic and forensic con-

text [139]. The theoretical treatment of the aerodynamics of self–similar turbulent vortex rings

is described in Sec. 8.2.1. The theory of dispersion of passive admixture (the GSR particles) by

a turbulent vortex ring is given in Sec. 8.2.2. The theoretical framework for the effects of a tur-

bulent vortex ring on blood droplets in backward spatter is described in Sec. 8.2.3. The results

on the GSR dispersion by a turbulent vortex ring are presented and discussed in Sec. 8.3.1, and

the interaction of a turbulent vortex ring with backward spattered blood droplets is discussed

in Sec. 8.3.2. Finally, conclusions are drawn in Sec. 8.4.
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3.5 Friction Coefficient and Blood Jets

(Parts of this section have been previously published in Experiments in Fluids by Comiskey,

et al. 2018, in Ref. [5].)

The friction coefficient (sometimes referred to as the coefficient of friction) is an important

parameter between the relationship of the force of friction and the subsequent normal reaction.

For an intact jet of fluid, this is related to the aerodynamic force which acts on the jet due

to the shear stress at the surface of the jet. This term is an empirical relation and is often

determined for specific problems, therefore the developed equation is oftentimes only applicable

to narrow fields of study. To mitigate this problem, a theoretical model discussed in Sec. 9.3

was constructed for the equations of motion of an intact jet of liquid for any friction coefficient.

This allows the model to be versatile as it does not need to be bound by the Reynolds number

range considered in Sec. 9.2.

The nozzles used in the experiments of Ch. 9 generated intact liquid jets because their

internal geometry closely followed that of a pressure washer except designed to work at a

low backpressure. The present work aims at establishing the average friction coefficient of

intact liquid jets moving in quiescent air under conditions characteristic of decorative fountains,

smaller sprinklers, and forensic applications. These cases are drastically different from those

whose friction coefficient has already been found such as in fiber forming processes like melt

spinning.



CHAPTER 4

INVESTIGATION OF BLOOD RHEOLOGY

This chapter has been previously published in Ref. [1], reprinted by permission from Springer

Nature [Blood rheology in shear and uniaxial elongation. Kolbasov, A., Comiskey, P. M., Sahu,

R. P., Sinha–Ray, S., Yarin, A. L., Sikarwar, B. S., Kim, S., Jubery, T. Z., and Attinger, D.,

Rheologica Acta 55, 901–908]. Copyright (2016) Springer Nature.

4.1 Introduction

Despite being at the same time a very common and precious fluid, the rheological proper-

ties of blood have not been thoroughly investigated. The goal of this chapter is to characterize

the rheology of swine blood in the context of BPA. This is accomplished by performing mea-

surements in shear flow and discussing experiments performed in uniaxial elongation. The

experimental data shows that blood is a shear–thinning fluid which exhibits viscoelastic behav-

ior. Elongational viscosity can be 1000 times higher than the shear viscosity and implications

in biology and forensics are described.

4.2 Materials and Methods

The blood used in the experiments was from the National Animal Disease Center (Ames,

IA) and was anticoagulated with 1% heparin and kept at 7 ◦C during transport before the

experiment. In preparation for each experiment, the blood samples were placed on a Labquake

(Thermo Scientific) rocker to ensure no coagulation until the blood samples reached room

25
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temperature. Prior to use, the relative humidity and temperature of the room, as well as the

temperature of the blood, were documented. The blood samples were then taken off the rocker

and used in the various instruments to conduct the required experiments. Hematocrit was also

measured for each blood sample through a HemataStat–II centrifugation device, according to

manufacturer’s instructions.

4.2.1 Shear Viscosity Measurements with a Rotational Viscometer

Simple shear experiments were conducted using three samples of swine blood: sample A

(fresh blood, hematocrit 49%), sample B (1–day–old blood, 44% hematocrit), and sample C

(1–day–old blood, 40% hematocrit; this type of blood was used in the experiments with a

capillary viscometer described in Sec. 4.2.2, with the results presented in Fig. 1 for comparison

with sample B). These three different types of samples were used to elucidate the influence of

hematocrit in shear flow. In order to elucidate the effect of the difference in blood preparation

on the experimental results, the blood from sample B was separated into two groups. All the

blood was first brought to room temperature (24 ◦C) by placing blood–containing vials in a

beaker with water at room temperature on a shaker table. Then, the vials with blood from

both groups were slowly turned upside down 10 times. The first group of samples was used after

that, whereas the samples from the second group were additionally passed through a 23–gauge

needle 10 times to elucidate the effect of blood preparation on the shear flow of blood.

Viscosity of blood in simple shear flow was first measured using an LV–II+ cone and plate

Brookfield viscometer with cone spindle CPE–40 (cone angle 0.8◦ and radius 2.4 cm). During

each trial, the sample temperature was maintained at 24 ◦C by the temperature–control system



27

Figure 1. Shear viscosity versus shear rate in simple shear flow. Data shown by circles were
obtained by the rotational viscometer and correspond to blood with the hematocrit of 44%
(sample B). The experimental data shown by diamond and square symbols were measured
using a capillary viscometer driven by a syringe pump (discussed in Sec. 4.2.2). Diamond

symbols correspond to blood with the hematocrit of 44% sample B). Square symbols
correspond to blood with the hematocrit of 40% (sample C). All blood samples were of types
B and C. Error bars represent the maximum and minimum standard deviations. Fig. from

Ref. [1].
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of the viscometer (model TC–102D). The shear rates studied were in the 7–60, 7–350, and

200–400 s−1 ranges, and the shear rate was varied by equal increments, each being maintained

for 30 s with a reading being performed before the next speed change. For hysteresis, the shear

rate was tested in equal increments for both the ramp up and ramp down cases.

The combined results for the flow curves measured in the simple–shear flow are shown in

Figs. 1–3. The results can be approximated using the Ostwald–de Waele power–law rheological

constitutive equation which reduces to the following expression in the simple shear flow for the

shear stress, τshear,

τshear = K (γ̇)n , (4.1)

where γ̇ is the shear rate, K is the consistency index, and n is the flow behavior index.

The non–Newtonian shear viscosity is defined as,

µshear =
τshear

γ̇
= K (γ̇)n−1 . (4.2)

4.2.2 Shear Viscosity Measurements with a Capillary Viscometer

The shear viscosity of an incompressible fluid can be determined through the internal steady–

state flow in a thin capillary. This is called a capillary viscometer and works based off of pressure

and volumetric flow rate measurements [140]. The capillary viscometer used here measured the

shear viscosity of blood through a power–law model in conjunction with the Rabinowitch–

Mooney (RM) equation following Refs. [140,141].
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Figure 2. Shear stress versus shear rate in simple shear flow. The experimental data shown by
the magenta line was obtained with blood that was not passed through the syringe. The
rotational viscometer was used. The blue line was obtained with blood that was passed

through the syringe. Blood samples B with a hematocrit of 44% were used. (a) The data is
shown by lines. (b) The data is shown by symbols, and the fitted functions are shown by

curves. Fig. from Ref. [1].

The experiments used flow rates ranging from 0.01 to 2 mL/min with a Reynolds number

Re < 600 to maintain laminar flow. The measurements were performed in the fully developed

flow region with an entry length, Le, that is negligible with respect to the entire length of the

tube, i.e. Le < 0.01 L, described in Ref. [142]. A 60 mL syringe was used, and the viscometer

was designed to measure the viscosity of blood in the shear rate range of 10–1500 s−1. A syringe

pump was used to pump blood into the microcapillary tube, and an Omega DPG 110 differential

pressure transducer was employed to measure the pressure drop across the tube at flow rates

between 0.01–1.5 mL/min. Calibration was performed to determine the hydraulic diameter

of the tube which was larger than 500 µm to avoid any viscosity underestimation caused by
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Figure 3. The ramp up and down shear stress versus shear rate in simple shear flow measured
by the rotational viscometer for five consecutive trials with blood samples B, with a

hematocrit of 44%. Fig. from Ref. [1].
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the depletion of blood cells near the walls, a phenomenon known as the Fahraeus–Lindqvist

effect, which is significant in tubes with diameters smaller than 300 µm [143]. Before starting

the viscosity measurements, the room and blood temperatures were measured with a digital

thermometer as 24.6 and 24.6 ◦C, respectively. The blood hematocrit was also measured by a

centrifugation device (HemataSTAT II), as 49± 1%.

4.3 Results

Equation (4.2) was fitted to the experimental data for samples A and B, and the results for

the consistency and flow behavior indices are listed in Table I. Figure 1 shows that the effect

of hematocrit on the measured shear viscosity values was minimal in the 100–1000 s−1 shear

rate range, as the comparison between the results of the rotational viscometer for sample B and

capillary viscometer for sample C shows. An example of the fitting is shown in Fig. 2.

Figure 2 shows that the experimental results are not affected by blood pre–treatment. The

hysteresis of the shear viscosity measurements appears to be negligible except for low values of

shear rate which is seen in Fig. 3. The viscometer is known to be inaccurate at low shear rates

and is likely the source of the hysteresis.

Note also that the maximum shear stresses measured in Figs. 2 and 3 are significantly lower

than the shear stresses reported to induce instantaneous cell lysis (about 400 Pa) [144] but close

to the shear stresses (10–100 Pa) reported to induce platelet activation [144–147].

As Fig. 1 shows, a very good agreement was obtained between the capillary and rheometer

measurements over the shear rates ranging from 100 to 2000 s−1. The capillary viscometer
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TABLE I

Consistency and flow behavior indices measured in simple shear experiments for samples A
(fresh blood hematocrit 49%) and B (1–day–old blood, hematocrit 44%). Table from Ref. [1].

Shear rate
range [1/s]

Hemato-
crit [%]

Age [days]/
sample type

Trial
n (ramp

up)

K
(ramp up)
[Pa × sn]

n (ramp
down)

K
(ramp down)

[Pa × sn]

7.5–225 49 0/A 1 0.48 1.05 0.64 0.44
7.5–225 49 0/A 2 0.51 0.86 0.65 0.43

7.5–337.5 49 0/A 1 0.64 0.46 0.68 0.38
7.5–337.5 44 1/B 1 0.68 0.30 0.76 0.19
7.5–337.5 44 1/B 2 0.63 0.42 0.71 0.25
7.5–337.5 44 1/B 3 0.65 0.34 0.71 0.25
7.5–337.5 44 1/B 4 0.63 0.38 0.74 0.20
7.5–337.5 44 1/B 5 0.65 0.33 0.73 0.22
7.5–337.5 44 1/B 6 0.70 0.26 0.73 0.21
7.5–337.5 44 1/B 7 0.66 0.34 0.70 0.26
7.5–337.5 44 1/B 8 0.64 0.38 0.71 0.25
7.5–337.5 44 1/B 9 0.66 0.33 0.70 0.26
7.5–337.5 44 1/B 10 0.67 0.30 0.73 0.21

7.5–60 49 0/A 1 0.28 2.81 0.53 1.11
7.5–60 49 0/A 2 0.30 1.87 0.58 0.58
7.5–60 49 0/A 3 0.42 1.17 0.56 0.62

200–400 49 0/A 1 0.68 0.55 0.66 0.64
200–400 49 0/A 2 0.44 2.11 0.85 0.19

measurements have a relative uncertainty of 4% due to the uncertainty of the instruments used

for the pressure and temperature measurements.

The equilibrium surface tension of blood was also measured using the pendant drop method

described in Ref. [140] resulting in γla = 60.45 mN/m.
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4.4 Conclusion

The experimental data on the elongational viscosity of blood in Ref. [1] shows that it can

be three orders of magnitude higher than the shear viscosity. The rheological measurements

presented reveal that the tensorial rheological constitutive equation of swine blood cannot be

reduced to the Ostwald–de Waele power–law model. Indeed, in uniaxial elongation, the behavior

of blood flow is clearly viscoelastic. For a situation such as blood dripping from a weapon due to

the Rayleigh–Taylor instability, the viscoelasticity of blood cannot be ignored because a thread

of blood from the liquid bulk to the drop is formed. This effect is also essential in blood drop

splashing as the drop impact forms a web of blood due to high elastic stresses. As a result, the

viscoelasticity of blood should be considered in the description and analysis of such processes.

It should be emphasized that the fact that blood reveals a power–law behavior in shear flows

still does not mean that the tensorial Ostwald–de Waele power–law model or any yield stress

model (e.g. the Casson model) could represent a real tensorial rheological constitutive equation

of blood, since none of them are capable to account for the viscoelasticity. The uniformly valid

tensorial rheological equation of blood seems to be viscoelastic with shear–thinning behavior in

shear.



CHAPTER 5

HIGH–SPEED VIDEO ANALYSIS OF BLOOD SPATTER

This chapter has been previously published in Ref. [7].

5.1 Introduction

High–speed videos of blood spatter due to a gunshot taken by the Ames Laboratory Midwest

Forensics Resource Center (MFRC) [148] are analyzed. The videos used in this analysis were

focused on a variety of targets hit by a bullet which caused either forward, backward, or both

types of blood spatter. The analysis process utilized particle image velocimetry (PIV) and

particle analysis software to measure drop velocities as well as the distributions of the number

of droplets and their respective side view area. The results of this analysis revealed that the

maximal velocity in forward spatter can be about 47 ± 5 m/s and 24 ± 8 m/s for backward

spatter. Moreover, our measurements indicate that the number of droplets produced is larger

in forward spatter than it is in backward spatter. In forward and backward spatter, the droplet

area in the side–view images is approximately the same. The upper angles of the close–to–cone

domain in which droplets are issued in forward and backward spatter are, 27± 9◦ and 57± 7◦,

respectively, whereas the lower angles of the close–to–cone domain are 28 ± 12◦ and 30 ± 18◦,

respectively. The inclination angle of the bullet as it penetrates the target is seen to play a

large role in the directional preference of the spattered blood. Also, muzzle gases, bullet impact

angle, as well as the aerodynamic wake of the bullet are seen to greatly influence the flight of
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the droplets. The intent of this investigation is to provide a quantitative basis for current and

future research on BPA of either forward or backward blood spatter due to a gunshot.

5.2 Experimental Video Analysis

The MFRC videos were produced from experiments performed primarily at the Minnesota

Bureau of Criminal Apprehension Forensic Science Laboratory, in Minnesota, USA, with some

performed at the Christchurch Laboratory of the Institute of Environmental Science and Re-

search, in Christchurch, New Zealand [149]. The camera used to record the experiments was a

Photron Fastcam–SA1 High–Speed Digital Video camera with most videos using either a Tam-

ron 90 mm macro lens, Micro Nikkor 55 mm, or Micro Nikkor 105 mm lens. Proper lighting

was specific to each experiment which resulted in a variety of apertures and shutter speeds used

to produce the highest quality videos possible. Room temperature human blood with an anti

coagulant was used within 72 h of the draw date for every experiment.

Of the series of over 500 videos, over 200 are posted on the MFRC Blood Pattern Analysis

Videos webpage, 19 of them are directly related to blood spatter due to a gunshot, and four of

those show different muzzle discharges [148]. The targets consisted of a blood soaked sponge,

fabric covering the sponge, tape encompassing the entire sponge, and a silicone–encased sponge.

The targets were placed at distances in the 1–182 cm range from the muzzle of the gun. Of the

19 videos available for blood spatter induced by a gunshot, five were chosen for a quantitative

analysis with PIV in the present work because they either contained both forward and backward

spatter, or, their spatter pattern was resolved enough (in time and space) for an accurate

analysis. The five experiments used in this analysis are described in Table II.
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TABLE II

Experiments from the MFRC used in this analysis. The experiment number corresponds to a
part of the title of a particular video on the MFRC website.

Experiment
number

Bullet caliber Target type Targe distance [cm]

7Aa1 .22 Bare Sponge 182
7Ab1 .44 Bare Sponge 182
7Cb3 .44 Tape–covered Sponge 182
7Db1 .44 Silicone–covered Sponge 182
7Db2 .44 Silicone–covered Sponge 182

Each frame of the high–speed videos were taken at time intervals of 0.1 ms. In the present

work, PIV analysis was conducted to characterize the motion of the blood droplets. The PIV

method relies on recording the positions of fluid particles (here droplets) for two time instances

in quick succession on the order of a millisecond. Statistical correlation of the two images

with the position of the particles allows for the determination of the velocity field, that is,

the spatial distribution of velocities. Here, PIV is conducted from approximately the time

the bullet impacted the sponge to two milliseconds in each experiment. The program used

for PIV was PIVlab 1.41 which is an application built for the numerical computing language

MATLAB [150]. The analysis was done with a fast Fourier transform (FFT) algorithm with

four interrogation passes from 64, 32, 16, and finally 8 square pixels. A linear interpolator

was used with a Gauss 2 × 3–point sub–pixel estimator and the contrast of each image was

automatically locally enhanced before processing. A region of interest mask of 100× 200 pixels

was drawn about a centimeter from the target for backspatter, and half a centimeter from the
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target for forward spatter. The dimensions for the region of interest were chosen so that it

would be sufficiently large enough to capture the created spray of blood droplets, yet not too

large as to increase the likelihood of a false reading by including phantom vectors. The location

of the region of interest away from the target was dictated by the distance at which droplets

became recognizable, as it was centered about the splash of blood droplets. Post–processing

vector validation was performed, in which physically impossible vectors were deleted as outliers.

Each experiment was also analyzed for the area of each droplet, measured as the area of

the droplet in flight as seen directly from frames of the high–speed videos, and the number of

droplets located within a region of interest. This was done using ImageJ [151], utilizing the

particle analysis toolset. A rectangular region of interest, 100 × 200 pixels large, was placed

at approximately the same respective location as done in the PIV tests. Each experiment was

analyzed at approximately 2 ms, a time which was chosen because the droplets became very

easily distinguishable from the background. Automatic local thresholding was performed on

each image following the method of Phansalkar, et al. [152] with a thresholding radius of 15

pixels, k = 0.25, and r = 0.5. This converted each image into a binary image which was

then analyzed with the particles toolset. There were no pixel–size limiting or circularity–based

restrictions imposed on the analysis.

5.3 Results and Discussion

The PIV technique described in Sec. 5.2 was employed to find the velocity magnitude at the

midplane of the region of interest, parallel to the target face. For each time interval between

the frames of interest, the velocity magnitude along this midplane was averaged and then these
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Figure 4. PIV results for experiment 7Aa1 are shown in panel (a), and for experiment 7Ab1
in panel (b). The red dashed line with circular data points represents the results from forward

spatter, and the solid blue line with square data points is for backward spatter. The error
bars are the standard deviations of the sets of data. Note that the data points are slightly
offset from their corresponding time reckoned from the bullet impact moment in order to

more easily distinguish the error bars.

velocities were plotted against the time reckoned from the bullet impact on the target. For the

bare sponge experiments number 7Aa1 and 7Ab1 from Table II, this process results in Fig. 4.

These two experiments are directly comparable with one another because they differ only in

the caliber of bullet used and both experiments resulted in forward and backward spatter.

Figure 4 shows that the larger caliber bullet used in experiment 7Ab1 results in an overall

larger average velocity for both forward and backward spattered droplets. The difference is

apparent from the first data point of the analysis at a time from the bullet impact in the 0.4–

0.5 ms range, all the way to the end of the experiment. For either caliber, the forward spattered
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velocity is larger than that of the backward spattered velocity, even though in Fig. 4(a), the

velocity gap is only noticeable starting at the 0.8–0.9 ms mark from the bullet impact time,

which may be due to a large number of droplets difficult to resolve. A larger forward spatter

velocity makes physical sense due to the entraining effect of the bullet traveling in the direction

of the blood spatter. It is also interesting to note that as the time from the bullet impact

increases, the standard deviation of the data, as indicated by the error bars, decreases due to

a more uniform flow field in the corresponding part of the region of interest. The trend of the

steep gradient upward and steady decrease in average velocity (cf. Fig. 4) indicates that at

the onset of the analysis which was at 0.4 ms after the bullet impact, the blood droplets are

accelerated. This means (from the second law of Newton applied to an individual droplet) that

droplets analyzed at the onset of the PIV analysis practically do not experience air drag but

on the contrary, are pulled forward by the aerodynamic wake of the fast moving, small–sized,

preceding droplets from the initial splash. This is similar to the aerodynamic interaction of

birds flying in V formation [110]. After about 0.6–0.9 ms, the blood droplets finally begin to

slow down due air drag, since at the later stage droplets have already sufficiently separated

and their mutual aerodynamic interaction has been diminished. It should be emphasized that

not only in forward spatter droplets are initially accelerated, but also in backward spatter

(cf. Fig. 4). Therefore, this acceleration cannot be attributed to the aerodynamic effect of the

bullet preceding droplets in forward spatter but to the mutual entrainment of droplets described

above.
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Figure 5. PIV result for the forward spattered blood data of experiment 7Cb3. The error bars
are the standard deviation of the set of data.

The tape–covered sponge of experiment 7Cb3 only produced forward spattered droplets and

the results from the PIV analysis are shown in Fig. 5. Since the same bullet caliber and shooting

distance as in experiment 7Ab1 were used, the results in Fig. 5 can be directly compared to the

forward spatter case of Fig. 4(b).

Covering the sponge with tape prevents the onset of backward spatter. Due to the spread

of the error bars, an accelerated droplet motion due to the aerodynamic wake of the preceding

droplets is still plausible, however, it is not directly seen in Fig. 5. The magnitude of the average

velocity is approximately that of the forward spattered case shown in Fig. 4(b). The trend of

a decrease in the error bar spread at a longer time is still seen, albeit to a lesser extent.
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Figure 6. Droplet velocities for experiment 7Db1 shown in panel (a), and 7Db2 shown in
panel (b). The red dashed lines with circular data points represent the results for forward
spatter, and the solid blue line with square data points is for backward spatter. The error

bars are the standard deviations of the set of data. Note that the data points are once again
slightly offset from their corresponding time from impact value in order to more easily

distinguish the error bars.

The two experiments with silicone–covered sponges, 7Db1 and 7Db2, were conducted using

the same caliber of bullet and the same shooting distance. The results for the 7Db1 and 7Db2

experiments are presented in Fig. 6.

Even though experiments 7Db1 and 7Db2 were conducted under exactly the same conditions

as indicated in Table II, 7Db1 only resulted in forward spatter, whereas 7Db2 revealed both

forward and backward spatter. This sheds light on the complexity of performing repeatable

BPA experiments: it means that for this set of experiments, there are some uncontrolled factors

which result in two very different outcomes. Upon careful inspection of the high–speed videos,
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it seems that the silicone–encased sponge in experiment 7Db2 held more blood. Even more

critically, the blood seems to have pooled to the backside of the target where backward spatter

would form. Therefore, the presence of backward spatter in only one of these trials could

simply be explained by the undocumented blood filling process of the silicone–encased sponge,

or by gravity–driven transport of blood. Regardless of this deficiency, Fig. 6(b) still reveals

the important result of a faster average blood velocity for forward spattered droplets versus

backward spattered droplets.

It should be emphasized that the PIV results shown in Figs. 4–6 do not contain data with

the initial velocities of the droplets. All data points were taken starting at 0.4 ms after the

bullet impacted the target (except for experiment 7Db1 where data started at 0.5 ms due to the

inability to accurately resolve the droplets at an earlier moment of time, the early frames are

completely blurry). The analysis was only conducted for the time interval when the droplets

became clear enough to get accurate results. Droplets were formed before 0.4 ms, but with the

current high–speed videos, PIV cannot be utilized to measure their velocity. The high–speed

videos seem to show at least two regimes of the expulsion of droplets, the first of which has

not been measured by PIV here. The first regime is a very fast moving spray which occurs

almost instantaneously after the impact. After about 0.4 ms, the second regime begins to take

place where the web of blood issued from the target consists of recognizable droplets moving

at a much slower pace. An example of these two regimes can be seen in Fig. 7 which is a frame

taken from the high–speed video of experiment 7Aa1.
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Figure 7. Cropped image of the backward spatter region of experiment 7Aa1 at 0.1 ms after
the bullet impact [148]. The two labels, R I and R II, represent the two regimes found. The

first regime, R I, is where recognizable droplets which are relatively large and travel relatively
slowly begin to form; they were analyzed by PIV. Note, that as time goes on, the boundary
between R I and R II moves towards the right of the image and at about 0.4 ms, individual

droplets in R I are easy to resolve.

As described in Sec. 5.2, the number of droplets was counted with the particle analysis

toolset of ImageJ within a region of interest replicating the one used in the PIV analysis. The

results for the number of droplets in each experiment are shown in Fig. 8.

For the three experiments which contained both forward and backward spattered droplets,

there were always more forward spattered droplets. In comparing experiments 7Aa1 and 7Ab1,

which differ only in the caliber of the bullet, experiment 7Ab1, corresponding to the larger

caliber, produced more droplets in both forward and backward spatter. It also seems as if the
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Figure 8. The number of droplets in the PIV region of interest for each experiment. The red
bars with negatively sloped crosshatching are for the forward spatter and the blue bars with

positively sloped crosshatching are for backward spatter.

experiments with an open–faced bare sponge produce more droplets overall when accounting

for the experimental inconsistencies of 7Db1 and 7Db2.

Using the particle analysis toolset of ImageJ, the side view area of each individual droplet

can also be determined. An average of all these values in each experiment is shown in Fig. 9.

For the experiments which revealed both forward and backward spattered droplets, there is

an insignificant difference between the average side view area of droplets in the case of a bare

sponge. The silicone–covered sponge in experiment of 7Db2 resulted in much larger backward

spattered droplets, albeit that might be due to the blood pooling towards that direction in the

sponge as discussed above.
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Figure 9. Average side view area of the droplets in all experimental cases. The red triangles
represent forward spattered droplets and the blue squares represent the backward spattered

ones. The error bars show the standard deviation. For experiment 7Db1, the error bar for the
area about 0.75 mm2 is too wide to be included in full in this frame.

Using data from the high–speed videos of each experiment at 0.5 ms after the bullet impact,

the maximum angular spread of the forward and backward spatter was established by drawing

tangents to the issued drop clouds near the target faces and reckoning their angles from the

bullet axis. This resulted in the average upper angles of the close–to–cone domain in which

droplets are issued for the forward and backward spatter of 27 ± 9◦ and 57 ± 7◦, respectively,

whereas the lower angles of the close–to–cone domain are 28 ± 12◦ and 30 ± 18◦, respectively.

The detailed information on these angles is given in Fig. 10, with the lower semi–angles shown

as negative.
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Figure 10. Spread angles of the close–to–cone domain in which droplet clouds are issued at
0.5 ms. The dashed line is the axis of symmetry of the bullet, the red bars correspond to the

forward spatter and the blue bars to the backward spatter.

Figure 10 shows that backward spattered droplets have a wider spread angle than the

forward spattered ones. The bare sponge experiments 7Aa1 and 7Ab1 revealed an almost

symmetric upper and lower angles of the spatter domains in forward and backward spatter.

Such symmetry is less prominent in the other experiments which indicates that covering a

sponge with silicone or tape results in an uneven distribution of droplets. This is important

because the initial droplet cloud significantly determines their further trajectories and shows

that the effect of victim’s clothes may be crucial for crime scene reconstruction. It should be

emphasized that blood droplets were seen to form from the target periphery not penetrated by

the bullet and continued to be formed long after the bullet left the target. The above–mentioned
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angles correspond to 0.5 ms after the bullet impact. However, they vary in time, albeit not too

much, i.e. staying close to the values shown in Fig. 10.

The effect of muzzle gases on the blood spattered droplets is more pronounced in experiments

where the distance between the muzzle of the gun and target was short. An example of this is

shown in a high–speed video not analyzed above, whose experiment number was 7Aa7 which

was a .22 cal bullet impacting a blood–impregnated sponge at 50 cm. Several frames of this

video are shown in Fig. 11.

While the motion of the muzzle gases is difficult to discern in the still images, it is clearly

visible in the video. The effect of the muzzle gases is the following: as time progresses, the

droplets do not only move outward from the surface of the sponge, but are also entrained by

muzzle gases impinging onto the sponge and turn towards the left, which is against gravity and

against backward spatter motion. This phenomena has been discussed in literature before [97],

and clearly should not be ignored.

Two more observations worth noting were made when viewing the selection of MFRC videos.

Both of them are revealed in the forward spattered section of experiment 7Db2, of which a series

of four video frames are shown in Fig. 12.

First, note that the angle of the bullet coming out of the target is not normal to the target

face. The forward spattered droplets seem to follow the axis of penetration and as a result, they

travel at a downward angle of inclination. Note that this trend is opposite to what is seen for

backward spattered droplets in Fig. 11. For that experiment, the bullet traveled horizontally,

parallel to the floor, and therefore impacted the sponge target at an angle. The backward
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Figure 11. Frames from experiment 7Aa7 where panel (a) corresponds to 2.4 ms, (b) 6.4 ms,
(c) 7.9 ms, and (d) 9.4 ms after the horizontally traveling bullet impacted the inclined

sponge [148].
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Figure 12. Frames from the forward spattered portion of experiment 7Db2 [148]. Panel (a) is
0.2 ms, (b) 0.8 ms, (c) 1.1 ms, and (d) 1.5 ms after the bullet impacted the silicon–encased

sponge target.
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spattered droplets are then issued normally to the face of the target, not in preference with the

axis of the bullet as seen in forward spatter in Fig. 12.

The final important observation in Fig. 12 is that the issued blood droplets do not continue

to travel as their initial trajectory would tend to suggest. For example, looking at the top

grouping of droplets in Fig. 12(b), notice that they move downward towards the centerline

of where the bullet was in Fig. 12(c), and then they continue to move in that direction as

indicated in Fig. 12(d). The same phenomenon happens with the bottom grouping of droplets

in Fig. 12(b), except in reverse. This means that the droplets initially traveling upwards, end up

projected downwards, and vice versa for the group initially traveling downwards. The process

may be difficult to visualize with only four frames of experiment 7Db2, but it is clearly visible

in the MFRC video online. This phenomena can occur because of two possibilities. First, it

might be that the aerodynamic wake forming behind the bullet is causing the droplets to spiral

about the axis of penetration, a process which would be very difficult to see from this viewpoint

and might manifest itself as this artifact. Second, the low pressure zone within the wake of the

bullet may be causing the droplets to travel opposite to their initial direction. With the current

set of MFRC videos, it is impossible to accurately deduce a reason. It should be emphasized

that in the other videos used in this analysis which contained forward spatter, this phenomenon

was only observed in experiment 7Db2.

5.4 Conclusion

Five different videos from the MFRC were quantitatively analyzed with PIV and droplet

detection software. The videos are freely available to the public [148] as well as the droplet
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detection software used which was ImageJ. A toolset called “analyze particles” was used after

the image was converted to binary with the use of a standard, automatic local thresholding

method. The PIV software was PIVlab 1.41 which is a free application that works within the

MATLAB environment [150]. The average velocity of both forward spattered and backward

spattered droplets, number of droplets, and average side view area were found.

When comparing experiment numbers 7Aa1 and 7Ab1, it was observed that a larger caliber

bullet results in more, faster, and larger droplets in both forward and backward spatter. Cover-

ing the blood–impregnated sponge target with tape, as was done in experiment 7Cb3, reduced

the amount of droplets created, and only produced forward spatter. These droplets were of

about the same size as in the experiment with a comparable bullet size, 7Ab1. The average

spread angles of the close–to–cone domain of the droplet cloud in the forward and backward

spatter for the upper domain were measured as 27 ± 9◦ and 57 ± 7◦, respectively, whereas for

the lower domain they were 28±12◦ and 30±18◦, respectively. Encasing the sponge in silicone

produced mixed results which may be attributed to the blood filling process of the sponge. It

was also noted that the blood spatter experiments clearly produced two regimes of spatter. In

one of the regimes, a fine mist traveled rapidly and was created immediately after the bullet

impacted the target. In another regime larger droplets propagated much slower, and within

this regime the analysis contained in this work was performed. The inclination angle of the

spattered blood droplets was seen to be influenced by the impact angle of the bullet which is not

the case for backward spattered droplets. Additionally, the effect of muzzle gas was prominent

and the aerodynamic wake of the bullet may influence the trajectory of the blood spatter.
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It was found that in both forward and backward spatter, the droplets analyzed with PIV

were moving with an acceleration. This is because those droplets which constitute a dense

cloud practically do not experience air drag, and on the contrary are pulled forward by the

aerodynamic wake of the preceding droplets spattered initially, at earlier time moments. This

effect is similar to the aerodynamic interaction of birds flying in V formation. Only at the later

stage when droplets are sufficiently separated, their mutual aerodynamic interaction has been

diminished and they started to experience aerodynamic drag and decelerate. The MFRC video

database, despite its limits in space and time resolution, contain an immense information that

can facilitate the development of BPA models.

Note that the videos analyzed were chosen from the entire MFRC database because they

were of high enough quality to extract reliable information on the physical mechanisms of back-

ward and forward blood spatter. It should be emphasized that there is no known recording of

the volume of blood which was used in each experiment. From viewing the videos, however,

it is clear that a sufficient amount of blood was soaked into the sponge target because a spot

of blood several times larger than the impacting bullet are clearly visible on each target. Nev-

ertheless, in this work it is shown that even with such limited accompanying information, the

database is a rich source for the exploration of the physical mechanisms of blood spatter aimed

in the present work.

The physical aspects of the process established in this chapter facilitate and confirm the

foundations of the detailed numerical models discussed in Chs. 6, 7, and 8, which describe in
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detail velocities, sizes and trajectories of blood drops formed in back and forward spatter after

a gunshot, as well as their impact angles and velocities, and the stain size they form.



CHAPTER 6

BACKWARD SPATTER OF BLOOD SPRAY

Parts of this chapter have been previously published in Ref. [2], reprinted with permission

from [Comiskey, P. M., Yarin, A. L., Kim, S., and Attinger, D., Physical Review Fluids, 1,

043201, 2016], copyright (2016) by the American Physical Society, and Ref. [6], reprinted with

permission from [Comiskey, P. M., Yarin, A. L., and Attinger, D., Physical Review Fluids, 2,

073906, 2017], copyright (2017) by the American Physical Society, as well as submitted for

publication in Ref. [8].

6.1 Introduction

A theoretical model for predicting blood–spatter patterns resulting from blood droplets in

backward spattering from a gunshot wound is discussed. Two bullet shapes, a blunt body

and a sharp cone, respectively, are considered as limiting cases and described mathematically.

The blunt bullet type belongs to the class of impact hydrodynamics with the pressure impulse

generating the blood flow whereas the sharp bullet belongs to a Wagner–type problem. For both

cases, the physical process generating a backward spatter of blood is linked to the Rayleigh–

Taylor instability which is due to the acceleration of blood toward the surrounding quiescent air,

allowing the determination of the initial distribution of drop sizes and velocities. The motion of

many blood drops in air is considered with governing equations accounting for gravity and air

drag as well as drop–drop interactions through air, diminishing the air drag on drops following in
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the leaders wake. The models predict the atomization process, the trajectories of the backward

spattered blood drops from the wound, as well as important distributions such as the number of

stains and their respective areas. The theoretical results are then compared with experimental

data and reveal satisfactory agreement.

6.2 Experiment

The experiments herein are a subset of an open source data set of high–resolution, 600 dots

per inch (DPI), scanned images of blood spatter from a gunshot [21]. There, the experimental

conditions are described in detail, and allows the forensic science community to test their models

on publicly available data. Backward spattered blood droplets due to a gunshot were created

at the indoor shooting range at Izaak Walton League Park in Ames, Iowa, USA. While the

indoor shooting range provided quiescent air for the experiments, the environmental conditions

varied with the time of the year of the specific experiments. Relative humidity was measured

between 44% and 76%, with a precision of ± 5% and the room temperature was between 14.5

and 23.5 ◦C. The rifle used was a .223 cal Rock River Arms, LAR–15 16” barrel M–4, fit

with a Yanki YHM Phantom 223 suppressor firing two different types of bullets, one hollow

point (HP), and the other full metal jacket (FMJ). The HP bullet was a BEE .224 cal with

a .223 Remington casing, 26.5 grain BLC–2 powder, and Winchester Small Rifle Primer. The

FMJ bullet was a 5.56 mm caliber Federal Ammunition XM193 with a mass of 55 grain. The

velocity of the HP bullet was measured with a chronograph as 897 m/s, and the FMJ bullet

was measured to be 922 m/s.
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Figure 13. Schematic of the experimental setup used to generate backward spattered blood
droplets impacting on a vertical substrate. Variables are dependent upon which experiment

was conducted as specified in Table III. The coordinate trihedron is located on the floor, with
the X –axis being parallel and coplanar (with respect to the Z–X plane) to the path of the

bullet which was aimed at the target center.

The bullets were shot at either a closed hollow cavity or polyurethane foam sheet filled

with 10–13 mL of swine blood. For the experiments conducted with the soaked foam target,

the blood was anticoagulated with acid citrate dextrose (ACD) and had 41% hematocrit. The

temperature of the blood injected into the foam was 35 ± 2 ◦C. For the experiments where

blood was contained in a closed hollow cavity, the blood was used at room temperature and

anticoagulated with heparin and had 38–39% hematocrit. In each case, the blood was drawn two

days before the experiment was conducted. A schematic of the experimental setup is depicted

in Fig. 13

Having in mind the effect of expanding muzzle gases interacting with blood droplets in

flight as discussed in Ch. 5 and Ref. [97], the experimental setup was designed such that the
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TABLE III

Parameters of the experiments of different backward blood spatter situations. The variables
are defined in Fig. 13, FMJ stands for the full metal jacket bullet, HP for the hollow point

bullet, VBlood for the volume of blood used in the target, and the blood source corresponds to
either a soaked polyurethane foam (a) or a hollow cavity (b). For all experiments, the bullet

impacted the target normally and the substrate was smooth cardstock.

Experiment
Number

Bullet
Blood
Source

δ [cm] VBlood [mL]

Rp11# FMJ (a) 50 13
Rp12# FMJ (a) 50 13
Rf13# HP (a) 50 13
Rf14# HP (a) 50 13
Rp41 FMJ (b) 10 10
Rp42 FMJ (b) 30 10
Rp43 FMJ (b) 30 10
Rp44 FMJ (b) 30 10
Rp45 FMJ (b) 60 10
Rp46 FMJ (b) 60 10
Rp47 FMJ (b) 60 10
Rp48 FMJ (b) 120 10
Rp49 FMJ (b) 120 10
Rp50 FMJ (b) 120 10
Rp101 FMJ (b) 90 10

bullet penetrated through a sheet of cardstock which acted as a diffuser to obstruct the muzzle

gases from traveling downstream. The substrate which was impacted by the blood droplets was

smooth cardstock.

6.3 Model for a Sharp Bullet

Bullet impact phenomena are short–term events taking place on the scale of 30 µs or even

shorter, estimated with the depth of penetration of about 1 cm and the velocity of about
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340 m/s. In such cases, viscous forces are always negligible compared to the inertial ones,

as the Reynolds number is of the order of 107. Moreover, in impact hydrodynamics when

pressure is high and flow processes are short, the effect of any rheological behavior (viscous

or non–Newtonian) is always negligibly small compared to the pressure impulse, and only

the inertial effects play a role, i.e. the initial flow field is potential, with the potential being

determined by the impulse [153]. Then, under the conditions of the Lagrange theorem, which

are fully applicable in the present case, the flow field will stay potential during its subsequent

evolution [83]. Therefore, the splash of blood resulting from a bullet impact can effectively

be considered in the framework of the inviscid potential flow approximation as in the classical

Wagner problem [83,131,153–156].

In the experiments in Sec. 6.2, a bullet impacted a blood–impregnated sponge with open

porosity and very low hydraulic resistance. The situation therefore effectively resembles the

situation of a bullet impacting a pool of blood, which then splashes. It is assumed that there

is no significant difference whether blood is being emitted from a free surface or from a highly

porous sponge with open porosity during the stage of interest when pressure is high and flow

processes are short. It is also assumed that the mechanical behavior of actual skin (a porous

organ containing blood vessels including capillaries) hardly matters and thus blood splashing

from a free surface seems to be a plausible model of real gunshot backspatters.
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Denote the flow potential by ϕ and consider the axisymmetric Laplace equation, which it

should satisfy in blood backspatter generated by a bullet impact,

∇2ϕ =
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+
∂2ϕ

∂z2
= 0, (6.1)

with r and z being radial and axial coordinates, respectively. Note that the z–axis corresponds

to the direction of bullet impact and is directed from the free surface into the liquid bulk.

In the present work, the theoretical approach is developed and tested for a purely conical

bullet shape (cf. Fig. 14) as a first approximation. A theory for a blunt bullet impact is

discussed in Sec. 6.4. It should be emphasized that in both bullet type cases (or transitional

shapes) backspatter of blood will be traced to the Rayleigh–Taylor instability, as is shown

Sec. 6.5.

In the present case a bullet is considered as a slender body of revolution and effectively acts

as a system of sources of strength q distributed along its main axis. In such cases the resulting

potential can be found as [83],

ϕ (r, z) = − 1

4π

∫
q (ξ)√

(ξ − z)2 + r2

dξ, (6.2)

where the integration is conducted over the bullet axis, with ξ being the axial dummy variable

and q a function of the velocity and shape of the bullet.
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Figure 14. (a) Origin of trajectory families of blood drops in backspatter. Only two trajectory
families corresponding to Φ = π/2 (the uppermost trajectory family) and Φ = 3π/2 (the

lowermost trajectory family) are shown. (b) Normal cross section of the conical tip with the
azimuthal angle Φ.

When the bullet tip has reached depth h (t) below the free surface, with t being time, the

condition that the surface is free is accommodated by the mirror reflection of the submerged

conical part of the bullet. This allows one to introduce the integration limits as follows,

ϕ (r, z) = − 1

4π

∫ h

−h

q (ξ)√
(ξ − z)2 + r2

dξ. (6.3)

It should be emphasized that the free surface is assumed to be located at z = 0, approx-

imately at the same place where it was at the moment of the bullet impact, which is a good

approximation for sufficiently slender bullets.
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The strength of the sources distributed over the submerged and mirror–reflected axis of the

bullet is established using the fact that the bullet surface is impenetrable for blood and thus,

∂ϕ

∂r

∣∣∣∣
bullet surface

=
1

2π

q (ξ)

r|bullet surface

. (6.4)

Since at the bullet surface the normal component of blood motion is equal to the normal

component of the bullet velocity, one can find from Eq. (6.4) that,

1

2π

q (ξ)

r|bullet surface

=

θḣ for 0 ≤ ξ ≤ h
− θḣ for − h ≤ ξ ≤ 0

, (6.5)

where the dot over h denotes time differentiation and θ is the semiangle of the bullet tip.

Accordingly,

q (ξ) =

2π r|bullet below surface × θḣ for 0 ≤ ξ ≤ h
2π r|bullet above surface ×

(
−θḣ

)
for − h ≤ ξ ≤ 0

. (6.6)

Note that the conical geometry of the bullet tip yields,

r|bullet below surface = (h− ξ) tanθ ≈ (h− ξ) θ for 0 ≤ ξ ≤ h
r|bullet above surface = (h− ξ) tanθ ≈ (h+ ξ) θ for − h ≤ ξ ≤ 0

. (6.7)
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Note also that Eq. (6.7) becomes less accurate for bullet tips significantly different from a

thin cone, albeit still qualitatively true. Then Eqs. (6.6), and (6.7) yield,

q (ξ) =

2πθ2 (h− ξ)× ḣ for 0 ≤ ξ ≤ h
− 2πθ2 (h+ ξ)× ḣ for − h ≤ ξ ≤ 0

. (6.8)

After the distribution of the sources (and also sinks corresponding to the mirror image of

the submerged bullet tip) are found, Eqs. (6.3) and (6.8) result in the following expression for

the flow potential,

ϕ (r, z) = −1

2
θ2ḣ

∫ h

0

h− ξ√
(ξ − z)2 + r2

dξ +
1

2
θ2ḣ

∫ 0

−h

h+ ξ√
(ξ − z)2 + r2

dξ. (6.9)

Blood velocity at the free surface (where it is splashed against the direction of bullet motion)

is found as,

vz|z=0 =
∂ϕ

∂z

∣∣∣∣
z=0

= −θ2ḣ

[
h

r
+ ln

r

h+
√
h2 + r2

]
. (6.10)

For example, at the free surface in contact with the penetrating bullet, i.e. at r = θh, at

the moment of impact when ḣ = V0, with V0 being the bullet impact velocity, Eq. (6.10) yields,

∂ϕ

∂z

∣∣∣∣
z=0, r=θh

= −θ2ḣ

[
1

θ
+ ln

θ

1 +
√

1 + θ2

]
≈ −θḣ = −θV0. (6.11)

This backspatter velocity is negative since it is directed against the positive bullet velocity

V0 and, moreover, it is much lower than the latter, since for slender bullets θ � 1. If one takes
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for the estimate θ = 0.24 (which corresponds to the semiangle of 14◦) and a bullet velocity of

340 m/s, the initial backspatter velocity is 80 m/s.

Evaluating the integrals in Eq. (6.9) and using the first of Eqs. (6.7) allows one to find the

potential distribution at the surface of the submerged bullet tip,

ϕ|bullet surface = −1

2
θ2ḣ

[
−2 (h− z) lnθ + 2z + (h− z) ln4 + hln

(
z2

h2 − z2

)
+ zln

(
h− z
h+ z

)]
.

(6.12)

The nonsteady Bernoulli equation in the slender–body approximation yields the pressure p

at the bullet surface as,

p|bullet surface = −ρ ∂ϕ
∂t

∣∣∣∣
bullet surface

, (6.13)

where ρ is the blood density. The drag force F experienced by the penetrating bullet in the

slender body approximation is found using the integral over the axially symmetric wetted surface

of a slender conical bullet,

F = −2πθ2

∫ h

0
p|bullet surface (h− z) dz. (6.14)

Then Eqs. (6.12)–(6.14) yield,

F = λπθ4ρ
(
ḣ
)2
h2 + λ

π

3
θ4ρ

(
ḧ
)
h3, (6.15)
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where the dimensionless factor,

λ = ln (2θ) + 1. (6.16)

It should be emphasized that for a slender bullet λ < 0 and thus the force F < 0, i.e. acting

against the direction of bullet motion. Note also that the first term on the right–hand side

(RHS) in Eq. (6.15) expresses the shape drag, whereas the second one expresses the added–

mass drag.

Newton’s second law for the motion of the bullet reads,

F = mḧ, (6.17)

where m is the bullet mass. Substituting the expression for the drag force from Eq. (6.15) into

Eq. (6.17), the equation describing bullet motion when it penetrates the blood is found,

d2h

dt2
=
λπθ4ρ (dh/dt)2 h2

m− λπθ4ρh3/3
, (6.18)

which should be solved subjected to the initial conditions,

t = 0 : h = 0,
dh

dt
= V0. (6.19)
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Using Eq. (6.10), the acceleration of the free liquid surface A is found as,

A =
∂vz
∂t

∣∣∣∣
z=0

= −θ2 d2h

dt2

[
h

r
+ ln

r

h+
√
h2 + r2

]
− θ2

(
dh

dt

)2 [1

r
+

1√
h2 + r2

]
. (6.20)

The estimates based on Eqs. (6.18)–(6.20) show that at dh/dt ∼ V0 = 340 m/s, the bullet

deceleration d2h/dt2 ∼ −121 m/s2. Accordingly, for h ∼ r ∼ 1 cm, the second term on the RHS

in Eq. (6.20) is much larger than the first one and thus the acceleration of the liquid surface

that results in backspatter is,

A ≈ −θ2V 2
0

[
1

r
+

1√
h2 + r2

]
≈ −θ

2V 2
0

r
. (6.21)

The drop velocity, according to Eq. (6.10) is then,

vz|z=0 = −θ
2V0h

r
. (6.22)

Note that in Eqs. (6.21)–(6.22) r ≥ θh. It should be emphasized that blood moves with

acceleration A toward air. Since the blood density is higher than the air density, such flow is

prone to the Rayleigh–Taylor instability [157], and discussed in Sec. 6.5.

Equation (6.22) shows that the most important information pertaining to the bullet is

the semiangle of its tip θ and the bullet impact velocity V0. Sensitivity of the results to the
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uncertainty in these values is not presently addressed and is considered as a task for future

work.

Denote the blood drops originating from the zone bi ≤ r ≤ bi+1 as a bin i. The mass Mi of

the blood drops in backspatter originating from this bin during time τ = ch/V0 is found as,

Mi = τρ

∫ bi+1

bi

|vz|z=0| 2πrdr = 2πρ (hθ)2 (bi+1 − bi) c, (6.23)

where c is a dimensionless factor. The number of drops ni in such a bin is approximately equal

to,

ni =
Mi

ρπl3∗,i/6
, (6.24)

where the characteristic drop size l∗,i is assumed to be the diameter. Note that the character-

istic time of the backspatter could be taken as the characteristic time of the Rayleigh–Taylor

instability, which would yield in the present case τ ≈ (σ/ρ)
1/4 h3/4/V

3/2
0 . This estimate is, how-

ever, quite uncertain, since the formation of multiple drops might take several characteristic

times and be different for different radial coordinates r. Therefore, a uniformly valid time scale

τ = ch/V0 is used, which introduced the factor c in Eq. (6.23). Its choice is discussed in Sec. 6.8.

6.4 Model for a Blunt Bullet

The blunt (HP) bullet has a front edge which resembles a disk. The impact duration

τ ∼ 1 µs, and the impact velocity V0 ≈ 1000 m/s, is at least of the order of the speed of

sound in blood and is supersonic relative to air. Then, the impact pressure is of the order
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∆p ∼ ρV0Cs, where Cs is the speed of sound in blood and ρ is its density. Essentially, this

is the situation where ∆p → ∞, τ → 0, and the impulse Π =
∫ τ

0 ∆pdt = O (1), with t being

time. Such situations are characteristic of impact–driven fluid mechanics, where the flows are

inevitably potential, with the potential ϕ = −Π/ρ [72, 131,132,153].

The flow potential once again satisfies the axisymmetric Laplace equation,

∇2ϕ =
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+
∂2ϕ

∂z2
= 0, (6.25)

with r and z being the radial and axial coordinates, respectively. The z–coordinate is reckoned

along the axis of symmetry of the bullet, is zero at the free surface, and is positive in the

direction away from the free surface into the liquid bulk.

The solution of the potential in Eq. (6.25) is finite at the z–axis in the liquid bulk,

r = 0 : ϕ <∞. (6.26)

At the free surface, the boundary conditions read,

z = 0 :
∂ϕ

∂z
= V0 at 0 < r < a, (6.27)

z = 0 : ϕ = 0 at a < r <∞, (6.28)

where a is the radius of the blunt bullet edge.
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In the far field within the liquid bulk the no–flow boundary condition is imposed,

z =∞ :
∂ϕ

∂z
= 0. (6.29)

The problem (6.25)–(6.29) is singular because of the boundary conditions (6.26) and (6.28)

(the axis of the cylindrical coordinate system, and the radially infinite domain, respectively).

Accordingly, being solved using variable separation, it possesses a continuous spectrum ν, with

the result being expressed in the form of the following Fourier–Bessel integral,

ϕ =

∫ ∞
0

DνJ0 (νr) e−νzdν, (6.30)

where Dν is a constant, i.e. it does not depend on either r or z.

Accordingly, the z–component of flow velocity at the moment of impact is,

vz =
∂ϕ

∂z
= −

∫ ∞
0

DννJ0 (νr) e−νzdν. (6.31)

Accordingly, the boundary conditions (6.27) and (6.28) with the help of Eqs. (6.30) and (6.31)

take the following form,

−
∫ ∞

0
DννJ0 (νr) dν = V0 for 0 < r < a, (6.32)

−
∫ ∞

0
DνJ0 (νr) dν = 0 for a < r <∞. (6.33)
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Introducing ξ = r/a and η = νa, Eqs. (6.32) and (6.33) are transformed to the following

form,

∫ ∞
0

DννJ0 (ηξ) dη = −V0a
2 for 0 < ξ < 1, (6.34)

∫ ∞
0

DνJ0 (ηξ) dη = 0 for 1 < ξ <∞. (6.35)

It is easy to check that Eqs. (6.34) and (6.35) are satisfied with,

Dν =
2

π
V0a

2

(
cosη

η
− sinη

η2

)
. (6.36)

Substituting Eqs. (6.36) and (6.30), we arrive at the following expression for the flow po-

tential at the blunt bullet edge,

ϕ|z=0 =
2

π
V0a

∫ ∞
0

(
cosη

η
− sinη

η2

)
J0 (ηξ) dη for 0 < ξ < 1. (6.37)

The integrals in Eq. (6.37) can be evaluated, which yields,

ϕ|z=0 = − 2

π
V0

√
a2 − r2 for 0 < r < a. (6.38)
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Also, Eqs. (6.30) and (6.36) yield the radial and axial velocity components at the free surface

1 < ξ <∞,

vr|z=0 =
∂ϕ

∂r
= − 2

π
V0

∫ ∞
0

(
cosη − sinη

η

)
J1 (ηξ) dη, (6.39)

vz|z=0 =
∂ϕ

∂z
= − 2

π
V0

∫ ∞
0

(
cosη − sinη

η

)
J0 (ηξ) dη. (6.40)

Evaluating the integrals in Eqs. (6.39) and (6.40), one obtains,

vr|z=0 = 0 for a < r <∞, (6.41)

vz|z=0 = − 2

π
V0

[
a√

r2 − a2
− arcsin

(a
r

)]
for a < r <∞. (6.42)

The latter equation can be found in Ref. [153]. Note also that vz|z=0 < 0, i.e. the flow at

the free surface is directed outward, toward air. The impulsive motions are established on the

time scale τ = ca/V0 where c is a dimensionless factor. Accordingly, the acceleration of blood

at the free liquid surface, A, can be evaluated using Eq. (6.42) as,

A (r) ≈ − 2

π

V 2
0

ca

[
a√

r2 − a2
− arcsin

(a
r

)]
. (6.43)
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The impact velocity that generates the impulsive motions V0 is less than the bullet approach

velocity Va, because the propagation of the sound wave within the liquid absorbs a part of the

kinetic energy of the bullet. Accordingly [72,154,155],

V0 = Va
1

1 + 4ρa3/ (3m)
, (6.44)

where m is the bullet mass. For the bullet used in the experiments (cf. Sec. 6.8), the approach

velocity is Va ≈ 1000 m/s, while a = 0.285 cm, and m = 2.916 g, which results in V0 =

988.90 m/s.

6.5 Rayleigh–Taylor Instability

The interface between a dense fluid which is accelerated towards a less dense one is un-

stable [157]. This instability is termed the Rayleigh–Taylor instability and it can be seen to

occur in a variety of situations ranging from the mushroom clouds in nuclear explosions to

water suspended above oil. For backward blood spatter splashed as a result of a gunshot, the

more–dense blood is accelerated towards air due to the bullet impact. As such, the solution

of the perturbation equations allows one to find the most unstable wavenumber of that fluid

interface as [157],

k∗ =

√
|A| (ρb − ρa)

3σ
, (6.45)

where A is the acceleration of the blood with density ρb towards air with density ρa, and σ is

the surface tension.
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The most unstable wavenumber is related to the most unstable wavelength through, k∗ =

2π/l∗, and transforms Eq. (6.45) to,

l∗ =
2π√

ρb |A| / (3σ)
w, (6.46)

where w is a dimensionless factor. The fastest growing wavelength of the Rayleigh–Taylor

instability determines only the order of magnitude of the drop size, and therefore, the factor w

is needed in Eq. (6.46) for an exact match. Its choice is discussed in Sec. 6.8.

Equation 6.46 determines the characteristic blood drop diameters in backward spatter as

a results of the acceleration of blood towards air, i.e. A, due to a bullet and is discussed in

Secs. 6.3 and 6.4.

6.6 Blood Drop Cloud Trajectories

One can assume that drops of different size groups and initial velocities form subfamilies

(also known as bins), each following different trajectories. This means that the original cloud

of blood drops of different sizes resulting from the Rayleigh–Taylor instability consists not of a

continuous spectrum of drop sizes, but of an approximate discrete one, which is a reasonable

approximation when many different sizes are involved. In other words, a discrete distribution

replaces the so–called diffusion approximation for the drop–size distribution. Then each group

of drops (each bin) interacts with the other groups through air and develops its own trajectory

according to the laws of mechanics. Consider one of these bins and pose the problem that

allows one to describe its trajectory in backspatter starting from the initial wound. Assume

that drops of this size group form a continuum that can be considered as a pseudogas moving
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through air (it should be emphasized that this pseudogas possesses an effective density but

not a viscosity). Then air and the pseudogas form a system of two interpenetrating continua,

which is known to be an effective approach in the fluid mechanics of two–phase flows [158].

Denote a parcel of drops originating from a bin by i and moving with an entrained air as a

blob i. Introduce the instantaneous averaged velocity of the blob i by ui and the instantaneous

averaged velocity of air accompanying this blob due to the entrainment in motion by all its

drops Ui. The interaction of an individual drop with the surrounding air corresponds to the air

drag force FD,i, which can be introduced using the drag coefficient CD,i [158],

CD,i =
FD,i

(1/2) ρa (ui − Ui) |ui − Ui|πl2∗,i
, (6.47)

where ρa is the air density. The drag coefficient is a function of the Reynolds number for an

individual drop Rei = ui2l∗,i/νa, with νa being the kinematic viscosity of air. The following

correlation for the drag coefficient is used in the present case and applied to individual drops

in the blob i [15, 159],

CD,i = 0.28 +
6

Re0.5
i

+
21

Rei
for 0.1 ≤ Rei ≤ 4000. (6.48)

This formula is used in BPA research and other fluid mechanical applications [15, 159] and

its accuracy and the range of validity is comparable to those of the standard drag curve given

by the Schiller–Naumann formula. Note also that in the simulations discussed in Sec. 6.8 the

values of Rei were always in the range of validity of Eq. (6.48), from 0.1 to 4000.
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Then the momentum balance of air in the air–drop blob projected onto the tangent of the

trajectory is given by,

d

dt
(ρaV Ui) =

∑
i

niCD,i
1

2
ρa (ui − Ui) |ui − Ui|πl2∗,i. (6.49)

Here V is the volume of air in the air–drop blob. It should be emphasized that the effect

of gravity on air motion is immaterial compared to the drop motion discussed below, i.e. the

effect of gravity on the motion of an air–drop blob is determined by its effect on drop motion,

while air is entrained via the interfacial drag force as in Eq. (6.49) and the viscous suction of

air into the blob discussed below.

The momentum balance of drops of a chosen size group in the air–drop blob is,

Mi
d

dt
(uiτ ) = −FD,iτ −Migk, (6.50)

where τ is the unit vector tangent to the trajectory, g is gravity acceleration, and k is the

unit vector of the vertical direction. Projecting Eq. (6.50) onto the tangent τ to the trajectory

yields,

Mi
dui
dt

= −niCD,i
1

2
ρa (ui − Ui) |ui − Ui|πl2∗,i −Mig

1

ui

dH

dt
, (6.51)
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where H is the current elevation of the blob relative to the ground. On the other hand, the

momentum balance of drops of a chosen size group (bin) in the air–drop blob, Eq. (6.50),

projected onto the normal to the trajectory yields,

d2H

dt2
= −g

[
u2
i − (dH/dt)2

]
u2
i

+
1

ui

dH

dt

dui
dt
. (6.52)

A moving air–drop blob acts on the surrounding air as an axisymmetric air jet occupying

the same space. The outside air experiences suction toward the jet core sustained by the viscous

forces. The mass of air passing through the jet cross section in unit time G increases due to

the suction proportional to the location along the trajectory characterized by the arc length

ξ [140],

G = 2πρa

∫ ∞
0

Uydy = 8πµaξ, (6.53)

where the radial coordinate reckoned from the trajectory is denoted by y and µa is air viscosity.

The volumetric flux of air through the jet cross section V̇ is thus equal to,

V̇ =
G

ρa
= 8πνaξ, (6.54)

with νa = µa/ρa being the kinematic viscosity of air.
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An air–drop blob has a characteristic size of V 1/3 and it takes time V 1/3/ui to pass the cross

section. Therefore, V = V̇
(
V 1/3/ui

)
and thus the blob volume increases in time as,

V (t) =

[
8πνa

ξ (t)

ui (t)

]3/2
. (6.55)

In turbulent jet–like motion, the kinematic viscosity νa is in fact the eddy viscosity. In

the framework of the semiempirical Prandtl mixing length theory it is possible to show that

νa = κ1ui0,maxV
1/3

blood, where ui0,max and Vblood are the maximal initial velocity of a drop bin

and volume of blood in the backspatter (Vblood =
∑

iMi/ρ), respectively, and the semiempirical

constant κ1 = 0.016 − 0.019 [140]. Accordingly, Eq. (6.55) for the air–drop volume can be

transformed to,

V (t)

Vblood
= κ

[
ξ (t)

V
1/3

blood

ui0,max

ui (t)

]3/2

, κ = 0.255− 0.33. (6.56)

The current arc length corresponding to the blob location along the trajectory is found as,

dξ

dt
= ui, (6.57)

and the current horizontal coordinate of the blob location along the trajectory is found as,

dX

dt
=

√(
dξ

dt

)2

−
(

dH

dt

)2

. (6.58)
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The six equations, Eqs. (6.49), (6.51), (6.52), and (6.56)–(6.58), govern the motion of each

blob and allow one to predict all six unknown functions, Ui (t), ui (t), V (t), ξ (t), H (t), and

X (t) and thus determine the trajectory as H = H (X) from its origin at a bullet wound to a

solid surface onto which the blob impacts as a result of backspatter. It should be emphasized

that blobs with drops of different sizes will follow different trajectories and will be deposited

at different places, thus forming a blood spatter pattern and the above–mentioned equations

determine their mutual interaction (through air) in flight.

Having in mind a numerical solution of the system of governing equations, the equations

are rendered dimensionless using the following scales: The initial drop velocity (determined by

the Rayleigh–Taylor instability discussed in Sec. 6.5) ui0,max = θ2V0/b1, the maximal initial

velocity corresponds to bin i = 1 is used as a scale for air and drop velocities Ui and ui; the

initial volume of the drop blob (also determined by the Rayleigh–Taylor instability discussed in

Sec. 6.5), V
1/3

blood is used as a scale for the arc length ξ, the horizontal and vertical locations of the

blob X and H, respectively, and for the drop size l∗,i (also determined by the Rayleigh–Taylor

instability discussed in Sec. 6.5); Vblood is used as a scale for the air volume in the blob V ;

V
1/3

blood/ui0,max is used as a scale for time t. Equations (6.49), (6.51), (6.52), and (6.56)–(6.58)

are transformed to the dimensionless form,

dU iV

dt
=

(
N∑
i=1

ni

)
1

2
CD,i

(
u1 − U i

) ∣∣u1 − U i
∣∣πl2∗,i, (6.59)
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dui
dt

= −1

2
niCD,i

ρa

ρb

(
ui − U i

) ∣∣ui − U i∣∣πl2∗,i − 1

Fr2

f

ui
, (6.60)

dH

dt
= f, (6.61)

df

dt
= − 1

Fr2

(
u2
i − f

2
)

u2
i

+
f (dui/dt)

ui
, (6.62)

V (t) = κ

[
ξ (t)

ui (t)

]3/2

, κ = 0.255− 0.33, (6.63)

dξ

dt
= ui, (6.64)

dX

dt
=

√(
dξ

dt

)2

−
(

dH

dt

)2

. (6.65)

It should be emphasized that Eq. (6.59) approximately expresses the fact that air entrain-

ment is dominated by the fastest moving drops “leading” the cloud, as was previously demon-

strated regarding the two–phase flows characteristic of sprinkler jets and diesel sprays [70, 71].

A similar phenomenon is commonly implied regarding the formation flight (or V formation)

of a geese flock [110]. Equation (6.59) is integrated directly for the product U iV . Also, f in
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Eqs. (6.61) and (6.62) is an auxiliary variable used to split the second–order equation into two

first–order ordinary differential equations (ODE’s).

The governing equations (6.59)–(6.65) and the expression (6.48) incorporate the following

dimensionless groups, the Reynolds and the Froude numbers, Re and Fr, respectively,

Rei = Re0uil∗,i for Re0 =
ui0,max2V

1/3
blood

νa
, F r−2 =

gV
1/3

blood

u2
i0,max

, (6.66)

where l∗,i = l∗,i/V
1/3

blood. Solutions of Eqs. (6.59)–(6.65) are subjected to the initial conditions,

t = 0 : U i = 0, ui =
ui0

ui0,max
, ξ = 0, X = 0, H = H0, f =

ui0
ui0,max

sinψ, V = 0, (6.67)

where H0 = H0/V
1/3

blood, with H0 being the initial elevation and ψ the initial inclination angle

from the horizontal. More details about ψ are given in the Sec. 6.7. The governing equa-

tions (6.59)–(6.65) with the initial conditions (6.67) are solved numerically using the Kutta–

Merson method with an automatically chosen and variable time step depending on the requested

accuracy.1

1The Kutta–Merson numerical scheme is usually not available in modern numerical methods literature and

is therefore described in Appendix A.
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6.7 Fanning of Blood Drop Clouds

To predict the sideways dispersion of blood spatter, consider a circular cross section of the

conical part of a bullet by a surface normal to its main axis. Denote by Φ the angular positions

over the circle, with Φ = 0 corresponding to the rightmost point on the RHS, Φ = π/2, to the

uppermost point on the top, etc. Blood drops are spattered in planes incorporating the cone

generatrices, while each such plane corresponds to a given value of Φ. The splash direction at

the moment of impact can differ from the bullet generatrix by an angle ∆θ due to the flowerlike

opening of HP bullets, bullet mushrooming, the effect of the sponge (and skin, in reality), etc.

(see Fig. 14).

Assume first that blood is splashed exactly over the generatrix of the conical part of the

bullet, i.e. ∆θ = 0. Then, by straightforward geometrical considerations (see Fig. 14) it is

possible to show that the trajectory family corresponding to a certain value of Φ has the initial

angle of inclination to the horizon ψ given by the formula,

ψ = ψ0 + ∆ψ, (6.68)

where the following notation for ψ0 and ∆ψ is adopted,

sinψ0 = sinθsinΦ, sin∆ψ =
sinδ√

1 + tan2θcos2Φ
. (6.69)

Equations (6.68) and (6.69) finalize the initial conditions (6.67). Then trajectories of drops

corresponding to all bins i (having the same initial inclination ψ for any direction Φ of interest)
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can be found by numerical integration of the system Eqs. (6.59)–(6.65) subject to the initial

conditions of Eq. (6.67). Thus, for each drop its horizontal landing distance XΦ from the

origin can be predicted. The corresponding X and Y coordinates on the floor [the longitudinal

coordinate X belongs to the central plane (Φ = π/2, or Φ = 3π/2), while Y is the lateral

coordinate reckoned from this plane (see Fig. 13)] are found as,

X = XΦ
cosδcosθ√

cos2δcos2θ + sin2θcos2Φ
, (6.70)

Y = X
tanθcosΦ

cosδ
. (6.71)

It should be emphasized that if ∆θ 6= 0, then θ in Eqs. (6.70) and (6.71) should be replaced

by ± (θ + ∆θ) for the upper and lower trajectory families, respectively [see Fig. 14(a)].

6.8 Results and Discussion

The scanned images of the cardstock sheet, which was located vertically at a distance of

50 cm from the target and perforated by a sharp and blunt bullet, were discretized radially

from the penetration location to the furthest drop into ten concentric disk–shaped areas of

equal width. In each ring–shaped segment, the number of stains was counted and summed to

find the number of stains per segment. Also, the average stain area and the impact angle per

segment were found. These values were attributed at the location of the mid radius of each

segment. This procedure resulted in ten data points for the number of drops, the average stain
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area, and the total stain area as the functions of the radial coordinate from the blunt bullet

penetration location on the vertical collector sheet.

It should be emphasized that the theory of Secs. 6.4 and 6.3 attributes formation of blood

drops in backspatter to the very first moment of the impact of the edge of the bullet onto the

target. Therefore, the theoretical predictions are unaffected by the following disintegration of

the bullet, which can happen in the experiments. To compare the theoretical data with the

results of the experiment described in Sec. 6.2, several parameters must first be defined. The

following values were used in the simulations: the blunt bullet impact velocity V0 = 988.90 m/s

(corresponding to a bullet approach velocity of Va ≈ 1000 m/s) the sharp bullet impact velocity

V0 = 100.0 m/s, radius of the impact area of the blunt bullet, a = 0.285 cm, the spatter spread

angle for the blunt bullet, ∆θ = 14◦, the spatter spread angle for the sharp bullet, ∆θ = 15◦, the

sharp bullet’s cone half angle, θ = 5.73◦, the sharp bullet’s depth of penetration, h = 0.5 cm,

the azimuthal discretization in the angular direction, ∆Φ = π/12, the height of the impact,

H0 = 56.0 cm, and the dimensionless factors for a blunt bullet as w = 0.112 and c = 786.6

whereas for a sharp bullet w = 2.375 and c = 483.0. The drop size generated by a gunshot

via the Rayleigh–Taylor instability should be affected by the bullet shape, which explains the

variation in the value of w [in the same order of magnitude in Eq. (6.46)]. Also, it should be

emphasized that the amount of blood splashed by a blunt bullet is usually larger than that

of a sharp, slender bullet. That is reflected by a different, larger value of c used in the blunt

bullet. Ultimately, the value of c is affected by the bullet shape, as one of the factors, and the

increased value used here reflects that fact.
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The chosen value of ∆θ can be substantiated on the basis of several published experiments

and on our theoretical analysis. The x–ray measurements during impact of metallic projectiles

in water in Ref. [160] revealed a conical cavity trailing the projectile with 10◦ < ∆θ < 20◦,

for diameters and supersonic (by air) impact velocities comparable to that of our study. In-

terestingly, Ref. [160] reported similar values of ∆θ for projectiles with various shapes, such as

spheres, cylinders with spherical tips, and blunt cylinders. Similar values of 10◦ < ∆θ < 20◦

were reported in Ref. [161] for impacts of spheres in water at both low and high Bond numbers.

The authors of Refs. [162, 163] used shadowgraphy to estimate the pressure field in the fluid

around the projectile.

A theoretical justification of the value of ∆θ in the present case of a blunt bullet atomization

of blood can be made as follows. For both the sharp and blunt bullet case, the radial velocity

of splashed liquid is equal to zero, and thus the initial ejection is expected to be strictly normal

to the free surface. This is indeed observed in the intact crownlike splashes resulting from

drop impact onto a liquid surface (cf. Fig. 6 in Ref. [164]). However, in the present case

the ejected liquid is atomized practically from the very beginning, which results in the suction

of a significant mass of air, which inevitably happens at the periphery of the spattered two–

phase blob unaffected by any aerodynamic effects caused by a bullet (cf. Fig. 10 in Ch. 5).

Accordingly, the ejected drop blob essentially forms an axisymmetric two–phase submerged

turbulent jet. It should be emphasized that due to the air entrainment, the air–drop blob

widens to compensate for the decrease of its velocity due to the action of the eddy viscosity

and sustains the invariant value of the longitudinal momentum flux [140]. Accordingly, the
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asymptotic boundary of the two–phase jet associated with the one–tenth longitudinal velocity,

u in comparison to the corresponding axial velocity value, um is given by y0.1 = η0.1aTx, where

η0.1 is the value of the self–similar coordinate corresponding to the boundary, and aT is the

semiempirical constant of the Prandtl mixing length theory (aT = 0.045−0.055) [140]. Since the

self–similar velocity profile in the jet cross–section is given by u/um =
(
1 + η2/8

)−2
, the value

of η0.1 is found as η0.1 =
[
8
(√

10− 1
)]1/2

= 4.16. Then, tan∆θ = dy0.1/dx = η0.1aT = 0.229

(with the value aT = 0.055 being used). Accordingly, ∆θ = 13◦, which is close to both values

of ∆θ used in the calculations.

Note that in Refs. [72,161], theoretical models for the evolution of the splash curtain formed

at high Weber number are presented, still in the velocity range well below that of a gunshot.

Also, the work of Ref. [165] explains theoretically that the cavity shape is identical for various

projectile shapes, provided that the ratio of their cross–section times drag coefficient over their

mass would be the same, which was verified in Ref. [166].

The case of backspatter caused by a sharp bullet belongs to the class of entry (Wagner)

problems where a wedgelike or an axisymmetric body penetration into liquid is accompanied

by a splashed liquid jet rising over the body generatrix and forming a thin sheet prone to

atomization. The entry problems, which are essentially different from the instantaneous impact

problem of blunt bullet impact, were studied in detail in the following works and references

therein [72, 153–156, 167, 168]. Recently, it was shown experimentally that the splashed liquid

jet rising over the body generatrix, as a consequence of the entry of the body, is displaced from

the body surface due to the air gulping, which can further affect the liquid atomization process
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Figure 15. Number of stains on a vertical wall in the case of (a) a sharp bullet and (b) a blunt
bullet. Red circles show the theoretical predictions and triangles correspond to experimental

trial numbers in Table III.

in such situations [169]. In typical BPA cases, muzzle gases can also deflect the ejected blood

drops as shown in Ch. 5 and quantified in Ch. 8. In particular, the effect of the muzzle gases

and the underlying bones could cause ∆θ ≈ 90◦, as in Ref. [170]. For the present case however,

the influence of the muzzle gases has been made negligible by design of the experimental setup.

It should be emphasized that the cardstock target was discretized into 10 even rings spanning

the minimum and maximum radial distances from the bullet penetration hole. The median

distance of each ring from the center of the hole is R. For the number of stains, the stains in

each ring were added together, for the stain area and impact angle, they were averaged in each

ring. Comparisons of the predicted and measured number of stains resulting from the sharp

and blunt bullets are shown in Fig. 15
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The experimental stain area resulting from a single–drop impact was determined by the

pixel density found via a purpose–built in–house program. The theoretically predicted stain

area resulting from a single–drop impact is found from the spread factor [43,171,172],

χ = 0.61

(
Weimpact

Ohimpact

)0.166

, (6.72)

where χ = Dmax/l∗,i, with Dmax being the final stain diameter and the final (impact) Weber

and Ohnesorge numbers being, respectively,

Weimpact =
ρl∗,iu

2
i,impact

σ
, Ohimpact =

√
Weimpact

Re
. (6.73)

Here ρ = 1.06 g/cm3 and σ = 60.45 g/s2 are the density and surface tension of blood found

in Ch. 4, respectively, and Re is the Reynolds number of the impacting blood droplet at high

shear rates1, µshear = 5 mPa–s, also discussed in Ch. 4. Since in the present case of backspatter

drop impact on a vertical cardstock sheet, the impacts are not normal and therefore the spread

factor alone cannot account for the arising stain area, and a relation with the impact angle

must be found. Using the approach employed for crime scene reconstruction [173], the relation

1This is not how the spread factor was calculated in Ref. [2], rather, the Reynolds number of the droplet

cluster was used and the impact velocity was taken as the magnitude, not the component that is normal to the

impacted surface. See Fig. 5 in Ref. [2] and references therein.
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between the longest size of drop stain, L, resulting from an oblique impact, and the stain size

after normal impact, χl∗ can be taken as,

L = χ
l∗

sinα
, (6.74)

with the angle α shown in Fig 16. Accordingly, the effective stain area, S, is evaluated as,

S =
πl2∗χ

2

4sinα
. (6.75)

l∗
L

α

Blood
Droplet

Figure 16. Stain formation in oblique drop impact onto a vertical surface.

For the same conditions as in Fig. 15, a comparison of the theoretical predictions with the

experimental data for the average stain area (it should be emphasized that this is averaged in

each ring) is shown in Fig. 17.
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Figure 17. Average stain area of droplets impacting onto a vertical wall for (a) a sharp bullet
and (b) a blunt bullet. Same notations as in Fig. 15.

The average impact angles predicted and measured under the same conditions as in Figs. 15

and 17 are shown in Fig. 18.

The two predictive models of backward spatter of blood can offer further insight to better

understand various physical scenarios which BPA experts can use to quantitatively analyze

crime scenes. Applying both models with the same parameters fitted to the experiments used

in Figs. 15–18 and changing the distance between the blood source and the vertical cardstock

target from 25–250 cm in steps of 25 cm, allows for cross–sections of the evolution of the blood

droplet spray to be seen. The cumulative stained area was plotted as a function of the area of

the stains in the spatter, a statistical concept that has been found useful to describe beating
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Figure 18. Average impact angle relative to a vertical wall for (a) a sharp bullet and (b) a
blunt bullet. Same notations as in Figs. 15 and 17. A value of αavg = 90

◦
corresponds to

normal impact.

spatters [174]. Then, the value corresponding to 50% of the cumulative distribution, denoted

as A50 and plotted as a function of the vertical substrate location, is shown in Fig. 19.

The best fit lines of Fig. 19 are useful for interpolating distance between those at which

data points were taken. An appropriate fit was created with the equation,

A50 = A0 + (B) e−exp(−λ)−λ+1, (6.76)

where λ = (Z − C) /D and the values of the parameters are listed in Table IV.

It is interesting to note that in Fig. 19, the sharp bullet produces larger droplets and at

closer vertical deposition distances than its blunt bullet counterpart. The prediction from the
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Figure 19. Area corresponding to 50% of the cumulative distribution of area as a function of
the vertical impact substrate distance. Panel (a) is for a sharp bullet and (b) for a blunt
bullet. The red circles are the results of the theoretical codes and the black line a best fit

function.

numerical simulations in Fig. 19 that A50 reaches a maximum at an intermediate distance be-

tween blood source and vertical target spatter was tested against a series of gunshot backspatter

experiments from [21]. As Fig. 20 shows, both experiments and numerical simulations show

a comparable maximum for A50 at a distance of about 75–90 cm. This agreement between

experiments and numerical simulations is a sign that the developed model captures the relevant

fluid dynamics. Moreover, it opens a path towards quantitative crime scene reconstruction of

the relative position of the blood source and the spatter based on a statistical examination of

the stains.
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Figure 20. Comparison between experiments and the numerical simulation of A50 for the
sharp bullet case. The blue triangles represent experimental trials Rp41–Rp50, and Rp101 in
Table III, and the red circles and lines are the results of the numerical simulations shown in

Fig. 19(a).
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TABLE IV

Parameters in the best fit correlation of Eq. (6.76), used for the stain area corresponding to
50% of the cumulative distribution of area. The values within the parenthesis represent

standard error and the last row is the coefficient of determination.

Parameters Sharp Bullet Blunt Bullet

A0 0.269 (0.022) 0.190 (0.029)
B 0.877 (0.046) 0.616 (0.042)
C 75.219 (1.408) 86.481 (2.278)
D 24.033 (1.657) 31.643 (3.166)
R2 0.978 0.959

The A50 value for each vertical deposition distance acts as a border between the small and

large droplets. The geometric centroids, CY, of those less than or equal to this value as compared

to those larger than A50, can help facilitate a qualitative analysis performed by BPA experts

on the distance to the vertical impact substrate by comparing to the quantitative analysis here.

Plotting the lowest bounded centroid (from droplets > A50) and the highest bounded centroid

(from droplets ≤ A50) as a function of the vertical deposition distance is seen in Fig. 21.

Note that CY becomes the same and equal to approximately 60 cm for both bullet types

after a certain distance. The best fit lines of Fig. 21 were found based off of the average of the

two centroids and a good fit was found with a simple exponential decay function,

CY = C0 + Fe−GZ , (6.77)

where the parameters are shown in Table V.
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Figure 21. The geometric centroid bounded by small and large droplets corresponding to A50.
Panel (a) is for a sharp bullet and (b) for a blunt bullet. The red bars are the result of the

theoretical codes and the black line is the best fit.

TABLE V

Parameters in the best fit correlation of Eq. (6.77) used for the centroid locations CY. The
values within the parenthesis represent standard error and the last row is the coefficient of

determination.

Parameters Sharp Bullet Blunt Bullet

C0 53.591 (4.319) 48.273 (5.973)
F 184.433 (36.009) 162.898 (22.526)
G 0.028 (0.006) 0.0190 (0.004)
R2 0.937 0.946
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6.9 Conclusion

A series of experiments were conducted by the present group and the resultant experimental

images with the raw data deposited in Ref. [21]. Four of those sets of experimental data were

chosen and compared with the physically based models for sharp and blunt bullets, described

in Sec. 6.3 and 6.4, respectively. These models predict that the Rayleigh–Taylor instability is

responsible for blood droplet formation in backward spatter and their initial size distribution.

The velocity and acceleration distribution of blood in the target are found solving the corre-

sponding fluid mechanical problem, thus allowing for the prediction of the resulting trajectories

of the droplets accounting for gravity, air drag and droplet–droplet aerodynamic interactions.

The number of stains, the average stain area, and the average impact angle on the cardstock

target predicted by the physical models were compared with experimental data and revealed

reasonably good agreement. Also, the models were used to provide a further insight into the

phenomena of backward spattered blood by predicting the locations of the stain area corre-

sponding to a 50% cumulative distribution and the geometric centroid of the spatter pattern.



CHAPTER 7

FORWARD SPATTER OF BLOOD SPRAY

Parts of this chapter have been previously published in Ref. [3], reprinted with permission

from [Comiskey, P. M., Yarin, A. L., and Attinger, D., Physical Review Fluids, 3, 063901, 2018],

copyright (2018) by the American Physical Society, and submitted for publication in Ref. [9].

7.1 Introduction

A theoretical model for the chaotic disintegration of a liquid due to an arbitrarily shaped

projectile is proposed. A unique solution for a bullet in the shape of an ovoid of Rankine

is found. The model uses percolation theory to predict the fragmentation process of blood

resulting in forward spatter to determine the number of droplets, as well as their sizes and

initial velocities resulting from the flow field generated by a 9 mm bullet (close to the shape of

an ovoid of Rankine), a .45 auto bullet, and a 7.62×39 mm bullet. Blood viscoelasticity, which

slows down the initial velocities of the droplets, is accounted for. The size distribution of blood

drops is determined, which allows for the prediction of a blood spatter cloud being ejected from

the rear side of the target where the bullet exits. Then, the blood droplet spray are numerically

predicted accounting for gravity and air drag, which is affected by the collective aerodynamic

interaction of drops through air. The model predicts the number and area of individual stains,

as well as the stain distribution as a function of distance from the region of origin. Experimental

data are then compared with theoretical predictions and agreement is found to be good.

95
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7.2 Experiment

The experimental forward spatter patterns were created at the Kansas City Police Depart-

ment Crime Lab in Kansas City, MO. In an attempt to construct a reproducible blood source,

a closed blood–filled reservoir was prepared as follows. A 4× 4 cm2 section of paper was peeled

back from one side of foam board and approximately 5 mm of exposed foam in a central 2× 2

cm2 section was then removed and the cavity was filled with 2 mL of whole human blood con-

taining ethylenediaminetetraacetic acid (EDTA) anticoagulant from a single individual. Clear

packaging tape was then used to attach the paper back over the blood–filled section. The blood

was allowed to cool to 20− 22◦C and prior to shooting, the foam board was gently agitated to

ensure homogenous displacement and limit coagulation within each cavity. Five cavities were

created for five replicated shooting trials for each bullet type.

Each cavity containing 2 mL of blood was shot only once with either a 9 mm Luger FMJ

bullet which is close in shape to an ovoid of Rankine, a 7.62 × 39 mm and a .45 auto bullet.

The .45 auto bullet is similar in shape to the 9 mm one while the 7.62 × 39 mm bullet has a

much different shape, two of which can be seen in Fig. 22. A chronograph (Competitive Edge

Dynamics Model M2) was used to measure the average muzzle velocity from the five trials

which was found as 350.89 ± 4.16 m/s for the 9 mm bullet, 234.47 ± 0.74 m/s for the .45 auto

bullet, and 714.44 ± 31.48 m/s for the 7.62× 39 mm bullet.

The blood spatter was produced on a butcher paper substrate strip (0.41×4 m2) located on

the floor behind the target. The substrate was then digitally scanned at 600 DPI and analyzed

for the number of stains and their areas as a function of the distance traveled from the rear
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Figure 22. Images of two of the bullets used in the experiments: (a) the .45 auto bullet, and
(b) the 7.62× 39 mm bullet.

side of the target. These parameters were binned in the 25–400 cm range from the rear side of

the target in strips 25 cm wide. Figure 23 depicts a schematic of the experimental setup and

the corresponding binning method.

Note that the reported experimental results are the combination of the number of stains

and their average areas over the five conducted trials for each bullet. Namely, the number of

stains were added for the five experiments, and then, the stain area was averaged stripwise.

The theoretical predictions were organized accordingly. The results were reported in this way

to minimize the effect of any minor irreproducibility such as the bullet impacting the target off–

center or arriving non–normal to the surface. Moreover, if there are multiple gunshot wounds, it

can be difficult for BPA experts to attribute which bloodstain occurred as a result of a specific

gunshot wound. Therefore, the total number of stains is a result of interest. Their respective

stain areas were averaged over all five replicates to get an impression of the possible distribution

of stain sizes.
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Figure 23. Schematic of the experimental setup for the study of forward spattering of blood.
The muzzle of the gun was located 304.8 cm away from the front face of the target and the

bullet impact was normal. When the bullet penetrated through the target, the forward blood
spatter spray was generated and then deposited onto the paper substrate located on the floor.

Note that the schematic is not to scale.

7.3 Theory of the Unique Solution for an Ovoid of Rankine

The formation of blood spatter due to a bullet impact is a short–term event in which the

viscous forces are negligibly small compared to the inertial ones because the Reynolds number

is of the order of 107 as described in Ch. 6. Blood spatter formation in forward spatter involves

a cascade of instability phenomena, and in this sense is seemingly more involved than in the

case of backward spatter, where at least the first group of spattered drops is formed due to

the Rayleigh–Taylor instability associated with acceleration of denser blood toward lighter

surrounding air (cf. Ch. 6). It was also found that the maximum velocity of forward spattered

drops is approximately two times higher than that of backwards spattered ones partially due to
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the entrainment effect of the bullet traveling in the same direction as the forward blood spatter

as shown in Ch. 5.

Given the above facts, an appropriate atomization model might be one of chaotic disintegra-

tion. Such models were developed previously in the framework of percolation theory to predict

the debris formation in terminal ballistics [72, 118, 175]. After atomization, the drops move

through air and experience gravity and air drag forces, with the latter being diminished for the

inner drops in the cloud due to collective effects associated with the aerodynamic drop–drop

interaction described in Chs. 5 and 6 [70,158]. At rates of strain as high as those characteristic

of forward spatter, the viscoelasticity of blood can significantly reduce drop ejection velocities,

and thus should be accounted for.

The framework of the theoretical model is built around percolation theory. First, the prob-

ability field within the target is established, and the fragmented sections are determined under

the condition that the probability of a site being occupied by liquid P < P ∗, with the latter be-

ing the critical probability value (a fully geometrical parameter known from percolation theory).

This is described in Sec. 7.3.1. Then in Sec. 7.3.2, the fragmented section is discretized into

bins that have the predicted initial velocities, inclination angles, and characteristic sizes. The

effect of blood viscoelasticity creates a web of blood that decelerates and reconnects droplets

forming a strongly interconnected web and is described in Sec. 7.3.3. Finally, the trajectories

of the blood droplet spray are predicted following Ch. 6.
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Figure 24. Schematic of the coordinates and variables used in the theoretical model.

7.3.1 Chaotic Disintegration of a Liquid

The problem of forward spatter formation is posed similarly to the formation of debris due

to bullet impact and is shown schematically in Fig. 24 [72,175]. The flow field within the blood-

impregnated target is potential. The bullet is assumed to be shaped like an ovoid of Rankine,

which is equivalent to parallel flow superimposed on a single source. The surface of the axially

symmetric ovoid of Rankine in spherical coordinates with the source at the coordinate system

origin is given by Ref. [176] as,

R =
R∞

2sin (θ/2)
, (7.1)

where R is the radial coordinate, θ is the zenith angle reckoned from the parallel flow direction,

with θ = π corresponding to the tip of the bullet, and R∞ being the cross–sectional radius of the
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ovoid of Rankine at infinity. The potential flow field generated in the target by the penetrating

ovoid of Rankine and resulting from its disjoining action possesses the velocity vector,

vT = − ẋR
2
∞

4R2
eR, (7.2)

where ẋ is the velocity of the ovoid of Rankine, and eR is the unit vector in the radial direction.

Note that the coordinate x is reckoned from the front surface of the target outward, which

means that x ≤ 0 is within the target.

The target undergoes fragmentation into drops due to the angular stretching imposed by

the penetrating axisymmetric bullet. When the kinetic energy of deformation becomes equal

to the surface energy of a liquid element under consideration, the fragmentation process cannot

be sustained anymore. Therefore, the smallest (indivisible) drop size, a0, is determined by the

equality [118],

1

2
ρa3

0 (ε̇a0)2 = γa2
0, (7.3)

where ρ is the density of the liquid target, 1060 kg/m3, γ is the surface tension of blood,

60.45 mN/m (cf. Ch. 4), and ε̇ is the local rate of strain. The rate of strain in the target is on

the order of,

ε̇ ∼ |ẋ|R
2
∞

R3
, (7.4)
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which shows that the azimuthal stretching process fades as 1/R3. Equations (7.3) and (7.4)

yield,

a0 ∼
(
γ

ρε̇2

)1/3

= R∞α
1/3R

2
, (7.5)

V0 =
4

3
πa3

0 =
4

3
πR3
∞αR

6
, (7.6)

where V0 is the volume of the smallest drop, R = R/R∞, and,

α =
γ

ρ |ẋ|2R∞
. (7.7)

Note that Eq. (7.5) is essentially an order–of–magnitude estimate, where the factor of the

order of one is immaterial [118,175].

As previously mentioned, the local elements of the target are fragmented due to angular

stretching. This causes random lacunae growth identical to multiple observations of liquid

fracture (cavitation) caused by a high–speed impact (e.g. bullet) or explosion [177–180]. To

account for the random nature of such a fragmentation process, percolation theory can be

applied [72, 118, 181, 182]. It should be emphasized that percolation theory is essentially a

purely geometric description, which underlies the essence of multiple physical phenomena, and
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thus is applicable to any medium (liquid or solid). A volume of an envelope encompassing an

element of a target that is undergoing fragmentation, dVT, can be estimated as,

dVT = dVT0

(
1 +

∫ t

0

|ẋ|R2
∞

R3
dt

)3

, (7.8)

where dVT0 is the initial element volume of that element. The corresponding probability that

an elementary particle of the size a0 is within an elementary site inside dVT is,

P (t) =
dVT0

dVT0

(
1 +

∫ t
0
|ẋ|R2

∞
R3 dt

)3 . (7.9)

As t→∞, the probability that a particle of size a0 occupies an elementary site within dVT

decreases, since the angular stretching (and thus lacunae growth) continues. Therefore, there

exists a certain time moment at which the probability becomes subcritical and thus small enough

for an infinite cluster of the occupied elementary sites to cease existing. The critical probability

value may be taken as P ∗ = 0.311 for three–dimensional percolation [118, 175, 181, 182]. In

the subcritical case only finite clusters can exist, which corresponds to drops of different sizes

comprised of a different number of elementary droplets of size a0.

In the framework of the Lagrangian description of the target deformation in the present

axisymmetric case, the probability field within the target P (R, θ, t) can be found. The initial

radial and angular positions of a material element are denoted as R0 and θ0, whereas the current

positions of this material element are denoted as RL and θL. Then, the following set of ordinary
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differential equations describes the evolution of the probability field and the current coordinates

of the material element in time,

d

dt

(
P−

1/3
)

=
|ẋ|R2

∞
R3

L

, (7.10)

dRL
dt

= vT · eR + |ẋ| cosθL, (7.11)

dθL
dt

=
1

RL
(vT · eθ − |ẋ| sinθL) , (7.12)

where Eq. (7.10) is obtained from Eq. (7.9) by differentiation in time.

Given that |ẋ|dt = d |x| (cf. Fig 24 having in mind that x < 0 and ẋ < 0), Eqs. (7.10)–(7.12)

take the following dimensionless form,

d

d |x|

(
P−

1/3
)

=
1

R
3
L

, (7.13)

dRL

d |x|
=

1

4R
2
L

+ cosθL, (7.14)

dθL

d |x|
= − 1

RL

sinθL. (7.15)
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Here RL and x are rendered dimensionless by R∞. Equations (7.13)–(7.15) are solved using

the following initial conditions,

|x| = 0 : P = 1, RL = R0, θL = θ0. (7.16)

The analytical solutions of Eqs. (7.13) and (7.14) read [72,175],

RL =

(
cosθL − cosθ0 + 2R

2
0sin2θ0

2sin2θL

)1/2

, (7.17)

P =

(
1 + 2ln

∣∣∣∣∣R
2
Lsin2θL

R
2
0sin2θ0

∣∣∣∣∣
)−3

, (7.18)

where R0 = R0/R∞. The equation for the current angular position of the material element,

Eq. (7.15), however, must be simultaneously numerically integrated for different material ele-

ments of the target corresponding to different values of R0 and θ0, as,

dθL
d |x|

= −
√

2sin2θL(
cosθL − cosθ0 + 2R

2
0sin2θ0

)1/2
. (7.19)

Note that Eqs. (7.17) and (7.18) are singular at θL = θ0 = π. The singularity in the limit

θ → π is removed by introducing δθ = π− θ � 1 as θ → π. Then, Eqs. (7.13)–(7.15) reduce to

the following equations,

d

d |x|

(
P−

1/3
)

=
1

R
3
L

, (7.20)
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dRL

d |x|
=

1

4R
2
L

− 1 +O
(
δ2
θ

)
, (7.21)

dδθ
d |x|

=
δθ

RL

+O
(
δ2
θ

)
. (7.22)

The analytical solutions of the latter three equations read [72,175],

P =

(
1 + 2ln

∣∣∣∣∣ R
2
L

4R
2
L − 1

∣∣∣∣∣− 2ln

∣∣∣∣∣ R
2
0

4R
2
0 − 1

∣∣∣∣∣
)−3

, (7.23)

4R0 − ln

∣∣∣∣2R0 + 1

2R0 − 1

∣∣∣∣ = 4 |x|+ 4RL − ln

∣∣∣∣2RL + 1

2RL − 1

∣∣∣∣ , (7.24)

δθL = δθ0

(
4R

2
0 − 1

4R
2
L − 1

)1/2

, (7.25)

where δθL = π − θL and δθ0 = π − θ0.

The probability that a material element of elementary size a0 occupies a site in proximity to

the bullet axis is thus found and its current position along that axis is determined by Eq. (7.24).

However, at the bullet tip, Eqs. (7.23) and (7.24) become singular since there, RL = R0 = 1/2,

which means that the asymptotic behavior at this point must also be further explored. Defining
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δR � 1, Eq. (7.23) for P = P (RL) and Eq. (7.24) for RL = RL (x) can be linearized about the

tip point, δR = 0, which yields,

P = (1 + 8 |x|)−3 +
24
(
1− e−4|x|)

(1 + 8 |x|)4 δR +O
(
δ2

R

)
. (7.26)

The probability that an elementary droplet of size a0 occupies any site inside the target

domain undergoing fragmentation at time t after impact is thus found.

It should be emphasized that an analytical solution for the magnitude of the coordinate of

the tip of the fractured zone in the target |x|∗ at time t∗ reckoned from the front surface of the

target can be found using Eqs. (7.23) and (7.24) as,

|x|∗ = H +
1

2
−R∗ +

1

4

(
ln

∣∣∣∣∣2R
∗

+ 1

2R
∗ − 1

∣∣∣∣∣− ln

∣∣∣∣1 +
1

H

∣∣∣∣
)
, (7.27)

where

R
∗

=

(
Q

4Q− 1

)1/2

, (7.28)

Q = exp =

(
ln

∣∣∣∣∣
(
H + 1/2

)2
4
(
H + 1/2

)2 − 1

∣∣∣∣∣+
(P ∗)−

1/3 − 1

2

)
, (7.29)

which uses the fact that R0 = H + 1/2 with H = H/R∞, and H is the target thickness.

To determine the distribution of mass and number of drops (finite clusters) within a volume

element in the fractured zone, dVT, percolation theory is applied. If s is the number of ele-
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mentary indivisible droplets of size a0 in a fragment (a finite cluster) emerging from the target

(s ≥ 1), the volume and mass of the fragment can be found using a0 from Eq. (7.5) as,

V =
4

3
πR3
∞αR

6
s, (7.30)

m =
4

3
πρR3

∞αR
6
s. (7.31)

The probability density function corresponding to a cluster of s elementary indivisible

droplets of size a0 is known from percolation theory [118,175,181,182] as,

ws = Ks−τ+1exp
(
−bsζ

)
, (7.32)

where τ and ζ are known constants determined by the space dimensionality (here we are dealing

with a three–dimensional case), b depends on the spatial location within the target, and K is

a normalization parameter,

K =
1∫∞

1 s−τ+1exp (−bsζ) ds
. (7.33)

Using Eqs. (7.30)–(7.33), the total number of fragments of mass mf in the fractured zone

of the target, dN, in dVT is found as,

dN (mf) =
3dVTK

4πR3
∞αR

6

∫ sf

1
s−τexp

(
−bsζ

)
ds, (7.34)
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sf

(
mf, R

)
= max

[
1,

3mf

4παρR3
∞R

6

]
. (7.35)

The upper limit of the integration in Eq. (7.34) is sf, given by Eq. (7.35), which is the number

of elementary indivisible droplets of size a0 in the fragment of mass mf. The total mass of the

fractured target corresponding to the fragments beginning from the indivisible elementary one

of size a0 to the one of mass mf is given by,

dM (mf) = ρdVTK

∫ sf

1
s−τ+1exp

(
−bsζ

)
ds. (7.36)

Accordingly, the total number of fragments (finite clusters, drops) and mass in the fractured

zone of the target are equal to,

N (mf) =

∫
VT

dN (mf) , (7.37)

M (mf) =

∫
VT

dM (mf) , (7.38)

respectively.

Evaluating these integrals using the standard parameter values and the expression familiar

in percolation theory [181, 182], namely τ = 3/2, b = 20.84 |P ∗ − P |1/σ, σ = 0.45, and ζ = 1,

results in,
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N (mf) =− 3ρ |ẋ|2

2πγR2
∞

∫
VT

K

R
6

{√
bπ
[
erf
(√

bsf

)
− erf

(√
b
)]

+exp (−bsf) s
−1/2
f − exp (−b)

}
dVT, (7.39)

M (mf) = ρ

∫
VT

erf
(√
bsf

)
− erf

(√
b
)

erfc
(√

b
) dVT, (7.40)

where the normalization parameter becomes,

K =

(
b

π

)1/2 1

erfc
(√

b
) . (7.41)

Equations (7.39) and (7.40) are numerically integrated over the entire fractured volume, VT,

which exists in the target only when P < P ∗. Directly in front of the leading edge of the bullet,

VT is encompassed by a cone–like domain whose apex is at the location of the source generating

the ovoid of Rankine (cf. Fig. 25). The boundaries of this domain are fully determined by the

critical percolation value P ∗. The semiangle of the cone, β, changes as the bullet approaches

the rear surface of the target, and at a time instance of t > t∗, the fractured zone reaches the

rear side of the target and the fragment cone is ejected. Between the time intervals from t

(where t > t∗) to t+ ∆t, a new, hollow fragmented cone emerges as a result of the continuous

bullet motion whose volume is found as ∆VT. Eventually, this volume ∆VT also leaves the

target and the process repeats until β ≥ π/2 because at that point, the cone approximation of
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the fractured domain is not valid anymore and is replaced by the cylindrical one. This process

continues until the bullet can freely leave the target without any further fragmentation.

Figure 25. Target discretization types from the bullet as it travels from the right to the left.
The gray cross–hatched section represents the portion of the target in which droplets form

and are ejected from the target. (a) Section of the target where VT is approximated as a cone,
and (b) where VT is approximated as a cylinder.

7.3.2 Drop Trajectories

Discretized ringlike slices of the fractured target volume, VT, are termed bins and denoted

by i. The number of drops and their respective masses for each bin are found using Eqs. (7.39)

and (7.40). These drops are ejected from the target with velocity magnitude ui|initial determined

by Eq. (7.2) as,

ui|initial = ẋ

√
R4
∞

16R4
+ 1− R2

∞
2R2

cosθ, (7.42)
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at the initial inclination angle, ϕ, which is found as,

ϕ = cos−1

(2− R2
∞

2R2
cosθ

)(
2

√
R4
∞

16R4
+ 1− R2

∞
2R2

cosθ

)−1
 . (7.43)

Each drop in the ejected bins has a characteristic size, l∗,i, calculated as,

l∗,i =

[
6 (Mi/Ni)

πρ

]1/3
. (7.44)

Each bin is considered as a blood drop spray that entrains air due to the turbulent eddy

viscosity, thus forming a two–phase interpenetrating continuum [70,158]. The resultant trajec-

tory equations are described in detail in Ch. 6. It should be emphasized that the equation for

the coefficient of drag used in the present work is the Schiller–Naumann formula [72],

CD,i =
24

Rei

(
1 + 0.15Re0.687

i

)
, (7.45)

where Rei is the Reynolds number for each bin. The current results belong to the range of

validity of this widely used correlation. Another option would be the empirical formula for the

drag coefficient discussed in Ref. [15].

7.3.3 Effect of Blood Elasticity on Forward Blood Spatter

Consider a single drop of characteristic size l∗,i, disconnecting from the target at a velocity

ui|initial. Since blood is a complex, non–Newtonian fluid that exhibits viscoelastic behavior

as discussed in Ch. 4, elastic stresses can build up in the rapidly stretching drop tails. Such

tails are inevitably formed during the ejection of a viscoelastic fluid at a sufficiently high initial



113

velocity of the drops in a short–time detachment process, i.e. when the Deborah number, De,

is De� 1 (cf. Ref. [1]). Here, the Deborah number is the ratio of the blood elastic relaxation

time, λ, to the characteristic time of the tail detachment process tdet,i, i.e. De = λ/tdet,i. Note

that in non–Newtonian fluid mechanics, flows with De� 1 are called strong flows. Drop tails

are inevitably formed as drops separate from ligaments, films, or fully three–dimensional liquid

bodies. Tail formation in viscoelastic fluids from strong elongational flows is due to significant

elastic stresses. This effect was explored in detail, for example, in Ref. [183]. A similar flow

scenario is present as in the current case of projectile–induced flow. It should be emphasized

that at De� 1, the rheological behavior of any material essentially resembles an elastic solid.

As a result, high–speed collisions with all liquids including blood cause a shock wave front

to propagate followed by a rarefaction wave, which induces cavitation and solidlike brittle

fracture. These spallation (fragmentation) phenomena have been experimentally observed to

occur in both Newtonian (viscous and in practically inviscid) and non–Newtonian viscoelastic

liquids [177–180,184], where, for example, the brittle fracture of a liquid jet was demonstrated

starting from the impact velocity as low as 23 m/s [177]. Because the impact velocity of the

bullet in the current case, |ẋ| = 351 m/s, is much higher than this threshold, it is assumed that

the blood droplet tails undergo brittle fracture.

The buildup of the elastic stresses in the drop tail, evident from the estimates in Ref. [1] and

substantiated in Sec. 7.5, can decelerate the drop detachment process and diminish its initial

ejection velocity. It should be emphasized that in the previous models of backward spatter

described in Ch. 6, blood viscoelasticity was not accounted for because the drop detachment
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velocities there were significantly lower than in the present case of forward spatter. For ex-

ample, in a previous experiment where both forward and backward spatter were observed, at

0.45 ms after bullet impact, droplet velocity in the forward spatter case was 40 m/s, whereas

for backward spatter it was only 8 m/s (cf. Ch. 5), with the former being higher than the

threshold velocity of brittle fracture of 23 m/s [177], whereas the latter was lower. Accordingly,

in the present case, consider a drop tail of size Li, which still spans the detaching drop and the

main body of the target. Its evolution is determined by the following kinematic equation and

the momentum balance, respectively,

dLi
dt

= ui, (7.46)

ρ
4π

3

(
l∗,i
2

)3 dui
dt

= −π
(
l∗,i
2

)2

3Gεxx, (7.47)

where, ui is the current drop velocity, G is the elastic shear modulus, and εxx = (Li − l∗,i) /l∗,i,

is the tail strain.

In the momentum balance of the drop, subjected to a resistive elastic force acting on it

from the stretching tail as described by Eq. (7.47), a relatively small tail stretching occurs

below Li ≈ l∗,i, and before the fracture would happen, and thus, blood elasticity is described

using Hooke’s law [28]. Note that G = E/3, where E is Young’s modulus of blood. The latter

can be evaluated using the speed of sound in blood, c = 1570 m/s [185], and its density, which

yields E = 2.6 GPa.
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Equations (7.46) and (7.47) yield,

ui = ui|initial cos (ti/Ti) , Ti =

(
2

3

ρl2∗,i
E

)1/2

. (7.48)

Droplet detachment time ti = tdet,i, which is obviously less than Ti, increases with its size

l∗,i and an appropriate correlation between tdet,i and l∗,i is discussed in Sec. 7.5. It should be

emphasized that ui predicted by Eq. (7.48) is used as the initial velocity in the simulations of

drop trajectories.

7.4 Blood Flow Generated by a Bullet of an Arbitrary Shape

7.4.1 Generalized Chaotic Disintegration of a Liquid

For a bullet shaped as an ovoid of Rankine, flow description in the framework of potential

flow theory is analytical since it is identical to the flow generated by a pointwise source located

in parallel flow [176] which was employed in Sec. 7.3.1. In order to model the forward spattering

of blood due to a bullet of an arbitrary shape, such as, for example, as shown in Fig. 22(b), an

appropriate system of sinks and sources q
(
ζ
)
, along the axis of symmetry of a bullet should be

found which generates the potential flow about such a bullet. The flow potential generated by

an axial system of sources and sinks reads (without parallel flow which can be superimposed

on it) [186],

ϕ
(
ξ, η
)

= −
∫ ξE

ξA

q
(
ζ
)[(

ξ − η
)2

+ η2
]1/2 dζ, (7.49)
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Figure 26. Schematic and variable definitions for a bullet of an arbitrary shape. The thick
dark line is where a nonzero value of q (ζ) exists, and between ξA and ξ∗ the function

q (ζ) = 0. Specifically, the sinks and sources are distributed over the section ξ∗ ≤ ξ ≤ ξE of the
horizontal axis. An appropriate distribution of q (ζ) can be found to guarantee the

no–penetration condition at an arbitrary axisymmetric bullet surface with the tip at
ξA = −R∞/2 < ξ∗. The spherical coordinate system is centered at ξ = 0, with r being the

radial coordinate of the spherical coordinate system, and θ being the corresponding azimuthal
angular coordinate. The polar angular spherical coordinate reckoned about the bullet axis is ε

and not shown here.

where ξ is the axial coordinate, η is the radial coordinate normal to the axis of revolution, the

subscripts A and E denote axial coordinates of the bullet tip and the end, and ζ is a dummy

variable. As shown with the overbar, all coordinates in Eq. (7.49) are rendered dimensionless

with the cross–sectional radius of the bullet tail, R∞, and q and ϕ are rendered dimensionless

by ξ̇R∞, where ξ̇ is the velocity of the bullet. The spherical coordinate system used here is

shown in Fig. 26, its origin is located at the distance R∞/2 to the right from the projectile tip.
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The potential of the parallel flow associated with the target material motion at infinity

towards the projectile is superimposed on that of the sinks and sources in Eq. (7.49), which

yields,

ϕ
(
ξ, η
)

= ξ −
∫ ξE

ξA

q
(
ζ
)[(

ξ − ζ
)2

+ η2
]1/2 dζ. (7.50)

The corresponding stream function rendered dimensionless by ξ̇R2
∞ is then,

ψ
(
ξ, η
)

= −
∫ ξE

ξA

q
(
ζ
) (
ξ − ζ

)[(
ξ − ζ

)2
+ η2

]1/2 dζ +
η2

2
+ const. (7.51)

The projectile tip where η = 0 belonging to the streamline ψ = 0, determines the constant

in Eq. (7.51) as,

const = −
∫ ξE

ξA

q
(
ζ
)

dζ. (7.52)

The entire projectile surface, η = R
(
ξ
)
, also belongs to the streamline ψ = 0. Accordingly,

Eqs. (7.51) and (7.52) yield the following integral equation for q
(
ζ
)
,

∫ ξE

ξA

 ξ − ζ[(
ξ − ζ

)2
+R

2 (
ξ
)]1/2 + 1

 q
(
ζ
)

dζ =
R

2 (
ξ
)

2
, (7.53)

where R
(
ξ
)

is the radial coordinate of the projectile surface [186]. Note that Eq. (7.53) is a

Fredholm integral equation of the first kind for the unknown, q
(
ζ
)
, and can be solved using
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standard mathematical methods [187, 188]1. Moreover, Eq. (7.53) does not involve a slender–

body approximation. It should be emphasized that every bullet type has a different shape

which means that it corresponds to a unique function R
(
ξ
)
, and thus, to a unique distribution

of sources and sinks q
(
ζ
)
. After Eq. (7.53) is solved and the distribution q

(
ζ
)

is found, the

potential ϕ is fully determined and the velocity field about the bullet generated by the system

of sources and sinks established is found as,

vT = ξ̇

[
∂ϕ

∂ξ
eξ +

∂ϕ

∂η
eη

]
, (7.54)

where subscript T corresponds to the target, the boldfaced characters denote vectors, and eξ

and eη are unit vectors in the axial and cylindrical radial directions.

Accordingly, the velocity field associated with the system of sources and sinks established

takes the following form in the spherical coordinates,

vT = ξ̇
[(
rsin2θΓ1 + cosθΓ2

)
er + (rsinθcosθΓ1 − sinθΓ2) eθ

]
, (7.55)

where,

Γ1 =

∫ rE

−rA

q
(
ζ
)[(

rcosθ − ζ
)2

+ r2sin2θ
]3/2 dζ, (7.56)

1The evaluation of Eq. (7.53) is not trivial, therefore, its solution is discussed in Appendix B.
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Γ2 =

∫ rE

−rA

(
rcosθ − ζ

)
q
(
ζ
)[(

rcosθ − ζ
)2

+ r2sin2θ
]3/2 dζ, (7.57)

rE = ξE, rA = −ξA, and er and eθ are the spherical radial and axial unit vectors in the spherical

coordinate system depicted in Fig. 26.

The fragmentation of blood in the target into individual droplets is the result of angular

stretching due to the bullet. This triggers a cascade of instabilities and cannot be sustained

indefinitely, but rather until the kinetic energy of deformation of progressively smaller scales

diminishes to the level of the surface energy at this scale. Thus, at the smallest possible scale,

surface tension would cease the fragmentation process and the smallest indivisible droplet radius

a0, would be found from the following equality according to Sec. 7.3.1,

1

2
ρa3

0 (γ̇a0)2 = σa2
0, (7.58)

where ρ and σ are the density and surface tension of blood (1060 kg/m3 and 60.45 mN/m,

respectively as per Ch. 4), and γ̇ is the local rate of strain. The rate of deformation tensor DT

determines the local rate of strain throughout the target as,

DT =
∂vr
∂r

er ⊗ er +
1

r
(vr + vθcotθ) eε ⊗ eε +

1

r

(
vr +

∂vθ
∂θ

)
eθ ⊗ eθ, (7.59)
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where the velocity components corresponding to Eq. (7.55) and their derivatives are,

vr = ξ̇
(
rsin2θΓ1 + cosθΓ2

)
, (7.60)

vθ = ξ̇ (rsinθcosθΓ1 − sinθΓ2) , (7.61)

∂vr
∂r

= − ξ̇

R∞

[(
1 + cos2θ

)
Γ1 −

cosθ

r
Γ2 − 3rsin2θcosθΓ3 + sin2θΓ4

]
, (7.62)

∂vθ
∂θ

= ξ̇
[
rcos (2θ) Γ1 − cosθΓ2 − 3r2sin2θcosθΓ3 + rsin2θΓ4

]
, (7.63)

and,

Γ3 =

∫ rE

−rA

ζq
(
ζ
)[(

rcosθ − ζ
)2

+ r2sin2θ
]5/2 dξ, (7.64)

Γ4 =

∫ rE

−rA

(
r2 + ζrcosθ − 2ζ

2
)
q
(
ζ
)

[(
rcosθ − ζ

)2
+ r2sin2θ

]5/2 dξ, (7.65)

Note that in Eq. (7.59), eε is the polar unit vector of the spherical coordinate system defined

in Fig. 26.
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The effective rate of strain of blood in the target, γ̇, is related to the modulus of the rate

of strain tensor,
√

DT : DT
T [189], and is expressed as,

γ̇ =

√(
∂vr
∂r

)2

+
1

(rR∞)2 (vr + vθcotθ)2 +
1

(rR∞)2

(
vr +

∂vθ
∂θ

)2

. (7.66)

Surface tension prevents droplet separation below a certain size, a0 [cf. Eq. (7.58)], which

determines the smallest possible droplets for a given rate of strain as,

a0 =

(
σ

ργ̇2

)1/3

, (7.67)

and the corresponding volume of the smallest possible droplet, V0, is,

V0 =
4πσ

3ργ̇2
. (7.68)

In the framework of percolation theory, the smallest possible drop is designated as a

site [118]. According to the probability of target space being randomly filled by such “ma-

terial sites”, bigger clusters (bigger drops) can be formed, sometimes even with some lacunae

inside. If the probability is equal to one, it would mean that the entire liquid mass would be a

single intact body.

A liquid mass initially thrown in such a way that it acquires a shape of a growing “amoeba” is

prone to disintegrate. Here, it is implied that liquid motion becomes chaotic and incorporates

multiple scales (a cascade of instabilities), while adhering to the liquid’s incompressibility.

Therefore, the more the “amoeba” spreads, the less is the probability, P, that a “site” of the
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size of the smallest possible droplet of the size a0 is occupied by it. The probability, P, that the

site is occupied is equal to the ratio of the liquid volume (which is conserved) to the volume of

the envelope surrounding the “amoeba”. As long as the “amoeba” is stretching, the probability

P, which is a function of time t, decreases. According to percolation theory, at a certain critical

value of P = P ∗, an intact liquid body (which can already have some lacunae) cannot exist

anymore, and will disintegrate into finite clusters of different sizes going down to a0, but not

below it [181,182]. The statistics of the finite clusters (the resulting drops) is known [181,182],

and it depends locally on P (t) which continues to diminish. In the case of forward spatter the

blood target undergoes mostly azimuthal stretching (accompanied by the corresponding radial

compression due to the incompressibility embedded in the rate of strain tensor, DT, which

is expressed in Eq. (7.66) for γ̇. Due to the cascade of instabilities, perturbations begin to

develop, and lacunae begin to appear and increase in size. Accordingly, the continuous liquid

target description is replaced by one rooted in percolation theory, still having in mind that

the entire chain of events has been triggered by γ̇. Finally, as the probability predicts, the

intact mass of liquid disintegrates, and a cluster of blood drops appear. This description can

be quantified using an element of target volume, dVT, undergoing fragmentation as a function

of γ̇ primarily due to the above–mentioned angular stretching. Percolation theory can be

applied to the corresponding fragmentation process, which allows one to determine the number
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of droplets, and their size distributions [72, 118, 181, 182]. The current volume of the target

undergoing fragmentation, dVT, is found as the following,

dVT = dVT0

(
1 +

∫ t

0
γ̇dt

)3

, (7.69)

where dVT0 is the initial volume. The probability of a site occupied by the smallest blood

droplet is,

P (t) =
dVT0

dVT0

(
1 +

∫ t
0 γ̇dt

)3 . (7.70)

Since the lacunae growth continues as the bullet penetration process progresses, the prob-

ability at which a material element occupies a virtual site in the domain encompassed by the

fluid decreases. Accordingly, at a certain critical time moment the lowest critical probability,

P ∗, is reached, at which an “infinite” (intact) blood body ceases to exist, and it splits into a

number of fragments. This target fragmentation threshold is known from percolation theory

to be P ∗ = 0.311 [181, 182], and has already been used in the theory corresponding to bullets

shaped as an ovoid of Rankine described in Sec. 7.3.1.

The basic flow is incompressible, and the motion of material elements in it can be tracked

linking the Lagrangian and Eulerian descriptions. Simultaneously, locally (in every element) a

switch to liquid disintegration is probed according to the corresponding value of the probability,

P. The Lagrangian tracking and the switch to disintegration are described by Eqs. (7.71)–(7.73).

Specifically, using the Lagrangian description of individual material particles of blood, the
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probability field P (r, θ, t) with the current angular and radial positions of a material element,

θL, and rL, respectively, can be found. Note that subscript L refers to the current Lagrangian

position. The following set of ordinary differential equations describes their evolution in time,

d

dt

(
P−

1/3
)

= γ̇|L , (7.71)

drL
dt

= vT · er + ξ̇cosθL, (7.72)

dθL
dt

=
1

rL

(
vT · eθ − ξ̇sinθL

)
. (7.73)

It should be emphasized that subscript L in Eq. (7.71) denotes the rate of strain at the

position with coordinates θL, and rL. Noting that ξ̇dt = dξ, Eqs. (7.71)–(7.73) take the

following dimensionless form,

d

dξ

(
P−

1/3
)

=
R∞

ξ̇
γ̇|L , (7.74)

drL

dξ
= rLsin2θL Γ1|L + (1 + Γ2|L) cosθL, (7.75)

dθL

dξ
=

1

rL
[rLsinθLcosθL Γ1|L − (1 + Γ2|L) sinθL] . (7.76)
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The following initial conditions must be imposed on Eqs. (7.74)–(7.76),

ξ = 0 : P = 1, rL = r0, θL = θ0, (7.77)

where r0 and θ0 are the initial radial and axial coordinates of a material element.

If a fragmented section of the target is comprised of s smallest–possible droplets (i.e. of the

size a0), its volume, V, can be determined using Eq. (7.68), as,

V =
4πσ

3ργ̇2
s, (7.78)

and its corresponding mass, m is found as,

m =
4πσ

3γ̇2
s. (7.79)

According to percolation theory [118,181,182], the probability that a fragment is composed

of s to s+ds minimally–sized (i.e. of size a0) possible droplets is wsds. The probability density

function is expressed as,

ws = Ks−τ+1exp
(
−bsψ

)
, (7.80)
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where τ = 3/2, b = 20.84 |P ∗ − P |1/0.43, and ψ = 1, which are parameters (called the critical

exponents) established in the framework of percolation theory [118, 181, 182], and K is the

normalization parameter such that
∑∞

s=1ws = 1, defined as,

K =
1∫∞

1 s−τ+1exp (−bsψ) ds
. (7.81)

Note that percolation theory is geometric in nature and thus absolutely universal, no matter

the physical type of discretized lattice as long as the discretization process is completely random.

In particular, in the present case, the random discretization of the target implies universal

values of the critical exponents used in the probability density function describing the drop–

size distribution resulting from a multi–stage discretization process [118,181,182].

Then, the number of fragments of mass mf within a differential target volume, dVT in the

fragmented part of the target is,

dN (mf) =
3ργ̇2

4πσ
dVTK

∫ sf

1
s−τexp

(
−bsψ

)
ds, (7.82)

where,

sf

(
mf, R

)
= max

[
1,

3γ̇2mf

4πσ

]
. (7.83)
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The total mass of the fragmented zone accounting for all the fragments starting from the

mass of the smallest indivisible one of size of a0 to the fragment mass mf, within the volume

element is,

dM (mf) = ρdVTK

∫ sf

1
s−τ+1exp

(
−bsψ

)
ds. (7.84)

Evaluating the integrals in Eqs. (7.82) and (7.84) over the fragmented target volume results

in,

N (mf) =
3ρ

4πσ

∫
VT

[
γ̇2K

∫ sf

1
s−τexp

(
−bsψ

)]
dVT, (7.85)

M (mf) = ρ

∫
VT

[
K

∫ sf

1
s−τ+1exp

(
−bsψ

)
ds

]
dVT, (7.86)

and yields,

N (mf) =
3ρ

2πσ

∫
VT

√
b

π

γ̇2

erfc
(√

b
) {√bπ [erf

(√
b
)
− erf

(√
bsf

)]

+exp (−b)− s−1/2
f exp (bsf)

}
dVT, (7.87)

M (mf) = ρ

∫
VT

erf
(√
bsf

)
− erf

(√
b
)

erfc
(√

b
) dVT. (7.88)
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The fragmented target volume can be approximated as cylindrical because directly in front

of the leading edge of the projectile, many small, extremely fast moving droplets travel together

with the bullet [this approximation has been introduced in Sec. 7.3.1, cf. Fig. 25(a)]. These

droplets do not contribute to the overall forward spattered bloodstain pattern and as such,

numerical integration for a cylindrical target element, dVT, was implemented in Eqs. (7.87) and

(7.88) similarly to Sec. 7.3.1.

7.4.2 Generalized Effect of Blood Elasticity

The fractured portion of the target was discretized into ring–like sections termed bins and

denoted by subscript i. The initial velocities of the droplets within each bin are found from the

time–dependent velocity field as,

ui|initial =

√
v2

T + ξ̇2 − 2vTξ̇cosθ. (7.89)

These droplets are issued at initial inclination angles, βi, determined as,

βi = cos−1

(
u2
i

∣∣
initial

+ ξ̇2 − v2
T

2 ui|initial ξ̇

)
. (7.90)

It should be emphasized that Eqs. (7.89) and (7.90) are unique for each bullet since vT is

unique. Note also that the characteristic droplet size in the ejected bins, l∗,i, can be found as,

l∗,i =

[
6 (Mi/Ni)

πρ

]1/3
. (7.91)



129

The web of blood droplets streaming from the fragmented target surface is initially inter–

connected by tails on the trailing edge of individual droplets. Viscoelastic fluids, such as

blood, subjected to strong elongational flows (for which the Deborah number, De, is De � 1)

characteristic of forward spatter result in significant elastic stresses similarly to Sec. 7.3.3. As

a result, the individual droplet tails undergo brittle fracture which has been experimentally

observed for various liquids under similar circumstances [177–180]. Up to the fracture moment,

tails decelerate the droplets and diminish their initial velocities when they finally detach. This

effect is quantified in the following equation as shown in Sec. 7.3.3,

ui = ui|initial cos (ti/Ti) , Ti =

(
2

3

ρl2∗,i
E

)1/2

, (7.92)

where ti is the droplet detachment time, the determination of which is discussed in Sec. 7.5 and

E is the Young’s modulus of blood, taken as E = 2.6 GPa (cf. Sec. 7.3.3).

Following Ch. 6 and Sec. 7.3.2, it is assumed that bins ejected from the target form a blood

drop spray entraining air due to viscous suction and thus create a two–phase interpenetrating

continua. This two–phase flow is subjected to gravity, air drag, and the collective effect of

the aerodynamic droplet–droplet interaction in flight. The corresponding trajectory equations

are described in detail in Ch. 6. The correlation for the air drag experienced by an individual
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droplet is given by the Schiller–Naumann formula which is in the range of validity of the forward

spattering phenomena [72],

CD,i =
24

Rei

(
1 + 0.15Re0.687

i

)
, (7.93)

where Rei is the bin Reynolds number. Note that this correlation neglects droplet oscillation

in flight, as well as their possible secondary atomization.

7.5 Results and Discussion

At the onset of the bullet penetrating the target, a nearly instantaneous spray is formed

that contains many small droplets traveling at a high initial velocity (cf. Ch 5). The theoretical

model described in Sec. 7.3 and 7.4 predicts that these small droplets form in the target directly

ahead of the bullet. These small droplets are rapidly decelerated by air drag and fall down very

close to the target. Moreover, high–speed videos of bullet penetration phenomena show that the

majority of the resultant blood drop spray stems from the area surrounding the bullet [7] and

thus droplets issued from the cross–hatched domain in Fig. 25(a) are disregarded. On the other

hand, bigger drops formed and issued from the “cylindrical” cross–hatched domain shown in

Fig. 25(b) were fully accounted for and their trajectories tracked. This cylindrical domain was

discretized into 20 ringlike slices (bins) spanning the length of the target, as shown in Fig. 23.

7.5.1 Unique Solution Results

To compare the experimental data to the theoretical results, several governing parameters

must be specified. Namely, the velocity of the bullet, ẋ = 351 m/s was used in the simulations,
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as well as the height at which the bullet impacted the target, H0 = 152.4 cm. Since the

theoretical model implies the bullet is shaped like an ovoid of Rankine, the latter was fitted to

the real bullet shape. Although close, the present bullet was not a perfect ovoid of Rankine.

It is unphysical to have the ovoid of Rankine bullet in the numerical simulation to extend past

the surface of the actual bullet since the tip shape practically completely determines the flow

field, which is substantiated by multiple well–established phenomena in the field of terminal

ballistics [190] and is a fundamental assumption in such models as the cavity expansion model

developed there. A very good agreement of the shape of the ovoid of Rankine can be achieved

with the leading part of the real bullet (Fig. 27). This, however, reached only 3/4 of the real

bullet radius (i.e. R∞ = 3.375 mm) at “infinity”, which was considered to be tolerable. The

thickness of the target was set to be equal to R∞ and the droplet bins issued from only over

the top and below the bottom of the bullet [at the azimuthal angles Φ = 90◦ and 270◦; cf.

Fig. 14(b)] were tracked numerically. This was motivated by the fact that the experiment was

designed in such a way that only a strip of paper directly under the trajectory of the bullet was

used to acquire the data.

The configuration of the fragmented “cylindrical” volume (cf. Fig. 25) of the target was

predicted at t = 0.2 ms after the bullet impact using Eqs. (7.17) and (7.19). The mass and

number of droplets issued from each bin was predicted using Eqs. (7.39) and (7.40). The

initial velocities and inclination angles of the droplets of each bin were predicted by Eqs. (7.42)

and (7.43) with characteristic sizes calculated by Eq. (7.44). It should be emphasized that

the droplets originating from the bins that are closer to the rear surface of the target move
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Figure 27. A 9 mm Luger copper FMJ bullet and cartridge casing used in the experiment
with the ovoid of Rankine shown by the line superimposed on its leading edge.

forward slower than the ones originating from the other side. Immediately following the moment

of fracture, in a very dense cloud of droplets, such a velocity distribution inevitably causes

chaotic multiple drop–drop collisions. Moreover, the following three circumstances should be

mentioned: (i) the fragmentation of a target due to a bullet impact is a large–scale phenomenon,

albeit the volume of material that actually leaves the target is quite small. An example of this

is seen in the seminal images photographed by Harold Edgerton [191]. In an image of a .30

caliber bullet impacting a sheet of plexiglass, one can see that there are small fragments leaving

the target in the direction of the bullet motion (the forward “spatter”) only in the very near

vicinity of the bullet impact point. On the other hand, there is a fractured zone that is massive

in comparison to the material that actually leaves the target. (ii) The case of the forward

spattering of blood due to a gunshot is not dissimilar to the bullet impacting a plexiglass pane

due to the fact that at high values of the Deborah number characteristic of bullet impact, blood

undergoes brittle fracture, as discussed in Sec. 7.3.3 and 7.4.2. A rough estimate can be done of

the volume of blood that is splashed forward, using the high–speed videos of blood spatter due
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to a gunshot, which were taken by the MFRC [148] and analyzed in Ch. 5. From experiment

7Aa1 there, which closely resembles the one here, one estimates that the target looks to be

filled with ∼ 10 mL of blood and that only 0.33 cm3 of blood was splashed (taking the average

sizes and estimating the number of droplets splashed), which means that only about 3.3% of

blood was actually splashed. It should be emphasized, however, that this is a rough “higher”

value, and in some cases it can be much lower. Using the exact number of droplets and average

area from Ch. 5, for instance, shows that in experiment 7Aa1, the percentage of droplets that

leave the target becomes 0.01%. (iii) An additional factor preventing detachment of multiple

droplets from the bulk is the formation of long tails that are stabilized by the elastic forces and

do not break up (the situation discussed in Sec. 7.3.3 and 7.4.2) and illustrated by the images

of disintegrating jets of dilute polymer solutions in Ref. [183]. Summarizing, one can state that

in any case, the volume of material that escapes the target is extremely small when compared

to the volume of the entire fractured part of the target. As a result, it is assumed that 5% of

the fractured target results in droplets that form the forward spatter spray.

The relaxation time of swine blood (which shares similarities with human blood [133]) is

about λ = 15 ms as shown in Ref. [1], bullet penetration happens on the scale of 10−5 s, and

the fracture process of the blood drop tail is on the order of microseconds, as Eq. (7.48) reveals

given the known input parameters. The droplet tail detachment time is naturally an increasing
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function of the droplet size, l∗,i, and the plausible interpolation function that satisfies these

criteria and generates the cutoff time in Eq. (7.48) and is shown in Fig. 28 is the following,

tdet,i = −13.4 (l∗,i)
2 + 8.34 (l∗,i) + 1.70× 10−3, (7.94)

where tdet,i is in µs and l∗,i in cm, and the coefficients have the corresponding units. This func-

tion was determined through testing the required initial velocities calculated with Eq. (7.48),

which produce trajectories corresponding to the experimental range seen in the experimental

data. It should be emphasized that according to Fig. 28, De = λ/tdet,i � 1, indeed, which cor-

responds to the brittle fracture regime. Note that this function satisfies the following plausible

criteria: (i) it grows with the droplet size, which is physical, and (ii) it works on the scale of

microseconds, i.e. once again, on physical grounds.

Drop trajectories were numerically determined using the Kutta–Merson algorithm described

in Appendix A. The predicted dependence of the number of stains on the floor to their final

distance from the rear side of the target is shown in Fig. 29 in comparison with the experimental

data, with the agreement being quite satisfactory.

The resultant stain area on the floor was measured experimentally and predicted following

the procedure of Ch. 6, which employs the calculated impact angle of blood drops on the floor,

αi [173] and the drop spread factor for normal impact ξi. Namely, a blood drop impinging onto a

horizontal surface shown in Fig. 30 reveals the longest size of the drop stain ∆Xi = (ξil∗,i) /sinαi,

where ξi = 0.61 (Wei/Ohi)
0.166 [43,171] with Wei and Ohi being the final Weber and Ohnesorge

numbers, respectively, based on the droplet parameters. This spread factor was first proposed
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Figure 28. The dependence of the droplet tail detachment time on its characteristic size used
in the simulations in conjunction with Eq. (7.44).

by Scheller and Bousfield [171] with the validity range for viscosity of 1–300 mPa × s and the

correlation coefficient of 0.963 for all of their experimental data. There is a plethora of various

other spread factor correlations to choose from and they all have different ranges of validity.

Some of these correlations are experimental and some others span the results of numerical

simulations [192, 193], but Ref. [194] showed that all of those later correlations are in full

agreement with the Scheller–Bousfield correlation used here.

It should be emphasized that the Ohnesorge number involves viscosity µblood, which was

taken as the asymptotic value obtained in the simple shear flow, µblood = 5 mPa × s (cf. Ch. 4),
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Figure 29. The number of stains deposited on the floor vs. the distance from the rear side of
the target in forward blood spatter. The red circles correspond to the predicted results, and

the blue squares to the experimental data. It should be emphasized that these data
correspond to the combined results of five experiments.

because high shear rates accompany droplet spreading on impact [172, 195]. This leads to the

following expression for the stain area,

Ai =
πl2∗,iξ

2
i

4sinαi
. (7.95)

Note also that for the effect of the impact obliquity on drop spreading at the surface, there

are no fully reliable correlations, especially accounting for the detailed behavior of the advancing
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Figure 30. Schematic of stain formation due to a blood droplet impacting onto a horizontal
surface.

and receding contact angles (which are unknown for blood). Therefore, Eq. (7.95) is used to

account for the effect of the impact obliquity by indirectly introducing into consideration the

largest semiaxis of an elliptical stain, as is currently done in the framework of BPA [18,196].

The predicted and measured stain area are shown as a function of the distance from the

rear side of the target in Fig. 31 with the agreement being fairly good. The spatial distribution

in the stain area plot in Fig. 31 reveals that the initially slower, larger droplets fly further than

the initially faster, smaller ones (cf. Fig. 29), which can be explained by two effects. First,

the smaller drops have a lower inertia with respect to the effect of air drag and as such the

trajectories of smaller drops are more affected by drag and fall shorter than those of larger

drops. Second, the collective aerodynamic effect also participates in the spatial distribution

in the stain area plot in Fig. 31, because the initially leading droplets create the aerodynamic

wake, which reduces the drag and facilitates the flight of the subsequent larger droplets. Note

that the model uses probability only to determine which part of the target is fragmented and
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Figure 31. The average stain area as a function of distance from the rear side of the target in
forward blood spatter. The red circles depict the predictions and the blue squares are the

experimental data. The error bars for the experimental data indicate the standard deviation
in the stain area arising from the five experiments.

produces detached droplets under a given bullet geometry and motion. Other than that, droplet

motion is fully deterministic, and Figs. 29 and 31 represent the fully deterministic predictions.

This is, essentially, similar to how detached droplets are generated, travel, and are deposited in

reality.

It should be emphasized that the parameters in such experiments are very difficult to control,

which results in the large standard deviations. These standard deviations do not follow a

Gaussian distribution, first of all because area is an inevitably positive quantity. Also, it should
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be emphasized that all the outlier stain areas were included. It seems nearly impossible to

create perfectly repeatable experiments because things that are seemingly minute, such as the

gunpowder in the cartridge, easily change the muzzle velocity of the bullet. Or, for instance,

the grain (the mass of the projectile) can be different even for the same bullet type, which

is something entirely dictated by the manufacturer and would completely change the inertia

of the impacting projectile. These parameters are out of the control of the police shooters

conducting these experiments. Blood properties can also vary from sample to sample, which

further compromises reproducibility and increases error bars, as in Fig. 31.

The offset stain area in the numerical results as compared to the experimental data may be

attributed to the physical considerations under which Eq. (7.95) was determined. For instance,

the numerical calculations neglect the evaporation of the drops during flight. Moreover, the

effect of hematocrit on surface tension is unknown, even though it is plausible that it does have

an effect because the surface tension of water is higher than that of blood. The addition of whey

protein isolate, for instance, is known to reduce the surface tension along with temperature [197].

It should be emphasized that the most commonly used spread factor correlations are empirical

and valid only for the flow regimes that they were experimentally tested on. As such, it is

nearly impossible to really prove that one correlation is better or more appropriate than the

other unless the correlation is tested and found for each possible deposition scenario. Note

also that using the dependence of the blood viscosity on temperature and hematocrit from

Ref. [195] and of the surface temperature of blood on temperature from Ref. [198], it was

found that the theoretical predictions of the dependence of the average stain area on distance
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(cf. Fig. 31) change insignificantly between the two limiting cases of the room and body

temperature. Accordingly, the effect of drop cooling during flight on the results is insignificant.

It should be emphasized that the experimental data were collected by adding the values

found in five experiments and that the number of stains in Fig. 29 was predicted accordingly,

whereas the stain area in Fig. 31 was averaged. An artificial discretization of the experimental

and theoretical results, as shown in Fig. 23, can contain some stains resulting from a certain

bin into a strip with the other stains, thus creating the resulting fluctuations, as for example

those seen in the theoretical predictions in Fig. 31 at x = 175 and 250 cm.

7.5.2 Generalized Solution Results

The number of droplets formed in the forward spattering of blood due to a bullet of an ar-

bitrary shape is found via numerical integration over the fractured target zone using Eq. (7.87).

The mass of these droplets is then found using Eq. (7.88) which allows for the characteristic

droplet sizes to be determined through Eq. (7.91). Droplets within each discretized target bin

are ejected with the initial velocity calculated in Eq. (7.89) at initial inclination angles found

from Eq. (7.90). Due to the viscoelasticity of blood, droplet tails act to slow down the droplets

according to Eq. (7.92) until the tail fractures. The two–phase air–droplet jet then propagates

through air which is described in detail in Ch. 6 with the drag coefficient given by Eq. (7.93).

Note that the bullet shape and velocity are tremendously important in determining blood spat-

ter patterns as they dictate the velocity field within the target. This is because the bullet shape

defines the system of sinks and sources, q
(
ζ
)
, which generates the flow potential via Eq. (7.53),
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and influences the velocity field within the blood target as seen in Eqs. (7.55)–(7.57). Note

specifically that Eq. (7.55) incorporates ξ̇ which is the velocity of the bullet.

This procedure allows for the proper evaluation of chaotic disintegration of blood in the

target due to the penetration of bullets of arbitrary shape. The analytical benchmark for this

numerical procedure is provided by the bullet shaped as an ovoid of Rankine. The comparison

of the velocity vectors and probability field of the benchmark analytical case of an ovoid of

Rankine with the generalized numerical predictions for the same bullet is shown in Fig. 32.

Note that the effective rate of strain in Sec. 7.3 used an order of magnitude estimate and

the difference between the exact equation Eq. (7.66) and the one used in Sec. 7.3 is
√

6/4.

Therefore, the comparison requires Eq. (7.66) to be multiplied by 4/
√

6 and for consistency,

this was held for the generalized numerical calculations of the 7.62 × 39 mm and .45 auto

bullets. The velocity vectors and probability field in Fig. 32 reveal that the present fully–

numerical procedure applicable for bullets of an arbitrary shape is in good agreement with the

results of the analytical benchmark case of the bullet shaped as an ovoid of Rankine.

Then, in the calculations related to the 7.62 × 39 mm bullet shown in Fig. 22(b), the

exact muzzle velocity and bullet shape (R∞ = 0.396 cm) were used. The system of sinks

and sources q
(
ζ
)
, found from solving Eq. (7.53), using the known bullet geometry is shown in

Fig. 33(a) and a representative system of material points in the target in Fig. 33(b) illustrates

the corresponding deformation field.

The prediction of the spatial distribution of the number of stains and their respective area

requires a physically plausible cutoff time ti of blood droplets from the web of viscoelastic
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Figure 32. Comparisons for a bullet shaped as an ovoid of Rankine. Predictions were done
using the analytical results of Sec. 7.3 and the generalized numerical model of Sec. 7.4. (a)

Velocity vector plot from the analytical results of Sec. 7.3, (b) velocity vector plot found from
the generalized numerical model using Eqs. (7.60) and (7.61), (c) probability contours from

the analytical results of Sec. 7.3, (d) probability contours from the generalized numerical
model using Eq. (7.74). The depth of bullet penetration is ξ = 1.0 and the contour levels are
indicated about the current position of the bullet. The ovoid of Rankine bullet is shown by

the thick black line.
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Figure 33. Results of the generalized numerical model applied to the 7.62 × 39 mm bullet
shown in Fig. 22(b). (a) The predicted distribution of sinks and sources found from the

solution of Eq. (7.53), and (b) a representative system of material points in the target at a
penetration depth of ξ = 2.0.

ligaments similar to those observed in Ref. [183]. Then, through Eq. (7.48), the initial blood

droplet velocity can be determined. It should be emphasized that such droplet tails undergo

strong uniaxial elongation which is characterized by extremely high values of the Deborah

number De � 1, which essentially means a practically brittle (cohesive) fracture [177–180].

In general, it is physically plausible that the tail detachment time becomes larger for large

blood droplets, and this occurs on the order of microseconds which corresponds to the bullet

penetration timescale. Accordingly, based on the available empirical information on droplet
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deposition ranges affected by the values of ti, the following empirical correlation of the tail

detachment time with the droplet size is proposed,

ti = −3.85 (l∗,i)
2 + 8.04 (l∗,i)− 4.72× 10−4, (7.96)

where ti is in µs and l∗,i in cm. Accordingly, the characteristic droplet detachment is on the

scale of microseconds. It should be emphasized that Eq. (7.96) is the droplet tail detachment

time needed for the evaluation as per Eq. (7.92).

Due to the chaotic dispersion of blood droplets in the first time moments of the spray and

the volume of blood leaving the target being significantly smaller than the entire fractured zone,

it is assumed that 0.5% of blood within the fractured target results in the blood spray. From

high–speed video evidence of Ch. 5, this value is in the 0.01 − 5.0% range, and accordingly,

0.5% is within the plausible range. All other parameters required for the analysis were kept

the same as Sec. 7.5.1 and are discussed in more detail there. The experimental data and the

theoretical predictions for the 7.62 × 39 mm bullet shaped as in Fig. 22(b) are compared in

Fig. 34, where the distribution of the number of stains along the floor from the rear side of the

target is shown.

The stain area can be calculated following the method employed in Sec. 7.5.1 which utilizes

the Scheller–Bousfield spread factor, χi, as a function of the impact Weber and Ohnesorge
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Figure 34. Number of stains as a function of the distance from the rear face of the target for
the 7.62 × 39 mm bullet where the blue squares correspond to the experimental data and the
red circles to the theoretical predictions. It should be emphasized that the data is the sum of

five experimental trials. Accordingly, the theoretical prediction is taken five–fold.
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numbers as χi = 0.6 (Wei/Ohi)
0.166, [171]. Accounting for the impact angle of the stain results

in the following formula,

Ai =
πl2∗,iχ

2
i

4sinαi
, (7.97)

where αi is the predicted impact angle of the droplet. The stain area was then averaged

according to the strips outlined in Fig. 23 and the comparison between the numerical and

experimental predictions is shown in Fig. 35.

In order to test the universality of the model to bullets of an arbitrary shape, the tail

detachment time function required for Eq. (7.92) should be generalized as a function of the

maximum characteristic strain rate, γ̇|max = ξ̇/R∞. This was done by linearly matching

Eq. (7.96) and the one used in Sec. 7.5.1, ti = −13.4 (l∗,i)
2 + 8.34 (l∗,i) + 1.70× 10−3 (where ti

is in µs), which yields the following generalized function,

ti = A (l∗,i)
2 +B (l∗,i) + C, (7.98)

where ti is in µs, l∗,i is in cm, A = 9.256× 10−5 ( γ̇|max)− 20.620, B = −2.908× 10−6 ( γ̇|max) +

8.567, C = −2.105×10−8 ( γ̇|max)+ 3.342×10−3, and γ̇|max, is in s−1. It should be emphasized

that this equation is uniformly valid because it accounts for the fact that different bullets have

different shapes and move with different velocities, thus generating different characteristic strain

rates in the surrounding blood. Note that these functions were established using the physical

parameters of the bullet to find the overall maximal value of γ̇|max.
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Figure 35. Average stain area as a function of distance from the rear face of the target for the
7.62 × 39 mm bullet where the blue squares correspond to experimental data and the red

circles to the theoretical predictions. The error bars on the experimental data are the
standard deviation.
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Figure 36. Results of the generalized numerical model applied to the .45 auto bullet. (a) The
predicted distribution of sinks and sources found from the solution of Eq. (7.53), and (b) a

representative system of material points in the target at a penetration depth of ξ = 2.0.

Applying Eq. (7.98) for the .45 auto bullet with its radius, R∞ = 0.5715 cm, and its velocity

of ξ̇ = 234.47 m/s, results in the tail detachment time function of,

ti = −16.82 (l∗,i)
2 + 8.45 (l∗,i) + 2.84× 10−3. (7.99)

All other model parameters were kept the same since the .45 auto bullet is similar in shape

to the bullet used and described in Sec. 7.5.1 as the ovoid of Rankine bullet. The solution of

Eq. (7.53), i.e. the predicted distribution of sinks and sources, for the known bullet geometry

of the .45 auto bullet is shown in Fig. 36(a). The corresponding representative target points

showing the deformation predicted by the model are depicted in Fig. 36(b).
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Figure 37. Number of stains as a function of the distance from the rear face of the target for
the .45 auto bullet. The blue squares correspond to the experimental data and the red circles
to the theoretical predictions. It should be emphasized that the data is the sum of five trials.

Accordingly, the theoretical prediction is taken five–fold.

The predicted number of stains for the .45 auto is compared with the corresponding exper-

imental data in Fig. 37.

The application of Eq. (7.97) for the calculation of the average stain area (exactly as done

for the 7.62 × 39 mm bullet and 9 mm one in Sec. 7.5.1) yields the results for the .45 auto

bullet shown in Fig. 38.

It should be emphasized that the results shown in Figs. 37 and 38 were obtained by using

the generalized model for a given type of bullet and its velocity without any additional fitting.
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Figure 38. Average stain area as a function of distance from the rear face of the target for the
.45 auto bullet where the blue squares correspond to experimental data and the red circles to

the theoretical predictions. The error bars on the experimental data are the standard
deviation.
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The plausible results show that the generalized model described in Sec. 7.4 holds great promise

for predicting the resultant forward blood spatter pattern for arbitrary bullets.

7.6 Conclusion

A theoretical model of forward blood spatter due to a gunshot was described. The model is

based on the approach previously applied to the problems of terminal ballistics in the framework

of percolation theory. In addition, the present model incorporates the effect of the viscoelasticity

of blood on droplet detachment from the target and the collective aerodynamic interaction of

droplets flying through air. The model has a unique solution for an ovoid of Rankine and was

generalized to accommodate a projectile of arbitrary shape.

The unique solution was tested with experimental data acquired from gunshots of a 9 mm

FMJ bullet shot by a Glock model 19 into a cavity filled with human blood. The comparison

of the predicted and measured number of blood stains and their respective stain area found at

certain distances from the rear side of the target along the bullet path revealed good agreement.

The generalized numerical model was validated by comparison to the previously developed

analytical benchmark case of the bullet shaped as an ovoid of Rankine. Then, the predictions

of the generalized numerical model were compared to the experimental data of the present work

for a 7.62 × 39 mm bullet. The comparison of the numerical results with the experimental data

for the distribution of the number of droplets and their respective stain areas on the floor

revealed good agreement. The model was then tested with a .45 auto bullet which is similar

in shape to the 9 mm bullet approximated as an ovoid of Rankine with a tail detachment time

being related to the effective strain rate. This also produced plausible results, which shows
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that the generalized model is universally valid for bullets of any given shape moving with any

given velocity. This shows that the generalized model of forward blood spattering based on

percolation theory of chaotically disintegrating liquid holds great promise for the modeling of

gunshot forward spatters in relation to forensic investigations.

It should be emphasized that the compared experimental results are preliminary, and in

order to fully validate the proposed model, more varied experiments should be conducted in the

future. The theoretical predictions are produced in the framework of a unified approach, based

on physical principles, i.e. the chaotic disintegration of blood described through percolation

theory, the viscoelasticity of blood, the velocity field, the individual droplet flight affected by

the gravity force, and air drag and the collective effect, which stems from the aerodynamic

droplet–droplet interaction. These predictions are based on the same set of input parameters,

and they are not trivial, e.g. the maximum of the number of stains and the deposition of the

largest of the droplets. These nontrivial effects stem from the collective aerodynamic effect in

which the leading drops create an aerodynamic wake, which lowers the drag on the subsequent

ones, and as such, the slower and larger droplets can fly to a distance farther than the initially

faster smaller droplets. Moreover, the model also predicts the droplet impact angle and its final

velocity responsible for the stain area. To date, there is no other theoretical model capable of

predicting any of these outcomes of the forward spattering of blood due to a gunshot based on

sound physical principles.



CHAPTER 8

INTERACTION OF MUZZLE GASES

This chapter has been submitted for publication in Ref. [4].

8.1 Introduction

Self–similar turbulent vortex rings are investigated theoretically in the framework of the

semi–empirical turbulence theory for the modified Helmholtz equation. The velocity and vor-

ticity fields are established, as well as the transport of passive admixture by turbulent vortex

rings. Turbulent vortex rings of propellant gases originating from the muzzle of a gun after a

gunshot are an important phenomenon to consider in crime scene reconstruction. In this work,

it is shown that this has a significant repercussion on the outcome of backward spattered blood

droplets from a gunshot. Turbulent vortex rings of propellant gases skew the distribution of

blood stains on the ground and can either propel blood droplets further from the target, or

even turn them backwards toward the target. This is revealed through the final bloodstain

locations and their respective distribution of the number of stains and their area as a function

of distance from the target using two different shooter–to–target distances. An image of the

propagating muzzle gases after bullet ejection is overlaid with the predicted flow field which

reveals good agreement. Gunshot residue is an important factor in determining the events of

a violent crime due to a gunshot and are considered to be entrained by the propellant gases.

153
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The self–similar solutions for the flow, vorticity, and concentration of gunpowder particles are

predicted and the results are shown to be within the measured range of experimental data.

8.2 Theoretical Model

8.2.1 Self–Similar Motion of Turbulent Vortex Rings

The structure of self–similar turbulent vortex rings is determined in the framework of the

semi–empirical theory of turbulence using the turbulent eddy viscosity in the momentum bal-

ance equation,

∂v

∂t
+ (v · ∇) v = F− 1

ρ
∇p+ ν∇2v, (8.1)

supplemented with the continuity equation for the incompressible mean flow,

∇ · v = 0, (8.2)

where bold characters denote vectors, v is the average flow velocity, F represents the body

force, t is time, ρ is the fluid density, p is the pressure, and ν is the turbulent eddy viscosity,

ν (t) = λW (t)R (t), where λ is an empirical constant, W is the axial velocity of the vortex

ring, and R is its radius.

The vortex ring is assumed to be axisymmetric in average. Then, the cylindrical coordinate

system shown in Fig. 39 (from the z–r coordinate origin) is introduced, with the z–coordinate

being reckoned along the ring axis, and the r–coordinate in the radial direction. The vorticity,

Ω = ∇×v, has only the azimuthal component which is denoted as Ω. The velocity components
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are generated by the stream function ψ, as vz = r−1∂ψ/∂r, and vr = −r−1∂ψ/∂z [83], which

satisfy Eq. (8.1). Then, Eq. (8.1) takes the form of the modified Helmholtz equation,

∂Ω

∂t
+
∂ψ

∂r

∂

∂z

(
Ω

r

)
− ∂ψ

∂z

∂

∂r

(
Ω

r

)
= ν

[
∂2Ω

∂z2
+
∂2Ω

∂r2
+

∂

∂r

(
Ω

r

)]
, (8.3)

while the definition of vorticity yields,

∂2ψ

∂z2
+
∂2ψ

∂r2
− 1

r

∂ψ

∂r
= −rΩ. (8.4)

H
XY 0

Target

Blood
Spatter

Gun
Muzzle

Propellant
GasesH0

δ

r
z 0

Figure 39. Schematic of the coordinate systems used for the description of the turbulent
vortex ring of propellant gases moving toward the target and of the backward spatter of

blood. The cylindrical coordinates r and z are associated with the radial and axial directions
of the turbulent vortex ring and its origin is at the muzzle of the gun. The Cartesian

coordinate system X –Y –H is used for the description of the trajectories of blood droplets in
backward spatter resulting from a bullet impacting the target (the blood source).
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The hydrodynamic vortex impulse is defined as,

P =
1

2

∫
r×ΩdV, (8.5)

where the integration is performed over an unbounded volume. The vortex impulse P is the

integral invariant of the equations of motion, Eqs. (8.3) and (8.4) [77, 199]. Therefore, the

impulse can be fully determined by the initial vorticity distribution in the turbulent vortex ring

Ω0 (r, z),

P0 = π

∫ ∞
−∞

∫ ∞
0

r2Ω0 (r, z) drdz, (8.6)

where subscript zero here indicates the initial value.

It should be emphasized that the initial radius of the turbulent vortex ring is comparable to

the radius of the muzzle exit and much smaller than the radius of the turbulent vortex ring as

it propagates toward the target. Therefore, the initial radius can be neglected, the idealization

which makes the problem self–similar [140]. Then, the dimensionless self–similar coordinates, r

and z are introduced, as well as other functions, following standard considerations of the theory

of self–similar flows [164,200],

r =
r

(P0t)
1/4

; z =
z

(P0t)
1/4

; Ω =
1

t
Ω (r, z) ; ψ =

P
3/4
0

t1/4
ψ (r, z) ; ν = λ0

(
P0

t

)1/2

, (8.7)
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where λ0 is a dimensionless empirical constant.

Accordingly, Eqs. (8.3) and (8.4) take the following dimensionless self–similar forms,

λ0

[
∂2Ω

∂z2 +
∂2Ω

∂r2 +
1

r

∂Ω

∂r
− Ω

r2

]
+ Ω +

1

4

[
z
∂Ω

∂z
+ r

∂Ω

∂r

]
=

1

r

[
∂ψ

∂r

∂Ω

∂z
− ∂ψ

∂z

∂Ω

∂r
− Ω

r

∂ψ

∂z

]
, (8.8)

∂2ψ

∂z2 +
∂2ψ

∂r2 −
1

r

∂ψ

∂r
= −rΩ. (8.9)

The solutions of Eqs. (8.8) and (8.9) are subjected to the following boundary conditions,

z2 + r2 →∞ : Ω→ 0 and ψ → 0, (8.10)

r = 0 : Ω = 0 and ψ = 0, (8.11)

and should satisfy the following integral invariant condition associated with Eq. (8.6),

π

∫ ∞
−∞

∫ ∞
0

r2Ωdrdz = 1. (8.12)

Equations (8.8) and (8.9) can only be solved numerically. However, an analytical solution

can be constructed when a plausible approximation of the RHS of Eq. (8.8) is introduced.

Namely, having in mind that the axial velocity of turbulent vortex rings is typically much
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higher than the radial one, i.e. vz � vr, and thus ∂ψ/∂r � ∂ψ/∂z, Eq. (8.8) is approximated

by the following equation,

λ0

[
∂2Ω

∂z2 +
∂2Ω

∂r2 +
1

r

∂Ω

∂r
− Ω

r2

]
+ Ω +

1

4

[
z
∂Ω

∂z
+ r

∂Ω

∂r

]
=

1

rm

∂ψ

∂r

∣∣∣∣r=rm
z=zm

∂Ω

∂z
, (8.13)

where rm and zm are the locations of the maximum of the vorticity function Ω (r, z).

The analytical solution of the system of Eqs. (8.9) and (8.13) reads,

ψ (r, z) =
r2

64
√

2πλ
3/2
0 s3

[
erf (s)− 2s√

π
exp

(
−s2

)]
, (8.14)

Ω (r, z) =
r

64
√

2π3/2λ
5/2
0

exp
(
−s2

)
, (8.15)

where,

s =

√
(z − zm)2 + r2

8λ0
, (8.16)

rm = 2
√
λ0, (8.17)

zm =
1

2
√

2e (πλ0)
3/2

[
1−

√
πe

8
erf

(
1√
2

)]
. (8.18)
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The empirical coefficient λ0 is related to the ratio of the coordinates of the maximum

vorticity locations, α = rm/zm, as,

λ0 =
√
α

[
1−

√
πe/8erf

(
1/
√

2
)

4
√

2eπ3/2

]1/2

. (8.19)

It should be emphasized that the ratio α can be measured experimentally, which deter-

mines the only empirical parameters of the semi–empirical theory of turbulent vortex rings, λ0,

through Eq. (8.19).

The solution of Eqs. (8.9) and (8.13) resulting in Eqs. (8.14)–(8.18) was recently published

in Ref. [77] without any derivation. The original derivation given is given in Ref. [200] and is

difficult to obtain, therefore, its complete derivation is proven independently in this work and

shown in Appendix C.

8.2.2 Gunpowder Particle Transport by a Turbulent Vortex Ring

The transport of gunpowder particles by a turbulent vortex ring is described using the

following equation,

∂c

∂t
+ vz

∂c

∂z
+ vr

∂c

∂r
= D

[
1

r

∂

∂r

(
r
∂c

∂r

)
+
∂2c

∂z2

]
, (8.20)

where c is the average gunpowder particle concentration in units of particles/cm3, D is the

turbulent diffusion coefficient, and D = γν, where γ is the inverse turbulent Schmidt number.
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The total number of gunpowder particles is invariant and thus, Eq. (8.20) possesses the

following integral invariant,

N0 = 2π

∫ ∞
−∞

∫ ∞
0

crdrdz, (8.21)

where N0 is the total number of gunpowder particles released from the muzzle.

Similarly to the flow field, the gunpowder particle concentration in the present case is also

self–similar, and thus Eq. (8.20) takes the following self–similar form,

γλ0

[
∂2c

∂z2 +
∂2c

∂r2 +
1

r

∂c

∂r

]
+

1

4

[
z
∂c

∂z
+ r

∂c

∂r

]
+

3

4
c =

1

r

[
∂ψ

∂r

∂c

∂z
− ∂ψ

∂z

∂c

∂r

]
, (8.22)

where,

c =
N0

2π (P0t)
3/4
c. (8.23)

The solution of Eq. (8.22) should satisfy the following boundary conditions,

z2 + r2 →∞ : c→ 0, (8.24)

r = 0 : c = max. (8.25)



161

As in the momentum balance equation discussed in Sec. 8.2.1, we account for the fact that

vz � vr, and thus, ∂ψ/∂r � ∂ψ/∂z, and reduce Eq. (8.22) to the following form,

γλ0

[
∂2c

∂z2 +
∂2c

∂r2 +
1

r

∂c

∂r

]
+

1

4

z − 4

rm

∂ψ

∂r

∣∣∣∣r=rm
z=zm

 ∂c

∂z
+
r

4

∂c

∂r
+

3

4
c = 0. (8.26)

Introduce the following variables to find an analytical solution of Eq. (8.26),

ξ =
1

m
(z − 4K) ; η =

1

m
r, (8.27)

where K = r−1
m ∂ψ/∂r

∣∣
r=rm
z=zm

and m =
√

8γλ0.

The solution is sought in the form,

c = exp

(
−ξ

2 + η2

2

)
Γ (ξ, η) . (8.28)

Accordingly, Eq. (8.26) yields the following equation for the function Γ (ζ, η),

1

η

∂

∂η

(
η
∂Γ

∂η

)
+
∂2Γ

∂ξ2
+
(
3− ξ2 − η2

)
Γ = 0, (8.29)

Defining Γ (ξ, η) = Γ1 (ξ) Γ2 (η), then Eq. (8.29) yields the following two ordinary differential

equations,

d2Γ1

dξ2
− ξ2Γ1 = − (A+ 3) Γ1, (8.30)
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1

η

d

dη

(
η

dΓ2

dη

)
− η2Γ2 = AΓ2, (8.31)

where A is a separation constant.

The integral invariant of Eq. (8.21) takes the following form,

∫ ∞
−∞

exp

(
−ξ

2

2

)
Γ1dξ

∫ ∞
0

exp

(
−η

2

2

)
ηΓ2dη =

1

(8γλ0)
3/2
. (8.32)

Equation (8.30) is known in the theory of one–dimensional quantum oscillators and its

solution satisfying Eq. (8.32) is readily available [187,201],

Γ1 (ξ) = B1
exp

(
−ξ2/2

)
Hj (ξ)

π1/4 (2Mj!)
1/2

, (8.33)

where B1 is a constant, Hj are the Hermite polynomials, and A+3 = 2j+1, where j = 0, 1, 2, . . ..

Equation (8.31) is also known in the theory of cylindrical quantum oscillators [202], and its

solution satisfying Eq. (8.32) exists only when −A = 2 (2i+ 1), where i = 0, 1, 2, . . .. Then,

it is seen that the only appropriate choice is i = j = 0, which yields A = −2, and Eq. (8.31)

results in,

Γ2 (η) = B2exp
(
−η2/2

)
, (8.34)

where B2 is a constant.
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Therefore, Γ (ξ, η) becomes,

Γ (ξ, η) = Bexp

(
−ξ

2 + η2

2

)
, (8.35)

where B is a constant which incorporates all the previous factors and is determined from the

integral invariant, Eq. (8.32), as,

B =
2

√
π (8γλ0)

3/2
. (8.36)

Then, Eqs. (8.28), (8.35), and (8.36) result in,

c =
2

√
π (8γλ0)

3/2
exp

[
−
(
ξ2 + η2

)]
. (8.37)

Through the variable transformation in Eq. (8.27), the latter equation yields the solution for

the concentration of gunpowder particles transported by a turbulent vortex ring in the following

form,

c =
2

√
π (8γλ0)

3/2
exp

[
−(z − 4K)2 + r2

8γλ0

]
. (8.38)

8.2.3 Deflection of Blood Droplets in Backward Spatter

When a bullet impacts a target and blood is splashed in the direction opposite of bullet

motion, i.e. backward spatter, the turbulent vortex ring of propellant powder following the

bullet can encounter the airborne blood droplets moving in the opposite direction. These blood
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droplets form due to the Rayleigh–Taylor instability which occurs in backward spatter because

the denser blood is accelerated towards air as explained in Ch. 6. The theory of this instability

has been used to predict the formation of blood droplets in two different cases of backward

spatter by sharp and blunt bullets (cf. Ch. 6). In that chapter, backward spatter is considered as

a system of two–interpenetrating continua, with a cloud of blood droplets propagating through

air experiencing aerodynamic drag, producing viscous suction and causing air entrainment. The

leading blood droplets experience the highest drag and entrain air in their wake which reduces

the air drag experienced by the following droplets. This collective effect, resembling a flock of

geese flying in V formation, allows the droplets to fly further [70].

Following the work of Sec. 6.6, the drag force acting on a droplet along its trajectory, FD,i,

with entrained air is,

FD,i =
1

8
πl2∗,iCD,iρa (ui −Ui) |ui −Ui| , (8.39)

where l∗,i is an individual droplet diameter determined by the Rayleigh–Taylor instability, CD,i

is the drag coefficient, ρa is the density of air, ui is the instantaneous average velocity of the

blood droplets in a cloud i along the droplet trajectory, and Ui is the instantaneous averaged

velocity of entrained air in the cloud along the trajectory.

The momentum balance of blood droplets in a cloud with air entrainment is then,
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− gk
where Mi is the mass of blood in the cloud, T is the time reckoned from the moment these

droplets have been spattered, ni is the number of blood droplets in the cloud, τ is the unit

vector tangent to the trajectory, and i, j, and k are the unit vectors of the X –Y –H directions

shown in Fig. 39. Note that a temporal offset exists between the formation of the turbulent

vortex ring and the backward spatter of blood droplets. Therefore, the time t, in which the

evolution and propagation of the turbulent vortex ring is tracked, and the time T, in which

droplet motion is calculated, are related as,

t = T +
δ

VA
, (8.41)

where VA is the velocity of the bullet approaching the target, and δ is the distance between the

muzzle exit and the target (cf. Fig. 39).

If the airborne blood droplets encounter a turbulent vortex ring, the counter–flow of air

generated by the latter sheds the air entrained by the cloud, i.e. the velocity and volume of
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the entrained air, Ui → 0, and V → 0. Then, the drag force acting on the droplets become

associated with the velocity of the counter–flow generated by the turbulent vortex ring as,

FD,i =
1

8
πl2∗,iρa (ui + v) |ui + v| , (8.42)

where v is the velocity vector of the turbulent vortex ring. It should be emphasized that

Eq. (8.42) does not include the effect of the air entrained by flying droplets before the strong

interaction with the oncoming vortex ring because the entrained air is easily shed back by the

ring long before the droplets are affected by the collision.

The momentum balance of blood droplets in a cloud interacting with a turbulent vortex

ring is expressed as,

d2X
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dT 2
j +
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The projections of Eqs. (8.40) and (8.43) on the X –Y –H axes and the appropriate initial

conditions are described in Appendix D.

In the case of a strong interaction of the blood droplets and the turbulent vortex ring, the

blood droplet velocity ui will slow down to zero. Then, droplet motion along the trajectory will

cease, and the droplets will be pushed by the turbulent vortex ring in the opposite direction.

The interaction of the turbulent vortex ring and the turned–around blood droplets is relatively

short because the turbulent vortex ring propagates rapidly, and its velocity field is practically

not felt outside of the vortex body. Then, the droplets will continue moving toward the target

entraining the surrounding air once again according to the mechanisms described in Eq. 8.40.

Also, the droplets which passed through the vortex ring will continue moving from the target

entraining the surrounding air once again according to the mechanisms described in Eq. (8.40).

8.3 Results and Discussion

8.3.1 Propagation of Propellant Gases

The dimensionless empirical parameter λ0 involved in the semi–empirical theory of turbulent

vortices is found using Eq. (8.19) and data for the coordinates of the locations of the maximum

vorticity, α = rm/zm. The latter was found experimentally as α ≈ 10−2 − 10−3 [76, 77]. For

the value of α = 5.5 × 10−3, which corresponds to the value of λ0 = 4.4 × 10−3, the field of

the self–similar stream function found from Eq. (8.14) is shown in Fig. 40. Note that unless

otherwise specified, this value of α, and thus λ0, is used hereinafter in this work. The vorticity

of such a turbulent vortex ring was reported to be highly localized [203], which is corroborated

in Fig. 41, plotted using Eq. (8.15).
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Figure 40. Self–similar streamlines of the turbulent vortex ring with α = 5.5× 10−3

(λ0 = 4.4× 10−3). The values of the streamlines from the outward line going inward are
0.022–0.176 in steps of 0.022.

The field of the self–similar concentration of gunpowder particles found from Eq. (8.19) with

γ = 1 (corresponding to the turbulent Schmidt number equal to one, a plausible approximation

for turbulent flows [140]) is shown in Fig. 42.

Using the self–similar solution, the time dependent flow pattern can be reconstructed with

Eq. (8.7), and the resultant flow field can be overlaid on experimental pictures of muzzle gases.

Such data is available in Ref. [79] where a 5.56 mm caliber M–16 rifle firing ball ammunition was

photographed during the early development of the muzzle flow pattern close to the muzzle of

the rifle. There were four photographs taken at 10, 37, 105, and 237 µs after the bullet left the
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Figure 41. Self–similar vorticity field of the turbulent vortex ring with α = 5.5× 10−3

(λ0 = 4.4× 10−3).

muzzle and the final image at 237 µs shows a plume of muzzle gases and the turbulent vortex

ring. The theoretical flow pattern predicted using Eq. (8.14) overlaid on this experimental

image is shown in Fig. 43. Note that other structures inherent of the propagation of muzzle

gases (such as the precursor blast wave) discussed in Sec. 2.5, are also seen in Fig. 43. The

impulse of the vortex ring was found by fitting the flow pattern to the experimental image

which yielded P0 = 75 cm4/s. The corresponding streamlines predicted with the values of α

(and thus λ0) and P0 mentioned above, properly fit the dark area in Fig. 43.
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Figure 42. Field of the self–similar concentration of gunpowder particles in the turbulent
vortex ring with α = 5.5× 10−3 (λ0 = 4.4× 10−3), and γ = 1.

The propagation of the turbulent vortex ring can be followed by the locations of the maxi-

mum vorticity versus time, which are found from Eq. (8.7), (8.17), and (8.18) as,

zm (t) = zm (P0t)
1/4 , rm (t) = rm (P0t)

1/4 . (8.44)

For the turbulent vortex ring shown in Fig. 43, the values of zm = 27.18 and rm = 0.1495

(corresponding to α = 5.5 × 10−3, and thus, λ0 = 4.4 × 10−3), with P0 = 75 cm4/s, yield the

axial and radial positions of the maximum vorticity through Eq. (8.44), as is shown in Fig. 44.
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Figure 43. Theoretically predicted flow pattern of the turbulent vortex ring at 237 µs after
the bullet left the muzzle of the gun. The experimental image is taken from Ref. [79]. The
values of the stream function corresponding to the streamlines from the outward line to the

inward one are, ψ = 0.8− 37.4 cm3/s in steps of 0.8 cm3/s.

The concentration of gunpowder particles swept by a turbulent vortex ring depends on the

total number of particles within the cartridge, N0. This value can be evaluated knowing the

volume of a single gunpowder particle and the volume of the cartridge which holds all gunpowder

particles. For spherical gunpowder particles of 1 mm in diameter (which have a density around

1 g/cm3 [204]), and the volume of the cartridge is approximately 1 mL, an estimate of the

number of the particles is then N0 ≈ 1500 particles. The concentration of gunpowder particles

(as a function of time) swept by the turbulent vortex ring of propellant gases with an impulse

in the P0 = 50 − 125 cm4/s range (which incorporates the value of P0 = 75 cm4/s established
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Figure 44. Location of the maximum vorticity in the turbulent vortex ring of the propellant
gases over time. (a) The axial position, (b) the radial position.

in Fig. 43), is shown in Fig. 45. It is calculated using Eqs. (8.23) and (8.38). The order of

magnitude of the concentration is within the realm of what was observed experimentally, as

Ref. [79] has reported 105 − 108 particles/cm3.

8.3.2 Effect of Propellant Gases on the Backward Spatter of Blood

To study the effect of a turbulent vortex ring of propellant gases on the backward spatter of

blood droplets, the case of a blunt bullet impacting a target normally from 30 cm is considered

with the same set of parameters as in Sec. 6.8. Namely, the blood spatter splash angle is

∆θ = 15◦, the approaching bullet velocity is VA = 1000 m/s, and the droplet size l∗,i ranges

from ∼ 0.2 to 0.4 mm, which is the size range present in backward blood spatter due to a

gunshot (cf. Ch. 6). The initial height (the droplet origin) was set to be H0 = 100 cm. The
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Figure 45. Gunpowder concentration in the turbulent vortex ring of propellant gases for
N0 = 1500 particles and the range of P0 is indicated in the legend. The units for P0 are cm4/s.

equations for the droplet trajectory calculations in Sec. 6.6 were modified to incorporate an

interaction with the turbulent vortex ring affecting the aerodynamic drag force, as described in

Sec. 8.2.3. In order to reveal the effect of the impulse of the turbulent vortex ring, P0, it was

varied from 75 cm4/s to 150 cm4/s, and the final locations of the blood droplets predicted with

and without accounting for the interaction with a turbulent vortex ring are shown in Fig. 46.

When the interactions with the turbulent vortex ring is accounted for, the blood droplet bins

can be deflected further from the target than without such interactions, as seen in Fig. 46(b),

for example. On the contrary, the blood droplet bins can be overcome by the turbulent vortex

ring and turn towards the target. These bins can either be deflected and spread outwards (in
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Figure 46. Final blood droplet bin locations on the floor accounting for an interaction with
and without a turbulent vortex ring. The impulse of the turbulent vortex ring is (a) P0 = 75

cm4/s, and (b) P0 = 150 cm4/s. The red circles and gray squares represent the cases with and
without the interaction with the turbulent vortex ring, respectively.

the Y –direction as shown in Fig. 46), or hit the target as indicated by the large quantity of red

circles located around X = 0 in Fig. 46. The predicted spatial and average stain area presented

in the form of histograms binned every 20 cm from the target are shown in Figs. 47 and 48,

respectively.

The interactions with the turbulent vortex rings result in large changes in their final loca-

tions, and the resultant distribution of the average stain area. For the impulse of P0 = 75 cm4/s,

18% of the droplets splashed fall within 20 cm of the target, whereas for the impulse of

P0 = 150 cm4/s, 41% of the droplets splashed fall within that range. A higher value of

the vortex impulse is equivalent to a closer shooting distance (for self–similar vortex rings).
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Figure 47. Spatial distribution of the number of bloodstains from a gunshot formed on the
floor by backward spatter. (a) The case of a turbulent vortex ring with the impulse of P0 = 75
cm4/s, and (b) with the impulse of P0 = 150 cm4/s. The gray bars indicate the distributions
predicted without an interaction with the vortex ring, and the red bars are for the case where

the interaction was accounted for.

Accordingly, these results show that a closer shooting distance result in more blood droplets

turning around and travelling towards the target, an effect important for CSI.

8.4 Conclusion

In this work, self–similar turbulent vortex rings of propellant gases are studied because they

comprise the main mechanism responsible for two practically important effects: (i) transport

of gunshot residue, and (ii) deflection of backward spattered blood droplets. The self–similar

velocity and the gunpowder concentration fields were predicted and compared to experimental

data which revealed a good agreement. The previously introduced theory of backward blood

splashing due to a blunt bullet was modified to account for the effect of a turbulent vortex
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Figure 48. Spatial distribution of the average stain area from a gunshot formed on the floor
by backward spatter. (a) The case of a turbulent vortex ring with the impulse of P0 = 75

cm4/s, and (b) with the impulse of P0 = 150 cm4/s. As in Fig. 47, the gray bars indicate the
distributions predicted without an interaction with the vortex ring, and the red bars are for

the case where the interaction was accounted for.

ring of propellant gases on the flight of blood droplets and their resultant deposition on the

floor. The predicted final locations of backward splashed blood droplets calculated with and

without the interaction of the turbulent vortex ring of propellant gases were compared. The

results revealed a clear link between the turbulent vortex ring impulse, the blood distribution

and average stain size on the floor. It was shown that doubling the impulse results in more

than double the number of stains located 20 cm away from the target (i.e. relatively close to

it). The same link, due to the self–similarity, exists between the final location of blood droplets

affected by shooting from a closer range.



CHAPTER 9

BLOOD JETTING

This chapter has been previously published in Ref. [5], reprinted by permission from Springer

Nature [Friction coefficient of an intact free liquid jet moving in air. Comiskey, P. M., and Yarin,

A. L., Experiments in Fluids, 59, 65], copyright (2018) Springer Nature.

9.1 Introduction

A novel method of determining the friction coefficient of intact free liquid jets moving in

quiescent air is proposed. The middle–size jets of this kind are relevant for such applications

as decorative fountains, fiber–forming, fire suppression, agriculture, and forensics. The present

method is based on measurements of trajectories created using a straightforward experimental

apparatus emulating such jets at a variety of initial inclination angles. Then, the trajectories

are described theoretically, accounting for the longitudinal traction imposed on such jets by the

surrounding air. The comparison of the experimental data with the theoretical predictions show

that the results can be perfectly superimposed with the friction coefficient Cfd = 5Re
−1/2 ± 0.05
d ,

in the 621 ≤ Red ≤ 1289 range, with Red being the Reynolds number based on the local cross–

sectional diameter of the jet. The results also show that the farthest distance such jets can

reach corresponds to the initial inclination angle α = 35◦ which is in agreement with already

published data.

177
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9.2 Experiment

Intact jets were experimentally issued using a three–tiered nozzle system shown in Fig. 49.

The working fluid was kept in a storage vessel and supplied to the nozzle system using a

submerged circulation pump (Marineland Maxi–Jet 600). The first tier of the nozzle system

which the working fluid encountered consisted of a porous medium which acted to smooth

the pulsing, slightly–transient flow from the circulation pump. Then, the second stage was an

elongated honeycomb mesh intended to prevent any possible swirling or secondary flows. The

final stage consisted of an enclosed cavity which filled uniformly and smoothly as it supplied

the working fluid into the nozzle. Two different solid–stream spray nozzles with cross–sectional

areas of 0.04 and 0.13 cm2 (McMaster–Carr 7611T43 and 7611T46) were used. The free liquid

jets were collected in a second storage vessel which had another submerged circulation pump

(Marineland Maxi–Jet 600) to pump the working fluid back to the first storage tank, thus

creating closed–loop system schematically shown in Fig. 49.

There were two replicated experiments, one for each nozzle type with four different initial

inclination angles, with a total of nine experiments, as listed in Table VI. The two nozzle types

were tested at the initial inclination angles of α ≈ 0◦, 20◦, 40◦, and 60◦. The inclination angle

values were measured with a digital level on site and later corrected to more precise values

based upon the images taken during each experiment, which resulted in the corrected values

listed in Table VI. The pressure head between the first submerged circulation pump and the

nozzle system had to be overcome by the pump. Accordingly, simply raising the three–tiered

nozzle system reduced the flow rate of the working fluid through the nozzle. As a result, low–
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Figure 49. Schematic of the experimental setup. The free liquid jet issued from the nozzle is
shown in blue and the gray lines indicate tubing. Tier 1 corresponds to the porous medium,

tier 2 the elongated honeycomb mesh, and tier 3 the enclosed cavity. Fig. from Ref. [5].

velocity jet experiments could easily be performed by inducing in this way a large opposite

pressure head as is the case of experiment 9 in Table VI. Note that for all other experiments,

the pressure head was effectively kept constant, however, slight deviations led to a difference in

jet velocity even for the same nozzle type. The velocity was determined through measuring the

volumetric flow rate approximately 30 times for each experiment and using the known nozzle

outlet area. The values were then averaged, with the results and the corresponding standard

deviations being listed in Table VI. No discharge coefficients were needed in this calculation,

because the internal geometry of the nozzles was smooth and gradual, resulting in a discharge
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coefficient very close to unity, which was corroborated by the jet images of the type shown in

Fig. 50. The working fluid used in all experiments was water.

Figure 50. Water jets used in experiment 5 (a) and experiment 8 (b). Fig. from Ref. [5].

9.3 Theoretical Model

The momentless quasi–one–dimensional theory of planar bending liquid jets yields the fol-

lowing continuity Eq. (9.1), and two projections (tangential and normal to the jet trajectory)

of the momentum balance equation [118],

∂λf

∂t
+
∂fW

∂x
= 0, (9.1)
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TABLE VI

Experimental parameters. Note that the values of α listed here were measured from
experimental images and Red is the jet Reynolds number based on the jet velocity, diameter

at the nozzle exit, and the kinematic viscosity of air. Table from Ref. [5].

Experiment
number

Cross-sectional
nozzle area [cm2]

α [deg] Jet velocity [cm/s] Red

1 0.04 2.00 438.69 ± 12.78 743
2 0.04 19.00 412.85 ± 5.96 652
3 0.04 38.73 404.22 ± 6.08 650
4 0.04 58.28 390.38 ± 7.63 621
5 0.13 -4.14 398.29 ± 12.8 1180
6 0.13 22.87 422.82 ± 19.37 1289
7 0.13 41.86 386.85 ± 15.05 1097
8 0.13 58.00 373.37 ± 9.96 1075
9 0.13 0.00 238.75 ± 8.46 713

∂λfVτ
∂t

− fVn
λ

∂λVn
∂x

+
∂fVτW

∂x
− λfWkVn =

1

ρ

∂P

∂x
+ λfFτ +

1

ρ
λqτ , (9.2)

∂λfVn
∂t

− fVτ
λ

∂λVn
∂x

+
∂fVnW

∂x
+ λfWkVτ =

1

ρ
λkP + λfFn +

1

ρ
λqn. (9.3)

Here, λ is the arc length of the jet axis, λ =
√

1 + (∂H/∂x)2, H and x are the vertical

and horizontal coordinates of the jet axis, f is the cross–sectional area of the jet, with the

cross section being approximately circular, and thus, f = πa2, with a being the cross–sectional

radius. In addition, W = Vτ − Vn (∂H/∂x), with subscripts τ and n corresponding to the

tangential and normal velocity components, respectively, k is the curvature of the jet axis,
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i.e. k =
(
∂2H/∂x2

) [
1 + (∂H/∂x)2

]−3/2
, ρ is the liquid density, and Fτ and Fn denote the

tangential and normal components of the acceleration associated with the body force (gravity,

in the present case). Similarly, qτ and qn denote the tangential and normal components of the

force imposed by the surrounding air on a unit length of the jet.

In the momentum balance, Eqs. (9.2) and (9.3), P is the longitudinal force acting in the jet

cross section given as,

P =

[
3µ

1

λ

∂Vτ
∂x
− kVnsign

(
1

λ

∂Vτ
∂x
− kVn

)
− σG

]
f + Pσ, (9.4)

where µ is the liquid viscosity, σ is the surface tension, and G is the double mean curvature

of the surface of the jet, and Pσ = 2πaσ
[
1 + λ−2 (∂a/∂x)2

]−1/2
. It should be emphasized that

here the liquid is assumed to be Newtonian, as in the present experiments with water. For any

other non–Newtonian fluid (e.g. blood, which is pseudoplastic and viscoelastic as discussed in

Ch. 4), Eq. (9.4) should be modified as described in [118]1.

For a steady–state jet ∂H/∂t = λVn = 0. In addition, if the jet is thick enough, as in the

present experiments, the effect of surface tension can be neglected. Then, Eqs. (9.1)–(9.4) take

the following form,

Q = fVτ , (9.5)

1The non–Newtonian extension is described in Appendix E.
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ρQ
dVτ
dx

=
dP

dx
+ ρλfgτ + λqτ , (9.6)

ρkfV 2
τ = kP + fρgn, (9.7)

P = 3µ
1

λ

dVτ
dx

f, (9.8)

where Q is the volumetric flow rate in the jet.

Projecting the acceleration of the body force onto the normal and tangent to the jet axis

(the trajectory arc), one obtains gn = −g/λ, and gτ = −g (1/λ) (dH/dx), respectively, with g

being gravity acceleration. This transforms Eqs. (9.6) and (9.7) to the following form,

ρQ
dVτ
dx

=
dP

dx
− ρfgdH

dx
+ λqτ , (9.9)

(
ρfV 2

τ − P
)
k = −fgρ

λ
. (9.10)

In the steady–state case, the only non–zero tangential aerodynamic force, qτ , acting on a

unit jet length can be expressed as qτ = −τshear2πa, where τshear is the shear stress acting at
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the jet surface. It is related to the friction coefficient Cfd as τshear = (1/2) ρaV
2
τ Cfd. In addition,

noting that a =
√
Q/ (Vτπ), Eqs. (9.9) and (9.10) are transformed to,

d

dx
(ρQVτ − P ) = −ρgQ

Vτ

dH

dx
− π1/2λρaV

3/2
τ Q

1/2Cfd, (9.11)

d2H

dx2
= − Q

Vτ

ρg
[
1 + (dH/dx)2

]
(ρQVτ − P )

. (9.12)

Moreover, for water used in the present experiments, viscous effects can be essentially ne-

glected, i.e. according to Eq. (9.8), P = 0, which reduces the order of the differential equation

relative to Vτ to the first one. Then, the boundary conditions for the system of Eqs. (9.11) and

(9.12) are imposed only at the nozzle exit and read,

x = 0 : Vτ = Vτ0, H = H0,
dH

dx
= tanα. (9.13)

The governing equations, Eqs. (9.11) and (9.12) subjected to the boundary conditions listed

in Eq. (9.13) are solved numerically using the Kutta–Merson method with an automatically

adjustable stepping in x.

9.4 Results and Discussion

The experimental apparatus described in Sec. (9.2) performs best with water as a working

fluid. An image at the onset of the water jet used to determine the initial inclination angle and

jet diameter is shown in Fig. 50(a), and an image of the trajectory arc of the water jet used to

determine the experimental jet location is shown in Fig. 50(b).
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Figure 51. Three superimposed trajectories for the intact free water jets. The legend refers to
experiments 2 through 4 from Table VI. The experimental data are shown by symbols and

solid lines correspond to the numerical predictions. Fig. from Ref. [5].

The experimental results for the trajectories of water jets issued from the nozzle with the

cross–sectional exit area of f0 = 0.04 cm2 at the inclination angles of α = 19.00◦, 38.73◦, and

58.28◦ are shown in Fig. 51. The experimental results for the nozzle with the larger cross–

sectional area, f0 = 0.13 cm2, at the initial inclination angles of α = 22.97◦, 41.86◦, and

58.00◦, are shown in Fig. 52. In the numerical simulations of the problem, Eqs. (9.11)–(9.13),

the input velocities used were within the standard deviation of the experimentally measured

values. The dependence for the friction coefficient was chosen as Cfd = γRe−βd . The best

fit of the predicted trajectories with the experimental data for all the experiments shown in
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Figure 52. Three superimposed trajectories for the intact free water jets. The legend refers to
experiments 6 through 8 from Table VI. The experimental data are shown by symbols and

solid lines correspond to the numerical predictions. Fig. from Ref. [5].

Figs. 51, 52, and 53 was achieved with γ = 5.0 and β = 1/2 ± 0.05, which means that the

dependence Cfd = 5Re
−1/2 ± 0.05
d was established and it was uniformly valid for all experiments.

The results for f0 = 0.04 cm2 and 0.13 cm2 with the corresponding initial angles of inclina-

tion of α = 2.00◦ and −4.14◦, respectively, as well as for the low–velocity jet with f0 = 0.13 cm2

and α = 0.00◦ are shown in Fig. 53. Here, again, one finds the agreement of the predictions

with the experimental data to be excellent when Cfd = 5Re
−1/2 ± 0.05
d is used. Note that in

Figs. 51–53, the experimental data are given for only the intact parts of the jets.

The accurate prediction of all jet trajectories with the uniformly valid friction coefficient

Cfd = 5Re
−1/2 ± 0.05
d allows one to use the numerical simulations to find the optimal inclination
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Figure 53. Three superimposed trajectories for the intact free water jets. The legend refers to
experiments 1, 5, and 9 from Table VI. The experimental data are shown by symbols and

solid lines correspond to the numerical predictions. Fig. from Ref. [5].

angle for reaching the farthest distance. Figure 54 shows the corresponding results, which were

obtained by varying only the initial inclination angle with the other parameters being fixed

for two different jet Reynolds numbers corresponding to the experimentally studied range.

Figure 54 reveals the optimal inclination angle of α = 35◦. This prediction is within the

α = 30 − 40◦ range of Ref. [104] and is in agreement with the experimental data of Ref. [102]

(α = 35◦). Note also that the optimum angle is essentially the same as for the large scale

two–phase sprinkler jets as shown by Ref. [70] where they found α = 36◦.
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Figure 54. Jet distance versus the initial inclination angle. The horizontal axis χ is the jet
distance rendered dimensionless by the maximum value corresponding to α = 35◦. The

friction coefficient was Cfd = 5Re
−1/2 ± 0.05
d . Fig. from Ref. [5].

9.5 Conclusion

Experiments conducted in this work with water jets combined with the predictions of the

quasi–one–dimensional theory developed here revealed that the friction factor Cfd for the intact

curved free liquid jets moving in air is given by the following dependence on the Reynolds

number, Red, based on the jet velocity, diameter, and air viscosity: Cfd = 5Re
−1/2 ± 0.05
d (in

the 621 ≤ Red ≤ 1289 range). This dependence for the friction coefficient reveals the optimal

inclination angle corresponding to the farthest reaching jet, α = 35◦, which is in agreement

with previous experimental results. It should be emphasized that the established dependence

Cfd = Cfd (Red) is radically different from those established for melt spinning, where tiny
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filaments (of about 100 µm in diameter) move with velocity of the order of 1 km/min. Note

that the present result Cfd = 5Re
−1/2 ± 0.05
d corresponds to jets of about 0.32 cm in diameter

moving in air with velocities of about 4 m/s, and is applicable to jets originating from decorative

fountains, smaller sprinklers, as well as blood jets originating from knives or other cutting

instruments used as a murder weapon, which is of interest in forensic applications.



CHAPTER 10

CONCLUSION

In the present work, the application of fluid mechanics to issues in forensic science were

demonstrated. First, various physical properties of blood were quantified. The rheological

behavior in simple shear flow was explored, and it was found that blood follows a power–law

shear thinning behavior when in shear flow. Ramifications of the elongational viscosity shown to

be up to three orders of magnitude larger than shear viscosity known in literature are discussed

in the context of forensic science.

Then, the analysis of experimental evidence of the atomization of blood due to a gunshot was

considered. This was done by performing PIV and image processing analysis techniques on high–

speed videos found in literature. It was revealed that the maximum velocity of forward spattered

blood droplets can be ∼ 47 ± 5 m/s, whereas the maximum velocity of backward spattered

blood droplets is ∼ 24 ± 8 m/s. The sizes of the blood droplets spattered are approximately

the same for both backward and forward spatter situations. The spatter angles of the blood

droplet spray were also measured and it was shown that the close–to–cone semi–angles seen

for backward spatter ranges from ∼ 30 − 57◦, whereas in forward spatter it is around ∼ 30◦.

It was also seen that the muzzle gases from the chemical reaction propelling the bullet can

greatly influence the trajectories of blood droplets in backward spatter, and that a collective

aerodynamic effect exists for groups of blood droplets.
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With the knowledge gained in the characterization of blood properties and a quantitative

analysis of experimental data on the atomization of blood spatter due to a gunshot, backward

blood spatter models were developed. Ultimately, two different models for idealized bullet

shapes, one a slender cone, and the other a blunt cylinder, were created. The first model belongs

to the class of Wagner–type problems, and the second is an instantaneous impact problem,

both of which allow for the initial velocity and acceleration of the blood to be determined. The

atomization of blood is then attributed to the Rayleigh–Taylor instability which arises when a

more–dense fluid is accelerated towards a lighter one. In the considered scenario, the instability

arises because blood is accelerated towards air due to the action of the bullet impacting the

blood target. Then, the blood droplet trajectories are determined and calculated including air

entrainment due to viscous suction, gravity, air drag, and drop–drop interaction in flight. The

theoretical results were compared with experimental data for the distribution of the number of

stains, their stain area, and their impact angle, and the agreement is good. Statistics on the

two models are then explored to facilitate and extend their usage.

The problem of forward blood spatter was then investigated. From the quantitative anal-

ysis of the atomization of blood due to a gunshot with PIV, it was shown that blood droplets

traveling in the direction of bullet motion are much faster than their backward spatter coun-

terparts. The Rayleigh–Taylor instability triggers a cascade of instabilities in this case which

leads to the chaotic disintegration of the blood. Within the framework of percolation theory,

the fragmentation of the blood target is predicted and the viscoelasticity of blood is considered

because the faster initial blood droplet velocities result in a build–up of elastic stresses which
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form a “web” of blood. The motion of the resultant blood droplets is calculated as before in

the case of backward spattered blood. The model is then generalized to predict the breakup of

the blood target for any bullet shape and compared with experimental data for the distribution

of the number of stains and their respective stain areas.

Muzzle gases were shown to be very important in the case of backward spattered blood

droplets from the analysis of the high–speed videos with PIV. It was determined that a turbulent

vortex ring of propellant gases is the main component of the muzzle gases which interact with the

blood droplets and should be explored. The turbulent vortex ring is self–similar and the velocity

and vorticity fields are calculated. Passive admixture of gunpowder particles is then assumed to

be swept by the turbulent vortex ring and its self–similar concentration is determined. Then, the

equations of motion for prediction of the trajectories of blood droplets are modified to account

for the flow field of the turbulent vortex ring. The results show that there is a significant impact

on the distribution of the number of blood stains and their respective area due to a turbulent

vortex ring.

Finally, intact jets of liquid were considered. The equations of motion for the trajectory of

an intact liquid jet were derived accounting for a friction coefficient which depends upon the

size of the jet. The friction coefficient was empirically found with experimental data taken in

this work. The results prove excellent agreement and the model is applicable for intact jets of

blood as well because the role of the jet disintegration there is negligibly small.
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Appendix A

KUTTA–MERSON METHOD

The numerical scheme for solving the system of ODE’s discussed in Sec. 6.6 and 9.3 is the

Kutta–Merson method (sometimes called Runge–Kutta–Merson). The method was originally

developed by R.H. Merson in 1957 [205] and is an explicit fourth order, five step, Runge–Kutta

method. The numerical scheme is described in Ref. [206] and shown below,

yn+1 − yn =
h

6
(k1 + 4k4 + k5) ,

k1 =f (xn, yn) ,

k2 =f

(
xn +

1

3
h, yn +

1

3
hk1

)
,

k3 =

(
xn +

1

3
h, yn +

1

6
hk1 +

1

6
hk2

)
, (A.1)

k4 =

(
xn +

1

2
h, yn +

1

8
hk1 +

3

8
hk3

)
,

k5 =

(
xn + h, yn +

1

2
hk1 −

3

2
hk3 + 2hk4

)
,

where h is the step length, and n denotes the step.



195

Appendix A (Continued)

The numerical scheme of Eq. (A.1) solves the initial value problem,

y′ = f (x, y) , (A.2)

which is subject to the initial condition, y (a) = b. The local truncation error is,

Tn+1 =
h

30
(−2k1 + 9k3 − 8k4 + k5) . (A.3)
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EVALUATION OF THE FREDHOLM INTEGRAL EQUATION FOR THE

GENERALIZED CHAOTIC DISINTEGRATION OF A LIQUID

The generalized chaotic disintegration of a liquid is governed by a Fredholm integral equation

of the first kind to solve for the system of sinks and sources, q
(
ζ
)
, which form a unique

distribution for an arbitrary body as discussed in Sec. 7.4.1. Standard mathematical methods

for the solution of equations of this type such as the integral–transform or generating–function

methods described in Refs. [187,188] may not adequately solve Eq. (7.53) for all possibilities of

the projectile surface, R
(
ξ
)
. Therefore, an iterative numerical technique was developed based

off of conversations with Dr. Ilia Roisman and is described below.

The arbitrary projectiles are assumed to be semi–infinite (that is, there is no “end” to the

arbitrary bullet), therefore as ξ →∞, R = 1. The limit of the integral in Eq. (7.53) then tends

towards 2 which means that
∫ ξE
ξA
q
(
ζ
)

dζ = 1/4. Equation (7.53) then becomes,

∫ ξE

ξA

(
ξ − ζ

)[(
ξ − ζ

)2
+R

2
]1/2 q (ζ) dζ =

R
2

2
− 1

4
. (B.1)

The smoothness on the RHS of Eq. (B.1) presents issues, especially when ζ = ξ. This

problem can be mitigated by expanding the left–hand side (LHS) of Eq. (B.1) via integration
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by parts and defining Θ
(
ζ
)

=
∫ ζ
ξA
q (η) dη, where η is a dummy–variable. Then, Eq. (B.1)

becomes,

∫ ξE

ξA

Θ
(
ζ
)[(

ξ − ζ
)2

+R
2
]3/2 dζ =

1

2
− 1

4R
2

1 +

(
ξ − ξE

)[(
ξ − ξE

)2
+R

2
]1/2
 . (B.2)

At the tip of the arbitrary projectile, ξA, the value of the function Θ → 0. Therefore

an intermediate point, ξ
∗
, located between ξE and ξA can be introduced where Θ

(
ξ
)

= 0 at

ξA ≤ ξ ≤ ξ
∗
. Splitting Eq. (B.2) at ξ∗, the approximate solution in the region of ξA ≤ ξ ≤ ξ

∗

is then,

∫ ξE

ξA

1[(
ξ − ζ

)2
+R

2
]3/2 Θ

(
ζ
)

dζ ≈ f
(
ξ
)
, (B.3)

where f
(
ξ
)

can be approximated as the RHS of Eq. (B.2) because of the assumption that

the arbitrary projectile is a semi–infinite body of revolution (i.e. when f
(
ξ
)∣∣
ξE
→ ∞, then

f
(
ξ
)

= 1/2 and the distribution of the system of sinks and sources then adheres to that of a

slender body of revolution as described in Ref. [153]).

The integral of Eq. (B.3) peaks as ζ → ξ. Since the principle contribution of the integral

occurs on such a short duration of ξ, the integral bounds can be extended to ± ∞ and then

Θ
(
ζ
)
≈ Θ

(
ξ
)
. Therefore, Eq. (B.3) can be solved for Θ

(
ξ
)

as,

Θ
(
ξ
)
≈ f

(
ξ
) R (ξ)2

2
. (B.4)
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To solve for the unknown ξ
∗
, the axial velocity component of Eq. (7.54) is used as,

vξ = ξ̇

∫ ξE

ξA

(
ξ − ζ

)[(
ξ − ζ

)2
+R

2
]3/2 q (ζ) dζ + 1

 eξ. (B.5)

Since at the projectile tip vξ = 0, and the system of sinks and sources exists when ξ ≥ ξ
∗

and ξA < ξ
∗
, then Eq. (B.5) becomes,

0 = −
∫ ξE

ξ
∗

(
ξA − ζ

)−2
q
(
ζ
)

dζ + 1. (B.6)

Integrating Eq. (B.6) by parts and noting that Θ
(
ζ
)
≈ Θ

(
ξ
)
, ξ
∗

can be solved for with the

following equation,

2

∫ ξE

ξ
∗

Θ
(
ζ
)(

ξA − ζ
)3 dζ + 1 =

1

4
(
ξA − ξE

)2 . (B.7)

The numerical scheme to solve Eq. (7.53) is now complete. In summary, this iterative

algorithm starts by finding the approximate value of Θ for all ξ from Eq. (B.4). Then, ξ
∗

can

be determined by guessing a value in Eq. (B.7) which results in an approximate value for the

RHS of Eq. (B.7) which can be compared to the “true” RHS,

f
(
ξ
)

=
1

2
− 1

4R
2

1 +

(
ξ − ξE

)[(
ξ − ξE

)2
+R

2
]1/2
− ∫ ξE

ξ
∗

Θ
(
ζ
)[(

ξ − ζ
)2

+R
2
]3/2 dζ. (B.8)
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The next iterative step of Θ
(
ξ
)

can then be solved for using,

Θj+1
(
ξ
)

= Θj
(
ξ
)

+ f
(
ξ
) R2

2
, (B.9)

which comes from Eq. (B.4), and j is the iteration step. The scheme is solved such that the

difference between the approximate RHS and true RHS is minimized. Once an acceptable

margin of error is met, q
(
ζ
)

can now be found through the definition of Θ.
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DETAILS ABOUT THE SELF–SIMILAR SOLUTION OF MUZZLE

GASES

(This appendix has been submitted for publication in Ref. [4].)

In order to find the solution of Eqs. (8.9) and (8.13), new variables are introduced as,

ξ =
1

M
(z − 4K) ; η =

1

M
r, (C.1)

where K = r−1
m ∂ψ/∂r

∣∣
r=rm
z=zm

and M =
√

8λ0.

Also, a new function ω is introduced as,

Ω = exp

(
−ζ

2 + η2

2

)
ω (ζ, η) . (C.2)

Then, Eq. (8.13) takes the form,

1

η

∂

∂η

(
η
∂ω

∂η

)
+
∂2ω

∂ξ2
+

(
5− ξ2 − η2 − 1

η2

)
ω = 0. (C.3)

Equation (C.3) is solved using variable separation, ω (ξ, η) = ω1 (ξ)ω2 (η), which yields the

following,

d2ω1

dξ2
− ξ2ω1 = − (E + 5)ω1, (C.4)
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1

η

d

dη

(
η

dω2

dη

)
− η2ω2 −

ω2

η2
= Eω2, (C.5)

where E is a separation constant.

The integral invariant, i.e. the vortex impulse of Eq. (8.12), becomes,

∫ ∞
−∞

exp

(
−ξ

2

2

)
ω1dξ

∫ ∞
0

exp

(
−η

2

2

)
η2ω2dη =

1

π (8λ0)2 . (C.6)

Equation (C.4) is known in the theory of one–dimensional quantum oscillators and its so-

lution is readily available [187,201]. The only solution which can satisfy Eq. (C.6) is,

ω1 (ξ) = F1
exp

(
−ξ2/2

)
Hk (ξ)

π1/4 (2kk!)
1/2

, (C.7)

where F1 is a constant, Hk are the Hermite polynomials, and E+5 = 2k+1, with k = 0, 1, 2, . . ..

Equation (C.5) is also known in the theory of cylindrical quantum oscillators [202], and its

solution satisfying Eq. (C.6) exists only when −E = 2 (2n+ 2), with n = 0, 1, 2, . . .. Then, it is

seen that the only appropriate choice would be k = n = 0, which yields E = −4. Equation (C.7)

then becomes,

ω1 (ξ) = F2exp
(
−ξ2/2

)
, (C.8)
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whereas the solution of Eq. (C.5) has the form,

ω2 (η) = F3ηexp
(
−η2/2

)
, (C.9)

where F2 and F3 are constant.

From Eqs. (C.2), (C.8), and (C.9) one finds that,

Ω (ξ, η) = Iηexp
[
−
(
ξ2 + η2

)]
, (C.10)

where I is a constant and is found using Eq. (C.6) as,

I =
1

32π3/2λ2
0

. (C.11)

Accordingly, Eqs. (C.1), (C.10), and (C.11) yield Eq. (8.15) where K = zm/4.

To find the stream function corresponding to the vorticity of Eq. (C.10), introduce a new

function Π,

ψ = η2Π
(
ξ2 + η2

)
. (C.12)

Then, the substitution of Eqs. (C.10)–(C.12) into Eq. (8.9) results in,

4
d

d (s2)

[
s2 dΠ

d (s2)

]
+ 6

dΠ

d (s2)
= −GM3exp

(
−s2

)
, (C.13)

where s2 = ξ2 + η2, and G = 1/
(
32π3/2λ2

0

)
.
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Introduce Π1 (s) = Π
(
s2
)
, which transforms Eq. (C.13) to the following,

1

2s

[
2

d

ds

(
s

dΠ1

ds

)
+ 6

dΠ1

ds

]
= −GM3exp

(
−s2

)
, (C.14)

and has the appropriate solution in the form,

Π1 (s) = K1
erf (s)− (2s/

√
π) exp

(
−s2

)
s3

, (C.15)

where,

K1 =

√
πGM3

8
. (C.16)

Substituting Eqs. (C.1), (C.15), and (C.16) into Eq. (C.12), one obtains Eq. (8.14). Equa-

tions (8.15) and (8.16) show that the maximum vorticity corresponds to z = zm, which

yields maximum to the function rexp
[
−r2/ (8λ0)

]
. This corresponding value of r is given

by Eq. (8.17). Also, using the fact that K = zm/4 = r−1
m ∂ψ/∂r

∣∣
r=rm
z=zm

, substituting Eqs. (8.14),

(8.16), and (8.17), one obtains Eq. (8.18).
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DETAILS ABOUT THE DEFLECTION OF BLOOD DROPLETS IN

BACKWARD SPATTER BY THE TURBULENT VORTEX RING

(Portions of this appendix have been submitted for publication in Ref. [4].)

Projecting the momentum balance of blood droplets in a blob with air entrainment as shown

in Eq. (8.40) onto the X –Y –H axes, one obtains,

d2X

dT 2
= −χdX

dT

(
1− Ui

Λ1

)
(Λ1 − Ui) , (D.1)

d2Y

dT 2
= −χdY

dT

(
1− Ui

Λ1

)
(Λ1 − Ui) , (D.2)

d2H

dT 2
= −χdH

dT

(
1− Ui

Λ1

)
(Λ1 − Ui)− g, (D.3)

where,

χ =
1

8
πl2∗,iCD,i

ni
Mi

ρa, (D.4)

Λ1 =

√(
dX

dT

)2

+

(
dY

dT

)2

+

(
dH

dT

)2

. (D.5)
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Equations (D.1)–(D.3) are subjected to the following initial conditions,

T = 0 :
X = 0, Y = 0, H = H0

dX
dT = ui,0

√
cos2β − sin2β

tan2Φ
, dY

dT = ui,0
sinβ
tanφ ,

dH
dT = ui,0sinβ

. (D.6)

The initial conditions listed in Eq. (D.6) utilize the initial blood droplet velocity calculated

by the Rayleigh–Taylor instability, ui,0, and the angles β, and φ are the initial inclination

angle of the trajectory, β = arcsin [sin (∆θ) sinφ], and the polar angle in the circular cross–

section of the bullet, respectively. Here, ∆θ is the angle at which the blood droplet trajectories

splashed relative to the bullet axis, as described in Ch. 6. Note that when Φ = 0, π, 2π, . . .,

then dY/dT = ui,0sin (∆θ).

The velocity of the entrained air can be determined through a momentum balance of air

projected onto the tangent of the trajectory as,

d

dT
(ρaV Ui) =

(
N∑
i=1

ni

)
1

8
πl2∗,iCD,iρa× (D.7)[

1

Λ1

(
dX

dT

)2

+
1

Λ1

(
dY

dT

)2

+
1

Λ1

(
dH

dT

)2

− Ui

]
×∣∣∣∣dXdT +

dY

dT
+

dH

dT
− Ui

∣∣∣∣
where the volume of the entrained air,

V (T ) = 0.33Vblood

(
ui,0|max

V
1/3

blood

ξ (T )

ui (T )

)3/2

, (D.8)
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and the arc length of the trajectory denoted as ξ is found from the following equation,

dξ

dT
= Λ1. (D.9)

Equation (D.7) is subjected to the following initial conditions,

T = 0 : Ui = 0, V = 0, ξ = 0. (D.10)

Equation (D.7) is solved directly for the product V Ui, and the equation for the volume of

air in the blood droplet cloud, V in Eq. (D.8), is based off of the integral invariant of mass for

an axisymmetric air jet and Prandtl’s turbulent mixing length theory (cf. Ch. 6). The volume

of blood splashed is Vblood, ui,0|max is the maximum initial blood droplet velocity calculated by

the Rayleigh–Taylor instability, and the arc length of the trajectory is denoted as ξ.

Rendering Eqs. (D.1)–(D.10) dimensionless with the maximum initial blood droplet velocity

ui,0|max for ui, and Ui, the volume of blood V
1/3

blood for X, Y, H, H0, ξ, and l∗,i, and V
1/3

blood/ ui,0|max

for T, results in the following set of governing equations for the trajectory of a blood droplet

cloud,

d2X

dT
2 = −χdX

dT

(
1− U i

Λ1

)(
Λ1 − U i

)
, (D.11)

d2Y

dT
2 = −χdY

dT

(
1− U i

Λ1

)(
Λ1 − U i

)
, (D.12)
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d2H

dT
2 = −χdH

dT

(
1− U i

Λ1

)(
Λ1 − U i

)
− 1

Fr2
, (D.13)

dU iV

dT
=

1

8
πl

2
∗,iCD,i

(
N∑
i=1

ni

)
× (D.14)[

1

Λ1

(
dX

dT

)2

+
1

Λ1

(
dY

dT

)2

+
1

Λ1

(
dH

dT

)2

− U i

]
×∣∣∣∣dXdT +

dY

dT
+

dH

dT
− U i

∣∣∣∣
where,

χ =
1

8
πl

2
∗,iCD,ini

ρa

ρb
, (D.15)

Λ1 =

√(
dX

dT

)2

+

(
dY

dT

)2

+

(
dH

dT

)2

, (D.16)

V
(
T
)

= 0.33

[
ξ
(
T
)

Λ1

(
T
)]3/2

, (D.17)

dξ

dT
= Λ1, (D.18)
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T = 0 :

X = 0, Y = 0, H = H0

dX
dT

= ui,0

√
cos2β − sin2β

tan2Φ
, dY

dT
= ui,0

sinβ
tanφ ,

dH
dT

= ui,0sinβ

V = 0, U i = 0, ξ = 0

, (D.19)

where overbar denotes a dimensionless parameter, ρb is the density of blood, and Fr is the

Froude number, Fr =

√
u2
i,0

∣∣∣
max

/
(
gV

1/3
blood

)
. Equation (D.14) expresses the fact that the

fastest moving blood droplets dominate the air entrainment and the terms dX/dT , dY /dT ,

and dH/dT in that equation represent the droplets “leading” the cloud.

Similarly, projecting Eq. (8.43) describing the interaction of the blood droplets with the

vortex ring onto the X –Y –H axes read,

d2X

dT 2
= −χ

(
dX

dT
+ vz

)√(
dX

dT
+ vz

)2

+

(
dY

dT
+
vr
Λ2

dY

dT

)2

+

(
dH

dT
+
vr
Λ2

dH

dT

)2

, (D.20)

d2Y

dT 2
= −χdY

dT

(
1 +

vr
Λ2

)√(
dX

dT
+ vz

)2

+

(
dY

dT
+
vr
Λ2

dY

dT

)2

+

(
dH

dT
+
vr
Λ2

dH

dT

)2

, (D.21)

d2H

dT 2
= −χdH

dT

(
1 +

vr
Λ2

)√(
dX

dT
+ vz

)2

+

(
dY

dT
+
vr
Λ2

dY

dT

)2

+

(
dH

dT
+
vr
Λ2

dH

dT

)2

− g,

(D.22)
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where,

Λ2 =

√(
dY

dT

)2

+

(
dH

dT

)2

. (D.23)

The six initial conditions for Eqs. (D.20)–(D.23) are the three final spatial positions and

velocities when the entrained air surrounding the blood drop cloud is shed, i.e. when Eqs. (D.1)–

(D.6) are not applicable anymore because of a turbulent vortex ring interaction and Eqs. (D.20)–

(D.23) then describe the motion.

Rendering Eqs. (D.20)–(D.23) dimensionless with the same scales as for Eqs. (D.1)–(D.6),

as well as using ui,0|max for vr and vz results in,

d2X

dT
2 = −χ

(
dX

dT
+ vz

)√(
dX

dT
+ vz

)2

+

(
dY

dT
+
vr

Λ2

dY

dT

)2

+

(
dH

dT
+
vr

Λ2

dH

dT

)2

, (D.24)

d2Y

dT
2 = −χdY

dT

(
1 +

vr

Λ2

)√(
dX

dT
+ vz

)2

+

(
dY

dT
+
vr

Λ2

dY

dT

)2

+

(
dH

dT
+
vr

Λ2

dH

dT

)2

, (D.25)

d2H

dT
2 = −χdH

dT

(
1 +

vr

Λ2

)√(
dX

dT
+ vz

)2

+

(
dY

dT
+
vr

Λ2
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where,

Λ2 =

√(
dY

dT

)2

+

(
dH

dT

)2

. (D.27)

As usual, Eqs. (D.11)–(D.13) and (D.24)–(D.26) are supplemented with the kinematic

equations relating coordinate variation with velocity to bring the system of second order ODE’s

down to first order ODE’s.
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NON–NEWTONIAN BLOOD JET MODEL EXTENSION

To extend the theory of an intact jet of liquid to accommodate a shear–thinning fluid such

as blood, Eq. (9.4) for the longitudinal force acting in the jet cross section, P, must be changed

to the following, according to Ref. [118],

P =

[
3
n+1
2 K

1

λ

∂Vτ
∂x
− k Vn|n sign

(
1

λ

∂Vτ
∂x
− kVn

)
− σG

]
f + Pσ. (E.1)

where n and K are the flow behavior, and flow consistency indices, respectively.

Through the simplifications described in Sec. 9.3, namely, for thick, steady–state jets,

Eq. (E.1) becomes,

P = 3
n+1
2 K

1

λ

∣∣∣∣dVτdx

∣∣∣∣n sign

(
dVτ
dx

)
f, (E.2)

which replaces Eq. (9.8).

The rest of the analysis still holds, and therefore Eqs. (9.11) and (9.12) are still valid and P

is simply replaced by Eq. (E.2) as opposed to P = 0. The governing equations can be rendered
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non–dimensional with H0 for x and H, the initial velocity V0 = Q/f0 for Vτ , and (Kf0V
n

0 ) /Hn
0

for P. This results in a dimensionless group, K, defined as,

K =
Kf2−n

0

ρQ2−nHn
0

. (E.3)

which can help determine if Eq. (E.2) is needed or not for intact jets of blood based off of an

order of magnitude estimate. Using experimental ranges where Q ∼ 102 cm3/s, ρ ∼ 1 g/cm3,

f0 ∼ 10−1 cm2, and H0 ∼ 10 cm, then K ∼ 10−5. Therefore, an intact jet of blood for the flow

range considered is practically inviscid and Eqs. (9.11) and (9.12) are still valid as evaluated in

Ch. 9.
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