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SUMMARY 

Hepatitis C Virus (HCV) chronically infects 170 million people around the globe, leading 

to steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite this enormous public 

health burden, current treatments are too costly and no preventative therapy or vaccine exists. 

In order to facilitate the development of effective and affordable HCV therapeutics, we have 

utilized mathematical modeling as an analytical tool to advance our understanding of the 

dynamics of HCV infection and treatment response.   

In Chapter Three, we used our published HCV replicon mathematical model to analyze 

HCV RNA synthesis and degradation in the context of antiviral treatment. Using the model to 

analyze HCV replicon treatment response data allowed us to estimate the intrinsic rate of RNA 

degradation as well as the efficacies and mechanisms of action of HCV antivirals.  

In Chapter Four, we describe the creation of the first data-driven mathematical model of 

the HCV cell culture (HCVcc) infection system. Through the process of testing the model against 

experimental HCV inhibition data, we identified a gap in our knowledge about HCV steady-state 

dynamics. Specifically, this initial model revealed that our empirically measured half-life of 

extracellular HCV particles was not fast enough to account for the inhibition kinetics observed 

empirically during DAA treatment, leading us to investigate the mechanism(s) of extracellular 

HCV clearance through in vitro and in vivo experimentation. Based on these data, we revised our 

HCVcc mathematical model to include non-productive entry of not only infectious, but also non-

infectious HCV particles into cells.  

In Chapter Five and Appendix A Manuscript 1, we used mathematical modeling to 
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investigate the MOA of the HCV NS5a inhibitor daclatasvir (DCV). First, we found that a multiscale 

model was needed to explain DCV inhibition kinetics in patients. Although only serum HCV RNA 

levels were measured, this model was able to make predictions about intracellular mechanisms 

of DCV –that it blocked both HCV RNA synthesis and assembly/secretion.  

We confirmed this hypothesis via in vitro experimentation, however, our in vitro HCVcc 

mathematical model could not simulate non-parallel reduction kinetics of extracellular infectious 

versus non-infectious HCV particles. We incorporated two alternative strategies that could allow 

the model to simulate non-parallel extracellular viral kinetics and tested these two hypotheses 

by fitting these alternative models to data and found that the most likely hypothesis was that 

DCV was altering specific infectivity. While this prediction needs to be tested experimentally, we 

have already utilized this concept to create new in vivo mathematical models that can successfully 

simulate the new, DAA-associated phenomenon of patients testing positive for HCV RNA at the 

conclusion of treatment, but going on to achieving sustained virologic response (SVR) or cure 

(Appendix B). 

In Chapter Six, we give an overview of the cyclical process of experimentation and 

mathematical modeling, illustrated throughout this thesis, and how it drives experimental design 

and hypothesis generation. We also discuss the key findings our combined 

experimental/theoretical modeling approach has revealed and the future directions we feel would 

continue to advance the HCV field. 
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1. INTRODUCTION 

1.1 Importance of Studying Hepatitis C Virus  

Hepatitis C virus (HCV) treatment options have advanced significantly during the course 

of this thesis work, however, currently there are approximately 170 million people chronically 

infected with HCV and our understanding of infection dynamics and treatment response is still 

limited. Of the patients acutely infected with HCV, only 20% experience symptoms such as fever, 

fatigue, vomiting, or jaundice, however, only ~20% will clear the infection naturally depending to 

varying extents on the degree of liver health, ethnicity, gender, and genetic composition of the 

host1,2. Unfortunately, the majority of those infected fail to clear the virus and their infections 

become chronic, gradually leading to steatosis, fibrosis, cirrhosis, non-alcoholic fatty liver 

disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC)3.  

This chronic liver damage results in 700,000 deaths per year around the world with total costs 

related to HCV projected to increase to $16.16 billion per year by 20194,5.  In 2015 in the United 

States, each patient with HCC incurred an average of $6,279 in medical bills per month of 

observation. For patients requiring liver transplants, that average cost increased to $7,492 per 

month.6 These statistics do not mention the cost to the economy when the employee must take 

leaves of absence, to the patient who loses their quality of life, or to the family that often loses a 

relative. Because of this global health burden, HCV is a focus of intense scientific research with 

the goal of discovering better methods of treating and preventing HCV infection. 
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1.2 Hepatitis C Virus Epidemiology   

HCV is transmitted by blood. Before HCV was isolated and identified, most infections 

occurred via contaminated blood products because it was not possible to screen for HCV7. Today 

HCV is spread most frequently through injected drug use. Infected mothers can also pass the 

virus on to their children, which is the case for 5% of HCV-positive mothers and 19.4% of HIV-

positive, HCV-positive mothers. Though less common, it can also be transmitted by other 

breaches of the skin such as occupational exposure to blood, tattooing/body piercing, or sexual 

activity. 

Without a vaccine to protect against HCV8 and after decades of ineffective therapeutics, 

the prevalence of HCV-infected patients in a given nation typically ranges between <1% and 

>10%7, with certain populations such as prison inmates reaching 38%9.  Hence, although the 

acute infection rate has fallen since the 1980’s, approximately 2-3% of the global population are 

still chronically infected with HCV- 4 times more than are infected with human immunodeficiency 

virus (HIV). In the United States, about 2% of the population is infected with HCV, but for military 

veterans that rate is estimated at 10%. Nations with the most notably high rates of HCV-infected 

individuals include Egypt (>30%) and other African or East Asian nations.  

 To date, seven HCV genotypes have been identified, each of which exhibit distinct disease 

manifestations and treatment response characteristics. Globally, the most frequent genotype is 

HCV genotype 1, causing 83.4 million or 46.2% of infections. Because HCV genotype 1 is most 

prevalent in developed countries like the USA, most drug and vaccine development has been 
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focused on combating genotype 1, even though it only causes about half of HCV infection cases 

worldwide. The next most prevalent HCV genotype is 3 (54.3 million or 30.1% of cases). In 

combination, genotypes 2, 4, and 6 cause 22.6% of HCV infections and genotype 5 causes less 

than 1% of cases10.  

 

1.3 Hepatitis C Virus Discovery and Experimental Systems 

Historically, it took decades to isolate HCV and establish it as a cause of transfusion-

associated hepatitis. During the mid-1970’s physicians noted that there were patients with 

chronic, transfusion-associated hepatitis that were testing negative for hepatitis B virus. It was 

also apparent that this chronic hepatitis was not caused by hepatitis A virus, which was known to 

cause acute, easily-transferrable hepatitis. Because of this, the symptoms of HCV were known as 

non-A non-B hepatitis (NANBH) until the virus was isolated in 1988.11  After this, a diagnostic 

test for HCV was developed and the virus was demonstrated to be the cause of the majority of 

non-A, non-B Hepatitis in patients that had received blood transfusions.  

Initially the only available experimental model for HCV research was chimpanzees. After 

the virus was isolated in 1988, it would take another decade for researchers to establish an in 

vitro HCV replication system.12  Cells stably supporting autonomous replication of HCV were 

made by transfecting modified HCV “replicon” RNA – in which the viral structural genes were 

replaced by an antibiotic selection marker (Fig. 1A) - into hepatoma cells. Replicons are useful 

for studying the replication of viral RNA and the function of the viral protease and polymerase.  
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However, it was not until 2005 that three laboratories, including my thesis laboratory, 

would discover that a particular clinical isolate of HCV could productively infect Huh7 hepatoma 

cells in vitro (complete HCV genome shown in Fig. 1B).13–15  This advance has allowed researchers 

to investigate the full viral lifecycle at the molecular level and develop strategies for targeting the 

virus at each of these steps. While we still await an affordable small animal model to study the 

liver pathology caused by chronic HCV infections, the new in vitro infection system has been 

fundamental in the understanding of HCV infection and the development of effective HCV 

antivirals.  

Developing a small animal infection model has been a goal since the early days of HCV 

research, but in light of the NIH’s mandate on chimpanzee research it is even more urgent.  

Currently, immunocompromised mouse models with humanized livers exist for studying HCV 

infection, but researchers are still striving for a model that will allow a robust HCV infection in 

the context of an intact immune system.16  As another way to address that goal, preliminary work 

has been done to develop a macaque model8 and there are also a few recently identified viruses 

closely related to HCV that can infect small primates17 or non-primates.16,18,19 

 

1.4 Hepatitis C Virus Molecular Virology 

HCV is an RNA virus, classified in the hepacivirus genus of the flaviviridae family. HCV 

virions are 55-65 nm in diameter14 and consist of positive-strand RNA protected by an 

icosahedral capsid made of multiple copies of a viral protein called Core20, which is surrounded 

by an envelope derived from the host cell. The viral envelope is decorated with viral glycoproteins 
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E1 and E221 and associates with host apolipoproteins22, a combination that allows it to enter 

human and chimpanzee hepatocytes. As such, HCV particles have a broad density profile (1.03 – 

1.18 g/mL), with most infectious particles being in the lower buoyant density range.23  

 

 

 

 

 

 
Figure 1. Hepatitis C Virus Constructs.  (A) Schematic of HCV subgenomic replicon. (B) Schematic 
of HCV genome as well as cleavage sites and known functions of proteins. Structural proteins are 
highlighted green and non-structural proteins are highlighted blue. (Modified from 24) 
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Figure 2. Schematic of the Hepatitis C Virus Lifecycle. 
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Unlike many viruses that require only one receptor to enter a cell, HCV uses multiple 

cellular entry factors to bind and enter hepatocytes in a series of events that are still not 

completely understood (Fig. 2, #1-2). This long list of entry factors includes cluster of 

differentiation 81 (CD81)25,26, low-density lipoprotein receptor (LDLR)27,28, scavenger receptor 

class B member 1 (SR-B1)29,30, claudin-1 (CLDN1)31, occludin (OCLN)32, Niemann-Pick C1-like 1 

(NPC1L1)33, transferrin receptor protein 1 (TFR1)34, and epidermal growth factor receptor 

(EGFR)35. After entering the cell, HCV’s 9600 nucleotide positive-sense RNA genome (Fig. 1B) is 

released into the cytosol (Fig. 2, #3). It has no cap to initiate translation; instead, the internal 

ribosome entry site (IRES) in HCV’s 5’ un-translated region guides the cellular 40S ribosomal 

subunit to the correct position to translate a polyprotein with about 3,000 amino acids.36 During 

translation, this polyprotein is cleaved by a combination of viral and host proteases into at least 

ten functional proteins (Fig. 1B; Fig. 2, #4).37  

At the N-terminus of this polyprotein are the structural proteins needed to form the viral 

particle: the capsid and the envelope glycoproteins E1 and E2 (Fig. 1B, green). Moving toward the 

C-terminus, next is a hydrophobic peptide called p7, which is an ion channel that is important 

for particle infectivity (Fig. 1B, green) and then the non-structural proteins (NS) 2-5 (Fig. 1B, 

blue).38  NS2 is not required for the replication of HCV RNA in the replicon system12, but is 

required for particle assembly; furthermore, it is a proteinase that cleaves its own C-terminus 

from the viral polyprotein.39–41 NS3 is a helicase/NTPase and serine protease, which complexes 

with NS4A to cleave HCV’s polyprotein at four sites (Fig. 1B). NS3/4A also cleaves the host cell’s 

mitochondrial antiviral signaling (MAVS) protein to block the retinoic acid-inducible gene 1 (RIG-
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I) pathway to interrupt innate immune signaling42. NS4B is a co-factor that can integrate into 

membranes and causes the morphology of the endoplasmic reticulum to change into a conducive 

environment for the production of HCV RNA43 This modified organelle is referred to as the 

membranous web.  

NS5A is a phosphoprotein with no known enzymatic activity that is involved in both RNA 

replication and virion assembly, as demonstrated by mutation studies44. The protein has a site 

for binding HCV RNA, and microscopic analyses during normal infection have shown that it is 

located both at the membranous web replication complex and at the lipid droplet sites of virion 

assembly.45–49  The protein relies on cellular kinases to be phosphorylated and is observed in two 

major forms, hyper-phosphorylated (p58) and basal-phosphorylated (p56). It can activate the 

viral polymerase regardless of its phosphorylation status, possibly through direct interaction or 

by binding RNA. It also recruits VAPA and VAPB to the membranous web, which in turn interacts 

with oxysterol-binding protein (OSBP) to recruit cholesterol to the membranous web, promoting 

both RNA replication and virion production.50  In its hyper-phosphorylated form, NS5A appears 

more likely to co-localize with lipid droplets and HCV core protein, facilitating the assembly step 

of the viral lifecycle (Fig. 1, #8).51 NS5A is also important for subverting Interferon signaling.52  

During my thesis work, DAA’s that target NS5A appeared to reduce patient serum HCV RNA very 

rapidly during clinical trials53, so NS5A inhibitors became a focus of my research. Since then, 

NS5A inhibitors have since been incorporated into what have become the most effective FDA-

approved HCV antivirals.  
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Finally, the protein closest to the C-terminus of the polyprotein is NS5B, the viral RNA-

dependent RNA polymerase (RdRp) responsible for replicating HCV RNA (Fig. 1B, blue). This 

enzyme has a catalytic site that can bind two nucleotides to initiate HCV RNA synthesis. A 

modified nucleoside known as guanosine triphosphate (GTP) also binds to NS5B at an allosteric 

site, which changes the conformation of NS5B to make space for dsRNA. At the 3’ end of the 

template higher concentrations of GTP are required for RNA elongation.50  

As the necessary viral proteins accumulate in the infected cell, the virus proceeds to 

modify the membrane of the endoplasmic reticulum into an environment known as the 

membranous web (Fig. 2, #5). Many viral and cellular factors work together, but the key viral 

factors appear to be NS4B and NS5A. In order to create the membranous web, HCV also increases 

lipid production and membrane biosynthesis through both the sterol regulatory element-binding 

protein (SREBP) and DEAD box polypeptide 3 X-linked (DDX3X) pathways. Cells infected with HCV 

have higher levels of lipogenic transcripts like fatty acid synthase and HMG-CoA, as well as high 

levels of cleaved, activated SREBPs. The membranous web minimizes the distance between factors 

required for HCV RNA replication and subsequent steps of the viral lifecycle, and it is the site of 

HCV RNA replication; the web may also function to block innate immune recognition of viral 

RNA.54 Within the membranous web, viral replicase complexes (comprising at least NS3-NS5B) 

create a negative-strand RNA from the initial positive-strand and then many positive-strand 

copies from each negative-strand template. Positive-strands outnumber negative-strands 10:1. 

Positive-strands can be translated into polyproteins, packaged into virion particles, or used as 

templates to create more negative-strands (Fig. 2, #5).50  
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After genome synthesis packaging of the viral RNA occurs at lipid droplets (LDs) in the 

cytosol (Fig. 2, #5-6). Cellular enzymes that affect LD homeostasis such as cytosolic 

phospholipase A2 and diacylglycerol acyltransferase-1 (DGAT-1) recruit Core protein to LDs. 

Because hyperphosphorylated NS5A is recruited to LD, can bind to HCV RNA, and is necessary for 

both replication and assembly, it has been suggested that NS5a may function to traffic the HCV 

genome from the site of replication to assembly at LDs. NS5A also binds to DGAT-1, which 

encourages interaction between NS5A and Core, possibly causing interaction between Core and 

HCV RNA if it is bound to NS5A.  

The viral capsid is then secreted non-cytolytically via the host’s ER/Golgi secretory 

pathway, during which the viral glycoproteins E1 and E2 are modified (Fig. 2, #7-8).55 The virus 

seems to specifically utilize the vLDL secretion pathway56, during which it acquires a membrane 

from the host cell in which its viral glycoproteins are embedded and it associates with host-

derived apolipoproteins, especially ApoE (which can interact with NS5A and HCV glycoproteins E1 

and E2), A1, C1, and B. Then, ESCRT machinery appears to be necessary for HCV egress in an 

indirect manner (Fig. 2, #8). After a virion is released from the cell, it is free to find a new cell to 

infect.57  

Alternatively, the virus can spread cell-cell without undergoing egress, avoiding antibody 

neutralization. The mechanism is not completely understood, so this process is the focus of 

several ongoing studies, including one of the projects in our lab. A better understanding of this 

process could be applied during treatment of chronic patients or in instances when a patient’s 
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naïve liver is at risk for infection, for instance after a liver transplant or in the case of uninfected 

individuals that may have been exposed to HCV.58,59  

 

1.5 History of Hepatitis C Virus Treatment  

There has been a long evolution of drugs developed for the treatment of HCV. For many 

years, the only option for patients was intravenous treatments of the immunostimulatory 

molecule Interferon-alpha (IFN). Beginning in 1991, interferon alpha was available for HCV 

treatment. Interferon-alpha treatments had to be administered intravenously by a medical staff 

in a hospital setting. Patients had to come in for daily appointments because the low stability 

interferon alpha molecule levels could not be kept high enough to treat the HCV. SVR rates for 

each of these treatments were a mere 9% for patients with HCV genotype 1 and 30% for HCV 

genotype 2 or 3, but also varied depending on the gender, genetics, HCV genotype, ethnicity, 

insulin resistance, HIV infection status, and relative degree of liver health of the patient.60  

One year later in 1998, a combination of Intron-A with Ribavirin (RBV) became available 

and increased the SVR rate of genotype 1 to 29% and the rates of genotype 2 and 3 to 62%. In 

2001 interferon alpha 2b was pegylated (marketed as Peg-Intron) to increase its stability in the 

body and reduced the intravenous appointments to three times per week, which increased patient 

compliance by making the treatment more convenient. In 2002, interferon alpha 2a was 

successfully pegylated (marketed as Pegasys); in combination with Ribavirin in 2003 it increased 

SVR rates in clinical trials up to 51% for genotype 1, 82% for genotypes 2 and 3, and 70% for 
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genotypes 4-6, and this was still the standard of care in 2010 when the experimental work for 

this thesis began. 

In 2011 the FDA approved the first drugs that could target HCV proteins directly. These 

DAA’s significantly improved SVR rates in patients.61,62 However, the first two DAA’s to be 

approved, which targeted the viral protease NS3/4a, had to be administered in conjunction with 

pegylated interferon and ribavirin. During clinical trials, these drugs increased SVR rates from 

51% to about 80% for genotype 1, when combined with pegylated interferon alpha and ribavirin.   

In late 2013, an HCV polymerase inhibitor called Sovaldi (Sofosbuvir) was approved for use in 

patients and had such high SVR rates in the absence of IFN during clinical trials that it was 

approved for use with ribavirin in the absence of IFN. This meant that patients would not be 

subjected to IFN’s serious side effects and would not have to visit the hospital to receive 

injections, increasing patient compliance rates.   In 2015 another major improvement in treatment 

was approved for use in patients- the NS5A inhibitor Daklinza (daclatasvir), a drug that reduced 

viral loads faster than any previous drug during clinical trials. Over time, additional protease, 

polymerase, and NS5a inhibitors have been approved and there are currently numerous 

combination therapies available from different companies63. The SVR rates for these new all-oral 

DAA combination therapies are generally unaffected by a patient’s gender, genetics, ethnicity, or 

metabolic/liver health, which is a great improvement over the IFN-based therapies. The amount 

of time required for treatment is also much shorter, with most therapies taking only 12 weeks to 

achieve SVR in the patient, versus the 6-12 months that previous IFN-based treatments 

required.64  



13 
 

With HCV treatment improving so much in the past 5 years, almost every patient who can 

afford the medication can clear the virus and in theory screenings can catch HCV-positive patients 

before the virus causes advanced liver disease. However, there are remaining challenges.  First, 

not every patient can afford the medication. Prices are coming down, but as an example, Sovaldi 

can cost as much as $84,000 for a 12-week regimen, meaning that each pill costs $1,000.  This 

makes treatment particular difficult to justify in high risk populations as treatment does not 

protect against re-infection. Finally, viral escape also remains a problem in up to 20% of patients 

depending on compliance. Thus, research is still needed to improve and decrease cost of 

treatment and design preventative treatments and/or vaccines. 

 

1.6 Mathematical Modeling of Biological Systems 

The underlying premise of this thesis is that by combining both experimental and 

modeling approaches we can achieve a more quantitative understanding of the viral lifecycle and 

develop mathematical tools to generate hypotheses and facilitate the investigations necessary to 

further our understanding of the system. Mathematical modeling consists of designing equations 

that mimic the behavior of data. Similar to the way physics equations describe the behavior of 

objects in the natural world, these equations describe biological processes in a quantitative way 

and are based on all of the major hypotheses we have about how a biological system works. When 

we compare the behavior of the equations to empirical data, we are essentially testing all of those 

hypotheses simultaneously. Because of this, discrepancies between the equations and the data 

can indicate where there are holes in our understanding. The changes that have to be made to a 
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mathematical model in order to simulate empirical data generate theoretical hypotheses which 

can then be tested experimentally, creating a repeating cycle of theoretical mathematical 

modeling and physical experimentation, each in response to the other.  

Once the model is updated to minimize the discrepancy between the empirical data and 

a mathematical simulation, the models can be used as data analysis tools. In an experiment where 

multiple factors had an effect on the output, mathematical models make it easier to rank the 

factors in terms of which were most influential on the experimental output. The models can also 

offer quantitative estimates of parameters that are difficult to isolate and measure directly in the 

context of a complex system, i.e. production and decay rates for objects that are simultaneously 

being produced and destroyed in the context of a complex system. For example, in this thesis 

when modeling the viral lifecycle, the model simulations can analyze the kinetic pattern of the 

change in viral load in response to different treatments and predict which viral lifecycle steps 

were most affected to create that pattern, what percent inhibition occurred at each step and 

estimate parameters such as viral RNA rates, which would otherwise be difficult or impossible to 

measure directly because the system is simultaneously creating and destroying HCV RNA. 

Identifying the step(s) affected is especially useful if the drug targets a viral protein that is not 

well-characterized, or if the target is not known.53,65  Likewise, being able to quantitatively 

compare the efficacies of different drugs and/or different doses of the same drug in silico 

provides a much more efficient means of predicting which drugs/drug combination are most 

effective.  
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1.7 Historical Use of Mathematical Modeling in the Clinical Setting 

In a clinical setting mathematical modeling has historically been used to quantitatively 

assess the ongoing success of a patient’s treatment in real time, throughout the regimen to 

determine what improvements could be made to the therapy protocol. Mathematical modeling 

has been employed in this way during the treatment of human immunodeficiency virus (HIV)65 

and hepatitis B virus (HBV)66,  but most prominently for HCV. In the past, when IFN-based 

therapies required extended treatment times and had low chances of success, mathematical 

modeling was used to predict whether a patient would fail treatment, allowing the physician to 

stop this uncomfortable treatment if the patient had no chance of achieving SVR. Often, 

mathematical models could predict whether treatment would fail after 6-48h of initiation67–69, 

and mathematical modeling has been used to assess the value of delivering treatment daily versus 

3x/week.66 These mathematical analyses helped clinicians maximize the success rates of HCV 

therapies and saved time, money, and frustration if it was demonstrated that the patient was not 

headed toward achieving SVR.  Mathematical modeling has also been used to estimate multiple 

in vivo parameters such as the death rate of HCV-infected cells70, HCV’s mutation rate71, and the 

occurrence rate of drug-resistant HCV mutations.72  

In contrast, mathematically modeling a patient’s response to treatment has a much 

different role now. Because current therapy regimens have higher success rates, monitoring HCV 

levels during treatment is not used to advise a patient whether he or she should prematurely 

abandon the treatment, but instead it is used to: investigate the molecular mechanisms that make 

the most successful drugs so effective, quantitatively determine which therapies are most 
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effective for which HCV genotypes, and predict what is the minimum time a patient needs to be 

treated to achieve SVR.73 This type of modeling can inform antiviral development as well as the 

optimization of HCV treatment regimens so that they are as short as possible, saving thousands 

of dollars per patient, and millions per nation.  Modeling is also now being used to understand 

the relatively new phenomenon of patients who achieve SVR after the end of treatment even 

though they are still positive for HCV RNA when treatment stops, an observation that was never 

seen before the use of DAA’s to treat HCV.72,74  

 

1.8 Advantages of Mathematically Modeling in vitro Data 

Mathematical modeling of numerous patient datasets has provided all of these insights 

listed here and more. However, these in vivo datasets are generally limited to infrequent 

observational extracellular (serum) measures of HCV RNA. Furthermore, there is no assay for 

measuring the infectious titer of clinical isolates, which makes it impossible to monitor infectious 

viral levels in vivo. In contrast, in this thesis we focus on in vitro studies as this allows a much 

broader range of experimental opportunities and measurement of more viral parameters (e.g. 

intracellular data and viral infectivity), enabling mathematical modeling predictions to be more 

specific, especially when used in conjunction with mathematical analyses of patient data to 

provide hypotheses concerning the molecular mechanisms of viral response to therapy. As such, 

this thesis will describe hypotheses generated and investigated while developing and using 

mathematical models to analyze data that we gathered while treating either HCV replicon cells, 
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cells that were chronically infected with HCV, as well as kinetic data from chronically HCV-infected 

patients.  

 

 1.9 In vitro Hepatitis C Virus Mathematical Models 

Our group had previously published a simple in vitro mathematical model for analyzing 

the HCV replicon system.75–78 When starting the work for this thesis, the main goal was to 

determine the mechanism of action (MOA) by which IFN reduced HCV levels. We wanted to 

describe this MOA in terms of the viral lifecycle steps that were most affected by the treatment, 

hoping to inform drug development by determining which lifecycle steps were most important to 

target during treatment. Subsequently, the focus of this thesis work shifted to studying DAAs and 

in Chapter 3 we present model predictions of drug efficacy. Because these drugs have well-

defined MOA’s that would help us estimate additional viral parameters (Chapter 3) and build our 

HCVcc mathematical model (Chapter 4). 

Building from that published replicon model, we developed the first mathematical model 

for fully infectious, cell culture-derived HCV (HCVcc) infection. This affords a more complete 

picture of HCV infection than the HCV replicon system and provides more accurate hypotheses 

about infection dynamics at the molecular level than extracellular patient data alone. In Chapter 

4, we present the first iteration of our model, where we discovered that our understanding of 

chronic HCV infection was incomplete and obtained experimental evidence that supported the 

model prediction that non-productive HCV entry into infected cells plays a significant role in 

steady-state HCV dynamics. In chapter 5, subsequent analysis of the novel and multifunctional 
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NS5a inhibitor, daclatasvir, revealed not only another important gap in our model regarding the 

specific infectivity of progeny virus produced, but also provided a plausible hypothesis regarding 

the new unexplained clinical phenomenon of patients who are positive for HCV RNA at the end 

of treatment, yet eventually achieve sustained virologic response (SVR i.e. HCV cure) without 

additional treatment. 
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2. MATERIALS AND METHODS 

2.1 Virus  

HCV JFH-1. Huh7-1 cells were electroporated with in vitro–transcribed full-length 

infectious HCV JFH-1 RNA generated from pJFH-1 provided by Takaji Wakita (National Institute 

of Infectious Diseases, Tokyo, Japan) as described previously.79 Virus in the media was collected, 

titered, and used to grow large volumes of cell culture–propagated HCV (HCVcc) by infecting naïve 

Huh7-1 cells at a multiplicity of infection (MOI) of 0.01 focus-forming units (FFU) per cell. Media 

was collected from these infected cells, aliquoted and stored at -80℃. This stock was titered and 

used for experiments.  

 

2.2 Cell Culture   

Huh7-1 hepatocytes derived from a human hepatoma have been described previously80. 

Cells were thawed at passage 22 and maintained in complete Dulbecco’s modified Eagle’s 

medium (DMEM) (HyClone) supplemented with 10% (vol/vol) FBS (HyClone), 100 U/mL penicillin, 

100 mg/mL streptomycin, and 2 mM L-glutamine (Gibco Invitrogen) for a maximum of 15 

passages before new P22 cells were thawed.   

Huh7-Sg2a replicon cells were created by linearizing the pSGR-JFH-1 plasmid containing 

the sgJFH-1 HCV genotype 2a JFH-1 replicon, provided by Takaji Wakita (National Institute of 

Infectious Diseases, Tokyo, Japan), and using it as template to transcribe HCV RNA in vitro. The 

resulting RNA was transfected into Huh7 cells and cell clones were selected by G418 treatment 

as described.81 Clone B HCV sg1b Huh7 cells were sourced from the NIH AIDS Research and 
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Reference Reagent Program and have been previously described.82 Replicon cells were cultured 

in complete DMEM (as described above) supplemented with 500 µg/mL Geneticin/G418 

(Invitrogen) to select for cells expressing the neomycin gene-containing HCV subgenomic RNA. 

For experiments, non-growing Huh7-1 and replicon cells cultures were established by 

seeding cells in collagen-coated BioCoat 96-well plates in cDMEM. When cells reached 90-95% 

confluence, media was supplemented with 1% DMSO. Media with 1% DMSO was changed every 

48-72 hours. Replicon cells were additionally maintained with Geneticin in their media to select 

for high production of HCV subgenomic RNA. At day 20 of DMSO-treatment when differentiation 

was complete.83,84 At this point, the replicon cells would exhibit HCV steady-state and were used 

for experiments (Fig. 3).  

 

 

 

 

 
Figure 3. Steady-state HCV Levels in Non-Growing Replicon Cells. We do not observe large 
fluctuations in the copies of HCV sgRNA (y-axis) in non-growing replicon cells over time (x-axis) 
(black line). 
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2.3 Hepatitis C Virus Infections   

To establish steady-state HCV infection in non-growing cells, Huh7 cells were infected 

with JFH-1 at an MOI of 0.02 after 14 days of DMSO cDMEM treatment. Chronic steady-state 

infection was therefore achieved by day 20 of DMSO treatment (Chapter 3, Fig. 17) and at this 

point cells were used for HCVcc inhibition kinetics experiments. 

 

2.4 Inhibitors and Reagents   

Recombinant human IFN- α-2a (PBL Biomedical Laboratories, New Brunswick, NJ) was 

resuspended in complete DMEM (as described above) to a stock concentration of 1 U/µl, aliquoted 

into single-use tubes, and stored at -80°C.  Similar resuspension and storage at -80°C was 

performed with NM107 (Pharmasset, Princeton, NJ), PF254027 (Pfizer, NYC, NY),   BILN2061 

(Bristol-Myers Squibb, NYC, NY), Naringenin (Sigma, St. Louis, MO), and BMS-790052 

(Daclatasvir) (Bristol-Myers Squibb, NYC, NY). Resuspension and storage at 4°C or -20°C was 

performed according to manufacturer’s instructions for the exosome secretion inhibitor GW4869 

(Cayman Chemicals, Ann Arbor, MI) and the exosome secretion enhancer A23187 (Sigma, St. 

Louis, MO). Guanidine Thiocyanate (GTC) (Thermo Fisher Scientific, Waltham, MA) was 

resuspended to a 5/3 concentration and stored at 4°C. 

 

  2.5 Hepatitis C Virus Inhibition Assays 

For replicon inhibition experiments, geneticin was removed from all cultures 24h before 

beginning any antiviral treatment. Media was changed every 48 hours, except in experiments 
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involving IFN treatments in which fresh vehicle control or IFN-α containing medium was added 

to the cultures every 12h for the entire duration of the experiment to ensure continuous IFN 

signaling.  Indicated inhibitors or diluent control was added to parallel wells and samples were 

harvested at the indicated times (see the figures). Culture media was harvested from triplicate 

wells for cytotoxicity analysis and cells were harvested in 200 µl of 1x Nucleic Acid Purification 

Lysis Solution (Applied Biosystems, Foster City, CA) for isolation of intracellular RNA.  

For HCVcc inhibition experiments, media was changed every 2 days in such a way that 

avoided changing media on a well within 24 hours of it being harvested, to avoid artificially 

reducing extracellular HCV levels. At indicated times, medium was harvested from eight replicate 

wells and pooled for isolation of extracellular HCV RNA, titer analysis, and cytotoxicity analysis. 

Cellular lysate from 4 individual wells was harvested in 200 μL 1× nucleic acid  

 

2.6 Hepatitis C Virus Infectivity and Particle Decay Assays  

Laboratory stock virus was thawed from -80℃, diluted by DMSO cDMEM cell culture 

medium to 5x104 FFU/mL, aliquoted into 2 mL tubes, and incubated at 37℃. Then we harvested 

samples at the indicated times and measured the infectious titer by titer assay and total HCV RNA 

by RT-qPCR in the sample over time to monitor decay.  To monitor the effect of spent media on 

stock virus, virus was thawed and aliquoted into U-bottom 96-deep well plates and an initial 

sample was harvested. Remaining wells received 25 µl of DMSO cDMEM media that was either 

fresh, 24-48h old taken from DMSO cell culture that was either naïve, naïve and treated with 100 
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IU/mL IFN-α, or infected with adenovirus. Every 3 hours, additional samples were harvested for 

RNA isolation and media was added to remaining wells.  

 

2.7 Intracellular RNA isolation 

Cellular lysates were harvested in 1x Nucleic Acid Purification Lysis Solution (Applied 

Biosystems) and RNA was purified using an ABI Prism 6100 Nucleic Acid PrepStation (Applied 

Biosystems), per the manufacturer’s instructions.  

 

2.8 Extracellular RNA isolation 

Manual extracellular RNA isolation. Most extracellular RNA samples were processed 

manually.  For these experiments, 600 µL of supernatant was combined with 1mL 5/3 GTC, 

mouse liver RNA was added to control for RNA isolation yield variation between samples, and 

then the sample was divided into two duplicate aliquots and processed independently by phenol 

chloroform extraction. Each replicate was resuspended in 30 µL.  

Semi-automated extracellular RNA isolation. Some extracellular RNA samples were 

processed using the Kingfisher Duo (Fisher Scientific). Duplicate aliquots were processed 

according to manufacturer’s protocol, each having 150 µL of supernatant, combined with 250 µL 

of 5/3 GTC and mouse liver RNA. Each replicate was resuspended in 100 µL.  
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2.9 Reverse Transcription and Real-Time Quantitative Polymerase Chain Reaction 

To quantify RNA levels, 3 µL of intracellular RNA (from 30µL total per well) or 9.35 µL of 

extracellular RNA (from 100µL total per sample) was used for random prime cDNA synthesis using 

the TaqMan RT reagents (in either a 15 µL or 20 µL reaction, respectively) (Applied Biosystems), 

followed by SYBR Green RT-qPCR using an Applied Biosystems 7300 real-time thermocycler 

(Applied Biosystems). Thermal cycling consisted of an initial denaturation step for 10 min at 95°C, 

followed by 40 cycles of denaturation (15 s at 95°C) and annealing/extension (1 min at 60°C).  

Primers used are indicated in Table 1. HCV copies were quantified relative to a standard curve 

comprised of serial dilutions of plasmid containing the pJFH-1 plasmid and normalized to cellular 

GAPDH.  

 

 

 

 

Gene detected Forward/sense sequence Reverse/antisense sequence 
HCV (sg1b, sg2a, JFH-1) 5’-CGACACTCCACCATAGATCACT-3’ 5’-GAGGCTGCACGACACTCATACT-3’ 

Human GAPDH  5’-GAAGGTGAAGGTCGGAGTC-3’ 5’-GAAGATGGTGATGGGATTTC-3’ 

Murine GAPDH 5’-GGAGATTGTTGCCATCAACG-3’ 5’-CATGGACTGTGGTCATGAGC-3’ 
 

Table 1. Real-Time Quantitative Polymerase Chain Reaction Primers  
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2.10 Hepatitis C Virus Titer Assay  

Cell supernatants were serially diluted 10-fold in cDMEM, and 200 μL per well was used to 

infect quadruplicate Huh7 cultures in 96-well plates. Because antiviral-treated samples contained 

potentially inhibitory drugs we initially performed dilution and time of inoculation experiments 

(described in Discussion of Chapter 4) to determine what dilution of the sample and timing of 

inoculum removal would minimize the effect of the drugs in the these titration assays.  However, 

to control for any residual drug effect, the experimental concentration of each drug was added 

individually to a mock-treated sample before serial dilution to ensure any effects were similar 

across all samples. The drug-containing virus/medium sample was then removed at 9 h post 

inoculation, cells were washed so that the titer assay could proceed in the absence of the antiviral 

compounds, and monolayers were overlaid with cDMEM containing 0.25% methylcellulose 

(wt/vol) (Fluka BioChemika). As a control to determine if residual inhibitor effects occurred, mock 

samples also were titered in the absence of any drug addition. At 72 h post inoculation, medium 

was removed, cells were fixed with 4% paraformaldehyde (Sigma), and immunohistochemical 

staining for HCV E2 was performed as described previously84. Viral infectivity titers are expressed 

as FFU per experimental well (200 µL of supernatant), determined by the average number of E2-

positive foci detected in quadruplicate samples at the highest HCV-positive dilution. 

 

2.11 Cytotoxicity assay 

The presence of lactate dehydrogenase (LDH) in the culture medium indicates that cell 

membrane integrity is compromised, so cytotoxicity can be determined by measuring the amount 
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of LDH present in the medium. For that purpose, LDH levels in the medium of antiviral-treated 

cultures were measured using a CytoTox-ONE Homogeneous Membrane Integrity Assay 

(Promega, Madison, WI), in accordance with manufacturer’s instructions. The fluorescent 

resorufin product was detected using an excitation wavelength of 560 nm and an emission wave- 

length of 590 nm (FLUOstar Optima fluorometer; BMGLabtech, Durham, NC). A complete cell lysis 

sample was run as a positive control, and fresh medium alone was run in the absence of cells as 

a negative control.  

 

2.12 Isolation and Detection of Exosomes 

Non-growing Huh7 cells cultured in T-162 flasks were treated either with exosome 

secretion enhancer, inhibitor, or vehicle control.  After 24h of treatment, 80 mL of supernatant 

was harvested from each condition. Exosomes were isolated from supernatant via 

ultracentrifugation, according to Current Protocols in Cell Biology.85,86 Briefly, supernatants were 

cleared of live cells and cell debris, then spun at 100,000g for 70 min to pellet exosomes. Pellets 

were resuspended in 100 µL of PBS for analysis by Bradford protein assay and CD63 ELISA (System 

Bioscience and Bradford assay) according to manufacturer protocol. 

 

2.13 Normalization of Data for Mathematical Modeling 

In order to prepare the data for mathematical modeling, the HCV level in all mock samples 

was normalized to the average HCV steady-steady level throughout the experiment (i.e. the 

average mock HCV level) (Fig. 4A versus 4B) This normalization combined with expressing  all 



27 
 

experimental conditions relative to mock levels at each time point allows us to see the kinetic 

profile of the RNA reduction induced by an inhibitor more clearly and negates the need to 

repeatedly show the control mock treated data, which always is a straight line. Hence in many of 

the figures throughout this these, the Mock control is not shown in graphs.  

 

 

 

 

 

 
 
Figure 4. Normalization of Kinetic Inhibition Data. In order to prepare each of our datasets for 
mathematical modeling, all mock samples were normalized to the average mock HCV level 
throughout the experiment (1x10^6 in this example) and all other experimental conditions were 
normalized to mock. (A) Raw data from an example NM107 inhibitor experiment. (B) Normalized 
data from an example NM107 inhibitor experiment. 
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2.14 Mathematical Modeling 

After developing the initial model based on prior knowledge about the drug MOA and viral 

life cycle, the first task is to reduce the number of unknown parameters by designing specific 

experiments to isolate and estimate parameters when possible such as extracellular viral stability 

and titer infectivity (e.g., parameters c and kloss in chapter 4, Fig. 16). Another example, when 

calibrating drug-inhibition data we reduce the number of unknown/free parameters in cases that 

the drug MOA is known: (i) assembly/secretion would not apply in the case of the polymerase 

inhibitor, and (ii) nor would inhibiting RNA production in the case of the secretion inhibitor (see 

chapter 4, Table 8). 

Next the model steady-state conditions are solved in order to further reduce the number 

of unknown model parameters (See below, Steady-State Equations). Then the candidate model is 

simulated to understand the role of each model parameter (called sensitivity analysis and 

parameter identifiability), which was done in Berkeley Madonna software for this thesis. 

Thereafter, the unknown parameters are fitted/calibrated against the experimental data and 

another round of math modeling analysis begins in case the goodness of fit is poor and/or 

parameter values are not biologically sound.    

 

2.15 Steady-State Equations  

At steady-state, differential equations are set to 0 because there are no level changes in 

the system. Algebraic rearrangement then allows us to link some of the unknown parameters to 

other model parameters (also see Fig. 15), i.e., to express certain parameters in terms of others 
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so that the number of unknowns is functionally reduced and the model can be used to simulate 

steady-state as follows: 

; solve d/dt(R)=0 
a0=(+ks)*Ro-kin*Vio 
; solve d/dt(Vni)=0 
Vnio=(ks*(1-)*Ro+K_loss*Vio)/c 
; d/dt(Vi)=0 
ks=(kin+c+K_loss)*Vio/(*Ro) 
; plug in ks into Vniod/dt(Vni)=0 and use Vnio=Vtoto-Vio 

kin=-c-K_loss/(1-rho)+c*/(1-)*(Vtoto-Vio)/Vio 
Equations above are for initial HCVcc model (Fig. 14). Below is the version of equations that includes 

non-infectious entry for the HCVcc model (Fig. 23):  

; solve d/dt(R)=0 
a0=(+ks)*Ro-kin*Vtoto  
; solve d/dt(Vni)=0 
Vnio=(ks*(1-)*Ro+K_loss*Vio)/(kin+c) 
; d/dt(Vi)=0 
ks=(kin+c+K_loss)*Vio/(*Ro) 
; plug in ks into Vnio d/dt(Vni)=0 and use Vnio=Vtoto-Vio 

kin=(-c*Vtoto+((c+K_loss)*Vio/))/(Vtoto-Vio/) 
 

2.16 Parameter Calibration and Confidence Intervals.  

DEDiscover software (http://www.dediscover.org) was used to calculate 95% confidence 

intervals of estimated parameters.  
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3. HEPATITIS C VIRUS REPLICON DYNAMICS AND DRUG EFFICACY 

 

3.1 Introduction 

In 2010 when the aims in this chapter were conceived, direct-acting antivirals (DAAs) 

against HCV replication were being developed, but none had been approved by the FDA. At that 

time, the standard of care for chronic HCV treatment in the clinic was pegylated interferon 

(pegIFN) plus ribavirin, which subjected patients to serious side effects and up to a 50% fail rate 

depending on the HCV genotype being treated. In light of the immediate need to understand the 

antiviral mechanism of action (MOA) of IFN and facilitate drug development, we sought to further 

understand HCV replication dynamics and drug MOA, by quantitatively characterizing and 

mathematically modeling HCV RNA replication and treatment response kinetics.  The rationale 

was that mathematical modeling could aid in drug development in several ways: (1) by elucidating 

the means by which IFN produced its beneficial effects thus enabling the development of 

compounds that could imitate those mechanisms in a more targeted manner that avoids the 

serious side effects induced by IFN and (2) by analyzing the treatment response of compounds 

that were candidates for clinical trials to determine their MOA and predict which drugs (or drug 

combinations) might be most effective in treating HCV.  

When analyzing data with mathematical modeling, reducing the number of unknown 

parameters in the model makes the results more meaningful.  Because the infectious HCV cell 

culture (HCVcc) system was relatively new at the time with many parameters 

undefined/unmeasured, we opted to start our analysis using the simpler HCV replicon system to 
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minimize the number of unknown parameters. Though the HCV replicon model lacks the entry, 

assembly, and egress steps of the HCV viral lifecycle, it recapitulates the aspect of the HCV life 

cycle against which all the first HCV DAAs being developed were targeted (i.e. HCV intracellular 

replication). 

Figure 5 contains schematics of the published simple intracellular subgenomic HCV 

(sgHCV) replicon model from our lab that was the starting point for this thesis.76 Looking at panel 

A, the oval represents a cell, and the arrows represent the two main phenomena that can affect 

the level of intracellular HCV RNA (R). The main contributor to HCV RNA levels is RNA production 

(), and the main detractor from HCV RNA levels is RNA degradation (µ).   

 

 

 

 
 
Figure 5.  Schematic of the Simple HCV Replicon Mathematical Model and Possible Antiviral Drug 
Effects. A. HCV subgenomic replicon RNA copies (R) are produced at rate  (copies/day) and 
degraded at rate R(copies/day) within a cell. B. Possible mechanisms by which antivirals might 
inhibit HCV subgenomic replicon RNA (R) production () and/or enhance degradation () within a 
cell are shown in red. Inhibition of R is represented by (1- εin) where εin represents percent drug 
efficacy. Enhancement of R degradation () represents the fold-change in degradation rate caused 
by the drug. 

degradation 

 

sgHCV RNA 

 

production degradation 
sgHCV RNA 

in  

production 

κ 

A B 

R R 

R R 



32 
 

 

As shown in Fig. 5B, the model can simulate the effect of a drug that blocks sgRNA 

production by multiplying the HCV copies per day production rate coefficient α by 1-εin ( 0≤εin 

≤1), which will decrease the production rate. We define εin as the percent efficacy of the drug in 

blocking RNA production. To simulate the effect of a drug on enhancing sgRNA degradation, the 

HCV copies per day degradation rate coefficient µ is multiplied by the parameter κ, which is equal 

to one if the drug has no effect on degradation or κ>1 if the drug enhances degradation. These 

schematics correspond to the following differential equation, which describes the change in 

sgRNA level (R) over time (t). 

 

= (1 − 𝜀 )𝛼 − 𝜅μ𝑅   (Eq. 1) 

 

In order to bring the model (Eq. 1) into steady-state, in which sgRNA level (R0) remains constant 

over time (as we discuss in more detail in chapter 2, Fig. 3), dR/dt was set to 0 (i.e., no change 

in R over time), and we set 0=R0.   
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Figure 6. Incomplete Replicon Model Simulations of Antiviral Treatment. Y-axis shows simulated 
sgRNA level on a logarithmic scale. X-axis shows time in days. (A) Model is simulating 0%, 90%, 
99%, or 99.99% inhibition of sgRNA synthesis (alpha). (B) Model is simulating 1x, 2x, 5x, 10x, 
50x, or 100x enhancement of sgRNA degradation. (C) Model is simulating steady-state or a 
combination of both inhibition mechanisms, a 2x enhancement of RNA degradation and a 99% 
inhibition of RNA synthesis. In all simulations R0=1x105 log copies/cell,  =0.98/day 
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Notably however, it was clear this simple model (Eq. 1) was not sufficient because it can 

only predict a single exponential sgRNA decline that reaches a new lower set point (Fig. 6), while 

biphasic declines have been observed in vitro 76 (Fig. 4B) and in vivo 87. To allow for this 2nd phase 

decline in sgRNA levels, a time-dependent term (exp-gt) was added to the model (multiplied by 

(1- εin)0) where parameter g accounts for the interruption of sgRNA production to increase over 

time, representing any non-immediate events that further slow the production of HCV 

subgenomic RNA, such as the gradual breakdown of RNA replication complexes. Hence, any 

events that decrease the rate of sgRNA production with an effect that increases with time can be 

represented by setting parameter g to a value greater than zero. With the addition of this 

parameter, the model is able to simulate the observed biphasic sgRNA decline76 (Fig. 7). Hence, 

the more detailed model equation is 

 

= (1 − 𝜀 )𝛼 exp(−𝑔𝑡) − 𝜅μ𝑅  (Eq. 2) 
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Figure 7. Replicon Model Simulations of Biphasic Antiviral Decline. The final published Replicon 
Model (Eq. 2) can simulate a biphasic decline when g parameter is greater than 0. (A) RNA 
synthesis inhibition is set at 98% and g is set to either 0 or 0.3. (B) RNA degradation is enhanced 
by 100% and g is set to either 0 or 0.3. Y-axis shows simulated RNA level on a logarithmic scale. 
X-axis shows time in days. Other model parameters values are as described in Fig. 6.  
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Anything that increases the amount of HCV RNA will be a positive expression in the 

equation. Specifically, the production of RNA will be positive, and it is expressed as the production 

rate α0 multiplied by (1- εin ), multiplied by the term that describes whether any secondary events 

such as the breakdown of replication complexes occur that would further slow the production of 

HCV RNA as time increases  (exp(-gt)). Anything that reduces the amount of HCV RNA will be a 

negative expression in the equation. For example, RNA degradation reduces the amount of HCV 

RNA and is represented by a negative product of the degradation rate coefficient, µ, the effect of 

the drug in enhancing HCV RNA degradation, κ, and the amount of RNA available to be degraded, 

R.   

Use of the simple intracellular HCV replicon model above to assess the kinetics of IFN 

inhibition of an HCV subgenomic genotype 1b (sg1b) replicon under the standard growing Huh7 

cell culture condition had suggested that IFN mainly blocks HCV RNA replication, but that at 

higher doses it might also enhance HCV RNA degradation and cause delayed events that further 

reduce HCV RNA replication (such as break-down of replication complexes)76 However, there 

were some limitations inherent in the initial experimental approach utilized. The work described 

herein overcomes these technical challenges in two significant ways.  The first difference is the 

conversion to the non-growing DMSO Huh7 system. This was a critical change as the non-

growing culture system allows for a true HCV steady-state to be achieved,83,84 enables longer 

experiments by avoiding issues of cells reaching confluence and requiring splitting, reduces well-

to-well variability,79,84 and reduces changes in intracellular HCV and drug concentration that may 

result from cell division. Hence, these non-growing DMSO Huh7 features are fundamental for a 
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more reliable drug-perturbation mathematical modeling. The non-growing DMSO Huh7 cells 

further exhibit increased liver-specific gene expression83 and drug metabolism activity more 

similar to differentiated hepatocytes88, which is also consistent with an infection environment 

that is more biologically relevant. Second, we broadened the scope of our inhibition studies to 

include the use of direct-acting antivirals of known MOA, such as protease and polymerase 

inhibitors, to help further characterize treatment response kinetics and demonstrate the 

usefulness of the model in analyzing the response kinetics observed with more defined inhibitors 

and more effectively estimate unknown parameters such as the intrinsic HCV RNA degradation 

rate, which would otherwise be difficult to measure empirically. 

 

3.2 Results 

3.2.1 Modeling Hepatitis C Virus Replicon Inhibition Kinetics in Non-Growing Huh7 Cells  

Our first goal in adapting our mathematical modeling experiments to the non-growing 

DMSO Huh7 cells89 was to explore whether the non-growing system would yield similar results 

as the growing cells by repeating analogous IFN experiments and mathematical analysis and 

comparing the results between systems. Using the same doses of IFN in the same HCV 

subgenomic genotype 1b (sg1b) replicon Huh7 cells, we quantified HCV RNA levels across a 

similar time scale in non-growing DMSO cells. Other than the non-growing status of the cells, 

the other main difference from the published experimental method was more frequent harvesting 

of RNA with more replicates at each time point, something that is manageable in the non-growing 



38 
 

cell culture system as it eliminates the need for splitting the cells during the experiment allowing 

for increased numbers of wells and a smaller 96-well format. 

Specifically, non-growing sg1b replicon Huh7 cells (see Materials and Methods2.2) were 

treated with IFN at doses of 0, 100 or 250, International Units (IU) per mL. Media was replenished 

every 12 hours to maintain consistent IFN signaling76 and cells were harvested from triplicate 

wells for intracellular RNA isolation every 2-4 hours for the first 24h after the initiation of IFN 

treatment and every 4-8 hours in subsequent days of IFN treatment as indicated across the x-

axis (Fig. 8). As was observed in the growing Huh7 cell culture experiments, both 100 IU/mL (Fig. 

8A) and 250 IU/mL (Fig. 8B) of IFN in the non-growing Huh7 cell system resulted in a biphasic 

decline. The 100 IU/mL dose caused a rapid, 1-log reduction in HCV RNA level between 0 and 2 

days. Between the second and fifth day there was an additional, slower, ½-log reduction, and 

then the HCV RNA level plateaued (Fig. 8A). The 250 IU/mL dose showed a rapid, 1.5-log 

reduction between days 0 and 1.75, then an additional, slower, 1-log reduction beginning at day 

1.75 (Fig. 8B).  
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Figure 8. Inhibition Kinetics of HCV sg1b RNA under IFN Treatment in Non-Growing Huh7 Cells. 
DMSO growth-arrested HCV replicon cells with steady-state HCV RNA levels were treated with (A) 
100 IU/mL or (B) 250 IU/mL doses of IFN or diluent control (not shown, see Materials and 
Methods). Open circles represent the average of triplicate samples graphed as the difference in 
HCV RNA copies per µg relative to the diluent treated control cultures at the corresponding time 
point. The solid line represents the best fit simulation created by the mathematical model (Eq. 2). 

 

 

 

 

 

Fitting Eq. 2 (Fig. 8, solid line) to the observed inhibition kinetics (Fig. 8, open circles), 

generated predictions about the MOA of IFN and drug efficacy (Table 2). Specifically, the model 

suggests that the lower dose of IFN (100 IU/mL) reduced sg1b RNA primarily by reducing HCV 

RNA production by 97% without significantly enhancing its degradation (κ=1.16 [95% CI =0.89-

1.45]).  In contrast, while the inhibition kinetics observed during higher doses of IFN (250 IU/mL) 

treatment exhibited a similar reduction in HCV RNA production (i.e. 96%), the model also 

predicted an enhancement of HCV RNA degradation (κ=2.54 [95% CI =1.35-3.73]) as well as 

A B 
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time-delayed events that further reduce HCV RNA production over time (i.e. g is greater than 0). 

Importantly, these MOAs and drug efficacy estimations are consistent with the predictions from 

our previously published results from growing cell experiments (Table 2). Based on 95% 

confidence intervals, the model estimates for the delays (t0) were not significantly different. 

 

 

 

 

 

 
Table 2. Replicon Model Predictions of IFN Efficacy and Mechanism of Action.  
t0 = delay; εin = percent inhibition of HCV RNA production; µ = degradation rate coefficient of 
HCV RNA; g = time-delayed events that further reduced HCV RNA production. *results from 
published growing cell experiments76 
 

 

 

 

 

 

IFN Dose 
(IU/mL) Cells Delay                      

t0 (h) [CI 95%] 
Drug efficacy           
εin [CI 95%] 

Degradation rate 
coefficient         
µ (per day) 

[CI 95%] 

g (per day) 
[CI 95%] 

100 DMSO 2.96 [2.95-2.98] 0.97 [0.96-0.98] 1.16 [0.89-1.45] 0 

100* dividing 9.5 [3.6-15.4] 0.97 [0.96-0.98] 0.98 [0.85-1.11] 0 [0-0.001] 

250 DMSO 3.00 [0-15] 0.96 [0.91-1.0] 2.54 [1.35-3.73] 0.30 [0.10-0.51] 

250* dividing 7.8 [3.1-12.4] 0.93 [0.88-0.97] 2.32 [1.57-3.07] 0.33 [0.22-0.45] 
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Importantly, these results demonstrate that the state of Huh7 cell growth does not 

inherently alter HCV treatment response kinetics and thus allowed us to transition into this more 

experimentally amenable system, which offers several advantages. First and foremost, it allows 

for a true HCV steady-state, which is extremely beneficial for mathematical modeling. Equally 

valuable, it has technical advantages such as not requiring cell splitting, which reduces variation 

in HCV RNA levels, allows us to grow these cultures in 96-well plates, and take more frequent 

samples, enhancing our ability to monitor HCV treatment response kinetics and predict drug 

mode of action through mathematical modeling.   

 

3.2.2 Quantitative Estimate of the Intrinsic Degradation Rate of Hepatitis C Virus RNA 

It can be difficult to directly measure parameters such as intracellular HCV RNA 

degradation. A major utility of mathematical modeling is the ability to estimate parameters like 

this, without isolating and measuring them empirically.  However, when the non-growing HCV 

replicon system (and mathematical model) is in steady-state, the RNA production and 

degradation rates are equal and thus impossible to estimate without altering one individually. In 

order to estimate the intrinsic degradation rate of the viral RNA, we chose to perturb steady-state 

of the HCV sg1b replicon system by specifically blocking HCV RNA production with a well-

characterized, nucleoside analog inhibitor of the viral NS5b polymerase called NM107. As such, 

the RNA degradation rate that is observed during treatment with NM107 can be considered the 

intrinsic degradation rate of the viral RNA. Briefly, non-growing HCV replicon cells with steady 

levels of HCV RNA were treated with polymerase inhibitor NM107 (open circles) or diluent control 
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(not shown) and triplicate samples were harvested at indicated time points to determine HCV RNA 

levels (Fig. 9). After six days of treatment, HCV RNA levels were reduced by 2 logs. Beyond 6 days 

of treatment, there is only one data point at day 8 of treatment which is difficult to interpret as it 

may indicate a new steady-state for the HCV RNA levels or the data point may be an outlier. 

The simple HCV replicon mathematical model (Eq. 2) is able to fit the NM107 polymerase 

inhibitor data through day 6 well (Fig. 9, solid line), enabling estimates of intracellular HCV RNA 

degradation rate and NM107 efficacy in blocking HCV RNA production (Table 2). However, the 

data were not sufficient to confidently fit the model with the later inhibition kinetics due to a lack 

of data points taken in that time frame post-treatment. Specifically, the data post day 6 consisted 

of a single time point taken 8 days after the beginning of drug treatment. Based on this one data 

point, the model would predict that drug efficacy is 98% and that HCV levels would achieve a new 

steady-state two logs lower than the starting level (Fig. 9, dashed line), but if that one isolated 

time point were excluded from the analysis the drug efficacy increased to 99.6% and the new 

predicted steady-state would be ten-fold lower (Fig. 9, solid line).  
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Figure 9.  Inhibition Kinetics of HCV sg1b RNA under NM107 Treatment. Non-growing DMSO-
Huh7 sg1b replicon cells were treated with 18M NM107 or diluent control (not shown). Triplicate 
wells were harvested at indicated times post-treatment and HCV RNA was quantified by RT-qPCR, 
normalized to cellular GAPDH levels. Open circles represent the average of triplicate samples 
graphed as the difference in HCV RNA copies per µg relative to the diluent treated control cultures 
at the corresponding time point. The solid line shows the mathematical model (Eq. 2) simulation 
fitting data from days 1-6. The dotted line shows the mathematical model simulation fitting all 
data points. 

 

 

 

 

3.2.3 Increased Sampling Frequency to Resolve Model Fit Ambiguity.   

Having converted to the non-growing Huh7 cell culture system we were readily able to 

design experiments with more frequent sampling to more thoroughly document HCV inhibition 

kinetics beyond 6 days of treatment.  We treated non-growing HCVsg1b replicon cells with 0 or 

18µM of HCV polymerase inhibitor NM107 and took frequent samples (every 6 hours or more 

frequent) during 16 days of treatment to measure intracellular HCV RNA levels (Fig. 10, open 

circles). The RNA levels were reduced quickly by ¾ log between 0 and 24 hours of treatment, they 

plateaued until 48h of treatment, then declined quickly by 2 additional logs until day 8 when a 

new plateau was achieved.  
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Figure 10. Extended Inhibition Kinetics of HCV sg1b RNA under NM107 Treatment. Non-growing 
DMSO-Huh7 sg1b replicon cells were treated with 18M NM107 or diluent control (not shown). 
Triplicate wells were harvested at indicated times post-treatment and HCV RNA was quantified 
by RT-qPCR and normalized to cellular GAPDH levels. Open circles represent the average of 
triplicate samples graphed as the difference in HCV RNA copies per µg relative to the diluent 
treated control cultures at the corresponding time point. Solid line shows mathematical model 
simulation fit. The dotted line shows the mathematical model simulation fitting based on 
experimental data until day 8. 

 

 

 

 

 
 
Table 3. Replicon Model Parameter Estimates Based on Extended NM107 Inhibition Kinetics.   
t0 = delay; εin = percent inhibition of HCV RNA production; µ = intrinsic degradation rate constant 
of HCV RNA; g = time-delayed events that further reduced sg1b RNA production. Due to NM107 
known MOA in terminating sg1b RNA synthesis it is not biological plausible that sg1b degradation 
was enhanced, hence κ=1 under NM107 treatment.  

Experiment 
Data 

analyzed 
Delay t0 

(hrs) 
Drug efficacy εin 

RNA degradation rate 
constant µ (per day) 

g      
(d-1) 

Fig. 5 6 days 6 [0-31] 0.996 [0.98-1.0] 0.83 [0.60-1] 0 

Fig. 5 8 days 6 [0-36] 0.98 [0.965-1.0] 0.96 [0.70-1.22] 0 

Fig. 6 16 days 6 (fixed) 0.998 [0.997-0.999] 0.89 [0.841-0.939] 0 
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Looking at the model parameter estimates and taking into account the 95% confidence 

intervals the 18 µM dose of NM107 from the 8 day experiment (excluding the single day 8 

outlier)(Fig. 9) and the 16 day experiment (Fig. 10), estimates for efficacy in blocking HCV RNA 

production, RNA degradation rates, and g decay rates were the same. Because the final plateau 

observed for  sg1b HCV RNA levels is 3 logs lower than the initial HCV RNA viral RNA levels (Fig. 

10), these results indicate that the day 8 data point in the first experiment (Fig. 9) was an outlier 

and confirm the need for samples to be taken frequently especially near the end of a time course. 

 

3.2.4 Polymerase Inhibitors with Distinct Mechanism of Inhibition Yield Similar Treatment 

Response Kinetics  

Intrinsic in this simple model is the expectation that all HCV NS5b polymerase inhibitors 

(i.e. drugs that specifically/solely block HCV RNA synthesis) would create similar kinetic patterns 

of HCV decline when dosed to the same efficacy. In order to test that hypothesis, we performed 

inhibition experiments with two different HCV polymerase inhibitors. Because NM107 is a 

nucleoside analog, we compare its HCV inhibition kinetics with PF254027, which is a non-

nucleoside analog that sterically blocks the HCV polymerase without interacting with its active 

site.  After performing an initial dosing of both polymerase inhibitors to determine which doses 

gave comparable inhibition of HCV (data not shown), cultures of non-growing HCV sg1b replicon 

cells with steady levels of HCV RNA were treated with 150 µM PF254027, 18 µM NM107, or control 

diluent. As expected, when dosed to the same efficacy both polymerase inhibitors exhibited 

overlapping biphasic inhibition kinetic patterns, reducing HCV sg1b steady-state replicon RNA 
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levels by 1.25 logs by 8 hours of treatment before achieving new plateaus (Fig. 11). The model 

parameter estimates and confidence intervals in Table 4 also confirm that at these doses, these 

two distinct polymerase inhibitors have identical efficacy in blocking HCV RNA production with 

no enhancement of HCV RNA degradation. Notably, due to large confidence intervals the model 

estimates for the delay showed no difference between the nucleoside analog (0-36 hours) and 

the non-nucleoside analog inhibitor (0 hours).  

 

 

 

 

 

 

Figure 11. Inhibition Kinetics of Hepatitis C Virus sg1b RNA under NM107 and PF254027 
Treatment. Non-growing DMSO-Huh7 sg1b replicon cells were treated with 18 M NM107 (gray 
line), 150 M PF254027 (black line), or diluent control (not shown). Triplicate wells were harvested 
at indicated times post-treatment and HCV RNA was quantified by RT-qPCR and expressed as 
HCV copies/µg RNA graphed relative to the HCV RNA levels in the diluent control.  
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Table 4.  Replicon Model Estimates based on Polymerase Inhibition Kinetics.  t0 = delay; εin = 
percent inhibition of HCV RNA production; µ = degradation rate constant of sg1b HCV RNA; g = 
time-delayed events that further reduced HCV RNA production.  *Not statistically different from 
0 hours because of large confidence interval 
 

 

 

 

3.2.5 Estimating Drug Efficacy and Mechanism of Action of a Viral Protease Inhibitor 

At the time, HCV NS3 protease inhibitors were also a focus of drug development, so we 

investigated the response kinetics of the HCV sg1b replicon under treatment with the protease 

inhibitor BILN2061. While our simple HCV replicon mathematical model does not in theory 

distinguish protease and polymerase inhibitors because inhibition of either viral protein 

interrupts the same HCV RNA production rate () in the model, the multiple possible roles of the 

viral NS3 protein in the viral life cycle (producing functional protein subunits as well as cleaving 

innate signaling molecules to render them non-functional for HCV detection by the host cell) 

meant that the protease inhibitor may have multiple MOAs, compared to the inhibitor of the viral 

Drug (dose) 
Delay  

t0 (hrs) 
Drug Efficacy 

εin [95% CI] 
RNA degradation rate 

constant µ (d-1) 

PF254027 (150µM) 0 0.98 [0.97-0.99] 1.07 [0.92-1.22] 

NM107 (18µM) 6 [0-36]* 0.98 [0.965-1.0] 0.96 [0.70-1.22] 
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NS5b polymerase, a protein that is presumed to have only one function in the viral lifecycle.  

Non-growing HCV sg1b replicon cells with steady levels of HCV RNA were treated with 

either BILN2061 protease inhibitor or control diluent and triplicate samples were harvested at 

indicated time points to monitor HCV RNA levels. We saw a much more dramatic 4 log reduction 

in sg1b RNA by both the 10 nM and 80 nM doses after 7 days of treatment (Fig. 12 A-B). Both 

doses were equally effective, suggesting that 10nM is significantly above the EC90. Because the 

protease inhibitor was able to reduce HCV RNA much more than the 98% efficacy doses of 

polymerase inhibitors (4 logs versus 2), this suggests that the protease inhibitor does indeed 

have an additional MOA that reduces HCV RNA levels faster than can be achieved simply by 

blocking HCV RNA production; this is supported by the BILN treatment being able to reduce 

sgRNA levels by 4 logs in 7 days, while model simulations require 10 days of treatment to reduce 

sgRNA levels by 4 logs even with 99.99% efficacy in blocking sgRNA synthesis (Fig. 6A).  
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Figure 12. Inhibition Kinetics of Hepatitis C Virus sg1b RNA under BILN2061 Treatment. Non-
growing DMSO-Huh7 sg1b replicon cells were treated with 10nM BILN (panel A), 80 nM BILN 
(panel B), or diluent control (not shown). Triplicate wells were harvested at indicated times post-
treatment and HCV RNA was quantified by RT-qPCR and normalized to cellular GAPDH levels. 
Open circles represent the average of triplicate samples graphed as the difference in HCV RNA 
copies per µg relative to the diluent treated control cultures at the corresponding time point. 
Solid line shows mathematical model simulation fit. 

 

 

Experiment BILN2061 
Dose 

Delay                   
t0 (hrs) 

Drug Efficacy 

εin [95% CI] 

RNA degradation 
rate constant    
µ(d-1)[95% CI] 

Enhancement 
of RNA 

degradation κ 

g  (d-1) 
[95% CI] 

Fig. 6A 10 nM 10 [0-33] 0.999 [0.99-1.0] 1.60 [1.14-2.06] 1.93 0 
Fig. 6B 80 nM 9.9 [0-30] 0.999 [0.99-1.0] 1.62 [1.20-2.04] 1.95 0 

16-day* 10 nM 6 (fixed) 0.98 [0.97-0.99] 1.79 [1.58-2.00] 2.01 0.10 [0-0.4] 
 
Table 5. Replicon Model Estimates Based on Protease Inhibition Kinetics. t0 = delay; εin = percent 
inhibition of HCV RNA production; µ = degradation rate constant of sg1b HCV RNA; κ = fold-
change of RNA degradation rate constant over intrinsic RNA degradation rate constant (estimated 
during treatment with polymerase inhibitor NM107); g = time-delayed events that further 
reduced HCV RNA production. *experiment (not shown) 

 

 

 

A B 
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After fitting the mathematical model to the data (solid line, fig. 12 A-B), we estimated that 

both 10 and 80 nM doses of BILN2061 showed a delay of 10 hours, at least 99% efficacy in 

blocking HCV RNA production and a 2-fold enhancement of the HCV RNA degradation rate (Table 

5). When this experiment was repeated in a 16-day format, we saw similar results.  

 

3.2.6. Direct Acting Antivirals Exhibit Different Efficacy against Different Hepatitis C Virus  

      Genotypes 

We began our modeling efforts using the HCV sg1b system, however the in vitro JFH-1 

HCVcc infection system available for modeling the entire viral life cycle (Chapters 4 and 5) is 

based on HCV genotype 2. Therefore, before moving to the HCVcc infection system, we tested 

whether the differences in drug efficacy between HCV genotypes observed in the clinic are 

recapitulated in our in vitro systems. Using both the sg1b and sg2a (JFH-1) subgenomic 

constructs allowed us to compare results between two HCV genotypes. 

Non-growing Huh7 HCV replicon cells (sg1b or sg2a) were treated with direct acting 

antivirals or diluent controls and intracellular HCV RNA levels were monitored during 8 days of 

treatment. NM107 (18 µM) was able to reduce sg1b RNA levels by 2 logs after 6 days of treatment 

(Fig. 13 panel a) with 98% efficacy in blocking HCV RNA production (Table 6). However, a higher 

dose of NM107 (25 µM), was only able to reduce sg2a RNA levels by 0.75 logs, plateauing after 

2 days of treatment (Fig. 13 panel b) with only 70% efficacy in blocking HCV RNA production 

(Table 7). 
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PF254027 elicited a dose-dependent response (data not shown) with the highest dose 

tested (i.e. 150 µM) reducing HCV sg1b and HCV sg2a steady-state replicon RNA levels by 1 log 

after 1 day of treatment (Fig. 13, panels c and d respectively). However, while the HCV sg2a RNA 

response plateaued, the HCV sg1b RNA was further reduced by 1 additional log after 4 days of 

treatment and the drug exhibited 98% efficacy in blocking HCV RNA production (table 6). In sg2a 

cells, the drug only exhibited 88% efficacy in blocking HCV RNA production (table 6). 

BILN2061 (10 nM) was able to reduce sg1b RNA levels by 4 logs after 7 days of treatment 

(Fig. 13 panel e) with 99.9% efficacy in blocking HCV RNA production (Table 6). However, a higher 

dose of BILN2061 (80 nM), was only able to reduce sg2a RNA levels by 3 logs after 7 days of 

treatment (Fig. 13 panel f) with only 93% efficacy in blocking HCV RNA production (table 6). 

This shows that these drugs were more effective for sg1b than sg2a, which is consistent 

with in vivo results and the fact that the drugs were designed against HCV genotype 1. 
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Figure 13. Different Potency of HCV DAA against HCV Genotype 1 and 2. Non-growing DMSO-
Huh7 sg1b (panels A, C, and E) or sg2a replicon cells (panels B, D, and F) were treated with NM107 
(panels A and B), PF254027 (panels C and D), BILN2061 (panels E and F), or diluent control (not 
shown). Triplicate wells were harvested at indicated times post-treatment (x-axis) and HCV RNA 
was quantified by RT-qPCR and normalized to cellular GAPDH levels. Open circles represent the 
average of triplicate samples graphed as the difference in HCV RNA cps/µg relative to the diluent 
treated control cultures at the corresponding time point. Solid line shows simulation by 
mathematical model fit to all data. 

 
HCV Genotype Drug NM107 PF254027 BILN2061 

sg1b 
Dose 18 µM 150 µM 10 nM 

Efficacy 98% 98% 99.9% 

sg2a 
Dose 25 µM 150 µM 80 nM 

Efficacy 70% 88% 93% 
 

Table 6. Replicon Model Estimates of Drug Efficacy. Efficacy is estimated as the εin, or percent 
inhibition of HCV RNA production 
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3.3 Discussion 

These studies used mathematical modeling to analyze HCV replicon kinetics. The HCV 

replicon was chosen over the full infectious system in order to minimize the number of unknown 

parameters, thus increasing the parameter estimating sensitivity of the model. The mathematical 

model used for these studies had been published, but it had only been used to analyze data from 

growing cells, which did not maintain steady levels of HCV RNA, a critical necessity according to 

the assumptions built into the model. In these studies, we analyzed non-growing HCV replicon 

cell kinetics under treatment with IFN or direct acting antivirals, specifically HCV NS5b polymerase 

and HCV NS3 protease inhibitors. The mathematical modeling analysis of these kinetic data 

provided estimates for the rate of HCV sgRNA degradation, drug efficacies, and response delays, 

as well as generating hypotheses about the mechanism of action of HCV antivirals. Experiments 

were also conducted to compare efficacy of HCV NS5b polymerase and HCV NS3 protease 

inhibitors against HCV genotypes 1b and 2a.  

Modeling perturbation of viral steady-state provides an enormous advantage due to the 

inherent information provided by the nature of a steady-state system (i.e. that production equals 

clearance). This simple fact enables different viral parameters to be expressed relative to each 

other, allowing a reduction in equation unknowns. However, it has been shown that HCV infection 

levels fluctuated in growing Huh7 cells following the growth rate of the cells.90 Hence, it was 

critical for us to adapt our modeling efforts to the non-growing DMSO Huh7 system which had 

been shown to establish a long term, stable, steady-state HCV infection.83  Equally important, 
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these non-growing Huh7 cells are more physiologically relevant in terms of hepatocyte biology 

and HCV infection dynamics. Transitioning Huh7 cells are into a non-growing state makes them 

more similar to liver hepatocytes in several ways: they are growth-arrested and polarized like 

hepatocytes, they have increased liver-specific gene expression that is closer to hepatocyte gene 

expression profiles, and the non-growing state induces drug metabolism.88 Additionally, the 

non-growing cells are able to maintain steady-state HCV infection similar to what is seen in 

chronically infected patients. 83,84   

The studies presented here show that our published replicon model not only fit the data 

from non-growing DMSO Huh7 experiments well, but also yielded parameter estimates that were 

consistent with published results from the growing Huh7 cell system (Table 2). Fortuitously, the 

non-growing DMSO Huh7 cultures have several additional technical advantages over growing cell 

cultures that further facilitate modeling efforts. The non-dividing state of the cells means that 

they do not need to be passaged, allowing for longer experiment time courses with cells plated 

in smaller wells (96-well plates) facilitating the management of high number of parallel wells 

needed for the frequent sampling of replicate cultures that is necessary for kinetic experiments 

(as demonstrated in figs 9 vs 10). All of these factors contribute to enhanced rigor (number of 

replicates) and reduced well-to-well variability 79,84  

Once we validated the use of the model in our non-dividing DMSO Huh7 cells, we 

proceeded to utilize the model to analyze HCV treatment response to direct acting antivirals. The 

mathematical model was instrumental for estimating unknown HCV replicon parameters. By 
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analyzing HCV RNA kinetics during treatment with HCV NS5b polymerase inhibitors, which have 

a well-characterized single mechanism of action, we were able to estimate drug efficacies in 

blocking HCV RNA synthesis and the intrinsic rate of HCV RNA degradation (Tables 3 and 4). This 

work also confirmed how essential frequent sampling is for accurate modeling (Fig. 9). 

While the HCV NS5b polymerase has a singular role in the HCV viral lifecycle, at the time 

it was being discovered that the viral NS3 protease has multiple possible roles not only cleaving 

the viral polyprotein into its essential functional protein subunits, but also cleaving host innate 

signaling molecules to render them non-functional for HCV detection. For this reason, an NS3 

inhibitor could have multiple possible mechanisms of action against HCV. Our experiments 

demonstrated that the protease inhibitor was able to reduce HCV RNA to a greater extent than 

the 98% effective dose of the polymerase inhibitor (4 logs versus 2) and mathematically modeling 

a complete (100%) block of RNA production alone was unable to simulate the rapid and profound 

decrease in HCV RNA levels that were seen empirically.  

This result and the mathematical modeling of the data thus strongly suggested that 

protease inhibitors do have multiple mechanisms of action to reduce HCV RNA. Specifically our 

model predicted that BILN2061 reduces HCV RNA by both blocking production and enhancing 

RNA degradation, which may be connected to its effect on thwarting a primary mechanism by 

which HCV blocks intracellular IFN antiviral signaling (Table 5). This is consistent with more recent 

modeling analyses of HCV kinetics in patients who were treated with HCV protease inhibitor 

danoprevir which project that danoprevir significantly blocks intracellular viral production (with 
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mean effectiveness 99.2%) and enhances intracellular viral RNA degradation about 5-fold.91 Thus 

our in vitro modeling support these in vivo modeling results in which intracellular HCV RNA 

kinetics are lacking. 

Statistically, the 95% confidence intervals for the delay estimates before sg1b declined 

from baseline were identical for polymerase inhibitors and protease inhibitors. However, the data 

suggested that the best estimate for the polymerase inhibitors was 0-6 hours (Table 4), and for 

the protease inhibitor it was 10 hours (Table 5). If the delay were proven to be longer for the 

protease inhibitor than for the polymerase inhibitor, it may reflect the time that it takes for 

existing replication complexes to degrade, because the protease inhibitor reduces HCV RNA by 

interfering with the supply of cleaved protein units that replace the replication complexes 

(compared to the polymerase inhibitor, which reduces RNA production more directly by blocking 

polymerase activity). Another possibility is that any RNA reduction caused by a restoration of the 

host’s innate immune signaling pathways will not be apparent until the host cell creates signaling 

proteins to replace those cleaved by the protease.  

Finally, before proceeding to the HCV genotype 2a infection, we used our model to 

compare the efficacy of HCV DAAs against HCV sg1b and sg2a replicons, which was of interest 

because these direct acting antivirals were developed against HCV genotype 1 and were expected 

to be more effective against sg1b. The results (Fig. 13 and Table 6) confirmed that both 

polymerase inhibitors (NM107 and PF254027) and protease inhibitors (BILN2061) are more 

effective at reducing sg1b HCV RNA, consistent with what was observed clinically. 
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In the future, this mathematical model could be adjusted to include more HCV lifecycle 

details in order to generate more detailed hypotheses about antiviral mechanism of action. For 

example, the model could incorporate the polyprotein translation step, including rate coefficients 

for initiation, elongation, and termination and/or synthesis of negative and positive strand RNAs. 

In order to reduce the number of unknown parameters estimated by the model, some of these 

rates could be measured experimentally or taken from literature. Likewise, the use of the 

subgenomic replicon model rather than full HCV infection model would facilitate such efforts as 

it would help keep the model complexity to a minimum.  Such a model would be ideal for studying 

the details of HCV replication, however, because our interest was primarily in antiviral drug 

development our future efforts turned to the in vitro HCV infection system (see Chapters 4 and 

5). 
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4. MODELING HCV INFECTION STEADY-STATE DYNAMICS 

4.1 Introduction 

After successfully mathematically modeling HCV replicon drug treatment response 

kinetics and utilizing this quantitative analysis to estimate HCV RNA half-life in the context of 

the replicon environment, we wanted to apply the same quantitative analysis to data generated 

in the cell culture HCV infection system, which had been first published by my thesis lab and 

others in 2006.13–15 Unlike the HCV replicon system, the cell culture HCV infection system 

recapitulates the entire viral life cycle and mathematically modeling this full life cycle would allow 

analysis of antivirals that target not only HCV RNA synthesis and polyprotein cleavage steps 

completed in the replicon system, but also the entry and assembly/secretion steps of the viral 

life cycle. Thus, we adapted the simple mathematical model (Eq. 1 in Chapter 3) of the HCV 

replicon system in order to describe the full viral life cycle of the cell culture HCV infection system. 

In this chapter, we will discuss the first iteration of this model, the adjustment/hypothesis it 

generated, and the revised model that reflects the resulting change in our understanding of HCV 

steady-state dynamics. 
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4.2 RESULTS 

4.2.1 Creating the Hepatitis C Virus Cell Culture Infection Model  

Unlike the replicon system, in which virus levels are measured by the single parameter of 

intracellular HCV RNA, in the HCV cell culture (HCVcc) infection model we include three 

experimentally measurable viral parameters: intracellular viral RNA, extracellular viral RNA (i.e. 

total virions), and extracellular titer (i.e infectious virions).  In the model schematic below (Fig. 

14A), the large oval represents a cell permissive to HCV infection. Infectious viral particles (Vi) 

can enter the cell with an entry rate coefficient of kin. Then, new copies of HCV RNA (R) are made 

with production rate α0.  

The accumulating HCV RNA (R) then degrades at rate constant µ or is assembled and 

secreted at rate constant ks. A portion of these secreted particles (ρ, a constant with possible 

values between 0 and 1) will be infectious (Vi), and the remainder (1- ρ) will be non-infectious 

(Vni). Infectious particles (Vi) are degraded into non-infectious particles (Vni) with rate coefficient 

kloss and total encapsidated RNA, Vtot, is degraded with rate constant c.  It is worth noting here 

that experimentally we measure total extracellular HCV RNA (Vtot) which represents both 

infectious and non-infectious extracellular HCV particles (i.e. Vi+Vni) by RT-qPCR and Vi by titer 

assay, but non-infectious extracellular HCV particles are not measured directly. 
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Fig 14.  Initial HCVcc Mathematical Model Schematic. A) Schematic representing the HCV viral 
lifecycle in an individual cell. B) Schematic representing the HCV viral lifecycle and possible 
antiviral effects marked in red. C) Equations that comprise the mathematical model.  
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Below the schematics are the equations that make up the mathematical model (Fig. 14C). 

Analogous to the replicon model (Eq. 1 in Chapter 3), the corresponding differential equations 

are constructed by combining the additive and subtractive forces that affect the levels of 

intracellular HCV RNA over time (dR/dt), extracellular infectious particles over time (dVi/dt), and 

extracellular non-infectious particles over time (dVni/dt). In order to simulate inhibition of any of 

the viral lifecycle steps that are included in the schematic –viral entry, RNA production, or 

assembly/secretion- the rate coefficient of that step in the equation is multiplied by an inhibition 

coefficient expressed as (1-ε), where ε is a value equal to or greater than 0 and smaller than 1, 

reflecting the percentage or efficacy of inhibition. In this set of equations, ε represents efficacy 

in blocking HCV RNA synthesis and εs represents efficacy in blocking viral assembly/secretion. In 

order to simulate a condition that enhances the degradation rate of intracellular HCV RNA (R), the 

degradation rate µ*R is multiplied by κ, which can be set to a number equal to or greater than 1. 

Because studies in cell culture and in patients have documented relatively small fluctuations 

in HCV levels over time during chronic infection, revealing that the virus exists at steady-state 

levels, we can use what we know about the dynamics of chronic HCV infection to minimize the 

number of unknown parameters in the model. Specifically, we express this knowledge 

mathematically by setting all viral inhibition parameters in our model to equal zero (and κ to 1) 

and setting the differential equations that describe the change in viral levels to zero for 

intracellular HCV RNA, extracellular HCV RNA, and extracellular titer (dR/dt, dVni/dt, and dVi/dt 

= 0).  
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With this information added, the mathematical model equations during steady-state become  

 

 

 

 

Algebraic rearrangement of these equations (steps described in Fig. 15) then allows us to link 

some of the unknown parameters to each other, in other words to express certain parameters in 

terms of others, so that the number of unknowns is functionally reduced and the model can be 

used to simulate steady-state with the incorporation of equations 4-7 (Fig. 15). 
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Figure 15. Using HCV Equilibrium to Reduce Unknown Model Parameters. Parameters a0 
(intracellular HCV RNA synthesis rate), Vni0 (pre-treatment Vni level) and Kin (viral entry rate 
constant), and ks (assembly/secretion rate constant) as a function of other model parameters. 
Vtot0, measured pre-treatment extracellular HCV RNA level; Vi0 (measured pre-treatment titer. 
R0, pre-treatment intracellular HCV RNA (Table 8).   

 

 

 

 

  

4.2.2 Empirically Measuring Unknown Viral parameters  

To further reduce the number of unknown parameters in our HCVcc Infection Model, we 

directly quantified those parameters which could be readily measured empirically. Specifically, 

we measured the decay rate of particle infectivity [i.e. infectious particles decay (kloss)] and of total 

extracellular HCV RNA [i.e. decay of RNA containing particles (c)]. To do this, we emulated our 

standard experiment conditions by diluting stock virus in cell culture medium to a concentration 

representative of that measured during our experiments and incubating it at the same 
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temperature as the kinetic experiments, 37℃. We harvested aliquots over time and measured the 

infectious titer and total HCV RNA to monitor decay (Fig. 16).  

The value for the rate coefficient for the loss of infectivity (kloss) in the mathematical model 

was found by plotting these data on a graph that had an x-axis of time (days) and a y-axis of the 

negative natural log of the FFU [-ln(FFU)], then adding a linear trend line whose slope value of 

2.64 day-1 was taken as the decay rate coefficient value. Analogously, the slope of the 

transformed RNA decay data gave the rate coefficient of 0.13 day-1 for the degradation of 

extracellular HCV particles that encase the viral RNA (c). The corresponding half-life for the 

infectivity at 37℃ is 6.3 hours, which is significantly less than the half-life of the particle that 

protects the HCV RNA, which is 127 hours. 
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Figure. 16.  Kinetics of extracellular HCV viral particle decay. Aliquots of virus were incubated at 
37℃ for the indicated times (x-axis). A) Loss of particle infectivity. Samples were titered by 
limiting-dilution titer assay. Focus-forming units or infectious particles per mL is graphed (y-
axis). B) Loss of HCV particle integrity. HCV RNA copies per mL was/were quantified by RT-qPCR 
(y axis). Two independent experiments are graphed. Each data point represents the average of 
duplicates taken at each time point. 

 

 

 

 

 



66 
 

 

 

4.2.3 Preliminary Model Fits to Inhibition Data Reveal Missing Pathway in Mathematical                   

Model   

After building the mathematical model to include HCV steady-state infection and all 

directly measured parameters, we wanted to determine whether the model could predict the 

behavior of the system.  To do this we performed HCV steady-state inhibition experiments and 

determined if the model could simulate the empirical data. Similar to the replicon experiments, 

we started by using HCV antivirals with well-defined, single mechanisms of action – an HCV NS5b 

polymerase inhibitor and an HCV secretion inhibitor. Specifically, we established non-growing 

Huh7 cultures (Fig. 17A), infected them with HCVcc, and allowed infection to progress to steady-

state (Fig. 17B). To perturb steady-state, we treated these chronic infections with either NM107, 

a nucleoside-analog inhibitor of the viral polymerase (NS5b), or Naringenin, a grapefruit 

extract/flavonoid that blocks HCV secretion by inhibiting very low density lipoprotein (vLDL) 

secretion through activation of peroxisome proliferator-activated receptor (PPARα)56,92. Frequent 

samples were harvested to monitor intracellular HCV RNA, extracellular HCV RNA, and 

extracellular HCV titers (Fig. 18). 
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Figure 17. Steady-State HCV Infection in Non-Growing Huh7 Cells. (A) Establishment of non-
growing Huh7 cells. Huh7 cells were plated on collagen and 1% DMSO was added to the media at 
confluence. At indicated times (x-axis), cells were harvested for counting (right y axis) and RNA 
extraction. RT-qPCR was performed to quantify the relative expression if the indicated 
hepatocyte-specific genes which are graphed as fold induction (left y-axis) over that observed in 
growing Huh7 cells (B) HCV infection. At day 20 post-DMSO treatment, cultures were infected 
with HCV at a MOI of 0.01 foci forming units (ffu)/cell. Culture media and cell RNA were harvested 
at various times post-infection (p.i.) and the kinetics of infection was monitored by titration and 
RT-qPCR, respectively. 
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Figure 18.  HCVcc Kinetics During Treatment with Direct Acting Antivirals.  DMSO growth-
arrested Huh7 cells with steady-state HCV RNA levels were treated with A) 25 µM NM107 or B) 
200 µM Naringenin or diluent control (not shown). Cell lysate and culture supernatant were 
harvested at the indicated time points post-treatment (x-axis). Intracellular HCV RNA was 
quantified by RT-qPCR and the average of triplicate samples is graphed as HCV RNA copies per 
well (gray circles). Extracellular HCV RNA was quantified by RT-qPCR and the average of duplicate 
samples is graphed as HCV RNA copies per well (white circles). HCV titer was determined by 
titration on naïve Huh7 cells and the average of duplicate samples is graphed as FFU per well 
(black squares). All data points are graphed relative to the diluent treated control cultures at the 
corresponding time point (as described in Materials and Methods). Error bars represent the 
standard of deviation of measured values among the replicate wells.  
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Inhibition of intracellular HCV RNA by the polymerase inhibitor, NM107, started to occur 

between 4 and 6 hours and dropped nearly one log by 9 hours after initiation of treatment. The 

decline slowed after 9 hours with HCV RNA being reduced by an additional log by 48 hours (Fig. 

18A, gray circles). The amounts of extracellular HCV RNA (white circles) and extracellular 

infectious titers (black squares) were also reduced by NM107, although this reduction was slower 

beginning after 12 hours of antiviral treatment presumably due to the time required for 

intracellular RNA levels to be reduced to the point that it would affect assembly. Both extracellular 

HCV RNA and titer were reduced by a log after 36-42 hours of treatment. During treatment with 

the HCV secretion inhibitor, as expected intracellular HCV RNA levels were not reduced (Fig. 18B, 

gray circles). In contrast, extracellular HCV RNA and titer (white circles and black squares, 

respectively) were each reduced by 1 log by 32 hours after initiation of treatment, which is 

consistent with the treatment affecting the secretion of HCVcc without affecting HCV RNA 

production. The delay lasted for 12-16h, which may reflect the time that is required for vLDL 

secretion to be reduced.  

To determine if our new HCVcc infection model could simulate the behavior of the system 

after perturbation from steady-state, we fit the model to these empirical data and assessed the 

quality or closeness of these fits. Looking at the polymerase data, the model simulation (Fig. 19A, 

solid gray line) recapitulated the intracellular HCV RNA inhibition kinetics (gray circles) giving a 

satisfactory fit.  However, the fit to the extracellular titer data (Fig. 19A, dashed gray line and 

black squares, respectively) was not accurate; it seemed to fit between 0 and 24 hours of 

treatment but then only predicted a ¾ log reduction which was significantly less than the empirical 
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data (black squares). Most problematic, the simulation of the extracellular RNA level (Vtot) (Fig. 

19A, dashed black line) showed no significant reduction over time, even though the empirical 

data (Fig. 19A, white circles) showed a reduction greater than one log during the course of 

treatment. The mathematical model was also unable to fit the secretion inhibitor data, even if the 

simulation blocked secretion by 99.99%. Again, simulating intracellular RNA was not a challenge, 

but model simulations with fixed c=0.13/day and kloss=2.64/day (Fig. 16) for extracellular HCV 

RNA were only reduced by ¼ log even though empirical levels were reduced by ¾ log and 

simulations for HCV titer were only reduced 1/3 log even though empirical levels were reduced 

by ¾ log (Fig. 19B).  
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Figure 19. Initial HCVcc Infection Model Data Fits. The mathematical model was used to fit the 
empirical data in Fig. 18 using Berkeley Madonna software. A) NM107 HCV NS5b polymerase 
inhibitor data. B) Naringenin HCV secretion inhibitor data. Solid or dashed lines represent 
mathematical model fits to corresponding datasets. Model parameter values used for plotting the 
curves: Ep=97% for NM107 (0 for Naringenin). Ein=0. Es=99.99%. R0=5.86x107, Vtot0=1.7x106, 
Vi0=1600, t0=0.1 days for NM107 or 0.67 days for Naringenin, c=0.13/day, µ=2.77/day, 
Kloss=2.64/day, ρ=0.0022 
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Looking at the schematic (Fig. 14A-B) and equations (Fig. 14C), the reason the model was 

unable to simulate the data became apparent. The only pathway in the mathematical model able 

to reduce extracellular HCV RNA was degradation, but based on our empirically measured HCV 

degradation rate, that process is too slow to account for the rate of reduction that was seen in 

the experiments as the stability of the particle protecting the HCV RNA in the media is extremely 

high with a half-life of 127 hours (Fig. 16A). In these inhibition experiments, the extracellular 

HCV RNA was reduced ~6 times as fast, with a half-life of 18.7 hours and 19.9 hours for the 

polymerase and secretion inhibitor experiments, respectively. Based on the MOA of these two 

antiviral drugs we expect them to reduce progeny virus secretion without enhancing the 

degradation rate of HCV particles and the RNA contained inside, thus the inability of the model 

to simulate the empirical data suggested that our understanding of the system was incomplete. 

Therefore, we hypothesized that there was another mechanism for clearing HCV particles/RNA 

from extracellular media and we designed experiments to investigate this model-derived 

hypothesis.  

 

4.2.4 Investigating Mechanisms by Which Extracellular Hepatitis C Virus Ribonucleic Acid 

is Reduced during the Hepatitis C Virus Cell Culture Lifecycle  

Because experimental data was indicating that degradation of extracellular virions 

encapsidating HCV RNA is about 6 times too slow to explain the reduction seen in our inhibition 
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experiments, this indicated that something was missing from our model. Specifically, there had 

to be an additional pathway by which extracellular RNA-containing viral particles were being 

removed from the extracellular milieu.  First, we tested the possibility that the cells might be 

secreting a product that enhances the degradation of extracellular HCV particles and the rate of 

extracellular HCV RNA reduction, we treated stock virus with either fresh/unused media or media 

taken from uninfected cells, cells infected by adenovirus, or cells treated with IFN to induce an 

immune response analogous to HCV.  

At every time point, we froze aliquots, and added fresh or spent media to the remaining 

aliquots. At the end of the experiment, RNA was isolated from all samples to determine HCV RNA 

levels over time when exposed to these differently conditioned media. Within the 25 hour assay, 

HCV RNA levels were not decreased significantly by any of treatments, indicating that HCV RNA 

degradation was not enhanced by spent media and suggesting that cells are not secreting 

products that enhance the loss of extracellular HCV RNA in the media (Fig. 20). In conclusion, 

this mechanism is not likely to be responsible for reducing the extracellular HCV RNA during 

HCVcc infection, and the next option that we considered was cellular uptake. 
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Figure 20. Extracellular HCV RNA Stability in Differently Conditioned Media. Virus aliquots were 
incubated with media from uninfected cells (squares), IFN-treated cells (triangles), adenovirus 
infected cells (crosses) or fresh media (diamonds) at 37C for the indicated time. HCV RNA was 
isolated, quantified by RT-qPCR, normalized to spiked carrier RNA and is graphed as HCV 
copies/mL. 

 

 

 

 

 

4.2.5 In vivo Evidence that Hepatitis C Virus Entry into Hepatocytes Plays a Major Role in 

Hepatitis C Virus Steady-State  

We often perform in vitro experiments to test mathematical model predictions/hypotheses 

generated when modeling clinical data, however in this case we happened to independently make 

an interesting observation while monitoring HCV levels in patients during liver transplantation 
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that provides in vivo evidence to support our in vitro model hypothesis that viral entry into 

hepatocytes may play a role in HCV steady-state.  

In a collaboration with Dr. Forns, we were monitoring viral kinetics during liver 

transplantation to evaluate the function of the liver in clearing free virus from the circulation.  

The idea was to measure HCV levels in the blood during the anhepatic phase (AH) when no liver 

is present and then during early post-reperfusion phase (RP) after the new liver had been 

introduced.  In total, 5 patients (P1-P5) with median age 60 years (range, 49-68) and median BMI 

30 (range, 19-34) underwent liver transplantation (Table 7).  Blood samples were taken before 

liver transplantation, every 5-15 minutes during the anhepatic phase (AH) and every 3.6 minutes 

to 2 hours until 4 hours after graft reperfusion (RP), during which we assume that there is no 

production of new virions from the HCV-negative donor liver. Thereafter, HCV RNA was measured 

intermittently (Fig. 21). Transfusion of blood products and albumin infusion were recorded. 
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Patient Gender Weight (kg) BMI Age at LT Donor age 
Donor 
gender 

HCV 
genotype 

1 M 90 29 49 29 M 1b 

2 M 88 30 68 72 M 1b 

3 F 70 31 66 33 M 1b 

4 M 87 34 56 69 M 3 

5 F 43 19 60 73 F 1b 

        

Median 
(range) 

 87 (43-90) 30 (19-34) 60 (49-68) 69 (29-73)   

Table 7. Characteristics of HCV Infected Liver Transplant Patients 
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Figure 21: HCV Kinetics before, during, and after Liver Transplantation.  
Surgery was initiated at t = 0. 

 

 

 

The median viral load across all 5 patients before AH phase was 6.04 (range 3.71-6.40) log10 

IU/mL. The AH phase lasted 1.25 h - 1.90 h in duration. During that time virus levels were flat in 

three patients (P2, P3 and P4). In the other two patients (P1 and P5), serum HCV half-live was 

1.93 h and 0.95 h, respectively (Fig. 22).  Although the calculations were adjusted/corrected for 

fluid input, it is perhaps noteworthy that patients 1 and 5 received the largest volume of fluid 

during the procedure consisting of 500 and 750 mL respectively. During the first 4 hours after 

graft reperfusion, Patient 1 experienced a plateau in viral load while Patients 2-5, exhibited HCV 

RNA decline with slopes 0.34, 0.36, 0.24, and 0.39 log10 IU/mL per day (p < 0.01), corresponding 

to viral half-lives of 0.9 h, 0.83 h, 1.23 h, and 0.78 h respectively.  While it was expected that 

HCV RNA levels would drop once the infected liver was removed because no more HCV particles 
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would be generated, the observation that the HCV levels remained unchanged during the 

anahepatic phase in three of five patients (Fig. 22) suggests that the liver was not only the main 

producer of HCV, but also the main route by which HCV is cleared from the serum.  

 

 

  

Figure 22: HCV RNA Kinetics during Liver Transplant. Blood samples were taken from five HCV 
infected patients before and during the anhepatic phase (rectangles), and 4 hours after liver graft 
reperfusion. HCV RNA measurements are shown with circles connected by straight lines. Patients 
2, 3 and 4 experienced a viral plateau (VP) during AH. The boxed region represents the anhepatic 
phase and VP indicates which patients had a viral load plateau during the anhepatic phase. 
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4.2.6 Updating Mathematical Model to Include Non-Productive Cellular Uptake of 

Hepatitis C Virus Particles  

Based on in vitro observations that Huh7 cells were not secreting something that enhances 

HCV particle degradation and in vivo observations during liver transplant that suggest the 

infected liver is the main route by which HCV is cleared from the serum of infected patients,  we 

added a pathway to the model that allows not only infectious particles (Vi), but now also non-

infectious virus particles (Vni) to enter infected cells (albeit all this entry is likely non-productive 

due to super-infection exclusion93) (Fig. 23).  
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Fig 23. Revised HCVcc Mathematical Model. This schematic represents the viral life cycle 
described by the mathematical model, with the inclusion of an additional pathway so that now 
any viral particle in theory (Vi and Vni) can enter infected cells (highlighted in blue). Specifically, 
Vni is now able to enter the cell with the same entry rate coefficient kin as Vi. The model also allows 
inhibition of entry εin for both species of extracellular HCV particles. The corresponding 
mathematical model equations are to the right of the schematic. 

 

 

4.2.7 Updated Hepatitis C Virus Cell Culture Model Fits Empirical Data, Consistent with 

Viral Entry Playing a Role in Maintaining Hepatitis C Virus Steady-State 

After changing the mathematical model to allow any virus (Vi or Vni) to non-productively 

enter infected cells, it was necessary to determine whether this updated model could simulate 

HCVcc inhibition kinetics and estimate HCVcc infection parameters. We allowed Berkeley 

Madonna software to find a best fit for the updated mathematical model (Fig. 23) and empirical 

HCVcc kinetics during treatment with both NM107 and Naringenin, (Fig. 24). For both sets of 

dR

dt
 (1)0  (1in )kinVtot R (1s )ksR

dVi

dt
 (1s )ksR  (kloss  c)Vi  (1in )kinVi

dVni

dt
 (1s )ks(1 )R klossVi  cVni  (1in )kinVni

Vtot Vi Vni
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inhibition kinetics, the model was able to accurately fit all three measured HCVcc parameters 

throughout the time course. 

With these new fits, we proceeded to calculate confidence intervals for parameter 

estimations made by the mathematical model (Table 8). This analysis is important as it reveals 

how robust the model parameter estimates are. As indicated, when appropriate, we fixed 

parameters that were estimated directly from designed in vitro experiments or for mechanisms 

of inhibition that are not relevant when considering the target of the antiviral being used. As can 

be seen by the tight confidence intervals and p-values below 0.05, this analysis revealed that the 

model is sensitive to all parameters estimated (Table 8).  This analysis also provided a quantitative 

assessment of how well the model fit the data. Specifically, the residual sum of squares/sum of 

squared residuals or RRS is calculated by squaring the distance from each data point to the closest 

point in the simulation then taking the square root of the sum of those squares. Compared to the 

very large “bad fit” RSS values of 90.5 (NM107 dataset) and 84.8 (Naringenin dataset) calculated 

when fitting our original HCVcc infection model (Fig. 14) to these same datasets (Fig. 18), the 4x 

lower RSS values of 19.2 (NM107 dataset) and 21.9 (Naringenin dataset) calculated when fitting 

the revised HCVcc infection model reveal a much closer fit (Table 8). 
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Figure 24. Revised HCVcc Infection Model Data Fits. The mathematical model was used to fit the 
empirical data in Fig. 18 using Berkeley Madonna software. A) NM107 HCV NS5b polymerase 
inhibitor data or B) Naringenin HCV secretion inhibitor data. Solid or dashed lines represent 
mathematical model fits to corresponding datasets. Model parameters are described in Table 8.   
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Biological Definition 

 NM107 
Values 

[95% C.I.] 

Naringenin 
Values        

[95% C.I.] 

 
Source 

 Experiment data points 49 49  
 Number of model estimates  3 2  
R0 Initial intracellular HCV RNA 5.86x107 

copies/well 
5.86x107 

copies/well 
Experimentally 
measured 

Vtot0 Initial extracellular HCV 
RNA 

1.7x106 
copies/well 

1.7x106 
copies/well 

Experimentally 
measured 

Vi0 Initial extracellular 
infectious HCV particles 

1600 FFU/well 1600 FFU/well Experimentally 
measured 

Vni0 Initial extracellular non-
infectious HCV particles 

1,698,400 
/well 

1,698,400 
/well 

Experimentally 
estimated as Vtot0-Vi0 

(RSS) Distance between data and 
simulation (natural log) 

19.201 21.914 Calculated by 
DEDiscover  

() Portion of infectious  
virions  

0.0021    
[0.0016-0.0026] 

0.0023    
[0.0017-0.0030] 

Estimated using 
DEDiscover 

() RNA degradation rate 
constant (/day) 

2.7782    
[2.0798-3.4767] 

2.7782 (fixed) Estimated by fitting 
model to NM107 data 

c Non-infectious particle 
degradation rate constant 

0.13/day 0.13/day Experimentally 
measured  

kloss Loss of infectivity rate 
constant 

2.64/day 2.64/day Experimentally 
measured  

α0 Intracellular HCV RNA 
synthesis rate constant 

1.78x108/day 1.78x108/day Determined by fitting 
in Berkeley Madonna 

kin Viral entry rate constant 1.84/day 1.84/day Determined by fitting 
in Berkeley Madonna 

ks Assembly/secretion rate 
constant 

0.06/day 0.06/day Determined by fitting 
in Berkeley Madonna 

t0 delay 0.1 days 0.67 days Estimated by Berkeley 
Madonna software 

(ε) RNA production Inhibition  0.9726    
[0.9605-0.9846] 

0 (fixed) Estimated by fitting 
model to NM107 data 

(εs) assembly/secretion 
Inhibition  

0 (fixed) 0.9217    
[0.8864-0.9569] 

Estimated by fitting 
model to Ng data 

εin Entry inhibition 0 (fixed) 0 (fixed) Fixed 
Table 8. Revised HCVcc Model Parameter Estimations. The estimated value for a parameter is 
followed by its 95% confidence interval in brackets. If the parameter was not estimated by the 
model, that is indicated by writing the word “fixed” after a parameter estimate.  
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Another important consideration is whether the mathematical model gives parameter 

estimates within the range of accepted biological norms. For example, having estimates for the 

portion of secreted HCV particles that are infectious around 1 in 500 [within a 95% confidence 

interval of 1/333-1/625] is consistent with empirically measured specific infectivity values in our 

laboratory and others. Likewise, the estimated values for the inhibition efficacies of these 

antivirals against their respective viral lifecycle targets being around 90% or greater is expected 

because these antivirals have been reported to be potent inhibitors of HCV. The estimate for the 

degradation rate coefficient of intracellular HCV RNA is between 2- 3-times faster than reported 

in the sg1b replicon system, but this is perhaps also expected due to the longer length and 

possibly lower stability of the viral RNA in the infection system does not stay perpetually 

associated with and protected by replication complexes (as it would in the replicon system), but 

rather must be transported to site of assembly which presumably would involve exposing it to 

degradation mechanisms. Importantly, this analysis confirms that the model estimates are all 

within accepted biological norms and further supports the hypothesis that non-productive 

cellular uptake of viral particles is a component of HCVcc infection dynamics. 

 

4.3 Discussion 

With the availability of a robust in vitro HCV infection that achieves long-term steady-

state chronic infection, we have created the first data-driven, multi-scale (i.e intracellular and 

extracellular) mathematical model of HCV infection for understanding the dynamics of HCV 
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infection and treatment response in vitro. The initial model was based on our basic understanding 

of the HCV lifecycle (Fig. 14) and empirically measured viral parameters (Fig. 16).  While we were 

able to generate model equations that represented HCV steady-state (i.e. no antiviral inhibition 

and no change in viral load), which allowed us to reduce the number of unknown parameters, 

this initial model was unable to predict the behavior of the system and simulate HCV inhibition 

kinetics under treatment with antivirals with single, known mechanisms of action (Fig. 18).  By 

assessing the inadequacies of the model, we hypothesized that extracellular HCV RNA must have 

an additional mechanism of clearance we originally did not anticipate. Through empirical 

observations in vitro (Fig. 20) and in vivo (Fig. 22), we obtained data consistent with non-

productive viral uptake into infected cells playing a role in the maintenance of HCV steady-state 

infection dynamics. Consistent with this hypothesis, expanding our HCV infection model to 

include this new aspect of HCV steady-state (Fig. 23) allowed for accurate simulation of the 

empirical data (Fig. 24; Table 8).  

Expanding our replicon model entailed adding additional steps of the viral life cycle (e.g. 

entry, assembly/secretion, and degradation of each species of extracellular HCV particle) that 

include not only intracellular HCV RNA levels (analogous to the replicon model), but also 

extracellular HCV RNA and titer in the culture media.  Therefore, in these experiments, we 

collected culture supernatants and cell lysates and expressed all measured parameters on the 

same scale, e.g. per experimental well to allow all HCV parameters to be interconnected in the 

mathematical model equations.  Most importantly, adapting the mathematical model from the 

HCV replicon system to the in vitro HCV infection system has two significant advantages. First, 
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the mathematical model allows us to study antivirals that target viral lifecycle steps such as entry, 

assembly, and egress, which are not recapitulated by the HCV replicon system. Second, the 

inclusion of extracellular HCV RNA data/predictions is more readily comparable to patient data 

(i.e. serum levels of HCV RNA) and thus is more directly clinically relevant/informative.  

One technical challenge we faced trying to quantify HCV extracellular titer in the context 

of HCV inhibition experiments was the presence of the HCV inhibitors in our collected media 

samples.  This required kinetic analysis to determine how long the inhibitor containing inoculum 

had to be left on the cells to allow the buoyant HCV particles to reach the cells and initiate HCV 

and careful titration of the samples to reduce the concentration of the inhibitors to non-

interfering doses without reducing the titer of the HCV present to below our quantification limits.  

While samples harvested early during the experiment have enough FFU to allow for adequate 

dilution, this can be problematic for samples taken later after antiviral inhibition. While we tried 

other, more complex, strategies such as filtering and dialysis, we ultimately settled on 

determining the maximum concentration of each drug that could be incubated with the cells for 

the 9 hours required for efficient HCV infection initiation (see Materials and Methods). Since the 

studies in this thesis were completed, our lab group has adapted this titer assay to 24-well plates 

to allow a higher volume of sample per well which increases the number of countable foci and 

results in a lower limit of detection. 

The mathematical modeling also highlighted a few interesting observations during the 

analysis of HCVcc response kinetics during treatment with a well-characterized HCV NS5b 
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polymerase inhibitor NM107. Because the HCV polymerase inhibitor was blocking HCV RNA 

synthesis, we expected a decline in intracellular HCV RNA and we did see a decrease that was 

two-logs (99%) lower than the initial levels (Fig. 24A).  The decline in intracellular HCV RNA was 

followed by a one-log (90%) decline in extracellular HCV particles, presumably as a secondary 

effect of the polymerase inhibition, due to less intracellular HCV RNA being available for 

packaging into progeny HCV particles that can be secreted.  Notably, this delay was simulated by 

the model without inserting an artificial delay in any equations that describe the effect of the 

polymerase inhibitor on extracellular HCV parameters. Importantly, the model also recapitulated 

the smaller reduction in extracellular HCV RNA compared to intracellular (90% vs 99%). One 

explanation for this observed inhibition pattern is that HCV RNA is likely synthesized in excess 

of the amount that ultimately gets packaged for secretion as Huh7 cells are limited in the 

lipoprotein synthesis required to support efficient HCV assembly and secretion.   

Because HCV superinfection exclusion has been reported for HCV93, in our initial model 

we assumed extracellular HCV steady-state RNA levels were maintained solely by HCV particle 

degradation balanced by HCV particle production. However, this initial model proved unable to 

simulate our empirical HCV inhibition kinetics (Fig. 19) and the discrepancies between the model 

and the data revealed that there must be an additional mechanism of extracellular HCV RNA 

clearance. While HCV clearance from the blood in patients has always been presumed to be 

immune-mediated, this mechanism is not present in vitro.   In the absence of in vitro evidence 

supporting enhanced degradation (Fig. 20) and the presence of in vivo evidence supporting liver 

uptake (Fig. 22), we adjusted our mathematical model to include a cellular uptake pathway that 
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reduces extracellular HCV RNA (Fig. 23). Importantly, this is not inconsistent with the previously 

reported super-infection exclusion as there are many possible mechanisms by which a virus can 

block a productive super-infection post-viral entry (e.g. preventing fusion, uncoating, or 

translation of the incoming virus).  While the model does not specify whether this entry pathway 

signifies the canonical HCV cellular entry pathway, or some other non-specific cellular uptake, 

the model does not include a mechanism for this secondary uptake to increase HCV RNA synthesis 

and any increase in intracellular RNA levels caused by cellular uptake is miniscule compared to 

that caused by the amplification of RNA synthesis, hence this entry is likely non-productive, 

consistent with superinfection exclusion. Importantly, the updated model accurately simulated 

NM107 and NG inhibition data yielding robust parameter estimates that are within biologically 

relevant ranges (Fig. 24 and Table 8). Hence, while future experiments are needed (see Chapter 

6), the revised model supports the unexpected conclusion that cellular uptake of HCV RNA is 

important for HCVcc infection dynamics. 
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5. MODELING HEPATITIS C VIRUS TREATMENT RESPONSE TO ELUCIDATE DRUG 

MECHANISM OF ACTION 

5.1 Introduction 

Initial HCV direct acting drug development efforts focused on the standard viral enzymatic 

targets, such as the NS3/4A protease and the NS5B polymerase. However, using a non-biased 

screening approach, Bristol Myer Squibb identified a NS5A inhibitor, which they named BMS-

790052 or daclatasvir.94  The clinical efficacy of daclatasvir was confirmed in a single dose study 

which surprisingly revealed that inhibiting this protein resulted in a more rapid reduction in serum 

HCV levels than had previously been seen with any other treatment.94 Not only was this exciting 

from a clinical perspective, but it was also interesting mechanistically for two reasons. First, it 

was of interest because the functions of HCV NS5a were not well defined and thus understanding 

the mechanism of action of this inhibitor could reveal insight into critical aspects of the HCV life 

cycle. Second, it was of interest because NS5a has no known enzymatic activity, making it an 

unusual and unexpected drug target.95–99 As such, we sought to use mathematical modeling to 

elucidate the mechanism of action of this new NS5a inhibitor, BMS-790052 or Daclatasvir (DCV). 
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5.2 Results 

5.2.1 Modeling HCV Treatment Response to Daclatasvir in Patients  

Our 2013 manuscript  (Proc Natl Acad Sci USA 110, 3991–3996)(Appendix A), describes 

the first phase of this study in which the serum (extracellular) HCV RNA levels that had been 

measured in patients were analyzed by mathematical modeling to try and determine the 

mechanism of the rapid HCV decline observed. Although previous modeling of HCV inhibition 

kinetics in patients had been achieved with a simple mathematical model based solely on 

extracellular HCV serum kinetics, these efforts found that simulating the in vivo inhibition kinetics 

of daclatasvir required a “multiscale” model that also includes theoretical intracellular inhibitory 

effects which cannot be directly measured from available patient samples. While the model could 

fit the data assuming several possible mechanisms of action, only simulations hypothesizing that 

DCV blocks viral RNA synthesis and virion assembly/secretion were deemed valid because 

matching the data to other mechanism simulations required parameter values that were outside 

of acceptable biological ranges.  

 

5.2.2 Confirming in vivo Model Predictions that Daclatasvir has Two Mechanisms of Action 

Because measuring intracellular HCV parameters is not feasible in patients, we conducted 

an experiment in vitro with the same drug and measured both intracellular and extracellular levels 

of virus to examine whether the NS5a inhibitor was blocking both RNA production and 
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assembly/secretion. Specifically, chronically HCV infected non-growing Huh7 cells were treated 

with drug vehicle alone, DCV, or the HCV NS5b polymerase inhibitor, NM107. During treatment, 

samples were harvested frequently to monitor the inhibition of intracellular HCV RNA and 

extracellular infectious HCV titer over time. Both drugs reduced intracellular HCV RNA with 

identical kinetics, but titer was reduced by DCV much faster than by NM107, consistent with the 

model prediction that DCV in addition to blocking HCV RNA synthesis, also has an additional 

independent effect on HCV virion assembly/secretion (Appendix A, Pg. 138, Fig. 4).  

5.2.3 Modeling Hepatitis C Virus Cell Culture Treatment Response to Daclatasvir in vitro    

While the ability of the in vivo mathematical model to generate a hypothesis about drug 

mechanisms of action within the cell based on extracellular data alone is impressive, we decided 

to utilize our in vitro mathematical model to try and further dissect this novel mechanism of 

action on a molecular level.  For this, chronically infected non-growing Huh7 cells were again 

mock-treated or treated with DCV, but this time samples were harvested to monitor intracellular 

HCV RNA, extracellular HCV titer, as well as extracellular HCV RNA over time. Similar to our 

published results, the NS5a inhibitor reduced intracellular HCV RNA (Fig. 25, gray circles), but 

titer was reduced more rapidly and to a larger extent (1 log versus 1.75 logs by 20 hours) (Fig. 

25, black squares) consistent with DCV inhibiting HCV RNA synthesis and HCV virion 

assembly/secretion. The additional extracellular HCV RNA data (Fig. 25, white circles) revealed a 

reduction of ¾ log, parallel with the intracellular RNA reduction indicating that DCV treatment 

was altering the specific infectivity of the virus being produced. 
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Surprisingly, although our HCVcc model was able to fit well the data from the secretion 

inhibitor (NG) and the HCV NS5b polymerase inhibitor (NM107) (Chapter 4, Fig. 24), when we 

tried to simulate these DCV NS5a inhibition kinetics we found that the model was unable to fit 

the data (Fig. 25). Full ranges of biologically relevant values were tested for each biological 

parameter, but the best fits could not simultaneously simulate the inhibition kinetics of all three 

measured variables- intracellular HCV RNA, extracellular titer and extracellular total HCV RNA 

levels. The two best fits could fit the kinetic data for only two of the three variables, one fitting 

the intracellular HCV RNA and extracellular titer levels (Fig. 25A) and one fitting the intracellular 

HCV RNA and the total extracellular HCV RNA levels (Fig. 25B). When testing each unknown 

parameter within its biologically relevant range, it became apparent that the model always 

decreased infectious extracellular titer and total extracellular HCV RNA in parallel under every 

condition, despite the fact that the mathematical model has a nearly 10-fold difference between 

the rate coefficients of particle degradation (c) and the loss of infectivity (kloss) which accounts for 

the difference in half-lives between these parameters. Because we know that viral infectivity can 

in theory be altered, this restriction in the model simulation dynamics suggested something was 

missing, likely due to the fact that we had left assembly and secretion coupled. 
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Fig 25. HCVcc Infection Model Data Fits to DCV Inhibition Kinetics. Growth-arrested Huh7 cells 
with steady-state, chronic HCV infection were treated with 1nM BMS-790052 or diluent control 
(not shown). Cell lysate and culture supernatant were harvested at the indicated time points post-
treatment (x-axis). Intracellular HCV RNA was quantified by RT-qPCR and the average of triplicate 
samples is graphed as HCV RNA copies per well (gray circles). Extracellular HCV RNA was 
quantified by RT-qPCR and the average of duplicate samples is graphed as HCV RNA copies per 
well (white circles). HCV titer was determined by titration on naïve Huh7 cells and the average of 
duplicate samples is graphed as FFU per well (black squares). All data points are graphed relative 
to the diluent treated control cultures at the corresponding time point (as described in Materials 
and Methods, Fig. 4). Error bars represent the standard of deviation of measured values among 
the replicate wells. Solid and dashed lines represent mathematical model fits to corresponding 
datasets achieved with Berkeley Madonna software. (A) Best fit to intracellular HCV RNA and 
extracellular HCV titer. (B) Best fit to intracellular HCV RNA and extracellular HCV RNA. 

 

B
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5.2.4 Confirming Accurate Quantification of Extracellular Hepatitis C Virus RNA Levels 

Before changing the model to account for DCV data, we first wanted to determine if there 

was a technical artifact that was causing the extracellular HCV RNA levels in our experimental 

system to remain high or if our assay was accurately measuring Vtot. In particular, it had been 

reported that HCV RNA can be found in extracellular exosomes raising the question of whether 

HCV may be transmitted by exosomes, and if perhaps this is one reason why antibodies against 

HCV particles are not optimally effective.100–103 Hence, we wanted to determine whether the high 

levels of extracellular HCV RNA might be due to the secretion of exosomes containing viral RNA. 

However, separating exosomes from HCV particles is difficult because they are similar in size 

(exosomes being 50-90 nm85 and HCV particles being 40-70 nm)14,23,104–107and HCV particles 

bind to CD-81108, a prominent exosome marker85. Hence, we decided to modulated the amount 

of exosomes that were secreted by infected cells and investigated whether the amount of 

exosome secretion affected extracellular HCV RNA levels. The experimental approach we chose 

was to manipulate exosome secretion and determine if this affects extracellular HCV RNA levels. 

Hence, we treated chronically HCV infected, non-growing cells with exosome secretion inhibitor 

(GW4869) or the exosome secretion enhancer (A23187)109,110 and monitored HCV levels as well 

as toxicity. Exosomes were isolated by ultracentrifugation and measured by Bradford assay and 

CD63 ELISA assay, indicating that exosomes in the supernatant were reduced by 40% and 

increased by 304% by these treatments, respectively (data not shown), but we did not observe 

any effect on extracellular HCV RNA levels (Fig. 26).  



95 
 

 

 

Figure 26. Extracellular HCV RNA Levels during Exosome Secretion Modulation. Growth-arrested 
Huh7 cells with steady-state, chronic HCV infection were treated with 10 µM GW4869 (dark gray 
line), 4 µM A23187 (black dashed line) or diluent control (black solid line). Culture supernatants 
were harvested at the indicated time points post-treatment (x-axis). Extracellular HCV RNA was 
quantified by RT-qPCR and the average of duplicate samples is graphed as HCV RNA copies per 
well. All data points are graphed relative to the diluent treated control cultures at the 
corresponding time point (as described in Materials and Methods, Fig. 4). Error bars represent 
the standard of deviation of measured values among the replicate wells.  

 

 

 

 

 Furthermore, when we treated chronically infected cells with a dose of an HCV-specific 

secretion inhibitor that blocks 92% of HCV secretion without altering the exosome secretion 

pathway (Chapter 3, Fig. 18B), we saw a 1-log reduction in extracellular HCV RNA, suggesting 

that 90% of the HCV RNA levels represent HCV particles and not exosomes. Additionally, if 

exosomes were artificially increasing extracellular HCV RNA levels in a way that caused them to 



96 
 

decline more slowly than extracellular titer levels, we would expect this phenomenon would have 

been equally apparent in our previous steady-state inhibition experiments. However, this had 

never been observed in our previous HCV secretion inhibitor (Chapter 3, Fig. 18B) or HCV 

polymerase inhibitor (Chapter 3, Fig. 18A) experiments, where we observed parallel decline in 

extracellular viral species, suggesting that exosomes were not artificially increasing levels of 

extracellular HCV RNA.  

 

5.2.5 Mechanisms by Which Daclatasvir Could be Reducing Extracellular Hepatitis C Virus 

Titer Faster than Extracellular Hepatitis C Virus RNA 

After confirming that our extracellular HCV RNA measurements are an accurate reflection 

of extracellular HCV particles, Vtot, we concluded that one of our model assumptions/hypotheses 

about the dynamics of HCV infection was incorrect or incomplete. When this occurs, it is an 

opportunity to determine where our gap in knowledge might be. After analyzing the model, we 

discovered two changes (i.e. hypotheses) that could allow extracellular titer to be reduced faster 

than total extracellular HCV RNA. One hypothesis that could be incorporated into the model would 

be to allow infectious and non-infectious particles to have distinct rates of entry, which we would 

model by having two separate entry rate coefficients for each species (ki and kni instead of the 

single kin) (Fig. 27A). This is biologically plausible because non-infectious particles could be less 

effective at entering a cell or perhaps enter through non-specific uptake at a distinct rate from 

infectious entry. However, this seems like an unlikely explanation because even if distinct entry 
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rates exist, NS5a is not thought to affect particle entry. A second hypothesis that could be 

incorporated into the model, and that would be consistent with our previous in vivo model 

predictions (Appendix A), is that the NS5a inhibitor disrupts/impairs some aspect of 

assembly/secretion such that an even larger percent of non-infectious virions are produced 

relative to infectious virions.  We modeled this by including two distinct parameters that represent 

the efficacy of the drug in blocking assembly/secretion of the infectious virus vs. the non-

infectious particles (Fig. 27B, having inhibition coefficients εsi and εsni, instead of only having εs).     
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Figure 27. Mathematical Models Allowing Non-Parallel Extracellular HCV RNA and Infectivity 
Inhibition Kinetics.  A) Distinct Entry Hypothesis Model. This model includes distinct entry rates 
ki and kni and distinct entry inhibition coefficients εi and εni for Vi and Vni, respectively. B) Distinct 
Assembly/Secretion Hypothesis Model. This model includes two distinct inhibition coefficients 
for assembly/secretion of infectious and non-infectious HCV.  
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After incorporating these two different hypotheses into the model, both were able to simulate 

a non-parallel reduction in the two extracellular virus parameters. The models were sensitive to 

all parameters tested, as demonstrated by the relatively narrow 95% confidence intervals, except 

in the case of εsi by the distinct assembly/secretion model (Table 8). However, the model 

proposing two distinct rates of entry for infectious and non-infectious particles was only able to 

fit the early NS5a data (0-36 hours), but then failed to simulate the later kinetics for the 

extracellular HCV RNA (Fig. 28A). In contrast, the model proposing that the NS5a inhibitor impairs 

infectious virus assembly/secretion modeled the data well with a greater goodness of fit (i.e., 

lower RSS) of model “assembly/secretion” compared to model “Entry”, while both models have 

the same number of unknown parameters consistent with the NS5a inhibitor DCV inhibiting both 

HCV replication and assembly/secretion (Table 9; Fig. 28B).  
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Figure 28. Revised HCVcc Infection Model Data Fits to NS5a Inhibitor Data. A) The mathematical 
model with distinct entry rates (Fig. 27A) or B) the mathematical model that allows an antiviral 
inhibition of assembly/secretion to have distinct effects on the two extracellular viral particle 
populations (Fig. 27B) were used to fit the empirical NS5a inhibition data in Figure 25 using 
Berkeley Madonna software. Solid and dashed lines represent mathematical model fits to 
corresponding datasets. Model parameters described in Table 9. 
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Model Assembly/Secretion  Entry  

Residual Sum of Squares (RSS) 20.2490 26.0254 

T0  (delay) 0.147 days (fixed) 0.01 days (fixed) 

ε (efficacy of blocking RNA synthesis) 0.94 [0.9143-0.9603] 0.93 [0.9167-0.9561] 

εsi (efficacy of blocking Vi 
assembly/secretion  

0.85 [0.0127-0.9381] 0.95 [0.9473-0.9911] 

εsni (efficacy of blocking Vni 
assembly/secretion  

0.34 [0.3142-0.3573] N/A 

Ki  (Vi entry rate) 6.79 (fixed) 2.0 [1.9673-2.1047] 

Kni (Vni entry rate) N/A 1.9 (fixed) 

 

Table 9. Parameter Calibration Analysis for Distinct Entry and Assembly/Secretion Models.  The 
two models were fit to the data generated by treatment with the HCV NS5a inhibitor Daclatasvir 
(DCV, BMS-790052). Estimated parameter values followed by 95% confidence intervals are shown. 
The residual sum of squares (RSS) is calculated by taking the shortest distance between each 
experimental data point and the model simulation, squaring each distance, summing the squares 
and taking the square root of the sum. If a value was estimated by curve fits in Berkeley Madonna 
or by the equilibrium/steady-state equations, no C.I. is available. N/A, this parameter does not 
exist in the model.  
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The distinct assembly/secretion model was also able to fit both the secretion inhibitor 

(NG) and polymerase inhibitor (NM107) kinetics as well as the previous model (data not shown), 

demonstrating that the adjustment to the model did not invalidate it for other classes of HCV 

inhibitors. However, it is important to note that the simpler model used to fit the secretion and 

polymerase inhibitor kinetics in the previous chapter (Chapter 4, Fig. 23) has the advantage of 

estimating fewer unknown parameters, giving the model more power. 

 

5.2.6 Investigating Whether the Reduced Infectivity Observed During Daclatasvir 

Treatment is Specifically Related to Inhibiting Non-Structural Protein 5a 

After getting the mathematical model to fit the NS5a inhibitor data and determining that 

DCV was affecting the specific infectivity of the progeny HCVcc produced, we were interested to 

further dissect the mechanism involved. Specifically, this raised the question whether the severe 

reduction in titer is specific to inhibition of HCV NS5a protein, or whether the dramatic reduction 

in virus titer is a compound effect caused by the inhibitor blocking both HCV synthesis and HCV 

assembly/secretion (e.g. perhaps reducing the amount of intracellular HCV RNA available for 

assembly/secretion making the process more error-prone).  To address this question, we 

performed a chronic HCV inhibition experiment in which we compared the kinetics of DCV 

inhibition relative to a two-drug combination treatment with the polymerase inhibitor, NM107, 

plus the secretion inhibitor, Naringenin. As controls, NM107 and Naringenin monotherapy 
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treatments were assessed in parallel (Fig. 29). While DCV, NM107, and the combination NM107 

+ Naringenin therapy all reduced intracellular HCV RNA with similar kinetics, there were clear 

differences in kinetics of HCV titer inhibition. NM107 and Naringenin did not start reducing HCV 

titer until 4 hours eventually causing a 0.5 log reduction after 20 hours of treatment. However, 

like DCV and the combination NM107 + Naringenin treatment reduced HCV titer earlier and to a 

larger degree, starting after 2 hours and reducing titer by 1.5 logs after 20 hours of treatment.  

While these preliminary results suggest that the key to DCV potent antiviral affect in reducing 

extracellular HCV titer lies not in targeting NS5a, but in targeting both RNA replication and 

assembly/secretion steps of the lifecycle simultaneously, this experiment must be repeated 

before any conclusions are drawn. 
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Figure 29. Comparison of HCV Inhibition Kinetics under DCV versus NM107 + Narengenin 
Combination Treatment. Non-growing, steady-state infected Huh7 cells were treated with 1nM 
BMS-790052 (black squares), 200 µM Naringenin (dark gray circles), 25 µM NM107 (light gray 
circles), 200 µM Naringenin +25 µM NM107 (dark gray triangles), or diluent control (black 
diamonds). Cell lysate and culture supernatant were harvested at the indicated time points post-
treatment (x-axis). Intracellular HCV RNA was quantified by RT-qPCR and the average of triplicate 
samples is graphed as HCV RNA copies per well (solid lines). HCV titer was determined by titration 
on naïve Huh7 cells and the average of duplicate samples is graphed as FFU per well (dashed 
lines). All data points are graphed relative to the diluent treated control cultures at the 
corresponding time point (as described in Materials and Methods). Error bars represent the 
standard of deviation of measured values among the replicate wells.  
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5.3 Discussion 

The work in this chapter focused on analyzing the unexpectedly rapid and potent HCV 

inhibition kinetics of NS5a protein inhibitor daclatasvir.  Initial analysis of in vivo patient response 

kinetics revealed that a multiscale model was needed to explain the inhibition pattern observed 

and yielded the hypothesis that daclatasvir inhibited two distinct steps of the HCV life cycle- HCV 

RNA synthesis and HCV particle assembly/secretion (Appendix A).  While in vitro experiments 

confirmed this hypothesis (Appendix A), we applied our in vitro HCVcc mathematical model to 

further dissect the molecular basis of this inhibition. Unexpectedly, our in vitro HCVcc model was 

not able to simulate in vitro HCV NS5a inhibitor kinetics, revealing a limitation of the model (i.e. 

the inability to alter the infectivity of the progeny virus produced) (Fig. 25). Testing alternative 

models/hypotheses to explain the observed reduced infectivity of extracellular HCV once again 

led to the conclusion that daclatasvir inhibits HCV RNA synthesis as well as assembly/secretion 

specifically reducing the ratio of infectious virus secreted relative to non-infectious virus. 

The ability to generate a hypothesis about DCV mechanism of action within the cell based 

solely on extracellular patient data (Appendix A) illustrates the strength of mathematical 

modeling. Importantly however, the premise of our dual experimental/modeling approach is that 

model hypotheses should be experimentally tested to the extent possible. That being said, 

because mathematical models can test multiple hypotheses simultaneously and rapidly while also 

revealing which parameters in a system contribute the most to the outcome, they allow for in-

depth analysis of experimental data and are very efficient tools for guiding not only the way we 
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think about biological systems, but also experimental design. As such, this interplay/crosstalk 

between empirical and theoretical efforts can serve to streamline research efforts. 

We can utilize our models not only to generate hypotheses, but test them as well. Here, we 

used our HCVcc mathematical model to test different hypotheses that would account for the more 

rapid reduction in extracellular HCV titer compared to total extracellular HCV RNA. Consistent 

with our in vivo model predictions that DCV was acting at viral assembly/secretion, we found that 

the in vitro model hypothesis proposing this mechanism of action was able to best fit the 

experimental data. In hindsight however, we believe the modifications we made to the model to 

allow for changes in the infectivity of secreted virus are not as biologically accurate as they could 

be. Currently, we achieved this by artificially adding distinct assembly/secretion rates of 

infectious versus non-infectious virions, but biologically it is assumed that infectious and non-

infectious particles are generated via the same pathways, albeit an inefficient/error-prone system 

that often generates defective (i.e. non-infectious) particles. Hence, future efforts are already 

underway to try and design the model to reflect this in a more biologically accurate way. Likewise, 

immediate future plans include separating the assembly and secretion steps of the HCV life cycle 

in our mathematical model, as this will allow finer dissection of the little-understood aspect of 

the viral life cycle. For this, we will adapt our kinetics experiments to also include measurements 

of intracellular infectious titer. 
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Most importantly, our findings that the NS5a inhibitor, DCV, reduces the infectivity of the 

extracellular HCV particles produced appears to explain a very unexpected and previously 

unexplained phenomena being observed in patients being treated with the new HCV DAAs. 

Specifically, it has been observed that many patients treated with HCV DAAs positive for serum 

HCV RNA at the end of their treatment, yet somehow go on to clear the virus after treatment has 

stopped.111–115 This phenomenon, referred to as End of Treatment (EOT) HCV+, had never been 

seen previously with IFN-based therapies as any detectable HCV RNA at the end of treatment 

resulted in immediate HCV rebound and treatment failure. While there are other possible 

explanations for clearance in those who are EOT HCV+ (e.g. restored immune function), our in 

vitro data suggests that perhaps the majority of the HCV RNA present at the EOT may be non-

infectious. In fact, while all published in vivo models to date predict HCV rebound if HCV RNA is 

present at the time treatment stops, we recently published a model incorporating the idea of 

non-infectious virus post-DAA treatment which is better able to predict HCV DAA treatment 

outcome (Appendix B).  
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6. DISCUSSION 

6.1 Mathematical Modeling of Biological Systems 

Recognizing an expanding need in biomedical research, in 2000 the NIH implemented 

“The Biomedical Information Science and Technology Initiative” to encourage the use of 

mathematical tools for understanding complex biological processes. Likewise, the mission of the 

National Centers for Biomedical Computing includes the creation of innovative software programs 

and other tools that will enable the biomedical community to integrate, analyze, model, and 

simulate data on human health and disease. The cross-disciplinary experimental and theoretical 

approach of this thesis is based on the same underlying premise that mathematical modeling can 

provide an effective research-enabling framework.  

The use of mathematical modeling to simulate and understand complex biological 

systems has a long history, but is only recently becoming more mainstream as systems biology 

approaches in general have become more in vogue. Mathematical modeling of viral dynamics is 

a systems biology approach in that it can be used to analyze experimental results from complex 

biological systems with multiple factors and simultaneously integrate and test all major 

hypotheses about that biological system. In doing so, modeling can expedite the formulation of 

focused hypotheses that streamline experimental design and provide estimates for parameters 

that are difficult to isolate and measure empirically. 

Mathematical models are valuable in understanding the dynamics of viruses that trigger 

both persistent infection (e.g. HIV-1116–119, hepatitis B virus120–122, hepatitis D virus123,124, Theiler 

murine encephalomyelitis virus125, herpes simplex virus126 and HCV87,127,128) and acute infection 
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(e.g influenza A129–131 and ebola virus.132 Mathematical modeling is also improving our 

understanding of intracellular viral genome dynamics53,75,76,133, T-cell dynamics, and the 

quantitative events that underlie the immune response to pathogens116,119. The standard model 

for HCV kinetics during treatment has provided many insights into the effectiveness and 

mechanism of action of interferon-alpha and ribavirin (reviewed in 134,135). The models were able 

to retrospectively predict the duration of treatment needed for HCV eradication (cure)73,136,137 and 

more recently used in real-time (during treatment) to predict the duration of IFN-free therapy 

with silibinin+ribavirin needed to achieve cure.138 

While one might assume that recapitulating the dynamics of biological systems requires 

extremely complex models based on an elaborate system of differential equations, our group 

and others have demonstrated the value of simple data-driven models as a means to generate 

testable hypotheses and further knowledge53,70,72,74,139. By taking a truly integrated cross-

disciplinary approach in which modeling is guided by experimental data that we tailor to the 

requirements of our mathematical model by our experimental design (Fig. 30), we are able to 

produce models with minimal unknowns, allowing for robust parameter estimation.  Importantly, 

as illustrated in this thesis, the process of creating these data-driven models is knowledge 

generating. Thus, creation of the mathematical model is not simply a goal, but rather a tool that 

helps us better understand the biological system. The models developed herein, while still not 

complete, have helped us understand new aspects of HCV steady-state dynamics and investigate 

the mechanisms of action of clinically relevant HCV DAAs, including daclatasvir. Future efforts to 

refine the current HCVcc model and expand it to address additional molecular aspects of the viral 
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life cycle certainly will provide more opportunities to advance our knowledge in analogous ways.  

 

 

 

 

 

 

 

Fig. 30. The Experimental Modeling Cycle. Cycle in which we create models based on all major 
hypotheses about the biological system, test those models experimentally to determine if our 
understanding is correct and generate new hypotheses, then incorporate new information into 
the model in order to re-test via experiments again. 
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6.2 Using Model/Data Discrepancies to Further Knowledge  

In Chapter 3, we utilized an already established HCV replicon mathematical model (Fig. 5; 

Eq.  2), and moving forward to use this to assess new HCV DAAs revealed the first model/data 

discrepancy, which informed our understanding of HCV biology.  Specifically, because HCV NS3 

protease inhibitors are expected to interfere with cleavage of the HCV polyprotein, reducing the 

amount of proteins required for HCV RNA synthesis, we expected the model to predict the 

inhibition kinetics of BILN2061 by reducing HCV RNA synthesis. However, we had to allow the 

model to also enhance HCV RNA degradation in order to simulate the rapid decline in HCV RNA 

that was observed empirically during these inhibition experiments (i.e. a 99.99% block in RNA 

synthesis simulated HCV RNA decline of 4 logs in 10 days while BILN2061 achieved this 

empirically in just 6-7 days).   

Notably, this intracellular in vitro data-driven prediction is in agreement with our 

subsequent serum data-driven in vivo model prediction based on data from patients treated with 

protease inhibitor danoprevir.91  While this simple model does not tell us if or how inhibition of 

NS3 might impact HCV RNA degradation, it is known that the HCV NS3 protease cleaves a cellular 

protein known as mitochondrial antiviral signaling protein/MAVS (also known as Cardif or IPS-1) 

and prevents this cellular protein from activating RIG-I/IFN signaling pathways that would reduce 

HCV140,141,142 and others subsequently reported that one effect of IFN is to enhance HCV RNA 

degradation.143  Hence, the model suggests that inactivation of HCV NS3 not only directly reduces 

HCV replication, but likely restores an important aspect of the host cell antiviral defense 

machinery.   
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In order to experimentally test this hypothesis and determine whether reactivation of 

MAVS is a major contributing factor to the rapid reduction in HCV RNA under HCV NS3 protease 

inhibitor BILN2061 treatment, we can repeat the kinetics experiment in our normal Huh7 cells 

and in Huh7.5 cells, which contain an inactivating mutation in MAVS. If the cells without functional 

MAVS do not show the same dramatic BILN20161 induced HCV inhibition and the mathematical 

model can simulate the RNA reduction kinetics in MAVS-deficient cells without requiring that the 

protease inhibitor increases HCV RNA degradation, then we could conclude that the reactivation 

of MAVS signaling is the explanation for the rapid protease inhibitor response kinetics. Notably, 

this would also allow us to potentially incorporate the effects of MAVS and NS3 inhibition of MAVS 

into the mathematical model. 

After creating our initial infectious HCVcc mathematical model (Fig. 14), we quickly 

realized that the model could not fit our HCV NS5b polymerase inhibitor (NM107) and HCV 

secretion inhibitor (Naringenin) data because the model was unable to reduce extracellular HCV 

RNA levels as quickly as observed empirically. This discrepancy between the model and the data 

made us reconsider the assumptions that we had built into the model about clearance of 

extracellular HCV RNA during chronic HCVcc infection steady-state. The common perception is 

that during viral infections extracellular virus clearance is primarily immune-mediated. However, 

because this type of immune clearance does not occur in vitro, the only mechanism of 

extracellular HCV RNA clearance we had incorporated into the model was our empirically 

measured decay rate of particles containing HCV RNA. Because this sole mechanism was too slow 

to account for the reduction that we measured during antiviral treatment, this discrepancy led us 
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to investigate other possible mechanisms of extracellular HCV RNA clearance. Specifically, we 

investigated whether cells were secreting anything that would affect the rate of HCV RNA decay 

(as we had originally determined the stability of these particles in the absence of cells) and 

whether HCV declined in transplant patients during the anhepatic phase when the patient has no 

liver.  

Because both of these experimental approaches provided evidence consistent with HCV 

uptake by hepatocytes, we added an additional pathway to our mathematical model that allowed 

not only infectious HCV particles (which was already intuitively present in the model), but also 

the much more abundant non-infectious HCV particles to enter cells.  Importantly, this addition 

allowed the model to fit both the NM107 and Naringenin data, consistent with the conclusion 

that a significant amount of HCV entry into cells (regardless of infection status) is important to 

the steady-state dynamics observed, which raises questions regarding the nature of that entry. 

Because most (if not all) the cells in our chronically infected cultures in vitro are already 

infected and superinfection exclusion has been reported for HCV, we assume this entry is non-

productive (i.e. does not enhance HCV RNA synthesis) and speculate that it perhaps represents 

general supernatant sampling, by which the cell may be acquiring nutrients or clearing debris. 

To test the “non-productive” cellular uptake hypothesis we plan to perform experiments 

monitoring extracellular HCV RNA (i.e. virion) levels during incubation with: 1) no cells (negative 

entry control), 2) uninfected Huh7 cells (positive entry control), or 3) CD81 knockout cells (which 

are not permissive for infectious HCV entry). If there is an alternative non-productive route of 

HCV entry into cells, the CD81-negative cells should not become infected, but nonetheless should 
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result in a reduction of HCV RNA/particles in the media.  If the results are unclear, we may need 

to expand the experiment to include an infected cell condition or alternative entry-blocking 

strategies, such as HCV neutralizing antibody or ezetimibe, which prevents HCV entry by blocking 

the internalization of the HCV entry factor NPC1L1.33  

While our revised HCVcc mathematical model was able to fit HCV polymerase and HCV 

secretion inhibitor data (Fig. 24), when we tried to fit DCV inhibitor data (NS5a inhibitor) the 

model was unable to simulate the kinetics observed. The discrepancy brought to our attention 

that the model was unable to simulate non-parallel reduction in extracellular HCV titer and RNA, 

highlighting an important element missing from the model - a mechanism to alter progeny virus 

specific infectivity (i.e. the proportion of secreted viral particles that are infectious vs non-

infectious). We could think of two different ways the model could be altered to allow changes in 

specific infectivity and thus created two models to test these two alternative hypotheses (e.g. the 

distinct entry hypothesis model versus the distinct assembly/secretion hypothesis model) (Fig. 

27).  While this approach confirmed the original in vivo model hypothesis that DCV was acting at 

the assembly/secretion step of the viral life cycle and further incorporated the empirically 

observed change in progeny virus specific infectivity, the current model still has limited ability to 

dissect the specific mechanism responsible. Hence, we would like to increase the amount of 

complexity in the model in order to increase the degree of detail in the hypotheses that can be 

generated by using the mathematical model to analyze kinetic data, particularly for drugs like 

HCV NS5a inhibitors. 
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6.3 Future Modeling Efforts 

 An important part of the process of increasing our model complexity will be to refine our 

HCVcc model so that the assembly/secretion step more accurately reflects the biology of these 

processes as we understand them. While the current model implies that assembly/secretion of Vi 

and Vni are separate pathways, the assembly step of the HCV viral lifecycle is believed to be a 

single error-prone process which produces non-infectious virus simply because not all virions 

are perfect (e.g. Huh7 cells do not produce sufficient lipoproteins, making the virions produced 

more dense and less infectious). Drugs that interfere with the assembly step of the viral lifecycle 

may block assembly completely or perhaps make some aspect of the process even less efficient, 

enhancing the error rate and further decreasing the portion of secreted particles that are 

infectious. To try and dissect the MOA of these drugs, we have begun to develop an alternative 

assembly/secretion model in which the distinct effects of the drug on the extracellular 

populations of infectious vs. non-infectious particles would be achieved by allowing the drug to 

change the specific infectivity by a factor (represented by the parameter r) that is multiplied by ρ 

(Fig. 31A-B).  
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Figure 31. Preliminary HCVcc Specific Infectivity Model.  (A) Model schematic allowing antiviral to 
change the specific infectivity ρ by a factor of r. (B) Equations comprising the mathematical model. 
(C) Preliminary fits of specific infectivity model to HCV NS5a inhibition data. Model parameters 
are described in Table 10. 
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Biological Definition NM107 Values Source 

R0 
Initial intracellular HCV 
RNA 

5.86x107 
copies/well 

Experimentally measured 

Vtot0 
Initial extracellular HCV 
RNA 

1.7x106 
copies/well 

Experimentally measured 

Vi0 
Initial extracellular 
infectious HCV particles 

1600 FFU/well Experimentally measured 

Vni0 
Initial extracellular non-
infectious HCV particles 

1,698,400 
/well 

Experimentally estimated as 
Vtot0-Vi0 

() 
Portion of infectious  
virions  

0.0022 
Estimated by fitting model to 
NM107 and Naringenin datasets 

() 
RNA degradation rate 
constant (/day) 

3.03/day 
Estimated by fitting model to 
NM107 data 

c 
Non-infectious particle 
degradation rate 
constant 

0.13/day Experimentally measured  

kloss 
Loss of infectivity rate 
constant 

2.64/day Experimentally measured  

α0 
Intracellular HCV RNA 
synthesis rate constant 

1.78x108/day 
Determined by fitting in Berkeley 
Madonna 

kin Viral entry rate constant 1.84/day 
Determined by fitting in Berkeley 
Madonna 

ks 
Assembly/secretion rate 
constant 

0.06/day 
Determined by fitting in Berkeley 
Madonna 

t0 delay 0.02 days 
Estimated by Berkeley Madonna 
software 

    

r 
Factor by which drug 
alters specific infectivity 

0.07 
Estimated by Berkeley Madonna 
software 

(ε) RNA synthesis Inhibition  0.95 
Estimated by Berkeley Madonna 
software 

(εs) 
assembly/secretion 
Inhibition  

0.5 
Estimated by Berkeley Madonna 
software 

εin Entry inhibition 0 (fixed) Fixed 
 
Table 10. Preliminary HCVcc Specific Infectivity Model Parameter Values. 
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Preliminary fits of this mathematical model have been promising (Fig. 31, Table 10) and 

additional work will be done to test/validate this model. While this model is mathematically 

indistinguishable from saying that the drug affects the assembly/secretion of one species more 

than another, one advantage to this model is that it is less likely that the drug mechanism will be 

misinterpreted and should allow the generation of more accurate hypotheses about 

assembly/secretion and drug mechanism(s) inhibiting this process. Another important 

mechanistic addition we hope to make in the future is to separate the assembly and secretion 

steps in the model and measure additional HCV parameters for that model by adapting our 

kinetics experiments to include measurements of intracellular infectious titer. 

 

6.4  Patient Cure Despite End of Treatment Hepatitis C Virus RNA Positivity 

HCV levels in patients need to be monitored during antiviral therapy to make decisions about 

treatment based on how quickly the levels are reduced. Because it is not possible to assess 

infectious titer in patients, extracellular (serum) HCV RNA levels are measured.  For IFN-based 

therapies, detection of HCV RNA at the end of treatment (EOT) was a clear and absolute indicator 

of treatment failure.144–146 However, since the FDA approval of HCV DAAs, numerous reports 

document that some patients treated with IFN-free DAA regimens achieved SVR (i.e. cure) despite 

having detectable viremia at end of treatment (i.e. EOT+/SVR).111–113,147–149   

One hypothesis offered for the phenomenon of EOT+/SVR is immune-mediated clearance that 

occurs after treatment is completed.150 The rationale for this hypothesis is compelling because 

unlike IFN treatment that continuously stresses the patient’s immune response, DAAs directly 
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attack the virus, reducing viral loads and providing relief for the patient’s immune system. 

However, our data suggest the additional hypothesis that DAAs (such as HCV NS5A inhibitors) 

promote the production of non-infectious viral particles as shown herein (Chapter 5).  

Understanding EOT HCV RNA positivity is important for monitoring treatment success in order 

to make decisions about clinical care. With current HCV DAAs being unaffordable to many, it is 

important to be able to determine when treatment could be stopped. In this sense, it is 

particularly important to determine whether EOT+/SVR is immune-mediated as this would imply 

the phenomenon might differ depending on host genetic factors, much like response to IFN 

treatment did, and thus the nature of the EOT HCV RNA is important for future modeling efforts. 

In this regard, it is interesting to note that we recently incorporated the concept that DAAs 

(such as DCV) may alter the proportion of secreted viral particles that are infectious vs. non-

infectious into an in vivo model developed to explain HCV cure after ultrashort DAA therapy (<28 

days) (Appendix B).  In this published study, we first showed that established models with 

measured longitudinal HCV viral loads indicated that in the two cases of ultrashort DAA therapy 

cure examined, cure would not have been predicted without an additional 3-6 weeks of therapy. 

We then developed a mathematical model that considers the fundamental concept that HCV RNA 

in serum represents both infectious virus (Vi) and non-infectious virus (Vni). This new model fit 

the observed treatment outcomes by considering that in addition to slowing Vi and Vni production 

(ε∼0.998), these treatments further enhanced the ratio of Vni to Vi, thus increasing the log (Vni/Vi) 

from 1 at pre-treatment to 6 by the EOT. 
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While some are taking the approach of monitoring HCV patient immune responses during 

therapy to assess if the immune clearance hypothesis may be true, the current efforts in my thesis 

laboratory are focused on developing an infectivity test for clinical isolates which would allow us 

to test the infectivity of EOT HCV RNA directly to determine if the reduced infectivity we have 

observed in vitro also occurs in patients under DAA treatment. Another approach is to determine 

if the reduced infectivity of the HCV particle during DAA treatment in vitro corresponds to a 

physical change in the particles as this could possibly be monitored in patient serum instead of 

infectious titer. 

 

6.5 Concluding Statements 

Mathematical modeling facilitates comprehensive analysis of data as well as experimental 

design in complex experimental systems and experimentation provides a method for testing 

theoretical hypotheses generated by modeling, each investigative approach strengthening the 

other. The findings of this thesis work –estimates for parameters (for both the HCV replicon and 

HCVcc infection), the generation of mathematical models for analysis of HCVcc treatment kinetics, 

predictions about HCVcc infection dynamics and antiviral mechanisms of action, along with the 

application of these concepts to analysis of clinical data- now belong to a tradition of conclusions 

facilitated by mathematical modeling, especially in the context of viral kinetics.  

True to the cyclical nature of data-driven mathematical modeling, this thesis work has 

not only answered inquiries but also raised questions and provided tools for future studies. 

Specifically, the mathematical modeling of HCV kinetics has led us to further investigate the 
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mechanisms of action of HCV NS3 protease inhibitors and HCV NS5a inhibitors. We expect these 

investigations to generate knowledge that further facilitates the analysis of clinical HCV treatment 

data, a process that has already begun.   
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