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SUMMARY 

Spectrin performs its fundamental roles by forming a filamentous network beneath the plasma 

membrane, where the tetramerization of the spectrin heterodimers is crucial.  We employed 

yeast two-hybrid (Y2H) methods to study the mutational effect of non-erythroid alpha 

spectrin (αII) at position 22 in tetramer formation with non-erythroid (beta) spectrin (βII), 

and to screen a human brain cDNA library to identify proteins interacting with βII-C, using a C-

terminal fragment (residues 1697-2145) of non-erythroid beta spectrin (βII-C) as the bait.  This 

region includes the tetramerization region involved in the association with alpha spectrin.   

For the first part, interaction of wild type (αII-N) and 4 mutants (αII-N-V22D, -V22F, -V22M, 

and -V22W) of the first 359 residues at the N-terminal region with βII-C, were studied 

using colony growth and β-galactosidase activity assays of Y2H analysis simultaneously 

with isothermal titration calorimetry (ITC) analysis.  Y2H results showed that the C-

terminal region of βII interacts with the N-terminal region of αII, either the wild type, or 

those with V22F, V22M or V22W mutations.  The V22D mutant did not interact with βII.  

For the positive results, we were not able to detect any differences in interactions between 

V22F, V22M or V22W with βII-C.  Both colony growth rate and colony size, as well as the 

blue color indication for β-galactosidase activity did not show detectable differences 

between V22, V22F, V22M and V22W.  ITC results showed that the Kd values for V22F 

were similar to those for the wild-type (about 7 nM), whereas the Kd values were about 35 

nM for V22M and about 90 nM for V22W.  We were not able to detect any binding for 

V22D with ITC methods.  This study clearly demonstrates that the single mutation at 

position 22 of αII, a region critical to the function of non-erythroid α  

xiv 



 
 
spectrin, may lead to a reduced level of spectrin tetramers and abnormal spectrin-based 

membrane skeleton.  These abnormalities could cause abnormal neural activities in cells. 

For the second part, we identified 17 proteins that interacted with βII-C (IPβII-C s).  The 

interacting proteins include a fragment (residues 38-284) of "THAP domain containing, 

apoptosis associated protein 3, isoform CRA g", "glioma tumor suppressor candidate region gene 

2" (residues 1-478), a fragment (residues 74-442) of septin 8 isoform c, a fragment (residues 

704-953) of "coatomer protein complex, subunit beta 1, a fragment (residues 146-614) of zinc-

finger protein 251, and a fragment (residues 284-435) of syntaxin binding protein 1.  We used 

yeast three-hybrid system to determine the effects of these βII-C interacting proteins as well as of 

7 proteins previously identified to interact with the tetramerization region of non-erythroid alpha 

spectrin (IPαII-N s) (Oh and Fung, 2007) on spectrin tetramer formation.  The results showed that 

3 IPβII-C s were able to bind βII-C even in the presence of αII-N, and 4 IPαII-N s were able to bind 

αII-N in the presence of βII-C.  We also found that the syntaxin binding protein 1 fragment 

abolished αII-N and βII-C interaction.  This suggests that this protein may inhibit or regulate 

non-erythroid spectrin tetramer formation. 
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CHAPTER 1                                                                                          

 

INTRODUCTION 

 

A. Spectrin, A Multifunctional Protein 

Spectrin is a prominent cellular protein that is ubiquitously expressed in vertebrates starting with 

simple metazoans, underlying its involvement in fundamental cellular processes (De Matteis and 

Morrow, 2000; Gascard and Mohandas, 2000; Kordeli, 2000; Bennett and Baines, 2001; Giorgi 

et al., 2001; Djinovic-Carugo et al., 2002).  Originally identified from guinea pig erythrocytes 

forming a meshwork beneath the plasma membrane along with proteins such as actin, ankyrin, 

and protein 4.1 (Marchesi and Steers, 1968), spectrin was initially thought to be absent in other 

cell types (Hiller and Weber, 1977) until the identification of non-erythrocyte isoforms and their 

functions (Levine and Willard, 1981).   

In addition to being a cytoskeletal protein, spectrin is involved in functions such as organization 

and maintenance of specialized plasma membrane domains at cell contacts and exocytosis 

(Bloch and Morrow, 1989; Lee et al., 1993), protein sorting and accumulation (Pinder and 

Baines, 2000), neuritogenesis and neurotransmitter release (Beck, 2005), nuclear architecture 

during mitosis, organization of chromatin remodeling complexes, RNA processing, 

nucleoskeleton structure, or regulating DNase I function (McMahon et al., 2001; Bettinger et al., 

2004), signal transduction (Gascard and Mohandas, 2000), DNA repair (Sridharan et al., 2006), 

and active nuclear transport (Young et al., 2003; Tang et al., 2003).   

1 
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B. Spectrin Isoforms 

In human, two α- (I and II) and five β-spectrin (I - IV, and H) isoforms have been identified 

(Bennett and Baines, 2001) (Figure 1).  The most common and well studied spectrin isoforms are 

erythroid αI- and βI-spectrins, and non-erythroid (brain) αII- and βII-spectrins (Bennett and 

Healy, 2008).  Even though spectrin isoforms are expressed from different genes, all feature two 

common cardinal properties; they are made up of repeating spectrin structural domains, and they 

have a partial structural domain involved in tetramerization (Bennett, 2001).   

 

 

 

Figure 1.  Schematic representation of the alpha and beta spectrin domain structures.  Amino 

acid sequences outside the spectrin structural domains are designated with lines.  This figure was 

prepared based on the descriptions in review article by Bennett and Baines, 2001. 
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Spatial localization of the spectrin isoforms in the cell is tightly regulated, for example, even 

though all four spectrin isoforms are expressed in neurons (Clark et al., 1994; Winkelmann and 

Forget, 1993; Susuki and Rasband, 2008), αI- and βI-spectrin molecules are strictly localized in 

cell bodies, dendrites, postsynaptic terminals (Reiderer, 1988), and αII- and βII-spectrin in the 

axon and pre-synaptic termini (Kordeli, 2000).  βIII spectrin was reported to be associated with 

golgi and cytoplasmic vesicles, and βIV, which is a newly discovered isoform, has been shown 

to localize at the axon initial segments and nodes of Ranvier of neurons (Stankiewich et al., 

1998; Berghs et al., 2000; Tse et al., 2001).   

Each spectrin isoform, having molecular masses larger than 200 kDa, consists of tandemly 

homologous structural domains, which are triple helical bundled structures composed of 

approximately 106 amino acid residues (Djinovic-Carugo, 2002).  Human α spectrin isoforms 

contain 22 such domains, and prior to the first domain is a single helix, Helix C', which is 

referred to as a partial domain.  On the other hand β spectrin isoforms has 16 domains and a 

partial domain at the C-terminal end that has two helices, Helices B' and C'.  Representative 

domain organization in spectrin isoforms is presented in Figure 1.   

B.1. Alpha Spectrin 

It has been shown that the C-terminal region of α spectrin associates with the N-terminal region 

of β spectrin to form a heterodimer, and two heterodimers in turn associate, at the N-terminal 

region of α spectrin on one heterodimer and C-terminal region of β spectrin on the other, to form 

tetramers (Cherry et al., 1999; Begg et al., 2000; Harper et al., 2001; Speicher et al., 2001).  

Even though spectrin isoforms exhibit high sequence similarity and identity (Mehboob et al., 

2003; Li and Fung, 2009; Mehboob et al., 2010), the tetramerization affinity is lower in erythroid 
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isoforms, with the Kd in the µM range for model erythroid proteins, and relatively higher in non-

erythroid (brain) proteins, with Kd in the nM range for model non-erythroid proteins (Bignone 

and Baines, 2003; Mehboob et al., 2003; Long et al., 2007; Mehboob et al., 2010).   

Recently published crystal structure of the N-terminal region of αII spectrin, residues 1-147, a 

region containing the partial domain involved in the tetramerization of spectrin, Helix C', and the 

first structural domain (αII-D1), reveals several important features of non-erythroid brain 

spectrin (Mehboob et al., 2010) (Figure 2).   
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Figure 2.  Crystal structure of the N-terminal 147 residues of non-erythroid (brain) spectrin at 

2.3 Å resolution.  Two monomers are observed in this asymmetric unit, where the ribbon 

structure of monomer 1 (M1) is shown in magenta, and of monomer 2 (M2) is shown in a 

spectrum of colors marking different regions of the protein (Mehboob et al., 2010).
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The crystal structures show two slightly different conformations of the N-terminal 147 residues 

of αII spectrin.  Each conformation contains a short unstructured segment followed by an 

unpaired helix, Helix C', with a bend, slight variations in its boundaries, and the location of the 

"bend" (Figure 2) (Mehboob et al., 2010).  Helix C', a region that is critical for the association 

with the C-terminal partial domain of β spectrin, starts with residue 12 or 14 and extends up to 

residue 36 in αII (Mehboob et al., 2010), and starts with residue 21 and extends up to residue 45 

in erythroid spectrin (αI) (Park et al., 2003) (Table 1).  Conformational mobility of Helix C' in αI 

spectrin, implies that this region may undergo conformational changes upon interacting with β 

spectrin (Antoniou et al., 2008), as well as any other proteins that it may interact in the cells.   

The junction region in both αI and αII, consists of 7 residues (46 - 52 in αI, and 37 - 43 in αII) 

that connects Helix C' to the first structural domain (αI-D1 or αII-D1) (Mehboob et al., 2010).  

This region was shown to be in a helical conformation in αII, but in an unstructured 

conformation in αI which undergoes a conformational change (to a helical conformation) upon 

binding to βI spectrin (Mehboob et al., 2003; Park et al., 2003; Li and Fung, 2009; Ipsaro et 

al., 2010; Mehboob et al., 2010).  We believe, this difference modulates the association 

affinity of these isoforms with β-spectrin. 

The first structural domain of both αI and αII spectrin is composed of a triple helical bundle, 

where three helices (Helix A1, Helix B1, and Helix C1) form the first triple helical domain of α 

spectrin (αI-D1 and αII-D1).  Helix A1 contains residues 53 - 81 in αI-D1, and residues 44 - 66 in 

αII-D1.  The loop region connecting the first helix (Helix A1) to the second helix (Helix B1) in 

the first structural domain spans residues 82 - 87 in αI, and 67 - 77 in αII.  Helix B1 contains 

residues 88 - 118, and residues 78 - 111 or 112 in αII-D1.  The loop region connecting Helix B1 
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to Helix C1 spans residues 119 - 122 in αI and 112 or 113 - 116 in αII.  And finally, Helix C1 

contains residues 123 - 153, and residues 117 - 143 or 146 in αII-D1 (Table 1).  Despite the 

similarities of the boundaries in other domains, it is interesting to note that the region connecting 

Helices A1 and B1 is relatively long in αII spectrin, 11 residues, whereas it is only 6 residues in 

αI spectrin.  Also the loop connecting Helix B1 and C1 is only 4 or 5 residues, which is still much 

shorter .  Therefore, it is logical to speculate that this long loop in αII may provide binding sites 

for other nonspectrin proteins to recognize this specific site for interaction.  This region consists 

of mainly polar residues, with differing side chain properties, which is well suited for specific 

molecular recognition and interactions.  The first few amino acids that have not been mentioned 

in Table 1 were either not studied or not seen (Mehboob et al., 2010).   
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TABLE I.  Secondary structure summary of αI, αII, βI, and βII spectrin isoforms (Park et al., 

2003; Mehboob et al., 2010; Song et al., 2011).   

 αI 

(1 - 156)  

αII 

(1 - 147) 

βI 

(1898 - 2083) 

βII 

(2016 - 2091) 

Helix C1 123 - 153 117 - 143/146   

Loop B1C1 119 - 122 112/113 - 116   

Helix B1 88 - 118 78 - 111/112   

Loop A1B1 82 - 87 67 - 77   

Helix A1 53 - 81 44 - 66   

Junction Region 46 - 52 37 - 44   

Helix C' 21 - 45 12/14 - 36   

Unstructured  14 - 20 8/11 - 11/13 2071 - 2083  

Helix B'   2042 - 2070 2047 - 2091 

Loop B'A'   2034 - 2041 2042 - 2048 

Helix A'   2083 - 2033 2016 - 2041 

 

 



9 
 
The atomic resolution structure of αII-D1 shows multiple hydrogen bonds spread through the 

interfaces of the three helices stabilizing the triple coiled coil structure, in addition to the 

hydrophobic clusters in the structure (Song et al., 2009; Mehboob et al., 2010).  However, a 

higher number of specific hydrogen bonds were identified in αII-D1, compared to αI-D1, which 

may contribute to the higher thermal stability of the αII-D1 compared to αI-D1 (Mehboob et al., 

2010). 

Two hydrophobic clusters have been identified in the Helices A'-B'-C' complex of αII / βII.  The 

first hydrophobic cluster involves three residues of Helix C' (Ile-15, Val-22, and Leu-23). The 

second hydrophobic cluster involves L40 of Helix C' and V2052, L2055, and I2056 of βII 

(Mehboob et al., 2010).   

It is important to note that residue Val-22 in Helix C' of αII, is homologous to a clinical hotspot 

in αI (V30) (Lecomte et al., 1993) (Details in Chapter 2).  Residue 22 in αII corresponds to a 

“d” position in the heptad repeat and is a member of the hydrophobic cluster in the 

interface of the triple helical bundle (Mehboob et al., 2010).  As presented in Chapter 2, we 

replaced the hydrophobic valine residue, with other amino acid residues that exhibit 

different side chain properties, and observed the effect of this replacement on the 

tetramerization affinity of spectrin.  These mutants were V22W, V22M, V22D, V22F.     

In separate studies, we have used ITC methods to determine Kd values of α/β heterodimer 

association to form tetramers in model systems (e.g., Mehboob et al., 2010; Kang et al., 

2010; Lam et al., 2009; Li an Fung, 2009; Mehboob et al., 2003).  Previously, our yeast 

two-hybrid studies showed that the mutation of αII at position Arg-37 to a proline residue 

impairs its ability to form tetramers with the C terminal domain of βII (Sumandea ad Fung, 
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2005).  Consequent studies showed that mutation of αII at position Arg-37 increases the Kd 

value from about 9 nM for αII with beta I spectrin (βI) to 10 µM for the R37P mutation 

(Mehboob et al., 2005).  The participation of this residue in the hydrophobic cluster may 

explain the impact of this replacement on the affinity, in addition to the possible 

contribution of the low helical propensity of the proline amino acid residue.   

Accumulated molecular knowledge on the spectrin tetramerization shows that it is 

important to underline that, ITC analysis of the titration of αI-N1 with βI-C1 or βII-C1 

showed similar titration isotherms with a KD value of ~1 µM (Mehboob et al., 2003; Long 

et al., 2007; Lam et al., 2009; Song et al., 2011),  and similarly, the binding of αII-N1 with 

βI-C1, or βII-C1 showed similar binding isotherms with a Kd value of ~10 nM (Long et al., 

2007; Li and Fung, 2009; Song et al., 2011).  These results indicate that β-spectrin I and II 

does not contribute to the observed differences in dimer association to form tetramers; the 

differences are due to the α-spectrin component of the interaction (Mehboob et al., 2010; 

Song et al., 2011).  Therefore, βI- and βII-spectrin not only exhibit 80% sequence 

similarity but similar affinities for α-spectrin isoforms for forming tetramers.  
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B.2. Beta Spectrin 

As indicated in an earlier publication (Song et al., 2011), majority of the structural information 

available for β spectrin is for either for structural domains (e.g., Yan et al., 1993; Pascual et al., 

1997; Davis et al., 2009; Ipsaro et al., 2010) or SH3 domains (e.g., Chevelkov et al., 2005; 

Prokhorov et al., 2008; Gushchina et al., 2009).  For the tetramerization regions, most of the 

studies have focused on the N-terminal region of αI- and αII-spectrin (Mehboob et al., 2003; 

Park et al., 2003; Chevelkov et al., 2005; Long et al., 2007; Antoniou et al., 2008; Lam et al., 

2009; Li and Fung, 2009; Mehboob et al., 2010), but only few have studied the C-terminal 

region of β-spectrin (Nicolas et al., 1998; Luo et al., 2001; Mehboob et al., 2005; Bignone et al., 

2007; Ipsaro et al., 2010; Song et al., 2011).   

The high resolution structures of the C-terminal tetramerization region of free βI- or βII-spectrin 

proteins are not known.  Spin label electron paramagnetic resonance (EPR) studies has shown 

that the Helix B’ in the partial domain of βI spectrin ends at residue 2070 (Luo et al., 2001).  The 

crystal structure of the C-terminal region of erythroid β-spectrin bound to αI has been solved by 

X-ray diffraction (Ipsaro et al., 2010) (Table 1).   

In a recent study, homology structures of the C-terminal fragments of βI and βII spectrin 

(residues 1898 – 2083 and residues 1906 – 2091, respectively) were modeled using a 

recombinant protein of domains 16 – 17 of chicken α-spectrin (PDB code: 1CUN; Grum, 1999) 

as the template (Song et al., 2011) (Figure 3).  Both structures featured a triple helical bundle as 

the full structural domain, which was followed by the partial domain, Helices A’ and B’ (Figure 

3).  An important structural feature of βI spectrin was that, the last helix in the structural domain 

(Helix C16) and first helix in the partial domain (Helix A') showed no clear boundary between 
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them, with one helix merging into the next (Song et al., 2011).  Similar overall structures were 

obtained except for Helix B’, which was 16 residues longer in βII (residues 2042-2070 in βI and 

residues 2047-2091 in βII).  This region in βI was followed by an unstructured region, which was 

helical in βII.   It is believed that these structural differences in β-spectrin C-terminal region lead 

to specific binding of proteins to βI and not to βII, and similarly to βII and not to βI (Song et al., 

2011). 
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Figure 3.  Predicted three-dimensional structures of β-spectrin segments.  The structures of the 

C-terminal fragment (residues 1898 – 2083) of βI-C1 (A) and (residues 1906 – 2091) of βII-C1 

(B).  Both structures feature a canonical triple helical bundle that is characteristic for the spectrin 

repeats, and the double helical partial domain.  The major difference is following residue P2071 

of βI-C1, which assumes unstructured conformation after this residue, whereas βII continues 

with a helical conformation (Song et al., 2011).     
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The predicted structure of the Helix B' in free βI-C1 (not associated with αI spectrin) shows a 

good overlap with previously obtained information on a local region in its structure using spin 

label EPR studies (Luo et al., 2001; Mehboob et al., 2005; Mehboob et al., 2011).  Both studies 

show that the residues before P2071 are in helical conformation, whereas the residues after 

P2071 are in an unstructured conformation.  On the other hand, a recent study showed that the 

large portion of the unstructured region (residues 2071 - 2083) in the free form is helical (2074 - 

2083) in the bound form.  Structural differences in the free (Park et al., 2003) and bound (Long 

et al., 2007; Antoniou et al., 2008; Song et al., 2009) forms have been observed experimentally.  

This is coinciding with the conformational change in the N-terminal junction region of αI-

spectrin that changes into a helical conformation in the bound state from an unstructured 

conformation in the unbound state (Antoniou et al., 2008; Ipsaro et al, 2010).   

Based on the differences in hydrogen bond networks and/or pairs of cation-Π interactions 

between the side chains of a particular β-spectrin isoform and its interactor (Song et al., 2011), it 

is possible that a specific cellular protein may bind to one β-spectrin isoform, maintain or 

regulating its tetramerization with a specific α spectrin isoform.  In addition to regulating the 

tetramerization, such interactions may regulate the localization of the β spectrin isoforms, for 

example in hair cells (Legendre et al., 2008) and in neuronal cells (Bignone et al., 2007). 

Structural differences between different βI and βII spectrin isoforms may very well extend 

beyond the regions discussed above (Song et al., 2011).  For example, two important residues in 

βII spectrin, residue 2110 (serine) and 2159 (threonine) can be phosphorylated which leads to a 

great reduction in its affinity for α spectrin isoforms.  However, the first residue is not conserved 

in βI spectrin, which may point to different regulation mechanisms, or interactions of different 
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spectrin isoforms (Bignone et al., 2007).  All these differences discussed above may provide 

basis for the selective interaction of β spectrin isoforms with different α spectrin isoforms, as 

well as with other non-spectrin proteins. 

Three proteins have been identified to bind βI and βII spectrin in a phage displayed screening 

(Song et al., 2011).  Two of them selectively binds to βI-C1, and one binds to βII-C1.  Modeling 

studies show the interaction site for the two proteins at the unstructured region of βI-C1.  Along 

with other structural comparison, results obtained from that study points to the similarity of βI 

and βII spectrins at their tetramerization sites, however differences at the downstream regions, 

which would enable the selective binding of the proteins that they identified in their phage 

displayed  screening study, as well as for other proteins.   

Spectrin isoforms interact with numerous cellular proteins (nonspectrin proteins) in order to 

perform some of the cellular functions discussed above.  Several proteins interacting with the N-

terminal region (residues 1 - 359) of αII spectrin (αII-N) have been identified in a library 

screening in our laboratory (Oh and Fung, 2007).  These proteins were Duo protein, Lysyl-

tRNA-synthetase, TBP-associated factor 1, two isoforms (b and c) of protein kinase A 

interacting protein and two different segments of Zinc finger protein 333.  The interaction of 

three proteins were shown to be abolished by a mutation on αII-N, which also abolishes spectrin 

tetramerization (Sumandea and Fung, 2005).  We also found out that these proteins may compete 

with its spectrin partner to regulate spectrin tetramerization and cytoskeletal structures.   

Several other proteins have been identified to interact with αII spectrin.  A partial view of αII 

(SPTAN1) putative interactome from NCBI protein interaction databases is schematically 

presented in Figure 4, using STITCH 2.0 software (to populate the list of interactions GENE; 
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Genes and mapped phenotypes service of NCBI (www.ncbi.nlm.nih.gov/gene) was used with an 

"SPTAN1" inquiry. STITCH 2.0 (Search Tool for Interactions of Chemicals) was used at; 

www.stitch.embl.de to visualize the interactions). 

Close examination of the cellular functions of the proteins listed above, indicates that these 

proteins exhibit multiple types of functions.  These interactions underline the involvement of 

spectrin isoforms in diverse cellular processes.   
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Figure 4.  Proteins interacting with brain alpha spectrin (SPTAN1) from NCBI protein 

interaction databases.  The details and the references of these proteins are given in the web-site, 

but not listed here.  The proteins are; abl-interactor 1 (ABI1), acid phosphatase 1 (ACP1), actin, 

both alpha 1 and beta subunit (ACTA1), Adducin 1 (ADD1), ankyrin 1 (ANK1), calpain 1, large 

subunit (CAPN1), c-abl oncogene 1, non-receptor tyrosine kinase (ABL1), apoptosis related 

cysteine kinase peptidase (caspase3) (CASP3), alpha 1 subunit of catenin (CTNNA1), DEAD 

box polypeptide 24 (DDX24), desmin (DES), disrupted in schizophrenia 1 (DISC1), emerin 

(EMD), Enah/Vasp-Like (EVL) protein, testis derived transcript 3 (TES), erythrocyte membrane 

protein 4.1 (EPB41), erythrocyte membrane protein 4.1-like 2 (EPB41L2), erythrocyte 

membrane protein band 4.2 (EPB42), excision repair cross-complementing rodent repair 

deficiency, complementation group 4 (ERCC4), Fanconi anemia complementation group A 

(FANCA), Fanconi anemia complementation group C (FANCC), Fanconi anemia 

complementation group G (FANCG), growth associated protein (GAP43), glutamate receptor, 

ionotropic (AMPA2) (GRIA2), glutamate receptor, ionotropic, N-methyl D-aspartate 1 (GRIN1), 

glutamate receptor, ionotropic, N-methyl D-aspartate 2D (GRIN2D), lamin B1 (LMNB1), 

moesin (MSN), neurofilament, light polypeptide (NEFL), peptidylprolyl cis/trans isomerase - 

NIMA-interacting 4 (PIN4), phosphodiesterase 4D (PDE4D), plectin (PLEC), pleckstrin 

homology domain containing, family A member 5 (PLAKHA5), protein kinase C, beta 

(PRKCB), prostate tumor overexpressed 1 (PTOV1), SH3 and multiple ankyrin repeat domains 1 

(SHANK1), SH3 and multiple ankyrin repeat domains 3 (SHANK3), solute carrier family 9, 

member 2 (SLC9A2), son of sevenless homolog 1 (SOS1), erythroid spectrin beta subunit 

(SPTB), non-erythroid spectrin beta subunit (SPTBN1), v-src sarcoma (Schmidt-Ruppin A-2) 
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viral oncogene homolog (SRC), signal transducer and activator of transcription 1 (STAT1), 

synapsin 1 (SYN1), TATA box binding protein-associated factor (TAF), tetratricopeptide repeat, 

ankyrin repeat and coiled-coil containing 1 (TANC1), tumor suppressing subtransferable 

candidate 4 (TSSC4), vimentin (VIM).   
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Similarly, numerous interacting partners of βII spectrin, mostly related to its important cellular 

functions, have been identified.  For example, using yeast two-hybrid systems, neurofibromatosis 

2 tumor suppressor schwannomin was shown to interact with βII, which is regulated by 

alternative splicing of the schwannomin protein (Scoles et al., 2001).   

A partial view of βII (SPTBN1) putative interactome from NCBI protein interaction databases is 

schematically presented in Figure 5, again, using STITCH 2.0 software to represent interactions 

deposited in GENE (Genes and mapped phenotypes) service of NCBI 

(www.ncbi.nlm.nih.gov/gene).  αII protein, and its interactions with βII interacting proteins is 

represented to show common interactions.   
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Figure 5.  Proteins interacting with brain beta spectrin (SPTBN1) from NCBI protein interaction 

databases.  The details and the references of these proteins are provided in the web-site, but not 

listed here.  The proteins are; YWHAG, 14-3-3 gamma; ATF7IP, activating transcription factor 7 

interacting protein; APC, Adenomatus polyposis coli (APC) protein; alpha-Cat, Alpha-catenin; 

ANK2, Ankyrin-B; CAPN1, Calpain; CSNK2A1, Casein kinase 2; C/EBP, CCAAT/enhancer 

binding protein; ACTR1B, Centractin; CPNE (1&4), Copine family of proteins (isoforms 1 and 

4); GRID, Delta glutamate receptor; MEF2C, Myocyte enhancer factor 2C; NF2, Neurofibromin 

2; PLCB1, Phospholipase C, beta 1; PLEKHA5, Pleckstrin homology domain containing, family 

A member 5; PJA1, Praja ring finger 1; EPB41L3, Protein 4.1R; PKC, Protein kinase C; 

PACKSIN1, Protein kinase C/casein kinase substrate in neurons; PYGO1, Pygopus homolog 1; 

RINT1, RAD50 interactor 1 protein; SRRM2, Serine/arginine repetitive matrix 2; STAT1, Signal 

transducer and activator of transcription 1; SMAD3, 4, and 9, Mothers against decapentaplegic 

homolog isoforms 3, 4, and 9; SREBF2, Stereol regulatory element binding transcription factor 

2; SYNCA, Synuclein, alpha; UBC, Ubiquitin c. 
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It is interesting to note that the number of proteins identified to interact with αII spectrin is much 

higher than the number of proteins interacting with βII spectrin.   

Proteins interacting with spectrin isoforms may regulate cellular functions of spectrin.  However, 

in addition to these interactions, others may be responsible for the regulation of the spectrin 

tetramerization.  It is interesting to note that, several recent studies mapped hereditary anemia 

mutations to the interacting domains in erythroid spectrin (Lam et al., 2009; Song et al., 2009; 

Ipsaro et al., 2010).  Structural information of αII spectrin show that the mutations in αII spectrin 

may alter the equilibrium between the spectrin dimers ad tetramers in the cell, leading to reduced 

levels of functional tetramers and increased levels in dimers, which is regarded as a potential 

cause for abnormal neuronal functions (Mehboob et al., 2010).  Therefore, further understanding 

of the regulation of the spectrin tetramerization is crucial. 
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C. Spectrin Tetramers 

The functional form of spectrin in the cytoskeleton is a tetramer (Reiderer et al., 1988), and 

tetramerization involves helical bundling of the single helix (Helix C’) at the N-terminal region 

of an α spectrin in one αβ heterodimer, and two helices (Helix A’ and Helix B’) at the C terminal 

region of β spectrin from another αβ heterodimer.  This interaction recapitulate formation of a 

composite 3-helix bundle structural domain as shown in erythrocyte spectrin (Speicher et al., 

1980; Park et al., 2003; Mehboob et al., 2003; Long et al., 2007; Antoniou et al., 2008; Song et 

al., 2009; Mehboob et al., 2010; Ipsaro et al., 2010) (Figure 6).   

Detailed structural information is required for a complete understanding of the tetramerization of 

spectrin isoforms.   
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 Figure 6.  Schematic representation of spectrin tetramerization.  A.  Spectrin assembly starts 

with the formation of the spectrin heterodimers and continues with head-to-head interaction of 

two heterodimers to form spectrin tetramers via interaction at the N-terminal region of α spectrin, 

and C-terminal region of β spectrin (region marked with a box).  B.  An enlarged schematic 

representation of the molecular components of tetramerization.  C.  Homology model of αII/βII 

tetramerization region created using a published structure of a structural domain, subjected to 

molecular dynamics simulations (labeled before and after) (modified from Ipsaro et al., 2010; 

Mehboob et al., 2010).   
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Previously, we identified several mutations at the tetramerization region of non-erythroid (brain) 

alpha spectrin (αII) that impair its interaction with βII spectrin (Sumandea and Fung, 2005).  

Similar mutations in erythroid spectrin (αI) leading to reduced amounts of tetramers leading to 

hereditary elliptocytosis (Tse and Lux, 1999).   

Given the importance of tetramerization of spectrin isoforms, the regulation of spectrin 

tetramerization emerges as a possible venue for the regulation of several cellular roles of 

spectrin.  For example, the tetramerization of spectrin isoforms was shown to be essential for 

neuritogenesis (Bignone et al., 2007).  Polarized spectrin assembly via spatial regulation of the 

tetramerization in epithelial cells shed new light on of cell polarity and the contributions of 

spectrin (Lee et al., 1997).  In myocardial cells, αII spectrin distribution is coincident with Z-

discs and plasma membrane of myofibrils (Bennett et al., 2004).  Identification of proteins that 

regulate spectrin tetramerization through interactions with spectrin isoforms is of utmost 

importance for understanding the physiology and the pathophysiology of human brain. 
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In this study, we first aimed to understand the mutational effects on spectrin tetramerization.  For 

this we used both the yeast two-hybrid (Y2H) system and ITC methods to further study the 

effect of mutations at position 22 of αII tetramer formation.   

Secondly, we aimed to identify proteins interacting with a C-terminal fragment (residues 1697 – 

2145) of βII-spectrin (βII-C), which includes tetramerization region.  We also studied the effects 

of these proteins on αII-N and βII-C association to identify proteins that may regulate non-

erythroid spectrin tetramerization. 
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CHAPTER 2  

 

YEAST TWO-HYBRID AND ITC STUDIES OF ALPHA AND BETA SPECTRIN 

INTERACTION AT THE TETRAMERIZATION SITE 

 

This chapter was submitted to "Cellular and Molecular Biology Letters" journal (Sevinc, A., 

Witek, M. A., and Fung, L. W.-M.). It has been accepted with minor revisions 

 

A. Abstract 

Yeast two-hybrid (Y2H) and isothermal titration calorimetry (ITC) methods were used to 

further study the mutational effect of non-erythroid alpha spectrin (αII) at position 22 in 

tetramer formation with beta spectrin (βII).  Four mutants, αII-V22D, V22F, V22M and 

V22W, were studied.  For the Y2H system, we used plasmids pGBKT7, consisting of the 

cDNA of the first 359 residues at the N-terminal region of αII, and pGADT7, consisting of 

the cDNA of residues 1697 - 2145 at the C-terminal region of βII.  Strain AH109 yeast 

cells were used for colony growth assays and strain Y187 was used for β-galactosidase 

activity assays.  Y2H results showed that the C-terminal region of βII interacts with the N-

terminal region of αII, either the wild type, or those with V22F, V22M or V22W 

mutations.  The V22D mutant did not interact with βII.  

For ITC studies, we used recombinant proteins of the αII N-terminal fragment and of the 

erythroid beta spectrin (βI) C-terminal fragment; results showed that the Kd values for 

V22F were similar to those for the wild-type (about 7 nM), whereas the Kd values were 
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about 35 nM for V22M and about 90 nM for V22W.  We were not able to detect any 

binding for V22D with ITC methods.  This study clearly demonstrates that the single 

mutation at position 22 of αII, a region critical to the function of non-erythroid α spectrin, 

may lead to a reduced level of spectrin tetramers and abnormal spectrin-based membrane 

skeleton.  These abnormalities could cause abnormal neural activities in cells. 

 

B. Introduction  

Spectrin, a prominent cytoskeletal protein, exerts its fundamental role in cells by forming a 

sub-membrane filamentous network. An essential aspect of the spectrin network formation 

is the tetramerization of spectrin αβ heterodimers.  We have previously used the yeast two-

hybrid system and random mutagenesis to investigate the effects of amino acid mutations 

on the tetramerization of non-erythroid (brain) spectrin (fodrin) (Sumandea and Fung, 

2005).  The Y2H techniques have been developed as convenient and useful methods to 

screen for protein interactors (Fields and Song, 1989; Fields, 2009; Hu et al., 2009), 

particularly when libraries of vectors containing protein cDNAs are commercially 

available.  We have used such methods to identify some interactors of non-erythroid alpha 

spectrin (αII) (Oh and Fung, 2007).  These studies are often qualitative in nature - a protein 

either interacts or does not interact with another protein.  However, several studies report 

quantitative results from Y2H studies.  For example, colonies of Y2H system with common 

polymorphisms of BRCA1 from cancer predisposing mutations were considerably smaller 

than controls (Humphrey et al., 1997), colony growth rates (cell viability) correlate with  

the strengths of interactions (Estojak et al., 1995; Jabbour et al., 2006), the levels of 
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transcription activation correlate with the strength of the binding interaction in a “small 

colony phenotype”, a growth phenotype discovered serendipitously (Coyne et al.,2004), 

and β-galactosidase activities correlate with protein-protein interaction affinities 

(Stavolone et al., 2001; Ma et al., 2003).  Yet, some authors indicate that, “our results 

emphasize the difficulty of attempting to quantitate differences in affinity from two-hybrid 

experiments alone” (Estojak et al., 1995).  Others show that Y2H results do not correlate 

with protein affinities (Larin et al., 1999; Grootjans et al., 2000; Crowthler et al., 2005).  

Since protein expression, structures and nature of interaction may vary from system to 

system in Y2H systems, many studies have focused on studying single mutation effects on 

protein-protein interactions (e.g., Coyne et al., 2004).   

In our study, we used both the Y2H system and ITC methods to further study the 

mutational effect of αII at position 22 on tetramer formation.  Previously we have used ITC 

methods to determine Kd values of α/β heterodimer association to form tetramers in model 

systems (e.g., Mehboob et al., 2010; Kang et al., 2010; Lam et al., 2009; Li an Fung, 2009; 

Mehboob et al., 2003).  Recently, we found that mutation of αII at position 37 increases the 

Kd value from about 9 nM for αII with beta I spectrin (βI) to 10 µM for the R37P mutation 

(Mehboob et al., 2005).  Residue 22 in αII corresponds to a “d” position in the heptad 

repeat and is in the interface of the triple helical bundle in α/β tetramers Mehboob et al., 

2010).  In this study, we found that the mutation effect was most severe for V22D, 

followed by V22W and V22M, whereas little effect was observed for V22F.   
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C. Methods 

C.1. Yeast Two-Hybrid Assays 

The Y2H system with colony growth and β-galactosidase detection methods were used to 

determine the interaction between βII and αII, wild-type or its mutants, at the 

tetramerization region.  The Matchmaker GAL4 Two-Hybrid System 3 (Clontech, 

Mountain View, CA) was used.  The yeast strain Y187, which is auxotrophic for leucine 

and tryptophan with Gal4-inducible lacZ gene, or strain AH109, which is auxotrophic for 

adenine, histidine, leucine, lysine, tryptophan and uracil and with Gal4-inducible lacZ 

genes was used.  Plasmids pGBKT7 (pBD) with the cDNA of the non-erythroid alpha 

spectrin (αII) consisting of the first 359 residues at the N-terminal region (αII-N) (pBD-αII-

N) and pGADT7 (pAD) with the cDNA of beta-spectrin consisting of residues 1697-2145 

at the C-terminal region (βII-C) (pAD-βII-C) were previously prepared (Sumandea and 

Fung, 2005).  Plasmids of two mutations at position 22 of αII-N, V22W and V22M, 

prepared by standard methods (Mehboob et al., 2005) as well as two previously prepared 

mutants (V22D and V22F) (Sumandea and Fung, 2005) (pBD-αII-N-V22Δ) were also used. 

For the colony growth assay, AH109 cells with  pAD-βII-C and pBD-αII-N, or pBD-αII-N-

V22Δ, were grown at 30 °C on agar plates with a growth medium containing all essential 

amino acids but tryptophan, leucine and histidine, and lacking adenine (SD/-W/-L/-H/-A 

with SD Minimal Agar Base and -Leu/-Trp/-His/-adenine DO Supplement, both from 

Clontech) for three days before photography.  Under this high-stringency growth condition, 

cells with strongly interacting protein pairs grow and form colonies, whereas colonies with 

proteins with low-affinity interactions may be missed (Clontech user manual).  We also 
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prepared pAD-βI-C, with βI-C consisting of residues 1898 - 2083 of βI and performed 

colony growth assay with pBD-αII-N or pBD-αII-N-V22D. 

For β-Galactosidase assay via colony lift method, strain Y187 cells with  pAD-βII-C and 

pBD-αII-N, or pBD-αII-N-V22Δ, were grown at 30 °C on agar plates with a growth 

medium containing all essential amino acids but leucine and tryptophan (SD/-Leu/-Trp 

with SD Minimal Agar Base and -Leu/-Trp DO Supplement; both from Clontech) for three 

days before colony lifting steps, as described in the manufacturer user manual.  Cells with 

interacting protein pairs produce β-galactosidase to give a blue color on filter papers when 

soaked with a solution consisting of its substrate, 5-bromo-4-chloro-3-indolyl-ß-D-

galactopyranoside (X-gal soaking solution, see Clontech user manual). 

C.2. Isothermal Titration Calorimetry 

Recombinant proteins αII-N, αII-N-V22Δ (V22D, V22F, V22M and V22W) and βI-C were 

prepared, following standard laboratory techniques (Mehboob et al., 2010).  Briefly, 

protein expression vector pGEX-2T was used to express glutathione S-transferase fusion 

protein, and purified with affinity column chromatography, with thrombin cleavage of 

fusion protein.  DNA sequence analysis and protein mass spectrometry analysis results 

were obtained (Research Resources Center, University of Illinois at Chicago).  Protein 

purity was checked with gel electrophoresis, using 16% polyacrylamide gel with 0.1% 

SDS.  Helical contents of the proteins were determined using circular dichroism spectra 

(Mehboob et al., 2005).  We have found that βI-C and βII-C proteins exhibit similar 

affinities for αII-N (Mehboob et al., 2010).  However, βII-C recombinant protein is more 
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difficult to prepare than βI-C protein due to its low expression level.  Thus, βI-C was used 

for ITC experiments. 

ITC measurements were performed at 25 °C using an isothermal titration calorimeter (VP 

ITC, MicroCal, LLC, Northampton, MA) (Mehboob et al., 2010).  Protein pairs (βI-C with 

αII-N, or αII-N-V22Δ) were dialyzed overnight in 5 mM phosphate buffer with 150 mM 

sodium chloride at pH 7.4 (PBS) to ensure identical solution conditions in titrating protein 

pairs.  In addition, all samples were thoroughly degassed prior to calorimetry titration.  

Each αII-N or αII-N-V22Δ sample (30 μM) was titrated into the sample cell containing βI-

C protein (3 μM).  Titrations of βI-C (30 - 100 µM) into αII-N or αII-N-V22Δ (3 μM) were 

also performed.  Titration isotherms were analyzed with a single binding site assumption, 

as before (Mehboob et al., 2010), to obtain dissociation constants, Kd.   
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D. Results 

D.1. Yeast Two-Hybrid Assays 

For colony growth assay, cells with either βI-C or βII-C and with αII-N or αII-N-V22F, -

V22M, or -V22W formed well separated colonies with diameters of 2 - 5 mm after 3 days, 

with no specific colony size associated with cells of a particular mutant (Figure 7).  

However, cells with αII-N-V22D, with either βI-C (data not shown) or βII-C (Figure 7) did 

not show any growth after 3 days (Figure 7).   

For the β-galactosidase activity (colony-lift) assay, Y187 cells with αII-N or αII-N-V22F,       

-V22M, or -V22W showed a distinct blue color, but without a consistent color variation 

associated with cells with a particular mutation (Figure 8).  
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Figure 7.  Colony growth assay.  AH109 cells co-transformed with pAD-βII-C and pBD-

αII-N, or  pBD-αII-N-V22D, -V22F, -V22M, or -V22W, were grown for 3 days at 30 °C, 

following procedures from the manufacturer (Clontech).  Colonies, 2 - 5 mm in diameter, 

were found for cells expressing αII-N (marked as V22 WT above), αII-N-V22F (V22F), 

αII-N-V22M (V22M), or αII-N-V22W (V22W), whereas cells expressing αII-N-V22D 

(V22D) did not show any growth. The scale bar is shown in top right panel. 
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Figure 8.  β-Galactosidase activity assay via colony lift method.  Y187 cells co-

transformed with pAD-βII-C and pBD-αII-N, -αII-N-V22D, -αII-N-V22F, -αII-N-V22M, or 

-αII-N-V22W were grown for 3 days at 30 °C following procedures from the manufacturer 

(Clontech).  Colonies were transferred onto filter papers, subjected to freeze-thaw cycles, 

and incubated on a second set of filter papers pre-soaked with β-galactosidase substrate (X-

gal) for 30 min.  Filter papers for colonies with αII-N, αII-N-V22F, αII-N-V22M and αII-

N-V22W all showed blue color, but those with αII-N-V22D did not show blue color. 
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D.2. Isothermal Titration Calorimetry Assay 

D.2.a. Recombinant Protein Analysis 

The SDS gel electrophoresis data showed that all αII-N (wild type and mutants) and βI-C 

proteins were ~90% pure.  Electrophoretic masses were ~42 kDa for αII-N proteins and 

~22 kDa for βI-C.  Mass spectrometric results showed 42,241.0 Da for αII-N (expected 

mass is 42,242.5 Da), 42,258.6 Da for αII-N-V22D (expected mass is 42,258.5 Da), 

42,289.0 Da for αII-N-V22F (expected mass is 42,290.6 Da), 42,274.8 Da for αII-N-V22M 

(expected mass is 42,274.6 Da), 42,329.8 Da for αII-N-V22W (expected mass is 42,329.6 

Da) and 22,036.9 Da for βI-C (expected mass is 22,036.9 Da).  The CD spectra of αII-N, 

αII-N-V22Δ and βI-C exhibited characteristic features of similar spectrin recombinant 

proteins (Mehboob et al., 2001), with minima at 222 and 208 nm.  Helical contents were 

~75%, in good agreement with published results (Mehboob et al., 2001). 

D.2.b. ITC Results (done by Marta A. Witek) 

The ITC isotherm of βI-C/αII-N system at 25 °C showed that sufficient heat (-0.45 

µcal/sec) was released during titration of αII-N into βI-C (Figure 9), with an average Kd 

value of 6.9 + 0.5 nM (n = 3), in good agreement with previous findings of a similar system 

(with βI-C) (Mehboob et al., 2003), and the values are similar to that with βII-C (Li and 

Fung, 2003).  The Kd value was 6.7 + 0.3 nM for βI-C/αII-N-V22F, 35 + 4 nM for βI-

C/αII-N-V22M and 93 + 28 nM for βI-C/αII-N-V22W.  However, for βI-C/αII-N-V22D 

system, there was insufficient heat released either when αII-N-V22D (30 µM) was titrated 

with βI-C (3 µM) (Figure 9, Table II), or when βI (30 - 100 µM) was titrated with αII-N-

V22D (3 µM), indicating that the Kd value for this system is larger than 100 µM. 



46 
 

 

 



47 
 
Figure 9.  ITC measurements.  Recombinant protein samples of βI-C, αII-N (marked as 

WT above), αII-N-V22D (D), αII-N-V22F (F), αII-N-V22M (M) and αII-N-V22W (W) 

were dialyzed together in 5 mM phosphate buffer with 150 mM sodium chloride at pH 7.4 

and degassed thoroughly prior to ITC measurements.  αII-N proteins (29 - 35 μM) were 

each individually titrated into the sample cell containing βI-C protein (3 μM).  Typical ITC 

titration isotherms and fitted curves are shown.  The average Kd values (n = 3), determined 

from the fitted curves using a single-binding site model of the manufacturer (MicroCal) 

software, were 6.9 nM for βI-C/αII-N and 6.7 nM for βI-C/αII-N-V22F, 35 nM for βI-

C/αII-N-V22M and 93 nM for βI-C/αII-N-V22W.  Little heat was released for βI-C/αII-N-

V22D titration and no Kd was obtained. 
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TABLE II. Y2H and ITC results of alpha and beta spectrin model proteins interaction. 

pBD Plasmida Colony Growthb β-Galactosidase Activityc     Kd
d (nM)    

αII-N Yes Blue color 6.9 

αII-N-V22D No No color not detectable 

αII-N-V22F Yes Blue color 6.7 

αII-N-V22M Yes Blue color 35 

αII-N-V22W Yes Blue color 93 

apAD-βII-C with different pBD-αII-N plasmids in the Y2H experiment; we also used pAD-

βI-C with pBD-αII-N or pBD-αII-N-V22D, and the results were the same as those with 

pAD-βII-C; byeast AH109 cells were grown in a medium containing all essential amino 

acids but tryptophan, leucine and histidine, and lacking adenine; cyeast Y187 cells were 

grown in medium containing all essential amino acids but leucine and tryptophan for the 

colony lift assay; dITC experiments using recombinant proteins of αII-N and mutants listed 

and of βI-C were carried out at 25 °C in 5 mM phosphate buffer with 150 mM sodium 

chloride at pH 7.4.   
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E. Discussion 

The Y2H systems have been widely used to study protein-protein interactions.  In this 

study, both colony growth and β-galactosidase activity detection results showed that αII 

spectrin with mutations V22F, V22M or V22W interacted with βII spectrin at the 

tetramerization site (N-terminal region of αII and C-terminal region of βII).  However, αII-

N-V22D did not interact with βII-C.  With those αII mutants that interacted with βII-C, we 

were not able to detect any differences in interactions between V22F, V22M or V22W with 

βII-C.  Both colony growth rate and colony size, as well as the blue color indication for β-

galactosidase activity did not show detectable differences between V22, V22F, V22M and 

V22W.   

The ITC methods require not only the preparation of recombinant proteins but also the 

characterization of these proteins for proper functional analysis.  In our systems, we 

characterized the protein systems with high resolution mass spectrometry analysis as well 

as by circular dichroism analysis.  We have found that, for both α and β spectrin 

recombinant proteins used for tetramerization studies, it is important to obtain their CD 

results to demonstrate that the proteins are folded properly before ITC experiments.  The 

ITC results show that the Kd values for V22F and the wild type with βI-C were about the 

same, with a Kd of about 7 nM.  However, V22M and V22W both exhibited lower affinity 

than the wild type, with Kd values of 35 nM and 93 nM, respectively.  The ITC results of 

V22D titration with βI-C showed little interaction, with Kd values larger than 100 µM.  As 

indicated in METHODS, we have found that βI-C and βII-C proteins exhibit similar 
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affinities for αII-N (Mehboob et al., 2010), and in this study we showed that results similar 

to those of βII-C were obtained when βI-C was used with αII-N wild type or with V22D.   

Spectrin tetramer formation involves the bundling of three helices, one from α (Helix C’) 

and two from β (Helix A’ and Helix B’), forming a triple helical bundle (Mehboob et al., 

2010; Mehboob 2001).  Mutations that affect the triple helical bundling lead to lower 

affinity.  Previous studies reveal that the V22 position of αII is critical for its 

tetramerization with βII (Sumandea and Fung, 2005).  Sequence alignment shows that αII 

V22 corresponds to V31 in erythroid α spectrin (αI).  αI V31 has been identified as a hot 

spot that leads to severe clinical symptoms (Lecomte et al., 1993).  In triple helical 

bundling of αII and βII helices, an N-terminal hydrophobic cluster (Li and Fung, 2009) 

involves three residues in the αII Helix C’ (I15, V22, and L23) and two residues in the βII 

Helix A’ (V2019 and F2022), and one residue in the βII Helix B’ (F2073) (Mehboob et al., 

2010).  Thus, it is not surprising that mutations at the V22 position may affect non-

erythroid spectrin tetramer formation.  Since V22 is involved in a hydrophobic cluster 

during helical bundling to form tetramers, a mutation from V to a charged residue D clearly 

weakens the hydrophobic cluster and thus severely reduces the ability of V22D to interact 

with Helices A’ and B’ in βII-C.  Mutation of V22 to other hydrophobic residues such as 

V22F did not affect its interaction with βII-C.  The mutations of V22M and V22W lowered 

the affinity by about 5 times and 10 times, respectively.  Hydrophobicity of individual side 

chains, and the properties of the interacting clusters also affected the triple helical 

bundling.  The Kd values determined by ITC represented a ΔG value of about -46.6 kJ/mol 

(-11.1 kcal/mol) for βI-C with either αII-N or αII-N-V22F, -42.6 kJ/mol (-10.1 kcal/mol) 
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with αII-N-V22M, and -40.1 kJ/mol (-9.6 kcal/mol) with αII-N-V22W.  Thus, the tetramers 

of these αII mutants and β spectrin exhibit slightly differing stabilities from each other.  As 

discussed previously (Li and Fung, 2009), αII spectrin has recently been reported to be 

essential for stabilizing nascent sodium channel clusters (Voas et al., 2007), assembling the 

mature node of Ranvier (Voas et al., 2007), and regulating endothelial cell-cell contacts 

(Benz et al., 2008).  The tetramer formation of αII-βII spectrin is also essential in the 

regulatory step for neuritogenesis (Bignone et al., 2007).  Tetramerization is clearly 

important for spectrin function.  At present, no clinical mutations in αII spectrin, including 

the tetramerization region, have been identified.  A reduced level of spectrin tetramers and 

abnormal spectrin-based membrane skeleton could cause abnormal neural activities in 

cells. 
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CHAPTER 3  

 

NON-ERYTHROID BETA SPECTRIN INTERACTING PROTEINS  

AND THEIR EFFECTS ON SPECTRIN TETRAMERIZATION 

 

This chapter was submitted to "Cellular and Molecular Biology Letters" journal (Sevinc, A., and 

Fung, L. W.-M.). 

 

A. Abstract 

With yeast two-hybrid methods, we used a C-terminal fragment (residues 1697-2145) of non-

erythroid beta spectrin (βII-C), including the region involved in the association with alpha 

spectrin to form tetramers, as the bait to screen a human brain cDNA library to identify proteins 

interacting with βII-C.  We applied stringent selection steps to eliminate false positives and 

identified 17 proteins that interacted with βII-C (IPβII-C s).  The proteins include a fragment 

(residues 38-284) of "THAP domain containing, apoptosis associated protein 3, isoform CRA g", 

"glioma tumor suppressor candidate region gene 2" (residues 1-478), a fragment (residues 74-

442) of septin 8 isoform c, a fragment (residues 704-953) of "coatomer protein complex, subunit 

beta 1, a fragment (residues 146-614) of zinc-finger protein 251, and a fragment (residues 284-

435) of syntaxin binding protein 1.  We used yeast three-hybrid system to determine the effects 

of these βII-C interacting proteins as well as of 7 proteins previously identified to interact with 

the tetramerization region of non-erythroid alpha spectrin (IPαII-N s) (Oh and Fung, 2007) on 

spectrin tetramer formation.  The results showed that 3 IPβII-C s were able to bind βII-C even in 

the presence of αII-N, and 4 IPαII-N s were able to bind αII-N in the presence of βII-C.  We also 
56 
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found that the syntaxin binding protein 1 fragment abolished αII-N and βII-C interaction, 

suggesting that this protein may inhibit or regulate non-erythroid spectrin tetramer formation. 

 

B. Introduction  

Spectrin is a cytoskeletal protein, initially identified for its role in preserving the biconcave shape 

of erythrocyte membranes (Marchesi and Steers, 1968) and originally considered to be present 

only in erythrocyte (Hiller and Weber, 1977) until the identification of non-erythrocyte isoforms 

and their functions (Levine and Willard, 1981).  Spectrin is involved in the formation and 

maintenance of plasma membranes at sites of cell-cell contacts (Lee et al., 1993), protein sorting 

and accumulation (Pinder and Baines, 2000), interactions with structural and regulatory proteins 

(Djinovic-Carugo et al., 2002), regulation of signal transduction pathways (Gascard and 

Mohandas, 2000), and regulation of DNA repair (Sridharan et al., 2006).  Non-erythroid spectrin 

(spectrin II), also referred to as brain spectrin (Kanda et al., 1986), calspectin  (Tsukita et al., 

1983), or fodrin (Sobue et al.,1982), is found in neuronal axons (Reiderer et al., 1988), whereas 

erythroid spectrin (spectrin I) is confined to neuronal cell bodies and dendrites, and some glial 

cells (Ohara et al., 1988).  Beta II spectrin (βII) participates in the propagation of TGF-β 

signaling (Tang et al., 2003).  Gene knock-out studies show that spectrin expression and 

regulation may not be essential but important for fundamental cellular functions; therefore, 

spectrin mutations may be non-lethal but cause disease conditions in humans (Bennett and 

Baines, 2001).  The functional form of spectrin is tetrameric (DeSilva et al., 1992), and its 

tetramerization involves interaction of the lone helix (Helix C’) at the N-terminal region of α-

spectrin of one αβ heterodimer and the two helices (Helix A’ and Helix B’) at the C-terminal 
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region of the β-spectrin on another heterodimer (Speicher et al., 1993; Mehboob et al., 2005; 

Ipsaro et al., 2010; Song et al., 2011).  This interaction involves hydrophobic residue clustering, 

salt bridges and hydrogen bonds (Ipsaro et al., 2010; Song et al., 2011; Antoniou et al., 2008; 

Song et al., 2009; Mehboob et al., 2010).  Despite high sequence homology and three-

dimensional structural similarity, dissociation constant measurements using model proteins of 

different spectrin fragments show two orders of magnitude difference in the N-terminal α-

spectrin and C-terminal α-spectrin association affinity between erythroid and non-erythroid 

spectrin (Mehboob et al., 2001; Mehboob et al., 2003), in good agreement with earlier studies 

using intact spectrin (Begg et al., 1997).  It has been shown that other proteins also interact with 

the N-terminal region of αII-spectrin (Oh and Fung, 2007).  They include Duo protein, Lysyl-

tRNA synthetase, TBP associated factor 1, two isoforms (b and c) of a protein kinase A 

interacting protein and 2 different segments of Zinc finger protein 333 as well as several 

unknown proteins.  These proteins may compete with its spectrin partner to regulate spectrin 

tetramerization and cytoskeletal structures.  

 In this study, we identified seventeen proteins that interact with a recombinant protein consisting 

of the C-terminal tetramerization site of βII-spectrin (βII-C).  The proteins include a fragment 

(residues 38-284) of "THAP domain containing, apoptosis associated protein 3, isoform CRA g", 

"glioma tumor suppressor candidate region gene 2", a fragment (residues 74-442) of septin 8 

isoform c, a fragment (residues 704-953) of "coatomer protein complex, subunit beta 1”, a 

fragment (residues 146-614) of zinc-finger protein 251, and a fragment (residues 284-435) of 

syntaxin binding protein 1.  These 17 proteins, along with 7 proteins that interact with the N-

terminal region of αII-spectrin (αII-N) mentioned above, have been tested for their effects on 
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spectrin tetramerization.  One βII-C interacting protein abolishes αII-N and βII-C interaction.  

This protein of 153 residues, except the last 8 residues, is identical to a fragment (residues 284-

428) of syntaxin binding protein 1.  We also studied the effects of these proteins on αII-N and 

βII-C association and found that the binding of syntaxin binding protein 1 fragment to βII-C 

abolishes the αII-N and βII-C association, suggesting that this protein may inhibit or regulate 

non-erythroid spectrin tetramerization.   

 

C. Materials and Methods 

C.1. Library Screening for βII-C Interacting Proteins (IPβII-C) 

The C-terminal region (amino acid residues 1697-2145) of brain (non-erythroid) beta spectrin 

(βII-C) was used as the bait to screen for interacting proteins in the human brain cDNA library 

(BD Matchmaker Library, BD Biosciences Clontech).  The sequence encoding βII-C was cloned 

to the binding domain (BD) plasmid (pBD) using standard methods (Oh and Fung, 2007; 

Sumandea and Fung, 2005), and labeled as pBD-βII-C.  

To test for potential toxic effects of BD-βII-C fusion protein, AH109 cells were co-transformed 

with pBD-βII-C and an empty activation domain (AD) plasmid (pAD).   Briefly, several colonies 

of AH109 cells were grown in medium with yeast extract, peptone, dextrose, and adenine 

(YPDA, 50 mL) at 30 oC overnight, before transferring to a fresh YPDA with kanamycin (300 

mL) until an OD600 of 0.6 (about 3 hours), following procedures in the user manual.  Cells were 

harvested, washed with tris-EDTA solution and suspended in tris-EDTA plus lithium acetate 

solution (see user manual for solution preparation).  pBD-βII-C and pAD plasmids (0.1 μg of 
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each), and Herring Testes carrier DNA (0.1 mg) were mixed with the cell suspension (100 μL).  

Polyethylene glycol and lithium acetate solution (600 μL) was added and the mixture was 

incubated at 30 oC for 30 min.  Dimethyl sulfoxide (70 μL) was added, before a heat shock step 

at 42 °C for 15 min.  Cells were briefly centrifuged, re-suspended in sterile tris-EDTA solution 

before spreading on agar plates containing synthetic defined (SD) minimal medium with double 

drop-out (DDO, SD/-Leu/-Trp) supplement and grown for 3 days at 30 oC.  

To test for potential non-specific activation of the reporter genes giving false positive results in 

screening, AH109 cells with pBD-βII-C and an empty pAD plasmids were spread on agar plates 

containing SD minimal medium supplemented with quadruple drop-out (QDO, SD/-Ade/-His/-

Leu/-Trp) and grown for 3 days at 30 oC. 

For library screening, bait plasmid pBD-βII-C was transformed into yeast strain AH109.  A 

freshly transformed colony, 2-3 mm in size, was inoculated into SD medium with drop-out 

supplement lacking tryptophane (SD/-Trp, 50 mL) and grown until cells reached stationary phase 

(OD600 > 1.5).   AH109 cells were harvested, re-suspended with a "2X YPDA" plus kanamycin 

solution (5 mL) and mated with Y187 cells containing library plasmids (pAD-IPβII-C) with > 5 x 

107 cfu/mL (1 mL).  These cells were cultured again in 2X YPDA with kanamycin (45 mL) for 

20 hours at 30 oC with slow shaking (30-50 rpm).  Diploid cells were collected and spread on 50 

large (150 mm) plates containing SD medium with QDO supplement and grown for 5 days at 30 

oC.  Well isolated colonies growing on these plates were selected, and ones showing coalescent 

growth were avoided. 
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Further selection to obtain positive colonies was done by transferring selected colonies to QDO 

plates with the chromagenic substance, X-α-gal, and grown for 3 days at 30 oC.  Those colonies 

with α-galactosidase production were detected by the appearance of blue colonies as they grew 

on plates.   

C.2. Co-transformation for Confirmation of Screened Interacting Proteins 

Plasmids purified from positive colonies were transformed into E. coli DH5α cells, using 

conventional methods.  Cells that were able to grow on plates with ampicillin were used to 

eliminate kanamycin resistant pBD-βII-C plasmid, and to obtain pAD-IPβII-C plasmids in positive 

colonies.  Purified pAD-IPβII-C and pBD-βII-C plasmids were co-transformed into the AH109 

cells and plated on QDO plates.  After 3 days at 30 oC, cells without growth were eliminated, and 

only those with growth were further analyzed for IPβII-C s. 

C.3. Effects of Interacting Proteins on Spectrin Tetramerization 

We also identified the IPβII-C s that were able to bind to βII-C in the presence of αII-N (first 359 

residues in αII) by using the yeast three-hybrid vector, pBridge (pBR), to express not only the 

binding domain fusion protein, BD-βII-C, but also to express an additional protein (such as αII-

N) only in the absence of methionine in the growth medium.  In the presence of methionine, this 

additional protein was not expressed, and thus can be used as a control sample.  AH109 cells 

were co-transformed with pBR-βII-C--αII-N and pAD-IPβII-C plasmids.  These cells were plated 

on agar plates containing SD medium with TDO supplement in the absence of methionine in the 

growth medium to express BD-βII-C and AD-IPβII-C as well as αII-N, and in the presence of 

methionine to express only BD-βII-C and AD-IPβII-C, and allowed to grow for 3 days at 30 oC. 
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 Once the IPβII-C s that were able to bind to βII-C in the presence of αII-N were selected, we then 

selected those that abolish the interaction between βII-C and αII-N by using AH109 cells co-

transformed with pBR-αII-N--IPβII-C and pAD-βII-C plasmids to express BD-αII-N and AD-βII-

C as well as  IPβII-C, in the absence of methionine.  

In addition to IPβII-C s from this screening, we also studied the effect of αII-N interacting proteins 

(IPαII-N s) identified in our earlier screening (Oh and Fung, 2007), on αII-N and βII-C interaction 

by using a similar experimental set up, replacing IPβII-C with  IPαII-N in the plasmids used.  The 

seven proteins used were Zinc finger protein 333 - fragment 1-169, Zinc finger protein 333 - 

fragment 1-230, AKIP1b, lysyl-tRNA synthetase - fragment 1-151, TBP associated factor 1-

fragment 1270-1495, Duo protein - fragment 181-722 and spectrin βIV - fragment 1916-2564 

(Oh and Fung, 2007). 

C.4. DNA Sequencing and Protein Identification 

Plasmids from positive colonies with IPβII-C s were sequenced at the DNA Services Facility, 

Research Resources Center at the University of Illinois at Chicago.  Sequencing results were 

analyzed with Clustal W v1.7 (EMBL, Heidelberg, DE) to identify the SMART III, CDSIII 

sequences, and poly A tail in each plasmid, and the segment between the SMARTIII and CDSIII 

sequences was marked as the sequence for the library cDNA.  Since the sequence of SMARTIII 

may vary in pAD-IPβII-C plasmids (see Clontech manual for SMART cDNA library 

construction), all three possible reading frames of DNA sequence were examined (Frame 0, 

following the Clontech codon assignment for SMARTIII for the rest of the plasmid; Frame +1, 

frame with one additional nucleotide; Frame -1, frame with two additional nucleotides).  The 

frame containing the most codons before the first stop codon was selected.  Amino acid 
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sequences were determined using the Translate tool (ExPASy proteomics server), and the 

sequences between SMARTIII and the first stop codon was taken as the sequence for the 

interacting protein.  These sequences were analyzed using Blastn, Blastx, and Blastp in "Basic 

Local Alignment Tool" (http://www.ncbi.nlm.nih.gov/blast/) in all non-redundant BLAST 

protein sequence databases, as before (Oh and Fung, 2007), for information on the interacting 

proteins. 

 

D. Results 

D.1. Library Screening for βII-C Interacting Proteins  

Tests for toxic effects of βII-C on yeast growth showed several colonies, 2-5 mm in diameter 

(Figure 10A), indicating that βII-C is not toxic to the yeast cells.  In the test for false positive in 

screening, yeast cells with pBD-βII-C and empty pAD plasmids did not form any colonies 

(Figure 10B), indicating that colony growth is observed only in the presence of an interacting 

protein X expressed by the pAD-X plasmid.   

In the library screening experiments for identifying βII-C interacting proteins, we selected 299 

well separated colonies and avoided coalescent colonies.  We further selected only those colonies 

(a total of 59) that produced α-galactosidase to give blue colonies (Figure 10C, for example, 

colonies on grids 17-20, 22-23, 25-28 and 32) and eliminated 240 of those colonies that appeared 

as white colonies (Figure 10C, colonies on grids 21, 24 and 29-31) and were considered to be 

false positives.  In the co-transformation confirmation analysis, randomly selected 20 of the 59 

blue colonies showed colony growth in all 20 samples (Figure 10D), confirming that these 

colonies indeed consisted of proteins that interacted with βII-C.  
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Figure 10.  Library screening for βII-C interacting proteins.   

AH109 cell colonies with pBD-βII-C and pAD plasmids supplemented with Ade and His (DDO 

medium) after 3 days of growth at 30 °C, indicating that pBD-βII-C is not toxic to yeast cell 

growth (A).  Same cells without Ade and His supplement (QDO medium) after 3 days of growth 

at 30 °C, shows no colonies indicating that pBD-βII-C does not lead to the false activation of the 

reporter genes (B).  Colonies from screening transferred to QDO plates with X-α-gal, and grown 

for 3 days at 30 °C, where  59 colonies, such as on grids 17-20, 22-23, 25-28 and 32, turned blue, 

while most of the colonies, such as on grids 21, 24 and 29-31, grew as white colonies (C).  

AH109 cells with one of the 20 randomly selected sequences (pAD-IPβII-C-1) and pBD-βII-C 

plasmids on QDO plates, after 3 days of growth at 30 °C, shows high numbers of colonies, 

confirming the presence of positive interactions between βII-C and IPβII-C-1 (D).   
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D.2. DNA Sequencing Results of the βII-C Interacting Proteins  

Sequence analysis of the cDNA sequences between SMARTIII and CDSIII of the 20 confirmed 

plasmids revealed that the sequences of the cDNA fragments ranged from 487 to 1,744 

nucleotides.  Three of the cDNA sequences were identical to each other, and another 2 of the 

cDNA sequences were also identical to each other.  Thus, a total of 17 different sequences were 

obtained from the 20 randomly selected positive colonies (Table III).  Selecting the largest 

number of codons from one of the three frames (-1, 0 and +1 frames, see Methods), 8 of the 17 

sequences were with frame 0, with the SMARTIII sequence ending as ATG GCC (Table III, #1-

5 and 7-9).  For #6 only 49 codons were obtained for frame 0, but 303 codons for frame +1, 

suggesting that the SMARTIII sequence for this sample ended with one extra nucleotide (G in 

TTA TGG CCG).  A similar frame shift was observed for #11 and 17.  For #10, only 21 codons 

were obtained for frame 0, 30 codons for frame +1, but 260 codons for frame -1, suggesting that 

the SMARTIII sequence for this sample ends with two extra nucleotides (GG in TAT GGC 

CGG).  Similar frame shift was observed for #12-16.  The first three amino acid residues of each 

translated proteins are shown in Table III for identification references.   
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TABLE III. DNA sequencing analysis of the library plasmids that show positive interactions 

with the C-terminal region (residues 1697-2145) of non-erythroid β spectrin (βII-C). 

IPβII-C Nucleotidesa Frameb Codonsc First Three Residuesd 

1 1536 0 153 (6, 30)  DDD 

2 1509 0 483 (0, 4)    SSF 

3 1509 0 483 (0, 4)    SSF 

4 1744 0 278 (10, 39)  RVG 

5 1325 0 386 (10, 39)  RVG 

6 1400 1 303 (7, 49)  KKK 

7 1232 0 247 (42, 108)  GGS 

8 602 0 131 (16, 24)  GGR 

9 1026 0 250 (5, 8)  EAA 

10 784 -1 260 (21, 30)  ELG 

11 1678 1 124 (73, 40)    LGK 

12 1484 -1 369 (4, 26)  ASH 

13 487 -1 54 (16, 3)     GEV 

14 1121 -1 84 (14, 28) PQP 

15 1083 -1 26 (7, 15) ERE 

16 889 -1 18 (10, 3)  QAW 

17 1672 1 78 (39, 27) ILP 
 

aNumber of nucleotides between SMARTIII and CDSIII; bFrame 0 uses the codon assignment by 

Clontech for SMARTIII sequence; Frame +1 is with one extra nucleotide; Frame -1 is with two 

extra nucleotides; cNumber of codons for the assigned frame, with those for other frames given 

in parentheses and the numbers for Frame 0 bolded; dfirst three amino acid residues in the 

protein. 
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D.3. αII-N Effect on IPβII-C Interaction with βII-C 

The yeast three-hybrid experiments with the cells of the 17 samples grown in the presence of 

methionine to give AD-IPβII-C and BD-βII-C, but no αII-N show colony growth (Figure 11A), as 

expected, confirming the interactions between AD-IPβII-C and BD-βII-C in these cells.  However, 

for cells grown in the absence of methionine leading to the expression of αII-N alongside AD-

IPβII-C and BD-βII-C, 14 samples showed no colony formation (data not shown), indicating these 

IPβII-C s did not interact with βII-C in the presence of αII-N.   Only the cells with three IPβII-C s 

(IPβII-C-1, -8 and -9) gave colonies (Figure 11B), indicating that IPβII-C-1, -8  and -9 interacted 

with βII-C in the presence of αII-N.   

Of these three IPβII-C s that interact with βII-C in the presence of αII-N, only IPβII-C-1 showed no 

colony growth for cells with pBR-αII-N--IPβII-C and pAD-βII-C plasmids, in the absence of 

methionine (Figure 11C), indicating that the presence of IPβII-C-1 abolished the αII-N and βII-C 

interaction.  In the presence of methionine, when no IPβII-C-1 was expressed, colonies formed 

(data not shown).   
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Figure 11.  Effects of interacting proteins on spectrin tetramerization.   

AH109 cell colonies with yeast three-hybrid plasmids (pAD-IPβII-C-1 and pBR-βII-C--αII-N for 

A and B, pAD-βII-C and pBR-αII-N--IPβII-C-1 for C, pAD-IPαII-N-18 and pBR-αII-N--βII-C for D 

and, pAD-βII-C and pBR-αII-N--IPαII-N-6 for E), after 3 days of growth at 30 °C on two different 

types of medium, with or without methionine, to understand αII-N effect on IPβII-C interaction 

with βII-C (A - C), and βII-C effect on IPαII-N interaction with αII-N (D - E).  Cells grown in the 

presence of methionine, consisting of AD-IPβII-C-1 and BD-βII-C showed colony growth (A).  

Only cells with IPβII-C-1, -8 and -9 showed colony growth when grown in the absence of 

methionine, consisting of  AD-IPβII-C, BD-βII-C and αII-N (B), whereas the rest of the samples 

did not (results not shown).  This indicates that, 3 IPβII-C s that showed colony growth were able 

to bind βII-C in the presence of αII-N.  When one of these 3 IPβII-C s were expressed in cells 

consisting of AD-βII-C and BD-αII-N, colony growth was not observed (C).  This indicates that 

in the presence of that IPβII-C, αII-N and βII-C were not able to interact.  Cells grown in the 

presence of methionine, consisting of AD-IPαII-N and BD-αII-N showed colony growth (results 

not shown).  Cells with 4 IPαII-N s showed colony growth when grown in the absence of 

methionine, consisting of AD-IPαII-N, BD-αII-N and βII-C (results not shown), whereas the rest 

of the samples did not (D).  Colony growth was observed when cells with plasmids for IPαII-N-6 

grown in the presence of methionine, expressing AD-βII-C and BD-αII-N, but not IPαII-N (results 

not shown), as well as in the absence of methionine, expressing  AD-βII-C and BD-αII-N, and 

IPαII-N-6 (E).  This indicates that the presence of IPαII-N-6 do not interfere with αII-N / βII-C 

interaction. 
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D.4. Alignment of βII-C Interacting Proteins to Human Proteins 

The sequence alignment results of the 17 IPβII-C sequences to protein sequences in the database 

show that only IPβII-C -7, except the last 8 residues, is identical to a fragment (residues 38-284) of 

a known protein -- "THAP domain containing, apoptosis associated protein 3, isoform CRA g" 

(Table IV).  Four of the proteins were 99% identical to known proteins or protein fragments, 

including glioma tumor suppressor candidate region gene 2 (residues 1-478), septin 8 isoform c 

(residues 74-442), and coatomer protein complex, subunit beta 1 (residues 704-953) (Table IV).  

We are puzzled about the identity of IPβII-C -10, which is identical to βII spectrin, residues 1781-

2040 except with two mutations (Table IV). 

IPβII-C -4 was similar to zinc-finger protein 251 (residues 146-614) (2% difference), and IPβII-C -1 

was similar to syntaxin binding protein 1 (residues 284-435) (4% difference).  The remaining 

proteins exhibited lower homology values to known proteins and the last 5 proteins did not 

match the sequences of any known proteins (Table IV).   

 



 

TABLE IV.  βII-C interacting proteins (IPβII-C s) and their effects on tetramerization site interaction. 
 

IPβII-C 
Matching 
Sequence 

Homo sapiens Proteins in Databases (Accession #),  
Matching Fragment 

Difference αII-Na Effect on 
Tetramerb

7 1-247  
(247)c 

THAP domain containing, apoptosis associated protein 3, 
isoform CRA g (EAW71568), residues 38-284 (284)c 

0% yes no 

10 1-260*d  
(260) 

Spectrin, beta, non-erythroid (AAY24229),  
residues 1781-2040 (2314) 

1%  
*G20E, F235Sd 

yes no 

2 6-483  
(483) 

Glioma tumor suppressor candidate region gene 2 
(NP_056525), residues 1-478 (478) 

1% 
first 5 aa (SSFDK) 

yes no 

12 1-369*  
(369) 

Septin 8 isoform c (NP_001092282), residues 74-442 
(442) 

1%  
*H239Q, P344T, F362S 

yes no 

9 1-250*  
(250) 

Coatomer protein complex, subunit beta 1 (NP_057535), 
residues 704-953 (953) 

1% 
*Y53C 

no not tested

4 1-271  
(278) 

Zinc-finger protein 251 (NP_612376), residues 146-416 
(671) 

2% 
last 7 residues 

yes no 

1 1-145  
(153) 

Syntaxin binding protein 1 (NP_003156), residues 284-
428 (603) 

4% 
last 8 residues 

no yes 

3 6-263 
288-483 (483) 

Glioma tumor suppressor candidate region gene 2 
(NP_056525), residues 1-258; 283-478 (478) 

6% 
first 5 aa (SSFDK) 

yes no  

8 19-131 (131) Ubiquitin-conjugating enzyme E2L3 (BAG61806),  
residues 100-212 (212) 

14% 
first 18 aa 

no not tested

6 1-150* 
151-168* 

169-247* (303) 

Golgin A6 family-like 10 (NP_001157937),  
residues 47-196; 211-228; 243-321 (479) 

26% 
*I4V, E39Q, R156H, R163C, 

Q169L, D174E, R191C, E237D

yes no 

5 32-386*  
(386) 

Zinc-finger protein 251 (NP_612376), residues 317-671 
(671) 

27% 
(*numerous mutations) 

yes no 

11 4-79  
(124) 

Eukaryotic translation initiation factor 3, subunit H 
(EAW91959), residues 1-76 (332) 

30%  
(*numerous mutations) 

yes no 

13-17  Unknowns 1, 2, 3, 4  yes no 
aeffects of αII-N on IPβII-C and βII-C interaction, with "yes" indicating that αII-N abolishes IPβII-C interaction with βII-C; beffects of IPβII-C on αII-N and βII-C 
interaction; ctotal number of residues in protein; dthe symbol * indicates mutations exist.
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D.5. βII-C Effect on IPαII-N Interaction with αII-N 

For the 7 αII-N interactors identified previously (see Methods), cells grown in the presence of 

methionine, consisting of AD-IPαII-N and BD-αII-N, but no βII-C, showed colony growth, 

confirming the interactions between AD-IPαII-N and BD-αII-N in these cells (data not shown).  

Four of the 7 samples of cells grown in the absence of methionine, with βII-C being expressed 

along side with AD-IPαII-N and BD-αII-N, gave colonies similar to Figure 3.2B, indicating that 

these IPαII-N (TBP-associated factor, lysyl-tRNA synthetase, and two fragments of Zinc finger 

protein 333 (1-169 residues and 1-230 residues fragments) interacted with αII-N in the presence 

of βII-C.  Cells with the remaining 3 IPαII-N s did not show any colony growth (Figure 3.2D).   

Of the 4 IPαII-N s that interact with βII-C in the presence of αII-N, Zinc finger protein 333 - 

fragment 1-230 was selected to test for its effect on αII-N and βII-C interactions.  In the absence 

of methionine, with the presence of Zinc finger protein 333 - fragment 1-230, colony growth was 

observed, indicating that Zinc finger protein 333 - fragment 1-230 did not abolish the αII-N and 

βII-C interaction (Figure 3.2E).   

 

E. Discussion 

Tetramerization is an important process for spectrin isoforms, and involves helical bundling of 

three helices, one from the α- and two from the β-spectrin (Mehboob et al., 2005; Ipsaro et al., 

2010; Song et al., 2009).  The bundled complexes exhibit different Kd values, with the non-

erythroid complex αII-N/βII-C about 10 nM and the erythroid complex about 1 mM (Mehboob et 

al., 2003).  Proteins have been identified that interact with αII spectrin at the tetramerization site, 

and we suggest that these proteins may regulate the affinity between αII-N and βII-C (Oh and 
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Fung, 2007).  In this study, we identified 17 proteins that interacted with βII spectrin at the 

tetramerization site.  Eight of these 17 proteins were very similar to existing proteins, with one 

(IPβII-C-7) identical to "THAP domain containing, apoptosis associated protein 3, isoform CRA 

g".  Each member of the THAP family consists of a conserved domain (Marchler-Bauer et al., 

2011), the THAP domain, which is a putative DNA-binding domain and probably also binds a 

zinc ion.  This is a novel protein motif with similarity to the DNA-binding domain of P element 

transposase in Drosophila (Roussigne et al., 2003).  Another βII-C interactor (IPβII-C-4) also 

binds zinc ion and is identical to a fragment (residues 146-416) of zinc finger protein 251 

(UniProt: Q9BRH9), with an additional 7 residues at the C-terminus.  It is interesting to note that 

fragments (residues 1-169 and 1-230) of zinc finger protein 333 are αII-N interacting proteins 

(Oh and Fung, 2007).  And, in this study, we found that these fragments associate with αII-N 

even in the presence of βII-C, but it did not abolish the αII-N and βII-C association.  Similarly, 

the zinc finger protein 251 fragment associates with βII-C even in the presence of αII-N, but it 

did not abolish the αII-N and βII-C association in tetramer formation.   IPβII-C-5 is also similar to 

zinc finger protein 251 (residues 317-671), but with numerous mutations. 

IPβII-C-2, other than the first 5 residues, is identical to "glioma tumor suppressor candidate region 

gene 2", in its entirety.  It is also interesting that we identified another protein (IPβII-C-3) that 

consists of the first 258 residues and residues 283-478 of this protein.  IPβII-C-12 is identical to a 

C-terminal fragment (residues 74-442) of septin 8 isoform c, except with three mutations 

(H239Q, P344T and F362S).  Septin 8 isoform c is a member of the large septin family that 

performs diverse cellular functions according to tissue expression and their interacting partners.  

Functions include cell division, chromosome segregation, protein scaffolding, cellular polarity, 

motility, membrane dynamics, vesicle trafficking, exocytosis, apoptosis, and DNA damage 
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response (Macara et al., 2002; Peterson and Petty, 2010).  The 6 IPβII-C s discussed above did not 

interact with βII-C in the presence of αII-C, suggesting that their affinities with βII-C are weaker 

than that of αII-N with βII-C.  

IPβII-C-9, identical to the C-terminal 250 residues of coatomer subunit beta (residues 704-953) 

except with one mutation (Y53 in IPβII-C-9 and 756C in coatomer subunit beta), interacts with 

βII-C even in the presence of αII-N, suggesting strong affinity with βII-C.  Similar to IPβII-C-9 in 

affinity are IPβII-C-1 and IPβII-C-8.  IPβII-C-1, except for the last 8 residues, is identical to a 

fragment (residues 284-428) of syntaxin binding protein 1.  Syntaxin binding protein 1 appears 

to play a role in the release of neurotransmitters via regulation of syntaxin, a transmembrane 

attachment protein receptor (Han et al., 2010).  IPβII-C-8, except the first 18 residues, is identical 

to ubiquitin-conjugating enzyme E2L3, residues 100-212.  This enzyme participates in the 

ubiquitination of p53, c-Fos and the NF-κB precursor p105 in vitro (David et al., 2010; Ardley et 

al., 2000).  With these three strongly interacting proteins, only IPβII-C-1, a 153-residue protein 

and its residues 1-145, which are identical to residues 284-428 of syntaxin binding protein 1, 

abolished αII-N and βII-C interaction. 

Until demonstrated by future experimental results, it is also possible that the interactions between 

specific IPβII-C and βII-spectrin may not regulate spectrin tetramer formation.  It is possible that 

these interactions may play a role in other cellular processes.  As indicated in a recent review, the 

spatial and temporal organization of molecules within a cell is critical for coordinating the many 

distinct activities carried out by the cell (Good et al., 2011).  Scaffold proteins, including actin-

spectrin cytoskeleton, have been found to play a central role in physically assembling the 

relevant molecular components, and have been exploited by evolution, pathogens, and cellular 
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engineers to reshape cellular behavior.  The IPβII-C s identified in this work may play a role in 

some of these cellular activities. 

In summary, we have identified 17 human proteins or protein fragments that interact with βII-C, 

a region of the non-erythroid beta spectrin that is involved in spectrin tetramerization.  Most of 

these proteins (14 of them) appear to interact with βII-C with lower affinity than that of αII-N 

since they do not interact with βII-C in the presence of αII-N.  However, three of these proteins 

retain interactions with βII-C in the presence of αII-N, and one, the syntaxin binding protein 

fragment, abolishes αII-N and βII-C interactions.  We suggest that further studies of these 

interactions, on structural and cellular levels, will provide a better understanding of brain 

physiology and pathophysiology.   
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CHAPTER 4  

 

IPβII-C-1 PURIFICATION 

 

A. Introduction  

Tetramerization is an important feature of spectrin isoforms for performing their fundamental 

cytoskeletal functions, which involves helical bundling of the single helix (Helix C’) at the N-

terminal region of α spectrin, and two helices (Helix A’ and Helix B’) at the C terminal region of 

β spectrin.  Our previous studies have identified several mutations on the N-terminal region 

(residues 1 – 359) of brain α spectrin (αII-N) effecting spectrin tetramerization (Sumandea and 

Fung, 2005), and several proteins interacting with αII-N at the tetramerization site (Oh and Fung, 

2007).   

Using yeast library screening methods, we identified 17 different proteins that interact with the 

C-terminal region (residues 1697 – 2145) of brain β spectrin (βII-C) in a human brain cDNA 

library.  Three of these proteins (IPβII-C-1, IPβII-C-8, and IPβII-C-9) were able to bind to βII-C even 

in the presence of αII-N, suggesting that these proteins exhibit a higher affinity for βII-C than 

αII-N.  Furthermore, IPβII-C-1 was shown to abolish the interaction between αII-N and βII-C, 

which implicates that it may be involved in regulation of the interaction of αII-N and βII-C, 

spectrin tetramerization, and in turn cytoskeletal organization.  Detailed studies on the interaction 

between IPβII-C-1 and βII-C will provide mechanistic understanding of these interactions.  

Assembly and disassembly of components of the submembranous cytoskeleton including αII and 

βII spectrin may regulate the formation of the SNARE complex (Nakano et al., 2001).   
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Sequence alignment studies showed that IPβII-C-1, except for the last 8 residues, residues 1-145 

are identical to a fragment (residues 284 – 428) of “syntaxin binding protein 1”, a protein closely 

related to a group of proteins that has been previously shown to interact with  spectrin isoforms 

(Nakano et al., 2001).   

Syntaxin binding protein 1, (also known as p67, unc18, Munc 18) was first discovered as a 

partner of the SNARE complex interacting with syntaxin 1a with nanomolar affinity (Pevsner et 

al., 1994; Hata et al., 1993; Rickman et al., 2007) and indirectly interacting with cytoskeleton 

(Nakano et al., 2001; Khanna et al., 2007).  Syntaxin binding protein 1 has been shown to be 

essential for regulated exocytosis, most probably through regulating the SNARE-assembly 

reaction (Lang and Jahn, 2008).  Cellular functions and location of syntaxin binding protein 1 

appears to be closely related to syntaxin 1a, and syntaxin 1a has been shown to interact with αII 

spectrin  (Nakano et al., 2001).  Over expression of this protein leads to a decrease in 

neurotransmitter release (Schulze et al., 1994), whereas null alleles and certain point mutations 

lead to a block in vesicle fusion (Schekman, 1992; Verhage et al., 2000), and this indicates that 

syntaxin binding protein 1 (and its orthologs in other species, such as yeast, Drosophila) not only 

maintain and regulate the SNARE complex at the sites of exocytosis, but also assist the syntaxin 

proteins in adopting a functional conformation or facilitate interactions of the SNARE complex 

proteins and other proteins.  This chaperone like activity of syntaxin binding protein 1 proteins 

was also shown by the failure of the transport of syntaxin 1a to the plasma membrane from the 

golgi apparatus (Rowe et al., 1999).  And finally, it has been shown that syntaxin binding 

proteins also interacts with RAB proteins, which are small GTPases that are essential for vesicle 

trafficking and membrane fusion (Pfeffer, 1999).   
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It has been suggested that the spectrin network formation beneath the plasma membrane may 

function as a barrier to prevent vesicles from docking with the plasma membrane (Perrin and 

Aunis, 1985).  Therefore the dissolution of the cytoskeleton prior to the docking of the vesicle 

may be enhanced by the dissociation of αII-spectrin from syntaxin family members, which may 

induce the formation of the SNARE complex.   At this point, syntaxin binding protein 1 may act 

as an accelerator for the formation of the SNARE complexes by binding to the syntaxin protein 

and the simultaneous dissolution of the spectrin cytoskeleton. 

Crystal structure of the syntaxin binding protein 1 bound to syntaxin 1a has been shown at 2.6 Å 

resolution (Misura et al., 2000) (Figure 12).  Syntaxin binding protein 1 consists of 3 domains; 

domain 1 formed by residues 4 – 134, domain 2 by residues 135 – 245 and 480 – 592, and 

domain 3 by 246 – 479.  Close examination of the structure reveals that the IPβII-C-1 fragment 

matches to a considerably large portion of Domain 3 (residues 284-428) (Figure 12), which is 

located at the opposite side of the region that is involved in its interactions with the syntaxin and 

the SNARE complex (Dubulova et al., 2003; Ciufo et al., 2005; Latham et al., 2006; Dulubova 

et al., 2007) (Figure 12).  It is interesting to note that, the third domain shows structural 

similarity to a variety of helical repeat proteins (Misura et al., 2000).  It is mainly made up of a 

series of alpha helices that is kinked at a non-helical glycine residue, between helices 12 and 13, 

separating this domain into two sub-domains, 3a (residues 241 – 359) and 3b (residues 362 – 

460).  Domain 3a does not show much interaction with the rest of the protein, whereas domain 

3b does (Misura et al., 2000).   
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Figure 12.  Structure of syntaxin binding protein 1.  Ribbon presentation of syntaxin binding 

protein 1 (Adapted from Misura et al., 2000).  The conformation of the protein is as it appears in 

complex with Syntaxin 1a, which is available (PDB code 3c98).   
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B. Methods Used for IPβII-C-1 Preparation 

B.1. Cloning of IPβII-C-1 into Bacterial Expression Plasmid, pGEX-2T 

The cDNA of IPβII-C-1 was transferred from the library plasmid, pGAKT7 (pAD), to bacterial 

expression plasmid, pGEX-2T, using standard laboratory procedures for PCR amplification 

(primers used are presented in appendix A), restriction enzyme digestion, ligation and 

transformation to give pGEX-IPβII-C-1 in E. coli DH5α cells.  DNA sequence analysis of the 

prepared plasmid was done at the Research Resources Center, University of Illinois at 

Chicago.   

B.2. Expression and Purification of IPβII-C-1 

Recombinant GST-IPβII-C-1 fusion protein was prepared, following standard laboratory 

techniques (Mehboob et al., 2010) with minor modifications.  Briefly, BL21 Codon+ cells 

were transformed with pGEX-IPβII-C-1 and analyzed for isopropyl-beta-D-

thiogalactopyranoside (IPTG) induced expression of the fusion protein by whole cell 

electrophoresis in order to determine the conditions for optimum cell growth and protein 

expression.  An overnight culture (0.5 mL, LB medium with ampicillin) was used to inoculate 

LB or TB medium (7 mL, with ampicillin) and incubated 3 hours at 37 °C with shaking (240 

rpm).  This was followed by induction of recombinant protein expression by addition of 5 - 10 

mM IPTG to the cell culture, and incubation for another 3 hours at 30 or 37 °C, taking samples 3 

hours of protein expression analysis.  Upon determination of the optimum conditions for growth 

and recombinant protein expression, mini-expression analysis of the protein expression was 

performed following the standard lab procedures, in order to quantitate the fusion protein 

production.   
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For large scale growth, a freeze-down vial of BL21 Codon+ cells were used to inoculate 200 mL 

LB medium containing ampicillin for overnight growth at 37 °C, in an auto-shaker at 240 rpm, 

and this cell culture was added to a high density fermenter BioFlo (New Brunswick Scientific 

Co, Inc.) containing 2 L TB medium with ampicillin and 1 mL antifoam, and allowed to grow for 

3 h at 37 °C with supplementary air.  5 mM IPTG for 2 L growth in fermenter was added, and 

cells were incubated for another 3 hours at 30 °C.  Cells were harvested and were either directly 

used for protein purification or stored at -80 °C.   

Cells were suspended in 1% Triton in PBS 7.4, disrupted by sonication for 15 min, and 

centrifuged at 18,000 g for 12 min.  Supernatant containing fusion protein was collected and 

passed through a glutathione-affinity column (glutathione-Sepharose 4B from Pharmacia) to 

allow GST fusion protein to bind to the resin.  The column was extensively washed with PBS 7.4 

before eluting the fusion protein with buffer with glutathione (γ-Glu-Cys-Gly).  Fusion protein 

fractions (5 mL) were collected and 10 μL sample was analyzed on 16% polyacrylamide gel 

with 0.1% SDS (16% SDS-PAGE).  The molecular mass was determined at Proteomics Center 

at the Research Resources Center at University of Illinois at Chicago.   

To prepare pure protein (recombinant protein without the N-terminal GST tag), thrombin (50 

unit/μmole of fusion proteins) digestion was performed to cleave the GST tag at the engineered 

recognition site in a TbR buffer and removal of the cleaved N-terminal GST tag by affinity 

column chromatography to collect pure protein.  Our initial attempts to prepare pure IPβII-C-1 

were hampered by the precipitation of the protein products after the thrombin reaction.  

Therefore, we did not continue our standard procedure, and used the GST fusion of the IPβII-C-1 

protein in our analysis.  Fusion protein was frozen in liquid nitrogen and stored at -80 °C for 

further characterization.   
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Protein concentrations were determined by UV spectrophotometer at 280 nm using an extinction 

coefficient values of 55,810 M-1 cm-1 as determined from sequence using the ProtParam tools 

from ExPASy.      

B.3. IPβII-C-1 Fusion Protein Solution Property 

Solution property of the fusion protein was analyzed using size-exclusion chromatography.  A 

Sephacryl(R) 10-HR column (GE Healthcare, Piscataway, NJ) was packed following 

manufacturer's instructions.  The void volume (V0) of the prepared column was determined by 

measuring the elution volume of the Blue Dextran (Sigma Aldrich, St. Louis, MO), with a 

molecular mass of 2,000,000 Da.  The column was calibrated with protein samples of known 

molecular masses (Ribonuclease A, 13,700 Da; Carbonic Anhydrase, 29,000 Da; Ovalbumin, 

43,000 Da; and Conalbumin, 75,000 Da) with a flow rate of 72 mL per hour (1.2 mL/min).  A 

calibration curve was plot with natural logarithm of the molecular mass of the calibration 

proteins versus the calculated phase distribution coefficient (Kav) values.  Kav for each protein 

was calculated using the elution volume (VE) of the protein.  VE of a protein is proportional to 

the percentage of the column volume accessible to the protein due to its molecular size and the 

porous structure of the column.  In order to use this correlation we use the phase distribution 

coefficient (Kav) value, which is defined as the ratio of the pore volume of the column that is 

accessible to the substance to the total pore volume of the column, as in Kav = (VE - V0) / (Vt - 

V0), where VE elution volume of the protein, V0 is the void volume of the mobile phase, Vt is the 

total liquid volume of the column.   
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Finally, 5 mL sample of IPβII-C-1 fusion protein with A280 of 3.23 was passed through the column 

using similar flow rate (73 mL per hour), and the elution profile was recorded.  Elution volume 

(VE) of each protein was measured, and the Kav value was calculated.  Using the Kav value and 

the calibration curve, a corresponding molecular mass of each species in solution was obtained.   

C. Results 

C.1. Cloning of IPβII-C-1 into E.coli Expression Plasmid, pGEX-2T 

Agarose gel electrophoresis analysis of the double restriction enzyme digestion product, 

showed the presence of two bands, one of which had a calculated size of 6.0 kbp, which is 

close to the expected size of the pGEX-2T plasmid (6,024 bp), and the second band with a 

calculated size of, ~450 bp, which is considerably close to the expected size of the PCR 

product (462 bp), coding for the library protein IPβII-C-1 (Figure 13, middle lane).  DNA 

sequence results showed the presence of the full length GST sequence, thrombin cleavage 

site, and the library sequence IPβII-C-1 sequence (Figure 14).   
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Figure 13.  Cloning of GST-IPβII-C-1.  GST-IPβII-C-1 sequence was cloned into bacterial 

expression vector, pGEX-2T, cleaved by BamHI and EcoRI restriction enzyme digestion.  The 

center lane shows the digestion product sample bands, with the bright band at ~6 kbp, which 

corresponds to expected size of the empty pGEX-2T plasmid, and the other band at ~450 bp, 

which corresponds to expected size of the IPβII-C-1 sequence, indicating the presence of the 

sequence in the plasmid. 
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GST IPβII-C-1 fusion protein DNA sequence 

 

GTGGATGTGAGCGGATACAATTTCACACAGGAAACAGTATTCATGTCCCCTATACTAGGTTATTGGAAAA 
 
TTAAGGGCCTTGTGCAACCCACTCGACTTCTTTTGGAATATCTTGAAGAAAAATATGAAGAGCATTTGTA 
 
TGAGCGCGATGAAGGTGATAAATGGCGAAACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCT 
 
TATTATATTGATGGTGATGTTAAATTAACACAGTCTATGGCCATCATACGTTATATAGCTGACAAGCACA 
 
ACATGTTGGGTGGTTGTCCAAAAGAGCGTGCAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAG 
 
ATACGGTGTTTCGAGAATTGCATATAGTAAAGACTTTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTA 
 
CCTGAAATGCTGAAAATGTTCGAAGATCGTTTATGTCATAAAACATATTTAAATGGTGATCATGTAACCC 
 
ATCCTGACTTCATGTTGTATGACGCTCTTGATGTTGTTTTATACATGGACCCAATGTGCCTGGATGCGTT 
 
CCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCCACAAATTGATAAGTACTTGAAATCCAGC 
 
AAGTATATAGCATGGCCTTTGCAGGGCTGGCAAGCCACGTTTGGTGGTGGCGACCATCCTCCAAAATCGG 
 
ATCTGGTTCCGCGTGGATCCGGGGACGACGACCTGTGGATAGCACTGCGCCACAAGCACATCGCAGAGGT 
              BamHI 
GTCCCAGGAAGTCACCCGGTCTCTGAAAGATTTTTCTTCTAGCAAGAGAATGAATACTGGAGAGAAGACC 
 
ACCATGCGGGACCTGTCCCAGATGCTGAAGAAGATGCCTCAGTACCAGAAAGAGCTCAGCAAGTACTCCA 
 
CCCACCTGCACCTTGCTGAGGACTGTATGAAGCATTACCAAGGCACCGTAGACAAACTCTGCCGAGTGGA 
 
GCAGGACCTGGCCATGGGCACAGATGCTGAGGGAGAGAAGATCAAGGACCCTATGCGAGCCATCGTCCCC 
 
ATTCTGCTGGATGCCAATGTCAGCACTTATGACAAAATCCGCATCATCCTTCTCTACATCTTTTTGAAGA 
 
ATGGCATCACGGAGGAAAACCTGAACAAACTGATCCAGTCTAAGTCACAGTGCCCTGACAGGTGAGAATT 
            EcoRI 
CATCGTGACTGACTGACGATCTGCCTCGCGCGTTTACGGGAGACATA 

 

Figure 14.  Sequence analysis of pGEX-IPβII-C-1.  Sequence coding for GST is highlighted, 

restriction enzyme recognition sites are underlined and labeled, and sequence coding for IPβII-C-1 

is written in bold. 
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C.2. Expression and Purification of IPβII-C-1 

The expected mass from the sequence of GST-IPβII-C-1 fusion protein was 44,063 Da.  The gel 

(Figure 15, lanes 3 and 4) showed a clear increase in the intensity of the band at 44 kDa upon 

addition of IPTG.  Mass spectrometry results showed one species at 44,062.5 Da (Figure 16).  

Mini-expression analysis of the culture grown with the determined conditions verified the 

presence of the IPβII-C-1 fusion protein in our cells, and that considerable amount of the protein 

(1.5 mg per g of cells) was able to bind glutathione affinity column via their GST fusion tags 

(Figure 17, lane 4).   

10 µg samples from several preparation of the IPβII-C-1 fusion protein was analyzed on an SDS-

PAGE gel, and analysis of the band intensities showed that the fusion protein was at least 80% 

pure (Figure 18), with minor bands at 30, 32, 34 kDa (Table V).   

Based on the results summarized for the expression and purification of IPβII-C-1 fusion protein, 

we concluded that we have accumulated about 186.1 mg of fusion protein samples (Table V).  

Different preparation dates and the amounts prepared are tabulated in Table V and the SDS 

electrophoresis these samples are shown in Figure 19.  Samples with purity above 47 % has been 

mixed, and 120.6 mg of fusion protein mix has been prepared to be used for further analysis.  

Using the measured purity of each preparation, total amount of fusion protein in each sample was 

calculated, and this shows that the final mix had 80.4 mg of fusion protein. 

To remove the GST tag, thrombin was added to GST fusion protein with the A280 of the solution 

around 1.0.  Upon completion of the thrombin reaction protein precipitates were found on the 

surface of the solution.  Keeping the solution on ice, lowering the protein concentration (to A280 

of 0.25) or buffer composition (i.e. using PBS instead of TbR) did not show any improvement in 

the solubility of the pure protein.   
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Figure 15.  Whole cell electrophoresis analysis of GST-IPβII-C-1.  Confirmed sequence was 

transformed into E.coli cells BL21 Codon+, and used in whole cell electrophoresis to check 

over-expression of fusion protein.   
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Figure 16.  Mass spectrometry analysis of the IPβII-C-1 fusion protein.  Prepared fusion protein 

was analyzed by mass spectrometry, and the results are depicted in this figure.  Elution profile of 

the sample (A), mass spectroscopy analysis of a elution time range including the major peak of 

the elution (B), and the SDS-Electrophoresis analysis of the sample is presented.  Elution profile 

shows the presence of one predominant peak, mass spectroscopy analysis shows the presence of 

a species with molecular mass of 44,062.5 Da – which is 0.001% different from the expected 

value of 44,063 – well below the accuracy (0.01%) of the instrument (RRC, Proteomics and 

Informatics Services Facility), whereas, the SDS gel shows the presence of several other minor 

species with a molecular weight smaller than the predominant protein species.   
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Figure 17.  Large scale preparation of GST-IPβII-C-1.  Upon determining the proper conditions 

for production of high yields of fusion protein, large scale cell growth was performed and fusion 

protein was purified. First lane is the low molecular weight standard that is composed of proteins 

with known molecular masses (97 kDa, 66 kDa, 45 kDa, 30 kDa, 20 kDa, and 14 kDa).  

Following lanes has the mini-expression analysis results of the GST-IPβII-C-1 protein.  BL21 

codon+ cells containing the bacterial expression plasmid for the recombinant protein is grown 

with conditions outlines in the whole cell electrophoresis experiments.  Known amounts of cells 

were used to solubilize cellular proteins (5 µL sample is in lane 2) using 5% Triton X-100.  This 

solution was mixed with glutathione resin and bound fusion protein was separated from the 

beads and was analyzed (5 µL sample is in lane 3).  Finally, to check the presence of insoluble 

fusion protein in the cell debris created in the first step, the cell pellet was dissolved using a 

stronger detergent (8 M urea), was analyzed (5 µL sample is in lane 4), and any fusion protein 

bound to glutathione resin was analyzed (5 µL sample is in lane 5).  
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Figure 18.  SDS electrophoresis results of all the IPβII-C-1 fusion protein samples.   
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TABLE V.  IPβII-C-1 fusion protein amounts and purities in each preparation. Samples showing a 

purity of 47% or lower were not selected (labeled as "Not included") and those selected were 

mixed to form a homogeneous mixture sample. 

Preparation Date A280 Volume (mL) Amount (mg) Purity Amount of 
Fusion Protein 

7/6/2010 1 25 25 35% Not included 
7/8/2010 0.6 20 12 52% 6.2 mg 

7/14/2010 0.5 16 8 35% Not included 
7/16/2010 0.2 7.5 1.5 77% 1.2 mg 
7/21/2010 0.25 22 5.5 66% 3.6 mg 
7/21/2010 0.25 28 7 66% 4.6 mg 
8/3/2010 0.8 25 20 53% 10.6 mg 

8/16/2010 0.9 30 27 57% 15.4 mg 
8/17/2010 0.35 30 10.5 23% Not included 
8/19/2010 0.9 6 5.4 24% Not included 
8/22/2010 0.6 25 15 59% 8.9 mg 
8/25/2010 0.75 30 22.5 71% 16.0 mg 
8/26/2010 0.5 30 15 55% 8.25 mg 
9/6/2010 0.65 18 11.7 48% 5.6 mg 

  Total 186.1 mg Total 
Mix 80.4 mg 
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C.3. Size Exclusion Chromatography 

Sephacryl(R) 10-HR column was packed according to the manufacturer's instructions, and the 

total liquid volume of the column (Vt) was measured as 199 mL.  The void volume of the mobile 

phase (V0) was found as 73.8 mL. The elution volume (VE) for Conalbumin (molecular mass: 

75,000 Da, log MW: 4.875) was 88.2 mL to give a Kav of 0.1150.  Similarly, the VE for 

Ovalbumin (molecular mass: 44,000 Da, log MW: 4.644) Carbonic anhydrase (molecular mass: 

29,000 Da, log MW: 4.46), Ribonuclease A (molecular mass: 13,700 Da, log MW: 4.1367), were 

96.6 mL, 108 mL, and 126 mL, respectively, which to give Kav values of 0.1592, 0.2732, 0.4169, 

respectively.  The calibration plot for this column is presented in Figure 19A.   

Next, 16 mg of GST-IPβII-C-1 fusion protein was passed through the column (Figure 19B) and 

two peaks were observed at fraction number 28 (VE: 82.5 mL) and fraction number 34 (VE: 

100.5 mL).  Our calculations showed that these elution volumes corresponded to Kav values of 

0.0695 and 0.2133, and molecular masses of 89,949 Da and 40,654 Da for the protein samples 

obtained in two peaks.  This indicated that the IPβII-C-1 fusion protein in solution exists as 

monomers and dimers.   
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Figure 19.  Solution property analysis using size-exclusion chromatography of the GST-IPβII-C-1 

fusion protein.  (A) The column was calibrated using Ribonuclease A (log MW: 4.1367, Kav: 

0.4169), Carbonic Anhydrase(log MW: 4.46, Kav: 0.2732), Ovalbumin (log MW: 4.644, Kav: 

0.1592) and Conalbumin (log MW: 4.875, Kav: 0.1150) with a flow rate of 72 mL/hour .  (B) 5 

mL sample with A280 of 3.23 was passed through Sephacryl(R) 10-HR column, and the 

absorbance readings of the corresponding fractions were recorded.  The elution volumes (VE) 

corresponding to the peaks were 82.5 mL for the first peak (fraction number 28), and 100.5 mL 

for the second peak (fraction number 34).  Based on this calibration, elution profile of GST-IPβII-

C-1 fusion protein sample shows that the solution is composed of 2 main components, first one at 

89,949 Da (Kav= 0.0695) and second one at 40,654 Da  (Kav= 0.2133).   
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D. Discussion  

We prepared the GST fusion protein for IPβII-C-1 that was identified in our screening of human 

brain cDNA library, using a C-terminal fragment (residues 1697-2145) of βII spectrin, including 

the tetramerization region, as the bait protein.  This protein abolishes the interaction of βII-C 

fragment with N-terminal region 359 amino acid residues of αII spectrin (αII-N1), which also 

includes the tetramerization region on αII.   

DNA Sequence analysis of the bacterial expression plasmid, pGEX-IPβII-C-1 showed that the 

sequence for IPβII-C-1 was present in its entirety, which was preceded by a complete sequence for 

the GST tag.  Preparation of the GST-IPβII-C-1 started with the expression of the fusion protein in 

BL21 codon+ cells.  The optimum conditions for the expression of the IPβII-C-1 fusion protein 

was determined to be 3 hours of growth at 37 °C in Terrific Broth, and 3 hours of growth at 30 

°C after addition of IPTG.  Mass analysis of the prepared fusion protein showed that the 

molecular mass of the GST-IPβII-C-1 fusion protein sample was 44,062.5 Da, and the expected 

mass from the sequence was 44,063.0 Da.  Large-scale preparation of the GST-IPβII-C-1 protein 

produced approximately 1.5 mg of fusion protein per one gram of cells.  This was less than the 5 

mg of pure protein for other proteins, such as spectrin isoforms purified in our laboratory.   

We have documented that GST-IPβII-C-1 construct has the full GST sequence, therefore, this 

construct, in theory, might yield similar amounts of proteins, 3 times more than obtained.   
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Based on the results we obtained, we have successfully produced the library protein with the 

GST tag.  This protein corresponds to a fragment of human brain protein syntaxin binding 

protein 1 (residues 284 – 428).  This protein may further be analyzed by biophysical methods for 

its interaction with βII-C protein, and more importantly, its impact on the interaction of αII-N 

and βII-C proteins may be elucidated.  This would provide information on the possible regulation 

of this interaction by this protein.   
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CHAPTER 5  

CONCLUSION 

We have performed two different but inter-related projects involving the non-erythroid spectrin 

subunit association to form tetramers. 

In the first part, we used the Y2H systems to study protein-protein interactions.  αII spectrin 

with mutations V22F, V22M or V22W interacted with βII spectrin at the tetramerization 

site (N-terminal region of αII and C-terminal region of βII).  However, αII-N-V22D did 

not.  Although ITC methods provide protein-protein interaction information quantitatively, 

ITC methods require not only the preparation of recombinant proteins but also 

characterization of these proteins for proper functional analysis.  Y2H method is relatively 

simple and is able to qualitatively demonstrate protein-protein interactions.   

The αII mutants and β spectrin exhibit different affinities to give different levels of 

tetramers.  As discussed previously (Li and Fung, 2009), αII spectrin has recently been 

reported to be essential for stabilizing nascent sodium channel clusters (Voas et al., 2007), 

assembling the mature node of Ranvier (Voas et al., 2007), and regulating endothelial cell-

cell contacts (Benz et al., 2008).  The tetramer formation of αII-βII spectrin is also 

essential in the regulatory step for neuritogenesis (Bignone et al., 2007).  Tetramerization 

is clearly important for spectrin function.  Some mutations in αII spectrin at the 

tetramerization region will result in abnormal functions.   
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In the second part, we identified 17 proteins that interact with the C-terminal region (residues 

1697-2145) of βII spectrin.  The proteins include a fragment (residues 38-284) of "THAP domain 

containing, apoptosis associated protein 3, isoform CRA g", "glioma tumor suppressor candidate 

region gene 2", a fragment (residues 74-442) of septin 8 isoform c, a fragment (residues 704-

953) of "coatomer protein complex, subunit beta 1”, a fragment (residues 146-614) of zinc-finger 

protein 251, and a fragment (residues 284-435) of syntaxin binding protein 1.  These 17 proteins, 

along with 7 proteins that interact with the N-terminal region of αII-spectrin (αII-N) mentioned 

above, have been tested for their effects on spectrin tetramerization.  One βII-C interacting 

protein abolishes αII-N and βII-C interaction.  This protein, except for the last 8 residues, is 

identical to a fragment (residues 284-428) of syntaxin binding protein 1.  This protein may 

inhibit or regulate non-erythroid spectrin tetramerization. 

These two thesis projects show that either mutation(s) or the presence of interacting proteins will 

affect the tetramer formation in spectrin leading to abnormal cellular functions that involve 

spectrin network.
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APPENDIX 

I - Primers Used  

Primers used in our studies are tabulated in Table VI.  The general criteria used for the design of 

the primers were that; they were 25 – 45 base pairs long, did not have complementary sequences 

at either end, and had a Tm value over 73 °C.  The primers listed in this table has been used in 

different experiments belonging to different studies mentioned, and therefore the aim for the 

design of the primers are introduced in the first column.  Introduced mutations are written in 

bold, and the restriction enzyme recognition sites (introduced) are underlined.   

First two pairs of primers (1 - 4) were used to replace the Val-22 codon (GTC) with others to 

generate sequences coding for αII-N1-V22W and -V22M proteins, as explained in Chapter 2.  

First pair (1 and 2) replaces the codon coding for valine with the tryptophane codon (TGG) and 

the second pair with the methionine codon (ATG).   

Primers 5 - 20 were used for our studies explained in Chapter 3.  Primers 5 and 6 replaces the 

present BamHI (GGATCC) and EcoRI (GAATTC) sites at the upstream and downstream of the 

sequence coding for βII-C, with EcoRI and BamHI sites, respectively, while amplifying the 

sequence fragment in order to transfer it from bacterial expression vector, pGEX, to the yeast 

cloning vector, pBD.   

Primers 7 and 8 introduces the same restriction enzyme recognition sites to αII-N sequence in 

order to transfer it from pGEX to the first cloning site (MCS1) of the yeast three-hybrid vector 

pBridge. Primers 9 and 10 replaces the present BamHI and EcoRI recognition sites of the αII-N 

sequence with NotI (GCGGCCGC) and BglII (AGATCT) recognition sites, respectively, in order 
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to transfer it from bacterial expression vector, pGEX, to the second cloning site (MS2) of the 

pBridge vector.   

Primers 11 and 12 introduce EcoRI and BamHI sites to the βII-C sequence during its 

amplification for cloning into the first cloning site of pBridge vector.  Due to the presence of 

internal NotI and BglII recognition sites in the βII-C sequence, these sites were silenced, by 

replacing the nucleotides without altering the amino acid sequence.  For this, primers 13 and 14 

were used to silence NotI recognition site, ad 15 and 16 were used to silence BglII site.  

Successful silencing of the restriction enzyme recognition was verified by the absence restriction 

enzyme digestion and sequencing.  βII-C sequence (without the NotI and BglII recognition sites) 

was transferred into the second cloning site of the pBridge plasmid using primers 17 and 18, 

introducing NotI and BglII sites to each ends of the sequence.   

Primers 19 and 20 were used to transfer selected library sequences from library plasmids to the 

second cloning site of the pBridge plasmid, introducing NotI and BglII sites to each ends of the 

sequences.  

The last primer pair was used for studies explained Chapter 4.  They were used to transfer the 

sequence coding for IPβII-C-1 sequence from library plasmid, pAD, to bacterial expression 

plasmid, pGEX-2T.   
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TABLE VI.  Primers used in our studies. 
 

1 Introduce V22W mutation  Forward 5’-GAGAGGCGGCAGCAGTGGCTCGATCGATACCACCGCTTC-3’
2 Reverse 5'-GAAGCGGTGGTATCGATCGAGCCACTGCTGCCGCCTCTC-3'
3 Introduce V22M mutation  Forward 5’-GAGAGGCGGCAGCAGATGCTAGACCGGTACCACCGCTTC-3’
4 Reverse 5'-GAAGCGGTGGTACCGGTCTAGCATCTGCTGCCGCCTCTC-3'
5 Transfer βII-C from pGEX to pBD Forward 5’GTGAATTCATGGAGCAATTTCCAAAGGAAACCGTTGTG-3’
6 Reverse 5’CGATGGATCCTCAATCATTGAGCCGTGCATGTCTCTC-3’
7 Transfer αII-N from pGEX to pBR 

(MCS1)  
Forward 5’-GTGAATTCATGGGCCCAAGTGGGGTCAAAGTGCTGG-3’

8 Reverse 5’CGATGGATCCTCAATCATTGAGCCGTGCATGTCTCTC-3’
9 Transfer αII-N from pGEX to pBR 

(MCS2)  
Forward 5’-CCGGCGGCCGCCATGGACCCAAGTGGGGTCAAAGTGCTG-3’

10 Reverse 5’-CGATAGATCTTCAATCATTGAGCCGTGCATGTCTCTCTGCCGC-3’
11 Transfer βII-C from pGEX to pBR 

(MS1)  
Forward 5’-CTGGTTCCGCGTGAATTCAGACACAGGTTATTCCAGCTC-3’

12 Reverse 5’-CAGTCAGTCACGATGGATCCTCACACCGTTTCTGCCATC-3’
13 Silence NotI Site in βII-C  Forward 5’-CACGATGCCAAGGAGATTTTTGGGCGTATACAGGAC-3’
14 Reverse 5’-GTCCTGTATACGCCCAAAAATCTCCTTGGCATCGTG-3’
15 Silence BglII Site in βII-C  Forward 5’-GAAGAGGAGAGGAAGAGACGACCGCCTTCTCCCGAG-3’
16 Reverse 5’-CTCGGGAGAAGGCGGTCGTCTCTTCCTCTCCTCTTC-3’
17 Transfer βII-C from pGEX to pBR 

(MS2)  
Forward 5’-TCGGATCTGGTTCCGGCGGCCGCCAGACACAGGTTATTC-3’

18 Reverse 5’-CGTCAGTCAGTCACGATAGATCTTCACACCGTTTCTGCC-3’
19 Transfer selected library sequences to 

pBR (MCS2)  
Forward 5’-CCAAGCAGTGGTATCAACGCGGCCGCGCCATTATGGCC3’

20 Reverse 5’-CATGTCGGCCGCCTCGAGATCTAGAGG-3’
21 Transfer IPβII-C-1 fusion protein 

sequence from pAD to pGEX  
Forward 5’-GAGTGGCCATTAGGATCCGGGGACGACGACCTGTGG-3’

22 Reverse 5'-CCAGCGGGAGTTGAATTCTCACCTGTCAGGGCAC-3'

110 
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II - DNA and Protein Sequences of IPβII-C s 

Sequences of the identified library plasmids are presented below.  Sequence analysis results 

(from RRC) were aligned, and a complete sequence of the plasmid was formed using the 

common region in the forward and the reverse complement of the reverse sequencing.  The 

common sequence is underlined in the sequences.  SMARTIII and CDSIII sequences were 

identified in the combined sequence, and cDNA sequence was identified as the sequence 

between these (also excluding the polyA sequence).  SMARTIII and CDSIII sequences are 

written in bold characters and the first and last (stop) codons of the expressed sequences are 

indicated with a box.  Total number of nucleotides in the cDNA sequence is given in parenthesis 

and the polyA sequence is written in italics.   

Finally, the amino acid sequences of IPβII-C s, as determined using the Translate tool of ExPASy 

Proteomics Server, are presented.  
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IPβII-C-1 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTATGGCCGGGG 

GACGACGACCTGTGGATAGCACTGCGCCACAAGCACATCGCAGAGGTGTCCCAGGAAGTCACCCGGTCTC

TGAAAGATTTTTCTTCTAGCAAGAGAATGAATACTGGAGAGAAGACCACCATGCGGGACCTGTCCCAGAT
GCTGAAGAAGATGCCTCAGTACCAGAAAGAGCTCAGCAAGTACTCCACCCACCTGCACCTTGCTGAGGAC
TGTATGAAGCATTACCAAGGCACCGTAGACAAACTCTGCCGAGTGGAGCAGGACCTGGCCATGGGCACAG
ATGCTGAGGGAGAGAAGATCAAGGACCCTATGCGAGCCATCGTCCCCATTCTGCTGGATGCCAATGTCAG
CACTTATGACAAAATCCGCATCATCCTTCTCTACATCTTTTTGAAGAATGGCATCACGGAGGAAAACCTG

AACAAACTGATCCAGTCTAAGTCACAGTGCCCTGACAGGTGAGAAGCAAACTCCCGCTGGAAGCCTCCAT

CTCTTTGGAAAAACAGTTAGTCTGGAGCCTGTGGCCCAGGCCCTTCTGTCCCCAGGCATCATCCCAACAG
CTCATTTTCCCTAGTCCGCCTTCGTTCAAGGGTCAGGAATGGACCAGAACAGATGGGTTCTGGAGGCCCC
TGAACAGAGGGCTATGGCTGTGGAGAAGGTTCTTGGCCCGTTGGACTCACACAGACCCTGTACCCTCTCG
GCAAGCATCTTCAGTCAGATTATCCTCAGTTTCAGATACTTCATAATACCTTGTGTTGTGTGGGGTCATA
CATCATCGTGTTTGTAAGAGAAGATGGTCATTTTATTCTCTGTATAAAACTTAGCTCTAAAGCAGAAACT
AAAACAGCAAATGCAGGAAGGCTGTCTCGCCATCCTCAAGACTCAGCAGCTCTCATTCTCCAGTGGTGAG
CACACCATTTGTGCTGCTGCTGTTGTCGTGAAATATAATAACAGTGGAAGTCACAAAAATGTCCCCTGCC
CAGCCCCCTCGCCGCCCTTGACCTCCTGCAGGCCATGTGTGTATTACTTGTCTAGTGATGTCCTCTCAAA
GTGCTGTACGCGAGTTGGGCGCCACCTCCGCCTCCCTTTCAGAGCCTGCTCCCCGCCCTCTTTGCTCGCT
GCATTGTGGTGTTTTTTTCTCAAGGCTTTGAAATCTCCCCTTGCACTGAGATTAGTCGTCAGATCTCTCC
CCGTCTCCCTCCCAACTTATACGCCCTGATTTCCTTAGGACGGAACCGCAGGCACCTGCGCCGGGCGTCT
TACTCCCGCTGCTTGTTCTGTCCCCTCCCTCGGACCAAACAGTGCTCATGTTTCAGGACCTTTTTTGTGG
AAGATGTTGGTTTCCCTTTTTCTTTTATTTATATAAAAATAATTTATCAAAAGGATATTTTAAAAAAGCT
AGTCTGTCTTGAAACTTGTTTACCTTAAAATTATCAGAATCTCAGTGTTTGAAAGTACTGAAGCACAAAC
ATATATCATTTCTGTACCATTCTGTACTAAAGCACTTGAGTTTAATAAATAAAGAAATCAAC (1536) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

IPβII-C-1 amino acid sequence 

DDDLWIALRHKHIAEVSQEVTRSLKDFSSSKRMNTGEKTTMRDLSQMLKKMPQYQKELSKYSTHLHLAED
CMKHYQGTVDKLCRVEQDLAMGTDAEGEKIKDPMRAIVPILLDANVSTYDKIRIILLYIFLKNGITEENL
NKLIQSKSQCPDR   
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IPβII-C-2 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCTG 

AGTTCTTCCTTTGACAAGATGGCGGCAGGAGGCAGTGGCGTTGGTGGGAAGCGCAGCTCGAAAAGCGATG

CCGATTCTGGTTTCCTGGGGCTGCGGCCCACTTCGGTGGACCCAGCGCTGAGGCGGCGGCGGCGAGGCCC
AAGAAATAAGAAGCGGGGCTGGCGGCGGCTTGCTCAGGAGCCGCTGGGGCTGGAGGTCGACCAGTTCCTG
GAAGACGTGCGGCTACAGGAGCGCACGAGCGGTGGCTTGTTGTCAGAGGCCCCAAATGAAAAACTCTTCT
TCGTGGACACTGGCTCCAAGGAAAAAGGGCTGACAAAGAAGAGAACCAAAGTCCAGAAGAAGTCACTGCT
TCTCAAGAAACCCCTTCGGGTTGACCTCATCCTCGAGAACACATCCAAAGTCCCTGCCCCCAAAGACGTC
CTCGCCCACCAGGTCCCCAACGCCAAGAAGCTCAGGCGGAAGGAGCAGCTATGGGAGAAGCTGGCCAAGC
AGGGCGAGCTGCCCCGGGAGGTGCGCAGGGCCCAGGCCCGGCTCCTCAACCCTTCTGCAACAAGGGCCAA
GCCCGGGCCCCAGGACACCGTAGAGCGGCCCTTCTACGACCTCTGGGCCTCAGACAACCCCCTGGACAGG
CCGTTGGTTGGCCAGGATGAGTTTTTCCTGGAGCAGACCAAGAAGAAAGGAGTGAAGCGGCCAGCACGCC
TGCACACCAAGCCGTCCCAGGCACCCGCCGTGGAGGTGGCGCCTGCCGGAGCTTCCTACAATCCATCCTT
TGAAGACCACCAGACCCTGCTCTCAGCGGCCCACGAGGTGGAGTTGCAGCGGCAGAAGGAGGCGGAGAAG
CTGGAGCGGCAGCTGGCCCTGCCCGCCACGGAGCAGGCCGCCACCCAGGAGTCCACATTCCAGGAGCTGT
GCGAGGGGCTGCTGGAGGAGTCGGATGGTGAGGGGGAGCCAGGCCAGGGCGAGGGGCCGGAGGCTGGGGA
TGCCGAGGTCTGTCCCACGCCCGCCCGCCTGGCCACCACAGAGAAGAAGACGGAGCAGCAGCGGCGGCGG
GAGAAGGCTGTGCACAGGCTGCGGGTACAGCAGGCCGCGTTGCGGGCCGCCCGGCTCCGGCACCAGGAGC
TGTTCCGGCTGCGCGGGATCAAGGCCCAGGTGGCCCTGAGGCTGGCGGAGCTGGCGCGGCGGCAGAGGCG
GCGGCAGGCGCGGCGGGAGGCTGAGGCTGACAAGCCCCGAAGGCTGGGGCGGCTCAAGTACCAGGCACCT
GACATCGACGTGCAGCTGAGCTCGGAGCTGACAGACTCGCTCAGGACCCTGAAGCCCGAGGGCAACATCC
TTCGAGACCGGTTCAAGAGCTTCCAGAGGAGGAATATGATCGAGCCTCGAGAGAGAGCCAAGTTCAAACG

CAAGTACAAGGTGAAGCTGGTGGAGAAGCGGGCGTTCCGTGAGATCCAGTTGTAGCTGCCATCAGATGCC

GGAGACTCGCCCTTCAATAAAAAATCTTTTTTAGCTT (1509) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

IPβII-C-2 amino acid sequence 

SSFDKMAAGGSGVGGKRSSKSDADSGFLGLRPTSVDPALRRRRRGPRNKKRGWRRLAQEPLGLEVDQFLE
DVRLQERTSGGLLSEAPNEKLFFVDTGSKEKGLTKKRTKVQKKSLLLKKPLRVDLILENTSKVPAPKDVL
AHQVPNAKKLRRKEQLWEKLAKQGELPREVRRAQARLLNPSATRAKPGPQDTVERPFYDLWASDNPLDRP
LVGQDEFFLEQTKKKGVKRPARLHTKPSQAPAVEVAPAGASYNPSFEDHQTLLSAAHEVELQRQKEAEKL
ERQLALPATEQAATQESTFQELCEGLLEESDGEGEPGQGEGPEAGDAEVCPTPARLATTEKKTEQQRRRE
KAVHRLRVQQAALRAARLRHQELFRLRGIKAQVALRLAELARRQRRRQARREAEADKPRRLGRLKYQAPD
IDVQLSSELTDSLRTLKPEGNILRDRFKSFQRRNMIEPRERAKFKRKYKVKLVEKRAFREIQL   
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IPβII-C-3 

Reliable sequence 

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCTG 

AGTTCTTCCTTTGACAAGATGGCGGCAGGAGGCAGTGGCGTTGGTGGGAAGCGCAGCTCGAAAAGCGATG

CCGATTCTGGTTTCCTGGGGCTGCGGCCCACTTCGGTGGACCCAGCGCTGAGGCGGCGGCGGCGAGGCCC
AAGAAATAAGAAGCGGGGCTGGCGGCGGCTTGCTCAGGAGCCGCTGGGGCTGGAGGTCGACCAGTTCCTG
GAAGACGTGCGGCTACAGGAGCGCACGAGCGGTGGCTTGTTGTCAGAGGCCCCAAATGAAAAACTCTTCT
TCGTGGACACTGGCTCCAAGGAAAAAGGGCTGACAAAGAAGAGAACCAAAGTCCAGAAGAAGTCACTGCT
TCTCAAGAAACCCCTTCGGGTTGACCTCATCCTCGAGAACACATCCAAAGTCCCTGCCCCCAAAGACGTC
CTCGCCCACCAGGTCCCCAACGCCAAGAAGCTCAGGCGGAAGGAGCAGCTATGGGAGAAGCTGGCCAAGC
AGGGCGAGCTGCCCCGGGAGGTGCGCAGGGCCCAGGCCCGGCTCCTCAACCCTTCTGCAACAAGGGCCAA
GCCCGGGCCCCAGGACACCGTAGAGCGGCCCTTCTACGACCTCTGGGCCTCAGACAACCCCCTGGACAGG
CCGTTGGTTGGCCAGGATGAGTTTTTCCTGGAGCAGACCAAGAAGAAAGGAGTGAAGCGGCCAGCACGCC
TGCACACCAAGCCGTCCCAGGCACCCGCCGTGGAGGTGGCGCCTGCCGGAGCTTCCTACAATCCATCCTT
TGAAGACCACCAGACCTGCTCTCAGCGGCCCACGAGGTGGAGTTGCAGCGGCAGAAGGAGGCGGAGAAGC
TGGAGCGGCAGCTGGCCCCTGCCCGCCACGGAGCAGGCCGCCACCCAGGAGTCCACATTCCAGGAGCTGT
GCGAGGGGCTGCTGGAGGAGTCGGATGGTGAGGGGGAGCCAGGCCAGGGCGAGGGGCCGGAGGCTGGGGA
TGCCGAGGTCTGTCCCACGCCCGCCCGCCTGGCCACCACAGAGAAGAAGACGGAGCAGCAGCGGCGGCGG
GAGAAGGCTGTGCACAGGCTGCGGGTACAGCAGGCCGCGTTGCGGGCCGCCCGGCTCCGGCACCAGGAGC
TGTTCCGGCTGCGCGGGATCAAGGCCCAGGTGGCCCTGAGGCTGGCGGAGCTGGCGCGGCGGCAGAGGCG
GCGGCAGGCGCGGCGGGAGGCTGAGGCTGACAAGCCCCGAAGGCTGGGGCGGCTCAAGTACCAGGCACCT
GACATCGACGTGCAGCTGAGCTCGGAGCTGACAGACTCGCTCAGGACCCTGAAGCCCGAGGGCAACATCC
TTCGAGACCGGTTCAAGAGCTTCCAGAGGAGGAATATGATCGAGCCTCGAGAGAGAGCCAAGTTCAAACG

CAAGTACAAGGTGAAGCTGGTGGAGAAGCGGGCGTTCCGTGAGATCCAGTTGTAGCTGCCATCAGATGCC

GGAGACTCGCCCTTCAATAAAAAATTTTTTTTAGCTT (1509) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA  

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

IPβII-C-3 amino acid sequence 

SSFDKMAAGGSGVGGKRSSKSDADSGFLGLRPTSVDPALRRRRRGPRNKKRGWRRLAQEPLGLEVDQFLE
DVRLQERTSGGLLSEAPNEKLFFVDTGSKEKGLTKKRTKVQKKSLLLKKPLRVDLILENTSKVPAPKDVL
AHQVPNAKKLRRKEQLWEKLAKQGELPREVRRAQARLLNPSATRAKPGPQDTVERPFYDLWASDNPLDRP
LVGQDEFFLEQTKKKGVKRPARLHTKPSQAPAVEVAPAGASYNPSFEDHQTCSQRPTRWSCSGRRRRRSW
SGSWPLPATEQAATQESTFQELCEGLLEESDGEGEPGQGEGPEAGDAEVCPTPARLATTEKKTEQQRRRE
KAVHRLRVQQAALRAARLRHQELFRLRGIKAQVALRLAELARRQRRRQARREAEADKPRRLGRLKYQAPD
IDVQLSSELTDSLRTLKPEGNILRDRFKSFQRRNMIEPRERAKFKRKYKVKLVEKRAFREIQL    
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IPβII-C-4 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTATGGCCGGGG 

CGCGTGGGAAATTCTGCCGGGCAGAGTTTGAACAAACCCAATATTCACAAGAGAGTTTTAACAGAAGCTA

CCGTGGGCAGGGAAAGATCTTTGGGAGAAAGAACCCAAGAGTGTAGTGCATTTGATAGAAACTTGAATCT
GGACCAAAATGTTGTTAGACTTCAAAGAAATAAAACAGGAGAGAGGGTCTTTAAATGTGATATATGCAGC
AAAACCTTCAAATATAATTCAGACCTAAGTAGACACCAGAGAAGTCACACTGGGGAGAAGCCGTACGAAT
GTGGCCGGTGTGGGCGAGCCTTTACTCACAGCTCAAATCTTGTTCTGCACCATCACATTCACACTGGAAA
TAAACCATTTAAATGTGATGAATGTGGGAAAACTTTTGGACTCAATTCTCACCTCCGTCTTCATCGGAGA
ATTCACACTGGAGAAAAACCCTTTGGCTGTGGTGAGTGTGGGAAGGCTTTCAGTCGAAGCTCAACTCTTA
TTCAACATCGGATCATTCACACAGGAGAGAAACCCTACAAGTGTAATGAATGTGGAAGAGGCTTTAGCCA
GAGCCCCCAGTTAACTCAGCATCAGAGAATTCACACTGGAGAGAAGCCGCATGAATGCAGTCACTGTGGG
AAGGCCTTCAGTCGAAGCTCCAGCCTTATTCAGCATGAGAGAATTCACACTGGAGAGAAGCCCCATAAAT
GCAATCAGTGTGGGAAGGCCTTCAGTCAGAGCTCAAGCCTTTTCCTCCATCATCGGGTTCATACTGGAGA

GAAACCCTATGTATGTAATGAATGCGGCAGAGCCTTTGGTTTTACTCTCATCTTACCGAACACGTAAGGA

TTCACACAGGAGAAAAACCCTATGTTTGTTAATGAGTGCGGCAAAGCCTTTCGTCGGAGTGCACTCTTGT
TCAGCATCGAAGAGTTCACACTGGGGAGAAGCCCTACCAGTGCGTTGAATGTGGGAAAGCTTTCAGCCAG
AGCTCCCAGCTCACCCTACATCAGCGAGTTCACACTGGAGAGAAGCCCTATGACTGTGGTGACTGTGGGA
AGGCCTTCAGCCGGAGGTCAACCCTCATTCAGCATCAGAAAGTTCACAGCGGAGAGACTCGTAAGTGCAG
AAAACATGGTCCAGCCTTTGTTCATGGCTCCAGCCTCACAGCAGATGGACAGACTCCCACTGGAGAGAAG
CACGGCAGAGCCTTTAACCATGGTGCAAATCTCATTTTGCGCTGGACAGTTCACACTGGTGAGAAATCCT
TTGGATGTAATGAATATGGAAAAGCTTTCAGTCCCACCTCCCGACCCACTGAAGATCAGATAATGCATGC
TGGGGAAAAGCCCTATAAATGTCAAGAATGTGGAAACGCCTTCAGTGGAAAGTCAACCCTTATTCAACAT
CAGGTAACTCACACTGGTCAGAAACCATGTCATTGCAGTGTGTATGGGAAAGCCTTCAGCCAGAGTTCAC
AGCTCACACCACCTCAGCAGACTCGTGTTGGAGAGAAACCTGCTTTAAATGATGGCTTTAAAAGATACTT
TATTCATATCAAGAAGATTTTCCAAGAAAGACATTTTTAATGTGATAAATGCAGAAGACAGTTTAGCAAC
TGTTCACTTGACATTAGAAGATAAGATGGCATAATGAAAGATATATAAGGTTTAAATATTACTGGCAAAG
TAAAATAAATAGTTCAGATGACTACTAAAGTCAAAGTCATTAAATTTGGAAGTAAACAAG (1744) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

IPβII-C-4 amino acid sequence 

RVGNSAGQSLNKPNIHKRVLTEATVGRERSLGERTQECSAFDRNLNLDQNVVRLQRNKTGERVFKCDICS
KTFKYNSDLSRHQRSHTGEKPYECGRCGRAFTHSSNLVLHHHIHTGNKPFKCDECGKTFGLNSHLRLHRR
IHTGEKPFGCGECGKAFSRSSTLIQHRIIHTGEKPYKCNECGRGFSQSPQLTQHQRIHTGEKPHECSHCG
KAFSRSSSLIQHERIHTGEKPHKCNQCGKAFSQSSSLFLHHRVHTGEKPYVCNECGRAFGFTLILPNT   
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IPβII-C-5 

Reliable sequence 

AAGAAGGGATCTTTAATACGACTCACTATAGGGCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGA
TTACGCTCATATGGCCATGGAGGCCAGTGAATTCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTA
TGGCCGGGG 

CGCGTGGGAAATTCTGCCGGGCAGAGTTTGAACAAACCCAATATTCACAAGAGAGTTTTAACAGAAGCTA

CCGTGGGCAGGGAAAGATCTTTGGGAGAAAGAACCCAAGAGTGTAGTGCATTTGATAGAAACTTGAATCT
GGACCAAAATGTTGTTAGACTTCAAAGAAATAAAACAGGAGAGAGGGTCTTTAAATGTGATATATGCAGC
AAAACCTTCAAATATAATTCAGACCTAAGTAGACACCAGAGAAGTCACACTGGGGAGAAGCCGTACGAAT
GTGGCCGGTGTGGGCGAGCCTTTACTCACAGCTCAAATCTTGTTCTGCACCATCACATTCACACTGGAAA
TAAACCATTTAAATGTGATGAATGTGGGAAAACTTTTGGACTCAATTCTCACCTCCGTCTTCATCGGAGA
ATTCACACTGGAGAAAAACCCTTTGGCTGTGGTGAGTGTGGGAAGGCTTTCAGTCGAAGCTCAACTCTTA
TTCAACATCGGATCATTCACACAGGAGAGAAACCCTACAAGTGTAATGAATGTGGAAGAGGCTTTAGCCA
GAGCCCCCAGTTAACTCAGCATCAGAGAATTCACACTGGAGAGAAGCCCTATGACTGTGGTGACTGTGGG
AAGGCCTTCAGCCGGAGGTCAACCCTCATTCAGCATCAGAAAGTTCACAGCGGAGAGACTTGTAAGTGCA
GAAAACATGGTCCAGCCTTTGTTCATGGCTCCAGCCTCACAGCAGATGGACAGACTCCCACTGGAGAGAA
GCACGGCAGAGCCTTTAACCATGGTGCAAATTTCATTTTGCGCTGGACAGTTCACACTGGTGAGAAATCC
TTTGGATGTAATGAATATGGAAAAGCTTTCAGTCCCCCCTCCCGACCCCCTGAAGATCAGATAATGCATG
CTGGGGAAAAGCCCTATAAATGTCAAGAATGTGGAAACGCCTTCAGTGGAAAGTCAACCCTTATTCAACA
TCAGGTAACTCACACTGGTCAGAAACCATGTCATTGCAGTGTGTATGGGAAAGCCTTCAGCCAGAGTTCA
CAGCTCACCCCCCCTCAGCAGACTCGTGTTGGAGAGAAACCTGCTTTAAATGATGGCTTTAAAAGATACT

TTATTCATATCAAGAAGATTTTCCAAGAAAGACATTTTTAATGTGATAAATGCAGAAGACAGTTTAGCAA

CTGTTCACTTGACATTAGAAGATAAGATGGCATAATGAAAGATATATAAGGTTTAAATATTACTGGCAAA
GTAAAATAAATAGTTCAGATGACTACTAAAGTCAAAGTCATTAAATTTGGAAGTAAACAAG (1325) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

CATGTCGGCCGCCTCGGCCTCTAGAGGGTGGGCATCGATACGGGACCATCGAGCTCGAGCTGCAAGATGG
T 

 

 

IPβII-C-5 amino acid sequence 

RVGNSAGQSLNKPNIHKRVLTEATVGRERSLGERTQECSAFDRNLNLDQNVVRLQRNKTGERVFKCDICS
KTFKYNSDLSRHQRSHTGEKPYECGRCGRAFTHSSNLVLHHHIHTGNKPFKCDECGKTFGLNSHLRLHRR
IHTGEKPFGCGECGKAFSRSSTLIQHRIIHTGEKPYKCNECGRGFSQSPQLTQHQRIHTGEKPYDCGDCG
KAFSRRSTLIQHQKVHSGETCKCRKHGPAFVHGSSLTADGQTPTGEKHGRAFNHGANFILRWTVHTGEKS
FGCNEYGKAFSPPSRPPEDQIMHAGEKPYKCQECGNAFSGKSTLIQHQVTHTGQKPCHCSVYGKAFSQSS
QLTPPQQTRVGEKPALNDGFKRYFIHIKKIFQERHF 
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IPβII-C-6 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTATGGCCGGGGG 

AAAAAGAAAATCAATGGCAGTAGCCCTGACACAGCCACTTCTGGTGGTTACCACTCACCTGGGGATTCAG

CAACAGGTATCTACGGGGAGGGCCGTGCATCCTCTACTACCCTGGAGGATCTGGAGAGCCAGTACCAAGA
ACTAGCAGTGGCCCTGGATTCAAGCTCCGCAATAATCAGTCAACTCACTGAAAACATCAATTCACTGGTT
CGCACATCTAAGGAGGAGAAGAAGCATGAGATACATCTGGTACAGAAGCTTGGGAGGAGCTTGTTCAAAC
TCAAAAACCAGACGGCTGAACCCCTGGCCCCAGAGCCCCCAGCAGGGCCATCTAAGGTAGAGCAGCTACA
AGATGAGACCAACCACCTAAGGAAGGAGCTAGAGAGTGTGGGAAGACAGCTCCAGGCTGAGGTGGAAAAC
AATCAGATGTTGAGTCTCCTGAACAGGAGACAGGAGGAGAGGCTACGTGAACAGGAGGAGAGGCTACGTG
AACAGGAGGAGAGGCAACGTGAACAGGAGGATAGGCTACATGAACAGGAGGAGAGGCTATGTGAACAGGA
GGAGAGGCTACGTGAACAGGAGGAGAGGCTGTGTGAACAGGAGAAGCTGCCAGGGCAGGAGAGGCTGCTG
GAAGAGGTGGAGAAGCTGTTAGAACAGGAGAGGCGGCAGGAGGAGCAGGAGAGGCTGCTGGAGAGGGAGA
GGCTGCTGGAAGAGGTGGAGAAGCTGTTAGAACAGGAGAGGCAGCAGGAGGAGCAGGAGAGGCTGCTGGA
GAGGGAGAGGCTGCTGGAAGAGGTGGAGAAGCTGTTAGAACAGGAGAGGCGGCAGGAGGAGCAGGAGAGG

CTGCTGGAGAGGGAGAGGCTGCTGGACGAGGTGGAGGAGCTCCTGGACGAGGTGGAGGAGCTCCTGGAGT

AGGAGAGGCTTTGGCAACAGGATGAGAGGCTGTGGCAGCAGTAGACTTTGCAGGAGCTGGAGAGGCTGCG

GGAGCTGGAGAGGCTGCGGGAGCTGGAGAGGATGCTGGAGCTGGGGTGGGAAGCCCTGTACGAGCAGCGG
GCCGAGCCACGCAGCGGCTTTGAGGAGCTGAACAACGAGAACAAGAGCACACTGCAGTTGGAGCAGCAAG
TAAAGGAGCTGAAGAAGTCGGGTGGAGCTGAAGAGCCAAGAGGCTCCGAGTTTGCAGCAGCAGCCAGACC
AGTAGCTGGAGCCCCAGTCCCCCAAGGAGCTTGGATGTGCGGACAAGCAGGGTGGACTCCCCAGGAGCAC
CCAGGCTTGAGTGGGGAAGCTGTTGGTACAGGAGAGGCGGCAGGAGGAGCAGGAGAGGCTGCATGCCATT
TTTTTCGGGCTGCGGAGAACAGGGAGGTAAACATCACCATCATTTAAGAGCGGGTCAAGGAATTG 
(1400) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

IPβII-C-6 amino acid sequence 

KKKINGSSPDTATSGGYHSPGDSATGIYGEGRASSTTLEDLESQYQELAVALDSSSAIISQLTENINSLV
RTSKEEKKHEIHLVQKLGRSLFKLKNQTAEPLAPEPPAGPSKVEQLQDETNHLRKELESVGRQLQAEVEN
NQMLSLLNRRQEERLREQEERLREQEERQREQEDRLHEQEERLCEQEERLREQEERLCEQEKLPGQERLL
EEVEKLLEQERRQEEQERLLERERLLEEVEKLLEQERQQEEQERLLERERLLEEVEKLLEQERRQEEQER
LLERERLLDEVEELLDEVEELLE 
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IPβII-C-7 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTATGGCCGGG 

GGGGGGCAGCCAGGCCTGGCTCGAGATGCCGAAGTCGTGCGCGGCCCGGCAGTGCTGCAACCGCTACAGC

AGCCGCAGGAAGCAGCTCACCTTCCACCGGTTTCCGTTCAGCCGCCCGGAGCTGCTGAAGGAATGGGTGC
TGAACATCGGCCGGGGCAACTTCAAGCCCAAGCAGCACACGGTCATCTGCTCCGAGCACTTCCGGCCAGA
GTGCTTCAGCGCCTTTGGAAACCGCAAGAACCTAAAGCACAATGCCGTGCCCACGGTGTTCGCCTTTCAG

GACCCCACACAGCAGGTGAGGGAGAACACAGACCCTGCCAGTGAGAGAGGAAATGCCAGCTCTTCTCAGA

AAGAAAAGGTCCTCCCTGAGGCGGGGGCCGGAGAGGACAGTCCTGGGAGAAACATGGACACTGCACTTGA
AGAGCTTCAGTTGCCCCCAAATGCCGAAGGCCACGTAAAACAGGTCTCGCCACGGAGGCCGCAAGCAACA
GAGGCTGTTGGCCGGCCGACTGGCCCTGCAGGCCTGAGAAGGACCCCCAACAAGCAGCCATCTGATCACA
GCTATGCCCTTTTGGACTTAGATTCCCTGAAGAAAAAACTCTTCCTCACTCTGAAGGAAAATGAAAAGCT
CCGGAAGCGCTTGCAGGCCCAGAGGCTGGTGATGCGAAGGATGTCCAGCCGCCTCCGTGCTTGCAAAGGG
CACCAGGGACTCCAGGCCAGACTTGGGCCAGAGCAGCAGAGCTGAGCCCCACAGGCTCCGGACGCAGAGG
TGGCAGTGGCACCAGGGCCGGCAGAGCTTTGGAGCTCTGGCTGTGGACATTTTTGTTTGCTGTGGACACT
GAGAAAGTTGGCCATGAGGCCTGCTTGGCCGGGGATCGAGACAGTAGCCAAGCTCCCCGGCGAGAGCCCC
AATGCCGTTTGGGGGACGTTTAGAGGCGTGGCACTAGGAGTGCACATCTGTGAGCATGACAAGCTTATCC
TCCCATGGTAACAGAAGTCCAGGCTGAGGCTGATTTTGGACGCTGTCCTTTCAGCACACGCAGAGCAAAG
ATCGTTGGAAGCCCCAGTGTGGGAGATGCTCCTCAGGGAGGAAGCCATGTGAGGGGGCTGGCTCTGTGGC
GGGTGAGTGGTCCCCTCCTCCATCAGCCTGGACAGCCGCTCGGGGTTTTAAGGAGTGACTCCTGTCCCGG
CCTGGTGTGAGTGGGCAGTGTAATAAAGTGTCTTTTTAC (1232) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAA 

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

 

IPβII-C-7 amino acid sequence 

GGSQAWLEMPKSCAARQCCNRYSSRRKQLTFHRFPFSRPELLKEWVLNIGRGNFKPKQHTVICSEHFRPE
CFSAFGNRKNLKHNAVPTVFAFQDPTQQVRENTDPASERGNASSSQKEKVLPEAGAGEDSPGRNMDTALE
ELQLPPNAEGHVKQVSPRRPQATEAVGRPTGPAGLRRTPNKQPSDHSYALLDLDSLKKKLFLTLKENEKL
RKRLQAQRLVMRRMSSRLRACKGHQGLQARLGPEQQS   
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IPβII-C-8 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTATGGGGGGGG 

GGGGGAAGGAGCAGCACCAAATCCAAGATGGCGGCCAGCAGGAGGCTGATGAAGGACAACCCTCCATATG

ATAAGGGAGCCTTCAGAATCGAAATCAACTTTCCAGCAGAGTACCCATTCAAACCACCGAAGATCACATT
TAAAACAAAGATCTATCACCCAAACATCGACGAAAAGGGGCAGGTCTGTCTGCCGGTAATTAGTGCCGAA
AACTGGAAGCCAGCAACCAAAACCGACCAAGTAATCCAGTCCCTCATAGCACTGGTGAATGACCCCCAGC
CTGAGCACCCGCTTCGGGCTGACCTAGCTGAAGAATACTCTAAGGACCGTAAAAAATTCTGTAAGAATGC

TGAAGAGTTTACAAAGAAATATGGGGAAAAGCGACCTGTGGACTAAAATCTGCCACGATTGGTTCCAGCA

AGTGTGAGCAGAGACCCCGTGCAGTGCATTCAGACACCCCGCAAAGCAGGACTCTGTGGAAATTGACACG
TGCCACCGCCTGGCGTTCGCTTGTGGCAGTTACTAACTTTCTACAGTTTTCTTAATCAAAAGTGGTCTAG
GTAACCTGTAAAGAAAGGATTAAAAATTTAAGATGTTC (602) 

AAAAAAAAAAAAAAAAAAAAAAAAAA 

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

 

IPβII-C-8 amino acid sequence 

GGRSSTKSKMAASRRLMKDNPPYDKGAFRIEINFPAEYPFKPPKITFKTKIYHPNIDEKGQVCLPVISAE
NWKPATKTDQVIQSLIALVNDPQPEHPLRADLAEEYSKDRKKFCKNAEEFTKKYGEKRPVD   
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IPβII-C-9 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCA 

GAGGCAGCAGATCCCCTAGCATCTAAACTTAACAAGGTCACCCAATTGACAGGTTTCTCAGATCCTGTAT

ATGCAGAAGCTTACGTTCATGTCAACCAATATGATATTGTCCTGGATGTACTTGTTGTGAACCAAACCAG
TGATACTTTGCAGAATTACACATTAGAACTAGCTACACTAGGGGATCTGAAACTTGTGGAAAAGCCGTCT
CCTTTGACTCTTGCTCCTCATGACTTCGCAAATATTAAAGCTAACGTCAAAGTAGCATCAACAGAAAATG
GAATAATTTTTGGTAATATAGTTTATGATGTCTCTGGAGCAGCAAGTGACAGAAATTGTGTGGTTCTCAG
TGATATTCACATCGACATCATGGACTATATCCAGCCTGCAACTTGCACTGATGCAGAATTCCGTCAGATG
TGGGCCGAATTTGAATGGGAAAACAAAGTGACAGTTAACACCAACATGGTTGATTTAAATGACTACTTAC
AGCACATATTAAAGTCAACCAATATGAAATGCCTGACTCCAGAAAAGGCCCTTTCTGGTTACTGTGGCTT
TATGGCAGCCAACCTTTATGCTCGTTCCATATTTGGTGAAGATGCACTTGCAAATGTCAGCATTGAGAAG
CCAATTCACCAGGGACCAGATGCTGCTGTTACCGGCCATATAAGAATTCGTGCAAAGAGCCAGGGAATGG

CCTTAAGTCTTGGAGATAAAATCAACTTGTCACAGAAGAAAACTAGTATATAAAAATAAACAAAAAGTCC

TTGAAGCTTTACAGTTAATTTAGGTATGGGCTTACTGGACTCCAACATCTTTTGTACTCTTTCATGCTTA
TATAGAATTTGAGTTCATGCTGAATACTTTTCAGCCAATAATTTATAGCCTTTCCCTTAAATCAAGATTG
AGTTTAAAATTATAGTTTGTCTTTTGTTTTAACAGTTTTGAATGCTGTCCTCAAAGTATATAATGTTTCA
TGTACCAAGACCCTTTTCACAGTACAATAAACAGATCTATTCATG (1026) 

AAAAAAAAAAAAAAAAAAAAAAAAAAA  

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

 

IPβII-C-9 amino acid sequence 

EAADPLASKLNKVTQLTGFSDPVYAEAYVHVNQYDIVLDVLVVNQTSDTLQNYTLELATLGDLKLVEKPS
PLTLAPHDFANIKANVKVASTENGIIFGNIVYDVSGAASDRNCVVLSDIHIDIMDYIQPATCTDAEFRQM
WAEFEWENKVTVNTNMVDLNDYLQHILKSTNMKCLTPEKALSGYCGFMAANLYARSIFGEDALANVSIEK
PIHQGPDAAVTGHIRIRAKSQGMALSLGDKINLSQKKTSI   
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IPβII-C-10 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGAATACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTATGGCGGG 

GAGCTTGGGAGAGATCAGAACACAGTGGAGACCTTACAGAGAATGCACACTACATTTGGGCATGACATCC

AGGCTCTGGGCACACAGGTGAGGCAGCTGCAGGAGGATGCAGCCCGCCTCCAGGCGGCCTATGCGGGTGA
CAAGGCCGACGATATCCAGAAGCGCGAGAACGAGGTCCTGGAAGCCTGGAAGTCCCTCCTGGACGCCTGT
GAGAGCCGCAGGGTGCGGCTGGTGGACACAGGGGACAAGTTCCGCTTCTTCAGCATGGTGCGCGACCTCA
TGCTCTGGATGGAGGATGTCATCCGGCAGATCGAGGCCCAGGAGAAGCCAAGGGATGTATCATCTGTTGA
ACTCTTAATGAATAATCATCAAGGCATCAAAGCTGAAATTGATGCACGTAATGACAGTTTCACAACCTGC
ATTGAACTTGGGAAATCCCTGTTGGCGAGAAAACACTATGCATCTGAGGAGATCAAGGAAAAATTACTGC
AGTTGACGGAAAAGAGGAAAGAAATGATCGACAAGTGGGAAGACCGATGGGAATGGTTAAGACTGATTCT
GGAGGTCCATCAGTTCTCAAGAGACGCCAGTGTGGCCGAGGCCTGGCTGCTTGGACAGGAGCCGTACCTA
TCCAGCCGAGAGATAGGCCAGAGCGTGGACGAGGTGGAGAAGCTCATCAAGCGCCACGAGGCATTTGAAA
AGTTTGCAGCAACCTGGGATGAGAGGTTTTCTGCCCTGGAAAGGCTGACTACATTGGAGTTACTGGAAGT
GCGCAGACAGC (784) 

AAAAAAAAAAAAAAAAAAAAAAAAAAA 

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

 

IPβII-C-10 amino acid sequence 

ELGRDQNTVETLQRMHTTFGHDIQALGTQVRQLQEDAARLQAAYAGDKADDIQKRENEVLEAWKSLLDAC
ESRRVRLVDTGDKFRFFSMVRDLMLWMEDVIRQIEAQEKPRDVSSVELLMNNHQGIKAEIDARNDSFTTC
IELGKSLLARKHYASEEIKEKLLQLTEKRKEMIDKWEDRWEWLRLILEVHQFSRDASVAEAWLLGQEPYL
SSREIGQSVDEVEKLIKRHEAFEKFAATWDERFSALERLTTLELLEVRRQ 

 

 



122 
 

 
 

IPβII-C-11 

Reliable sequence  

ACGACTCACTATAGGGCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCA
TGGAGGCCAGTGAATTCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTATGGCCGGGGG 

CTTGGAAAGATGGCGTCCCGCAAGGAAGGTACCGGCTCTACTGCCACCTCTTCCAGCTCCACCGCCGGCG

CAGCAGGGAAAGGCAAAGGCAAAGGCGGCTCGGGAGATTCAGCCGTGAAGCAAGTGCAGATAGATGGCCT
TGTGAGTGCTGTTCTTTTTCCTCTGGCCCACGTGGGGAGCGCAGTTCCCAGCCCCGTCCCACCAGACGTA
CTTTCTAGCATTCTCCCCCTTGGGCTTGGTGTGGCTGGGCCAAAGTTTTTCCCTAGTACGTTTCTCTTTC
ATCTTCACTTTTTGTTCAGGAGCTTCGACAGCCTTCTCTTGTCTTCTAACGGGACAGTTGGGGCTTCAGG

AAGGGGACTGAGAATAGGGGTGTGAGTGACAGGTTCCTGGGGTCTTGTTTTGAGATGACCGGTGGGGGGA

TTTGGAGAAAGACTCCTGGAGACCAGCAGCTAACGAAGGTGTCGAGAAGGATTTAGGGACCTAGTAGGGC
TCTGGGAAGGAGAGAGTAAGGAAACTCCACTGATTCCCTGCTGGGATCTGACATCTATAACGTTCCAAGT
GGAGATGTACTTTGTAGCCACTCTTTTGAGCCTGTACTTCGGCGCTTTATCTGAAACCGTATAATTTAGA
ATACTCTTTTGTAGTGTTCATTCTGAAAAACATAAAAGAATATCAAAGAGAAGGGCCTTAAATGTATTTA
GTAGTTAAGGTTCATGAACTAGGACATCCAAGGAAATTCTTGATAAGGAAATGGACTTAGCTGGGAAGAG
GAAAATCTAGAATGAGAAATTTTATTTCTGTTGTTTCGAAGCAAAATGCATTTATATGACGTTCTAGTTT
TAAAAGTATCCTTTCTTGCCCTCTTTTAAAAAGCATCCTCTCTTCCTTTGATTTTTTTAAAGGTTATTTC
CTATTAATGCAGATCTTAGATATTTGTAATAAGAAAGTACTTTTAAATTCATGTGAAAATTGTAATTGCA
AGCAGGTATTTTTAAGTGGAAACTGTTGATAATTTAAACGCAGCATATAATTGAATCTGTTGAACTGACT
TAGTTAAACTGGATACAAGAGTGTAGCCTGGTGGTTAAGAGCTCATTCAGTCTTCTAGGCTCTTCCACTT
AACCAGCTCTGTGACTTTAGGCAAGTTAGCCTTTCCAGGCTTTGCTTTCCTCATCTGTCAAGTGGGAATG
AGAAGTATCTGTATCATAGAGTTGTTTGGATTAAATGAAAAAGTTTATGTGGTGACCTGTAGTCCAGTGT
AATCACTTAATGTTAATTATGATTATTATTATGAGTTTAATGTCTGTGGTTAGCAGAGTTTGAAAGATGC
AGGCAAGAGATTAACTTTGGAATGTTTTGTTTTAAATGTCACTTGTGTAATACTTTGAAAATGCAGGCCG
GGCGGGGTGGCTCACGGCTGTAATCCCAGCACTTTGGGAGGCCGGGGCGGGGGGATCAGGAGGTCAGGAG
TTCGAGACCACCCTGACCAGCATGGTGAAACCCCGTCTTTACTAAAAACACAAAATTAGCCGGGGGGGTT
GGCACGCGCCGGTAGTTTCAGCTACTCGGGAGGCTGAGGCGGGAGAATCGCTTGAACCTGGGGGGGGGGG
GTTGCAGTGAGCCGAGATTGTGCCACTGCACTCCAGCCTGGGCAATAGAGCGAGCCTCCGTCC (1678) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA  

CATGTCGGCCGCCTCGGCCTCTAGAGG  

 

 

 

IPβII-C-11 amino acid sequence 

LGKMASRKEGTGSTATSSSSTAGAAGKGKGKGGSGDSAVKQVQIDGLVSAVLFPLAHVGSAVPSPVPPDV
LSSILPLGLGVAGPKFFPSTFLFHLHFLFRSFDSLLLSSNGTVGASGRGLRIGV  
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IPβII-C-12 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTATGGCCGGG 

GCCAGTCACCATGAGGCATGCGTGCGCCTGCGGCCCCAGACCTATGACCTCCAGGAGAGCAACGTGCAGC

TCAAGCTGACCATTGTGGATGCCGTGGGCTTTGGGGATCAGATCAATAAGGATGAGAGTTACAGGCCCAT
AGTTGACTACATCGATGCGCAGTTTGAAAATTATCTGCAGGAGGAGCTGAAGATCCGCCGCTCGCTCTTC
GACTACCATGACACAAGGATCCACGTTTGCCTCTACTTCATCACGCCCACAGGGCACTCCCTGAAGTCTC
TAGATCTAGTGACCATGAAGAAACTAGACAGCAAGGTGAACATTATTCCCATCATCGCCAAGGCTGACAC
CATCTCCAAGAGCGAGCTCCACAAGTTCAAGATCAAGATCATGGGCGAGTTGGTCAGCAACGGGGTCCAG
ATCTACCAGTTCCCCACGGATGATGAGGCTGTTGCAGAGATTAACGCAGTCATGAATGCACATCTGCCCT
TTGCCGTGGTGGGCAGCACCGAGGAGGTGAAGGTGGGGAACAAGCTGGTCCGAGCACGGCAGTACCCCTG
GGGAGTGGTGCAGGTGGAGAATGAGAATCACTGCGACTTCGTGAAGCTGCGGGAGATGTTGATCCGGGTG
AACATGGAAGACCTCCGCGAGCAGACCCACAGCCGGCACTACGAGCTCTACCGGCGCTGCAAGTTGGAGG
AGATGGGCTTTCACGACAGCGATGGTGACAGCCAGCCCTTCAGCCTACAAGAGACATACGAGGCCAAGAG
GAAGGAGTTCTTAAGTGAGCTGCAGAGGAAGGAGGAAGAGATGAGGCAGATGTTTGTCAACAAAGTGAAG
GAGACAGAGCTGGAGCTGAAGGAGAAGGAAAGGGAGCTCCATGAGAAGTTTGAGCACCTGAAGCGGGTCC
ACCAGGAGGAGAAGCGCAAGGTGGAGGAAAAGCGCCGGGAACTGGAGGAGGAGACCAACGCCTTCAATCG
CCGGAAGGCTGCGGTGGAGGCCCTGCAGTCGCAGGCCTTGCACGCCCCCTCGCAGCAGCCCCTGAGGAAG

GACAAGGACAAGAAGAAAGCCAGTGGCTGGTTTTCCATTTACAGTGTCACTATTCCCTGACGGAGCTGTT

ATGTGCCGCTCTAGCGAAGGCCCCAGCCGGGATGCTAGGCCTAATTGTTCAGCGTGGAGATGGCAACTCA
CGTGGTGCCCTAGGTGCAGCTGCGTGGTTTGGTATACATGCTGCAAAATTCACCCAGTTCCCCTCATTTT
AATTTTTTTAACCTACAGCTTAATTTTAATAACTTTAAAACACTTTTAAATATTTTTTTTGGCACCAGCG
TCAAGACAAATAATATCCTTTCCCATTATTTTCATAAGTAACACAGATTCCCTGATTTTTAAAAACTAAA
AATACAGCTAAACCTTTTTTATGTATAAAGTATGCCTATCATATACAGGGAGAGGGGGGTAATAAACTTC
CTGTAATGACG (1484) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

IPβII-C-12 amino acid sequence  

ASHHEACVRLRPQTYDLQESNVQLKLTIVDAVGFGDQINKDESYRPIVDYIDAQFENYLQEELKIRRSLF
DYHDTRIHVCLYFITPTGHSLKSLDLVTMKKLDSKVNIIPIIAKADTISKSELHKFKIKIMGELVSNGVQ
IYQFPTDDEAVAEINAVMNAHLPFAVVGSTEEVKVGNKLVRARQYPWGVVQVENENHCDFVKLREMLIRV
NMEDLREQTHSRHYELYRRCKLEEMGFHDSDGDSQPFSLQETYEAKRKEFLSELQRKEEEMRQMFVNKVK
ETELELKEKERELHEKFEHLKRVHQEEKRKVEEKRRELEEETNAFNRRKAAVEALQSQALHAPSQQPLRK
DKDKKKASGWFSIYSVTIP   
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IPβII-C-13 

Reliable sequence  

AAAAAAAAGAGGTTTCTTTTTAATACGACTCACTATACGCGCGCGAGCGCCGCCATGGAGTACCCATACG
ACGTACAGAACGCTCATATGGCCATGGAGGCCAGTGAATTCCACCCAAGCAGTGGTATCAACGCAGAGTG
GCCATTATGGCCGG 

GGGGAAGTAGAGCGGAGGTGGTGGCGGCGGAGGCTTTGGCAGCTCGGGACTGAGTGCAAGAATCAGCATG

ATTCTTCAGAGGCTCTTCAGGTTCTCCTCTGTCATTCGGTCAGCCGTCTCAGTCCATTTGCGGAGGAACA

TTGGTGTTACAGCAGTGGCATTTAATAAGGAACTTGATCCTATACAGAAACTCTTTGTGGACAAGATTAG

AGAATACAAATCTAAGCGACAGACATCTGGAGGACCTGTTGATGCTAGTTCAGAGTATCAGCAAGAGCTG
GAGAGGGAGCTTTTTAAGCTCAAGCAAATGTTTGGTAATGCAGACATGAATACATTTCCCACCTTCAAAT
TTGAAGATCCCAAATTTGAAGTCATCGAAAAACCCCAGGCCTGAAGAAATAAAGTAAAATTAATCTGGTA
ATTTGTCACGGATTAGTTGTACAACTAGTTAGAAGTTTCAGAATAAACATGCATTTCATAACTGG 
(487) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAA  

CATGTCGGCCGCCTCGGCCTCTAGAGGGTGGGCATCGATACGGGATCCATCGAGCTCGAGCTGCCAGATG
C 

 

 

IPβII-C-13 amino acid sequence 

GEVERRWWRRRLWQLGTECKNQHDSSEALQVLLCHSVSRLSPFAEEHWCYSSGI 
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IPβII-C-14 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTATGGCCGG 

CCCCAGCCCCTGCATGGATTCCTTGTGGCTTTTCTGTCTTTTGCTAGCTTCACCAGTTTCTGTTCCTTGT

GGGATGCTGCTCTAGGGATACTCAGGGGGCTCCTGCTCTCCTTCCCCTTCCCTTCTTGCCTCACCATTCC
CCTAGGCAGGCCCTGCAGGTCCCACACTCTCCCAGGCCCTAAACTTGGGCGGCCTTGCCCTGAGAGCTGG

TCCTCCAGCGAGGCCCTGTCAGCGGTCTTAGGCTCCTGCACATGAAGGTGTGTGCCTGTGGTGTGTGGGC

TGCTCTAGGAGCAGATACAGGCTGGTATAGAGGATGCAGAAAGGTAGGGCAGTATGTTTAAGTCCAGACT
TGGCACATGGCTAGGGATACTGCTCACTAGCTGTGGAGGTCCTCAGGAGTGGAGAGAATGAGTAGGAGGG
CAGAAGCTTCCATTTTTGTCCTTCCTAAGACCCTGTTATTTGTGTTATTTCCTGCCTTTCCGAGTCCTGC
AGTGGGCTGCCCTGTACCCTGAACCTCATGAGCCTCTAAGGGAAAGGAGGAACAATTAGGACGTGGCAAT
GAGACCTGGCAGGGCAGAGTACAAGCCCAGCACCCAGTGTCCCAGCCTTACTGGGTCCTTACCCTGGGCC
AAACAGGGAGGGCTGATACCTCCTTGTTCTTCCTAGATGCCCACCTCCTACAATTTCAGCCCACAAGTCC
TTTCCACCCTAGGGGGCTTGTTGCATGGCAATAACTCATAATTTGATTTGGAGGTTTGCCCTTTACAGGG
GCAGATTTTTTGTTCAGTTCAACAATGAAATGAAGAGGAACTCCCTCTTTTTACAGCTCACTTTTATCAG
AGGCCCAGGTGCTTCAGAGCCACATTGAGTTGCTTTTTTTGGGATGAGGAAGTAGGGTTAAACTCCCCAG
TTTCCTGAGGGAGGCTCCTGACAGGTGCCCTTTGTCAGACCCTACCACAGCCTGGATAGGCAGCCACATT
GGTCCTCGCCCTTGCTCGGCACTCCGTGGTGGTCCTGCCCTTCTCCCTGCATGCCTGGGGGTTTGTTTTG
GTGTGTGAAGGTCGGTGGGTTAACTGTGTGCCTACTGAACCTGGCAAATAAACATCACCCTGCAAAGCC 
(1121) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

IPβII-C-14 amino acid sequence 

PQPLHGFLVAFLSFASFTSFCSLWDAALGILRGLLLSFPFPSCLTIPLGRPCRSHTLPGPKLGRPCPESW
SSSEALSAVLGSCT 
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IPβII-C-15 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTATGGCCGG 

GAAAGAGAAAAAAAAAACACTAGAATTCTTAATAGTATTGAAATAAATGTATTATATGAATATATTCAGC

ATCTCTACTGACAAAACCATTTTTAAGGACCATTGGTGGATTTTGATAGGTAAATCTTGTGCATTGCCTT

TTCTCCTCACCCATCCATCCATTCATTCACTCATTCATTTCGTATTTATTCTGTGCCAGAGACTGTGCTT
AAGGGCTAGGGATTCAGCAGTGAAAGGTGGTAAAATAGCATGTTTTCCTCAAGAAGTTAACAGTCTAGAG
AAGATGGAGCTCATAAATTCGAAAGATGGGGATGACAGGTCACATTAAAACCAGATTCAGAAGAAAAAGA
CGAAACTTGGTTTGCTTAGTACATTACTCTTTTTTGCATACATATATATAATTTGACACGCTGTTTCAAG
AAGAGATGGTACGTATCCCTTGGGTCATATCTGAGGCTGACTTGTGAGGATGTGAAGTCAGCTGATGAGC
ACATTTGGAGCCCACGCCTACTATGTGCAGATCTCTCGTCAGCGTCATTCCCAGGGCCCCAGGTGGTGTT
AAAGTCTAGGTGACTCAGACAGCTGTTCGCGTCATTCAAGCAATGAAGTCTTTTTTTTTAATTTCTTTGG
TTTAAAATTATACTCATAATTAATTGGGTTGAATTTTCCAGTGGCTTGGTTACCATAGACTTCAGTTTAT
TAGGGAACTGCTATCTGCCACTGGTTTATTATTTGCCCCAAGGTGGACTCTAAAACTTTAGGTAGGAGAC
TCTTGGTGATCAAACTGAAACTCTTGCATCTCAACCTATGAGCCGCACTTTATTGTTATTTTATTTTTTT
AGAGACAGGGTCTAGCTTTGTTGCCGAGGCTGGGGTGCAGTGGCATGATCACAGCCCACTGTAGCCTTGA
ACTCCAGGGCTCAAGTGATCCTCCCCCCTCAGCCTCCAAGTAGCTCGGACTACAGGCATGTGCCACTGCA
CCCAGCTCAAGAGTTACACTTCAAAGCACAGAATGAAAACCTATTTTTAAAGCCAACTTGATACATAGAG
TAGCTTACCAAGAATTAGTAACAACAACAAC (1083) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA  

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

IPβII-C-15 amino acid sequence 

EREKKNTRILNSIEINVLYEYIQHLY 
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IPβII-C-16 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCA 

CAAGCTTGGTCTAGGACTGGAATTTCAAGCATAAATGAATACTGTACAATTGTTTAATTTTAAACTATTT

TGCAGCATAGCTACCTTCAGAATTTAGTGTATCTTTTAATGTTGTATGTCTGGGATGCAAGTATTGCTAA
ATATGTTAGCCCTCCAGGTTAAAGTTGATTCAGCTTTAAGATGTTACCCTTCCAGAGGTACAGAAGAAAC
CTATTTCCAAAAAAGGTCCTTTCAGTGGTAGACTCGGGGAGAACTTGGTGGCCCCTTTGAGATGCCAGGT
TTCTTTTTTATCTAGAAATGGCTGCAAGTGGAAGCGGATAATATGTAGGCACTTTGTAAATTCATATTGA
GTAAATGAATGAAATTGTGATTTCCTGAGAATCGAACCTTGGTTCCCTAACCCTAATTGATGAGAGGCTC
GCTGCTTGATGGTGTGTACAAACTCACCTGAATGGGACTTTTTTAGACAGATTTTCATGACCTGTTCCCA
CCCCAGTTCATCATCATTTTTTTTACACCAAAAGGTTTGCAGGGTGTGGTAACTGTTTTTTTTGTGCCAT
TTTGGGGTGGAGAAGGGGGATGTGATGAAGCCAATAATTCAGGACTTATTCCTTTTTGTGTTGTGTTTTT
TTTGGCCCTTGCCCCAGAGTATGAAATAGCTTCCAGGAGCTCCAGCTATAAGCTTGGAAGTGTTTGTGTG
ATTGTAATCACATGGTGACAACACTCAGAATTTAAATTGGACTTTTGTTGTATTCTCCCCACTCAATTTG
TTTTTTAGCAGTTTAATGGGTACATTTTAGAGTCTTCCATTTTGTTGGAATTAGATCCTCCCCTTCAAAT
GCTGTAATTAACAACACTTAAAAAAACTTGAATAAAATATTGAAACCCC (889) 

AAAAAAAAAAAAAAAAAAAAAAAAA  

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

IPβII-C-16 amino acid sequence 

QAWSRTGISSINEYCTIV 
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IPβII-C-17 

Reliable sequence  

GCGAGCGCCGCCATGGAGTACCCATACGACGTACCAGATTACGCTCATATGGCCATGGAGGCCAGTGAAT
TCCACCCAAGCAGTGGTATCAACGCAGAGTGGCCATTATGGGGGG 

ATTTTACCAGAGGGAGCCAGGGCTGCAGCCTCATCTGTTTGCGGATCAGAACCCGAGCTGTGCTTGTGGC

TGCGGCTGCTAACTGGCTGCGCACAGAAGCTGAGAGAAGAGGGTGGCAATAAGTACTTTTGCCTCATTCT
GAAGCCTTGGAAGGAGCTGTCACCATGCCTCACTCGTACCCAGCCCTTTCTGCTGAGCAGAAGAAGGAGT

TGTCTGACATTGCCCTGCGGATTGTAGCCCCGGGCAAAGGCATTCTGGCTGCGGATGAGTCTGTAGGCAG

CATGGCCAAGCGGCTGAGCCAAATTGGGGTGGAAAACACAGAGGAGAACCGCCGGCTGTACCGCCAGGTC
CTGTTCAGTGCTGATGACCGTGTGAAAAAGTGCATTGGAGGCGTCATTTTCTTCCATGAGACCCTCTACC
AGAAAGATGATAATGGTGTTCCCTTCGTCCGAACCATCCAGGATAAGGGCATCGTCGTGGGCATCAAGGT
TGACAAGGGTGTGGTGCCTCTAGCTGGGACTGATGGAGAAACCACCACTCAAGGGCTGGATGGGCTCTCA
GAACGCTGTGCCCAATACAAGAAGGATGGTGCTGACTTTGCCAAGTGGCGCTGTGTGCTGAAAATCAGTG
AGCGTACACCCTCTGCACTTGCCATTCTGGAGAACGCCAACGTGCTGGCCCGTTATGCCAGTATCTGCCA
GCAGAATTGGAATTGTGCCTATTGTGGAACCTGAAATATTGCCTGATGGAGACCACCACCTCCAAACGTT
GTCAGTCATGTACAGAGAGGTCTTGGCTGCTGTGTCCAGGCCCTGAGTGACCATCATGTATACCTGGAGG
GGACCTTGCTCAAGCCCAACATGGTGACCTTGGACCATGCCTGTCCCATCAAGTATTACCCCAGAGGAGA
TTGCCATGGCAACTGTCACTGCCCTGCGTCGCACTGTGCCCCCAGCTGTCCCAGGAGTGACCTTCCTGTC
TGGGGGTCAGAGCGAAGAAGAGGCATCATTCAACCTCAATGCCATCAACCGCTGCCCCCTTCCCCGACCC
TGGGCGCTTACCTTCTCCTATGGGCGTGCCCTGCAAGCCTCTGCACTCAATGCCTGGCGAGGGCAACGGG
ACAATGCTGGGGCTGCCACTGAGGAGTTCATCAAGCGGGCTGAGGTGAATGGGCTTGCAGCCCAGGGCAA
GTATGAAGGCAGTGGAGAAGATGGTGGAGCAGCAGCACAGTCACTTTACATTGCCAACCATGCCTACTGA
GTATCCACTCCATACCACAGCCCTTGGCCCAGCCATCTGCACCCACTTTTGCTTGTAGTCATGGCCAGGG
CCAAATAGCTATGCAGAGCAGAGATGCCTTCACCTGGCACCAACTTGTCTTCCTTTCTTTTTTCCCTTCC
CCTCTCTCATTGCTGCACCTGGGACCATAGGATGGGAGGATAGGGAGCCCCTCATGACTGAGGGCAGAAG
AAATTGCTAGAAGTCAGAACAGGATGGCTGGGTCTCCCCCTACCTCTTCCAGCTCCCACAATTTTCCCAT
GATGAGGTAGCTTCTCCCTGGGCTTTCCTTTTTGCCTGCCCTGTTTCCTGGGATCAGAGGGTAGTACAGA
AGCCCTGACTCATGCCTTGAGTACATACCATACAGCAAATAAATGGTAGCAAAACATTTT (1672) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA  

CATGTCGGCCGCCTCGGCCTCTAGAGG 

 

 

IPβII-C-17 amino acid sequence 

ILPEGARAAASSVCGSEPELCLWLRLLTGCAQKLREEGGNKYFCLILKPWKELSPCLTRTQPFLLSRRRS
CLTLPCGL 
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