Development and Synthetic Application of Iodine(III)- and

Chromium(VI)-Mediated Alkene Oxamidation

BY
MIKHAIL V. GERASIMOV
B.S., Moscow State University, 2003

THESIS

Submitted as partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate College of the
University of Illinois at Chicago, 2015

Chicago, Illinois

Defense Committee:

Duncan J. Wardrop, Chair and Advisor
Donald J. Wink
Tom G. Driver
Justin T. Mohr
Karol S. Bruzik, Medicinal Chemistry and Pharmacognosy

This thesis is dedicated to my adoring family, Liudmila, Vladimir, Catherine, Elena and Alexander.

ACKNOWLEDGMENTS

I wish to express my sincerest gratitude and appreciation to my advisor Professor Duncan J. Wardrop for his guidance, advice and encouragement over the past years. I am profoundly grateful for the outstanding opportunity he has given me to work on the challenging, yet fascinating projects. I would also like to thank the members of my thesis committee, Professors Donald J. Wink, Tom G. Driver, Justin T. Mohr and Karol S. Bruzik, for their valuable time, constructive criticism and insightful suggestions. I would also like to thank Professor Donald J. Wink for his guidance on sample preparation and single crystal X-ray analysis.

I would like to thank my chemistry teachers Drs. Sergey A. Maznichenko and Tatiana V. Klochkova in Krasnodar, Russia who inspired me to become a chemist. I would also like to thank my former advisors Drs. Galina A. Golubeva and Liudmila A. Sviridova at Moscow State University and Professor Aziz M. Muzafarov at Institute of Synthetic Polymer Material of RAS who introduced me to research and taught me the indispensable lab techniques.

I am deeply grateful to all current and former members of the Wardrop group for their collaboration, help and friendship. It was a privilege to work with this great team of people in the excellent scientific environment.

I would like to thank Dr. Dan McElheny for the invaluable learning experience I had working as NMR technician.

I would like to thank Rhonda Staudohar, Silvia Solis, Pat Ratajczyk and the entire staff of the Chemistry Department for all of their help and assistance.

Finally, I would like to thank my dear wife Elena and my parents Liudmila and Vladimir for their love, endless support and encouragement.

The Obstacle is the Path.
Zen proverb

TABLE OF CONTENTS

CHAPTER PAGE
PART ONE
DEVELOPMENT OF NEW METHODS FOR ALKENE OXAMIDATION

1. OXAMIDATION OF ALKENES 1
1.1. Introduction 1
1.2. Recent Advances in Intermolecular Oxamination 3
1.3. Recent Advances in Intramolecular Oxamination 8
1.4. Metal-Free Hypervalent Iodine-Mediated Oxamination Protocols 11
1.5. Nitrenium Ion Chemistry 13
1.6. N-ACYL- N-ALKOXYNITRENIUM IONS 22
1.7. Nitrenium Ion Chemistry in Natural Product Synthesis 27
1.8. I(III)-Mediated Oxamidation Methodological Study 32
1.8.1 Introduction. 32
1.8.2 Preparation of Unsaturated O-Alkyl Hydroxamate Substrates 34
1.8.3 Oxamidation of O-Alkyl Hydroxamates using HTIB 41
1.8.4 Oxamidation of O-Alkyl Hydroxamates using HMIB 54
1.8.5 Oxamidation of O-Alkyl Hydroxamates using HPIB 60
1.8.6 Hypervalet Iodine-Mediated Azaspirocyclization 69
1.8.7 Mechanistic Considerations 73
1.9. $\mathrm{Cr}(\mathrm{VI})-\mathrm{Mediated}$ Oxoamidation of Alkenes 75
1.9.1 Optimization of Reaction Conditions, Scope and Limitations 78
1.9.2 Mechanistic Studies 86
1.10. Conclusions 91
1.11. EXPERIMENTAL PROCEDURES 93
PART TWO:
HYPERVALENT IODINE-MEDIATED INTRAMOLECULAR OXAMIDATION OF ALKENES: SYNTHESIS OF KAINIC ACID AND SYNTHETIC STUDIES TOWARDS THE MADANGAMINE AND ALSTOSCHOLARINE FAMILIES
2. FORMAL SYNTHESIS OF KAINIC ACID 159
2.1. Introduction 159
2.2. Biological Activity 160
2.3. BIOSYNTHESIS 161

TABLE OF CONTENTS (continued)
CHAPTER PAGE
2.4. Kainic Acid as a Synthetic Target 163
2.4.1 Pyrrolidine Building Blocks. 164
2.4.2 Formation of C-2-C-3 Bond 169
2.4.3 Formation of C-3-C-4 Bond 171
2.4.4 Cycloaddition Routes 173
2.4.5 Formation of C-N Bond 175
2.5. Retrosynthetic Analysis of Kainic Acid 177
2.6. Synthetic Studies Toward Kainic Acid 179
2.7. CONCLUSIONS 195
2.7. EXPERIMENTAL Procedures 196
3. TOWARDS THE SYNTHESIS OF THE MADANGAMINE AND
ALSTOSCHOLARINE FAMILIES 217
3.1. An Introduction to the Morphan Ring System 217
3.2. Studies Towards the Synthesis of the Madangamine Alkaloids. 219
3.2.1 Synthetic Approaches to the Madangamines 220
3.2.2 Retrosynthetic Analysis of the Madangamines 228
3.2.3 Towards the Synthesis of the Madangamines 230
3.3. Studies Towards the Synthesis of the Alstoscholarines 239
3.3.1 Introduction. 239
3.3.2 Biosynthesis of Alstoscholarines 240
3.3.3 Recent Alstoscholarines Syntheses 242
3.3.4 Alstoscholarines Retrosynthesis 244
3.3.5 Model Studies Towards the Alstoscholarines 245
3.3.6 Entry to Indole Natural Product-Like Compounds 247
3.4. Conclusions 250
3.5. EXPERIMENTAL PROCEDURES 251
CITED LITERATURE 270
APPENDICES 287
VITA 308

LIST OF SCHEMES

Scheme 1 3
Scheme 2 5
Scheme 3 5
Scheme 4 6
Scheme 5 7
Scheme 6 7
Scheme 7 8
Scheme 8 9
Scheme 9 9
Scheme 10 9
Scheme 11 10
Scheme 12 10
Scheme 13 11
Scheme 14 12
Scheme 15 12
Scheme 16 14
Scheme 17 16
Scheme 18 16
Scheme 19 17
Scheme 20 18
Scheme 21 18
Scheme 22 19

LIST OF SCHEMES (continued)

Scheme 23 20
Scheme 24 20
Scheme 25 20
Scheme 26 21
Scheme 27 22
Scheme 28 22
Scheme 29 23
Scheme 30 24
Scheme 31 24
Scheme 32 25
Scheme 33 25
Scheme 34 26
Scheme 35 26
Scheme 36 27
Scheme 37 28
Scheme 38 28
Scheme 39 29
Scheme 40 30
Scheme 41 30
Scheme 42 31
Scheme 43 31
Scheme 44 32

LIST OF SCHEMES (continued)

Scheme 45 33
Scheme 46 34
Scheme 47 35
Scheme 48 35
Scheme 49 36
Scheme 50 37
Scheme 51 48
Scheme 52 49
Scheme 53 50
Scheme 54 53
Scheme 55 54
Scheme 56 54
Scheme 57 58
Scheme 58 62
Scheme 59 65
Scheme 60 73
Scheme 61 75
Scheme 62 85
Scheme 63 86
Scheme 64 87
Scheme 65 88
Scheme 66 89

LIST OF SCHEMES (continued)

Scheme 67 89
Scheme 68 91
Scheme 69 162
Scheme 70 164
Scheme 71 165
Scheme 72 166
Scheme 73 167
Scheme 74 168
Scheme 75 168
Scheme 76 169
Scheme 77 170
Scheme 78 170
Scheme 79 171
Scheme 80 172
Scheme 81 172
Scheme 82 173
Scheme 83 174
Scheme 84 175
Scheme 85 176
Scheme 86 177
Scheme 87 178
Scheme 88 180

LIST OF SCHEMES (continued)

Scheme 89 181
Scheme 90 182
Scheme 91 183
Scheme 92 184
Scheme 93 184
Scheme 94 185
Scheme 95 186
Scheme 96 188
Scheme 97 190
Scheme 98 191
Scheme 99 192
Scheme 100 193
Scheme 101 194
Scheme 102 195
Scheme 103 221
Scheme 104 221
Scheme 105 222
Scheme 106 223
Scheme 107 223
Scheme 108 224
Scheme 109 225
Scheme 110 226

LIST OF SCHEMES (continued)

Scheme 111 227
Scheme 112 229
Scheme 113 230
Scheme 114 231
Scheme 115 232
Scheme 116 233
Scheme 117 233
Scheme 118 234
Scheme 119 235
Scheme 120 235
Scheme 121 236
Scheme 122 237
Scheme 123 238
Scheme 124 239
Scheme 125 241
Scheme 126 242
Scheme 127 244
Scheme 128 245
Scheme 129 246
Scheme 130 246

LIST OF TABLES

Table 1. Nitrenium Ion Stabilization Energies $\left(\Delta \mathrm{E}_{\mathrm{st}}\right)$ Relative to $\mathrm{NH}_{2}{ }^{+}$ 15
Table 2. Preparation of O-Methyl Hydroxamates 38
Table 3. Exploratory Oxamidation Study using I(III) Reagents 42
Table 4. Scope of Hydroxamate Oxamidation with HTIB 45
Table 5. Styrene Oxamidation using HTIB 51
Table 6. Scope of Hydroxamate Oxamidation with HMIB 56
Table 7. Styrene Oxamidation using HMIB 59
Table 8. Scope of Hydroxamate Oxamidation with HPIB 63
Table 9. Styrene Oxamidation using HPIB. 66
Table 10. ${ }^{\mathrm{n}} J(\mathrm{P}, \mathrm{O}, \mathrm{C})$ Coupling Constants (in Hz) 67
Table 11. Scope of Hydroxamate Azaspirocyclization using I(III) Reagents 71
Table 12. Exploratory Oxidation Studies. 77
Table 13. Optimization of $\mathrm{Cr}(\mathrm{VI})$-Mediated Oxoamidation. 80
Table 14. Scope of $\mathrm{Cr}(\mathrm{VI})$-Mediated Hydroxamate Oxoamidation 82
Table 15. Oxidative Cyclization of O-Methyl Hydroxamate $\mathbf{1 8 1 f}$. 180
Table 16. Carbonate Elimination Studies 187
Table 17. Acetonide Deprotection Studies 191
Table 18. Boc Deprotection of $\mathbf{5 0 2}$. 237
Table 19. Fischer Indole Synthesis 247
Table 20. Indolization Study 249
Table 21. Crystal Data and Structure Refinement for 477 287
Table 22. Atomic Coordinates and Equivalent Isotopic Displacement Parameters for 477 288

LIST OF TABLES (continued)

Table 23. Atomic Displacement Parameters $\left(\AA^{2}\right)$ for 477 290
Table 24. Geometric Parameters $\left(\AA,^{\circ}\right)$ for 477 291
Table 25. Crystal Data and Structure Refinement for 502 293
Table 26. Atomic Coordinates and Equivalent Isotopic Displacement Parameters for $\mathbf{5 0 2}$ 294
Table 27. Atomic Displacement Parameters $\left(\AA^{2}\right)$ for 502 298
Table 28. Geometric Parameters $\left(\AA,{ }^{\circ}\right)$ for 502 302

LIST OF FIGURES

Figure 1 Examples of natural products containing the vicinal amino alcohol moiety. 1
Figure 2 Synthetic ligands and chiral auxiliaries used for C-alkylation (7, 8, 9), aldol (9) reactions and catalytic reduction of ketones (10) 2
Figure 3 Number of citations in Web of Science topic search conducted on July 7, 2014 13
Figure 4 Previously synthesized aryl hydroxamates. 41
Figure 5 Comparison of the coupling constants for 184f, anti-185, anti-186 and syn-187 43
Figure 6 HMBC correlations observed within $\mathbf{1 8 4 g}$ and $\mathbf{1 8 8 g}$ 48
Figure 7 Examples of biologically important phosphate esters 61
Figure $8{ }^{3} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{3}\right)$ coupling constants of $\mathbf{2 1 7} \mathbf{p}, \mathbf{q}$. 68
Figure $9{ }^{19}$ F NMR spectra of HTIB+TFA and PIFA 74
Figure 10 Recent examples of transition-metal complexes containing nitrenium ion ligands 76
Figure 11 Members of the kainoid family of natural products are characterized by the presence of 4-substituted 3-carboxymethyl-pyrrolidine-2-carboxylic acid and found in a variety of marine and terrestrial plants and fungi. 160
Figure 12 Neurotransmitter L-glutamic acid and its analogue, kainic acid 161
Figure 13 Comparison of nOe correlations in the spectra of $\mathbf{3 8 1}$ and $\mathbf{3 7 7}$ 183
Figure 14 Comparison of peaks in ${ }^{1} \mathrm{H}$ NMR spectra of $E, Z-394$ and $E, Z-395$ 188
Figure 15 nOe correlations in the spectra of $\mathbf{3 9 6}$ 189
Figure 16 The morphan ring system and examples of natural products that encompass it 218
Figure 17 The madangamine alkaloid family 219
Figure 18 Crystal structure of alcohol $\mathbf{4 7 7}$ and HMBC correlations of $\mathbf{4 7 7}$ and $\mathbf{2 3 3 j}$. 232
Figure 19 Crystal structure of compound $\mathbf{5 0 2}$ 236

LIST OF FIGURES (continued)

Figure 20 Structure of the anti-inflammatory natural products E - and Z-alstoscholarine (420, 512) 239

Figure 21 Examples of biologically important indole-containing molecules. 248

Figure 22 X-ray crystal structure of 477 292

Figure 23 X-ray crystal structure of $\mathbf{5 0 2}$. 307

LIST OF ABBREVIATIONS

app	apparent
aq	aqueous
9-BBN	9-borabicyclononane
BINOL	1,1'-bi-2,2'-naphthol
Bn	benzyl
BOC	tert-butoxycarbonyl
br	broad
BTMSA	$b i s($ trimethylsilyl) acetylene
$t-\mathrm{Bu}$	tert-butyl
Bz	benzoyl
c	concentration
CCE	constant current electrolysis
Cbz	carbobenzyloxy
CI	chemical ionization
COD	1,5-cyclooctadiene
COSY	correlation spectroscopy
Cp	cyclopentadienyl
CSA	10-camphorsulfonic acid
Cy	cyclohexyl
δ	chemical shift in parts per million downfield from tetramethylsilane
d	doublet
dd	doublet of doublets

LIST OF ABBREVIATIONS (continued)

DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	dicyclohexylcarbodiimide
DCE	1,1-dichloroethane
DDO	dimethyldioxirane
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
de	diastereomeric excess
DEPT	distortionless enhanced polarization transfer
DEAD	diethyl azodicarboxylate
DFT	density functional theory
DIB	(diacetoxyiodo)benzene
DIAD	diisopropyl azodicarboxylate
DIEA	N, N-diisopropylethylamine
DMAP	4-dimethylaminopyridine
DMDO	dimethyldioxirane
DMF	N, N-dimethylformamide
DMP	Dess-Martin Periodinane
DMSO	dimethyl sulfoxide
E	electrophile
ee	enantiomeric excess
equiv	equivalents
EDC	N-ethyl- N^{\prime} '(3-dimethylaminopropyl)carbodiimide hydrochloride
EI	electron impact

LIST OF ABBREVIATIONS (continued)

FAB	fast atom bombardment
FTIR	Fourier transform infrared spectroscopy
h	hours
ho	light
HFIP	hexafluoroisopropanol
HMBC	heteronuclear multiple bond correlation
HMPA	hexamethylphosphoramide
HMQC	heteronuclear multiple-quantum correlation
HOBt	1-hydroxybenzotriazole
HOMO	highest occupied molecular orbital
HPLC	high-performance liquid chromatography
HRMS	high resolution mass spectrometry
IBX	2-iodoxybenzoic acid
Im	imidazole
$i-\operatorname{Pr}$	isopropyl
Ipc	isopinocamphenyl
IR	infrared spectroscopy
KHMDS	potassium hexamethyldisilylamide
LA	Lewis acid
LAH	lithium aluminum hydride
LDA	lithium diisopropylamide
LFP	laser flash photoloysis

LIST OF ABBREVIATIONS (continued)

LUMO	lowest unoccupied molecular orbital
M	molar
m	multiplet
m - CPBA	meta-chloroperoxybenzoic acid
min	minutes
MM2	molecular mechanics 2
MTPA	methoxy(trifluoromethyl)phenylacetic acid
MNDO	modified neglect of diatomic overlap
mp	melting point
Ms	methanesulfonyl
MS	molecular sieves
MOM	methoxymethyl
MVK	methyl vinyl ketone
NADP	nicotinimide adenine dinucleotide phosphate
NBS	N -bromosuccinimide
NCS	N -chlorosuccinimide
NMM	N -methylmorpholine
NMO	N-methylmorpholine- N -oxide
NMR	nuclear magnetic resonance
NPhth	N-phthalimido
Nuc	nucleophile
NOESY	nuclear Overhauser enhancement spectroscopy

LIST OF ABBREVIATIONS (continued)

OTFA	trifluoroacetate
PDC	pyridinium dichromate
PCC	pyridinium chlorochromate
Phth	phthaloyl
PIFA	phenyliodine(III) bis(trifluoroacetate)
PMB	para-methoxybenzyl
PMSF	phenylmethylsulfonic fluoride
PPTS	pyridinium 4-toluenesulfonate
p TSA	para-toluenesulphonic acid
py	pyridine
q	quartet
RCM	ring-closing metathesis
R_{f}	retention factor
rms	root mean square speed
rt	room temperature
S	singlet
sat	saturated
SIR	specific incorporation rate
SOMO	singly occupied molecular orbital
t	triplet
TBAF	tetrabutylammonium fluoride
TBDPS	tert-butyldiphenylsilyl

LIST OF ABBREVIATIONS (continued)

TBS	tert-butyldimethylsilyl
TEA	triethylamine
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
TFEA	trifluoroethanol
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin-layer chromatography
TMEDA	trimethylethylenediamine
TMS	trimethylsilyl
Tol	4-tolyl
TPAP	tetrapropylammonium perruthenate
Troc	$2,2,2$-trichloroethyl carbamate
Ts	4-toluenesulfonyl

SUMMARY

This thesis describes the development of the iodine(III)- and chromium(VI)-mediated oxidative cyclization of unsaturated O-alkyl hydroxamates and the use of these transformations use for the preparation of usefully functionalized lactam ring products.

Chapter 1 describes recent advances in inter- and intramolecular alkene oxamination reactions involving both metal and hypervalent iodine-mediated protocols. Methods for the generation of nitrenium ions and their application to the total synthesis of natural products are also discussed in Chapter 1. Earlier studies have shown that unsaturated O-alkyl hydroxamates undergo oxidative cyclization in the presence of phenyliodine(III) bis(trifluoroacetate) (PIFA) to form the lactam products. The mechanism of this transformation is thought to proceed via formation of an N-acylnitrenium ion, which undergoes alkene cycloaddition to form an N-acyl-N-alkoxy-aziridinium ion. Stereospecific and regioselective ion-pair collapse of this reactive intermediate then gives rise to the products of intramolecular amidotrifluoroacetoxylation. Chapter 1 describes the extension of this methodology to include [hydroxy(organosulfonyloxy)iodo]arenes, [hydroxy(diphenylphosphoryloxy)iodo]arenes and chromium(VI) oxidants, thereby providing access to a wide range of nitrogen-containing, saturated heterocycles, including pyrrolidines, piperidines, morpholines and piperazines. The broad functionalization scope of these simple methods allow for the efficient generation of sulfonates, phosphates, amino ketones, as well as spirolactams.

The latter part of this thesis discusses the application of alkene oxamidations towards natural product synthesis. The formal synthesis of kainic acid, an agonist of kainate ionotropic glutamate receptors, is discussed in Chapter 2. Chapter 3 is devoted to a review of methods for the preparation of azabicyclo[3.3.1]nonanes, also known as morphans, which are found in more

SUMMARY (continued)

than 300 natural products. The preparation of an advanced bicyclic intermediate for the synthesis of the madangamine alkaloids is also discussed. In addition, our oxamidation methodology was successfully applied to the preparation of advanced tetracyclic intermediates for the synthesis of the anti-inflammatory natural products E - and Z-alstoscholarine.

PART ONE:
DEVELOPMENT OF NEW METHODS FOR ALKENE OXAMIDATION

1. OXAMIDATION OF ALKENES

1.1. Introduction

The vicinal hydroxy amine functionality is a widespread structural fragment, found in a bewildering array of naturally-occurring molecules, synthetic ligands and chiral auxiliaries. The presence of this functionality and its relative and absolute stereochemical configuration are often essential in order to maintain the bioactivity of systems that contain it. In Nature, the most widely found amino alcohols are the amino acids serine and threonine. Several other important and synthetically inspirational bioactive compounds are shown in Figure 1.

Hapalosin
(1)

Detoxinine
(4)

Swainsonine
(2)

Anisomycin
(5)

Bestatin
(3)

Lepadiformine A
(6)

Figure 1 Examples of natural products containing the vicinal amino alcohol moiety

Hapalosin (1), a novel cyclic depsipeptide from the blue-green alga Hapalosiphon welwitschii shows inhibition of multidrug resistance activity in tumor cells, ${ }^{1}$ while the indolizidine alkaloid swainsonine (2) has been shown to enhance cellular immune system responses and reduce the growth of solid tumor in rodents. ${ }^{2}$ Bestatin (3), a naturally occurring small peptide containing a nonproteinogenic α-hydroxy- β-amino acid, is a specific
aminopeptidase inhibitor that is used in cancer chemotherapy. ${ }^{3}$ The unusual amino acid detoxinine (4) is present as the core structure in a number of active compounds that comprise the detoxin complex. ${ }^{4}$ Anisomycin (5) is an antibiotic produced by Streptomyces griseolus and used in cancer chemotherapy. ${ }^{5}$ Lepadiformine (6), a pyrroloperhydroquinoline marine alkaloid, displays in vitro cytotoxic activity against non-small-cell lung carcinoma (NSCLCN6) and nasopharynx carcinoma (KB). ${ }^{6}$

Figure 2 Synthetic ligands and chiral auxiliaries used for C-alkylation (7, 8, 9), aldol (9) reactions and catalytic reduction of ketones (10)

Chiral amino alcohols have been found to be effective ligands for a number of asymmetric transformations catalyzed by transition metal complexes with enolate alkylations and aldol reactions being the most common applications (Figure 2). For example, the complexes generated in situ from $\mathrm{Ni}(\mathrm{acac})_{2}$ and 3-dimethylaminoborneol (7) catalyze the addition of ZnEt_{2} to chalcones. ${ }^{7}$ Although many of amino alcohol ligands consist of ring structures, acyclic ephedrine derivatives $\mathbf{8}$ has been widely used for the asymmetric alkylation of amides. ${ }^{8}$ Ueberbacher and co-workers established that ferrocenyloxazolidinones 9 are effective as chiral auxiliaries in aldol and alkylation reactions, ${ }^{9}$ while the Corey-Bakshi-Shibata catalysts, exemplified by 10, have been extensively used for the enantioselective reductions of ketones. ${ }^{10}$

1.2. Recent Advances in Intermolecular Alkene Oxamination

The direct oxidative aminohydroxylation of alkenes is a powerful, yet challenging, chemical transformation. The intramolecular version of this process yields nitrogen heterocycle derivatives that are common among natural products and pharmaceutically useful synthetic molecules. ${ }^{11}$ Despite the development of numerous protocols for the preparation of vicinal amino alcohols, new approaches are needed in order to achieve better stereoselectivity and improve efficiency. The fuctionalization of olefins is among the most versatile methods used for the preparation amino alcohols and for that reason has traditionally been a primary method of choice. Of these processes, the Sharpless aminohydroxylation, mediated by osmium(VIII) complexes, proved to be a starting point in the modern development of this type of reaction. A representative example, involving the oxidation of 1-methyl styrene, is shown in Scheme 1. ${ }^{12}$ The catalytic version of the Sharpless aminohydroxylation remains one of the most useful methods for the stereospecific synthesis of vicinal amino alcohols starting from olefins. ${ }^{13}$

Sharpless, 1975

Sharpless, 1998

14
 $n-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}$

15 (40\%, 93\% ee)

16

Scheme 1

Aminohydroxylation methods, including stereoselective ones, for the preparation of 1,2-amino alcohols were reviewed in $1996{ }^{14}$ and again in $2000 .{ }^{15}$ In 2011, Donohoe and coworkers published a review summarizing recent advances in the direct conversion of alkenes to vicinal amino alcohol derivatives. ${ }^{16}$ Due to the significant scope of these articles, only the most prominent of recent methods will be disscussed in the proceeding overview.

Although Donohoe and co-workers have developed a number of novel osmiumcatalyzed amidohydroxylation reactions, there remains a need for strategies to control absolute stereoselectivity, either through auxiliaries or directing groups. ${ }^{17}$ Blakey and coworkers have reported an interesting copper-catalyzed intramolecular olefin aminoacetoxylation, ${ }^{18}$ which in contrast to previously published Pd and Cu -catalyzed systems, favors the formation of piperidines via 6-endo-trig cyclization as opposed to the more commonly observed 5-exo-trig pathways that yield pyrrolidines. Michael has also reported $\mathrm{Pd}($ II $)$-catalyzed alkoxyamination promoted by N-fluorobenzenesulfonimide. ${ }^{19}$ The author noted that the regioselective outcome of this reaction can be controlled by variation of the solvent media, allowing the selective formation of either exo or endo product.

In 2013, Schomaker and co-workers published a stereoselective protocol for the preparation of 1,3-diamino ketones 18 using Os(VIII)-catalyzed oxamination of bicyclic methylene-aziridines $\mathbf{1 7}$ (Scheme 2). ${ }^{20}$ Notably, the products were formed in good yields and with excellent regio- and diastereoselectivity.

Scheme 2

Enantioselective oxamination of terminal alkenes 19 with N-sulfonyl oxaziridines 20 was utilized by Yoon as a means to access oxazolidines 21 (Scheme 3). ${ }^{21}$ This transformation was catalyzed by the novel $\mathrm{Fe}(\mathrm{II})$ bis(oxazoline) complex 22. Interestingly, the regioselectivity of this transformation was opposite to that observed for the related $\mathrm{Cu}(\mathrm{II})-$ catalyzed reaction. ${ }^{22}$ Thus, by varying the choice of low-cost transition metal catalyst for the oxaziridine-mediated oxamination processes, it is possible to prepare both regioisomers of 1,2-amino alcohols in enantiopure form.

Scheme 3

In 2012, McLeod reported a direct intermolecular osmium-catalyzed aminohydroxylation of a variety of mono-, di-, and trisubstituted alkenes 23 using N toluenesulfonyloxy carbamates 24 (Scheme 4). ${ }^{23}$ The reaction required low catalyst loading and the products 25 were prepared in good yields and high regioselectivity for unsymmetrically substituted alkenes.

Scheme 4

Castle and co-workers recently published a base-free intermolecular aminohydroxylation of functionalized trisubstituted and 1,1-disubstituted alkenes 26 employing a benzoyloxycarbamate (Scheme 5). ${ }^{24}$ Notably, in some cases, increased catalytic loading of OsO_{4} was required to efficiently promote the transformation. In all cases, the more substituted alcohols 27 were favored.

Scheme 5

Dauban and co-workers reported an intermolecular addition of nitrenes to enecarbamates and enesulfonamides 28 (Scheme 6). ${ }^{25}$ In this work, the authors were able to prepare a variety of oxyamidated products 29 in excellent yields and with good stereoselectivity. The N, O-acetal products were formed with complete regioselectivity and shown to react further with a variety of nucleophiles under Lewis acid catalysis.

 (66%)
(cis:trans $-42: 58$)

(74%)
is:trans $-0: 100)$

(94\%) (cis:trans - 34:66) (cis:trans-28:72)

(61\%)

Scheme 6

In 2011, Dodd established that copper(I) hexafluorophosphates can be used as catalysts for the intermolecular alkoxyamination of alkenes (Scheme 7). ${ }^{26}$ Exposure of N phenyl enamides $\mathbf{3 1}$ to an iminoiodane in the presence of primary alcohols delivered cis alkoxyamides 32 in good yields and high enantioselectivity. This transformation can be utilized for direct access to α-amino aminals in a completely regio- and diastereoselective manner. The authors established that this transformation can be performed in enantioselective fashion through the use of chiral bidentante Box ligand.

(17\%, 93\% ee)

(71\%, 87\% ee)

(61\%, 67\% ee)

(47\%, 82\% ee)

Scheme 7

1.3. Recent Advances in Intramolecular Alkene Oxamination

Xu and co-workers recently reported an iron(II)-catalyzed intramolecular alkene oxyamination of functionalized O-benzoyl hydroxamates 33 (Scheme 8). ${ }^{27}$ Preliminary mechanistic studies suggested the intermediacy of an iron nitrenoid, which can undergo either alkene aminohydroxylation or aziridination.

Scheme 8

As outlined in Scheme 9, Chelmer and co-workers have reported the $\mathrm{Cu}(\mathrm{II})$-mediated addition of an amine moiety and alcohol to alkenes of general structure 36. ${ }^{28}$ Interestingly, amine trapping occurs intermolecularly, while the alcohol is added in an intramolecular sense. A variety of 2-aminomethyl morpholines $\mathbf{3 7}$ were generated in moderate to excellent yields and with good diastereoselectivity.

Scheme 9

The same group subsequently published an extension of this methodology involving a protocol for diastereoselective Cu -catalyzed intramolecular oxamination of γ alkenylsulfonamides and N -allylureas $\mathbf{3 8}$ to generate disubstituted pyrrolidines $\mathbf{3 9}$ (Scheme 10). ${ }^{29}$

Scheme 10

The Cu-catalyzed oxyamination of N -alkenylamidines 40 to form 4-acetoxymethyl-4,5-dihydroimidazoles 41 was accomplished by Chiba, who employed $\mathrm{PhI}(\mathrm{OAc})_{2}$ as the oxidant (Scheme 11). ${ }^{30}$ It was proposed that this transformation could be mediated by the high-valent $\mathrm{N}-\mathrm{Cu}(\mathrm{III})$ species, resulted from the reaction of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and $\mathrm{PhI}(\mathrm{OAc})_{2}$ with an amidine. The products could be reduced into useful 2,3-diaminopropanol derivatives 42 using AlH_{3}.

Scheme 11

In 2012, Moriyama and Togo published the transition-metal-free intramolecular aminohydroxylation reaction shown in Scheme $12 .{ }^{31}$ In this work, N-alkenylsulfonamides 43 in the presence of catalytic quantities of Brønsted acids underwent cyclization to form substituted prolinol derivatives $\mathbf{4 5}$ in high yields. The reaction is believed to proceed via oxone-mediated epoxidation of alkene function, followed by the epoxide amination with the sulfonamide tether.

Scheme 12

A radical-mediated alkene oxyamination was described by Alexanian in 2011 (Scheme 13). ${ }^{32}$ Using the reagent DIAD as a radical trap, this method serves to demonstrate the unique reactivity of amidoxyl radicals. In case of cyclic alkenes, this transformation provided trans oxyamination products, which are difficult to obtain using alternative methods.

Scheme 13

1.4. Metal-Free Hyprevalent Iodine-Mediated Oxamination Protocols

In recent years, hypervalent iodine reagents have become an important component in the synthetic chemist's tool box. ${ }^{33}$ They continue to prove useful as synthetic tools due to their low cost, ease of handling, ready availability, and reactivity under mild conditions. ${ }^{34}$

Michael and co-workers successfully employed iodosylbenzene ($\mathrm{PhIO} \mathrm{)} \mathrm{in} \mathrm{the}$ oxidative cyclization of unsaturated ureas (Scheme 14). ${ }^{35}$ The isolated products are primarily bicyclic isoureas 49 as a result from an intramolecular oxamination process. A variety of substrates $\mathbf{5 0}$ generate the isoureas in good yields and with high diastereoselectivity.

Scheme 14

More recently, the same research group has reported another oxidative cyclization of sulfonamide-tethered alkenes 51 using (diacetoxyiodo)benzene (DIB) together with Brønsted acids (Scheme 15). ${ }^{36}$ The products 52 were furnished in good yields and good to excellent diastereoselectivities. In contrast to alternative exo selective oxyamination methods, this process yields endo ring closure products.

Scheme 15

1.5. Nitrenium Ion Chemistry

Nitrenium ions are reactive divalent intermediates that are isoelectric with carbenes, nitrenes and carbenium ions. ${ }^{37}$ Nitrenium species play an important role in the genotoxic activity displayed by aromatic amines. ${ }^{38}$ It has also been demonstrated that appropriately substituted arylnitrenium ions are selectively capped by the $\mathrm{C}-8$ position of guanine bases in DNA. ${ }^{39}$ Despite being involved in many important chemical and biological processes, nitrenium ions have not received the attention of synthetic chemists to the same degree as their isoelectric isologs (Figure 3).

Figure 3 Number of citations in Web of Science topic search conducted on July 7, 2014

The majority of nitrenium ions characterized to date are very reactive and hence, relatively short-lived electron-deficient species. ${ }^{40}$ However, arylnitrenium ions are generally more stable than alkylnitrenium ions due to the delocalizing effect of the aromatic ring. ${ }^{41}$ In
this regard, electron-rich donor substituents on the nitrogen atom are also stabilizing nitrenium ions.

In nitrenium ions, a non-bonding electron pair and two bonding orbitals potentially allow two energetically accessible electronic states: singlet $\left(\mathrm{S}_{0}\right) \mathbf{5 4}$ or triplet $\left(\mathrm{T}_{1}\right) \mathbf{5 5}$ (Scheme 16). Singlet nitrenium ions are characterized by the presence of a non-bonding pair of electrons with opposite spin orientations, occupying a single σ-type orbital. Essentially, these species behave as Lewis acids and react with nucleophiles. In contrast, the triplet electronic configuration of nitrenium ion exists as two unpaired electrons that separately occupy two orthogonal orbitals. These species can behave like radicals, most commonly abstracting hydrogen atoms to form radical cations. The energy difference between the singlet and triplet states is indicated by the singlet-triplet gap, or $\Delta \mathrm{E}_{\text {st }}$. In addition, R-N-R' bond angles influenced by geometric constraints have a substantial effect on $\Delta \mathrm{E}_{\text {st. }}{ }^{42}$

Scheme 16

Semi-empirical MNDO calculations have revealed that in the presence of heteroatoms or aromatic substituents, the singlet state becomes the favored electronic configuration. Calculations performed by Falvey, ${ }^{43}$ Glover ${ }^{44}$ and Ford ${ }^{45}$ suggest the ground state of $\mathrm{NH}_{2}{ }^{+}$ (Table 1, entry 1) to be a triplet, which is about $21.2 \mathrm{kcal} / \mathrm{mol}$ more stabilized than the corresponding singlet state. Substitution of the hydrogen atoms of the parent nitrenium ion
results in significant electron density transfer to the nitrogen atom. This is particularly evident for the N-aryl series, where the NH group was found to carry only about 20% of the positive charge (Table 1, entries 6, 7). In addition, electron density equally stabilizes singlet and triplet states. Even though the actual transfer of charge in the singlet state leads to a greater stability, the overall stabilization difference of the singlet in aromatic nitrenium ions is found lower than the triplet state. The singlet electronic state stabilization in the heteroatom series (Table 1, entries 8-10) can be explained by π-donation from the adjacent filled heteroatom $2 p_{z}$ orbital to the empty $2 p_{z}$ orbital on the nitrenium ion. These long-lived, stabilized nitrenium ions provide an excellent opportunity for the development of new synthetic methodologies.

Table 1. Nitrenium Ion Stabilization Energies $\left(\Delta \mathrm{E}_{\mathrm{st}}\right)$ Relative to $\mathbf{N H}_{\mathbf{2}}{ }^{+}$

entry	ion	$\Delta \mathrm{E}_{\mathrm{st}}, \mathrm{kcal} / \mathrm{mol}^{a}$
1	$\mathrm{H}^{-\stackrel{+}{{ }^{-}}}{ }_{\mathrm{H}}$	$21.2{ }^{\text {b }}$
2	$\mathrm{Me}{ }^{-\mathrm{N}^{\text {H }} \mathrm{H} \text { }}$	$6.2{ }^{\text {b }}$
3		7.0^{b}
4	$\mathrm{Me}^{-\mathrm{N}_{1 \mathrm{Me}}}$	$8.0^{\text {b }}$
5	$\star{ }^{N}{ }_{M e}$	$-7.4{ }^{\text {c }}$

entry	ion	$\Delta \mathrm{E}_{\mathrm{st}}, \mathrm{kcal} / \mathrm{mol}^{a}$
6		$-26.1{ }^{\text {b }}$
7	1-Naph ${ }^{-{ }^{\text {- }} \text { - } \mathrm{H} \text { }}$	$-28.9{ }^{\text {b }}$
8	$\mathrm{H}_{2} \mathrm{~N}^{-\stackrel{+}{\mathrm{N}}}{ }_{-\mathrm{H}}$	$-32.3{ }^{\text {d }}$
9	$\mathrm{H}_{2} \mathrm{P}^{-\stackrel{+}{N}} \cdot \mathrm{H}$	$-13.6{ }^{\text {d }}$
10	$\mathrm{HO}^{-\stackrel{+}{N}}{ }_{-\mathrm{H}}$	$-22.8{ }^{\text {d }}$

${ }^{a}$ The negative values represent a higher stability of a singlet state compared to the triplet state. ${ }^{b}$ MNDO data reported by Ford. ${ }^{45}$ MNDO data reported by Falvey. ${ }^{43}$ d MNDO data reported by Glover. ${ }^{44}$

The chemistry of nitrenium ions has been reviewed several times over the last decade. ${ }^{46}$ In analogy to carbenes and nitrenes, stabilized nitrenium ions can undergo
concerted, $[2+1]$ cycloaddition to alkenes, which lead to formation of aziridinium ions. For example, Urry and co-workers described the formation of an aminonitrenium (diazenium) ion by treatment of 1,1-dimethylhydrazine 57 with an aqueous mixture of Br_{2} and HBr (Scheme 17). ${ }^{47}$ When styrene was added to this solution, β-bromohydrazinium salt $\mathbf{6 0}$ was formed in good yield. Unfortunately, minimal to no conversion was observed for 1,1- and 1,2disubstituted alkenes. The ammonium salt products can be further transformed into the corresponding hydrazino alcohols $\mathbf{6 1}$ by treatment with aqueous sodium hydroxide.

Scheme 17

A more practical example of intermolecular hydrazidohydroxylation of styrenes was developed by Kikugawa (Scheme 18). ${ }^{48}$ Thus, exposure of N-acetylaminophthalimide (62) to PIFA in the presence of styrenes $\mathbf{6 3}$ provided trifluoroacetoxy hydrazide derivatives $\mathbf{6 5}$ in good yields with high regioselectivity. Subsequent cleavage of trifluoroacetyl and phthalimido groups was accomplished through hydrazine-mediated hydrolysis.

Scheme 18

Interestingly, the acidic hydrolysis of $\mathbf{6 5}$ under mild conditions $\left(\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}, 2: 1\right)$ generated two regioisomeric alcohols (Scheme 19). The authors postulated that the adjacent acetamido group assists the elimination of trifluoroacetyl group to generate the aziridinium ion 66, which is attacked by water non-regioselectively to form a mixture of regioisomers 68 and 69. Taking the mechanism of hydrolysis into consideration, the authors proposed that the hydrazidohydroxylation reaction proceeds via electrophilic attack of the nitrenium ion upon the alkene without generation of aziridinium ion, i.e., a termolecular addition process. No kinetic evidence was presented for this hypothesis.

Scheme 19

The formation of putative N-methoxynitrenium ion 72 via the reaction of N, N dimethoxyamine with $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}$ was exploited by Rudchenko and co-workers (Scheme 20). ${ }^{49}$ It was found that 72 can serve as an ambidentate cation: it methylates n nucleophiles and forms aziridinium ions 74 upon reaction with alkenes (e.g., cis-2-butene). The complete stereospecificity of this process strongly points towards the existence of a singlet nitrenium ion intermediate.

Scheme 20

Vedejs further improved Rudchenko's method by utilizing trimethylsilyl triflate as an activating agent (Scheme 21). ${ }^{50}$ Treatment of simple olefins with N, N-dimethoxyamine in the presence of 1 equivalent of TMSOTf delivered aziridines 78 in good yield. However, the method was found to have significant limitations of functional group tolerance due to the high reactivity of the nitrenium intermediate. Furthermore, no conversion was detected for electron-deficient substrates, such as dimethyl fumarate.

Scheme 21

That nucleophilic attack on singlet arylnitrenium ions typically occurs at the ortho and para aromatic positions rather than at the nitrogen center reflects the fact that positive
charge in these species is largely delocalized onto the aromatic ring. Kikugawa reported that the putative arylnitrenium species generated from phenylhydrazines 79 in the presence of AlCl_{3} can be trapped by aromatic solvents to form mixtures of C - and N -substitution products $(\mathbf{8 0}, \mathbf{8 1}, \mathbf{8 2})$ (Scheme 22). ${ }^{51}$ On the other hand, the more sterically encumbered ion generated from N-methyl- N-phenylhydrazine, exclusively undergoes attack at the para position.

Scheme 22

More recently, it was reported that certain hypervalent iodine oxidants, such as phenyliodine bis(trifluoroacetate) (PIFA), may react with the N - H group of N -aryl amides $\mathbf{8 4}$ in acidic conditions to generate N -acylnitrenium ions. To this point, treatment of anilides with PIFA in TFA provided C - or N-substitution products, depending on the substituents on the aryl and acyl group (Scheme 23). ${ }^{52}$ In case of highly electronegative anilide acyl groups or electron-deficient N -aryl groups, N -arylation of iodobenzene was observed. In contrast, when the N-aryl acyl group contains electron-donating substituents, the trifluoroacetate from PIFA attacks the para position with respect to the anilide substituent generating aryl esters, which are converted into the corresponding phenol derivatives $\mathbf{8 3}$ during the work-up procedure.

Scheme 23

SanMartin and Dominguez have utilized PIFA in the intramolecular oxamination of terminal alkenes (Scheme 24). ${ }^{53}$ The authors have posited that in the first step of this transformation, a stabilized N -acylnitrenium intermediate is generated. Starting from O methyl hydroxamates, these species are intramolecularly trapped by nucleophilic arene moieties to generate the quinolinone derivatives 86. In contrast, when N methoxyphenylamides are subjected to the same conditions, pyrrolidinones $\mathbf{8 8}$ are formed via an alkene oxamidation.

Scheme 24

In 2006, the same group effectively used this novel strategy for the preparation of a wide range of heterocycles. The key cyclization step features PIFA-mediated oxidation of N substituted amides 89 into N-acylnitrenium ions 90 which can be intercepted by a wide variety of nucleophilic groups (Scheme 25).

Scheme 25

Thus, the synthesis of a series of N, N-disubstituted pyrazolones, ${ }^{54}$ indazolones $(\mathbf{9 3})^{55}$ and benzisothiazolones $(\mathbf{9 5})^{56}$ derivatives via nitrenium ion trapping of amino and thiol functionalities was accomplished (Scheme 26). In case of N-N bond formation, the substrate scope is limited to N-arylamides as N-alkyl or N -alkoxy amides failed to undergo cyclization. Difunctionalization of alkenes was achieved when suitably substituted amides 96 were exposed to PIFA in trifluoroethanol (TFEA). ${ }^{57}$ Cyclization of $\mathbf{9 6}$ occurs via an exo mode to provide a wide range of α-hydroxy pyrrolidines and piperidines 97 . Indoline derivatives 99 were also prepared similarly using this approach. ${ }^{58}$ The use of TFEA as a solvent was found to be essential and is proposed to stabilize the nitrenium species. No reaction took place in other solvents, including $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$.

Scheme 26

In 2011, Antonchick and co-workers published an I(III)-catalyzed intramolecular C-H amidation of anilides $\mathbf{1 0 0}$ using Kita's 2,2'-diiodo-4,4',6,6'-tetramethylbiphenyl $\mathbf{1 0 1}^{59}$ catalyst to form an I(III) active species in situ by means of peracetic acid. ${ }^{60}$ The amidation process proceeded efficiently, generating carbazoles $\mathbf{1 0 2}$ in moderate to excellent yields
(Scheme 27). A variety of electron-rich and electron-deficient arenes could be cyclized using these catalytic conditions.

Scheme 27

Interestingly, alkynes can undergo intramolecular oxamidation in addition to alkenes. Oxidation of amides $\mathbf{1 0 3}$ with PIFA led to the generation pyrrolidinones $\mathbf{1 0 4}$, which are proposed to arise from intramolecular interception of N -acylnitrenium ions by tethered alkynes (Scheme 28). ${ }^{61}$

Scheme 28

1.6. $\quad N$-Acyl- N-alkoxynitrenium Ions

As discussed in Section 1.5., nitrenium ions in general are short-lived and very reactive electrophilic species. In order to overcome the associated limitations of their use and increase their synthetic value, the selection of suitable N-substituents is of key importance.

Among the most useful and easily accessible members of this family are N -acyl- N alkoxynitrenium ions. After being independently discovered in 1984 by Glover ${ }^{62}$ and Kikugawa, ${ }^{63}$ these remarkable electrophiles have proved their utility in the reactions with a broad variety of aromatic systems. In initial reports, the generation of these putative species was achieved through the treatment of N-chloro- N-methoxyamides 105 with $\operatorname{Ag}(\mathrm{I})$ salts (Scheme 29).

Scheme 29

It was also found that acidic media is essential for successful cyclization. In the second generation of this method, Kikugawa developed milder conditions involving anhydrous zinc acetate in nitromethane. ${ }^{64}$ In addition to the N-methoxy group, N-allyloxy group was found to be tolerated. The resultant N-allyloxy heterocycles could be deprotected to form the corresponding N-hydroxy compounds by palladium-catalyzed deallylation. Attempts to cyclize the substrates bearing N-benzyl and N-methoxyethoxymethyl groups were unsuccessful.

Unfortunately, both Glover's and Kikugawa's initial procedures suffered from the need to employ the stoichiometric quantities of t-butyl hypochlorite, which is restricted in most countries due to its toxic and explosive nature. In the search for more environmentally friendly methods, it was discovered by Kikugawa that hypervalent iodine reagents can mediate the formation of N -acyl- N -alkoxynitrenium ions directly from N -alkoxyamides, thus
avoiding the chlorination step. ${ }^{65}$ PIFA was also successfully utilized by Romero in the synthesis of dopamine D_{2} receptor agonist PNU-95666E (115) (Scheme 30). ${ }^{66}$

Scheme 30

Interestingly, the general outcome of the cyclization of aryl-tethered nitrenium ions 117 is highly dependent on the substituents on the aromatic ring (Scheme 31). Thus, electronneutral aromatic rings undergo $\mathrm{Ar}_{2}-6$ type cyclization, generating N-methoxybenzolactams 116, whereas substrates possessing electron-rich arenes undergo spirocyclization via the $\mathrm{Ar}_{1^{-}}$ 5 pathway to form dienones $\mathbf{1 1 8}$, after loss of methanol.

Scheme 31

The dearomatization of benzene is an energetically unfavorable process, but provides a rapid entry into complex synthetic building blocks containing unmasked functionalities and new stereogenic centers, unavailable from other synthetic methods. Wardrop and Burge demonstrated that N-methoxy- N-acylnitrenium ions undergo ipso cyclization when tethered
with electron-rich arenes (Scheme 32). ${ }^{67}$ To this point, treatment of ω-arylhydroxamates 119 with PIFA furnished azaspirocyclic 2,5-cyclohexadienones $\mathbf{1 2 0}$ in good yields and with moderate to high stereoselectivities. Subsequent ozonolytic cleavage of dienone moiety afforded pyrrolidinone, piperidinones, di- and trisubstituted azetidinone derivatives $\mathbf{1 2 1}$.

Scheme 32

Antonchick and co-workers employed bis(iodoarene) $\mathbf{1 0 1}^{59}$ with co-oxidant peracetic acid catalytic system for the formation of anilides and N -aryl hydrazines from unactivated arenes $\mathbf{1 2 3}$ at ambient temperature (Scheme 33). ${ }^{68}$ The corresponding products $\mathbf{1 2 4}$ were obtained in high yields and with excellent regioselectivity.

Scheme 33

The proposed catalytic cycle for this process is shown in Scheme 34. First, aryl iodide $\mathbf{1 0 1}$ is oxidized with $\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}$ to provide the hypervalent μ-oxo-bridged iodane $\mathbf{1 2 5}$. The ligand exchange at the iodine center by $\mathbf{1 2 2}$ affords intermediate $\mathbf{1 2 6}$, which undergoes
oxidative fragmentation to generate putative nitrenium ion 127 as well as I(III) species 128, which then formed $\mathbf{1 2 5}$ and continues the catalytic cycle. At the same time, the arene $\mathbf{1 2 3}$ attacks the electrophilic nitrenium ion $\mathbf{1 2 7}$ to furnish anilides $\mathbf{1 2 4}$.

Scheme 34

The same research group later developed organocatalytic annulation by functionalization of benzamide derivatives $\mathbf{1 2 9}$ with alkynes $\mathbf{1 3 0}$ (Scheme 35). ${ }^{69}$ The authors utilized catalytic PhI with the oxidant peracetic acid, providing a straightforward synthesis of isoquinolones 131. Notable selectivity in the annulation of unsymmetrically disubstituted alkynes was demonstrated.

Scheme 35

In 2010, Wardrop and co-workers utilized PIFA-mediated oxamidation for the diastereoselective formation of five- to eight-membered hydroxy lactams $\mathbf{1 3 5}$ (Scheme 36). The authors proposed the ionic mechanism for this transformation, the first step of which is oxidation of N-methoxyamide moiety by the iodine(III) reagent. The resultant singlet nitrenium ion is then attacked by the alkene to afford bicyclic N-acyl- N-alkoxyaziridinium ion intermediate 133. Subsequent diastereoselective, preferably exo opening by the TFA group delivers trifluoroacetate derivatives $\mathbf{1 3 4}$ with high anti selectivity. Further hydrolysis with methanolic ammonia affords hydroxy lactams $\mathbf{1 3 5}$ in high yields and with excellent diastereoselectivity.

Scheme 36

1.7. Nitrenium Ion Chemistry in Natural Product Synthesis

The total synthesis of biologically active natural products has become increasingly important to a range of disciplines outside of organic chemistry, including cell biology, immunology and medicine. Although there has been limited application of nitrenium ion
chemistry in natural product synthesis, it nonetheless provides chemists a unique opportunity for the efficient preparation of complex N-bearing molecules. Kikugawa and co-workers applied $\mathrm{Zn}(\mathrm{OAc})_{2}$-mediated nitrenium ion cyclization of N -chloro- N -methoxyamide $\mathbf{1 3 6}$ to the synthesis of alkaloid eupolauramine (138), ${ }^{70}$ which is a structurally unique azaphenanthrene alkaloid isolated from Eupomatia laurina (Scheme 37). ${ }^{71}$

Scheme 37

Using the same methodology, the Fleming group developed a route to the core oxindole moiety of the challenging target of gelsemine (142) (Scheme 38). ${ }^{72}$ The authors note that cyclization in the case of $\mathbf{1 3 9}$ was faster than the one reported by Kikugawa. ${ }^{71}$ This was ascribed to the Thorpe-Ingold effect mediated by the cyclic adamantyl structure. Incidental formation of the para chlorinated N-methoxyoxindole was also observed under these conditions. Finally, reduction of the $\mathrm{N}-\mathrm{O}$ bond with $\mathrm{Na} / \mathrm{Hg}$ provided the oxindole 141 in quantitative yield.

Scheme 38

Notably, the utility of the PIFA-mediated intramolecular dearomatization strategy utilizing N-methoxy- N-acyl nitrenium ions was demonstrated by the Wardrop group in the synthesis of a number of bioactive natural products. Thus, the formal synthesis (-)TAN1251A (147), an antagonist of M1 muscarinic receptor, from L-tyrosine (143) was accomplished by Wardrop and Basak (Scheme 39). ${ }^{73}$ The key step of the synthesis was the construction of the core 1-azaspiro[4.5]decane system via a spirocyclization of $\mathbf{1 4 4}$. The dienone product 145 was further elaborated to intermediate 146 , which was used by Kawahara in his synthesis of the target alkaloid. ${ }^{74}$

Scheme 39

Similarly, the formal synthesis of (\pm)-desmethylamino FR901483 (150) was carried out from commercially available 3-(4-methoxyphenyl)propanoic acid. The assembly of the azatricyclic system of $\mathbf{1 5 0}$ was achieved via cyclization of 148 (Scheme 40). FR901483, a secondary metabolite of Cladobotryium sp. No. 11231 isolated at Fujisawa, has demonstrated superior immunosuppressant potency, significantly increasing the graft survival times in rat transplant models. ${ }^{75}$

Scheme 40

In the total synthesis of piperidine alkaloid (\pm)-adalinine (153), Wardrop and coworkers utilized a PIFA-mediated spirocyclization to install the lactam core of the target molecule (Scheme 41). ${ }^{76}(\pm)$-Adalinine, isolated from the European two-spotted ladybird Adalia bipunctata, is emitted when the reflex bleeding, an insect defensive mechanism, is triggered. It also exhibits deterrent and toxic properties. ${ }^{77}$

Scheme 41

Furthermore, the total synthesis of the neuroexcitotoxin (-)-dysibetaine (156) was reported by Wardrop and Burge (Scheme 42). ${ }^{78}$ (-)-Dysibetaine, an unusual amino acid isolated by Sakai from the marine sponge Dysidea herbacea, is known for its harmful binding and damaging activity in the central nervous system of rodents. ${ }^{79}$ The centerpiece of this synthesis was a nitrenium ion-induced spirocyclization, which diastereoselectively
generated core dienone 155 containing two chiral centers. Oxidative cleavage of the dienone moiety furnished the core of the natural product.

Scheme 42

In 2010, the total synthesis of polyhydroxy indolizidine alkaloid (+)-castanospermine (160) was reported by Bowen and Wardrop. ${ }^{80}(+)$-Castanospermine, isolated from the chestnut tree Castanospermum australe at Moreton Bay, ${ }^{81}$ demonstrates a wide range of bioactivities. ${ }^{82}$ The central theme in this approach was the diastereoselective generation of piperidine 159 via the intramolecular oxidative cyclization of an unsaturated O-methyl hydroxamate 157 (Scheme 43).

Scheme 43

In 2011, Bowen and Wardrop utilized PIFA-mediated bis-cyclofunctionalization of an γ, δ-unsaturated O-alkyl hydroxamate 161 in the total synthesis of indolizidine alkaloid (-)swainsonine (164). ${ }^{83}$ (-)-Swainsonine, a Golgi alpha-mannosidase II inhibitor, is known as a potent inhibitor of tumor cells metastasis by boosting immune responses, which also
decreases the tumor progression in rodents. ${ }^{2}$ The pivotal transformation to this alkaloid was the formation of the pyrrolidine $\mathbf{1 6 3}$ through the diastereoselective capture of an N -acyl- N alkoxyaziridinium ion generated by the intramolecular addition of an N -acyl- N alkoxynitrenium ion to the alkene (Scheme 44).

Scheme 44

1.8. I(III)-Mediated Oxamidation Methodological Study

1.8.1 Introduction

Since lactam rings are an important structural component found in a wealth of physiologically active pharmaceutical agents and naturally occurring systems, new synthetic approaches that expedite the direct preparation of these saturated N-heterocycles are of considerable importance. While the oxidation of hydroxamic acids has been widely studied in light of their role in the generation of acyl nitroso compounds, ${ }^{84}$ the reactions of the corresponding O-alkyl hydroxamate esters have received less attention. Recently, we published a useful method for the preparation of 5 to 8 -membered functionalized lactams 169, involving the I(III)-mediated oxamidation of unsaturated O-alkyl hydroxamates $165 .{ }^{85}$ We believe that this transformation proceeds through the intermediacy of a singlet nitrenium ion 166 and bicyclic N-acyl- N-alkoxyaziridinium ion 167. This reaction demonstrated high
regioselectivity and stereospecificity, forming the trans exo-oxamidation products. We hypothesized that switching from PIFA to other hypervalent iodine reagents might result in the formation of a differently functionalized class of cyclization products $\mathbf{1 7 2}$. To this end, we decided to search for new intramolecular I(III)-mediated oxamidation protocols of O alkyl hydroxamates (Scheme 45).

Scheme 45

1.8.2 Preparation of Unsaturated \boldsymbol{O}-Alkyl Hydroxamate Substrates

Our investigation commenced with the preparation of the requisite unsaturated carboxylic acids (173a-z). Synthesis of 173a was completed in 3 steps starting from commercially available 2-iodobenzoic acid (174) (Scheme 46). ${ }^{86}$ Thus, treatment of the latter with thionyl chloride in ethanol resulted in ester formation. Next, iodine-magnesium exchange followed by quenching of the resulting Grignard reagent with allyl bromide generated ethyl 2-allyl benzoate (175) in excellent yield. ${ }^{87}$ The ester was then readily transformed into acid 173a by saponification with sodium hydroxide in methanol and THF. This hydrolysis had to be performed at room temperature since olefin isomerization was observed at temperatures over $50^{\circ} \mathrm{C}$.

Scheme 46

Carboxylic acids $\mathbf{1 7 3 e}, \mathbf{1 7 3 k}, 1731,173 \mathrm{~m}, 173 \mathrm{o}$ and $\mathbf{1 7 3 y}$ were prepared through Ireland-Claisen rearrangement of the corresponding allylic alcohols using the conditions developed by Johnson (Scheme 47). ${ }^{88}$ Overall, the reaction was highly stereoselective, exclusively producing E-alkenes in good yields.

Scheme 47

Compounds 173b, 173p, 173q were accessed through the malonic ester synthesis strategy outlined in Scheme 48. Thus, appropriate alcohols were initially converted to the corresponding mesylates via treatment with methanesulfonyl chloride and triethylamine. These compounds were then used to alkylate the anion of dimethyl malonate. Hydrolysis of the resulting substituted diesters and decarboxylation with quinoline at $100{ }^{\circ} \mathrm{C}$ afforded corresponding acids in good yields.

Scheme 48

Cyclohexeneacetic acid derivatives 173i, 173j and 173jj were synthesized via the Arndt-Eistert homologation method (Scheme 49). Ring opening of cis-1,2,3,6-
tetrahydrophthalic anhydride $\mathbf{1 7 6}$ using methanol and boron fluoride etherate provided halfester $\mathbf{1 7 7},{ }^{89}$ which was subsequently converted to diazoketone upon sequential treatment with oxalyl chloride and diazomethane. Sonication with freshly prepared silver(I) oxide triggered Wolff rearrangement to furnish desired acid $\mathbf{1 7 3} \mathbf{j}$ in moderate yield. In order to prepare trans acid 173jj, anhydride $\mathbf{1 7 6}$ was heated with NaOMe in methanol at reflux for 3 h . Elongation of the carbon chain of $\mathbf{1 7 8}$ was achieved using the procedure developed for $\mathbf{1 7 3 j} \mathbf{j}$, providing compound $\mathbf{1 7 3} \mathbf{j} \mathbf{j}$ in low yield. Acid $\mathbf{1 7 3 i}$ was prepared following the same procedure starting from known acid 173g. ${ }^{90}$

Scheme 49

The synthesis of $\mathbf{1 7 3 d}$ and $\mathbf{1 7 3 d} \mathbf{d}$ is outlined in Scheme 50. Thus, sulphonylation of glycine methyl ester (179) followed by Mitsunobu-type condensation of the N-sulphonyl derivatives with E-crotyl alcohol gave the protected esters. Sequential hydrolysis provided the required N-alkylated carboxylic acids 173d and 173dd.

Scheme 50

Diene 173c was obtained from (4-carboxybutyl)triphenylphosphonium bromide and pentenal via Wittig reaction. ${ }^{91}\left(1 R^{*}, 6 R^{*}\right)$-6-Phenylcyclohex-3-enecarboxylic acid (173h), ${ }^{92}$ 2-(cinnamyloxy)acetic acid (173n) ${ }^{93}$ and 2-(but-2-yn-1-yloxy)acetic acid (173z) ${ }^{94}$ were prepared according to literature methods.

Each acid (173a-z) was coupled with methoxyamine hydrochloride to form the O methyl hydroxamates 181a-z listed in Table 2. This transformation was accomplished using one of two methods. Treatment of the carboxylic acids with $\mathrm{Et}_{3} \mathrm{~N}$ and subsequent addition of a mixture of EDC and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}$ provided the corresponding O-methyl hydroxamates in good to excellent yields, after overnight stirring at room temperature. Alternatively, the methoxyamide moiety can be installed via the procedure of Tanabe. ${ }^{95}$ Thus, treatment of the carboxylic acids with tosyl chloride and N -methylimidazole in $\mathrm{CH}_{3} \mathrm{CN}$ at $0^{\circ} \mathrm{C}$, followed by the addition of $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}$ afforded O-methyl hydroxamates in high yields, after purification by flash chromatography.

Table 2. Preparation of \boldsymbol{O}-Methyl Hydroxamates

entry	acid	O -methyl hydroxamate	method	yield, $\%^{a}$
1			B	82
2			A	76
3			B	97
4		 181d	A	80
5		 181dd	A	68
6			A	99
7		 181f	B	99
8		 181g	A	93
9			B	73

[^0]Table 2. Preparation of \boldsymbol{O}-Methyl Hydroxamates (continued)
entry

[^1]
Table 2. Preparation of \boldsymbol{O}-Methyl Hydroxamates (continued)

entry

[^2]The O-methyl hydroxamates $\mathbf{1 8 1 r} \mathbf{r}$ w shown below had been previously prepared by Burge for the initial azaspirocyclization study (Figure 4). ${ }^{67}$

181r

181u

181s

181v

181t

181w

Figure 4 Previously synthesized aryl hydroxamates

1.8.3 Oxamidation of \boldsymbol{O}-Alkyl Hydroxamates using HTIB

Our initial studies of the intramolecular oxamidation reaction focused on the reaction of $\mathbf{1 8 1 f}$ with a variety of $\mathrm{I}(\mathrm{III})$ reagents (Table 3). Our original, general procedure for PIFApromoted cyclization of O-alkyl hydroxamates involved treatment of a solution of the cyclization precursor in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{M})$ with PIFA (1.2 equiv) at $0{ }^{\circ} \mathrm{C}$. We chose these conditions to screen several available hypervalent iodine(III) reagents. Employment of DIB did not provide the expected cyclization product, but led to the formation of 1,2diacetylhydrazine 182. An attempt to mediate aminocyanation using (dicyanoiodo)benzene, obtained by premixing DIB with 2 equivalents of cyanotrimethylsilane, ${ }^{96}$ failed to provide the expected product, but also generated 182. A combination of DIB and 2 equiv of TMSOTf, which is known to form $\operatorname{PhI}(\mathrm{OTf})_{2}$ in situ, ${ }^{97}$ provided moisture-sensitive triflate 183, albeit in low yield. Further experiments revealed that employment of
[hydroxy(tosyloxy)iodo]benzene $(\mathrm{PhI}(\mathrm{OH}) \mathrm{OTs}),{ }^{98}$ more commonly known as Koser's reagent led to formation of lactam $\mathbf{1 8 4 f}$ in a reasonable yield.

Table 3. Exploratory Oxamidation Study using I(III) Reagents
entry \quad I(III) reagent \quad PhI(OAc)
${ }^{\bar{a}}$ Isolated yields, after purification by flash chromatography. ${ }^{b}$ Single diastereomer by ${ }^{1} \mathrm{H}$ NMR analysis.

Encouraged by the success of Koser's reagent in mediating alkene oxamidation, we opted to optimize the reaction conditions for HTIB. Changing solvent from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{3} \mathrm{CN}$ or $\mathrm{CH}_{3} \mathrm{NO}_{2}$ did not improve the yield of product $\mathbf{1 8 4 f}$. When the oxamidation was conducted in THF, hydrolysis of the amide moiety to the corresponding carboxylic acid $\mathbf{1 7 3 f}$ was observed. When the reaction was carried out at lower temperatures $\left(-40^{\circ} \mathrm{C}\right)$ the yield diminished, an observation that likely reflects the poor solubility of Koser's reagent in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under these conditions. Based on previous reports involving nitrenium ion intermediates, addition of Brønsted acids is often associated with increases in efficiency, possibly by preventing dimerization. ${ }^{62,99}$ Attempts to perform the oxamidation in the presence of p-toluenesulfonic acid (1 or 5 equivalents) were ineffective and resulted in lower yields. Notably, when 1 equiv of TFA was added to the reaction mixture prior to I(III) reagent, the rate of the process was significantly accelerated. This led to a more efficient cyclization, increasing the overall yield of tosylate $\mathbf{1 8 4 f}$ from 51% to 73%. Use of greater than one molar equivalent of TFA led to lower yields.

The stereochemistry of $\mathbf{1 8 4 f}$ was confirmed by collation and correlation of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 8 4 f}$ with structurally related lactams (anti-185, anti-186 and syn-187) prepared in an earlier study (Figure 5). ${ }^{85}$ The vicinal coupling constant value (7.6 Hz) for $\mathrm{H}-4 / \mathrm{H}-5$ of $\mathbf{1 8 4 f}$ was comparable to those previously observed for compounds anti-185 (7.6 Hz) and anti-186 (7.3 Hz). The $\mathrm{H}-5 / \mathrm{H}-6$ coupling constant was found to be 0 Hz for all three anti compounds, whereas for syn alcohol 187, the same coupling constant value was found to be significantly different (4.4 Hz). NOESY experiments provided additional evidence of the stereospecific/anti nature of this reaction.

Figure 5 Comparison of the coupling constants for 184f, anti-185, anti-186 and syn-187

With conditions thus established we proceeded to examine the scope of this novel oxamidation protocol. Functional groups tolerance as well as the stereo- and regioselectivity of this transformation were evaluated. Encouragingly, a variety of unsaturated O-alkyl hydroxamates smoothly underwent cyclization to produce α-tosyloxy lactams in good to excellent yields (Table 4). Employing this method we were able to generate a number of 5and 6- membered heterocycles including pyrrolidones (entry 7), piperidinones (entries 1,3), morpholinones and piperazinones (entry 4). The reaction was highly regioselective, providing solely exo ring closure products in most cases. This method appears tolerant of a number of other functional groups, including alkenes (entry 3), heteroatoms (entries 4), and esters (entry 11).

Table 4. Scope of Hydroxamate Oxamidation with HTIB
Monosubstituted Alkenes

Table 4. Scope of Hydroxamate Oxamidation with HTIB (continued)
entry

Examination of Table 4 reveals that addition of TFA significantly improves the yield of cyclization, as previously observed by our group. ${ }^{85}$ In general, when 1 equivalent of TFA was used, a 10 to 20% increase in yield was observed for most substrates: the most notable improvement being observed for the cyclization of N-methoxycyclohex-3-ene-1carboxamide $\mathbf{1 8 1 g}$ (entry 8), where a 34% increase in combined yield was observed. Overall, this cyclization method proved to be most effective for oxamidation of 1,2-disubstituted and cyclic alkenes. For trisubstituted olefins 181e, 181p (Table 4, entries 5, 6), the unsaturated lactams 189, 190 were obtained in moderate yield. The expected tertiary tosylates, retrieved in trace amounts from the reaction mixture, were unstable and underwent spontaneous elimination reaction to afford $\mathbf{1 8 9}$ and $\mathbf{1 9 0}$ after short-term storage.

The construction of larger rings was challenging and not regiospecific (Table 4, entry 2). Cyclization of substrate 181b produced a mixture of 7 - and 8 - membered lactams in modest yield (Scheme 51). As anticipated, the observed product ratio was close to unity as previously noted during development of the PIFA oxamidation methodology. ${ }^{85} \mathrm{HMBC}$ and HMQC were used to confirm the identity of $\mathbf{1 8 4 b}$ and $\mathbf{1 8 8 b}$. The HMBC spectrum of $\mathbf{1 8 4 b}$ showed a cross peak between $\mathrm{C}-2$ and $\mathrm{H}-7$ and therefore was assigned as the 7 -membered ring. Additionally, this assignment was confirmed by the ${ }^{1} \mathrm{H}$ NMR spectrum, where the multiplicity of $\mathrm{H}-8$ signal was found to be quintet. This can be rationalized from $\mathrm{H}-8$ signal coupling on $\mathrm{H}-7$ and CH_{3} groups with identical coupling constants ($J=6.6 \mathrm{~Hz}$). The identity of 8-membered lactam 188b was confirmed in a similar fashion: the $\mathrm{H}-7$ signal in the ${ }^{1} \mathrm{H}$ NMR spectrum was found to be a double of triplets $(J=2.3,9.9 \mathrm{~Hz})$.

Scheme 51

Interestingly, upon treatment with HTIB, cyclohexene $\mathbf{1 8 1 g}$ underwent cyclization to provide a mixture of bicyclic [3.2.1] and [2.2.2]azabicyclooctanes. In the presence of TFA, the regioselectivity towards the [2.2.2]-fused product was slightly improved from 1:1.4 to 1:2.0. The structure of these isomeric bicyclic oxamidation products was carefully established by 2D NMR experiments (Figure 6). The HMBC spectrum of $\mathbf{1 8 4 g}$ showed a cross peak between $\mathrm{C}-2$ and $\mathrm{H}-6$, while no cross peak was observed between $\mathrm{C}-2$ and $\mathrm{H}-5$ and thus, this compound was assigned as being an azabicyclo[3.2.1]octane ring system. In contrast, the HMBC spectrum of more polar $\mathbf{1 8 8 g}$ indicated no cross peak between C-2 and $\mathrm{H}-6$, while a cross peak was observed between $\mathrm{C}-2$ and $\mathrm{H}-5$. This evidence suggests that $\mathbf{1 8 8 g}$ is an azabicyclo[2.2.2]octane.

184g

188g

Figure 6 HMBC correlations observed within 184g and 188g

Notably, structurally related hydroxamate $\mathbf{1 8 1 g}$, bearing a C-2 phenyl substituent, cyclized to afford tetrahydrophenanthridine derivative 191 (Scheme 52). In this case, it appears that the putative nitrenium ion, generated upon treatment with Koser's reagent, was
trapped by the arene in preference to the cyclic alkene. In order to corroborate the observed outcome, saturated hydroxamate 193 was prepared through the catalytic hydrogenation of 181h. Treatment of 193 with 1.5 equivalents of Koser's reagent furnished hexahydrophenanthridinone 194 in excellent yield. We foresee that a transformation of this type could expedite the assembly of the novel synthetic cannabinoid levonantradol (195). ${ }^{100}$ It has been demonstrated that 195 is 30 times more effective than Δ^{9} - THC (the main psychoactive component in cannabis) in stimulating the CB_{1} and CB_{2} receptors as well as possesses promising analgesic and antiemetic properties. ${ }^{101}$

Scheme 52

It is interesting to note that substrates $\mathbf{1 8 1} \mathbf{i}$ and $\mathbf{1 8 1} \mathbf{j}$ (Table 4, entries 10,11), which have an extra methylene group on the methoxyamide side chain, but are otherwise structurally similar to $\mathbf{1 8 1 g}$, exclusively yielded azabicyclo[3.3.1]nonanes upon cyclization (Scheme 53). This observation was rationalized in terms of steric factors. Upon formation, the steric bulk of bridged tricyclic aziridinium ion deters nucleophilic attack of the tosylate
ion on the proximal carbon (Pathway A). Thus, preferential tosylate anion attack on the less hindered, distal carbon generates product 184i (Pathway B).

Scheme 53

In light of previous studies conducted in the Wardrop group, ${ }^{85}$ it was expected that styrene substrates, which react to generate aryl-substituted aziridinium ions would undergo facile ring opening at the benzylic position since this would be electronically favored. This prediction was borne out experimentally: cyclization proceeded with nucleophilic attack occurring only at the benzylic position (Table 5).

Table 5. Styrene Oxamidation using HTIB
Styrenes

Yields of the tosylate products were dependent upon the aryl substitution pattern. With strongly electron-donating group, such as methoxy (Table 5, entry 5), alcohol 200 was formed instead of the desired tosylate. In contrast, O-alkyl hydroxamates $\mathbf{1 8 1 k} \mathbf{k}$ possessing electron-neutral and electron-deficient aryl rings (Table 5, entries 1-4) cyclized smoothly, although inseparable mixtures of diastereomers were obtained. The ratio of anti and syn isomers in each case was determined by integration of the ${ }^{1} \mathrm{H}$ NMR spectra. The anti isomer, expected from syn addition of the nitrenium ion to the olefin followed by ring opening with inversion, was predominant in all cases. Selectivity without added TFA ranged from 26:1 in entry 2 to 7:1 in entry 4 and seems to be unaffected by the electron withdrawing or electron donating nature of the substituents on the aromatic ring. Interestingly, the presence of TFA greatly influenced the diastereomeric ratio. For most substrates it dropped dramatically when TFA was present in the reaction mixture. On the other hand, the reaction of $\mathbf{1 8 1 m}$ with HTIB was significantly more diastereoselective with the addition of 1 equivalent of trifluoroacetic acid.

The stereochemical outcome of these cyclizations can be rationalized in terms of the formation of benzylic carbocation intermediate 204 (Scheme 54). The electron donating substituents on the aromatic ring would favor carbocation formation via pathway B. Thus, the nucleophilic attack of tosylate may occur from either face of the planar benzylic carbon 204, generating both syn and anti isomers. An electron withdrawing trifluoromethyl substituent would destabilize such an intermediate, leading to the formation of the anti isomer (pathway \mathbf{A}).

Scheme 54

The drop (from >100:1 to 13:1) in stereoselectivity observed for cyclization of 181m without TFA was harder to rationalize since anti/syn ratio was improved for other substrates in this class (Scheme 55). One could hypothesize that, in case of electron-deficient alkene 181m, the cycloaddition of nitrenium ion with the olefin may be sluggish due to decreased nucleophilicity of the alkene. This consequence may allow the alternative mechanism to operate (Pathway C). First, HTIB activates the double bond (instead of nitrogen oxidation) to give an electrophilic intermediate 207. The latter reacts intramolecularly with the nucleophilic amide. In this mechanism, observed formation of syn isomer may arise from $\mathrm{S}_{\mathrm{N}} 2$ substitution of aryliodonium species 208 with the tosylate. However, as shown in the literature, if iodonium ion is formed, one should be intercepted by more nucleophilic carbonyl oxygen atom and not nitrogen during ring-opening. As a result, such cyclizations of urea-tethered alkenes in similar conditions often generate isoureas. ${ }^{35,102}$ Since we had not observed the formation such byproducts, this path was ruled out.

Scheme 55

1.8.4 Oxamidation of \boldsymbol{O}-Alkyl Hydroxamates using HMIB

Encouraged by the successful oxamidation of O-alkyl hydroxamates using Koser's tosylate reagent, we were interested in extending this methodology to the preparation of other useful products, such as mesylates. We anticipated that the reaction of (hydroxymesyloxy)iodobenzene (HMIB) with unsaturated hydroxamate $\mathbf{1 8 1 f}$ would lead to formation of nitrenium ion intermediate, which upon intramolecular alkene cycloaddition may eventually form aziridinium ion 209. A subsequent ion pair collapse of the latter should produce $210 f$ (Scheme 56).

Scheme 56

Accordingly, the scope of hydroxamate oxamidation (181a-j) with HMIB was examined (Table 6). We found that this reaction was efficient for a wide range of mono- and 1,2-disubstituted alkenes. Various functional groups, such as alkenes (entry 3), aminosulfonyls (entry 4) and esters (entry 11) were tolerated. It was found that oxamidation of trisubstituted alkenes $181 \mathrm{e}, \mathrm{p}$ proceeds to the formation of alkenes $\mathbf{1 8 9}, \mathbf{1 9 0}$, which results from spontaneous elimination of the first-formed 3° mesylate products. As in the case of HTIB, the yields of the mesylate esters improved dramatically in the presence of TFA. We also observed that trifluoroacetic acid greatly accelerated the oxamidation and led to cleaner reactions.

Table 6. Scope of Hydroxamate Oxamidation with HMIB
Monosubstituted Alkenes
${ }^{\bar{a}}$ Conditions: O-methyl hydroxamate (1.0 equiv), HMIB (1.5 equiv), TFA (1.0/0.0 equiv), DCM (0.05 $\mathrm{M}), 0{ }^{\circ} \mathrm{C}, 0.5-2 \mathrm{~h}$ reaction time. ${ }^{b}$ Isolated yields, after purification by flash chromatography.

Table 6. Scope of Hydroxamate Oxamidation with HMIB (continued)
entry
${ }^{\bar{a}}$ Conditions: O-methyl hydroxamate (1.0 equiv), HMIB (1.5 equiv), TFA (1.0/0.0 equiv), DCM (0.05 M), 0 ${ }^{\circ} \mathrm{C}, 0.5-2 \mathrm{~h}$ reaction time. ${ }^{b}$ Isolated yields, after purification by flash chromatography.

Cyclization of substrate $\mathbf{1 8 1 b}$ produced a mixture of 7 - and 8- membered α mesyloxylactams in moderate yield (Scheme 57). HMBC and HMQC were used to confirm the identity of exo opening and endo opening $\mathbf{2 1 0 b}$ and 211b. The HMBC spectrum of $\mathbf{2 1 0 b}$ showed a cross peak between $\mathrm{C}-2$ and $\mathrm{H}-7$ and therefore was assigned as the 7 -membered ring. Additionally, this assignment was confirmed by ${ }^{1} \mathrm{H}$ NMR spectrum, where the multiplicity of H-8 signal was found to be quintet. This can be rationalized from H-8 signal coupling on H-7 and CH_{3} groups with identical coupling constants ($J=6.2 \mathrm{~Hz}$). The identity of 8-membered lactam 211b was confirmed in a similar fashion as $\mathrm{H}-7$ signal in ${ }^{1} \mathrm{H}$ NMR spectrum was found to be double of triplets $(J=2.6,10 \mathrm{~Hz})$.

Scheme 57

Styrene derivatives $\mathbf{1 8 1 k} \mathbf{k}$ were cyclized in good yields (Table 7). Inseparable mixtures of diastereomers were isolated in most cases. Notably, addition of 1 equivalent of TFA greatly improved (by 7-37\%) the yields of oxamidation products. In the presence of TFA, the stereoselectivity dropped for substrates with electron-neutral or moderate electrondonating aryl groups (Table 7 , entries $1,2,4$). However, for substrate $\mathbf{1 8 1 m}$ possessing strong electron withdrawing p-trifluoromethyl moiety, anti/syn ratio increased from $16: 1$ to $>100: 1$ with the employment of TFA. As expected, para-methoxy styrene 1810 cyclized to provide alcohol 200 instead of the desired mesylate.

Table 7. Styrene Oxamidation using HMIB
Stry
${ }^{a}$ Conditions: O-methyl hydroxamate (1.0 equiv), HMIB (1.5 equiv), TFA (1.0/0.0 equiv), DCM (0.05 M), 0 ${ }^{\circ} \mathrm{C}, 0.5-2 \mathrm{~h}$ reaction time. ${ }^{b}$ Ratio determined by integration of ${ }^{1} \mathrm{H}$ NMR peaks. ${ }^{c}$ Isolated yields, after purification by flash chromatography.

1.8.5 Oxamidation of \boldsymbol{O}-Alkyl Hydroxamates using HPIB

Having successfully established two novel oxamidation processes for the synthesis of functionalized lactams, we now proceeded to examine the possibility of employing this process to install the biologically relevant phosphate moiety. Organic phosphates play a crucial role in biochemistry, agriculture and medicine (Figure 7). For instance, ATP (213), one of the most well-known molecules in Biology, is involved in human body metabolism and essential to the flow of energy in living cells. ${ }^{103}$ Sphingosine-1-phosphate (S1P) (214) is a member of lipid mediators family that act as agonists both inside cells as well on the surface of epithelial cells. ${ }^{104}$ FdUMP (215) functions as an effective inhibitor of thymidylate synthase enzyme (TS), which plays a central role in the generation of DNA precursor thymidylate (dTMP). ${ }^{105}$ Masking functional groups as phosphates is a vital tool in drug discovery in order to facilitate transport across certain cell barriers or overcome low affinity towards certain enzymes. ${ }^{106}$ This approach was undertaken for the preparation of $3 / 5$-methyl cycloSal derivatives of acyclovir (216), a well-known drug used to treat herpes. ${ }^{107}$ The phosphate derivatives proved to be potent antiviral agents against TK-deficient HSV-1 virus strains as well as display strong activity against EBV and HSV-1 infected cells.

Figure 7 Examples of biologically important phosphate esters

Despite the diminished reactivity in comparison with sulfonates or halides, electrophilic phosphate esters have proven of significant utility in organic synthesis (Scheme 58). Metal-catalyzed C-C forming reactions of activated (allyl, propargyl, benzyl) sp^{3} hydridized phosphates with Grignard nucleophiles have been particular useful. ${ }^{108}$ Switching between $\mathrm{S}_{\mathrm{N}} 2$ and $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ mechanisms is possible with the employment of $\mathrm{CuCN} \cdot 2 \mathrm{LiCl} .{ }^{109}$ Vinyl phosphates are often used in Kumada, Sonogashira, Nozaki-Hiyama, Stille, Suzuki and Negishi cross-coupling reactions. ${ }^{110}$ Nicolaou has demonstrated the utility of cyclic ketene aminal phosphates as coupling partners for the construction of a range of N-heterocycles. ${ }^{111}$ In contrast, aryl phosphates have received much less attention likely due to the ready availability and the low cost of aryl halide analogs. However, as shown in 1956 by Havinga, ${ }^{112}$ aryl phosphates undergo photohydrolysis and generate phenyl cations under UV irradiation, which opens up great possibility for $\mathrm{ArS}_{\mathrm{N}} 1$ reactions. ${ }^{113}$ Similarly, convenient
photoremovable protecting benzyl phosphates have found their niche in biological applications. ${ }^{114}$

Scheme 58

Thus, in order to introduce the phosphate ligand to hypervalent iodine reagent, hydroxy(diphenylphosphoryloxy)iodobenzene ${ }^{115}(\mathrm{HPIB})$ was prepared by grinding DIB with commercially available diphenyl phosphate. Subjecting our test substrate $\mathbf{1 8 1 f}$ to the oxamidation protocol with 1.5 equiv of HPIB, we were pleased to find that the desired α phosphoryloxylactam was obtained in good yield (Table 8, entry 7). Similarly, we found that this reaction was efficient for wide range of O-methyl hydroxamates (181a-j) providing the phosphorylated lactams ($\mathbf{2 1 7} \mathbf{a}-\mathbf{j}$) in moderate to good yields (Table 8).

Table 8. Scope of Hydroxamate Oxamidation with HPIB
Monosubstituted Alkenes
${ }^{a}$ Conditions: O-methyl hydroxamate (1.0 equiv), HPIB (1.5 equiv), TFA ($1.0 / 0.0$ equiv), DCM (0.05 M), $0{ }^{\circ} \mathrm{C}, 0.5-2$ h reaction time. ${ }^{b}$ Isolated yields, after purification by flash chromatography.

Table 8. Scope of Hydroxamate Oxamidation with HPIB (continued)
Cyclic Alkenes
${ }^{\bar{a}}$ Conditions: O-methyl hydroxamate (1.0 equiv), HPIB (1.5 equiv), TFA ($1.0 / 0.0$ equiv), DCM (0.05 M), $0{ }^{\circ} \mathrm{C}, 0.5-2$ h reaction time. ${ }^{b}$ Isolated yields, after purification by flash chromatography.

In all cases, the cyclization with HPIB proceeded less rapidly and in lower yields than that with HTIB or HMIB. It appears that the addition of 1 equiv of trifluoroacetic acid to the reaction mixture slightly increases the yield of the cyclized products. In addition to previously successful hydroxamates, we were able to isolate the oxamidation products of 1,1disubstituted alkenes $\mathbf{1 8 1 p}, \mathbf{q}$ (Table 8 , entres 5, 6). In contrast, attempted cyclization of alkene 181p with HTIB or HMIB could not be interrupted at the stage of oxamidation and yielded only alkene 190 resulting from elimination (Scheme 59). These results reflect the significant difference between the nucleofugality of the tertiary diphenyl phosphate vs. tosylate/mesylate groups. Similarly, upon oxamidation of trisubstituted olefin 181e, phosphate 217e was obtained in addition to alkene 189 (Table 8, entry 4).

Scheme 59

Styrene hydroxamates 181k-n were cyclized in good to excellent yields (Table 9). The addition of 1 equiv of trifluoroacetic acid to the reaction mixture was advantageous and led to considerable increase in yields of the lactams. The observed diastereoselectivity trends were similar to those, described in Sections 1.8.3 and 1.8.4. The highest selectivity (>100:1) in the presence of TFA were obtained for substrates $\mathbf{1 8 1 k}, \mathbf{m}$. Cyclization of $\mathbf{1 8 1 0}$, bearing an electron-donating methoxy substituent on the aryl moiety, led to alcohol 200 instead of the desired diphenyl phosphate.

Table 9. Styrene Oxamidation using HPIB
Styrenes

Upon examination of the ${ }^{13} \mathrm{C}$ NMR spectra of phosphorylated products it was noted that carbon signals two or three bonds away from the phosphorus atom appear as doublets because of P-C coupling. In some cases we also observed splitting of the diphenyl phosphate signals due to diastereotopic nature of these groups. ${ }^{\mathrm{n}} J(\mathrm{P}, \mathrm{O}, \mathrm{C})$ values of $\mathbf{2 1 7 a - q}$ are shown in Table 10.

Table 10. ${ }^{\mathrm{n}} \mathrm{J}(\mathrm{P}, \mathrm{O}, \mathrm{C})$ Coupling Constants (in Hz)

	product	${ }^{2} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{1}\right)$	${ }^{3} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{2}\right)$	${ }^{3} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{3}\right)$	${ }^{2} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{4}\right)$	${ }^{3} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{5}\right)$
	217a	6.5	8.3	-	6.9	4.2
	217c	6.5	1.8	6.5	6.9	4.6
	217d	6.0	7.9	1.8	7.4	4.6
	217 f	6.5	6.9	5.1	7.4	4.6
	217g	6.5	5.5	4.6	7.4	4.6
	218g	6.5	5.5	5.5	6.9	5.1
	217 i	6.9	6.0	4.6	6.9	4.6
 Diphenyl phosphate (DPP)	217j	6.5	5.5	4.2	7.4	4.6
	217k	6.0	7.9	1.8	7.4	4.6
	2171	6.0	7.9	1.8	7.4	4.6
	217m	6.0	7.9	-	6.9	5.1
	217n	5.5	8.3	1.4	6.9	4.6
	217p	6.9	4.6	6.9;0	7.4	4.6
	217q	6.9	4.2	6.0;0	7.9	4.6
	DPP	-	-	-	7.2	4.8

As noted in the literature, an introduction of the bulky substituents on phosphorus atom can lead to an increase in ${ }^{\mathrm{n}} J(\mathrm{P}, \mathrm{C}) .{ }^{116}$ This fact is frequently attribute to an increase in the X-P-X bond lengths and angles due to the increasing s orbital character in those bonds. ${ }^{117}$ As shown in Table 10 , no definite differences were found between the ${ }^{2} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{1}\right),{ }^{2} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{4}\right)$ and ${ }^{3} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{5}\right)$ coupling constants. In fact, the latter two were congruous to those known for
commercially available diphenyl phosphate (CAS \# 838-85-7). ${ }^{118}$ The three bond ${ }^{3} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{3}\right)$ showed the widest range between 0 and 6.9 Hz . Notably, the lower ${ }^{3} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{3}\right)$ coupling constant values (1.4-1.8 Hz) were detected for α-aryl phosphates $\mathbf{2 1 7 k} \mathbf{k}, \mathbf{l}, \mathbf{n}$ and piperazinone 217d. The reduction of coupling constants is likely a consequence of decreased steric interference around sp^{2}-hybridized C-3 in $\mathbf{2 1 7} \mathbf{k}, \mathbf{l}, \mathrm{n}$ and the rather small methyl group in $\mathbf{2 1 7 d}$. For tertiary phosphates $\mathbf{2 1 7} \mathbf{p}, \mathbf{q}$, the two $\mathrm{C}-3$ atoms are non-equivalent, therefore two different ${ }^{3} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{3}\right)$ are possible (Figure 8). Interestingly, no signal splitting was observed for the methyl group, whereas higher ${ }^{3} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{3}\right)$ constants were found between P and cyclic methylene group (6.9 and 6.0 Hz , respectfully).

Figure $\mathbf{8}^{3} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{3}\right)$ coupling constants of $\mathbf{2 1 7} \mathbf{p}, \mathbf{q}$

Surprisingly low ${ }^{3} J\left(\mathrm{P}, \mathrm{O}, \mathrm{C}_{2}\right)$ was found for piperidine 217c. On comparing with the rest of the products the observed value is 2-4 times lower. This could be attributed to less sterically congested environment on C-2 due to relative stereochemical configuration between the lactam nitrogen and phosphate substituent, since 217c derived from from cis alkene 181c.

1.8.6 Hypervalent Iodine-Mediated Azaspirocyclization

The dearomatization of aromatic rings is a powerful strategy for the rapid stereo- and regiocontrolled preparation of saturated and unsaturated cyclic compounds. ${ }^{119}$ Earlier studies in the Wardrop group have demonstrated that electron rich aryl hydroxamates are readily oxidized in the presence of PIFA to generate 2,5-cyclohexadienone systems in high yields. ${ }^{67}$ The dienone moiety can be cleaved to furnish di- and trisubstituted lactams, which are embedded in a diverse array of biologically important molecules. However, this method suffers from low temperature requirements, leading to a necessity to employ methanol as a co-solvent for better solubility of expensive PIFA. As a result, methanol adducts, arising from the conjugate addition of methanol to the dienone system, may form as by-products. We were therefore interested to establish if whether Koser's hypervalent iodine reagents would offer certain advantages for this intramolecular oxamidation process. To test our hypothesis, aryl hydroxamates 181r-x were treated with HTIB and HMIB using the conditions (O-alkyl hydroxamate (1.0 equiv), $\mathrm{I}(\mathrm{III})$ reagent (1.5 equiv), $\mathrm{DCM}(0.05 \mathrm{M}), 0{ }^{\circ} \mathrm{C}$) previously developed for alkene oxamidation.

To our delight, we found that substrates $\mathbf{1 8 1 r} \mathbf{r} \mathbf{w}$, with various alkyl tethers, efficiently underwent cyclization to provide the corresponding 4- to 6-membered spirolactams 219r-w in excellent yields (Table 11). O-Benzyl hydroxamates $\mathbf{1 8 1 s}, \mathbf{v}, \mathbf{w}$ cyclized smoothly to give products $219 \mathbf{s}, \mathbf{v}, \mathbf{w}$ in high yields. Substrate $\mathbf{1 8 1 t}$ underwent spirocyclization to provide the anti spirolactam diastereomer with reasonable selectivity (6:1), which was determined by integration of the appropriate proton signals in the ${ }^{1} \mathrm{H}$ NMR spectrum. The stereoselectivity observed during formation of $\mathbf{2 1 9 t}$ was lower than observed in the PIFA-mediated protocol $(10: 1)$, which was carried out at much lower temperature $\left(-78{ }^{\circ} \mathrm{C}\right)$. In a control experiment
with N-methoxy-3-phenylpropanamide 181x and HMIB, we found that the reaction did not proceed to the formation of spirolactam indicating that an electron-rich arene is required. The reaction did, however, yield some hexahydroquinoline derivative 220 in addition to the 1,2diacetylhydrazine. We note that the reaction did not require the addition of 1 equivalent of TFA in order to achieve high yields. In general, our yields were normally higher for than those previously reported for the PIFA-mediated spirocyclization. ${ }^{67}$ In similarity to HMIB and HTIB, exposure 181r to hydroxy(diphenylphosphoryloxy)iodobenzene (HPIB) resulted in formation of $\mathbf{2 1 9 r}$ in 99% yield. Overall, among three reagents, HMIB was found to be the most practical and efficient.

Table 11. Scope of Hydroxamate Azaspirocyclization using I(III) Reagents
entry
${ }^{a}$ Isolated yields with the employment of PIFA reported by Burge. ${ }^{67}{ }^{b}$ Conditions: O-alkyl hydroxamate (1.0 equiv), I(III) reagent (1.5 equiv), DCM (0.05 M), $0{ }^{\circ} \mathrm{C}, 0.5-2 \mathrm{~h}$ reaction time. ${ }^{c}$ Isolated yields with the employment of HMIB / HTIB reagents, after purification by flash chromatography.

Table 11. Scope of Hydroxamate Azaspirocyclization using I(III) Reagents (continued)
entry
${ }^{a}$ Isolated yields with the employment of PIFA reported by Burge. ${ }^{67}{ }^{b}$ Conditions: O-alkyl hydroxamate (1.0 equiv), $\mathrm{I}(\mathrm{III})$ reagent (1.5 equiv), $\mathrm{DCM}(0.05 \mathrm{M}), 0{ }^{\circ} \mathrm{C}, 0.5-2 \mathrm{~h}$ reaction time. ${ }^{c}$ Isolated yields with the employment of HMIB / HTIB reagents, after purification by flash chromatography.

1.8.7 Mechanistic Considerations

Aryl $-\lambda^{3}$-iodanes are electrophilic species that readily participate in ligand exchange reactions. ${ }^{120}$ The observed rate acceleration in the presence of TFA in the three processes studied suggests the initial protonation of the hydroxyl group of HTIB and a subsequent nucleophilic substitution at trivalent iodine by trifluoroacetate would afford mixed reagent 223, which we believe would be significantly more reactive than Koser's reagent itself (Scheme 60).

Scheme 60

In order to test this hypothesis and shed light on the oxamidation mechanism, we performed ${ }^{19}$ F NMR studies (Figure 9). Indeed, new deshielded signals in respect to TFA, appeared in the ${ }^{19} \mathrm{~F}$ NMR spectrum immediately after the addition of 1 equivalent TFA to HTIB solution in CDCl_{3}. Although the nature of these singnals has not been confirmed, they could arise from the initial displacement step thus providing a mixture of mixed iodanes. The chemical shifts of these peaks were similar to that observed for PIFA. With the addition of another equivalent of TFA, these two peaks merge into one. However, this could be a result of peak broadening due to the more acidic media.

Figure $9{ }^{19}$ F NMR spectra of HTIB+TFA and PIFA

The ligand exchange with a relatively acidic O-alkyl hydroxamate $\mathbf{1 8 1 f}$ would now form aminoiodane 224, which upon reductive elimination of iodobenzene, would produce N -tosyloxy- N-methoxy amide 225 (Scheme 61). The formation of TFA-analogs of $\mathbf{2 2 5}$ and $\mathbf{2 2 4}$ was confirmed by Bowen in his studies of PIFA-mediated oxamidation by in situ NMR analysis. ${ }^{121}$ Subsequent dissociation could now form transient nitrenium ion 226. Due to the low dielectric constant of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\varepsilon=8.93)$ intermediate 226 should presumably exist as a tight ion pair with the tosylate counter ion. Intramolecular cycloaddition with the alkene moiety would generate aziridinium ion intermediate 227 , which upon rapid regioselective ion-pair collapse would furnish tosylate product 184f. Taking into account the high anti stereoselectivity of this process, we conclude that the addition of the nitrenium ion across the alkene, followed by tosylate-mediated opening of the aziridinium ion occur with inversion in a concerted fashion. Remarkably, no TFA-adducts were isolated, which strongly supports the
proposed rapid ion pair collapse. Our current assumption is that the oxamidations mediated by HMIB and HPIB proceed via similar mechanisms.

Scheme 61

1.9. $\quad \mathrm{Cr}(\mathrm{VI})$-Mediated Oxoamidation of Alkenes

Transition metal oxidants and catalysts have found great utility in both the direct and intermolecular oxamination of olefins. ${ }^{16,122}$ Their use offers certain advantages such as the ability of metal (atom or ion) to coordinate ligands that results in formation of chiral metalorganic frameworks. Indeed, the employment of metal catalysts, provide facile synthetic routes for the synthesis of chiral compounds, including enantiopure amino alcohols. Historically, hypervalent iodine oxidants have been utilized to mediate the formation of nitrenium ions. ${ }^{46 \mathrm{~b}}$ In contrast, studies on metal-mediated nitrenium ion formation are particularly limited. In 1993, Smith reported that photolysis or thermolysis of bis(N,Ndimetyldithiocarbamato)bis[N-alkyl- N-phenylhydrazido(2-)]-molybdenum(VI) complexes in 1,1,2,2-tetrachloroethane led to transfer of the hydrazido group to the solvent with formation of dichloroacetohydrazides. The products generated in this transformation can be formally
derived from nitrenium ions. However, the attempts to trap the nitrenium ions by carrying out the reaction in the presence of various olefins and aromatics failed, suggesting that these species are not involved as free entities.

In 2011, the first example of the use of nitrenium ions as ligands for transition-metal chemistry was published by Gandelman and co-workers (Figure 10). ${ }^{123}$ The authors were able to isolate and characterize several $\mathrm{Rh}(\mathrm{I})$ and $\mathrm{Ru}(\mathrm{II})$-metal complexes featuring a nitrenium ion ligand (228, 229). More recently, $\mathrm{Ni}(\mathrm{I})$ and $\mathrm{Ni}(\mathrm{II})$ complexes bound N heterocyclic nitrenium units (230,231) were studied using DFT and spectroscopic methods by Ray and co-workers. ${ }^{124}$ It was shown that the electrophilic property of a $\mathrm{Ni}(\mathrm{II})$ center featuring a nitrenium ligand can be effectively employed in formate oxidation. This finding opens the door for the use of N-heterocyclic nitrenium ligands in the transformations catalyzed by transition metals.

228
Ray, 2014

230

229, Solv = DMF

231

Figure 10 Recent examples of transition-metal complexes containing nitrenium ion ligands

In an effort to identify metal-based oxidants for our alkene oxamidation process, we treated the unsaturated O-methyl hydroxamate $\mathbf{1 8 1 f}$ with various transition metal catalysts and oxidants. Herein we report the result of this investigation (Table 12).

Table 12. Exploratory Oxidation Studies

				Product(s)	
entry	oxidant	loading	solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	product (isolated yield, \%)
1	$\mathrm{Cu}(\mathrm{acac})_{2}$	1 equiv	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	
2	CuBr_{2}	1 equiv	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	
3	$\mathrm{Fe}(\mathrm{acac})_{3}$	1 equiv	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	
4	$\mathrm{Mn}(\mathrm{OAc})_{3}$	1 equiv	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	no reaction
5	CeO_{2}	1 equiv	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	
6	TPAP/NMO	$10 \mathrm{~mol} \%$	$\mathrm{CH}_{3} \mathrm{CN}$	25	
7	$\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{BQ}$	$10 \mathrm{~mol} \%$	DMF	80	
8	FeCl_{3}	1 equiv	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	no isolable
9	$\mathrm{OsO}_{4} / \mathrm{NMO}$	$10 \mathrm{~mol} \%$	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$	25	products
10	$\mathrm{Pb}(\mathrm{OAc})_{4}$	1 equiv	DCE	25	
11		$10 \mathrm{~mol} \%$		25	
12	$\mathrm{CH}_{3} \mathrm{ReO}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}$	$10 \mathrm{~mol} \%$	$\mathrm{CH}_{3} \mathrm{CN}$	25	$\mathrm{O}=\underset{\mathrm{O}}{\boldsymbol{\lambda}}$
13	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	1 equiv	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$	25	232 (81-95\%)
14	PCC	3 equiv	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	

No reaction was observed with the use of the following oxidants: $\mathrm{Cu}(\mathrm{acac})_{2}, \mathrm{CuBr}_{2}$, $\mathrm{Fe}(\mathrm{acac})_{3}, \mathrm{Mn}(\mathrm{OAc})_{3},{ }^{125} \mathrm{CeO}_{2}{ }^{126}$ and TPAP. ${ }^{127} \mathrm{The} \mathrm{Pd}(\mathrm{II}) /(\mathrm{IV})$ catalytic system also failed to mediate the cyclization. Heating $\mathbf{1 8 1 f}$ with ferric chloride ${ }^{128}$ led to cleavage of N-O bond and formation of multiple chlorination products. Even more disappointing, the use of osmium(VIII) catalysts, best known for their application in intramolecular aminohydroxylation reactions, ${ }^{122}$ failed to generate the expected lactam, instead forming a mixture of polar vicinal diols. Employment of lead(IV) acetate provided hydrazine species $\mathbf{1 8 2}$ from dimerization of the starting material. ${ }^{129}$ Treatment of O-methyl hydroxamate $\mathbf{1 8 1 f}$ with $\mathrm{RuCl}_{3},{ }^{130}$ methylrhenium trioxide ${ }^{131}$ or oxone ${ }^{31}$ peroxide-driven systems yielded lactone 232. The anti isomer is believed to arise via alkene epoxidation, nucleophilic epoxide opening by the carbonyl oxygen followed by the hydrolysis of the resulting imine in the acidic media. ${ }^{132}$ Gratifyingly, we found that employment of 3 equivalents of pyridinium chlorochromate (PCC) as the oxidant in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ produced pyrrolidinone $\mathbf{2 3 3 f}$ in 26% yield after stirring for 24 h . In this case, 1,2-amido ketone was generated instead of the expected 1,2-amido alcohol product. This finding is proposed to result from in situ secondary oxidation by excess of PCC. ${ }^{133}$

1.9.1 Optimization of Reaction Conditions, Scope and Limitations

Encouraged by the success of PCC, we explored the feasibility of other $\mathrm{Cr}(\mathrm{VI})$ oxidants to mediate the intramolecular oxoamidation of alkenes. Substrate $\mathbf{1 8 1 f}$ was chosen for this undertaking. While optimizing the conditions for the cyclization, we found that the oxoamidation reaction generally requires heating in order to reach completion in a reasonable
timeframe (Table 13). The reaction proceeds in a number of aprotic solvents suitable for $\mathrm{Cr}(\mathrm{VI})$ oxidations and, indeed, a strong solvent effect was noted. The oxoamidation was found to be faster in solvents with low dielectric constant (e.g., DCM, toluene) and slower in more polar solvents (e.g., acetone, DMF). Agarwal and co-workers have noted that the oxidation of alcohols by PCC is accelerated by Brønsted acids. ${ }^{134} \mathrm{We}$ also observed that the cyclization process accelerates in the presence of acids, while bases, such as pyridine, inhibit the process (Table 13, entry 2). Activated molecular sieves ($4 \AA$) were added in all cases to facilitate the work-up process. The highest isolated yield (61\%) of product $\mathbf{2 3 3 f}$ was obtained when the reaction was performed in the presence of 5 equivalents of anhydrous acetic acid. Employment of other organic acids, including TFA and TfOH, decreased yields (Table 13, entries 11-13). Cyclization using pyridinium ${ }^{135}$ and quinolinium ${ }^{136}$ dichromates (PDC, QDC) proved to be easier to work-up as a result of the more polar chromium byproducts generated with these reagents. Despite this, cyclization in the presence of dichromate was slow and the prolonged reaction times led to a reduction in yields. Maintaining anhydrous conditions was crucial for the success of the cyclization: aqueous-based $\mathrm{Cr}(\mathrm{VI})$ oxidants such as potassium dichromate or Jones reagent were found to hydrolyze the N -methoxyamide moiety to the carboxylic acid (Table 13, entries 16, 17).

Table 13. Optimization of $\mathbf{C r}(\mathrm{VI})$-Mediated Oxoamidation

			$\xrightarrow{\text { Conditions }}$		$\underbrace{233 \mathrm{f}}_{\mathrm{H}}$	
entry	oxidant	additive	solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	time, h	yield of 233f, \% ${ }^{a}$
1	PCC	-	DCM	25	120	26
2	PCC	py (3 equiv)	DCM	25	120	0
3	PCC	AcOH (3 equiv)	DCM	25	120	38
4	PCC	AcOH (3 equiv)	DCM	40	5	42
6	PCC	AcOH (5 equiv)	acetone	56	5	36
6	PCC	AcOH (3 equiv)	$\mathrm{CH}_{3} \mathrm{CN}$	81	8	52
7	PCC	AcOH (3 equiv)	toluene	111	0.5	50
8	PCC	AcOH (3 equiv)	DCE	84	1	56
9	PCC	AcOH (5 equiv)	DCE	84	0.25	61
10	PCC	AcOH (100 equiv)	DCE	84	0.25	54
11	PCC	TFA (1 equiv)	DCE	84	0.25	44
12	PCC	TfOH (1 equiv)	DCM	40	1	$0^{\text {b }}$
13	PCC	$\mathrm{Ac}_{2} \mathrm{O}$ (6 equiv)	DCE	84	4	40
14	PDC	AcOH (5 equiv)	DCE	84	2	47
15	QDC	AcOH (5 equiv)	DCE	84	8	28
16	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	$1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{H}_{2} \mathrm{O}$	25	2	0^{c}
17	CrO_{3}	$8 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$	acetone	25	2	$0^{\text {c }}$

[^3]Having thus established optimized conditions, the scope of the $\mathrm{Cr}(\mathrm{VI})$-mediated oxoamidation was examined. As summarized in Table 14, the scope of this oxidative cyclization is quite broad with a variety of 1,2- and trisubstituted alkenes undergoing cyclization. While hypervalent iodine-mediated oxamidations do, in some cases, generate mixtures of regioisomers arising from the opening of the intermediate aziridinium ion, the $\mathrm{Cr}(\mathrm{VI})$-mediated methodology provides excellent regioselectivity. The exo products, i.e., those bearing an exocyclic keto group, are preferred. Using this methodology we were able to prepare pyrrolidinones, morpholinones and piperazinones 233b-y. For tri- or tetrasubstituted alkenes, such as 181e, cyclization proceeds only to form tertiary alcohols, as further oxidation is not possible without $\mathrm{C}-\mathrm{C}$ bond cleavage. Cyclic substrates $\mathbf{1 8 1 g} \mathbf{g} \mathbf{j}$ were transformed into various bicyclic systems, including azabicyclo[2.2.2]octanes and azabicyclo[3.3.1]nonanes. For O-alkyl β-arylhydroxamates, azaspirocyclization was possible for electron-rich compounds bearing aromatic ortho and para methoxy groups. We note that the presence of strongly activating groups on the aromatic ring is crucial for the success of spirocyclization. Compounds with an unsubstituted phenyl ring, such as $\mathbf{1 8 1 x}$, exhibit a lack of reactivity under the standard reaction conditions.

Although starting material was consumed, no product(s) were observed with 1,1disubsituted olefin 181p, suggesting that the primary alcohol product is prone to overoxidation and decomposition under these conditions. Only starting material was recovered with 234, which may be due to deactivation of the nitrenium ion by the electron-withdrawing nature of the carbamate. Also, no reaction was noted with unsaturated amides 236 and 238, suggesting that the electron-donating $N-\mathrm{OMe}$ group is required for nitrenium ion generation.

Table 14. Scope of $\mathbf{C r}(\mathrm{VI})$-Mediated Hydroxamate Oxoamidation
Mono \& 1,2-Disubstituted Alkenes

[^4]Table 14. Scope of Cr(VI)-Mediated Hydroxamate Oxoamidation (continued)

entry	substrate		product		yield, $\%^{a, b}$
11		181h		233h	63
12		181i		233i	26
13		181j		233j	36
14		181jj		233jj	56
Styrenes					
15		181k		233k	59
16		1811		2331	63
17		181m		233m	68
18		181n		233n	45
Arylhydroxamates					
19		181r		219r	50
20		181s		219s	32

${ }^{a}$ Conditions: O-alkyl hydroxamate (1 equiv), PCC (3 equiv), AcOH (5 equiv), DCE (0.05 M), $84{ }^{\circ} \mathrm{C}, 0.25-2 \mathrm{~h}$ reaction time. ${ }^{b}$ Isolated yields, after purification by flash chromatography.

Table 14. Scope of $\mathbf{C r}(\mathrm{VI})$-Mediated Hydroxamate Oxoamidation (continued)

| entry | substrate | yield, $\%{ }^{a, b}$ |
| :--- | :--- | :--- | :--- | :--- |
| Alkynes | | |

Notably, substrate 181h smoothly underwent cyclization with PCC to provide ketone 233h (Table 14, entry 11). Treatment of saturated hydroxamate 193 with 3 equivalents of PCC in the control experiment failed to generate the cyclized product with the arene moiety, providing hydrazine 241 in low yield. It seems that $\mathrm{Cr}(\mathrm{VI})$-mediated oxoamidation, which is carried out at higher ($84{ }^{\circ} \mathrm{C}$) temperatures, can only take place with the more nucleophilic alkene system. The observed outcome reflects a distinct contrast to the transformation using hypervalent iodine-mediated reagents, which produce tetrahydrophenanthridine derivatives 191, 194 (Scheme 62).

Scheme 62

Interestingly, reaction of substrate $\mathbf{1 8 1 z}$ with PCC gave imide $\mathbf{2 4 0}$ as well as some hydrazine (Table 14, entry 22). In this case, cyclization required additional time for completion. We believe that upon cyclization, an addition-fragmentation process mediated by a chromate ester takes place, cleaving the carbon-carbon bond. In the next chapter we will discuss the possible mechanism of this cascade transformation.

Overall, this $\mathrm{Cr}(\mathrm{VI})$-mediated methodology serves as a useful adjunct to our previous work featuring hypervalent iodine oxamidation (Scheme 63). Oxidative cyclization of $\mathbf{1 8 1 f}$ by PIFA with subsequent hydrolysis of the trifluoroacetate group affords trans amido alcohol

186, which can be converted into its diastereomer 187 by an oxidation-reduction sequence. Alternatively, treatment of O-methyl hydroxamate $\mathbf{1 8 1 f}$ with PDC yields 1,2-oxoamidation product 233f, which can be reduced using NaBH_{4} to generate cis α-hydroxyalkyl lactam $\mathbf{1 8 7}$ in diastereoselective fashion.

Scheme 63

1.9.2 Mechanistic Studies

In this study, we sought to investigate the mechanism of $\mathrm{Cr}(\mathrm{VI})$-mediated oxoamidation. Both PCC and PDC are known to mediate the oxidative cyclizations of bishomoallylic alcohols into tetrahydrofuran products ${ }^{137}$ (Scheme 64) and, for alcohols bearing suitably positioned alkene groups, highly stereoselective generation of THF rings is feasible. ${ }^{138}$ Syn-oxidative cyclization of a bishomoallylic diol induced by a chromium(VI) species was utilized by Morimoto and co-workers in their total synthesis of (+)-eurylene and (+)-14-deacetyleurylene (246). ${ }^{139}$ The authors hypothesized that the reaction proceeds via a chelated dialkoxychromium intermediate in order to account for the stereoselective formation of the THF ring. Wandell and co-workers performed a structure-reactivity study of this
process with bishomoallylic alcohols. ${ }^{140}$ It was found that conformationally restricted alkenes are less reactive and attempts to generate 7-membered rings were ineffective. Perumal and co-workers employed PCC on silica gel to mediate a cyclization of N-phenolic and thiophenolic derivatives of aroylimines, generating a small library of 2-arylbenzothiazoles and 2-arylbenzoxazoles. ${ }^{141}$ In this process, the role of PCC was ascribed to aiding the aromatization step. To date, there are no reports concerning the formation of saturated N heterocycles using $\mathrm{Cr}(\mathrm{VI})$ oxidants.

(+)-14-deacetyleurylene
(246)

Scheme 64

Despite a number of experimental and theoretical studies on the addition of transition metal oxo compounds to olefins, a straightforward mechanistic rationale of this transformation is still unclear. Thus, drawing from known studies of metal-mediated oxidative cyclizations, ${ }^{142}$ we can propose three different pathways as illustrated in Scheme 65: a) [3+2] cycloaddition, b) epoxidation and ring closure, and c) a nitrenium-ion based mechanism. ${ }^{85}$

Scheme 65

It is recognized that the $[3+2]$ cycloaddition, shown in pathway \mathbf{A}, is often observed during metal-promoted aminohydroxylations ${ }^{16}$ and dihydroxylations. ${ }^{143}$ Moreover, such oxidations are stereospecific for syn-addition of the two heteroatoms across the olefin giving intermediate 248, which then oxidizes further to the corresponding ketone 233f. In alternative pathway \mathbf{B}, the transformation would proceed through $\operatorname{Cr}(\mathrm{VI})$-mediated epoxidation of this alkene, which could react further to give the products ultimately observed. In this process, nucleophilic opening of the epoxide by the amide nitrogen would form trans intermediate 250, which would then undergo oxidation to ketone 233f. Pathway \mathbf{C}, involving a singlet nitrenium ion, is also possible. Intermolecular cycloaddition would generate aziridinium ion 251, which would then trap chromous acid to form trans intermediate $\mathbf{2 5 0}$. Oxidation of the latter would afford the observed heterocycle $\mathbf{2 3 3 f}$ featuring the vicinal ketoamino moiety.

In order to elucidate the mechanism of this transformation and distinguish between pathways \mathbf{A}, \mathbf{B} and \mathbf{C}, it was initially necessary to determine whether the formation of the C N and C-O bonds proceeds with syn or anti selectivity. We envisioned that analysis of the
outcome of the oxoamidation of 1,1,2-trisubstituted alkenes, where $R_{Z} \neq R_{\mathrm{E}}$, would potentially shed light on the possible reaction mechanism (Scheme 66).

Scheme 66

To pursue this approach, O-methyl hydroxamate $\mathbf{2 5 5}$ was prepared and submitted to the cyclization conditions (Scheme 67). Based on our earlier studies, ${ }^{85}$ treatment of $\mathbf{2 5 5}$ with PIFA afforded 5-exo cyclization TFA-adduct 257, where the regio- and stereoselective anti attack of trifluoroacetate occurred on the putative aziridinium ion 256. Quenching with methanolic ammonia gave $\mathbf{2 5 8}$ as a single diastereomer. When $\mathbf{2 5 5}$ was treated with PCC in dichloroethane heated at reflux, the same diastereomer of $\mathbf{2 5 8}$ was obtained. Traces of benzyl group cleavage were also observed under these conditions.

Scheme 67

These experimental results rule out pathway \mathbf{A} on the basis of the formation of the anti diastereomer of $\mathbf{2 5 8}$ in both cases. Although some stronger $\mathrm{Cr}(\mathrm{VI})$ oxidants, such as Fieser's reagent $\left(\mathrm{CrO}_{3}\right.$ in $\left.\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}\right)$, can generate intermediate epoxides in reactions with alkenes, milder reagents, such as PCC, are generally unreactive under these conditions. ${ }^{144}$ In addition, pathway \mathbf{B} is unlikely due to the nucleophilic properties of O-alkyl hydroxamates. Entries 11-13 of Table 12 serve to illustrate that in reaction with epoxides, O-alkyl hydroxamates behave as O-nucleophiles rather than N-nucleophiles and so lactone formation would be the favored product of pathway B. As suggested by our earlier studies involving hypervalent iodine reagents, the formation of a N-methoxynitrenium ion is entirely feasible. ${ }^{67}$ It is equally important to note that no conversion was observed for substrate $\mathbf{2 3 8}$ that lacks a methoxy group (Table 14, entry 8). Based on this accumulated evidence, we currently believe that $\mathrm{Cr}(\mathrm{VI})$-mediated oxoamidation of unsaturated O-alkyl hydroxamates proceeds through Pathway \mathbf{C}, i.e., via a nitrenium ion formation and addition.

The mechanism of the oxidative cyclization of hydroxamate $\mathbf{1 8 1 z}$ to form imide $\mathbf{2 4 0}$ was also investigated (Scheme 68). $\mathrm{Cr}(\mathrm{VI})$ oxidants are known to oxidatively cleave tetrahydrofurfuryl alcohol derivatives to yield γ-butyrolactones when stirred under reflux in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 3-8 h. ${ }^{145}$ More recently, Stark has reported a catalytic version of this process, utilizing $1 \mathrm{~mol} \%$ PCC and 4 equivalents of $\mathrm{H}_{5} \mathrm{IO}_{6}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at $0{ }^{\circ} \mathrm{C} .{ }^{146}$ This transformation can be rationalized on the basis of the glycol cleavage or as an example of Criegee-type fragmentation of vicinal diols. In light of this literature precedent, it was rather surprising that no fragmentation product was detected during the preparation of tertiary alcohol 233e, which was isolated in moderate yield (Table 14, entry 5). Given the findings of our current and previous study, we believe that formation of nitrenium ion $\mathbf{2 5 9}$ occurs through oxidation of
$181 z$ with PCC. A subsequent termolecular addition of nitrenium moiety and an oxochromium species across an alkyne would provide chromium enolate $\mathbf{2 6 0}$. Then, following either intramolecular or intramolecular pathway, hemiaminal 261 is formed. Nucleophilic attack of chlorochromate on the carbonyl group in 261 would produce hemiacetal-like intermediate 262. The latter, upon subsequent scission of C-C bond, would furnish the observed imide 240.

Scheme 68

1.10. Conclusions

In summary, we have developed a set of methodologies for the regio- and stereoselective construction of 5 to 8 -membered α-substituted lactams from unsaturated O alkyl hydroxamates in the presence of iodine(III) or chromium(VI) oxidants. The intramolecular oxamidation of unsaturated O-alkyl hydroxamates provides easy access to various pyrrolidones, piperidinones, morpholinones, piperazinones and their bicyclic counterparts in good to excellent yields. Mechanistic studies suggest that these
transformations proceed via a nitrenium-ion mechanism and form the products of anti aminohydroxylation. The good functional group tolerance of these methods allows for their application in the synthesis of nitrogen-containing heterocycles found in a variety of natural products.

1.11. Experimental Procedures

1.11.1 General Procedures

All non-aqueous reactions were carried out in oven or flame-dried glassware under an atmosphere of dry nitrogen or argon, unless otherwise noted. Except as otherwise indicated, all reactions were magnetically stirred and monitored by analytical thin-layer chromatography using Merck pre-coated silica gel plates with F_{254} indicator. Visualization was accomplished by UV and/or potassium permanganate solution. Flash column chromatograph was performed using Silicycle Silica-P flash silica gel ($40-63 \mu \mathrm{~m}$). Yields refer to chromatographically and spectrographically pure compounds, unless otherwise noted.

1.11.2 Materials

Dichloromethane (DCM), purchased from Sigma-Aldrich, was additionally purified on PureSolv PS-400-4 by Innovative Technology, Inc. purification system. Acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and N -methylimidaloze (NMI) were distilled from calcium hydride under an atmosphere of dry nitrogen. Acetic acid (AcOH) was distilled from phosphorus pentoxide under an atmosphere of dry nitrogen. 1,2-Dichloroethane (DCE) was distilled from and stored over activated $4 \AA$ molecular sieves. Pyridinium chlorochromate (PCC) was prepared according to the method of Corey and Suggs, ${ }^{133}$ while pyridinium dichromate (PDC) was prepared according to the method of Corey and Schmidt. ${ }^{135}$ Quinolinium dichromate (QDC) was prepared according to the method of Balasubramanian. ${ }^{136}$ All other reagents and starting materials, unless otherwise noted, were purchased from commercial vendors and used without further purification.

1.11.3 Instrumentation

All melting points were determined in open Pyrex capillaries using a Thomas Hoover Unimelt melting point apparatus and are uncorrected. Infrared spectra were recorded as thin films on sodium chloride plates using an ATI Mattson Genesis Series IR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance $400\left(400 \mathrm{MHz},{ }^{1} \mathrm{H}, 100 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$ or a Bruker Avance $500\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}, 125 \mathrm{MHz}{ }^{13} \mathrm{C}\right.$). Chemical shift values (δ) are reported in ppm relative to residual chloroform ($\delta 7.27 \mathrm{ppm}$ for ${ }^{1} \mathrm{H} ; 77.00 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$), residual acetone ($\delta 2.05 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$; 29.92 ppm for ${ }^{13} \mathrm{C}$), residual methanol ($\delta 3.31 \mathrm{ppm}$ for ${ }^{1} \mathrm{H} ; 49.15$ ppm for ${ }^{13} \mathrm{C}$) and residual DMSO ($\delta 2.50 \mathrm{ppm}$ for ${ }^{1} \mathrm{H} ; 39.51 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$). Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet) and br (broad). DEPT 135 and two-dimensional (COSY, HMQC, HMBC, NOESY) NMR experiments were employed, where appropriate, to aid in the assignment of signals in the ${ }^{1} \mathrm{H}$ NMR spectra. High-resolution electron spray ionization mass spectra (HRMS-ESI) were obtained on a Micromass Q-TOF 2 at the University of Illinois Research Resources Center or on a Micromass Q-TOF Ultima at the Mass Spectroscopy Laboratory at the University of Illinois, Urbana-Champaign.

1.11.4 Literature Preparations

5-Methylhex-4-enoic acid (173e), (E)-5-phenylpent-4-enoic acid (173k), (E)-5-(4-bromophenyl)pent-4-enoic acid (1731), (E)-5-(4-trifluoromethylphenyl)pent-4-enoic acid (173m), (E)-5-(4-methoxyphenyl)pent-4-enoic acid (173o) and (E)-4-methylhex-4-enoic acid (173y) were prepared by the method of Johnson. ${ }^{88}$ 2-Allylbenzoic acid (173a), ${ }^{86}\left(1 R^{*}, 6 R^{*}\right)$ -6-phenylcyclohex-3-enecarboxylic acid (173h), ${ }^{92}$ cyclohex-3-enecarboxylic acid (173g), ${ }^{90}$ 2-
(cinnamyloxy)acetic acid (173n), ${ }^{93}$ 2-(but-2-yn-1-yloxy)acetic acid (173z) ${ }^{94}$ and pent-4enamide (236) ${ }^{147}$ were prepared according to literature methods.

1.11.5 Preparation of Cyclization Substrates

Representative Procedure 1. Preparation of O-Alkyl Hydroxamates (EDC)

(\pm)-O-Methyl 2-(cyclopent-2-enyl)-acetohydroxamate (181f)

To a solution of $\mathbf{1 7 3 f}\left(750 \mathrm{mg}, 5.94 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($1.33 \mathrm{~mL}, 9.50 \mathrm{mmol}, 1.6$ equiv) and the mixture stirred for 5 min . $\mathrm{EDC}(2.05 \mathrm{~g}, 10.69$ mmol, 1.8 equiv) and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(793 \mathrm{mg}, 9.50 \mathrm{mmol}, 1.6$ equiv) were then added in one portion. After 10 h , aqueous $\mathrm{HCl}(1 \mathrm{M}, 20 \mathrm{~mL})$ was added and the aqueous phase extracted with EtOAc (4 x 15 mL). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue purified by flash chromatography on silica gel (EtOAc) to provide $\mathbf{1 8 1 f}$ (921 mg , 99%) as a colorless oil; $\mathrm{R}_{f} 0.33$ (EtOAc); IR (film) $v_{\max } 3180,2940,1659,1518,1361,1191,982,943,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right):$ $\delta 5.82-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.70-5.62(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 1$ H), 2.34-2.24 (m, 1 H$), 2.14(\mathrm{dd}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=$ $13.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{ddt}, J=12.6,9.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right): \delta$ $170.3,133.2,131.0,62.9,42.3,38.4,31.2,28.9 ;$ HRMS-ESI calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 178.0844, found: 178.0840 .

Representative Procedure 2. Preparation of \boldsymbol{O}-Alkyl Hydroxamates (TsCI/NMI) O-Methyl (E)-5-(4-bromophenyl)-pent-4-enohydroxamate (1811)

1731

181

A mixture of compound $1731(1.91 \mathrm{~g}, 10.8 \mathrm{mmol}, 1.0$ equiv) and N-methylimidazole (3.1 $\mathrm{mL}, 33.4 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and then treated with a solution of $\mathrm{TsCl}\left(2.48 \mathrm{~g}, 13 \mathrm{mmol}, 1.2\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ via cannula. The reaction mixture was stirred for 30 min in an ice bath and then a solution of $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(1.1 \mathrm{~g}$, $13.0 \mathrm{mmol}, 1.02$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ and N -methylimidazole ($1.0 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.0$ equiv) was added via cannula. After warming to rt , the reaction was stirred for 2 h and then concentrated and the residue purified by flash chromatography on silica gel (EtOAc/hexanes, 1:1) to provide $\mathbf{1 8 1 1}(1.81 \mathrm{~g}, 82 \%)$ as a white solid; $\mathrm{mp} 102-104{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} /$ hexanes $) ; \mathrm{R}_{f} 0.16$ (EtOAc/hexanes, 1:1); IR (film) $\cup_{\max } 3220,3010,2974,2934,2894,1653,1523,1485,1441$, 1076, $970,806 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=15.8,1 \mathrm{H}), 6.24(\mathrm{dt}, J=6.9,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dd}, J$ $=6.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 171.9,138.1$, $132.8,131.4,130.4,129,121.8,64.5,33.5,29.9 ;$ HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$ 284.0286, found: 284.0285 .

O-Methyl 2-allylphenylhydroxamate (181a)

Following Representative Procedure 2, a mixture of compound 173a ($360 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.0$ equiv) and N-methylimidazole ($0.53 \mathrm{~mL}, 6.7 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was treated with a solution of $\mathrm{TsCl}\left(510 \mathrm{mg}, 2.7 \mathrm{mmol}, 1.2\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 1 h , a solution of $\mathrm{MeONH}_{2} \bullet \mathrm{HCl}\left(189 \mathrm{mg}, 2.3 \mathrm{mmol}, 1.02\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and N-methylimidazole ($0.18 \mathrm{~mL}, 2.2 \mathrm{mmol}, 1.0$ equiv) was added and the reaction mixture warmed to rt . The reaction was concentrated after 2 h and the residue purified by flash chromatography on silica gel (EtOAc/hexanes, 1:2) to provide 181a ($424 \mathrm{mg}, 82 \%$) as a white solid; mp $85-87{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.50$ (EtOAc); IR (film) $\mathrm{u}_{\max } 3129,2936$, $2822,1632,1576,1531,1443,1317,1162,1039,902,747,687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ MHz): $\delta 8.40$ (br. s., 1H), 7.37-7.44 (m, 2H), 7.24-7.30 (m, 2H), 6.01 (ddt, $J=16.9,10.3,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90($ br. s., 3 H$), 3.58(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 169.2,138.4,137.3,132.6,130.8,130.6,127.7$, 126.4, 116.4, 64.7, 37.3; HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$192.1025, found: 192.1017.

O-Methyl (E)-oct-6-enohydroxamate (181b)

Following Representative Procedure 1, a solution of $\mathbf{1 7 3 b}$ ($1.00 \mathrm{~g}, 7.04 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}(1.56 \mathrm{~mL}, 11.3 \mathrm{mmol}, 1.6$ equiv), EDC ($2.44 \mathrm{~g}, 12.7 \mathrm{mmol}, 1.8$ equiv) and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(940 \mathrm{mg}, 11.3 \mathrm{mmol}, 1.6$ equiv) to provide 181b ($910 \mathrm{mg}, 76 \%$) as a colorless oil; $\mathrm{R}_{f} 0.55$ (EtOAc); IR (film) $\cup_{\max } 3181,2934,2856$, 1657, 1515, 1439, 1376, 1059, $967 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right): \delta 5.48-5.36(\mathrm{~m}, 2$ H), $3.67(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.60$
(p, J=7.5 Hz, 2 H), $1.36(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right): \delta 171.7,131.0$, 125.2, 63.3, 32.6, 32.2, 29.0, 25.1, 17.1; HRMS-ESI calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$172.1338, found: 172.1342 .

O-Methyl (Z)-deca-5,9-dienenohydroxamate (181c)

173c: To a stirred solution of 4-(carboxybutyl)triphenylphosphonium bromide ($14.80 \mathrm{~g}, 33.5$ mmol, 1.5 equiv) in THF (100 mL) was added a solution of tert-BuOK ($7.90 \mathrm{~g}, 70.4 \mathrm{mmol}$, 3.1 equiv) in THF (100 mL) via cannula. The reaction was heated at reflux for 2 h , cooled to $-78^{\circ} \mathrm{C}$ and a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of 4-pentenal ($2.2 \mathrm{~mL}, 22.3 \mathrm{mmol}, 1.0$ equiv) in THF (20 mL) transferred to the phosphonium ylide solution via dry ice-packed cannula. The reaction mixture was allowed to slowly warm to rt over 16h and then quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, acidified to pH 5 using 1 N HCl and concentrated to approximately 60 mL under reduced pressure. The biphasic mixture was treated with 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(150 \mathrm{~mL})$ and extracted with toluene $(100 \mathrm{~mL})$. The aqueous layer was cooled in an ice bath and acidified to pH 2 with concentrated HCl , then extracted with EtOAc (3 x 200 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and purified by flash chromatography (EtOAc/hexanes, 1:4) to provide 173c (3.10 g) as a mixture of geometric isomers [Z/E, 41:1]: colorless oil; $\mathrm{R}_{f} 0.12$ (EtOAc/hexanes, 1:4); IR (film) $\cup_{\max } 3100$ (br), 3076, 3006, 2933, 1710, 1641, 1437, 1415, 1243, 1204, 1163, $913 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $400 \mathrm{MHz}): \delta 11.1(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.87-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.33(\mathrm{~m}, 2 \mathrm{H}), 5.05-4.95(\mathrm{~m}, 2 \mathrm{H})$,
2.37 (dd, J = 7.5, $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.14-2.08 (m, 6 H), 1.75-1.67 (ddd, J = 7.5, 7.5, $15.0 \mathrm{~Hz}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 180.4,138.5,130.5,128.9,114.9,34.0,33.6,26.9,26.7$, 24.7; HRMS-ESI calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$167.1072, found: 167.1069.

181c: Following Representative Procedure 2, a mixture of compound 173 c ($870 \mathrm{mg}, 5.2$ mmol, 1.0 equiv) and N-methylimidazole ($1.25 \mathrm{~mL}, 15.6 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ (10 $\mathrm{mL})$ was treated with a solution of $\mathrm{TsCl}\left(1.18 \mathrm{~g}, 6.2 \mathrm{mmol}\right.$, 1.2 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. After 1 h , a solution of $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}\left(440 \mathrm{mg}, 5.3 \mathrm{mmol}, 1.02\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and N-methylimidazole ($0.41 \mathrm{~mL}, 5.3 \mathrm{mmol}, 1.0$ equiv) was added and the reaction mixture warmed to rt . The reaction was concentrated after 2 h and the residue purified by flash chromatography on silica gel (EtOAc/hexanes, 1:4) to provide 181c (990 mg, 97\%) as a colorless oil; $\mathrm{R}_{f} 0.16$ (EtOAc/hexanes, 1:4); IR (film) $\cup_{\max } 3181$ (br), 3077, 3002, 2935, 2863, $1659,1528,1439,1082,912 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): \delta 9.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.85-$ $5.77(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.33(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{dd}, \mathrm{J}=17.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, \mathrm{J}=10.2,1.14$ $\mathrm{Hz} 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 8 \mathrm{H}), 1.61(\mathrm{ddd}, \mathrm{J}=7.35,7.35,14.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 125 \mathrm{MHz}\right): \delta 170.2,138.5,129.8,129.1,114.3,63.3,33.6,32.0,26.4,26.3,25.2 ;$ HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$220.1313, found: 220.1321.
O-Methyl (E)-2-(N-(but-2-enyl)-2-nitrophenylsulfonamidoacetohydroxamate (181dd)

Step 1: To a stirred biphasic mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}(33.8 \mathrm{~g}, 318 \mathrm{mmol}, 2.4$ equiv $)$ in $\mathrm{H}_{2} \mathrm{O}(100$ $\mathrm{mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at room temperature was sequentially added methyl glycine hydrochloride (179) (20.0 g, $159 \mathrm{mmol}, 1.2$ equiv) and o-nitrobenzenesulfonyl chloride (29.4 $\mathrm{g}, 133 \mathrm{mmol}, 1.0$ equiv). After 6 h , the contents were acidified with $6 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$ then
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 100 \mathrm{~mL})$. The combined organic extracts were then washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to yield an offwhite solid. This material was recrystallized from EtOH to provide ethyl 2-(2nitrosulphonamido) acetate ($39.7 \mathrm{~g}, 91 \%$) as a white solid.

Step 2: To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of methyl 2-(2-nitrosulphonamido)acetate ($387 \mathrm{mg}, 1.41$ mmol, 1.0 equiv), $\mathrm{PPh}_{3}(444 \mathrm{mg}, 1.69 \mathrm{mmol}, 1.2$ equiv) and E-crotyl alcohol ($122 \mathrm{mg}, 1.69$ mmol, 1.2 equiv) in THF (10 mL) was added over 5 min , via cannula, DEAD ($295 \mathrm{mg}, 1.69$ mmol, 1.2 equiv) in THF (2 mL). The reaction mixture was warmed to rt and stirred for 24 h before the volatile components were removed under reduced pressure. The residual oil was purified by flash chromatography (EtOAc/hexanes, 1:2) to yield methyl (E) - N-(but-2-en-1-yl)-N-((2-nitrophenyl)sulfonyl)glycinate (462 mg, 99\%): $\mathrm{R}_{f}=0.57(E t O A c / h e x a n e s, 1: 1) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.12-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H}), 5.68-$ $5.60(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.31(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 1.70-$ $1.63(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 169.3,147.8,133.5,132.3,131.7,130.8$, 124.4, 124.2, 52.1, 50.3, 46.7, 17.6.

Step 3: To a stirred solution of methyl (E)- N-(but-2-en-1-yl)- N-((2-nitrophenyl)sulfonyl)glycinate ($1.60 \mathrm{~g}, 4.87 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(3: 2: 1$) at rt , was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($220 \mathrm{mg}, 5.36 \mathrm{mmol}, 1.1$ equiv). The yellowish solution was then stirred for 40 min until the starting material had been consumed. Upon completion, the solution was poured into 30 mL of 1 N HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 15 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to provide $\mathbf{1 7 3 d d}(1.49 \mathrm{~g})$ as an off-white solid, which was used in the next step without further purification.

Step 4: Following Representative Procedure 1, a solution of 173dd (1.49 g, $4.74 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80.0 \mathrm{~mL})$ was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}(700 \mu \mathrm{~L}, 4.97 \mathrm{mmol}, 1.05$ equiv), $\operatorname{EDC}\left(1.0 \mathrm{~g}, 5.21 \mathrm{mmol}, 1.1\right.$ equiv) and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(455 \mathrm{mg}, 5.45 \mathrm{mmol}, 1.15$ equiv) to provide, after work-up and purification by flash chromatography (acetone/hexanes, 1:1), 181dd ($1.12 \mathrm{~g}, 68 \%, 2$ steps) as a white solid; $\mathrm{mp} 111-113{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} /$ hexanes $) ; \mathrm{R}_{f} 0.45$ (acetone/hexanes, 1:1); IR (film) $v_{\max } 3216,2938,1657,1590,1544,1348,1085,974,765$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.09(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.63(\mathrm{~m}, 3 \mathrm{H}), 5.77-5.65$ (m, 1 H$), 5.41-5.32(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.88(\mathrm{~m}, 4 \mathrm{H}), 3.68$ (br. s., 3 H$), 1.67(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 165.4,147.9,134.1,133.3,132.3,132.1,131.1,124.3$, 123.7, 64.4, 51.4, 47.4, 17.7; HRMS-ESI calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 344.0916$, found: 344.0914.

O-Methyl 5-methyl-hex-4-enohydroxamate (181e)

Following Representative Procedure 1, a solution of $\mathbf{1 7 3 e}(510 \mathrm{mg}, 3.97 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}(893 \mu \mathrm{~L}, 6.36 \mathrm{mmol}, 1.6$ equiv), EDC $\left(1.37 \mathrm{~g}, 7.16 \mathrm{mmol}, 1.8\right.$ equiv) and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(531 \mathrm{mg}, 6.36 \mathrm{mmol}, 1.6$ equiv) to provide 181e ($624 \mathrm{mg}, 99 \%$) as a colorless oil; $\mathrm{R}_{f} 0.41$ (EtOAc); IR (film) $\cup_{\max } 3147,2975,2927$, 1649, 1520, 1444, 1384, 1057, 985, 936, 829, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta$ 5.05-5.03 (m, 1H), 3.64(s, 3H), 2.28-2.25 (m, 2H), $2.05(\mathrm{t}, J=7.2,2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right): \delta 170.0,131.8,120.9,61.6,31.1,23.1,22.3,14.9$; HRMS-ESI calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$180.1000, found: 180.0999.

(\pm)-O-Methyl cyclohex-3-enecarbohydroxamate (181g)

Following Representative Procedure 1, a solution of $\mathbf{1 7 3 g}(1.00 \mathrm{~g}, 7.93 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.0 \mathrm{~mL})$ was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}(1.78 \mathrm{~mL}, 12.7 \mathrm{mmol}, 1.6$ equiv), EDC $\left(2.73 \mathrm{~g}, 14.2 \mathrm{mmol}, 1.8\right.$ equiv) and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(1.06 \mathrm{~g}, 12.7 \mathrm{mmol}, 1.6$ equiv) to provide $\mathbf{1 8 1 g}(1.15 \mathrm{~g}, 93 \%)$ as a white solid; $\mathrm{mp} 68-69{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{hexanes}) ; \mathrm{R}_{f} 0.43$ (EtOAc); IR (film) $v_{\max } 3164,2930,1655,1516,1444,1087,1944,918,744,650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta 5.71-5.56(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.93(\mathrm{~m}, 3$ H), 1.83-1.69 (m, 1 H), 1.69-1.54 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 100 \mathrm{MHz}\right): \delta 175.7,127.6$, 126.3, 64.4, 39.4, 28.8, 26.8, 25.8; HRMS-ESI calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$178.0844, found: 178.0836.
(\pm)-O-Methyl trans-6-phenylcyclohex-3-enehydroxamate (181h)

Following Representative Procedure 2, to a solution of $\mathbf{1 7 3 h}(5.0 \mathrm{~g}, 24.72 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{CH}_{3} \mathrm{CN}(85 \mathrm{~mL})$ was added N -methylimidazole $(6.09 \mathrm{~g}, 74.16 \mathrm{mmol}, 3.0$ equiv) and TsCl $\left(5.65 \mathrm{~g}, 29.66 \mathrm{mmol}, 1.2\right.$ equiv) at $0^{\circ} \mathrm{C}$. After $1 \mathrm{~h}, \mathrm{MeONH}_{2} \cdot \mathrm{HCl}(2.06 \mathrm{~g}, 24.72 \mathrm{mmol}, 1.0$ equiv) and N -methylimidazole ($2.03 \mathrm{~g}, 24.72 \mathrm{mmol}, 1.0$ equiv) were added and allowed to warm to rt. After 1.5 h , reaction mixture was concentrated in vacuo, purified by flash chromatography (EtOAc/hexanes, 1:1) and recrystallized from EtOAc to provide 181h (2.4 $\mathrm{g}, 73 \%$) as a white solid; mp $142-144{ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) ; \mathrm{R}_{f} 0.66$ (EtOAc); IR (film) $\mathrm{v}_{\max } 3179$,

3026, 3000, 2972, 2904, 2839, 1649, 1435, 1059, 835, 758, 702, $662 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta 7.26-7.00(\mathrm{~m}, 5 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H}), 4.59$ (br. s., 1 H$), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.91$ $(\mathrm{td}, J=8.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right): \delta 173.5,144.8,129.5$ (2 C), 129.2 (2 C), 127.8, 127.6, 126.2, 64.0, 45.4, 44.3, 34.8, 30.3; HRMS-ESI calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$232.1332, found: 232.1329 .

(土)-O-Methyl trans-2-phenylcyclohexanehydroxamate (193)

A mixture of $\mathbf{1 8 1 h}(120 \mathrm{mg}, 0.52 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(6 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{MeOH}(50$ mL) was stirred under 1 atm of H_{2} for 4 h . Filtration of the mixture through a pad of Celite followed by concentration provided $193(117 \mathrm{mg}, 97 \%)$ as a white solid; $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}$ (EtOAc); $\mathrm{R}_{f} 0.67$ (EtOAc); IR (film) $v_{\max } 3161,3006,2925,2853,1652,1525,1492,1382$, $1060,953,704,652 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.69$ (br. s., 1 H), 7.13-7.28 (m, $5 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.94(\mathrm{~m}, 5 \mathrm{H})$, 1.32-1.56 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 172.1,144.3,128.3,127.4,126.4,63.5$, 48.6, 46.4, 33.6, 29.4, 26.0, 25.2; HRMS-ESI calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$234.1494, found: 234.1492.

(\pm)-O-Methyl 2-(cyclohex-3-enyl)-acetohydroxamate (181i)

173i: Cyclohex-3-enecarboxylic acid (173g) ($2.0 \mathrm{~g}, 15.9 \mathrm{mmol}, 1.0$ equiv) was dissolved in dry benzene (15 mL) and oxalyl chloride ($2.7 \mathrm{~mL}, 31.8 \mathrm{mmol}$, 2 equiv) was slowly added at rt. DMF $(200 \mu \mathrm{~L})$ was then added dropwise and the reaction was stirred for 2 h . The reaction was then concentrated in vacuo and dissolved in ether (30 mL) and slowly added to a cold solution of diazomethane in ether ($0.5 \mathrm{M}, 150 \mathrm{~mL}, 75 \mathrm{mmol}, 4.7$ equiv). The reaction mixture was left overnight. After removal of ether in vacuo, the dark orange residue was dissolved in a mixture of dioxane and water ($100 \mathrm{~mL}, 4: 1$) and sonicated with freshly prepared silver oxide ($370 \mathrm{mg}, 1.6 \mathrm{mmol}, 0.1$ equiv) for 1 h . The black suspension was then filtered, concentrated in vacuo and the product separated by flash chromatography (EtOAc/hexanes, 1:1) to provide $\mathbf{1 7 3 i}(1.5 \mathrm{~g}, 68 \%)$ as a white solid; $\mathrm{mp} 50-52{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.70-5.61(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.83-$ $1.73(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 179.7,126.8,125.6,40.8$, 31.2, 30.4, 28.3, 24.6.

181i: Following Representative Procedure 2, a mixture of compound $\mathbf{1 7 3 i}(1.5 \mathrm{~g}, 10.7 \mathrm{mmol}$, 1.0 equiv) and N-methylimidazole ($2.64 \mathrm{~mL}, 32.1 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL}$) was treated with a solution of $\mathrm{TsCl}(2.65 \mathrm{~g}, 13.9 \mathrm{mmol}, 1.3$ equiv $)$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 1 h , a solution of $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}\left(1.07 \mathrm{~g}, 2.0 \mathrm{mmol}\right.$, 1.2 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ and N-methylimidazole ($0.88 \mathrm{~mL}, 10.8 \mathrm{mmol}, 1.0$ equiv) was added and the reaction mixture warmed to rt . The reaction was concentrated after 2 h and the residue was purified by flash chromatography on silica gel (EtOAc/hexanes, 1:1) to provide $\mathbf{1 8 1 i}(1.81 \mathrm{~g}, 89 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.41$ (EtOAc); IR (film) $v_{\max } 3160$, 3024, 2914, 1643, 1627, 1451, 1372, 1081, 1038, 938, $643 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.77$ (br. s., 1 H$), 5.64(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.76 (br. s., 3 H), 2.14 (br. s., 3 H), 2.05 (br. s., 3 H), 1.76 (br. s., 2 H), 1.30
(br. s., 1 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 170.2,126.8,125.6,64.4,39.8,31.2,30.8,28.3$, 24.6; HRMS-ESI calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$170.1181, found: 170.1181.
(土)-Methyl cis-6-(2-(methoxyamino)-2-oxyethyl)-cyclohex-3-enecarboxylate (181j)

177: To a well stirred solution of cis-1,2,3,6-tetrahydrophthalic anhydride (176) (5.0 g, 33 mmol, 1.0 equiv) in methanol ($20 \mathrm{~mL}, 494 \mathrm{mmol}, 15$ equiv), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL}, 16 \mathrm{mmol}$, 0.5 equiv) was added dropwise. After 2 h , starting material was consumed and a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(60 \mathrm{~mL})$ was added. Traces of starting material were removed by ether extraction ($3 \times 60 \mathrm{~mL}$). The aqueous layer was neutralized with concentrated HCl at $0^{\circ} \mathrm{C}$ and extracted with ether ($3 \times 60 \mathrm{~mL}$). The organic extracts were washed with brine ($3 \times 60 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give $177(6.0 \mathrm{~g}, 100 \%)$ as a white solid; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 5.69$ (s, 2 H), 3.70 ($\mathrm{s}, 3 \mathrm{H}$), 3.12-3.03 (m, 2 H), 2.64-2.53 (m, 2 H), 2.43-2.32 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 179.3,173.7,125.1,125.0,51.9$, 39.5, 39.4, 25.7, 25.5.

173j: Compound 177 ($2.0 \mathrm{~g}, 10.9 \mathrm{mmol}, 1.0$ equiv) was dissolved in dry benzene (15 mL) and oxalyl chloride ($1.9 \mathrm{~mL}, 21.7 \mathrm{mmol}$, 2 equiv) was slowly added at rt . DMF ($200 \mu \mathrm{~L}$) was then added dropwise and the reaction stirred for 2 h . The reaction was then concentrated in vacuo and dissolved in ether (30 mL) and slowly added to a cold solution of diazomethane in ether ($0.5 \mathrm{M}, 100 \mathrm{~mL}, 50 \mathrm{mmol}, 4.5$ equiv). The reaction mixture was left overnight. After removal of ether in vacuo, the dark orange residue was dissolved in a mixture of dioxane and water ($100 \mathrm{~mL}, 4: 1$) and sonicated with freshly prepared silver(I) oxide ($252 \mathrm{mg}, 1.1 \mathrm{mmol}$, 0.1 equiv) for 1 h . The black suspension was then filtered, concentrated in vacuo and the
product separated by flash chromatography (EtOAc/hexanes, 1:1) to provide $\mathbf{1 7 3 j} \mathbf{~ (~} 950 \mathrm{mg}$, $44 \%)$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.78-5.54(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $2.78(\mathrm{dt}, J=3.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=4.7,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}$, $J=9.3,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right):$ $\delta 178.9,174.5,124.9,124.8,51.6,41.5,34.7,30.4,29.6,24.9$.

181j: Following Representative Procedure 2, a mixture of compound 173j ($590 \mathrm{mg}, 3.0$ mmol, 1.0 equiv) and N-methylimidazole ($0.74 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL}$) was treated with a solution of $\mathrm{TsCl}\left(740 \mathrm{mg}, 3.9 \mathrm{mmol}, 1.3\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. After 1 h , a solution of $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}\left(300 \mathrm{mg}, 3.6 \mathrm{mmol}\right.$, 1.2 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and N-methylimidazole ($0.25 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.0$ equiv) was added and the reaction mixture warmed to rt . The reaction was concentrated after 2 h and the residue was purified by flash chromatography on silica gel (EtOAc/hexanes, 1:1) to provide $\mathbf{1 8 1} \mathbf{j}$ ($657 \mathrm{mg}, 97 \%$) as a white solid; mp 66-68 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.39$ (EtOAc); IR (film) $\cup_{\max } 3155,2992$, $1842,1729,1633,1528,1434,1339,1183,1044,930,678 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ MHz): $\delta 8.91$ (br. s., 1 H), 5.73-5.53 (m, 2 H), 3.74 (br. s., 3 H), 3.67 (s, 3 H), 2.79-2.73 (m, 1 H), 2.64 (br. s., 1 H), 2.34-1.97 (m, 6 H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 174.8,170.1$, $125.1,124.7,64.3,51.6,41.4,34.3,31.3,29.3,25.2$; HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$228.1236, found: 228.1231.
(\pm)-Methyl trans-6-(2-(methoxyamino)-2-oxyethyl)-cyclohex-3-enecarboxylate (181jj)

178: Sodium ($1.4 \mathrm{~g}, 61 \mathrm{mmol}, 1.5$ equiv) was dissolved in dry methanol (100 mL) at rt. Cis-1,2,3,6-tetrahydrophthalic anhydride (176) (5.0 g, $41 \mathrm{mmol}, 1.0$ equiv) was then added in one portion and the reaction mixture was heated at reflux for 3 h . Upon completion, the reaction was cooled, diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and neutralized with concentrated HCl at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted with ether ($3 \times 60 \mathrm{~mL}$). The organic extracts were washed with brine ($3 \times 60 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give $\mathbf{1 7 8}(6.0 \mathrm{~g}, 100 \%)$ as a white solid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.58(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.48(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ $179.4,173.4,124.8,124.7,51.6,39.2,39.1,25.4,25.2$; HRMS-ESI calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 185.0814$, found: 185.0813 .

173jj: Compound 178 ($2.0 \mathrm{~g}, 10.9 \mathrm{mmol}, 1.0$ equiv) was dissolved in dry benzene (15 mL) and oxalyl chloride ($1.9 \mathrm{~mL}, 21.7 \mathrm{mmol}$, 2 equiv) was slowly added at rt. DMF ($200 \mu \mathrm{~L}$) was then added dropwise and the reaction stirred for 2 h . The reaction was then concentrated in vacuo, the residue dissolved in ether (30 mL) and slowly added to a cold solution of diazomethane in ether $(0.5 \mathrm{M}, 100 \mathrm{~mL}, 50 \mathrm{mmol}, 4.5$ equiv). The reaction mixture was left overnight. After removal of ether in vacuo, the dark orange residue was dissolved in a dioxane-water mixture ($100 \mathrm{~mL}, 4: 1$) and sonicated with freshly prepared silver oxide (252 $\mathrm{mg}, 1.1 \mathrm{mmol}, 0.1$ equiv) for 1 h . The black suspension was then filtered, concentrated in vacuo and the residue purified by flash chromatography (EtOAc/hexanes, 1:1) to provide 173jj ($540 \mathrm{mg}, \mathbf{2 5 \%}$) as a colorless oil; IR (film) $\cup_{\max } 2926,1721,1691,1658,1440,1305$, 1206, 954, 941, $654 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.71(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~d}, J=18.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{qd}, J=5.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}$,
$1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 169.9,167.6,124.6,124.3,63.7,40.7,37.5,27.0,26.7$, 24.1.

181jj: Following Representative Procedure 2, a mixture of compound 173jj ($539 \mathrm{mg}, 2.72$ mmol, 1.0 equiv) and N-methylimidazole ($0.67 \mathrm{~mL}, 8.2 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL}$) was treated with a solution of $\mathrm{TsCl}\left(670 \mathrm{mg}, 3.5 \mathrm{mmol}, 1.3\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. After 1 h , a solution of $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}\left(272 \mathrm{mg}, 3.3 \mathrm{mmol}\right.$, 1.2 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and N-methylimidazole ($0.23 \mathrm{~mL}, 2.7 \mathrm{mmol}, 1.0$ equiv) was added and the reaction mixture warmed to rt. After 2 h , the reaction was concentrated and the residue purified by flash chromatography on silica gel (EtOAc/hexanes, 1:1) to provide $\mathbf{1 8 1} \mathbf{j j}$ ($482 \mathrm{mg}, 78 \%$) as a colorless oil; $\mathrm{R}_{f} 0.41(\mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 5.69-5.59(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3$ H), $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.62-1.90(\mathrm{~m}, 5 \mathrm{H})$; HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 250.1055$, found: 250.1057.

O-Methyl (E)-5-phenyl-pent-4-enohydroxamate (181k)

Following Representative Procedure 1, a solution of $\mathbf{1 7 3 k}$ ($501 \mathrm{mg}, 2.84 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}(638 \mu \mathrm{~L}, 4.54 \mathrm{mmol}, 1.6$ equiv), EDC ($980 \mathrm{mg}, 5.11 \mathrm{mmol}, 1.8$ equiv) and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(379 \mathrm{mg}, 4.54 \mathrm{mmol}, 1.6$ equiv) to provide 181k ($579 \mathrm{mg}, 99 \%$) as a white solid; $\mathrm{mp} 55-56{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.48$ (EtOAc); IR (film) $v_{\max } 3181,2996,2936,1656,1516,1494,1440,1071,965,745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right): \delta 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dt}, J=15.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.53-$ $2.48(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right): \delta 170.5,137.3$,
131.1, 128.1, 127.6, 126.8, 125.6, 63.0, 32.2, 28.4; HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$228.1000, found: 228.0992.

O-Methyl (E)-5-(4-trifluoromethylphenyl)-pent-4-enohydroxamate (181m)

Following Representative Procedure 1, a solution of $\mathbf{1 7 3 m}(1.01 \mathrm{~g}, 4.14 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}(620 \mu \mathrm{~L}, 4.35 \mathrm{mmol}, 1.05$ equiv), EDC ($870 \mathrm{mg}, 4.6 \mathrm{mmol}, 1.1$ equiv) and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(360 \mathrm{mg}, 4.35 \mathrm{mmol}, 1.05$ equiv) to provide $\mathbf{1 8 1 m}(970 \mathrm{mg}, 86 \%)$ as a white solid; $\mathrm{mp} 79-81{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $) ; \mathrm{R}_{f} 0.38$ (EtOAc); IR (film) $\cup_{\max } 3217,3004,2819,1652,1591,1330,1110,1068 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right): \delta 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.44-6.35(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right): \delta 171.9,142.8,132.6,131.2,130.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.0 \mathrm{~Hz}\right), 127.6$, 126.6, $125.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=269 \mathrm{~Hz}\right), 64.5,33.4,30.0 ;$ HRMS-ESI calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 274.1055, found: 274.1061.

O-Methyl (2-cinnamyloxy)-acetohydroxamate (181n)

Following Representative Procedure 1, a solution of $\mathbf{1 7 3 n}(824 \mathrm{mg}, 4.29 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{~mL})$ was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}(633 \mu \mathrm{~L}, 4.50 \mathrm{mmol}, 1.05$ equiv), EDC ($944 \mathrm{mg}, 4.71 \mathrm{mmol}, 1.1$ equiv) and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(412 \mathrm{mg}, 4.93 \mathrm{mmol}, 1.15$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc/hexanes, 1:1), 181n $(807 \mathrm{mg}, 85 \%)$ as a white solid; $81-83^{\circ} \mathrm{C}(\mathrm{EtOAc} /$ hexanes $) ; \mathrm{R}_{f} 0.34$ (EtOAc); IR (film) $\mathrm{v}_{\text {max }}$

3191, 2950, 2817, 1663, 1502, 1449, 1280, 1094, 965, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 9.25$ (br. s., 1 H), $7.43-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.61(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{td}, J=6.1$, $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 166.6,135.9,133.9,128.5,128.0,126.4,124.0,72.1,68.7,64.5 ;$ HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$222.1130, found: 222.1125.
O-Methyl (E)-5-(4-trifluoromethylphenyl)-pent-4-enohydroxamate (1810)

Following Representative Procedure 1, a solution of $\mathbf{1 7 3 0}(950 \mathrm{mg}, 4.28 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}(620 \mu \mathrm{~L}, 4.49 \mathrm{mmol}, 1.05$ equiv), EDC ($900 \mathrm{mg}, 4.71 \mathrm{mmol}, 1.1$ equiv) and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(370 \mathrm{mg}, 4.49 \mathrm{mmol}, 1.05$ equiv) to provide 1810 ($810 \mathrm{mg}, 76 \%$) as a white solid; $\mathrm{mp} 106-108{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $) ; \mathrm{R}_{f} 0.41$ (EtOAc); IR (film) $u_{\max } 3219,3012,2956,2937,1653,1558,1540,1506,1253,966 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right): \delta 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1$ H), $6.05(\mathrm{dt}, J=15.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right): \delta 171.0,159.5,131.0,130.5,127.2,125.6,113.9$, 63.4, 54.6, 32.8, 28.9; HRMS-ESI calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$236.1287, found: 236.1288. O-Methyl 4-methyl-pent-4-enohydroxamate (181p)

Following Representative Procedure 1, a solution of $\mathbf{1 7 3 p}(500 \mathrm{mg}, 4.38 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}(984 \mu \mathrm{~L}, 7.00 \mathrm{mmol}, 1.6$ equiv $), \mathrm{EDC}$ $\left(1.47 \mathrm{~g}, 7.70 \mathrm{mmol}, 1.8\right.$ equiv) and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(585 \mathrm{mg}, 7.00 \mathrm{mmol}, 1.6$ equiv) to provide
$\mathbf{1 8 1 p}(589 \mathrm{mg}, 94 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.38$ (EtOAc); IR (film) $\mathrm{v}_{\max } 3413,2971,2929$, 1692, 1590, 1380, 1050, 750, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right): \delta 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.71$ ($\mathrm{s}, 1 \mathrm{H}$), $3.67(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 125 \mathrm{MHz}\right): \delta 170.7,143.8,109.9,62.9,32.8,30.8,21.1 ;$ HRMS-ESI calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 166.0844$, found: 166.0851.

O-Methyl 6-methyl-hept-6-enohydroxamate (181q)

Following Representative Procedure 1, a solution of $\mathbf{1 7 3 q}(1.03 \mathrm{~g}, 7.26 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{~mL})$ was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}(1.6 \mathrm{~mL}, 11.7 \mathrm{mmol}, 1.6$ equiv $), \mathrm{EDC}$ ($2.49 \mathrm{~g}, 13.1 \mathrm{mmol}, 1.8$ equiv) and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}(970 \mathrm{mg}, 11.6 \mathrm{mmol}, 1.6$ equiv) to provide 181q ($850 \mathrm{mg}, 69 \%$) as a colorless oil; $\mathrm{R}_{f} 0.51$ (EtOAc); IR (film) $\mathrm{v}_{\max } 3182,2967,2935$, 1653, 1520, 1507, 1456, 1438, 1089, 1053, $886 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta 4.69$ $(\mathrm{s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.70$ $(\mathrm{s}, 3 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 125 \mathrm{MHz}\right): \delta 171.2$, $145.1,109.4,62.9,37.0,32.2,26.6,24.7,21.0$; HRMS-ESI calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 172.1338, found: 172.1342 .

O-Methyl 3-phenylpropanohydroxamate (181x)

Following Representative Procedure 2, to a stirred solution of $\mathbf{1 7 3 x}(3.0 \mathrm{~g}, 20.55 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added N-methylimidazole $(5.05 \mathrm{~g}, 61.64 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{TsCl}\left(4.70 \mathrm{~g}, 24.66 \mathrm{mmol}, 1.2\right.$ equiv). After $1 \mathrm{~h}, \mathrm{MeONH}_{2} \cdot \mathrm{HCl}(1.72 \mathrm{~g}, 20.55$
mmol, 1.0 equiv) and N-methylimidazole ($1.68 \mathrm{~g}, 20.55 \mathrm{mmol}, 1.0$ equiv) were added and the reaction allowed to warm to rt. After 3 h , reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc/hexanes, 1:4) to provide $181 \mathbf{x}(3.27 \mathrm{~g}, 91 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.48$ (EtOAc); IR (film) $v_{\max } 3174,2971,2935,1651,1603,1515,1496$, 1065, 931, 748, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 9.08$ (br. s., 1 H), 7.31-7.23 (m, 2 H), $7.19(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.65$ (br. s., 3 H), $2.96\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$), 2.38 (br. s., 2 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 170.0,140.3,128.5,128.3,126.3,64.2,34.9,31.3$; HRMS-ESI calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$180.1025, found: 180.1023.

O-Methyl (E)-4-methyl-hex-4-enohydroxamate (181y)

Following Representative Procedure 1, a solution of $\mathbf{1 7 3 y}$ ($200 \mathrm{mg}, 1.55 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}(348 \mu \mathrm{~L}, 2.48 \mathrm{mmol}, 1.6$ equiv $), \mathrm{EDC}$ ($533 \mathrm{mg}, 2.79 \mathrm{mmol}, 1.8$ equiv) and $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}$ ($207 \mathrm{mg}, 2.48 \mathrm{mmol}$, 1.6 equiv) to provide 181y ($229 \mathrm{mg}, 93 \%$) as a colorless oil; $\mathrm{R}_{f} 0.48$ (EtOAc); IR (film) $\cup_{\max } 3216,2977$, 2937, 2859, 1654, 1436, 1383, 1201, 1076, $976 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 9.23$ (br $\mathrm{s}, 1 \mathrm{H}), 5.24(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.59$ $(\mathrm{s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 171.3,134.3,120.2,64.6$, 35.4, 32.4, 15.9, 13.8; HRMS-ESI calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$181.1000, found: 181.1007.
(土)-2-(Cyclopent-2-enyl)- N -ethylacetamide (238)

A solution of $\mathbf{1 7 3 f}(275 \mathrm{mg}, 2.18 \mathrm{mmol}, 1.0$ equiv) in THF (5.0 mL) was stirred with oxalyl chloride ($281 \mu \mathrm{l}, 3.27 \mathrm{mmol}, 1.5$ equiv) for 2 h , then concentrated, dissolved in THF (2.0 mL) and quenched with ethylamine ($0.5 \mathrm{~mL}, 6.3$ equiv, 70% in water). The reaction was concentrated and the residue purified by flash chromatography on silica gel (EtOAc/hexanes, 1:1) to 238 ($254 \mathrm{mg}, 76 \%$) as a colorless oil; $\mathrm{R}_{f} 0.50$ (EtOAc); IR (film) $v_{\max } 3292,2972$, 2933, 1640, 1547, 1293, 1153, 1031, $720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.77(\mathrm{dd}, J=$ $2.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.51$ (br. s., 1 H), 3.34-3.26(m, 2 H), 3.16-3.07 (m, 1 H), 2.41-2.26 (m, 2 H), 2.25-2.18(m, 1 H), 2.18-2.08(m, $2 H), 1.36-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 172.0,133.9,131.4,42.9,42.6,34.3,31.8$, 29.6, 14.9; HRMS-ESI calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$154.1232, found: 154.1237.

O-Methyl (E)-6-(benzyloxy)-5-methylhex-4-enhydroxamate (255)

Step 1: A mixture of 2-methylbut-3-en-2-ol ($1.8 \mathrm{~g}, 20.9 \mathrm{mmol}$) and triethyl orthoacetate (6.0 $\mathrm{mL}, 32.8 \mathrm{mmol}, 1.6$ equiv) and propionic acid ($0.2 \mathrm{~mL}, 2.7 \mathrm{mmol}, 0.13$ equiv) was heated at $100^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was then cooled, concentrated in vacuo and purified by flash chromatography (EtOAc/hexanes, 1:10) to provide ethyl 5-methylhex-4-enoate (1.66 g , 51%) as a colorless oil.

Step 2: To a solution of ethyl 5-methylhex-4-enoate ($1.5 \mathrm{~g}, 9.61 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) was added selenium dioxide ($533 \mathrm{mg}, 4.8 \mathrm{mmol}, 0.5$ equiv). A 70% aqueous solution of t - $\mathrm{BuOOH}(3.8 \mathrm{~mL}, 29 \mathrm{mmol}, 3$ equiv) was then added and the reaction mixture stirred for 12 h at rt . Upon completion, the reaction was poured into saturated aqueous
$\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 60 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and purified by flash chromatography (EtOAc/hexanes, 1:9) to provide (E)-ethyl 5-methyl-6-oxohex-4-enoate ($1.42 \mathrm{~g}, 87 \%$) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 9.46(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{dt}, J=1.1,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.91(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}{ }^{3}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 194.0,174.0,145.7,140.5,60.7,27.4,9.5,9.0$.

To a solution of (E-ethyl 5-methyl-6-oxohex-4-enoate ($1.42 \mathrm{~g}, 8.35 \mathrm{mmol}, 1.0$ equiv) in ethanol (50 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(950 \mathrm{mg}, 25.1 \mathrm{mmol}, 3$ equiv) portionwise over 30 min . The reaction mixture was stirred for 2 h at rt . The resulting mixture was then poured into $1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$ and extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by flash chromatography to provide (E)-ethyl 6-hydroxy-5-methylhex-4-enoate $(1.12 \mathrm{~g}, 78 \%)$ as a colorless oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ MHz): $\delta 5.40$ (br. s., 1 H), 4.14 (q, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.01 (s, 2 H), 2.37 (br. s., 4 H), 1.69 (s, 3 H), 1.49 (br. s., 1 H), $1.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 173.2,136.2$, $123.8,68.6,60.3,34.1,23.2,14.2,13.6$.

Step 3: To a solution of (E)-ethyl 6-hydroxy-5-methylhex-4-enoate ($500 \mathrm{mg}, 2.91 \mathrm{mmol}, 1.0$ equiv) in THF (20 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(175 \mathrm{mg}, 60 \%$ in mineral oil, $4.37 \mathrm{mmol}, 1.5$ equiv). The mixture was stirred at room temperature for 30 min and $\mathrm{Bu}_{4} \mathrm{NI}(90 \mathrm{mg}, 0.24$ mmol) and benzyl bromide ($0.52 \mathrm{~mL}, 4.37 \mathrm{mmol}, 1.5$ equiv) were added to the mixture. The reaction was stirred at room temperature for 12 h and then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The resulting mixture was extracted with diethyl ether ($3 \times 30 \mathrm{~mL}$), the combined organic extracts dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was
purified by flash chromatography (hexane/EtOAc, 10:1) to afford ethyl (E)-6-(benzyloxy)-5-methylhex-4-enoate ($457 \mathrm{mg}, 60 \%$).

Step 4: Ethyl (E)-6-(benzyloxy)-5-methylhex-4-enoate ($457 \mathrm{mg}, 1.74 \mathrm{mmol}, 1.0$ equiv), obtained from the previous step, was dissolved in THF (10 mL) and a solution of sodium hydroxide ($105 \mathrm{mg}, 2.61 \mathrm{mmol}, 1.5$ equiv) in water (5 mL) was added. The reaction mixture was stirred for 30 min , then acidified with 1 N HCl to pH 3 . The layers were separated and the aqueous layer extracted with diethyl ether ($3 \times 25 \mathrm{~mL}$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography (hexane/EtOAc, 1:1) to afford (E)-6-(benzyloxy)-5-methylhex-4-enoic acid ($188 \mathrm{mg}, 46 \%$).

Step 5: Following Representative Procedure 2, to a solution of (E)-6-(benzyloxy)-5-methylhex-4-enoic acid ($638 \mathrm{mg}, 2.73 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was added N methylimidazole ($0.7 \mathrm{~mL}, 8.19 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{TsCl}(676 \mathrm{mg}, 3.55 \mathrm{mmol}, 1.3$ equiv) at $0{ }^{\circ} \mathrm{C}$. After $1 \mathrm{~h}, \mathrm{MeONH}_{2} \cdot \mathrm{HCl}(260 \mathrm{mg}, 3.11 \mathrm{mmol}, 1.2$ equiv) and N-methylimidazole (0.23 $\mathrm{mL}, 2.73 \mathrm{mmol}, 1.0$ equiv) were added and the reaction mixture allowed to warm to rt . After 3 h , reaction mixture was concentrated in vacuo and the residue purified by flash chromatography (EtOAc/hexanes, 1:2) to provide $255(610 \mathrm{mg}, 85 \%)$ as a colorless oil; R_{f} 0.39 (EtOAc); IR (film) $v_{\max } 2937,1771,1715,1496,1452,1271,1166,1027,714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 8.87$ (br. s., 1 H), 7.39-7.27 (m, 5 H), 5.43 (br. s., 1 H), 4.47 (s, 2 H), 3.91 (s, 2 H), 3.74 (br. s., 3 H), 2.46-2.39 (m, 2 H), 2.14 (br. s., 1 H), 1.71 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 170.2,138.1,133.4,128.0,127.4,127.2,125.6,75.6,71.3,63.6$, 32.4, 23.4, 13.9; HRMS-ESI calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$264.1600, found: 264.1590 .

O-Methyl 2-(but-2-yn-1-yloxy)acetohydroxamate (181z)

Following Representative Procedure 2, to a solution of $\mathbf{1 7 3 z}(781 \mathrm{mg}, 6.1 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL})$ was added N -methylimidazole ($1.51 \mathrm{~mL}, 18.3 \mathrm{mmol}, 3.0$ equiv) and TsCl ($1.51 \mathrm{mg}, 7.9 \mathrm{mmol}, 1.3$ equiv) at $0^{\circ} \mathrm{C}$. After $1 \mathrm{~h}, \mathrm{MeONH}_{2} \cdot \mathrm{HCl}(610 \mathrm{mg}, 7.3 \mathrm{mmol}, 1.2$ equiv) and N-methylimidazole ($0.5 \mathrm{~mL}, 6.1 \mathrm{mmol}, 1.0$ equiv) were added and the reaction allowed to warm to rt. After 6 h , reaction mixture was concentrated in vacuo and the residue purified by flash chromatography (EtOAc/hexanes, 1:1) to provide $\mathbf{1 8 1 z}(580 \mathrm{mg}, 61 \%)$ as a yellowish needles; mp 68-70 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) ; \mathrm{R}_{f} 0.53$ (EtOAc); IR (film) $v_{\max } 3196,2921,2214$, $1661,1505,1452,1357,1134,1087,955,721,679,584 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right):$ $\delta 9.07$ (br. s., 1 H), 4.12-4.16(m, 2H), $4.08(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{t}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 166.4,84.3,73.4,68.2,64.5,59.3,3.4$; HRMS-ESI calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$158.0817, found: 158.0816.

1.11.6 Preparation Hypervalent Iodine Reagents

Representative Procedure 3. Preparation of Hydroxy(mesyloxy)iodobenzene (HMIB)

$$
\begin{aligned}
& \mathrm{Phl}(\mathrm{OAc})_{2} \xrightarrow[\text { no solvent }]{\mathrm{XOH}} \mathrm{Phl}(\mathrm{OX}) \mathrm{OH} \\
& \mathbf{X}=\mathrm{Ms}, \mathrm{Ts}, \mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}
\end{aligned}
$$

A mixture of (diacetoxyiodo)benzene ($10.1 \mathrm{~g}, 31 \mathrm{mmol}, 1.0$ equiv) and methanesulfonic acid ($2.0 \mathrm{~mL}, 31 \mathrm{mmol}, 1.0$ equiv) was gently blended in a porcelain mortar. The resulting homogeneous mixture was then ground by hand for 2 h . During this time, the formation of acetic anhydride and wetting of the reaction mixture was observed. The solid residue was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and dried under vacuum for 2 days to afford
hydroxy(mesyloxy)iodobenzene ($9.9 \mathrm{~g}, 100 \%$) as a white solid; mp $117-119{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ (lit. $\mathrm{mp}^{148} 119-121^{\circ} \mathrm{C}$).

[Hydroxy(tosyloxy)iodo]benzene (HTIB)

Following Representative Procedure 3, (diacetoxyiodo)benzene ($5.00 \mathrm{~g}, 15.5 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.95 \mathrm{~g}, 15.5 \mathrm{mmol}, 1.0$ equiv $)$ were ground to provide, after filtration and washing with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, hydroxy(tosyloxy)iodobenzene ($5.9 \mathrm{~g}, 97 \%$) as a white solid; mp 129-132 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ (lit. $\left.\mathrm{mp}^{148} 132-134{ }^{\circ} \mathrm{C}\right)$.

[Hydroxy(diphenylphosphyl)iodo]benzene (HPIB)

Following Representative Procedure 3, (diacetoxyiodo)benzene ($2.56 \mathrm{~g}, 8.0 \mathrm{mmol}, 1.0$ equiv) and diphenyl phosphate ($1.99 \mathrm{~g}, 8.0 \mathrm{mmol}, 1.0$ equiv) were ground to provide, after filtration and washing with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, hydroxy(diphenylphosphyl)iodobenzene ($2.73 \mathrm{~g}, 73 \%$) as a white solid; mp $101-103{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\right.$ lit. $\left.m p^{115} 102-105{ }^{\circ} \mathrm{C}\right)$.

1.11.7 Cyclization of Unsaturated \boldsymbol{O}-Alkyl Hydroxamates using I(III) Reagents

Representative Procedure 4. Hydroxamate Cyclization using I(III) Reagents

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of O-alkyl hydroxamate $(0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}, 0.05 \mathrm{M})$ under N_{2}, was added TFA (0.10 mmol). After 5 min , the I(III) reagent (1.5 equivalents) was added and the reaction mixture was stirred for 1 h . Upon completion (as monitored by TLC), the reaction mixture was concentrated in vacuo and the residue purified by flash chromatography on silica gel (EtOAc) to provide the product.

1.11.8 HTIB-Mediated Cyclization

184a

184a: Following Representative Procedure 4, to a solution of 181a (14.0 mg , 0.073 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($5.6 \mu \mathrm{~L}, 0.073$ mmol, 1.0 equiv) and HTIB ($43 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 184a ($20.0 \mathrm{mg}, 76 \%$) as a colorless oil; $\mathrm{R}_{f} 0.73$ (EtOAc); IR (film) $v_{\max } 2936,1670,1598$, $1459,1360,1174,985,929,813,664 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.06(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 3.36(\mathrm{dd}, J=16.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=16.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 163.1,145.2,134.5,132.8,132.2,130.0,128.2,128.0,127.9,127.7$, 127.4, 66.3, 63.1, 57.0, 30.5, 21.6; HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 362.1062$, found: 362.1072 .

184b and 188b: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 b}$ ($19.7 \mathrm{mg}, 0.12 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added TFA ($9 \mu \mathrm{~L}, 0.12 \mathrm{mmol}, 1.0$ equiv) and HTIB ($68 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{1 8 4 b}$ (9.3 $\mathrm{mg}, 24 \%$) and $\mathbf{1 8 8 b}(3.1 \mathrm{mg}, 8 \%)$.

Analytical data for 184b: colorless oil; $\mathrm{R}_{f} 0.33$ (EtOAc); IR (film) $\cup_{\max }$ 2937, 1669, 1452, $1359,1174,905,792,663 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{quin}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.46$
$(\mathrm{s}, 3 \mathrm{H}), 2.41-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{ddd}, J=14.9,11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=13.1,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.67-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126\right.$ MHz): $\delta 171.3,145.1,134.1,129.9,127.6,77.1,65.3,61.5,34.0,26.2,22.8,22.3,21.7,18.3 ;$ HRMS-ESI calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 342.1375$, found: 342.1365 .

Analytical data for 188b: colorless oil; $\mathrm{R}_{f} 0.49$ (EtOAc); IR (film) $\mathrm{u}_{\max } 2737,1661,1448$, 1356, 1174, 906, 868, $683 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{dd}, J=9.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.47$ $(\mathrm{s}, 3 \mathrm{H}), 2.35-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.89-2.00(\mathrm{~m}, 7 \mathrm{H}), 1.55-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.25-1.33 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): ~ \delta 174.4,145.0,134.1,129.9,127.7,83.8$, $64.2,55.6,34.7,28.8,28.7,21.7,20.3,14.7$; HRMS-ESI calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 342.1375, found: 342.1364 .

184c

184c: Following Representative Procedure 4, to a solution of 181c (14.5 $\mathrm{mg}, 0.073 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($5.6 \mu \mathrm{~L}$, $0.073 \mathrm{mmol}, 1.0$ equiv) and HTIB ($43 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 184 c ($16.9 \mathrm{mg}, 63 \%$) as a colorless oil; $\mathrm{R}_{f} 0.42$ (EtOAc); IR (film) $v_{\max } 2927,1722$, 1640, 1447, 1356, 1173, 1122, 1009, 905, 815, $682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.61(\mathrm{ddt}, J=17.0,10.4,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.83-4.96 (m, 3H), 4.12-4.19 (m, 1H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.10$ (ddd, $J=10.9,5.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.80(\mathrm{~m}, 2 \mathrm{H})$, 1.60-1.68 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 167.6,145.2,136.5,133.4,129.9,127.9$,
115.7, 80.0, 60.6, 59.4, 33.2, 29.4, 27.3, 23.0, 21.7, 19.1; HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 368.1532$, found: 368.1533.

184d: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 d}(16.4 \mathrm{mg}$, $0.058 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA $(4.4 \mu \mathrm{~L}, 0.058$ mmol, 1.0 equiv) and HTIB ($34 \mathrm{mg}, 0.087 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{1 8 4 d}(19.9 \mathrm{mg}, 76 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.71$ (EtOAc); IR (film) $\mathrm{v}_{\text {max }}$ 2937, 1682, 1597, 1446, 1349, 1168, 1072, $914,688 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ 7.75-7.81 (m, 4H), $7.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 5.00-5.06 (m, 1H), 3.91-3.96(m, 1H), $3.68(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, J=12.8,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=12.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 161.3,145.1,135.2,133.8,133.5,129.9,129.6,127.8,127.7,76.2$, 61.5, 60.7, 49.5, 44.4, 21.7, 17.4; HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 469.1103$, found: 469.1100 .

189: Following Representative Procedure 4, to a solution of 181 e (23.5 mg , $0.15 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added TFA $(11.4 \mu \mathrm{~L}, 0.15$ 189 mmol, 1.0 equiv) and HTIB ($88 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $189(12.8 \mathrm{mg}, 55 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.29$ (EtOAc); IR (film) $\mathrm{u}_{\max }$ 2924, 1714, 1445, 1370, 1162, 1043, 956, $660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.03(\mathrm{~s}$, $1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=8.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.35$
$(\mathrm{m}, 1 \mathrm{H}), 2.13-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ $171.1,142.5,114.8,62.4,62.1,26.9,21.2,16.9$; HRMS-ESI calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 156.1025, found: 156.1021.

190

190: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 p}$ (22.6 mg , $0.16 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added TFA ($12 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$, 1.0 equiv) and HTIB ($93 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 190 ($16.0 \mathrm{mg}, 72 \%$) as a colorless oil; $\mathrm{R}_{f} 0.09$ (EtOAc); IR (film) $\mathrm{u}_{\max } 2938,1715$, $1651,1418,1143,1036,777,683 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.35-5.38(\mathrm{~m}, 1 \mathrm{H})$, $4.11(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, J=3.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 165.1,127.7,116.3,61.1,52.7,32.8,19.6$; HRMS-ESI calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 142.0868$, found: 142.0866.

184f: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 f}(16.5 \mathrm{mg}$, $0.11 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($8.1 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$, 1.0 equiv) and HTIB ($63 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{1 8 4 f}$ ($25.2 \mathrm{mg}, 73 \%$) as a colorless oil; $\mathrm{R}_{f} 0.37$ (EtOAc); IR (film) $\mathrm{v}_{\max }$ 2939, 1699, 1597, 1356, 1173, 1096, 942, 896, 815, $783,671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.81$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=17.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}$, $1 \mathrm{H}), 1.94(\mathrm{dd}, J=17.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.60(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 168.8,145.1,133.2,129.9,127.9,82.7,65.7,61.9,34.0,31.4,31.1$, 29.9, 21.6; HRMS-ESI calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 326.1062$, found: 326.1066.

184g and 188g: Following Representative Procedure 4, to a solution
 of $\mathbf{1 8 1 g}$ ($32.0 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added TFA ($16 \mu \mathrm{~L}, 0.21 \mathrm{mmol}, 1.0$ equiv) and HTIB ($123 \mathrm{mg}, 0.32 \mathrm{mmol}$, 1.5 equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{1 8 4 g}(23.0 \mathrm{mg}, 34 \%)$ and $\mathbf{1 8 8 g}(43.6 \mathrm{mg}, 65 \%)$.

Analytical data for $\mathbf{1 8 4 g}$: white solid; $\mathrm{mp} 95-97{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{hexanes}) ; \mathrm{R}_{f} 0.58(\mathrm{EtOAc}) ; \mathrm{IR}$ (film) $u_{\max } 2937,1732,1598,1360,1190,926,884,809,663 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.80-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-$ $2.00(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.78(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 175.5,145.2,133.5,130.0$, 127.7, 74.1, 63.6, 57.0, 37.2, 26.3, 24.0, 22.8, 21.7; HRMS-ESI calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 326.1062$, found: 326.1066.

Analytical data for $\mathbf{1 8 8 g}$: white solid; mp 104-106 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.47$ (EtOAc); IR (film) $u_{\max } 2937,1703,1598,1356,1175,968,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.73-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.05(\mathrm{~m}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.74-$ $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{dt}, J=14.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 172.1,145.4$, 133.1, 130.1, 127.8, 75.3, 63.7, 58.9, 38.6, 31.3, 23.2, 21.7, 20.6; HRMS-ESI calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 326.1062$, found: 326.1063.

191: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 h}$ (16.9 mg , $0.073 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA $(5.6 \mu \mathrm{~L}, 0.073$ mmol, 1.0 equiv) and HTIB ($43 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 191 ($15.4 \mathrm{mg}, 92 \%$) as a white solid; mp 122-125 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.48$ (EtOAc-hexanes, 1:3); IR (film) $v_{\max } 2931,1680,1601,1455,1363,1060,843,758$, $678 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.31-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.16$ $(\mathrm{m}, 1 \mathrm{H}), 5.77-5.92(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.91-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.79$ $(\mathrm{m}, 1 \mathrm{H}), 2.54(\mathrm{ddd}, J=14.1,10.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}): \delta 167.2,137.1,127.8,127.4,125.8,124.9,124.6,123.6,112.0,62.4,40.2,33.7,29.1$, 26.7; HRMS-ESI calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$230.1181, found: 230.1182.

194: Following Representative Procedure 4, to a solution of 193 (17.8 mg , $0.076 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($5.8 \mu \mathrm{~L}, 0.076$ mmol, 1.0 equiv) and HTIB ($45 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 194 ($16.6 \mathrm{mg}, 94 \%$) as a white solid; $\mathrm{mp} 65-67^{\circ} \mathrm{C}(\mathrm{EtOAc} /$ hexanes $) ; \mathrm{R}_{f}$ 0.48 (EtOAc-hexanes, 1:3); IR (film) $v_{\max } 2928,2854,1685,1601,1487,1455,1325,1255$, $1056,757,681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.28-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 2 \mathrm{H})$, 7.07-7.12 (m, 1H), $3.91(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.15(\mathrm{~m}, 1 \mathrm{H})$, 1.91-1.98 (m, 2H), 1.35-1.46(m, 3H), 1.24-1.35 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ $167.9,137.3,128.4,127.5,124.0,123.5,112.0,62.5,43.9,37.2,28.4,26.5,25.1,25.1$; HRMS-ESI calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 232.1338$, found: 232.1341.

184i

184i: Following Representative Procedure 4, to a solution of 181 i (16.0 mg , $0.095 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA $(7.2 \mu \mathrm{~L}, 0.095$ mmol, 1.0 equiv) and $\operatorname{HTIB}\left(56 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{1 8 4 i}(29.3 \mathrm{mg}, 91 \%)$ as a white solid; $\mathrm{mp} 111-113{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} /$ hexanes $)$; $\mathrm{R}_{f} 0.38$ (EtOAc); IR (film) $\mathrm{u}_{\max } 2923,1686,1447,1369,1171,1095,969,835,672 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.80(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.76$ (br. s., 1H), 3.86 (br. s., 1H), 3.70 (br. s., 3H), 2.66 (br. s., 1H), 2.46 (s, 3 H), 2.28 (d, $J=10.3 \mathrm{~Hz}$, 2H), 2.17 (br. s., 1H), 1.85 (br. s., 2H), 1.58 (br. s., 2H), 1.46 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 169.7,145.0,133.3,129.9,127.8,75.0,62.2,56.3,38.3,26.9,26.1$, 25.9, 21.6, 21.6; HRMS-ESI calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}$ [M+H] ${ }^{+}: 340.1219$, found: 340.1218.

184j

184j: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 j}$ (12.8 mg , 0.056 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($4.3 \mu \mathrm{~L}, 0.056$ mmol, 1.0 equiv) and HTIB ($33 \mathrm{mg}, 0.085 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{1 8 4 j}$ ($22.3 \mathrm{mg}, 99 \%$) as a white solid; mp 121-123 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.40$ (EtOAc); IR (film) $v_{\max } 2921,1734,1681,1595,1441,1362,1167,1095,914,830$, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.83(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.89(\mathrm{~m}$, $1 \mathrm{H}), 2.53-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.82$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 172.7,168.1,145.4,133.0,130.1,127.8,74.5,62.2$,
55.7, 52.1, 41.0, 34.4, 28.5, 27.3, 23.9, 21.7; HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 398.1273, found: 398.1278.

184k: Following Representative Procedure 4, to a solution of 181k (21.4 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($8 \mu \mathrm{~L}, 0.10$ mmol, 1.0 equiv) and HTIB ($61 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 184k ($27.4 \mathrm{mg}, 88 \%$) as a colorless oil; $\mathrm{R}_{f} 0.40$ (EtOAc); IR (film) $v_{\max } 2926,1668,1495$, $1451,1153,1121,1032,1008,815,681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.61(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dt}, J=8.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.16(\mathrm{~m}, 2 \mathrm{H})$, 2.05-2.09 (m, 1H), 1.84-1.92 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 171.1,144.7,134.4$, 133.5, 129.5, 128.7, 128.5, 127.8, 126.6, 125.8, 80.6, 62.6, 61.1, 26.5, 21.6, 16.1; HRMS-ESI calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 376.1219$, found: 376.1216.

1841: Following Representative Procedure 4, to a solution of 1811 (21.1 $\mathrm{mg}, 0.074 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA $(6 \mu \mathrm{~L}$, $0.074 \mathrm{mmol}, 1.0$ equiv) and $\operatorname{HTIB}\left(44 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5\right.$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $1841(20.9 \mathrm{mg}, 62 \%)$ as a dark yellow oil; $\mathrm{R}_{f} 0.40$ (EtOAc); IR (film) $\cup_{\max } 2942,1674,1487,1398,1152,1031,1007,814,682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2H), $7.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.41$
$(\mathrm{s}, 3 \mathrm{H}), 2.12-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.95(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}): \delta 171.0,145.1,133.5,133.4,131.8,129.7,128.4,127.8,123.0,80.0,62.7,60.8,26.5$, 21.6, 16.1; HRMS-ESI calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{SBr}[\mathrm{M}+\mathrm{H}]^{+}: 454.0324$, found: 454.0330.

184m: Following Representative Procedure 4, to a solution of 181m ($17.2 \mathrm{mg}, 0.063 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}$) was added TFA (5 $\mu \mathrm{L}, 0.063 \mathrm{mmol}, 1.0$ equiv) and HTIB ($37 \mathrm{mg}, 0.095 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{1 8 4 m}(18.5 \mathrm{mg}, 66 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.49$ (EtOAc); IR (film) $v_{\max } 2928,1712,1612,1597,1418,1362,1323,1174,1066,869,682 \mathrm{~cm}^{-}$ ${ }^{1}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 3.94-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.38$ $(\mathrm{s}, 3 \mathrm{H}), 2.13-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.95(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}): \delta 171.1,145.2,138.6,133.2,129.7,127.9,127.1,125.5,125.5,79.6,62.8,61.0,26.5$, 21.5, 15.9; HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~F}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 444.1093$, found: 444.1081.

184n: Following Representative Procedure 4, to a solution of 181n (15.4 $\mathrm{mg}, 0.070 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA $(5.3 \mu \mathrm{~L}$, $0.070 \mathrm{mmol}, 1.0$ equiv) and HTIB ($41 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{1 8 4 n}(13.0 \mathrm{mg}, 48 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.44$ (EtOAc); IR (film) $\cup_{\max } 2923,1731,1651,1495,1452,1120,1008,681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.27(\mathrm{~m}, 7 \mathrm{H}), 5.91(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$,
4.06-4.14 (m, 3H), $3.97(\mathrm{q}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=12.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 164.8,144.7,134.5,133.6,129.5,128.9,128.5$, $127.8,127.0,79.9,68.8,64.7,62.8,61.9,21.5 ;$ HRMS-ESI calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 392.1168, found: 392.1166.

200

200: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 0}$ ($16.1 \mathrm{mg}, 0.069 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA $(5.2 \mu \mathrm{~L}, 0.069 \mathrm{mmol}, 1.0$ equiv) and HTIB $(40.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $200(7.2 \mathrm{mg}, 42 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.27$ (EtOAc); IR (film) $v_{\max } 3376,2937,2834,1695,1612,1511,1245,1174,1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H})$, $3.93(\mathrm{td}, J=4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{ddd}, J=17.0,10.2,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.14-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{ddd}, J=17.9,10.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 172.1,159.2,131.6,127.0,113.9,70.6,62.6,62.0,55.3,27.0,15.1 ;$ HRMS-ESI calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 274.1055$, found: 274.1063.

1.11.9 HMIB-Mediated Cyclization

210a: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 a}$ (14.8 mg , $0.077 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($6 \mu \mathrm{~L}, 0.077$ mmol, 1.0 equiv) and HMIB ($37 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 210a ($16.8 \mathrm{mg}, 76 \%$) as a colorless oil; $\mathrm{R}_{f} 0.54$ (EtOAc); IR (film) $u_{\max } 2937,1667,1606$,
$1460,1351,1171,996,962,737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{dd}, J=16.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=$ 16.3, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 163.2,134.6,132.9,128.1$, $127.9,127.8,127.5,66.3,63.1,57.2,37.4,30.8$; HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 286.0749, found: 286.0740 .

210b 211b

210b and 211b: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 b}$ ($18.7 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added TFA ($8.4 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 1.0$ equiv) and HMIB ($52 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 210b (5.1 $\mathrm{mg}, 18 \%$) and 3.7 mg 211b ($3.7 \mathrm{mg}, 12 \%$).

Analytical data for 210b: colorless oil; $\mathrm{R}_{f} 0.23$ (EtOAc); IR (film) $\mathrm{v}_{\max } 2920,1653,1456$, 1351, 1040, 968, 835, 811, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.10$ (quin, $J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dt}, J=8.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.87-2.06$ $(\mathrm{m}, 5 \mathrm{H}), 1.72-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}): \delta 171.1,77.1,64.9,61.4,38.5,33.4,24.6,22.1,22.0,18.4$; HRMS-ESI calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 266.1062$, found: 266.1068 .

Analytical data for 211b: colorless oil; $\mathrm{R}_{f} 0.40$ (EtOAc); IR (film) $\mathrm{v}_{\max } 2941,1700,1418$, 1337, 1143, 1039, $778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.91(\mathrm{dt}, J=10.1,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.17-4.24 (m, 1H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $2.05(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.59$ (br. s., 6 H$), 1.55(\mathrm{~d}, J=6.6 \mathrm{~Hz}$,

4H), 1.48-1.52 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 174.2,83.3,64.3,55.5,38.9,34.7$, 29.6, 28.8, 20.4, 15.0; HRMS-ESI calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 266.1062, found: 266.1061.

210c: Following Representative Procedure 4, to a solution of 181c (17.5 $\mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($7 \mu \mathrm{~L}$, $0.089 \mathrm{mmol}, 1.0$ equiv) and HMIB ($42 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 210 c ($25.8 \mathrm{mg}, 99 \%$) as a colorless oil; $\mathrm{R}_{f} 0.33$ (EtOAc); IR (film) $\mathrm{v}_{\max } 2937,1723$, $1640,1412,1334,1170,1041,905,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.79(\mathrm{ddt}, J=$ $16.9,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-5.13(\mathrm{~m}, 3 \mathrm{H}), 4.25-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H})$, 2.47-2.54 (m, 1H), 2.35-2.44(m, 1H), 2.25-2.34(m, 1H), 2.12-2.19 (m, 2H), 1.86-1.93 (m, $1 \mathrm{H}), 1.63-1.85(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 167.4,136.5,116.2,79.8,60.6$, 59.6, 38.4, 33.2, 29.8, 27.5, 23.3, 19.0; HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 292.1219, found: 292.1223.

210d: Following Representative Procedure 4, to a solution of 181d (18.8 mg, $0.066 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($5 \mu \mathrm{~L}, 0.066 \mathrm{mmol}$, 1.0 equiv) and HMIB ($31 \mathrm{mg}, 0.099 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 210d (20.3 mg, 81\%) as a white solid; mp 162-165 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.44$ (EtOAc); IR (film) $v_{\max } 2941,1679,1445,1404,1345,1167,1039,954,910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.82(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.64(\mathrm{~m}, 2 \mathrm{H}), 5.16$
(qd, $J=6.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.68(\mathrm{~m}$, $2 \mathrm{H}), 3.45(\mathrm{dd}, J=12.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 161.5,135.4,133.9,129.7,127.7,74.9,61.6,60.1,49.6,43.3,38.7$, 17.9; HRMS-ESI calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 393.0790$, found: 393.0787.

210f: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 f}(16.7 \mathrm{mg}$,
0.11 mmol , 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($8.2 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$, 1.0 equiv) and HMIB ($51 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $210 \mathrm{f}(24.0 \mathrm{mg}, 89 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.23$ (EtOAc); IR (film) $v_{\max } 2941,1689$, $1350,1171,941,898,801 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.12$ (br. s., 1 H), 4.34 (d, $J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=17.7,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.15-2.24 (m, 1H), 2.00-2.08 (m, 3H), $1.62(\mathrm{ddt}, J=13.0,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 169.0,82.6,66.1,62.2,38.3,34.1,31.4,31.1,30.4$; HRMS-ESI calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 250.0749$, found: 250.0739.

$\mathbf{2 1 0 g}$ and 211g: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 g}$ ($17.0 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was 211g added TFA ($8.4 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 1.0$ equiv) and HMIB ($52 \mathrm{mg}, 0.16$ mmol, 1.5 equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 0 g}$ ($8.7 \mathrm{mg}, \mathbf{3 2 \%}$) and $\mathbf{2 1 1 g}$ (18.3 $\mathrm{mg}, 67 \%)$.

Analytical data for 210g: colorless oil; $\mathrm{R}_{f} 0.37$ (EtOAc); IR (film) $\mathrm{U}_{\max } 2939,1721,1450$, $1348,1165,927,844,656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.05$ (br. s., 1 H$), 4.13(\mathrm{t}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.50($ br. s., 1 H$), 2.14(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-2.07$ $(\mathrm{m}, 1 \mathrm{H}), 1.94-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$ MHz): $\delta 175.4,73.8,63.7,57.1,38.4,37.2,26.3,24.6,22.9$; HRMS-ESI calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 250.0749$, found: 250.0739.

Analytical data for 211g: colorless oil; $\mathrm{R}_{f} 0.23$ (EtOAc); IR (film) $\mathrm{U}_{\max } 2925,1688,1456$, $1350,1173,1038,967,867 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.98-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{br}$. s., 1 H$), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.23(\mathrm{~m}, 1 \mathrm{H})$, 1.86-1.98(m, 2H), 1.79-1.85(m, 1H), $1.73(\mathrm{dt}, J=14.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}): \delta 172.0,74.7,63.7,59.1,38.6,38.4,31.6,23.2,20.6$; HRMS-ESI calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 250.0749$, found: 250.0744 .

210i: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 i}(13.2 \mathrm{mg}$, $0.078 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($6 \mu \mathrm{~L}, 0.078 \mathrm{mmol}$, 1.0 equiv) and HMIB ($37 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 210i (20.5 mg, 99\%) as a white solid; mp 98-100 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.26$ (EtOAc); IR (film) $v_{\max } 2936,2910,1659,1450,1403,1345,1163,912,839,750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 5.01$ (br. s., 1 H), 4.04 (br. s., 1 H), 3.78 (s, 3 H), $3.06(\mathrm{~s}, 3 \mathrm{H}), 2.72$ (dd, $J=17.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.22$ (br. s., 1 H$), 1.91$ (d, $J=12.9 \mathrm{~Hz}, 3 \mathrm{H})$, 1.77-1.87 (m, 1H), $1.58(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 169.2,74.9$,
$62.3,56.6,38.4,38.2,26.9,26.1,26.0,22.1$; HRMS-ESI calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 264.0906, found: 264.0900 .
$\mathbf{2 1 0 j}$: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 j}$ (14.2
 $\mathrm{mg}, 0.063 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($5 \mu \mathrm{~L}$, $0.063 \mathrm{mmol}, 1.0$ equiv) and HMIB ($30 \mathrm{mg}, 0.094 \mathrm{mmol}, 1.5$ equiv) at 0 ${ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 0 j}(20.0 \mathrm{mg}, 99 \%)$ as a white solid; $\mathrm{mp} 117-119{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.30$ (EtOAc); IR (film) $v_{\max }$ 2940, 1721, 1655, 1444, 1164, 964, 929 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.10(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (br. s., 1H), 2.59-2.63 (m, $1 \mathrm{H}), 2.31-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-2.08(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$ MHz): $\delta 172.6,168.0,74.5,62.4,56.0,52.2,41.0,38.4,34.5,28.6,27.3,24.4$, HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 322.0960$, found: 322.0966.

210k: Following Representative Procedure 4, to a solution of 181k (14.7 $\mathrm{mg}, 0.072 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA $(5.5 \mu \mathrm{~L}$,
$0.072 \mathrm{mmol}, 1.0$ equiv) and HMIB ($34 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 210k ($20.0 \mathrm{mg}, 93 \%$) as a colorless oil; $\mathrm{R}_{f} 0.40$ (EtOAc); IR (film) $\mathrm{v}_{\max } 2923,1668$, 1495, 1452, 1150, 1040, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.39-7.44(\mathrm{~m}, 5 \mathrm{H}), 5.93$ $(\mathrm{s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 171.6,134.8,129.0(3 \mathrm{C}), 126.0(2 \mathrm{C}), 80.6,63.0,60.6,39.2$, 26.6, 15.6; HRMS-ESI calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 300.0906$, found: 300.0910.

2101: Following Representative Procedure 4, to a solution of 1811 (15.5 $\mathrm{mg}, 0.055 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA $(4 \mu \mathrm{~L}$, $0.055 \mathrm{mmol}, 1.0$ equiv) and HMIB ($26 \mathrm{mg}, 0.082 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 2101 ($13.7 \mathrm{mg}, 66 \%$) as a colorless oil; $\mathrm{R}_{f} 0.31$ (EtOAc); IR (film) $v_{\max } 2929,1703$, $1490,1456,1348,1172,1050,789 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-5.89(\mathrm{~m}, 1 \mathrm{H}), 3.99-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}$, $3 \mathrm{H}), 2.38(\mathrm{ddd}, J=17.5,9.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{ddd}, J=17.2,9.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.06$ $(\mathrm{m}, 1 \mathrm{H}), 1.88-1.96(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 171.3,134.1,132.2,127.6$, 123.1, 79.8, 62.9, 60.2, 39.1, 26.5, 15.4; HRMS-ESI calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 378.0011, found: 378.0004 .

210m: Following Representative Procedure 4, to a solution of 181m ($18.9 \mathrm{mg}, 0.069 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA (5.3 $\mu \mathrm{L}, 0.069 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{HMIB}(33 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.5$ equiv) at
$0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 0 m}(17.0 \mathrm{mg}, 67 \%)$ as a white solid; $\mathrm{mp} 157-159{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.38$ (EtOAc); IR (film) $\cup_{\max }$ 2924, 2853, 1705, 1387, 1351, 1173, $1105,946,798 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.01$ (br. s., 1H), $4.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.49$
$(\mathrm{m}, 1 \mathrm{H}), 2.27-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.97(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}): \delta 171.4,139.2,131.1,127.6,126.2,126.1,126.0,79.5,63.1,60.3,39.2,26.5$, 15.3; HRMS-ESI calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{SF}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 368.0780$, found: 368.0776 .

210n: Following Representative Procedure 4, to a solution of 181n (16.4 $\mathrm{mg}, 0.074 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($6 \mu \mathrm{~L}, 0.074$ mmol, 1.0 equiv) and $\mathrm{HMIB}\left(35 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 210n (15.3 mg, 65\%) as a colorless oil; $\mathrm{R}_{f} 0.40$ (EtOAc); IR (film) $\mathrm{v}_{\max } 2924,1667,1454$, $1418,1325,1121,1039,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.37-7.47(\mathrm{~m}, 5 \mathrm{H}), 6.02$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 4.04-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.81(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 165.2,134.6,129.3,129.1,126.4,79.5,69.0,64.4,62.1,62.0$, 39.2; HRMS-ESI calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 316.0855$, found: 316.0852

1.11.10 HPIB-Mediated Cyclization

217a: Following Representative Procedure 4, to a solution of 181a ($12.7 \mathrm{mg}, 0.066 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($5 \mu \mathrm{~L}, 0.066 \mathrm{mmol}, 1.0$ equiv) and HPIB ($47 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 7 a}(23.2 \mathrm{mg}, 79 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.64$ (EtOAc); IR (film) $v_{\max }$ 2935, 1668, 1589, 1487, 1459, 1284, 1162, 950, $687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 1 \mathrm{H})$,
7.30-7.39 (m, 5H), 7.17-7.23 (m, 4H), 7.13 (t, $J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.45-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.28$ $(\mathrm{m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{dd}, J=16.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=16.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 163.2,150.30(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{C}-4$ '), 150.26 (d, $J=6.9 \mathrm{~Hz}, \mathrm{C}-4)$, 134.7, 132.7, 129.88 (C-6'), 129.85 (C-6), 128.2, 128.0, 127.8, 127.4, 125.57 (C-7'), 125.55 (C-7), 119.97 (d, $J=4.2 \mathrm{~Hz}, \mathrm{C}-5$ '), 119.93 (d, $J=4.2 \mathrm{~Hz}, \mathrm{C}-5), 65.8(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{C}-1)$, 63.1, 57.8 (d, $J=8.3 \mathrm{~Hz}, \mathrm{C}-2$), 30.5; HRMS-ESI calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 440.1263$, found: 440.1258 .

217c: Following Representative Procedure 4, to a solution of 181c ($11.0 \mathrm{mg}, 0.056 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($4.3 \mu \mathrm{~L}, 0.056 \mathrm{mmol}, 1.0$ equiv) and HPIB ($40 \mathrm{mg}, 0.084 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 7 c}(13.1 \mathrm{mg}, 53 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.29$ (EtOAc); IR (film) $\cup_{\max }$ 2937, 1668, 1641, 1589, 1487, 1283, 1186, 952, 772, $689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.33-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.27(\mathrm{~m}, 6 \mathrm{H})$, $5.75(\mathrm{ddt}, J=17.0,10.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.02(\mathrm{~m}, 3 \mathrm{H}), 4.08-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, 2.40-2.47 (m, 1H), 2.29-2.36 (m, 1H), $2.23(\mathrm{dt}, J=14.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dt}, J=14.8,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.88-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.56(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}): \delta 167.8,150.51(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{C}-4 ’), 150.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{C}-4), 136.8,129.9$ (C-6, $\left.6^{\prime}\right), 125.56(\mathrm{C}-7$ '), $125.50(\mathrm{C}-7), 120.08(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-5$ '), 119.98 ($\mathrm{d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-5$), $115.8,78.7(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{C}-1), 60.7,60.0(\mathrm{~d}, J=1.8 \mathrm{~Hz}, \mathrm{C}-2), 33.3,29.8,28.5(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, \mathrm{C}-3), 23.2,19.2 ;$ HRMS-ESI calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 446.1733$, found: 446.1730.

217d: Following Representative Procedure 4, to a solution of 181d ($11.2 \mathrm{mg}, 0.039 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA (3 $\mu \mathrm{L}, 0.039 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{HPIB}(28 \mathrm{mg}, 0.059 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 7 d}(11.2 \mathrm{mg}, 53 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.36$ (EtOAc); IR (film) $v_{\max } 2923,1683,1590,1488,1327,1282,1164,953,689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.24(\mathrm{~m}, 6 \mathrm{H}), 5.11-5.18(\mathrm{~m}, 1 \mathrm{H})$, 3.85 (br. s., 1H), 3.74 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (s, 3 H), 3.53 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.51$ $(\mathrm{m}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 161.7,150.38(\mathrm{~d}, J=7.4$ Hz, C-4'), 150.34 (d, $J=7.4 \mathrm{~Hz}, \mathrm{C}-4$), 135.3, 133.7, 129.84 (C-6'), 129.80 (C-6), 129.6, 127.7, 125.53 (C-7'), 125.45 (C-7), $120.15\left(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-5{ }^{\prime}\right), 120.02(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-5)$, $74.0(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{C}-1), 61.8,61.3(\mathrm{~d}, J=7.9 \mathrm{~Hz}, \mathrm{C}-2), 49.6,43.7,17.9(\mathrm{~d}, J=1.8 \mathrm{~Hz}, \mathrm{C}-$ 3); HRMS-ESI calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{PS}[\mathrm{M}+\mathrm{H}]^{+}: 547.1304$, found: 547.1299.

217f: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 f}$ ($22.5 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}$) was added TFA ($11 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{HPIB}(102 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 7 f}(34.0 \mathrm{mg}, 58 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.30$ (EtOAc); IR (film) $\cup_{\max } 2926,1708,1589,1387,1282,1186,1018,940$, $767,689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.33-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.26(\mathrm{~m}, 6 \mathrm{H}), 5.11-$ $5.15(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=17.7$,
$10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.59(\mathrm{~m}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 169.2,150.4\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{C}-4,4{ }^{\prime}\right), 129.8(\mathrm{C}-6,6$ ' $), 125.5$ (C-7, 7'), 119.99 (d, $\left.J=4.6 \mathrm{~Hz}, \mathrm{C}-5^{\prime}\right), 119.96(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-5), 81.4(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{C}-1)$, $66.5(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{C}-2), 62.2,34.3,31.3,31.0,30.6(\mathrm{~d}, J=5.1 \mathrm{~Hz}, \mathrm{C}-3)$; HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 404.1263$, found: 404.1265.

$\mathrm{mg}, 0.24 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 7 g}(15.6 \mathrm{mg}, 24 \%)$ and $\mathbf{2 1 8 g}$ ($36.9 \mathrm{mg}, 56 \%$).

Analytical data for 217g: colorless oil; $\mathrm{R}_{f} 0.50$ (EtOAc); IR (film) $\mathrm{v}_{\max } 2940,1728,1589$, 1487, 1285, 1186, 1009, 940, $689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.34-7.40(\mathrm{~m}, 4 \mathrm{H})$, 7.20-7.26 (m, 6H), 4.98-5.03(m, 1H), $4.00(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.43$ (br. s., 1 H), $2.05(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{tdd}, J=12.8,5.9,1.7$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 175.5,150.4\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{C}-4,4{ }^{\prime}\right), 129.9$ (C-6, 6'), 125.6 (C-7, 7'), 120.02 (d, $J=4.6 \mathrm{~Hz}, \mathrm{C}-5$ '), 119.99 (d, $J=4.6 \mathrm{~Hz}, \mathrm{C}-5$), 72.6 (d, $J=6.5$ $\mathrm{Hz}, \mathrm{C}-1), 63.5,57.2(\mathrm{~d}, J=5.5 \mathrm{~Hz}, \mathrm{C}-2), 37.4,26.2,24.9(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-3), 22.8$; HRMSESI calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 404.1263$, found: 404.1260.

Analytical data for 218g: colorless oil; $\mathrm{R}_{f} 0.38$ (EtOAc); IR (film) $v_{\max }$ 2968, 2940, 1669, $1589,1486,1288,1185,1009,938,755,688 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.34-7.40$
(m, 4H), 7.19-7.25 (m, 6H), 4.98 (td, $J=9.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (br. s., 1H), 3.78 (s, 3H), 2.60 (br. s., 1 H), $2.37(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.66(\mathrm{dt}, J$ $=14.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 172.2,150.2\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{C}-4,4^{\prime}\right)$, 129.9 (C-6, 6^{\prime}), 125.7 (C-7, 7^{\prime}), 119.9 (d, $\left.J=5.1 \mathrm{~Hz}, \mathrm{C}-5,5^{\prime}\right), 74.0(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{C}-1)$, 63.6, $59.3(\mathrm{~d}, J=5.5 \mathrm{~Hz}, \mathrm{C}-2), 38.7,32.2(\mathrm{~d}, J=5.5 \mathrm{~Hz}, \mathrm{C}-3), 23.3,20.4$; HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 404.1263$, found: 404.1262 .

217i: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 i}$ ($15.8 \mathrm{mg}, 0.093 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($7.2 \mu \mathrm{~L}, 0.093 \mathrm{mmol}, 1.0$ equiv) and HPIB ($66 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 7 i}(18.9 \mathrm{mg}, 48 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.33$ (EtOAc); IR (film) $v_{\max }$ 2937, 1694, 1589, 1487, 1455, 1285, 1186, 1009, 947, 754, $688 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.34-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.27(\mathrm{~m}$, $6 \mathrm{H}), 4.95-5.01(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{dd}, J=17.7,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.29-2.35 (m, 1H), $2.22(\mathrm{dd}, J=13.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16$ (br. s., 1 H), 1.76-1.91 (m, 4H), 1.74 (br. s., 1 H), $1.50(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 169.2,150.46(\mathrm{~d}, J=$ $\left.7.9 \mathrm{~Hz}, \mathrm{C}-4{ }^{\prime}\right), 150.43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, \mathrm{C}-4), 129.9\left(\mathrm{C}-6,6^{\prime}\right), 125.5\left(\mathrm{C}-7,7^{\prime}\right), 120.01(\mathrm{~d}, J=4.6$ Hz, C-5'), 119.97 (d, $J=4.6 \mathrm{~Hz}, \mathrm{C}-5), 73.5(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{C}-1), 62.1,56.8(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{C}-$ 2), $38.2,26.8,26.2,26.1,22.4(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-3)$; HRMS-ESI calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+}: 418.1420$, found: 418.1412.

217j: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1} \mathbf{j}$ ($18.2 \mathrm{mg}, 0.080 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($6.2 \mu \mathrm{~L}, 0.080 \mathrm{mmol}, 1.0$ equiv) and HPIB ($57 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 7} \mathbf{j}$ ($28.9 \mathrm{mg}, 76 \%$) as a colorless oil; $\mathrm{R}_{f} 0.29$ (EtOAc); IR (film) $v_{\max }$ 2934, 1730, 1675, 1589, 1487, 1438, 1283, 1185, 1010, 758, $689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.33-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~m}, 6 \mathrm{H})$, $5.06(\mathrm{dd}, J=7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.86(\mathrm{~m}$, $1 \mathrm{H}), 2.55-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.96(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 172.8,168.0,150.34(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{C}), 150.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{C}-4)$, 129.9 (C-6, 6'), $125.6\left(\mathrm{C}-7,7^{\prime}\right), 119.98\left(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-5^{\prime}\right), 119.94(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-5)$, $73.3(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{C}-1), 62.2,56.1(\mathrm{~d}, J=5.5 \mathrm{~Hz}, \mathrm{C}-2), 52.1,40.9,34.5,29.7,28.7,27.2$, 24.6 (d, $J=4.2 \mathrm{~Hz}, \mathrm{C}-3$); HRMS-ESI calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{8} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 476.1474$, found: 476.1478.

217k: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 k}$ ($18.3 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA (7 $\mu \mathrm{L}, 0.089 \mathrm{mmol}, 1.0$ equiv) and HPIB ($63 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 7 k}$ ($30.5 \mathrm{mg}, 75 \%$) as a colorless oil; $\mathrm{R}_{f} 0.25$ (EtOAc); IR (film) $v_{\max } 2936,1673,1589,1487,1277,1185,1010,941,800 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.30-7.37(\mathrm{~m}, 8 \mathrm{H}), 7.17-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $5.90(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.17(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.93$
$(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 171.6,150.40\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{C}-4{ }^{\prime}\right), 150.28(\mathrm{~d}, J=$ 7.4 Hz, C-4), 135.3 (d, $J=1.8 \mathrm{~Hz}, \mathrm{C}-3$), 129.77 (C-6'), 129.64 (C-6), 128.9, 128.7, 126.6, 125.47 (C-7’), 125.27 (C-7), 120.13 (d, $J=4.6 \mathrm{~Hz}, \mathrm{C}-5$ '), 119.92 (d, $J=4.6 \mathrm{~Hz}, \mathrm{C}-5$), 79.3 (d, $J=6.0 \mathrm{~Hz}, \mathrm{C}-1), 62.7,61.7(\mathrm{~d}, J=7.9 \mathrm{~Hz}, \mathrm{C}-2), 26.6,15.7$; HRMS-ESI calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 454.1420$, found: 454.1404 .

2171: Following Representative Procedure 4, to a solution of 1811 (14.6
 $\mathrm{mg}, 0.051 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA $(4 \mu \mathrm{~L}$, $0.051 \mathrm{mmol}, 1.0$ equiv) and HPIB ($36 \mathrm{mg}, 0.077 \mathrm{mmol}, 1.5$ equiv) at 0 ${ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 2171 ($15.3 \mathrm{mg}, 56 \%$) as a colorless oil; $\mathrm{R}_{f} 0.42$ (EtOAc); IR (film) $\cup_{\max } 2935,1683,1589,1487,1285,1185,1044,949,800,688$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.28$ $(\mathrm{m}, 8 \mathrm{H}), 7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 2.12-2.18 (m, 2H), 2.00-2.08 (m, 1H), 1.83-1.93(m, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ $171.5,150.30(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{C}-4 ’), 150.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{C}-4), 134.4(\mathrm{~d}, J=1.8 \mathrm{~Hz}, \mathrm{C}-3)$, $134.4,131.8,129.80(\mathrm{C}-6$ ') , 129.71 (C-6), 128.2, 125.56 (C-7'), 125.39 (C-7), 123.0, 120.06 (d, $J=4.6 \mathrm{~Hz}, \mathrm{C}-5$ '), $119.84(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-5), 78.7(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{C}-1), 62.7,61.4(\mathrm{~d}, J=$ 7.9 Hz, C-2), 26.5, 15.6; HRMS-ESI calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{BrP}[\mathrm{M}+\mathrm{H}]^{+}: 532.0525$, found: 532.0521.

217m: Following Representative Procedure 4, to a solution of 181m ($12.5 \mathrm{mg}, 0.046 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($3.5 \mu \mathrm{~L}, 0.046 \mathrm{mmol}, 1.0$ equiv) and HPIB ($32 \mathrm{mg}, 0.069 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 7 m}(23.7 \mathrm{mg}, 99 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.42$ (EtOAc); IR (film) $v_{\max }$ 2939, 1712, 1589, 1488, 1324, 1186, 1010, 947, $688 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 7.32-7.38 (m, 2H), 7.18-7.26 (m, 5H), 7.12-7.17 (m, 1H), 7.02 (d, J = 8.0 Hz, 2H), 5.96 $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dt}, J=9.6,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-2.14$ $(\mathrm{m}, 1 \mathrm{H}), 1.83-1.92(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 171.5,150.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{C}-$ $\left.4^{\prime}\right), 150.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{C}-4), 139.5,131.2,129.83(\mathrm{C}-6$ '), 129.73 (C-6), 126.9, 125.66 (C$\left.7^{\prime}\right), 125.63$ (C-7), $125.5,120.04(\mathrm{~d}, J=5.1 \mathrm{~Hz}, \mathrm{C}-5 ’), 119.80(\mathrm{~d}, J=5.1 \mathrm{~Hz}, \mathrm{C}-5), 78.4(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, \mathrm{C}-1), 62.8,61.6(\mathrm{~d}, J=7.9 \mathrm{~Hz}, \mathrm{C}-2), 26.5,15.4$; HRMS-ESI calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{~F}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 522.1293$, found: 522.1304.

217n: Following Representative Procedure 4, to a solution of 181n

($18.3 \mathrm{mg}, 0.083 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($6.4 \mu \mathrm{~L}, 0.083 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{HPIB}(58 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 7 n}(26.1 \mathrm{mg}, 70 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.41$ (EtOAc); IR (film) $\mathrm{v}_{\max }$ 2924, 2854, 1683, 1589, 1488, 1456, 1284, $1135,1009,754,689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.30-7.38(\mathrm{~m}, 8 \mathrm{H}), 7.22-7.27(\mathrm{~m}$, 2H), 7.15-7.22 (m, 3H), $7.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{dd}, J=8.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.12$
$(\mathrm{m}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=12.1,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 165.3,150.36(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{C}-4$ '), 150.27 (d, $J=6.9 \mathrm{~Hz}, \mathrm{C}-4), 139.3,135.3(\mathrm{~d}, J=1.4 \mathrm{~Hz}, \mathrm{C}-3), 129.79(\mathrm{C}-6$ '), 129.67 (C-6), 129.1, 128.7, 126.8, 125.60 (C-7'), 125.53 (C-7), 125.4, 120.04 (d, $J=4.6 \mathrm{~Hz}, \mathrm{C}-5^{\prime}$), 119.87 $(\mathrm{d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-5), 78.4(\mathrm{~d}, J=5.5 \mathrm{~Hz}, \mathrm{C}-1), 68.9,64.3,63.3(\mathrm{~d}, J=8.3 \mathrm{~Hz}, \mathrm{C}-2), 62.2$; HRMS-ESI calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 470.1369$, found: 470.1364 .

217p: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 p}$ ($19.6 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA ($11 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1.0$ equiv) and HPIB ($97 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 7 p}(31.1 \mathrm{mg}, 58 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.10$ (EtOAc); IR (film) $v_{\max } 2936,1667,1589,1487,1288,1215,1187,1038,940,772,689 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.36(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.18-7.26(\mathrm{~m}, 6 \mathrm{H}), 4.16(\mathrm{dd}, J=$ $12.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.43(\mathrm{~m}$, $1 \mathrm{H}), 2.24-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ 165.0, 150.46 (d, $J=7.4 \mathrm{~Hz}, \mathrm{C}-4 ’$), 150.35 (d, $J=7.4 \mathrm{~Hz}, \mathrm{C}-4$), 129.9 (C-6, 6'), 125.63 (C$\left.7^{\prime}\right), 125.59(\mathrm{C}-7), 120.13(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-5$ '), 120.03 (d, $J=4.6 \mathrm{~Hz}, \mathrm{C}-5), 82.2$ (d, $J=6.9$ Hz, C-1), 60.7, 57.7 (d, $J=4.6 \mathrm{~Hz}, \mathrm{C}-2), 33.4$ (d, $J=6.9 \mathrm{~Hz}, \mathrm{C}-3$), 28.4, 24.9; HRMS-ESI calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 392.1263$, found: 392.1254.

217q: Following Representative Procedure 4, to a solution of $\mathbf{1 8 1 q}$ ($21.4 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}$) was added TFA
$\left(10 \mu \mathrm{~L}, 0.13 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{HPIB}\left(88 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.5\right.$ equiv) at $0^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 7 q}(33.4 \mathrm{mg}, 64 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.23(\mathrm{EtOAc})$; IR (film) $\mathrm{v}_{\text {max }}$ $2926,1665,1590,1488,1455,1283,1188,1010,936,755,688 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 7.32-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 6 \mathrm{H}), 4.03(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=15.8$ Hz, 1H), 3.69 (s, 3H), 2.38-2.46 (m, 1H), 2.28-2.37 (m, 1H), 1.86 (br. s., 1H), 1.73-1.80 (m, $1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.65(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 171.1,150.6(\mathrm{~d}, J=7.9$ Hz, C-4, 4'), 129.74 (C-6'), 129.73 (C-6), 125.33 (C-7’), 125.27 (C-7), 120.19 (d, J = 4.6 Hz , C-5'), $120.04(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{C}-5), 89.1(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{C}-1), 61.1,54.5(\mathrm{~d}, J=4.2 \mathrm{~Hz}, \mathrm{C}-2)$, $37.3(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{C}-3), 35.1,28.0,21.8$; HRMS-ESI calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 420.1576, found: 420.1579 .

1.11.11 I(III)-Mediated Cyclization of Aryl Hydroxamates

Representative Procedure 5. Hydroxamate Cyclization using I(III) Reagents

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of O-alkyl hydroxamate $(0.10 \mathrm{mmol})$ in $\mathrm{DCM}(2 \mathrm{~mL}, 0.05 \mathrm{M})$ under N_{2}, was added I (III) reagent (1.5 equivalent). The reaction mixture was stirred for 1 h . Upon completion (by TLC), the reaction mixture was concentrated in vacuo and the residue purified by flash chromatography on silica gel (EtOAc) to provide the product.

219r: Using HMIB: Following Representative Procedure 5, to a solution of
 $\mathbf{1 8 1 r}$ ($17.4 \mathrm{mg}, 0.073 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added HMIB ($35 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to
provide $\mathbf{2 1 9 r}$ ($15.6 \mathrm{mg}, 96 \%$).
Using HTIB: Following Representative Procedure 5, to a solution of $\mathbf{1 8 1 r}$ ($18.9 \mathrm{mg}, 0.079$ mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added $\mathrm{HTIB}\left(47 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 9 r}(15.2 \mathrm{mg}, 86 \%)$ as a white solid; $\mathrm{mp} 133-135{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.26$ (EtOAc); IR (film) $\cup_{\max }$ 2939, 1733, 1670, 1652, 1558, 1373, 1178, 1001, 856, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.62(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ $(\mathrm{dd}, J=9.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{ddd}, J=$ $17.2,9.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=17.1,9.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=13.4,9.9,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.08-2.18(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 186.3,173.1,172.7,144.2,130.3$, 103.2, 64.6, 62.8, 56.2, 27.3, 26.2; HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}:$224.0923, found: 224.0917.

219s

219s: Using HMIB: Following Representative Procedure 5, to a solution of 181s ($23.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added HMIB ($36 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 219s (22.3 mg, 100\%).

Using HTIB: Following Representative Procedure 5, to a solution of $\mathbf{1 8 1 r}(26.5 \mathrm{mg}, 0.084$ mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added $\mathrm{HTIB}\left(50 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $219 \mathrm{r}(22.1 \mathrm{mg}, 88 \%)$ as a white solid; $\mathrm{mp} 142-143{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.36$ (EtOAc); IR (film) $\cup_{\max }$ 2944, 1724, 1664, 1602, 1369, 1227,

1176, 1066, 999, 858, 756, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.29-7.36(\mathrm{~m}, 5 \mathrm{H}), 6.17$ $(\mathrm{d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.58-$ $2.67(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{ddd}, J=17.0,9.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{dt}, J=12.8,9.9$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 186.4,173.7,172.9,144.4,134.7,129.8,129.7$, 128.9, 128.4, 103.0, 78.4, 62.8, 56.2, 27.4, 26.3; HRMS-ESI calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 300.1236, found: 300.1227 .

219t

219t: Using HMIB: Following Representative Procedure 5, to a solution of 181 t ($25.5 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added HMIB ($38 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 219 t ($21.2 \mathrm{mg}, 88 \%$).

Using HTIB: Following Representative Procedure 5, to a solution of $\mathbf{1 8 1 t}$ ($24.2 \mathrm{mg}, 0.077$ mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{HTIB}\left(45 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $219 \mathrm{t}(21.0 \mathrm{mg}, 91 \%)$ as a white solid; $\mathrm{mp} 129-130{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.58$ (EtOAc); IR (film) $v_{\max } 1726,1664,1603,1367,1225 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.25-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.67(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=9.9$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{dd}, J=13.5,9.9 \mathrm{~Hz}$, 1H), 2.15-2.22 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 186.3,173.7,172.6,144.3,138.5$, 130.7, 129.0 (2C), 127.6 (3C), 103.3, 64.9, 61.9, 56.3, 43.7, 37.2; HRMS-ESI calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 300.1236$, found: 300.1242 .

219u: Using HMIB: Following Representative Procedure 5, to a solution of 181u ($25.8 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added HMIB ($54 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 219u (24.0 mg, 100\%).

Using HTIB: Following Representative Procedure 5, to a solution of $\mathbf{1 8 1 u}(26.4 \mathrm{mg}, 0.12$ mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added $\mathrm{HTIB}\left(69 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 9 u}(19.5 \mathrm{mg}, 80 \%)$ as a white solid; $\mathrm{mp} 100-103{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.47$ (EtOAc); IR (film) $v_{\max } 1785,1676,1600,1222 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.72(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=9.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=$ $1.95 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 186.2,168.8,162.9,141.7,131.6,105.3,64.9,60.7,56.2$, 43.3; HRMS-ESI calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 210.0766$, found: 210.0764.

219v: Using HMIB: Following Representative Procedure 5, to a solution of
 181v ($21.6 \mathrm{mg}, 0.072 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added HMIB ($34 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 219v ($18.9 \mathrm{mg}, 100 \%$).

Using HTIB: Following Representative Procedure 5, to a solution of 181v ($26.0 \mathrm{mg}, 0.086$ mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added $\mathrm{HTIB}\left(51 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash
chromatography (EtOAc) to provide 219v (20.7 mg, 84%) as a white solid; $\mathrm{mp} 101-102{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.63$ (EtOAc); IR (film) $v_{\max } 1786,1662,1600,1222,1050 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.24-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.29(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=9.9$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.75(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 186.3,168.8,164.4,141.2,135.0$, 130.7, 129.1, 129.0, 128.6, 105.0, 79.0, 61.0, 56.1, 43.4; HRMS-ESI calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 286.1079$, found: 286.1075.

219w: Using HMIB: Following Representative Procedure 5, to a solution of 181w ($24.2 \mathrm{mg}, 0.074 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added HMIB ($35 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide 219w (22.0 mg, 96\%).

Using HTIB: Following Representative Procedure 5, to a solution of $\mathbf{1 8 1 w}$ ($29.6 \mathrm{mg}, 0.090$ mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added $\mathrm{HTIB}\left(53 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography (EtOAc) to provide $\mathbf{2 1 9 w}(23.8 \mathrm{mg}, 85 \%)$ as a white solid; $\mathrm{mp} 175-177{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.33$ (EtOAc); IR (film) $v_{\max } 1664,1630,1598,1365,1222 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.18-7.36(\mathrm{~m}, 5 \mathrm{H}), 6.52(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=9.9$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.14-2.20 (m, 1H), 2.00-2.10(m, 2H), 1.82-1.89 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ $186.2,173.6,170.0,145.6,134.9,129.3,128.6,128.6,128.3,103.0,77.6,65.3,56.1,35.4$, 33.3, 18.0; HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 314.1392$, found: 314.1399.

1.11.12 Cyclization of Unsaturated \boldsymbol{O}-Alkyl Hydroxamates Using PCC

Representative Procedure 6. Hydroxamate Cyclization using Pyridinium Chlorochromate (PCC)

To a solution of O-alkyl hydroxamate $(0.10 \mathrm{mmol})$ in DCE $(2 \mathrm{~mL}, 0.05 \mathrm{M})$, was added PCC ($0.30 \mathrm{mmol}, 3$ equiv). After purging the reaction vessel with N_{2}, anhydrous AcOH (5 equiv) was added via syringe and the reaction mixture stirred at room temperature for 30 min . A reflux condenser was then attached and the reaction mixture heated at $84{ }^{\circ} \mathrm{C}$ until TLC indicated consumption of starting material. Upon completion, the reaction mixture was cooled to room temperature, dilute with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$, filtered through Celite and poured into aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(3 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with EtOAc (3 x 3 mL). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vaсиo. The residue was then purified by flash chromatography on silica gel (EtOAc) to give the final product.

233c: Following Representative Procedure 6, to a solution of 181c (33.7 $\mathrm{mg}, 0.17 \mathrm{mmol}, 1.0$ equiv) in DCE (4 mL) were sequentially added PCC ($111 \mathrm{mg}, 0.51 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(48 \mu \mathrm{l}, 0.85 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 233c (17.0 mg, 47\%) as a colorless oil; $\mathrm{R}_{f} 0.23$ (EtOAc); IR (film) $\cup_{\max } 3078,2937,2818,1724$, $1680,1444,1403,1331,1165,1066,995,912,864,648 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: $\delta 5.80(\mathrm{ddt}, J=17.0,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}$,
$3 \mathrm{H}), 2.70(\mathrm{dt}, J=17.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dt}, J=17.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.37$ $(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{quin}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 206.9,167.8,136.5,115.7,67.6,61.7,38.6,32.9,27.2,26.6$, 18.7; HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 212.1287$, found: 212.1291.

233dd 233dd: Following Representative Procedure 6, to a solution of 181dd (19.9 $\mathrm{mg}, 0.056 \mathrm{mmol}, 1.0$ equiv) in DCE (2 mL) were sequentially added PCC (36 $\mathrm{mg}, 0.17 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(16 \mu \mathrm{l}, 0.28 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 233dd (14.0 mg, 68%) as a colorless oil; $\mathrm{R}_{f} 0.23$ (EtOAc); IR (film) $\cup_{\max } 3095,2939,1732,1685,1545,1373$, 1176, 1047, 949, 852, 752, $573 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.02(\mathrm{dd}, J=7.6,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}$, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72$ (dd, $J=13.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 202.4,161.5,148.1$, 134.6, 132.2, 131.5, 130.8, 124.6, 66.8, 62.4, 48.9, 46.1, 27.3; HRMS-ESI calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 358.0709$, found: 358.0708.
 233e: Following Representative Procedure 6, to a solution of $181 \mathrm{e}(12.0 \mathrm{mg}$, $0.076 \mathrm{mmol}, 1.0$ equiv) in DCE (2 mL) were sequentially added PCC (50 mg , 233e
$0.23 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(22 \mu \mathrm{l}, 0.38 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 233e ($5.5 \mathrm{mg}, 42 \%$) as a colorless oil; $\mathrm{R}_{f} 0.19$ (EtOAc); IR (film) $\cup_{\max } 3400,2974,2936,1682,1382,1252,1170$, 959, 811, $659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 3.77-3.88(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.73(\mathrm{~m}, 1 \mathrm{H})$,
2.21-2.42 (m, 2 H$), 2.06-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 170.7,73.3,63.6,61.1,26.6,25.9,24.1,18.6$; HRMS-ESI calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 174.1130$, found: 174.1128 .

233f: Following Representative Procedure 6, to a solution of 181f $(25.3 \mathrm{mg}$, $0.16 \mathrm{mmol}, 1.0$ equiv) in DCE (3 mL) were sequentially added PCC (106 mg , $0.49 \mathrm{mmol}, 3$ equiv) and anhydrous AcOH ($46 \mu \mathrm{l}, 0.80 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), $\mathbf{2 3 3 f}$ (16.8 mg , 61%) as a colorless oil; $\mathrm{R}_{f} 0.22$ (EtOAc); IR (film) $\cup_{\max } 2984,2935,1703,1441,1372,1304$, $1265,1179,1077,1011,890,849,770,657 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.87(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.25$ (dd, $J=2.9,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 211.1,170.6$, 63.3, 62.8, 36.6, 33.9, 30.5, 27.4; HRMS-ESI calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 170.0817$, found: 170.0815.

233g: Following Representative Procedure 6, to a solution of $\mathbf{1 8 1 g}$ ($32.0 \mathrm{mg}, 0.21$ mmol, 1.0 equiv) in DCE (4 mL) were sequentially added PCC ($134 \mathrm{mg}, 0.62$ mmol, 3 equiv) and anhydrous $\mathrm{AcOH}(60 \mu \mathrm{l}, 1.05 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 233g ($17.6 \mathrm{mg}, 50 \%$) as a colorless oil; $\mathrm{R}_{f} 0.43$ (EtOAc); IR (film) $\cup_{\max } 2943,1738,1448,1352,1273,1038,951,798$, $744,642,544 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.05(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 2.68 (br. s., 1 H), 2.64-2.42 (m, 3 H), 2.40-2.28(m, 1 H), 1.96-1.84 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 205.9,175.6,65.4,63.4,37.5,34.8,31.0,27.8$; HRMS-ESI calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 170.0817$, found: 170.0820 .

233h: Following Representative Procedure 6, to a solution of $\mathbf{1 8 1 h}(24.0 \mathrm{mg}, 0.10$ mmol, 1.0 equiv) in DCE (2 mL) were sequentially added PCC ($67 \mathrm{mg}, 0.31$ mmol, 3 equiv) and anhydrous $\mathrm{AcOH}(29 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 233h (16.1 mg, 63\%) as a colorless oil; $\mathrm{R}_{f} 0.71$ (EtOAc); IR (film) $v_{\max }$ 2973, 2939, 1724, 1634, 1602, 1451, 1279, 1229, 1081, 1034, 975, 763, 701, $665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.31-7.39(\mathrm{~m}$, 2H), 7.24-7.30 (m, 2H), $7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{dd}, J=16.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.23(\mathrm{~m}, 1 \mathrm{H})$, $2.00(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 206.3,175.7,141.1,128.9(2 \mathrm{C})$, 127.4 (2 C), 127.2, 66.0, 63.5, 44.4, 42.3, 39.0, 25.8; HRMS-ESI calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 246.1130$, found: 246.1129.

233i: Following Representative Procedure 6, to a solution of $\mathbf{1 8 1 i}$ ($200 \mathrm{mg}, 1.2$ mmol, 1.0 equiv) in DCE (20 mL) were sequentially added PCC ($767 \mathrm{mg}, 3.6$ 233 i mol, 3 equiv) and anhydrous $\mathrm{AcOH}(0.34 \mathrm{~mL}, 6.0 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 233i ($56.0 \mathrm{mg}, \mathbf{2 6 \%}$) as a colorless oil; $\mathrm{R}_{f} 0.26$ (EtOAc); IR (film) $v_{\max }$ 2935, 1728, 1678, 1443, 1390, 1306, 1223, 1142, 1092, 1045, 997, 806, 675, $507 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.03$ (br. s., 1 H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{dd}, J=17.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{td}, J=14.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.56(\mathrm{~m}$, $1 \mathrm{H}), 2.44(\mathrm{dq}, J=14.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.13(\mathrm{~m}$,
$1 \mathrm{H}), 1.93-2.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 207.2,168.9,66.3,62.0,38.4,34.3$, 33.5, 32.7, 26.8; HRMS-ESI calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 184.0974, found: 184.0965.

233j: Following Representative Procedure 6, to a solution of 181j (392.0

233j $\mathrm{mg}, 1.7 \mathrm{mmol}, 1.0$ equiv) in DCE (50 mL) were sequentially added PCC $(1.11 \mathrm{~g}, 5.2 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(0.48 \mathrm{~mL}, 8.5 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 233j $(148.0 \mathrm{mg}, 36 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.30$ (EtOAc); IR (film) $\mathrm{v}_{\max } 2923,1732,1683,1592$, 1147, 1027, 955, 731, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.05$ (br. s., 1 H), 3.76 (s, 3 H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{td}, J=$ 3.1, $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 205.2,171.3,167.6$, $65.1,62.2,52.5,47.1,35.2,34.5,33.2,29.3$; HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 242.1028, found: 242.1019 .

233jj: Following Representative Procedure 6, to a solution of $\mathbf{1 8 1} \mathbf{j j}$ (43.8
 233jj $\mathrm{mg}, 0.19 \mathrm{mmol}, 1.0$ equiv) in DCE (4 mL) were sequentially added PCC ($125 \mathrm{mg}, 0.58 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(54 \mu \mathrm{l}, 0.95 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 233jj ($26.0 \mathrm{mg}, 56 \%$) as a colorless oil; $\mathrm{R}_{f} 0.30$ (EtOAc); IR (film) $v_{\max } 2939,1726,1653,1497$, $1340,1279,1064,1020,975,871,763,701,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.03-$ $3.98(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{ddd}, J=4.0,4.2,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.82$ (m, 1 H$), 2.78-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{dd}, J=2.8,13.5$
$\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 205.1,171.3,167.5,64.9,62.1,52.4,46.9,35.1$, 34.4, 33.0, 29.2; HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 242.1028 , found: 242.1021.

233k: Following Representative Procedure 6, to a solution of $\mathbf{1 8 1 k}$ (16.0

233k $\mathrm{mg}, 0.078 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCE}(2 \mathrm{~mL})$ were sequentially added PCC ($51 \mathrm{mg}, 0.23 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(22 \mu \mathrm{l}, 0.39 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 233k (10.0 mg, 59\%) as a colorless oil; $\mathrm{R}_{f} 0.40$ (EtOAc); IR (film) $\cup_{\max } 2939,1695,1596,1571$, 1449, 1227, 1180, 1058, 1000, 964, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.98(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{dd}, J=8.8,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.54(\mathrm{~m}, 3 \mathrm{H}), 1.99-2.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 195.7$, $172.2,134.3,134.2,129.1,128.4,63.5,61.6,26.7,21.1$; HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 220.0974$, found: 220.0981.

2331: Following Representative Procedure 6, to a solution of 1811 (23.0 $\mathrm{mg}, 0.081 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCE}(2 \mathrm{~mL})$ were sequentially added PCC ($52 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(23 \mu \mathrm{l}, 0.41$ mmol, 5 equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 2331 ($15.2 \mathrm{mg}, 63 \%$) as a colorless oil; $\mathrm{R}_{f} 0.31$ (EtOAc); IR (film) $v_{\max } 2926,2850,1693$, $1581,1459,1236,1215,1149,964,940,827,643 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.84$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{dd}, J=8.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, 2.37-2.53 (m, 3H), 1.96-2.04 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 194.9,172.2,132.9$,
132.4, 129.8, 129.6, 63.5, 61.4, 26.6, 20.9; HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 298.0079, found: 298.0073.

233m: Following Representative Procedure 6, to a solution of $\mathbf{1 8 1 m}$ ($26.9 \mathrm{mg}, 0.099 \mathrm{mmol}, 1.0$ equiv) in $\operatorname{DCE}(2 \mathrm{~mL}$) were sequentially added PCC ($64 \mathrm{mg}, 0.30 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(29 \mu \mathrm{l}$, $0.50 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 233m (19.3 mg, 68\%) as a colorless oil; $\mathrm{R}_{f} 0.34$ (EtOAc); IR (film) $\cup_{\max } 2940$, $1705,1581,1512,1411,1324,1225,1168,1014,982,833,704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 8.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.27-5.32(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, 2.37-2.54 (m, 3H), 1.95-2.08(m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 195.0,172.2,136.9$, 128.8, 126.2, 126.1, 126.1, 126.1, 63.5, 61.7, 26.6, 20.8; HRMS-ESI calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~F}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 288.0848$, found: 288.0836.

233n: Following Representative Procedure 6, to a solution of 181n (15.5 $\mathrm{mg}, 0.070 \mathrm{mmol}, 1.0$ equiv) in DCE (2 mL) were sequentially added PCC ($45 \mathrm{mg}, 0.21 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(20 \mu \mathrm{l}, 0.35 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 233n ($7.3 \mathrm{mg}, 45 \%$) as a colorless oil; $\mathrm{R}_{f} 0.40$ (EtOAc); IR (film) $\cup_{\max } 3064,2935,1699,1597$, $1450,1238,1128,957,854,777,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.97(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.71-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.41$ (br. s., 1 H$), 4.35(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20$ (br. s., 2 H), $3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 101\right.$

MHz): $\delta 192.7,166.0,134.3,134.0,129.2,128.4,68.9,67.1,64.2,63.1 ;$ HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 236.0923$, found: 236.0918.

233y

233y: Following Representative Procedure 6, to a solution of $\mathbf{1 8 1 y}(12.5 \mathrm{mg}$, $0.080 \mathrm{mmol}, 1.0$ equiv) in DCE (2 mL) were sequentially added PCC (52 mg , $0.24 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(23 \mu \mathrm{l}, 0.40 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 233y (7.0 mg , 51%) as a colorless oil; $\mathrm{R}_{f} 0.42$ (EtOAc); IR (film) $\mathrm{v}_{\max } 2981,2930,1715,1617,1424,1360$, $1159,1072,1046,964,838,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.43$ $(\mathrm{m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{dt}, J=12.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 207.5,171.2,70.3,64.3,27.6,26.2,25.7,20.7$; HRMS-ESI calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 172.0974$, found: 172.0978.

219r: Following Representative Procedure 6, to a solution of $181 \mathbf{r}$ (25.0 mg , $0.10 \mathrm{mmol}, 1.0$ equiv) in DCE (2 mL) were sequentially added PCC (68 mg , $0.31 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(29 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 219r $(11.7 \mathrm{mg}, 50 \%)$ as a white solid; $\mathrm{mp} 133-135^{\circ} \mathrm{C}(\mathrm{EtOAc} /$ hexanes $) ; \mathrm{R}_{f} 0.26$ (EtOAc); IR (film) $v_{\max } 2939,1733,1670,1652,1558,1373,1178,1001,856,696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.62(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.18(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 186.3,173.0,172.7,144.2,130.3,103.2,64.6,62.9$, 56.2, 27.3, 26.3; HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 224.0923, found: 224.0917.

219s: Following Representative Procedure 6, to a solution of 181s $(27.0 \mathrm{mg}$, $0.082 \mathrm{mmol}, 1.0$ equiv) in DCE (2 mL) were sequentially added PCC (53 $\mathrm{mg}, 0.25 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(23 \mu \mathrm{l}, 0.41 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 219s ($8.3 \mathrm{mg}, 32 \%$) as a white solid; mp 142-143 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.36$ (EtOAc); IR (film) $v_{\max } 2944,1724,1664,1602,1369,1227,1176,1066,999,858,756,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.30-7.36(\mathrm{~m}, 5 \mathrm{H}), 6.17(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.24$ $(\mathrm{m}, 1 \mathrm{H}), 2.04-2.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 186.3,173.6,172.8,144.4$, 134.8, 129.9, 129.7, 128.9, 128.4, 103.1, 78.4, 62.9, 56.2, 27.5, 26.3; HRMS-ESI calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 300.1236$, found: 300.1227 .

240

240: Following Representative Procedure 6, to a solution of $\mathbf{1 8 1 z}(25.0 \mathrm{mg}, 0.16$ mmol, 1.0 equiv) in DCE (2 mL) were sequentially added PCC ($103 \mathrm{mg}, 0.48$ mmol, 3 equiv) and anhydrous $\mathrm{AcOH}(48 \mu \mathrm{l}, 0.8 \mathrm{mmol}, 5$ equiv) to provide, after work-up and purification by flash chromatography (EtOAc), 240 ($7.1 \mathrm{mg}, 31 \%$) as a colorless oil; $\mathrm{R}_{f} 0.47$ (EtOAc-hexanes, 1:1); IR (film) $\mathrm{U}_{\max } 2924,2853,1716,1438,1336$, $1270,1214,1141,1098,964,942,877,727,666,607 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $4.46(\mathrm{~s}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 165.5,68.7,64.7$.

258: Following Representative Procedure 6, to a solution of 255 (38.6 mg , 0.14 mmol , 1.0 equiv) in DCE (5 mL) were sequentially added PCC (90 mg , 258 $0.42 \mathrm{mmol}, 3$ equiv) and anhydrous $\mathrm{AcOH}(42 \mu \mathrm{l}, 0.7 \mathrm{mmol}, 5$ equiv) to provide, after work-
up and purification by flash chromatography (EtOAc), $\mathbf{2 5 8}(13.5 \mathrm{mg}, 33 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.23$ (EtOAc); IR (film) $v_{\max } 3391,2978,2939,1683,1601,1451,1384,1271,1110$, 1057, $958,714,660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.29-7.39(\mathrm{~m}, 5 \mathrm{H}), 4.51-4.60(\mathrm{~m}$, $2 \mathrm{H}), 4.02(\mathrm{dd}, J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}), 2.29-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 170.6,137.6,128.5,127.9,127.8,75.5,73.7,73.7,61.1,59.0$, 26.7, 19.4, 17.4; HRMS-ESI calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 280.1549 , found: 280.1537.

PART TWO:
HYPERVALENT IODINE-MEDIATED
INTRAMOLECULAR OXAMIDATION OF ALKENES:
SYNTHESIS OF KAINIC ACID AND SYNTHETIC STUDIES
TOWARDS THE MADANGAMINE AND ALSTOSCHOLARINE FAMILIES

2. FORMAL SYNTHESIS OF KAINIC ACID

2.1. Introduction

(-)- α-Kainic acid (KA) (263) and its epimer allokainic acid (264) are the parent members of a family of natural products also known as the kainoids (Figure 11). The name "kainic acid" is derived from the word kaininso, which translates as "mother alga" from Japanese. ${ }^{149}$ It was originally isolated from the Japanese marine alga Digenea simplex by Murakami and co-workers in $1953 .{ }^{150}$ Subsequently, KA was found in the related alga Centroceras clavulatum ${ }^{151}$ and in the Corsican moss, Alsidium helminthocorton. ${ }^{152}$ Since 1953, a large number of natural products bearing the characteristic KA-framework, i.e., a proline fragment with two carboxylic groups along with a pedant isopropene substituent on the C-4 position, have been isolated. Domoic acid (267), a seafood environmental toxin produced by the diatom Nitzschia pungens, is responsible for Amnesic Shellfish Poisoning. ${ }^{153}$ Other members of the kainoid family include several isodomoic acids (268$\mathbf{2 7 4}$) and the poison mushroom components acromelic acids A and $B(\mathbf{2 6 5}, \mathbf{2 6 6})$. The structure and relative stereochemistry of KA was determined by X-ray analysis of the zinc dicarboxylate and its crystallohydrate. ${ }^{149}$

Isodomoic acid D
(271)

Isodomoic acid E
(272)

Isodomoic acid F
(273)
(270)

Figure 11 Members of the kainoid family of natural products are characterized by the presence of 4-substituted 3-carboxymethyl-pyrrolidine-2-carboxylic acid and found in a variety of marine and terrestrial plants and fungi

2.2. Biological Activity

Since its discovery, (-)- α-kainic acid (263) has received a great deal of attention as a result of its important neuroexcitatory properties. During the 1970s, KA was first employed in neuroscience as a tool for neuropathological model studies. ${ }^{154}$ It was discovered by Olney that KA mimics the effects of the most abundant excitatory neurotransmitter, glutamic acid by operating on a class of kainate receptors. ${ }^{155} \mathrm{KA}$ represents the first key to unlock the neurophysiological role of glutamic acid. L-Glutamic acid (275), a nonessential amino acid, is the most abundant neurotransmitter that inhibits neural excitation in the central nervous
system. Structurally related to glutamate, KA is a nondegradable analog and a potent neurotoxin. Investigations by Andersson have shown that KA can elicit selective neuronal death in the brain of rodents. ${ }^{156}$ Upon binding to kainate receptors (KARs), KA exerts its neuroexcitotoxic and epileptogenic properties as well as inducing a number of cellular events such as influx of cellular $\mathrm{Ca}^{2+},{ }^{157}$ production of reactive oxygen species, ${ }^{158}$ and mitochondrial dysfunction. ${ }^{159}$ Indeed, the administration of KA causes the specific neuropathological damage pattern in rat brains which is symptomatic in a number of human pathological disorders. Thus, kainic acid enables the creation of models of human diseases like Huntington's chorea, ${ }^{154 a}$ Alzheimer disease, ${ }^{160}$ and epilepsy, ${ }^{161}$ thereby facilitating the development of conventional medical treatments and cognitive therapies.

(275)

Kainic acid
(263)

Figure 12 Neurotransmitter L-glutamic acid and its analogue, kainic acid

2.3. Biosynthesis

While studies of KA biosynthesis have yet to be reported, a number of studies on other kainoids, including the domoic acids and the acromelates have been performed. Domoic acid (DA) (267), originally isolated in 1958 from the red alga Chondria armata, is also a neurologically active amino acid which possesses structural resemblance to KA. The biosynthesis of DA in the diatom Pseudo-nitzschia multiseries has been investigated using ${ }^{13} \mathrm{C}$ - and ${ }^{14} \mathrm{C}$-labelled precursors by Write and co-workers. ${ }^{162}$ In this work, acetate and [1, 2-
${ }^{13} \mathrm{C}_{2}$]-acetate were fed to cultures under pulse-feeding conditions. ${ }^{163}$ After biosynthesis was complete, DA was extracted from the samples and analyzed by NMR spectroscopy. The results indicated that DA was mostly isotopically enriched at C-7 and to a smaller degree at $\mathrm{C}-8$, while isoprene portion of the molecule was enriched only at a low level. This isotopic incorporation to the $\mathrm{C}-6 / \mathrm{C}-7$ unit versus $\mathrm{C}-2 / \mathrm{C}-8$ suggests that either each unit is biosynthesized in a different part of the diatom cell, or, that the isoprene chain is not assembled by the usual acetate-mevalonate pathway.

Scheme 69

In the proposed mechanism, DA is biosynthesised by condensation of geranyl pyrophosphate (276) with glutamate intermediate derived from the tricarboxylic acid (TCA) cycle. Enamine 277, resulting from this condensation, subsequently undergoes intramolecular cyclization to form the characteristic pyrrolidine ring. Given the structural homology present
in this class, it seems likely that this pathway may be common to other kainoid natural products.

2.4. Kainic Acid as a Synthetic Target

Until the mid-1990s, the commercial extraction of KA on a large scale was primarily performed for use in agriculture, where it was used as an anthelmintic agent. However, with the advent of improved remedies, KA production was discontinued creating a deficit. ${ }^{164}$ Even though this pause in supply was found to be temporary, ${ }^{165}$ the price of KA remains very high, currently surpassing $\$ 10,000$ per gram. The supply concern did however spark considerable interest in this deceptively simple natural product from organic chemists. To date, there have been more than 100 publications devoted to the synthesis of KA. Indeed, KA is an intriguing molecule comprising of a fully functionalized pyrrolidine core featuring 3 adjoining stereo centers. The cis relationship between C-3/C-4 side arms (allokainic acid excluded) requires careful consideration. An idealized kainic acid synthetic plan would allow the convergent installation of different substituents at the C-4 position in order to generate all the members and analogues of the kainoid family.

The manifold syntheses of kainoids have been reviewed several times: in 1998 by Parsons ${ }^{166}$ and in 2012 by Gallos. ${ }^{167}$ Due to the numerous synthetic approaches, we have chosen to classify KA total syntheses in the following manner: based on the formation of the final bond during the process of pyrrolidine ring assembly. This classification includes five sections: the syntheses employed existent pyrrolidine ring, cycloaddition reactions and the formation of C-2-C-3, C-3-C-4 and C-N bonds. Since the early syntheses ${ }^{168}$ of KA were
relatively inefficient and nonstereoselective, we will focus our attention on relatively recent approaches.

2.4.1 Pyrrolidine Building Blocks

An obvious approach to KA is to employ readily available pyrrolidine building blocks. An enantioselective route to KA using pyroglutamate $\mathbf{2 7 9}$ as a starting material was reported by Rubio and co-workers in 1998 (Scheme 70). ${ }^{169}$ The C-4 isopropenyl unit was accessed via the elimination of a 3° alcohol, accessed from the aldol condensation of $\mathbf{2 7 9}$ and acetone. The C-3 ester substituent was added through the Michael addition of malonate to 2,3-didehydroprolinate 280. Epimerization of the C-3 stereo center was accomplished via alkene formation, exo-face hydrogenation and decarboxylation to generate 282. Then, epimerization of the C-2 stereogenic center in $\mathbf{2 8 2}$ yielded the natural product (12 steps from $\mathbf{2 7 9}, 17 \%$ total yield).

Scheme 70

In 1999, Cossy reported an enantioselective formal synthesis of KA from Lpyroglutamic acid (283). ${ }^{170}$ As shown in Scheme 71, the C-4 side chain of the pyrrolidine core was accessed via the ketyl radical cyclization of ene carbamate 284. The resulting
carbinol 285 was converted in 5 steps into advanced intermediate 286, which previously appeared in Hanessian's ${ }^{171}$ total synthesis of KA. Synthesis of $\mathbf{2 8 6}$ was completed in 18 steps with a rather modest 0.2% overall yield.

Scheme 71

In 2005, Hodgson and co-workers reported a new stereocontrolled route to trisubstituted pyrrolidines and successfully utilized their methodology in the synthesis of KA (Scheme 72). ${ }^{172}$ The authors discovered that treatment of 7-azanorbornadiene-type substrates, such as $\mathbf{2 8 7}$, with 2-iodoethanol in the presence of radical initiators promoted a sequence of alkene addition and subsequent homoallylic radical rearrangement to generate 2-azabicyclo-[2.2.1]hept-5-enes 288. These products provided convenient access to 2,3,4-trisubstituted pyrrolidines, specifically kainoids, via oxidative cleavage of alkene bridge. In this approach, 2-iodoethanol was added to enantiopure 7-azanorbornadiene 287 to form rearrangement product 288 in high yield and with excellent syn stereoselectivity. Ozonolysis followed by the Swern oxidation furnished lactone $\mathbf{2 8 9}$, which was elaborated onto KA in 15 steps with an overall yield of 4%.

Scheme 72

Poisson and co-workers have employed trans-4-hydroxy-L-proline (290), an inexpensive amino acid that possesses both the core kainoid structure and the absolute configuration of the target molecule in their synthetic studies towards kainic acid (Scheme 73). Their first synthesis crucially relied on the regio- and stereoselective alkylation of 4oxoproline 291, as well as the stereoretentive substitution of the tosylate 293 by a high order cyanocuprate. ${ }^{173}$ The origin of the unusual substitution was ascribed to the neighboring participation of the N-carboxybenzyl protecting group. ${ }^{174}$ Natural KA was obtained with excellent stereocontrol and in an overall yield of 7\% (14 steps).

Scheme 73

In his second synthesis, Poisson employed a Diels-Alder reaction to establish the C-2/C-3/C-4 stereochemical relationship in an efficient and elegant fashion. ${ }^{175}$ Starting from the same amino acid 290, the authors prepared dienophile 295, which underwent intermolecular Diels-Alder reaction with Danishefsky's diene. Unfortunately, high pressure (15 atm) and prolonged (72 h) reaction time were required to promote the cycloaddition of the trisubstituted olefin. Cycloadduct 296 was generated in high yield and with excellent enantiomeric access. Introduction of the methyl group, oxidation cleavage and standard functional group manipulations concluded the total synthesis, which provided the target in an overall yield of 10% (19 steps).

In 2012, Lin and associates reported an enantioselective synthesis of kainic acid featuring the asymmetric Michael addition of alkenyltrifluoroborates to α, β-unsaturated lactam 297, catalyzed by a C2 symmetric rhodium-diene complex (Scheme 74). ${ }^{176}$ The syn
relationship at C-3/C-4 was then established by alkylation of 298 followed by dynamic protonation process at low temperature. Reduction of $\mathbf{2 9 9}$ with subsequent substitution at C-2 generated nitrile $\mathbf{3 0 0}$ which, upon basic hydrolysis, provided the desired product in 7 steps and excellent overall yield.

Scheme 74

A racemic synthesis of KA, which employs photochemical $\mathrm{C}-\mathrm{H}$ carbamoylation of octahydroisoindole derivative $\mathbf{3 0 1}$ with PhNCO , has recently been published by Yoshimitsu. ${ }^{177}$ As shown in Scheme 75, photolytically derived monocarbamylated product 302, was deprotected and converted into the cyclohexanone $\mathbf{3 0 3}$ in 8 steps. The product underwent Baeyer-Villiger oxidation and subsequent desilylative olefination to furnish alkene 304. Hydrolysis of $\mathbf{3 0 4}$ afforded (\pm)-KA in 13 steps with and overall yield of 18%.

Scheme 75

2.4.2 Formation of C-2-C-3 Bond

The first route to kainic acid (263) employing this strategy was reported by Clayden, who made use of the stereoselective dearomatizing cyclization of a lithiated N-benzyl- p anisamide (Scheme 76). ${ }^{178}$ When 305 was treated with t-BuLi at low temperature, the resulting benzyl lithium intermediate rapidly cyclized to provide isoindole, which yielded enone 306 after exposure to acid. Conjugate addition of dimethylcuprate occurred solely from the exo face and was followed by RuO_{4}-mediated oxidative fragmentation of the arene moiety to afford 307. Subsequent transformations, including Baeyer-Villiger oxidative cleavage, Grieco elimination as well as lactam reduction furnished the natural product with an overall yield of 5\% (13 steps).

Scheme 76

Several years later the same research group reported an enantioselective variant of their original synthesis. ${ }^{179}$ In this case, enantioselective deprotonation of $\mathbf{3 0 5}$ was achieved with chiral lithium amide 309, which provided enone 306 in good yield and excellent enantioselectivity, after a single recrystallization. In 2011 Clayden reported the application of this approach to the preparation of isodomoic acids B, E and $\mathrm{F}(\mathbf{2 6 9}, \mathbf{2 7 2}, \mathbf{2 7 3}) .{ }^{180}$

Fukuyama and co-workers have utilized a diastereoselective intramolecular Michael addition to access the kainoid family (Scheme 77). ${ }^{181}$ Lactone 315 was generated from Evans-type auxiliary $\mathbf{3 1 0}$ through a sequence of transformations featuring a stereoselective TiCl_{4}-mediated aldol reaction and ring-closing metathesis.

Scheme 77

Fukuyama subsequently reported a second generation synthesis, which features a straightforward preparation of key lactone $\mathbf{3 1 8}$ from the readily available azetidinone derivative 316. Diastereoselective construction of the highly functionalized pyrrolidine 319 was efficiently achieved via one-pot reaction cascade involving acylation, elimination, and intramolecular Michael addition (Scheme 78). ${ }^{182}$

Scheme 78

2.4.3 Formation of C-3-C-4 Bond

In 2003, Trost and co-workers reported the preparation of (+)-kainic acid, which is the enantiomer of the naturally-occurring form (Scheme 79). ${ }^{183}$ In this approach, the authors utilized a Ru-catalyzed intramolecular cycloisomerization of a tethered propargyl alcohol and alkyne to generate cyclic dienone 324. Thus, a single stereocenter, introduced by asymmetric reduction of ketone 321 using the conditions described by Noyori, set the stage for all other stereocenters.

Scheme 79

In 2007, Cohen and co-workers efficiently synthesized kainic acid (263) (route A) using a Zn -mediated palladium-catalyzed ene cyclization (Scheme 80). ${ }^{184}$ It was shown that this transformation can be accomplished on a multigram scale. The cyclization precursor 329 was prepared in four steps from amino ester 328, which was obtained from D-serine methyl ester (327). Treatment of $\mathbf{3 2 9}$ with excess ZnEt_{2} and tetrakis(triphenylphosphine)palladium(0) furnished the cyclized product 331 as a single diastereomer (enantiomeric ratio 1.6:1). The elaboration of $\mathbf{3 3 1}$ to KA was achieved in a further five steps. The same group has also published an improved synthesis (route B), in
which cyclization of allylic acetate 330, readily obtained from L-methionine (332), furnished pyrrolidine $\mathbf{3 3 1}$ in enantiopure form. ${ }^{185}$

Scheme 80

Recently, Evans has utilized a rhodium-catalyzed ene-cycloisomerization of an alkenylidencyclopropane to construct $\mathbf{2 6 3}$ from commercially available amino alcohol $\mathbf{3 3 3}$ (Scheme 81). ${ }^{186}$ Dess-Martin oxidation of $\mathbf{3 3 3}$ followed by Wittig homologation and palladium-catalyzed allylic amination furnished conjugate ester 334. After ester reduction, cyclization to pyrrolidine $\mathbf{3 3 6}$ took place, upon heating with $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}$.

Scheme 81

Li and co-workers have reported an efficient total synthesis of $\mathbf{2 6 3}$ in which the key step involves a diastereoselective, reductive [3+2] cycloaddition (Scheme 82). ${ }^{187}$ Precursor 338 was prepared in six steps from inexpensive D-serine methyl ester (337). Upon treatment with SmI_{2}, cyclopropane $\mathbf{3 3 8}$ underwent intramolecular cycloaddition to produce pyrrolidine 339 with the desired C-2/C-3 trans relationship. Isomerization of the double bond, oxidative cleavage of the aryl ketone, followed by Tebbe olefination furnished $\mathbf{2 6 3}$ in excellent overall yield.

Scheme 82

2.4.4 Cycloaddition Routes

In 2005, Fukuyama and co-workers reported the use of an acid-catalyzed 1,3-dipolar cycloaddition to kainoid synthesis (Scheme 83). ${ }^{188}$ Treatment of chiral butenolide 343 with reactive azomethine ylide ${ }^{189} \mathbf{3 4 4}$ provided the heterocyclic pyrrolidine core $\mathbf{3 4 5}$ with the required cis C-3-C-4 configuration. The remaining C-2 carboxyl substituent was introduced
via electrophilic substitution via deprotonation of compound $\mathbf{3 4 6}$ with s-BuLi in the presence of (+)-sparteine (348).

Scheme 83

Aggarwal and co-workers have reported a formal synthesis of KA using their palladium-mediated annulation methodology involving the reaction of vinyl aziridines with Michael acceptors (Scheme 84). ${ }^{190}$ Enantioselective aziridination of imine 349 with sulfonium salt $\mathbf{3 5 0}$ gave $\mathbf{3 5 1}$ in good yield and excellent enantiomeric excess. Palladiumcatalyzed annulation with MVK furnished pyrrolidine $\mathbf{3 5 2}$ as a single diastereomer, after recrystallization. Simultaneous conversion of styryl and phenyl groups into carboxylic acids was performed via oxidation with $\mathrm{RuCl}_{3} / \mathrm{NaIO}_{4} .354$ is an intermediate in Lautens total synthesis and can be converted into natural product in 3 steps. ${ }^{191}$

Scheme 84

2.4.5 Formation of C-N Bond

Recently, Fukuyama published a large-scale stereoselective synthesis of KA (Scheme 85). ${ }^{192}$ Starting from (+)-carvone ($\mathbf{3 5 5}$), aldehyde $\mathbf{3 5 6}$ was formed in 4 steps after an oxidative cleavage and an iodolactonization reaction. The amino group on the pyrrolidine ring was installed via Pinnick oxidation $\mathbf{3 5 6}$ followed by the Curtius rearrangement of the corresponding carboxylic acid using diphenylphosphoryl azide. Stereoselective alkylation of lactone $\mathbf{3 5 7}$ allowed installation of the $\mathrm{C}-3$ carboxylic unit.

Scheme 85

In 2013, Chandrasekhar reported a linear synthesis of 263, which utilizes chirality transfer via a key Ireland-Claisen rearrangement (Scheme 86). ${ }^{193}$ Asymmetric reduction of the bis-protected ynone $\mathbf{3 6 0}$ using Noyori conditions gave rise to allylic alcohol, which was alkylated to generate ester 361. Treatment of $\mathbf{3 6 1}$ with LHMDS/TMSCl accomplished formation of the C-3-C-4 side arms with the required stereochemistry. Construction of the pyrrolidine ring was accomplished by reduction of alcohol $\mathbf{3 6 3}$ with triphenylphosphine (TPP), wherein the azide was transformed to the amine, which readily underwent 5-exo-tet cyclization with the epoxide ring.

Scheme 86

2.5. Retrosynthetic Analysis of Kainic Acid

As discussed in the preceding review, kainic acid has become a popular target for showcasing the utility of novel synthetic methodologies. Wardrop and co-workers have previously shown that the oxidative intramolecular oxamidation of unsaturated O-methyl hydroxamates offers a convenient method to access pyrrolidine and piperidine systems. ${ }^{85}$ In this regard, α-kainic acid with its biological relevance and highly functionalized trisubstituted pyrrolidine ring presents itself as an ideal target to evaluate this methodology.

Our synthetic strategy is outlined in Scheme 87. We planned to access 263 from the all-cis stereoisomer $\mathbf{3 6 5}$ using an α-epimerization at the C-2 stereogenic center. ${ }^{169,194}$ The diacid fragment of $\mathbf{3 6 5}$ could be accessed through the oxidative cleavage of vicinal diol 366, which we envisioned as arising through the exhaustive amide reduction and deprotection of acetonide 367 . We posited that the C-4 isopropene substituent might be installed by basemediated deconjugation of α, β-unsaturated amide 368. We anticipated that the enolate
resulting from the γ-deprotonation of $\mathbf{3 6 8}$ would be quenched at the α-position from the exoface to form all-cis pyrrolidinone 367. ${ }^{195}$ Notably, there is considerable precedence for the generation of all cis-isomers by exo-face protonation. ${ }^{196}$ We anticipated that unsaturated compound 368 could be obtained through the aldol condensation of pyrrolidinone 369 with acetone. Retrosynthetic disconnection of the O, O-acetal through dihydroxylation leads to the olefin synthon present in alkene 370, which itself could be prepared via E-2 elimination of mesylate 210 f .

Scheme 87

Compound 210f would be a product of the cyclization of N-methoxy- N-acylnitrenium ion 372. Based on our oxamidation studies (vide supra), we expected that this cyclization would establish the desired cis stereochemistry at the C-3/C-4 stereocenters. Finally,
compound 181f, the unsaturated O-methyl hydroxamate, could be accessed through coupling of the corresponding acid $\mathbf{1 7 3 f}$ with methoxyamine hydrochloride.

2.6. Synthetic Studies Toward Kainic Acid

Our synthesis began with the preparation of O-methyl hydroxamate 181f, which was obtained from 2-(cyclopent-2-en-1-yl)acetic acid (173f) using Tanabe's procedure. ${ }^{95}$ Thus, treatment of $\mathbf{1 7 3 f}$ with methoxyamine hydrochloride in the presence tosyl chloride and NMI resulted in the formation of $\mathbf{1 8 1 f}$ in nearly quantitative yield. With regard to the cyclization of $\mathbf{1 8 1 f}$, we ideally wished to generate a product that could undergo elimination directly following the ring closure. The cyclization of this substrate was therefore conducted with a variety of hypervalent iodine reagents. The results of this investigation are summarized in Table 15. In all cases, the cyclization product was obtained as a single diastereomer with trans relationship between $\mathrm{C}-\mathbf{X}$ and $\mathrm{C}-\mathrm{N}$ bonds, which was established by the comparison with the structurally related pyrrolidinones discussed in Chapter 1.8. We also noted that addition of TFA resulted in yield augmentation. Overall, the cyclization of $\mathbf{1 8 1 f}$ with 1.5 equivalent of [(hydroxy)mesyloxyiodo]benzene (HMIB) in the presence of 1 equivalent of TFA generated mesylate $\mathbf{2 1 0 f}$ in excellent 89% yield. We were also gratified to discover that the cyclization can be successfully carried out on a multigram scale, without loss of yield.

Table 15. Oxidative Cyclization of \boldsymbol{O}-Methyl Hydroxamate 181 f

entry	I(III) reagent	X	yield, \% ${ }^{a, b}$
1	$\mathrm{PhI}(\mathrm{OTFA})_{2}$	OH	71/61
2	$\mathrm{PhI}(\mathrm{OH}) \mathrm{OTs}$	OTs	73/51
3	$\mathrm{PhI}(\mathrm{OH}) \mathrm{OMs}$	OMs	$89\left(85^{c}\right) / 59$
4	$\mathrm{PhI}(\mathrm{OAc})_{2}+\mathrm{TMSOTf}$ (3 equiv)	OTf	23/-

${ }^{\bar{a}}$ Conditions: 181 f (1.0 equiv), I(III) reagent (1.5 equiv), TFA (1.0/0.0 equiv), DCM (0.05 $\mathrm{M}), 0^{\circ} \mathrm{C}, 1-3 \mathrm{~h}$ reaction time. ${ }^{b}$ Isolated yields, after purification by flash chromatography. ${ }^{\text {c }}$ The reaction was performed on a 28 mmol scale.

Alkene $\mathbf{3 7 0}$ was now formed in a high yield through treatment of mesylate $\mathbf{2 1 0 f}$ with DBU in toluene for 6 h at reflux. In this case we noted only the formation of the disubstituted alkene. Dihydroxylation of $\mathbf{3 7 0}$ was achieved using $\mathrm{OsO}_{4}-\mathrm{NMO}^{197}$ in acetone- $\mathrm{H}_{2} \mathrm{O}$ (4:1). The stereochemistry of this process is controlled by the cup-shaped nature of the cis-fused 2azabicyclo[3.3.0]octane ring system; the pyrrolidinone ring blocks the attack by OsO_{4} from the concave face of the cyclopentene, and thus favors formation of exo-cis-diol 373. This compound was then protected as an acetonide with 2,2-dimethoxypropane and PPTS in acetone, furnishing 374 in good yield. ${ }^{198}$

Scheme 88

Treatment of lactam 374 with LHMDS in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ facilitated α deprotonation of the amide to provide the enolate, which was subsequently quenched with acetone (freshly distilled over $\mathrm{B}_{2} \mathrm{O}_{3}$) to furnish alcohol 375 in quantitative yield (Scheme 89). ${ }^{199}$ When stronger bases, e.g., LDA, were employed, the yield of the aldol product decreased as a result of cleavage of the N-methoxy group. ${ }^{200}$ Notably, the Boc-protected amide failed to undergo aldol condensation with acetone using LHMDS, a result which is possibly attributable to the steric effect of the carbamate group. In contrast, the less sterically encumbered $N-\mathrm{Cbz}$ group was well tolerated.

Scheme 89

We now began our evaluation of methods for the elimination of the tertiary alcohol of 375 (Scheme 90). Unexpectedly, compound 375 was found to be reluctant towards elimination under acidic conditions; i.e., $\mathbf{3 7 5}$ was fully recovered after 24 h reflux with PTSA in toluene. More encouragingly it was found that treatment of $\mathbf{3 7 5}$ with methanesulfonyl chloride and triethylamine in excess afforded a readily separable mixture (7:1) of isomeric alkenes $\mathbf{3 7 6}$ and $\mathbf{3 7 7}$ in moderate yield. The stage was thus set for examination of our key alkene deconjugation strategy. Unfortunately, all attempts to mediate alkene isomerization failed. γ-Deprotonation using a range of bases and subsequent quenching with butylated hydroxytoluene (BHT) as a hindered proton source returned the starting material intact. ${ }^{195}$ Varying the amide protecting group also failed. Control experiments using base/ $\mathrm{D}_{2} \mathrm{O}$
revealed no deuterium incorporation suggesting that no deprotonation of the methyl group(s) had occurred.

Scheme 90

In light of these finding, our deconjugation approach was revised to include allylic oxidation of 376 (Scheme 91). Our rationale in this case was to functionalize one of the methyl groups, then set the stereochemistry at C-4 via catalytic hydrogenation and finally convert the latent alcohol functionality into a terminal alkene. We examined the allylic oxidation of 376 and found that the use of SeO_{2} in 1,4-dioxane gave the best results, delivering a readily separable $5: 1$ mixture of unsaturated aldehydes $\mathbf{3 8 0} .{ }^{201}$ We hoped that catalytic hydrogenation would allow us to selectively reduce the tetrasubstituted alkene from the α-face in order to establish cis C-3-C4 stereochemistry. Unfortunately, numerous attempts to perform the reduction of $\mathbf{3 8 0}$ using a range of homo- and heterogeneous metal catalysts, including $\mathrm{Pd} / \mathrm{C},{ }^{202} \mathrm{Pd}(0)-\mathrm{HCO}_{2} \mathrm{NH}_{4},{ }^{203} \mathrm{Pd}(\mathrm{OH})_{2},{ }^{204} \mathrm{Rh} / \mathrm{C},{ }^{205} \mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3},{ }^{206}$ $\operatorname{Ir}(\operatorname{cod})\left(\mathrm{PCy}_{3}\right)\left(\mathrm{Py}^{2}\right) \mathrm{PF}_{6}($ Crabtree cat) $){ }^{207} \mathrm{Ra}-\mathrm{Ni}^{208}$ met with limited success due to the lack of catalytic competence. Pleasingly, hydrogenation of $\mathbf{3 8 0}$ using $10 \mathrm{~mol} \% \mathrm{PtO}_{2}$ provided the
desired product 381 in excellent yield. ${ }^{209}$ Optimization of the reaction conditions revealed that glacial acetic acid appeared to be the best solvent in terms of the observed diastereoselectivity ($\geq 10: 1$). Reduction of the aldehyde moiety to the corresponding alcohol was also observed under these conditions.

Scheme 91

The relative stereochemistry of $\mathbf{3 8 1}$ was established through comparison of 2D NOESY experiments with compound 377 (Figure 13). Analysis of the spectra revealed a moderate nOe cross peak between $\mathrm{H}-3$ and $\mathrm{H}-5$ for $\mathbf{3 8 1}$, which was not observed in the 2 D NOESY of $\mathbf{3 7 7}$.

Figure 13 Comparison of nOe correlations in the spectra of $\mathbf{3 8 1}$ and $\mathbf{3 7 7}$

Being satisfied with the initial steps of our synthesis, but looking for more concise ways to establish the cis isopropene substituent, we decided to employ a different α prefunctionalized ketone for the aldol reaction. To this end, benzyloxyacetone (384) was prepared in two steps from 2-methallyl chloride, as shown in Scheme 92. ${ }^{210}$

Scheme 92

Reaction of the lithium enolate of $\mathbf{3 7 4}$ with benzyloxyacetone proceeded smoothly to provide alcohol 385 in excellent yield (Scheme 93). Although dehydration of $\mathbf{3 8 5}$ did not go to completion, was low-yielding and provided an inseparable mixture of isomeric alkenes 386, we obtained enough material to proceed further. Unexpectedly, hydrogenation over catalytic PtO_{2} in AcOH generated compound 387 , wherein both benzyl and hydroxyl groups were reduced. Attempts to hydrogenate the $\mathrm{N}-\mathrm{H}$ lactam 388, under the same conditions also led to hydrogenolysis of the benzyloxy group generating amide $\mathbf{3 8 9}$.

386, $\mathrm{R}=\mathrm{OMe}$
388, R = H

387, $\mathrm{R}=\mathrm{OMe}$ (91\%)
$389, \mathrm{R}=\mathrm{H} \quad$ (90\%)

Scheme 93

To address this issue, we replaced benzyloxyacetone with ethyl pyruvate for the aldol reaction. Using our established reaction conditions, we were able to generate $\mathbf{3 9 0}$ as a mixture of syn and anti β-hydroxyamides in near quantitative yield (Scheme 94). As
discussed before, this tertiary alcohol demonstrated considerable resistance towards dehydration. Indeed, alcohol 390 resisted dehydration using conventional MsCl and $\mathrm{Et}_{3} \mathrm{~N} ;{ }^{211}$ the reaction underwent sluggishly returning conjugated amides in low yields. Use of $\mathrm{DCC} / \mathrm{CuCl}^{212}$ and $\mathrm{Tf}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}^{213}$ also failed and only led to recovered starting material. Compound $\mathbf{3 9 0}$ also remained unchanged after stirring with one equivalent of PTSA hydrate for 24 h in toluene held at reflux or exposed to aqueous sulfuric acid (1 M) for 12 h at room temperature. In the latter case, rapid decomposition of the starting material was observed when the reaction was heated at $70{ }^{\circ} \mathrm{C}$. Since $\mathrm{POCl}_{3}{ }^{214}$ and $\mathrm{SOCl}_{2}{ }^{215}$ in pyridine have been effectively utilized in the dehydration of tertiary alcohols, we opted to examine these reagents. Unfortunately, treatment of $\mathbf{3 9 0}$ with POCl_{3} or SOCl_{2} in pyridine at room temperature failed to provide the alkene product in all but trace amounts.

Scheme 94

Ultimately, we discovered that t-butyl carbonate 391 and 393 underwent elimination when exposed to base. Although dehydrocarbonation of tertiary ethyl carbonates is known ${ }^{216}$ and useful for activation of allylic alcohols towards the Tsuju-Trost reaction, ${ }^{217}$ the elimination of tert-butyl carbonates has yet to be reported. Thus, reaction of alcohol $\mathbf{3 9 0}$ with Boc-anhydride and DMAP in $\mathrm{CH}_{3} \mathrm{CN}$ afforded carbonate 391 in excellent yield (Scheme 95). Cleavage of the N-methoxy group was completed by treatment of $\mathbf{3 9 0}$ with molybdenum
hexacarbonyl in aqueous acetonitrile to afford $\mathrm{N}-\mathrm{H}$ amide 392 in good yield. ${ }^{218}$ Both amide and hydroxyl functionalities were then protected with Boc-anhydride to afford carbonate 393.

Carbonates 391, 393 were now submitted to dehydrocarbonation with a range of bases. The results of this elimination study are outlined in Table 16. Treatment of $\mathbf{3 9 1}$ with potassium tert-butoxide in THF at ambient temperature provided a mixture of E - and $Z-394$, albeit in moderate yield. Minor quantities of the corresponding N - H products resulting from N-methoxy group cleavage were also observed. ${ }^{200}$ In all cases, the E-alkene was the major product of this transformation. Attempts to accomplish this reaction by heating a solution of 391 in pyridine at $100^{\circ} \mathrm{C}$ proved fruitless and led only to recovering of starting material. The best results were obtained using 5 equivalents of DBU in toluene at $100^{\circ} \mathrm{C}$. The elimination reaction of N-Boc derivative 393 was more successful, generating mixtures of separable alkenes E and Z-395 in higher yields. These ratios were similar to those observed for the elimination of carbonate $\mathbf{3 9 1}$ and the E-alkene predominated in all instances. We also noted that dehydrocarbonation of carbonate 393 with DBU in toluene proceeds at a significantly lower ($50{ }^{\circ} \mathrm{C}$) temperature. We believe that this may be a consequence of the electron-
withdrawing ability of the N-Boc group, which would serve to increase the acidity of the β hydrogen and thus promote elimination.

Table 16. Carbonate Elimination Studies

entry	substrate	base	equiv	solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	time, h	yield, $\%{ }^{a}(E: Z)$
1	$\mathbf{3 9 1}$	t-BuOK	3	THF	25	48	$38(4.1: 1)$
2	$\mathbf{3 9 1}$	KOH	3	toluene	100	6	$42(3.5: 1)$
3	$\mathbf{3 9 1}$	DBU	5	toluene	100	6	$63(4.3: 1)$
4	$\mathbf{3 9 1}$	py	-	py	100	6	NR
5	$\mathbf{3 9 3}$	t-BuOK	3	THF	25	24	$81(3.2: 1)$
6	$\mathbf{3 9 3}$	t-BuOK	3	toluene	50	4	$85(3.5: 1)$
7	$\mathbf{3 9 3}$	t-BuOK	3	t-BuOH	25	4	decomp
8	$\mathbf{3 9 3}$	DBU	10	DCM	40	12	$77(3.7: 1)$
9	$\mathbf{3 9 3}$	DBU	5	toluene	50	5	$86(3.3: 1)$
10	$\mathbf{3 9 3}$	KOH	3	THF	50	5	$52(3.9: 1)$
11	$\mathbf{3 9 3}$	KHMDS	3	THF	25	5	NR

${ }^{a}$ Isolated yields, after flash chtomatography.

The structures of $E, Z-394$ and $E, Z-395$ were elucidated using ${ }^{1} \mathrm{H}$ NMR experiments (Figure 14). It was found the allyl methyl group protons for major E-isomers of 394 and 395 are deshielded ($\delta 2.36$ and 2.38 ppm , respectively) relative to $Z-394,395$ ($\delta 2.00$ and 2.03 ppm , respectively) as a result of their close proximity to the amide carbonyl group. In addition, protons $\mathrm{H}-4$ for $E-394,395$ are more downfield ($\delta \sim 4.00 \mathrm{ppm}$) relative to $Z-394$, $395(\delta \sim 3.55 \mathrm{ppm})$ due to their close proximity to the ester carbonyl group.

Figure 14 Comparison of peaks in ${ }^{1} \mathrm{H}$ NMR spectra of $E, Z-394$ and $E, Z-395$

Catalytic hydrogenation of tetrasubstituted alkene $E-\mathbf{3 9 5}$ over PtO_{2} in glacial acetic acid provided cis-cis-2,3,4-trisubstituted pyrrolidinone 396 with excellent stereoselectivity (10:1) and high yield (Scheme 96). Attempts to perform this reaction in other solvents, including EtOAc, THF, MeOH and EtOH , resulted in a decrease in diastereoselectivity. No reaction or alkene isomerization was observed when the reduction was carried out over other transition metal catalysts (vide supra).

Scheme 96

The relative configuration of $\mathbf{3 9 6}$ was confirmed by a 2D NOESY experiment (Figure 15). Analysis of the spectra revealed strong nOe correlations between $\mathrm{H}-3 / \mathrm{H}-4, \mathrm{H}-3 / \mathrm{H}-5$ and H-4/H-5 for compound 396, which was proven to contain the required all-cis stereochemistry at C-3/C-4/C-5.

Figure 15 nOe correlations in the spectra of $\mathbf{3 9 6}$

Simultaneous ester and amide reduction of $\mathbf{3 9 6}$ was accomplished by treatment with a 15 -fold excess of $\mathrm{BH}_{3}-\mathrm{Me}_{2} \mathrm{~S}$ complex in the presence of catalytic NaBH_{4} (Scheme 97). ${ }^{219}$ Alternatively, this transformation could be performed using a 2-step procedure. Thus, ester and amide moieties were initially reduced with LiBH_{4} in THF to the corresponding primary alcohol and hemiaminal functionalities. Dissolution of the crude product in AcOH and treatment with an excess of $\mathrm{NaBH}_{3} \mathrm{CN}$ then afforded pyrrolidine 397 in good yield. Unfortunately, application of Grieco's ${ }^{220}$ dehydration protocol (via selenide and selenoxide) failed to provide 398. This result was rather surprising since this method has been widely employed for the construction of the isoprene unit in kainoid syntheses. ${ }^{178,179 b, 221} \mathrm{We}$ therefore elected to convert the primary alcohol to the corresponding mesylate in order to have more flexibility with the elimination step. Treatment of alcohol 397 with methanesulfonyl chloride in the presence of triethylamine generated stable mesylate derivative 399 in good yield.

Scheme 97

In order to remove the acetonide group from 399, a range of conditions known to mediate this transformation was qualitatively screened (Table 13). However, selective acetonide deprotection in the presence of the Boc carbamate was found to be more challenging than anticipated. Aqueous TFA and HCl , PTSA in methanol, 50X8 DOWEX acidic ion-exchange resin in refluxing methanol all generated the free amine in addition to the desired 1,2-diol. No acetonide cleavage was detected when 399 was treated with aqueous AcOH or 50X8 DOWEX in methanol at ambient temperature. The use of a solution of iodine in MeOH as milder cleaving agent led to the formation of $\mathbf{4 0 0}$ and $\mathbf{4 0 1}$ (1:7).

Table 17. Acetonide Deprotection Studies

		conditions			
entry	reagent	solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	time, h	product(s) ${ }^{a}$
1	80\% TFA	$\mathrm{H}_{2} \mathrm{O}$	25	0.5	only 401
2	3 M HCl	THF- $\mathrm{H}_{2} \mathrm{O}(1: 1)$	25	12	only 401
3	0.1 M HCl	THF- $\mathrm{H}_{2} \mathrm{O}$ (1:1)	25	24	only 401
4	1 M HCl	acetone $-\mathrm{H}_{2} \mathrm{O}(1: 1)$	40	4	only 401
5	$50 \% \mathrm{AcOH}$	$\mathrm{H}_{2} \mathrm{O}$	25	12	no reaction
6	PTSA	MeOH	25	12	only 401
7	I_{2}	MeOH	65	24	400 + 401 (1:7)
8	DOWEX 50X8-100	MeOH	25	12	no reaction
9	DOWEX 50X8-100	MeOH	65	12	only 401

${ }^{\bar{a}}$ Monitored by TLC.

Since we were unable to retain the Boc protecting group, we simply opt to reprotect the free amine of 401 using Boc anhydride with $\mathrm{Et}_{3} \mathrm{~N}$ and DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 98). Following this method, we were pleased to discover that N-Boc protected diol 400 can be synthesized from pyrrolidine 401 in high yield. Initial attempts to mediate oxidative cleavage of the diol moiety in 400 by treatment with $\mathrm{NaIO}_{4} / \mathrm{RuCl}_{3}$ in $\mathrm{CH}_{3} \mathrm{CN}^{-} \mathrm{CCl}_{4}-\mathrm{H}_{2} \mathrm{O}$ (2:2:3) solvent mixture were unsuccessful and led to the decomposition of starting material. We believe this reflects the inherent instability of Boc groups to sodium iodide ${ }^{222}$ and strongly Lewis acidic conditions. ${ }^{223}$

Scheme 98

Our protecting group strategy was revised to involve N-Cbz derivative 406, which was readily prepared from alkene E-394 (Scheme 99). Using our established hydrogenation procedure, cis ester 403 was prepared in excellent yield and with high stereoselectivity (10:1). We envisioned the removal of the N-OMe group prior to reduction, since the direct reduction of N -methoxyamides is not generally a high-yielding process. Thus, reaction of 403 with $\mathrm{Mo}(\mathrm{CO})_{6}$ in a mixture of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}$ at reflux temperature generated $\mathbf{4 0 4}$ in high yield. Treatment with LiAlH_{4} in dioxane at reflux afforded amino alcohol 405, which was used directly in the next step. Thus, sequential, one-pot treatment of $\mathbf{4 0 5}$ with CbzCl and MsCl delivered carbamate 406 in 81% over 3 steps.

Scheme 99

Removal of the acetonide protecting group of $\mathbf{4 0 6}$ was efficiently accomplished by acidic hydrolysis, generating vicinal diol, which was oxidatively cleaved using sodium periodate in $\mathrm{H}_{2} \mathrm{O}-\mathrm{THF}$ at ambient temperature (Scheme 100). The crude diol was immediately treated with 8 M Jones reagent, followed by an ethereal solution of diazomethane to furnish diester 407 in a reasonable overall yield. Compound 407 then underwent $\mathrm{S}_{\mathrm{N}} 2$ substitution and elimination to form $\mathbf{4 0 8}$ upon heating to reflux with NaI and

DBU in dimethoxyethane. In this step, we hoped that such base treatment would also epimerize C-2 center to provide the natural trans C-2/C-3 diastereomer. According to Ogasawara, ${ }^{224}$ cis- and trans-408 can distinguished by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Thus, the signal for the characteristic C-2 methine proton is observed at $\delta 4.46(\mathrm{dd}, J=6.4,2.7 \mathrm{~Hz})$ for cis-408, while the same signal is shifted to $\delta 4.24(\mathrm{dd}, J=4.2,2.9 \mathrm{~Hz})$ for the natural trans408 isomer. Given the fact that we observed the signal at $\delta 4.47$ (dd, $J=16.7,6.2 \mathrm{~Hz}$), we conclude that the desired epimerization did not occur under these conditions. In order to complete the synthesis of the target itself, basic hydrolysis as well as Cbz deprotection step was required. It is known that benzyl carbamates are cleaved to the corresponding amines upon heating with aqueous $\mathrm{NaOH} .{ }^{169,194 \mathrm{a}, 225}$ Unfortunately, attempts to cleave the Cbz group under these conditions failed to provide the desired natural product.

Scheme 100

Our plan to complete the synthesis is outlined below (Scheme 101). It was now decided to the reverse the last two steps: first removing Cbz group under catalytic hydrogenolysis and then forming the isopropene appendage by mesylate elimination, followed by diester hydrolysis.

Scheme 101

Here is a consolidated diagram, summarizing our progress towards neurotransmitter α-kainic acid (Scheme 102). An advanced intermediate 408 was synthesized with 7.6% overall yield over a total of 17 steps starting from commercially available 2-(cyclopent-2-en1 -yl)acetic acid (173f). Compound 408 can be converted to α-kainic acid by following the previously reported studies by Ogasawara ${ }^{190 a}$ and Rubio, ${ }^{165}$ respectively.

Scheme 102

2.7. Conclusions

Employing the HMIB-mediated intramolecular oxamidation of unsaturated O-alkyl hydroxamates, a strategy for the preparation of neurotransmitter α-kainic acid has been developed. Construction of an advanced intermediate $\mathbf{4 0 8}$ has demonstrated the synthetic utility of N-methoxy- N-acylnitrenium ions for the preparation of complex natural products.

2.8. Experimental Procedures

2.8.1 General Procedures

All non-aqueous reactions were carried out in oven or flame-dried glassware under an atmosphere of dry nitrogen or argon, unless otherwise noted. Except as otherwise indicated, all reactions were magnetically stirred and monitored by analytical thin-layer chromatography using Merck pre-coated silica gel plates with F_{254} indicator. Visualization was accomplished by UV and/or potassium permanganate solution. Flash column chromatograph was performed using Silicycle Silica-P flash silica gel ($40-63 \mu \mathrm{~m}$). Yields refer to chromatographically and spectrographically pure compounds, unless otherwise noted.

2.8.2 Materials

Dichloromethane (DCM), diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, toluene, tetrahydrofuran (THF) and methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ after purchase from Aldrich were additionally purified on PureSolv PS-400-4 by Innovative Technology, Inc. purification system. Acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and N methylimidazole (NMI) were distilled from calcium hydride under an atmosphere of dry nitrogen. Acetic acid (AcOH) was distilled from phosphorus pentoxide under an atmosphere of dry nitrogen. Hydroxy(tosyloxy)iodobenzene (HTIB) and hydroxy(mesyloxy)iodobenzene (HMIB) were prepared according to the method of Yusubov and Wirth. ${ }^{226}$ PIFA was prepared following the procedure reported by Varvoglis. ${ }^{227}$ All other reagents and starting materials, unless otherwise noted, were purchased from commercial vendors and used without further purification.

2.8.3 Instrumentation

All melting points were determined in open Pyrex capillaries using a Thomas Hoover Unimelt melting point apparatus and are uncorrected. Infrared spectra were recorded as thin films on sodium chloride plates using an ATI Mattson Genesis Series FTIR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance $400\left(400 \mathrm{MHz},{ }^{1} \mathrm{H}, 101 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$ or a Bruker Avance $500\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$. Chemical shift values (δ) are reported in ppm relative to residual chloroform ($\delta 7.27 \mathrm{ppm}$ for ${ }^{1} \mathrm{H} ; 77.00 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$), residual acetone ($\delta 2.05 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$; 29.92 ppm for ${ }^{13} \mathrm{C}$), residual methanol ($\delta 3.31 \mathrm{ppm}$ for ${ }^{1} \mathrm{H} ; 49.15$ ppm for ${ }^{13} \mathrm{C}$) and residual DMSO ($\delta 2.50 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$; 39.51 ppm for ${ }^{13} \mathrm{C}$). Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet) and br (broad). DEPT 135 and two-dimensional (COSY, HMQC, HMBC, NOESY) NMR experiments were employed, where appropriate, to aid in the assignment of signals in the ${ }^{1} \mathrm{H}$ NMR spectra. High-resolution electron spray ionization mass spectra (HRMS-ESI) were obtained on a Micromass Q-TOF 2 at the University of Illinois Research Resources Center or on a Micromass Q-TOF Ultima at the Mass Spectroscopy Laboratory at the University of Illinois, Urbana-Champaign.

2.8.4 Experimental Procedures

(\pm)-O-Methyl cyclopent-2-enyl-acetohydroxamate (181f)

A mixture of compound $\mathbf{1 7 3 f}(2.0 \mathrm{~g}, 15.9 \mathrm{mmol}, 1.0$ equiv) and N -methylimidazole (3.8 mL , 44.7 mmol , 3.0 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and then treated with a solution of $\mathrm{TsCl}\left(3.93 \mathrm{~g}, 20.6 \mathrm{mmol}, 1.3\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$ via cannula. The reaction mixture
was stirred for 1 h in an ice bath and then a solution of $\mathrm{NH}_{2} \mathrm{OMe} \cdot \mathrm{HCl}(1.72 \mathrm{~g}, 20.6 \mathrm{mmol}$, 1.3 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ and N-methylimidazole ($1.27 \mathrm{~mL}, 15.9 \mathrm{mmol}, 1.0$ equiv) was added via cannula. After warming to rt , the reaction was stirred overnight and then concentrated and the residue purified by flash chromatography on silica gel (EtOAc/hexanes, 1:1 to EtOAc) to provide 181 f (2.46 g , quant) as a colorless oil; $\mathrm{R}_{f} 0.33$ (EtOAc); IR (film) $v_{\max } 3180,2940,1659,1518,1361,1191,982,943,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ 8.71 (br. s., 1 H), 5.78 (dd, $J=5.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.68 (br. s., 1 H), 3.76 (br. s., 3 H), 3.08-3.20 $(\mathrm{m}, 1 \mathrm{H}), 2.25-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.21(\mathrm{~m}, 3 \mathrm{H}), 1.47(\mathrm{dq}, J=14.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 170.1,133.4,131.8,64.4,42.2,39.3,31.8,29.4$; HRMS-ESI calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 178.0844$, found: 178.0840.
(3aS*, 6aR*)-1-Methoxy-2-oxooctahydrocyclopenta[b]pyrrol-6-yl methanesulfonate (210f)

$181 f$

A solution of compound $\mathbf{1 8 1 f}(4.3 \mathrm{~g}, 27.7 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(400 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath) and sequentially treated with TFA ($2.1 \mathrm{~mL}, 27.7 \mathrm{mmol}, 1.0$ equiv) and a solution of HMIB ($13.1 \mathrm{~g}, 41.6 \mathrm{mmol}, 1.2$ equiv) in DCM (100 mL) rapidly via syringe. After 1 h , the reaction was allowed to warm to rt and stirred for 5 h . The reaction mixture was then concentrated under reduced pressure to yield a brown oil, which was immediately purified by flash chromatography on silica gel (EtOAc) to provide $\mathbf{2 1 0 f}(5.9 \mathrm{~g}, 85 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.23$ (EtOAc); IR (film) $\mathrm{v}_{\max } 2941,1689,1350,1171,941,898,801 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 5.12$ (br. s., 1 H), $4.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.06$ (s, $3 H), 2.89-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=17.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.08(\mathrm{~m}$,
$3 \mathrm{H}), 1.62(\mathrm{ddt}, J=13.0,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 169.0,82.6,66.1$, $62.2,38.3,34.1,31.4,31.1,30.4$; HRMS-ESI calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 250.0749$, found: 250.0739 .
(3aS*, 6aR*)-1-Methoxy-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrol-2(3H)-one (370)

To a solution of compound $210 \mathrm{f}(2.73 \mathrm{~g}, 11.0 \mathrm{mmol}, 1.0$ equiv) in toluene (70 mL) was added DBU ($4.0 \mathrm{~mL}, 26.8 \mathrm{mmol}, 2.4$ equiv) via syringe. The mixture was stirred for 10 min then heated to reflux. The reaction was stirred at reflux for 6 h , at which point TLC indicated complete consumption of substrate. The reaction mixture was then concentrated under reduced pressure to yield a dark oil, which was immediately purified by flash chromatography on silica gel (EtOAc) to provide $370(1.49 \mathrm{~g}, 89 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.23$ (EtOAc); IR (film) $v_{\max } 2938,1705,1647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.00(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=5.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.99$ $(\mathrm{m}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=17.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=17.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=17.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 169.0,135.2$, 128.2, 67.0, 62.9, 40.1, 35.6, 30.5; HRMS-ESI calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}[\mathrm{M}]^{+}$153.0790, found: 153.0789.

$\left(3 \mathrm{a} S^{*}, 3 \mathrm{~b} R^{*}, 6 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}\right)$-4-Methoxy-2,2-dimethylhexahydro-[1,3]dioxolo[4',5':4,5]-

 cyclopenta[1,2-b]pyrrol-5(3aH)-one (374)

To a solution of compound $\mathbf{3 7 0}\left(783 \mathrm{mg}, 5.1 \mathrm{mmol}, 1.0\right.$ equiv) in acetone (20 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(5 \mathrm{~mL})$ was added a solution of $\mathrm{OsO}_{4}\left(4 \mathrm{wt} \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 0.16 \mathrm{~mL}, 0.005$ equiv) via syringe. The mixture was stirred for 10 min , and then N -methylmorpholine N -oxide hydrate ($830 \mathrm{mg}, 6.1$ mmol, 1.2 equiv) was added in one portion. The reaction was stirred for 4 h before a saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \mathrm{~mL})$ was added. The mixture was stirred for 20 min and then diluted with DCM (75 mL). The organic layer was separated and washed with brine (20 mL). The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was dissolved in acetone (20 mL) and PPTS ($128 \mathrm{mg}, 0.51 \mathrm{mmol}, 0.1$ equiv) and 2,2-dimethoxypropane ($1.9 \mathrm{~mL}, 15.3 \mathrm{mmol}, 3.0$ equiv) were added via syringe. After stirring at room temperature for 4 h , the reaction mixture was concentrated under reduced pressure. The residual material was purified by flash chromatography on silica gel (EtOAc) to provide 374 (743 mg , 65%, over 2 steps) as a colorless oil; $\mathrm{R}_{f} 0.25$ (EtOAc); IR (film) $v_{\max } 2983,2936,1718,1437,1374,1212,1052 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ 4.73-4.79 (m, 1H), 4.68-4.73 (m, 1H), 4.03 (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{dd}, J=$ $10.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=17.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=14.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J$ $=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{ddd}, J=14.5,10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 169.5,110.6,81.6,81.4,68.0,62.0,37.8,33.3,32.2,26.7,24.3 ;$ HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}[\mathrm{M}]^{+}$227.1158, found: 227.1156. $\left(3 \mathrm{a} S^{*}, 3 \mathrm{~b} R^{*}, 6 R^{*}, 6 \mathrm{aS}{ }^{*}, 7 \mathrm{a} R^{*}\right.$)-6-(2-Hydroxypropan-2-yl)-4-methoxy-2,2-dimethylhexahydro-[1,3]-dioxolo[4',5':4,5]cyclopenta[1,2-b]pyrrol-5(3aH)-one (375)

374

375

To a solution of compound $374(212 \mathrm{mg}, 0.93 \mathrm{mmol}, 1.0$ equiv) in THF (20 mL) cooled to $78^{\circ} \mathrm{C}$ was added LHMDS (1 M solution in THF, $2.24 \mathrm{~mL}, 2.24 \mathrm{mmol}, 2.4$ equiv) via syringe. After stirring for 1 h , acetone ($103 \mu \mathrm{~L}$, 1.4 mmol , 1.5 equiv) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(172 \mu \mathrm{~L}, 1.4$ mmol, 1.5 equiv) were sequentially added via syringe. The reaction mixture was stirred for 4 h at $-78{ }^{\circ} \mathrm{C}$ then allowed to warm to rt and quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic extracts were then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc-hexanes, 1:1) to provide $\mathbf{3 7 5}$ (265 mg , 100%) as a colorless oil; $\mathrm{R}_{f} 0.49$ (EtOAc); IR (film) $\cup_{\max } 3445,2983,2935,1698,1457$, 1437, 1211, $1056 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.75(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 1 \mathrm{H}), 2.78(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.44(\mathrm{dd}, J=14.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$, $1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 170.9,110.9,81.5,81.1,72.1,67.6,61.8,55.2$, 38.4, 36.0, 27.5, 26.8, 26.0, 24.4; HRMS-ESI calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{5}[\mathrm{M}]^{+} 285.1576$, found: 285.1577.

Ethyl (S)-2-hydroxy-2-((3aS*, 3b $\left.R^{*}, 6 R^{*}, 6 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}\right)$-4-methoxy-2,2-dimethyl-5-oxooctahydro-[1,3]-dioxolo[4',5':4,5]cyclopenta[1,2-b]pyrrol-6-yl)propanoate and ethyl (\boldsymbol{R})-2-hydroxy-2-(($\left.3 \mathrm{a} S^{*}, 3 \mathrm{~b} R^{*}, 6 R^{*}, 6 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}\right)$-4-methoxy-2,2-dimethyl-5-oxooctahydro-[1,3]-dioxolo-[4',5':4,5]cyclopenta[1,2-b]pyrrol-6-yl)propanoate (390)

374

390

To a solution of compound $374(2.46 \mathrm{~g}, 10.8 \mathrm{mmol}, 1.0$ equiv) in THF (200 mL) cooled to $78^{\circ} \mathrm{C}$ was added LHMDS (1 M solution in THF, $30 \mathrm{~mL}, 30 \mathrm{mmol}$, 2.4 equiv) was added via syringe. After stirring for 1 h , ethyl pyruvate ($1.9 \mathrm{~mL}, 16.2 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($2.0 \mathrm{~mL}, 16.2 \mathrm{mmol}, 1.5$ equiv) were sequentially added via syringe. The reaction mixture was stirred for 4 h at $-78{ }^{\circ} \mathrm{C}$ then allowed to warm to rt and quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc (3 x 100 mL) and the combined organic extracts were then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc-hexanes, 1:1) to provide $390(3.68 \mathrm{~g}, 99 \%)$ as a mixture of diastereomers: white solid; $\mathrm{mp} 109-111{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.57$ (EtOAc); IR (film) $v_{\max }$ 3511, 2983, 2936, 1713, 1472, 1379, 1204, 1011, 888, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.73(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J$ $=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H})$, 3.00-3.09 (m, 1H), $2.51(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=14.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.46$ (br. s., 3 H), 1.45 (br. s., 3 H), 1.28-1.35 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 175.6,168.5$, $110.6,81.3,81.0,74.7,67.3,62.6,61.3,52.7,37.9,34.4,26.6,24.4,24.3,14.0$; HRMS-ESI calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 344.1709$, found: 344.1705.

Ethyl $\quad(S)-2-\left(\left(3 a^{*}, 3 b R^{*}, 6 R^{*}, 6 a S^{*}, 7 a R^{*}\right)\right.$-2,2-dimethyl-5-oxooctahydro-[1,3]dioxolo-[4',5':4,5]-cyclopenta[1,2-b]pyrrol-6-yl)-2-hydroxypropanoate and ethyl (R)-2$\left(\left(3 \mathrm{aS}{ }^{*}, 3 \mathrm{~b} R^{*}, 6 R^{*}, 6 \mathrm{a}^{*}, 7 \mathrm{a}^{*}{ }^{*}\right)\right.$-2,2-dimethyl-5-oxooctahydro-[1,3]dioxolo[4',5':4,5]-cyclopenta-[1,2-b]pyrrol-6-yl)-2-hydroxypropanoate (392)

To a solution of $\mathbf{3 9 0}$ ($250 \mathrm{mg}, 0.72 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(15: 1,10 \mathrm{~mL})$ was added $\mathrm{Mo}(\mathrm{CO})_{6}(280 \mathrm{mg}, 1.07 \mathrm{mmol}, 1.5$ equiv) in one portion. The reaction was heated at reflux for 6 h and then allowed to cool to rt . The reaction was opened to air and stirred for 12 hours. The reaction mixture was then concentrated under reduced pressure and purified by flash chromatography on silica gel to provide $392(200 \mathrm{mg}, 87 \%)$ as a white solid; $\mathrm{mp} 156-160{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.28$ (EtOAc); IR (film) $\cup_{\max }$ 3311, 2983, 2937, 1731, 1699, 1444, $1373,1269,1055,866,737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.67-4.74(\mathrm{~m}$, $1 \mathrm{H}), 4.37-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.34(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.16$ $(\mathrm{q}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=14.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{ddd}, J=14.5,10.2$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.35(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta$ $176.2,175.9,110.5,84.7,81.2,74.7,65.3,62.4,56.3,38.9,38.0,26.7,24.6,24.4,14.0$; HRMS-ESI calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 314.1604$, found: 314.1595.
tert-Butyl $\quad\left(3 \mathrm{a} S^{*}, 3 \mathrm{~b} R^{*}, 6 R^{*}, 6 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}\right)-6-((R)$-2-((tert-butoxycarbonyl)oxy)-1-ethoxy-1-oxopropan-2-yl)-2,2-dimethyl-5-oxohexahydro-[1,3]dioxolo[4',5':4,5]cyclopenta[1,2-b]-pyrrole-4(3aH)-carboxylate and tert-butyl $\left(3 \mathrm{aS}{ }^{*}, 3 \mathrm{~b} R^{*}, 6 R^{*}, 6 \mathrm{aS}^{*}, 7 \mathrm{a} R^{*}\right)-6-((S)-2-(($ tert-butoxycarbonyl)oxy)-1-ethoxy-1-oxopropan-2-yl)-2,2-dimethyl-5-oxohexahydro-[1,3]dioxolo $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ cyclopenta[1,2-b]pyrrole-4(3aH)-carboxylate (393)

To a stirred solution of compound 392 ($1.15 \mathrm{~g}, 3.69 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$ were sequentially added triethylamine ($4.10 \mathrm{~mL}, 29.52 \mathrm{mmol}, 8.0$ equiv) and DMAP ($450 \mathrm{mg}, 3.69 \mathrm{mmol}, 1.0$ equiv). A solution of $\mathrm{Boc}_{2} \mathrm{O}(3.22 \mathrm{~g}, 14.8 \mathrm{mmol}, 4.0$ equiv)
in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was then added via cannula. The reaction mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$ and then allowed to warm to rt . After 6 h , the reaction was concentrated under reduced pressure and the residual oil purified by flash chromatography (EtOAc-hexanes, 1:4) to yield 393 ($1.89 \mathrm{~g}, 100 \%$) as a mixture of diastereomers: colorless oil; $\mathrm{R}_{f} 0.17$ (EtOAchexanes, 1:4); IR (film) $v_{\max }$ 2981, 2937, 1789, 1747, 1722, 1458, 1362, 1290, 1157, 1117, $1061,852,737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.63(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.31(\mathrm{~m}, 4 \mathrm{H}), 4.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.18(\mathrm{~m}$, $1 \mathrm{H}), 3.07(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=14.6,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37$ (dd, $J=14.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 5 \mathrm{H}), 1.58-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.58(\mathrm{~m}$, $15 \mathrm{H}), 1.48(\mathrm{~s}, 14 \mathrm{H}), 1.46(\mathrm{~s}, 7 \mathrm{H}), 1.31(\mathrm{~s}, 5 \mathrm{H}), 1.25-1.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$ MHz): $\delta 170.5,170.3,169.9,169.7,151.6,151.4,150.0,149.9,110.9,85.8,85.6,83.8,83.7$, $83.0,82.9,82.0,81.2,80.2,80.1,68.9,68.8,62.0,61.9,56.5,56.0,37.7,37.6,34.9,34.9$, 28.0, 28.0, 27.7, 27.6, 27.0, 26.9, 24.7, 24.6, 20.8, 19.0, 14.0, 13.9; HRMS-ESI calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NO}_{10}[\mathrm{M}+\mathrm{H}]^{+}: 514.2652$, found: 514.2647.
$\left(3 \mathrm{aS}{ }^{*}, 3 \mathrm{~b} R^{*}, 6 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}, \boldsymbol{E}\right)$-tert-Butyl 6-(1-ethoxy-1-oxopropan-2-ylidene)-2,2-dimethyl-5-oxohexahydro-[1,3]dioxolo[4',5':4,5]cyclopenta[1,2-b]pyrrole-4(3aH)-carboxylate $\quad(E-$ 395) and tert-butyl $\left(3 \mathrm{a} S^{*}, 3 \mathrm{~b} R^{*}, 6 \mathrm{aS}^{*}, 7 \mathrm{a}^{*}, Z\right)$-6-(1-ethoxy-1-oxopropan-2-ylidene)-2,2-dimethyl-5-oxohexahydro-[1,3]dioxolo[4',5':4,5]cyclopenta[1,2-b]pyrrole-4(3aH)carboxylate (Z-395)

To a stirred solution of compound 393 ($405 \mathrm{mg}, 0.79 \mathrm{mmol}, 1.0$ equiv) in toluene (20 mL) was added DBU ($0.60 \mathrm{~mL}, 3.95 \mathrm{mmol}, 5.0$ equiv) via syringe. The reaction was heated to 50
${ }^{\circ} \mathrm{C}$, stirred for 4 h , cooled to rt and quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by flash chromatography (EtOAc-hexanes, 1:5) to yield $E-395$ (205.7 mg, 66\%) and $Z-395$ (62.3 $\mathrm{mg}, 20 \%$).

Analytical data for E-395: colorless oil; $\mathrm{R}_{f} 0.30$ (EtOAc-hexanes, 1:4); IR (film) $\mathrm{v}_{\max } 2981$, 2939, 1772, 1734, 1716, 1701, 1456, 1371, 1238, 1157, 1059, $852 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 4.62-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.96-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=14.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.57(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}): \delta 167.6,166.4,150.6,138.3,137.2,110.9,85.8,83.8,81.1,67.0,61.3,39.5,37.3$, 28.0, 27.0, 24.7, 14.3, 14.1; HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 396.2022$, found: 396.2015.

Analytical data for Z-395: colorless oil; $\mathrm{R}_{f} 0.13$ (EtOAc-hexanes, 1:4); IR (film) $\mathrm{v}_{\max } 2982$, $2935,1777,1716,1653,1457,1368,1239,1151,1052,974,853,770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.68(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{qd}, J=7.1,2.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=14.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}$, $3 \mathrm{H}), 1.68(\mathrm{ddd}, J=14.6,10.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.35(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 169.6,163.9,150.4,138.0,131.9,111.1,86.0,83.7,81.4,67.9$, $61.5,36.3,36.3,28.0,27.1,24.8,17.8,13.9$; HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}$: 396.2022, found: 396.2030 .
$\left(3 \mathrm{a} S^{*}, 3 \mathrm{~b} R^{*}, 6 S^{*}, 6 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}\right)$-tert-Butyl 6-(1-ethoxy-1-oxopropan-2-yl)-2,2-dimethyl-5-oxohexahydro-[1,3]dioxolo[4',5':4,5]cyclopenta[1,2-b]pyrrole-4(3aH)-carboxylate (396)

A mixture of compound $E-395(29.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.0$ equiv $)$ and $\mathrm{PtO}_{2}\left(1.7 \mathrm{mg}, 7.5 \times 10^{-3}\right.$ mmol, 0.1 equiv) in $\mathrm{AcOH}(5 \mathrm{~mL})$ was placed in a Parr hydrogenation apparatus. The reaction mixture was shaken for 24 h under an atmosphere of hydrogen (15 psi). The Parr apparatus was flushed with nitrogen and the reaction mixture filtered and the filtrate concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc-hexanes, 1:5) to provide $396(28.0 \mathrm{mg}, 94 \%)$ as a white solid; $\mathrm{mp} 95-97^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.61$ (EtOAc-hexanes, 1:1); IR (film) $\cup_{\max }$ 2981, 2937, 1721, 1718, $1456,1375,1211,1178,1053,881 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.64-4.68(\mathrm{~m}, 1 \mathrm{H})$, 4.61-4.64 (m, 1H), 4.16-4.29 (m, 2H), 4.12 (d, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=11.0,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.01-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.59(\mathrm{~m}$, 9H), $1.48(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$: $\delta 175.4,173.0,150.1,110.6,84.2,83.7,80.5,67.7,60.8,49.1,37.7,35.2,31.7,28.0,26.6$, 24.3, 16.4, 14.1; HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 398.2179$, found: 398.2170.
tert-Butyl
$\left(3 \mathrm{a} S^{*}, 3 \mathrm{~b} R^{*}, 6 S^{*}, 6 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}\right)-6-((S)$-1-hydroxypropan-2-yl)-2,2-
dimethylhexahydro-[1,3]dioxolo[4',5':4,5]cyclopenta[1,2-b]pyrrole-4(3aH)-carboxylate (397)

To a stirred solution of $396(120 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv) in THF (25 mL) at room temperature, was added $\mathrm{LiBH}_{4}(26.4 \mathrm{mg}, 1.2 \mathrm{mmol}, 4$ equiv). After stirring for 12 h , saturated aqueous sodium tartrate (15 mL) was added and stirring continued for 30 min . $\mathrm{EtOAc}(20 \mathrm{~mL})$ was then added, the layers separated and the aqueous layer extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and dissolved in glacial $\mathrm{AcOH}(10 \mathrm{~mL}) . \mathrm{NaBH}_{3} \mathrm{CN}$ (4 equiv) was added to the solution portionwise. After 10 min , the reaction mixture was slowly poured to cold 2 M aqueous KOH $(100 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). Combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and the residue purified by flash chromatography on silica gel (EtOAc-hexanes, 1:1) to provide 397 ($78 \mathrm{mg}, 75 \%$) as a colorless oil; $\mathrm{R}_{f} 0.34$ (EtOAc-hexanes, 1:1); IR (film) $\mathrm{u}_{\max }$ 3510. 2977, 1675, 1507, 1394, 1367, 1257, 1205, 1170, 1118, 1051, 886, $778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ (mixture of rotamers) $4.70($ br. s., 1 H$), 4.53-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.57$ $(\mathrm{dd}, J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.91-3.03(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.61-$ $1.74(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.51(\mathrm{~m}, 12 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ (mixture of rotamers) $154.8,154.5,110.1,109.8,85.6,84.7$, 81.4, 81.3, 79.9, 79.7, 69.8, 67.1, 66.9, 49.1, 49.0, 43.8, 43.0, 42.4, 41.8, 36.1, 30.4, 30.2,
29.7, 28.5, 26.6, 24.4, 24.3, 15.7, 14.3; HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 342.2280$, found: 342.2278 .
tert-Butyl $\quad\left(3 \mathrm{aS}^{*}, 3 \mathrm{~b} R^{*}, 6 S^{*}, 6 \mathrm{a} S^{*}, 7 \mathrm{a}^{*}\right)$-2,2-dimethyl-6-((S)-1-((methylsulfonyl)oxy)-propan-2-yl)-hexahydro-[1,3]dioxolo[4',5':4,5]cyclopenta[1,2-b]pyrrole-4(3aH)carboxylate (399)

A stirred solution of crude compound 397 ($100 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) was cooled to $0^{\circ} \mathrm{C}$ then triethylamine ($684 \mu \mathrm{~L}, 5 \mathrm{mmol}, 15$ equiv) and $\mathrm{MsCl}(129 \mu \mathrm{~L}$, $1.6 \mathrm{mmol}, 5.0$ equiv) were sequentially added via syringe. The reaction mixture was stirred for 20 min at $0{ }^{\circ} \mathrm{C}$ and then allowed to warm to rt . The reaction mixture was concentrated under reduced pressure and purified by flash chromatography (EtOAc-hexanes, 1:1) to provide 399 ($96 \mathrm{mg}, 78 \%$) as a colorless oil; $\mathrm{R}_{f} 0.27$ (EtOAc/hexanes, 1:1); IR (film) $\mathrm{v}_{\max }$ 2923, 2853, 1696, 1558, 1393, 1169, 1129, 1046, 968, 842, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta$ (mixture of rotamers) $4.68($ br. s., 1 H$), 4.50-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.97$ (dd, $J=9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 5 \mathrm{H})$, $2.04(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 5 \mathrm{H})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ (mixture of rotamers) $154.5,154.3,110.1,109.8,85.4,84.5,81.2,81.1,80.0,79.8,73.0,72.9,69.7$, $69.6,48.7,48.6,43.7,42.8,42.2,41.5,37.3,33.9,30.2,30.1,28.4,26.6,26.5,24.3,24.2$, 15.7; HRMS-ESI calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 442.1875$, found: 442.1876.

Ethyl (S)-2-((tert-butoxycarbonyl)oxy)-2-((3aS*, 3bR*, $\left.6 R^{*}, 6 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}\right)-4$-methoxy-2,2-

 dimethyl-5-oxooctahydro-[1,3]dioxolo[4',5':4,5]cyclopenta[1,2-b]pyrrol-6-yl)propanoate and ethyl (R)-2-((tert-butoxycarbonyl)oxy)-2-((3aS*,3bR*, $\left.6 R^{*}, 6 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}\right)-4-m e t h o x y-$ 2,2-dimethyl-5-oxooctahydro-[1,3]dioxolo[4',5':4,5]cyclopenta[1,2-b]pyrrol-6yl)propanoate (391)

A stirred solution of compound $390\left(1.22 \mathrm{~g}, 3.80 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ then triethylamine ($2.0 \mathrm{~mL}, 14.4 \mathrm{mmol}, 8.0$ equiv) and DMAP ($470 \mathrm{mg}, 3.80$ mmol, 1.0 equiv) were sequentially added. A solution of $\mathrm{Boc}_{2} \mathrm{O}(2.5 \mathrm{~g}, 11.4 \mathrm{mmol}, 3.0$ equiv $)$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was then added via cannula. The reaction mixture was stirred for 20 min at $0{ }^{\circ} \mathrm{C}$ and then allowed to warm to rt . After 12 h , the reaction was concentrated under reduced pressure and the residual oil purified by flash chromatography (EtOAc-hexanes, 1:4) to yield 391 ($1.60 \mathrm{~g}, 95 \%$) as a mixture of diastereomers: white solid; $\mathrm{mp} 81-83{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.70$ (EtOAc); IR (film) $\cup_{\max }$ 2935, 1739, 1716, 1706, 1457, 1374, $1259,1208,1168,1110,1057,950,860,759,659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.67-$ $4.71(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.13(\mathrm{dt}, J=10.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=14.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H})$, $1.59(\mathrm{ddd}, J=14.8,10.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.29(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 169.9,165.4,151.5,110.6,81.0,80.8,66.4,61.9,61.2$, 52.1, $37.7,35.3,27.6,26.7,24.3,20.8,19.1,13.9$; HRMS-ESI calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NO}_{9}[\mathrm{M}+\mathrm{H}]^{+}$: 444.2234, found: 444.2236.

Ethyl (E)-2-((3aS*, 3bR*, $\left.6 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}\right)$-4-methoxy-2,2-dimethyl-5-oxohexahydro-[1,3]dioxolo-[4',5':4,5]cyclopenta[1,2-b]pyrrol-6(3aH)-ylidene)propanoate ($E-394$) and ethyl $\quad(Z)-2-\left(\left(3 \mathrm{a} S^{*}, 3 \mathrm{~b} R^{*}, 6 \mathrm{aS}{ }^{*}, 7 \mathrm{a} R^{*}\right)-4-m e t h o x y-2,2-d i m e t h y l-5-o x o h e x a h y d r o-[1,3]-\right.$ dioxolo-[4',5':4,5]-cyclopenta[1,2-b]pyrrol-6(3aH)-ylidene)propanoate (Z-394)

To a stirred solution of compound $391(211 \mathrm{mg}, 0.48 \mathrm{mmol}, 1.0$ equiv) in toluene (20 mL) was added DBU ($0.36 \mathrm{~mL}, 2.38 \mathrm{mmol}, 5.0$ equiv) via syringe. The reaction was heated to $100^{\circ} \mathrm{C}$ and stirred for 4 h , then cooled to rt and quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). Combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. The crude residue was purified by flash chromatography (EtOAc-hexanes, 1:5) to yield E-394 (77.9 mg, 51\%) and Z-394 (20.1 mg, 12\%).

Analytical data for E-394: colorless oil; $\mathrm{R}_{f} 0.45$ (EtOAc-hexanes, 1:1); IR (film) $\mathrm{v}_{\max } 2984$, $2935,1716,1682,1436,1373,1276,1185,1101,1051,1006,885,769,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.70-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.65-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.28(\mathrm{~m}, 2 \mathrm{H}), 3.97-4.06$ $(\mathrm{m}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{dd}, J=14.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $1.64($ ddd, $J=14.6,10.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.34(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $101 \mathrm{MHz}): \delta 167.3,164.5,136.5,134.9,110.7,81.9,81.3,66.5,62.2,61.1,40.5,37.3,26.7$, 24.4, 14.1, 13.7; HRMS-ESI calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 326.1604$, found: 326.1603.

Ethyl (S)-2-((3aS*,3bR*,6S*,6aS*,7aR*)-4-methoxy-2,2-dimethyl-5-oxooctahydro-

[1,3]dioxolo-[4',5':4,5]cyclopenta[1,2-b]pyrrol-6-yl)propanoate (403)

A mixture of compound $E-394(151 \mathrm{mg}, 0.47 \mathrm{mmol}, 1.0$ equiv $)$ and $\mathrm{PtO}_{2}(10.7 \mathrm{mg}, 0.047$ mmol, 0.1 equiv) in $\mathrm{AcOH}(20 \mathrm{~mL})$ was placed in a Parr hydrogenation apparatus. The reaction mixture was shaken for 24 h under an atmosphere of hydrogen (15 psi). The Parr apparatus was flushed with nitrogen and the reaction mixture filtered and the filtrate concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc-hexanes, 1:5) to provide $403(140.0 \mathrm{mg}, 92 \%)$ as a white solid; mp 87-89 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.65$ (EtOAc); IR (film) $\cup_{\max }$ 2981, 2937, 1732, 1718, 1456, 1375, 1211, 1178, 1053, $881 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.73-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.73(\mathrm{~m}$, $1 \mathrm{H}), 4.17-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.03-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J$ $=11.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=14.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.72(\mathrm{~m}, 1 \mathrm{H})$, $1.62(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 175.2,168.8,110.5,81.3,80.2,66.6,62.0,60.8,45.0,37.6,36.1$, 31.7, 26.4, 24.2, 16.2, 14.1; HRMS-ESI calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 328.1760$, found: 328.1772.

Ethyl $\quad(S)-2-\left(\left(3 a S^{*}, 3 \mathrm{~b} R^{*}, 6 S^{*}, 6 \mathrm{a} S^{*}, 7 \mathrm{a} R^{*}\right)\right.$-2,2-dimethyl-5-oxooctahydro-[1,3]dioxolo-

 [4',5':4,5]-cyclopenta[1,2-b]pyrrol-6-yl)propanoate (404)

To a solution of 403 ($270 \mathrm{mg}, 0.83 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(15: 1,20 \mathrm{~mL})$ was added $\mathrm{Mo}(\mathrm{CO})_{6}(330 \mathrm{mg}, 1.24 \mathrm{mmol}, 1.5$ equiv) in one portion. The reaction was heated at reflux for 6 h , and then allowed to cool to rt . The reaction was opened to air and stirred for 12 hours. The reaction mixture was then concentrated under reduced pressure and purified by flash chromatography on silica gel (EtOAc) to provide 404 (220 mg, 91\%) as a white solid; $\mathrm{mp} 181-183{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.53$ (EtOAc); IR (film) $\mathrm{v}_{\max } 3169,3085,2979,2908$, $1721,1696,1383,1270,1067,1026,859,839,762,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right):$ $\delta 7.01(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dddd}, J=17.8,10.7$, $7.1,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.38-2.45 (m, 1H), 2.01 (dd, $J=14.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.27$ $(\mathrm{m}, 6 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 176.7,175.6,110.1,83.4$, 81.5, 63.9, 60.4, 48.1, 40.0, 37.5, 31.6, 26.2, 23.9, 16.6, 14.0; HRMS-ESI calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 298.1654$, found: 298.1648.
(S)-2-((3aS*, 3b $\left.R^{*}, 6 S^{*}, 6 a^{*}, 7 \mathrm{a} R^{*}\right)-2,2-D i m e t h y l o c t a h y d r o-[1,3] d i o x o l o[4 ', 5 ': 4,5]-$ cyclopenta-[1,2-b]pyrrol-6-yl)propan-1-ol (405)

To a solution of 404 ($110 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.0$ equiv) in dioxane (20 mL) under nitrogen was added $\mathrm{LiAlH}_{4}(163 \mathrm{mg}, 4.3 \mathrm{mmol}, 10$ equiv) in single portion. The reaction was heated at reflux for 6 h , after which it was cooled to rt . The reaction mixture was then concentrated under reduced pressure and the residue (90 mg) used directly in the next step.

Analytical data for 405: colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.79(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 3.42-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.20$ $(\mathrm{m}, 1 \mathrm{H}), 2.96(\mathrm{td}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{dd}, J=$ $12.0,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126\right.$ MHz): $\delta 110.5,83.2,81.4,77.7,67.2,56.9,44.8,42.9,37.1,30.6,26.2,23.9,16.2$; HRMSESI calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: \mathbf{2 4 2 . 1 7 5 6}$, found: 242.1756.

Benzyl (3aS*,3bR*,6S*,6aS*,7aR*)-2,2-dimethyl-6-((S)-1-((methylsulfonyl)oxy)propan-2-yl)hexahydro-[1,3]dioxolo[4',5':4,5]cyclopenta[1,2-b]pyrrole-4(3aH)-carboxylate (406)

To a stirred solution of compound $405(90 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$ was sequentially added triethylamine ($174 \mu \mathrm{~L}, 1.26 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{CbzCl}(60 \mu \mathrm{~L}, 0.42 \mathrm{mmol}, 1.0$ equiv) via syringe. The reaction mixture was stirred for 20 \min at $0^{\circ} \mathrm{C}$ and then allowed to warm to rt. After 3 h , triethylamine $(0.57 \mathrm{~mL}, 4.2 \mathrm{mmol}$, 10.0 equiv) and $\mathrm{MsCl}(98 \mu \mathrm{~L}, 1.26 \mathrm{mmol}, 3.0$ equiv) were sequentially added via syringe and the reaction stirred for a further 12 h . The reaction mixture was then concentrated under reduced pressure and the residue purified by flash chromatography (EtOAc-hexanes, 1:1) to provide 406 ($156 \mathrm{mg}, 81 \%$, over 3 steps) as a colorless oil; $\mathrm{R}_{f} 0.25$ (EtOAc-hexanes, 1:1); IR
(film) $v_{\max } 2977,2937,1698,1410,1353,1206,1109,955,839,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta($ mixture of rotamers $) 7.28-7.46(\mathrm{~m}, 5 \mathrm{H}), 5.10-5.30(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.74(\mathrm{~m}, 2 \mathrm{H})$, 4.06-4.13 (m, 1H), 3.95-4.01 (m, 2H), 3.71-3.85 (m, 1H), 3.02-3.09 (m, 2H), $3.00(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.05-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{dd}, J=14.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.52-$ $1.60(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ (mixture of rotamers) $155.0,154.8,136.8,136.6,128.5,128.4,128.3$, $128.1,127.8,127.7,110.1,85.3,84.0,81.2,81.1,72.9,72.8,70.0,69.7,66.9,66.9,49.3$, $48.8,43.9,43.0,42.2,41.7,37.4,33.9,33.9,30.3,26.5,24.2,15.7$; HRMS-ESI calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 454.1899$, found: 454.1892.

1-Benzyl 2-methyl (3S*,4S*)-3-(2-methoxy-2-oxoethyl)-4-((S)-1-((methylsulfonyl)oxy)-propan-2-yl)pyrrolidine-1,2-dicarboxylate (407)

Compound 406 ($46 \mathrm{mg}, 0.1 \mathrm{mmol}$, 1 equiv) was dissolved in THF (5 mL) and aqueous HCl (1M,5 mL). The mixture was then heated to $40^{\circ} \mathrm{C}$ for 4 h . The volatiles were then removed under reduced pressure, and the remaining residue dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and THF (10 $\mathrm{mL})$. To this solution was added $\mathrm{NaIO}_{4}(217 \mathrm{mg}, 1.0 \mathrm{mmol}, 10$ equiv). After stirring for 8 h , the solution was filtered through Celite, and the filter cake washed with EtOAc. The organic filtrate was separated and brine was added to the aqueous phase before the extraction with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the residue dissolved in acetone (10 mL). This solution was cooled to $0^{\circ} \mathrm{C}$ and treated with 8 M Jones reagent ($125 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 10$ equiv) for 10 min . The reaction mixture was
allowed to warm to rt , stirred for 30 min and quenched with 2-propanol (1 mL). The resulting green mixture was diluted with $\operatorname{EtOAc}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous fraction extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to provide the crude diacid as a yellow oil. This material was dissolved in methanol (5 mL) and treated with excess ethereal diazomethane. The reaction mixture was then concentrated under reduced pressure to leave an oily residue, which was chromatographed on silica gel (EtOAc-hexanes, 1:1) to provide 407 ($24 \mathrm{mg}, 50 \%$) as a colorless oil; $\mathrm{R}_{f} 0.21$ (EtOAc-hexanes, 1:1); IR (film) $v_{\max } 2952,1745,1703,1414,1350,1120,956,748,689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right):$ δ (mixture of rotamers) $7.28-7.41(\mathrm{~m}, 5 \mathrm{H}), 4.98(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.36(\mathrm{dd}, J=11.3,5.8$ Hz, 1H), 4.09-4.19 (m, 2H), 4.01-4.08 (m, 1H), 3.77 (br. s., 1H), 3.69-3.74 (m, 2H), 3.66 (d, $J=10.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 3.15-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 2.99(\mathrm{~s}$, 1 H), 2.54-2.62 (m, 1H), 2.29 (br. s., 1 H), 2.11-2.18 (m, 1H), $1.88(\mathrm{dt}, J=10.8,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.07(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ (mixture of rotamers) 172.3, 155.0, $154.6,136.3,128.5,128.4,128.2,128.0,72.5,72.3,67.6,67.4,62.8,62.6,60.4,52.1,51.8$, 49.1, 48.5, 44.7, 44.0, 39.3, 38.2, 37.5, 32.4, 29.7, 28.5, 28.4, 21.0, 17.4, 15.2, 14.2; HRMSESI calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{9} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$472.1641, found: 472.1636.

1-Benzyl 2-methyl $\quad\left(2 R^{*}, 3 S^{*}, 4 S^{*}\right)$-3-(2-methoxy-2-oxoethyl)-4-(prop-1-en-2-yl)-pyrrolidine-1,2-dicarboxylate (408)

407

408

To a solution of $\mathbf{4 0 7}(17.5 \mathrm{mg}, 0.037 \mathrm{mmol}, 1$ equiv) in DME (15 mL) was added NaI (15 $\mathrm{mg}, 0.1 \mathrm{mmol}, 2.7$ equiv) and the mixture was heated to reflux. After 4 h , the reaction mixture was allowed to cool to rt and saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$ was added. The resulting mixture was extracted with EtOAc ($3 \times 7 \mathrm{~mL}$) and the organic extracts combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the remaining residue was purified by flash chromatography (EtOAc-hexanes, 1:1) to provide $408(10.0 \mathrm{mg}, 72 \%)$ as a colorless oil; R_{f} 0.66 (EtOAc-hexanes, 1:1); IR (film) $\cup_{\max } 2952,1734,1705,1653,1559,1414,1353,1258$, 1201, 1174, 1114, 1011, $769,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ (mixture of rotamers) 7.28-7.40 (m, 5H), $5.19(\mathrm{dd}, J=12.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=16.7,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=10.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{ddd}, J=$ $17.6,10.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dt}, J=17.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ (mixture of rotamers) $172.6,170.9,170.5,155.0,154.6,140.6$, $140.5,136.4,136.2,128.5,128.4,128.1,128.0,128.0,113.7,113.5,67.4,67.3,63.0,62.8$, 52.1, 51.7, 51.7, 48.0, 47.4, 47.3, 39.4, 38.3, 29.6, 29.5, 22.7, 22.6; HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 398.1580$, found: 398.1574.

3. TOWARDS THE SYNTHESIS OF THE MADANGAMINE AND
 ALSTOSCHOLARINE FAMILIES

3.1. An Introduction to the Morphan Ring System

The 2-azabicyclo[3.3.1]nonane framework, also known as the morphan ring system (Figure 16), encompasses more than 300 natural products, including the familiar alkaloids morphine (410) $)^{228}$ and strychnine (411). ${ }^{229}$ The morphan moiety also constitutes the monoterpene alkaloid kopsone (412), ${ }^{230}$ isolated from a Malayan shrub. Other alkaloids featuring this promiscuous system include the cytotoxic diterpenoid aspernomine (413), ${ }^{231}$ the securinega alkaloid secu'amamine $\mathrm{A}(\mathbf{4 1 4}),{ }^{232}$ himgaline (415), ${ }^{233}$ the magangamines (416), ${ }^{234}$ the unique polycyclic alkaloid sarain $\mathrm{A}(417)^{235}$ and the immunosuppressant FR901483 (418)..75,236 Other examples include the Daphniphyllum alkaloids (419) ${ }^{237}$ and monoterpene indole alkaloids alstoscholarines (420), ${ }^{238}$ isolated from a genus of evergreen trees and shrubs, are widely used in traditional medicine. They have demonstrated important pharmacological activities, including antioxidant, anticancer and antibacterial properties.

(410)

Strychnine (411)

Kopsone (412)

Figure 16 The morphan ring system and examples of natural products that encompass it

In 2011, Bonjoch and co-workers published an excellent review on the construction of the 2-azabicyclo[3.3.1]nonane motif for the purpose of assembling either morphan derivatives or polycyclic systems with more complex structures en route to the synthesis of natural products. ${ }^{239}$ We envisioned that we might be able to construct the bridged heterocyclic core of the madangamine and alstoscholarine natural product families by implementing our oxamidation methodology. Now follows a brief overview of the synthetic methods developed towards the madangamines and alstoscholarines.

3.2. Studies Towards the Synthesis of the Madangamine Alkaloids

The madangamines (Figure 17) are a small family of marine alkaloids, which are encompassed by a common diazatricyclic core (ABC ring system) and two linear bridges (rings D and $E)$. Madangamines $A-E(\mathbf{4 2 1}, \mathbf{4 2 2}, \mathbf{4 2 3}, 416,424)$ were isolated from the sponge Xestospongia ingens found at Madang in Papua New Guinea by Andersen and coworkers. ${ }^{234,240}$ This group of alkaloids differs only in the macrocyclic ring E. The structure of this chain varies in terms of carbon content (13-15 atoms) as well as the degree, type and position of unsaturation. In 2007, Madangamine F was isolated from the Brazilian marine sponge Pachychalina alcaloidifera along with the other bis-piperidine alkaloids by Berlinck and co-workers. ${ }^{241}$ In contrast to the other members of this family, madangamine F contains a 13-membered D ring, while the others possess an 11-membered ring. Also, madangamine F (425) incorporates an extra hydroxyl group on the B ring at C-4.

Madangamine A (421)

Madangamine D
(416)

Madangamine B (422)

Madangamine E
(424)

Madangamine C (423)

Madangamine F
(425)

Figure 17 The madangamine alkaloid family

The madangamines are surprisingly nonpolar compounds as compared to the closely associated ingenamine natural products. For instance they can be efficiently extracted using
hexanes from aqueous media. ${ }^{242}$ This can be attributed to the rigidity of their structure. As a result, the lone pair on the $\mathrm{N}-7$ nitrogen is directed to the center of the tricyclic system and thereby shielded from protonation and hydrogen bonding. In biological assays, the madangamines showed significant in vitro cytotoxicity against human lung A549, brain U373 and breast MFC-7 cancer cell lines. In 2014, the absolute configuration of the madangamines was confirmed by Amat and Bosch. ${ }^{243}$

3.2.1 Synthetic Approaches to the Madangamines

Due to their synthetically challenging structures, the madangamines remain a relatively little-studied group of alkaloids. Until recently, there have been only a handful of synthetic approaches to the assembly of the diazatricyclic ABC core and a few reports describing the assembly of the macrocyclic rings D and E. In 2014, the first total synthesis of (+)-madangamine D was reported by Amat and Bosch. ${ }^{243}$ Herein we will review the synthetic methods developed for assembling of the polycyclic core of the madangamines.

In 1997, Weinreb and co-workers reported the first work towards the synthesis of the madangamines, involving a concise synthesis of the ABC ring system (Scheme 103). ${ }^{244}$ SESprotected furfurylamine 426 was oxidized by m-CPBA to generate an N-sulfonyliminium species, which was reduced with triethylsilane to provide 427. A high pressure Diels-Alder reaction then furnished enone 428. Homologation of the ketone functionality using TosMIC followed by palladium-promoted [3,3]-sigmatropic rearrangement afforded aldehyde 429, after acidic hydrolysis. The azabicyclononane framework was assembled in the final step by
an aminomercuration process. Starting from furfurylamine, tricyclic compound 431 was prepared in 12 steps.

Scheme 103

Kibayashi and Yamazaki demonstrated that the intramolecular cyclization of ketoaminophenol 432 generated cyclic N, O-acetal 433 (Scheme 104). ${ }^{245}$ Chemoselective MOM monodeprotection and subsequent removal of the (2-hydroxyphenyl)methyl group by catalytic hydrogenation afforded amino alcohol 434, which was further elaborated into the ABC-core system 437.

Scheme 104

The same research group later reported a modified version of their initial approach (Scheme 105). ${ }^{246}$ Starting from C-3 functionalized keto-aminophenol 438, the authors were able to fabricate the morphan skeleton by initial N, O-acetalization. Alcohol 439 was then treated with DMP to generate the corresponding ketone, which underwent Wittig-Horner olefination with Still's reagent to generate the Z-unsaturated ester. Allylic derivative 440 was accessed via reduction of this compound with DIBAL-H. Acylation of 440 and palladiumcatalyzed coupling of the resulting carbonate with a (Z)-vinylstannane in the presence of lithium chloride yielded skipped diene 441, as a single stereoisomer. Finally, deprotection of the TBDPS group, oxidation with Dess-Martin periodinane, Boc deprotection with TFA and intramolecular reductive amination delivered tricyclic product 442, albeit in rather modest yield.

Scheme 105

In 2005, a short synthesis of the tricyclic ABC ring system 446 was described by Marazano and co-workers (Scheme 106). ${ }^{247}$ The key reaction of this remarkable process entails condensation of the sodium salt of diethylacetone dicarboxylate (445) with dihydropyridinium salt 444, which was obtained in 7 steps from methyl nicotinate (443) with
27% yield. This approach is modeled on a proposed biogenetic pathway, which may link the madangamines to the ircinals (related alkaloids found in sponges of the same order). ${ }^{248}$

Scheme 106

In 2008, Bonjoch and co-workers reported the synthesis of diazatricycle $\mathbf{4 5 2}$ from cisperhydroisoquinolines 449 that are available in four steps from 4-methoxybenzylamine (447) (Scheme 107). ${ }^{249}$ Sterically-controlled kinetic alkylation, followed by carbonyl protection and amide reduction afforded amine $\mathbf{4 5 0}$ in moderate yield. In order to accomplish the final cyclization, N-nosylation, acetal cleavage and stereoselective ketone reduction using Lselectride were undertaken to furnish the corresponding axial alcohol 451 in good yield. Finally, the construction of the bridged subunit was achieved in good yield by an intramolecular Mitsunobu reaction.

Scheme 107

In 2010, Bosch and Amat reported the first enantioselective synthesis of the tricyclic core of the madangamines, utilizing an intramolecular hydroxyamination step to build the morphan system (Scheme 108). ${ }^{250}$ Isoquinolone 453, produced from enantiopure oxazolopiperidone, was alkylated sequentially to afford ester $\mathbf{4 5 4}$ as a single diastereomer. Cleavage of the tosylate group followed by global reduction with LiAlH_{4} and Boc protection of the secondary amine yielded alcohol 455 . Mesylation of alcohol 455 with subsequent nucleophilic substitution using NaN_{3} yielded azide 456. m-CPBA-mediated oxidation of the cyclohexene system followed by an in situ Staudinger reduction formed a reactive amino epoxide. The latter underwent the key cyclization to produce diazatricyclic amino alcohol 457, a potential precursor of madangamine D .

Scheme 108

In 2013, the enantioselective synthesis of advanced tetracyclic precursors of madangamine D , containing rings $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}$, was reported by the same group. ${ }^{251}$ The 14 membered ring E was constructed from previously discussed diazatricyclic compounds via either Ru-catalyzed ring-closing metathesis or macrolactamization approaches (Scheme 109). Using conventional group manipulations, prefunctionalized diazatricyclic alcohol 458 was elaborated to acetal 459 in moderate yield. Then, a sequential debenzylation-oxidation
procedure, followed by Boc removal and macrolactamization using high-dilution conditions afforded tetracyclic amide 460. Alternatively, structurally-related tetracyclic compound 461 could be synthesized from alcohol 462, featuring a five-carbon substituent at C-9. Protection of the hydroxy group by benzylation, then selective deprotection of the piperidine C ring by TFA, followed by acylation with 7-octenoyl chloride afforded the tricyclic amide. The latter was then converted to the diene 463 by acetal deprotection followed by Wittig methylenation. Next, diene 463 underwent a Ru-catalyzed ring-closing metathesis under high-dilution conditions. Treatment of the resulting $Z-E$ mixture of alkenes with H_{2} over PtO_{2} accomplished both the alkene hydrogenation and hydrogenolysis of the benzyloxy group to furnish tetracyclic alcohol 461.

Scheme 109

The construction of the macrocyclic rings of the madangamine family using a simplified model system has also been studied by Amat and Bosch. ${ }^{252}$ The authors envisaged a direct approach to solve this problem using the eight-carbon phosphonium salt 465, already
containing both the central $\mathrm{ZC}_{17}-\mathrm{C}_{18}$ double bond present in the D ring of madangamines A E and the ester group necessary for the final macrolactamization step (Scheme 110). Thus, treatment of bicyclic ketone 464 with a nonstabilized ylide prepared from phosphonium bromide 465 and KHMDS yielded an enriched mixture ($Z / E, 10: 1$) of alkenes 466. Deprotection of the N-tosyl group followed by alkaline hydrolysis and macrolactamization using $\mathrm{HOBt} / \mathrm{EDC}$ at low concentrations $(0.02 \mathrm{M})$ provided a single tricyclic lactam 467 in low yield.

Scheme 110

In 2014, Amat and Bosch completed their synthetic studies and published the first total synthesis of madangamine D (416) (Scheme 111). ${ }^{243}$ It involved the stereoselective assembly of the ABC ring system starting from an enantiomerically pure phenylglycinolderived lactam and the subsequent construction of the macrocyclic rings D , E . The authors were able to obtain a pure sample of synthetic madangamine D and confirm the absolute configuration of this alkaloid family for the first time. The synthesis commenced with enantiopure lactam 468, which was readily accessible in one step from (R)-phenylglycinol. α-Acylation, followed by the conversion to the unsaturated lactam via an intermediate seleno derivative provided an unsaturated lactam, which underwent a stereoselective conjugate
addition with an allyl cuprate to generate the cis-diallyl-substituted lactam. The assembly of B ring was now achieved by a RCM reaction, generating the cis-octahydroisoquinolone derivative 469. Next, a stereoselective alkylation from the most accessible face of the β ketoester moiety and the removal of the phenylethanol chiral auxiliary by successive treatment of with $\mathrm{Na} / \mathrm{NH}_{3}$ and LiAlH_{4} resulted in an unstable N -unsubstituted piperidine derivative, which was immediately protected with Boc. The alcohol functionality was then transformed into the azide through a mesylate and the cyclohexene double bond was epoxidized with m-CPBA to give 470.

Scheme 111

Staudinger reduction of $\mathbf{4 7 0}$ furnished an amino epoxide, which spontaneously cyclized in situ. Protection of the resulting amine and alcohol moieties through N-tosylation and O-benzylation provided an unsymmetrically protected diamino derivative. Selective
deprotection of $\mathrm{N}-7$, followed by acylation with 7-octenoyl chloride, gave rise to amide 471. Hydrolysis of the acetal protecting group and Wittig methylenation of the corresponding aldehyde furnished a diene, which readily participated in a ring-closing metathesis using the Grubbs (I) catalyst under dilute conditions. A subsequent catalytic hydrogenation of the alkene isomers $(2: 1, Z / E)$ simultaneously removed the benzyl ether, furnishing 2° alcohol. DMP oxidation of this alcohol generated the ketone. The (Z, Z)-unsaturated 8 -carbon fragment essential for the completion of the total synthesis was attached via a Wittig reaction using the ylide prepared from phosphonium salt 465. The resulting mixture of alkenes 472 (2.2:1, Z / E) was treated with sodium naphthalenide, which removed of N-tosyl group. Hydrolysis of the ester group and macrolactamization provided the pentacyclic dilactam. Ultimately, amide reduction with LiAlH_{4} provided madangamine D (416), thus completing the synthesis with 1.8% overall yield over a total of 20 steps.

3.2.2 Retrosynthetic Analysis of the Madangamines

Our strategy for the synthesis of madangamine D is outlined in Scheme 112. It was envisioned that the natural product 416 could be accessed through a two-step macrolactamization and reduction sequence from amino acid 473. This compound could be accessed via the Wittig reaction of ketone 474 with the appropriate phosphonium ylide. We anticipated that the peripheral 13-membered E-ring could be formed from unsaturated amine 475 via N -acylation followed by ring-closing metathesis. We envisioned that formation of Ring C could be achieved via a dual reduction of both the nitrile and ester functionalities of compound 476, followed by N -sulfonylation and ring closure via a Mitsunobu reaction.

Nitrile 476 could be synthesized from amide 477 by cyanation, followed by allylation. In this case, a stereoselective enolate attack on the allyl bromide could establish a syn relationship between the nitrile substituent and the ester group at C-5. We proposed that bicyclic alcohol 477 could be obtained through nitrenium ion-mediated cyclization of O-methyl hydroxamate $\mathbf{1 8 1} \mathbf{j}$, which could be accessed by coupling of the corresponding carboxylic acid, $\mathbf{1 7 3 j} \mathbf{j}$, with methoxyamine hydrochloride. Finally, the known acid 173j could be prepared from inexpensive cis-1,2,3,6-tetrahydrophthalic anhydride $\mathbf{1 7 6}$ using the Arndt-Eistert homologation reaction. ${ }^{253}$

Scheme 112

While our initial studies were conducted in the racemic series, our plan was conceived in such a manner that it could be switched to an enantioselective mode through the use of a chiral catalyst for the methanolic desymmetrization of the original tetrahydrophthalic anhydride 176. In 1999, Bolm reported that the necessary ($1 S, 6 R$) monoester 478 could be produced in 99% yield and 93% ee by the treatment of $\mathbf{1 7 6}$ with 3 equivalents of methanol in
the presence of stoichiometric amounts of quinine. ${ }^{254}$ Later reports showed that $5-10 \mathrm{~mol} \%$ of quinine-thiourea bifunctional organocatalysts (e.g., 479) can be used in place of quinine (Scheme 113). ${ }^{255}$ Computational studies suggest that the quinuclidine group of the catalyst functions as a general base and activates the alcohol, while the thiourea group simultaneously activates the anhydride by hydrogen bonding.

Scheme 113

3.2.3 Towards the Synthesis of the Madangamines

Our route to madangamine D began from commercially available cis-1,2,3,6tetrahydrophthalic anhydride 176, which was converted to half-ester 177 in quantitative yield through BF_{3}-catalyzed methanolysis (Scheme 114). 1-Carbon homologation was now accomplished utilizing the Arndt-Eistert reaction. Thus, treatment of 177 with oxalyl chloride followed by reaction with diazomethane afforded diazoketone 480, which was used directly in a Wolf rearrangement. Sonication 480 of with silver oxide under aqueous conditions gave $\mathbf{1 7 3 j}$ in low yield. Acid 173j was then converted into O-methyl hydroxamate $\mathbf{1 8 1} \mathbf{j}$ using Tanabe's coupling procedure. ${ }^{95}$

Scheme 114

Submission of $\mathbf{1 8 1} \mathbf{j}$ to standard PIFA-mediated oxamidation conditions provided azabicycle 477 in 86% yield (Scheme 115). In this case, stereospecific opening of 472 by trifluoroacetate at the exo position affords anti alcohol 477 as a single diastereomer, after hydrolysis of the labile trifluoroacetate ester with methanolic ammonia. The secondary alcohol was then oxidized with pyridinium chlorochromate in dichloromethane to afford ketone $\mathbf{2 3 3} \mathbf{j}$ in good overall yield. Alternatively, intramolecular oxoamidation of the substrate $\mathbf{1 8 1 j}$ could be accomplished in one step utilizing our $\mathrm{Cr}(\mathrm{VI})$-mediated methodology. Thus, treatment of $\mathbf{1 8 1 \mathbf { j }}$ with 3 equivalents of PCC in the presence of 5 equivalents of acetic acid at $84{ }^{\circ} \mathrm{C}$ provided $\mathbf{2 3 3} \mathbf{j}$ in modest yield. We believe that this reaction proceeds via formation of chromate ester 485 , which further oxidizes in the presence of an excess of PCC to form ketone 233j. Interestingly, we have not observed any of the acetoxyamidation products resulting from the aziridinium ion trapping by acetate, despite the increased nucleophilicity of the acetate compared to trifluoroacetate and, possibly, chlorochromate. As previously discussed, we believe that the putative nitrenium and aziridinium ions are short-lived reactive species that exist as tight ion-pairs.

Scheme 115

The structures of 2-azabicyclo[3.3.1]nonane derivatives $\mathbf{4 7 7}$ and 233j were elucidated by 2D NMR experiments (Figure 18). The HMBC spectrum of 477 showed cross peaks between $\mathrm{C}-4 / \mathrm{H}-2$ and $\mathrm{C}-5 / \mathrm{H}-1$, while no cross peaks were observed between $\mathrm{C}-4 / \mathrm{H}-1$ and C -5/H-2, thus suggesting a 2-azabicyclo[3.3.1]nonane ring system. Similarly, the HMBC spectrum of $\mathbf{2 3 3} \mathbf{j}$ demonstrated cross peak between $\mathrm{C}-5$ and $\mathrm{H}-1$, whereas no cross peak was observed between C-4 and H-1. In addition, the relative configuration of 477 was confirmed by single crystal X-ray analysis.

477

477

Figure 18 Crystal structure of alcohol 477 and HMBC correlations of 477 and 233j

Ketone 233j was viewed as an appropriate model to probe the Wittig or Horner-Wadsworth-Emmons reaction required to append the D ring to the 2-azabicyclo[3.3.1]nonane skeleton (Scheme 116). Thus, treatment of $\mathbf{2 3 3} \mathbf{j}$ with 1.5 equivalents of ethyl 2(diethoxyphosphoryl)acetate ${ }^{256}$ at $0{ }^{\circ} \mathrm{C}$ in the presence of NaH provided an inseparable mixture (2:1) of alkenes $\mathbf{4 8 6}$ in 80% unoptimized yield. At this point, cleavage of the N methoxy group of $\mathbf{2 3 3} \mathbf{j}$ was accomplished with molybdenum hexacarbonyl in acetonitrile to produce amide 487 in high yield.

Scheme 116

While we were able to construct the morphan core relatively efficiently, the ArndtEistert homologation proved to be a significant bottleneck in the synthesis. In particular, this reaction was not scalable and necessitated the use of toxic and potentially explosive diazomethane. Moreover, we sought to introduce the N-7 amino functionality, necessary for the construction of Ring C. As a result, a revised synthetic plan was adopted in which one carbon homologation would be achieved via displacement of a primary sulfonate ester by cyanide (Scheme 117).

Commencing from 176, heating with allylamine, followed by the addition of acetic anhydride afforded N-allyl imide 491, which was partially reduced by sodium borohydride in an isopropanol-water solvent mixture ${ }^{257}$ to provide alcohol 492 in 87% yield (Scheme 118). The amide carbonyl group was then reduced with LiAlH_{4} to furnish amino alcohol 493 in excellent yield. Simultaneous protection of the amino group and the conversion of the primary alcohol to the corresponding tosylate 494 were performed by treatment of 493 with an excess of tosyl chloride and pyridine. Substitution of the primary tosylate with KCN in DMSO provided nitrile 495 in 83% yield. The formation of carboxylic acid 496 was finally accomplished by hydrolysis of the nitrile with sodium hydroxide in aqueous ethanol.

Scheme 118

Carboxylic acid 496 was coupled with methoxyamine hydrochloride using EDC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford O-methyl hydroxamate 497 in high yield (Scheme 119). As expected, treatment of 497 with PIFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by hydrolysis with methanolic ammonia, generated alcohol 498 as a single diastereomer. At this point, we decided to cleave the N-O bond and reprotect both the alcohol and the amide with Boc groups. Treatment of 498 with molybdenum hexacarbonyl in the mixture of acetonitrile and water furnished $\mathrm{N}-\mathrm{H}$ amide

499, which upon reaction with Boc anhydride in the presence of DMAP, delivered bis-Boc adduct $\mathbf{5 0 0}$ in good yield.

Scheme 119

We now anticipated that acylation of the enolate of 1,3-dicarbonyl compound $\mathbf{5 0 0}$ from the less hindered exo face with a formate derivative and then subsequently with allyl bromide would establish the cis relationship between the ester substituent and the amine appendage. The enolate of $\mathbf{5 0 1}$ is convex in shape with the adjacent ring shielding the endo face, so the second alkylation was anticipated to occur from the exo face. Initial attempts to perform enolate acylation with CbzCl or ethyl cyanoformate led only to recovery of starting material. More successfully, deprotonation of $\mathbf{5 0 0}$ with 2.4 equivalents of LHMDS and treatment of the resulting enolate with 1.2 equivalents of freshly opened ethyl chloroformate resulted in the formation of compound $\mathbf{5 0 1}$ in nearly quantitative yield. Treatment of $\mathbf{5 0 1}$ with excess allyl bromide and potassium carbonate in refluxing acetone now afforded alkylated product $\mathbf{5 0 2}$ as a single diastereomer in a reasonable yield.

Scheme 120

The structure and the relative configuration of compound $\mathbf{5 0 2}$ were confirmed by single crystal X-ray analysis (Figure 19). Gratifyingly, the cis relationship between C-5 methyleneamino side chain and the ethyl carboxylate at $\mathrm{C}-7$, required for the construction of C ring of madangamine $D(416)$, was clearly visible.

Figure 19 Crystal structure of compound 502

Having established the relative configuration of the C-5 and C-7 stereogenic centers, we now proceeded to the construction of the C ring. In this regard, we envisioned that cyclization could be achieved via an Appel reaction involving the secondary amine with the primary alcohol of $\mathbf{5 0 3}$ accessible via reduction of ester $\mathbf{5 0 2}$ (Scheme 121). An alkylative cyclizations such as this has been previously used by Bowen and Wardrop in their preparation of the pyrrolidine ring in (+)-castanospermine ${ }^{80}$ and the piperidine ring in (-)swainsonine. ${ }^{83}$

Scheme 121

Unfortunately, treatment of 502 with LiAlH_{4} failed to accomplish exhaustive reduction of the substrate to amino diol $\mathbf{5 0 5}$, but instead yielded a complex mixture of products (Scheme 122). In light of this result, we decided to first cleave the Boc protection.

Scheme 122

The Boc carbonate showed significant stability towards acidic conditions (Table 18, entry 1). Treatment of $\mathbf{5 0 2}$ with 10 equivalents of TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ produced a mixture of bisand mono-deprotected alcohols $\mathbf{5 0 6}$ and $\mathbf{5 0 7}$ even after prolonged heating. We thus elected to keep the Boc carbonate group and proceed with selective deprotection of the amide by quenching the reaction with sodium bicarbonate after 1 h of stirring at room temperature (Table 18, entry 2).

Table 18. Boc Deprotection of 502

[^5]Although there is significant literature precedent for the successful deallylation of amides and sulfonamides, ${ }^{258}$ our attempts to cleave the N-allyl group of $\mathbf{5 0 7}$ proved troublesome. Indeed, all methods investigated, including $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and vinylmagnesium bromide, ${ }^{259} \mathrm{Pd} / \mathrm{C}$ and ethanolamine ${ }^{260}$ and $\mathrm{Pd}(\mathrm{dba})_{2}$ with dppb and 2-mercaptobenzoic acid ${ }^{261}$ failed to provide 508. Exposure of $\mathbf{5 0 7}$ to RhCl_{3} in refluxing n-propanol, ${ }^{262}$ followed by analysis of the crude NMR, indicated cleavage of the allyl group, however product recovery was difficult. Our attempt to cleave the N-allyl group by adopting Ogasawara's nickelcatalyzed deallylation procedure ${ }^{263}$ using DIBAL-H and $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$ in refluxing toluene led to diol 509 in low yield (Scheme 123). Disappointingly, the allyl group withstood these conditions while collateral ester reduction and Boc removal were observed. We noted that the cleavage of t-butyl carbonate occurs immediately after DIBAL-H addition, while the ester reduction requires reflux temperatures. Neither the use of $\mathrm{Me}_{3} \mathrm{Al}$ instead of DIBAL-H, nor increasing the loading of $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$ was found to be fruitful.

Scheme 123

Our plan to finish ABC core of the madangamine is outlined in Scheme 124. Catalytic deallylation of $\mathbf{5 0 9}$ followed by the Appel (or Mitsunobu) reaction is anticipated to provide ABC core intermediate 511.

Scheme 124

3.3. Studies Towards the Synthesis of the Alstoscholarines

3.3.1 Introduction

Alstonia is a widespread genus of evergreen trees and shrubs found in the tropical regions of Africa and Southeast Asia and comprises of more than 50 species. Alstonia trees are widely used in traditional medicine. For example, its bark decoction and leaf extract from it are used throughout Southeast Asia region as remedy for urinary tract infections, ${ }^{264}$ skin diseases and the alleviation of malaria. ${ }^{265}$ The phytochemical components of the Alstonia species have been studied extensively. To date, more than 400 secondary metabolites have been isolated. Many of these compounds are monoterpene indole alkaloids containing 18 or 19 carbon atoms at the core. Potent anticancer, antibacterial, anti-inflammatory, and antitussive activities for several of these natural compounds have been documented. ${ }^{266}$ In 2007, two monoterpenoid indole alkaloids, named E-and Z-alstoscholarine (420, 512), were isolated from Alstonia scholaris leaves by Luo and co-workers (Figure 20). ${ }^{238}$

Figure 20 Structure of the anti-inflammatory natural products E - and Z-alstoscholarine $(420,512)$

Although initial screening did not reveal antibacterial activity, it was later discovered that both indole alkaloids exhibit significant anti-inflammatory and anti-asthmatic properties at low concentrations during in vitro biological evaluations. ${ }^{267}$ Z-Alstoscholarine in particular was noted as a worthy lead candidate for the development of a therapy for chronic airway inflammatory disease. ${ }^{268}$

3.3.2 Biosynthesis of Alstoscholarines

The biogenetic origin of the alstoscholarines was first proposed by Luo and coworkers and is outlined in Scheme $125 .{ }^{238}$ The authors believe that alstoscholarines belong to a special class of monoterpenoid indole alkaloids, containing 2 extra carbons in its structure. It is known that all of members of terpene indole alkaloid family are tryptophan and secologanin derivatives. Initially, tryptophan decarboxylase generates tryptamine from tryptophan. ${ }^{269}$ Then, following the common biosynthetic pathway for terpene indole alkaloids, tryptamine and secologanin undergo stereoselective Pictet-Spengler condensation, which is catalyzed by the enzyme strictosidine synthase to generate strictosidine (516). ${ }^{270}$ Next, nucleophilic attack of electron-rich indolic C-7 on C-16 of 19-E-geissoschizine (517) provides rhazimol (518). Oxidation and dehydroxymethylation at $\mathrm{C}-17$ of rhazimol furnishes picrinine. Subsequent cleavage of both C-2-O and C-5-N-4 bonds produces C-5 aldehyde and N-4-C-21 alkene functions. Then, the C-6 intramolecular attack on C-21 cleaves C-6-C-7 bond, thus generating C-6-C-21 alkene functionality. Ultimately, the construction of pyrrole ring could be accomplished by means of malonyl-coenzyme A. ${ }^{271}$

Scheme 125

As noted before, the alstoscholarines $\mathbf{4 2 0}$ and 512 contain a different double bond configuration at C-19/20. Apparently, the juncture of those geometrical isomers could arise during the biosynthesis of geissoschizine, where a double bond is formed, providing 19-E as well as $19-Z$ products. Thus, Z-alstoscholarine is likely to be formed via the similar biosynthetic pathway starting from Z-geissoschizine.

3.3.3 Recent Alstoscholarines Syntheses

Since the discovery of the alstoscholarines, only one total synthesis and one partial synthesis have been reported. In 2012, Miranda and co-workers published a synthesis for the preparation of the tetracyclic core of alstoscholarine alkaloids (Scheme 126). ${ }^{272}$ Their approach began with readily available methyl ester of glutamic acid (524), which was converted to pyrrole after treatment with 2,5-dimethoxytetrahydrofuran. Consequently, subjection of the carboxylic acid to ethyl chloroformate in the presence of ethanethiol afforded a thioester, which was reduced using triethylsilane and $10 \% \mathrm{Pd} / \mathrm{C}$. Carboxylic acid functionality was reduced to the corresponding aldehyde 525 without affecting the distal ester group. ${ }^{273}$ The alkynyl group was then installed using the Bestmann-Ohira reagent. Alkynylindolizinone $\mathbf{5 2 6}$ was efficiently obtained via boron tribromide-mediated cyclization. Finally, employing Sonogashira cross-coupling conditions with o-iodoaniline, followed by microwave-mediated intramolecular cyclization, tetracyclic system 527 was obtained in good yield.

Scheme 126

In 2011, Zhu and co-workers reported a protecting-group-free total synthesis of both alstoscholarines. ${ }^{274}$ As shown in Scheme 127, the synthesis began with tetrahydrophthalic anhydride 176, which underwent asymmetric desymmetrization with methanol in the presence of catalyst 528. The carboxylic acid moiety was converted to a 2-pyridylthioester, followed by addition of pyrrylmagnesium bromide, using the method developed by Nicolaou, ${ }^{275}$ furnished 2-ketopyrrole $\mathbf{5 2 9}$ as a single diastereomer. Dihydroxylation of $\mathbf{5 2 9}$ and then oxidative cleavage provided 1,6-dial, which cyclized spontaneously in situ to generate hemiaminal $\mathbf{5 3 0}$ as a mixture of two diastereomers. Palladium-catalyzed heteroannulation between o-iodoaniline and aldehyde 530, then a Pictet-Spengler reaction afforded pentacycle $\mathbf{5 3 2}$ as a $5: 1$ mixture of diastereomers. It was concluded that the basic heteroannulation conditions may be a cause of the observed epimerization. Finally, ethylidenation of $\mathbf{5 3 2}$ using Takeda's reagent and subsequent Vilsmeier-Haack formylation provided a 3:1 mixture of E / Z-alstoscholarines in moderate yield. It was noted that the two geometric isomers can be separated by preparative TLC on silica gel.

Scheme 127

3.3.4 Alstoscholarines Retrosynthesis

Our retrosynthetic analysis of Z - and E-alstoscholarine (420, 512) is outlined in Scheme 128. In common with Zhu, ${ }^{274}$ we envisioned accessing the natural product from pentacycle $\mathbf{5 3 3}$ via a Vilsmeier-Haack formylation. In turn, the pyrrole ring synthesis could be accessed from vinyl iodide 534 through a TMS-SnBu 3 -mediated anionic cyclization. ${ }^{276}$ The ethylidene appendage could be easily installed by the aldol condensation of amide $\mathbf{5 3 5}$ with acetaldehyde. Oxidation of alcohol 477 by PCC followed by Fischer indole synthesis could construct the indole synthon. Based on our study of the madangamines, we posited that
the bicyclic system 477 could be prepared from 181j via intramolecular oxamidation. We anticipated that $\mathbf{1 8 1} \mathbf{j}$, the precursor for the cyclization, could by derived from cis-1,2,3,6tetrahydrophthalic anhydride $\mathbf{1 7 6}$ via an Arndt-Eistert homologation procedure.

Scheme 128

3.3.5 Model Studies Towards the Alstoscholarines

As described in this chapter, our proposed madangamine and alstoscholarine syntheses share $\mathbf{1 8 1 \mathbf { j }}$ as the same intermediate. Treatment of $\mathbf{1 8 1 \mathbf { j }}$ with PIFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0 ${ }^{\circ} \mathrm{C}$ with subsequent hydrolysis by methanolic ammonia gave 2-azabicyclo[3.3.1]nonane 477 in 86% yield (Scheme 129). This compound was then transformed to ketone $\mathbf{2 3 3} \mathbf{j}$ via oxidation with PCC, as previously described. Alternatively, intramolecular oxamidation of $\mathbf{1 8 1 j}$ could be accomplished in one step by employing our $\mathrm{Cr}(\mathrm{VI})$ methodology. Thus, treatment of $\mathbf{1 8 1} \mathbf{j}$ with 3 equivalents of PCC in the presence of 5 equivalents of acetic acid at $84^{\circ} \mathrm{C}$ delivered 233j albeit in low yield.

Scheme 129

With the bicyclic skeleton structure established, it was now necessary to install the indole system through a Fischer synthesis. We envisaged that employment of N-benzyl phenylhydrazine as a coupling partner would provide a flexible entry to the alstoscholarine series. To accomplish this, phenylbenzyl hydrazine (537) was prepared from commercially available phenyl hydrazine hydrochloride via alkylation with benzyl bromide (Scheme 130). ${ }^{277}$

Scheme 130

Traditionally, rather harsh reaction conditions, such as higher temperatures and the use of stoichiometric quantities of acid, are necessary in order to expedite this classic multistep transformation efficiently. The stoichiometric formation of ammonia as the byproduct, may account for the necessity of using excess of Brønsted acids. We initially conducted the Fischer indolization using five equivalents of trifluoroacetic acid in
dichloroethane at $55^{\circ} \mathrm{C}$. After 15 h , we found that the reaction was completed, providing indole derivative 538a in reasonable yield (Table 19, entry 1). Smith, in his synthesis of the monoterpenoid indole alkaloid scholarisine A, employed pyridine hydrochloride (539) in pyridine to carry out indolization on a structurally related substrate. ${ }^{278}$ Applying Smith's conditions, 233j was heated with 1.3 equivalents of $\mathbf{5 3 7}$ and 10 equivalents of $\mathrm{py} \cdot \mathrm{HCl}$ in pyridine at $110{ }^{\circ} \mathrm{C}$ for 15 h . Encouragingly, product 538a was cleanly generated in 72% yield (Table 19, entry 2).

Table 19. Fischer Indole Synthesis
conditions
${ }^{\text {and }}$ Isolated yields, after flash chromatography.

3.3.6 Entry to Indole Natural Product-Like Compounds

The diversity-oriented synthesis of natural product-like molecules is of great interest as a means to develop leads in drug discovery. The indole moiety is present in a number of clinically-approved drugs on the market, many of which belong to the triptan family of which frovatriptan (540), ${ }^{279}$ used for the treatment of migraines, is a well-known example (Figure 21). Recent studies have highlighted the numerous biological and pharmacological properties
of the psychoactive compound mitragynine (541), ${ }^{280}$ including analgesic, antitussive, antidiarrheal, adrenergic and antimalarial activities. Yohimbine (542), ${ }^{281}$ structurally related to mitragynine, is a common male intimacy supplement. Tadalafil (543), a PDE5 inhibitor, is available under the name Cialis as an erectile dysfunction remedy and under the name Adcirca for pulmonary arterial hypertension (PAH) treatment. ${ }^{282}$ The spiroindolone drug candidate NITD609 (544) is known for its inhibition of gametocytogenesis and transmission blockade of Plasmodium falciparum to Anopheles mosquito vectors. ${ }^{283}$ Indoles are also commonly found in alkaloids. The indolizidino[8,7-b]indole alkaloid (+)-harmicine (545), ${ }^{284}$ one of nineteen indole alkaloids extracted from the Malaysian plant Kopsia griffithii, has been evaluated as a potent anti-leishmania agent.

Frovatriptan (540)

Tadalafil (543)

Mitragynine (541)

NITD609 (544)

Yohimbine (542)

(+)-Harmicine (545)

Figure 21 Examples of biologically important indole-containing molecules

In the Wardrop group we have used O-methyl hydroxamates to stereoselectively construct cyclic and bicyclic α-oxy lactams. We felt that given the wide substrate scope of this process, it offered an excellent means to access a focused series of complex polycyclic compounds with different ring sizes using the Fischer annulation.

A series of ketones was prepared from the corresponding O-methyl hydroxamates utilizing our $\mathrm{Cr}(\mathrm{VI})$-mediated oxamidation methodology (Part 1). Then, following the indolization procedure published by Smith, ${ }^{278}$ ketones 233f,i,j and $\mathbf{5 4 6}$ were converted into the corresponding indoles 538a-d. The results of the indolization study are shown in Table 20.

Table 20. Indolization Study

entry

[^6]It was found that the Fischer annulation protocol appeared to be general and effective, producing indole derivatives in good yields. We observed that reaction times are strongly dependent upon ketone structure. Most probably as a result of the steric interactions caused
by the ester substituent of substrates $\mathbf{2 3 3 j}$, $\mathbf{5 4 6}$ the reaction time in these cases was slower than for substrate 233i. In addition, the reaction was substantially faster for substrate $\mathbf{2 3 3 f}$ (Table 20, entry 4) which lacks the bicyclic bridge. Neither the formation of other byproducts, nor epimerization among the stereocenters of the substrates was noted during the course of the indolization.

3.4. Conclusions

In summary, utilizing the $\mathrm{I}(\mathrm{III})-$ or $\mathrm{Cr}(\mathrm{VI})$-mediated oxamidation of alkenes, we developed a wide-ranging strategy for the stereoselective construction of the morphan ring system, which is found in over 300 natural products. In work directed toward a total synthesis of the marine alkaloid madangamine D , an advanced, functionalized bicyclic intermediate was synthesized. In model studies towards the synthesis of monoterpenoid indole alkaloids of the alstoscholarine family, an advanced tetracyclic intermediate was constructed. Finally, the utility of our N-methoxy- N-acylnitrenium ion cyclization methodology was demonstrated in the preparation of polycyclic natural product-like molecules using the Fischer indolization protocol.

3.5. Experimental Procedures

3.5.1 General Procedures

All non-aqueous reactions were carried out in oven or flame-dried glassware under an atmosphere of dry nitrogen, unless otherwise noted. Except as otherwise indicated, all reactions were magnetically stirred and monitored by analytical thin-layer chromatography using Merck pre-coated silica gel plates with F_{254} indicator. Visualization was accomplished by UV and/or potassium permanganate solution. Flash column chromatograph was performed using Silicycle Silica-P flash silica gel (40-63 $\mu \mathrm{m})$. Yields refer to chromatographically and spectrographically pure compounds, unless otherwise noted.

3.5.2 Materials

Dichloromethane (DCM), diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, tetrahydrofuran (THF), methanol (MeOH) and toluene, purchased from Sigma-Aldrich, were additionally purified on PureSolv PS-400-4 (Innovative Technology, Inc.) purification system. Acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and N methylimidazole (NMI) was distilled from calcium hydride under an atmosphere of dry nitrogen. Triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ was distilled from NaOH under an atmosphere of dry nitrogen. Acetic acid (AcOH) was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ under an atmosphere of dry nitrogen. 1,2-Dichloroethane (DCE) was distilled from and stored over activated $4 \AA$ molecular sieves. PIFA was prepared following the procedure reported by Varvoglis. ${ }^{227}$ Pyridinium chlorochromate (PCC) was prepared according to the method of Corey and Suggs. ${ }^{133}$ All other reagents and starting materials, unless otherwise noted, were purchased from commercial vendors and used without further purification.

3.5.3 Instrumentation

All melting points were determined in open Pyrex capillaries using a Thomas Hoover Unimelt melting point apparatus and are uncorrected. Infrared spectra were recorded as thin films on sodium chloride plates using an ATI Mattson Genesis Series FTIR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance $400\left(400 \mathrm{MHz},{ }^{1} \mathrm{H}, 100 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$ or a Bruker Avance $500\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}, 125 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$. Chemical shift values (δ) are reported in ppm relative to residual chloroform ($\delta 7.27 \mathrm{ppm}$ for ${ }^{1} \mathrm{H} ; 77.00 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$), residual acetone ($\delta 2.05 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$; 29.92 ppm for ${ }^{13} \mathrm{C}$), residual methanol ($\delta 3.31 \mathrm{ppm}$ for ${ }^{1} \mathrm{H} ; 49.15$ ppm for ${ }^{13} \mathrm{C}$) and residual DMSO ($\delta 2.50 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$; 39.51 ppm for ${ }^{13} \mathrm{C}$). Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet) and br (broad). DEPT 135 and two-dimensional (COSY, HMQC, HMBC, NOESY) NMR experiments were employed, where appropriate, to aid in the assignment of signals in the ${ }^{1} \mathrm{H}$ NMR spectra. High-resolution electron spray ionization mass spectra (HRMS-ESI) were obtained on a Micromass Q-TOF 2 at the University of Illinois Research Resources Center or on a Micromass Q-TOF Ultima at the Mass Spectroscopy Laboratory at the University of Illinois, Urbana-Champaign.

3.5.4 Madangamine Project Experimental Procedures

Methyl $\left(1 R^{*}, 5 R^{*}, 6 R^{*}, 8 R^{*}\right)$-8-hydroxy-2-methoxy-3-oxo-2-azabicyclo[3.3.1]nonane-6carboxylate (477)

181j

then $\mathrm{NH}_{3}-\mathrm{MeOH}$

477

A solution of $\mathbf{1 8 1} \mathbf{j} \mathbf{(2 8 . 9 ~ m g}, 0.13 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt was first treated with trifluoroacetic acid ($10 \mu \mathrm{~L}, 0.13 \mathrm{mmol}, 1.0$ equiv), and then with a solution of PIFA (60
$\mathrm{mg}, 0.14 \mathrm{mmol}, 1.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After stirring for 1 h , ammonia in methanol $(0.5 \mathrm{~mL})$ was added and the reaction stirred for additional 20 min . The reaction was then concentrated and the residue purified by flash chromatography on silica gel (EtOAc-acetone, 1:1) to provide 477 ($26.6 \mathrm{mg}, 86 \%$) as a colorless oil, which crystallized upon standing; mp $92-94{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.19$ (EtOAc); IR (film) $v_{\max } 3331,2962,2931,1725,1637$, 1441, 1378, 1089, 930, 790, $640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 500 \mathrm{MHz}$): $\delta 4.15$ (br. s., 1 H), 3.80 (br. s., 1H), 3.73 (s, 3H), $3.69(\mathrm{~s}, 3 \mathrm{H}), 2.97-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.67$ (m, 1H), 2.50 (br. s., $1 \mathrm{H}), 2.40(\mathrm{dd}, J=13.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.71$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 126 \mathrm{MHz}\right): \delta 175.9,170.6,66.0,62.4,59.2,52.5,42.1,35.1$, 30.5, 27.9, 27.5; HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$244.1185, found: 244.1180.
(3a $R^{*}, 7 \mathrm{a} S^{*}$)-2-Allyl-3a,4,7,7a-tetrahydro-1H-isoindole-1,3(2H)-dione (491)

$\mathrm{Et}_{3} \mathrm{~N}\left(2.74 \mathrm{~mL}, 19.7 \mathrm{mmol}, 3.3\right.$ equiv) was added to $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ in a round-bottomed flask equipped with a stir bar, under nitrogen. Allylamine ($0.44 \mathrm{~mL}, 5.97 \mathrm{mmol}, 1.0$ equiv) was then added to the flask, followed by cis-1,2,3,6-tetrahydrophthalic anhydride (176) (1.00 $\mathrm{g}, 6.57 \mathrm{mmol}$, 1.1 equiv) dissolved in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$. The solution was then heated to $50{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was then allowed to cool to room temperature, followed by the addition of $\mathrm{Ac}_{2} \mathrm{O}(0.67 \mathrm{~mL}, 7.16 \mathrm{mmol}, 1.2$ equiv). Once addition was complete, the reaction was heated to $50^{\circ} \mathrm{C}$ again and monitored by TLC. Once the reaction was complete, it was cooled to room temperature, and the pH adjusted to $1-2$ with 1 M HCl . The product was extracted with dichloromethane ($3 \times 25 \mathrm{~mL}$) and the combined extracts dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent provided $491(1.13 \mathrm{~g}, 99 \%)$ as a yellowish oil that was used
directly in the next step; $\mathrm{R}_{f} 0.57$ (EtOAc-hexanes, 3:7); IR (film) $\mathrm{u}_{\max } 3042,2948,2850$, $1776,1695,1646,1425,1389,1331,1192,1169,987,926 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 5.87-5.95(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{ddt}, J=16.7,10.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.08$ $(\mathrm{d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.29(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 179.6,130.6,127.8,117.5,40.9,39.1,23.5$; HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 192.1025$, found: 192.1017.

$\left(1 R^{*}, 6 S^{*}\right)$ - N-Allyl-6-(hydroxymethyl)cyclohex-3-ene-1-carboxamide (492)

To a solution of $491(250 \mathrm{mg}, 1.31 \mathrm{mmol}, 1.0$ equiv) in 2-propanol/water ($6: 1,10 \mathrm{~mL}$), sodium borohydride ($250 \mathrm{mg}, 6.55 \mathrm{mmol}, 5.0$ equiv) was added. The reaction was placed under nitrogen and stirred at room temperature overnight. The reaction was then poured into saturated sodium bicarbonate, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give 492 ($220 \mathrm{mg}, 87 \%$) as a colorless oil that was used directly in the next step; $\mathrm{R}_{f} 0.68$ (EtOAc); IR (film) $v_{\max } 3296,3080,2909,1636,1532,1418,1247,1036,919$, $656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.15$ (br. s., 1 H$), 5.71-5.88(\mathrm{~m}, 3 \mathrm{H}), 5.10-5.20(\mathrm{~m}$, 2H), 3.82-3.97 (m, 2H), 3.63 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.48 (br. s., 1H), 2.84-2.90 (m, 1H), 2.36$2.45(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.93(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}): \delta 175.2,134.0,127.3,124.8,116.4,64.2,41.9,41.7,37.1,26.8,26.3$; HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 196.1338$, found: 196.1333.
$\left(\left(1 S^{*}, 6 R^{*}\right)\right.$-6-((Allylamino)methyl)cyclohex-3-en-1-yl)methanol (493)

To a suspension of $\mathrm{LiAlH}_{4}(1.22 \mathrm{~g}, 32.0 \mathrm{mmol}, 2.0$ equiv) in THF (75 mL), was added a solution of $492(3.13 \mathrm{~g}, 16.0 \mathrm{mmol}, 1.0$ equiv) in THF (20 mL) at a rate which maintained a gentle reflux. The reaction was then heated at reflux overnight, and then quenched by careful, dropwise addition of water. The fine white precipitate that formed was filtered off, washed with THF and then discarded. The filtrate was concentrated to give $493(2.60 \mathrm{~g}, 90 \%)$ as a colorless oil, which was directly used in the next step; $\mathrm{R}_{f} 0.12$ (acetone); IR (film) $\mathrm{v}_{\max } 3267$, 3020, 2891, 2838, 1644, 1437, 1103, 993, 734, $660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $5.89(\mathrm{ddt}, J=16.9,10.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.23(\mathrm{~m}$, $2 \mathrm{H}), 3.55-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{dd}, J=12.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=$ $12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-2.02(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 135.5,126.7,124.6,116.9,64.7,52.1,50.0,39.1,37.2,30.8,25.6 ;$ HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 182.1545$, found: 182.1546.
$\left(\left(1 S^{*}, 6 R^{*}\right)-6-(((N\right.$-Allyl-4-methylphenyl)sulfonamido)methyl)cyclohex-3-en-1-yl)methyl 4-methylbenzenesulfonate (494)

A solution of $493(640 \mathrm{mg}, 3.53 \mathrm{mmol}, 1.0$ equiv) in 15 mL of dry pyridine was stirred at -20 ${ }^{\circ} \mathrm{C}$ for 10 minutes under nitrogen. $\mathrm{TsCl}(2.02 \mathrm{~g}, 10.6 \mathrm{mmol}, 3.0$ equiv) was added in small portions over an hour. The reaction was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over the next hour, and then
moved to the refrigerator overnight. The reaction was then added to 130 mL of cold water, and the product was extracted with $\operatorname{EtOAc}(3 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (EtOAchexanes, 1:3) to provide 494 ($740 \mathrm{mg}, 43 \%$) as a colorless oil; $\mathrm{R}_{f} 0.67(\mathrm{EtOAc} / \mathrm{Hexane} 1: 3)$; IR (film) $v_{\max } 2922,1736,1597,1439,1338,1174,1095,954,815,660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.48-5.61(\mathrm{~m}, 3 \mathrm{H}), 5.08-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{dd}, J=9.5,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{dd}, J=13.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ (dd, $J=13.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.22$ (br. s., 2 H), 2.07 (d, $J=18.0 \mathrm{~Hz}$, 2H), $1.86(\mathrm{t}, J=18.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 144.8,143.3,136.5,132.9$, 129.9, 129.7, 127.9, 127.3, 125.6, 124.4, 119.3, 70.4, 51.4, 48.2, 34.2, 32.7, 26.7, 26.2, 21.6, 21.5; HRMS-ESI calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 490.1722$, found: 490.1717 .

N-Allyl- N-((($\left.1 R^{*}, 6 R^{*}\right)$-6-(cyanomethyl)cyclohex-3-en-1-yl)methyl)-4-methylbenzenesulfonamide (495)

A solution of $494(1.62 \mathrm{~g}, 3.30 \mathrm{mmol}$, 1.0 equiv) in DMSO (7 mL) was added dropwise over 10 minutes to a stirred mixture of $\mathrm{KCN}(1.37 \mathrm{~g}, 21.1 \mathrm{mmol}, 6.4$ equiv) in DMSO (17 mL) at $60^{\circ} \mathrm{C}$ under nitrogen. The reaction was allowed to stir overnight, and then poured into water $(100 \mathrm{~mL})$. The product was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (EtOAc-hexanes, 1:1) giving $495(940 \mathrm{mg}, 83 \%)$ as a colorless oil; $\mathrm{R}_{f} 0.56$ (EtOAc-hexanes, 1:3); IR (film) $v_{\max } 2913,2243,1598,1449,1327,1154,1003,900,760$,
$683 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $5.64(\mathrm{~s}, 2 \mathrm{H}), 5.52-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.21(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{dd}, J=13.9,7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=13.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 4 \mathrm{H}), 2.23-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.13-2.23(\mathrm{~m}, 2 \mathrm{H})$, 2.03-2.11 (m, 1H), $1.75(\mathrm{dd}, J=18.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 143.6$, $136.3,132.8,129.8,129.7,127.2,127.1,125.3,124.5,119.5,51.3,48.5,33.8,31.1,29.1$, 26.2, 21.5, 16.9; HRMS-ESI calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 345.1637$, found: 345.1638.

2-((1R*,6R*)-6-(((N-Allyl-4-methylphenyl)sulfonamido)methyl)cyclohex-3-en-1-yl)acetic acid (496)

A mixture of a 1 M solution of NaOH in ethanol $\left(\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}, 9: 1\right)(15 \mathrm{~mL})$ and $495(940 \mathrm{mg}$, $2.73 \mathrm{mmol}, 1.0$ equiv) was heated at reflux for 48 h . The reaction was then concentrated, and acidified with 1 M HCl . The product was extracted with EtOAc $(3 \times 25 \mathrm{~mL})$, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give 496 ($870 \mathrm{mg}, 88 \%$) as a yellow oil that was used directly in the next step; $\mathrm{R}_{f} 0.34$ (EtOAc/Hexane 1:3); IR (film) $v_{\max } 3022,1704$, 1597, 1436, 1155, 1089, 922, 818, $657 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.65(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.2,2 \mathrm{H}), 5.49-5.60(\mathrm{~m}, 3 \mathrm{H}), 5.04-5.15(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.82(\mathrm{~m}, 2 \mathrm{H})$, 2.92-3.06 (m, 2H), 2.37 (s, 3H), 2.29-2.35 (m, 2H), 2.19-2.27 (m, 1H), 2.07-2.17 (m, 2H), 1.97-2.04 (m, 1H), $1.89(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}): \delta 179.2,143.1,136.3,132.8,129.5,127.0,125.2,124.8,118.9,51.0,47.9,33.9,33.5$, 30.2, 29.1, 26.3, 21.2; HRMS-ESI calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 364.1583, found: 364.1585.

2-((1R*,6R*)-6-(((N-Allyl-4-methylphenyl)sulfonamido)methyl)cyclohex-3-en-1-yl)-Nmethoxyacetamide (497)

To a stirred solution of $496(2.25 \mathrm{~g}, 6.19 \mathrm{mmol}, 1.0$ equiv) and methoxyamine hydrochloride ($570 \mathrm{mg}, 6.81 \mathrm{mmol}, 1.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at room temperature, were sequentially added $\operatorname{EDC}\left(1.31 \mathrm{~g}, 6.81 \mathrm{mmol}, 1.1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.94 \mathrm{~mL}, 6.81 \mathrm{mmol}, 1.1$ equiv). After stirring for 12 h , the reaction was acidified with 1 M aqueous $\mathrm{HCl}(1 \mathrm{~mL})$, quenched with water (100 mL) and extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromatography over silica gel (EtOAc-hexanes, 1:1) to afford $497(2.31 \mathrm{~g}$, 95%) as a white solid: mp $73-74{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); $\mathrm{R}_{f} 0.34$ (EtOAc/hexanes 1:1); IR (film) $v_{\max } 3020,2913,1654,1439,1331,1149,1086,910,659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 5.39-$ $5.47(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.67$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}, J=13.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=13.8,6.8 \mathrm{~Hz}$, 1H), 2.32 (s, 3H), 2.24 (br. s., 1H), 2.05-2.10 (m, 1H), 1.96-2.03 (m, 3H), 1.83-1.92 (m, 2H), 1.58-1.68 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 170.3,143.2,136.1,132.5,129.5,126.7$, 125.1, 124.9, 118.9, 63.7, 50.8, 48.4, 34.2, 31.5, 30.9, 28.8, 26.0, 21.1; HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 393.1848$, found: 393.1847.
N-Allyl- N-(($\left(1 S^{*}, 5 S^{*}, 6 S^{*}, 8 S^{*}\right)$-8-hydroxy-2-methoxy-3-oxo-2-azabicyclo[3.3.1]nonan-6-yl)methyl)-4-methylbenzenesulfonamide (498)

A solution of $497\left(1.17 \mathrm{~g}, 2.98 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $40{ }^{\circ} \mathrm{C}$ was sequentially treated with trifluoroacetic acid $(0.23 \mathrm{~mL}, 2.98 \mathrm{mmol}, 1.0$ equiv) and a solution of PIFA ($1.54 \mathrm{~g}, 3.58 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. After stirring for 3 h under nitrogen, the reaction was cooled to room temperature, ammonia in methanol (35 mL) added and the reaction stirred for 20 min . After 20 min , the reaction was concentrated and the residue purified by flash chromatography on silica gel (EtOAc) to provide $498(1.10 \mathrm{~g}, 90 \%)$ as a light yellow oil, which crystallized upon standing; mp 158-160 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); R_{f} 0.30 (EtOAc); IR (film) $\cup_{\max } 3336,2924,1658,1629,1597,1450,1339,1216,903,646 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.50-$ $5.61(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.27$ (br. s., 1 H$), 3.78-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.71-3.78(\mathrm{~m}, 4 \mathrm{H})$, 3.16 (dd, $J=14.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=14.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}), 2.29-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.22$ (br. s., 1 H$), 1.92(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.29-1.37(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 168.6,143.4,136.4,132.9,129.7$, 127.2, 119.3, 65.6, 61.9, 58.5, 51.7, 50.4, 33.6, 32.5, 28.9, 28.2, 28.0, 21.5; HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 409.1797$, found: 409.1793.
N-Allyl- N-(($\left(1 S^{*}, 5 S^{*}, 6 S^{*}, 8 S^{*}\right)$-8-hydroxy-3-oxo-2-azabicyclo[3.3.1]nonan-6-yl)methyl)-4-methylbenzenesulfonamide (499)

To a solution of $498(1.86 \mathrm{~g}, 4.55 \mathrm{mmol})$ in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(15: 1,50 \mathrm{~mL})$ was added $\mathrm{Mo}(\mathrm{CO})_{6}$ $(1.80 \mathrm{~g}, 6.82 \mathrm{mmol})$ in one portion. The reaction was held at reflux for 6 h , after which it was stirred at room temperature for 12 h . The reaction was then concentrated under reduced pressure and the resulting residue purified by flash chromatography on silica gel (acetone) to provide $499(1.43 \mathrm{~g}, 83 \%)$ as a white solid: $\mathrm{mp} 233-235^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CN}\right) ; \mathrm{R}_{f} 0.36$ (acetone); IR (film) $v_{\max } 3332,2935,1628,1449,1334,1302,1156 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 500 \mathrm{MHz}$): $\delta 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.44-5.55(\mathrm{~m}$, $1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.79$ $(\mathrm{m}, 1 \mathrm{H}), 3.60-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 3.05(\mathrm{dd}, J=13.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=$ $13.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.19(\mathrm{~m}, 3 \mathrm{H}), 1.92-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J$ $=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.11-1.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{-}{ }_{6}, 126\right.$ $\mathrm{MHz}): \delta 171.3,143.2,136.2,133.2,129.9,127.0,118.9,67.8,50.7,50.6,50.5,32.7,31.1$, 28.0, 27.3, 25.6, 22.5, 21.0; HRMS-ESI calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 379.1692$, found: 379.1687.
tert-Butyl $\quad\left(1 S^{*}, 5 S^{*}, 6 S^{*}, 8 S^{*}\right)-6-(((N$-allyl-4-methylphenyl)sulfonamido $) m e t h y l)-8-(($ tert-butoxycarbonyl)oxy)-3-oxo-2-azabicyclo[3.3.1]nonane-2-carboxylate (500)

499

To a solution of 499 ($480 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.0$ equiv) in 50 mL acetonitrile at room temperature was added $\mathrm{Boc}_{2} \mathrm{O}(1.37 \mathrm{~g}, 6.3 \mathrm{mmol}, 5.0$ equiv) followed by DMAP (154 mg , $1.26 \mathrm{mmol}, 1$ equiv). The solution was stirred at room temperature for 12 h . The reaction mixture was then concentrated under reduced pressure, and the residue purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc-hexanes, 1:2) to afford $\mathbf{5 0 0}$ (627 mg, 86\%) as a colorless oil; $\mathrm{R}_{f} 0.77$ (EtOAc-hexanes, 1:1); IR (film) $\cup_{\max } 2980,1768,1739,1718,1598,1451,1394$, 1333, 1271, 1152, 1089, 925, 734, $661 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.68(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{ddt}, J=16.9,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.18(\mathrm{~m}, 2 \mathrm{H})$, 4.88-4.92 (m, 1H), 4.32 (br. s., 1H), 3.78 (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.12$ (dd, $J=14.0,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.73 (dd, $J=14.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.44$ (s, 3H), 2.28 (br. s., 2H), 2.18 (d, J $=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.63($ br. s., 1 H$), 1.53$ $(\mathrm{s}, 11 \mathrm{H}), 1.49(\mathrm{~s}, 10 \mathrm{H}), 1.32-1.39(\mathrm{~m}, 1 \mathrm{H}), 0.82-0.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$: $\delta 170.9,152.3,151.6,143.5,136.4,132.9,129.8,127.2,119.3,83.6,82.4,71.8,52.6,51.6$, $50.1,34.4,33.7,27.9,27.8,27.5,27.2,25.8,21.5$; HRMS-ESI calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 579.2740$, found: 579.2736.

2-(tert-Butyl) 4-ethyl ($\left.1 S^{*}, 4 R^{*}, 5 R^{*}, 6 S^{*}, 8 S^{*}\right)$-6-(((N-allyl-4-methylphenyl)sulfonamido)-

 methyl)-8-((tert-butoxycarbonyl)oxy)-3-oxo-2-azabicyclo[3.3.1]nonane-2,4-
dicarboxylate (501)

To a solution of compound $\mathbf{5 0 0}(116 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv $)$ in THF (30 mL) cooled to $78^{\circ} \mathrm{C}$ was added via syringe LHMDS (1 M solution in THF, $0.48 \mathrm{~mL}, 0.48 \mathrm{mmol}, 2.4$ equiv). After stirring for 1 h , ethyl chloroformate ($23 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2$ equiv) was added via
syringe. The reaction mixture was stirred for 4 h at $-78^{\circ} \mathrm{C}$ then allowed to warm to rt and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc-hexanes, 1:2) to provide $\mathbf{5 0 1}$ ($129.2 \mathrm{mg}, 99 \%$) as a colorless oil; $\mathrm{R}_{f} 0.84$ (EtOAc-hexanes, 1:1); IR (film) $v_{\max } 2941,2931,1774,1732,1454,1335,1257,1146 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{ddt}$, $J=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.86-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.10$ $(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{dd}, J=14.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=$ $14.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 4 \mathrm{H}), 2.21-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 4 \mathrm{H}), 1.86-1.92$ $(\mathrm{m}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 12 \mathrm{H}), 1.47(\mathrm{~s}, 12 \mathrm{H}), 1.32-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.79-0.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 171.0,170.9,152.2$, $151.5,143.4,136.3,132.8,129.7,127.2,119.2,83.6,82.3,71.7,60.3,52.5,51.5,50.0,34.3$, $33.6,27.8,27.7,27.5,27.1,25.7,21.4,20.9,14.1$; HRMS-ESI calcd for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 651.2951$, found: 651.2953.

2-(tert-Butyl) 4-ethyl $\quad\left(1 S^{*}, 4 S^{*}, 5 R^{*}, 6 S^{*}, 8 S^{*}\right)-4$-allyl-6-(((N-allyl-4-methylphenyl)-sulfonamido)-methyl)-8-((tert-butoxycarbonyl)oxy)-3-oxo-2-azabicyclo[3.3.1]-nonane-

2,4-dicarboxylate (502)

To a solution of $\mathbf{5 0 1}(142 \mathrm{mg}, 0.22 \mathrm{mmol})$ in acetone $(5 \mathrm{~mL})$ was added potassium carbonate $(200 \mathrm{mg}, 1.45 \mathrm{mmol})$. The mixture was stirred for 10 min and then allyl bromide ($57 \mu \mathrm{l}, 0.66$
mmol, 3.0 equiv) added. After heating at $56^{\circ} \mathrm{C}$ for 5 h , the slurry was filtered and the filtrate concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc-hexanes, 1:3) to provide 502 (101 mg, 67\%) and recovered starting material 501 ($10 \mathrm{mg}, 7 \%$); $\mathrm{R}_{f} 0.73$ (EtOAc-hexanes, 2:3); IR (film) $v_{\max } 2982,1772,1724$, 1450, 1395, 1275, 1252, 1138, 1090, 924, $657 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.65(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.88-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{ddt}, J=16.9,10.3,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.05-5.19(\mathrm{~m}, 4 \mathrm{H}), 4.91-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.64-3.78 (m, 2H), $3.09(\mathrm{dd}, J=13.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=13.8,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.74$ (m, 1H), 2.43 (s, 3H), 2.24 (br. s., 2H), 2.17 (s, 3H), 2.03-2.09 (m, 2H), 1.53 (s, 9H), 1.50 (s, 9H), 1.24-1.32 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 172.0,169.7,152.2,152.0,143.4$, $136.5,133.6,133.2,129.7,127.2,119.1,118.8,83.8,82.3,71.6,61.7,57.6,52.9,51.6,50.7$, $43.7,39.5,36.6,30.9,29.2,27.9,27.8,26.6,25.5,21.5,13.6$; HRMS-ESI calcd for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 713.3084$, found: 713.3081.

Ethyl $\left(1 S^{*}, 4 S^{*}, 5 R^{*}, 6 S^{*}, 8 S^{*}\right)-4$-allyl-6-(($(N$-allyl-4-methylphenyl)sulfonamido)methyl)-

 8-((tert-butoxycarbonyl)oxy)-3-oxo-2-azabicyclo[3.3.1]nonane-4-carboxylate (507)

To a solution of $\mathbf{5 0 2}(77.4 \mathrm{mg}, 0.112 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$, was added TFA ($45 \mu \mathrm{~L}, 0.59 \mathrm{mmol}, 5$ equiv) and the solution then allowed to warm to room temperature. After stirring for 1 h , saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated in vacuo and purified by flash chromatography (EtOAc-
hexanes, 2:1) to yield $\mathbf{5 0 7}$ ($61.0 \mathrm{mg}, 92 \%$) as a colorless oil; $\mathrm{R}_{f} 0.26$ (EtOAc-hexanes, 2:3); IR (film) $u_{\max } 2923,2853,1733,1653,1559,1457,1368,1275,1254,1089,864,659 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.38-6.49$ $(\mathrm{m}, 1 \mathrm{H}), 5.94-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{ddt}, J=16.9,10.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.04-$ $5.11(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 4.11-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.58$ (br. s., 1 H$), 3.07$ (dd, $J=13.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.30(\mathrm{~m}$, $3 \mathrm{H}), 2.09(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.52(\mathrm{~m}, 10 \mathrm{H}), 1.22-1.32(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 172.4,171.3,152.6,143.3,136.6,134.2,133.1,129.7$, $127.2,119.1,118.1,82.4,73.2,61.6,55.3,51.5,50.6,48.8,43.5,39.5,37.2,27.7,26.5,24.9$, 21.4, 13.6; HRMS-ESI calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 613.2560$, found: 613.2560.
N-Allyl- N-((($\left.1 S^{*}, 4 R^{*}, 5 R^{*}, 6 S^{*}, 8 S^{*}\right)$-4-allyl-8-hydroxy-4-(hydroxymethyl)-3-oxo-2-
azabicyclo-[3.3.1]nonan-6-yl)methyl)-4-methylbenzenesulfonamide (509)

To a solution of $\mathbf{5 0 7}\left(125.7 \mathrm{mg}, 0.213 \mathrm{mmol}, 1.0\right.$ equiv) in toluene (25 mL) at $0{ }^{\circ} \mathrm{C}$ was slowly added DIBAL-H ($2.13 \mathrm{~mL}, 1 \mathrm{M}$ in toluene, $2.13 \mathrm{mmol}, 10$ equiv) and reaction mixture allowed to stir for 1 h before warming to rt . The mixture was then heated at $110^{\circ} \mathrm{C}$ for 3 h , cooled to room temperature and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The biphasic layers were separated and aqueous phase extracted with EtOAc ($4 \times 25 \mathrm{~mL}$). The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude residue was purified by flash chromatography (EtOAc) to provide $\mathbf{5 0 9}$ ($26 \mathrm{mg}, 27 \%$) as a colorless oil; R_{f} 0.63 (acetone); IR (film) $v_{\max } 3327,2925,1717,1635,1558,1507,1456,1337,1205,1154$,

1089, 1032, 916, 814, $660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.39-6.44(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.19$ $(\mathrm{m}, 4 \mathrm{H}), 4.23-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.95$ (br. s., 1 H$), 3.72-3.84(\mathrm{~m}, 3 \mathrm{H}), 3.69(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.41-3.48 (m, 2H), $3.37(\mathrm{dd}, J=13.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 4 \mathrm{H}), 2.35-$ $2.40(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=13.6,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.77-$ $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}): \delta 179.6,143.5,136.3,133.1,133.1,129.8,127.2,119.3,119.3,68.8,64.6,62.7,52.2$, $51.8,51.4,48.8,39.7,36.5,35.6,29.8,28.9,25.3,21.5$; HRMS-ESI calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 449.2110$, found: 449.2099.

3.5.5 Alstoscholarine Project Experimental Procedures

1-Benzyl-1-phenylhydrazine (537)

Phenylhydrazine hydrochloride salt (536) ($1.32 \mathrm{~g}, 9.1 \mathrm{mmol}, 1.0$ equiv), benzyl bromide ($1.08 \mathrm{~mL}, 9.1 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaHCO}_{3}(1.53 \mathrm{~g}, 18.2 \mathrm{mmol}, 2.0$ equiv) were mixed in $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ and heated to $100^{\circ} \mathrm{C}$ under vigorous stirring. After 3 h , the mixture was cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The layers were separated and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexanes- $\mathrm{Et}_{2} \mathrm{O}, 4: 1$) to afford $537(1.19 \mathrm{~g}, 66 \%)$ as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.27-7.41(\mathrm{~m}, 7 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.63$ (s, 2H), 3.73 (br. s., 1 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 151.5,137.4,129.1$, 128.7, 127.9, 127.4, 118.9, 113.9, 60.4 .

Pyridine hydrochloride (539)

A mixture of methanol ($1.28 \mathrm{~g}, 40 \mathrm{mmol}, 1.0$ equiv) and pyridine ($3.16 \mathrm{~g}, 40 \mathrm{mmol}, 1.0$ equiv) in diethyl ether (25 mL) was cooled to $0^{\circ} \mathrm{C}$. A solution of acetyl chloride ($3.14 \mathrm{~g}, 40$ mmol, 1.0 equiv) in diethyl ether was added slowly over 5 min . The reaction mixture was stirred for 30 min , then filtered to provide a white solid which was dried in vacuo to afford $539(4.09 \mathrm{~g}, 90 \%)$ as a white solid.

Representative Procedure 7. Preparation of Indoles

Methyl $\quad\left(1 R^{*}, 5 R^{*}, 6 S^{*}\right)$-11-benzyl-2-methoxy-3-oxo-2,3,4,5,6,11-hexahydro-1H-1,5-methano-azocino[3,4-b]indole-6-carboxylate (538a)

233j
 $110^{\circ} \mathrm{C}$

538a

A mixture of ketone $\mathbf{2 3 3} \mathbf{j}$ ($31.3 \mathrm{mg}, 0.13 \mathrm{mmol}$, 1.0 equiv), benzyl phenylhydrazine (537) ($33.0 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.3$ equiv), pyridine hydrochloride (539) ($149 \mathrm{mg}, 1.3 \mathrm{mmol}, 10$ equiv), and pyridine (1 mL) was stirred at $110{ }^{\circ} \mathrm{C}$ for 15 h and then cooled to room temperature. The solvent was removed in vacuo, and the resulting residue was diluted with ethyl acetate and washed with hydrochloric acid (1 N aqueous, 2 x). The aqueous layers were back-extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$ and the combined organic extracts washed with hydrochloric acid (1 N aqueous, 2 x), saturated aqueous sodium bicarbonate, brine, and dried over anhydrous sodium sulfate. The solvent was removed in vacuo to afford a yellow oil, which was purified by flash chromatography (EtOAc-acetone, 100:1) to furnish indole 538a
$(37.9 \mathrm{mg}, 72 \%)$ as a clear oil; $\mathrm{R}_{f} 0.35$ (EtOAc); IR (film) $\cup_{\max } 2949,1730,1673,1610,1489$, $1464,1436,1251,1189,912,727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.60(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.09$ (br. s., 1 H$), 2.73-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.62(\mathrm{~m}, 1 \mathrm{H})$, 2.38-2.47 (m, 1H), $2.26(\mathrm{dd}, J=13.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 173.2$, $169.8,138.0,137.2,136.2,128.9,127.4,126.0,125.8,122.6,119.9,119.7,110.1,105.1$, $62.3,52.1,50.7,46.7,45.7,35.8,33.3,30.2$; HRMS-ESI calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 405.1814, found: 405.1802 .

538b: Following Representative Procedure 7, a mixture of $\mathbf{2 3 3 i}(12.4 \mathrm{mg}$, $0.07 \mathrm{mmol}, 1.0$ equiv), benzyl phenylhydrazine ($17.4 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.3$ equiv), pyridine hydrochloride ($78 \mathrm{mg}, 0.7 \mathrm{mmol}, 10$ equiv), and pyridine $(1 \mathrm{~mL})$ was stirred at $110^{\circ} \mathrm{C}$ for 12 h to provide, after work-up and purification by flash chromatography (EtOAc-acetone, 100:1), 538b (18.4 mg, 78\%) as a colorless oil; $\mathrm{R}_{f} 0.44$ (EtOAc); IR (film) $v_{\max } 2929,1667,1611,1492,1452,1379,1079,729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.06-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.99$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{t}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, J=16.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=17.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J$ $=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78($ br. s., 1 H$), 2.40-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{dd}, J=12.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 171.7,138.4,137.1,135.6,128.8,127.3,126.6,125.9,122.4$, $119.4,118.7,109.9,107.2,62.1,51.2,46.7,40.8,32.5,29.3,26.5$; HRMS-ESI calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 347.1760$, found: 347.1751.

538c: Following Representative Procedure 7, a mixture of 546 (19.9 mg , $0.09 \mathrm{mmol}, 1.0$ equiv), benzyl phenylhydrazine $(22.6 \mathrm{mg}, 0.11 \mathrm{mmol}$, 1.3 equiv), pyridine hydrochloride ($101 \mathrm{mg}, 0.9 \mathrm{mmol}, 10$ equiv), and pyridine (1 mL) was stirred at $110^{\circ} \mathrm{C}$ for 15 h to provide, after work-up and purification by flash chromatography (EtOAc-acetone, 100:1), 538c ($24.0 \mathrm{mg}, 70 \%$) as a pale yellow oil; R_{f} 0.60 (EtOAc); IR (film) $u_{\max } 2934,1723,1678,1612,1496,1452,1255,1174,1067,728 \mathrm{~cm}^{-}$ ${ }^{1}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.21(\mathrm{~m}$, 4H), $5.46(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~d}$, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 174.4,171.4,137.4,137.0,136.7,128.9$, $127.6,126.6,126.0,122.2,120.3,119.9,109.9,104.3,62.9,52.3,51.6,46.8,43.7,41.7$, 32.4; HRMS-ESI calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 391.1658$, found: 391.1647 .

538d: Following Representative Procedure 7, a mixture of 233f (14.3 $\mathrm{mg}, 0.08 \mathrm{mmol}, 1.0$ equiv), benzyl phenylhydrazine ($21.8 \mathrm{mg}, 0.11$ mmol, 1.3 equiv), pyridine hydrochloride ($97 \mathrm{mg}, 0.8 \mathrm{mmol}, 10$ equiv), and pyridine (1 mL) was stirred at $110{ }^{\circ} \mathrm{C}$ for 5 h to provide, after work-up and purification by flash chromatography (EtOAc-acetone, 100:1), 538d (12.3 mg, 44\%) as a pale yellow oil; $\mathrm{R}_{f} 0.42$ (EtOAc); IR (film) $u_{\max } 2930,1699,1612,1452,1380,1299,1057,735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.56-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=14.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{dd}, J=$ $17.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta 169.1,141.9,141.6,137.8,128.7,127.4$,
126.4, 123.7, 122.3, 120.4, 119.8, 119.7, 110.7, 62.7, 59.0, 48.3, 38.5, 35.5, 32.1; HRMS-ESI calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 333.1603, found: 333.1602.

CITED LITERATURE

1. Dinh, T. Q.; Smith, C. D.; Du, X. H.; Armstrong, R. W. J. Med. Chem. 1998, 41, 981.
2. Goss, P. E.; Reid, C. L.; Bailey, D.; Dennis, J. W. Clin. Cancer Res. 1997, 3, 1077.
3. Ota, K.; Kurita, S.; Yamada, K.; Masaoka, T.; Uzuka, Y.; Ogawa, N. Cancer Immunol. Immunother. 1986, 23, 5.
4. Ohfune, Y.; Nishio, H. Tetrahedron Lett. 1984, 25, 4133.
5. Frey, U.; Krug, M.; Reymann, K. G.; Matthies, H. Brain Res. 1988, 452, 57.
6. Biard, J. F.; Guyot, S.; Roussakis, C.; Verbist, J. F.; Vercauteren, J.; Weber, J. F.; Boukef, K. Tetrahedron Lett. 1994, 35, 2691.
7. de Vries, A. H. M.; Jansen, J. F. G. A.; Feringa, B. L. Tetrahedron 1994, 50, 4479.
8. Rück, K. Angew. Chem. Int. Ed. Engl. 1995, 34, 433.
9. Ueberbacher, B. J.; Griengl, H.; Weber, H. Tetrahedron-Asymmetry 2008, 19, 838.
10. (a) Yeung; Chein, R.-J.; Corey, E. J. J. Am. Chem. Soc. 2007, 129, 10346; (b) Corey, E. J.; Helal, C. J. Angew. Chem. Int. Ed. 1998, 37, 1986.
11. Singh, I. P.; Bodiwala, H. S. Nat. Prod. Rep. 2010, 27, 1781.
12. Sharpless, K. B.; Patrick, D. W.; Truesdale, L. K.; Biller, S. A. J. Am. Chem. Soc. 1975, 97, 2305.
13. (a) Reddy, K. L.; Sharpless, K. B. J. Am. Chem. Soc. 1998, 120, 1207; (b) Muniz, K. Chem. Soc. Rev. 2004, 33, 166; (c) Bodkin, J. A.; McLeod, M. D. J. Chem. Soc., Perkin Trans. 1 2002, 2733; (d) Nilov, D.; Reiser, O. Adv. Synth. Catal. 2002, 344, 1169.
14. Li, G.; Chang, H.-T.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1996, 35, 451.
15. Bergmeier, S. C. Tetrahedron 2000, 56, 2561.
16. Donohoe, T. J.; Callens, C. K. A.; Flores, A.; Lacy, A. R.; Rathi, A. H. Chem. Eur. J. 2011, 17, 58.
17. (a) Donohoe, T. J.; Callens, C. K. A.; Thompson, A. L. Org. Lett. 2009, 11, 2305; (b) Donohoe, T. J.; Lindsay-Scott, P. J.; Parker, J. S.; Callens, C. K. A. Org. Lett. 2010, 12, 1060.
18. Mancheno, D. E.; Thornton, A. R.; Stoll, A. H.; Kong, A.; Blakey, S. B. Org. Lett. 2010, 12, 4110.

CITED LITERATURE (continued)

19. Liskin, D. V.; Sibbald, P. A.; Rosewall, C. F.; Michael, F. E. J. Org. Chem. 2010, 75, 6294.
20. Weatherly, C. D.; Guzei, I. A.; Schomaker, J. M. Eur. J. Org. Chem. 2013, 3667.
21. Williamson, K. S.; Yoon, T. P. J. Am. Chem. Soc. 2012, 134, 12370.
22. Michaelis, D. J.; Williamson, K. S.; Yoon, T. P. Tetrahedron 2009, 65, 5118.
23. Masruri; Willis, A. C.; McLeod, M. D. J. Org. Chem. 2012, 77, 8480.
24. Ma, Z.; Naylor, B. C.; Loertscher, B. M.; Hafen, D. D.; Li, J. M.; Castle, S. L. J. Org. Chem. 2012, 77, 1208.
25. Gigant, N.; Dequirez, G.; Retailleau, P.; Gillaizeau, I.; Dauban, P. Chem. Eur. J. 2012, 18, 90.
26. Nakanishi, M.; Minard, C.; Retailleau, P.; Cariou, K.; Dodd, R. H. Org. Lett. 2011, 13, 5792.
27. Liu, G.-S.; Zhang, Y.-Q.; Yuan, Y.-A.; Xu, H. J. Am. Chem. Soc. 2013, 135, 3343.
28. Sequeira, F. C.; Chemler, S. R. Org. Lett. 2012, 14, 4482.
29. Paderes, M. C.; Keister, J. B.; Chemler, S. R. J. Org. Chem. 2013, 78, 506.
30. Sanjaya, S.; Chiba, S. Org. Lett. 2012, 14, 5342.
31. Moriyama, K.; Izumisawa, Y.; Togo, H. J. Org. Chem. 2012, 77, 9846.
32. Schmidt, V. A.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 11402.
33. (a) Silva, L. F., Jr.; Olofsson, B. Nat. Prod. Rep. 2011, 28, 1722; (b) Tellitu, I.; Dominguez, E. Synlett 2012, 2165.
34. Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123.
35. Cochran, B. M.; Michael, F. E. Org. Lett. 2008, 10, 5039.
36. Lovick, H. M.; Michael, F. E. J. Am. Chem. Soc. 2010, 132, 1249.
37. Moss, R. A.; Platz, M. S.; Jones, M. (editors). Reactive Intermediate Chemistry. Wiley: 2004; p 593.

CITED LITERATURE (continued)
38. (a) Kennedy, S. A.; Novak, M.; Kolb, B. A. J. Am. Chem. Soc. 1997, 119, 7654; (b) Shahab, U.; Moinuddin; Ahmad, S.; Dixit, K.; Habib, S.; Alam, K.; Ali, A. PLoS One 2013, 8:e53205.
39. McClelland, R. A.; Gadosy, T. A.; Ren, D. Can. J. Chem. 1998, 76, 1327.
40. Falvey, D. E.; Gudmundsdottir, A. D. (editors). Nitrenes and Nitrenium Ions. Wiley: 2013.
41. Gassman, P. G. Acc. Chem. Res. 1970, 3, 26.
42. (a) Cramer, C. J.; Truhlar, D. G.; Falvey, D. E. J. Am. Chem. Soc. 1997, 119, 12338;
(b) Cramer, C. J.; Falvey, D. E. Tetrahedron Lett. 1997, 38, 1515.
43. Falvey, D. E.; Cramer, C. J. Tetrahedron Lett. 1992, 33, 1705.
44. Glover, S. A.; Scott, A. P. Tetrahedron 1989, 45, 1763.
45. Ford, G. P.; Scribner, J. D. J. Am. Chem. Soc. 1981, 103, 4281.
46. (a) Huh, C. W.; Aube, J. Chem. Sci. 2014, 5, 699; (b) Kikugawa, Y. Heterocycles 2009, 78, 571; (c) Borodkin, C. I.; Shubin, V. G. Russ. J. Org. Chem. 2005, 41, 473.
47. Urry, W. H.; Szecsi, P.; Ikoku, C.; Moore, D. W. J. Am. Chem. Soc. 1964, 86, 2224.
48. Murata, K.; Tsukamoto, M.; Sakamoto, T.; Saito, S.; Kikugawa, Y. Synthesis 2008, 32.
49. Rudchenko, V. F.; Ignatov, S. M.; Chervin, I. I.; Aliev, A. É.; Kostyanovskii, R. G. B. Acad. Sci. USSR CH+ 1990, 39, 1249.
50. Vedejs, E.; Sano, H. Tetrahedron Lett. 1992, 33, 3261.
51. Ohwada, A.; Nara, S.; Sakamoto, T.; Kikugawa, Y. J. Chem. Soc. Perkin 1 2001, 3064.
52. Itoh, N.; Sakamoto, T.; Miyazawa, E.; Kikugawa, Y. J. Org. Chem. 2002, 67, 7424.
53. (a) Serna, S.; Tellitu, I.; Dominguez, E.; Moreno, I.; SanMartin, R. Tetrahedron Lett. 2003, 44, 3483; (b) Serna, S.; Tellitu, I.; Dominguez, E.; Moreno, I.; SanMartin, R. Tetrahedron 2004, 60, 6533.
54. Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. Tetrahedron 2006, 62, 11100.
55. Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. J. Org. Chem. 2006, 71, 3501.

CITED LITERATURE (continued)
56. Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. Org. Lett. 2006, 8, 4811.
57. Tellitu, I.; Urrejola, A.; Serna, S.; Moreno, I.; Herrero, M. T.; Dominguez, E.; SanMartin, R.; Correa, A. Eur. J. Org. Chem. 2007, 437.
58. Correa, A.; Tellitu, I.; Domínguez, E.; SanMartin, R. J. Org. Chem. 2006, 71, 8316.
59. Dohi, T.; Takenaga, N.; Fukushima, K.-i.; Uchiyama, T.; Kato, D.; Motoo, S.; Fujioka, H.; Kita, Y. Chem. Commun. 2010, 46, 7697.
60. Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Angew. Chem. Int. Ed. 2011, 50, 8605.
61. (a) Gao, M.; Wang, D.-X.; Zheng, Q.-Y.; Huang, Z.-T.; Wang, M.-X. J. Org. Chem. 2007, 72, 6060; (b) Tellitu, I.; Serna, S.; Herrero, M. T.; Moreno, I.; Dominguez, E.; SanMartin, R. J. Org. Chem. 2007, 72, 1526; (c) Serna, S.; Tellitu, I.; Dominguez, E.; Moreno, I.; SanMartin, R. Org. Lett. 2005, 7, 3073.
62. Glover, S. A.; Goosen, A.; McCleland, C. W.; Schoonraad, J. L. J. Chem. Soc., Perkin Trans. 1 1984, 2255.
63. Kikugawa, Y.; Kawase, M. J. Am. Chem. Soc. 1984, 106, 5728.
64. Kikugawa, Y.; Shimada, M.; Matsumoto, K. Heterocycles 1994, 37, 293.
65. Kikugawa, Y.; Kawase, M. Chem. Lett. 1990, 581.
66. (a) Romero, A. G.; Darlington, W. H.; Jacobsen, E. J.; Mickelson, J. W. Tetrahedron Lett. 1996, 37, 2361; (b) Romero, A. G.; Darlington, W. H.; McMillan, M. W. J. Org. Chem. 1997, 62, 6582.
67. Wardrop, D. J.; Burge, M. S. J. Org. Chem. 2005, 70, 10271.
68. Samanta, R.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P. Org. Lett. 2012, 14, 5518.
69. Manna, S.; Antonchick, A. P. Angew. Chem. Int. Ed. Engl. 2014, 53, 7324.
70. Bowden, B. F.; Picker, K.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1975, 28, 2681.
71. (a) Kikugawa, Y.; Kawase, M.; Miyake, Y.; Sakamoto, T.; Shimada, M. Tetrahedron Lett. 1988, 29, 4297; (b) Kawase, M.; Miyake, Y.; Sakamoto, T.; Shimada, M.; Kikugawa, Y. Tetrahedron 1989, 45, 1653.

CITED LITERATURE (continued)
72. Fleming, I.; Moses, R. C.; Tercel, M.; Ziv, J. J. Chem. Soc., Perkin Trans. 1 1991, 617.
73. Wardrop, D. J.; Basak, A. Org. Lett. 2001, 3, 1053.
74. Nagumo, S.; Nishida, A.; Yamazaki, C.; Murashige, K.; Kawahara, N. Tetrahedron Lett. 1998, 39, 4493.
75. Sakamoto, K.; Tsujii, E.; Abe, F.; Nakanishi, T.; Yamashita, M.; Shigematsu, N.; Izumi, S.; Okuhara, M. J. Antibiot. (Tokyo) 1996, 49, 37.
76. Wardrop, D. J.; Landrie, C. L.; Ortiz, J. A. Synlett 2003, 1352.
77. Lognay, G.; Hemptinne, J. L.; Chan, F. Y.; Gaspar, C. H.; Marlier, M.; Braekman, J. C.; Daloze, D.; Pasteels, J. M. J. Nat. Prod. 1996, 59, 510.
78. Wardrop, D. J.; Burge, M. S. Chem. Commun. 2004, 1230.
79. Sakai, R.; Oiwa, C.; Takaishi, K.; Kamiya, H.; Tagawa, M. Tetrahedron Lett. 1999, 40, 6941.
80. Bowen, E. G.; Wardrop, D. J. Org. Lett. 2010, 12, 5330.
81. Hohenschutz, L. D.; Bell, E. A.; Jewess, P. J.; Leworthy, D. P.; Pryce, R. J.; Arnold, E.; Clardy, J. Phytochemistry 1981, 20, 811.
82. Walker, B. D.; Kowalski, M.; Goh, W. C.; Kozarsky, K.; Krieger, M.; Rosen, C.; Rohrschneider, L.; Haseltine, W. A.; Sodroski, J. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 8120.
83. Wardrop, D. J.; Bowen, E. G. Org. Lett. 2011, 13, 2376.
84. Bodnar, B. S.; Miller, M. J. Angew. Chem. Int. Ed. 2011, 50, 5629.
85. Wardrop, D. J.; Bowen, E. G.; Forslund, R. E.; Sussman, A. D.; Weerasekera, S. L. J. Am. Chem. Soc. 2010, 132, 1188.
86. Querolle, O.; Dubois, J.; Thoret, S.; Roussi, F.; Guéritte, F.; Guénard, D. J. Med. Chem. 2004, 47, 5937.
87. Boymond, L.; Rottländer, M.; Cahiez, G.; Knochel, P. Angew. Chem. Int. Ed. 1998, 37, 1701.
88. Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741.

CITED LITERATURE (continued)

89. Sabitha, G.; Srividya, R.; Yadav, J. S. Tetrahedron 1999, 55, 4015.
90. Werber, F. X.; Jansen, J. E.; Gresham, T. L. J. Am. Chem. Soc. 1952, 74, 532.
91. de los Angeles Rey, M.; Martínez-Pérez, J. A.; Fernández-Gacio, A.; Halkes, K.; Fall, Y.; Granja, J.; Mouriño, A. J. Org. Chem. 1999, 64, 3196.
92. Langlois, M.; Rapin, M.; Meingan, J. P.; Van, T. V.; Maillard, J. Eur. J. Med. Chem. 1976, 11, 493.
93. Taaning, R. H.; Thim, L.; Karaffa, J.; Campaña, A. G.; Hansen, A.-M.; Skrydstrup, T. Tetrahedron 2008, 64, 11884.
94. Gille, A.; Rehbein, J.; Hiersemann, M. Org. Lett. 2011, 13, 2122.
95. Wakasugi, K.; Iida, A.; Misaki, T.; Nishii, Y.; Tanabe, Y. Adv. Synth. Catal. 2003, 345, 1209.
96. Zhdankin, V. V.; Tykwinski, R.; Williamson, B. L.; Stang, P. J.; Zefirov, N. S. Tetrahedron Lett. 1991, 32, 733.
97. Zefirov, N. S.; Safronov, S. O.; Kaznacheev, A. A.; Zhdankin, V. V. Zh. Org. Khim. 1989, 25, 1807.
98. Koser, G. F.; Wettach, R. H.; Troup, J. M.; Frenz, B. A. J. Org. Chem. 1976, 41, 3609.
99. Glover, S. A.; Goosen, A.; McClei, C. V.; Schoonraad, J. L. Tetrahedron 1987, 43, 2577.
100. Sheshenev, A. E.; Boltukhina, E. V.; Hii, K. K. Chem. Commun. 2013, 49, 3685.
101. (a) Citron, M. L.; Herman, T. S.; Vreeland, F.; Krasnow, S. H.; Fossieck, B. E.; Harwood, S.; Franklin, R.; Cohen, M. H. Cancer Treat. Rep. 1985, 69, 109; (b) Tyson, L. B.; Gralla, R. J.; Clark, R. A.; Kris, M. G.; Bordin, L. A.; Bosl, G. J. Am. J. Clin. Oncol. 1985, 8, 528.
102. Farid, U.; Wirth, T. Angew. Chem. Int. Ed. 2012, 51, 3462.
103. Agteresch, H. J.; Dagnelie, P. C.; van den Berg, J. W. O.; Wilson, J. H. P. Drugs 1999, 58, 211.
104. Spiegel, S.; Milstien, S. Nat. Rev. Mol. Cell Biol. 2003, 4, 397.

CITED LITERATURE (continued)

105. Bijnsdorp, I. V.; Comijn, E. M.; Padron, J. M.; Gmeiner, W. H.; Peters, G. J. Oncol. Rep. 2007, 18, 287.
106. (a) Juntunen, J.; Huuskonen, J.; Laine, K.; Niemi, R.; Taipale, H.; Nevalainen, T.; Pate, D. W.; Järvinen, T. Eur. J. Pharm. Sci. 2003, 19, 37; (b) Schultz, C. Biorg. Med. Chem. 2003, 11, 885.
107. Meerbach, A.; Klöcking, R.; Meier, C.; Lomp, A.; Helbig, B.; Wutzler, P. Antiviral Res. 2000, 45, 69.
108. (a) Yanagisawa, A.; Noritake, Y.; Nomura, N.; Yamamoto, H. Synlett 1991, 1991, 251; (b) van Klaveren, M.; Persson, E. S. M.; del Villar, A.; Grove, D. M.; Bäckvall, J.-E.; van Koten, G. Tetrahedron Lett. 1995, 36, 3059.
109. Yanagisawa, A.; Nomura, N.; Yamamoto, H. Tetrahedron 1994, 50, 6017.
110. (a) Hansen, A. L.; Ebran, J.-P.; Gogsig, T. M.; Skrydstrup, T. Chem. Commun. 2006, 4137; (b) Karlström, A. S. E.; Itami, K.; Bäckvall, J.-E. J. Org. Chem. 1999, 64, 1745; (c) Claveau, E.; Gillaizeau, I.; Blu, J.; Bruel, A.; Coudert, G. J. Org. Chem. 2007, 72, 4832; (d) Takakura, H.; Sasaki, M.; Honda, S.; Tachibana, K. Org. Lett. 2002, 4, 2771.
111. C. Nicolaou, K.; Namoto, K. Chem. Commun. 1998, 1757.
112. Havinga, E.; de Jongh, R. O.; Dorst, W. Recl. Trav. Chim. Pays-Bas 1956, 75, 378.
113. (a) Protti, S.; Fagnoni, M.; Albini, A. Angew. Chem. Int. Ed. 2005, 44, 5675; (b) Protti, S.; Fagnoni, M.; Albini, A. J. Am. Chem. Soc. 2006, 128, 10670.
114. (a) Pelliccioli, A. P.; Wirz, J. Photochem. Photobiol. Sci. 2002, 1, 441; (b) Givens, R. S.; Kueper, L. W. Chem. Rev. 1993, 93, 55.
115. Koser, G. F.; Lodaya, J. S.; Ray, D. G.; Kokil, P. B. J. Am. Chem. Soc. 1988, 110, 2987.
116. Kühl, O. Phosphorus-31 NMR Spectroscopy. Springer: 2008; p 19.
117. Jameson, C. J. J. Am. Chem. Soc. 1969, 91, 6232.
118. ChemicalBook compound database. Retrieved from http://www.chemicalbook.com/SpectrumEN_838-85-7_13CNMR.htm.
119. (a) Ding, Q.; Zhou, X.; Fan, R. Org. Biomol. Chem. 2014, 12, 4807; (b) Jin, C.-Y.; Du, J.-Y.; Zeng, C.; Zhao, X.-H.; Cao, Y.-X.; Zhang, X.-Z.; Lu, X.-Y.; Fan, C.-A. Adv. Synth. Catal. 2014, 356, 2437.

CITED LITERATURE (continued)
120. Wirth, T.; Ochiai, M.; Varvgolis, A.; Zhdankin, V. V.; Koser, G. F.; Tohma, H.; Kita, Y. Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis. Topics in Current Chemistry. Springer-Verlag: Berlin, Heidelberg, New York: 2003; Vol. 224, p 138.
121. Bowen, E. G. Ph.D. Thesis. University of Illinois at Chicago, Chicago, IL, 2009.
122. Donohoe, T. J.; Callens, C. K. A.; Lacy, A. R.; Winter, C. Eur. J. Org. Chem. 2012, 655.
123. Tulchinsky, Y.; Iron, M. A.; Botoshansky, M.; Gandelman, M. Nat. Chem. 2011, 3, 525.
124. Heims, F.; Pfaff, F. F.; Abram, S.-L.; Farquhar, E. R.; Bruschi, M.; Greco, C.; Ray, K. J. Am. Chem. Soc. 2013, 136, 582.
125. Melikyan, G. G.; Aslanyan, G. K.; Panosyan, G. A.; Kazaryan, P. I.; Badanyan, S. O. Russ. J. Org. Chem. 1994, 30, 222.
126. Paira, M.; Mandal, S. K.; Roy, S. C. Tetrahedron Lett. 2008, 49, 2432.
127. Piccialli, V.; Caserta, T. Tetrahedron Lett. 2004, 45, 303.
128. Du, Y.; Chang, J.; Reiner, J.; Zhao, K. J. Org. Chem. 2008, 73, 2007.
129. Cooley, J. H.; Jacobs, P. T. J. Org. Chem. 1975, 40, 552.
130. Yamaoka, H.; Moriya, N.; Ikunaka, M. Org. Process Res. Dev. 2004, 8, 931.
131. Abu-Omar, M. M.; Espenson, J. H. Organometallics 1996, 15, 3543.
132. (a) Russell, A. T.; Procter, G. Tetrahedron Lett. 1987, 28, 2041; (b) Ichikawa, Y. I.; Miwa, T.; Narasaka, K. Bull. Chem. Soc. Jpn. 1985, 58, 3309.
133. Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647.
134. Agarwal, S.; Tiwari, H. P.; Sharma, J. P. Tetrahedron 1990, 46, 4417.
135. Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 399.
136. Balasubramanian, K.; Prathiba, V. Indian J. Chem. Sect. B 1986, 25, 326.
137. Srikrishna, A.; Vasantha Lakshmi, B.; Sudhakar, A. V. S. Tetrahedron Lett. 2007, 48, 7610.
138. Towne, T. B.; McDonald, F. E. J. Am. Chem. Soc. 1997, 119, 6022.

CITED LITERATURE (continued)
139. Morimoto, Y.; Muragaki, K.; Iwai, T.; Morishita, Y.; Kinoshita, T. Angew. Chem. Int. Ed. 2000, 39, 4082.
140. Beihoffer, L. A.; Craven, R. A.; Knight, K. S.; Sisson, C. R.; Waddell, T. G. Transition Met. Chem. 2005, 30, 582.
141. Praveen, C.; Kumar, K. H.; Muralidharan, D.; Perumal, P. T. Tetrahedron 2008, 64, 2369.
142. Wietzerbin, K.; Bernadou, J.; Meunier, B. Eur. J. Inorg. Chem. 2000, 1391.
143. Kolb, H. C.; Vannieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
144. Schlecht, M. F.; Kim, H.-j. Tetrahedron Lett. 1986, 27, 4889.
145. Baskaran, S.; Chandrasekaran, S. Tetrahedron Lett. 1990, 31, 2775.
146. Roth, S.; Stark, C. B. W. Chem. Commun. 2008, 6411.
147. Bertrand, M. B.; Wolfe, J. P. Tetrahedron 2005, 61, 6447.
148. Merritt, E. A.; Carneiro, V. M. T.; Silva, L. F.; Olofsson, B. J. Org. Chem. 2010, 75, 7416.
149. Nitta, I.; Watase, H.; Tomiie, Y. Nature 1958, 181, 761.
150. Murakami, S.; Takemoto, T.; Shimizu, Z. Yakugaku zasshi 1953, 73, 1026.
151. Impellizzeri, G.; Mangiafico, S.; Oriente, G.; Piattelli, M.; Sciuto, S.; Fattorusso, E.; Magno, S.; Santacroce, C.; Sica, D. Phytochemistry 1975, 14, 1549.
152. Balansard, G.; Gaytesorbier, A.; Cavalli, C. Ann. Pharm. Fr. 1982, 40, 527.
153. Perl, T. M.; Bedard, L.; Kosatsky, T.; Hockin, J. C.; Todd, E. C. D.; Remis, R. S. N. Engl. J. Med. 1990, 322, 1775.
154. (a) Coyle, J. T.; Schwarcz, R. Nature 1976, 263, 244; (b) McGeer, E. G.; McGeer, P. L. Nature 1976, 263, 517.
155. Olney, J. W.; Rhee, V.; Ho, O. L. Brain Res. 1974, 77, 507.
156. (a) Andersson, P. B.; Perry, V. H.; Gordon, S. Immunology letters 1991, 30, 177; (b) Andersson, P. B.; Perry, V. H.; Gordon, S. Neuroscience 1991, 42, 201; (c) Andersson, M.; Bergendorff, O.; Nielsen, M.; Sterner, O.; Witt, R.; Ai, J.; Lu, A.; Wang, A. M. Phytochemistry 1995, 38, 835.

CITED LITERATURE (continued)

157. Benveniste, H.; Jorgensen, M. B.; Diemer, N. H.; Hansen, A. J. Acta Neurol. Scand. 1988, 78, 529.
158. (a) Bondy, S. C.; Lee, D. K. Brain Res. 1993, 610, 229; (b) Reynolds, I. J.; Hastings, T. G. J. Neurosci. 1995, 15, 3318; (c) Han, J. Y.; Ahn, S. Y.; Oh, E. H.; Nam, S. Y.; Hong, J. T.; Oh, K. W.; Lee, M. K. eCAM 2012, 2012, 479016.
159. Chuang, Y. C.; Chang, A. Y.; Lin, J. W.; Hsu, S. P.; Chan, S. H. Epilepsia 2004, 45, 1202.
160. Gervais, F. G.; Xu, D.; Robertson, G. S.; Vaillancourt, J. P.; Zhu, Y.; Huang, J.; LeBlanc, A.; Smith, D.; Rigby, M.; Shearman, M. S.; Clarke, E. E.; Zheng, H.; Van Der Ploeg, L. H. T.; Ruffolo, S. C.; Thornberry, N. A.; Xanthoudakis, S.; Zamboni, R. J.; Roy, S.; Nicholson, D. W. Cell 1999, 97, 395.
161. Benari, Y. Neuroscience 1985, 14, 375.
162. Ramsey, U. P.; Douglas, D. J.; Walter, J. A.; Wright, J. L. Nat. Toxins 1998, 6, 137.
163. (a) Qu, H.; Eloqayli, H.; Muller, B.; Aasly, J.; Sonnewald, U. Neurochem. Int. 2003, 42, 101; (b) Muller, B.; Qu, H.; Garseth, M.; White, L. R.; Aasly, J.; Sonnewald, U. Neurosci. Lett. 2000, 279, 169.
164. Tremblay, J.-F. Chem. Eng. News 2000, 78, 14.
165. (a) Tremblay, J.-F. Chem. Eng. News 2001, 79, 19; (b) Tremblay, J.-F. Chem. Eng. News 2000, 78, 31.
166. Parsons, A. F. Tetrahedron 1996, 52, 4149.
167. Stathakis, C. I.; Yioti, E. G.; Gallos, J. K. Eur. J. Org. Chem. 2012, 4661.
168. (a) Ueno, Y.; Tanaka, K.; Ueyanagi, J.; Nawa, H.; Sanno, Y.; Honjo, M.; Nakamori,
R.; Sugawa, T.; Uchibayashi, M.; Osugi, K.; Tatsuoka, S. P. Jpn. Acad. 1957, 33, 53;
(b) Sanno, Y. Yakugaku zasshi 1960, 80, 603.
169. Rubio, A.; Ezquerra, J.; Escribano, A.; Remuinan, M. J.; Vaquero, J. J. Tetrahedron Lett. 1998, 39, 2171.
170. Cossy, J.; Cases, M.; Pardo, D. G. Tetrahedron 1999, 55, 6153.
171. Hanessian, S.; Ninkovic, S. J. Org. Chem. 1996, 61, 5418.
172. Hodgson, D. M.; Hachisu, S.; Andrews, M. D. Org. Lett. 2005, 7, 815.

CITED LITERATURE (continued)

173. Poisson, J. F.; Orellana, A.; Greene, A. E. J. Org. Chem. 2005, 70, 10860.
174. Anderson, J. C.; Whiting, M. J. Org. Chem. 2003, 68, 6160.
175. Pandey, S. K.; Orellana, A.; Greene, A. E.; Poisson, J. F. Org. Lett. 2006, 8, 5665.
176. Yu, H. J.; Shao, C.; Cui, Z.; Feng, C. G.; Lin, G. Q. Chem. Eur. J. 2012, 18, 13274.
177. Kamon, T.; Irifune, Y.; Tanaka, T.; Yoshimitsu, T. Org. Lett. 2011, 13, 2674.
178. Clayden, J.; Tchabanenko, K. Chem. Commun. 2000, 317.
179. (a) Clayden, J.; Menet, C. J.; Mansfield, D. J. Chem. Commun. 2002, 38; (b) Clayden, J.; Menet, C. J.; Tchabanenko, K. Tetrahedron 2002, 58, 4727.
180. Lemiere, G.; Sedehizadeh, S.; Toueg, J.; Fleary-Roberts, N.; Clayden, J. Chem. Commun. 2011, 47, 3745.
181. Sakaguchi, H.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2007, 9, 1635.
182. Sakaguchi, H.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2008, 10, 1711.
183. (a) Trost, B. M.; Rudd, M. T. Org. Lett. 2003, 5, 1467; (b) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2005, 127, 4763.
184. Chalker, J. M.; Yang, A.; Deng, K.; Cohen, T. Org. Lett. 2007, 9, 3825.
185. Wei, G.; Chalker, J. M.; Cohen, T. J. Org. Chem. 2011, 76, 7912.
186. Evans, P. A.; Inglesby, P. A. J. Am. Chem. Soc. 2012, 134, 3635.
187. Luo, Z.; Zhou, B.; Li, Y. Org. Lett. 2012, 14, 2540.
188. Morita, Y.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2005, 7, 4337.
189. Hosomi, A.; Sakata, Y.; Sakurai, H. Chem. Lett. 1984, 1117.
190. Lowe, M. A.; Ostovar, M.; Ferrini, S.; Chen, C. C.; Lawrence, P. G.; Fontana, F.; Calabrese, A. A.; Aggarwal, V. K. Angew. Chem. Int. Ed. Engl. 2011, 50, 6370.
191. Scott, M. E.; Lautens, M. Org. Lett. 2005, 7, 3045.
192. (a) Takita, S.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2011, 13, 2068; (b) Takita, S.; Yokoshima, S.; Fukuyama, T. Synthesis 2011, 3848.
193. Kesava Reddy, N.; Chandrasekhar, S. J. Org. Chem. 2013, 78, 3355.

CITED LITERATURE (continued)

194. (a) Nakagawa, H.; Sugahara, T.; Ogasawara, K. Org. Lett. 2000, 2, 3181; (b) D. Campbell, A.; J. K. Taylor, R.; M. Raynham, T. Chem. Commun. 1999, 245.
195. Zlatopolskiy, B. D.; Kroll, H. P.; Melotto, E.; de Meijere, A. Eur. J. Org. Chem. 2004, 4492.
196. Charrier, J.-D.; Duffy, J. E. S.; Hitchcock, P. B.; Young, D. W. Tetrahedron Lett. 1998, 39, 2199.
197. VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 17, 1973.
198. Evans, M. E.; Parrish, F. W.; Long Jr, L. Carbohydr. Res. 1967, 3, 453.
199. Ezquerra, J.; Pedregal, C.; Yruretagoyena, B.; Rubio, A.; Carreno, M. C.; Escribano, A.; Ruano, J. L. G. J. Org. Chem. 1995, 60, 2925.
200. Graham, S. L.; Scholz, T. H. Tetrahedron Lett. 1990, 31, 6269.
201. Sha, C.-K.; Lee, F.-K.; Chang, C.-J. J. Am. Chem. Soc. 1999, 121, 9875.
202. Ballini, R.; Bosica, G.; Cioci, G.; Fiorini, D.; Petrini, M. Tetrahedron 2003, 59, 3603.
203. Tsuji, J.; Shimizu, I.; Minami, I. Chem. Lett. 1984, 13, 1017.
204. (a) Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slafer, B. W.; Davis, A. Org. Lett. 2005, 7, 1047; (b) Cossy, J.; Bauer, D.; Bellosta, V. Tetrahedron 2002, 58, 5909; (c) Angle, S. R.; Kim, M. J. Org. Chem. 2007, 72, 8791.
205. (a) Chiou, W.-H.; Schoenfelder, A.; Sun, L.; Mann, A.; Ojima, I. J. Org. Chem. 2007, 72, 9418; (b) Hanessian, S.; Abad-Grillo, T.; McNaughton-Smith, G. Tetrahedron 1997, 53, 6281.
206. Oikawa, Y.; Tanaka, T.; Yonemitsu, O. Tetrahedron Lett. 1986, 27, 3647.
207. (a) Ginn, J. D.; Padwa, A. Org. Lett. 2002, 4, 1515; (b) Crabtree, R. H.; Davis, M. W. J. Org. Chem. 1986, 51, 2655.
208. (a) Sugimura, T.; Watanabe, J.; Nakagawa, S.; Okuyama, T. J. Mol. Catal. A: Chem. 2006, 248, 233; (b) Del Valle, J. R.; Goodman, M. J. Org. Chem. 2003, 68, 3923.
209. Hodgson, D. M.; Hachisu, S.; Andrews, M. D. Synlett 2005, 2005, 1267.
210. (a) Köhling, P.; Schmidt, A. M.; Eilbracht, P. Org. Lett. 2003, 5, 3213; (b) Hon, Y.S.; Lin, S.-W.; Lu, L.; Chen, Y.-J. Tetrahedron 1995, 51, 5019.

CITED LITERATURE (continued)
211. (a) Nakatani, K.; Izawa, T.; Isoe, S. J. Org. Chem. 1994, 59, 5961; (b) Padwa, A.; Eidell, C. K.; Ginn, J. D.; McClure, M. S. J. Org. Chem. 2002, 67, 1595; (c) Lee, N.; Kim, Y.-W.; Chang, K.; Kim, K. H.; Jew, S.-S.; Kim, D.-K. Tetrahedron Lett. 1996, 37, 2429; (d) Hanessian, S.; Claridge, S.; Johnstone, S. J. Org. Chem. 2002, 67, 4261; (e) Kang, J.-H.; Chung, H.-E.; Kim, S. Y.; Kim, Y.; Lee, J.; Lewin, N. E.; Pearce, L. V.; Blumberg, P. M.; Marquez, V. E. Biorg. Med. Chem. 2003, 11, 2529.
212. Fox, D. N. A.; Lathbury, D.; Mahon, M. F.; Molloy, K. C.; Gallagher, T. J. Am. Chem. Soc. 1991, 113, 2652.
213. Kozikowski, A. P.; Tuckmantel, W. J. Org. Chem. 1991, 56, 2826.
214. (a) Balduzzi, S.; Müller-Bunz, H.; McGlinchey, M. J. Chem. Eur. J. 2004, 10, 5398;
(b) Giner, J.-L.; Faraldos, J. A. J. Org. Chem. 2002, 67, 2717; (c) Ohkubo, T.; Akino, H.; Asaoka, M.; Takei, H. Tetrahedron Lett. 1995, 36, 3365.
215. (a) Fukumoto, H.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Angew. Chem. Int. Ed. 2006, 45, 2731; (b) Trudeau, S.; Morken, J. P. Org. Lett. 2005, 7, 5465.
216. Wolleb, H.; Pfander, H. Helv. Chim. Acta 1986, 69, 646.
217. (a) Mandai, T.; Suzuki, S.; Murakami, T.; Fujita, M.; Kawada, M.; Tsuji, J. Tetrahedron Lett. 1992, 33, 2987; (b) Chiba, S.; Kitamura, M.; Narasaka, K. J. Am. Chem. Soc. 2006, 128, 6931.
218. Cicchi, S.; Goti, A.; Brandi, A.; Guarna, A.; De Sarlo, F. Tetrahedron Lett. 1990, 31, 3351.
219. Saito, S.; Hasegawa, T.; Inaba, M.; Nishida, R.; Fujii, T.; Nomizu, S.; Moriwake, T. Chem. Lett. 1984, 13, 1389.
220. Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem. 1976, 41, 1485.
221. (a) Clayden, J.; Knowles, F. E.; Baldwin, I. R. J. Am. Chem. Soc. 2005, 127, 2412; (b) Orellana, A.; Pandey, S. K.; Carret, S.; Greene, A. E.; Poisson, J. F. J. Org. Chem. 2012, 77, 5286.
222. Theodoridis, G. Tetrahedron 2000, 56, 2339.
223. (a) Bose, D. S.; Lakshminarayana, V. Synthesis 1999, 66; (b) Frank, R.; Schutkowski, M. Chem. Commun. 1996, 2509.
224. Takano, S.; Iwabuchi, Y.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1988, 1204.

CITED LITERATURE (continued)
225. Takano, S.; Sugihara, T.; Satoh, S.; Ogasawara, K. J. Am. Chem. Soc. 1988, 110, 6467.
226. Yusubov, M. S.; Wirth, T. Org. Lett. 2005, 7, 519.
227. Varvoglis, A. Hypervalent Iodine in Organic Synthesis. Academic Press: New York: 1997; p 10.
228. (a) Novak, B. H.; Hudlicky, T.; Reed, J. W.; Mulzer, J.; Trauner, D. Curr. Org. Chem. 2000, 4, 343; (b) Zezula, J.; Hudlicky, T. Synlett 2005, 388.
229. (a) Bonjoch, J.; Sole, D. Chem. Rev. 2000, 100, 3455; (b) Mori, M.; Nakanishi, M.; Kajishima, D.; Sato, Y. J. Am. Chem. Soc. 2003, 125, 9801.
230. KanFan, C.; Sevenet, T.; Hadi, H. A.; Bonin, M.; Quirion, J. C.; Husson, H. P. Nat. Prod. Lett. 1995, 7, 283.
231. Staub, G. M.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. J. Am. Chem. Soc. 1992, 114, 1015.
232. (a) Ohsaki, A.; Ishiyama, H.; Yoneda, K.; Kobayashi, J. Tetrahedron Lett. 2003, 44, 3097; (b) Liu, P.; Hong, S.; Weinreb, S. M. J. Am. Chem. Soc. 2008, 130, 7562.
233. (a) Shah, U.; Chackalamannil, S.; Ganguly, A. K.; Chelliah, M.; Kolotuchin, S.; Buevich, A.; McPhail, A. J. Am. Chem. Soc. 2006, 128, 12654; (b) Evans, D. A.; Adams, D. J. J. Am. Chem. Soc. 2007, 129, 1048; (c) Evans, D. A.; Adams, D. J.; Kwan, E. E. J. Am. Chem. Soc. 2012, 134, 8162.
234. Kong, F. M.; Andersen, R. J.; Allen, T. M. J. Am. Chem. Soc. 1994, 116, 6007.
235. (a) Cimino, G.; Mattia, C. A.; Mazzarella, L.; Puliti, R.; Scognamiglio, G.; Spinella, A.; Trivellone, E. Tetrahedron 1989, 45, 3863; (b) Garg, N. K.; Hiebert, S.; Overman, L. E. Angew. Chem. Int. Ed. 2006, 45, 2912; (c) Becker, M. H.; Chua, P.; Downham, R.; Douglas, C. J.; Garg, N. K.; Hiebert, S.; Jaroch, S.; Matsuoka, R. T.; Middleton, J. A.; Ng, F. W.; Overman, L. E. J. Am. Chem. Soc. 2007, 129, 11987.
236. (a) Snider, B. B.; Lin, H. J. Am. Chem. Soc. 1999, 121, 7778; (b) Scheffler, G.; Seike, H.; Sorensen, E. J. Angew. Chem. Int. Ed. 2000, 39, 4593.
237. Kobayashi, J. i.; Kubota, T. Nat. Prod. Rep. 2009, 26, 936.
238. Cai, X.-H.; Du, Z.-Z.; Luo, X.-D. Org. Lett. 2007, 9, 1817.
239. Bonjoch, J.; Diaba, F.; Bradshaw, B. Synthesis 2011, 993.

CITED LITERATURE (continued)

240. Kong, F. M.; Graziani, E. I.; Andersen, R. J. J. Nat. Prod. 1998, 61, 267.
241. de Oliveira, J. H. H. L.; Nascimento, A. M.; Kossuga, M. H.; Cavalcanti, B. C.; Pessoa, C. O.; Moraes, M. O.; Macedo, M. L.; Ferreira, A. G.; Hajdu, E.; Pinheiro, U. S.; Berlinck, R. G. S. J. Nat. Prod. 2007, 70, 538.
242. Kong, F.; Andersen, R. J. Tetrahedron 1995, 51, 2895.
243. Ballette, R.; Perez, M.; Proto, S.; Amat, M.; Bosch, J. Angew. Chem. Int. Ed. 2014, 53, 6202.
244. Matzanke, N.; Gregg, R. J.; Weinreb, S. M.; Parvez, M. J. Org. Chem. 1997, 62, 1920.
245. Yamazaki, N.; Kusanagi, T.; Kibayashi, C. Tetrahedron Lett. 2004, 45, 6509.
246. Yoshimura, Y.; Inoue, J.; Yamazaki, N.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett. 2006, 47, 3489.
247. Tong, H. M.; Martin, M. T.; Chiaroni, A.; Benechie, M.; Marazano, C. Org. Lett. 2005, 7, 2437.
248. Kondo, K.; Shigemori, H.; Kikuchi, Y.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. J. Org. Chem. 1992, 57, 2480.
249. Quirante, J.; Paloma, L.; Diaba, F.; Vila, X.; Bonjoch, J. J. Org. Chem. 2008, 73, 768.
250. Amat, M.; Perez, M.; Proto, S.; Gatti, T.; Bosch, J. Chem. Eur. J. 2010, 16, 9438.
251. Amat, M.; Ballette, R.; Proto, S.; Perez, M.; Bosch, J. Chem. Commun. 2013, 49, 3149.
252. Proto, S.; Amat, M.; Perez, M.; Ballette, R.; Romagnoli, F.; Mancinelli, A.; Bosch, J. Org. Lett. 2012, 14, 3916.
253. Lohse, C.; Detterbeck, R.; Acklin, P.; Borschberg, H.-J. Helv. Chim. Acta 2002, 85, 945.
254. Bolm, C.; Gerlach, A.; Dinter, C. L. Synlett 1999, 195.
255. Rho, H. S.; Oh, S. H.; Lee, J. W.; Lee, J. Y.; Chin, J.; Song, C. E. Chem. Commun. 2008, 1208.
256. Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. Org. Lett. 2008, 10, 4715.
257. Corey, E. J.; Letavic, M. A. J. Am. Chem. Soc. 1995, 117, 9616.

CITED LITERATURE (continued)

258. Guibé, F. Tetrahedron 1998, 54, 2967.
259. Jiang, G.-J.; Fu, X.-F.; Li, Q.; Yu, Z.-X. Org. Lett. 2012, 14, 692.
260. Karpf, M.; Trussardi, R. J. Org. Chem. 2001, 66, 2044.
261. LemaireAudoire, S.; Savignac, M.; Dupuis, C.; Genet, J. P. Bull. Soc. Chim. Fr. 1995, 132, 1157.
262. Zacuto, M. J.; Xu, F. J. Org. Chem. 2007, 72, 6298.
263. Taniguchi, T.; Ogasawara, K. Tetrahedron Lett. 1998, 39, 4679.
264. Chattopadhyay, D.; Maiti, K.; Kundu, A. P.; Chakraborty, M. S.; Bhadra, R.; Mandal, S. C.; Mandal, A. B. J. Ethnopharmacol. 2001, 77, 49.
265. (a) Wright, C. W.; Allen, D.; Phillipson, J. D.; Kirby, G. C.; Warhurst, D. C.; Massiot, G.; Lemenolivier, L. J. Ethnopharmacol. 1993, 40, 41; (b) Gandhi, M.; Vinayak, V. K. J. Ethnopharmacol. 1990, 29, 51.
266. Macabeo, A. P. G.; Krohn, K.; Gehle, D.; Read, R. W.; Brophy, J. J.; Cordell, G. A.; Franzblau, S. G.; Aguinaldo, A. M. Phytochemistry 2005, 66, 1158.
267. (a) Shang, J. H.; Cai, X. H.; Feng, T.; Zhao, Y. L.; Wang, J. K.; Zhang, L. Y.; Yan, M.; Luo, X. D. J. Ethnopharmacol. 2010, 129, 174; (b) Baliga, M. S. Integr. Cancer Ther. 2010, 9, 261.
268. Hou, Y.; Cao, X.; Wang, L.; Cheng, B.; Dong, L.; Luo, X.; Bai, G.; Gao, W. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 908, 98.
269. Irmler, S.; Schroder, G.; St-Pierre, B.; Crouch, N. P.; Hotze, M.; Schmidt, J.; Strack, D.; Matern, U.; Schroder, J. Plant J. 2000, 24, 797.
270. Heckendorf, A. H.; Hutchinson, C. R. Tetrahedron Lett. 1977, 4153.
271. Schmidt, W.; Beerhues, L. FEBS Lett. 1997, 420, 143.
272. Polindara-Garcia, L. A.; Miranda, L. D. Synthesis 2012, 44, 1051.
273. Tokuyama, H.; Yokoshima, S.; Lin, S. C.; Li, L. P.; Fukuyama, T. Synthesis 2002, 1121.
274. Gerfaud, T.; Xie, C.; Neuville, L.; Zhu, J. Angew. Chem. Int. Ed. 2011, 50, 3954.
275. Nicolaou, K. C.; Claremon, D. A.; Papahatjis, D. P. Tetrahedron Lett. 1981, 22, 4647.

CITED LITERATURE (continued)

276. Mori, M.; Hashimoto, A.; Shibasaki, M. J. Org. Chem. 1993, 58, 6503.
277. Müller, S.; Webber, M. J.; List, B. J. Am. Chem. Soc. 2011, 133, 18534.
278. Adams, G. L.; Carroll, P. J.; Smith, A. B. J. Am. Chem. Soc. 2012, 134, 4037.
279. Silberstein, S. D.; Elkind, A. H.; Schreiber, C.; Keywood, C. Neurology 2004, 63, 261.
280. Hassan, Z.; Muzaimi, M.; Navaratnam, V.; Yusoff, N. H. M.; Suhaimi, F. W.; Vadivelu, R.; Vicknasingam, B. K.; Amato, D.; von Hörsten, S.; Ismail, N. I. W.; Jayabalan, N.; Hazim, A. I.; Mansor, S. M.; Müller, C. P. Neurosci. Biobehav. Rev. 2013, 37, 138.
281. Tam, S. W.; Worcel, M.; Wyllie, M. Pharmacol. Ther. 2001, 91, 215.
282. Brock, G. B.; McMahon, C. G.; Chen, K. K.; Costigan, T.; Shen, W.; Watkins, V.; Anglin, G.; Whitaker, S. J. Urol. 2002, 168, 1332.
283. van Pelt-Koops, J. C.; Pett, H. E.; Graumans, W.; van der Vegte-Bolmer, M.; van Gemert, G. J.; Rottmann, M.; Yeung, B. K. S.; Diagana, T. T.; Sauerwein, R. W. Antimicrob. Agents Chemother. 2012, 56, 3544.
284. Kam, T.-S.; Sim, K.-M. Phytochemistry 1998, 47, 145.

APPENDICES

X-ray data collected from 477

Table 21. Crystal Data and Structure Refinement for 477

Empirical Formula	$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{5}$
Formula weight	243.26
Z	8
Temperature	298(2) K
Wavelength	0.71073 £
Crystal system	monoclinic
Space group	C2/c
Unit cell dimensions	$\alpha=27.646(5) \AA$
	$\beta=6.3613(11) \AA$
	$\chi=13.531(2) \AA$
Volume	$2351.7 \AA^{3}$
Density (calc)	$1.374 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.109 \mathrm{~mm}^{-1}$
F(000)	1040
Crystal size	Not recorded
θ range for data collection	1.49 to 28.29°
Limiting indices	$-34<h<36,-8<k<8,-17<k<17$
Reflections collected	10456
Independent reflections	$2766\left(\mathrm{R}_{\text {int }}=0.0476\right)$
Completeness to $\theta=28.29$	0.949
Refinement method	Full-matrix least squares on F^{2}
Data / restraints / parameters	2766 / 0 / 157
Goodness-of-fit on F^{2}	0.682
Final R indices [$1>2 s(I)$]	$\mathrm{R} 1=0.0476, \mathrm{wR} 2=0.1565$
R indices (all data)	$\mathrm{R} 1=0.0673, \mathrm{wR} 2=0.1892$
Largest diff. Peak and hole	0.25 and -0.15 e \AA^{-3}

APPENDICES (continued)

X-ray Data Collected from 477

Table 22. Atomic Coordinates and Equivalent Isotopic Displacement Parameters for 477

atom	x	y	z	Uiso*/Ueq
O11"	0.03223 (4)	0.2553 (2)	0.15281 (10)	0.0545 (4)
C7	0.08589 (6)	0.5353 (2)	0.20092 (11)	0.0415 (4)
H7	0.092	0.4767	0.2687	0.050*
O9	0.15466 (6)	0.79539 (19)	0.35623 (9)	0.0604 (4)
H9	0.1483	0.8952	0.3904	0.091*
O1	0.13666 (5)	0.8146 (2)	-0.06494 (9)	0.0642 (4)
O10'	0.00159 (5)	0.5780 (2)	0.12310 (11)	0.0619 (4)
N2	0.17425 (5)	0.8097 (2)	0.09509 (10)	0.0470 (4)
O2	0.19213 (5)	1.01433 (17)	0.08461 (10)	0.0577 (4)
C3	0.17973 (6)	0.7400 (3)	0.19903 (11)	0.0449 (4)
H3	0.2124	0.779	0.2326	0.054*
C10	0.03516 (6)	0.4657 (3)	0.15446 (12)	0.0451 (4)
C4	0.17512 (6)	0.5028 (3)	0.19940 (13)	0.0466 (4)
H4A	0.1785	0.4515	0.2676	0.056*
H4B	0.2007	0.4398	0.1673	0.056*
C8	0.09000 (6)	0.7743 (3)	0.21097 (13)	0.0479 (4)
H8A	0.0805	0.8378	0.1457	0.057*
H8B	0.0675	0.8233	0.2543	0.057*
C5	0.12509 (6)	0.4436 (2)	0.14315 (11)	0.0401 (4)
H5	0.1222	0.2901	0.1428	0.048*
C6	0.12113 (6)	0.5196 (3)	0.03459 (12)	0.0442 (4)
H6A	0.1361	0.4144	-0.0029	0.053*
H6B	0.0867	0.5259	0.0066	0.053*
C9	0.14146 (7)	0.8456 (2)	0.25331 (12)	0.0457 (4)
H9A	0.1436	0.9982	0.2451	0.055*

APPENDICES (continued)

X-ray Data Collected from 477
Table 22. Atomic Coordinates and Equivalent Isotopic Displacement Parameters for 477 (continued)

atom	x	y	z	Uiso*/Ueq
C1	$0.14376(6)$	$0.7292(3)$	$0.01744(12)$	$0.0442(4)$
C11	$-0.01374(7)$	$0.1648(3)$	$0.10874(15)$	$0.0567(5)$
H11A	-0.0396	0.2234	0.1399	0.085^{*}
H11B	-0.0127	0.0153	0.1185	0.05^{*}
H11C	-0.0195	0.1953	0.0384	0.05^{*}
C12	$0.23969(8)$	$1.0023(4)$	$0.05565(17)$	$0.0695(6)$
H12A	0.2584	0.8944	0.0937	0.104^{*}
H12B	0.2561	1.1349	0.0681	0.104^{*}
H12C	0.2365	0.9695	-0.0143	0.104^{*}

APPENDICES (continued)

X-ray Data Collected from 477

Table 23. Atomic Displacement Parameters (\AA^{2}) for 477

atom	U 11	U 22	U 23	U 12		U 13
O11"	$0.0498(7)$	$0.0474(7)$	$0.0656(9)$	$-0.0007(5)$	$0.0066(6)$	$0.0063(6)$
C7	$0.0508(9)$	$0.0389(8)$	$0.0361(8)$	$0.0048(6)$	$0.0107(6)$	$0.0055(6)$
O9	$0.0976(11)$	$0.0488(7)$	$0.0339(7)$	$0.0064(6)$	$0.0068(6)$	$-0.0003(5)$
O1	$0.0827(10)$	$0.0664(9)$	$0.0410(7)$	$-0.0133(6)$	$0.0012(6)$	$0.0132(6)$
O10'	$0.0572(8)$	$0.0562(8)$	$0.0700(9)$	$0.0132(6)$	$0.0023(6)$	$0.0052(6)$
N2	$0.0581(9)$	$0.0422(7)$	$0.0414(8)$	$-0.0097(6)$	$0.0092(6)$	$0.0014(6)$
O2	$0.0776(9)$	$0.0398(7)$	$0.0568(8)$	$-0.0104(6)$	$0.0138(6)$	$-0.0001(5)$
C3	$0.0517(9)$	$0.0445(9)$	$0.0367(8)$	$-0.0016(7)$	$0.0007(7)$	$0.0010(6)$
C10	$0.0522(9)$	$0.0479(9)$	$0.0378(8)$	$0.0055(7)$	$0.0154(7)$	$0.0045(6)$
C4	$0.0505(9)$	$0.0434(9)$	$0.0446(9)$	$0.0079(7)$	$0.0034(7)$	$0.0036(6)$
C8	$0.0604(11)$	$0.0404(9)$	$0.0452(9)$	$0.0096(7)$	$0.0150(7)$	$-0.0013(6)$
C5	$0.0482(8)$	$0.0312(7)$	$0.0414(8)$	$0.0056(6)$	$0.0084(6)$	$0.0014(6)$
C6	$0.0497(9)$	$0.0456(9)$	$0.0385(9)$	$-0.0019(7)$	$0.0107(6)$	$-0.0046(6)$
C9	$0.0664(10)$	$0.0345(8)$	$0.0361(8)$	$0.0029(7)$	$0.0077(7)$	$0.0024(6)$
C1	$0.0495(9)$	$0.0461(9)$	$0.0377(8)$	$0.0018(7)$	$0.0083(6)$	$0.0026(6)$
C11	$0.0551(10)$	$0.0576(11)$	$0.0568(11)$	$-0.0051(8)$	$0.0063(8)$	$-0.0006(8)$
C12	$0.0668(13)$	$0.0683(13)$	$0.0728(14)$	$-0.0251(10)$	$0.0087(10)$	$0.0073(10)$

APPENDICES (continued)

X-ray Data Collected from 477

Table 24. Geometric Parameters ($\AA{ }^{\AA}{ }^{\circ}$) for 477

O11"-C10	1.341 (2)	N2-O2	1.4072 (18)
O11"- C 11	1.439 (2)	N2-C3	1.460 (2)
C7-C10	1.513 (2)	O2-C12	1.430 (3)
C7- C 5	1.544 (2)	C3-C4	1.515 (2)
C7-C8	1.529 (2)	C3-C9	1.532 (2)
O9-C9	1.4209 (19)	C4-C5	1.521 (2)
O1- C 1	1.228 (2)	C8-C9	1.519 (2)
O10'- C 10	1.196 (2)	C5-C6	1.534 (2)
N2-C1	1.344 (2)	C6-C1	1.506 (2)
C10-O11"-C11	116.98 (13)	O11"-C10-C7	110.42 (13)
C10-C7-C5	110.91 (13)	C3-C4-C5	108.39 (12)
C10-C7-C8	112.30 (13)	C9-C8-C7	112.50 (13)
C5-C7-C8	111.84 (13)	C4-C5-C7	107.95 (13)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{O} 2$	117.49 (13)	C4-C5-C6	109.13 (13)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	126.71 (14)	C7-C5-C6	114.38 (12)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 3$	113.05 (12)	C1-C6-C5	117.12 (13)
$\mathrm{N} 2-\mathrm{O} 2-\mathrm{C} 12$	109.26 (14)	O9-C9-C8	112.83 (14)
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	108.02 (13)	O9-C9-C3	106.18 (13)
N2-C3-C9	110.56 (13)	C8-C9-C3	111.34 (13)
C4-C3-C9	111.74 (13)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	122.37 (15)
O10'-C10-O11"	123.25 (16)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	121.24 (15)
O10'-C10-C7	126.33 (16)	N2- $\mathrm{C} 1-\mathrm{C} 6$	116.27 (14)

APPENDICES (continued)

Figure 22 X-ray crystal structure of 477

APPENDICES (continued)

X-ray data collected from $\mathbf{5 0 2}$
Table 25. Crystal Data and Structure Refinement for 502

Empirical Formula	$\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$
Formula weight	690.84
Z	8
Temperature	$296(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	monoclinic
Space group	C 1 c 1
Unit cell dimensions	$\alpha=43.753(12) \AA$
	$\beta=14.664(4) \AA$
	$\chi=11.972(3) \AA$
Volume	$7651(4) \AA^{3}$
Density (calc)	$1.172 \mathrm{Mg}^{3} / \mathrm{m}^{3}$
Absorption coefficient	$0.136 \mathrm{~mm}{ }^{-1}$
F(000)	2896
Crystal size	Not recorded
θ range for data collection	0.9 to 28.39°
Limiting indices	$-56<h<58,-18<k<18,-15<k<15$
Reflections collected	$33964\left(\mathrm{R}_{\text {int }}=0.08\right)$
Independent reflections	16281
Completeness to $\theta=28.38$	0.85
Refinement method	$\mathrm{Full-matrix} \mathrm{least} \mathrm{squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$16281 / 2 / 865$
Goodness-of-fit on F^{2}	0.756
Final R indices [I>2s(I)]	$\mathrm{R} 1=0.0791, \mathrm{wR} 2=0.1833$
R indices (all data)	0.27 and -0.21 e $\AA \AA^{-3}$
Largest diff. Peak and hole	

APPENDICES (continued)

X-ray data collected from $\mathbf{5 0 2}$
Table 26. Atomic Coordinates and Equivalent Isotopic Displacement Parameters for 502

atom	x	y	z	Uiso*/Ueq
S51	$0.32757(12)$	$0.2960(4)$	$0.3137(4)$	$0.1024(16)$
S2	$0.23954(13)$	$0.7949(4)$	$0.3672(4)$	$0.1081(16)$
O56	$0.4579(2)$	$0.3108(8)$	$0.3265(8)$	$0.081(3)$
O7	$0.0736(3)$	$1.1665(7)$	$0.2170(9)$	$0.087(3)$
O52	$0.4950(2)$	$0.6645(8)$	$0.4602(8)$	$0.091(3)$
O11	$0.1019(3)$	$0.6662(7)$	$0.3594(9)$	$0.096(4)$
O58	$0.4651(3)$	$0.1625(8)$	$0.3196(9)$	$0.098(4)$
O54	$0.4344(3)$	$0.6554(9)$	$0.4570(11)$	$0.109(4)$
N1	$0.2135(3)$	$0.8236(8)$	$0.4408(10)$	$0.081(4)$
N2	$0.1036(3)$	$1.0546(9)$	$0.3000(10)$	$0.074(3)$
O9	$0.1352(3)$	$1.1593(9)$	$0.2183(9)$	$0.103(4)$
N52	$0.4645(3)$	$0.5541(9)$	$0.3808(11)$	$0.080(4)$
C102	$0.4133(4)$	$0.5961(11)$	$0.2832(12)$	$0.091(5)$
C103	$0.1536(3)$	$1.1006(10)$	$0.3989(12)$	$0.063(4)$
N51	$0.3572(3)$	$0.3244(12)$	$0.2393(12)$	$0.105(5)$
O59	$0.3376(3)$	$0.3108(9)$	$0.4220(10)$	$0.115(4)$
O10	$0.1117(3)$	$0.7320(8)$	$0.1945(10)$	$0.118(5)$
C104	$0.4700(5)$	$0.0686(11)$	$0.370(2)$	$0.122(7)$
O57	$0.4565(3)$	$0.2324(7)$	$0.4818(10)$	$0.098(4)$
C105	$0.0147(4)$	$1.1852(12)$	$0.1730(13)$	$0.106(6)$
C106	$0.4395(4)$	$0.6003(11)$	$0.3792(11)$	$0.075(5)$
O6	$0.2058(3)$	$1.1357(7)$	$0.4430(11)$	$0.108(4)$
C108	$0.1310(3)$	$1.1109(13)$	$0.2896(16)$	$0.092(6)$
C109	$0.1181(3)$	$0.9790(9)$	$0.4854(10)$	$0.069(4)$
O8	$0.0595(3)$	$1.0212(9)$	$0.1972(12)$	$0.129(5)$

APPENDICES (continued)

X-ray data collected from $\mathbf{5 0 2}$
Table 26. Atomic Coordinates and Equivalent Isotopic Displacement Parameters for 502 (continued)

atom	x	y	z	Uiso*/Ueq
O2	0.2299 (3)	0.8158 (12)	0.2465 (10)	0.154 (6)
C110	0.2025 (4)	0.9206 (11)	0.4251 (16)	0.107 (6)
053	0.5094 (3)	0.5172 (9)	0.4890 (11)	0.118 (5)
C112	0.1537 (4)	$1.0101 \text { (10) }$	0.4758 (13)	0.095 (5)
O5	0.1924 (2)	1.0909 (9)	0.2652 (9)	0.104 (4)
$\mathrm{C} 113$	0.5227 (4)	$0.7067 \text { (11) }$	0.5342 (14)	0.094 (6)
C114	0.4599 (4)	0.2246 (14)	0.3812 (16)	0.098 (6)
C93	0.4239 (4)	0.6793 (10)	0.2048 (12)	0.093 (5)
O3	0.2506 (3)	0.7071 (9)	0.3973 (13)	0.137 (5)
O60	0.3192 (3)	$0.2020(8)$	0.2759 (10)	0.124 (5)
C115	0.0490 (3)	1.2073 (12)	0.1405 (13)	0.075 (4)
C40	0.1488 (4)	1.1817 (11)	0.4854 (14)	0.090 (5)
C116	0.5112 (5)	0.8081 (11)	0.5102 (17)	0.123 (7)
C117	0.4927 (4)	0.5699 (13)	0.4511 (13)	0.076 (5)
C118	0.3794 (6)	0.1901 (16)	0.1577 (19)	0.135 (8)
C119	0.1076 (4)	0.7392 (11)	0.2943 (16)	0.078 (5)
C120	0.0776 (4)	1.0818 (12)	0.2282 (14)	0.083 (5)
C121	0.4167 (4)	0.5080 (10)	0.2126 (9)	0.073 (4)
C122	0.3580 (5)	0.2733 (17)	0.1272 (15)	0.111 (7)
C123	0.4512 (4)	0.4933 (11)	0.2008 (13)	0.096 (6)
C124	0.1666 (4)	0.9248 (9)	0.4223 (11)	0.069 (4)
C125	0.2405 (4)	1.165 (2)	0.3970 (18)	0.185 (12)
C126	0.4032 (3)	0.4124 (11)	0.2545 (14)	0.095 (5)
C127	0.2621 (5)	0.4941 (12)	0.324 (2)	0.133 (7)
C128	0.2726 (4)	0.8750 (11)	0.4051 (18)	0.095 (5)

APPENDICES (continued)

X-ray data collected from $\mathbf{5 0 2}$
Table 26. Atomic Coordinates and Equivalent Isotopic Displacement Parameters for 502 (continued)

atom	x	y	z	Uiso*/Ueq
C129	$0.2992(4)$	$0.3668(13)$	$0.2755(14)$	$0.099(6)$
C130	$0.1004(5)$	$0.5702(10)$	$0.3116(14)$	$0.103(6)$
C131	$0.2840(4)$	$0.8811(14)$	$0.5103(16)$	$0.098(6)$
C132	$0.0481(4)$	$1.1724(14)$	$0.0155(14)$	$0.118(7)$
C133	$0.3191(3)$	$0.9875(10)$	$0.4671(15)$	$0.088(5)$
C135	$0.3666(4)$	$0.4216(11)$	$0.2457(12)$	$0.081(5)$
C136	$0.1489(5)$	$1.2767(13)$	$0.4276(14)$	$0.101(6)$
C137	$0.4164(5)$	$0.7680(15)$	$0.262(2)$	$0.143(8)$
C138	$0.2845(6)$	$0.3561(15)$	$0.1625(19)$	$0.149(9)$
C139	$0.2598(6)$	$0.4245(18)$	$0.1509(17)$	$0.148(9)$
C140	$0.2790(6)$	$0.9320(15)$	$0.3151(18)$	$0.144(8)$
C141	$0.4940(5)$	$0.0672(16)$	$0.4700(17)$	$0.136(7)$
C142	$0.4345(5)$	$0.0454(13)$	$0.3914(15)$	$0.135(7)$
C143	$0.2174(8)$	$0.547(2)$	$0.167(3)$	$0.239(18)$
C144	$0.5140(4)$	$0.6803(11)$	$0.6557(11)$	$0.090(5)$
C145	$0.0706(5)$	$0.5671(13)$	$0.2295(17)$	$0.126(7)$
C146	$0.5503(3)$	$0.6780(14)$	$0.4910(14)$	$0.117(7)$
C147	$0.0904(5)$	$0.5218(12)$	$0.4234(15)$	$0.132(8)$
C148	$0.3084(4)$	$0.9356(13)$	$0.5518(16)$	$0.117(7)$
C149	$0.1699(5)$	$1.3409(15)$	$0.4597(16)$	$0.145(8)$
C150	$0.0528(5)$	$1.3116(12)$	$0.1524(17)$	$0.119(6)$
C151	$0.4727(4)$	$0.0102(13)$	$0.2713(16)$	$0.121(6)$
C152	$0.2858(6)$	$0.4284(19)$	$0.3521(14)$	$0.146(8)$
C153	$0.2095(5)$	$0.7783(14)$	$0.5520(16)$	$0.124(7)$
C154	$0.1650(10)$	$0.673(2)$	$0.564(3)$	$0.200(14)$

APPENDICES (continued)

X-ray data collected from $\mathbf{5 0 2}$
Table 26. Atomic Coordinates and Equivalent Isotopic Displacement Parameters for 502 (continued)

atom	x	y	z	Uiso*/Ueq
C155	$0.4040(8)$	$0.8278(15)$	$0.195(3)$	$0.220(14)$
C156	$0.2368(10)$	$0.515(2)$	$0.220(2)$	$0.34(2)$
C157	$0.1844(6)$	$0.695(2)$	$0.523(3)$	$0.192(15)$
C158	$0.3104(8)$	$0.981(2)$	$0.359(2)$	$0.213(14)$
C159	$0.1293(4)$	$0.5462(14)$	$0.2530(14)$	$0.118(6)$
C163	$0.3463(6)$	$1.061(2)$	$0.500(2)$	$0.188(11)$
C167	$0.4673(4)$	$0.4706(11)$	$0.3147(12)$	$0.089(5)$
C168	$0.1026(3)$	$0.9692(10)$	$0.3625(12)$	$0.063(4)$
O62	$0.3612(3)$	$0.6380(9)$	$0.2442(11)$	$0.124(5)$
O61	$0.3743(3)$	$0.5878(8)$	$0.4120(11)$	$0.108(4)$
C169	$0.2593(5)$	$1.1692(19)$	$0.4909(17)$	$0.177(10)$
C170	$0.1508(4)$	$0.9012(13)$	$0.2939(12)$	$0.089(5)$
C171	$0.3813(3)$	$0.6112(10)$	$0.3143(13)$	$0.073(4)$
C172	$0.1168(4)$	$0.8949(10)$	$0.3024(11)$	$0.071(4)$
C173	$0.4140(3)$	$0.3976(10)$	$0.3743(11)$	$0.062(4)$
C174	$0.4509(4)$	$0.3933(10)$	$0.3911(13)$	$0.080(5)$
C175	$0.3306(4)$	$0.6393(14)$	$0.262(2)$	$0.159(10)$
O20	$0.1084(2)$	$0.8088(7)$	$0.3581(8)$	$0.079(3)$
C176	$0.1854(5)$	$1.1065(11)$	$0.3522(16)$	$0.122(9)$
C94	$0.3169(6)$	$0.717(2)$	$0.205(3)$	$0.259(16)$
C92	$0.3979(6)$	$0.168(2)$	$0.071(3)$	$0.215(12)$

APPENDICES (continued)

X-ray Data Collected from 502

Table 27. Atomic Displacement Parameters (\AA^{2}) for 502

atom	U 11	U 22	U 23	U 12	U 13	U 23
S51	$0.111(4)$	$0.107(4)$	$0.093(4)$	$-0.015(3)$	$0.034(3)$	$0.007(3)$
S2	$0.127(4)$	$0.098(4)$	$0.101(4)$	$-0.006(3)$	$0.013(3)$	$-0.014(3)$
O56	$0.102(8)$	$0.086(8)$	$0.055(6)$	$-0.009(6)$	$0.004(5)$	$0.005(6)$
O7	$0.107(9)$	$0.049(7)$	$0.101(8)$	$-0.002(6)$	$-0.015(7)$	$-0.008(6)$
O52	$0.077(7)$	$0.097(9)$	$0.098(8)$	$0.001(6)$	$0.009(6)$	$-0.021(7)$
O11	$0.131(11)$	$0.069(8)$	$0.088(7)$	$-0.015(7)$	$0.007(7)$	$-0.003(6)$
O58	$0.129(10)$	$0.094(10)$	$0.079(7)$	$-0.026(7)$	$0.043(7)$	$-0.048(7)$
O54	$0.081(8)$	$0.113(10)$	$0.130(10)$	$0.012(7)$	$0.001(7)$	$0.020(8)$
N1	$0.105(9)$	$0.066(8)$	$0.079(8)$	$0.022(7)$	$0.050(7)$	$0.027(7)$
N2	$0.084(9)$	$0.079(9)$	$0.059(7)$	$-0.003(8)$	$0.004(7)$	$-0.006(7)$
O9	$0.111(9)$	$0.125(10)$	$0.069(7)$	$-0.031(7)$	$-0.009(6)$	$0.062(7)$
N52	$0.066(8)$	$0.072(9)$	$0.100(10)$	$0.010(7)$	$-0.009(8)$	$-0.019(8)$
C102	$0.130(14)$	$0.075(12)$	$0.067(10)$	$0.030(10)$	$-0.003(10)$	$0.006(9)$
C103	$0.028(7)$	$0.080(11)$	$0.080(10)$	$0.005(7)$	$0.010(7)$	$0.016(9)$
N51	$0.055(9)$	$0.162(15)$	$0.100(10)$	$-0.006(9)$	$0.014(8)$	$0.040(10)$
O59	$0.149(12)$	$0.124(10)$	$0.074(8)$	$-0.009(8)$	$0.020(8)$	$-0.012(7)$
O10	$0.194(14)$	$0.087(9)$	$0.077(9)$	$-0.007(8)$	$0.037(9)$	$-0.002(6)$
C104	$0.147(16)$	$0.043(10)$	$0.19(2)$	$0.007(10)$	$0.081(15)$	$0.008(12)$
O57	$0.137(10)$	$0.074(8)$	$0.082(9)$	$-0.003(7)$	$-0.001(8)$	$0.012(6)$
C105	$0.102(12)$	$0.139(14)$	$0.084(11)$	$-0.029(10)$	$0.047(9)$	$-0.021(9)$
C106	$0.119(13)$	$0.065(10)$	$0.041(8)$	$-0.006(9)$	$0.017(8)$	$-0.037(7)$
O6	$0.098(9)$	$0.072(8)$	$0.148(10)$	$0.002(6)$	$-0.028(8)$	$-0.004(7)$
C108	$0.057(9)$	$0.088(14)$	$0.126(15)$	$-0.007(10)$	$-0.020(11)$	$-0.048(11)$
C109	$0.071(9)$	$0.078(8)$	$0.057(8)$	$0.024(7)$	$0.006(7)$	$-0.028(6)$
O8	$0.100(9)$	$0.076(9)$	$0.196(13)$	$-0.024(7)$	$-0.062(9)$	$0.022(8)$

APPENDICES (continued)

X-ray Data Collected from $\mathbf{5 0 2}$

Table 27. Atomic Displacement Parameters ($\AA^{\mathbf{2}}$) for 502 (continued)

atom	U11	U22	U33	U12	U13	U23
O2	0.137 (11)	0.250 (17)	0.079 (9)	-0.039 (10)	0.030 (8)	-0.048 (9)
C110	0.070 (11)	0.061 (12)	0.185 (18)	0.025 (8)	-0.019 (11)	-0.011 (11)
O 53	0.156 (12)	0.082 (9)	0.106 (9)	0.029 (8)	-0.048 (8)	-0.001 (7)
C112	0.101 (13)	0.052 (10)	0.139 (13)	0.020 (8)	0.049 (10)	0.026 (9)
O5	0.076 (7)	0.164 (11)	0.071 (7)	-0.016 (7)	-0.006 (6)	-0.010 (7)
C113	0.124 (15)	0.078 (11)	0.073 (12)	-0.020 (10)	-0.033 (11)	-0.014 (9)
C114	0.084 (13)	0.140 (18)	0.067 (11)	-0.040 (11)	-0.014 (10)	0.047 (11)
C93	0.159 (15)	0.046 (9)	0.068 (9)	-0.010 (9)	-0.021 (9)	0.008 (7)
O3	0.122 (11)	0.066 (8)	0.228 (15)	0.016 (7)	0.043 (10)	-0.008 (9)
O60	0.183 (12)	0.088 (9)	0.111 (9)	-0.034 (8)	0.061 (9)	-0.026 (7)
C115	0.048 (8)	0.097 (12)	0.081 (10)	0.011 (8)	0.008 (7)	0.025 (9)
C40	0.100 (12)	0.052 (9)	0.121 (12)	-0.007 (8)	0.035 (10)	-0.024 (9)
C116	0.157 (17)	0.042 (10)	0.157 (16)	-0.029 (10)	-0.061 (13)	-0.024 (9)
C117	0.104 (14)	0.066 (13)	0.061 (9)	-0.012 (10)	0.024 (9)	-0.017 (8)
C118	0.136 (18)	0.121 (18)	0.151 (18)	-0.014 (14)	0.022 (14)	-0.048 (14)
C119	0.103 (12)	0.050 (11)	0.083 (13)	-0.012 (8)	0.028 (10)	0.013 (10)
C120	0.079 (11)	0.061 (11)	0.104 (12)	-0.014 (9)	-0.017 (9)	0.001 (9)
C121	0.121 (12)	0.074 (11)	0.022 (6)	0.006 (9)	-0.009 (7)	0.004 (6)
C122	0.102 (15)	0.16 (2)	0.076 (13)	-0.012 (14)	0.030 (11)	-0.042 (13)
C123	0.096 (12)	0.100 (12)	0.093 (11)	0.035 (9)	0.009 (9)	-0.061 (9)
C124	0.103 (12)	0.049 (8)	0.055 (8)	-0.010 (8)	0.010 (8)	0.011 (6)
C125	0.068 (12)	0.36 (4)	0.130 (17)	0.014 (16)	0.011 (12)	0.035 (18)
C126	0.059 (9)	0.100 (12)	0.124 (13)	-0.044 (8)	-0.006 (9)	0.037 (10)
C127	0.131 (14)	0.078 (12)	0.19 (2)	0.033 (10)	-0.016 (14)	-0.008 (12)
C128	0.085 (12)	0.070 (11)	0.130 (14)	0.013 (9)	0.011 (11)	-0.011 (11)

APPENDICES (continued)

X-ray Data Collected from $\mathbf{5 0 2}$

Table 27. Atomic Displacement Parameters ($\AA^{\mathbf{2}}$) for 502 (continued)

atom	U 11	U 22	U 23	U 12	U 13	U 23
C129	$0.102(13)$	$0.131(15)$	$0.063(10)$	$0.037(11)$	$0.007(10)$	$0.006(10)$
C130	$0.181(19)$	$0.038(10)$	$0.083(11)$	$0.007(11)$	$-0.019(12)$	$0.006(9)$
C131	$0.095(13)$	$0.114(13)$	$0.087(12)$	$0.020(10)$	$0.018(10)$	$0.061(10)$
C132	$0.101(12)$	$0.189(19)$	$0.068(11)$	$-0.020(11)$	$0.034(9)$	$0.005(11)$
C133	$0.080(9)$	$0.077(9)$	$0.106(13)$	$-0.027(7)$	$-0.002(9)$	$0.042(9)$
C135	$0.093(12)$	$0.072(11)$	$0.081(10)$	$-0.032(9)$	$0.032(9)$	$-0.009(8)$
C136	$0.146(16)$	$0.074(12)$	$0.081(10)$	$0.005(11)$	$0.000(10)$	$-0.021(9)$
C137	$0.132(17)$	$0.068(13)$	$0.23(2)$	$-0.011(11)$	$0.041(15)$	$0.022(14)$
C138	$0.150(18)$	$0.110(16)$	$0.17(2)$	$0.013(13)$	$-0.065(14)$	$0.022(13)$
C139	$0.157(19)$	$0.17(2)$	$0.109(14)$	$-0.086(16)$	$-0.039(14)$	$-0.002(14)$
C140	$0.195(19)$	$0.098(15)$	$0.150(18)$	$-0.043(13)$	$0.069(15)$	$0.043(13)$
C141	$0.102(13)$	$0.161(19)$	$0.137(14)$	$0.025(12)$	$-0.035(12)$	$0.031(12)$
C142	$0.172(18)$	$0.102(13)$	$0.141(15)$	$-0.045(11)$	$0.073(13)$	$-0.038(10)$
C143	$0.29(3)$	$0.17(3)$	$0.24(4)$	$0.15(3)$	$-0.06(2)$	$-0.05(2)$
C144	$0.130(14)$	$0.087(11)$	$0.050(8)$	$-0.025(9)$	$-0.015(8)$	$0.007(7)$
C145	$0.147(16)$	$0.088(13)$	$0.131(15)$	$-0.032(11)$	$-0.041(13)$	$0.038(11)$
C146	$0.033(8)$	$0.199(17)$	$0.120(12)$	$-0.035(9)$	$0.013(8)$	$-0.085(12)$
C147	$0.25(2)$	$0.049(10)$	$0.102(11)$	$-0.027(11)$	$0.045(13)$	$0.015(9)$
C148	$0.106(14)$	$0.112(14)$	$0.131(14)$	$-0.050(11)$	$-0.006(11)$	$-0.029(11)$
C149	$0.175(19)$	$0.124(16)$	$0.126(14)$	$-0.029(14)$	$-0.046(13)$	$-0.015(11)$
C150	$0.141(16)$	$0.078(13)$	$0.136(15)$	$-0.001(11)$	$-0.001(12)$	$-0.036(11)$
C151	$0.123(13)$	$0.109(14)$	$0.135(14)$	$-0.033(10)$	$0.039(11)$	$-0.048(11)$
C152	$0.20(2)$	$0.19(2)$	$0.057(10)$	$-0.016(17)$	$0.001(12)$	$-0.023(12)$
C153	$0.18(2)$	$0.083(13)$	$0.103(14)$	$0.011(13)$	$-0.003(14)$	$0.008(11)$
C154	$0.29(4)$	$0.15(2)$	$0.17(2)$	$0.02(2)$	$0.04(2)$	$-0.001(17)$
C155	$0.32(4)$	$0.050(12)$	$0.29(3)$	$-0.052(16)$	$0.07(3)$	$-0.028(14)$

APPENDICES (continued)

X-ray Data Collected from $\mathbf{5 0 2}$

Table 27. Atomic Displacement Parameters ($\AA^{\mathbf{2}}$) for 502 (continued)

atom	U 11	U 22	U 23	U 12	U 13	U 23
C156	$0.55(6)$	$0.30(4)$	$0.15(2)$	$-0.31(4)$	$-0.08(3)$	$-0.03(3)$
C157	$0.140(18)$	$0.17(3)$	$0.28(3)$	$0.044(16)$	$0.12(2)$	$0.15(2)$
C158	$0.29(4)$	$0.20(3)$	$0.15(2)$	$-0.07(3)$	$0.06(3)$	$0.05(2)$
C159	$0.109(13)$	$0.149(15)$	$0.098(11)$	$0.053(11)$	$0.018(9)$	$-0.028(10)$
C163	$0.16(2)$	$0.21(3)$	$0.19(2)$	$-0.042(18)$	$-0.03(2)$	$-0.018(18)$
C167	$0.151(14)$	$0.064(10)$	$0.049(9)$	$0.005(9)$	$-0.010(9)$	$-0.026(8)$
C168	$0.074(11)$	$0.050(9)$	$0.065(9)$	$0.004(8)$	$0.002(8)$	$0.006(8)$
O62	$0.112(11)$	$0.149(12)$	$0.107(9)$	$0.029(8)$	$-0.015(8)$	$0.039(8)$
O61	$0.128(10)$	$0.078(8)$	$0.121(10)$	$0.003(6)$	$0.027(8)$	$-0.023(7)$
C169	$0.140(17)$	$0.30(3)$	$0.093(12)$	$-0.008(17)$	$-0.007(13)$	$-0.029(14)$
C170	$0.090(11)$	$0.116(14)$	$0.060(10)$	$-0.002(10)$	$0.001(9)$	$-0.008(9)$
C171	$0.066(10)$	$0.092(11)$	$0.064(10)$	$0.001(8)$	$0.024(9)$	$0.016(8)$
C172	$0.093(11)$	$0.059(10)$	$0.059(8)$	$-0.012(9)$	$-0.001(8)$	$0.017(7)$
C173	$0.064(9)$	$0.073(9)$	$0.048(8)$	$0.009(7)$	$0.005(7)$	$-0.004(7)$
C174	$0.092(12)$	$0.041(9)$	$0.112(12)$	$0.012(8)$	$0.032(10)$	$-0.012(8)$
C175	$0.044(10)$	$0.124(14)$	$0.30(3)$	$0.055(9)$	$-0.020(14)$	$0.043(16)$
O20	$0.096(8)$	$0.063(7)$	$0.081(7)$	$-0.012(6)$	$0.029(6)$	$-0.001(6)$
C176	$0.19(2)$	$0.068(11)$	$0.089(12)$	$-0.061(12)$	$-0.086(14)$	$0.018(10)$
C94	$0.18(2)$	$0.33(3)$	$0.28(3)$	$0.11(2)$	$0.12(2)$	$0.14(3)$
C92	$0.158(19)$	$0.25(3)$	$0.25(3)$	$0.038(17)$	$0.09(2)$	$-0.01(2)$

APPENDICES (continued)

X-ray Data Collected from 502

Table 28. Geometric Parameters ($\AA,{ }^{\circ}$) for 502

S51-O59	1.348 (12)	O53-C117	1.130 (18)
S51-O60	1.488 (12)	C112-C124	1.536 (19)
S51-C129	1.651 (17)	O5-C176	1.13 (2)
S51-N51	1.691 (14)	C113-C146	1.42 (2)
S2-O3	1.412 (13)	C113-C144	1.58 (2)
S2-O2	1.500 (14)	C113-C116	1.59 (2)
S2-N1	1.561 (12)	C93-C137	1.52 (3)
S2-C128	1.888 (18)	C115-C150	1.54 (2)
O56-C114	1.423 (19)	C115-C132	1.58 (2)
O56-C174	1.483 (16)	C40-C136	1.56 (2)
O7-C120	1.260 (17)	C118-C92	1.41 (3)
O7-C115	1.476 (17)	C118-C122	1.56 (3)
O52-C117	1.394 (18)	C119-O20	1.274 (19)
O52-C113	1.566 (18)	C121-C123	1.543 (19)
O11-C119	1.360 (17)	C121-C126	1.619 (19)
O11-C130	1.518 (18)	C123-C167	1.51 (2)
O58-C114	1.21 (2)	C124-C170	1.67 (2)
O58-C104	1.509 (19)	C125-C169	1.33 (2)
O54-C106	1.268 (15)	C126-C173	1.48 (2)
N1-C153	1.51 (2)	C126-C135	1.60 (2)
N1-C110	1.508 (18)	C127-C152	1.43 (3)
N2-C120	1.423 (19)	C127-C156	1.62 (4)
N2-C108	1.47 (2)	C128-C131	1.32 (2)
N2-C168	1.462 (18)	C128-C140	1.41 (2)
O9-C108	1.14 (2)	C129-C152	1.45 (3)
N52-C106	1.286 (18)	C129-C138	1.45 (2)

APPENDICES (continued)

X-ray Data Collected from $\mathbf{5 0 2}$

Table 28. Geometric Parameters ($\AA{ }^{\AA},{ }^{\circ}$) for 502 (continued)

N52-C117	1.45 (2)	C130-C159	1.54 (2)
N52-C167	1.468 (18)	C130-C145	1.56 (2)
C102-C171	1.50 (2)	C130-C147	1.61 (2)
C102-C106	1.55 (2)	C131-C148	1.39 (2)
C102-C121	1.56 (2)	C133-C158	1.31 (3)
C102-C93	1.63 (2)	C133-C148	1.38 (2)
C103-C176	1.55 (3)	C133-C163	1.63 (3)
C103-C108	1.58 (2)	C136-C149	1.35 (2)
C103-C112	1.615 (19)	C137-C155	1.28 (3)
C103-C40	1.60 (2)	C138-C139	1.47 (3)
N51-C135	1.48 (2)	C139-C156	1.90 (5)
N51-C122	1.54 (2)	C140-C158	1.60 (4)
O10-C119	1.228 (19)	C143-C156	1.12 (4)
C104-C151	1.47 (2)	C153-C157	1.66 (4)
C104-C141	1.52 (3)	C154-C157	1.07 (4)
C104-C142	1.63 (2)	C167-C174	1.66 (2)
O57-C114	1.232 (19)	C168-C172	1.47 (2)
C105-C115	1.61 (2)	O62-C171	1.224 (17)
O6-C176	1.409 (17)	O62-C175	1.38 (2)
O6-C125	1.71 (2)	O61-C171	1.281 (16)
C109-C168	1.570 (18)	C170-C172	1.50 (2)
C109-C112	1.635 (19)	C172-O20	1.490 (16)
O8-C120	1.224 (17)	C173-C174	1.61 (2)
C110-C124	1.57 (2)	C175-C94	1.43 (3)
O59-S51-O60	119.5 (8)	O53-C117-N52	127.6 (17)
O59-S51-C129	109.8 (9)	O53-C117-O52	127.6 (18)

APPENDICES (continued)

X-ray Data Collected from $\mathbf{5 0 2}$

Table 28. Geometric Parameters ($\AA{ }^{\AA},{ }^{\circ}$) for 502 (continued)

O60-S51-C129	109.9 (10)	N52-C117-O52	104.8 (15)
O59-S51-N51	105.5 (8)	C92-C118-C122	112 (2)
O60-S51-N51	104.3 (8)	O10-C119-O20	130.8 (15)
C129-S51-N51	107.0 (9)	O10-C119-O11	122.7 (16)
O3-S2-O2	119.5 (10)	O20-C119-O11	106.5 (16)
O3-S2-N1	110.6 (8)	O8-C120-O7	127.2 (17)
O2-S2-N1	109.5 (8)	O8-C120-N2	116.1 (15)
O3-S2-C128	105.6 (9)	O7-C120-N2	115.8 (14)
O2-S2-C128	104.4 (10)	C123-C121-C102	107.9 (12)
N1-S2-C128	106.3 (8)	C123-C121-C126	107.1 (12)
C114-O56-C174	119.5 (13)	C102-C121-C126	119.7 (12)
C120-O7-C115	123.4 (13)	N51-C122-C118	103.6 (16)
C117-O52-C113	118.9 (13)	C167-C123-C121	109.2 (12)
C119-O11-C130	121.1 (14)	C112-C124-C110	115.3 (12)
C114-O58-C104	118.3 (14)	C112-C124-C170	114.6 (12)
C153-N1-C110	117.7 (13)	C110-C124-C170	110.2 (12)
C153-N1-S2	121.7 (11)	C169-C125-O6	103.8 (16)
C110-N1-S2	115.1 (10)	C173-C126-C135	107.8 (12)
C120-N2-C108	114.0 (14)	C173-C126-C121	109.4 (11)
C120-N2-C168	119.4 (13)	C135-C126-C121	107.2 (12)
C108-N2-C168	125.9 (14)	C152-C127-C156	137 (2)
C106-N52-C117	127.1 (14)	C131-C128-C140	127.4 (19)
C106-N52-C167	122.9 (13)	C131-C128-S2	119.3 (16)
C117-N52-C167	109.9 (13)	C140-C128-S2	112.6 (16)
C171-C102-C106	117.1 (13)	C152-C129-C138	119.2 (18)
C171-C102-C121	113.2 (14)	C152-C129-S51	123.6 (15)
C106-C102-C121	109.6 (12)	C138-C129-S51	116.6 (16)

APPENDICES (continued)

X-ray Data Collected from $\mathbf{5 0 2}$

Table 28. Geometric Parameters ($\AA \AA^{\circ}{ }^{\circ}$) for 502 (continued)

C171-C102-C93	110.7 (13)	O11-C130-C159	112.0 (16)
C106-C102-C93	99.7 (13)	O11-C130-C145	105.7 (14)
C121-C102-C93	105.2 (12)	C159-C130-C145	112.3 (15)
C176-C103-C108	102.3 (12)	O11-C130-C147	95.8 (12)
C176-C103-C112	107.2 (11)	C159-C130-C147	125.0 (15)
C108-C103-C112	121.5 (13)	C145-C130-C147	103.6 (16)
C176-C103-C40	111.5 (13)	C128-C131-C148	126.5 (16)
C108-C103-C40	110.8 (11)	C158-C133-C148	126.4 (18)
C112-C103-C40	103.6 (11)	C158-C133-C163	115 (2)
C135-N51-C122	119.1 (14)	C148-C133-C163	118.5 (17)
C135-N51-S51	115.5 (12)	N51-C135-C126	101.1 (12)
C122-N51-S51	114.6 (12)	C149-C136-C40	122.0 (17)
C151-C104-O58	103.4 (16)	C155-C137-C93	114 (2)
C151-C104-C141	121.7 (17)	C139-C138-C129	106 (2)
O58-C104-C141	112.9 (16)	C138-C139-C156	148.0 (19)
C151-C104-C142	98.7 (16)	C128-C140-C158	103.7 (19)
O58-C104-C142	98.6 (14)	C133-C148-C131	110.7 (15)
C141-C104-C142	118.0 (17)	C127-C152-C129	126.8 (18)
O54-C106-N52	122.1 (15)	N1-C153-C157	105.4 (17)
O54-C106-C102	113.8 (15)	C143-C156-C127	161 (4)
N52-C106-C102	124.1 (12)	C143-C156-C139	117 (3)
C176-O6-C125	110.2 (15)	C127-C156-C139	82 (2)
O9-C108-N2	126.9 (15)	C154-C157-C153	132 (4)
O9-C108-C103	123.5 (15)	C133-C158-C140	121 (2)
N2-C108-C103	109.4 (16)	N52-C167-C123	104.3 (12)
C168-C109-C112	107.1 (11)	N52-C167-C174	102.2 (11)
N1-C110-C124	110.3 (12)	C123-C167-C174	117.2 (13)

APPENDICES (continued)

X-ray Data Collected from $\mathbf{5 0 2}$

Table 28. Geometric Parameters ($\AA \AA^{\circ}$) for 502 (continued)

C124-C112-C103	114.4 (12)	N2-C168-C172	110.5 (12)
C124-C112-C109	101.0 (11)	N2-C168-C109	111.8 (12)
C103-C112-C109	108.3 (11)	C172-C168-C109	111.1 (11)
C146-C113-C144	123.0 (16)	C171-O62-C175	123.1 (15)
C146-C113-C116	118.6 (17)	C172-C170-C124	106.4 (12)
C144-C113-C116	107.3 (15)	O61-C171-O62	119.9 (14)
C146-C113-O52	108.5 (13)	O61-C171-C102	119.4 (14)
C144-C113-O52	100.7 (13)	O62-C171-C102	120.4 (14)
C116-C113-O52	92.9 (12)	C168-C172-O20	106.0 (12)
O57-C114-O58	135.5 (18)	C168-C172-C170	116.8 (13)
O57-C114-O56	111.0 (19)	$\mathrm{O} 20-\mathrm{C} 172-\mathrm{C} 170$	111.6 (12)
O58-C114-O56	113.4 (15)	C126-C173-C174	110.8 (11)
C137-C93-C102	107.2 (15)	O56-C174-C173	102.6 (11)
O7-C115-C150	106.0 (13)	O56-C174-C167	98.7 (11)
O7-C115-C132	114.4 (13)	C173-C174-C167	112.4 (12)
C150-C115-C132	113.7 (14)	O62-C175-C94	107.9 (19)
O7-C115-C105	114.2 (12)	C119-O20-C172	113.9 (12)
C150-C115-C105	105.8 (13)	O5-C176-O6	124 (2)
C132-C115-C105	102.6 (12)	O5-C176-C103	130.1 (15)
C136-C40-C103	111.8 (13)	O6-C176-C103	105.4 (17)

APPENDICES (continued)

Figure 23 X-ray crystal structure of $\mathbf{5 0 2}$

VITA

NAME: Mikhail V. Gerasimov

EDUCATION: B.S., Chemistry, Moscow State University, Moscow, Russia, 2003
Ph.D., Chemistry, University of Illinois at Chicago, Chicago, Illinois, 2014

EXPERIENCE: Teaching Assistant, Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 2005-2014

NMR Technician, Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 2008-2011

Associate Research Scientist, Asinex, Moscow, Russia, 2003-2005

HONORS AND

AWARDS:
UIC Chemistry TA Appreciation Award, 2014
International Soros Science Education Program (ISSEP) Fellow, 1998

AFFILIATIONS: American Chemical Society

PUBLICATIONS: Wardrop, D. J.; Dickson, D. P.; Gerasimov, M. V. "Oxidative Bisamidation of Unsaturated O-Alkyl Hydroxamates: Total Synthesis of Epiquinamide", submitted.

Wardrop, D. J.; Dickson, D. P.; Sussman, A. D.; Gerasimov, M. V.; Wink, D. J. "Diamidation of Unsaturated O-Alkyl Hydroxamates: A Versatile Approach to Intra/Intermolecular Alkene Diamination", submitted.

Vorozhtzov, N. I.; Gerasimov, M. V.; Golubeva, G. A.; Sviridova, L. A. "Reduction of 1-Arylidenepyrazolines-2 Borofluorides by Complex Metal Hydrides", Vestn. MGU, Ser. 2, Khimiya, 2004, 45, 399-404.

[^0]: ${ }^{a}$ Isolated yields, after purification by flash chromatography.

[^1]: ${ }^{\bar{a}}$ Isolated yields, after purification by flash chromatography.

[^2]: ${ }^{a}$ Isolated yields, after purification by flash chromatography.

[^3]: $\overline{{ }^{a} \text { Isolated yields, after purification by flash chromatography. }{ }^{b} \text { Decomposition of the starting material was }}$ observed. ${ }^{c}$ Hydrolysis of O-methyl hydroxamate to form the corresponding carboxylic acid was observed.

[^4]: ${ }^{\bar{a}}$ Conditions: O-alkyl hydroxamate (1 equiv), PCC (3 equiv), AcOH (5 equiv), DCE (0.05 M), $84^{\circ} \mathrm{C}, 0.25-2 \mathrm{~h}$ reaction time. ${ }^{b}$ Isolated yields, after purification by flash chromatography. ${ }^{c}$ No isolable products were recovered.

[^5]: ${ }^{\bar{a}}$ Isolated yields, after purification by flash chromatography.

[^6]: ${ }^{a}$ Isolated yields, after purification by flash chromatography.

