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SUMMARY

Nowadays, one is often confronted with the problem of high-dimensional data in many machine

learning and data mining applications. Hence, feature selection has become an important technique since

it can alleviate curse of dimensionality, speed up learning process and provide better interpretability.

In this thesis, I will introduce my research on unsupervised feature selection, with special focus on

heterogeneous data, include networked data, multi-view/multi-modal data and data with complex side

information.

In the first part of the dissertation, we focus on unsupervised feature selection without relying

on clustering. We select the features that maximally preserve stochastic neighbors and this approach

achieves state-of-the-art performance.

Also, various social/information networks, such as bibliographic network and gene network be-

come prevalent in the big data era, I introduce three methods designed for feature selection on so-

cial/information networks. The first and second approaches study feature selection as a standalone task,

while the third approach studies coupled feature selection in the task of representation learning. The first

approach proposes partial order preserving principle, which exploits linkage information for feature se-

lection in an efficient manner. The second method considers a generative view for feature selection

on networks, in which we assume the node features and links are generated from a set of high quality

features. The third model studies joint representation learning and feature selection with cross-view link

prediction on partially observable networks as an application.
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SUMMARY (Continued)

As multi-view/multi-modal data become ubiquitous in the era of big data, we study how to perform

effective unsupervised feature selection for multi-view data. We first fuse the information from multi-

view data by cross diffusion. Then matrix alignment is performed to use the fused information for

feature selection on each view.

Moreover, data are often equipped with complex side information, in which different objects are

inter-connected and can be represented by heterogeneous information network. We study how to extract

information from such side information and how to utilize it to guide feature selection.

xiii



CHAPTER 1

INTRODUCTION

1.1 Dissertation Framework

In the era of big data, one is often confronted with the problem of high-dimensional data in many

machine learning and data mining applications. Hence, feature selection has become an important

technique since it can alleviate curse of dimensionality, speed up learning process and provide better

interpretability. This dissertation work focuses on unsupervised feature selection as class labels are

usually expensive to obtain.

In unsupervised feature selection, it is typically more challenging to evaluate the quality of features

than its supervised counterpart due to the lack of guidance from class labels. We designed several

new criteria, which have some desirable properties and can effectively identify discriminative features

without using class labels. Moreover, due to better capability of data collection, data samples usually

come in heterogeneous forms, such as networked data, multi-modal/multi-view data and data equipped

with complex side information. Such heterogeneous information (e.g., network structure and additional

views) can be highly useful when class labels are not available. Meanwhile, how to better utilize the

abundant information contained in heterogeneous data poses additional challenges.

Through studying and researching on feature selection for heterogeneous data, we provide insightful

analysis and innovative methods to solve existing and new research problems. The dissertation covers

the following different research directions related to feature selection on heterogeneous forms of data:

1
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• In order to select discriminative features for traditional data, we design a novel criterion by pre-

serving stochastic neighbors. It does not rely on potentially noisy cluster labels and is able to

select high-quality features in unsupervised scenario.

• We propose three approaches for feature selection on network data. To better utilize network

structure, we designed two methods: Partial Order Preserving (POP) approach and Generative

Feature Selection (GFS) approach. The former method is able to select features in an efficient

manner and the latter exploits information both links and node attributes. In addition, we develop

a method with joint representation learning and feature selection, to tackle a novel problem of

cross view link prediction.

• As multi-view/multi-modal information becomes prevalent, we design a new method, Cross Dif-

fused Matrix Alignment based Feature Selection (CDMA-FS), to better utilize the information

from different views. The proposed method effectively fuses multi-view information by cross

diffusion. Then, the feature utility can be evaluated in a non-linear manner by performing matrix

alignment.

• To leverage more complex form of side information, we introduce a novel method which models

the inter-connected side information as heterogeneous information network. The proposed model

is able to exploit information from the complex side information through meta-path extraction.

Joint graph embedding and feature selection are performed to select high-quality features.

1.2 Unsupervised Feature Selection by Preserving Stochastic Neighbors

(Part of the section was previously published in (101).)
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Unsupervised feature selection is more challenging than its supervised counterpart due to the lack of

labels. In chapter 2, we present an effective method, Stochastic Neighbor-preserving Feature Selection

(SNFS), for selecting discriminative features for traditional data in unsupervised setting. We employ

the concept of stochastic neighbors and select the features that can best preserve such stochastic neigh-

bors by minimizing the Kullback-Leibler (KL) Divergence between neighborhood distributions. The

proposed approach measures feature utility jointly in a non-linear way and discriminative features can

be selected due to its ’push-pull’ property. We develop an efficient algorithm for optimizing the objec-

tive function based on projected quasi-Newton method. Moreover, few existing methods provide ways

for determining the optimal number of selected features and this hampers their utility in practice. Our

approach is equipped with a guideline for choosing the number of features, which provides nearly opti-

mal performance in our experiments. Experimental results show that the proposed method outperforms

state-of-the-art methods significantly on several real-world datasets.

1.3 Efficient Partial Order Preserving Unsupervised Feature Selection on Networks

(Part of the section was previously published in (99).)

In the past decade, research on network data has attracted much attention and many interesting

phenomena have been discovered. Such data are often characterized by high dimensionality but how

to select meaningful and more succinct features for network data received relatively less attention. In

chapter 3, we investigate unsupervised feature selection problem on networks. To effectively incorpo-

rate linkage information, we propose a Partial Order Preserving (POP) principle for evaluating features.

We show the advantage of this novel formulation in several respects: effectiveness, efficiency and its

connection to optimizing AUC. We propose three instantiations derived from the POP principle and



4

evaluate them using three real-world datasets. Experimental results show that our approach has signifi-

cantly better performance than state-of-the-art methods under several different metrics.

1.4 Unsupervised Feature Selection on Networks: A Generative View

(Part of the section was previously published in (96).)

Most existing feature selection methods fail to incorporate the linkage information, and the state-

of-the-art approaches usually rely on pseudo labels generated from clustering. Such cluster labels may

be far from accurate and can mislead the feature selection process. In chapter 4, we investigate the

problem of unsupervised feature selection on networks from a generative point of view. We propose a

generative point of view for unsupervised features selection on networks that can seamlessly exploit the

linkage and content information in a more effective manner. We assume that the link structures and node

content are generated from a succinct set of high-quality features, and we find these features through

maximizing the likelihood of the generation process. Experimental results on three real-world datasets

show that our approach can select more discriminative features than state-of-the-art methods.

1.5 Learning Representation Consensus with Coupled Feature Selection for Cross View Link Prediction

(Part of the section was previously published in (100).)

Link Prediction has been an important task for studying information and social networks and most

existing approaches assume the completeness of network structure. However, in many real-world net-

works, the links and node attributes can usually be partially observable. In chapter 5, we study the

problem of Cross View Link Prediction (CVLP) on partially observable networks, where the focus

is to recommend nodes with only links to nodes with only attributes (or vice versa). We aim to bridge
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the information gap by learning a robust consensus for link-based and attribute-based representations so

that nodes become comparable in the latent space. Moreover, feature selection is performed jointly with

the representation learning to alleviate the effect of noisy high-dimensional attributes. We present two

instantiations of this framework with different loss functions and develop an alternating optimization

framework to solve the problem. Experimental results on four real-world datasets show the proposed

algorithm outperforms the baseline methods significantly for cross-view link prediction.

1.6 Multi-view Unsupervised Feature Selection by Cross-diffused Matrix Alignment

(Part of the section was accepted and to appear as (98).)

Multi-view high-dimensional data become increasingly popular in the big data era. Feature selection

is a useful technique for alleviating the curse of dimensionality. In chapter 6, we study unsupervised

feature selection for multi-view data. Traditional feature selection methods are mostly designed for

single-view data and cannot fully exploit the rich information from multi-view data. Existing multi-

view feature selection methods are usually based on noisy cluster labels which might not preserve suffi-

cient information from multi-view data. To better utilize multi-view information, we propose a method,

CDMA-FS, to select features for each view by performing alignment on a cross diffused matrix. Ex-

periments results on four real-world datasets show that the proposed method is more effective than the

state-of-the-art methods in multi-view setting.

1.7 Unsupervised Feature Selection with Complex Side Information

Many datasets are also equipped with certain side information of complex structure. Such side

information can be critical for feature selection when class labels are unavailable. In chapter 7, we

propose a new feature selection method, SideFS, to exploit such rich side information. We model
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the complex side information as a heterogeneous network and derive instance correlations to guide

subsequent feature selection. Representations are learned from the side information network and the

feature selection is performed in a unified framework. An alternating method is developed for SideFS

to solve the optimization problem. Experimental results show that the proposed method can effectively

enhance the quality of selected features by incorporating complex side information.



CHAPTER 2

UNSUPERVISED FEATURE SELECTION BY PRESERVING STOCHASTIC

NEIGHBORS

(This chapter was previously published as “Unsupervised Feature Selection by Preserving Stochastic

Neighbors”, in Proceedings of the 19th international Conference on Artificial Intelligence and Statistics

(AISTATS 16), 2016, with permission to reuse.)

2.1 Introduction

In the era of big data, datasets are often characterized by high dimensionality in many machine

learning or data mining tasks. To alleviate the curse of dimensionality, feature selection (34) (63) (99)

has become an important technique. By selecting a subset of high-quality features, feature selection can

speed up the learning process and provide easier interpretation of the problem.

Depending on the availability of supervision information, feature selection methods can be cate-

gorized into two classes: supervised feature selection and unsupervised feature selection. Since class

labels are usually expensive to obtain, our work focuses on unsupervised scenario. It is usually more

difficult to evaluate the discriminativeness of features without guidance from class labels. Different

heuristics (e.g., frequency based, variance based) have been proposed to perform unsupervised feature

selection. Similarity-preserving approaches (34) (110) have gained much popularity among others. In

such similarity preserving methods, a feature is considered to be good if it can preserve the local mani-

fold structure well.

7
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Recently, pseudo label based algorithms with L2,1 norm (106) (48) have become increasingly pop-

ular. Since class labels are not available, such methods attempt to generate cluster labels (i.e., pseudo

labels) or subspace representations through linear transformation/regression regularized by L2,1 norm.

They rank features by their usefulness on predicting pseudo label/constructing the subspace. One major

drawback of such approach is that the cluster labels are usually far from accurate and such inaccurate

pseudo labels can mislead feature selection.

The central issue in unsupervised feature selection is how to effectively uncover the discriminative

information embedded in the data. Inspired by the popular visualization technique Stochastic Neighbor

Embedding (SNE) (35), we employ the concept of stochastic neighbors for the purpose of unsupervised

feature selection. We develop a novel unsupervised feature selection method, Stochastic Neighbor-

preserving Feature Selection (SNFS), to select a set of high-quality features. Specifically, for each data

point, other data points are its neighbors with certain probability. The goal is to select a set of features

that best preserve such stochastic probability. With this criterion, the derived gradient update formula

is very simple, and it has a desirable pull-push property that the selected features can pull similar data

points close and push dissimilar data points far apart. As a result, data points from different classes

could be better separated with the set of selected features. The advantages of SNFS can be summarized

as follows:

• The aim of unsupervised feature selection is usually to improve subsequent clustering tasks. Pop-

ular clustering methods such as KMeans and Spectral Clustering (62) are distance/similarity-

based methods: KMeans needs to measure the similarity/distance to centroids when assigning

data points and Spectral Clustering needs to build a similarity graph for clustering. State-of-
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the-art L2,1 norm based approaches (106) (48) (68) select features based on how well they can

linearly explain the variance of cluster labels (i.e., by their linear regression coefficients). By

contrast, SNFS is not based on linear regression and is able to evaluate features jointly in a more

similarity-friendly manner.

• The proposed criterion aims to keep similar data points closer than dissimilar data points. Such a

criterion can select discriminative features to make the clusters more separable.

• For supervised feature selection, one can choose the number of selected features based on cross-

validation performance. But it is very challenging to choose the optimal number of features in

unsupervised setting. The inability of existing approaches (48) (68) to choose optimal feature size

limits their practical utility. We provide a guideline for deciding feature sizes and experimental

results indicate that this proposed guideline can usually achieve decent performance.

We develop an efficient optimization algorithm for the proposed method based on projected quasi-

Newton method. Experimental results on six real-world datasets illustrate the superiority of SNFS.

2.2 Related Work

In this section, we review related work on feature selection.

2.2.1 Supervised Feature Selection

The goal of feature selection is to alleviate the curse of dimensionality, enabling machine learn-

ing models to achieve comparable, if not better, performance. Traditional feature selection methods

generally fall into three categories: filter model (109) (64), wrapper model (23) and embedded model

(17) (87). In supervised feature selection, the criterion for feature quality is usually straightforward:
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high-quality features should be highly correlated with class labels. Different methods are proposed to

capture the correlation between label and feature, such as Mutual Information, Fisher Score (22) and

HSIC (78). For example, Song et al. (2007) introduces Hilbert-Schmidt Independence Criterion (HSIC)

as a measure of dependence between the features and the labels (78). LASSO (87), as an embedded

model, performs feature selection during regression/classification by using L1 regularization.

2.2.2 Unsupervised Feature Selection

In the unsupervised setting, various heuristics are proposed to guide the feature selection process.

One popular guiding principle is to preserve the local manifold structure or similarity (34) (109) (110).

But features useful for preserving similarity are not necessarily discriminative. Also, these earlier unsu-

pervised feature selection algorithms tend to evaluate the importance of features individually (34) (109),

which neglects correlation among features and may introduce redundancy in the selected features. Re-

cent methods (106) (48) (76) (96) using sparsity-inducing norms overcome this issue by evaluating the

features as a whole. For example, Unsupervised Discriminative Feature Selection (UDFS) (106) intro-

duces pseudo label-based regression to better capture discriminative information. Sparsity-inducingL2,1

norm is used to select the feature jointly. Robust Unsupervised Feature Selection (RUFS) (68) further

employs robust L2,1 loss on the regression objective to alleviate the effect of outlier instances. Robust

Spectral Feature Selection (RSFS) (76) uses robust learning framework with local kernel regression for

generating pseudo-labels.

Essentially, all the pseudo label based methods evaluate the utility of features based on how well in

linear projection they can explain the variance of the cluster labels. As a result, they have similar draw-

backs: first, they only evaluate features on their linear ability and overlook their non-linear usefulness.
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Second, the pseudo labels derived from clustering are usually not accurate enough. The noisy infor-

mation contained in the pseudo labels can further mislead feature selection. Moreover, state-of-the-art

pseudo-label approaches (68) (76) usually have 3 ∼ 5 free parameters (e.g., neighborhood size, number

of latent dimensions and hyperparameters controlling regularization terms), which are difficult, if not

impossible to tune without supervision.

2.3 Formulations

2.3.1 Notations

Suppose we have n data samples X = [x1,x2, . . . ,xn] and the total number of features is D. So

xi ∈ RD and xit denotes the value of t-th (t = 1, . . . , D) feature of xi. Our goal is to select d (d� D)

discriminative features. We use w ∈ {0, 1}D as the selection indicator vector: wt = 1 indicates the t-th

feature is selected and wt = 0 otherwise.

2.3.2 Stochastic Neighbors-preserving Feature Selection

We assume each data sample has all the other data samples as stochastic neighbors with certain

probability, rather than having a fixed set of neighbors. Let us denote the probability of xi having xj

(j 6= i) as its neighbors as pij and assume pij depends on their similarity Sij . The larger Sij is, the more

likely xj is xi’s neighbor. For convenience, we also define pii = 0 for i = 1, . . . , n.

To make
∑n

j=1 pij = 1, we use the softmax function to define this probability.

pij =
exp (Sij)∑
k 6=i exp (Sik)

(2.1)
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In principle, Sij could be any affinity measure, such as cosine similarity and negative euclidean distance.

We use inner product to measure the similarity of two data points and therefore Sij = xTi xj .

To add more flexibility to the model, we also include a scale (bandwidth) parameter σ2 in the soft-

max function as follows. We will discuss how to set this parameter later in this chapter.

pij =
exp (Sij/σ

2)∑
k 6=i exp (Sik/σ2)

(2.2)

After feature selection, we denote similarity calculated on the selected features as sij = xTi diag(w)xj ,

where diag(w) is the diagonal matrix using w as diagonal elements. So, the probability of xj being the

neighbor of xi after feature selection is qij .

qij =
exp (

xT
i diag(w)xj

σ2 )∑
k 6=i exp (

xT
i diag(w)xk

σ2 )
(2.3)

Note that qij (or pij) is not only influenced by sij (or Sij), but also affected by sik (or Sij , k = 1, . . . , j−

1, j + 1, . . . , n) via the normalization term. Therefore, qij (or pij) is determined by the relative value of

sij (or Sij) compared with other sik (or Sik).

To preserve the stochastic neighbors, we try to make two distributions qi = [qi1, . . . , qin]T and

pi = [pi1, . . . , pin]T similar by minimizing their KL divergence for each xi.

KL(pi||qi) =
∑
j 6=i

pij log
pij
qij

(2.4)
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We propose the following feature selection criterion: selecting the set of features to minimize the sum

of KL divergence between pi and qi on all the data points.

min
w

n∑
i=1

∑
j 6=i

pij log
pij
qij

s.t.

D∑
t=1

wt = d

wt ∈ {0, 1},∀t = 1, . . . , D

(2.5)

The goal is that, for similar data points, we still want them to be similar after feature selection. For

dissimilar data points, it is desirable to keep them dissimilar with selected features. So, by minimizing

KL-divergence between pi and qi for i = 1, . . . , n, we select the features that make similar data samples

still closer than dissimilar samples.

2.3.3 Setting Scale Parameter

In this subsection, we discuss how to set the scale/bandwidth parameter σ2. pi is influenced by the

value of σ2: the higher σ2 is, the higher entropy pi has. For data sample xi, when σ2 is relatively large,

other data samples tend to have similar probability of being xi’s neighbors. In the extreme case, when

σ2 goes to infinity, all other data samples have equal probability of being xi’s neighbor. When σ2 is

small, the probability tends to be concentrated on a small number of most similar neighbors. We define

the average perplexity as follows.

Perplexity(P ) = 2
1
n

∑n
i=1H(pi) (2.6)
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where H(pi) = −∑j 6=i pij log pij is the entropy of pi. The perplexity has a more intuitive interpre-

tation than σ2: it can be interpreted as a smooth measure of the effective number of neighbors. The

perplexity is a monotonically increasing function of σ2 and larger perplexity corresponds to larger σ2.

After we specify the value of perplexity, the value of σ2 can be found by line search (e.g., binary search).

So we do not need to directly set σ2. Rather, we use perplexity as a proxy since it has more intuitive

explanation. As we will show in the experimental results, SNFS can usually achieve good performance

for a reasonably large range of perplexity (e.g., 5 ∼ 50).

2.4 Optimization

2.4.1 Gradient Derivation

The formulation in Equation 2.5 is a ‘0/1’ integer programming problem, which is time-consuming

to optimize. To make the optimization more efficient, we relax the ‘0/1’ constraint on wt (∀t =

1, . . . , D) to real values in the range of [0, 1]. Also, we re-write the summation constraint
∑D

t=1wt = d

using Lagrangian multiplier.

min
w

n∑
i=1

∑
j 6=i

pij log
pij
qij

+ λ||w||1

s.t. 0 ≤ wt ≤ 1, ∀t = 1, . . . , D

(2.7)

where || · ||1 is the L1 norm and λ is the parameter to control the L1 regularization. Note that in general

L1 norm is not differentiable due to the non-smoothness at value 0, but in our case, |wt| = wt since wt

(∀t = 1, . . . , D) is always non-negative.
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Let us denote the objective in Equation 2.7 as L. It takes several steps to calculate the gradient ∂L
∂wt

,

but the final result is simple.

∂L
∂wt

= −
n∑
i=1

∑
j 6=i

(pij − qij)xitxjt/σ2 + λ (2.8)

If we use negative euclidean distance as the affinity measure (i.e., sij = −(xi−xj)
T diag(w)(xi−xj)),

one can derive the following gradient formula in a similar manner:

∂L
∂wt

=

n∑
i=1

∑
j 6=i

(pij − qij)(xit − xjt)2/σ2 + λ (2.9)

Such a gradient update formula in Equation 2.8 (or Equation 2.9) has an intuitive push-pull interpre-

tation: when xj is more likely to be xi’s neighbor than desired (e.i., pij < qij), wt is updated in the

direction of xitxjt/σ2 (or−(xit−xjt)2/σ2) to push them away; when xj is less likely to be xi’s neigh-

bor than desired (e.i., pij > qij), wt is updated to pull them closer. If a feature has little contribution in

preserving the distribution of stochastic neighbors, its weight tends to shrink to zero under the effect of

L1 regularization.



16

2.4.2 Projected Quasi-Newton Method

To make the optimization more efficient, we incorporate second order information by using pro-

jected quasi-Newton method (6). At each iteration, we partition wt (t = 1, . . . , D) into two groups:

restricted variablesRw and free variables Fw.

Rw ={wt|(wt ≤ ε ∧
∂L
∂wt

> 0) or

(wt ≥ 1− ε ∧ ∂L
∂wt

< 0)}
(2.10)

Fw = {w1, w2, . . . , wD} −Rw (2.11)

where ε is a small positive value. The restricted variables are those close to the lower or upper bound in

their gradient direction. In Newton’s Method, the scaling matrix S̄k for the free variables at iteration k

is the inverse Hessian matrix.

S̄k = [∇2L(wk)]−1
Fk

w
, (2.12)

For both free and restricted variables, the scaling matrix can be defined as follows.

Sk =

S̄k 0

0 D

 (2.13)

The scaling matrix D for restricted variables can be identity matrix. In each iteration, we find appropri-

ate step size ηk using backtracking line search to satisfy Armijo rule:

f(wk)− f(wk + ηkdk) ≤ c1η
kdk (2.14)
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where c1 is a constant in the range of 0 ≤ c1 ≤ 1 and d is the descent direction (d = Sk∇L(wk) in our

case). Note that computing the step size does not increase the computational complexity of the method,

since computing the orthogonal projection after each backtracking step is trivial.

The final projected-Newton update formula is as follows.

wk+1 ← P(wk − ηkSk∇L(wk)) (2.15)

where the projection operator P(·) projects the value (·) to [0, 1].

[P(w)]t = min(1,max(0, wt)), ∀t = 1, . . . , D (2.16)

For restricted variables wkt ∈ Rkw, we can directly set them to 0 or 1 if ε is sufficiently small.

[P(wk − ηkSk∇L(wk))]t =


0, if wt ≤ ε ∧ ∂L

∂wt
> 0

1, if wt ≥ 1− ε ∧ ∂L
∂wt

< 0

(2.17)

So, we only need to compute the scaling matrix S̄ for free variables. This can save considerable com-

putation time if the number of free variables is small (i.e., |Fw| � |Rw|), which is usually the case in

feature selection scenario. It has been shown (6) (26) this projected-Newton method is convergent under

mild conditions.

Theorem 2.4.1 For a loss function L, assume that ∇L is Lipschitz continuous and ∇2L has bounded

eigenvalues. Then every limit point of wk generated by Equation 2.15 is a stationary point of Equa-

tion 2.7.
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However, the Newton-step is often computation-intensive and requires D2 storage. To save com-

putation time and storage space, we approximate the Hessian with L-BFGS, as shown in Algorithm

1. L-BFGS only requires O(mD) storage if the gradients in that last m iterations are used. Though

the convergence rate of the method has been shown for Sk derived from the Hessian, the convergence

itself only requires a positive-definite gradient scaling Sk with bounded eigenvalues for all k (6). Thus,

quasi-Newton approximations (e.g., L-BFGS) can also be employed to derive convergent methods. In

our experiments, the optimization algorithm usually converges in less than 20 iterations.

Algorithm 1 Projected L-BFGS Algorithm for SNFS

1: Initialize w← [1, 1, . . . , 1]
2: while not converge do
3: Identify restricted and free variables by Equation 2.10 and Equation 2.11.
4: Set the restricted variables to the corresponding lower or upper bound (i.e., 0 or 1)
5: Calculate the gradient using ?? and S̄ for free variables using the gradient information of last m

iterations.
6: Use backtracking line search to find the step size η that satisfies Armijo condition Equation 2.14
7: Update w using formula Equation 2.15
8: end while
9: Select features with wt (t = 1, . . . , D) greater than 1− α

2.4.3 Determining the number of selected features

It is worth noting that w can be intuitively interpreted as features’ importance scores in preserving

stochastic neighbors. The relaxed wt (t = 1, . . . , D) has the maximum value of 1 and the minimum of

0. For unrelaxed w, we simply retain the features with wt = 1. Similarly, to select the high-quality
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TABLE I: Comparison of different similarity-based unsupervised feature selection methods

Methods
LS(34),
SPEC(109)

SPFS(111),
MCFS(12)

NDFS(48),
RUFS(68),
RSFS(76)

SNFS

Evaluate features jointly? × X X X
Evaluate features non-linearly? X × × X
Do not rely on clustering? X X × X
Guideline for setting number
of selected features?

× × × X

features from relaxed version of w, we can select the features with wt equal or close to 1. For example,

we can keep the features with wt greater than (1 − α) for a small α (e.g., α = 0.05 or α = 0.1. We

denote the number of features with scores larger than (1−α) asN1−α. For example, N0.9 is the number

of features that have scores greater than 0.9. As we will show in the experimental results, such a strategy

can usually achieve near-optimal performance.

Since N0.9 is influenced by the regularization parameter λ (i.e., larger λ leads to smaller N0.9), one

can also do a line search for appropriate λ (e.g., via binary search) if he wants to retain a specific number

of features.

2.5 Discussion

Similarity-based approaches are a popular thread of unsupervised feature selection methods. In this

section, we discuss how SNFS is different and superior to other similarity-based methods.

Laplacian Score (34) and SPEC (109) are based on the eigenvalues of similarity matrix. They assign

a score to each feature and select the features with higher scores. Features are evaluated individually

and redundancy can have negative impact on the performance of selected features. Besides, while the
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selected features will make similar data points still similar, they make little effort to make dissimilar

data points far apart.

SPFS and MCFS (12) perform sparse linear regression towards the spectral decomposition of sim-

ilarity matrix and choose the features with large coefficients. NDFS (48), RUFS (68) and RSFS (76)

generate cluster labels and perform linear regression with L2,1 norm. The drawback is that the inaccu-

rate cluster labels can provide misleading information for feature selection. In all these regression-based

methods, the selection criterion depends on how well the features can linearly explain the variance of

cluster labels/subspace representation. This limits their effectiveness in clustering tasks, since most

popular clustering algorithms are based on similarity/distance, such as KMeans and Spectral Clustering

(62).

Moreover, a common shortcoming of all these methods is that they do not provide any guideline for

choosing the number of selected features.

In contrast, SNFS evaluates features jointly and non-linearly. Rather than preserving the similar-

ity itself, SNFS focuses on preserving the relative value of similarity in each neighborhood. Table I

summarizes the difference between several popular similarity-based feature selection methods. We can

see that SNFS has several desirable properties, which enable it to identify a set of more discriminative

features.



21

TABLE II: Statistics of datasets

Statistics BBC BBC Sport BlogCatalog TDT Guardian Newsgroup
# of instances 2225 737 500 1500 302 1575
# of features 9636 4612 4547 6458 3631 2849
# of classes 5 5 5 15 6 4

2.6 Experiment

2.6.1 Baselines

We compare our approach to using all features and five unsupervised feature selection methods as

baselines. LS and MCFS are manifold-preserving/similarity-preserving approaches. UDFS, RUFS and

RSFS are pseudo-label based methods which also consider the similarity information.

• All Features: It uses all the features for evaluation.

• Laplacian Score (LS): Laplacian score (34) selects the features which can best preserve the local

manifold structure.

• MCFS: Multi-cluster Feature Selection (12) performs spectral analysis and sparse regression to

select features.

• UDFS: Unsupervised Discriminative Feature Selection (106) is a psuedo-label based approach

which performs L2,1-norm regularized subspace learning.

• RUFS: Robust Unsupervised Feature Selection (68) generates psuedo labels by NMF (Non-

negative Matrix Factorization) and local learning-based regularization (31).
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• RSFS: Robust Spectral Feature Selection (76) selects features by robust spectral analysis frame-

work and L2,1-norm regularized regression.

2.6.2 Datasets

We use six publicly available datasets: BBC and BBCSport news dataset1, Guardian news dataset2,

BlogCatalog3 blog-posts dataset, Newsgroup 4 and TDT25. The statistics of six datasets are summarized

in Table II.

2.6.3 Experimental Setting

In this section, we evaluate the quality of selected features by their clustering performance. We use

Accuracy and Normalized Mutual Information (NMI) to evaluate the result of clustering, following the

typical setting of evaluation for unsupervised feature selection (106) (48). These two metrics evaluate

the cluster quality by matching and comparing the cluster labels with ground-truth labels (more detailed

definition of the two metrics is presented in supplemental material). Higher values of Accuracy and

NMI indicate better quality of clustering.

We set k = 5 for the kNN neighbor size in the baseline methods following previous convention

(48). For the number of pseudo classes in UDFS, RUFS and RSFS, we use the ground-truth number of

1http://mlg.ucd.ie/datasets/bbc.html

2http://mlg.ucd.ie/datasets/3sources.html

3http://dmml.asu.edu/users/xufei/datasets.html

4http://www.cs.umb.edu/˜smimarog/textmining/datasets/

5http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

http://mlg.ucd.ie/datasets/bbc.html
http://mlg.ucd.ie/datasets/3sources.html
http://dmml.asu.edu/users/xufei/datasets.html
http://www.cs.umb.edu/~smimarog/textmining/datasets/
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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classes. Besides, UDFS, RUFS and RSFS also require specifying the values of several other regulariza-

tion parameters. In the original papers of UDFS, RUFS and RSFS, they use class labels to find the best

parameters by grid search. However, this violates the assumption of no supervision and could be unfair

to approaches with less or no free parameters. Nonetheless, we perform grid search in the range of

{0.1, 1, 10} for the regularization parameters in UDFS, RUFS and RSFS. Besides the best performance,

we also report the median performance for them, which is a more realistic reflection of these methods’

practical power. For SNFS, we fix perplexity = 15 and λ = 10−3 × n on all datasets and we will

discuss the sensitivity of these two parameters in the following subsection. 1.

Following the convention in previous work (12) (106), we use KMeans 2 for clustering evaluation.

Since Kmeans is affected by the initial seeds, we repeat the experiment for 20 times and report the

average performance. We vary the number of features in the range of {100, 200, 400, 600}. For SNFS,

we report the clustering performance using the features with scores greater than 0.9.

2.6.4 Clustering Results

The clustering accuracy on six datasets is shown in Table III. The experimental results show that

feature selection is a very effective technique for enhancing clustering. With much less features, SNFS

(N0.9) can obtain better accuracy and NMI than using all the features. For instance, compared with

using all 4547 features, SNFS with only 230 features improves the clustering accuracy by 36.4% on

1For the projected quasi-Newton method in the optimization of SNFS, we use the implementation at http:
//www.cs.ubc.ca/˜schmidtm/Software/minConf.html

2We use the code at http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html

http://www.cs.ubc.ca/~schmidtm/Software/minConf.html
http://www.cs.ubc.ca/~schmidtm/Software/minConf.html
http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html
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TABLE III: Clustering accuracy on six datasets. For UDFS, RUFS, RSFS, median/best performance is
reported. SNFS(N0.9) denotes the performance of SNFS with top N0.9 features.

Method BBC BBC Sport
# features 100 200 400 600 100 200 400 600
All Features 0.8071 0.6551
LS 0.2360 0.2655 0.4322 0.4718 0.4185 0.4561 0.5110 0.6751
MCFS 0.6223 0.7489 0.7793 0.8217 0.6082 0.7075 0.7027 0.7248
UDFS 0.4246/0.4811 0.6174/0.6681 0.7766/0.7805 0.7599/0.7763 0.4661/0.4875 0.4770/0.5601 0.5390/0.605 0.5770/0.6139
RUFS 0.4744/0.7548 0.6708/0.8584 0.7976/0.8991 0.8263/0.8836 0.6018/0.7487 0.6598/0.7683 0.7009/0.7518 0.6812/0.7187
RSFS 0.5677/0.7660 0.7523/0.8118 0.8068/0.8863 0.8326/0.8693 0.6158/0.6658 0.6546/0.714 0.6648/0.6961 0.6494/0.7030
SNFS 0.6040 0.7729 0.8165 0.8102 0.5847 0.6881 0.7455 0.6964
SNFS(N0.9) 0.8414(550) 0.7195(440)
Method BlogCatalog Guardian
# features 100 200 400 600 100 200 400 600
All Features 0.4627 0.5477
LS 0.2998 0.4084 0.4203 0.4003 0.3364 0.4083 0.6573 0.6237
MCFS 0.3704 0.4428 0.4143 0.4161 0.5093 0.5053 0.5361 0.5348
UDFS 0.3901/0.3917 0.4069/0.4691 0.4383/0.4749 0.4876/0.5321 0.3682/0.4998 0.4525/0.5144 0.5127/0.5394 0.5247/0.5411
RUFS 0.4877/0.5307 0.5508/0.5756 0.5476/0.5889 0.5375/0.5648 0.4369/0.5608 0.5329/0.5659 0.5490/0.5661 0.5563/0.5791
RSFS 0.3847/0.4969 0.4371/0.5346 0.4709/0.5464 0.5031/0.5412 0.5320/0.5553 0.5296/0.5816 0.5550/0.5907 0.5541/0.5921
SNFS 0.5842 0.6350 0.5924 0.5821 0.5288 0.6063 0.6290 0.6071
SNFS(N0.9) 0.6313(230) 0.6270(440)
Method Newsgroup TDT
# features 100 200 400 600 100 200 400 600
All Features 0.7184 0.7711
LS 0.2808 0.3863 0.6420 0.7063 0.6548 0.7472 0.7870 0.7816
MCFS 0.3374 0.4368 0.4883 0.5059 0.6128 0.6656 0.7250 0.7367
UDFS 0.3516/0.4145 0.3954/0.4173 0.4403/0.4653 0.4604/0.6335 0.4863/0.4979 0.6102/0.6110 0.7231/0.7247 0.7499/0.7520
RUFS 0.4687/0.6073 0.4595/0.6435 0.4915/0.6476 0.5295/0.6477 0.4381/0.6865 0.5423/0.8112 0.6731/0.7967 0.7614/0.8198
RSFS 0.3969/0.6045 0.4776/0.6516 0.6069/0.6765 0.6225/0.6923 0.6589/0.7806 0.7730/0.8153 0.7695/0.8173 0.7854/0.8261
SNFS 0.4518 0.5075 0.6833 0.7039 0.7502 0.7902 0.7835 0.7890
SNFS(N0.9) 0.8007(495) 0.8161(163)
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Figure 1: Clustering accuracy with different perplexity values
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Figure 2: Clustering accuracy with different λ
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BlogCatalog dataset. Besides the improved accuracy and NMI, using selected features rather than all

features can also lead to better interpretability.

We can observe that for SNFS, using N0.9 features usually performs the best (or nearly the best)

among different number of features. The top N0.9 features all have scores equal to 1 or very close to

1. So it is not wise to use only a subset of them. Also, using more than N0.9 features may lead to

redundancy since less important features are included.

When comparing SNFS with the baseline methods, we observe that SNFS has very competitive per-

formance. The accuracy and NMI of SNFS (N0.9) is better than or comparable to the best performance

of two strong baselines (RUFS and RSFS) and outperforms their median performance significantly.

Since in practice one cannot know the optimal parameters of RUFS and RSFS in unsupervised scenario,

the median performance is more representative of their practical utility. Also, all the baseline methods

do not provide guidelines for determining the number of selected features. For example, RUFS achieves

its top median performance with 400, 200 and 600 features on BBCSport, BlogCatalog and Guardian

datasets, respectively. This makes these baseline methods less favorable in practice.

In summary, although these baseline methods also attempt to exploit similarity information in certain

ways, they do not perform as well as SNFS. The experimental results illustrate that SNFS is a more

effective method for selecting discriminative features.

2.6.5 Sensitivity Analysis

For unsupervised feature selection, it is important that the feature selection algorithm is not very

sensitive to its parameters. SNFS has two free parameters: the perplexity and the regularization param-
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eter λ for L1 norm. In this section, we investigate how the performance of SNFS (N0.9) varies w.r.t

different parameter values.

Figure 1 shows the clustering accuracy of SNFS (N0.9) over different values of perplexity. We can

observe that SNFS has consistently good performance with different perplexity values ranging from

5 ∼ 50. In most cases, the performance is better than using all the features.

For λ, we vary its value in the range of [0.0001, 0.0002, 0.0004, 0.0006, 0.0008, 0.001, 0.002, 0.004]×

n. The clustering performance of SNFS (N0.9) over different λ is shown in Figure 2. On most

datasets, SNFS has decent performance and can outperform using all features, if λ is not too small

(< 2× 10−4 × n) or too large (> 2× 10−3 × n).



CHAPTER 3

EFFICIENT PARTIAL ORDER PRESERVING UNSUPERVISED FEATURE

SELECTION ON NETWORKS

(This chapter was previously published as “Efficient Partial Order Preserving Unsupervised Feature

Selection on Networks”, in Proceedings of 2015 SIAM International Conference on Data Mining (SDM

15), with the permission to reuse from Society for Industrial and Applied Mathematics (SIAM))

3.1 Introduction

In many machine learning tasks, one is often confronted with the problem of high dimensionality.

Hence, feature selection (34) (63) has become an important technique since it can help alleviate the

curse of dimensionality and speed up the learning process. Depending on the availability of class labels,

feature selection algorithms can be classified into supervised methods and unsupervised methods. Our

work focuses on unsupervised scenario as class labels are usually expensive to obtain. A variety of

approaches has been developed for unsupervised feature selection by following different principles. In

recent work, similarity-preserving approaches (34) (110) and regression based approaches using pseudo

labels (106) (48) have gained much popularity among others.

Network data has become increasingly popular in the past decade, because of the proliferation of

various social and information networks. Social media websites such as Facebook, Twitter have millions

of users all across the world. Different forms of information networks, e.g, co-author network, citation

29
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network and protein interaction network, also attract considerable attention to analyze (61) (104) (102)

(2).

However, traditional feature selection approaches assume that instances are independent and identi-

cally distributed (i.i.d). In relational data or information networks, the instances are implicitly or explic-

itly related, with certain correlation and dependency. For example, in research collaboration networks,

the researchers who collaborate with each other tend to share more similar research topics than re-

searchers with no collaboration. But traditional approaches are not able to exploit such rich information

contained in the links. LUFS (84) is the first attempt to incorporate network information for unsuper-

vised feature selection, but it uses the structural information at community level via social dimensions

(86) and fails to exploit finer-grained link information. Also, LUFS requires several parameters, which

are hard to tune in unsupervised setting.

Moreover, the ever increasing size of network data poses additional challenges to feature selection.

For instance, Facebook and Linkedin have more than 1.28 billion1 and 300 million2 users as of 2014,

respectively. However, state-of-the-art unsupervised feature selection methods (106) (48) (84) are pro-

hibitively slow, as their time complexity is usually cubic of the number of features or instances. This

makes these algorithms unpractical for large-scale and high-dimensional data.

In this chapter, we present a new perspective to address these challenges regarding both effectiveness

and efficiency. We propose a Partial Order Preserving (POP) framework, which allows for parameter-

1http://en.wikipedia.org/wiki/Facebook

2http://en.wikipedia.org/wiki/Linkedin
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free mathematical formulation and efficient optimization. Rather than simply preserving the similarity

or local manifold structure, POP aims to preserve the partial order of similarity. Network data have abun-

dant partial order information: a node is usually more similar to its neighbors than to the other nodes.

By exploiting such difference for feature selection, structural information distinguishing neighbors from

non-neighbors is incorporated. As a consequence, more discriminative features can be selected. The

main contribution of our work can be summarized in the following:

• We propose a new principle for feature selection on networks: Partial Order Preserving (POP)

principle, which selects features that best preserve partial orders. As state-of-the-art approaches

are mostly pseudo-label based methods using L2,1 norm (106) (48) (84), POP brings a new per-

spective to the problem of unsupervised feature selection.

• As the linkage relationship in the network is neither complete nor noise free, we present three

instantiations of the POP principle, which are robust to noisy/incomplete link information and are

parameter free in the objective functions.

• We develop a highly efficient and unified optimization algorithm for these three instantiations.

This makes our methods applicable to large-scale datasets.

• We evaluate the proposed algorithms on three real world datasets, and show the advantage of our

approach over the baseline methods using different metrics.

3.2 Related Work

In this section, we briefly review related work on feature selection (mainly on unsupervised feature

selection).
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3.2.1 Unsupervised Feature Selection for Traditional Data

In the unsupervised setting, there are various principles to guide the feature selection process. One

popular guiding principle is to preserve the local manifold structure or similarity (34) (109) (110). Re-

cently, pseudo label-based framework (106) (48) gained much popularity. Unsupervised Discriminative

Feature Selection (UDFS) (106) introduces pseudo labels to better capture discriminative information

and sparsity-inducing L2,1 norm is used to select the feature in an iterative manner. Non-negative Dis-

criminative Feature Selection (NDFS) (48) performs non-negative spectral analysis and feature selection

simultaneously. But both UDFS and NDFS have computation complexity of O(D3T + n2) (D is the

number of features, T is the number of iterations, n is number of instances) as eigen-decomposition on

D×D matrix is performed in each iteration. This severely refrains them from being applied to high di-

mensional data such as text or microarray data. Moreover, they have 3 ∼ 4 parameters to be specified in

the objective function. In supervised learning, appropriate parameters can be found through grid search

but in unsupervised setting, there is no straightforward way to tune the parameters.

3.2.2 Feature Selection for Network Data

Traditional feature selection techniques assume data instances are independent and identically dis-

tributed (i.i.d), which is not the case in network data. In recent years, efforts have been made towards

feature selection on relational data. (30) addresses supervised feature selection on network data via

adding network-based regularization term to enforce similarity between neighbors. (83) explores super-

vised feature selection on social media data and integrates different types of relations into the feature

selection framework. (85) studies co-selection of features and instances in social media since both

features and instances can be noisy and irrelevant. (82) investigates unsupervised multi-view feature
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selection on social media but it does not utilize link information. Linked Unsupervised Feature Selec-

tion (LUFS) (84) is the only unsupervised feature selection method that utilizes link information. LUFS

exploits network information through incorporating social dimension based regularization (86) into the

UDFS framework (106). So it shares the same downside of UDFS such as too many parameters and

high computational cost. Also, in LUFS, network information is utilized at community/cluster level and

finer-grained information in the links is ignored. In this chapter, we propose a parameter-free framework

for unsupervised feature selection on network data, which is more effective with lower computation bur-

den.

Figure 3: An example network with 9 nodes
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3.3 Problem Formulation

3.3.1 Partial Order on Network

In this section, we present several concepts as preliminaries of our Partial Order Preserving (POP)

principle for feature selection. Our partial order is defined on an information network.

Definition 1 Information Network An information network G = (V,E,X) consists of V , the group

of vertices, E ⊆ V ×V , the set of edges, and feature matrix X = [x1,x2, . . . ,xn] ( i = 1 . . . n, n = |V |

), where xi ∈ {0, 1}D is the attribute vector of node vi.

In an information network, for each node v, the remaining nodes can be divided to two categories

based on whether they are linked to v: linked set and unlinked set.

Definition 2 Linked Set For a node v ∈ V , its linked set is defined as the set L(v) of all the nodes

which are linked to v, i.e., u ∈ L(v)⇔ (u, v) ∈ E.

Definition 3 Unlinked Set For a node v ∈ V , its unlinked set is set of nodes U(v) which are not in the

linked set of v, i.e., U(v) = V/L(v)

Traditional i.i.d assumption does not hold for data instances in networks because of the widely

observed homophily effect. In recent years, many machine learning algorithms on networks try to

exploit this fact: friends are similar. One popular technique is network based regularization (30) (11),

which enforces neighbor nodes (i.e., nodes in linked set) to be similar.

But exploiting information solely from linked sets is not sufficient for feature selection. Though

good features are likely to be shared by neighbors, not all features shared by neighbors are of high
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quality. For example, in citation network, neighbors (i.e., cited and citing paper) are usually of similar

topic because of the homophily effect. As a result, they usually share some topical words (e.g. SVM,

LDA). But indiscriminative words such as propose and compare are also shared by many neighbors.

So we take one step further to exploit both the linked sets and unlinked sets: friends are usually more

similar than non-friends. Good features should make neighbors look similar and non-neighbors not so

similar. We formulate this idea as link-based partial order as follows.

Definition 4 Link-based Partial Order We formulate such property as partial order j >i k, where

node vj and node vk are in the linked set and unlinked set of node vi, respectively. Node vi is referred

to as the pivot of this partial order. Such partial order is denoted as a triplet (i, j, k) or j >i k.

sim(vi, vj) > sim(vi, vk), vj ∈ L(vi), vk ∈ U(vi) (3.1)

Let us take the network with 9 nodes in Figure 3 for example. The linked set L(v3) of node v3 is

{v1, v2, v4, v9}, while its unlinked set U(v3) is {v5, v6, v7, v8}. Generally speaking, {v1, v2, v4, v9}

should resemble v3 more than {v5, v6, v7, v8} to v3. There are 4 × 4 = 16 partial order triplets (e.g.,

(3, 1, 6), (3, 1, 7), (3, 2, 5)) w.r.t pivot v3.

This link-based partial order aims to capture the difference between linked set and unlinked set, i.e.,

what distinguishes linked set from unlinked set. The major difficulty of unsupervised feature selection

comes from the lack of label, as the labels can provide clear guidance: features providing good separa-

bility of different classes are high-quality ones. In unsupervised scenario, we will show partial order can
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TABLE IV: Symbol definitions

Symbol Definition
xi ∈ {0, 1}D Feature vector of node vi
L(vi) Linked set of node vi
U(vi) Unlinked set of node vi
sij Similarity between node vi and vj after feature selection
sijk Difference between sij and sik
j >i k Partial order triplet in which vj ∈ L(vi), vk ∈ U(vi)

(i, j, k) Same as above
Ω Set of all partial order triplets (i, j, k)

l(j >i k) The extent to which j >i k is preserved
L(>) The extent to which all partial orders are preserved
w ∈ {0, 1}D Feature selection indicator vector

serve a similar purpose as class label. Features of good quality should be able to distinguish the linked

set from the unlinked set, which is the intuition underlying our approach.

3.3.2 Partial Order Preserving Feature Selection (POPFS)

Suppose the feature vector of node vi is xi ∈ {0, 1}D and our goal is to select d (d < D) features.

Without loss of generality, we assume binary features since categorical or numerical features can be

transformed to binary features (e.g., by binning). In order to do feature selection, we introduce an

indicator vector w = (w1, w2, . . . , wD)T , wi ∈ {0, 1} (∀i = 1, . . . , D). Then we construct a diagonal

matrix diag(w) from w. Therefore, the data instance xi after feature selection is diag(w)xi. A set of

important symbols used in this chapter are summarized in Table IV.
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Based on the link-based partial order defined above, it is desirable that partial order is preserved

after feature selection. This can be formulated as follows.

sim(diag(w)xi, diag(w)xj) > sim(diag(w)xi, diag(w)xk) (3.2)

In principle, sim(·, ·) could be any similarity metric defined on the feature vector, such as Cosine

Similarity. To make the optimization simple, we use inner product as the similarity measure. We

denote sim(diag(w)xi, diag(w)xj) as sij . Rather than the absolute values of sij and sik, we are more

interested in their relative difference sijk.

sijk = sij − sik

= xTi diag(w)xj − xTi diag(w)xk

(3.3)

We further define an objective function l(j >i k |w) over the partial order triplet (i, j, k) to quantify to

what extent the partial order j >i k is preserved.

l(j >i k | w) = f(sijk | w) (3.4)

A monotonically non-decreasing link function f is used to connect l(j >i k) with sijk. When sijk is

large, it means (i, j, k) is well preserved; when sijk is small (e.g., a negative value), it means (i, j, k)

is poorly preserved. Different types of link function can be adopted, for example, identity function or

sigmoid function.
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However, similar nodes may not be always connected in networks. For example, in co-author net-

work, Jiawei Han and Christos Faloutsos have not collaborated though they work on similar research

topics. So we cannot expect every (j >i k) derived from the network to be preserved. But in an aggre-

gate sense, a set of good features should make the partial order triplets derived from network structure

minimally violated (i.e., maximally preserved). Let us denote the set of all the partial order triplets as

Ω.

Ω = {(i, j, k)|i ∈ V, j ∈ Li, k ∈ Ui} (3.5)

We are interested in preserving the aggregated partial order L(>). This leads to maximizing l(·) over

all triplets with constraint
∑D

i=1wi = d where d is the number of selected features.

max
w

L(>) =
∑

(i,j,k)∈Ω

l(j >i k | w)

=
∑
i∈V

∑
j∈Li

∑
k∈Ui

f(sijk | w)

s.t. wi ∈ {0, 1},
D∑
i=1

wi = d

(3.6)

3.4 Instantiations of the POP Framework

In previous section, we introduce the unified framework for Partial Order Preserving Feature Se-

lection (POPFS). In this section, we present three instantiations of the POP principle: Simple POP,

Probabilistic POP and Max-Margin POP, which have different interpretations.
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3.4.1 Simple POP (SPOP)

For simplest case of link function, we can use identity function as f . It is easy to show that the

optimization problem in Equation 3.6) is equivalent to calculating the following score for each feature.

score(a) =
∑

(i,j,k)∈Ω

I(i, j, a)−
∑

(i,j,k)∈Ω

I(i, k, a) (3.7)

where I(i, j, a) is an indicator function, which equals 1 if both nodes i and j have feature a and equals

0 otherwise. The first part of the score is the number of neighbor pairs sharing this feature a, which we

refer to as the linked score of feature a; the second part of the score is the number of non-neighbor pairs

sharing feature a, referred to as unlinked score. The final score of each feature is the difference between

linked score and unlinked score. After we calculate the score using Equation 3.7, we can simply select

the top d features with the highest scores. By using identity link function, it does not consider interaction

among features and therefore each feature can be evaluated independently.

This decomposition reveals several useful properties about SPOP and provides better understanding

of this principle. If a feature’s final score is above zero, it means its linked score is larger than its

unlinked score. This indicates that, statistically, this feature appear more often in linked nodes than

in non-linked nodes. Consider for example a citation network with papers from several topics (e.g.,

Machine Learning, Database, System). A generic feature (e.g., stop word) will have both high linked

score and unlinked score because of its indiscriminative presence in nodes. The final score will be low

as a result. The domain-specific features (e.g., SVM, classification) tend to have high linked scores

and relatively low unlinked scores. Hence, the domain-specific terms will be retained and generic terms
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will be discarded by the feature selection process. As a result, unsupervised learning tasks, such as

clustering, will benefit from this.

Although real-world networks can provide rich link information for constructing partial orders, they

are often noisy by nature. If a noisy link connects two dissimilar nodes by accident, it will have minimal

impact on the score calculated by SPOP. For example, given node vi, consider two nodes vj ∈ Li

and vk ∈ Ui. Suppose both vj and vk are not similar to vi but vj appears in Li as noise. For an

indiscriminative feature a, vj and vk would have similar probability to have it. So, by expectation this

will not increase score(a) since E[I(i, j, a) − I(i, k, a)] ≈ 0. If we only utilize linked set through

preserving Graph Laplacian without using unlinked set, feature selection would be possibly misled by

noisy links. This illustrates another strength of preserving partial order against preserving the absolute

value of similarity.

3.4.2 Probabilistic POP(PPOP)

Though SPOP is simple and intuitive, it evaluates features individually and hence fails to take into

consideration the correlation between features. In this and the following section, we develop two instan-

tiations which evaluate features jointly.

From a generative point of view, we assume all the partial orders are generated from the indicator

vector w ∈ {0, 1}D. More specifically, we model the probability of preserving partial order j >i k as

P (j >i k | w) = σ(sijk) (3.8)
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where σ(x) = 1/(1 + e−x) is the sigmoid function. The larger sijk is, the more likely partial order

j >i k is preserved. By assuming the partial orders to be independent, the probability P (> |w) of all

the partial orders being respected given w is,

P (> |w) =
∏

(i,j,k)∈Ω

P (j >i k|w)

=
∏

(i,j,k)∈Ω

σ(sijk)

(3.9)

The goal is to find the feature indicator vector w which maximizes P (> |w) (i.e., to preserve the aggre-

gated partial orders with maximum probability). Learning this model can be performed by maximizing

the log-likelihood,

max
w

logP (> |w) =
∑

(i,j,k)∈Ω

logP (j >i k|w)

=
∑

(i,j,k)∈Ω

log σ(sijk)

s.t. wi ∈ {0, 1},
D∑
i=1

wi = d

(3.10)

It provides a probabilistic interpretation for the partial order preserving principle. The connection be-

tween Equation 3.17 andEquation 3.6 is easy to see: log σ(·) is used as the link function.

3.4.3 Max Margin POP (MMPOP)

Structured learning methods, such as Structural SVM (39), have gained substantial popularity in the

past decade and are powerful for combinatorial optimization. Preserving partial order is to well separate
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the linked and unlinked sets for each given pivot, which fits well into structural learning framework as

follows.

min
w

1

2
‖w‖2

s.t. sijk ≥ 1, ∀(i, j, k) ∈ Ω

(3.11)

However, in real world networks, the linked set and unlinked set are not always linearly separable using

w, as in the Jiawei Han/Christos Faloutsos example. So, to address this issue, we add an slack variable

µijk to impose soft margin.

min
w

∑
(i,j,k)∈Ω

µijk

s.t. sijk ≥ 1− µijk,∀(i, j, k) ∈ Ω

wi ∈ {0, 1},
D∑
i=1

wi = d

(3.12)

To make clear its connection to the Equation 3.6 in the general framework, we rewrite it as follows.

max
w

∑
(i,j,k)∈Ω

−max(0, 1− sijk)

s.t. wi ∈ {0, 1},
D∑
i=1

wi = d

(3.13)

So, Equation 3.18 is equivalent to using negative hinge loss as link function in Equation 3.6.
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3.4.4 Connection to AUC Optimization

To further justify using the POP principle for feature selection, we show how it is related to opti-

mizing AUC. AUC (Area Under ROC Curve) is a widely used metric for evaluating binary prediction

problem such as recommender system and link prediction. Optimizing the objective based on POP

optimizes the AUC for link prediction.

AUC(vi) =
1

|Li||Ui|
∑
j∈Li

∑
k∈Ui

I(sijk > 0) (3.14)

where indicator function I(·) returns 1 if sijk > 0 and 0 otherwise .

AUC =
1

|V | ·
∑
i∈V

AUC(vi)

=
1

Z

∑
(i,j,k)∈Ω

I(sijk > 0)

(3.15)

whereZ = |Li||Ui||V | is a normalizing constant. Comparing the objective function in Equation 3.6)with

Equation 3.15, it is obvious to observe the connection with AUC optimization. AUC uses a non-

continuous indicator function I(·) as the loss function, while PPOP and MMPOP use continuous loss

function (logistic loss and hinge loss, respectively) to approximate the non-continuous counterpart.

Features selected by methods following different principles tend to have different properties. From

the analogy between POP and AUC, we know that features selected by POP based methods are optimal

in terms of preserving the network structure. This implies that POP-based feature selection methods can

be particularly useful for link prediction task.
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3.5 Optimization

For Simple POP (SPOP), one only needs to calculate linked score and unlinked score and rank

features by their final scores. Optimization for MMPOP and PPOP is a mixed 0−1 integer programming

problem, which is NP-hard in general. To make optimization tractable, we relax the ”0/1” constraint

in the integer programming problem by replacing wi ∈ {0, 1} with wi ∈ R. Such real-valued weights

can be intuitively interpreted as features’ Importance Score. Then we can rank the features by their

importance scores in w and output the top d features. A challenge for all POP instantiations is that,

there are a large number of potential partial order combinations (O(n|E|)). It would be very inefficient

to iterate through all these O(n|E|) partial order triplets. So we propose to use a bootstrap sampling

based technique, Stochastic (Sub)Gradient Descent, to solve the optimization problem. In addition to

efficiency, sampling based technique is also more robust to noise and outliers.

The objective functions of all three instantiations are convex since they use convex link function f .

Since the link functions in SPOP and PPOP are both differentiable, the optimization problem can be

efficiently solved by Stochastic Gradient Descent (SGD) method. But MMPOP uses hinge loss which

is not differentiable. To solve the optimization problem of MMPOP, we can calculate subgradient and

employ Stochastic Subgradient Descent. Hence, all three instantiations can be solved using a unified

framework, which is presented in Algorithm 2. In each iteration, we sample a triplet (i, j, k), calculate

the (sub)gradient and update w.

Simple POP has the simplest form of gradient.

∂l(j >i k)

∂w
=

∂

∂w
sijk (3.16)
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For probabilistic POP (PPOP), the gradient for one sample is calculated as follows:

∂l(j >i k)

∂w
=

∂

∂w
f(sijk) =

e−sijk

1 + e−sijk
· ∂
∂w

sijk (3.17)

For Max Margin POPFS (MMPOP), we calculate the subgradient and only update the weight vector

when 1− sijk > 0:

∂l(j >i k)

∂w
=


∂
∂wsijk if sijk < 1

0 otherwise
(3.18)

For these three approaches,

∂

∂wp
sijk =



1 if xip = 1 & xjp = 1 & xkp = 0

−1 if xip = 1 & xjp = 0 & xkp = 1

0 otherwise

(3.19)

where xip is the p-th feature in xi. From the gradient formula of three approaches, one can observe that

the gradient on the p-th feature in SPOP is not influenced by other features. In PPOP and MMPOP, the

gradient is impacted by sijk: when sijk is large, the gradient is a small value (e−sijk/(1 + e−sijk)) in

PPOP or 0 in MMPOP. Such updating scheme addresses the redundancy issue in feature selection.

The optimization error can be bounded as shown in the following theorem.



46

Algorithm 2 Stochastic (sub)gradient descent algorithm for POP

w← [0, 0, . . . , 0]
for (t in 1..T ) do

step size ηt← 1
λt

update wt+1 ← wt − ηt ∗∆t, using corresponding formula (Equation 3.16), (Equation 3.17) or
(Equation 3.18) for ∆t

end for
Sort features w.r.t. w[i] and output the top d features

Theorem 3.5.1 Assume that the data is bounded such that maxi xTi diag(w)xi < R and R ≥ 1. In

algorithm 2 at iteration T , with λ ≤ 1
4 , and batch-size B = 1, w̄ = 1

T

∑T
t=1 wT be the average w by

iteration T . Then, with probability of at least 1− δ,

f(w̄)−minf(w∗) ≤ 21R2ln(T/δ)

λT
. (3.20)

Proof Sketch: Algorithm 2 is an instance of PEGASOS without a projection step on one-class data.

Corollary 2 in (74) proves the same bound for traditional SVM input ( without a projection step).

In each iteration, it takes O(m) time to update w, where m is the average number of non-zero

features in each data point. This effectively exploits the fact that, in many datasets, m is often small

though D can be large. If we sample T triplets of (i, j, k), the overall time complexity is O(mT ). Since

our goal is feature selection, only the rank of weights wi is needed. It means w does not need to be too

precise (i.e., δ does not need to be very small). By employing SGD algorithm in Algorithm 2, SPOP,

PPOP and MMPOP can be efficiently solved for large-scale networks. In addition, SGD can be updated

in an online fashion. This is very useful since new nodes continuously join real-world networks.
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TABLE V: Statistics of three datasets

Statistics Citeseer Cora Wiki
# of instances 3312 2708 3363
# of links 4598 5429 33219
# of features 3703 1433 4973
avg. # of non-zero features per instance 31.75 18.17 630.57
# of classes 6 7 19

3.6 Experiment

In this section, we conduct systematic experiments on three publicly available datasets. We compare

our POP methods with four baselines on both efficiency and effectiveness. To illustrate how POP meth-

ods differ from existing mechanisms, we evaluate the selected features on both clustering task and link

prediction task. Experimental results show that POP can select well-rounded features which achieve top

performance in both tasks.

3.6.1 Datasets

We use three publicly available network datasets: Citeseer dataset, Cora Dataset and Wikipedia

dataset 1 (73). The statistics of three datasets are summarized in Table V.

3.6.2 Baselines

We compared our approach to the following baseline methods.

1For detailed information about the datasets, one can refer to http://linqs.cs.umd.edu/projects/
/projects/lbc/index.html

http://linqs.cs.umd.edu/projects//projects/lbc/index.html
http://linqs.cs.umd.edu/projects//projects/lbc/index.html
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• All Features.

• Link Only: Spectral clustering using network links.

• Laplacian Score (LS): Laplacian score (34) selects the features which can best preserve the local

manifold structure.

• UDFS: Unsupervised Discriminative Feature Selection (106) is a state-of-the-art pseudo-label

based approach for i.i.d data. Unlike Laplacian score, UDFS selects features jointly rather than

individually.

• LUFS: Linked Unsupervised Feature Selection is a state-of-the-art unsupervised feature selection

method (84) designed for linked social media data, which combines the idea of social dimension

(86) with UDFS.

3.6.3 Efficiency

In this section, we investigate the efficiency of POP Feature Selection (POPFS) and the baseline

approaches. Baseline methods UDFS and LUFS rely on an iterative method to converge to a local

optima. In each iteration, it heavily involves matrix computation and therefore is very inefficient even

for a medium-sized (1000 ∼ 10000) feature set. POPFS has a convex formulation and can be optimized

by Stochastic Gradient Decent (SGD). In practice, sampling a small portion of partial order triplets is

usually enough. In our experiment, we find sampling |E| ∼ 2|E| triplets (|E| is the number of edges)

is sufficient for good performance.

Table VI reports the running time of different feature selection algorithms. POPFS requires much

less running time than baseline methods (especially UDFS and LUFS). For example, on Citeseer dataset,
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TABLE VI: Running time (seconds) of different feature selection algorithms

Dataset LS UDFS LUFS SPOP PPOP MMPOP
Citeseer 10 1234 1420 1 2 2
Cora 5 161 113 1 1 1
Wiki 23 2536 2788 19 22 19

UDFS takes nearly 20 minutes to converge, while POPFS only needs 1 or 2 seconds. The running time

of LS is relatively close to POPFS but it only evaluates features individually. Real world social networks

(e.g. Facebook and Linkedin) or information networks (e.g., DBLP and biological network) have ever

increasing sizes in terms of both number of instances and number of features. Our SGD-based approach

can significantly reduce computation time without trading off too much effectiveness.

3.6.4 Results on Clustering

In this section, we evaluate the quality of selected features by their clustering performance. Follow-

ing the typical setting (106) (84) of evaluation for unsupervised feature selection, we use Accuracy and

Normalized Mutual Information (NMI) to evaluate the result of clustering. Accuracy is measured as

follows.

Accuracy =
1

n

n∑
i=1

I(ci = map(pi)) (3.21)

where pi is the clustering result of data point i and ci is its ground truth label. map(·) is a permutation

mapping function that maps pi to a class label using Kuhn-Munkres Algorithm.
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Normalized Mutual Information (NMI) is calculated as follows. Let C be the set of clusters from

the ground truth and C ′ is obtained from a clustering algorithm.

NMI(C,C ′) =
MI(C,C ′)

max(H(C), H(C ′))
(3.22)

where H(C) and H(C ′) are the entropy of C and C ′ and MI(C,C ′) is the mutual information. Higher

value of NMI indicates better quality of clustering.

We use the default parameter setting suggested in the original papers for the baseline methods. For

the number of pseudo classes in UDFS and LUFS, we use the ground-truth number of classes. As in

previous work (106) (84), we use K-means1 for evaluation. Since Kmeans is affected by the initial

seeds, we repeat the experiment for 20 times and report the average performance. We vary the number

of features from 200 to 800, with an increment of 200. The KMeans clustering performance for three

datasets is shown in Figure 4.

Among three POP instantiations, MMPOP and PPOP have better clustering performance than SPOP.

This demonstrates the importance of evaluating features in a joint manner. SPOP does not take into

consideration correlation between features and the redundancy in selected features makes the clustering

result suboptimal. With only 200 features, MMPOP and PPOP can obtain much better accuracy and

NMI than using all the features. For instance, compared with using all features, MMPOP with 200

features improve the accuracy of KMeans by 10.6% on Citeseer dataset. Besides the improved accuracy

and NMI, using selected features rather than all features would also result in speed-up of clustering time.

1We use the code at http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html

http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html
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When comparing POP with the baseline methods, we observe that POP based methods (especially

PPOP and MMPOP) consistently perform better than baseline methods in terms of both accuracy and

NMI. This indicates that POP is an effective criterion for selecting high-quality features. Also, POP

tends to obtain good performance with a small number of features (i.e., 200 to 400) while baseline

methods normally need more features (i.e., 600 to 800).

Another thing worth noting is the poor performance of clustering with only link structure. Since

links in networks are often sparse and noisy, structural information alone is not sufficient to obtain

good clusters. But using link structure as guidance to select features achieves much better performance,

which illustrates the strength of the POP feature selection. Baseline LUFS exploits link information via

extracting social dimensions (86) from links. But social dimensions extracted from noisy and sparse

links can be unreliable and this may further mislead the feature selection process.

3.6.5 Partial Order Preserving Property

Our approach (POP) has an objective of preserving partial order as described in previous sections. In

this section, we illustrate this partial order preserving effect through kNN (we use k = 1) link prediction.

For each node v, we retrieve the top 1 node u of highest similarity to v. We test if this retrieved node u

is an actual neighbor of node v on the network. The precision@1 is shown in Figure 5.

Since this 1NN retrieval uses content only, the prediction performances of all methods are very

limited. It also indicates that many similar nodes are not connected in these three datasets. Under such

circumstances, POP approaches still outperform other feature selection baselines. This means POP is

robust to incomplete link structure.



52

200 300 400 500 600 700 800
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of selected features

A
cc

ur
ac

y

 

 

SPOP

PPOP

MMPOP

LS

UDFS

LUFS

All Features

Link Only

(a) Accuracy on Citeseer

200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of selected features

N
M

I

 

 

SPOP

PPOP

MMPOP

LS

UDFS

LUFS

All Features

Link Only

(b) NMI on Citeseer

200 300 400 500 600 700 800
0.34

0.36

0.38

0.4

0.42

0.44

0.46

Number of selected features

A
cc

ur
ac

y

 

 

SPOP

PPOP

MMPOP

LS

UDFS

LUFS

All Features

Link Only

(c) Accuracy on Cora

200 300 400 500 600 700 800
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of selected features

N
M

I

 

 

SPOP

PPOP

MMPOP

LS

UDFS

LUFS

All Features

Link Only

(d) NMI on Cora

200 300 400 500 600 700 800
0.2

0.25

0.3

0.35

0.4

0.45

Number of selected features

A
cc

ur
ac

y

 

 

SPOP

PPOP

MMPOP

LS

UDFS

LUFS

All Features

Link Only

(e) Accuracy on Wiki

200 300 400 500 600 700 800

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of selected features

N
M

I

 

 

SPOP

PPOP

MMPOP

LS

UDFS

LUFS

All Features

Link Only

(f) NMI on Wiki

Figure 4: KMeans Results on Three Datasets
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POP approaches outperform the baseline methods (LS, UDFS, LUFS) significantly. PPOP and MM-

POP usually improve the performance of three other baselines by more than 50% on each dataset. This

illustrates that POP’s strength in respecting the network structure due to its connection to AUC opti-

mization. The three instantiations of POP perform similarly on Citeseer and Cora datasets. But on Wiki

dataset, the performance of SPOP degrades significantly. This is because SPOP ignores the correlation

between features and only analyzes each feature individually. This might not result in serious problem

when the number of non-zero features in each instance is low (e.g., Citeseer and Cora). However, it

would lead to degenerated performance when the number of non-zero features per instance is large,

which is the case in Wiki dataset.

LUFS has the ability to incorporate network structure through social dimension. But it utilizes the

network information at a community level and fails to exploit the finer grained information of networks.

To further understand the difference between different methods, we present the average document

frequency (df) of features selected by each approach. As shown in Table VII, UDFS tends to select

features with high df. This might be fine for clustering, but it loses too much microscopic information.

In comparison, PPOP and MMPOP can make a more balanced selection without favoring features with

high df in particular. In summary, the features selected by POP are not only better for macroscopic

analysis such as clustering, but also good at microscopic analysis because POP respects the local partial

order.
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TABLE VII: Average document frequency (df) of selected features (top 400)

Dataset All features LS UDFS LUFS SPOP PPOP MMPOP
Citeseer 28.40 10.23 102.39 76.11 134.30 84.48 70.81
Cora 34.34 52.62 71.61 56.59 80.53 58.42 55.67
Wiki 426.42 598.71 946.91 678.41 1084.40 274.31 262.20
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Figure 5: 1NN Results on Three Datasets



CHAPTER 4

UNSUPERVISED FEATURE SELECTION ON NETWORKS: A GENERATIVE

VIEW

(This chapter was previously published as “Unsupervised Feature Selection on Networks: A Gener-

ative View”, in Proceedings of the 30th international AAAI conference on Artificial Intelligence (AAAI

16), 2016, c©AAAI.)

4.1 Introduction

Network data have become increasingly popular in the past decade, because of the proliferation of

various social and information networks. Social networks such as Facebook and Twitter have millions

of users all across the world. Different forms of information networks, e.g., co-author networks, cita-

tion networks and protein interaction networks, also attract considerable research attention (61) (2). In

addition to the link structure, these network data are usually accompanied with content information on

the nodes. For example, one can extract thousands of profiling features for users in social networks or

ontology features for genes in protein interaction networks. However, redundant and irrelevant features

might be included in the high-dimensional feature space. Feature selection (34) (63) is a useful tech-

nique since it can help alleviate the curse of dimensionality, speed up the learning process and provide

better interpretability. However, not much research effort exists to explore feature selection on networks,

especially in unsupervised scenario.

55
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Depending on the availability of class labels, feature selection algorithms can be categorized into

supervised methods and unsupervised methods. In the supervised setting, class labels provide a clear

guidance to the feature selection process. In the unsupervised setting, feature selection becomes more

challenging due to the lack of class labels. In this chapter, we focus on unsupervised feature selec-

tion as class labels are usually expensive to obtain. State-of-the-art approaches introduce the notion of

pseudo labels (106) (48) (68) to guide the feature selection process. The basic idea is to imitate super-

vised methods by generating pseudo-labels via certain clustering methods (e.g., spectral clustering and

non-negative matrix factorization), and performing sparse regression towards these cluster labels. How-

ever, the generated pseudo labels are usually inaccurate and could further mislead the feature selection

process.

Moreover, traditional feature selection approaches assume that data instances are independent and

identically distributed (i.i.d). In the network data, however, instances are implicitly or explicitly re-

lated with certain correlations and dependencies. For example, in research collaboration networks,

researchers who collaborate with each other (i.e., connections in the network) tend to share more similar

research topics (i.e., close distances in the feature space) than researchers without such collaboration.

Most existing feature selection approaches fail to exploit the rich information contained in the links.

Motivated by the importance of feature selection on networks and the deficiency of existing ap-

proaches, we propose a novel unsupervised feature selection method from a generative point of view.

Our aim is to effectively incorporate information from both link structures and node attributes in the

network data. Rather than using potentially inaccurate pseudo labels to guide the feature selection pro-

cess, we assume that link structures and node attributes are generated by an oracle set of features. We
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propose a probabilistic model for this generative process. By performing inference using the linkage

and attribute information, we can recover a succinct set of high-quality features. In this manner, we

utilize information directly from the network data without generating intermediate pseudo labels. We

refer to the proposed approach as Generative Feature Selection (GFS). To our knowledge, no existing

method has adopted a generative view for feature selection.

As the state-of-the-art approaches on unsupervised feature selection are mostly pseudo label based

methods, we illustrate the essential differences of these approaches and our approach in Figure 6. The

class labels can be viewed as a perfect summarization of the data and using them to guide feature

selection can usually achieve good performance (6a). Pseudo label based approaches attempt to first

summarize the information from the data via clustering, and the pseudo labels serve as a proxy between

the original data and the selected features (6b). However, such inaccurate summarization loses much

information of the data. Our approach avoids the intermediate step and directly builds connections

between the original data and the selected features (i.e., oracle features). As a result, more information

from the data could be utilized to guide the feature selection process (6c).

(a) Supervised feature selection (b) Pseudo-label approach (c) Generative Feature Selection

Figure 6: Illustration of different feature selection approaches
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4.2 Related Work

4.2.1 Feature Selection for Traditional Data

Feature selection aims to select the most relevant ones from a large number of features and traditional

feature selection methods generally fall into three categories: filter models (109) (64), wrapper models

(23) and embedded models (17) (87).

Our work focuses on unsupervised scenario as class labels are usually expensive to obtain. One pop-

ular guiding principle for unsupervised feature selection is to preserve the local manifold structure or

similarity (34) (109) (110). Recently, pseudo label based frameworks (106) (48) (68) have gained much

popularity. Unsupervised Discriminative Feature Selection (UDFS) (106) introduces pseudo labels to

better capture the discriminative information and the sparsity-inducing L2,1 norm is used to select fea-

tures in an iterative manner. NDFS (48) performs non-negative spectral analysis and feature selection

simultaneously. RUFS (68) and RSFS (76) utilizes robust learning framework for generating pseudo

labels. Essentially, different pseudo label based methods all use a L2,1-regularized regression based

framework with different clustering algorithms and constraints on pseudo labels. Since the clustering

label is usually far from the ground-truth, it could result in degenerated quality of selected features.

4.2.2 Feature Selection for Network Data

In recent years, efforts have been made towards feature selection on network data. (30) (83) address

supervised feature selection on network data via adding network-based regularization term to enforce

similarity between neighbors. In unsupervised scenario, POPFS (99) uses network links to guide fea-

ture selection efficiently but it fails to use content information. Linked Unsupervised Feature Selection

(LUFS) (84) is the only unsupervised feature selection method that utilizes both content and link infor-
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mation. LUFS exploits network information through incorporating social dimension based regulariza-

tion (86) into the UDFS framework (106). It enforces the nodes within the same social dimension to

have similar pseudo labels. But the social dimensions generated from links (e.g., by modularity (60)

or spectral clustering (62)) and pseudo labels generated from attributes are usually far from accurate,

which could mislead the feature selection process.

4.3 Problem Formulation

4.3.1 Preliminaries

In this section, we present several concepts as preliminaries of our unsupervised feature selection

method. In the rest of the chapter, we use features and attributes interchangeably. Our goal is to select a

set of important features on the network with node attributes, which we refer to as attributed network.

Definition 5 (Attributed Network) An attributed network G = (V,E,X) consists of V , the set of

nodes, E ⊆ V × V , the set of links, and X = [x1,x2, . . . ,xn] where n = |V | and xi ∈ RD is the

feature/attribute vector of the node vi.

In the supervised setting, one can select discriminative features that provide good separability of

different classes. For unsupervised feature selection, there is no such clear guidance due to the lack of

labels. Instead of relying on inaccurate pseudo labels, we aim to directly exploit the information from

the data. From a generative point of view, we assume that link structures and node features are generated

by an oracle set of features. Our goal is to recover this set of features through inference on the network.

Specifically, we assume that there are d � D important features among all features which are referred

to as oracle features. All the node content and the network links are generated by these d oracle features.
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We use s = {0, 1}D as the indicator vector for oracle features, where sp equals 1 if the p-th feature is an

oracle feature and 0 otherwise. Let us denote the diagonal matrix with diagonal elements s as diag(s).

Therefore, the oracle feature vector of the node vi is diag(s)xi.

4.3.2 Modeling Link Generation

Most unsupervised feature selection methods cannot exploit linkage information. In our generative

framework, we can incorporate linkage information seamlessly. From a generative point of view, we

assume that the links are generated from a set of oracle features. More specifically, we assume that the

probability of a link is determined by the oracle affinity between two nodes defined as follows.

Definition 6 (Oracle Affinity) Oracle affinity is determined by the dot product of oracle features of two

nodes.

aij = xTi diag(s)xj (4.1)

We assume that the oracle affinity is determined by oracle features rather than all the original features

to avoid redundancy and irrelevance in the high-dimensional input space. Consider a collection of com-

puter science papers on different topics (e.g., machine learning, operating system, database) and citation

links between them. Indiscriminative terms, such as propose, related and conclusion, contain little

information in determining the essential similarity between two papers. Since two linked papers are

more likely to share similar topics than two random papers, informative terms such as LDA, classifica-

tion and database would be useful in generating the links. Thus, if a feature is highly indicative of the

existence of links, it is likely to be an informative and discriminative feature. By recovering the oracle
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features via exploiting network links, we are able to select a set of discriminative features. To achieve

this, we introduce the following generative process:

pij =Fg(aij)

Eij ∼Bernoulli(pij)

(4.2)

where Fg(·) is a function that transforms the oracle affinity aij to the linkage probability pij . Fg(·)

should be non-decreasing so that a larger affinity would lead to a larger probability of connection. For

example, it could be the sigmoid function, i.e., Fg(aij) = 1/(1 + e−aij ). We further introduce a bias

term b ∈ R, so Fg(aij) = 1/(1 + e−(aij+b)).

Equation 4.2 describes the generative process from oracle features to the links in networks. By

assuming links are i.i.d, the probability of the whole network given the oracle features is as follows:

P (G|s) =
∏

(i,j)∈E

pij ·
∏

(i,j)/∈E

(1− pij) (4.3)
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The negative log-likelihood for generating the network links using Fg(aij) = 1

1+e−aij−b is the following:

LG =− log(P (G|s))

=−
∑

(i,j)∈E

log
1

1 + exp (−xTi diag(s)xj − b)

−
∑

(i,j)/∈E

log
exp (−xTi diag(s)xj − b)

1 + exp (−xTi diag(s)xj − b)

=
∑

(i,j)∈V×V

log(1 + exp (−xTi diag(s)xj − b))

+
∑

(i,j)/∈E

(xTi diag(s)xj + b)

(4.4)

In real-world applications, network data can be very sparse, i.e., linked node pairs are far less than

non-linked node pairs. Due to such imbalanced distribution, LG would be dominated by the loss on

non-linked node pairs. To address this issue, we under-sample the non-linked node pairs to make their

size comparable to the linked node pairs. With down-sampling, LG is reformulated as follows:

LG =−
∑

(i,j)∈E

log
1

1 + exp (−xTi diag(s)xj − b)

−
∑

(i,j)∈SN

log
exp (−xTi diag(s)xj − b)

1 + exp (−xTi diag(s)xj − b)

=
∑

(i,j)∈E∪SN

log(1 + exp (−xTi diag(s)xj − b))

+
∑

(i,j)∈SN

(xTi diag(s)xj + b)

(4.5)

where SN denotes the set of sampled non-linked node pairs.
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It is worth noting that our link generation approach differs from graph regularization (30) (83) in

two important aspects: first, graph regularization usually enforces similarity on linked pairs but fails to

utilize information from unlinked pairs; second, graph regularization is usually used on cluster mem-

bership/latent factors (as in existing pseudo-label methods) rather than directly on the oracle features.

And actually, applying graph regularization on diag(s)xi directly will favor those features that appear

indiscriminatively since it fails to penalize features that are frequently shared by unlinked pairs.

4.3.3 Modeling Content Generation

In addition to the linkage information, it is critical to incorporate information from the node content.

We assume that each node generates its attributes from the set of oracle features with a mapping function.

That is to say, the oracle features can be regarded as a succinct summary of all the features. This intuition

can be formalized as follows:

µi =Fc(diag(s)xi)

xi ∼N (µi, σ
2ID)

(4.6)

whereN is the Gaussian distribution and Fc(·) is the function that generates xi from the oracle features

diag(s)xi. There could be different choices for the generation function Fc(·). For simplicity, we use a

linear mapping as the generating function.

Fc(diag(s)xi) = WT diag(s)xi (4.7)
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where W ∈ RD×D is a projection matrix that represents all the features using oracle features. Only

d rows of W are non-zero which correspond to the non-zero elements of s. If all the original features

could be approximated by the oracle features through Fc(·), the oracle features arguably contain the

essential information of the node content.

It is easy to verify that, given fixed W, maximizing the log-likelihood of content generation under

Equation 4.6 is equivalent to minimizing the sum of square error:

||XT diag(s)W −XT ||2F (4.8)

where || · ||F denotes the Frobenius norm of a matrix. By finding the oracle features that minimize

Equation 4.8, we select the most important features that preserve the information of node attributes in

the network data. We also need to impose a norm on W to control its complexity and avoid overfitting.

We choose Frobenius norm for the simplicity of optimization.

LC = ||XT diag(s)W −XT ||2F + β||W||2F (4.9)

Note that other distributions could also be used for modeling feature generation. For example, one can

consider Bernoulli distribution if the features are binary.

µi =
1

1 + exp(−Fc(diag(s)xi))

xi ∼Bernoulli(µi)

(4.10)
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where µi determines the probability of occurrence of xi. It is easy to see that both Equation 4.6 and

Equation 4.10 are special cases of Generalized Linear Model (GLM) with different link functions.

Equation 4.6 corresponds to linear regression and Equation 4.10 corresponds to logistic regression.

4.3.4 Combining Things Together

We have discussed how to generate attributes and links from oracle features in previous sections.

Now we put things together and aim to select a set of high-quality features that are optimal considering

both content and link generation. Therefore, we aim to minimize the negative log-likelihood on both

link and content. By assuming the conditional independence of G and C given b, s and W, the total

negative log-likelihood is as follows:

min
s,b,W

− logP (G,C|s, b,W) = LG + LC

s.t. sp ∈ {0, 1}, ∀p = 1, . . . , D

D∑
p=1

sp = d

(4.11)

4.4 Optimization

In this section, we develop a method for performing inference with features and links. The opti-

mization problem in Equation 4.11 is a ‘0/1’ integer programming problem. To make the optimization
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tractable, we relax the 0/1 constraint on s and only require s to be a real-valued vector in the range of

[0, 1]. Moreover, we can write the summation constraint
∑D

p=1 sp = d in the form of Lagrangian:

min
s,b,W

L = LG + LC + λ||s||1

s.t. 0 ≤ sp ≤ 1, ∀p = 1, . . . , D

(4.12)

where the sparsity-inducing L1 norm ||s||1 is equal to
∑D

p=1 sp, because we enforce s to be non-negative

(i.e., 0 ≤ sp ≤ 1). The value of sp can be interpreted as the p-th feature’s importance score in generating

the content and linkage information. Important features would have scores close to 1 and scores of less

useful features tend to shrink towards 0. After obtaining the relaxed solution on s, we can rank all the

features by their importance scores and select the top d features as the oracle features.

For the optimization problem in Equation 4.12, we need to optimize jointly on the selection vector

s, bias term b and the projection matrix W. Since Equation 4.12 is not jointly convex on s, b and W,

we adopt an alternating optimization framework to solve it.

Step 1. Fix W and optimize Equation 4.12 over s and b.

With fixed W, Equation 4.12 is a convex optimization problem on s and b. For real-valued s, both

LG and LC is differentiable. For the loss incurred on link structures, the gradient of LG with respect to

s can be calculated as follows:

∂LG
∂sp

=−
∑

(i,j)∈E∪SN

xTipxjp
exp (−xTi diag(s)xj − b)

1 + exp (−xTi diag(s)xj − b)

+
∑

(i,j)∈SN

xTipxjp

(4.13)
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The gradient of LC with respect to s is the following:

∂LC
∂sp

= [X(XT diag(s)W −XT )WT ]pp (4.14)

where [·]pp denotes the p-th diagonal element of matrix [·].

The L1 norm in general is non-smooth at zero. However, since in our case s is guaranteed to be

non-negative, the L1 regularization on non-negative s is differentiable with gradient 1. So the gradient

of the whole objective function is

∂L
∂sp

=
∂LG
∂sp

+
∂LC
∂sp

+ λ (4.15)

Since we also require s to be in the range [0, 1], we perform Projected Gradient Descent (PGD) (13) for

this constrained optimization problem. We project s back to [0, 1] after each gradient updating step.

Proj[0,1](sp) = min(max(0, sp), 1),∀p = 1, . . . , D (4.16)

Moreover, the gradient with respect to the bias term b is

∂LG
∂b

=−
∑

(i,j)∈E∪SN

exp(−xTi diag(s)xj − b)
1 + exp(−xTi diag(s)xj − b)

+ |SN | (4.17)

where |SN | denotes the total number of sampled non-linked node pairs.

Step 2. Fix s and b, optimize Equation 4.12 over W.
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With fixed s, the optimization with respect to W is convex and we can obtain the closed form

solution for W as follows:

W = (diag(s)XXT diag(s) + βID)−1 diag(s)XXT (4.18)

where ID is an D ×D identity matrix. Algorithm 3 shows the optimization method based on projected

gradient descent. We alternatively perform step 1 and step 2 in an iterative manner until it converges or

reaches user-specified maximum number of iterations.

The objective function in Equation 4.12 monotonically decreases in each iteration and it has a lower

bound. Hence, Algorithm 3 can converge.

Algorithm 3 Alternating Optimization with Projected Gradient Descent

Initialize: s0 = 0D, b0 = 0, W0 = 0D×D, t = 0.
repeat

t = t+ 1
Update st and bt through performing projected gradient descent by Equation 4.15 and Equa-

tion 4.17 with W(t−1)

Find the optimal Wt by Equation 4.18 with st.
until converged or t = maxIterations
Sort features w.r.t. st and output the top d features.
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TABLE VIII: Statistics of three datasets

Statistics Citeseer Cora Wiki
# of instances 3312 2708 3363
# of links 4598 5429 33219
# of features 3703 1433 4973
# of classes 6 7 19

4.5 Experiment

In this section, we evaluate the feature quality by performing clustering (community detection) on

the features. Experimental results show that GFS significantly outperforms the state-of-the-art methods

in terms of feature quality.

4.5.1 Experiment Setup

We use three publicly available network datasets with node attributes: Citeseer dataset, Cora Dataset

and Wikipedia dataset 1 (73). One can refer to the link in the footnote for more details on the datasets.

The statistics of three datasets are summarized in Table VIII.

We compared our approach to the following baseline methods: (a) All Features; (b) Link Only

(Spectral clustering using network links); (c) LS (Laplacian Score) (34); (d) UDFS (content only) (106)

(e) LUFS (which incorporates both content and link information) (84); (f) RSFS (content only) (76).

1http://linqs.cs.umd.edu/projects//projects/lbc/index.html

http://linqs.cs.umd.edu/projects//projects/lbc/index.html
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Figure 7: Clustering results on three datasets

Following the typical setting (106) (84) of evaluation for unsupervised feature selection, we use

Accuracy and Normalized Mutual Information (NMI) to evaluate the result of clustering. Accuracy is

measured as follows.

Accuracy =
1

n

n∑
i=1

I(ci = map(pi)) (4.19)

where pi is the clustering result of data point i and ci is its ground truth label. map(·) is a permutation

mapping function that maps pi to a class label using Kuhn-Munkres Algorithm.
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NMI is calculated as follows. Let C be the set of clusters from the ground truth and C ′ is obtained

from a clustering algorithm.

NMI(C,C ′) =
MI(C,C ′)

max(H(C), H(C ′))
(4.20)

where H(C) and H(C ′) are the entropy of C and C ′ and MI(C,C ′) is the mutual information. Higher

value of NMI indicates better quality of clustering.

Since it is difficult to determine the optimal values of parameters in unsupervised setting, we use the

parameter setting for the baseline methods as suggested in the sensitivity analysis section of the original

papers. For the number of pseudo classes in UDFS, LUFS and RSFS, we use the ground-truth number

of classes. For the proposed method GFS, we found it is not sensitive to the parameters in a reasonable

range. So we fix the parameters of GFS for all datasets with β = 1 and λ = 1.

As in previous work (106) (84), we use K-means1 for evaluation. Since K-means is affected by the

initial seeds, we repeat the experiment for 20 times and report the average performance. We vary the

number of features in the range {200, 400, 600}. The K-means clustering performance for three datasets

is shown in Figure 7.

4.5.2 Results

We can observe from Figure 7 that feature selection is an effective way to enhance the cluster-

ing/community detection performance. With much less features, GFS can obtain significantly better

accuracy and NMI than using all the features. For instance, compared with using all features, GFS

1We use the code at http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html

http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html
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with 200 features improves the accuracy of clustering by 21.0%, 6.0% and 10.4% on Citeseer, Cora

and Wikipedia, respectively. This illustrates the importance of feature selection on networks, since the

original feature space can have many low quality/noisy features. It is also worth noting that clustering

using only links does not perform very well. This is because network links are often sparse and noisy,

and structural information alone is not sufficient to obtain good clusters. But using link structures as

guidance in addition to the node content to select features can achieve much better performance, which

illustrates the strength of our proposed GFS framework.

When comparing GFS with other unsupervised feature selection approaches, we observe that GFS

performs consistently better than baseline methods on different datasets with different numbers of se-

lected features. This indicates that the proposed generative view is an effective framework for selecting

high-quality features on network data. LS, UDFS and RSFS are unable to exploit network structure and

do not perform as well as GFS. Compared with the most competitive feature selection baseline RSFS,

GFS outperforms RSFS by 44.5%, 9.2% and 35.2% with 200 features on three datasets, respectively.

Baseline LUFS also attempts to exploit link information via extracting social dimensions (86) from

links. But social dimensions extracted from noisy and sparse links can be unreliable and this may fur-

ther mislead the feature selection process. For example, in Citeseer dataset, the network is sparse and

each node only has 1.39 links on average. So the derived social dimensions make LUFS even worse than

UDFS and RSFS which do not utilize linkage information. In contrast, GFS can benefit from exploiting

the links even when the network structure is sparse, as shown in the case of Citeseer dataset.

In summary, noisy features can be detrimental to the performance of clustering/community detection

and appropriately designed unsupervised feature selection method, such as GFS, can alleviate this issue.



CHAPTER 5

LEARNING REPRESENTATION CONSENSUS WITH COUPLED FEATURE

SELECTION FOR CROSS VIEW LINK PREDICTION

(This chapter was previously published as “Cross View Link Prediction by Learning Noise-resilient

Representation Consensus” in Proceedings of the 26th International World Wide Web Conference (WWW

17), with the permission to reuse from 2017 International World Wide Web Conference Committee)

5.1 Introduction

The optimality of feature selection can depend upon the specific application. For example, features

that are optimal for community detection/clustering might not be optimal for link prediction. In this

chapter, we use the cross view link prediction problem to illustrate how to formulate the feature selection

problem based on the application objective. Specifically, representation learning is performed jointly

with feature selection and they could be mutually enhanced for link prediction task.

In the past decade, there have been an increasing number of information networks from a wide range

of domains. Study on computer networks, biological and social networks has attracted great attention

from the research community (33) (10) (96). Link prediction (1) (2), which aims at recommending

potential links between network nodes, is an important step to understand and study the characteristics

of these networks. For instance, in bioinformatics, by predicting protein interaction links, one does

not need to conduct expensive experiments on all possible pairs and can spend the resource wisely on

the most likely interaction. For social media websites, such as Facebook and Twitter, it is fundamen-

73
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Figure 8: An example of networks with partially observable links and attributes

tal to grow the user base and enhance user engagement with link prediction techniques. For security

analysts/agencies, predicting (currently unobserved) links can reveal hidden but important relationship

among terrorists and provides additional insights for understanding organizational structures of terrorist-

attack activities.

Many methods have been proposed for the task of link prediction (49) (1) (41) (2). However, in var-

ious social and information networks, it is common that certain nodes do not have any link information

revealed (94) and make these methods not applicable:

• In real-world social networks (e.g., Facebook and Twitter), link prediction for new users usually

has the challenge of cold start problem, since these users do not have any connection. Besides,

some users may choose a strict privacy setting that restricts the visibility of their connections,
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personal information or posts12. Recommending links in such a partially observable setting could

enhance user experience.

• In bioinformatics information networks, for example, studying protein interaction could help re-

searchers better understand many biological processes. However, it is infeasible to collect all the

experimental data for all the possible pairs of protein.

• In terrorist-attack networks, nodes represent terrorist activities and links represent terrorist attacks

in which the same terrorist group is involved. Detecting hidden links in these networks is useful

for understanding the underlying structure of terrorist-attack activities. However, the complete

linkages between attacks are highly difficult to resolve (51).

Nonetheless, nodes in many social/information networks are often equipped with features/attributes,

such as user attributes in social networks, paper content in co-authorship networks and gene properties

in biological networks. These node attributes can help when the link information is not observable. For

example, for a new user who joins a social network with few connections (i.e., links), we can utilize

his/her user profile (i.e., node attributes) filled out in the registration process to suggest potential links

to such a new user, based on the profile similarity.

However, due to the difficulty in data collection, the node attributes of real-world networks also

tend to be partially observable in a variety of scenarios and this poses additional challenges for link

prediction.

1https://www.facebook.com/help/325807937506242/

2https://help.linkedin.com/app/answers/detail/a_id/52

https://www.facebook.com/help/325807937506242/
https://help.linkedin.com/app/answers/detail/a_id/52
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• In online social networks, some users might not fill up profile information when registering or

have not yet started to write posts. Besides, a user might choose a privacy level with which no

one or only friends could view his/her posts and profile information.

• For information networks in domain of bioinformatics, it can be costly to obtain features for

certain genes or proteins.

• In terrorist network, the difficulty of collecting attributes/profiles for different terrorists varies.

For example, the information of terrorists with higher ranks is often protected better than that of

an ordinary terrorist. Also, it is usually difficult to obtain all the necessary attributes for a newly

joined terrorist.

Hence, for real-world networks, assuming partially observable networks is a more realistic setting,

in which only a certain fraction of nodes have both connections and node attributes, whereas the other

nodes have either links or attributes unobservable. Consider the example in Figure 8. The network has

5 nodes with both link and attribute information and other nodes are partially observable. While the

link information of node v6 is missing, we could recommend potential friends from the candidate pool

{v2, v3, v5, v9, v10, v11} based on their attribute similarity. However, it would be more challenging to

recommend from the candidates {v1, v4, v7, v8} which only have link information. We refer to such

problem as Cross View Link Prediction (CVLP), in which we recommend nodes with only attributes

to nodes with only links (or vice versa).

The CVLP task can be even more challenging in many real-world social/information networks,

as node attributes are usually characterized by high dimensionality and contain certain amount of

noisy/irrelevant attributes. For example, in Facebook network, one could extract millions of (sparse)
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features for user profiling, such as the groups a user has joined, the web pages he has liked, the content

of posts, and the user’s demographic features. Such high-dimensional features pose additional chal-

lenges to link prediction task. These features have different importances in predicting the links and

some features might even have negative effect on the prediction. So it is critical to select only the

relevant features for link prediction.

In this chapter, we study the novel problem of CVLP, and propose an effective approach, Noise-

resilient Representation Consensus Learning (NRCL), to address these challenges of cross view link

prediction. Since nodes with only links and nodes with only attributes are not directly comparable

in their original form, we propose to learn a common subspace in which nodes with incomplete in-

formation become comparable to each other. We utilize link-based representations and content-based

representations of fully observable nodes to form a co-regularization consensus. Experimental results

on real-world datasets demonstrate that NRCL outperforms baseline methods significantly. The contri-

bution of the chapter can be summarized as follows:

• To our best knowledge, we are the first to formulate and investigate the problem of cross-view

link prediction on networks with partially observable links and node attributes.

• We propose to learn representation consensus so that nodes with either link information or node

attributes could become comparable in the latent space. Two instantiations of the proposed frame-

work, based on log loss and Huber loss, are developed and compared, with the latter being more

robust to noisy link structure.
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• Considering that many node attributes in real-world networks tend to be noisy/irrelevant, we

perform joint feature selection in our framework to alleviate the issue of noisy attributes. To our

knowledge, no prior work on node representation learning selects features jointly.

• We conduct experiments on four real-world networks and show the effectiveness of the proposed

method on the task of cross-view link prediction.

5.2 Related Work

The link prediction problem has been studied extensively by researchers from the machine learning

and data mining community (1) (107) (103). Various scoring methods have been proposed based on

the topology of graphs: 1) Common Neighbor based methods: Adamic/Adar (1) assigns weight to each

common neighbor based on the degree of the neighbors; 2) Path based methods such as Katz (41) and

Local Path and Random Walk with Restart (54). Katz (41) is a path based method which sums over all

paths between two nodes.

Some link prediction methods (50) (2) formulate link prediction as a supervised task where the

existence of link is used as supervision. For example, Lichtenwalter et al. studied how to ensemble

different measures for link prediction (50). Supervised Random Walk (2) is a random walk based

approach to combine different similarity scores. It attempts to learn a weight for different features to

make the transition probability between linked nodes larger than that of unlinked nodes.

Some work investigates the low rank approximation methods by generating a low rank matrix to

approximate the adjacency matrix of network structure (91) (56). Besides, various latent variable models

(3) (107) (58) have been proposed to model the relationship between nodes. For example, WTFW (3),

a topic model-based approach, can perform link prediction as well as providing explanation to support
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the prediction. Recently, embedding methods, such as DeepWalk (65), LINE (81) and node2vec (29),

are developed to learn representations for network nodes based on the link structure. They employ

similar objective function as the popular word embedding method Word2Vec (57) and the derived node

embedding can be used for link prediction (29).

Recently, researchers study how to perform link prediction for the heterogeneous information net-

work (79) (108) (103), where multiple types of nodes and links exist in the network.

However, existing methods usually assume the network structure is complete. No previous research

studies cross-view link prediction on partially observable networks.

5.3 Formulations

In this section, we present a few preliminary definitions that will be used in the rest of this chapter.

Definition 7 Information Network An information network G = (V,E,X) consists of V , the set of

nodes, E ⊆ V × V , the set of edges, and a feature matrix X = [x1,x2, . . . ,xn]T (n = |V |), where

xi ∈ RD (i = 1 . . . n) is the attribute vector of node vi.

Since various real-world social/information networks have partially observable links and node attributes,

we study link prediction on such networks defined as follows.

Definition 8 Partially Observable Information Network In a partially observable information net-

work G = (V,E,X), each node can belong to one or two of the following (overlapping) sets: the set of

nodes Og with observable links and nodes Oa with observable attributes. We also use Os = Og ∩ Oa

to denote the set of nodes with both observable links and attributes .
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Note that V = Og∪Oa since we assume each node has at least one source of information. In real world,

certain nodes might have disclosed neither links nor attributes. We do not consider such nodes since

no information can be used to suggest link to them in that case. In a partially observable information

network G = (V,E,X), many nodes have only one view of information, i.e., link or node attributes.

We refer to nodes with only links (Og\Os) as link-only nodes and nodes with only attributes (Oa\Os)

as attribute-only nodes. In this chapter, we study how to recommend link-only nodes to attribute-only

nodes, or vice versa. We refer to such task as Cross View Link Prediction (CVLP).

Let the number of nodes with links, nodes with attributes and nodes with both links and attributes

be ng = |Og|, na = |Oa| and ns = |Os|, respectively.

5.4 Link-based Representation Learning

We aim to learn representations for the network nodes by preserving structural information. For a

node vi, other nodes can be divided into to two classes, neighbors and non-neighbors. Hence, we can

derive triplets (i, j, k) from the network structure, where vi and vj are neighbors while vi and vk are

non-neighbors. We denote the set of all such triplets (i, j, k) as Ω.

Let us denote the representation learned from links as Ug ∈ Rng×m, where m is the number of

dimensions in the representation. The affinity sij between two nodes vi and vj can be calculated as

the inner product of the representations sij = Ug
i (U

g
j )
T . To make the representation appropriate for
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link prediction, it is desirable to make the affinity between neighbors larger than the affinity between

non-neighbors. So we aim to optimize the following objective.

min
Ug
||Ug||2F

s.t. sij ≥ sik, ∀(i, j, k) ∈ Ω

(5.1)

This objective function minimizes the complexity of representation while keeping neighbors and non-

neighbors separable. Since it might not be possible to satisfy all the hard constraint on all triplets

(i, j, k), we minimize the number of mis-ordered ranking triplets. Let us denote sijk = sij − sik and

the objective function is the following.

min
Ug

∑
(i,j,k)∈Ω

I(sijk < 0) + λg||Ug||2F (5.2)

where I(·) is an indicator function which returns 1 if (·) is true and 0 otherwise. The 0/1 loss function

is not smooth and is computationally intractable to optimize. So we replace it with a continuous convex

surrogate loss l(·) in the objective function.

min
Ug

∑
(i,j,k)∈Ω

l(sijk) + λg||Ug||2F (5.3)

AUC (Area Under ROC Curve) is a widely used metric for evaluating binary prediction problem such

as recommender system and link prediction (50). It can be shown that optimizing the objective in

Equation 5.2 is related to optimizing the AUC (70) (99). Hence, learning the representation under

such objective is a good choice for link prediction. There can be different options for the loss function
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l(sijk), such as log-loss, exponential loss and hinge loss. In the following subsection, we develop two

instantiations of NRCL with different loss functions.

5.4.1 Probabilistic Representation Learning (P-RL)

From a generative point of view, one can assume all the triplets (i, j, k) ∈ Ω are generated from

the node representation Ug. More specifically, we model the probability of preserving ranking order

sij > sik using the sigmoid function σ(x) = 1/(1 + e−x).

P (sij > sik |Ug) = σ(sijk) (5.4)

The larger sijk is, the more likely ranking order sij > sik is preserved. By assuming the ranking orders

to be independent, the probability P (> |Ug) of all the ranking orders being preserved given Ug is the

following.

P (> |Ug) =
∏

(i,j,k)∈Ω

P (sij > sik|Ug)

=
∏

(i,j,k)∈Ω

σ(sijk)

(5.5)
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So, the goal is to find the latent representation Ug for network nodes which maximizes P (> |Ug) (i.e.,

to make preserving the aggregated ranking orders have maximum probability). It can be performed by

minimizing the following sum of negative log-likelihood:

min
Ug

Lg = − logP (> |Ug) + λg||Ug||2F

= −
∑

(i,j,k)∈Ω

logP (sij > sik|Ug) + λg||Ug||2F

= −
∑

(i,j,k)∈Ω

log σ(sijk) + λg||Ug||2F

(5.6)

The connection between Equation 5.6 and Equation 5.3 is easy to see: log loss is used as the loss

function l(·). Such a formulation provides a probabilistic interpretation for the ranking order preserving

principle. Such a loss function is similar in spirit to the Bayesian Personalized Ranking (70), which

attempts to predict the interaction between users and items.

5.4.2 Max Margin Representation Learning (MM-RL)

One can also employ a structural learning framework with max margin formulation as follows.

min
Ug

∑
(i,j,k)∈Ω

µijk + λg||Ug||2F

s.t. sijk ≥ 1− µijk,∀(i, j, k) ∈ Ω

(5.7)
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where µijk is a slack variable to impose soft margin. Such a formulation is similar to Structural SVM

(39). To make clear its connection to the Equation 5.3 in the general framework, we can write it in the

following form.

min
Ug

∑
(i,j,k)∈Ω

max(0, 1− sijk) + λg||Ug||F (5.8)

So, Equation 5.8 is equivalent to using hinge loss as l(·) in Equation 5.3.

The hinge loss is not differentiable at 0 and therefore poses difficulty for gradient-based optimiza-

tion. We use a differentiable loss defined as follows.

l(x) =



0 if x ≥ 2

1
4(x− 2)2 if 2 > x > 0

1− x if x ≤ 0

(5.9)

This loss function, which is also referred to as Huber loss, is a combination of L1 loss (when 2 > x > 1)

and L2 loss (when x < 0). In the link structure of many networks, there is often certain amount of noisy

information. For example, it is not rare that a Facebook user may accept a connection invitation from

someone he/she actually does not know (i.e., false positive), or two new users have not connected even

if they know each other (i.e., false negative). Besides, the interaction between two proteins may have

not been discovered due to the difficulty in the study of certain biological process (i.e., false negative).

Such pairs might form noisy ranking triplets (i, j, k), which could potentially hamper the performance

of link prediction models. Such noisy triplets might cause sijk to become negative. Rather than using
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L2 loss on the whole range, Huber loss uses L1 loss for x < 0 because L1 loss penalizes the error less

harshly than L2 loss and hence more robust to noisy triplets.

Hence, the optimization problem becomes the following:

min
Ug

Lg =
∑

(i,j,k)∈Ω

l(sijk) + λg||Ug||2F (5.10)

where l(·) is the Huber loss defined in Equation 5.9.

5.5 Noise-resilient Representation Consensus Learning (NRCL)

We have discussed how to learn ranking-based representation from network links with P-RL and

MM-RL. In this section, we describe the framework of NRCL based on learning representation consen-

sus. Linkage information alone might not be sufficient for learning node representation, since network

links are often sparse and noisy. Also, the node features can be of high dimensionality and contain many

irrelevant features. Since links and attributes provide complementary information on the network nodes,

it is desirable to learn a consensus from both the link-based and attribute-based representation. Also,

the consensus learning enables link-only nodes and attribute-only nodes to be comparable in the latent

space. Therefore, the similarity between the representations of two nodes can be used for cross view

link prediction.

For the attribute-based representation, we learn a linear projection under the guidance of Ug.

min
W

∑
i∈Os

||Ug
i − xiW||2F (5.11)
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Figure 9: Representation consensus learning on partially observable networks

If we represent all the Ug
i and xi in i ∈ Os as Us and Xs, respectively, we can write the objective

function in the following form.

min
W
||Us −XsW||2F (5.12)

Different features usually have different importances for predicting the links. For example, in the Face-

book social network, ”went to the same college” could be a more informative feature than ”live in the

same country” for link prediction. The projection matrix W can encode such knowledge by optimizing

the objective in Equation 5.12 and useful features tend to have large (absolute value of) weights in the

matrix W.

Besides, node features could contain many irrelevant ones which could even harm the representation

learning. To address this challenge, we propose to perform joint feature selection when learning the
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projection. We use a feature selection indicator vector s ∈ {0, 1}D where sp = 1 indicates the p-th

feature is selected and sp = 0 indicates the feature is not selected.

min
W,s

||Us −Xs diag(s)W||2F

s.t. sp ∈ {0, 1}, ∀p = 1, . . . , D

D∑
p=1

sp = d

(5.13)

where diag(s) is the diagonal matrix with s as the diagonal elements. The constraint
∑D

p=1 sp = d

means that we aim to select d (d < D) high quality features for the attribute-based representation.

diag(s)W is a matrix with d non-zero rows and hence it achieves feature selection. We combine s and

W together, and employ L2,0 norm to achieve the effect of feature selection:

min
W
||Us −XsW||2F

s.t. ||W||2,0 ≤ d
(5.14)

The L2,0 norm ||W||2,0 is the number of rows in W with non-zero value. If ||Wi·||F = 0, i-th feature

is not selected. We relax ||W||2,0 to its convex hull, since the feasible region defined by ||W||2,0 < d is

not convex:

min
W
||Us −XsW||2F

s.t. ||W||2,1 ≤ d
(5.15)
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where the L2,1 norm ||W||2,1 =
∑D

i=1 ||Wi·||F could also achieve row sparsity. We further write the

constraint in the form of Lagrangian as follows:

min
W

La = ||Us −XsW||2F + λa||W||2,1 (5.16)

where λa is the regularization parameter on L2,1 norm (63).

We combine the link-based loss and attribute-based loss together and the objective function becomes

the following:

min
Ug ,W

L = Lg + La

=
∑

(i,j,k)∈Ω

l(sijk) + λg||Ug||2F+

α||Us −XsW||2F + λa||W||2,1

(5.17)

where α is the parameter that controls the relative importance of consensus learning. We refer to the

instantiations of NRCL with Lg in Equation 5.6 and Equation 5.10 as P-NRCL and MM-RNCL, respec-

tively.

Figure 9 summarizes the NRCL framework: 1) Representation Ug learned on linkage information

might not be sufficiently good, as network links could be sparse and noisy. The consensus constraint

||Ug
i −Ua

i ||2F (where the attribute-based representation Ua
i = xiW ) serves as additional regularization

on Ug, which enables link-based representation to incorporate information from node attributes. This

can be especially useful when a node has very few or no links. 2) On the other hand, node attributes

are not equally important for link prediction. The consensus constraint ||Ug
i − Ua

i ||2F can guide the
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Algorithm 4 Alternating Optimization for NRCL

Initialize: Ug
i = rand(0, 1), W = 0D×m, t = 1.

while not converged do
Fixing W, find the optimal Ug by L-BFGS with Equation 5.25
Fixing Ug, find the optimal W with Algorithm 5
t = t+ 1

end while
Ua
i = xiW, ∀i ∈ Oa

learning of attribute-based representation by jointly selecting node attributes. By learning the consensus

between Ug and Ua, link information and attribute information could lend strength to each other for

learning more noise-resilient representation. Also, the representations learned from network structure

and node attributes become comparable in the latent space. To perform cross view link prediction, we

can calculate the similarity sij = Ug
i (U

a
j )
T in the latent space for link-only node vi and attribute-only

node vj .

5.6 Optimization

In this section, we discuss how to solve the optimization problem for P-NRCL and MM-NRCL.

5.6.1 Alternating Optimization

For both instantiations, we need to optimize over Ug and W. We decompose it to two sub-problems

and develop an alternating optimization approach to solve the problem.
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5.6.1.1 Fixing W, update Ug

Now we derive the gradient for optimizing the objective function in Equation 5.6 and Equation 5.10.

For P-NRCL, the gradient for one triplet is calculated as follows:

∂l(sijk)

∂Ug
i

=
e−sijk

1 + e−sijk
· ∂

∂Ug
i

sijk (5.18)

For Max Margin NRCL (MM-NRCL), the gradient is the following:

∂l(sijk)

∂Ug
i

=



0 if sijk ≥ 2

1
2(sijk − 2) · ∂

∂Ug
i
sijk if 2 > sijk > 0

− ∂
∂Ug

i
sijk if sijk ≤ 0

(5.19)

The gradients on sijk w.r.t. Ug
i , Ug

j and Ug
k are the following:

∂

∂Ug
i

sijk = Ug
j −Ug

k (5.20)

∂

∂Ug
j

sijk = Ug
i (5.21)

∂

∂Ug
k

sijk = −Ug
i (5.22)
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So, the gradient on Lg w.r.t Ug
i is as follows:

∂Lg

∂Ug
i

=
∑

(i,j,k)∈Ω

e−sijk

1 + e−sijk
· ∂

∂Ug
i

sijk+

∑
(j,i,k)∈Ω

e−sjik

1 + e−sjik
· ∂

∂Ug
i

sjik+

∑
(j,k,i)∈Ω

e−sjki

1 + e−sjki
· ∂

∂Ug
i

sjki

(5.23)

We can also derive the following gradient on La w.r.t Ug
i :

∂La

∂Ug
i

= 2α(Ug
i −Ua

i ) (5.24)

where Ua
i = xiW. To sum up, the gradient of the objective function in Equation 5.17 w.r.t Ug

i is as

follows:

∂L

∂Ug
i

=


∂Lg

∂Ug
i

for φ(i) ∈ Og\Os

∂Lg

∂Ug
i

+ ∂La

∂Ug
i

for φ(i) ∈ Os
(5.25)

We can use gradient-based method (e.g., L-BFGS) to solve this subproblem.

5.6.1.2 Fixing Ug, update W

With fixed Ug, we find the optimal W for the following convex sub-problem.

min
W
L = ||Us −XsW||2F + λ′a||W||2,1 (5.26)
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where λ′a = λa/α. To solve this subspace learning with L2,1 regularization, we develop Algorithm 5

inspired by the iterative approach used in (63).

By setting ∂L(W)
∂W = 0, we have the following:

∂L(W)

∂W
= (Xs)T (XsW −Us) + λ′aEW = 0⇒

W = ((Xs)TXs + λ′aE)−1(Xs)TUs

(5.27)

where E is a diagonal matrix with diagonal elements Eii = 1
2||Wi||F and Wi is the i-th row of W.

Theorem 5.6.1 For the optimization problem in Equation 5.26, Algorithm 5 would converge.

Proof: It is easy to see that Equation 5.27 is a solution of the problem:

min
W
||XsW −Us||2F + λ′a Tr(WTEW) (5.28)

where Tr(·) is the trace of matrix (·). So, from the t-th to (t+ 1)-th iteration,

||XsWt+1 −Us||2F + λ′a Tr((Wt+1)TEt+1Wt+1)

≤ ||XsWt −Us||2F + λ′a Tr((Wt)TEtWt)⇒

||XsWt+1 −Us||2F + λ′a
∑
i

||Wt+1
i ||2F

2||Wt
i||F

≤ ||XsWt −Us||2F + λ′a
∑
i

||Wt
i||2F

2||Wt
i||F

(5.29)
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Equivalently,

||XsWt+1 −Us||2F + λ′a||Wt+1||2,1−

λ′a(||Wt+1||2,1 −
∑
i

||Wt+1
i ||2F

2||Wt
i||F

)

≤ ||XsWt −Us||2F + λ′a||Wt||2,1−

λ′a(||Wt||2,1 −
∑
i

||Wt
i||2F

2||Wt
i||F

)

(5.30)

Note that ||Wt+1||2,1 −
∑

i
||Wt+1

i ||2F
2||Wt

i ||F
≤ ||Wt||2,1 −

∑
i
||Wt

i ||2F
2||Wt

i ||F
(because

√
a− a

2
√
b
≤
√
b− b

2
√
b
,

a, b > 0). So,

L(Wt+1) = ||XsWt+1 −Us||2F + λ′a||Wt+1||2,1

≤ ||XsWt −Us||2F + λ′a||W||2,1 = L(Wt)

(5.31)

The objective function L(W) decreases in each iteration and it is lower bounded, so the convergence of

Algorithm 5 is guaranteed. In our experiments, we observe it converges usually in less than 10 iterations.

Algorithm 4 summarizes the optimization methods for NRCL. The following theorem shows the

convergence of this algorithm.

Theorem 5.6.2 The alternating optimization framework in Algorithm 4 would converge.

Proof: The objective function for each subproblem decreases in each iteration. The objective func-

tion in Equation 5.17 is hence guaranteed to decrease and it is lower-bounded. So the alternating opti-

mization algorithm 4 would converge.
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Algorithm 5 Algorithm for Learning Projection with L2,1 norm

1: Input: Xs ∈ Rns×D, projection target Us ∈ Rns×m, λ′a
2: Initialize: E = ID
3: while not converged do
4: W = ((Xs)TX + λ′aE)−1(Xs)TUs

5: E =


1

2||W1||F
. . .

1
2||WD||F


6: end while
7: Output: W ∈ RD×m

5.6.2 Sampling ranking triplets

One can derive O(|E||V |) triplets from the network structure. Such large amount of triplets is

computationally expensive to optimize on. Rather than using all the potential triplets, we only sample a

portion of them as follows: for each link (vi, vj) in the network, we randomly sample nk (nk � |V |)

negative pairs to form triplets with (vi, vj). Hence, a total of |E|nk triplets (i.e, |Ω| = |E|nk) is used in

the optimization. In our preliminary experiments, we found nk = 2 or nk = 3 is usually sufficient to

achieve decent performance, so we use nk = 2 in our experiments.

5.7 Experiments

In this section, we perform cross-view link prediction on four real-world networks with partially

observable links and node attributes.

5.7.1 Datasets

We use four publicly available social/information network datasets in our experiments:
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TABLE IX: Statistics of datasets

Statistics Blogcatalog Facebook Wiki Pubmed
# of instances 3192 1045 3363 19717
Avg. degree 8.87 51.19 19.76 4.50
# of attributes 3221 576 4973 500

• Facebook Dataset1: The whole dataset consists of ten ego-networks of facebook users. We use

the network with largest number of nodes, which has 1045 users, 576 user profile features (e.g.,

education, work and location) and 53498 links.

• BlogCatalog Dataset2: We extract users who have blog posts in the category of {Music, Finance,

Health, Computers, Entertainment}. The friendship connection between blog users establishes

the network links and the word occurrence in the blogs is used as user features.

• Wikipedia Dataset3 (73): Wikipedia articles from 19 categories and the hyperlinks establish the

network structure. The original hyperlinks are directed and we symmetrize the network to make

it undirected.

1https://snap.stanford.edu/data/egonets-Facebook.html

2http://dmml.asu.edu/users/xufei/datasets.html

3http://linqs.cs.umd.edu/projects//projects/lbc/index.html

https://snap.stanford.edu/data/egonets-Facebook.html
http://dmml.asu.edu/users/xufei/datasets.html
http://linqs.cs.umd.edu/projects//projects/lbc/index.html
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• PubMed Dataset 3 (73): It consists of 19717 scientific publications about diabetes from PubMed

database, which are classified into one of three classes. The word occurrence in the paper is used

as the node features.

The statistics of these datasets are shown in Table IX.

5.7.2 Experimental Setting

TABLE X: Link prediction with different observable rates

Dataset |Os|/n Metric Recommend AO to LO Recommend LO to AO

Facebook

0.5770
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 39.47 44.87 34.34 41.58 27.24 8.68 21.53 23.57 16.69 17.71 11.85 8.79
Recall@5 (%) 16.33 20.09 13.62 19.94 7.92 4.92 10.62 12.41 7.82 8.53 5.25 4.15

0.3703
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 38.45 39.48 32.96 32.10 30.47 11.33 20.24 22.51 16.76 17.33 14.09 8.91
Recall@5 (%) 10.26 10.86 8.03 9.66 6.65 3.31 6.63 8.35 4.59 5.52 3.84 4.13

BlogCatalog

0.5081
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 14.65 13.74 0.90 2.19 7.23 0.65 1.18 1.12 0.11 0.28 0.06 0.45
Recall@5 (%) 33.27 30.82 2.12 4.68 15.08 1.59 2.86 1.93 0.23 0.66 0.14 1.01

0.2701
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 13.43 13.51 0.41 1.45 8.24 0.74 0.66 0.44 0.09 0.13 0.06 0.63
Recall@5 (%) 24.61 24.83 0.79 1.97 15.58 1.38 0.58 0.59 0.10 0.10 0.01 1.11

Wiki

0.5332
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 21.77 24.42 13.05 16.86 10.18 3.58 11.49 14.12 6.59 10.33 2.81 2.94
Recall@5 (%) 25.91 29.28 11.50 16.52 11.31 4.49 14.78 18.46 7.75 12.51 3.11 2.58

0.3417
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 21.01 24.31 13.23 17.83 9.90 3.59 11.05 13.61 3.96 7.87 1.09 3.51
Recall@5 (%) 20.42 25.48 10.48 16.13 9.98 3.02 11.20 14.18 3.42 6.72 0.89 3.22

PubMed

0.4521
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 3.18 4.90 0.89 1.50 0.02 0.98 0.69 1.03 0.17 0.28 0.05 1.44
Recall@5 (%) 7.92 12.60 1.61 2.93 0.03 2.31 1.57 2.63 0.22 0.57 0.18 3.43

0.1847
PNRCL MMNRCL PRL MMRL LINE DeepWalk PNRCL MMNRCL PRL MMRL LINE DeepWalk

Precision@5 (%) 2.57 4.34 0.41 1.08 0.03 0.82 0.44 0.69 0.10 0.19 0.02 1.05
Recall@5 (%) 4.77 9.66 0.55 1.30 0.06 1.94 0.85 1.38 0.19 0.28 0.03 2.38
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5.7.2.1 Baselines

Existing methods usually assume the completeness of links and are not directly applicable for our

problem setting. We create content links for each node in Oa (that has attributes) by connecting them

with k other nodes with largest similarity w.r.t attributes, where k is the average degree of the network.

Then we construct a combined network by connecting nodes that are connected by either a structural

link or content link. We use the following methods on this combined network:

• Probabilistic Representation Learning (P-RL): P-RL learns the repsentation of nodes by opti-

mizing the objective function Lg in Equation 5.6, which is similar to the triple loss based link

prediction (56) (70).

• Max Margin Representation Learning(MM-RL): MM-RL learns the representation by optimizing

the objective function Lg in Equation 5.10.

• LINE: An efficient embedding learning approach for network nodes (81) and the similarity be-

tween node embeddings can be used for link prediction.

• DeepWalk: It learns node representations that encode structural information by using truncated

random walk as input (65). Recent work shows that it has state-of-the-art performance for link

prediction (29).

5.7.2.2 Evaluation Metrics

We use the widely adopted metrics Precision, Recall to evaluate the performance of different link

prediction approaches.

• Precision@N =
|CRN

∩Cadopted|
N
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Figure 10: Parameter sensitivity for MM-NRCL

• Recall@N =
|CRN

∩Cadopted|
|Cadopted|

where CRN
is the set of top N nodes in the recommendation and Cadopted is the set of links that ac-

tually exist in the network. The precision and recall averaged over all the nodes are reported to reflect

performance of each link prediction approaches.

5.7.2.3 Generating Partially Observable Networks

Similar to (94), we randomly select m1 nodes and remove their links to create partially observable

networks. We remove these links and denote the number of nodes without any links as m2. Typically

m2 is larger than m1, as removing the links for the m1 nodes might make some other nodes become

isolated. Then we pick anotherm2 nodes randomly which have links and remove their attributes. Hence,
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only |Os| = n − 2m2 nodes have both links and attributes. For recommending attribute-only nodes to

link-only nodes (or link-only to attribute-only), 20% of the link-only (or attribute-only) nodes is used

for validation and the rest is used for testing.

We set the dimension sizes (i.e., m) of P-NRCL, MM-NRCL, P-RL, MM-RL to 50 and that of

LINE and DeepWalk to their default setting. For the regularization parameters in P-NRCL, MM-

NRCL, P-RL and MM-RL, we perform grid search on the validation set in the following ranges:

α = {0.01, 0.1, 1, 10}, λa = {10, 20, 30} × α, λg = {5, 10, 15, 20}.

TABLE XI: Feature importance on Facebook dataset

Feature Name Feature Score
Top ranked features

education;school;id;anonymized feature 538 1.1095
education;school;id;anonymized feature 237 0.4649
work;employer;id;anonymized feature 151 0.4579
education;school;id;anonymized feature 52 0.3724

education;concentration;id;anonymized feature 14 0.3499
Examples of unselected features

last name;anonymized feature 592 0
work;employer;id;anonymized feature 648 0
work;position;id;anonymized feature 697 0
work;end date;anonymized feature 674 0

education;school;id;anonymized feature 459 0
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5.7.3 Comparison on Cross View Link Prediction

We report the link prediction performance with different percentages (|Os|/n) of fully observable

nodes in Table X by setting m1 = {0.2, 0.3} × n. On most of the datasets, NRCL methods (especially

MM-NRCL) outperform the baseline methods significantly. For example, on Wiki dataset, P-NRCL

and MM-NRCL improve over the best baseline method MM-RL by 29.1% and 44.8%, respectively,

in terms of precision@5. When the fully observable rate goes to as low as 20% ∼ 40%, MM-NRCL

still performs very well for cross view link prediction. Though MM-RL and P-RL employ the same

objective function Lg on the link-based representation learning as MM-NRCL and P-NRCL, the content

links created from potentially noisy feature space make them unable to learn high quality representation.

This indicates the importance of selecting the most informative features for representation learning on

partially observable networks, in order to achieve decent link prediction performance. In comparison,

the representation learned by MM-NRCL and P-NRCL could be more resilient to irrelevant features, as

NRCL performs joint feature selection and only use the high-quality features to learn the representation.

When comparing P-NRCL with MM-NRCL, we observe that MM-NRCL performs better than P-

NRCL in most cases. Similarly, MM-RL often outperforms P-RL as well. This suggests that Huber

loss, which is more robust to noisy links, tends to be a better choice for learning node representations

than log loss.

5.7.4 Case Study on Joint Feature Selection

Since we perform joint feature selection in our NRCL framework, the utility of feature i (i =

1, 2, . . . , D) can be ranked by their coefficients
∑m

j=1W
2
ij . For useless features,

∑m
j=1W

2
ij tends to

shrink towards zero under the effect of L2,1 norm, while important features tend to have large values of
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∑m
j=1W

2
ij . As a case study, we show the feature importance for Facebook dataset in Table XI. The spe-

cific value and meaning of features are anonymized for privacy concern. Features in the same category

(e.g., education) can be encoded into multiple binary features and they may have different importance

for representation learning. For instance, education features 538 and 237 are highly important while

education feature 459 is considered useless. By examining the features with large scores (
∑m

j=1W
2
ij),

one could have a deeper understanding about the roles of different features in the formation of network

links.

5.7.5 Sensitivity Analysis

In this subsection, we study the effect of dimension sizem and consensus regularization parameter α

only for MM-NRCL, since previous results show that MM-NRCL is more promising than P-NRCL. The

precision results w.r.t different parameter values on Facebook and Wiki datasets are shown in Figure 10.

Effect of latent dimension size For m, we can observe that MM-NRCL is not very sensitive to the

parameter value when it is not too small (e.g., m ≤ 20).

Effect of regularization controlling consensus strength For the co-regularization parameter α,

MM-NRCL can perform consistently well as long as α is not too large (e.g., α ≥ 10).



CHAPTER 6

MULTI-VIEW UNSUPERVISED FEATURE SELECTION BY CROSS-DIFFUSED

MATRIX ALIGNMENT

(This chapter was accepted/to appear as “Multi-view Unsupervised Feature Selection by Cross-

diffused Matrix Alignment”, in Proceedings of the 30th International Joint Conference on Neural Net-

works (IJCNN 17), 2017)

6.1 Introduction

Data obtained from different sources or feature subsets usually provide complementary information

for machine learning tasks, and conventionally they are named as multi-view data. We can observe

multi-view data in a wide range of application domains. For example, news about the same event can

often be reported in different languages and by different agencies. In the video domain, in addition

to features extracted from visual signals, videos are often equipped with textual descriptions and re-

lated tags. In medical science, various diagnosis tools can provide many measurements from different

laboratory tests, including clinical, imaging, immunologic and serologic features.

Capability for simultaneous consideration of data coming from multiple views/sources is important

for many learning tasks, which is referred to as multi-view learning. Multiple views together depict an

enriched picture about the entities of interest and thereby provide an effective way of heterogeneous

data fusion. How to effectively incorporate the abundant information from multiple views is critical for

different application domains (43) (82). It has been shown that incorporating information from multiples

102
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views can improve the performance of various machine learning tasks. For example, co-regularized

spectral clustering (43), by enforcing consensus learning on latent factors, outperforms single-view

clustering significantly.

The curse of dimensionality is an inevitable problem in the era of big data, which is also one of the

major challenges in many multi-view learning scenarios. For example, the vocabulary of news articles

can contain more than 100, 000 words in each language. Also, the user generated content in social media

(such as blog websites) tends to be highly noisy. Such high-dimensional noisy data can hamper the

performance and efficiency of many machine learning/data mining tasks. Feature selection is potentially

a useful technique for alleviating such issue. Traditional feature selection methods mainly focus on a

single view which could be insufficient considering the existence of other views being available. It is

desirable to utilize information from other complementary views, when selecting features for each view.

Since class labels are usually expensive to obtain, unsupervised feature selection usually has wider

applicability than its supervised counterpart. The key challenge of unsupervised multi-view feature se-

lection is twofold: (1) how to effectively represent the fused information from multiple views, and (2)

how to effectively exploit the fused information representation to select high-quality features. State-of-

the-art unsupervised multi-view feature selection approaches (82) (69) fuse information by generating

intermediate cluster labels. However, summarizing the information for each instance with a cluster label

tends to lose too much information, since the cluster labels are usually noisy and inaccurate. In this pa-

per, we propose a new method, CDMA-FS (Cross Diffused Matrix Alignment based Feature Selection),

to address the challenges of multi-view feature selection in unsupervised setting. The advantages of our

method compared to state-of-the-art approaches (82) (69) can be summarized as follows.



104

clustering sparse regression

pseudo-label

view 1 on original features

view 2 on original features view 2 on selected features

view 1 on selected features

(a) Pseudo-label based multi-view feature selection

cross diffusion matrix alignment

consensus matrix

view 1 on original features

view 2 on original features view 2 on selected features

view 1 on selected features

(b) Multi-view feature election by cross-diffused
matrix alignment

Figure 11: Comparison of CDMA-FS Framework with existing multi-view feature selection methods

• We employ a cross diffusion-based approach to learn a consensus similarity graph from multiple

views, which retains more information than the cluster labels (Figure 11).

• Rather than relying on cluster-label guided sparse regression, we directly exploit the information

from the cross-diffused matrix by matrix alignment.

• Existing approaches typically have a few parameters which are difficult to set in unsupervised

setting. This makes them less practical for real-world applications. In contrast, we provide guide-

lines for setting the parameter in the proposed method.

• Our objective function is not based on linear regression and hence can evaluate the non-linear

usefulness of features.

6.2 Related Work

Earlier unsupervised feature selection methods (34) (109) usually assign scores to each feature based

on certain heuristics and neglect the correlation among features. However, such heuristic based meth-
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ods usually ignore the correlation among the features and redundancy may exist in the selected features.

In recent years, different methods (106) (68) (99) (96) have been proposed to evaluate feature quality

jointly. Linear projection based methods (106) (48) (21) (90) with sparsity-inducing L2,1 norm have

become prevalent among others. Compared to the heuristic-based methods (34) (109), the major ad-

vantage of L2,1-based approaches is that they can evaluate features jointly. Different L2,1 norm-based

methods usually differ in the ways they generate pseudo labels and the loss functions on the projection.

Unsupervised Discriminative Feature Selection (UDFS) (106) introduces pseudo-label based regres-

sion to better capture the information from the local structure. Non-negative Discriminative Feature

Selection (NDFS) (48) derives the cluster/pseudo labels from non-negative spectral analysis. Robust

Unsupervised Feature Selection (RUFS) (68) and Embedded Unsupervised Feature Selection (EUFS)

(90) generate pseudo labels from non-negative matrix factorization. Robust Spectral Feature Selection

(RSFS) (76) employs local kernel regression for the cluster indicators and Huber loss for the projection.

These methods are only able to evaluate the. To address this issue, Stochastic Neighbor-preserving Fea-

ture Selection (SNFS) (101) and Nonlinear Joint Feature Selection (NJFS) (95) are proposed, which can

evaluate the non-linear usefulness of features.

Recently, several pseudo label-based methods have been extended to multi-view setting (82) (69)

(75) via cluster consensus learning. In these approaches, pseudo-labels derived from certain cluster-

ing algorithms are required to be the same across different views in order to incorporate multi-view

information. For example, adaptive Unsupervised Multi-view Feature Selection (AUMFS) (25) rely on

spectral clustering on the combined similarity graphs obtained from different views. Multi-View Fea-

ture Selection (MVFS) (82) and MVUFS (69) can be seen as extention of NDFS (48) and RUFS (68)
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to multi-view feature selection by enforcing consensus on the cluster indicators from different views,

respectively. However, they rely on the cluster labels to guide feature selection, and the noisy cluster

labels may lead to suboptimal feature selection results. Also, they evaluate features based on linear re-

gression and hence cannot select high-quality features if they are non-linearly correlated with the class

labels.

6.3 Fusing Different Views by Cross Diffusion

We denote n data samples with m views as {X(v)|v = 1, . . . ,m}, X(v) = [x
(v)
1 ,x

(v)
2 , . . . ,x

(v)
n ] and

the number of features in the v-th view as D(v). So x
(v)
i ∈ RD(v)

and x(v)
ip denotes the value of p-th

(p = 1, . . . , D(v)) feature of x
(v)
i .

The proposed CDMA-FS framework is a two-step approach. First, we fuse different kernels into

one robust similarity matrix through cross diffusion. Second, we perform matrix alignment for the

features from each view so that the kernel constructed from the selected features can best align with the

fused matrix (Figure 11). In this manner, feature selection on each view can benefit from the consensus

information fused from multiple views.

With the features from the v-th view, one can construct a kernel/similarity matrix for this view.

There are different types of similarity matrices:

• Gaussian Kernel Weighting: Wij = e−(xi−xj)2/σ2

• Dot-product Kernel Weighting: Wij = xTi · xj

• 0-1 Weighting: Wij = 1 if and only if xi is within xj’s k Nearest Neighbors.
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A similarity matrix can then be used to define the transition probability as follows.

P(v)
ij =

W
(v)
ij∑n

k=1W
(v)
ik

(6.1)

where
∑n

j=1 P
(v)
ij = 1 (∀i = 1, . . . , n) and we let P(v)

ii = 0 for convenience. For a probability vector

u (i.e., uT1 = 1), uTP(v) is a Markov random walk of u w.r.t. P(v). P(v)u can be viewed as a local

averaging operation with W(v) measuring the locality. It can also be interpreted as a generalization

of Parzen window estimators to functions on the local manifold (88). Both uTP(v) and P(v)u can be

viewed as a diffusion process.

6.3.1 Cross Diffusion

Cross diffusion (88) aims to exploit mutual enhancement of different views inspired by co-training

(8). The main idea of cross diffusion is to perform random walk using the transition probability from

different views in an alternating manner. In the case ofm = 2, the cross diffusion process can be defined

as follows.

P
(1)
t+1 = P(1) ·P(2)

t · (P(1))T (6.2)

P
(2)
t+1 = P(2) ·P(1)

t · (P(2))T (6.3)

where P
(1)
t and P

(2)
t are the status matrices at the t-th iteration for view 1 and view 2, respectively. For

the initial values, we set P
(1)
1 = P(1) and P

(2)
1 = P(2). Since the distances between data points are

usually unreliable in high-dimensional space, it is usually preferable to use the k nearest neighbors as

P(1) and P(2). Under mild conditions that P(1) and P(2) are irreducible and aperiodic, the convergence
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of this process can be proved using Perron-Frobenius Theorem (66). The final status matrix can be

computed as the average of status matrices from two views: P∗ = (P
(1)
e + P

(2)
e )/2, where e is the

number of iterations at which the cross diffusion terminates. We refer to this final status matrix P∗ as

cross diffused matrix.

Let us denote the connected components in the cross-diffused matrix as {θ1, θ2, . . . , θQ}, where Q

is the total number of connected components. We also denote the ground-truth class label of x as c(x).

We define the purity of the q-th connected component as the percentage of majority class of instances.

If purity(θq) ≥ 1− ε for all 1 ≤ q ≤ Q, we say that P is an ε-good graph. At the (2t+ 1)-th iteration,

P
(1)
2t+1 and P

(2)
2t+1 can be written as the following.

P
(1)
2t+1 ∝ (P(1)P(2))t ·P(2) · ((P(2))T (P(1))T )t (6.4)

P
(2)
2t+1 ∝ (P(2)P(1))t ·P(1) · ((P(1))T (P(2))T )t (6.5)

In order to effectively guide subsequent feature selection, it is desirable that the connected compo-

nents in P
(1)
2t+1 and P

(2)
2t+1 obtained from the cross-diffusion process have large purity. The following

theorem provides guarantee on the purity of components in the cross-diffused matrix (88).

Theorem 6.3.1 If the K-nearest-neighbors is good to measure local affinity (93), P
(1)
2t+1 and P

(2)
2t+1 are

ε-good graphs. The number of connected components in graph P
(1)
2t+1 is equal to that of graph P

(2)
2t+1,

and it is not larger than that in graphs P(1) and P(2).
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Moreover, it is usually helpful to add regularization at each iteration of the diffusion process to make

the probability matrix more robust.

P
(1)
t+1 = P(1) ·P(2)

t · (P(1))T + αI (6.6)

P
(2)
t+1 = P(2) ·P(1)

t · (P(2))T + αI (6.7)

where I is an identity matrix and α is the parameter that controls the regularization. We remark that

CDMA-FS can perform reasonably well for a wide range of α (e.g., 10−4 ∼ 10).

6.3.2 Extension to more than two views

Similar to the case of m = 2, P
(v)
t+1 for m > 2 can be calculated as follows.

P
(v)
t+1 = P(v) · 1

m− 1

∑
i 6=v

P
(i)
t · (P(v))T (6.8)

The final status matrix is the average of m matrices:

P∗ =
1

m

m∑
v=1

P(v)
e (6.9)

Since the transition probability might be not reliable for non-nearest neighbors, we create a kNN graph

G from P∗ after obtaining P∗. In the following section, we present how to use G to guide the feature

selection for each view.
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6.4 Aligning with Cross-diffused Matrix

Our goal is to select d(v) (d(v) � D(v)) high-quality features for each view. We denote the selection

indicator vector as s(v) ∈ {0, 1}D(v)
, where s(v)

p = 1 indicates that the p-th feature is selected and

s
(v)
p = 0 otherwise.

To directly exploit the information from the cross-diffused matrix for feature selection in each view,

we propose to perform matrix alignment towards the cross-diffused matrix. We assume that a kernel

matrix can be constructed from each view based on the selected features diag(s)X(v) with Gaussian

kernels (i.e., Radial Basis Function):

K
(v)
ij = exp

(
− 1

σ2
‖diag(s(v))x

(v)
i − diag(s(v))x

(v)
j ‖2

)
(6.10)

The intuitive idea of CDMA-FS is to make the kernel constructed from selected features imitate the

cross-diffused matrix G. We achieve this by employing the matrix alignment technique (20) (94) as

follows.

Definition 9 Matrix Alignment For two symmetric matrices K1 ∈ Rn×n and K2 ∈ Rn×n, the align-

ment between K1 and K2 is defined as

ρ(K1,K2) =
Tr(K1K2)

||K1||F · ||K2||F
(6.11)

where Tr(·) is the trace of a matrix.
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Matrix alignment can be viewed as computing the cosine similarity between two vectorized matri-

ces. However, the optimization problem is more difficult to solve with the normalization term ||K1||F ·

||K2||F . In this paper, we employ the unnormalized version of matrix alignment as in (20), which can

be considered as the inner product between two vectorized matrices.

Definition 10 Unnormalized Matrix Alignment For two symmetric matrices K1 ∈ Rn×n and K2 ∈

Rn×n, the alignment between K1 and K2 is defined as

ρ(K1,K2) = Tr(K1K2) (6.12)

It is usually helpful to center the matrix for better matrix alignment performance as in observed in

(19). For a symmetric matrix K, centering K can be achieved by HKH, where the centering matrix

H = I− 1
n11T .

Definition 11 Centered Matrix Alignment For two real matrices K1 ∈ Rn×n and K2 ∈ Rn×n, the

centered alignment between K1 and K2 is defined as

ρ(K1,K2) = Tr(HK1HHK2H)

= Tr(HK1HK2)

where the second equation can be obtained by noting HH = H and Tr(AB) = Tr(BA) for arbitrary

matrices A,B ∈ Rn×n.
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After a high-quality cross-diffused matrix is obtained, we select features for each view under the

guidance of this matrix. To achieve this, we aim to maximize the correlation between the cross-diffused

matrix and the kernel matrix computed from selected features. To select d(v) features for the v-th view,

we formulate it as a constrained optimization problem and find s(v) to minimize the following objective

function:

min
s(v)

f = −Tr(HGHK(v))

s.t.
D(v)∑
p=1

s(v)
p = d(v)

s(v)
p ∈ {0, 1}, ∀p = 1, . . . , D(v)

(6.13)

Discussion Traditional sparse regression based methods (82) (69) rely on generating intermediate clus-

ter labels and rank features by their linear regression coefficients. In contrast, CDMA-FS framework

utilizes the cross-diffused matrix, which preserves more information than cluster labels. Also, the con-

nected components in the cross diffused matrix tend to have good purity as shown in Theorem 1, which

means the connected data points are likely from the same class. The objective, through matrix align-

ment, aims to select the features that make connected instances close and unconnected instances far

apart. By optimizing the objective above, we directly infer the selection vector s which can achieve

the following desirable effects: features that make data points from the same class similar would be re-

warded and features that make data points from different classes similar would shrink sp to zero. Hence,

different classes would be more separable in the space of selected features.
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6.5 Optimization

6.5.1 Gradient Derivation with Relaxed Constraint

The ‘0/1’ integer programming problem in Equation 6.13 is computationally intensive to optimize.

We relax the ‘0/1’ constraint on s(v)
p (p = 1, . . . , D(v)) to real values in range of [0, 1] to make the

optimization tractable as in (95). We further rewrite the summation constraint
∑D(v)

p=1 s
(v)
p = d(v) in the

form of Lagrange multiplier:

min
s(v)

f = −Tr(HGHK(v)) + λ||s(v)||1

s.t. 0 ≤ s(v)
p ≤ 1,∀p = 1, . . . , D(v)

(6.14)

where || · ||1 denotes the l1 norm on vector (·) and λ controls the sparsity of s(v). Note that in our case

||s(v)||1 =
∑D

p=1 sp since we have non-negative constraints on s(v).

We can derive the following gradient w.r.t. the objective function, since K(v) (v = 1, . . . ,m) is a

symmetric matrix.

∂f

∂s
(v)
p

= −
n∑

i,j=1

((HGH)ij ·
∂K

(v)
ij

∂s
(v)
p

) + λ

=

n∑
i,j=1

(((HGH)�K(v))ij

(
x

(v)
ip − x

(v)
jp

)2
)
2sp
σ2

+ λ

(6.15)

where � is element-wise product. To solve this constrained optimization problem efficiently, we use

Projected Quasi-Newton Method as shown in the next subsection.
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6.5.2 Projected Quasi-Newton Method

Traditional Newton method optimizes the following second-order approximation at the t-th iteration.

qt(s) = f(st) + (s− st)
T∇f(st) +

1

2
(s− st)

TBt(s− st) (6.16)

where Bt = ∇2f(st) is the Hessian matrix. Newton method enjoys good convergence rate but the

Hessian matrix requiresO(D2) storage and it is time-consuming to compute. So Quasi-Newton methods

(e.g., L-BFGS (52)) use a positive definite approximation to the Hessian matrix ∇2f(st). For example,

L-BFGS (52) uses the gradients in previous iterations to compute an approximate Hessian matrix.

Bt+1 = Bt −
Btutu

T
t Bt

uTt Btut
+

yty
T
t

yTt ut
(6.17)

where ut = st+1 − st and yt = ∇f(st+1)−∇f(st).

To address the constraints on s in Equation 6.14, projected Newton method can be used to solve the

following constrained quadratic approximation:

min
s

qt(s)

s.t. s ∈ C
(6.18)

In our case, C is the [0, 1] box constraint on s(v). A projection operator for this constraint can be defined

as follows.

[Proj[0,1](s
(v))]p = min(1,max(0, s(v)

p )), ∀p = 1, 2, . . . , D(v) (6.19)
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To make the optimization more efficient, we use a variant of the L-BFGS method which employs spec-

tral projected gradient method as subroutine to solve the constrained problem in Equation 6.18. The

optimization method (71) is two-level approach: at the outer level, L-BFGS updates are used to con-

struct a sequence of quadratic approximations (with constraints) to the problem; at the inner level, a

spectral projected gradient method optimizes the constrained subproblem approximately to generate a

feasible direction. The number of iterations in this algorithm remains linear in dimensionality of feature

vector, but with a higher constant factor than the L-BFGS method. Nevertheless, the method can lead to

significant gain when the cost of the projection is much lower than evaluating the function, which is the

case in our problem setting.

Although we could use spectral projected gradient method to exactly solve problem Equation 6.18,

it is expensive to do so in practice. Therefore, we terminate the spectral gradient descent subroutine

before the exact solution is found, since our goal is only to obtain a feasible descent direction for L-

BFGS. One might be concerned about the early termination of the spectral gradient descent subroutine,

but in (71) it has been shown that the spectral gradient descent subroutine, even when terminated early,

can give a descent direction, if we initialize it with st and we perform at least one spectral gradient

descent iteration. In the implementation, we can parametrize the maximum number of the spectral

gradient descent iterations by tp, the cost of one iteration is O(mtpD) for the inexact Newton method,

given that our projection operation requires O(D) time and L-BFGS stores m most recent gradients.

The projected Quasi-Newton algorithm is shown in Algorithm 6.
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Algorithm 6 Solve CDMA-FS with Projected Quasi-Newton Algorithm
Initialize: s0 ← 1, t = 0.
while not converged do

Compute the gradient by Equation 6.15
Compute the approximate Hessian
Solve Equation 6.18 for s∗t using projected spectral gradient algorithm.
dt = s∗t − st
Perform line search on the direction of dt to satisfy the Armijo condition.
t = t+ 1

end while
Select the features with corresponding entry in s equal to 1.

6.6 Parameter Selection

Existing multi-view feature selection methods typically have 2 ∼ 3 regularization parameters and it

is difficult to choose appropriate values for these parameters when class labels are not available. In the

original papers of these psuedo-label approaches (106) (68) (76), only the best performance is reported,

the parameters of which are tuned using all the class labels. However, such way of setting parameters

violates the assumption of no supervision. In practice, it is impossible to know the best parameter values

and this makes them less useful for real world applications.

For CDMA-FS, we provide guidelines for choosing the value of parameter λ. Let us denote the

number of features with s(v)
p = 1 as N (v)

1 , which is influenced by the value of λ. By noting that N (v)
1

is a monotonically non-increasing function of λ, we can choose the value of λ for each view that makes

N
(v)
1 equal to (or within a small range of) the feature size one wants to retain.
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TABLE XII: Statistics of datasets

Statistics Reuters BBC Sport BlogCatalog CNN
# of instances 1575 544 1000 2107

# of features
view1 view2 view1 view2 view1 view2 view1 view2
3791 2862 3183 3203 5390 2003 6262 996

# of classes 6 5 5 7

6.7 Experiments

In this section, we compare the proposed method with state-of-the-art baseline methods on four real

world datasets.

6.7.1 Datasets

We use four publicly available real-world datasets in our experiments.

• Reuters Multilingual dataset 1: News articles in English and German on six topics. Each language

can be considered a view for the same article.

• BBC Sport dataset 2: BBC news articles from 5 topics: athletics, cricket, football, rugby, tennis.

Paragraphs in the news articles are used to construct two views.

1https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,
+Multiview+Text+Categorization+Test+collection

2http://mlg.ucd.ie/datasets/segment.html

https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+Categorization+Test+collection
https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+Categorization+Test+collection
http://mlg.ucd.ie/datasets/segment.html
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• CNN dataset 1: It consists of news articles from CNN with two views: news text and images in

the news.

• Blogcatalog dataset 2: A subset of blog posts from Blogcatalog website in the categories of

{Autos, Software, Crafts, Football, Career&Jobs}. Two views are the text in posts and the tags

associated with the posts, respectively.

The statistics of four real-world datasets is summarized in Table XII.

TABLE XIII: Clustering accuracy on four datasets. For the baselines that need parameter tuning,
best/median performance is reported.

Method BBC Sport Reuters
# features 100 200 300 400 100 200 300 400
All Features 0.5960 0.6545
LS 0.4034 0.3885 0.3756 0.4112 0.3792 0.4587 0.5446 0.5900
UDFS 0.4565/0.4504 0.5232/0.5228 0.5549/0.5107 0.5525/0.5164 0.4320/0.4225 0.4921/0.4436 0.5926/0.4630 0.5918/0.5421
RSFS 0.6054/0.5388 0.6515/0.5709 0.6713/0.6041 0.6634/0.6085 0.5688/0.4558 0.5757/0.4529 0.6546/0.5271 0.6259/0.5332
MVFS 0.5996/0.5480 0.6572/0.5662 0.6148/0.5966 0.6118/0.6015 0.5302/0.4284 0.5561/0.4505 0.5592/0.5447 0.5950/0.5299
MVUFS 0.6253/0.4338 0.6181/0.5258 0.6242/0.6089 0.6542/0.6181 0.5998/0.3677 0.6476/0.4782 0.6397/0.5339 0.6182/0.5619
CDMA-FS 0.7341 0.7403 0.7472 0.7494 0.5465 0.6015 0.6322 0.6428
Method BlogCatalog CNN
# features 100 200 300 400 100 200 300 400
All Features 0.5979 0.3005
LS 0.3947 0.3975 0.4112 0.4550 0.2435 0.2419 0.2573 0.3238
UDFS 0.5219/0.4153 0.6173/0.6022 0.6561/0.6556 0.6489/0.6459 0.4095/0.4084 0.4019/0.3956 0.4171/0.3921 0.3962/0.3772
RSFS 0.6388/0.4995 0.6504/0.5733 0.6657/0.5917 0.6513/0.6014 0.3647/0.2692 0.4131/0.3140 0.4112/0.3608 0.4243/0.3596
MVFS 0.5409/0.5139 0.6027/0.5690 0.6107/0.5778 0.6457/0.6056 0.3578/0.2639 0.4204/0.3511 0.3902/0.3697 0.4213/0.3637
MVUFS 0.6157/0.4901 0.6693/0.6157 0.6565/0.5514 0.6496/0.5521 0.4524/0.3227 0.4899/0.3520 0.4879/0.3402 0.4649/0.3566
CDMA-FS 0.6029 0.6746 0.6704 0.6851 0.5347 0.4989 0.4771 0.4783

1https://sites.google.com/site/qianmingjie/home/datasets/cnn-and-fox-news

2http://dmml.asu.edu/users/xufei/datasets.html

https://sites.google.com/site/qianmingjie/home/datasets/cnn-and-fox-news
http://dmml.asu.edu/users/xufei/datasets.html


119

TABLE XIV: Clustering NMI on four datasets. For the baselines that need parameter tuning,
best/median performance is reported.

Method BBC Sport Reuters
# features 100 200 300 400 100 200 300 400
All Features 0.4434 0.4846
LS 0.0724 0.0775 0.0702 0.1099 0.1960 0.2689 0.3486 0.3989
UDFS 0.2279/0.1968 0.3453/0.2994 0.3453/0.2939 0.3386/0.2861 0.2203/0.2187 0.2829/0.2639 0.4023/0.2834 0.4046/0.3677
RSFS 0.3543/0.3141 0.4340/0.3900 0.5162/0.4151 0.5076/0.4166 0.4079/0.2429 0.4329/0.2963 0.4539/0.3648 0.4666/0.4134
MVFS 0.3383/0.3133 0.4288/0.3899 0.4276/0.4155 0.4371/0.4157 0.3594/0.2267 0.3986/0.2787 0.4256/0.3855 0.4427/0.4180
MVUFS 0.4374/0.2062 0.4255/0.3171 0.4273/0.4032 0.4443/0.4236 0.4260/0.1866 0.4887/0.3346 0.4816/0.3570 0.4681/0.4000
CDMA-FS 0.5774 0.6659 0.6693 0.6738 0.3823 0.4532 0.4801 0.4858
Method BlogCatalog CNN
# features 100 200 300 400 100 200 300 400
All Features 0.4782 0.0957
LS 0.2252 0.2458 0.2400 0.2819 0.0513 0.0557 0.0667 0.1280
UDFS 0.3223/0.1978 0.4123/0.3580 0.4501/0.4309 0.4753/0.4328 0.2122/0.1897 0.1852/0.1846 0.1920/0.1831 0.1868/0.1784
RSFS 0.4260/0.3090 0.4551/0.3564 0.4715/0.4064 0.4746/0.4408 0.1537/0.0690 0.1862/0.0984 0.1853/0.1430 0.2048/0.1383
MVFS 0.3432/0.3181 0.3971/0.3543 0.4274/0.4041 0.4764/0.4424 0.1517/0.0739 0.2051/0.1391 0.1558/0.1444 0.2034/0.1391
MVUFS 0.4237/0.2910 0.4747/0.4347 0.4643/0.3997 0.4504/0.3998 0.2242/0.1170 0.2824/0.1340 0.2917/0.1423 0.2670/0.1645
CDMA-FS 0.4176 0.4650 0.4866 0.5105 0.3244 0.3244 0.3049 0.2910

6.7.2 Baselines

We compare CDMA-FS with using all features and five other unsupervised feature selection meth-

ods as follows:

• All Features: It uses all original features without selection for evaluation.

• LS: Laplacian Score (34) selects the features that preserve the local manifold structure.

• UDFS: Unsupervised Discriminative Feature Selection (106) is a pseudo-label based approach

with L2,1 regularization to exploit the local structure.

• RSFS: Robust Spectral Feature Selection (76) selects features by robust spectral analysis frame-

work with sparse regression.
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• MVFS: Multi-view Feature Selection (82) is unsupervised feature selection for multi-view data

based on pseudo labels, which are generated as the consensus of spectral clustering on two views.

• MVUFS: Multi-view Unsupervised Feature Selection (69) generates pseudo-labels by Non-negative

Matrix Factorization and local kernel learning.

6.7.3 Experiment setup

In this section, we evaluate the quality of selected features by their clustering performance. We use

the the popular co-regularized spectral clustering (43) for clustering multi-view data 1. We set their σ as

the median of pairwise Euclidean distances between data points and λ = 0.1 as suggested in the paper.

KMeans is then used on these latent factors. We repeat the KMeans experiment for 20 times (since it

is initilization) and report the average performance. We vary the number of features d in the range of

{100, 200, 300, 400}. For each feature size d, we choose appropriate λ in our method via binary search

to let the number of selected features (with score sp = 1) within d± 10.

Following the typical experimental setting for unsupervised feature selection (106) (48) (101), we

use Accuracy and Normalized Mutual Information (NMI) to evaluate the result of clustering. We set

k = 5 for the kNN neighbor size in the baseline methods and our approach following previous con-

vention (48). For the number of pseudo-classes in UDFS, RSFS, MVFS and MVUFS, we use the

ground-truth number of classes. Also, we perform grid search in the range of {0.1, 1, 10} for the reg-

ularization parameters in these baseline methods. Besides their best performance, we also report the

median performance for them. For CDMA-FS proposed in this paper, we use ‘0/1’ weighting in the W

1We use the code at http://www.umiacs.umd.edu/˜abhishek/code_coregspectral.zip

http://www.umiacs.umd.edu/~abhishek/code_coregspectral.zip
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Figure 12: NMI w.r.t different values of α

and we fix σ2 = 1 and α = 0.01 for all the datasets after normalizing each data point to unit length. We

set the maximum number of iterations for the cross-diffusion process as 20.

6.7.4 Results

The clustering accuracy and NMI on four datasets are shown in Table XIII and Table XIV. It can

be observed that feature selection is a useful technique for improving the multi-view clustering perfor-

mance. For example, compared with using all the features, CDMA-FS with 400 features improves the

accuracy on BBCSport and BlogCatalog datasets by 26% and 15%, respectively. When comparing with

other feature selection methods, we can observe that CDMA-FS performs favorably or comparable to

the best performance of baseline methods, the parameters of which are tuned using all the class labels.

Considering that in practice one cannot know the best parameters for these baseline methods (since
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we assume no supervision), their median performance is a better reflection of these methods’ practical

power, which is far inferior to CDMA-FS.

6.7.5 Parameter Sensitivity

In this subsection, we study how the regularization α in the cross diffusion process affects the quality

of selected features. The performance w.r.t different α on BlogCatalog and CNN is shown in Figure 12.

We can observe that the performance is not very sensitive to α, and CDMA-FS can perform reasonably

well when α > 10−5. In contrast, the baseline methods in Table XIII and Table XIV tend to be more

sensitive w.r.t. the parameter values, as the their median performance differs significantly with best

performance.



CHAPTER 7

UNSUPERVISED FEATURE SELECTION WITH COMPLEX SIDE INFORMATION

7.1 Introduction

High dimensional data become increasingly popular as people are able to collect information from

different aspects. For example, thousands of gene profiling features are obtained from microarray exper-

iments, and data collected from sensors that are deployed at various locations across the country could

compose feature vectors of more than one million entries.

Such high dimensionality poses challenges to many machine learning and data mining tasks because

many features in the high dimensional space are noisy and irrelevant. Feature selection (34) (106),

by removing noisy features and retaining a set of high-quality ones, can help alleviate the curse of

dimensionality. In addition to improving the performance, selecting a small set of relevant features can

also make the machine learning models more interpretable and provide additional insights about the

problem.

Supervised feature selection (77) selects features by measuring their correlations with class labels

which are usually expensive to obtain. Therefore, we mainly focus on unsupervised feature selection

in this chapter. Unsupervised feature selection methods (34) (106) usually aim to exploit the statistics

information of the data. However, using the potentially noisy features alone as guidance might be

insufficient for selecting high-quality features.

123
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Figure 13: Examples of data with complex side information

In the era of big data, one can often collect various forms of side information associated with the

entities of interest. Such side information can usually provide abundant information about the data

instances. Hence, to select high-quality features, it is highly desirable to incorporate the side informa-

tion. However, side information usually comes in a complex and interrelated form and poses additional

challenges on how to use it effectively (Figure 13).

• In blog websites (e.g., BlogCatalog), each blog can be represented as a high dimensional feature

vector from the text data. Besides such text features, blog posts are also equipped with complex

side information as shown in 13a where each blog post is associated with a user who writes the

blog and a set of tags describing the post. In addition, there are social relationships between users.

Considering the cost of supervised feature selection with labels from human experts, it would be

a worthwhile effort to utilize the side information to guide feature selection.

• In bioinformatics, each chemical compound can be represented by its substructures in the vec-

tor space. Consider the task of predicting the side effect of drugs (i.e., chemical compounds)
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based on these substructure features. The supervision information (i.e., side effect) can be very

expensive to obtain through clinical trials (e.g., sometimes even at the cost of human lives), and

thus supervised feature selection is less effective in this scenario. Fortunately, one can have a

set of side information (e.g., gene-chemical compound interaction, gene-pathway interaction and

gene-disease interaction, as in 13b) which provides rich information for selecting informative

substructure features.

• In news articles, there are different concepts or entities, such as people, places and organizations.

The relationships between these entities can be extracted from external knowledge bases, such as

Freebase (9). For instance, people can be related with multiple places and organizations (13c).

Such external knowledge can also be useful for guiding the selection of text features.

Side information can provide valuable information for feature selection, especially when class labels

are unavailable. In this chapter, we study the problem of unsupervised feature selection with complex

side information. To handle the increasingly complicated form of side information, we propose a new

method, SideFS (Complex Side Information-guided Feature Selection), in this chapter. Since the side

information is usually interrelated, we model them as a heterogeneous information network (79) (90)

(47). We then derive similarity measures between instances based on the concept of meta-path. Infor-

mation is derived from the meta-paths by learning network based representations. Such representations

are used to guide feature selection. The contributions of this chapter can be summarized as follows.

• To our best knowledge, we are the first to formulate the problem of unsupervised feature selection

with complex form of side information.
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• We propose a novel method, SideFS, which performs joint feature selection and representations

learning from the complex side information by modeling it as a heterogeneous information net-

work.

• We conduct experiments on real-world datasets and show that SideFS can effectively utilize the

side information and outperform baseline methods significantly.

7.2 Related Work

In this section, we briefly review unsupervised feature selection.

Unsupervised feature selection typically utilizes information only from the features by employing

different criteria. One popular criterion principle is to preserve the local manifold structure or similarity

(34) (109) (110). These unsupervised feature selection algorithms usually evaluate the importance of

features individually and neglect correlation among features. Psuedo-label based methods (106) (48)

(92) with L2,1 norm (63) have gained much popularity in recent years. In these methods, sparse regres-

sion/subspace learning are performed to achieve the effect of feature selection. These methods mainly

differ in the the way of generating pseudo-labels and the constraints on pseudo-labels. Non-negative

Discriminative Feature Selection (NDFS) (48) enforces non-negative constraint on the latent factors ob-

tained from spectral analysis. Robust Unsupervised Feature Selection (RUFS) (68) further adds L2,1

norm to the regression objective to be robust to outlier instances. Robust Spectral Feature Selection

(RSFS) (76) uses local kernel regression and robust Huber loss. FSASL (21) performs feature selection

and local structure learning jointly. Recently, Stochastic Neighbor-preserving Feature Selection (SNFS)

are proposed to jointly evaluate features in a non-linear manner based on the concept of stochastic

neighbors (101).
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However, these methods are not able to exploit side information in the complex form, which could

contain abundant information.

7.3 Proposed Method

We denote n data samples as X = [x1,x2, . . . ,xn] and the dimensionality of original feature space

is D. So xi ∈ RD and xip denotes the value of p-th (p = 1, . . . , D) feature of xi. Our goal is to select

d (d� D) high-quality features.

7.3.1 Knowledge Extraction from Complex Side Information

The first step of the framework is to extract knowledge from the complex side information. We

model the complex relationship of entities in the side information as a heterogeneous information net-

work. The key idea of this knowledge extraction step is to first derive meta-paths from the side infor-

mation network and encode the side information via embedding learning.

We model the inter-connected objects in the complex side information as a heterogeneous side in-

formation network:

Definition 12 Side Information Network The complex side information of data instances can be rep-

resented as a Side Information Network G = (V, E). V denotes the set of nodes, which includes t types

of entities, V1 = {v11, v12, . . . , v1n1}, . . . , Vt = {vt1, vt2, . . . , vtnt}. E denotes the set of (multiple types

of) links E ⊂ V × V .

The target data instances are also one type of nodes in the side information network and we refer to

them as instance nodes.
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TABLE XV: Examples of meta-paths derived from two datasets

Datasets Examples of meta-path

BlogCatalog
Blog has−−→ Tag has−1

−−−−→ Blog

Blog
written by−−−−−−→ User

written by−1

−−−−−−−−→ Blog

Blog
written by−−−−−−→ User

friend−−−−→ User
written by−1

−−−−−−−−→ Blog

Blog
written by−−−−−−→ User

friend−−−−→ User
friend−−−−→ User

written by−1

−−−−−−−−→ Blog

Chemical Compound

Compound treat−−−→Disease treat
−1

−−−−→Compound

Compound bind−−→ Gene bind−1

−−−−→Compound

Compound bind−−→ Gene PPI−−−→ Gene bind−1

−−−−→Compound

Compound treat−−−→Disease cause
−1

−−−−−→Gene bind
−1

−−−−→ Compound

Compound bind−−→ Gene has−−→ Pathway has−1

−−−−→ Gene bind−1

−−−−→ Compound

Definition 13 Meta-path A meta-pathP of length l represents a sequence of relationsRi (i = 1, . . . , l),

i.e., T1
R1−−→ T2

R2−−→ · · · Rl−→ Tl+1, where Ti (i = 1, . . . , l+ 1) are the types of nodes. A unique sequence

of nodes is referred to as a path instance of P .

For each pair of instances, various meta-paths can be extracted to provide information about their

correlations (Table XV). Different types of meta-paths usually have different semantic meanings. For

example, meta-path Compound-Disease-Compound means chemical compounds that can cure the same

disease, while meta-path Compound-Gene-Pathway-Gene-Compound indicates chemical compounds

binding with the genes that are involved in the same pathway.

Inspired by the path-counting measure in (80), we define the following side information-based sim-

ilarity measure by counting the meta-path instances between the target data points.
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Definition 14 SideSim Given a side information network, we define the following similarity measure

from the side information w.r.t meta-path m ∈M as follows:

s
(m)
ij =

2 · |P(m)(i; j)|
|P(m)(i; ·)|+ |P(m)(j ; ·)| (7.1)

where |P(m)(i; j)| denotes the number of path instances with type m between data instances i and j,

and |P(m)(i; ·)| denotes the number of out-going path instances of type m from instance i.

These multiple types of meta-paths depict the correlations among target data instances from com-

plementary perspectives, and it is desirable to ensemble them to obtain a more comprehensive view of

correlations. We consider the following two ways of aggregation, which we refer to as Micro Aggre-

gation and Macro Aggregation. We will compare the performance of these two aggregation methods

in experiments.

Definition 15 Micro SideSim Aggregation We define the micro-aggregation of SideSim as follows:

sij =

∑
m∈M ·2w(m)|P(m)(i; j)|∑

m∈M w(m)|P(m)(i; ·)|+∑m∈M w(m)|P(m)(j ; ·)| (7.2)

Definition 16 Macro SideSim Aggregation We define the macro-aggregation of SideSim as follows:

sij =
∑
m∈M

w(m)s
(m)
ij (7.3)

where w(m) is the weight assigned for meta-path with type m. In the unsupervised scenario, one could

just use equal weights for all types of meta-paths, as the simplest form of ensemble. Alternatively,
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one could rely on domain experts to provide prior knowledge to determine the importance of different

meta-paths. We adopt the former approach in our experiments.

We further define the transition probability P based on the aggregated SideSim

Pij =
sij∑n
j=1 sij

(7.4)

Considering that the SideSim between instances are not quite reliable for non-nearest pairs, we

truncate the fused full similarity graph to a kNN graph Gf based on P̂ = (Pij + P Tij )/2 which tends to

have better performance in our preliminary experiments. We use k = 10 in this chapter.

To further extract information from the fused graph Gf , we learn embeddings from this graph struc-

ture. Since the connected instances tend to have larger correlations, we learn the embeddings ui ∈ Rc

(i = 1, 2, . . . , n) for each instance to make the embeddings of neighbors in Gf close and embeddings

of non-neighbors far apart. Hence, we minimize the negative log-likelihood as follows:

min
U

Lg = −
∑

(i,j)∈E

log (fij)−
∑

(i,j)∈NE

log (1− fij) + γ||U||2F (7.5)

where U = [uT1 , . . . ,u
T
n ]T and γ controls the complexity of U (|| · ||F denotes Frobenius norm).

fij should be a monotonic function that transforms the similarity or distance between ui and uj into

the range of (0, 1). For example, fij could be 1
1+exp (−UiUT

j )
or 1

1+||Ui−Uj ||2F
. We found these two

functions have similar performance in our preliminary experiments and we use the former one in the

rest of chapter. For the set of negative edges NE in Equation 7.5, we perform negative sampling as in

(81) and retain |E| number of negative edges.
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7.3.2 Joint Representation Learning and Feature Selection

In the previous subsection, we discuss how to learn representations from the fused side information

network. Side information could also be noisy, so the representations derived from the side information

network might not be high-quality for every data instance. Under such scenario, it is desirable to incor-

porate information from the instance features for the representation learning. Meanwhile, we perform

feature selection jointly in this process.

To utilize these representations for feature selection, we learn a linear projection of U.

min
V
||UVT −X||2F (7.6)

A projection matrix V ∈ RD×c is introduced to establish the connection between the representations U

and the feature matrix X in Equation 7.6.

To perform joint feature selection when learning the representation, we employ a feature selection

indicator vector s ∈ {0, 1}D, where sp = 1 indicates the p-th feature is selected and sp = 0 otherwise.

min
V,s

||UVT diag(s)−X||2F

s.t. sp ∈ {0, 1}, ∀p = 1, . . . , D

D∑
p=1

sp = d

(7.7)

where diag(s) is the diagonal matrix with s as the diagonal elements. The constraint
∑D

p=1 sp = d

enforces that only d (d < D) features are retained. Intuitively, the representations leverage informa-

tion from both the original features and the rich information from the side information. The features
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that cannot be well represented by the latent representations through linear projection tend to be noisy

features and will be removed. sp of such features tend to be 0 under the constraint of
∑D

p=1 sp = d.

diag(s)V is a matrix with d non-zero rows and hence it achieves the effect of feature selection.

We can combine s and V together, and employ L2,0 norm to achieve the effect of feature selection.

The L2,0 norm ||W||2,0 is the number of rows in V with non-zero values. If ||Vi·||F = 0, the i-th

feature is not selected. The feasible region defined by ||V||2,0 ≤ d is not convex and we relax ||V||2,0

into its convex hull ||V||2,1:

min
V
||UVT −X||2F

s.t. ||V||2,1 ≤ d
(7.8)

where the L2,1 norm ||V||2,1 =
∑D

i=1 ||Vi·||F could also achieve row sparsity. We further write the

constraint in the form of Lagrangian as follows:

min
V

La = ||UVT −X||2F + λ||V||2,1 (7.9)

where λ is the regularization parameter on L2,1 norm.
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We combine the side information-based loss and feature-based loss together, and the final objective

function becomes the following:

min
U,V

L = Lg + La

=−
∑

(i,j)∈E

log (fij)−
∑

(i,j)∈NE

log (1− fij)+

γ||Ug||2F + α||UVT −X||2F + λ||V||2,1

(7.10)

where α is the parameter that controls the relative importance of consensus learning.

7.4 Optimization

In this section, we discuss how to solve the optimization problem for SideFS.

The objective function in Equation 7.10 is not jointly convex on both U and V. Now we decompose

the objective function into two subproblems and develop an alternating optimization approach to solve

the problem in Equation 7.10.

Step 1. Fixing V, update U. With fixed V, we optimize the following objective:

min
U
Lu = Lgu + Lau + Lregu

Lgu = −
∑

(i,j)∈E

log (fij)−
∑

(i,j)∈NE

log (1− fij)

Lau = α||UV −X||2F

Lregu = γ||U||2F
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It is easy to verify this objective function is convex w.r.t U when V is fixed. The following gradients

can be derived w.r.t. U.

∂Lgu
∂ui

=
∑

(i,j)∈E

(fij − 1) · uj +
∑

(i,j)∈NE

fij · uj (7.11)

∂Lau
∂U

= 2(UV −X)V (7.12)

To solve this subproblem, one can use gradient-based methods, such as L-BFGS.

Step 2. Fixing U, update V. With fixed U, we find the optimal V by solving the following problem:

min
V

Lv = ||UV −X||2F +
λ

α
||V||2,1 (7.13)

We denote Lregv = λ
α ||V||2,1. We can derive the following gradient w.r.t. V:

∂Lv
∂V

= 2(UV −X)′ ·U +
∂Lregv
∂V

(7.14)

∂Lregv
∂Vij

=
λ

α

Vij√∑k
j=1 Vij + ε

(7.15)

where ε is a very small positive number that makes the regularization term differentiable at 0 (105).

We perform step 1 and 2 in alternating manner, as shown in Algorithm 7.

Theorem 7.4.1 For the optimization problem in Equation 7.10, Algorithm 7 is guaranteed to converge.
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Algorithm 7 Alternating Optimization for SideFS

Initialize: U = rand(0, 1), V = 0, t = 1.
while not converged do

Fixing V, find the optimal U by L-BFGS
Fixing U, find the optimal V by L-BFGS
t = t+ 1

end while
Output: Rank all the features (i = 1, . . . , D) by ||Vi·|| and return the top d features.

TABLE XVI: Statistics of two datasets

Statistics BlogCatalog Chemical Compound
# of instances 3083 105
# of features 3170 290
# of labels 5 550

Proof: The objective function in Equation 7.10 monotonically decreases in each iteration and it is

lowered bounded. So the alternating framework in Algorithm 7 would converge.

7.5 Experiments

In this section, we compare the proposed method with several baselines with applications on clus-

tering and multi-label prediction.
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7.5.1 Datasets

• BlogCatalog Dataset1: A subset of blog post dataset in the following categories: {Personal Devel-

opment, Investing, Fitness, Soccer, Cars}. A blog post can have side information such as users,

tags and relationships between users.

• Chemical Compound Dataset (42): A bioinformatics network in which each chemical compound

has subgraph features mined from the compound structure. Besides, we also have complex side

information such as genes, diseases, pathways and PPIs (protein-protein interactions).

The statistics of these two datasets is shown in Table XVI and the interrelated complex side information

is illustrated in 13a and 13b.

7.5.2 Baselines

We compare our method to the following unsupervised feature selection methods.

• All Features: It uses all original features without selection for evaluation.

• LS: Laplacian Score (34) selects the features which can best preserve the local manifold structure.

• UDFS: Unsupervised Discriminative Feature Selection (106) is a pseudo-label based approach

with L2,1 regularization.

• RSFS: Robust Spectral Feature Selection (76) selects features by L2,1-norm regularized regres-

sion with robust Huber loss.

1http://dmml.asu.edu/users/xufei/datasets.html

http://dmml.asu.edu/users/xufei/datasets.html
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TABLE XVII: Clustering performance on BlogCatalog

Accuracy (All Features: 0.6224)
# of Features LS UDFS RSFS SNFS Micro-SideFS Macro-SideFS
100 0.2809 0.4490 0.3973 0.6103 0.6796 0.6740
200 0.3730 0.5489 0.5292 0.6670 0.7284 0.7333
300 0.3958 0.6147 0.5752 0.6840 0.7247 0.7157
400 0.4311 0.6380 0.6059 0.6020 0.7430 0.7351

NMI (All Features: 0.4667)
# of Features LS UDFS RSFS SNFS Micro-SideFS Macro-SideFS
100 0.0193 0.2113 0.1453 0.3870 0.4595 0.4671
200 0.1195 0.3391 0.3268 0.4673 0.5348 0.5252
300 0.1503 0.4346 0.3837 0.5000 0.5387 0.5377
400 0.2109 0.4451 0.4298 0.4357 0.5628 0.5570

• SNFS: The recently proposed Stochastic Neighbor-preserving Feature Selection (101) evaluates

features jointly in a non-linear manner.

For all methods (except SNFS), we do grid search for the regularization parameter in the range of

{0.1, 1, 10} and report the best performance. For SNFS, we follow the author’s suggestion and choose

the λ that makes N0.9 close to the desired number of features. We use c = 5 as the latent dimension

size in our method and the baselines. For the proposed SideFS, we use all the non-redundant meta-paths

with length less than 5, since previous work (79) suggests meta-paths with large length tend to be not as

useful.

7.5.3 Clustering Blog Posts

For the BlogCatalog dataset, we evaluate the feature quality by the clustering performance. We use

Accuracy and Normalized Mutual Information (NMI) as evaluation metrics following the convention in
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existing work (106) (68) (76). The cluster labels are mapped to ground truth labels using Kuhn-Munkres

Algorithm (59). Normalized Mutual Information (NMI) is defined based on the mutual information

between cluster labels and class labels. Higher values of accuracy and NMI indicate better quality of

clustering. For all methods, we perform K-means1 on the selected features. Since K-means is affected

by the initial seeds, we repeat the experiment for 20 times and report the average performance.

Results The clustering performance is shown in Table XVII. When comparing the two variants of

SideFS, Macro-SideFS and Micro-SideFS performs similarly with different numbers of features. Com-

pared with other feature selection methods, both Micro-SideFS and Macro-SideFS outperform the base-

line methods significantly with different feature sizes. For example, the best performance achieved by

Micro-SideFS and Macro-SideFS, which can effectively utilize side information, improves clustering

accuracy over the most competitive baseline SNFS by 8.6% and 7.5%, respectively. This suggests both

micro and macro aggregation methods can be effective to incorporate side information.

7.5.4 Predicting Side Effect of Chemical Compounds

In this subsection, we evaluate the feature quality by their performance in predicting side effects

for chemical compounds. Selecting informative substructures can help human experts develop better

insights on the mechanisms of compound structures and their potential risks on incurring side effects.

Similar to previous work (12), we use 1-NN as the classifier for the prediction task. Since a chemical

compound might cause more than one side effects, we use the micro-F1, macro-F1 and Hamming Loss

as the performance measures. The performance of different methods is shown in Table XVIII. The

1We use the code at http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html

http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html
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TABLE XVIII: 1-NN performance on side effect prediction. ↑ indicates that larger value is better while
↓ indicates that smaller value is better. The best result on each metric is in bold font.

Micro-F1 ↑ (All Features: 0.0913)
LS UDFS RSFS SNFS Micro-SideFS Macro-SideFS
0.0799 0.0866 0.0936 0.0825 0.1041 0.0978

Macro-F1 ↑ (All Features: 0.1061)
LS UDFS RSFS SNFS Micro-SideFS Macro-SideFS
0.0946 0.1023 0.1094 0.1029 0.1177 0.1127

Hamming Loss ↓ (All Features: 0.0456)
LS UDFS RSFS SNFS Micro-SideFS Macro-SideFS
0.0477 0.0459 0.0456 0.0477 0.0453 0.0431

features selected by SideFS usually outperform baseline methods by 5% ∼ 10%. This illustrates the

usefulness of incorporating the side information into the feature selection process.

7.5.5 Sensitivity Analysis

In our algorithm, there are several regularization parameters λ, α, γ and latent dimension size c. In

this subsection, we investigate how the proposed method performs under different values of parameters

(vary one parameter when fixing c = 5 and others equal to 1) with feature sizes {100, 200, 300, 400}.

The NMI results on the BlogCatalog dataset with micro-aggregation are shown in Figure 14. We can

observe that SideFS is not very sensitive to these parameters and performs well for a wide range of

parameter values.
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Figure 14: Parameter sensitivity w.r.t. different parameters



CHAPTER 8

CONCLUSIONS AND CONTRIBUTION

(Parts of chapter were previously published (101), (99), (96), (100) and (98).)

In this thesis, we have explored unsupervised feature selection for heterogeneous forms of data.

Towards this direction, we thoroughly studied different forms of data: traditional data, network data,

multi-view data and data with complex side information. We presented methods related to feature

selection on these types of data with novel perspectives and insights. The effectiveness of the proposed

approaches are evaluated by experiments on various real-world datasets. The contributions we have

made can be summarized as follows:

• We propose a new method, SNFS, for unsupervised feature selection by preserving stochastic

neighbors. For each data point, other data points can be its potential neighbors with certain

probability. We select the features that can approximate the original distribution by minimizing

the KL-divergence. This criterion can select discriminative features that makes similar data points

close and push dissimilar data points far apart. The objective function has less parameters than

the state-of-the-art pseudo-label methods and it has a simple gradient update formula. We develop

an efficient optimization algorithm for SNFS based on projected L-BFGS. Empirical results show

that the proposed method outperforms state-of-the-art approaches on several real-world datasets.

• Network structures present valuable information as well as new challenges to feature selection.

We develop an efficient unsupervised feature selection algorithm for network data based on partial

141
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order preserving (POP) principle, a new perspective on using links to guide feature selection. Our

method is conceptually simple and computationally efficient, whereas state-of-the-art approaches

typically involve heavy matrix computation and are intractable for large real world networks. Ex-

periments indicate that our approach significantly outperforms state-of-the-art methods in terms

of both efficiency and effectiveness.

• We develop an unsupervised feature selection algorithm from a generative point of view which

can incorporate information from the node content and links directly. We assume that the node

attributes and link structures are generated from a set of oracle features and we aim to recover

this set of high-quality features based on the generation process. Experiments indicate that our

approach significantly outperforms state-of-the-art methods in terms of feature quality.

• In many real-world networks, the links and node attributes are often partially observable. We

study how to recommend link-only nodes to attribute-only nodes (or vice versa), by learning a

representation consensus between links and attributes. Two instantiations that employ different

ranking-based loss are presented for the representation learning. Considering high-dimensional

node attributes are potentially noisy, we perform joint feature selection in the representation

learning process. The link-based representation and the attribute-based representation could lend

strength to each other and make the representation more resilient to link and attribute noise. Ex-

perimental results shows that the proposed P-NRCL and MM-NRCL are able to learn high-quality

representations, which can effectively perform cross-view link prediction.

• High-dimensional multi-view data pose challenges for many machine learning tasks. While fea-

ture selection methods can be useful for alleviating the curse of dimensionality, existing ap-
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proaches either cannot exploit information from multiple views simultaneously or rely on cluster

labels for this task. We aim to preserve more accurate information from multi-view data by

learning a cross-diffused matrix and directly utilize the information. Experimental results show

that CDMA-FS is able to select high-quality features on real-world datasets and outperforms the

baseline methods significantly.

• By observing many datasets are equipped with complex side information, we propose a novel

method, SideFS, for unsupervised feature selection with heterogeneous side information. Such

side information can provide useful information when the class labels are expensive to obtain We

leverage the side information by learning representations from the meta-paths and such represen-

tations can be used to guide feature selection. Experimental results show that incorporating side

information can effectively enhance the quality of selected features in real-world applications.
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