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SUMMARY 

Individuals with schizophrenia evidence impairment in multiple aspects of emotional 

functioning, including emotion expression, perception, and recognition. Neuroimaging research 

has identified abnormalities in the amygdala as an etiological factor underlying affective 

impairment in this population. However, the exact nature of amygdala dysfunction remains 

unclear. The current study utilized psychophysiological interaction analyses to examine 

functional connectivity between the amygdala and medial prefrontal cortex (mPFC) during an 

emotion perception task. Participants with schizophrenia (SZ) and demographically-matched 

comparison participants (HC) viewed and rated positive, negative, and neutral images from the 

International Affective Picture System (IAPS) library while undergoing functional 

neuroimaging. Results revealed a significant group difference in right amygdala-mPFC 

connectivity during perception of negative compared to neutral images. Specifically, HC 

participants demonstrated positive functional coupling between the amygdala and mPFC, 

consistent with co-active processing of salient information. In contrast, SZ participants 

evidenced negative functional coupling, consistent with top-down inhibition of the amygdala by 

the mPFC. A significant positive correlation between connectivity strength during negative 

image perception and clinician-rated social functioning was observed in SZ participants. Similar 

patterns of functional coupling were observed during positive image perception, though the 

between-group difference failed to reach statistical significance. These results suggest that 

emotional dysfunction in schizophrenia may be due, in part, to abnormal interactions between 

the amygdala and mPFC during perception of emotional stimuli. Disturbances in functional 

connectivity during early stages of emotion processing could lead to impairment in higher order 

aspects of emotion processing, such as emotion regulation. 
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I. INTRODUCTION 

Emotional dysfunction has long been recognized in schizophrenia, since Kraepelin 

(1919/1971) and Bleuler (1911) described disturbances in affect. Affective impairment is 

considered a core feature of the illness, with affective flattening listed in the DSM-IV as a 

negative symptom of schizophrenia (American Psychiatric Association, 1994). Individuals with 

schizophrenia show deficits in emotional expression, perception and recognition, including 

identification, discrimination, and intensity ratings of facial emotion expressions (Kring & 

Moran, 2008; Tremeau, 2006). They also report increased levels of physical and social 

anhedonia (e.g., Blanchard, Mueser, & Bellack, 1998; Herbener, Rosen, Khine, & Sweeney, 

2007; Katsanis, Iacono, & Beiser, 1990). Despite blunted emotional expression and self-reported 

anhedonia, individuals with schizophrenia report the same emotional responses to affective 

stimuli in the moment (e.g., Aghevli, Blanchard, & Horan, 2003; Curtis, Lebow, Lake, Katsanis, 

& Iacono, 1999; Herbener, Song, Khine, & Sweeney, 2008; Kring & Moran, 2008). Gaining a 

better understanding of this emotional experience-perception disconnect is a current 

schizophrenia research goal and aim of the current study. 

A. Amygdala Dysfunction in Schizophrenia  

 Neuroimaging techniques have been used to investigate the neural underpinnings of 

emotional dysfunction in schizophrenia, revealing mixed results. Studies have typically focused 

on the amygdala given its role in processing emotional information, particularly negative affect 

(LeDoux, 2000; Phan, Wager, Taylor, & Liberzon, 2002). Anatomical studies note decreased 

volume (Ellison-Wright, Glahn, Laird, & Thelen, 2008; Joyal et al., 2003) and altered gene 

expression (Weidenhofer, Bowden, Scott, & Tooney, 2006) in the amygdala in schizophrenia. 

Functional studies reveal abnormal amygdala response during emotion perception and 
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recognition, with mixed findings regarding direction of activation differences. Some studies have 

reported amygdala hypoactivation (e.g., Gur et al., 2002; Hempel, Hempel, Schonknecht, 

Stippich, & Schroder, 2003; Phillips et al., 1999; Schneider et al., 1998) while others have found 

amygdala hyperactivation (Holt et al., 2006; Kosaka et al., 2002; Sanjuan et al., 2007; Taylor, 

Phan, Britton, & Liberzon, 2005) in people with schizophrenia compared to controls. Similarly, 

some studies report group differences in left amygdala (Gur et al., 2002; Paradiso et al., 2003; 

Williams et al., 2004), while others report differences in right amygdala activity (Johnston, 

Stojanov, Devir, & Schall, 2005; Takahashi et al., 2004). Further complicating matters, some 

studies have found no group differences in amygdala response to emotional stimuli (Anticevic, 

Repovs, & Barch, 2012a; Dowd & Barch, 2010). Meta-analyses examining amygdala activation 

in people with schizophrenia indicate modest amygdala hypoactivation in response to aversive 

stimuli (Anticevic et al., 2012b; Li, Chan, McAlonan, & Gong, 2010; Taylor et al., 2012).  

Several factors likely contribute to differing findings regarding amygdala dysfunction in 

schizophrenia. First, studies differ in patient characteristics and there is evidence that some 

amygdala abnormalities may be specific to paranoid patients (Russell et al., 2007). Second, 

studies differ in control condition, with some comparing emotional to neutral stimuli and others 

comparing emotional stimuli to baseline brain activity. Studies investigating brain response to 

neutral faces have found hyperactivation in those with schizophrenia in the amygdala (Hall et al., 

2008; Holt et al., 2006; Surguladze et al., 2006), suggesting that decreased amygdala response to 

emotional versus neutral stimuli may reflect heightened response to neutral stimuli. Third, task 

differences in cognitive load may also contribute to mixed amygdala findings. Most tasks require 

at least modest cognitive effort (e.g., recognizing, labeling, or matching emotions), and increased 

cognitive engagement is known to suppress amygdala function in healthy individuals (Pessoa, 
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Padmala, & Morland, 2005). Moreover, a recent emotion study using minimal cognitive load 

reported no group differences in amygdala recruitment but abnormal amygdala-prefrontal 

connectivity in participants with schizophrenia (Anticevic et al., 2012a). Thus, the literature 

largely points to amygdala dysfunction underlying emotion impairment in schizophrenia, but the 

exact nature of amygdala abnormality is unclear.   

B. Functional Connectivity 

The amygdala is a well-connected structure, with known anatomical and functional 

connections throughout the brain (Kim et al., 2011b). Therefore, emotion deficits in 

schizophrenia may not be due to isolated amygdala dysfunction, per se, but rather disruptions to 

functional connections in amygdala circuitry. Of particular relevance to schizophrenia, functional 

disconnection has been proposed as a key etiologic factor in schizophrenic illness (Friston, 

1998). Recent advances in statistical methodology have allowed for the examination of 

functional connectivity between brain structures, i.e. the statistical associations between blood 

oxygen level dependent (BOLD) intensity time series in different brain regions. Accordingly, 

neuroimaging research has recently shifted its focus from activity in isolated brain regions to 

using a network approach, investigating how brain regions interact with one another. Functional 

connectivity approaches can be applied to resting state brain activity or activity associated with 

different task conditions. For example, psychophysiological interaction (PPI) analyses allow for 

comparison of functional connectivity between specified brain regions in different task 

conditions. PPI analyses can further be applied to the comparison of task-related connectivity 

between healthy controls and psychiatric populations. The present study employed PPI analyses 

to investigate functional connectivity in an emotion perception task in individuals with 

schizophrenia compared to healthy controls.  
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1.  Amygdala-mPFC connectivity 

 The amygdala shares connections with a number of cortical and subcortical regions that 

are involved in emotion processing including frontal, insular, temporal, and occipital cortices 

(Amaral, Behniea, & Kelly, 2003; Amaral & Price, 1984) as well as striatum (Russchen, Bakst, 

Amaral, & Price, 1985). Here we focus on connections between the amygdala and medial 

prefrontal cortex (mPFC) including the anterior cingulate cortex (ACC), given the well-

established mPFC and ACC abnormalities in schizophrenia (Goghari, Sponheim, & MacDonald, 

2010; Levitt, Bobrow, Lucia, & Srinivasan, 2010) and importance of mPFC/ACC circuits for 

emotion appraisal, expression, and regulation (Etkin, Egner, & Kalisch, 2011). Strong 

anatomical connections between the amygdala and prefrontal cortical regions have been 

identified. Specifically, animal studies have found efferent and afferent connections between the 

amygdala and prefrontal regions including the mPFC and orbitofrontal cortex (OFC) (Aggleton, 

Burton, & Passingham, 1980; Carmichael & Price, 1995; Ghashghaei & Barbas, 2002; 

Ghashghaei, Hilgetag, & Barbas, 2007; Stefanacci & Amaral, 2002). More recently, diffusion 

tensor imaging studies have confirmed amygdala-mPFC anatomical connectivity in humans 

(Bracht et al., 2009; Croxson et al., 2005; Kim & Whalen, 2009).  

 In addition to anatomical connectivity, functional connections between the amygdala and 

mPFC have been identified in healthy individuals. Functional magnetic resonance imaging 

(fMRI) studies have revealed significant co-activation between the amygdala and prefrontal 

regions during emotion processing, with the direction of coupling depending on task 

characteristics and location within the frontal lobes. Studies utilizing passive emotional picture 

viewing paradigms with minimal cognitive load largely indicate positive coupling between the 

amygdala and prefrontal regions including ventromedial PFC (Heinz et al., 2005), dorsomedial 
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PFC (Kim et al., 2004) and dorsal ACC (Williams et al., 2006). Positive coupling between the 

amygdala and PFC has also been noted in emotion labeling (Satterthwaite et al., 2011) and 

matching (Pezawas et al., 2005) tasks. Findings of positive coupling suggest the amygdala and 

mPFC co-activate during the detection of emotionally salient stimuli that may have survival 

significance, for example during the perception of threat. In addition, they may co-activate to 

generate an emotional response, for example during emotion appraisal or expression. On the 

other hand, emotion studies requiring higher cognitive load such as emotion regulation typically 

find negative amygdala-mPFC coupling (Banks, Eddy, Angstadt, Nathan, & Phan, 2007; 

Drabant, McRae, Manuck, Hariri, & Gross, 2009; Ochsner, Bunge, Gross, & Gabrieli, 2002; 

Ochsner & Gross, 2005). Negative coupling results suggest top-down inhibition of amygdala 

activity by the PFC in order to regulate emotional experience, for example dampening negative 

affect. Affective labeling (Hariri, Bookheimer, & Mazziotta, 2000; Hariri, Mattay, Tessitore, 

Fera, & Weinberger, 2003) and viewing (Das et al., 2005) tasks have also found negative 

amygdala-mPFC coupling during negative emotion conditions, which are also interpreted as top-

down emotion regulation. Cognitive load is of particular relevance, as even a simple cognitive 

load can alter emotional experience. For example, one fMRI study found increased amygdala 

and decreased PFC response during passive viewing compared to labeling of emotional images 

(Taylor, Phan, Decker, & Liberzon, 2003). Location within the PFC is also important to note, as 

some studies have found instances of both negative and positive coupling between the amygdala 

and various PFC regions during emotion tasks (e.g., Pezawas et al., 2005; Satterthwaite et al., 

2011; Williams et al., 2006) and at rest (Kim et al., 2011a). Ektin and colleagues (2011) 

suggested that dorsal PFC regions associated with emotion generation (e.g., appraisal, 

expression) hold positive connections with the amygdala while ventral PFC regions associated 
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with emotion inhibition (e.g., emotion regulation) hold negative functional connections with the 

amygdala. In sum, there is ample evidence of functional connections between the amygdala and 

mPFC during emotion processing, with data generally indicating positive coupling during low 

cognitive load tasks and negative coupling during high cognitive load tasks.  

2.  Amygdala-mPFC connectivity in schizophrenia 

 Functional connectivity studies indicate altered connectivity between the amygdala and 

mPFC in schizophrenia that may underlie emotional dysfunction in this population. Resting-state 

studies largely indicate decreased functional coupling between the amygdala and mPFC in 

individuals with schizophrenia (Fan et al., 2013; Hoptman et al., 2010; Liu et al., 2014), though 

one study found hyperconnectivity amongst these regions during rest (Salvador et al., 2010). 

Amygdala-mPFC hypoconnectivity may hold functional relevance, as lower connectivity 

strength has been correlated with higher aggression (Hoptman et al., 2010) and poorer emotion 

regulation task performance (Fan et al., 2013). In addition to altered resting state connectivity, 

there is burgeoning evidence of aberrant amygdala-mPFC connectivity during emotion 

processing tasks in people with schizophrenia. The exact nature of functional disconnection is 

unclear. Some studies have found decreased connectivity strength in people with schizophrenia 

(Anticevic et al., 2012a; Williams et al., 2004) and those with high proneness to psychosis 

(Modinos, Ormel, & Aleman, 2010). Similarly, others have found significant task-dependent 

amygdala-mPFC connectivity in controls but not those with schizophrenia (Das et al., 2007; 

Fakra, Salgado-Pineda, Delaveau, Hariri, & Blin, 2008; Leitman et al., 2008). Yet another study 

revealed opposite directions of functional coupling such that healthy controls showed negative 

coupling and schizophrenia participants showed positive coupling between the amygdala and 

ventral ACC (Das et al., 2007). Differences in connectivity findings is likely due to task 
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differences in cognitive engagement (e.g., passive viewing versus emotion labeling) and level of 

emotion processing (e.g., emotional appraisal versus regulation), variables that are known to 

influence amygdala-PFC connectivity (Etkin et al., 2011). Though findings differ, they provide 

convergent evidence of disjunction in amygdala-mPFC circuitry during emotion processing in 

schizophrenia.  

 The available literature on amygdala-mPFC functional connectivity in schizophrenia is 

not without limitations. First, the aforementioned studies largely assess amygdala-mPFC 

coupling during tasks in which subjects view emotional faces; however, results from these types 

of tasks are difficult to interpret given that people with schizophrenia often show general deficits 

in face processing (Marwick & Hall, 2008). Face processing studies also carry limited ecological 

validity, as emotional stimuli experienced in daily life contain environmental and human body 

information beyond that conveyed by faces. Only one functional connectivity study to date has 

used emotion stimuli that included emotional scenes (Anticevic et al., 2012a). Second, the 

published functional connectivity studies on emotion in schizophrenia have all used negatively-

valenced images, with neutral images as a comparison condition. It is unclear whether the results 

reflect the impact of arousal versus valence, as these two aspects of emotion are confounded in 

these studies. It is also unclear whether functional disconnection extends to positively valenced 

stimuli, as the amygdala may also respond to positive affect (Hamann, Ely, Hoffman, & Kilts, 

2002; Murray, 2007). Third, the previously mentioned tasks vary significantly in design, 

including passive viewing, emotional face matching, emotion labeling, gender identification, and 

cognitive reappraisal. These studies either employed passive viewing or tasks with high 

cognitive load, with none requiring participants to focus on or rate the intensity of emotional 
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response they felt while viewing emotionally-valenced images. Such a study could shed light on 

functional connectivity during self-evaluative emotional perception. 

C. The Current Study 

 We previously examined effects of valence and diagnosis on brain activity in regions 

associated with emotion processing with this dataset (Nelson, Bjorkquist, Olsen, & Herbener, 

under review). Results indicated minimal differences between schizophrenia and control 

participants in brain activation to emotional stimuli, consistent with previous studies (Dowd & 

Barch, 2010; Harvey, Armony, Malla, & Lepage, 2010). Of note, no group differences were 

observed in the amygdala, ACC, or medial frontal gyrus. Schizophrenia participants also showed 

similar ratings of emotional response to images, and both groups reported stronger emotional 

response to negative than positive images (Nelson et al., under review). While isolated amygdala 

activity and behavioral response may be intact, it is possible that functional disconnection 

between the amygdala and other regions may underlie emotional dysfunction in this population. 

Consistent with this notion, Anticevic et al. (2012a) found no group differences in behavioral or 

amygdala response, but decreased amygdala-mPFC negative coupling in people with 

schizophrenia in an emotional perceptual decision making task.  

 The present study builds upon prior findings in our fMRI emotion perception task 

(Nelson et al., under review), investigating whether functional connectivity between the 

amygdala and mPFC differs by valence (positive, negative, neutral) and group (schizophrenia 

(SZ), healthy controls (HC)). Specifically, context-dependent changes in functional connectivity 

were examined using psychophysiological interaction analyses, which allow for comparison of 

task-related connectivity between individuals with schizophrenia and healthy controls. The 

current study aims to expand our knowledge of amygdala-mPFC functional connectivity during 



 

 

9 

emotion processing in schizophrenia and address the previously mentioned limitations. First, the 

present study uses ecologically-valid task stimuli, specifically, IAPS images that include 

emotional people and scenes in addition to faces. Second, it is the first study to examine 

functional connectivity during processing of positive in addition to negative stimuli. Finally, the 

current study is the first to investigate connectivity during self-evaluative emotion perception, 

requiring participants to rate the intensity of emotional response they felt while viewing 

emotionally-valenced images. 

D.  The Hypotheses of the Current Study 

  We predicted that individuals with schizophrenia would show decreased strength of 

amygdala-mPFC connectivity during negative compared to neutral image perception, based on 

the majority of past studies indicating decreased connectivity strength in schizophrenia 

participants during negative emotion processing (Anticevic et al., 2012a; Fakra et al., 2008; 

Leitman et al., 2008; Modinos et al., 2010; Williams et al., 2004). Based on the literature 

suggesting positive coupling between the amygdala and mPFC during negative emotion 

appraisal/expression (Etkin et al., 2011) and other emotion processing tasks low in cognitive load 

(Heinz et al., 2005; Kim et al., 2004; Williams et al., 2006) we expected to find positive coupling 

in mPFC regions across study participants during perception of negative compared to neutral 

stimuli. However, negative coupling was also possible, as affective labeling (Hariri et al., 2000; 

Hariri et al., 2003) and viewing (Das et al., 2005) tasks (in addition to those high in cognitive 

load) have also found negative coupling between the amygdala and mPFC. Finally, exploratory 

analyses examined connectivity during positive compared to neutral image perception, as well as 

the relationship between connectivity strength and current functioning in schizophrenia 

participants. 
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II. METHOD 

Parts of this chapter were previously published in Psychiatry Research: Neuroimaging 

(Bjorkquist & Herbener, 2013) 

A. Participants 

Study participants included individuals meeting Diagnostic and Statistical Manual of 

Mental Disorders (DSM-IV; American Psychiatric Association, 1994) criteria for schizophrenia 

or schizoaffective disorders (n = 14) and healthy controls (n = 14). Schizophrenia participants 

were recruited from ads in the community, special interest web sites (National Alliance on 

Mental Illness, National Institutes of Health), and physician referral. Healthy controls were 

recruited via ads in the community and were matched to schizophrenia participants on the basis 

of age, sex, ethnicity, years of education, parental education, and intelligence. Exclusionary 

criteria included history of head trauma with loss of consciousness longer than 15 minutes, 

substance abuse or dependence within the past 6 months, contraindication for MRI scanning 

(e.g., metallic implants in the body), or serious medical conditions that could influence brain 

activity or blood flow (e.g., epilepsy).  

Diagnoses for all participants were established with the Structured Clinical Interview for 

DSM-IV diagnosis (First, Spitzer, Gibbon, & Williams, 1997). Schizophrenia participants were 

clinically stable outpatients and had been on a stable medication regimen for a minimum of 4 

weeks prior to testing. Healthy control participants were not taking any psychotropic medications 

and had no family history of schizophrenia spectrum disorders. Participants were asked to avoid 

caffeine and tobacco for at least two hours prior to the neuroimaging session. All participants 

completed the reading subtest of the Wide Range Achievement Test, 3rd ed. (WRAT; Wilkinson, 

1993), a measure of premorbid intelligence, and the Wechsler Abbreviated Scale of Intelligence 
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(WASI; Wechsler, 1999), a measure of current intelligence. See Table I for participant 

demographics. Written informed consent was obtained from all participants, and the study was 

approved by the Institutional Review Board at the University of Illinois at Chicago (UIC). 

Participants received financial compensation for their time participating in the research.  

Participants with schizophrenia were additionally administered two clinical rating 

measures by a Ph.D. level clinician. Severity of symptoms was rated with the Positive and 

Negative Syndrome Scale (PANSS; Kay, Fiszbein, & Opler, 1987). Participants with 

schizophrenia (n = 9) did not differ from those with schizoaffective disorder (n = 5) on PANSS 

Positive, Negative, or General ratings (p’s > 0.05). Schizophrenia participants were also 

interviewed using the Heinrichs-Carpenter Quality of Life Scale (QLS; Heinrichs, Hanlon, & 

Carpenter, 1984). The QLS is a semi-structured clinical interview yielding composite scores in 

several domains, with higher scores reflecting a greater quality of life. The present study 

assessed social functioning (QLS-SF), a composite score reflecting frequency of social contact as 

well as capacity for intimacy, active versus passive participation, avoidance or withdrawal 

tendencies, empathy, and emotional interaction; work functioning (QLS-WF), a composite score 

measuring the extent of functioning as a worker, student, or housekeeper/parent as well as level 

of accomplishment, degree of underemployment, and satisfaction with the current role; and 

motivation (QLS-M), a composite score reflecting sense of purpose, motivation, curiosity, and 

ability to experience pleasure. One schizophrenia participant did not complete the QLS. 
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TABLE I 

SAMPLE DEMOGRAPHICS FOR SCHIZOPHRENIA (SZ) AND HEALTHY CONTROL 
(HC) PARTICIPANTS 

 
 SZ [M±SD] HC [M±SD] p 

N 14 14  
Age (years) 31.57±7.52 31.36±11.38 n.s.* 
Sex (% female)  29 36 n.s. 
Race (% African American) 50 71 n.s. 
Years of Education 13.89±3.00 13.64±1.65 n.s. 
Parental Education Level  < 12th grade 0% 

High school graduate 36% 
Some college 18% 

 College graduate 45% 

< 12th grade 14% 
High school graduate 57% 

Some college 21% 
 College graduate 7% n.s. 

Handedness (% right) 100 100 n.s. 
WRAT 102.57±12.47 94.57±10.79 n.s. 
WASI 104.43±12.74 99.50±14.87 n.s. 
PANSS Positive 17.93±4.75   
PANSS Negative 17.36±5.81   
PANSS General 38.79±9.24   

Medication 
Number on Medication 11 0  
Typical Antipsychotics (n) 3 0  
Atypical Antipsychotics (n) 9 0  
Antidepressants (n) 4 0  
Stimulants (n) 0 0  
Mood Stabilizers (n) 1 0  
Sedative/Hypnotics (n) 2 0  
*n.s.: nonsignificant, p > 0.05 

Note. Parental Education Level reflects mean level obtained by both parents. Parental education 
level was unavailable for 3 SZ participants. WRAT: Wide Range of Achievement Test; WASI: 
Wechsler Abbreviated Scale of Intelligence; PANSS: Positive and Negative Syndrome Scale. 
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B. Experimental Design 

Positive, negative, and neutral images were selected from the IAPS library (Lang, 

Bradley, & Cuthbert, 2005). Positive and negative images were equated on arousal and were 

rated as more arousing than neutral images based on the IAPS normative data. Positive and 

negative images exceeded a cut-off value of four on a 1-9 scale for arousal ratings. Positive, 

negative, and neutral images also differed by normative valence ratings (Lang et al., 2005). 

Positive images exceeded a rating of seven and negative images were below a rating of four for 

valence ratings on a 1-9 scale. See Figure 1 for example images. Emotionally extreme images 

from the IAPS library were excluded so the task would be less disturbing to participants and to 

ensure the ecological validity of the study.  

 

 

 

Figure 1. Example task stimuli. Negative (left), positive (middle), and neutral (right) images. 

 



 

 

14 

To acclimate participants to the MRI scanner and prevent gross movement, participants 

completed a mock scan session approximately one week prior to the neuroimaging session. They 

were also given a computerized practice version of the task outside of the scanner to ensure task 

comprehension. During the task, participants viewed 108 IAPS images. Images were presented 

in blocks of 12 in each condition and included 36 positive, 36 negative, and 36 neutral images. 

Images were ordered using a Latin square design. Each image was presented for four seconds, 

and 10 second rest periods were included between blocks to allow brain activation to return to 

baseline before the subsequent block. During the presentation of each image, participants rated 

the intensity of their emotional response to the image, either low (none to low) or high (moderate 

to strong), via button press. Following the scan, participants were asked to explain task 

instructions in order to confirm task comprehension. 

C. Data Acquisition and Analysis 

Analysis of behavioral ratings of emotional response to images is reported elsewhere 

(Nelson et al., under review). Structural and functional scans were acquired on a 3 Tesla scanner 

(Signa, General Electric Medical System, Milwaukee, Wisconsin) at the UIC Medical Center. 

The acquisition protocol for the functional scan was a gradient-echo echo-planar imaging (EPI) 

series with TR = 2000ms, TE = 25ms, flip angle = 90 degrees, field of view = 200mm, matrix = 

64mm x 64mm, slice thickness = 3mm, gap = 1mm, for 33 axial slices. The structural scan 

immediately followed the functional scan. 

fMRI data were processed using public domain Analysis of Functional Neuroimages 

(AFNI) software (http://afni.nimh.nih.gov/afni/). Context-dependent changes in functional 

connectivity were examined using psychophysiological interaction analyses 

(http://afni.nimh.nih.gov/sscc/gangc/CD-CorrAna.html). We examined whether the amygdala 
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showed significantly altered correlated activity with the mPFC while participants viewed 1) 

negative compared to neutral, and 2) positive compared to neutral images. Analyses were run 

separately for the left and right hemispheres (e.g., right amygdala with right mPFC). Between-

group t-tests were then run to determine whether these context-dependent changes in functional 

connectivity differed between HC and SZ participants.  

1. Regions-of-interest 

Anatomically-defined masks were created in Talairach space separately for the left and 

right hemispheres of the amygdala. The amygdala region-of-interest (ROI) mask was obtained 

from researchers with extensive experience creating masks using AFNI software (e.g., Pavuluri, 

Passarotti, Harral, & Sweeney, 2009; Pavuluri, Passarotti, Fitzgerald, Wegbreit, & Sweeney, 

2012). Specifically, the amygdala ROI was drawn on a merged structural image of 15 healthy 

subjects and traced in coronal view, a method shown to be reliable and valid (Kates, Abrams, 

Kaufmann, Breiter, & Reiss, 1997). The anterior boundary was defined at the presence of the 

anterior commissure and posterior boundary at the presence of hippocampus. The superior 

boundary was defined by the entorhinal sulcus and inferior boundary by the white matter of the 

uncus. The medial boundary was defined by the presence of cerebrospinal fluid and lateral 

boundary by the white matter of the insular cortex. ROIs for the medial frontal gyrus and ACC 

are available on AFNI, and were merged into a single mPFC ROI for each hemisphere. These 

ROIs were created by tracing Talairach and Tournoux brain illustrations (Lancaster et al., 1997; 

Lancaster et al., 2000).  

2. Individual subject preprocessing 

AFNI’s 3D volume registration program was used to detect and correct for motion across 

individual participants’ time series. Individual data were spatially smoothed using a 5mm full-
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width half-maximum Gaussian filter, and then normalized by dividing signal intensity of a voxel 

at each time point by the mean signal intensity of that voxel across the time series and 

multiplying by 100. The amygdala was selected as the seed region and first transformed into 

original space using parameters from each individual’s structural scan. The average time series in 

the amygdala was extracted and the trend removed from the time series. The 

psychophysiological variable was created as the deconvolved seed time series multiplied by a 

vector coded by condition (1 for negative, -1 for neutral, 0 for all other conditions; 1 for positive, 

-1 for neutral, 0 for all other conditions). Next, AFNI’s 3dDeconvolve program was used to 

obtain per-voxel fit coefficients corresponding to BOLD response associated with the 

psychophysiological interaction term. This regression controlled for the seed time series, valence 

conditions, and individual subject motion. Next, images were normalized to stereotaxic space 

(Talairach & Tournoux, 1988) and resampled to the original acquisition size of 3x3x3mm3 

voxels. The mPFC mask was then applied to the data to isolate this region-of-interest.  

3. Group analyses 

Based on Monte Carlo simulations calculated by AFNI’s AlphaSim program, we required 

486 mm3 contiguous voxels significant at the p < 0.01 level for mPFC significance of p < 0.05. 

To examine whether the psychophysiological interaction differed between SZ and HC 

participants, t-tests were used to assess between-group differences in the interaction between 

valence (negative versus neutral; positive versus neutral) and amygdala—mPFC connectivity. 

Significant group differences were followed up within each group to determine effects 

underlying the interaction.    
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III. RESULTS 

A. Amygdala-mPFC Connectivity 

 We hypothesized that HC participants would demonstrate greater connectivity strength 

between the amygdala and mPFC during negative compared to neutral image perception than 

would SZ participants. Results revealed one area within the right mPFC that showed altered 

connectivity strength with the right amygdala in SZ compared to HC participants. This 648mm3 

cluster was anterior to the genu of the corpus callosum and included portions of the medial 

frontal gyrus and rostral ACC. In order to determine the nature of the observed between-group 

effect, within-group t-tests compared right amygdala-mPFC functional connectivity during 

negative compared to neutral image perception. Results indicated opposite patterns of functional 

coupling between groups, though results failed to reach statistical significance in either group. 

Specifically, healthy controls demonstrated positive functional coupling, while schizophrenia 

participants demonstrated negative functional coupling between the right amygdala and mPFC. 

See Figure 2.  

 In contrast to the significant group difference observed in right amygdala-mPFC 

connectivity, we did not find any significant differences in left amygdala-mPFC connectivity 

between HC and SZ participants. We also failed to find group differences in amygdala-mPFC 

connectivity in positive compared to neutral image perception, for either the right or left 

hemispheres.  
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Figure 2. Top panel: mPFC region of task- and group-related functional connectivity with right 
amygdala, in negative versus neutral perception (HC > SZ). Peak Talairach coordinates: x=-7.5, 
y=-49.5, z=8.5. Bottom panel: Within-group negative versus neutral connectivity with right 
amygdala; left panel, HC; right panel, SZ. Note: In bottom panel, voxelwise p < 0.05, 
uncorrected, for visualization.
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B. Quality Assurance 

 To ensure that results were not due to individual differences in behavioral response, 

functional connectivity analyses were repeated with the addition of emotion intensity rating as a 

covariate. Mean intensity ratings were calculated per block for each subject, and then 

transformed into z-scores and combined into a single covariate file. Individual and group 

analyses were repeated with the addition of the covariate. Results of initial analyses were 

replicated in covariate analyses, ruling out the possibility that results were driven by individual 

differences in emotion intensity ratings.   

To determine specificity of results between the right amygdala and mPFC, functional 

connectivity analyses were conducted between the right amygdala and a region not expected to 

differ by group: the precuneus. Results revealed no group differences in right amygdala-

precuneus connectivity in negative compared to neutral image perception.  

C. Functional Significance 

We next aimed to determine the functional significance of connectivity results. 

Specifically, we examined whether right amygdala-mPFC connectivity strength during negative 

versus neutral image perception was related to symptoms and quality of life in SZ participants. 

First, the resultant right mPFC cluster demonstrating significant connectivity with the amygdala 

was extracted and applied to individual subject preprocessed data. Beta weights representing 

connectivity strength between the mean amygdala and maximum mPFC BOLD response were 

then obtained per subject for the amygdala x condition interaction term using AFNI’s 3dROIstats 

program. Pearson’s correlation analyses were used to determine the relationship between 

maximum connectivity strength and the following variables: PANSS Positive, PANSS Negative, 

PANSS General, HQL-SF, HQL-WF, and HQL-M. Results revealed a significant positive 
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correlation between maximum connectivity strength and HQL-SF in SZ participants, r(14) = 

0.63, p = 0.021, such that greater right amygdala-mPFC connectivity strength during negative 

compared to neutral image perception was associated with increased social functioning. See 

Figure 3. No other significant correlations between maximum connectivity strength and 

functional outcome were observed.  

 

 

 

Figure 3. Correlation between clinician-rated social functioning (HQL social functioning) and 
maximum amygdala-mPFC connectivity strength during negative versus neutral perception. 
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IV. DISCUSSION 

Parts of this chapter were previously published in Psychiatry Research: Neuroimaging 

(Bjorkquist & Herbener, 2013) 

 The current study investigated functional connectivity between the amygdala and mPFC 

during an emotion perception task, and whether connectivity differed between participants with 

schizophrenia and healthy controls. Results of psychophysiological interaction analyses indicate 

between-group differences in connectivity strength in negative compared to neutral image 

perception, consistent with our predictions. Specifically, we found significant group differences 

in functional connectivity between the right amygdala and a region within the right mPFC that 

included the medial frontal gyrus and rostral ACC. Follow-up analyses indicated opposite 

patterns of functional coupling between groups, such that healthy controls showed positive 

amygdala-mPFC coupling, while participants with schizophrenia showed negative amygdala-

mPFC coupling. Furthermore, groups did not differ in behavioral or amygdala response (Nelson 

et al., under review), ruling out the possibility that connectivity results reflected group 

differences in task performance or amygdala responsivity.   

 Past research on healthy populations indicates both negative and positive functional 

connections between the amygdala and mPFC during emotion processing. The amygdala and 

mPFC typically hold positive connections during emotion generation (e.g., expression, appraisal) 

and in emotion tasks lower in cognitive load (e.g., passive viewing; e.g., Heinz et al., 2005; Kim 

et al., 2004; Williams et al., 2006). In contrast, the two regions are inversely related during 

emotion inhibition and in emotion tasks higher in cognitive load (e.g., emotion regulation; e.g., 

Banks et al., 2007; Drabant et al., 2009; Ochsner et al., 2002; Ochsner & Gross, 2005). In our 

emotion perception task requiring affective response ratings, healthy controls utilized co-active 
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processing between the amygdala and mPFC, consistent with salience detection and emotion 

generation. On the other hand, participants with schizophrenia demonstrated an inverse 

relationship between the amygdala and mPFC, consistent with top-down inhibition. These 

findings suggest that individuals with schizophrenia may utilize emotion regulation strategies 

when perceiving and judging their emotional response to negative stimuli, perhaps to dampen 

negative affect. Such an interpretation may help explain affective flattening in schizophrenia, at 

least for negatively valenced information. Alternatively, our findings of positive coupling in 

controls and negative coupling in schizophrenia participants may relate to cognitive load. While 

our task was relatively low in cognitive load, it is possible that the participants with 

schizophrenia required additional cognitive effort to generate emotion intensity ratings, eliciting 

a high cognitive load negative coupling response.  

 Our results of altered amygdala-mPFC connectivity during emotion processing in 

schizophrenia adds to the growing literature on this topic. To date, studies have reported 

decreased connectivity strength (Anticevic et al., 2012a; Modinos, et al., 2010; Williams et al., 

2004) and task-dependent connectivity in controls but not those with schizophrenia (Das et al., 

2007; Fakra et al., 2008; Leitman et al., 2008) in tasks eliciting negative amygdala-mPFC 

coupling in healthy individuals. The current study is the first to examine connectivity in 

schizophrenia using a task that elicits positive coupling in healthy controls. Our findings of 

opposite direction of functional coupling complement the findings of Das and colleagues (2007), 

who reported negative amygdala-mPFC coupling in controls and positive coupling in 

schizophrenia participants. Our findings also support those of Anticevic and colleagues (2012a), 

who reported altered functional connectivity in participants with schizophrenia despite intact 

behavioral and amygdala responses. In sum, our results, along with the extant literature, suggest 
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that abnormal interactions between the amygdala and mPFC may underlie emotion deficits in 

individuals with schizophrenia. Disturbances in functional connectivity during early stages of 

emotion processing could lead to impairment in higher order aspects of emotion processing by 

influencing the neural resources available for further processing. For example, aberrant 

perception of emotional stimuli could reasonably lead to abnormal interpretation of such 

information, guiding decisions and behavior.  

A. Symptom Correlations 

 Symptom correlation analyses indicated that connectivity between mean amygdala and 

maximum mPFC response during negative image perception predicted clinician-rated social 

functioning in individuals with schizophrenia. Of note, this composite variable (QLS Social 

Functioning) reflects an interplay of social and emotional factors, including social contact and 

participation, capacity for intimacy, avoidance or withdrawal tendencies, empathy, and 

emotional interaction. Our results indicate that small regions of significant positive coupling 

between the amygdala and mPFC predicted improved social and emotional functioning in 

participants with schizophrenia. This suggests that some, albeit limited, capacity to co-activate 

the amygdala and mPFC relates to a more positive functional outcome in patients. These results 

demonstrate the functional significance of our task and build upon previous literature 

demonstrating relationships between brain response and functional outcome in individuals with 

schizophrenia. For example, one study found a correlation between amygdala-PFC connectivity 

strength during neutral image perception and flat affect, such that weaker connectivity predicted 

greater affective flattening (Anticevic et al., 2012a). In addition, studies examining BOLD 

response have demonstrated positive correlations between social functioning and activity in the 

ACC (Nelson et al., under review) and amygdala (Pinkham, Hopfinger, Pelphrey, Piven, & Penn, 
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2008) during social and emotional processing in people with schizophrenia. These findings are 

consistent with the role of the amygdala in salience detection (e.g., Sander, Grafman, & Zalla, 

2003) and ACC in evaluation of affective social information (e.g., Harris, McClure, van den Bos, 

Cohen, & Fiske, 2007). Taken together, these results suggest that the amygdala and mPFC 

function in concert during the processing of social and emotional information, and stronger 

connectivity between these two regions predicts better functional outcome in people with 

schizophrenia. 

B. Valence 

 The present study was the first to examine amygdala-mPFC coupling during positive 

emotion processing in schizophrenia. Although we found effects in right amygdala-mPFC 

connectivity during negative emotion perception, we failed to find effects during positive image 

perception. Examination of data during positive versus neutral processing revealed similar 

patterns of functional coupling (positive coupling for healthy controls, negative coupling for 

schizophrenia participants), but within and between group analyses failed to reach statistical 

significance. Of note, a previous study with these data indicated that all participants rated 

negative images as evoking a stronger emotional response than positive images (Nelson et al., 

under review). This difference in behavioral response to images may have contributed to 

differences in findings with regard to valence.  

 The amygdala’s role in processing negative emotion, particularly fear, is well-established 

(for review, see Phan et al., 2002; Phelps & LeDoux, 2005; Zald, 2003). More recently, research 

has revealed amygdala response to positive stimuli. The amygdala is implicated in reward and 

positive reinforcement (Murray, 2007), and has been proposed as a salience detector given its 

role in processing positive and biological stimuli (Sander et al., 2003). However, studies on 
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positive emotion processing are inconsistent, with many studies failing to detect amygdala 

response to positive stimuli (Zald, 2003). Several possibilities exist to explain amygdala response 

to negative but not positive stimuli, including arousal and perceptual intensity. By nature, 

positive stimuli are less strongly pleasant than negative stimuli are unpleasant, and are typically 

less arousing and intense than negative stimuli. For example, a picture of an ice cream cone is 

likely less arousing and less intensely perceived than a picture of a gun pointed at the viewer. In 

addition, while greater amygdala activity is associated with greater arousal for negative images, 

highly pleasant stimuli can be either arousing (e.g., beautiful woman) or calming (e.g., beautiful 

landscape), and there are instances of decreased amygdala response to highly positive emotional 

stimuli in the literature (e.g., Blood & Zatorre, 2001). It is thus difficult for studies to truly match 

positive and negative images in terms of valence intensity and arousal. The current study used 

IAPS normative data to match negative and positive stimuli on arousal, but participants rated 

their emotional response to negative images as significantly more intense than their response to 

positive images (Nelson et al., under review). Thus, while our findings of altered connectivity 

appear to be specific to negative images, it is possible that images in our positive condition were 

simply not arousing or intense enough to elicit significant group differences in amygdala-mPFC 

coupling.  

C. Laterality 

 The current study observed effects in right, but not left, amygdala-mPFC connectivity 

during negative emotion processing. A majority of emotion studies in the literature report 

lateralized amygdala findings, though laterality results are highly inconsistent across studies. 

Indeed, in a meta-analysis of emotion studies in healthy individuals, 41 studies found left 

amygdala activity, 30 found right amygdala activity, and 17 found bilateral amygdala activity, 
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with no consistent pattern within or between tasks (Baas, Aleman, & Kahn, 2004). Several 

theories have been proposed regarding amygdala laterality. First, the left amygdala processes 

verbal information and detailed features, while the right amygdala processes visual information 

and engages in quick and shallow processing (Markowitsch, 1998). Second, and similarly, 

laterality may depend on elaboration and interpretation of emotional information, such that the 

right amygdala is active when the stimulus is visual and emotional valence is obvious, while the 

left amygdala is active when the emotional property of the stimulus requires verbal elaboration 

(Phelps, O’Connor, Gatenby, Core, Grillon, & Davis, 2001). Third, laterality may depend on task 

instructions, i.e., whether participants are asked to explicitly judge the emotionality of a stimulus 

versus passively view (and implicitly process) the stimulus (Lange et al., 2003). Fourth, the right 

amygdala may be involved in rapid stimulus detection and habituate quickly, while the left 

amygdala is involved in sustained response (Wright et al., 2001). The meta-analysis failed to 

support any of these theories, as it did not find significant laterality effects of stimulus type, 

elaboration, task instructions, or habituation. Instead, it was proposed that the right amygdala 

may process global, holistic aspects of a stimulus, while the left amygdala may process local 

details of the stimulus (Baas et at., 2004). Such a theory is consistent with our findings of right 

hemisphere activity, as our images largely consisted of complex scenes including multiple 

stimuli that would require more global processing. Our findings are also consistent with 

Markowitsch (1998), who proposed that the right amygdala processes visual information.  

D. Strengths 

 The current study addresses several limitations in the literature, adding to our growing 

understanding of functional connectivity in schizophrenia. Prior studies on emotion processing in 

schizophrenia have typically utilized emotional faces as task stimuli, which hold minimal 
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ecological validity and may be confounded by general face processing impairment. The current 

study addressed this limitation by using ecologically valid stimuli, such as emotional people and 

scenes. Our results of altered amygdala-mPFC connectivity are consistent with the literature, 

suggesting that extant findings extend beyond face processing to general emotion processing.  

Second, to our knowledge, studies of amygdala-mPFC connectivity in schizophrenia have only 

examined connectivity in processing of negative stimuli, so it is unclear whether altered 

connectivity extends to positively valenced information. Based on our findings, it appears that 

altered connectivity in individuals with schizophrenia is specific to negative stimuli; however, 

this may due to differences in arousal, as our negative images were rated as more emotionally 

intense than positive. Examination of the data indicated that people with schizophrenia and 

healthy controls demonstrated similar patterns of connectivity in negative and positive 

conditions, but with lower connectivity strength in the less arousing positive condition. Finally, 

emotion processing connectivity studies in the literature vary largely in task design and most 

require participants to rate some aspect of a stimulus, such as matching emotional faces, labeling 

valence of the stimulus, identifying gender, or passively viewing. Our study is one of few that 

are low in cognitive load and require participants to rate their internal emotional response to task 

stimuli. Our findings thus add to the literature by demonstrating altered functional connectivity 

during self-evaluative emotional perception. 

E. Limitations 

This study contributes to the emotion processing literature in schizophrenia by 

demonstrating abnormal functional connectivity between the right amygdala and right mPFC 

during negative emotion perception. At the same time, we note that we used an a priori, 

theoretically-driven ROI approach, so analyses were focused on predetermined brain regions that 
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have previously been associated with emotion processing. It is possible that functional 

disconnections between other regions outside the scope of this study may also underlie emotion 

processing deficits in schizophrenia. Second, in contrast to many studies using IAPS stimuli, our 

affective conditions excluded extreme images such as mutilated bodies or pornographic images 

in order to not upset our participants or decrease ecological validity; thus, our range of affective 

valence was restricted. Inclusion of extreme images would likely elicit increased limbic brain 

response and perhaps lead to different results, such as differences in functional connectivity 

during positive emotion perception. Third, we did not examine potential effects of 

neuropsychological, diagnostic, or demographic factors that could have influenced results. 

However, we attempted to control for these effects by matching the SZ and HC groups on 

demographics and by comparing conditions that required the same judgment. Finally, a majority 

of participants in the SZ group were taking antipsychotic medication. Further, the group was 

heterogeneous in medication type, dosage, and medication history. Our results may have been 

influenced by effects of psychotropic medication on brain functioning, both between groups and 

within the SZ group. However, most individuals with schizophrenia who are in psychiatric care 

are treated with antipsychotic medication. Thus, our results provide important information about 

brain circuitry in people with schizophrenia in their typical life circumstances.  

F. Future Directions 

 The current study focused on connectivity between the amygdala and mPFC, but we 

recognize a network of regions work in concert to process emotional information. Future studies 

should examine functional connectivity between other regions known to be involved in emotion 

processing, such as the orbitofrontal cortex, dorsolateral prefrontal cortex, insula, hippocampus, 

and ventral striatum. Future studies should also use data-driven approaches, such as independent 
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component analysis, to investigate emotion processing networks in schizophrenia. Second, we 

note that we excluded extreme emotional images from our study, and positive images were rated 

as less emotionally intense than negative images. Thus, we were unable to determine whether 

null results in the positive condition were due to differences in valence or arousal. Future studies 

should match positive and negative stimuli on participant-rated emotional response, perhaps by 

utilizing more emotionally evocative positive stimuli.  Third, we controlled for potential effects 

of demographic factors by matching groups on demographics but did not investigate 

contributions of these variables to results of the study. Future studies can examine effects of 

demographic factors that are known to influence brain response to emotional stimuli, such as sex 

and race (Brekke et al., 2005; Kring and Moran, 2008). Future studies can also more thoroughly 

investigate potential differences in connectivity between individuals with schizophrenia and 

schizoaffective disorder, as our study was unable to do so with our relatively small sample size. 

Fourth, the current study found that functional connectivity strength in our emotion perception 

paradigm predicted clinician-rated social/emotional functioning. Future studies can use social 

cognition tasks to further investigate connectivity during social processing, particularly for 

affective information. Finally, future studies with larger sample sizes can conduct meaningful 

analyses on the effects of medication on functional connectivity between the amygdala and 

mPFC. 

G. Conclusions 

 In sum, our findings provide evidence of altered functional connectivity between the 

amygdala and mPFC, including the medial frontal gyrus and rostral ACC, in people with 

schizophrenia during perception of negative stimuli. Aberrant functional connectivity in 

schizophrenia was observed in light of normal BOLD response in these regions and behavioral 
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response to images, suggesting altered connectivity as a key etiological factor underlying 

abnormal perception of emotional stimuli in schizophrenia. Furthermore, connectivity strength 

predicted clinician-rated social functioning, suggesting a relationship between altered 

connectivity and functional outcome. This study adds to the growing literature on abnormal 

functional connections in schizophrenia and supports the functional disconnection hypothesis of 

schizophrenia. Future studies should continue to take a network approach to investigate the 

neural correlates of emotion processing in schizophrenia. 
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