
Energy-Aware Computation in Mobile Devices

BY

AJITA SINGH

B.E., Birla Institute of Technology, Mesra, India, 2013

THESIS

Submitted as partial fulfillment of the requirements

for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the

University of Illinois at Chicago, 2016

Chicago, Illinois

Defense Committee:

 Hulya Seferoglu, Chair and Advisor

 Daniela Tuninetti

Rashid Ansari

ii

To my family.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Prof Hulya Seferoglu for her unwavering support and invaluable

guidance. This thesis would not have been possible without her encouragement and counsel. I would also

like to thank my committee members, Prof Daniela Tuninetti and Prof Rashid Ansari for their support and

insightful suggestions.

I would also like to thank members of the Networking Research Lab namely, Yuxuan Xing for

his help and suggestions while I was working on my thesis. I would also like to thank my parents and my

sister for always being there for me, I appreciate your constant care and support.

AS

iv

TABLE OF CONTENTS

CHAPTER PAGE

1. Introduction.. 1

1.1 Motivation... 1

1.2 Overview... 3

1.3 Organization.. 4

2. Related Work... 5

3. Background.. 7

3.1 Wi-Fi: 802.11 Wireless LANs.. 7

3.1.1 Architecture... 7

3.1.2 MAC Protocol... 9

3.1.3 Frame Structure... 13

3.1.4 Wireless Ad Hoc Networks... 14

3.2 Wi-Fi Direct.. 16

3.2.1 Architecture.. 16

3.2.2 Group Formation.. 18

3.2.3 Security.. 19

3.2.4 Power... 20

3.3 Transmission Control Protocol (TCP)... 21

3.3.1 Segment Structure.. 21

3.3.2 Connection... 23

3.3.3 Reliable Data Transfer... 25

3.3.4 Flow Control.. 26

3.3.5 Congestion Control.. 28

3.4 Creating Network Applications... 31

3.4.1 Socket Programming with TCP... 31

4. System Model and Formulation... 33

4.1 System Model.. 33

4.2 Problem Formulation and Solution.. 35

5. Implementation Details.. 37

6. Performance Evaluation... 42

6.1 Processing Power.. 42

6.2 Energy Consumption... 44

7. Conclusion.. 46

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

REFERENCES... 47

VITA... 50

vi

LIST OF TABLES

TABLE PAGE

I. SUMMARY OF IEEE 802.11 STANDARDS.. 7

vii

LIST OF FIGURES

FIGURE PAGE

1. Example setup, where D1 receives data with rate 1Mbps, but decodes with rate

500kbps.. 1

2. Experiment setup is on the left side, and the data rate versus time graph for

varying computational complexities such as O(1), O(n) and O(n2) are shown

on the right hand side... 2

3. 802.11 Architecture (a) Infrastructure mode (b) Ad-hoc mode......................... 8

4. Active and passive scanning for access points.. 9

5. 802.11 using link-layer acknowledgments.. 10

6. Hidden terminal example: A is hidden from B and vice versa......................... 12

7. Collision Avoidance using RTS and CTS frames... 12

8. 802.11 Frame Structure... 13

9. Wi-Fi Direct supported technologies and use cases.. 17

10. TCP Segment Structure... 22

11. TCP three-way handshake... 24

12. Terminating a TCP connection.. 25

13. Buffer Allocation in TCP... 27

14. TCP Congestion Control Mechanism.. 30

15. TCP sockets... 31

16. Building Block of mobile device n.. 33

17. Source Device.. 37

18. Receiver – Flowchart for thread 2... 38

19. Receiver – Flowchart for thread 3, device is charging.................................... 39

viii

LIST OF FIGURES (Continued)

FIGURE PAGE

20. Receiver – Flowchart for thread 3, device is not charging.............................. 40

21. Two-way Transmission: Data rate for O(1) complexity.................................. 42

22. Two-way Transmission: Data rate for O(n) complexity.................................. 43

23. Two-way Transmission: Data rate for O(n2) complexity................................. 43

24. Decrease in Battery % over Time for O(1) complexity................................... 44

25. Decrease in Battery % over Time for O(n) complexity................................... 45

26. Decrease in Battery % over Time for O(n2) complexity.................................. 45

ix

LIST OF ABBREVIATIONS

ACK Acknowledgement

AP Access Point

ARQ Automatic Repeat Request

AVC Advanced Video Coding

BSS Basic Service Set

CRC Cyclic Redundancy Check

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CTS Clear to Send

D2D Device to Device

DCF Distributed Coordination Function

DHCP Dynamic Host Control Protocol

DIFS Distributed Inter-frame Space

FIN Finish

GO Group Owner

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

LAN Local Area Network

MAC Media Access Control

MSS Maximum Segment Size

NoA Notice of Absence

P2P Peer to Peer

QoS Quality of Service

RTS Request to Send

RTT Round Trip Time

x

LIST OF ABBREVIATIONS (Continued)

SIFS Short Inter-frame Space

SSID Service Set Identifier

SYN Synchronize

TCP Transmission Control Protocol

WLAN Wireless Local Area Network

WPS Wi-Fi Protected Setup

xi

SUMMARY

The booming of mobile devices and applications has a significant social and economic impact.

However, new data intensive applications, which are continuously emerging in daily routines of mobile

users, continuously increase the demand for wireless resources. Although bandwidth is traditionally

considered as the primary scarce resource in wireless networks, the developments in communication theory

shifts the focus from bandwidth to other scarce resources including processing power and energy. Thus, it

is crucial to develop new networking mechanisms by taking into account the processing power and energy

as bottlenecks.

In this thesis, our primary goal is to overcome the bottlenecks created by processing power and

energy. To achieve this goal, we first analyze and evaluate the effects of processing power and energy on

data rates in a real testbed. Motivated by our initial observations on the impact of processing power and

energy limitations on data transmission rates, we develop an energy-aware computation (EaC) framework.

The crucial components of EaC are decoder, energy filter, and cooperation among mobile devices. The

decoder part deals with the processing power limitation of mobile devices. The energy filter helps us

incorporate the energy consumption requirements of mobile devices. Cooperation among mobile devices

eliminate and distribute the processing power and energy bottlenecks over multiple mobile devices.

The integral part of this thesis is to evaluate the EaC framework in a practical setup. Thus, we

created a testbed consisting of Android operating system based mobile devices, where these mobile devices

communicate via WiFi Direct based device-to-device links. We implemented the proposed EaC framework

in this testbed. Finally, we evaluated the EaC framework as compared the baselines. The experimental

results demonstrate that EaC significantly improves data transmission rates by overcoming processing

power and energy bottlenecks.

1

1 INTRODUCTION

1.1 Motivation

The rapidly increasing number of mobile device users and its applications have made a significant

impact on the current wireless networks. The number of worldwide mobile users, including both business

and consumers have already reached over 5.6 billion (in 2014) and is expected to rise to 6.2 billion by the

end of 2018 [1]. This poses a huge challenge for current wireless networks, so new methodologies should

be developed to overcome this challenge. Furthermore, the need for data intensive applications has

increased significantly. This, along with the increased number of mobile users has put stress on how

significantly the demand for wireless resources has risen in the past few years [2], [3].

In this setup, although bandwidth is traditionally considered the primary scarce resource in today’s

wireless networks, other wireless resources such as processing power, energy, and memory of mobile

devices could become bottlenecks in mobile networks. Thus, in this thesis, we specifically focus on

processing power and energy as scarce resources and we aim to develop efficient mechanisms to effectively

utilize these scarce resources.

Let us consider the impact of processing power via an example. Consider a mobile device D1 in

Figure 1 with a Wi-Fi or cellular link of rate 1 Mbps, and assume that D1 is receiving video and decodes it

Figure 1: Example setup, where D1 receives data with rate 1Mbps, but decodes with rate 500kbps

2

with rate of 500kbps. This would limit the streaming rate of to 500 kbps. Apart from decoding, there are

various other computationally intensive tasks that is couple with data transmission such as error correction,

packet randomization and network coding of data at the source introduce computational complexities up to

O(n3), [5], [6]. Moreover, H.264/AVC decoders increase the computational complexity when higher quality

guarantees are required by the user [7], [8].

In order to understand the impact of computational complexity on today’s mobile devices, we create

a prototype shown in the left figure of Figure 2. In this setup, a mobile device receives data from an access

point, where the mobile device is an Android operating system (OS) based Nexus 7 tablets. The specific

version of the Android OS is Android Lollipop 5.1.1. The device has 16GB storage, 2GB RAM, Qualcomm

Snapdragon S4 Pro, 1.5.GHZ COU, and Adreno 320, 400MHz GPU. Packet size is 500B. In this

experiment, after receiving the packets, the mobile device performs operations with complexities of O(1),

O(n), and O(n
2

) above the transport layer (TCP), where n is the packet size, and the operations we perform

are counting the bytes in the packets. In particular, O(1), O(n), and O(n
2
) correspond to (i) no counting, (ii)

counting every byte in a packet once, and (iii) counting every byte in a packet n times, respectively. We

Figure 2: Experiment setup is on the left side, and the data rate versus time graph for varying computational

complexities such as O(1), O(n) and O(n2) are shown on the right hand side.

0 2 4 6 8 10
0

5

10

15

Time (s)

A
ve

ra
ge

 R
at

e
(M

bp
s)

O(1)

O(n)

O(n
2
)

Nexus 7
Tablet

3

demonstrate in the right hand side of Figure 2 the received rate at the mobile device (note that this is the

rate we measure at the mobile device after performing computations) versus time. As seen, when the

computational complexity increases, the average rate measured at the mobile device (after computation)

decreases. Figure 2 clearly indicates the extent up to which decoding complexities can affect the

transmission rates in mobile devices. Our goal is in this thesis is to develop mechanisms to overcome the

bottleneck of processing power.

The second challenge is the energy limitation of mobile devices transmission/reception of data. As

similar to the processing power bottleneck discussed above, energy could be bottleneck during data

transmission. In this context, our goal is to develop mechanisms that ensure that mobile devices have

enough energy to transmit, receive and process the data.

1.2 Overview

The goal of this thesis is to understand the impact of processing power and energy consumption

bottlenecks on mobile wireless networks. Towards this goal, we have developed a networking mechanism

designed specifically by taking into account processing power and energy bottlenecks, and implemented

this mechanism in a real testbed.

The crucial components of the developed framework are decoder, energy filter, and cooperation

among mobile devices. The decoder helps us understand how the processing power can vary, depending on

the type of application that is being used. The energy filter helps us in incorporating the needs of the user

along with the decoder to analyze the battery that is consumed for different computational complexities.

Cooperation among mobile devices helps us to eliminate and distribute the processing power and energy

bottlenecks over multiple mobile devices.

Our testbed is developed using Android operating system based mobile devices. We implemented

Wi-Fi Direct [11] to create device-to-device (D2D) connections which are used to connect multiple mobile

devices in close proximity.

4

1.3 Organization of the Thesis

The thesis is organized as follows: Chapter 2 discusses in detail, the related work and previous

publications that have focused on maximization of resources like bandwidth. Chapter 3 contains

background information of the current wireless technologies: Wi-Fi and Wi-Fi Direct. It also discusses

transport layer protocols (TCP) and socket programming. Chapter 4 explains the Energy-Aware

Computation (EaC) system model that we have composed, consisting of a source, wireless channel and the

mobile device. We have also formulated the problem statement in this chapter. The implementation details

of our system model has been outlined in Chapter 5. The simulation results of the proposed system model

is presented in Chapter 6, and finally Chapter 7 summarizes our conclusion to the thesis.

5

2 RELATED WORK

The work in this thesis is based mainly upon Wi-Fi Direct connections, along with maximization

of resources used in processing power and battery consumption. In particular, D2D group formations are

used for several data streaming applications for various purposes including, but not restricted to,

cooperative video streaming over mobile devices, offloading cellular networks and distribution of content

among mobile devices, as discussed below.

A peer-to-peer cooperation scheme was introduced in [16] with focus on power reduction. In this

paper, mobile devices were connected to the Internet through a wireless AP, all of them requesting the same

data from a server. The server would then distribute the data amongst all devices, who would further

exchange data with each other through Bluetooth technology. On similar lines, [17] introduced a scheme

where mobile devices collaboratively helped each other to recover lost packets by broadcasting to its

neighbors. This scheme, also known as BOPPER (broadcasting with peer-to-peer error recovery) achieved

high scalability and low recovery delay.

An optimal and scalable distribution of dynamic content was first introduced in [18]. It utilized

and allocated the bandwidth optimally, making sure that the content received by every user was ‘fresh’.

This paper ensured that such an optimal system would work even if the total bandwidth of the service

provider remains fixed, ensuring both optimality and scalability. A case study on information delivery in

Mobile Social Networks (MoSoNets) was performed in [19], where opportunistic communications were

exploited to facilitate the information dissemination and reduce the amount of cellular traffic. A particular

target set was provided with information by the content service providers, after which the information was

further propagated amongst all the subscribed users using opportunistic communications, thereby

minimizing cellular data traffic.

Content dissemination amongst users led to a novel social-based forwarding algorithm called

BUBBLE [20] which utilized real human mobility traces to enhance content delivery performance. This

6

paper focused on the social structure and interaction of users for its algorithm, unlike the previous methods

that relied on building and updating routing tables to cope with dynamic network conditions. Opportunistic

networks is another technology which allow content sharing between mobile users without requirement of

any pre-existing Internet infrastructure. In [21], a protocol named HiBOp exploits the framework and

represents the user’s behavior and social relations through context information. The user then uses this

information to drive the forwarding process. HiBOp is compared with other solutions to show that a context-

aware approach is much more efficient for forwarding in opportunistic networks.

We have attempted to examine in particular the bottleneck created by processing power and

battery consumption of mobile devices in this thesis, and remove it through cooperation amongst devices

in [14]. An increased interest in computing using mobile devices by exploiting connectivity among mobile

devices is seen in [22]. Such an approach suggests that devices can be used together to process certain tasks,

which turns out to be a cheaper alternative to remote clouds. This has led to interesting work specifically

towards collaborative cloud computing.

‘Transient clouds’, as introduced in [23] allows nearby devices to form ad hoc networks and

provide various functionalities of the devices and their social awareness, which cannot be provided as

efficiently by the traditional clouds. This paper showed the efficiency of their algorithm by implementation

on Android devices, using the Wi-Fi Direct framework. In the attempt to converge cloud computing with

mobile computing, [24] uses virtual machine technology to reconcile the tradeoffs between centralization

of cloud computing and decentralization of mobile computing. The paper yielded a transient PC computing

model that preserved centralization benefits without sacrificing mobility or usability. Furthermore, [25]

discusses a future wherein mobile devices are capable of forming mobile clouds, or ‘mClouds’ to

accomplish tasks without relying on the backend communication. In this thesis, our focus is on processing

power and energy of mobile devices. Our resource allocation mechanism shares similar flavors with [26],

[27], and [28], but fundamentally different than these works as we explicitly design resource allocation

mechanism by taking into account processing power, energy and cooperation among real mobile devices.

7

3 BACKGROUND

3.1 Wi-Fi: 802.11 Wireless LANs

Wireless LANs [9] have become increasingly popular in our everyday lives: our homes, offices

and public places are being equipped with them to connect computers, smart phones, tablets and other

wireless devices. The main wireless LAN standard which is in great use today is 802.11, also called Wi-Fi.

There are various 802.11 standards for wireless LAN technology, including 802.11b, 802.11a and 802.11g.

A summary of these standards, with their main characteristics is given in Table 1 [15].

All three 802.11 standards have major differences in the physical layer. The 802.11b wireless

LAN competes for frequency spectrum with 2.4 GHz phones and microwave ovens. 802.11a wireless LANs

run at higher rates at higher frequencies. This means that 802.11a has a shorter transmission distance for a

given power level and suffer greatly from multipath propagation. On the other hand, 802.11g can not only

transmit at data rates of 802.11a, but do so at lower frequencies and are backward compatible with 802.11b.

In the following sections, we will discuss more in detail about the common characteristics of the

various standards of 802.11. Along with the basic architecture, these standards use the same medium access

protocol (CSMA/CA) and frame structure for their link-layer frames. Other features such as the ‘ad-hoc

mode’ of wireless LANs will be discussed, and later compared to Wi-Fi Direct.

3.1.1 Architecture

802.11 networks are used in two modes [9]: infrastructure and ad hoc. Figure 3(a) illustrates the

infrastructure mode, where the fundamental building block if a basic service set (BSS). A BSS contains

Standard Frequency Range Data Rate

802.11b 2.4-2.485 GHz Up to 11 Mbps

802.11a 5.1-5.8 GHz Up to 54 Mbps

802.11g 2.4-2.485 GHz Up to 54 Mbps

Table 1: SUMMARY OF IEEE 802.11 STANDARDS [15]

8

multiple clients, each associated with a central base station known as an Access Point (AP). These APs can

connect to other networks through routers and switches.

Figure 3(b) shows the ad hoc network formed by various IEEE 802.11 devices. Networks are

formed ‘on-the-fly’ by mobile devices that are in close proximity of each other. Each client can connect to

others directly, without an intermediate access point. We will discuss more about this mode later in this

chapter and compare it against the Wi-Fi Direct technology.

Channels and Association

Every wireless device has to be configured to a wireless AP before it can send or receive any data.

When an AP in installed, a one or two word Service Set Identifier (SSID) and channel number is assigned

to it. Since 802.11b/g operates in 2.4-2.485 GHz range, it leaves an 85 MHz band which defines 11 partially

overlapping channels. Any two channels are non-overlapping if and only if they are separated by four or

more channels. Thus, the set of 1, 6 and 11 is the only set of three non-overlapping channels, which can

give a maximum speed of 33 Mbps. This is done by installing 3 APs at the same physical location, with

channels 1, 6 and 11 respectively, and connecting them with a switch [15].

In order to gain Internet access, a wireless device needs to associate itself with an AP. The 802.11

standard dictates that each AP must periodically send out beacon frames containing its SSID and MAC

address. The wireless device will periodically scan all 11 channels, looking out for any beacon frames from

 (a) (b)

Figure 3: 802.11 Architecture (a) Infrastructure mode (b) Ad-hoc mode

Access Point

(AP)

Wireless

Stations

9

any APs. Even though there isn’t a specific algorithm to select which AP to associate with, typically the

AP with the highest signal strength is selected.

Passive scanning is defined as the process of scanning channels and listening for beacon frames.

A wireless device can also perform active scanning by sending a broadcast probe frame to all APs within

the device’s range. These two scenarios are shown in Figure 4 [15]. Once an AP is selected, an association

request is sent by the wireless device, to which the AP responds with an association frame. It is possible

that a wireless device be asked to authenticate itself to the AP. The most common method to implement

this is by employing usernames and passwords. An authentication server is used to relay information to the

AP, which allows the server to be not only used for multiple APs, but also keeps costs and complexity to

the minimum.

3.1.2 MAC Protocol

Certain factors that are fundamental to wireless communication, make the 802.11 MAC layer

protocol very different from Ethernet. The MAC protocol must be independent of the underlying physical

layer and must also be efficient for periodic as well as burst traffic. Since multiple devices or APs may want

to transmit data frames at the same time, and possibly over the same channel, an appropriate multiple access

protocol is required to coordinate such transmissions. Unlike Ethernet, 802.11 uses a collision-avoidance

(a) Passive Scanning (b) Active Scanning

1. Beacon frames sent from APs 1. Probe Request frame broadcast from H1

2. Association Request frame sent: H1 to AP2 2. Probes Response frame sent from APs

3. Association Response frame sent: AP2 to H1 3. Association Request frame sent: H1 to AP2

4. Association Response frame sent: AP2 to H1

Figure 4: Active and passive scanning for access points [15]

H1

AP2

1

3
2

1
AP1

1

H1

AP2

2

3
4

2
AP1

10

technique instead of a collision detection technique, a Distributed Coordinate Function (DCF) known as

Carrier Sense multiple access with collision avoidance (CSMA/CA) [9]. Also, due to higher bit error rates

of wireless channels, 802.11 uses a link-layer acknowledgment and retransmission (ARQ) scheme.

As 802.11 does not use a collision detection scheme, a station (wireless device or an AP) will

transmit a frame in its entirety every time. This can significantly degrade the performance of the MAC

protocol if the likelihood of collisions is high. To avoid such scenarios, 802.11 uses a link-layer

acknowledgment scheme consisting of two very short durations of time: SIFS (Short Inter-frame Spacing)

and DIFS (Distributed Inter-frame Space) [9].

DIFS is the minimum delay at the source station before starting transmission of a packet, after the

channel is expected to be idle and SIFS is the delay at the destination station between end of transmission

of a packet and sending an acknowledgement frame to the source station. The concept of CSMA/CA along

with the link-layer acknowledgments is shown through the Figure 5 and the following [9]:

1. At the source station:

a. Channel is busy:

i. The stations that wish to transmit data will back off for a random time and

counts down this value while the channel is sensed idle. While the channel is

busy, the counter is frozen.

b. Channel is idle:

i. If the value of the counter is zero, the station that wishes to transmit data

waits for a period of time equal to DIFS before transmission.

Figure 5: 802.11 using link-layer acknowledgments

Source

Destination

DIFS

SIFS ACK

DATA

11

ii. The station waits for an acknowledgement once the frame is transmitted in

its entirety.

iii. Once an acknowledgement is received from the destination station, it

understands that its frame has been correctly received at the destination

station.

iv. If an acknowledgement isn’t received within a certain timeout interval, the

station enters the back-off phase, assuming that the packet has been lost.

2. At the destination station:

a. When a frame is correctly received (checked through CRC), it waits for a short period

of time equal to SIFS, and then sends back an acknowledgment frame.

In CSMA/CA, the station refrains from transmitting during the count down, even if the channel

senses to be idle. This is done as the basic approach to CSMA/CA is collision avoidance. If two stations try

to transmit data at the same time on a busy channel, they both will enter into random back-off times. This

way, if one transmits before the other, the second station will detect a busy channel and back-off again, thus

avoiding collision.

DCF with RTS/CTS

Consider the scenario shown in Figure 6 [15]. We have two wireless stations A and B, such that

both are associated with the AP between them, but each station is hidden from the other. Suppose that

station A is transmitting a frame and halfway through A’s transmission, station B wants to send a frame to

the AP. As B will not hear the transmission from A, it will wait a DIFS interval and then transmit the frame,

resulting in a collision. This shows the wastage of the channel during the entire period of A’s and B’s

transmission.

The 802.11 protocol avoids this problem by using a short Request to Send (RTS) control frame

and a short Clear to Send (CTS) control frame to reserve access to the channel [9]. When a sender wishes

12

to send a data frame, it will first send an RTS frame to the AP, indicating the total time required to transmit

the data frame and the acknowledgment (ACK) frame. When the AP receives the RTS frame, it responds

by sending a broadcast CTS frame. Two purposes are solved with this frame: it gives the sender explicit

permission to send and also instructs all other stations to not send any data for the reserved duration.

Thus, in our example, A will first broadcast an RTS frame, which is heard by all the stations in

its circle, including the AP. The AP will then respond with the broadcast of the CTS frame, which is heard

by all stations within its range.

AP A B

Figure 6: Hidden terminal example: A is hidden from B and vice versa [15]

Figure 7: Collision Avoidance using RTS and CTS frames

Source (A)

Destination (AP)

(

DIFS

SIFS

All other

nodes (B)

CTS

SIFS

SIFS ACK

Deferred access for

all other nodes

RTS DATA

13

As station B will have heard the CTS, it will refrain from transmitting for the time specified by

the CTS frame. This is portrayed in Figure 7. It is obvious that the delay in increased with the use of RTS

and CTS, hence, in practice it is used only when the data frame is longer than a specified RTS threshold.

3.1.3 Frame Structure

The frame structure for 802.11 is shown in Figure 8 [9]. The numbers above each field represents

the lengths of the fields in bytes, and the numbers above each of the subfields in the frame control field

represents the lengths of the subfields in bits. The entire frame can be broadly classified into four parts, as

discussed below.

Payload and CRC fields

The Payload typically consists of an IP datagram or an ARP (Address Resolution Protocol) packet

of size fewer than 1,500 bytes (although up to 2,312 bytes are allowed). The 802.11 frame also consists of

a 32-bit cyclic redundancy check (CRC) to detect bit errors in the received frame.

Address fields

There are four different address fields in an 802.11 frame, out of which three address fields are

required for internetworking purposes – for moving the network-layer datagram from a wireless station

through an AP to a router interface. The fourth address field is used when APs forward frames to each other

in ad hoc mode. For now, we will only concentrate on the first three address fields. Address 2 is the MAC

address of the station that transmits the frame. Address 1 is the MAC address of the wireless station that is

to receive the frame. Address 3 contains the MAC address of a router interface which connects to other

subnets.

 Figure 8: 802.11 Frame Structure [9]

14

QoS Control and HT Control Fields

The QoS Control field identifies the traffic category or the traffic stream to which the frame

belongs to. This 16 bit field contains of five or eight subfields, used to determine QoS and mesh-related

information about the frame, which we will not discuss here. HT Control Field is present in QoS Data and

management frames. This 32 bit field is further divided into 9 sub fields, which are mainly used for Link

Adaptation Control [9].

Sequence Number, Duration and Frame Control fields

The use of sequence numbers in 802.11 allows a receiver to distinguish between a newly received

frame and a retransmitted previous frame. Whenever a station correctly receives a frame from another

station, it sends back an acknowledgment according to the sequence number. The duration value in the

frame gives the time duration for which the channel needs to be reserved, which includes the time to

transmit the data frame and the time to transmit an acknowledgment. This value is included for both data

frames and for the RTS and CTS frames.

The Frame control field consists of 11 subfields [9] [15]. Protocol version allows future versions

of 802.11 to operate at the same time in the same cell. The Type (data, control or management) and Subtype

(RTS or CTS) fields for regular data frame without quality of service, are set to 10 and 0000 in binary. The

To AP and From AP frames indicate whether the frame is going to or coming from the network connected

to the APs. More fragments bit means that more fragments will follow. Retry marks a retransmission of a

frame sent earlier. The Power Management bit indicates that the sender is going into power-save mode.

The More data bit indicates that the sender has additional frames for the receiver. The WEP (Wired

Equivalent Privacy) bit indicates that the frame body has been encrypted for security. Finally, the Order

but tells the receiver that the higher layer expects the sequence of frames to arrive strictly in order.

3.1.4 Wireless Ad Hoc Networks

As mentioned briefly at the beginning of this chapter, ad hoc networks [10] can be formed with

802.11 devices. These decentralized networks do not rely on any pre-existing infrastructure, such as access

points in wireless networks. All stations form an Independent Basic Service Set (IBSS). Any other station

15

that is within the transmission range of another can start communicating. Access Point (APs) are not

required unless a station has an ad hoc and a wired network connection.

Every station participates in routing and forwarding data to other stations. These stations are the

network and they co-operatively provide the functionality which is normally provided by the infrastructure

e.g. routers and switches. Apart from classic routing, ad hoc networks also use flooding for sending data.

IEEE 802.11 is normally associated with a single-hop ad hoc network, with the range of stations being up

to 100-200 meters. This can be overcome by adding routing mechanisms to forward packets towards the

intended destination for multi-hop ad hoc networking. This extends the range of any ad hoc network beyond

the transmission radius of the source station.

Common Problems in Wireless Ad Hoc Networks

As stated in [9] [10], there are many problems that can arise in wireless networks, specifically in

the ad hoc mode:

1. The channels are unprotected from outside signals

2. The wireless medium has neither absolute nor readily observable boundaries outside of which

stations are known to be unable to receive network frames

3. The channels have time-varying and asymmetric propagation properties

4. The wireless medium is significantly less reliable than wired media

Apart from the basic drawbacks of wireless networks, the 802.11 ad hoc mode provides minimal

security against any unwanted incoming connections. Ad hoc devices cannot disable their SSID broadcast

like infrastructure mode devices can. If any attacker is within the wireless device’s range, they can easily

connect to it. Furthermore, wireless networking standards such as 802.11g supports only speeds up to 11

Mbps in ad hoc mode. This is a huge step down from the speeds provided in 802.11g infrastructure mode

(54 Mbps). Finally, as the number of devices increases in an ad hoc mode, the performance of the networks

suffers. Devices may randomly disconnect from time to time and it may get difficult to manage such a

network.

16

Taking into consideration the drawbacks of ad hoc mode of wireless networks, we delve further

into the Wi-Fi Direct technology, and how it improves on the shortcomings of the wireless ad hoc mode.

3.2 Wi-Fi Direct

Apart from the ad hoc mode in wireless networks, 802.11z or Tunneled Direct Link Setup (TDLS)

[12] also provides direct device to device (D2D) communication, on the condition that all wireless stations

be associated with the same AP. Unlike these technologies, Wi-Fi Direct [11], defined by the Wi-Fi Alliance

[4], aims at enhancing D2D communications in Wi-Fi by building upon the successful IEEE 802.11

infrastructure mode and allows negotiation amongst devices to decide who will take over the AP-like

functionalities. In this way, Wi-Fi Direct inherits all the improved features such as QoS, power saving, and

security mechanisms developed for the Wi-Fi infrastructure mode in the past years.

In the following sections, we will study an overview of the Wi-Fi Direct specification [11]. We

will focus on its novel functionalities and group formation procedures along with architecture, security and

power of Wi-Fi Direct.

3.2.1 Architecture

In Wi-Fi Direct, the roles of an AP and a device (or client) are dynamic in nature, which means

that at least one device in the network must behave as both a client and an AP (also referred to as Soft-AP).

Before establishing a peer-to-peer (P2P) connection, each device will have to agree on the role that they

will assume. Each network consists of P2P devices which communicate by establishing P2P Groups, similar

to traditional 802.11 infrastructure networks.

One device acts like an AP in the P2P Group and is referred to as the P2P Group Owner (P2P

GO), with the other devices acting as P2P Clients. When P2P devices discover one another, they negotiate

their roles as P2P GO and P2P Client, and establish a P2P Group. Other P2P Clients can now join the P2P

Group as they do in traditional Wi-Fi network. Legacy clients also communicate with the P2P GO as long

as they are not 802.11b-only devices and support the required security mechanisms. These legacy devices

do not formally belong to the P2P Group, but they simply ‘see’ the P2P GO as a traditional AP.

17

Looking at Figure 9 [11], we can see two simple Wi-Fi Direct architectures. Figure 9(a) represents

a scenario with two P2P Groups. The first group is formed by a mobile phone which shares its 4G

connection with two other laptops, where the phone acts as the P2P GO and the laptops act as the P2P

Clients. Expanding the network further, one of the laptops create a separate P2P Group with a printer, for

which the laptop if the P2P GO.

For the laptop to work as both a P2P GO and P2P Client, it will alternate between the roles by

using the Wi-Fi interface on a time-sharing basis. Figure 9(b) depicts a case of a laptop accessing the

Internet via a legacy infrastructure AP, while simultaneously streaming data to a TV, by establishing a

separate P2P Group, in which the laptop is the P2P GO. The P2P GO needs to announce itself through

beacons, like a traditional AP. It runs Dynamic Host Configuration Protocol (DHCP) server to provide P2P

Clients with IP addresses. Transfer of the role of a P2P GO is not permitted once a P2P Group has been

4G Interface | P2P Client

P2P Client

P2P Client | P2P GO P2P Client

P2P Group 1
P2P Group 2

P2P Group 3 802.11 WLAN

P2P Client

Legacy Client | P2P GO

Legacy

802.11 AP

Figure 9: Wi-Fi Direct supported technologies and use cases [11]

(b)

(a)

(a)

(a)

(a)

(a)

(a)

(a)

(a)

(a)

(a)

(a)

18

formed. If the P2P GO leaves the P2P Group, it will tear down the connections as well, and must be re-

established.

3.2.2 Group Formation

Three main ways have been defined for two devices to establish a P2P Group – Standard,

Autonomous and Persistent – depending on if they have to negotiate which device should take the role of

the P2P GO, or if they have previously shared some security information.

Standard

This is the most basic case for formation of a P2P Group. A traditional Wi-Fi scan, either active

or passive, is performed to discover any pre-existing P2P Groups and Wi-Fi networks. Following this, a

Discovery algorithm [11] is executed as follows:

1. A P2P Device selects one of the channel: 1, 6 or 11 in the 2.4GHz band, as a Listen channel.

2. The device now alternates between two states: a search state, wherein it actively scans by

sending Probe Requests in each of the channels; and a listen state, wherein it listens for the

channel to respond with Probe Responses.

The amount of time spent in each state is decided randomly, but it usually falls between 100-

300ms. Once both devices have found each other, the GO Negotiation phase begins. A three-way handshake

occurs between the devices: GO Negotiation Request, GO Negotiation Response and GO Negotiation

Confirmation. Here, the two devices decide who the P2P GO will be, and on which channel the group will

operate (2.4 GHz or 5GHz band). A numerical parameter for each device, called the GO Intent value, is

shared during the three-way handshake. The device that declares a higher value becomes the P2P GO. In

rare cases when the GO Intent value is the same for both devices, a tie-breaker bit is included in the GO

Negotiation Request phase, which is randomly set for each request. The next step is establishment of secure

communication, using Wi-Fi Protected Setup or WPS Provisioning phase (discussed later), following which

DHCP sets up the IP addresses for both devices.

19

Autonomous

Compared to the previous case, the Discovery algorithm is simplified the Autonomous case. Any

P2P Device can autonomously create a P2P Group, where it immediately assigns itself to be the P2P GO

by sitting on a channel and send beacon frames. Other P2P Devices discover and establish connections

using the traditional scanning mechanism and proceed to WPS Provisioning followed by DHCP for IP

address configuration. Clearly, no GO negotiation phase is required, nor is there any need to alternate

between states.

Persistent

This case is commonly used when P2P Devices need to repeatedly connect to each other over a

period of time. Here, the P2P Devices declare a group as persistent, by setting a flag in its beacon frames,

Probe Responses and GO Negotiation frames. The devices store the group’s networks credentials and assign

the same P2P GO and Clients for any subsequent re-connections of the P2P Group.

After the Discovery phase, if a P2P Device recognizes to have previously formed a persistent

group with the corresponding peer in the past, it uses the Invitation Procedure (a two-way handshake) to

quickly re-instantiate the group. The WPS Provisioning phase is significantly reduced as the network

credentials that were stored can be reused.

3.2.3 Security

Once the roles of each device in the P2P Group has been negotiated, the Wi-Fi Direct devices are

required to implement Wi-Fi Protected Setup (WPS) [13] to support secure connections. WPS requires the

P2P GO to implement an internal Registrar, and the P2P Client is required to implement an Enrollee. WPS

comprises mainly of two phases. In the first phase, the Registrar is in charge of generating and issuing the

network credentials (a security key) to the Enrollee. WPS is based on WPA-2 security and the Advanced

Encryption Standard (AES)-CCMP is used as a cypher, randomly generating a Pre-Shared Key (PSK) for

mutual authentication. In phase two, the Enrollee disassociates itself and reconnects using its new

20

authentication credentials. This way, for a persistent connection, only the second authentication phase is

required as it would already have the required network credentials.

3.2.4 Power

Energy efficiency is of vital importance for battery constrained devices that may act as a P2P GO

or a soft-AP. In current Wi-Fi networks, power saving mechanisms like legacy power save mode, have

been defined only for clients, and P2P Clients in Wi-Fi Direct can also benefit from this. On the other hand,

two new mechanisms [11] have been defined for the P2P GO in Wi-Fi Direct: Opportunistic Power Save

protocol and the Notice of Absence (NoA) protocol.

Opportunistic Power Save

This mechanism assumes that P2P Clients use the legacy power saving protocol and use it as a

leverage for P2P GO. A time window defined by CTWindow is advertised by the P2P GO within each

Beacon and Probe Response frames. This window specifies the amount of time the P2P GO will stay awake

after a Beacon is received. During this time, P2P Clients which are in their power saving mode can send

their frames. All connected clients will be in doze state due to two reasons: either they announced a switch

to the doze state by sending a frame with the Power Management (PM) bit set to 1, or they were already in

the doze state during the previous beacon interval; and P2P GO can enter sleep mode until the next Beacon

is to be sent. If a P2P Client leaves the power saving mode (by setting its PM bit to 0), the P2P GO is

obligated to stay awake until all P2P Clients return to their power saving modes. The power saving

mechanism for the P2P GO is clearly dependent on the activity of any associated P2P Clients. On the other

hand, the Notice of Absence protocol allows the P2P GO to control its own energy consumption, as

explained below.

Notice of Absence

Unlike the Opportunistic Power Save protocol, Notice of Absence (NoA) protocol allows a P2P

GO to define and announce a time interval referred to as absence periods. P2P Clients are not allowed

access to the channel irrespective of whether they are in power saving mode or not. The absence periods

are also defined in Beacons and Probe Requests using four parameters:

21

1. Duration: Length of each absence period.

2. Interval: Time between consecutive absence periods.

3. Start Time: Start time of the first absence period after the current Beacon frame.

4. Count: Number of absence periods scheduled during the current NoA schedule.

If the P2P GO decides to change or cancel the current NoA schedule, it can do so by modifying

or omitting the signaling element. P2P Clients will always obey the most recently received schedule. For

both, Opportunistic Power Save and NoA protocols, Wi-Fi Direct specification does not define any

mechanism to calculate the CTWindow or the absence periods.

3.3 Transmission Control Protocol

The Transmission Control Protocol (TCP) is a highly reliable, connection oriented transport layer

protocol. The basics of TCP has been defined in RFC 793, and we will discuss some important underlying

principles such as connection, reliability, flow control, congestion control in the following sections.

3.3.1 Segment Structure

TCP segments are transmitted as internet datagrams. While the Internet Protocol header carries

several information fields, including the source and destination host address, the TCP header also allows

information specific to TCP. The TCP header format [RFC 793] is shown in Figure 10 below.

1. Source Port and Destination Port (16 bits each): This allows the source process to pass

application data to the correct source host and the destination host to pass application data to

the correct process running on the destination end system.

2. Sequence Number (32 bits): This field contains a value that is used for numbering the packets

of data flowing from the sender to the receiver. Any gaps in the sequence numbers of packets

received allows the receiver to detect a lost packet, and duplicate sequence numbers allow the

receiver to detect duplicate copies of a packet.

22

3. Acknowledgment Number (32 bits): This field contains the value of the next sequence number

that the receiver is expecting to receive. The ACK flag bit is also set to 1. TCP acknowledges

bytes up to the first missing byte in the stream of packets, and thus TCP is said to provide

cumulative acknowledgments.

4. Data Offset (4 bits): This field specifies the length of the TCP header in 32-bit words. The

length varies due to the TCP options field. If the options field is empty, the header is 20 bytes.

5. Reserved (6 bits): Reserved for future use and value must always be zero.

6. Control Bits (6 bits): This field has 6 flags. The URG bit is used to indicate any ‘urgent’

upper-layer data in the given segment. ACK bit indicates that the value carried in the

Acknowledgment Number is valid. PSH bit tells the receiver to pass the data to the upper

layer immediately. RST, SYN and FIN bits are used for initiating and tearing down a TCP

connection as discussed in the TCP’s Connection Management in the following section.

7. Window (16 bits): This field is mainly used for flow control and specifies the amount of data

the sender is willing to accept, after the most recently acknowledged segment.

8. Checksum (16 bits): This field is used to detect errors in a transmitted packet. The sender

performs a 1’s complement of the sum of all 16-bit words in the header and the result is put

Sequence Number

Acknowledgment Number

Source Port Number Destination Port Number

Window

Urgent Data Pointer Checksum

Data Offset Reserved Control Bits

Figure 10: TCP Segment Structure [RFC 793]

Options Padding

Data

23

in the checksum field of the TCP header. The receiver performs the same method on the

received segment, and can detect any errors or alterations that have been made to the segment.

9. Urgent Data Pointer (16 bits): This field points to the sequence number of the octet following

the urgent data, and is to be interpreted only when the URG flag is set.

10. Options (variable): This is mostly used when the sender wants to negotiate the maximum

segment size (MSS) with the receiver. RFC 854 and RFC 1323 can be seen for further details.

11. Padding (variable): This field is used to ensure that the TCP header ends and data begins on

a 32 bit boundary. It consists of zeros only.

Now that we have a fair idea to what goes in a TCP header, we will see how this header is used

to make TCP a reliable, and connection oriented protocol.

3.3.2 Connection

The three-way handshake is used to establish a TCP connection between two devices, and hence

is called a connection oriented protocol. TCP runs only on the end devices, and not in the intermediate

network elements such as routers, switches etc. These elements are oblivious to TCP connections and

simply forward any datagrams that they receive. TCP provides a full-duplex service, which means that

application layer data can flow simultaneously from two devices, to each other. TCP also provides a point-

to-point connection between a single sender and a single receiver, which implies that multicast (transfer of

data from one sender to multiple receivers) is not possible with TCP.

Connection Management

A TCP connection is established by using the SYN and ACK flags, and it is torn down using the

FIN and ACK flags of the TCP header. The client application process first informs the client TCP that it

wants to establish a connection with the process at the server. Connection establishment is then proceeded

through the following steps [15]:

24

1. A TCP SYN segment with no data, the SYN bit set to 1 and a randomly generated initial

sequence number (SNC) is encapsulated in an IP datagram and sent to the server.

2. Assuming that the IP datagram arrives at the server, it extracts the TCP SYN segment and

allocates a TCP buffer and variables to the connection, and sends a connection-granted

segment to the client. This segment does not have any data, the SYN bit is set to 1, the

Acknowledgment Number field is set to (SNC +1) and a randomly generated server sequence

number (SNS) is added to the Sequence Number field of the server TCP header. This implies

that the server has granted and agreed to a connection with the client.

3. Once this segment is received at the client, buffers and variables are allocated to the

connection. The client sends another segment with the SYN bit to 0, Acknowledgment

Number field set to (SNS+1) and Sequence Number field as (SNC+1). This segment may or

may not carry data in the segment payload.

In all future segments, the SYN bit is set to 0. Since three packets are sent to establish a TCP

connection, it is known as a three-way handshake. A basic example for establishing a TCP connection is

shown in the Figure 11 above.

ACK = 121

Time

Time

Connection

granted

Connection

request

Server host

Client host
ACK

SYN=1

SNS = 200

SYN=0

SNC = 121

ACK = 201

SYN=1

SNS = 200

SYN=1

SNC = 120

Figure 11: TCP three-way handshake

25

A TCP connection is terminated in a similar manner [RFC 793] [15], once the client decides to

close the connection. This is done to de-allocate the buffers and variables of the hosts. The TCP client send

a segment to the TCP server process with the FIN bit set to 1. Once the server receives this segment, it

sends the client an acknowledgment segment in return and sends another shut down segment with its FIN

bit set to 1. To complete the termination process, the client acknowledges the server’s final shut down

segment and enters a wait period before it can shut down itself. All resources (buffers and variables) have

been de-allocated. Figure 12 illustrates this process.

3.3.3 Reliable Data Transfer

It is essential for TCP to create a reliable data transfer service [15] on top of Internet’s network

layer service (IP service), as IP does not guarantee datagram delivery, in-order delivery or integrity of the

data. Three major events are associated with data transmission and retransmission at the sender: data

received from the application above, timeout and ACK reception.

When TCP receives data from the application, it encapsulates the data in a segment and passes

the segment to IP. Each of these segments consist of a sequence number which is the byte-stream number

of the first data byte in the segment. TCP starts the timer if no other timer is running, and its expiration time

is calculated through an estimate of RTT (Round Trip Time). If timeout occurs, TCP retransmits the

Figure 12: Terminating a TCP connection

Closed

Timed wait

Close

Time

Time

Close

Server host

Client host

ACK

FIN ACK

FIN

26

segment that caused the timeout and restarts the timer as well. If an ACK arrives from the receiver, TCP

compares the ACK value to the last unacknowledged byte or SendBase [15]. Thus, SendBase-1 is sequence

number of the last byte that is known to have been received correctly at the receiver. If the ACK value is

greater than SendBase, the ACK is acknowledging one or more previously unacknowledged segments. The

SendBase variable is then updated and the timer is restarted if there are currently any unacknowledged

segments.

TCP implementations employs some modification of the events described above. Whenever a

timeout occurs and a TCP sender has to retransmit an unacknowledged segment, it sets the next timeout

interval to twice the previous value, rather than estimating it from the RTT. Thus, the intervals grow

exponentially after each retransmission. However, when data is received from the application above, or

when an ACK in received, the timeout interval is derived from RTT. This provides a limited amount of

congestion control in TCP, which is discussed in detail in the later sections.

One of the major problems with the retransmission is that the timeout periods can be extremely

long. When a segment is lost, a large timeout period forces a delay in retransmitting the lost segment,

increasing end-to-end delay. Instead, TCP identifies a lost segment through reception of duplicate ACKs at

the sender. This means that the receiver re-acknowledges a segment for which the sender has already

received an earlier ACK. When a segment is lost, the receiver will send back-to-back acknowledgments for

that segment, and once the sender receives 3 duplicate ACKs, it will assume that the segment is lost and

will retransmit. This helps in reducing the end-to-end delay in the network. This mechanism is also known

as Fast Retransmit.

3.3.4 Flow Control

As discussed in connection management of TCP, buffers are allocated for every connection at the

client and server processes. The receiver TCP buffer receives bytes in the correct sequence and the

associated application reads data from this buffer. It is possible that the sender overflows the receiver’s

TCP buffer, and hence TCP provides a flow-control service. It can be considered as a speed-matching

27

service – synchronizing the rate at which the sender is sending data against the rate at which the receiver

application reads the data.

As explained in [15], in flow control, the sender maintains a variable called the Receive Window,

which gives an idea of how much free buffer space is available at the receiver. Consider a scenario where

Host A is sending a file to Host B over a TCP connection. Host B will allocate a receive buffer to the

connection denoted by RcvBuffer. Host B will read data from this buffer from time to time.

LastByteRead gives the last byte in the data stream read from the buffer by Host B. LastByteRcvd

gives the last byte in the data stream that has arrived from the network and has been placed in the receiver

buffer at B. In order to avoid overflow at the allocated buffer, the following condition must be satisfied;

LastByteRead – LastByteRead ≤ RcvBuffer

The receive window, given by rwnd is set to the amount of free space in the buffer [RFC 813];

rwnd = RcvBuffer – [LastByteRecvd – LastByteRead]

The value of rwnd is dynamic as the amount of free space changes with time. An illustration of

flow control is shown in Figure 13 [15]. Host B puts the value of rwnd in the Window field of its TCP

segment and sends it to Host A. In turn, Host A keeps a track of the LastByteSent and LastByteAcked, the

meaning of which is evident. The difference between these two variables is the amount of unacknowledged

Figure 13: Buffer Allocation in TCP [15]

Rwnd

Application

process

RcvBuffer

Data

from IP

datagram
Free space

TCP data in

buffer

28

data that A has sent to B. This unacknowledged data should not exceed the value of rwnd received from

Host B, thus assuring that A does not overflow Host B’s buffer.

LastByteSent – LastByteAcked ≤ Rwnd

Now consider the scenario where Host B’s receiver buffer becomes full such that rwnd = 0. After

telling Host A that rwnd is zero, suppose that Host B has nothing to send to A. This means that once Host

B’s buffer starts to empty, it won’t be able to inform A by sending a new segment and Host A will be

blocked. To avoid this problem, TCP specification requires Host A to continue to send segments with one

data byte when B’s receiver window is zero. These segments will have to be acknowledged by Host B, and

hence will be able to inform A about any change in the free space, given by rwnd.

3.3.5 Congestion Control

It is essential that TCP provides an end-to-end congestion control mechanism since the IP layer

provides no feedback to the end systems regarding network congestion. This can be done by using an

additional variable, the Congestion Window It is denoted by cwnd and constraints the rate at which a TCP

sender can transmit traffic in to the network. Thus, considering Flow Control and Congestion Control in

TCP, we have the following condition [15], [RFC 5681];

LastByteSent – LastByteAcked ≤ min {cwnd, rwnd}

For this section, let us assume that the rwnd is always large, and the amount of unacknowledged

data at the sender is primarily limited by cwnd. Also assume that the sender always has some data to send.

This way, the sender’s rate is roughly cwnd/RTT bytes/sec; where RTT is the average round trip time for a

packet to be sent and acknowledged in a network. Thus, the rate at the sender can be adjusted by changing

the value of rwnd. Congestion control in TCP follows three basic principles:

1. A lost segment implies congestion and thus TCP sender’s rate should be decreased. This lost segment

is identified either by a timeout or duplicate ACKs.

2. When an ACK arrives for a previously unacknowledged segment, it implies that the network is

delivering the data to the receiver and thus the sender rate can be increased.

29

3. TCP’s strategy for adjusting its transmission rate is very simple. It keeps probing the network and

increases its rate until a loss occurs (indicating congestion in the network), where it backs off from that

rate and begins probing again to see when congestion occurs.

The above principles are seen implemented in three ways in TCP’s Congestion Control algorithm:

Slow Start, Congestion Avoidance and Fast Recovery [15], [RFC 5681]. While Slow Start and Congestion

Avoidance is mandatory, Fast Recovery is recommended, but not required for TCP senders. Figure 14 gives

an example of how TCP enters all three states.

Slow Start

When a TCP connection starts, the value of Congestion Window or cwnd is initialized to a small

value of 1 maximum segment size (MSS) resulting in an initial sending rate of roughly MSS/RTT. MSS is

defined as the maximum amount of data that can be placed in a segment (along with the TCP/IP header),

and is determined by the maximum transmission unit (MTU) or the largest link-layer frame that can be sent

by the sending host. The available bandwidth may be much larger than MSS/RTT, thus the TCP sender

would want to calculate the bandwidth as fast as possible.

The Slow Start state begins with the value of cwnd beginning at 1 MSS and increasing by 1 MSS

every time a transmitted segment is first acknowledged. So once the sender receives the first

acknowledgement, it will increase its cwnd by 1 and transmit two segments. When these two segments are

acknowledged, it will increase its window by 1 for each segment, thus incrementing cwnd to 4 MSS. Hence,

the sender rate starts slowly, but grows exponentially during the slow start state. This exponential growth

ends when congestion (a loss event) occurs, which is indicated by a timeout. The sender resets the value of

cwnd to 1 and begins the slow start process afresh. Another variable is added, ssthresh which is cwnd/2 –

half the value of the congestion window when congestion was detected.

Once the cwnd reaches or surpasses ssthresh, slow start state ends and TCP transitions into

congestion avoidance mode, where the value of cwnd increases more cautiously. Congestion can also be

30

detected by three duplicate ACKs, in which TCP performs fast retransmit and enters the fast recovery state

as discussed below.

Congestion Avoidance

When TCP enters the congestion avoidance state, cwnd is approximately half the value when

congestion was encountered. The value of cwnd must therefore be increased in a conservative manner, by

incrementing cwnd by a single MSS every RTT. This means that if there are 10 segments being

acknowledged every RTT, each acknowledgment would imply an increase in cwnd by 1/10. If and when

timeout occurs, the value of cwnd is reset to 1MSS and ssthresh is updated to half the value of cwnd when

congestion occurred. If the loss event is triggered by triple duplicate ACKs, the network continues to deliver

segments to the receiver and a less drastic approach is adopted: TCP halves the value of cwnd and ssthresh

is half the value of cwnd when the triple duplicate ACKs were receiver. Fast Recovery state is then entered.

Fast Recovery

For every duplicate ACK that is received for a missing segment, cwnd is increased by 1 MSS.

Eventually, when an ACK does arrive, acknowledging the missing segment, TCP enters congestion

avoidance state after decreasing cwnd. If a timeout event occurs, TCP enters slow-start state after decreasing

Figure 14: TCP Congestion Control Mechanism

Slow Start

Fast

Recovery

Congestion

Avoidance

Fast

Retransmit

Slow Start

ssthresh1

ssthresh2

ssthresh3

Triple duplicate

ACKs

Timeout

Window

Size

Time

31

the cwnd to 1 MSS and ssthresh to half the value of cwnd when timeout occurred. TCP Tahoe (RFC 5681),

which is the earlier version of TCP does not incorporate Fast Recovery. Whereas, the newer version TCP

Reno does.

3.4 Creating Network Applications

Now that we have a basic understanding of how network applications works, we can explore more

on how the programs are actually created. Each network application consists of two programs in general: a

client and a server program. Both the programs reside in two different devices. When they are executed,

their respective processes are created which in turn communicate by writing to and reading from sockets.

Since we have previously discussed how TCP works, we will see how the client and server programs are

created for TCP itself.

3.4.1 Socket Programming with TCP

As we have seen in the previous section, TCP in a connection oriented protocol. This implies that

the client and server need to perform a three-way handshake before any data can be sent across the

connection. Two sockets are associated with the TCP connection – a client and server socket – each linked

with an IP address and a port number. The data can be dropped via the socket once a TCP connection has

been established [15].

Bytes

Three-way

handshake

Client process

Server process

Client socket

Connection

socket

Welcoming

socket

Figure 15: TCP sockets

32

It is the client’s job to contact the server, which implies two things. First, the server has to be up

and running for an incoming TCP connection. Secondly, a special socket must be defined at the server that

welcomes initial contact from the client process. This socket is referred to as the Welcoming socket [15].

Once the server process is running, the client can initiate a TCP connection by creating a TCP socket. The

client will need to specify the address of the Welcoming socket at the server, which is the IP address of the

server host along with the port number of the socket. A three-way handshake can now be initiated at the

transport layer, which is completely invisible to the client and server processes. During the three-way

handshake, the client process communicates with the server through the Welcoming socket, which initiates

creation of a new socket called the Connection socket is dedicated to that particular client (as shown in the

Figure 15).

Eventually, the Connection socket and the Client socket is directly connected to send bytes of

data. TCP guarantees that the server process will receive each and every byte, in the order that it was sent.

The same socket is also used at the client process to receive bytes from the server; and at the server process

to send bytes into its Connection socket.

33

4 SYSTEM MODEL AND FORMULATION

Now that we have a good understanding of how wireless networks work, we will focus on the

Energy-Aware Computation (EaC) system model for this thesis. Our model shown in Figure 16(a) helps in

focusing on the bottlenecks of the system: processing power, energy consumption of the mobile devices

and bandwidth. The model consists of N mobile devices, where the mobile device communicates with each

other via a D2D connections and the source communicates with mobile devices via cellular or Wi-Fi links.

Also, our analysis assumes a time slotted system where t refers to the beginning of slot t.

4.1 System Model

For N devices, the flow rate towards any device n in Figure 16(a) is ∑ {𝑥𝑛,𝑘(𝑡)}𝑘∈𝑁 , where 𝑥𝑛,𝑘(𝑡)

is the transmission rate of the packets from the source to the device n and these packets will be used by

device n. For 𝑥𝑛,𝑘(𝑡), packets will be processed by device n, to be further forwarded to device k. Multiple

𝑄𝑛,𝑘 Decoder 𝑈𝑛,𝑘

𝑥𝑛,𝑘(𝑡) 𝑑𝑛,𝑘(𝑡) 𝑑𝑛,𝑘(𝑡)𝛼𝑛,𝑘(𝑡)

Link from

Source

Energy Credits ℎ𝑛,𝑘(𝑡)

𝑍𝑛,𝑘 Energy

Filter

Energy

Source

𝑒𝑛,𝑘(𝑡)

Wi-Fi Direct

Interface

Figure 16: Building Block of mobile device n

𝑥𝑛,𝑛(𝑡),

𝑥𝑛,𝑘(𝑡)

𝑥 (𝑡)

𝑥 (𝑡)

ℎ𝑛,𝑘(𝑡)

ℎ (𝑡)

k

n m

D2D

Connections

Source

Cellular or

Wi-Fi Links

(a)

(b)

34

queues have been implemented in a mobile device, to represent different levels of progress in packet

processing and energy awareness for a mobile device. Figure 16(b) shows these building blocks of a mobile

device n, where 𝑈𝑛,𝑘, 𝑄𝑛,𝑘 and 𝑍𝑛,𝑘 represent three levels of queues constructed at the mobile device n to

process packets for mobile device k. All the incoming packets from the source are stored in 𝑈𝑛,𝑘, and is

then forwarded to the decoder at rate 𝑑𝑛,𝑘(𝑡). These packets are decoded by the decoder block and passed

to queue 𝑄𝑛,𝑘 at rate 𝑑𝑛,𝑘(𝑡). 𝛼𝑛,𝑘(𝑡), where 𝛼𝑛,𝑘(𝑡) is a positive real value which captures any changes in

the rate at the decoder. It is thus also identified as a rate shaper. A common example is to consider the

decoder to be a H.264/AVC decoder such that the output of the decoder is higher than the input, as

H.264/AVC will decompress the incoming packets. This change in rate will be captured by 𝛼𝑛,𝑘(𝑡).

The decoded and rate changed packets are then passed to queue 𝑄𝑛,𝑘(𝑡), which further passes it

to the energy filter. This filter is associated with the energy source and determines the amount of energy

that can be consumed on any given task, at each time slot. Energy credits are allotted to the device

depending upon the battery level as well as an estimate of the expected battery consumption in the near

future. These credits are used to calculate the number of packets that can be supported by the device, and

that value enters the energy filter in terms of energy credits. Therefore, at each time slot, packets will be

transmitted from 𝑄𝑛,𝑘(𝑡), to 𝑍𝑛,𝑘(𝑡) if there are energy credits in the filter. Finally, the packets are

transmitted to the original destination k via a local interface.

Since the focus of our thesis is the processing power and energy consumption of a mobile device,

we will see concentrate on how the above model helps in both scenarios. Consider a case where the number

of packets in 𝑈𝑛,𝑘 increases too much. This implies that the decoder, hence the processing power is the

bottleneck, and node n should stop receiving packets from the source. Likewise, increase in 𝑄𝑛,𝑘 implies

that the energy filter in the bottleneck and hence node n should stop receiving packets. Since the packets

are intended for destination k, there is also a possibility of buildup in 𝑍𝑛,𝑘 if the link between node n and k

35

is the bottleneck of the system. Based on these observations, a resource allocation algorithm was developed

in [14], from which we will formulate a solution in the next section.

4.2 Problem Formulation and Solution

According to the stability region and NUM formulation in [14], in order to maximize the

efficiency of our system, we need to take into consideration the number of packets in each of the queues

𝑈𝑛,𝑘, 𝑄𝑛,𝑘 and 𝑍𝑛,𝑘. The main focus of this thesis will be on the system model of an individual mobile

device shown in Figure 16(b), which is a part of the system represented in Figure 16(a). The D2D

connections between various devices from Figure 16(a) and its efficiency maximization has been discussed

in [14] as well.

The problem of processing power and energy consumption in a mobile device as discussed above,

have the following two proposed solutions:

1. Decoder control: At every time slot t, the rate 𝑑𝑛,𝑘(𝑡), who’s value is greater than the

decoding rate of the device, is determined by calculating the difference in the number of

packets processed by 𝑈𝑛,𝑘 and 𝑄𝑛,𝑘 and by setting a maximum threshold (𝑇ℎ𝑟𝑈) for the

number of buffered packets in 𝑈𝑛,𝑘. Thus, we have the conditions: 𝑈𝑛,𝑘(𝑡) − 𝑄𝑛,𝑘(𝑡) ≥ 0

and 𝐵𝑢𝑓𝑓𝑒𝑟𝑒𝑑(𝑈𝑛,𝑘(𝑡)) < 𝑇ℎ𝑟𝑄. If these conditions are not satisfied, no packets are

forwarded to the decoder, and further to queue 𝑄𝑛,𝑘.

2. Energy Control: At every time slot t, the rate 𝑒𝑛,𝑘(𝑡) is determined by calculating the

difference in the number of packets processed by 𝑄𝑛,𝑘 and 𝑍𝑛,𝑘 and by setting a maximum

threshold 𝑇ℎ𝑟𝑈 for the number of buffered packets in 𝑄𝑛,𝑘. Thus, we have the conditions:

𝑄𝑛,𝑘(𝑡) − 𝑍𝑛,𝑘(𝑡) ≥ 0 and 𝐵𝑢𝑓𝑓𝑒𝑟𝑒𝑑(𝑄𝑛,𝑘(𝑡)) < 𝑇ℎ𝑟𝑈. If these conditions are satisfied,

the packets are forwarded to the energy filter. Here, the energy credits are evaluated, and if the

device has enough credits the packets are forwarded to 𝑍𝑛,𝑘. If the condition is not satisfied,

packets aren’t forwarded to the filter, and further to 𝑍𝑛,𝑘.

36

Note that all transmissions over the links are unicast transmissions in our work, where unicast is

dominantly used in practice over cellular, Wi-Fi, and Wi-Fi Direct links. It is straightforward to extend our

framework for broadcast transmissions. As it can be seen, our algorithm takes into account the resources of

processing power and energy in addition to bandwidth in an optimal manner. In the next section, we will

see the implementation details and the performance of our algorithm in a practical setup.

37

5 IMPLEMENTATION DETAILS

The scenario shown in Figure 16(b) was implemented on mobile devices, specifically Nexus 5

smartphones and Nexus 7 tablets. The source in Figure 16(a) is also represented using a Nexus 7 tablet. In

a simple source-to-receiver transmission, the building blocks shown in Figure 16(b) are implemented on

top of the transport layer at the receiver. The TCP socket is connected to the output of queue 𝑍𝑛,𝑘, and over

this TCP connection Wi-Fi Direct operates.

We created the Energy-Aware Computation (EaC) application using Eclipse, along with the

Android SDK. The IP Addresses associated with the WiFi-Direct Group was acquired after initiating WiFi-

Direct connections using the Android 5.1.1 operating system. These IP Addresses were used to create and

maintain the sockets on both the source and receiver phones, as discussed in Section 3.4. Once the sockets

were created, packets could be transmitted from the source to the receiver.

Source Device

At the source, each packet is of size 500 bytes. These packets are read using the public java class

BufferedInputStream from the file and stored in a buffer, and then pushed to the OutputStream of the source

socket. This is done continuously till the end of the file has been reached. At this point, the

BufferedInputStream and source socket is closed.

Receiver Device

At the receiver, the socket uses its BufferedInputStream to read the incoming data, one packet

(500 bytes) at a time. This data will later be stored using an OutputStream in a location which has been pre-

defined by the user, if it satisfies the Decoder and Energy conditions as shown in Figure 16(b). All queues

are created using the LinkedList class which implements the Queue interface in Java. Each of these three

Figure 17: Source Device

38

queues is implemented on separate threads, so that they can be executed simultaneously and independently.

All queues work on a slotted system where each slot is of 20ms, and no more than 100 packets can be sent

in a slot.

In the first thread, in every slot, packet that are received at the socket are added to the first queue

𝑈𝑛,𝑘(𝑡). In the second thread, the decoder decodes the data (this can vary in terms of complexity) and

forwards it to the queue 𝑄𝑛,𝑘(𝑡) according to the following rules:

1. In the duration of a slot, every packet that is received is transmitted directly to the next queue

𝑄𝑛,𝑘(𝑡).

2. If the packet is received at a time that exceeds the current time slot of 20ms, it is transmitted

to the next queue 𝑄𝑛,𝑘(𝑡) if the following conditions are satisfied:

a. The difference between the number of packets processed by queue 𝑈𝑛,𝑘(𝑡) and

𝑄𝑛,𝑘(𝑡), i.e., 𝑈𝑛,𝑘(𝑡) − 𝑄𝑛,𝑘(𝑡) ≥ 0

Figure 18: Receiver - Flowchart for thread 2

39

b. The number of buffered packets in queue 𝑈𝑛,𝑘(𝑡), i.e. 𝐵𝑢𝑓𝑓𝑒𝑟𝑒𝑑 (𝑈𝑛,𝑘(𝑡)) < 5000

which implies that there should not be more than 5,000 packets waiting to be

processed. If this condition is not satisfied, it implies that the decoder is a bottleneck.

The participation of this device is either completely terminated, or reduced in

comparison to others.

3. If the number of packets in the slot have already exceeded 100, the slot is terminated at that

instance and the end-of-slot condition (Step 2) is executed.

In the third thread, the Energy Filter is used to first determine whether the device has enough

energy resources to process the incoming file. The Energy Filter forwards the packets to the final queue

𝑍𝑛,𝑘(𝑡) based on the following rules:

1. A threshold is first set by the user, which indicates the minimum battery percentage that the

user requires after the file has been processed.

2. If the device is plugged in/charging while processing the packet, it simply forwards the

packets to the next queue (𝑍𝑛,𝑘(𝑡)), in each slot.

3. If the device is not plugged in and the packet is received in a slot duration, it is directly

forwarded to the next queue (𝑍𝑛,𝑘(𝑡)).

Figure 19: Receiver - Flowchart for thread 3, device is charging

40

4. If the device is not plugged in and the packet is received at a time that exceeds the current

time slot of 20ms, it is transmitted to the next queue 𝑍𝑛,𝑘(𝑡) if the following conditions are

satisfied:

a. The difference between the number of packets processed by queue 𝑄𝑛,𝑘(𝑡) and

𝑍𝑛,𝑘(𝑡), i.e., 𝑄𝑛,𝑘(𝑡) − 𝑍𝑛,𝑘(𝑡) ≥ 0

b. The number of buffered packets in queue 𝑄𝑛,𝑘(𝑡), i.e. 𝐵𝑢𝑓𝑓𝑒𝑟𝑒𝑑 (𝑄𝑛,𝑘(𝑡)) < 5000

which implies that there should not be more than 5,000 packets waiting to be

processed.

c. Energy Credits: The battery level of the device must be greater than the threshold set

by the user.

5. If the number of packets in the slot have already exceeded 100, the slot is terminated at that

instance and Step 4 is executed.

Once the packet has been forwarded to queue Z according to the above rules, it is written to a file

using the OutputStream. Once all packets have been received, the OutputStream and socket at the receiver

is closed. The file transfer is complete.

Figure 20: Receiver - Flowchart for thread 3, device is not charging

41

In our experiments, we used two files of size 22.49MB and 308.80MB. Both the files are video

files in MP4 format. Since each packet is 500 bytes each, there are roughly 45,000 packets for the smaller

file and 645,000 packets for the larger file. Each of the queues mentioned above have a maximum size of

150,000 packets. With these implementation details, we present our results in the next section.

42

6 PERFORMANCE EVALUATION

This section discusses the results in different levels of computational complexity. The results

show a significant improvement in throughput in terms of data transfer rate and battery consumption as

well. Our results will focus on the two main goals of this thesis: processing power and energy consumption.

6.1 Processing Power

We will first show the results we achieved while analyzing the processing power in data intensive

applications. Like we had discussed in the beginning of this thesis, processing power limits the rate of a

device by introducing computational complexities up to O(n3). These results are shown for transfer of the

smaller file, size 22.49MB.

Two-way Transmission

Our first setup is focused on exchange of data over two mobile devices (Phone A and Phone B),

under the 3 sets of computational complexities discussed above. This analysis helps us focus on the data

rates when a cooperative setup is introduced, and mobile devices help each other by exchanging data. As

expected, the data rates reduce during the full-duplex transmission, and are further reduced when the

complexities are introduced. Figures 21, 22 and 23 show the data rates for two-way transmissions for

complexities O(1), O(n) and O(n2) respectively.

 Figure 21: Two-way Transmission: Data rate for O(1) complexity

43

Figure 22: Two-way Transmission: Data rate for O(n) complexity

Figure 23: Two-way Transmission: Data rate for O(n2) complexity

44

6.2 Energy Consumption

Our second set of results concentrate on the energy consumption of mobile devices. This setup

involves two scenarios; the first one is the ‘No Energy Constraint’ scenario in which the battery threshold

set by the user is below the current battery level, and the second one is the ‘Energy Constraint’ scenario in

which the battery threshold set by the user is above the current battery level.

In the first scenario, packets will check the end-of-slot condition every 20ms and will forward the

packet, whereas in the second scenario the packets will be processed at a lower rate (1Mbps), as there is not

sufficient battery in the device. This setup is shown for complexities O(1), O(n) and O(n2); and as expected,

the battery consumption is lower under the influence of the Energy Constraint applied to the battery level

using the threshold. These results are shown in Figures 24, 25 and 26; and are shown for transfer of the

larger file, size 308.80MB with the battery threshold set at 40%.

Figure 24: Decrease in Battery % over Time for O(1) complexity

45

Figure 25: Decrease in Battery % over Time for O(n) complexity

Figure 26: Decrease in Battery % over Time for O(n2) complexity

46

7 CONCLUSION

In this thesis, we considered a device-to-device, Wi-Fi Direct connection between two mobile

devices within proximity of each other. We successfully showed how data rates are affected due to changes

in decoder complexities, for both one way and two way transmissions. We also showed that the battery

consumption is significantly less in our algorithm with the Energy Filter, which is also implemented in the

cooperative setup shown in [14]. Our framework provided a set of algorithms for decoder and energy

control. These algorithms were implemented in a test bed which consists of real mobile devices and showed

significant performance improvements.

47

REFERENCES

[1] “Mobile Statistics Report, 2014-2018”, The Radicati Group, Inc. February, 2014.

[2] “Cisco visual networking index: Global mobile data traffic forecast update”, 2014-2019.

[3] “Ericsson Mobility report”, February 2015.

[4] Wi-Fi Alliance, Wi-Fi Peer-to-Peer (P2P) Technical Specification v1.0 [Online]. Available:

http://www.wi-fi.org

[5] P. Vingelmann, P. Zanaty, F. Fitzek, and H. Charaf, “Implementation of random linear network

coding on opengl-enabled graphics cards,” in Wireless Conference, 2009. EW 2009. European,

May 2009, pp. 118–123.

[6] H. Shojania, B. Li, and X. Wang, “Nuclei: Gpu-accelerated many-core network coding,” in

INFOCOM 2009, IEEE, April 2009, pp. 459–467.

[7] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer, and T.

Wedi, “Video coding with h.264/avc: tools, performance, and complexity,” Circuits and Systems

Magazine, IEEE, vol. 4, no. 1, pp. 7–28, First 2004.

[8] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/AVC baseline profile decoder

complexity analysis,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 13,

no. 7, pp. 704–716, July 2003.

[9] IEEE standard 802.11, “Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications”, March 2012.

[10] G. Anastasi, E. Borgia, M. Conti, E. Gregori, IEEE 802.11 ad hoc networks: performance

measurements, in: Proceedings of the Workshop on Mobile and Wireless Networks (MWN 2003)

in conjunction with ICDCS 2003, May 19, 2003.

[11] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device to device communications with

WiFi Direct: Overview and experimentation,” IEEE Wireless Communication, vol. 20, no. 3, pp.

96-104, June 2013.

[12] IEEE 802.11z-2010 — Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications, Amendment 7: Extensions to Direct-Link Setup (DLS).

[13] Wi-Fi Alliance, Wi-Fi Protected Setup Specification v1.0h, Dec. 2006.

http://www.wi-fi.org/

48

REFERENCES (Continued)

[14] A. Singh, Y. Xing, H. Seferoglu, “Energy-Aware Cooperative Computation in Mobile Devices,”

under preparation for submission, Nov. 2015.

[15] Kurose, J.F. and Ross K.W.: Computer Networking: A top-down approach, 2013.

[16] M. Ramadan, L. E. Zein, and Z. Dawy, “Implementation and evaluation of cooperative video

streaming for mobile devices,” in Proc. of IEEE PIMRC, Cannes, France, September 2008.

[17] S. Li and S. Chan, “Bopper: wireless video broadcasting with peer-to-peer error recovery,” in

Proc. of IEEE ICME, Beijing, China, July 2007.

[18] S. Ioannidis, A. Chaintreau, and L. Massoulie, “Optimal and scalable distribution of content

updates over a mobile social network,” in Proc. IEEE INFOCOM, Rio de Janeiro, Brazil, April

2009.

[19] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, G. Pei, and A. Srinivasan, “Cellular traffic

offloading through opportunistic communications: a case study,” in Proc. of ACM Workshop on

Challenged Networks (CHANTS), Chicago, IL, September 2010.

[20] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based forwarding in delay tolerant

networks,” in Proc. of ACM MobiHoc, Hong Kong, May 2008.

[21] C. Boldrini, M. Conti, and A. Passarella, “Exploiting users’ social relations to forward data in

opportunistic networks: The hibop solution,” in Proc. of Pervasive and Mobile Computing,

October 2008.

[22] R. K. Lomotey and R. Deters, “Architectural designs from mobile cloud computing to ubiquitous

cloud computing - survey,” in Proc. IEEE Services, Anchorage, Alaska, June 2014.

[23] T. Penner, A. Johnson, B. V. Slyke, M. Guirguis, and Q. Gu, “Transient clouds: Assignment and

collaborative execution of tasks on mobile devices,” in Proc. IEEE GLOBECOM, Austin, TX,

December 2014.

[24] M. Satyanarayanan, S. Smaldone, B. Gilbert, J. Harkes, and L. Iftode, “Bringing the cloud down

to earth: Transient pcs everywhere,” in MobiCASE’10, 2010, pp. 315–322.

[25] E. Miluzzo, R. Caceres, and Y. Chen, “Vision: mclouds - computing on clouds of mobile

devices,” in ACM workshop on Mobile cloud computing and services, Low Wodd Bay, Lake

District, UK, June 2012.

49

REFERENCES (Continued)

[26] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and

scheduling policies for maximum throughput in mul- tihop radio networks,” IEEE Trans. On

Automatic Control, vol. 37, no. 12, December 1992.

[27] “Dynamic server allocation to parallel queues with randomly varying connectivity,” IEEE Trans.

on Information Theory, vol. 39, no. 2, March 1993.

[28] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic control for heterogeneous

networks,” IEEE Trans. on Networking, vol. 16, no. 2, April 2008.

50

VITA

NAME: Ajita Singh

EDUCATION: B.E., Electronics and Communication Engineering, Birla Institute of

Technology, Mesra, India, 2013

M.S., Electrical and Computer Engineering, University of Illinois at

Chicago, Chicago, Illinois, 2016

TEACHING: Department of Electrical and Computer Engineering, University of Illinois

at Chicago, Chicago, Illinois:

Graduate Teaching Assistant – ECE 436 Computer Communication

Networks II, Spring 2015

HONORS: Tuition and fee waiver for Graduate Students, Fall 2014

