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SUMMARY 

The booming of mobile devices and applications has a significant social and economic impact. 

However, new data intensive applications, which are continuously emerging in daily routines of mobile 

users, continuously increase the demand for wireless resources. Although bandwidth is traditionally 

considered as the primary scarce resource in wireless networks, the developments in communication theory 

shifts the focus from bandwidth to other scarce resources including processing power and energy. Thus, it 

is crucial to develop new networking mechanisms by taking into account the processing power and energy 

as bottlenecks. 

In this thesis, our primary goal is to overcome the bottlenecks created by processing power and 

energy. To achieve this goal, we first analyze and evaluate the effects of processing power and energy on 

data rates in a real testbed. Motivated by our initial observations on the impact of processing power and 

energy limitations on data transmission rates, we develop an energy-aware computation (EaC) framework. 

The crucial components of EaC are decoder, energy filter, and cooperation among mobile devices. The 

decoder part deals with the processing power limitation of mobile devices. The energy filter helps us 

incorporate the energy consumption requirements of mobile devices. Cooperation among mobile devices 

eliminate and distribute the processing power and energy bottlenecks over multiple mobile devices. 

The integral part of this thesis is to evaluate the EaC framework in a practical setup. Thus, we 

created a testbed consisting of Android operating system based mobile devices, where these mobile devices 

communicate via WiFi Direct based device-to-device links. We implemented the proposed EaC framework 

in this testbed. Finally, we evaluated the EaC framework as compared the baselines. The experimental 

results demonstrate that EaC significantly improves data transmission rates by overcoming processing 

power and energy bottlenecks.     
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1 INTRODUCTION 

1.1 Motivation 

The rapidly increasing number of mobile device users and its applications have made a significant 

impact on the current wireless networks. The number of worldwide mobile users, including both business 

and consumers have already reached over 5.6 billion (in 2014) and is expected to rise to 6.2 billion by the 

end of 2018 [1].  This poses a huge challenge for current wireless networks, so new methodologies should 

be developed to overcome this challenge.  Furthermore, the need for data intensive applications has 

increased significantly.  This, along with the increased number of mobile users has put stress on how 

significantly the demand for wireless resources has risen in the past few years [2], [3].  

In this setup, although bandwidth is traditionally considered the primary scarce resource in today’s 

wireless networks, other wireless resources such as processing power, energy, and memory of mobile 

devices could become bottlenecks in mobile networks. Thus, in this thesis, we specifically focus on 

processing power and energy as scarce resources and we aim to develop efficient mechanisms to effectively 

utilize these scarce resources. 

 

 

  

 

 

 

 

 

 

Let us consider the impact of processing power via an example. Consider a mobile device D1 in 

Figure 1 with a Wi-Fi or cellular link of rate 1 Mbps, and assume that D1 is receiving video and decodes it 

Figure 1: Example setup, where D1 receives data with rate 1Mbps, but decodes with rate 500kbps 
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with rate of 500kbps. This would limit the streaming rate of to 500 kbps. Apart from decoding, there are 

various other computationally intensive tasks that is couple with data transmission such as error correction, 

packet randomization and network coding of data at the source introduce computational complexities up to 

O(n3), [5], [6]. Moreover, H.264/AVC decoders increase the computational complexity when higher quality 

guarantees are required by the user [7], [8].  

 

 

In order to understand the impact of computational complexity on today’s mobile devices, we create 

a prototype shown in the left figure of Figure 2. In this setup, a mobile device receives data from an access 

point, where the mobile device is an Android operating system (OS) based Nexus 7 tablets. The specific 

version of the Android OS is Android Lollipop 5.1.1. The device has 16GB storage, 2GB RAM, Qualcomm 

Snapdragon S4 Pro, 1.5.GHZ COU, and Adreno 320, 400MHz GPU. Packet size is 500B. In this 

experiment, after receiving the packets, the mobile device performs operations with complexities of O(1), 

O(n), and O(n
2

) above the transport layer (TCP), where n is the packet size, and the operations we perform 

are counting the bytes in the packets. In particular, O(1), O(n), and O(n
2
) correspond to (i) no counting, (ii) 

counting every byte in a packet once, and (iii) counting every byte in a packet n times, respectively. We 

Figure 2: Experiment setup is on the left side, and the data rate versus time graph for varying computational 

complexities such as O(1), O(n) and O(n2) are shown on the right hand side. 
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demonstrate in the right hand side of Figure 2 the received rate at the mobile device (note that this is the 

rate we measure at the mobile device after performing computations) versus time. As seen, when the 

computational complexity increases, the average rate measured at the mobile device (after computation) 

decreases.  Figure 2 clearly indicates the extent up to which decoding complexities can affect the 

transmission rates in mobile devices. Our goal is in this thesis is to develop mechanisms to overcome the 

bottleneck of processing power.  

The second challenge is the energy limitation of mobile devices transmission/reception of data. As 

similar to the processing power bottleneck discussed above, energy could be bottleneck during data 

transmission. In this context, our goal is to develop mechanisms that ensure that mobile devices have 

enough energy to transmit, receive and process the data.  

1.2 Overview  

The goal of this thesis is to understand the impact of processing power and energy consumption 

bottlenecks on mobile wireless networks. Towards this goal, we have developed a networking mechanism 

designed specifically by taking into account processing power and energy bottlenecks, and implemented 

this mechanism in a real testbed.  

The crucial components of the developed framework are decoder, energy filter, and cooperation 

among mobile devices. The decoder helps us understand how the processing power can vary, depending on 

the type of application that is being used. The energy filter helps us in incorporating the needs of the user 

along with the decoder to analyze the battery that is consumed for different computational complexities. 

Cooperation among mobile devices helps us to eliminate and distribute the processing power and energy 

bottlenecks over multiple mobile devices.  

Our testbed is developed using Android operating system based mobile devices. We implemented 

Wi-Fi Direct [11] to create device-to-device (D2D) connections which are used to connect multiple mobile 

devices in close proximity.  
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1.3 Organization of the Thesis  

The thesis is organized as follows: Chapter 2 discusses in detail, the related work and previous 

publications that have focused on maximization of resources like bandwidth. Chapter 3 contains 

background information of the current wireless technologies: Wi-Fi and Wi-Fi Direct. It also discusses 

transport layer protocols (TCP) and socket programming. Chapter 4 explains the Energy-Aware 

Computation (EaC) system model that we have composed, consisting of a source, wireless channel and the 

mobile device. We have also formulated the problem statement in this chapter. The implementation details 

of our system model has been outlined in Chapter 5. The simulation results of the proposed system model 

is presented in Chapter 6, and finally Chapter 7 summarizes our conclusion to the thesis.  
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2 RELATED WORK 

The work in this thesis is based mainly upon Wi-Fi Direct connections, along with maximization 

of resources used in processing power and battery consumption. In particular, D2D group formations are 

used for several data streaming applications for various purposes including, but not restricted to, 

cooperative video streaming over mobile devices, offloading cellular networks and distribution of content 

among mobile devices, as discussed below. 

A peer-to-peer cooperation scheme was introduced in [16] with focus on power reduction. In this 

paper, mobile devices were connected to the Internet through a wireless AP, all of them requesting the same 

data from a server. The server would then distribute the data amongst all devices, who would further 

exchange data with each other through Bluetooth technology. On similar lines, [17] introduced a scheme 

where mobile devices collaboratively helped each other to recover lost packets by broadcasting to its 

neighbors. This scheme, also known as BOPPER (broadcasting with peer-to-peer error recovery) achieved 

high scalability and low recovery delay.  

An optimal and scalable distribution of dynamic content was first introduced in [18]. It utilized 

and allocated the bandwidth optimally, making sure that the content received by every user was ‘fresh’. 

This paper ensured that such an optimal system would work even if the total bandwidth of the service 

provider remains fixed, ensuring both optimality and scalability. A case study on information delivery in 

Mobile Social Networks (MoSoNets) was performed in [19], where opportunistic communications were 

exploited to facilitate the information dissemination and reduce the amount of cellular traffic. A particular 

target set was provided with information by the content service providers, after which the information was 

further propagated amongst all the subscribed users using opportunistic communications, thereby 

minimizing cellular data traffic. 

Content dissemination amongst users led to a novel social-based forwarding algorithm called 

BUBBLE [20] which utilized real human mobility traces to enhance content delivery performance. This 
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paper focused on the social structure and interaction of users for its algorithm, unlike the previous methods 

that relied on building and updating routing tables to cope with dynamic network conditions. Opportunistic 

networks is another technology which allow content sharing between mobile users without requirement of 

any pre-existing Internet infrastructure. In [21], a protocol named HiBOp exploits the framework and 

represents the user’s behavior and social relations through context information. The user then uses this 

information to drive the forwarding process. HiBOp is compared with other solutions to show that a context-

aware approach is much more efficient for forwarding in opportunistic networks.  

We have attempted to examine in particular the bottleneck created by processing power and 

battery consumption of mobile devices in this thesis, and remove it through cooperation amongst devices 

in [14]. An increased interest in computing using mobile devices by exploiting connectivity among mobile 

devices is seen in [22]. Such an approach suggests that devices can be used together to process certain tasks, 

which turns out to be a cheaper alternative to remote clouds. This has led to interesting work specifically 

towards collaborative cloud computing.  

‘Transient clouds’, as introduced in [23] allows nearby devices to form ad hoc networks and 

provide various functionalities of the devices and their social awareness, which cannot be provided as 

efficiently by the traditional clouds. This paper showed the efficiency of their algorithm by implementation 

on Android devices, using the Wi-Fi Direct framework. In the attempt to converge cloud computing with 

mobile computing, [24] uses virtual machine technology to reconcile the tradeoffs between centralization 

of cloud computing and decentralization of mobile computing. The paper yielded a transient PC computing 

model that preserved centralization benefits without sacrificing mobility or usability. Furthermore, [25] 

discusses a future wherein mobile devices are capable of forming mobile clouds, or ‘mClouds’ to 

accomplish tasks without relying on the backend communication. In this thesis, our focus is on processing 

power and energy of mobile devices. Our resource allocation mechanism shares similar flavors with [26], 

[27], and [28], but fundamentally different than these works as we explicitly design resource allocation 

mechanism by taking into account processing power, energy and cooperation among real mobile devices.   



 
 

7 

3 BACKGROUND 

3.1 Wi-Fi: 802.11 Wireless LANs 

Wireless LANs [9] have become increasingly popular in our everyday lives: our homes, offices 

and public places are being equipped with them to connect computers, smart phones, tablets and other 

wireless devices. The main wireless LAN standard which is in great use today is 802.11, also called Wi-Fi. 

There are various 802.11 standards for wireless LAN technology, including 802.11b, 802.11a and 802.11g. 

A summary of these standards, with their main characteristics is given in Table 1 [15].  

All three 802.11 standards have major differences in the physical layer. The 802.11b wireless 

LAN competes for frequency spectrum with 2.4 GHz phones and microwave ovens. 802.11a wireless LANs 

run at higher rates at higher frequencies. This means that 802.11a has a shorter transmission distance for a 

given power level and suffer greatly from multipath propagation. On the other hand, 802.11g can not only 

transmit at data rates of 802.11a, but do so at lower frequencies and are backward compatible with 802.11b.   

 

In the following sections, we will discuss more in detail about the common characteristics of the 

various standards of 802.11. Along with the basic architecture, these standards use the same medium access 

protocol (CSMA/CA) and frame structure for their link-layer frames. Other features such as the ‘ad-hoc 

mode’ of wireless LANs will be discussed, and later compared to Wi-Fi Direct. 

3.1.1 Architecture 

802.11 networks are used in two modes [9]: infrastructure and ad hoc. Figure 3(a) illustrates the 

infrastructure mode, where the fundamental building block if a basic service set (BSS). A BSS contains 

Standard Frequency Range Data Rate 

802.11b 2.4-2.485 GHz Up to 11 Mbps 

802.11a 5.1-5.8 GHz Up to 54 Mbps 

802.11g 2.4-2.485 GHz Up to 54 Mbps 

Table 1: SUMMARY OF IEEE 802.11 STANDARDS [15] 
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multiple clients, each associated with a central base station known as an Access Point (AP). These APs can 

connect to other networks through routers and switches.  

 

 

 

 

 

 

 

Figure 3(b) shows the ad hoc network formed by various IEEE 802.11 devices. Networks are 

formed ‘on-the-fly’ by mobile devices that are in close proximity of each other. Each client can connect to 

others directly, without an intermediate access point. We will discuss more about this mode later in this 

chapter and compare it against the Wi-Fi Direct technology.  

Channels and Association 

Every wireless device has to be configured to a wireless AP before it can send or receive any data. 

When an AP in installed, a one or two word Service Set Identifier (SSID) and channel number is assigned 

to it. Since 802.11b/g operates in 2.4-2.485 GHz range, it leaves an 85 MHz band which defines 11 partially 

overlapping channels. Any two channels are non-overlapping if and only if they are separated by four or 

more channels. Thus, the set of 1, 6 and 11 is the only set of three non-overlapping channels, which can 

give a maximum speed of 33 Mbps. This is done by installing 3 APs at the same physical location, with 

channels 1, 6 and 11 respectively, and connecting them with a switch [15].  

In order to gain Internet access, a wireless device needs to associate itself with an AP. The 802.11 

standard dictates that each AP must periodically send out beacon frames containing its SSID and MAC 

address. The wireless device will periodically scan all 11 channels, looking out for any beacon frames from 

 (a)                    (b) 

Figure 3: 802.11 Architecture (a) Infrastructure mode (b) Ad-hoc mode 

Access Point 

(AP) 

Wireless 

Stations 
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any APs. Even though there isn’t a specific algorithm to select which AP to associate with, typically the 

AP with the highest signal strength is selected.  

Passive scanning is defined as the process of scanning channels and listening for beacon frames. 

A wireless device can also perform active scanning by sending a broadcast probe frame to all APs within 

the device’s range. These two scenarios are shown in Figure 4 [15]. Once an AP is selected, an association 

request is sent by the wireless device, to which the AP responds with an association frame. It is possible 

that a wireless device be asked to authenticate itself to the AP. The most common method to implement 

this is by employing usernames and passwords. An authentication server is used to relay information to the 

AP, which allows the server to be not only used for multiple APs, but also keeps costs and complexity to 

the minimum. 

 

 

 

 

 

 

 

 

 

3.1.2 MAC Protocol 

Certain factors that are fundamental to wireless communication, make the 802.11 MAC layer 

protocol very different from Ethernet. The MAC protocol must be independent of the underlying physical 

layer and must also be efficient for periodic as well as burst traffic. Since multiple devices or APs may want 

to transmit data frames at the same time, and possibly over the same channel, an appropriate multiple access 

protocol is required to coordinate such transmissions. Unlike Ethernet, 802.11 uses a collision-avoidance 

(a) Passive Scanning     (b) Active Scanning 

1. Beacon frames sent from APs    1. Probe Request frame broadcast from H1 

2. Association Request frame sent: H1 to AP2   2. Probes Response frame sent from APs 

3. Association Response frame sent: AP2 to H1   3. Association Request frame sent: H1 to AP2 

4. Association Response frame sent: AP2 to H1 

 

Figure 4: Active and passive scanning for access points [15] 
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technique instead of a collision detection technique, a Distributed Coordinate Function (DCF) known as 

Carrier Sense multiple access with collision avoidance (CSMA/CA) [9]. Also, due to higher bit error rates 

of wireless channels, 802.11 uses a link-layer acknowledgment and retransmission (ARQ) scheme.  

 

 

 

 

 

 

As 802.11 does not use a collision detection scheme, a station (wireless device or an AP) will 

transmit a frame in its entirety every time. This can significantly degrade the performance of the MAC 

protocol if the likelihood of collisions is high. To avoid such scenarios, 802.11 uses a link-layer 

acknowledgment scheme consisting of two very short durations of time: SIFS (Short Inter-frame Spacing) 

and DIFS (Distributed Inter-frame Space) [9].  

DIFS is the minimum delay at the source station before starting transmission of a packet, after the 

channel is expected to be idle and SIFS is the delay at the destination station between end of transmission 

of a packet and sending an acknowledgement frame to the source station. The concept of CSMA/CA along 

with the link-layer acknowledgments is shown through the Figure 5 and the following [9]:  

1. At the source station: 

a. Channel is busy:  

i. The stations that wish to transmit data will back off for a random time and 

counts down this value while the channel is sensed idle. While the channel is 

busy, the counter is frozen. 

b. Channel is idle:  

i. If the value of the counter is zero, the station that wishes to transmit data 

waits for a period of time equal to DIFS before transmission. 

Figure 5: 802.11 using link-layer acknowledgments 

Source 

Destination 

DIFS 

SIFS ACK 

DATA 
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ii. The station waits for an acknowledgement once the frame is transmitted in 

its entirety.  

iii. Once an acknowledgement is received from the destination station, it 

understands that its frame has been correctly received at the destination 

station. 

iv. If an acknowledgement isn’t received within a certain timeout interval, the 

station enters the back-off phase, assuming that the packet has been lost. 

2. At the destination station: 

a. When a frame is correctly received (checked through CRC), it waits for a short period 

of time equal to SIFS, and then sends back an acknowledgment frame.  

In CSMA/CA, the station refrains from transmitting during the count down, even if the channel 

senses to be idle. This is done as the basic approach to CSMA/CA is collision avoidance. If two stations try 

to transmit data at the same time on a busy channel, they both will enter into random back-off times. This 

way, if one transmits before the other, the second station will detect a busy channel and back-off again, thus 

avoiding collision. 

DCF with RTS/CTS 

Consider the scenario shown in Figure 6 [15]. We have two wireless stations A and B, such that 

both are associated with the AP between them, but each station is hidden from the other. Suppose that 

station A is transmitting a frame and halfway through A’s transmission, station B wants to send a frame to 

the AP. As B will not hear the transmission from A, it will wait a DIFS interval and then transmit the frame, 

resulting in a collision. This shows the wastage of the channel during the entire period of A’s and B’s 

transmission. 

The 802.11 protocol avoids this problem by using a short Request to Send (RTS) control frame 

and a short Clear to Send (CTS) control frame to reserve access to the channel [9]. When a sender wishes 
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to send a data frame, it will first send an RTS frame to the AP, indicating the total time required to transmit 

the data frame and the acknowledgment (ACK) frame. When the AP receives the RTS frame, it responds 

by sending a broadcast CTS frame. Two purposes are solved with this frame: it gives the sender explicit 

permission to send and also instructs all other stations to not send any data for the reserved duration.  

 

 

 

 

 

 

 

Thus, in our example, A will first broadcast an RTS frame, which is heard by all the stations in 

its circle, including the AP. The AP will then respond with the broadcast of the CTS frame, which is heard 

by all stations within its range.  

 

 

 

 

 

 

AP A B 

Figure 6: Hidden terminal example: A is hidden from B and vice versa [15] 

Figure 7: Collision Avoidance using RTS and CTS frames 
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As station B will have heard the CTS, it will refrain from transmitting for the time specified by 

the CTS frame. This is portrayed in Figure 7. It is obvious that the delay in increased with the use of RTS 

and CTS, hence, in practice it is used only when the data frame is longer than a specified RTS threshold. 

3.1.3 Frame Structure 

The frame structure for 802.11 is shown in Figure 8 [9]. The numbers above each field represents 

the lengths of the fields in bytes, and the numbers above each of the subfields in the frame control field 

represents the lengths of the subfields in bits. The entire frame can be broadly classified into four parts, as 

discussed below. 

Payload and CRC fields 

The Payload typically consists of an IP datagram or an ARP (Address Resolution Protocol) packet 

of size fewer than 1,500 bytes (although up to 2,312 bytes are allowed). The 802.11 frame also consists of 

a 32-bit cyclic redundancy check (CRC) to detect bit errors in the received frame.  

Address fields 

There are four different address fields in an 802.11 frame, out of which three address fields are 

required for internetworking purposes – for moving the network-layer datagram from a wireless station 

through an AP to a router interface. The fourth address field is used when APs forward frames to each other 

in ad hoc mode. For now, we will only concentrate on the first three address fields. Address 2 is the MAC 

address of the station that transmits the frame. Address 1 is the MAC address of the wireless station that is 

to receive the frame. Address 3 contains the MAC address of a router interface which connects to other 

subnets. 

 Figure 8: 802.11 Frame Structure [9] 
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QoS Control and HT Control Fields 

The QoS Control field identifies the traffic category or the traffic stream to which the frame 

belongs to. This 16 bit field contains of five or eight subfields, used to determine QoS and mesh-related 

information about the frame, which we will not discuss here. HT Control Field is present in QoS Data and 

management frames. This 32 bit field is further divided into 9 sub fields, which are mainly used for Link 

Adaptation Control [9]. 

Sequence Number, Duration and Frame Control fields 

The use of sequence numbers in 802.11 allows a receiver to distinguish between a newly received 

frame and a retransmitted previous frame. Whenever a station correctly receives a frame from another 

station, it sends back an acknowledgment according to the sequence number. The duration value in the 

frame gives the time duration for which the channel needs to be reserved, which includes the time to 

transmit the data frame and the time to transmit an acknowledgment. This value is included for both data 

frames and for the RTS and CTS frames. 

The Frame control field consists of 11 subfields [9] [15]. Protocol version allows future versions 

of 802.11 to operate at the same time in the same cell. The Type (data, control or management) and Subtype 

(RTS or CTS) fields for regular data frame without quality of service, are set to 10 and 0000 in binary. The 

To AP and From AP frames indicate whether the frame is going to or coming from the network connected 

to the APs. More fragments bit means that more fragments will follow. Retry marks a retransmission of a 

frame sent earlier. The Power Management bit indicates that the sender is going into power-save mode. 

The More data bit indicates that the sender has additional frames for the receiver. The WEP (Wired 

Equivalent Privacy) bit indicates that the frame body has been encrypted for security. Finally, the Order 

but tells the receiver that the higher layer expects the sequence of frames to arrive strictly in order. 

3.1.4 Wireless Ad Hoc Networks 

As mentioned briefly at the beginning of this chapter, ad hoc networks [10] can be formed with 

802.11 devices. These decentralized networks do not rely on any pre-existing infrastructure, such as access 

points in wireless networks. All stations form an Independent Basic Service Set (IBSS). Any other station 
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that is within the transmission range of another can start communicating. Access Point (APs) are not 

required unless a station has an ad hoc and a wired network connection.  

Every station participates in routing and forwarding data to other stations. These stations are the 

network and they co-operatively provide the functionality which is normally provided by the infrastructure 

e.g. routers and switches. Apart from classic routing, ad hoc networks also use flooding for sending data. 

IEEE 802.11 is normally associated with a single-hop ad hoc network, with the range of stations being up 

to 100-200 meters. This can be overcome by adding routing mechanisms to forward packets towards the 

intended destination for multi-hop ad hoc networking. This extends the range of any ad hoc network beyond 

the transmission radius of the source station. 

Common Problems in Wireless Ad Hoc Networks 

As stated in [9] [10], there are many problems that can arise in wireless networks, specifically in 

the ad hoc mode:  

1. The channels are unprotected from outside signals 

2. The wireless medium has neither absolute nor readily observable boundaries outside of which 

stations are known to be unable to receive network frames 

3. The channels have time-varying and asymmetric propagation properties 

4. The wireless medium is significantly less reliable than wired media 

Apart from the basic drawbacks of wireless networks, the 802.11 ad hoc mode provides minimal 

security against any unwanted incoming connections. Ad hoc devices cannot disable their SSID broadcast 

like infrastructure mode devices can. If any attacker is within the wireless device’s range, they can easily 

connect to it. Furthermore, wireless networking standards such as 802.11g supports only speeds up to 11 

Mbps in ad hoc mode. This is a huge step down from the speeds provided in 802.11g infrastructure mode 

(54 Mbps). Finally, as the number of devices increases in an ad hoc mode, the performance of the networks 

suffers. Devices may randomly disconnect from time to time and it may get difficult to manage such a 

network.   
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Taking into consideration the drawbacks of ad hoc mode of wireless networks, we delve further 

into the Wi-Fi Direct technology, and how it improves on the shortcomings of the wireless ad hoc mode. 

3.2 Wi-Fi Direct  

Apart from the ad hoc mode in wireless networks, 802.11z or Tunneled Direct Link Setup (TDLS) 

[12] also provides direct device to device (D2D) communication, on the condition that all wireless stations 

be associated with the same AP. Unlike these technologies, Wi-Fi Direct [11], defined by the Wi-Fi Alliance 

[4], aims at enhancing D2D communications in Wi-Fi by building upon the successful IEEE 802.11 

infrastructure mode and allows negotiation amongst devices to decide who will take over the AP-like 

functionalities. In this way, Wi-Fi Direct inherits all the improved features such as QoS, power saving, and 

security mechanisms developed for the Wi-Fi infrastructure mode in the past years.  

In the following sections, we will study an overview of the Wi-Fi Direct specification [11]. We 

will focus on its novel functionalities and group formation procedures along with architecture, security and 

power of Wi-Fi Direct. 

3.2.1 Architecture 

In Wi-Fi Direct, the roles of an AP and a device (or client) are dynamic in nature, which means 

that at least one device in the network must behave as both a client and an AP (also referred to as Soft-AP). 

Before establishing a peer-to-peer (P2P) connection, each device will have to agree on the role that they 

will assume. Each network consists of P2P devices which communicate by establishing P2P Groups, similar 

to traditional 802.11 infrastructure networks.  

One device acts like an AP in the P2P Group and is referred to as the P2P Group Owner (P2P 

GO), with the other devices acting as P2P Clients. When P2P devices discover one another, they negotiate 

their roles as P2P GO and P2P Client, and establish a P2P Group. Other P2P Clients can now join the P2P 

Group as they do in traditional Wi-Fi network. Legacy clients also communicate with the P2P GO as long 

as they are not 802.11b-only devices and support the required security mechanisms. These legacy devices 

do not formally belong to the P2P Group, but they simply ‘see’ the P2P GO as a traditional AP. 
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Looking at Figure 9 [11], we can see two simple Wi-Fi Direct architectures. Figure 9(a) represents 

a scenario with two P2P Groups. The first group is formed by a mobile phone which shares its 4G 

connection with two other laptops, where the phone acts as the P2P GO and the laptops act as the P2P 

Clients. Expanding the network further, one of the laptops create a separate P2P Group with a printer, for 

which the laptop if the P2P GO.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the laptop to work as both a P2P GO and P2P Client, it will alternate between the roles by 

using the Wi-Fi interface on a time-sharing basis. Figure 9(b) depicts a case of a laptop accessing the 

Internet via a legacy infrastructure AP, while simultaneously streaming data to a TV, by establishing a 

separate P2P Group, in which the laptop is the P2P GO. The P2P GO needs to announce itself through 

beacons, like a traditional AP. It runs Dynamic Host Configuration Protocol (DHCP) server to provide P2P 

Clients with IP addresses. Transfer of the role of a P2P GO is not permitted once a P2P Group has been 

4G Interface | P2P Client 

P2P Client 

P2P Client | P2P GO P2P Client 

P2P Group 1 
P2P Group 2 

P2P Group 3 802.11 WLAN 

P2P Client 

Legacy Client | P2P GO 

Legacy 

802.11 AP 

Figure 9: Wi-Fi Direct supported technologies and use cases [11] 
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formed. If the P2P GO leaves the P2P Group, it will tear down the connections as well, and must be re-

established.   

3.2.2 Group Formation 

Three main ways have been defined for two devices to establish a P2P Group – Standard, 

Autonomous and Persistent – depending on if they have to negotiate which device should take the role of 

the P2P GO, or if they have previously shared some security information. 

Standard 

This is the most basic case for formation of a P2P Group. A traditional Wi-Fi scan, either active 

or passive, is performed to discover any pre-existing P2P Groups and Wi-Fi networks. Following this, a 

Discovery algorithm [11] is executed as follows:  

1. A P2P Device selects one of the channel: 1, 6 or 11 in the 2.4GHz band, as a Listen channel. 

2. The device now alternates between two states: a search state, wherein it actively scans by 

sending Probe Requests in each of the channels; and a listen state, wherein it listens for the 

channel to respond with Probe Responses. 

The amount of time spent in each state is decided randomly, but it usually falls between 100-

300ms. Once both devices have found each other, the GO Negotiation phase begins. A three-way handshake 

occurs between the devices: GO Negotiation Request, GO Negotiation Response and GO Negotiation 

Confirmation. Here, the two devices decide who the P2P GO will be, and on which channel the group will 

operate (2.4 GHz or 5GHz band). A numerical parameter for each device, called the GO Intent value, is 

shared during the three-way handshake. The device that declares a higher value becomes the P2P GO. In 

rare cases when the GO Intent value is the same for both devices, a tie-breaker bit is included in the GO 

Negotiation Request phase, which is randomly set for each request. The next step is establishment of secure 

communication, using Wi-Fi Protected Setup or WPS Provisioning phase (discussed later), following which 

DHCP sets up the IP addresses for both devices.  
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Autonomous 

Compared to the previous case, the Discovery algorithm is simplified the Autonomous case. Any 

P2P Device can autonomously create a P2P Group, where it immediately assigns itself to be the P2P GO 

by sitting on a channel and send beacon frames. Other P2P Devices discover and establish connections 

using the traditional scanning mechanism and proceed to WPS Provisioning followed by DHCP for IP 

address configuration. Clearly, no GO negotiation phase is required, nor is there any need to alternate 

between states.  

Persistent 

This case is commonly used when P2P Devices need to repeatedly connect to each other over a 

period of time. Here, the P2P Devices declare a group as persistent, by setting a flag in its beacon frames, 

Probe Responses and GO Negotiation frames. The devices store the group’s networks credentials and assign 

the same P2P GO and Clients for any subsequent re-connections of the P2P Group.  

After the Discovery phase, if a P2P Device recognizes to have previously formed a persistent 

group with the corresponding peer in the past, it uses the Invitation Procedure (a two-way handshake) to 

quickly re-instantiate the group. The WPS Provisioning phase is significantly reduced as the network 

credentials that were stored can be reused. 

3.2.3 Security 

Once the roles of each device in the P2P Group has been negotiated, the Wi-Fi Direct devices are 

required to implement Wi-Fi Protected Setup (WPS) [13] to support secure connections. WPS requires the 

P2P GO to implement an internal Registrar, and the P2P Client is required to implement an Enrollee. WPS 

comprises mainly of two phases.  In the first phase, the Registrar is in charge of generating and issuing the 

network credentials (a security key) to the Enrollee.  WPS is based on WPA-2 security and the Advanced 

Encryption Standard (AES)-CCMP is used as a cypher, randomly generating a Pre-Shared Key (PSK) for 

mutual authentication. In phase two, the Enrollee disassociates itself and reconnects using its new 
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authentication credentials. This way, for a persistent connection, only the second authentication phase is 

required as it would already have the required network credentials. 

3.2.4 Power 

Energy efficiency is of vital importance for battery constrained devices that may act as a P2P GO 

or a soft-AP. In current Wi-Fi networks, power saving mechanisms like legacy power save mode, have 

been defined only for clients, and P2P Clients in Wi-Fi Direct can also benefit from this. On the other hand, 

two new mechanisms [11] have been defined for the P2P GO in Wi-Fi Direct: Opportunistic Power Save 

protocol and the Notice of Absence (NoA) protocol. 

Opportunistic Power Save 

This mechanism assumes that P2P Clients use the legacy power saving protocol and use it as a 

leverage for P2P GO. A time window defined by CTWindow is advertised by the P2P GO within each 

Beacon and Probe Response frames. This window specifies the amount of time the P2P GO will stay awake 

after a Beacon is received. During this time, P2P Clients which are in their power saving mode can send 

their frames. All connected clients will be in doze state due to two reasons: either they announced a switch 

to the doze state by sending a frame with the Power Management (PM) bit set to 1, or they were already in 

the doze state during the previous beacon interval; and P2P GO can enter sleep mode until the next Beacon 

is to be sent.  If a P2P Client leaves the power saving mode (by setting its PM bit to 0), the P2P GO is 

obligated to stay awake until all P2P Clients return to their power saving modes. The power saving 

mechanism for the P2P GO is clearly dependent on the activity of any associated P2P Clients. On the other 

hand, the Notice of Absence protocol allows the P2P GO to control its own energy consumption, as 

explained below. 

Notice of Absence 

Unlike the Opportunistic Power Save protocol, Notice of Absence (NoA) protocol allows a P2P 

GO to define and announce a time interval referred to as absence periods. P2P Clients are not allowed 

access to the channel irrespective of whether they are in power saving mode or not. The absence periods 

are also defined in Beacons and Probe Requests using four parameters: 



21 
 

 

1. Duration: Length of each absence period. 

2. Interval: Time between consecutive absence periods. 

3. Start Time: Start time of the first absence period after the current Beacon frame. 

4. Count: Number of absence periods scheduled during the current NoA schedule. 

If the P2P GO decides to change or cancel the current NoA schedule, it can do so by modifying 

or omitting the signaling element. P2P Clients will always obey the most recently received schedule. For 

both, Opportunistic Power Save and NoA protocols, Wi-Fi Direct specification does not define any 

mechanism to calculate the CTWindow or the absence periods.  

3.3 Transmission Control Protocol 

The Transmission Control Protocol (TCP) is a highly reliable, connection oriented transport layer 

protocol. The basics of TCP has been defined in RFC 793, and we will discuss some important underlying 

principles such as connection, reliability, flow control, congestion control in the following sections. 

3.3.1 Segment Structure 

TCP segments are transmitted as internet datagrams. While the Internet Protocol header carries 

several information fields, including the source and destination host address, the TCP header also allows 

information specific to TCP. The TCP header format [RFC 793] is shown in Figure 10 below.  

1. Source Port and Destination Port (16 bits each): This allows the source process to pass 

application data to the correct source host and the destination host to pass application data to 

the correct process running on the destination end system. 

2. Sequence Number (32 bits): This field contains a value that is used for numbering the packets 

of data flowing from the sender to the receiver. Any gaps in the sequence numbers of packets 

received allows the receiver to detect a lost packet, and duplicate sequence numbers allow the 

receiver to detect duplicate copies of a packet.  
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3. Acknowledgment Number (32 bits): This field contains the value of the next sequence number 

that the receiver is expecting to receive. The ACK flag bit is also set to 1. TCP acknowledges 

bytes up to the first missing byte in the stream of packets, and thus TCP is said to provide 

cumulative acknowledgments. 

 

 

4. Data Offset (4 bits): This field specifies the length of the TCP header in 32-bit words. The 

length varies due to the TCP options field. If the options field is empty, the header is 20 bytes. 

5. Reserved (6 bits): Reserved for future use and value must always be zero. 

6. Control Bits (6 bits): This field has 6 flags. The URG bit is used to indicate any ‘urgent’ 

upper-layer data in the given segment. ACK bit indicates that the value carried in the 

Acknowledgment Number is valid. PSH bit tells the receiver to pass the data to the upper 

layer immediately. RST, SYN and FIN bits are used for initiating and tearing down a TCP 

connection as discussed in the TCP’s Connection Management in the following section. 

7. Window (16 bits): This field is mainly used for flow control and specifies the amount of data 

the sender is willing to accept, after the most recently acknowledged segment. 

8. Checksum (16 bits): This field is used to detect errors in a transmitted packet. The sender 

performs a 1’s complement of the sum of all 16-bit words in the header and the result is put 

Sequence Number  

Acknowledgment Number  

Source Port Number  Destination Port Number  

Window 

Urgent Data Pointer  Checksum 

Data Offset Reserved Control Bits 

Figure 10: TCP Segment Structure [RFC 793]  
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in the checksum field of the TCP header. The receiver performs the same method on the 

received segment, and can detect any errors or alterations that have been made to the segment. 

9. Urgent Data Pointer (16 bits): This field points to the sequence number of the octet following 

the urgent data, and is to be interpreted only when the URG flag is set. 

10. Options (variable): This is mostly used when the sender wants to negotiate the maximum 

segment size (MSS) with the receiver. RFC 854 and RFC 1323 can be seen for further details. 

11. Padding (variable): This field is used to ensure that the TCP header ends and data begins on 

a 32 bit boundary. It consists of zeros only. 

Now that we have a fair idea to what goes in a TCP header, we will see how this header is used 

to make TCP a reliable, and connection oriented protocol. 

3.3.2 Connection 

The three-way handshake is used to establish a TCP connection between two devices, and hence 

is called a connection oriented protocol. TCP runs only on the end devices, and not in the intermediate 

network elements such as routers, switches etc. These elements are oblivious to TCP connections and 

simply forward any datagrams that they receive. TCP provides a full-duplex service, which means that 

application layer data can flow simultaneously from two devices, to each other. TCP also provides a point-

to-point connection between a single sender and a single receiver, which implies that multicast (transfer of 

data from one sender to multiple receivers) is not possible with TCP.  

Connection Management  

A TCP connection is established by using the SYN and ACK flags, and it is torn down using the 

FIN and ACK flags of the TCP header. The client application process first informs the client TCP that it 

wants to establish a connection with the process at the server. Connection establishment is then proceeded 

through the following steps [15]: 
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1. A TCP SYN segment with no data, the SYN bit set to 1 and a randomly generated initial 

sequence number (SNC) is encapsulated in an IP datagram and sent to the server.  

2. Assuming that the IP datagram arrives at the server, it extracts the TCP SYN segment and 

allocates a TCP buffer and variables to the connection, and sends a connection-granted 

segment to the client. This segment does not have any data, the SYN bit is set to 1, the 

Acknowledgment Number field is set to (SNC +1) and a randomly generated server sequence 

number (SNS) is added to the Sequence Number field of the server TCP header. This implies 

that the server has granted and agreed to a connection with the client.  

3. Once this segment is received at the client, buffers and variables are allocated to the 

connection. The client sends another segment with the SYN bit to 0, Acknowledgment 

Number field set to (SNS+1) and Sequence Number field as (SNC+1). This segment may or 

may not carry data in the segment payload.  

 

 

 

 

 

 

 

 

In all future segments, the SYN bit is set to 0. Since three packets are sent to establish a TCP 

connection, it is known as a three-way handshake. A basic example for establishing a TCP connection is 

shown in the Figure 11 above.  
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Figure 11: TCP three-way handshake 
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A TCP connection is terminated in a similar manner [RFC 793] [15], once the client decides to 

close the connection. This is done to de-allocate the buffers and variables of the hosts. The TCP client send 

a segment to the TCP server process with the FIN bit set to 1. Once the server receives this segment, it 

sends the client an acknowledgment segment in return and sends another shut down segment with its FIN 

bit set to 1. To complete the termination process, the client acknowledges the server’s final shut down 

segment and enters a wait period before it can shut down itself. All resources (buffers and variables) have 

been de-allocated. Figure 12 illustrates this process. 

3.3.3 Reliable Data Transfer 

It is essential for TCP to create a reliable data transfer service [15] on top of Internet’s network 

layer service (IP service), as IP does not guarantee datagram delivery, in-order delivery or integrity of the 

data. Three major events are associated with data transmission and retransmission at the sender: data 

received from the application above, timeout and ACK reception.  

When TCP receives data from the application, it encapsulates the data in a segment and passes 

the segment to IP. Each of these segments consist of a sequence number which is the byte-stream number 

of the first data byte in the segment. TCP starts the timer if no other timer is running, and its expiration time 

is calculated through an estimate of RTT (Round Trip Time). If timeout occurs, TCP retransmits the 

Figure 12: Terminating a TCP connection 
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segment that caused the timeout and restarts the timer as well. If an ACK arrives from the receiver, TCP 

compares the ACK value to the last unacknowledged byte or SendBase [15]. Thus, SendBase-1 is sequence 

number of the last byte that is known to have been received correctly at the receiver. If the ACK value is 

greater than SendBase, the ACK is acknowledging one or more previously unacknowledged segments. The 

SendBase variable is then updated and the timer is restarted if there are currently any unacknowledged 

segments. 

TCP implementations employs some modification of the events described above. Whenever a 

timeout occurs and a TCP sender has to retransmit an unacknowledged segment, it sets the next timeout 

interval to twice the previous value, rather than estimating it from the RTT. Thus, the intervals grow 

exponentially after each retransmission. However, when data is received from the application above, or 

when an ACK in received, the timeout interval is derived from RTT. This provides a limited amount of 

congestion control in TCP, which is discussed in detail in the later sections.  

One of the major problems with the retransmission is that the timeout periods can be extremely 

long. When a segment is lost, a large timeout period forces a delay in retransmitting the lost segment, 

increasing end-to-end delay. Instead, TCP identifies a lost segment through reception of duplicate ACKs at 

the sender. This means that the receiver re-acknowledges a segment for which the sender has already 

received an earlier ACK. When a segment is lost, the receiver will send back-to-back acknowledgments for 

that segment, and once the sender receives 3 duplicate ACKs, it will assume that the segment is lost and 

will retransmit. This helps in reducing the end-to-end delay in the network. This mechanism is also known 

as Fast Retransmit. 

3.3.4 Flow Control 

As discussed in connection management of TCP, buffers are allocated for every connection at the 

client and server processes. The receiver TCP buffer receives bytes in the correct sequence and the 

associated application reads data from this buffer. It is possible that the sender overflows the receiver’s 

TCP buffer, and hence TCP provides a flow-control service. It can be considered as a speed-matching 
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service – synchronizing the rate at which the sender is sending data against the rate at which the receiver 

application reads the data.  

 

 

 

 

 

 

 

 

 

 

As explained in [15], in flow control, the sender maintains a variable called the Receive Window, 

which gives an idea of how much free buffer space is available at the receiver. Consider a scenario where 

Host A is sending a file to Host B over a TCP connection. Host B will allocate a receive buffer to the 

connection denoted by RcvBuffer. Host B will read data from this buffer from time to time.  

LastByteRead gives the last byte in the data stream read from the buffer by Host B. LastByteRcvd 

gives the last byte in the data stream that has arrived from the network and has been placed in the receiver 

buffer at B. In order to avoid overflow at the allocated buffer, the following condition must be satisfied;  

LastByteRead – LastByteRead ≤ RcvBuffer 

The receive window, given by rwnd is set to the amount of free space in the buffer [RFC 813]; 

rwnd = RcvBuffer – [LastByteRecvd – LastByteRead] 

The value of rwnd is dynamic as the amount of free space changes with time. An illustration of 

flow control is shown in Figure 13 [15]. Host B puts the value of rwnd in the Window field of its TCP 

segment and sends it to Host A. In turn, Host A keeps a track of the LastByteSent and LastByteAcked, the 

meaning of which is evident. The difference between these two variables is the amount of unacknowledged 

Figure 13: Buffer Allocation in TCP [15] 
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data that A has sent to B. This unacknowledged data should not exceed the value of rwnd received from 

Host B, thus assuring that A does not overflow Host B’s buffer.  

LastByteSent – LastByteAcked ≤ Rwnd 

Now consider the scenario where Host B’s receiver buffer becomes full such that rwnd = 0. After 

telling Host A that rwnd is zero, suppose that Host B has nothing to send to A. This means that once Host 

B’s buffer starts to empty, it won’t be able to inform A by sending a new segment and Host A will be 

blocked. To avoid this problem, TCP specification requires Host A to continue to send segments with one 

data byte when B’s receiver window is zero. These segments will have to be acknowledged by Host B, and 

hence will be able to inform A about any change in the free space, given by rwnd. 

3.3.5 Congestion Control 

It is essential that TCP provides an end-to-end congestion control mechanism since the IP layer 

provides no feedback to the end systems regarding network congestion. This can be done by using an 

additional variable, the Congestion Window It is denoted by cwnd and constraints the rate at which a TCP 

sender can transmit traffic in to the network. Thus, considering Flow Control and Congestion Control in 

TCP, we have the following condition [15], [RFC 5681]; 

LastByteSent – LastByteAcked ≤ min {cwnd, rwnd} 

For this section, let us assume that the rwnd is always large, and the amount of unacknowledged 

data at the sender is primarily limited by cwnd. Also assume that the sender always has some data to send. 

This way, the sender’s rate is roughly cwnd/RTT bytes/sec; where RTT is the average round trip time for a 

packet to be sent and acknowledged in a network. Thus, the rate at the sender can be adjusted by changing 

the value of rwnd. Congestion control in TCP follows three basic principles: 

1.  A lost segment implies congestion and thus TCP sender’s rate should be decreased. This lost segment 

is identified either by a timeout or duplicate ACKs.  

2. When an ACK arrives for a previously unacknowledged segment, it implies that the network is 

delivering the data to the receiver and thus the sender rate can be increased. 
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3. TCP’s strategy for adjusting its transmission rate is very simple. It keeps probing the network and 

increases its rate until a loss occurs (indicating congestion in the network), where it backs off from that 

rate and begins probing again to see when congestion occurs.  

The above principles are seen implemented in three ways in TCP’s Congestion Control algorithm: 

Slow Start, Congestion Avoidance and Fast Recovery [15], [RFC 5681]. While Slow Start and Congestion 

Avoidance is mandatory, Fast Recovery is recommended, but not required for TCP senders. Figure 14 gives 

an example of how TCP enters all three states. 

Slow Start 

When a TCP connection starts, the value of Congestion Window or cwnd is initialized to a small 

value of 1 maximum segment size (MSS) resulting in an initial sending rate of roughly MSS/RTT. MSS is 

defined as the maximum amount of data that can be placed in a segment (along with the TCP/IP header), 

and is determined by the maximum transmission unit (MTU) or the largest link-layer frame that can be sent 

by the sending host. The available bandwidth may be much larger than MSS/RTT, thus the TCP sender 

would want to calculate the bandwidth as fast as possible. 

The Slow Start state begins with the value of cwnd beginning at 1 MSS and increasing by 1 MSS 

every time a transmitted segment is first acknowledged. So once the sender receives the first 

acknowledgement, it will increase its cwnd by 1 and transmit two segments. When these two segments are 

acknowledged, it will increase its window by 1 for each segment, thus incrementing cwnd to 4 MSS. Hence, 

the sender rate starts slowly, but grows exponentially during the slow start state. This exponential growth 

ends when congestion (a loss event) occurs, which is indicated by a timeout. The sender resets the value of 

cwnd to 1 and begins the slow start process afresh. Another variable is added, ssthresh which is cwnd/2 – 

half the value of the congestion window when congestion was detected.  

Once the cwnd reaches or surpasses ssthresh, slow start state ends and TCP transitions into 

congestion avoidance mode, where the value of cwnd increases more cautiously. Congestion can also be 
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detected by three duplicate ACKs, in which TCP performs fast retransmit and enters the fast recovery state 

as discussed below.  

 

 

 

 

 

 

Congestion Avoidance 

When TCP enters the congestion avoidance state, cwnd is approximately half the value when 

congestion was encountered. The value of cwnd must therefore be increased in a conservative manner, by 

incrementing cwnd by a single MSS every RTT. This means that if there are 10 segments being 

acknowledged every RTT, each acknowledgment would imply an increase in cwnd by 1/10. If and when 

timeout occurs, the value of cwnd is reset to 1MSS and ssthresh is updated to half the value of cwnd when 

congestion occurred. If the loss event is triggered by triple duplicate ACKs, the network continues to deliver 

segments to the receiver and a less drastic approach is adopted: TCP halves the value of cwnd and ssthresh 

is half the value of cwnd when the triple duplicate ACKs were receiver. Fast Recovery state is then entered. 

Fast Recovery 

For every duplicate ACK that is received for a missing segment, cwnd is increased by 1 MSS. 

Eventually, when an ACK does arrive, acknowledging the missing segment, TCP enters congestion 

avoidance state after decreasing cwnd. If a timeout event occurs, TCP enters slow-start state after decreasing 

Figure 14: TCP Congestion Control Mechanism 
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the cwnd to 1 MSS and ssthresh to half the value of cwnd when timeout occurred. TCP Tahoe (RFC 5681), 

which is the earlier version of TCP does not incorporate Fast Recovery. Whereas, the newer version TCP 

Reno does. 

3.4 Creating Network Applications 

Now that we have a basic understanding of how network applications works, we can explore more 

on how the programs are actually created. Each network application consists of two programs in general: a 

client and a server program. Both the programs reside in two different devices. When they are executed, 

their respective processes are created which in turn communicate by writing to and reading from sockets. 

Since we have previously discussed how TCP works, we will see how the client and server programs are 

created for TCP itself.  

3.4.1 Socket Programming with TCP 

As we have seen in the previous section, TCP in a connection oriented protocol. This implies that 

the client and server need to perform a three-way handshake before any data can be sent across the 

connection. Two sockets are associated with the TCP connection – a client and server socket – each linked 

with an IP address and a port number. The data can be dropped via the socket once a TCP connection has 

been established [15].  

 

 

 

 

 

 

 

 

Bytes  

Three-way 

handshake 

Client process 

Server process 

Client socket 

Connection 

socket 

Welcoming 

socket 

Figure 15: TCP sockets 
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It is the client’s job to contact the server, which implies two things. First, the server has to be up 

and running for an incoming TCP connection. Secondly, a special socket must be defined at the server that 

welcomes initial contact from the client process. This socket is referred to as the Welcoming socket [15]. 

Once the server process is running, the client can initiate a TCP connection by creating a TCP socket. The 

client will need to specify the address of the Welcoming socket at the server, which is the IP address of the 

server host along with the port number of the socket. A three-way handshake can now be initiated at the 

transport layer, which is completely invisible to the client and server processes. During the three-way 

handshake, the client process communicates with the server through the Welcoming socket, which initiates 

creation of a new socket called the Connection socket is dedicated to that particular client (as shown in the 

Figure 15). 

Eventually, the Connection socket and the Client socket is directly connected to send bytes of 

data. TCP guarantees that the server process will receive each and every byte, in the order that it was sent. 

The same socket is also used at the client process to receive bytes from the server; and at the server process 

to send bytes into its Connection socket. 
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4 SYSTEM MODEL AND FORMULATION 

Now that we have a good understanding of how wireless networks work, we will focus on the 

Energy-Aware Computation (EaC) system model for this thesis. Our model shown in Figure 16(a) helps in 

focusing on the bottlenecks of the system: processing power, energy consumption of the mobile devices 

and bandwidth. The model consists of N mobile devices, where the mobile device communicates with each 

other via a D2D connections and the source communicates with mobile devices via cellular or Wi-Fi links. 

Also, our analysis assumes a time slotted system where t refers to the beginning of slot t. 

4.1 System Model 

 

 

 

 

 

 

 

 

 

For N devices, the flow rate towards any device n in Figure 16(a) is ∑  {𝑥𝑛,𝑘(𝑡)}𝑘∈𝑁 , where 𝑥𝑛,𝑘(𝑡) 

is the transmission rate of the packets from the source to the device n and these packets will be used by 

device n. For 𝑥𝑛,𝑘(𝑡), packets will be processed by device n, to be further forwarded to device k. Multiple 
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queues have been implemented in a mobile device, to represent different levels of progress in packet 

processing and energy awareness for a mobile device. Figure 16(b) shows these building blocks of a mobile 

device n, where 𝑈𝑛,𝑘, 𝑄𝑛,𝑘 and 𝑍𝑛,𝑘 represent three levels of queues constructed at the mobile device n to 

process packets for mobile device k. All the incoming packets from the source are stored in 𝑈𝑛,𝑘, and is 

then forwarded to the decoder at rate 𝑑𝑛,𝑘(𝑡). These packets are decoded by the decoder block and passed 

to queue 𝑄𝑛,𝑘 at rate  𝑑𝑛,𝑘(𝑡). 𝛼𝑛,𝑘(𝑡), where 𝛼𝑛,𝑘(𝑡) is a positive real value which captures any changes in 

the rate at the decoder. It is thus also identified as a rate shaper. A common example is to consider the 

decoder to be a H.264/AVC decoder such that the output of the decoder is higher than the input, as 

H.264/AVC will decompress the incoming packets. This change in rate will be captured by 𝛼𝑛,𝑘(𝑡). 

The decoded and rate changed packets are then passed to queue 𝑄𝑛,𝑘(𝑡), which further passes it 

to the energy filter. This filter is associated with the energy source and determines the amount of energy 

that can be consumed on any given task, at each time slot. Energy credits are allotted to the device 

depending upon the battery level as well as an estimate of the expected battery consumption in the near 

future. These credits are used to calculate the number of packets that can be supported by the device, and 

that value enters the energy filter in terms of energy credits. Therefore, at each time slot, packets will be 

transmitted from 𝑄𝑛,𝑘(𝑡), to 𝑍𝑛,𝑘(𝑡) if there are energy credits in the filter. Finally, the packets are 

transmitted to the original destination k via a local interface. 

Since the focus of our thesis is the processing power and energy consumption of a mobile device, 

we will see concentrate on how the above model helps in both scenarios. Consider a case where the number 

of packets in 𝑈𝑛,𝑘 increases too much. This implies that the decoder, hence the processing power is the 

bottleneck, and node n should stop receiving packets from the source. Likewise, increase in 𝑄𝑛,𝑘  implies 

that the energy filter in the bottleneck and hence node n should stop receiving packets. Since the packets 

are intended for destination k, there is also a possibility of buildup in 𝑍𝑛,𝑘 if the link between node n and k 
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is the bottleneck of the system. Based on these observations, a resource allocation algorithm was developed 

in [14], from which we will formulate a solution in the next section. 

4.2 Problem Formulation and Solution 

According to the stability region and NUM formulation in [14], in order to maximize the 

efficiency of our system, we need to take into consideration the number of packets in each of the queues 

𝑈𝑛,𝑘, 𝑄𝑛,𝑘 and 𝑍𝑛,𝑘. The main focus of this thesis will be on the system model of an individual mobile 

device shown in Figure 16(b), which is a part of the system represented in Figure 16(a). The D2D 

connections between various devices from Figure 16(a) and its efficiency maximization has been discussed 

in [14] as well.  

The problem of processing power and energy consumption in a mobile device as discussed above, 

have the following two proposed solutions: 

1. Decoder control: At every time slot t, the rate 𝑑𝑛,𝑘(𝑡), who’s value is greater than the 

decoding rate of the device, is determined by calculating the difference in the number of 

packets processed by 𝑈𝑛,𝑘 and 𝑄𝑛,𝑘 and by setting a maximum threshold (𝑇ℎ𝑟𝑈) for the 

number of buffered packets in 𝑈𝑛,𝑘. Thus, we have the conditions: 𝑈𝑛,𝑘(𝑡) − 𝑄𝑛,𝑘(𝑡) ≥  0 

and 𝐵𝑢𝑓𝑓𝑒𝑟𝑒𝑑(𝑈𝑛,𝑘(𝑡)) <  𝑇ℎ𝑟𝑄. If these conditions are not satisfied, no packets are 

forwarded to the decoder, and further to queue 𝑄𝑛,𝑘. 

2. Energy Control: At every time slot t, the rate 𝑒𝑛,𝑘(𝑡) is determined by calculating the 

difference in the number of packets processed by 𝑄𝑛,𝑘 and 𝑍𝑛,𝑘  and by setting a maximum 

threshold 𝑇ℎ𝑟𝑈 for the number of buffered packets in 𝑄𝑛,𝑘. Thus, we have the conditions: 

𝑄𝑛,𝑘(𝑡) − 𝑍𝑛,𝑘(𝑡) ≥  0 and 𝐵𝑢𝑓𝑓𝑒𝑟𝑒𝑑(𝑄𝑛,𝑘(𝑡)) <  𝑇ℎ𝑟𝑈. If these conditions are satisfied, 

the packets are forwarded to the energy filter. Here, the energy credits are evaluated, and if the 

device has enough credits the packets are forwarded to 𝑍𝑛,𝑘. If the condition is not satisfied, 

packets aren’t forwarded to the filter, and further to 𝑍𝑛,𝑘. 
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Note that all transmissions over the links are unicast transmissions in our work, where unicast is 

dominantly used in practice over cellular, Wi-Fi, and Wi-Fi Direct links. It is straightforward to extend our 

framework for broadcast transmissions. As it can be seen, our algorithm takes into account the resources of 

processing power and energy in addition to bandwidth in an optimal manner. In the next section, we will 

see the implementation details and the performance of our algorithm in a practical setup.  
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5 IMPLEMENTATION DETAILS 

The scenario shown in Figure 16(b) was implemented on mobile devices, specifically Nexus 5 

smartphones and Nexus 7 tablets. The source in Figure 16(a) is also represented using a Nexus 7 tablet. In 

a simple source-to-receiver transmission, the building blocks shown in Figure 16(b) are implemented on 

top of the transport layer at the receiver. The TCP socket is connected to the output of queue 𝑍𝑛,𝑘, and over 

this TCP connection Wi-Fi Direct operates.  

We created the Energy-Aware Computation (EaC) application using Eclipse, along with the 

Android SDK. The IP Addresses associated with the WiFi-Direct Group was acquired after initiating WiFi-

Direct connections using the Android 5.1.1 operating system. These IP Addresses were used to create and 

maintain the sockets on both the source and receiver phones, as discussed in Section 3.4. Once the sockets 

were created, packets could be transmitted from the source to the receiver.  

Source Device 

 

 

At the source, each packet is of size 500 bytes. These packets are read using the public java class 

BufferedInputStream from the file and stored in a buffer, and then pushed to the OutputStream of the source 

socket. This is done continuously till the end of the file has been reached. At this point, the 

BufferedInputStream and source socket is closed. 

Receiver Device 

At the receiver, the socket uses its BufferedInputStream to read the incoming data, one packet 

(500 bytes) at a time. This data will later be stored using an OutputStream in a location which has been pre-

defined by the user, if it satisfies the Decoder and Energy conditions as shown in Figure 16(b). All queues 

are created using the LinkedList class which implements the Queue interface in Java. Each of these three 

Figure 17: Source Device   
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queues is implemented on separate threads, so that they can be executed simultaneously and independently. 

All queues work on a slotted system where each slot is of 20ms, and no more than 100 packets can be sent 

in a slot.  

In the first thread, in every slot, packet that are received at the socket are added to the first queue 

𝑈𝑛,𝑘(𝑡).  In the second thread, the decoder decodes the data (this can vary in terms of complexity) and 

forwards it to the queue 𝑄𝑛,𝑘(𝑡) according to the following rules: 

 

1. In the duration of a slot, every packet that is received is transmitted directly to the next queue 

𝑄𝑛,𝑘(𝑡).  

2. If the packet is received at a time that exceeds the current time slot of 20ms, it is transmitted 

to the next queue 𝑄𝑛,𝑘(𝑡) if the following conditions are satisfied:  

a. The difference between the number of packets processed by queue 𝑈𝑛,𝑘(𝑡) and 

𝑄𝑛,𝑘(𝑡), i.e., 𝑈𝑛,𝑘(𝑡) − 𝑄𝑛,𝑘(𝑡) ≥  0 

Figure 18: Receiver - Flowchart for thread 2   
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b. The number of buffered packets in queue 𝑈𝑛,𝑘(𝑡), i.e. 𝐵𝑢𝑓𝑓𝑒𝑟𝑒𝑑 (𝑈𝑛,𝑘(𝑡)) < 5000 

which implies that there should not be more than 5,000 packets waiting to be 

processed. If this condition is not satisfied, it implies that the decoder is a bottleneck. 

The participation of this device is either completely terminated, or reduced in 

comparison to others. 

3. If the number of packets in the slot have already exceeded 100, the slot is terminated at that 

instance and the end-of-slot condition (Step 2) is executed. 

In the third thread, the Energy Filter is used to first determine whether the device has enough 

energy resources to process the incoming file. The Energy Filter forwards the packets to the final queue 

𝑍𝑛,𝑘(𝑡) based on the following rules:  

1. A threshold is first set by the user, which indicates the minimum battery percentage that the 

user requires after the file has been processed.  

2. If the device is plugged in/charging while processing the packet, it simply forwards the 

packets to the next queue (𝑍𝑛,𝑘(𝑡)), in each slot. 

 

3. If the device is not plugged in and the packet is received in a slot duration, it is directly 

forwarded to the next queue (𝑍𝑛,𝑘(𝑡)). 

Figure 19: Receiver - Flowchart for thread 3, device is charging   
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4. If the device is not plugged in and the packet is received at a time that exceeds the current 

time slot of 20ms, it is transmitted to the next queue 𝑍𝑛,𝑘(𝑡) if the following conditions are 

satisfied: 

a. The difference between the number of packets processed by queue 𝑄𝑛,𝑘(𝑡) and 

𝑍𝑛,𝑘(𝑡), i.e.,  𝑄𝑛,𝑘(𝑡) − 𝑍𝑛,𝑘(𝑡) ≥  0 

b. The number of buffered packets in queue 𝑄𝑛,𝑘(𝑡), i.e. 𝐵𝑢𝑓𝑓𝑒𝑟𝑒𝑑 (𝑄𝑛,𝑘(𝑡)) < 5000 

which implies that there should not be more than 5,000 packets waiting to be 

processed. 

c. Energy Credits: The battery level of the device must be greater than the threshold set 

by the user. 

5. If the number of packets in the slot have already exceeded 100, the slot is terminated at that 

instance and Step 4 is executed. 

 

Once the packet has been forwarded to queue Z according to the above rules, it is written to a file 

using the OutputStream. Once all packets have been received, the OutputStream and socket at the receiver 

is closed. The file transfer is complete. 

Figure 20: Receiver - Flowchart for thread 3, device is not charging   
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In our experiments, we used two files of size 22.49MB and 308.80MB. Both the files are video 

files in MP4 format. Since each packet is 500 bytes each, there are roughly 45,000 packets for the smaller 

file and 645,000 packets for the larger file. Each of the queues mentioned above have a maximum size of 

150,000 packets. With these implementation details, we present our results in the next section. 
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6 PERFORMANCE EVALUATION 

This section discusses the results in different levels of computational complexity. The results 

show a significant improvement in throughput in terms of data transfer rate and battery consumption as 

well. Our results will focus on the two main goals of this thesis: processing power and energy consumption.  

6.1 Processing Power 

We will first show the results we achieved while analyzing the processing power in data intensive 

applications. Like we had discussed in the beginning of this thesis, processing power limits the rate of a 

device by introducing computational complexities up to O(n3). These results are shown for transfer of the 

smaller file, size 22.49MB. 

Two-way Transmission 

Our first setup is focused on exchange of data over two mobile devices (Phone A and Phone B), 

under the 3 sets of computational complexities discussed above. This analysis helps us focus on the data 

rates when a cooperative setup is introduced, and mobile devices help each other by exchanging data. As 

expected, the data rates reduce during the full-duplex transmission, and are further reduced when the 

complexities are introduced. Figures 21, 22 and 23 show the data rates for two-way transmissions for 

complexities O(1), O(n) and O(n2) respectively. 

 

 

 

 

 

 

 

 

 Figure 21: Two-way Transmission: Data rate for O(1) complexity 
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Figure 22: Two-way Transmission: Data rate for O(n) complexity 

Figure 23: Two-way Transmission: Data rate for O(n2) complexity 
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6.2 Energy Consumption 

Our second set of results concentrate on the energy consumption of mobile devices. This setup 

involves two scenarios; the first one is the ‘No Energy Constraint’ scenario in which the battery threshold 

set by the user is below the current battery level, and the second one is the ‘Energy Constraint’ scenario in 

which the battery threshold set by the user is above the current battery level.  

In the first scenario, packets will check the end-of-slot condition every 20ms and will forward the 

packet, whereas in the second scenario the packets will be processed at a lower rate (1Mbps), as there is not 

sufficient battery in the device. This setup is shown for complexities O(1), O(n) and O(n2); and as expected, 

the battery consumption is lower under the influence of the Energy Constraint applied to the battery level 

using the threshold.  These results are shown in Figures 24, 25 and 26; and are shown for transfer of the 

larger file, size 308.80MB with the battery threshold set at 40%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 24: Decrease in Battery % over Time for O(1) complexity 
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Figure 25: Decrease in Battery % over Time for O(n) complexity 

Figure 26: Decrease in Battery % over Time for O(n2) complexity 
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7 CONCLUSION 

In this thesis, we considered a device-to-device, Wi-Fi Direct connection between two mobile 

devices within proximity of each other. We successfully showed how data rates are affected due to changes 

in decoder complexities, for both one way and two way transmissions. We also showed that the battery 

consumption is significantly less in our algorithm with the Energy Filter, which is also implemented in the 

cooperative setup shown in [14]. Our framework provided a set of algorithms for decoder and energy 

control. These algorithms were implemented in a test bed which consists of real mobile devices and showed 

significant performance improvements. 
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