
Architecture Support for Emerging Memory Technologies

BY

KUN FANG
B.E., Huazhong University of Science and Technology, 2005
M.E., Huazhong University of Science and Technology, 2007

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2013

Chicago, Illinois

Defense Committee:
Zhichun Zhu, Chair and Advisor
Shantanu Dutt
Ashfaq Khokhar
Wenjing Rao
Ajay Kshemkalyani, Computer Science

Copyright by

Kun Fang

2013

To my parents,

Hongsheng Fang and Xiaoping Li,

my wife,

Runzhe Tao,

whose love encourages me towards excellence.

iii

ACKNOWLEDGMENTS

I would like to thank Professor Zhichun Zhu, for her guidance, her encouragement, and

her support during my Ph.D. research. I am also indebted to Dr. Shantanu Dutt and Dr.

Ashfaq Khokhar for teaching the courses of electrical and computer engineering that helped

me understand the circuits better. Also, I would like to thank Dr. Wenjing Rao for the group

presentations and discussions and Dr. Ajay Kshemkalyani for the insightful comments on my

research. In particular, I would like to thank Dr. Zhao Zhang and Long Cheng of Iowa State

University. Our collaboration builds the foundation of my several research projects. I would

also like to thank Dr. Hongzhong Zheng who helped me to quickly pass the starting phase of

Ph.D..

A number individuals were also extremely helpful when I have to live in a totally new

country for study. Han Liang showed me around Chicago. Hua Wei, Bo Ling and Shen Min

were my roommates. Yehua Su, Yu Liu, Chi Zhang, Jinghu Li, Jingye Xu, Jiang Lin, Suyu

Zhang, Kun Ma, Soumya Banerjee and Hui Lin are the names flashed across my mind when I

pick the word “friendship”.

KF

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK 9
2.1 Memory Organization . 9
2.2 Memory Technologies . 9
2.2.1 DDRx SDRAM . 9
2.2.2 DDR SDRAM Power Modes . 12
2.2.3 MRAM and PCM . 14
2.2.4 Mini-Rank Architecture . 15
2.2.5 Related Work . 16

3 CONSERVATIVE ROW ACTIVATION TO SAVE MEMORY
POWER . 22
3.1 Introduction . 22
3.2 Conservative Row Activation . 26
3.2.1 Basic Scheme . 28
3.2.2 Implementation . 30
3.2.3 Hardware Overhead . 32
3.2.4 Improvements from Basic Scheme 33
3.3 Experimental Methodologies . 36
3.3.1 Memory Power Calculation and Performance Metrics 37
3.3.2 Workloads . 38
3.4 Experimental Results . 39
3.4.1 Overview of Performance and Power Consumption 39
3.4.2 Performance Analysis . 42
3.4.3 Power Analysis . 46
3.4.4 Conservative Row Activation with More Memory Channels . 47
3.5 Conclusion . 49

4 HETEROGENEOUS MINI-RANK FOR OPTIMIZED PERFOR-
MANCE AND POWER EFFICIENCY 50
4.1 Introduction . 50
4.2 Heterogeneous Mini-Rank . 52
4.2.0.1 Dynamic Mini-Rank Type Prediction 53
4.2.0.2 Device Selection and Memory Layout 55
4.2.1 Memory Access Scheduling for Mini-Rank 56
4.2.2 Mini-Rank Overhead . 58

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.2.2.1 Mini-Rank Buffer Power Overhead 58
4.2.2.2 Overhead for Managing Type Mapping Tables 59
4.2.2.3 Hardware Overhead of MEMTMT 60
4.3 Experimental Methodologies . 60
4.3.1 Memory Power Calculation and Performance Metrics 62
4.3.2 Workloads . 63
4.4 Experimental Results . 63
4.4.1 Evaluation of Heterogeneous Mini-Rank 63
4.4.2 Analysis of Heterogeneous Mini-Rank Performance Impact . . 66
4.5 Conclusion . 67

5 MEMORY ARCHITECTURE FOR INTEGRATING EMERG-
ING MEMORY TECHNOLOGIES . 68
5.1 Introduction . 68
5.2 Prototype Design of UniMA . 72
5.2.1 Prototype Design Overview . 73
5.2.2 Memory Access Protocol . 75
5.2.2.1 Memory Commands . 75
5.2.2.2 Token Ring for Coordinated Data Bus Scheduling 79
5.2.3 Unified DIMM Interface Chip 79
5.2.4 Overheads . 80
5.2.5 Other Discussions . 82
5.3 Experimental Methodologies . 82
5.4 Experimental Results . 85
5.4.1 Performance with Homogeneous DDR3 Memory Devices . . . 86
5.4.2 Overhead of Token Passing Mechanism 88
5.4.3 Memory Access Latency . 90
5.4.4 Impact of Scheduling Choices on UDIC 91
5.4.5 UniMA with DDR3 and Pseudo-PCM Devices 92
5.5 Conclusion . 95

6 CONCLUSION . 96

CITED LITERATURE . 98

VITA . 109

vi

vii�
�

TABLE PAGE

I MAJOR SIMULATION PARAMETERS FOR CRA. 36

II PARAMETERS USED FOR CALCULATING DRAM

POWER (2GB, X8, DDR3-1600, 11-11-11). 37

III EXPERIMENTING WORKLOADS FOR CRA. 38

IV MAJOR SIMULATION PARAMETERS FOR

HETEROGENEOUS MINI-RANK. 61

V PARAMETERS USED FOR CALCULATING

DRAM POWER ON HETEROGENEOUS MINI-RANK. . . 62

VI MAJOR SIMULATION PARAMETERS FOR UNIMA. 84

VII WORKLOAD MIXES FOR UNIMA. 85

LIST OF TABLES

viii�
�

FIGURE PAGE

1 Basic internal architecture of DRAM device. 10

2 A simple timing diagram of DDR3-1600 (tRCD: RAS to CAS delay,

tCL: CAS latency, tRTP: read to precharge time). 11

3 Low power modes for DDR3-1600 memory device and the current
under each mode. PDE: Power-Down Enter; PDX: Power-Down
eXit; SRE: Self-Refresh Enter; SRX: Self-Refresh eXit. 13

4 Conventional timing diagram of two concurrent requests going to
different ranks. (The shaded bar represents the wasted cycles due to
data bus contention.) . 23

5 Timing diagram of Conservative Row Activation for two concurrent
requests going to different ranks. 24

6 BRT and bank queues in memory controller. The reserved BRT
entry will point to the request in bank queue. 31

7 An example of row and column command conicts at the same cycle. 33

8 Overview of power saving and performance impact of Conservative

Row Activation. 40

9 Data bus utilization of Conservative Row Activation compared to
baseline. 42

10 Memory read and write latency for Conservative Row Activation
compared to baseline. 43

11 Power breakdown of Conservative Row Activation compared to base-
line. 45

LIST OF FIGURES

ix�
�

FIGURE PAGE

12 Percentage of average rank active time of Conservative Row Ac-
tivation compared to baseline. 45

13 The power saving and performance impact of Conservative Row
Activation under 4-channel configuration. 48

14 Data layout for heterogeneous mini-rank. Four x16 configuration
and four x32 configuration sharing eight x8 device. The blocks of
the same color represent all the data in a read/write burst. x16 co-
nfiguration will burst using 2 devices for 16 memory cycles while
x32 configuration will burst using 4 devices for 8 memory cycles. . 53

15 A view of memory block layout of heterogeneous mini-rank, assu-
ming 64-byte cache line size and x8 memory device. D0, D1, D2,
and D3 are four memory devices. B0, B1, B2 and B3 are four me-
mory blocks of cache line size; and each square in the figure repr-
esents a sub-block of 16 bytes from those blocks. Those memory
blocks may not necessarily be consecutive in the physical memory
address space. A physical memory page of typical 8KB size may
consist of 64 memory blocks, and their sub-blocks may be mapped
onto a number of memory devices according to the memory inter-
leaving scheme and the number of memory channels, DIMMs, and
ranks in the system. 54

16 Basic structure of a heterogeneous mini-rank system. 57

LIST OF FIGURES (Continued)

x�
�

FIGURE PAGE

17 Timing of one request with the x32 mini-rank type and another
request with the x16 mini-rank type. For conventional x64 rank,
burst length (BL) is 8 so the data transfer take 4 cycles on DDRx
bus. The x32 configuration will need additional 8 cycles to tran-
sfer data to MRB and 3 cycles of DDRx bus cycles can be overla-
pped. So the increased data transfer time is 5 cycles. For x16 mini-
rank configuration, data will take 16 cycles to MRB and with 3
cycle overlap, the overhead is 13 cycles. 57

18 Overview of power saving and performance impact with varying
mini-rank con_gurations and heterogeneous mini-rank configura-
tion. 64

19 Normalized EDP (Energy-Delay Product) for conventional, hom-
ogeneous and heterogeneous mini-rank configurations. (Smaller is
better) . 66

20 Read latency of individual application in workload MIX-1. 67

21 The organization of UniMA design with single channel configurat-

ion. 73

22 The timing of commands (Read, Write and Get Read) for UniMA

design. 76

23 Detailed design of UniMA DIMM and UDIC. A: connecting to me-
mory controller; B: connecting to devices on DIMM; C: connecting
to the next UDIC on the “Token Ring”; D: connecting to the prev-
ious UDIC on the “Token Ring”; E: setting or receiving “Need To-
ken” signal; F: clock for devices on DIMM; G: incoming clock from
bus. 78

LIST OF FIGURES (Continued)

xi�
�

FIGURE PAGE

24 Performance comparison of UniMA and conventional DDR3-
1066 system as the number of DIMMs per channel changes. 86

25 Token passing overhead of UniMA with 16 DIMMs per channel. . 89

26 Latency breakdown of conventional DDR3 memory system and

UniMA. 90

27 Performance comparison of UniMA without and with request re-
ordering at UDICs. 92

28 Performance comparison of traditional DDR3 system and UniMA
with both pseudo-PCM and DDR3 DIMMs. (PCMx stands for pu-
re PCM module; bPCMx stands for con_guration of PCM module
with an 8MB buffer). 94

LIST OF FIGURES (Continued)

LIST OF ABBREVIATIONS

CPU Central Processing Unit

DRAM Dynamic Random Access Memory

SDRAM Synchronous Dynamic Random Access Memory

DDR Double Data Rate

GDDR Graphics Double Data Rate

XDR eXtreme Data Rate

DIMM Dual In-line Memory Module

FB-DIMM Fully Buffered Dual In-line Memory Module

SPEC Standard Performance Evaluation Corporation

PCM Phase Change Memory

MLC Multi-Level Cell

MRAM Magnetic Random Access Memory

STT-MRAM Spin-Torque Transfer Magnetic Random Access

Memory

EDP Energy Delay Product

CRA Conservertive Row Activation

UniMA Universal Memory Architecture

xii

LIST OF ABBREVIATIONS (Continued)

RAS Row Address Strobe

CAS Column Address Strobe

AMB Advanced Memory Buffer

MRB Mini-Rank Buffer

BRT Bus Reservation Table

ACT Activation Access

PRE Precharge Access

COL Column Access

CKE Clock Enable

PDE Power-Down Enter

PDX Power-Down eXit

SRE Self-Refresh Enter

SRX Self-Refresh eXit

REF Refresh

DLL Delay Locked Loop

MEM Memory Intensive Workload

ILP CPU Intensive Workload

MIX Mixed Workload

xiii

LIST OF ABBREVIATIONS (Continued)

IPC Instruction Per Cycle

FR-FCFS First Ready - First Come First Serve

TMT Type Mapping Table

MEMTMT Type Mapping Table in Memory Controller

OSTMT Type Mapping Table in Operating System

UDIC Unified Dual In-line Memory Module Interface

Chip

xiv

SUMMARY

Memory system is responsible to store all the information used and produced by the CPU

in the Von Neumann architecture. As the technology advances for the processors, the growing

disparity of speed between CPU and main memory becomes so large that the so called “memory

wall” becomes the major bottleneck of a modern computer system. In recent decades, the CPU

speed keeps improving at an annual rate of 60% but the memory speed only improves at 10%.

Although after the year 2000, CPU speed improvements slowed down due to thermal constraints,

the chip geometries shrink steadily. We now are entering a new era that the number of hardware

threads per socket increases dramatically (33). With the wide spread use of multi-core and

many-core processors, current memory system designers try to push the memory bandwidth

and capacity to meet the user demands. A negative side-effect is the continuous increase on

memory power consumption. Listed in a publication of Intel (34), the power consumption of

processor can vary from 45W to 200W and on average, DDR3 power can be from 2W to 13W

for a small configuration (2GB to 4GB). As the memory capacity increases to 32 GB or 64GB

and the memory speed is forecasted to be at 1866MHz and 2133MHz, the power consumption

of memory system will surpass the CPU power.

In addition, main memory system design is severely limited by the rigid architecture that

requires the memory controller to track the internal status of all memory devices (chips) and

schedule the timing of all device operations. As a result, DRAM memory system is head-

ing to the scalability wall. New memory technologies, for instance, Phase-Change Memory

xv

SUMMARY (Continued)

(PCM), Spin Torque Transfer Magnetic RAM (STT-MRAM), are promising alternatives to

the DRAM technology in future memory systems. Although those technologies have better

energy-efficiency and scalability than DRAM, they also suffer from low write-endurance and

long write-latency. Thus, new memory architectures are needed for supporting future memory

systems and balancing among performance, energy-efficiency, capacity and lifetime.

In this thesis, we address the memory power and scalability issues for multi-core and many-

core systems, and give answers on how to reduce memory power consumption, how to get

the best tradeoff between performance and memory power and eventually how to combine the

emerging and current memory technologies to improve memory system efficiency. The works

done and presented in this thesis form a systematic support for improving memory system

efficiency at the architecture level by three steps. Firstly, a new DRAM scheduling algorithm

called Conservative Row Activation is proposed to make the DRAM more energy-efficient by

allowing memory ranks stay at a low-power mode longer if the data bus ownership cannot be

acquired immediately after row activation finishes (25). Secondly, we present a heterogeneous

mini-rank memory architecture that allows concurrently running applications to have different

sub-rank widths based on their memory access behavior (24). By dynamically assigning and

changing the sub-rank configurations, the balance can be achieved between the performance

and power saving, and large performance loss can be avoided (23). Lastly, we build a new

memory architecture framework called Universal Memory Architecture (UniMA) (22) that can

support different memory technologies in a computer system by decoupling the scheduling of

xvi

SUMMARY (Continued)

device operations from memory controller. A bridge chip is added to each memory module to

perform device-specific scheduling locally.

Our first work, the Conservative Row Activation is based on the observation that due to

the increasing importance of memory-level parallelism, most memory scheduling schemes ea-

gerly exploits such parallelism to optimize performance. A common policy used by memory

controllers today is, whenever possible, always trying to open memory banks for pending re-

quests to maximize bank-level parallelism and throughput. However, we find out that this is

neither power optimal nor necessary for maintaining performance because usually many banks

are open while waiting for the data bus ownership. The purpose of “Conservative Row Acti-

vation” memory access scheduling scheme is to improve memory system power efficiency with

minimal performance impact. Instead of activating a bank at the earliest possible time, it acti-

vates a bank only when the follow-up column access will not wait for the data bus ownership.

The scheme monitors the data bus transactions and reserves bus slots for each pending col-

umn command at the earliest possible time. Then the optimal time to issue the corresponding

row activation is calculated as tRCD cycles before the column command. In this way, more

banks can stay in idle state longer and ranks will get a better chance to stay in the low-power,

precharge state to save power. In addition, because the column commands can still be issued

almost at the same time as before, the performance impact would be minimal.

Our second work improves a recent proposed mini-rank memory architecture. The mini-

rank (96) memory system achieves significant memory power reduction with a slight increase of

the data transfer time. It uses a bridge chip called MRB (Mini-Rank Buffer) on each DIMM,

xvii

SUMMARY (Continued)

between the DRAM devices and the DDRx bus, to break conventional x64 ranks into x32, x16

or even smaller ranks to save memory power. Although the original mini-rank design works

well for most workloads, we further observe that it has a limitation: it applies a fixed and

unified partition from ranks to mini-ranks on all applications. Some applications will suffer

a great performance loss under narrow mini-rank configurations, such as x8 mini-ranks; while

others may lose power saving opportunities under wide mini-rank configurations, such as x32

mini-ranks. To address this issue, we propose a heterogeneous mini-rank scheme (23) that

allows each application to have its own mini-rank configuration within a single memory system

in order to approach the optimal power-performance trade-off. A latency-sensitive application

will be assigned to a wide mini-rank configuration for maintaining its performance; while a

latency-insensitive application will be assigned to a narrow mini-rank configuration for memory

power saving. We find out that the memory bandwidth requirement of an application can be

used as a guidance to select its near-optimal configuration. It is simple and only introduces

small overhead in both software and hardware implementations.

Our third work is to provide architecture support for new memory technologies. Recent re-

search shows a trend of using new memory technologies to build the main memory system. But

without universal interoperability, future systems may have to use different memory controllers

for various types of memory modules, which is infeasible in economic sense. Furthermore, fu-

ture processors are likely to use integrated memory controllers, which means there would be

many subtypes of processors. We propose Universal Memory Architecture (UniMA) to enable

universal interoperability between all major processors and memory modules made by emerging

xviii

SUMMARY (Continued)

memory technologies as well as DRAM. The UniMA is a framework of memory architecture

rather than a particular implementation. It is an advanced memory organization with a new

memory access protocol that offloads the scheduling of device-level operations to each memory

module. Each memory module embeds a bridge chip that performs local management, e.g., for

DRAM devices, to schedule device operations including precharge, activation and read/write.

The memory controller may still perform memory access reordering, i.e. reorder memory re-

quests based on some scheduling schemes, but without timing constraints. The bridge chip is

an extra chip on the memory module like those on the FB-DIMM (86), Mini-Rank (96) and

Decoupled DIMM (97), or the bottom chip in future stacked 3-D memory modules. Since the

controller no longer has the full knowledge of each device’s status, a new protocol is proposed

for the communication between the controller and modules to avoid bus contentions. The

controller sends generic commands such as reads or writes instead of device-specific ones to

modules; a module with ready data will raise its readiness via some additional signal lines;

and a token-based approach is used to grant bus ownership to one ready module and avoid

contentions.

Throughout this thesis, we demonstrate that our schemes can save DRAM power, provide

optimal energy efficiency for mini-rank kind of design and integrate diverse memory technologies

into one memory system with small overhead. A combination of the techniques in this thesis is

straightforward and would be able to show a path to utilize both dominant and future memory

technologies in a single computer system.

xix

CHAPTER 1

INTRODUCTION

Memory system is responsible to store all the information used and produced by the CPU

in the Von Neumann architecture. As the technology advances for the processors, the growing

disparity of speed between CPU and main memory becomes so large that the so-called “memory

wall” becomes the major bottleneck of a modern computer system. In recent decades, the CPU

speed keeps improving at an annual rate of 60% but the memory speed only improves at 10%.

Although after the year 2000, CPU speed improvements slowed down due to thermal constraints,

the chip geometries shrink steadily. We now are entering a new era that the number of hardware

threads per socket increases dramatically (33). With the wide spread use of multi-core and

many-core processors, current memory system designers try to push the memory bandwidth

and capacity to meet the user demands. A negative side-effect is the continuous increase on

memory power consumption. Listed in a publication of Intel (34), the power consumption of

processor can vary from 45W to 200W and on average, DDR3 power can be from 2W to 13W

for a small configuration (2GB to 4GB). As the memory capacity increases to 32 GB or 64GB

and the memory speed is forecasted to be at 1866MHz and 2133MHz, the power consumption

of memory system will surpass the CPU power.

In addition, main memory system design is severely limited by the rigid architecture that

requires the memory controller to track the internal status of all memory devices (chips) and

schedule the timing of all device operations. As a result, DRAM memory system is head-

1

2

ing to the scalability wall. New memory technologies, for instance, Phase-Change Memory

(PCM), Spin Torque Transfer Magnetic RAM (STT-MRAM), are promising alternatives to

the DRAM technology in future memory systems. Although those technologies have better

energy-efficiency and scalability than DRAM, they also suffer from low write-endurance and

long write-latency. Thus, new memory architectures are needed for supporting future memory

systems and balancing among performance, energy-efficiency, capacity and lifetime.

The goal of this thesis is to propose a systematic way to optimize the memory system and

balance among the three most important characters: power, performance and capacity. The

recently developed memory technologies also provide interesting opportunity and material to

improve the memory system. Our research presented in this Ph.D. thesis addresses the goal

through a series of implementations. Firstly, a new DRAM scheduling algorithm called Con-

servative Row Activation is proposed to make the DRAM more energy-efficient by allowing

memory ranks stay at a low-power mode longer if the data bus ownership cannot be acquired

immediately after row activation finishes (25). Secondly, we present a heterogeneous mini-rank

memory architecture that allows concurrently running applications to have different sub-rank

widths based on their memory access behavior (24). By dynamically assigning and changing

the sub-rank configurations, the balance can be achieved between the performance and power

saving, and large performance loss can be avoided (23). Lastly, we build a new memory ar-

chitecture framework called Universal Memory Architecture (UniMA) (22) that can support

different memory technologies in a computer system by decoupling the scheduling of device

3

operations from memory controller. A bridge chip is added to each memory module to perform

device-specific scheduling locally.

Chapter 3 starts the whole research by reducing the conventional DDR3 memory system

power consumption. A Conservative Row Activation algorithm is proposed. It is based on the

observation that due to the increasing importance of memory-level parallelism, most memory

scheduling schemes eagerly exploits such parallelism to optimize performance. A common policy

used by memory controllers today is, whenever possible, always trying to open memory banks

for pending requests to maximize bank-level parallelism and throughput. However, we find out

that this is neither power optimal nor necessary for maintaining performance because usually

many banks are open while waiting for the data bus ownership.

The purpose of “Conservative Row Activation” memory access scheduling scheme is to im-

prove memory system power efficiency with minimal performance impact. Instead of activating

a bank at the earliest possible time, it activates a bank only when the follow-up column access

will not wait for the data bus ownership. The scheme monitors the data bus transactions and

reserves bus slots for each pending column command at the earliest possible time. Then the

optimal time to issue the corresponding row activation is calculated as tRCD cycles before the

column command. In this way, more banks can stay in idle state longer and ranks will get a

better chance to stay in the low-power, precharge state to save power. In addition, because

the column commands can still be issued almost at the same time as before, the performance

impact would be minimal.

4

We build a detailed memory model and integrate it to the MARSS (63) simulator. Running

the quad-core workloads with SPEC2006 (81) benchmark, the experiment indicates that our

proposed scheme can effectively improve memory system power efficiency with little performance

impact. The memory power is saved by 5.6%, 3.3% and 5.8% on average for MEM, ILP and

MIX workloads, respectively (up to 7.0%). The performance is even slightly improved for MEM

workloads because our scheme can slightly improve the bus utilization by giving column access

commands higher priority than others. The weighted speedup for MEM workloads is improved

by 0.3% on average (up to 1.0%). For ILP and MIX workloads, the performance loss is less than

1.0%. The power saving is because our algorithm can put memory ranks in low power modes

longer. So the background power contributes the most of the power reduction. This result

also shows that our scheduling scheme can retain the performance effectively. This is because

although the activation is delayed, the scheme looks into the future to place column commands

wisely and the latency of a request is determined by when its column access is performed not

when its row activation is performed. This mechanism does not change the baseline scheduling

sequence of data transfer, hence the performance is kept the same.

After the successful attempt to save memory power, we further extend the original mini-

rank design to make it dynamically reconfigurable. This extension puts us one step further

towards our research goal. Now we can balance between performance and power to get the

best energy-delay product. In Chapter 4, we discuss the heterogeneous mini-rank design based

on a recent mini-rank (96) memory system for performance/power tradeoff, which achieves

significant memory power reduction with a slight increase of the data transfer time. It uses

5

a bridge chip called MRB (Mini-Rank Buffer) on each DIMM, between the DRAM devices

and the DDRx bus, to break conventional x64 ranks into x32, x16 or even smaller ranks to

save memory power. Although the original mini-rank design works well for most workloads,

we further observe that it has a limitation: it applies a fixed and unified partition from ranks

to mini-ranks on all applications. Some applications will suffer a great performance loss under

narrow mini-rank configurations, such as x8 mini-ranks; while others may lose power saving

opportunities under wide mini-rank configurations, such as x32 mini-ranks. To address this

issue, we propose a heterogeneous mini-rank scheme (23) that allows each application to have

its own mini-rank configuration within a single memory system in order to approach the optimal

power-performance trade-off. A latency-sensitive application will be assigned to a wide mini-

rank configuration for maintaining its performance; while a latency-insensitive application will

be assigned to a narrow mini-rank configuration for memory power saving. We find out that

the memory bandwidth requirement of an application can be used as a guidance to select its

near-optimal configuration. Then we further extend our heterogeneous mini-rank scheme by

making the bandwidth detection for each application online to predict and dynamically assign

and reassign of mini-rank configuration. The heterogeneous mini-rank scheme can provide

near optimal performance/power trade-off, and avoid big performance loss for workloads with

diverse memory access behavior. The heterogeneous mini-rank configuration selection is based

on applications run-time memory bandwidth usage. It is simple and only introduces small

overhead in both software and hardware implementations.

6

For heterogeneous workloads containing applications with diverse memory access behaviors,

on average, the heterogeneous mini-rank can reduce the memory power by 18.6% (up to 38.0%)

with the performance loss of 2.4% (up to 7.4%), compared with a conventional memory system.

In comparison, the x32 homogeneous mini-rank can only save memory power by 12.6% on

average (up to 25.4%); while the x8 homogeneous mini-rank will cause the performance loss by

8.1% on average (up to 19.3%). Compared with the x16 homogeneous mini-rank configuration,

the heterogeneous mini-rank can also reduce the EDP (energy-delay product) by up to 9.6%.

In Chapter 5, we unify the dominant DDR technology and emerging memory technologies

such as PCM and STT-MRAM. With the hint of heterogeneous mini-rank, we discover that by

using a bridge chip on DIMM, we can build a system that the underlining memory device can be

selected and configured to fit the system requirement. The advantage of new memory technolo-

gies can be utilized and the shortcomings can be avoided using the mature DDR technology.

To realize this idea, future systems may have to use different memory controllers for various

types of memory modules, which is infeasible in economic sense. Furthermore, future processors

are likely to use integrated memory controllers, which means there would be many subtypes

of processors. We propose Universal Memory Architecture (UniMA) to enable universal in-

teroperability between all major processors and memory modules made by emerging memory

technologies as well as DRAM. The UniMA is a framework of memory architecture rather than

a particular implementation. It is an advanced memory organization with a new memory access

protocol that offloads the scheduling of device-level operations to each memory module. As for

the implementation, it extends the logic functions of the bridge chip when compared with the

7

heterogeneous mini-rank scheme. Such an extension does not incur significant extra cost or

power consumption, and it inherits the improved scalability, performance and power efficiency

from decoupled memory organizations. In this thesis, we evaluate an implementation of the

UniMA framework on top of the DDRx bus protocol; so that we can compare it with exist-

ing memory system designs. Each memory module embeds a bridge chip that performs local

management, e.g., for DRAM devices, to schedule device operations including precharge, acti-

vation and read/write. The memory controller may still perform memory access reordering, i.e.

reorder memory requests based on some scheduling schemes, but without timing constraints.

The bridge chip is an extra chip on the memory module like those on the FB-DIMM (86),

Mini-Rank (96) and Decoupled DIMM (97), or the bottom chip in future stacked 3-D memory

modules. Since the controller no longer has the full knowledge of each devices status, a new

protocol is proposed for the communication between the controller and modules to avoid bus

contentions. The controller sends generic commands such as reads or writes instead of device-

specific ones to modules; a module with ready data will raise its readiness via some additional

signal lines; and a token-based approach is used to grant bus ownership to one ready module

and avoid bus contentions.

Our simulation results show that UniMA achieves comparable performance when compared

with conventional DDR3 memory systems. On a simulated quad-core system with homogeneous

DRAM devices, UniMA can improve performance by 3.1% on average (up to 4.5%) for memory-

intensive workloads; and incurs an average performance loss of 1.0% (up to 1.8%) for non

memory-intensive workloads. UniMA may also support heterogeneous devices in one system,

8

which is not feasible under the conventional memory organization. A heterogeneous system

of PCM and DRAM, for example, may balance the large capacity and relatively high power

efficiency of PCM with the relatively high performance of DRAM. Our simulation results show

that compared with the performance of a pure DRAM system, the overall performance of a

pure PCM system is about 25% lower for memory-intensive workloads, while the performance

of a hybrid system enabled by our UniMA design is only 12% lower.

Throughout this thesis, we demonstrate that our schemes can save DRAM power, provide

optimal energy efficiency for mini-rank kind of design and integrate diverse memory technologies

into one memory system with small overhead. A combination of the techniques in this thesis

is straightforward and would be able to show a path to utilize both dominant and future

memory technologies in a single computer system to reduce memory power, increase capacity

and performance.

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Memory Organization

A conventional memory system may consist of a few memory channels. Each channel can

operate independently and connect with one to four DIMMs. Each DIMM consists of several

DRAM devices that are organized as ranks to serve requests. In desktop and server environment,

the data bus in a channel is usually 64-bit wide and is shared by all devices connected to the

channel. Using the most widely used x8 devices as an example, eight devices will form a rank

to match the bus width and serve memory requests together. For a typical memory system

with last-level cache block size of 64 bytes, the 64-byte data of each cache line filling request

will be spread onto eight devices, with each holding 64-bit data.

2.2 Memory Technologies

2.2.1 DDRx SDRAM

DRAM is the dominant memory technology today with DDR (Double Data Rate) SDRAM

being the most widely used. The DDR interface uses double pumping mechanism to transfer

data on both the rising and falling edges of the clock. It has several generations, DDR, DDR2,

DDR3 and with DDR4 projected.

Figure 1 shows the internal architecture of a typical DDR SDRAM device. There are usually

4 or 8 banks in a DRAM device and each has a row buffer. When a row activation command

9

10

�������	�
���
�����

�����
�����

���������

��
�
�	
��
��

��
��

��
�
��

	�
��
��
�

Figure 1: Basic internal architecture of DRAM device.

and corresponding row address are received, the row decoder translates the row address and

selects a row from the corresponding DRAM bank. Then the contents of the selected row are

fetched to the row buffer. When there are valid data in the row buffer, the bank is open to

accept subsequent column access requests. A column access command can be issued to an open

bank to transfer data to or from the column selected by the column decoder. If data in any

row other than the one currently in the row buffer need to be accessed, a precharge command

will be issued to the bank, which stores the data in row buffer back to DRAM core. After

that, a new set of row activation and column access can be performed. All the read and write

operations on DRAM devices are accomplished by scheduling these basic commands.

11

��� ����

��	
��
���	

��������

�����	�

�������

���� ���� ���� ����

������

�������
��������

���

���

 ���!"

��	
��
����	

��	
��
��������

Figure 2: A simple timing diagram of DDR3-1600 (tRCD: RAS to CAS delay, tCL: CAS latency,
tRTP: read to precharge time).

DRAM devices operate as slaves of a memory controller. The controller schedules concur-

rent memory requests and sends commands (including precharge, row and column accesses) to

devices for each request based on devices’ status and timing constraints. Figure 2 shows an

example of the timing and status of command and data buses of a DDR3-1600 memory system.

With DDR technology, a maximum transfer rate of 1600 MB/s could be achieved with 100

MHz bus frequency (53). The superseding DDR2 and DDR3 technology achieves higher bus

speed than DDR with the same memory clock since their internal clock is set at one quarter and

one eighth the speed of data bus. Also DDR2 and DDR3 use advanced device technology that

allows lower operation voltage and higher device density. The power is significantly reduced

and the latency is also improved slightly. At the 2008 Intel Developer Forum in San Francisco,

DDR4 was revealed and said to debut in 2012. Although sometimes they are called DDRx for

simplicity, they are not compatible, which means different generations of DDR devices cannot

be used together.

12

Graphics Double Data Rate 3 (GDDR3) and its successors GDDR4 and GDDR5 are spe-

cially designed on the base of DDR2 and DDR3 to handle certain graphics demands better,

and are widely used on graphic cards.

The XDR (eXtreme Data Rate) DRAM is the successor to the Direct Rambus DRAM. It

heavily emphasizes on per pin bandwidth and is designed for small, high-bandwidth consumer

systems and high-end GPUs. It is used in Sony PlayStation 3 console. Also XDR2 DRAM was

announced around mid 2005 (70).

2.2.2 DDR SDRAM Power Modes

The DRAM device can enter into several different power modes to reduce its power con-

sumption if there is no access to the device. Figure 3 shows different power modes of a typical

DDR SDRAM device and the transition between each mode. When there are one or more

banks open in a rank, the rank is in the Active Standby mode. The rank can enter the Active

Power-down mode by putting the CKE (clock enable) signal to low. If there is no bank open

in a rank, the rank is in the Precharge Standby mode (fast or slow). When only the CKE

is put to low, the rank can be put into the Precharge Power-down (fast) mode. If the DLL

(delay-locked loop) is also disabled, it will be put into the Precharge Power-down (slow) mode,

which consumes less power than the fast mode but requires longer time to return to the standby

mode and then serve incoming requests. The rank can also be put into the Self-refresh mode

that just performs the periodic refresh operation to maintain the data and consumes the least

power. The current value of each mode is also shown in the figure. The data is based on the Mi-

cron 2GB DDR3-1600 x8 device (52). We can see that at the Active/Precharge Standby mode,

13

����
��
�������

���� ��!��
�������

����
��
�����"����

�	#�	$

�%#�&

���� ��!�

����
���

���� ��!��
�����"�����

'��(�)

�	#�	$

�%#�&

����"�����(

��#

��$

�%#�&

���� ��!��
�����"����

'(���)

�	#*
	&&����

�	$*
	&&���

�%#�&

+,��

+���

+-��

.,�� �-��

/��

Figure 3: Low power modes for DDR3-1600 memory device and the current under each mode.
PDE: Power-Down Enter; PDX: Power-Down eXit; SRE: Self-Refresh Enter; SRX: Self-Refresh
eXit.

the current (determining power consumption) is higher than that at the Precharge Power-down

fast/slow modes (45/42 mA vs. 35/12 mA). The power mode determines the background power.

When the rank is performing an activation or a precharge operation, the operation power is

consumed. When the rank is bursting data in/out, the I/O and termination power is consumed.

Background power, operation power and I/O and termination power are three sources of power

consumed by a rank during normal operations.

14

2.2.3 MRAM and PCM

Magnetic RAM (MRAM), Spin-Torque Transfer Magnetic RAM (STT-MRAM) and Phase

Change Memory (PCM) are non-volatile memory technologies that have been under extensively

research and are potential alternatives to DRAMs (16; 41; 69). They use the resistance of cell to

represent information and are also called resistive memories (28). Unlike conventional DRAM

technologies, MRAM, STT-MRAM and PCM do not store data as electrical charge. MRAM

(STT-MRAM) uses the different resistance of magnetic storage elements determined by the

polarity of its two layers; while PCM uses the obviously different resistance of chalcogenide

glass between its two states: amorphous and crystalline, to represent data. Samsung ships

industry’s first Multi-chip Package with PCM on April, 2010 (74). The most basic MRAM cell

size is limited to around 18 nm due to the half-select problem. Although Toggle-mode MRAM

could be made into much smaller size, a worthy of putting into wide production is not shown

in the near future. PCM on the other hand have their own advantages and disadvantages

compared with DRAM. For instance, PCM has longer latency and worse write endurance than

DRAM but promises better power-efficiency and higher density.

By carefully controlling the programming voltage and electric current, the phase change ma-

terial can partially transit between phases. Thus, intermediate resistance/state can be achieved.

This characteristic of PCM allows each PCM cell to have multiple states and be used to build

Multi-Level Cell PCM (MLC PCM). A multi-level cell can store several bits. For example, if a

MLC PCM cell has four states, it can represent two bits; and if it has sixteen states, four bits

can be stored. Thus, MLC PCM can double or even quadruple the storage density. However,

15

the more states a MLC PCM has, the more difficult it becomes to bring a MLC PCM cell to

its desired state region because the margin is smaller. So usually a write-verify type of write

strategy (60) is implemented to gradually set a cell to the right state. The drawback is that

such multiple write-verify iterations will make write to MLC PCM to be much slower and wear

out cells much faster than single-level cell PCM.

2.2.4 Mini-Rank Architecture

In a typical DDR2/DDR3 DRAM memory system, multiple DRAM devices (chips) on a

DIMM form a group to match the 64-bit data path and serve one memory request. Such a

group is called a rank (e.g., sixteen x4 DRAM devices forming a x64 rank). With the fast

increase on memory channel bandwidth and the slow improvement on DRAM row and column

access speed, the bus transfer time only counts for a small portion of the overall memory access

latency in today’s memory system. By observing that fact, a recent study proposed a mini-rank

architecture that partitions each memory rank into multiple mini-ranks with narrower width

(e.g. a x64 rank into two x32 mini-ranks) and lets each mini-rank serve one memory request (96).

It can significantly reduce the memory operation power since fewer devices are activated for

each request. In addition, it can also reduce the background power because more independent

groups of devices mean better chance to utilize the low-power modes. The performance penalty

mainly comes from the increase on the bus transfer time for a request. However, since that only

counts for a small portion of the total memory access latency, the overall performance penalty

is small. In order to relay data between the wide data bus and the narrow mini-rank, a bridge

16

chip called mini-rank buffer (MRB), is added to each DIMM. The data relay and transfer on

the bus can be pipelined and partially overlapped to minimize the overhead.

The power saving comes from better use of low power modes mentioned above, less operation

power and less termination power due to the isolation effects brought by the MRB. As mini-rank

breaks the original x64 rank into smaller ranks, fewer devices are involved when an operation is

issued by the memory controller. Because operation power grows proportionally as the number

of device decreases, smaller ranks costs less operation power than x64 rank. Using mini-rank

will double the number of logic ranks in x32 configuration, quadruple in x16 and octuple in

x8 configuration. Giving that the number of memory requests waiting for service almost has

nothing to do with the memory subsystem architecture and unit memory operation is based

on rank, when the number of rank increases, more ranks could gain the opportunity to go into

low power mode. The divided mini-ranks are connected to MRB so that they do not share the

same bus as in non-mini-rank design, which eliminate the need for rank termination.

2.2.5 Related Work

Many studies have been focused on how to utilize low power modes of DRAM. Lebeck et

al. proposed power-aware page allocation policy to increase the chance of DRAM chips to be

put in low power modes (40). Delaluz et al. proposed software and hardware approaches and

OS scheduling methods to reduce memory power (15). Fan et al. studied control policies for

memory power (20; 21). Huang et al. proposed a virtual memory scheme to manage memory

power (29) and maximize the chip low power time by dealing with memory traffic (30). Li et al.

proposed performance guaranteed low power management schemes (43). Pandey et al. extended

17

the memory power management aspect by considering DMA access behaviors (61). Hur and

Lin studied power saving potential of memory scheduling and memory power control schemes

via throttling (32). Mrinmoy et al. studied refreshment algorithms to reduce memory refresh

powe (27). Diniz et al. proposed algorithms to reduce Rambus DRAM power by dynamically

adjusting chip power states (18).

There have been many studies on memory system performance and power analysis. Burger

et al. evaluated several techniques to hide memory access latencies (8). They discovered that

one of the limitations of modern computer system design is memory bandwidth. Cuppu et

al. compared several different memory architectures for their latency, bandwidth and cost

tradeoffs (14). Cuppu and Jacob evaluated the performance impact of various memory design

parameters (13). Ganesh et al. evaluated Fully-Buffered DIMM and DDRx (26). They analyzed

the scalability of capacity and bandwidth of FB-DIMM in detail. A recent paper by Zheng et

al.(98) compared different memory design parameters and their impact on memory system

power consumption.

There are also studies proposed to modify memory system architecture or management

policies to reduce memory power. For example, Zheng et al. proposed a mini-rank architecture

that reduces memory operation power and background power by activating fewer devices for

each memory request (96). Ahn et al. proposed Multicore DIMM used the rank subset concept

with split data bus to reduce the memory power (2). Udipi et al. proposed to split the DRAM

row buffer to reduce memory power consumption via less operation power (85), which will

require significant change of commercial device. Kaseridis et al. proposed DRAM page policy

18

that sets the target of page hit number and schedules memory requests accordingly (37) to

optimize page open time and reduce activation power. Lim et al. proposed a new memory blade

architecture for blade servers. They used a dedicated blade for shared memory storage and a

stand-alone memory control facility is given to each memory blade (44). Beamer et al. proposed

a new memory system bus architecture using Monolithically Integrated Silicon Photonics. The

bus speed increases significantly and an inhibited memory scalability is empowered (5). Several

other studies focused on using low-power DRAM to build low power memory systems (90; 46).

Many studies proposed to use a bridge chip on DIMM for the purpose of performance-

endurance and storage tradeoff. Registered DIMM (54) puts a register chip on each DIMM

to cache command/address from memory controller. So the electrical load is reduced for sup-

porting more DIMMs. MetaRAM (51) not only buffers command and address but also data

to reduce the number of visible ranks to memory controller, which also reduces the load on

buses. Fully-Buffered DIMM (35) relay multiple DIMMs via Advanced Memory Buffer that

more DIMMs could be put into one channel. Also the narrowed buses made it possible to put

more channels on the motheboard. Decoupled DIMM (97) uses a sync-buffer to bridge the

speed differences of on-DIMM devices and DDRx data bus so high speed bus could be used by

low speed memory devices.

There have also been many other studies on memory scheduling algorithms and performance

analysis. There were mapping schemes improve the row page hit rate and reduce the latency

(95; 45). McKee and Wulf study the effectiveness of five access ordering schemes on a uniproces-

sor system (49). They also studied them on SMP systems for vector-like stream accesses (50).

19

The Impulse memory controller supports application-specific optimizations through address

translation (remapping) to improve bus and cache utilization, and also supports prefetching

at the memory controller to hide the cost of remapping (9; 93). Hur and Lin propose adap-

tive history-based scheduling policies to minimize the expected delay and match the program’s

mixture of reads and writes (31). Zhu and Zhang evaluate memory optimizations for the SMT

processors and propose thread-aware scheduling schemes based on the pending request number

and processor resource usage (100). Jun and Brian propose a burst scheduling mechanism to

cluster the accesses on the same row page to maximize the data bus utilization (78). Mathew

et al. design a Parallel Vector Access Unit for the Impulse controller, which gathers sparse

and strided data structures to improve memory locality and reduce observed memory laten-

cies (47). Fine-grain scheduling schemes can improve the performance of multi-channel memory

systems (101). Rixner analyzes the effects of policies utilizing channel buffers of virtual channel

SDRAM and memory access scheduling schemes in reducing memory access latency in web

servers (72). Mckee et al. propose to reorder memory requests (48) to reduce memory read

latency. Rixner et al. proposed the FR-FCFS scheduler (73) to improve memory through-

put. Nesbit et al. used fair queueing to schedule memory requests for fairness and QoS (59).

STFM (57) estimated the slowdown of each thread and prioritizes the thread that had been

slowed down the most. PAR-BS (58) formed a batch of requests for threads and prioritized the

one with fewest requests for performance purpose. The ATLAS scheduler (38), aimed to maxi-

mize system throughput by prioritizing threads that have attained the least service. TCM (39)

put threads in two groups via memory intensiveness and schedule them to get the optimal

20

fairness and throughput. The Prefetch-Aware memory scheduler (19), identified the prefetch

streams and scheduled non-prefetch and accurate prefetches ahead to improve performance.

Ausavarungnirun et al. proposed a staged memory scheduler (4) to co-schedule CPU and GPU

accesses.

There have also been many recent studies on issues related to using PCM and MRAM

memory technologies, such as analyzing the scaling behavior of PCM (71), using PCM as the

substitute of DRAM (41; 69), improving write endurance of PCM (99; 68), and using PCM to

improve cache organizations (88; 82). Other studies include write cancellation and pausing to

improve PCM performance (66), using PCM as the flash memory log for better efficiency and

lifetime (83), using non-volatile memory to build high performance data arrays (10), and flipping

the data bits to save power (11). There are also studies regarding write strategies (60; 36; 94),

dynamically adjusting MLC PCM for optimal latency-capacity trade-off (67), a demo of MLC

PCM (62), and changing the cell encoding for lower power (89). Some use STT-MRAM blocks

to reduce leakage power of processor (28), and using on chip interconnections to reroute accesses

to STT-RAM (55).

There are also research studies on the impact of putting different memory technologies into

one system, such as the cache hierarchy to form a hybrid cache (88), evaluation on a hybrid

DRAM and PCM system and guidelines for possible designs (7), hybrid memory system for

low power mobile applications (42), using PDRAM memory to save memory system energy and

manage PCM wear leveling (17), a MLP aware heterogeneous memory using off-line profiling

method to map applications to proper memory regions (65), OS supports for hybrid memory

21

management (56), and a architecture of hybrid SDRAM and STT-RAM cache that relaxes the

STT-RAM design to reduce energy-delay product (12).

CHAPTER 3

CONSERVATIVE ROW ACTIVATION TO SAVE MEMORY POWER

3.1 Introduction

In recent years, the memory bandwidth and capacity has been improved steadily to meet the

user demands on higher bandwidth and larger capacity. A negative side-effect is the continuous

increase on memory power consumption, which has become a first-order design consideration for

memory systems. In this study, we propose a new scheme to reduce memory power consumption

with negligible performance impact.

As we enter the era of multi-core systems, memory-level parallelism has become a very

important performance factor. This is because multiple concurrently running processes generate

multiple memory access streams and they tend to destroy locality appeared at the memory

side. To support multiple concurrent requests, a typical memory system has multiple ranks and

banks, which can serve requests in parallel. The memory controller will schedule device and

bus transactions for those concurrent requests to meet timing constraints and avoid resource

contentions. A common strategy used by today’s controllers is, whenever possible, always trying

to open a memory bank for a pending request to maximize bank-level parallelism and thus

throughput. However, we find that this is neither power optimal nor necessary for maintaining

good performance. Since memory requests tend to cluster together, it is common that several

22

23

���
���

���
���

���	

���
���

���
���

	���� 	���� 	���� 	����

��&

	���� 	���� 	���� 	����

��&���	

�������0��

�������0��

Figure 4: Conventional timing diagram of two concurrent requests going to different ranks.
(The shaded bar represents the wasted cycles due to data bus contention.)

banks are open but most of them are just stay idle, waiting for the data bus to become free.

That wastes unnecessary power and contributes little to extra performance.

Figure 4 shows an example of two concurrent read requests going to two banks in different

ranks. Each request has an activation command followed by a column access command. Once

an activation command is sent out, after a delay of tRCD, the corresponding rank enters the

active state, the bank is open, and the row containing the required data is fetched to the row

buffer. The first request (mapped to Rank0 in the example) can immediately issue its column

access command once its bank is open because the data bus is free at that time. However,

the second request (mapped to Rank1 in the example) has to wait three more bus cycles for

the data bus becoming free after its bank is open and ready to serve column accesses. This is

because the data bus is shared among all the ranks connected to a channel and can only serve

one data transfer at a time. The extra three cycles of Rank1 in the high-power, active state

is not necessary for delivering the maximal performance. If the activation of Rank1 is delayed

24

���
���

���
���

���	

���
���

���
���

	���� 	���� 	���� 	����

��&

	���� 	���� 	���� 	����

��&���	

�������0��

�������0��

Figure 5: Timing diagram of Conservative Row Activation for two concurrent requests going
to different ranks.

by three cycles as shown in Figure 5, the second request can issue its column access command

right after a delay of tRCD once its activation command is issued, and there are no cycles for

Rank1 to be wasted in the high-power, active state. This example shows delaying bank/row

activation until its corresponding column access not being blocked by the busy data bus can

reduce the time that a rank stays at the high-power, active state to save memory power without

compromising performance.

There are two questions to be answered before the idea of delaying row activation can be

applied in real systems to improve memory power efficiency. The first one is whether the optimal

delay time of a row activation can be determined efficiently. The answer to this question is yes.

Because the memory controller knows the status and timing of each bank and each pending

request, and it also knows when the command and data buses become free. Thus, for a given

request, the controller knows the earliest time that the column access command can be sent

out. It can use that information to calculate backward the latest time when the row activation

25

command should be sent out, since the row activation and column access commands must be

separated by at least a time of tRCD.

The second question is whether it happens frequently in real systems that several banks

are open but idle waiting for data bus becoming free. We further verify with experiments that

such situation does happen frequently in real systems. We collect the statistics of the number

of cycles that a bank is in active state but cannot issue its column command because the data

bus is not free. Then we calculate the metric of “possibility that a bank open but waiting

for free data bus”. The metric can give us an idea of how often that a bank stays at the

unnecessary open state wasting energy. For instance, we find out that for a memory-intensive

workload consisting of SPEC2006 applications lbm, gemsFDTD, leslie3d and libquantum, the

experimental result on a dual-channel configuration with two DIMMs per channel and two ranks

per DIMM shows that on average a bank wastes 11.5% of time in active state but waiting for

a free data bus to issue column commands. Note that a rank usually contains four or eight

banks. So a rank will be more likely to stay at the active state but the data bus is used by

other ranks.

Based on those analysis and observations, we propose a “Conservative Row Activation”

memory access scheduling scheme to improve memory system power efficiency with minimal

performance impact. Instead of activating a bank at the earliest possible time, it activates a

bank only when the follow-up column access will not wait for the data bus ownership. The

scheme monitors the data bus transactions and reserves bus slots for each pending column

command at the earliest possible time. Then the optimal time to issue the corresponding

26

row activation is calculated as tRCD cycles before the column command. In this way, more

banks can stay in idle state longer and ranks will get a better chance to stay in the low-power,

precharge state to save power. In addition, because the column commands can still be issued

almost at the same time as before, the performance impact would be minimal.

We build a detailed memory model and integrate it to the MARSS (63) simulator. Running

the quad-core workloads with SPEC2006 (81) benchmark, the experiment indicates that our

proposed scheme can effectively improve memory system power efficiency with little performance

impact. The memory power is saved by 5.6%, 3.3% and 5.8% on average for MEM, ILP and

MIX workloads, respectively (up to 7.0%). The performance is even slightly improved for MEM

workloads because our scheme can slightly improve the bus utilization by giving column access

commands higher priority than others. The weighted speedup for MEM workloads is improved

by 0.3% on average (up to 1.0%). For ILP and MIX workloads, the performance loss is less

than 1.0%.

3.2 Conservative Row Activation

As described in Section 3.1, conventional memory schedulers usually open a row at the

earliest possible time to maximize memory-level parallelism and to minimize memory access

latency. However, we find that although such scheduling policy is simple and performance-

optimal, it wastes unnecessary energy. For today’s memory systems, it is common that several

requests are served by the memory system at the same time since multiple threads/applications

are running concurrently on the multi-core processors. We find that when there exist multiple

27

concurrent memory requests, some of the row activation operations can be delayed to save

memory power without performance penalty.

In a typical desktop/server system with DDRx memory system, the memory bus is eight-

byte wide and the block size of the last level cache is 64 bytes. Each cache miss request from

the last level cache will fetch 64-byte data in a burst, whose length is eight. Thus, each burst

occupy the DDRx data bus for four bus cycles to transfer its data. Because each memory

bus/channel can only transfer one burst at a time, all data transfers must be serialized by the

bus. In general, the data bus is the performance bottleneck instead of the command/address

bus. A typical memory request occupies the data bus for four cycles (with additional cycles for

read/write turn-around), while its row activation and column access commands each occupies

the command bus for one cycle. Thus, when the row activation commands of two concurrent

requests to different banks are sent out back to back, the bank to serve the second request will

sit in the open state waiting for the data bus becoming free to perform its column access. Such

waiting in the high-power open state is unnecessary. It consumes extra power but contributes

little to performance.

To address this issue, we propose a memory scheduling scheme called “Conservative Row

Activation”. It delays the row activation of a pending request until its subsequent column

access does not need to wait for the data bus becoming free. This allows memory ranks to stay

in the low-power idle state longer to save memory power. At the same time, our scheme tries

to avoid delaying column accesses to minimize the performance impact.

28

3.2.1 Basic Scheme

Memory system performance should always be considered at the highest priority because it

directly affects the overall system performance. Bear this in mind, we propose the “Conservative

Row Activation” memory scheduling scheme to save memory power with minimal performance

impact. To maximize the rank idle time for memory power saving, our scheme delays the row

activation command as late as possible. However, a row has to be opened for column access

to get the data transferred. Moreover, a column cannot be immediately read from or written

to after the row activation command, a delay of tRCD (row access to column access delay)

must be expired between the row activation and its column access. Thus, to minimize the

performance impact, our scheme should avoid delaying the column access when the row access

is delayed. In order to achieve the goal, our scheme would carefully calculate and then schedule

the row command so that a bank will be opened at the latest time without delaying the column

command.

Algorithm 1 describes the scheduling of row activation and column access commands by

our proposed scheme. The basic idea is to look ahead for data bus availability and reserve the

time slot on the bus for a pending column access. Once the time slot of the column access

is determined, the timing of its associated row activation can be calculated using the value of

tRCD, and the activation command can be scheduled accordingly. When a pending request

goes to a bank, whether an activation can be issued must satisfy the following constraint: Its

column command can be issued immediately after the bank enters the open state.

29

for Every memory cycle at best available bank do
if This cycle is reserved then

Issue the column command;
else

if Bank Idle then
Check timing for activation and column access at tRCD memory cycles later;
if Success then: Reserve cmd bus for column access at tRCD memory cycles
later AND Issue activation for this bank;

else
Check timing for column access at tRCD memory cycles later for row hits;
And reserve bus slots if available;

end
Algorithm 1: Conservative Row Activation algorithm.

To ensure this, the scheduler looks ahead for tRCD memory cycles and tries to reserve

command bus slots for the column command first. If there is no timing conflicts, the memory

controller will mark the command bus for this request’s column access at tRCD cycles in the

future and issue the row activation at this cycle. Otherwise, the row activation will not be

issued now, and such procedure will repeat the next cycle. In this way, most of the banks can

be put at idle state and let the rank enter precharge standby low-power mode to save memory

power. For row-buffer hits, the memory controller will also look ahead for tRCD memory cycles

and reserve the slot for its column access. This is because the looking ahead and reserving

scheme implicitly prioritizes reserved column accesses. The row-buffer hits should be given the

same privilege to acquire the data bus as the row-buffer misses; otherwise, they will be starved.

30

To avoid modification on the memory device and DDR command and also ensure the cor-

rectness of memory access scheduling, a reserved column access must be issued at its designated

cycle and cannot be issued on any other time. Thus, at each memory cycle, the memory con-

troller will first check if the current cycle is reserved for any column access. If so, the reserved

column command is issued. Otherwise, this cycle can be used to test a new activation and

make reservation for its column command.

3.2.2 Implementation

The hardware implementation of our scheme in the memory controller is simple. An array

called “Bus Reservation Table” (BRT) is added for each memory channel to record the reserved

command bus slots for pending column accesses. The data bus reservation does not need to

be recorded because the timing of a data bus transfer is determined once its corresponding

column access command is issued. For DDRx memory devices, once a column access command

is issued, depending on whether the request is a read or a write, after a delay of tRL (column

command to read data delay) or tWL (column command to write data delay) cycles, the data

bus will be occupied for four memory cycles by the request.

Each entry of the BRT (Bus Reservation Table) will record a request ID for whom the time

slot has been reserved. It also contains a valid bit to tell the memory controller if the entry is

a valid reserve or the entry should be ignored. The BRT is referenced as a circular queue and

a pointer is used to indicate which entry of BRT stands for the current cycle. The pointer will

increase by one every memory cycle, and it will be wrapped around and pointing to the BRT

head when reaching the tail of BRT.

31

�����������������

1�(

�2

��3��(��4	

5��������!

��
��
��
�

666
����

7����(

Figure 6: BRT and bank queues in memory controller. The reserved BRT entry will point to
the request in bank queue.

Figure 6 shows the structure of the BRT and the bank queues in the memory controller.

The bank queues are structures in the memory controller that buffer and schedule requests for

each bank. As the simple example shown in the figure, a BRT slot is reserved for a column

access (its associated activation has already been served). The current pointer points to one

slot ahead of the reserved slot, which means a column access is reserved for the next memory

cycle. Then at the next memory cycle, the current pointer will point to the reserved entry.

The valid flag is set for the entry. Thus, the entry is valid and the Request ID field will tell

the memory controller to find the corresponding request in the memory bank queues and issue

corresponding command for it.

32

3.2.3 Hardware Overhead

As discussed in Section 3.2.2, the additional hardware to support the Conservative Row

Activation scheme is BRT. Every time when a reservation is made, the memory controller will

look ahead for tRCD cycles and try to reserve a command bus slot there. So the minimum

number of entries for BRT is tRCD + 1 (11 + 1 for DDR3-1600 memory device). The maximum

number of entries should depend on how many slots that it would like to reserve in the future.

Because the memory controller can update the BRT on every memory cycle, there is no need

to reserve more than two requests. Given that each request is separated by four or five cycles

if they satisfy the requirement stated in Section 3.2.1, the maximum number of BRT entries

is 32. The valid flag will need one bit. The Request ID can either be the request number if

the memory controller has a central facility to keep tracking every pending memory requests

or the rank and bank index of each request otherwise. Considering a typical memory system

today, the estimated size of one BRT entry is no more than six bits. So the total size of BRT

per channel would be 192 bits.

The memory controller should remember the reserved requests so that it will not reschedule

a reserved request. A rescheduling may change the bank state and waste the reserved time

slot. Thus, we propose to add a one-bit “reserved” flag for each entry of the bank queues.

The additional storage overhead will be within several hundred bits depending on the size of

the bank queues for a memory controller implementation. In summary, the hardware cost to

implement our scheduling algorithm is trivial.

33

���� ����

��
��
��
��

��
��
�

����� ����	 �

���	

�(�����

Figure 7: An example of row and column command conflicts at the same cycle.

3.2.4 Improvements from Basic Scheme

The basic Conservative Row Activation scheme is simple but strictly requires a column

access be immediately scheduled after its bank is open, which sometimes introduces conflicts

on command bus and thus decreases the command bus utilization and performance. Figure 7

shows a simple example of conflicts on the command bus.

As shown in the figure, Col0 and Col1 are previously reserved command bus slots for column

accesses to Bank 0 and Bank 1, respectively. Col0 and Col1 are at the turning point from a

read burst to a write burst. Due to bus turn-around delay, they are apart by seven memory

cycles. The closest next available time slot for a new column access is at Cycle 11. However,

the cycle cannot be reserved for a new column access because that would require an activation

to be issued at the current cycle to open the row. However, the current cycle has already been

reserved for the column access to Bank 0. As a result, the memory controller will choose to

issue the column command for Bank 0 and delay the activation for the new request to the next

34

cycle, and reserve Cycle 12 for its column access. There will be a bubble on the data bus,

which reduces the data bus utilization. The schedule of DRAM commands is very dynamic

and complex. There will be many cases that commands may conflict with each other and cause

bubbles on the data bus. This will reduce memory system performance.

To resolve the problem, we modify the original scheme and relax a little bit on the constraint

stated in Section 3.2.1 to: The column command can be issued immediately or one memory cycle

after the bank enters the open state.

The relaxed rule allows a bank to stay in the open state for one more memory cycle. The

modification gives the activation command a two-memory-cycle window to minimize the per-

formance loss. Choosing a window wider than two memory cycles may further reduce command

bus conflicts. However, that will reduce memory power saving and complicate the scheduling

algorithm. From experiments, we find that the two-cycle window is a good design choice.

Another optimization is done to further reduce memory power. The scheme saves memory

power mainly by reducing the time that each rank stays at the active state. If requests are

spread across several ranks, it is better to schedule requests in the same rank together and then

go to the next rank instead of jumping across ranks frequently. Thus, our revised scheme will

give higher priority to requests going to the current rank than those to different ranks.

Algorithm 2 shows the improved Conservative Row Activation scheme. Compared with the

basic scheme, the revised one can improve the data bus utilization and thus memory perfor-

mance. The side effect is that a rank may stay in the high-power open state slightly longer.

35

for Every memory cycle at best available bank in the same rank; Then different rank do
if This cycle is reserved then

Issue the column command;
else

if Bank Idle then
Check timing for activation and column access at tRCD memory cycles later;
(Relax 1 memory cycle if fails);
if Success then: Reserve cmd bus and data bus for column access at tRCD
memory cycles later AND Issue activation for this bank;

else
Check timing for column access at tRCD memory cycles later for row hits;
And reserve bus slots if available;

end
Algorithm 2: Modified Conservative Row Activation algorithm that allows a two-cycle win-
dow for activation command to avoid timing conflict.

We also want to point out that our scheme works on a page policy that auto-precharges a

row if there is no pending request on it. It is also the most widely used page policies in today’s

computer systems. With multi-core processors, the locality among memory access streams is

much lower than that with a single memory access stream. The page policy we use tends to

perform better than open page policy.

For the open page policy, it lets the bank stay in active state until it must be precharged to

serve a conflict memory request, our scheme would have smaller impact on memory power and

performance because memory ranks will have little chance to be at precharge low-power state.

36

TABLE I: Major simulation parameters for CRA.

Parameter Value

Processor
4core, 3.2GHz, 4-issue per
core, 14-stage pipeline

Functional
units

2 IntALU, 4 LSU, 2 FPALU,

IQ, ROB and
LSQ size

IQ 32, ROB 128, LQ 48, SQ
44

Physical regis-
ter num

128 Int, 128 FP, 128 BR, 128
ST

Branch predic-
tion

Combined, 6k bimodal + 6k
two level, 1K RAS, 4k-entry
and 4-way BTB

L1 caches (per
core)

64KB Inst/64KB Data, 2-way,
16B line, hit latency: 3-cycle
Inst/3-cycle Data

L2 cache
(shared)

4MB, 8-way, 64B line, 13-cycle
hit latency

Memory
2 channels, 2 DIMMs/channel,
2 ranks/DIMM, 8 banks/rank

Memory con-
troller

64-entry buffer, 15ns overhead

DDR3 DRAM
latency

DDR3-1600:11-11-11:
precharge/ row access/
column access: 13.75ns

3.3 Experimental Methodologies

We have built a detailed DDR3 DRAMmemory model and integrated it into MARSSx86 (63)

simulator. The simulator is capable of keeping track of each request and the state of every mem-

ory channel, rank and bank. The simulated memory controller will issue commands according

to the current memory status and pending requests. The memory transactions are pipelined

whenever possible. Also the XOR-based mapping (95) is used. Table I shows the major simu-

lation parameters.

37

TABLE II: Parameters used for calculating DRAM Power (2GB, x8, DDR3-1600, 11-11-11).

Parameters Values

Normal voltage 1.5V

Active precharge current 95mA

Precharge power-down standby current (fast) 35mA

Precharge power-down standby current (slow) 12mA

Precharge standby current 42mA

Active power-down standby current 40mA

Active standby current 45mA

Read burst current 180mA

Write burst current 185mA

Burst refresh current 215mA

3.3.1 Memory Power Calculation and Performance Metrics

We follow the Micron power calculation methodology (52) to estimate the power consump-

tion of DDR3 DRAM devices. At the end of every memory cycle, the energy consumption of

the current cycle is calculated based on the state of each device, and the result is recorded and

accumulated. The parameters used for calculating the DRAM power are listed in Table II. For

cases that the electrical current values presented in data-sheet are from the maximum device

voltage, they are de-rated by the normal voltage(52).

The performance is characterized using weighted speedup (80)
∑n

i=1(IPCmulti[i]/IPCsingle[i]),

where n is the total number of applications running, IPCmulti[i] is the IPC value of the appli-

cation running with other instances and IPCsingle[i] is the IPC value of the same application

running alone.

38

TABLE III: Experimenting Workloads for CRA.

Workloads Applications

MEM-1 lbm,gemsFDTD,leslie3d,libquantum
MEM-2 bwaves,soplex,sphinx3,cactusADM
MEM-3 mcf,perlbench,zeusmp,milc
MEM-4 libquantum,soplex,lbm,milc

ILP-1 gamess,namd,povray,calculix
ILP-2 tonto,gromacs,astar,omnetpp
ILP-3 sjeng,hmmer,gobmk,xalancbmk
ILP-4 gcc,bzip2,namd,gamess

MIX-1 lbm,libquantum,povray,calculix
MIX-2 leslie3d,gemsFDTD,gamess,namd
MIX-3 bwaves,soplex,tonto,astar
MIX-4 sphinx3,cactusADM,gromacs,omnetpp
MIX-5 mcf,perlbench,sjeng,hmmer
MIX-6 zeusmp,milc,gcc,gobmk

3.3.2 Workloads

Our experiments simulate a quad-core x86-64 system with Linux 2.6.31.4 (64-bit) running on

it. We use applications from SPEC2006 (81) benchmarks to form quad-core multiprogramming

workloads for evaluation and pin each application in a workload to a processor core. We use the

same method described in a previous work (38) to group SPEC benchmarks into two categories:

MEM (memory-intensive) and ILP (compute-intensive) based on their L2 cache misses per 1000

instructions (L2 MPKI). The MEM applications are those with larger than ten L2 MPKI and

the ILP applications are those with smaller than ten L2 MPKI. Table III shows fourteen quad-

core multi-programming workloads randomly formed based on their categories. The MEM-x

workloads contain applications from the MEM group and the ILP-x workloads are from the

39

ILP group. We then pickup two applications from each group to form the MIX-x workloads to

simulate workloads with different memory behavior running in the same system.

We insert a signal at the starting point of every application’s main execution phase and

let the application run in the fast forwarding mode until the signal is reached and then let

the application sleep. When all the applications in a workload reach their signals, all the

applications will be waken up and the detailed simulation and statistic collecting will launch

for the following 400 million instructions.

3.4 Experimental Results

We compare our proposed Conservative Row Activation scheduling scheme with a baseline, a

modified version of FR-FCFS (73) (First Read, First Come First Serve) scheduler that groups

bank hits together and prioritizes reads over writes, to evaluate the performance and power

consumption. Our scheme focuses on the bank activation policy and can be applied with other

schedulers targeting fairness or QoS. If not specified, all the results are based on the memory

configuration of two Channels, two DIMMs per Channel and two Ranks per DIMM. We use

CRA to stand for our Conservative Row Activation scheme in the figures to reduce title space.

3.4.1 Overview of Performance and Power Consumption

The proposed scheme can reduce memory power by allowing a rank to stay longer in the

precharged state and gives the rank more chances to be put into the low-power mode. Figure 8

compares the performance and memory power consumption of our Conservative Row Activation

scheme and the baseline FR-FCFS scheme. From Figure 8a, we can see that in general, the

proposed scheme achieves the same performance as the baseline. For MEM workloads, the

40

1 5
2

2.5
3

3.5
4

4.5
5

gh
te

d
Sp

ee
du

p

Performance of CRA vs FR-FCFS
Base CRA

0
0.5

1
1.5

W
ei

g

(a) Weighted speedup of Conservative Row Activation compared to baseline.

6

8

10
12

14

16

18

W
at

t

Power of CRA vs FR-FCFS

Base CRA

0

2

4

6

(b) Power consumption of Conservative Row Activation compared to baseline.

Figure 8: Overview of power saving and performance impact of Conservative Row Activation.

41

scheme improves performance by 0.3% on average. Especially for MEM-1, which is the most

memory-intensive workload, our scheme outperforms the baseline by 1.0%. For CPU-intensive

workloads, our scheme and the baseline almost perform the same. The performance difference

is less than 0.09% (our scheme is slightly better). For MIX workloads, we find that for three of

them (MIX-2, MIX-4 and MIX-5), our scheme performs worse than baseline. But the difference

is negligible (less than 0.02%). This result shows that our scheduling scheme can retain the

performance effectively. This is because although the activation is delayed, the scheme looked

into the future to place column commands wisely and the latency of a request is determined by

when its column access is performed not when its row activation is performed. This mechanism

does not change the baseline scheduling sequence of data transfer hence the performance is kept

the same.

Figure 8b shows the memory power consumption of our scheme and the baseline. The

average power reduction of using our scheme is 5.6%, 3.3% and 5.8% for MEM, ILP and MIX

workloads, respectively. For ILP workloads, the power saving is from 2.1% to 4.1%. This is

because for CPU-intensive workloads, the memory traffic is low. The ranks are in the low-

power mode for most of the time. Their power consumption ranges from 1.8W to 2.3W, which

is far less than that of memory-intensive workloads (16.1W for MEM-1). When ILP workloads

are running, concurrent memory requests are few, and thus the chance of banks open but

data bus is not available to transfer data is low. Thus, our scheme only has small impact

on ILP workloads. For memory-intensive workloads, the power reductions are from 5.1% to

6.4%. Memory-intensive workloads tend to have more concurrent memory requests. Because

42

0.3

0.4

0.5

0.6

0.7

0.8
Data bus utilization for FR-FCFS and CRA scheduler

Write

Read

8 �(�
�8����

0

0.1

0.2

B C B C B C B C B C B C B C B C B C B C B C B C B C B C

�
�
�
��
�
��
�
�� ���� ����� ����� �����
���
����
����
����
����
����

Figure 9: Data bus utilization of Conservative Row Activation compared to baseline.

conventional memory schedulers tries to open as many banks as possible, the possibility of

several banks open but data bus being occupied is much higher. Our scheme can prevent banks

open unnecessarily early and avoid consuming unnecessary extra power. MIX workloads have

medium memory bandwidth requirement. The memory-intensive applications in them generate

request concurrency that tends to open many banks at the same time, while the computation-

intensive applications put less stress on the memory system. Our scheme can help saving

memory power for the concurrent requests, while the total memory power consumption is less

than the pure memory-intensive workloads. As a result, their power saving ratio is slightly

higher than MEM workloads (from 4.7% to 7.0%).

3.4.2 Performance Analysis

To further analyze the performance impact of our scheme, we collect the memory system

statistics to get an insight of why our scheme can slightly improve performance. Figure 9

43

60

80

100

120

140

160

M
em

or
y

C
yc

le
s

Average Memory Access Latency
Base-R CRA-R Base-W CRA-W

0

20

40M

Figure 10: Memory read and write latency for Conservative Row Activation compared to
baseline.

shows the utilization rate of read and write requests on the data bus. As shown in the figure,

the scheme can slightly improve the data bus utilization. The biggest improvements are on

workloads MEM-1, MEM-4, MIX-1 and MIX-3. The data bus utilization of read and write

combined are improved by 0.8%, 0.4%, 0.6% and 0.4%, respectively. The reason behind is

that our scheme reserves command and data bus slots in advance, which gives higher priority

to column accesses, and the memory scheduler can make a better decision on scheduling bus

transactions. In this way, our scheme can put the data transfers closer to each other and reduce

the bubbles on the data bus. For the other workloads, the data bus utilization of our scheme and

the baseline is almost the same (the difference is less than 0.1%). The result partly explains

why using our scheme performs better than the baseline. Giving higher priority to column

44

accesses can increase the data bus utilization and hence the memory throughput is improved.

For memory-intensive workloads, the data bus is the bottleneck. The better the data bus is

utilized, the less the CPU will be blocked by outstanding load instructions.

Figure 10 shows the average read and write latency of each workload. We can see that

the average read latency is reduced for all of the workloads. For MEM workloads, the read

latency is reduced by 2.9% on average. Especially for MEM-1, the most memory-intensive

workload, the read latency is reduced by 5.6%. The read requests are on the critical path

and directly affect the system performance. The 5.6% of latency reduction leads to the 1.0%

of overall performance improvement for this workload. The write latency of some workloads

is increased because our proposed algorithm gives column access higher priority than other

DRAM commands and it tries to issue all the outstanding reads before writes to minimize bus

turn-arounds, which delays writes more. However, since the overall performance only directly

depends on read latency, a longer write latency in exchange for a shorter read latency is good for

performance. For the other workloads, the change of read and write latency is less obvious. The

read latency is reduced by 1.1% and 1.7% for ILP and MIX workloads on average, respectively.

For average write latency, the MIX workloads get a 4.1% increase on average, and the ILP

workloads have a 1.8% decrease on average. Unlike MEM workloads, ILP workloads have lower

memory bandwidth. Our scheme can place the transactions on data bus more compactly and

thus both the read and write latency can be reduced for those workloads.

45

6

8

10

12

14

16

18

W
at

t

Power breakdown for FR-FCFS and CRA scheduler

device_RW/Term

device_operation

device_background

8 �(�
�8����

0

2

4

B C B C B C B C B C B C B C B C B C B C B C B C B C B C

�
�
�
��
�
��
�
�� ���� ����� ����� �����
���
����
����
����
����
����

Figure 11: Power breakdown of Conservative Row Activation compared to baseline.

0.3

0.4

0.5

0.6

0.7

0.8

Rank open rate of CRA vs FR-FCFS

Base CRA

0

0.1

0.2

Figure 12: Percentage of average rank active time of Conservative Row Activation compared
to baseline.

46

3.4.3 Power Analysis

We will study the source of power saving of our Conservative Row Activation scheme in this

section. Figure 11 breaks down the power consumption of our experiments into three parts as

in Micron DDR3 power calculator (52) and as discussed in Section 2.2.2:

1. Background power.

2. Operation power.

3. I/O and termination power.

The figure shows that the major power saving comes from reduction on background power.

When using our scheme, the background power dropped by 12.0%, 4.1% and 10.8% on average

for MEM, ILP and MIX workloads, respectively. Figure 12 shows the percentage of time that

any bank is open in a rank (rank active). If a bank is open, it may transfer data, wait for

data bus ownership if another bank is transferring data or wait for DRAM timing constraints

(tCL, tRTP, tWR etc) to expire to perform device operation. Our scheme targets the portion

of a bank waiting for data bus and tries to minimize it. The result shows that the scheme

can reduce the bank open rate by 13.7%, 9.9% and 12.2% on average for MEM, ILP and MIX

workloads, respectively. For MEM workloads that have the most memory-intensive applications,

the reduction on bank open rate ranges from 8.6% to 21.5%. Thus, the observation of reduction

on background power is due to memory ranks staying longer at the precharge low-power state

rather than at the active power state. For MEM workloads, the background power can be saved

by 9.1% to 13.8%. For ILP workloads, the reduction on bank open rate is small (from 7.9% to

47

10.9%). This is because for CPU-intensive workloads, the parallel accesses to different memory

banks are small. So the reduction on background power is also small (from 2.3% to 5.3%). The

power consumption of MIX workloads is between that of the MEM and ILP workloads. The

improvement of background power ranges from 6.5% to 14.0% because of the drop of bank open

rate ranging from 6.1% to 21.6%.

For operation power, I/O power and termination power, because our scheme does not change

the underlying scheduler, their changes are small. The average difference on I/O and termina-

tion power for MEM, ILP and MIX workloads is less than 0.5%. Compared to the baseline, our

scheme reduces the operation power by 3.3%, 1.7% and 1.7% for MEM, ILP and MIX workloads

on average, respectively. This is due to the slight difference of power consumed by activating

the first idle bank and the rest of the idle banks. Our scheme allows more banks to stay at the

idle state and will increase the chance of activating a first idle bank in a rank.

3.4.4 Conservative Row Activation with More Memory Channels

We would like to see how the algorithm will perform in a system with more memory channels.

Figure 13 is the result we get when the simulator is configured to have 4 Channels, 2 DIMMs per

Channel and 2 Ranks per DIMM. The result is very similar to those in Section 3.4.1. The av-

erage power savings for MEM, ILP and MIX workloads are 5.9%, 2.4% and 5.3%, respectively.

The average performance difference is less than 0.2% (our algorithm is better). We can see

that the performance gain is smaller in the 4-channel configuration compared to the 2-channel

configuration. This is because when there are more channels in the memory system, the con-

tention on data bus will be less due to increased number of data buses. The higher utilization

48

1 5
2

2.5
3

3.5
4

4.5
5

gh
te

d
Sp

ee
du

p

Performance of CRA vs FR-FCFS
Base-4ch CRA-4ch

0
0.5

1
1.5

W
ei

g

(a) Weighted speedup of Conservative Row Activation compared to baseline for 4-channel
configuration

6
8

10
12
14
16
18
20

W
at

t

Power of CRA vs FR-FCFS

Base-4ch

CRA-4ch

0
2
4
6

(b) Power for Conservative Row Activation compared to baseline for 4-channel configu-
ration

Figure 13: The power saving and performance impact of Conservative Row Activation under
4-channel configuration.

49

effect of our algorithm on data bus will be scattered and less distinctive. The power savings

increased a little for MEM workloads and decreased for ILP and MIX workloads. Conservative

Row Activation can only save memory power by letting the rank stay shorter in high-power

active state, which is closely related to application’s memory access pattern. Simply increasing

the number of memory channels can not change the memory access patterns of applications

much. So there is no significant change in power savings between 2-channel and 4-channel con-

figurations. For memory-intensive workloads, the increase on power savings is mainly because

larger channel bandwidth allows more requests being served by memory system and the chance

for our algorithm working is higher. For other workloads, the channel bandwidth is not the

bottleneck. In addition, more memory devices will increase the background power. Hence, the

percentage value of power saving decreases.

3.5 Conclusion

In this study, we propose a new memory scheduling scheme called “Conservative Row Acti-

vation” that delays the row activation of a request for power optimization by allowing a bank to

stay at the low-power mode until further delaying the activation would harm performance. It

minimizes the performance impact by looking ahead when the bus becoming free and reserving

slots on command/data buses for future column commands. Our simulation results indicate

that the memory efficiency can be improved with negligible performance impact. This scheme

can be implemented on top of many existing memory schedulers with little hardware overhead.

CHAPTER 4

HETEROGENEOUS MINI-RANK FOR OPTIMIZED PERFORMANCE

AND POWER EFFICIENCY

4.1 Introduction

As the demands on memory capacity and bandwidth keep increasing, the memory power

consumption has approached or even surpassed the processor power consumption in many

server platforms. Thus, how to reduce the memory power consumption while still delivering

high performance becomes an important issue for multi-core computer systems. A recent study

proposed a mini-rank architecture that splits each DRAM rank into multiple mini-ranks and

activates only one mini-rank for each memory request (96). Because fewer chips are involved

for each request, the memory power consumption can be significantly reduced at the cost of

slight increase on memory access latency.

A later study called Multicore DIMM (2) also divides devices in a conventional x64 rank

into subsets, which they call “rank subsetting”. It addresses the memory power efficiency issue

using an approach similar to mini-rank but with a few differences. First, it splits the data

bus among the rank subsets. Thus, the memory controller needs to be modified to support

the change. In addition, if the accesses are not evenly distributed on subsets, the data bus of

Multicore DIMM will be under-utilized. Mini-rank on the other hand, allows all the devices

in a channel to have equal chance to use the data bus. Mini-rank uses a buffer to relay data

50

51

and commands between devices and bus; while Multicore DIMM uses a demux register to route

control signals to devices and introduces less additional power and hardware cost.

Although the original mini-rank design works well for most workloads, we further observe

that it has a limitation: it applies a fixed and unified partition from ranks to mini-ranks on

all applications. Some applications will suffer a great performance loss under narrow mini-

rank configurations, such as x8 mini-ranks; while others may lose power saving opportunities

under wide mini-rank configurations, such as x32 mini-ranks. To address this issue, we further

propose a heterogeneous mini-rank scheme that allows each application to have its own mini-

rank configuration within a single memory system in order to approach the optimal power-

performance trade-off. A latency-sensitive application will be assigned to a wide mini-rank

configuration for maintaining its performance; while a latency-insensitive application will be

assigned to a narrow mini-rank configuration for memory power saving. We find out that

the memory bandwidth requirement of an application can be used as a guidance to select its

near-optimal configuration.

For heterogeneous workloads containing applications with diverse memory access behaviors,

on average, the heterogeneous mini-rank can reduce the memory power by 18.6% (up to 38.0%)

with the performance loss of 2.4% (up to 7.4%), compared with a conventional memory system.

In comparison, the x32 homogeneous mini-rank can only save memory power by 12.6% on

average (up to 25.4%); while the x8 homogeneous mini-rank will cause the performance loss by

8.1% on average (up to 19.3%). Compared with the x16 homogeneous mini-rank configuration,

the heterogeneous mini-rank can further reduce the EDP (energy-delay product) by up to 9.6%.

52

4.2 Heterogeneous Mini-Rank

The original mini-rank design applies a single configuration (e.g., x32 mini-ranks) to all

workloads running in a single computer system. However, as applications may have different

memory access behaviors from each other, their performance and power efficiency can be affected

differently by the choice of mini-rank size. For instance, a workload of SPEC2000 applications

of wupwise, vpr, mcf and parser sees 21.6% memory power reduction and 5.1% performance

loss under the x32 mini-rank configuration, and 38.4% power saving and 26.9% performance

loss under the x8 mini-rank configuration, respectively; while another workload of swim, applu,

art and lucas sees 26.5% memory power reduction and 0.5% performance loss under the x32

configuration, and 52% power saving and 2.7% performance loss under the x8 configurations,

respectively. It is obvious that different workloads may have different optimal mini-rank config-

urations, and thus assigning a fixed mini-rank configuration to the whole memory system may

not exploit the full potential of mini-rank.

To address the limitation of the original mini-rank design (called homogeneous mini-rank

in the rest of discussion), we further propose a dynamic heterogeneous mini-rank scheme that

dynamically assigns different mini-rank configurations to different workloads. To implement

this scheme, we have addressed the following design questions:

1. How to make online prediction of the best mini-rank type for each application?

2. How to map requests to its assigned mini-rank configuration?

3. How to implement in hardware and software to let multiple mini-rank configurations

co-exist in a system?

53

����

�
�����	

�
�����	�

�
�����	�

�
�����	

�
�����	�

�
�����	�

�
�����	�

�
�����	� ���

����	������

���
 ���
 ���� ���� ���� ���� ���� ����

����
 ����
 ����
 ����
 ����� ����� ����� �����
����� ����� ����� ����� ����� ����� ����� �����

���
 ���� ���� ���� ����
 ����� ����� �����

��	����	� ����!	"�	#���$%��&	'(�� ��	����	� ����!	"��	#���$%��&	'(��

Figure 14: Data layout for heterogeneous mini-rank. Four x16 configuration and four x32
configuration sharing eight x8 device. The blocks of the same color represent all the data in a
read/write burst. x16 configuration will burst using 2 devices for 16 memory cycles while x32
configuration will burst using 4 devices for 8 memory cycles.

4.2.0.1 Dynamic Mini-Rank Type Prediction

For the first design question, we have found that the memory bandwidth usage of a given

application for the past time window is an effective predictor for the optimal mini-rank type

for the application. The underlying reason is that applications of high memory bandwidth

usage tend to have more concurrent memory accesses than others, and thus more requests can

be served concurrently by using a narrow mini-rank configuration. Furthermore, they are not

sensitive to the increase of memory access latency. By contrast, applications with moderate

memory bandwidth usage generally have lower memory concurrency and are more sensitive to

the increase of the latency. Thus, for memory-intensive applications of high bandwidth usage,

using a narrower mini-rank can be more effective in power reduction and with lower performance

loss.

54

Figure 15: A view of memory block layout of heterogeneous mini-rank, assuming 64-byte cache
line size and x8 memory device. D0, D1, D2, and D3 are four memory devices. B0, B1, B2 and
B3 are four memory blocks of cache line size; and each square in the figure represents a sub-
block of 16 bytes from those blocks. Those memory blocks may not necessarily be consecutive
in the physical memory address space. A physical memory page of typical 8KB size may consist
of 64 memory blocks, and their sub-blocks may be mapped onto a number of memory devices
according to the memory interleaving scheme and the number of memory channels, DIMMs,
and ranks in the system.

In the new design, the memory controller monitors the bandwidth usage of each application

and records the information in a set of hardware counter registers. The operating system reads

those registers and uses the information to predict the mini-rank type when a page is about to

be loaded into physical memory. Physical memory pages are partitioned into three mini-rank

types, namely x32, x16 and x8. The full rank size is not used because it is not power-efficient

and its performance is very close to that of the x32 mini-rank size. We assume that on a page

fault, the operating system allocates a page from the memory region of the predicted mini-

rank type. All request addresses falling into that page will be accessed using this mini-rank

configuration until the page is de-allocated. Section 4.2.0.2 discusses the memory block layout

in details. In our simulation, the mini-rank type of a physical memory page is decided when a

55

virtual memory page of a given program is touched for the first time and then mapped to the

physical page. In a real system, the operating system may use additional data structures to

track pages of those three types.

4.2.0.2 Device Selection and Memory Layout

Contemporary memory systems distribute memory requests evenly across all channels,

DIMMs, ranks and banks to maximize memory-level concurrency. For heterogeneous mini-

rank, the same principle remains to be held. Consider a system with a last-level cache of

64-byte cache lines and a DDRx memory of x8 memory devices. With conventional memory,

a cache miss will trigger a memory request to fetch 64-byte memory data, with 8 bytes from

each device. With heterogeneous mini-rank, fewer devices are involved on a memory request,

and the number of device varies with the mini-rank configuration. Figure 14 shows an example

of high-level data layout of heterogeneous mini-rank with x8 devices. To simplify the example,

we only show how the x16 and x32 configurations can be mixed together. Figure 15 further

compares the layout of memory blocks from the same physical memory region under different

mini-rank configurations, where the memory region size is a multiple of four times the memory

page size. As it shows, the layout of a memory region can be changed without affecting the

layout of other memory regions mapped onto the same set of devices.

Figure 16 presents the system view of a heterogeneous mini-rank system in our specific

design. Two Type Mapping Tables (TMT) in Operating System (OSTMT) and in memory

controller (MEMTMT) are used to keep tracking the mini-rank type for each physical memory

page.

56

The OSTMT in our design is a table to record the mini-rank type of memory regions. The

table is indexed with the physical memory address. Each entry in the table represents a memory

region, which consists of multiple physical memory pages (4MB by default), and its mini-rank

type. We use a large region size to reduce the overhead of OSTMT.

When the mini-rank type prediction is made at the page allocation, the OS finds an available

slot in OSTMT and sets up its virtual address to physical address mapping accordingly. Note

that all the pages belong to the same entry have the same mini-rank configuration but they

may come from different applications. The management mechanism would be the same as how

the OS manages super pages.

The MEMTMT is a mirror image of the OSTMT. It is modified by the OS when the OSTMT

is updated, which only occurs when a page fault happens, as in our design the mini-rank type

of a page stays the same until it is swapped out. When the memory controller receives a

request, it looks up the MEMTMT using the physical address of the request to obtain the

mini-rank type, and then determines the channel, DIMM and mini-rank that the request is

mapped to according to the mini-rank type. The MRB will then generate chip enable signals

to corresponding devices.

4.2.1 Memory Access Scheduling for Mini-Rank

The use of mini-rank affects two parameters in memory access scheduling, the interval

between the read/write command and the data burst, and the number of data burst cycles.

Figure 17 shows the difference of scheduling among a request of conventional x64 rank, a request

of x32 mini-rank and a request of x16 mini-rank, assuming the accessed banks are activated.

57

���%�'���	�('�#

��
)(��	#������

)����

��#*%(�*�'%*���%

�+�
)(��	#������

)����

����

���

����$%��&	'(��	��,*

��#	%�-.� '

�
��

�$
%�

�&
	

'(
��

�*
#
#
��

!
����	
������

����	
������

Figure 16: Basic structure of a heterogeneous mini-rank system.

%��!

�*�

���"	��*�&

�*##��!

/!!%�
���"	�.
0�	��'1

�2	"��	#���$%��&
0��	��'1

'�3

�2	"�	#���$%��&
0�	��'1

��'� ��'� ��'� ��'�

4	5	�

�3	5	6

4	5	��

Figure 17: Timing of one request with the x32 mini-rank type and another request with the
x16 mini-rank type. For conventional x64 rank, burst length (BL) is 8 so the data transfer take
4 cycles on DDRx bus. The x32 configuration will need additional 8 cycles to transfer data to
MRB and 3 cycles of DDRx bus cycles can be overlapped. So the increased data transfer time
is 5 cycles. For x16 mini-rank configuration, data will take 16 cycles to MRB and with 3 cycle
overlap, the overhead is 13 cycles.

58

The scheduling for write accesses is similar. The timing parameter tCL is multiple cycles not

shown fully in the figure. With conventional DDRx memories, the data burst takes four bus

cycles. With x32 mini-rank, the data are firstly burst into the MRB for eight bus cycles, and

then onto the x64 bus for four cycles in a pipelined manner. There is one extra cycle delay for

the MRB to buffer the last trunk of data. Therefore, the latency is increased by five bus cycles

over the conventional DDRx memories. The timing for x16 mini-rank is similar, except that

the latency is increased by 13 bus cycles. There is another one-cycle latency for buffering the

command/address signals. For heterogeneous mini-rank, it can schedule the timing for each

request concurrently according to their mini-rank type information.

4.2.2 Mini-Rank Overhead

4.2.2.1 Mini-Rank Buffer Power Overhead

We first model MRB using Verilog and then break its power consumption into three portions:

(1) I/O interface with DRAM chips and DDRx bus, including data, control and address pins; (2)

DLL (Delay-Locked Loop); and (3) non-I/O logics, including SRAM data entries and re-decode

logic. We estimated the I/O power by calculating the DC power using Thevenin equivalent

circuit. The DLL power is derived from the power difference of DRAM device in two states

with DLL enabled and disabled. The non-I/O logic power is estimated by the Synopsys Design

Compiler (84) and standard 90nm technology library from UMC (1), which takes our Verilog

code as input. It includes both static power and dynamic power and assumes average transistor

activity level. Our simulator provides the activity ratio of the MRB chips, which is factored

into the calculation of the actual I/O power and non-I/O logic power.

59

With memory sub-system configuration of four channels, two DIMMs per channel, two ranks

per DIMM and two mini-ranks per rank (x8 devices) with 50% read and 30% write channel

bandwidth utilization (emulating memory intensive workloads), the I/O power, non-I/O logic

power, and DLL power contributes to 85.9%, 8.7% and 5.4% of the MRB power, respectively;

and the total MRB power is 936mW. Not surprisingly, the I/O power dominates. Nevertheless,

the I/O power between the MRB and the DDRx bus, which is 58.1% of whole MRB power, is

also needed in conventional DDRx systems. The actual power increase is 394mW per DIMM

for the configuration.

4.2.2.2 Overhead for Managing Type Mapping Tables

The OSTMT and MEMTMT may be updated only upon a page fault. When a page fault

happens, the OS will perform a sequence of jobs, including updating the page table and swapping

pages between main memory and disks. Managing the OSTMT only requires the OS to consider

the mini-rank type of an application and assign it to the corresponding page. If an entry of

the same type is not full yet, the page will be assigned to the entry and its physical address

will be determined. In this situation, no information is needed to be sent to the MEMTMT.

If all the entries of the same type are full, a new entry will be allocated either by selecting an

empty one or replacing an existing one (all the pages in the replaced entry will be swapped out

and the policy can be adopted from how OS manages super pages). After that, a port write

operation will be used to update the corresponding entry in the MEMTMT. The OSTMT can

either be integrated into the page table (two additional bits to indicate the mini-rank type) or

60

stand-alone. Compared to all the other operations that a page fault handler needs to perform,

the time overhead of managing the OSTMT and MEMTMT is negligible.

4.2.2.3 Hardware Overhead of MEMTMT

The MEMTMT in the memory controller contains the mapping from physical addresses to

mini-rank types. As the most significant bits of physical addresses are used as the index to the

MEMTMT, no space is needed to store the address information; and only three bits per entry

are required. A major design question is to decide how large the address region that an entry

should represent. The smaller region the entry represents, the finer grain the management can

have, but the larger the MEMTMT size. Take a system with 8 GB of physical memory as an

example: if each entry represents 4MB of memory space, the MEMTMT will have 2K entries

and occupy 6K bits.

4.3 Experimental Methodologies

We built a detailed DDR3 DRAM memory model and integrated it into MARSSx86 (63)

simulator. The simulator is capable of keeping track of each request and the state of every mem-

ory channel, rank and bank. The simulated memory controller will issue commands according

to the current memory status and pending requests. We implemented a read-first and hit-first

scheduling policy that groups all bank hits and issue them together on top of FR-FCFS sched-

uler. The scheduler will issue the column access command together with an auto-precharge

if the column command comes form the last row-hit request of a bank. This greedy policy

maximize bank hit and precharge a bank to minimize miss latency of that bank. The memory

transactions are pipelined whenever possible. Also the XOR-based mapping (95) is used to

61

TABLE IV: Major simulation parameters for Heterogeneous Mini-rank.

Parameter Value

Processor
4core, 3.2GHz, 4-issue per
core, 14-stage pipeline

Functional
units

2 IntALU, 4 LSU, 2 FPALU,

IQ, ROB and
LSQ size

IQ 32, ROB 128, LQ 48, SQ
44

Physical regis-
ter num

128 Int, 128 FP, 128 BR, 128
ST

Branch predic-
tion

Combined, 6k bimodal + 6k
two level, 1K RAS, 4k-entry
and 4-way BTB

L1 caches (per
core)

64KB Inst/64KB Data, 2-way,
16B line, hit latency: 3-cycle
Inst/3-cycle Data

L2 cache
(shared)

4MB, 8-way, 64B line, 13-cycle
hit latency

Memory
2 channels, 2 DIMMs/channel,
2 ranks/DIMM, 8 banks/rank

Memory con-
troller

64-entry buffer, 15ns overhead

DDR3 DRAM
latency

DDR3-1600:11-11-11:
precharge/row access/column
access: 13.75ns

maximize memory level parallelism. More specifically, in a system of 2 channels, 2 ranks per

channel and 8 banks per rank, we select address bits 20, 22, 23, 24, 25 and XOR them with

address bits 6, 7, 8, 9, 10. Then the lower bits 0-5 is the byte address, bit 6 selects the channel,

bit 7 selects the rank and bits 8-10 select the bank; the upper bits are used as column index

and row index. We also built a module to simulate the function of TMTs. Table IV shows the

major simulation parameters.

62

TABLE V: Parameters used for calculating DRAM Power on Heterogeneous Mini-rank.

Parameters Values

Normal voltage 1.5V

Active precharge current 95mA

Precharge power-down standby current 35mA

Precharge standby current 42mA

Active power-down standby current 40mA

Active standby current 45mA

Read burst current 180mA

Write burst current 185mA

Burst refresh current 215mA

4.3.1 Memory Power Calculation and Performance Metrics

We follow the Micron power calculation methodology (52) to estimate the power consump-

tion of DDR3 DRAM devices. At the end of every memory cycle, the energy consumption of

the current cycle is calculated based on the state of each device, and the result is recorded

and accumulated. The parameters used for calculating the DRAM power are listed in Table V.

For cases that the electrical current values presented in data-sheet are from the maximum de-

vice voltage, they are de-rated by the normal voltage (52). The MRB power is calculated as

described in Section 4.2.2.1.

The performance is characterized using weighted speedup (80)
∑n

i=1(IPCmulti[i]/IPCsingle[i]),

where n is the total number of instance running, IPCmulti[i] is the IPC value of the application

running with other instances and IPCsingle[i] is the IPC value of the same application running

alone.

63

4.3.2 Workloads

Our experiments simulate a quad-core x86-64 system with Linux 2.6.31.4 (64 bit) running

on it. The workloads is built the same as described in Section 3.3.2

As discussed in section 4.2.0.1, the real time bandwidth usage of each application is used

to determine its mini-rank configuration under heterogeneous mini-ranks. In our experiments,

an application that consumes higher than 5GB/s memory bandwidth will use the x8 mini-

rank configuration for newly allocated pages; an application whose bandwidth usage is between

3GB/s and 5GB/s will use the x16 configuration; and an application whose bandwidth usage

is below 3GB/s will use the x32 configuration.

We inserted signal at the starting point of every application’s main execution phase and

let the application running in the fast forwarding mode until the signal is reached and then

the application will sleep. When all the applications in a workload reach the signal, all the

applications will be awakened and the detailed simulation and statistic collecting will launch

for the following 400 million instructions.

4.4 Experimental Results

4.4.1 Evaluation of Heterogeneous Mini-Rank

Overall, heterogeneous mini-rank achieves a better trade-off between power efficiency and

performance than homogeneous mini-rank. Figure 18 compares the performance and memory

power consumption of the conventional x64 rank, homogeneous mini-rank configurations (x32,

x16, x8) and the heterogeneous mini-rank configuration determined by workload’s memory

bandwidth requirement. Compared with the conventional x64 rank, heterogeneous mini-rank

64

2

3

4

5

6

ei
gh

te
d

Sp
ee

du
p

Perf of Heterogeneous Mini-Rank
conv x32mini x16mini x8mini heter

0

1

W
e

(a) Weighted speedup for conventional, ho-
mogeneous and heterogeneous mini-rank con-
figurations

6
8

10
12
14
16
18
20

W
at

t

Power of Heterogeneous Mini-Rank
conv x32mini x16mini x8mini heter

0
2
4
6

(b) Power for conventional, homogeneous and
heterogeneous mini-rank configurations

Figure 18: Overview of power saving and performance impact with varying mini-rank configu-
rations and heterogeneous mini-rank configuration.

reduces memory power consumption by 5.4% to 38.0%, with a performance loss of -0.1% to

7.4%. In comparison, the x32 homogeneous mini-rank configuration reduces memory power

consumption by 2.0% to 25.4%. The x8 homogeneous mini-rank reduces memory power con-

sumption by 7.2% to 47.8%; however, it incurs performance loss by up to 19.3%, The x16

homogeneous mini-rank, in general, achieves better trade-off between power efficiency and per-

formance than x8 and x32 ones; however, it does show weakness on some cases. For instance,

for the MEM-3 workload, it reduces memory power consumption by 12.9% but at the cost of

6.7% performance loss, while the x32 configuration reduces power by 9.6% with 0.9% perfor-

mance loss. In comparison, the heterogeneous mini-rank reduces memory power consumption

by 14.3% with 2.6% performance loss.

65

Figure 19 shows the normalized EDP (Energy-Delay Product) for conventional, homoge-

neous and heterogeneous mini-rank configurations. Note that for EDP, the smaller the value

the better. The heterogeneous mini-rank achieves almost the same or even better EDP com-

pared to the best EDP values of homogeneous mini-rank. For workloads MEM-3, MIX-2 and

MIX-4, the heterogeneous scheme has an EDP value that is 1.7%, 1.2% and 1.4% better than

the best EDP value of homogeneous mini-rank, respectively. For workloads ILP-1 and MIX-1,

the heterogeneous scheme is 1.2% and 3.0% worse than the best EDP of homogeneous config-

uration. The reason is that for the two workloads, homogeneous mini-rank produces the best

EDP on x8 configuration. As described in Section 4.3.2, for all ILP workloads (memory band-

width < 500MB/s), we apply x32 mini-rank configuration. Hence the dynamic scheme cannot

put the ILP applications in the two workloads to x8 configuration and miss the opportunity for

the best EDP. However, adding x8 configuration will make the other ILP application perform

much worse. Although the x8 homogeneous mini-rank gets 1.2% and 3.0% better EDP, the

heterogeneous scheme is very close. As for the rest workloads, the EDP differences of best

homogeneous mini-rank and the dynamic scheme is less than 0.1%. Note that for different

workloads, the homogeneous mini-rank configuration with best EDP value might be different.

In summary, heterogeneous mini-rank can maintain the performance and reduce the memory

power consumption for applications of a large spectrum. Homogeneous mini-rank achieves

significant overall improvement of power efficiency; however, for individual workloads of diverse

memory access characteristics, it may incur visible performance losses with small mini-rank size

or under-utilize power saving opportunities with relatively large mini-rank size.

66

0.4

0.6

0.8

1

1.2

EDP of Heterogeneous Mini-Rank
conv x32mini x16mini x8mini heter

0

0.2

Figure 19: Normalized EDP (Energy-Delay Product) for conventional, homogeneous and het-
erogeneous mini-rank configurations. (Smaller is better)

4.4.2 Analysis of Heterogeneous Mini-Rank Performance Impact

In this section, we analyze the source of the performance gain of heterogeneous mini-rank

compared with homogeneous ones. Figure 20 shows the read latency in memory cycles of each

application under homogeneous and heterogeneous mini-ranks. We only present the results

of workload MIX-1 here (including applications lbm, libquantum, povray, and calculix). The

workload is selected because it has a diverse per application memory bandwidth (6.0GB/s,

4.8GB/s, 550MB/s and 102MB/s respectively). Thus, its heterogeneous configuration performs

differently from the homogeneous configurations. Other workloads have similar results.

67

40

50

60

70

80

90

100

m
or

y
C

yc
le

s
Average Memory Access Latency

conv x32mini x16mini x8mini heter

0

10

20

30

40

lbm libquantum povray calculix

M
em

Figure 20: Read latency of individual application in workload MIX-1.

The result shows that under the homogeneous configurations, each application sees almost

the same average read latency. While under the heterogeneous configuration, the MEM appli-

cations (lbm and libquantum) see shorter average read latency than the ILP applications (povray

and calculix). Because the performance of ILP applications is not sensitive to the read latency,

the heterogeneous mini-rank can better balance between performance and power consumption.

4.5 Conclusion

In this study, we propose a heterogeneous mini-rank scheme that can provide near optimal

performance/power trade-off, and avoid big performance loss for workloads with diverse memory

access behavior. The heterogeneous mini-rank configuration selection is based on application’s

run-time memory bandwidth usage. It is simple and only introduces small overhead in both

software and hardware implementations.

CHAPTER 5

MEMORY ARCHITECTURE FOR INTEGRATING EMERGING

MEMORY TECHNOLOGIES

5.1 Introduction

Main memory system design is on the edge of revolutionary changes. On one hand, DRAM-

based memory systems are stretched to meet the increasing demands on high memory band-

width and large memory capacity from multi-core processors. As a negative side-effect, memory

power consumption and overheating have become design constraints for many server platforms.

On the other hand, emerging memory technologies present new opportunities to address those

issues. For instance, Phase-Change Memory (PCM), Spin Torque Transfer Magnetic RAM

(STT-MRAM), Nanowire Phase Change Memory (NW/PCM), Fuse/Antifuse memory tech-

nology are promising alternatives to the DRAM technology.

Those new developments have pushed the existing memory system design to its limit. DDRx

memory systems, which are dominant in laptops, personal computers, workstations and servers,

evolve from SDRAM (synchronous DRAM) of decades ago. While many optimizations have

been integrated into DDRx and memory bandwidth has been improved by more than twenty-

fold, the memory organization is almost unchanged. The memory controller has to main-

tain rigid control on all memory devices, schedule almost all device-level operations including

precharge, activation (row access), data read/write (column access) to meet device timing con-

68

69

straints and avoid bus contentions. To do so, the controller has to track the status of internal

banks of all devices, such as row buffer contents, power modes and progress of ongoing opera-

tions.

This rigid memory access protocol presents a severe problem to integrating new memory

technologies into existing memory systems. Those technologies behave very differently from

DRAM; and many of them need complicated internal structures to work efficiently. Consider

the PCM design as an example: all proposed designs in the research domain use some kinds of

buffers, either inside the devices or the memory modules, to alleviate the limited write endurance

and long latency of PCM devices (41; 99; 69; 67). In other words, those memory modules are

advanced modules with complex internal structures. To apply a rigid memory access protocol

as before, the memory controller will have to track the status of both PCM storage cores and

their buffers, plus the progress of all ongoing operations. Furthermore, the memory controller

must store the address tags of those buffers; otherwise, the controller cannot know whether

a request hits in a buffer and thus its access latency, which is required to schedule the bus

transactions.

Recent research in memory systems shows a trend of using decoupled memory organization,

in which a bridge chip is added to a memory module to relay command/address and data be-

tween the memory controller and DDRx DRAM devices for improving scalability, performance

or power efficiency. For instance, Fully-Buffed DIMM (FB-DIMM) uses a narrow, high-speed

memory channel organized as a daisy chain with a bridge chip to convert between the FB-DIMM

channel and on-DIMM DDRx bus (86). Registered DIMM (54) uses a buffer on each DIMM to

70

reduce the electrical load on the command/address bus so that more DIMMs can be installed

on a memory channel. MetaRAM (51) uses a controller to relay address/command and data

between the controller and devices, so as to reduce the number of externally visible ranks on

a DIMM and reduce the load on the DDRx bus. Mini-Rank (96) and Multicore DIMM (2)

activate sub-ranks narrower than the 64-bit bus to save memory power. The bridge chip is

used to relay data between the DDRx bus and sub-ranks. Decoupled DIMM (97) uses memory

devices with low data rate and bus with high data rate to improve performance. The bridge

chip is used to convert between the two data rates.

However, decoupled memory organizations do not enable universal interoperability for di-

verse memory modules. Their bridge chips simply relay command/address and/or data, with

memory controllers scheduling device operations as before. Without universal interoperabil-

ity, future systems may have to use different memory controllers for various types of memory

modules, which is infeasible in economic sense. Furthermore, future processors are likely to use

integrated memory controllers, which means there would be many sub-types of processors.

We propose Universal Memory Architecture (UniMA) to enable universal interoperability

between all major processors and memory modules made by emerging memory technologies as

well as DRAM.

The UniMA proposed in this study is a framework of memory architecture rather than a

particular implementation. It is an advanced memory organization with a new memory access

protocol that offloads the scheduling of device-level operations to each memory module. As

for the implementation, it extends the logic functions of the bridge chip when compared with

71

the decoupled memory organization. Such an extension does not incur significant extra cost or

power consumption, and it inherits the improved scalability, performance and power efficiency

from decoupled memory organizations.

In this study, we evaluate an implementation of the UniMA framework on top of the DDRx

bus protocol, so that we can compare it with existing memory system designs. Each mem-

ory module embeds a bridge chip that performs local management, e.g., for DRAM devices,

to schedule device operations including precharge, activation and read/write. The memory

controller may still perform memory access reordering, i.e. reorder memory requests based on

some scheduling schemes, but without timing constraints. The bridge chip is an extra chip on

the memory module like those on the FB-DIMM, Mini-Rank and Decoupled DIMM, or the

bottom chip in future stacked 3-D memory modules. Since the controller no longer has the full

knowledge of each device’s status, a new protocol is proposed for the communication between

the controller and modules to avoid bus contentions. The controller sends generic commands

such as read or write instead of device-specific ones to modules; a module with ready data will

raise its readiness via some additional signal lines; and a token-based approach is used to grant

bus ownership to one ready module and avoid contentions.

Our simulation results show that UniMA achieves comparable performance when compared

with conventional DDR3 memory systems. On a simulated quad-core system with homogeneous

DRAM devices, UniMA can improve performance by 3.1% on average (up to 4.5%) for memory-

intensive workloads; and incurs an average performance loss of 1.0% (up to 1.8%) for none

memory-intensive workloads.

72

UniMA may also support heterogeneous devices in one system, which is not feasible under

the conventional memory organization. A heterogeneous system of PCM and DRAM, for ex-

ample, may balance the large capacity and relatively high power efficiency of PCM with the

relatively high performance of DRAM. Our simulation results show that compared with the

performance of a pure DRAM system, the overall performance of a pure PCM system is about

25% lower for memory-intensive workloads, while the performance of a hybrid system enabled

by our UniMA design is only 12% lower.

The main focus of this study is to answer the question whether the UniMA framework

featured with localized scheduling is a viable approach. The UniMA implementation here is

for evaluation purpose only. It is not fully optimized and is not intended to be a standard.

Particularly, it does not introduce any major change of memory bus design, though a new bus

design may be expected with UniMA. Neither does it evaluate the optimal data layout for

hybrid memory systems, which may further improve the performance of such systems. Both

issues are very complicated and beyond the scope of this study.

5.2 Prototype Design of UniMA

In this section, we present a prototype design of UniMA on the conventional DDRx memory

channel for evaluation purpose. UniMA is a memory architecture framework, which can also

be applied to other memory channel designs, e.g. FB-DIMM or Rambus channel. We give

this design to demonstrate that UniMA is implementable; and our evaluation results will show

that it can achieve efficiency comparable to that of the conventional memory organization. We

73

�������	
�

�
��

�
�

�
�

��
�
��
�

�
��

�
�
��
��
��

�
��

�
�
��

��
��

���� ����

����
����

	
���
�
�
��
��

�
�
��

��
�

�
��
��
��
�
��

�
��

�
�
��

��
��

��������
����

���������	

��������

Figure 21: The organization of UniMA design with single channel configuration.

minimize the changes on DDRx memory channel to make a fair comparison. If UniMA is to be

employed in product systems, the actual implementation can be very different.

5.2.1 Prototype Design Overview

Figure 21 shows the organization of UniMA applied to a DDRx memory system. We have

several design considerations. First, timing and other device-specific management issues should

be transparent to the memory controller for interoperability. Since the controller no longer

tracks the status of each DIMM and ongoing operations, a new protocol is needed to avoid

contention on the shared data bus and to notify the memory controller when fetched data will

74

be ready. We propose a token-based approach to grant data bus ownership to ready DIMMs

and avoid data bus contentions. The details will be discussed in Section 5.2.2.2.

We have also considered other design alternatives on this aspect. One approach is to add

a bus arbitration chip onto the motherboard to handle data bus contentions. However, this

would require modifications to the controller, DIMMs and a dedicated chip on board, and is not

cost-effective and efficient. Another approach is to use time-division multiplexing to avoid bus

contentions. The controller may assign a fixed time slot to each DIMM for reporting whether

it has ready data and then schedule ready transfers accordingly. However, this approach is not

scalable. Another design consideration is to minimize the changes to the current DDRx bus

design for the reasons discussed above.

A new memory access protocol, including a set of device-independent commands, is defined

to support the communication between the memory controller and DIMMs. A bridge chip called

Unified DIMM Interface Chip (UDIC) is added to each DIMM to process the communication.

Three additional lines are added to avoid contentions on the shared data bus. All DIMMs

connected to a channel form a ring by a “Token Ring” line that passes a token between two

adjacent DIMMs. Only the DIMM holding the token can use the data bus. A “Data Ready”

line is used to notify the controller that a DIMM has fetched data ready. It is shared by all

DIMMs in a channel; and an “OR” operation is performed on the line. Finally, a “Need Token”

line is added to avoid unnecessary token passing operations, which is only set when a DIMM

without the token has data ready. The DIMM holding the token will only pass the token to

others when the line is set.

75

5.2.2 Memory Access Protocol

5.2.2.1 Memory Commands

We will first discuss the design of device-independent commands to support communication

between the controller and memory modules, and then discuss how to use a token-based scheme

to avoid data bus contention. The core command set generated by the controller only includes

“Read”, “Write”, and “Get Read” commands. An extended set can be used for configuration.

Figure 22 shows an example of timing regarding those commands. A delay of one memory cycle

is inserted between a command and its address/data transfer to allow the bridge chip (UDIC) to

set bus direction accordingly after receiving the command. When the memory controller receives

a read or write request from the processor, it will send out a “Read” or “Write” command with

the address (and data for a write request). The UDIC on the destination module will buffer

the command and address (with data for a write), and generate corresponding device-level

commands when the devices are ready.

For a write request, after the controller sends out the command, address and data to the

corresponding module, their communication for this request is completed. For a read request,

additional communication is required for sending the fetched data back. In a conventional

memory system, the controller will only issue the read command to a DIMM if the bus will be

free at the time of data returning, in addition to other timing constraints. This is no longer the

case in UniMA. The issue of “Read” command from the controller and the read operation on

devices are decoupled. When a read request is finished at a module, the module needs to notify

the controller that it has data ready to be sent back. To do so, a “Data Ready” line is added

76

����

#	�$������

�����	�

�������

#	�$����������
��������

%��� %���

%���

%���%���

%���

%���

����

%���

%���

%���

%���

%���

%���

%���

%���

%���

(a) UniMA Read command

����� %���

%��� %���

%���

%���

%���

%���

%���

%���

%���

%���

%���

���� ���� ���� ����

����

(b) UniMA Write command

&���
����

%���

%���

%���

%���

%���

%���

%���

%���

%���

%��� %���

%�������

���� ���� ���� ����

(c) UniMA Get Read command

Figure 22: The timing of commands (Read, Write and Get Read) for UniMA design.

77

and is shared by all the DIMMs on a channel. A UDIC sets the line when it has or will have

data ready for transfer. Note that since the UDIC schedules local device operations, it knows in

advance when the data will be ready. It may set the line in advance as long as the data will be

ready when the bus becomes free1. The controller monitors the “Data Ready” line and issues

a “Get Read” command when it can accept returning data. There might be multiple DIMMs

with data ready; only the one holding the token can respond to the “Get Read” command and

send its ready data back to the controller.

Since the controller does not know which read request is returned, the DIMM also needs to

send that information back with the data. One design choice is to add a request ID to each

pending request. This would require a few additional lines to transfer the request ID between

the controller and DIMMs. Another solution is to send back the address with each fetched data.

This will increase the traffic on the address bus. In a typical DDRx system with the L2 cache

block size of 64 Bytes, each read request will take two memory cycles to transfer the address

(row and column) and four memory cycles to transfer the data. Under this design, each read

request needs to transfer its address twice and would cause new bottleneck on the address bus.

This is because now the address bus is bi-directional and one cycle of high impedance on pins is

required when the direction of signal transfer changes (73). To avoid the bottleneck, the same

double pumping mechanism as that used on the data bus can be applied on the address bus,

so that each address transfer only takes one memory cycle.

1We will discuss later how the UDIC knows when the bus becomes free.

78

����

����
�	��� ��������������

�����
������

����

�����������	

����� �����

��	

������� � ��	

���!
�����

�������
����

�����
������

� � ����

�
 �
 �
�
�
��

� � ����

����
��

�����	�"������������

#��������

(a) UniMA DIMM design and connections.

�$$

��
��
�%
 �
��
�
��

��
�
��
�
��
�
���
�

&�
�

�
 �

�

"��

 �
 "
�
��

��

'

�� ����(�
�!� � �
�	%%��

)����
��(�
� �	%%��

����
����������

�
��

�
�
��
��
��

��
��
��
%
��

&�
�

�
 �

�

"��

 �
 "
�
��

��

'

��

��* � +

�������
�����

����� ��

(b) UniMA UDIC design.

Figure 23: Detailed design of UniMA DIMM and UDIC. A: connecting to memory controller;
B: connecting to devices on DIMM; C: connecting to the next UDIC on the “Token Ring”; D:
connecting to the previous UDIC on the “Token Ring”; E: setting or receiving “Need Token”
signal; F: clock for devices on DIMM; G: incoming clock from bus.

79

5.2.2.2 Token Ring for Coordinated Data Bus Scheduling

In order to resolve the contention on data bus, a single token is assigned to each channel,

which is a one-bit flag indicating the ownership of data bus. A ring is formed to pass the

token between adjacent DIMMs as discussed above. When the controller issues a “Get Read”

command, only the UDIC holding the token can burst its data (normally the oldest ready one)

to the shared data bus. To maintain fairness, it will also check the “Need Token” line and pass

the token to the next UDIC if that line is set. The line can be set by any other DIMM that

needs the token to transfer data. If the line is not set, the current owner will hold the token to

avoid unnecessary token passing.

To minimize the token passing overhead and maximize the data bus utilization, when a

UDIC receives the token, it can grab the token if it already has data buffered or will have data

ready before the data bus becomes free; otherwise, it will pass the token to the next UDIC. As

mentioned above, a UDIC knows in advance when its read data becomes ready; and it uses an

internal timer to monitor when the data bus will be free. For any UDIC without the token,

every time when it observes a “Get Read” or “Write” command on the command bus, it will

set its timer to four for a system with last-level cache block size of 64 Bytes and decrease the

timer by one on every memory cycle until that reaches zero. The timer indicates when the data

bus becomes free since every data burst takes four memory cycles.

5.2.3 Unified DIMM Interface Chip

The Unified DIMM Interface Chip (UDIC) acts as the bridge between the controller and

memory devices. It receives device-independent operation commands from the controller, sched-

80

ules and issues device-level commands accordingly, and sends read data back to the controller.

Figure 23b shows the major components of the UDIC. The Interface to Memory Controller is

responsible for receiving commands and write data from the controller and sending read data

back. A Read Buffer holds the addresses received from the controller and the data returned

from the devices for read requests. A Write Buffer stores the addresses and data of write re-

quests received from the controller. Each buffer has 32 entries in our experiments. The Device

Interface is the functional module of UDIC to control memory devices on DIMM. It controls

the timing of devices and generates device-level commands accordingly. The Token Control

Logic is responsible to request and pass the token. Finally, a DLL (Delay-Locked Loop) Logic is

used to reduce the clock skew from the memory bus; and a Device Clock Generator generates

the clock signal for the devices since they may run at a rate different from the bus clock rate.

5.2.4 Overheads

The UDIC on each DIMM will introduce some cost, but its complexity is much lower than

that of a conventional memory controller. A conventional memory controller must handle the

maximum number of DIMMs, ranks, and banks that the processor supports, while a UDIC only

handles a single DIMM. Also, conventional memory controller supports both device timing and

request reordering for all requests, but the UDIC only maintains the timing constraints for

local devices. The complexity of memory controller can also be reduced because the device

timing function is moved to the UDIC. The controller may use a small counter for each UDIC

to track its fullness state to avoid overflowing UDICs. Moving device timing to the UDIC is the

key that enables our UniMA design to support diverse memory technologies under a universal

81

architecture. A different approach to supporting diverse memory modules in one system is to

use a dedicated memory controller for each type of memory modules. However, this approach

is not efficient and hard to be implemented.

Buffering requests and data on the UDIC will increase the idle latency of a single memory

request. However, because memory requests can be served in parallel and pipelined, the overall

performance overhead is small. In terms of additional power consumption, sending the address

back with the read data consumes some extra power. However, considering that the address

bits are much narrower than a typical cache block, the extra power is small in percentage. The

UDIC also consumes additional power. We use the methodology in existing studies (96; 97) to

estimate its power consumption. The power consumed by the I/O interface to the controller and

devices is estimated by using Thevenin equivalent circuit. The non-I/O logic power (including

static and dynamic power) is generated by Synopsys Design Compiler (84) using our Verilog

files as input. Using the configuration of 533MHz bus speed and standard 90nm technology

library from UMC (1), the I/O power for bus transfer is the dominant, with 804mW when

the memory traffic is high (assuming 50% read and 30% write channel bandwidth utilization).

The overall power consumption for UDIC is 1.66W. Considering that the conventional DDRx

memory system also needs to consume the same I/O power for the bus transfer, the additional

power consumption of UDIC with bus overhead is only 856mW. Note that the additional power

will drop with the decrease of memory traffic.

82

5.2.5 Other Discussions

The device voltage and clock frequency of different memory technologies may vary. In order

to support diverse memory devices, different voltage levels and clock rates may be needed. The

UDIC can easily generate multiple clock rates using the clock generator and the bus clock, but

not multiple voltage levels. A possible design choice is to let the DIMM socket on motherboard

provide multiple voltage levels. This may increase the pin count of DIMM. Another alternative

is to provide the standard voltage only but put a voltage regulator on each DIMM to generate

the suitable power source for devices. This would increase the DIMM implementation cost and

generate additional power and heat. The regulator can be either stand-alone or integrated with

the UDIC. In the later case, off-chip inductors and (usually) off-chip capacitors are needed (64).

The stand-alone regulator generally has an efficiency of 70% to 80% (76), while the integrated

one may achieve a higher efficiency of around 80% to 90% (64). The power consumption of

the regulator can be calculated as ((1− Er)/Er) ∗ Pd, while Er is the efficiency of the voltage

regulator and Pd is the total power consumption of devices on DIMM.

5.3 Experimental Methodologies

We built a detailed memory simulator for the conventional DDRx and our proposed UniMA

design, and integrated it into M5 (6) simulator. For experiments of conventional memory

systems, the simulated memory controller will issue device-level commands based on the status

of pending requests and memory channels, ranks and banks, using the hit-first and read-first

scheduling policy. For experiments of UniMA design, the memory controller only monitors

the bus state and issues UniMA commands to maximize the bus utilization. It also groups

83

requests with close addresses to increase the possibility of row buffer hits and allows reads to

bypass writes. The simulated UDIC on each DIMM is then responsible to translate the UniMA

commands into standard device-level commands. In our experiment, memory transactions are

pipelined whenever possible. For comparison, we also simulate a simplified PCM-based system,

and call it pseudo-PCM. For the PCM DIMM design and timing, we use the same assumption as

that in a previous study (41): the PCM DIMM has similar device architecture as DDRx but has

different cell organization. The timing for PCM device is adopted from existing studies (41; 66).

A PCM device is only precharged when its row buffer is dirty and a new row request is pending

due to its non-volatile feature. Table VI shows the major simulation parameters.

In our experiments, we simulate a quad-core system with each core running a distinct ap-

plication from SPEC2000 and SPEC2006 benchmarks (81). We follow the method used in an

existing study (38), to group those benchmarks into two categories: MEM (memory-intensive)

and ILP (compute-intensive) based on their numbers of L2 cache misses per 1000 instructions

(L2 MPKI). Applications whose L2 MPKI values are larger than ten are classified as MEM

applications; the other applications are classified as ILP applications. Table VII shows nine

four-core multi-programming workloads randomly selected from these applications. The MEM

workloads consist of memory-intensive applications; and the ILP workloads contain compute-

intensive applications. Then we randomly mix memory-intensive and compute-intensive appli-

cations as the MIX workloads to simulate cases that applications with different memory access

behaviors are running together. For each SPEC2000 application, SimPoint 3.0 (79) is used to

generate a simulation point of 100 million instructions. For each SPEC2006 application, the

84

Parameter Value

Processor
4 cores, 3.2GHz, 4-issue per core, 16-
stage pipeline

Functional
units

4 IntALU, 2 IntMult, 2 FPALU, 1 FP-
Mult

IQ, ROB and
LSQ size

IQ 64, ROB 196, LQ 32, SQ 32

Physical regis-
ter num

228 Int, 228 FP

Branch predic-
tion

Hybrid, 8k global + 2k local, 16-entry
RAS, 4k-entry and 4-way BTB

L1 caches (per
core)

64KB Inst/64KB Data, 2-way, 64B
line, hit latency: 1-cycle Inst/3-cycle
Data

L2 cache
(shared)

4MB, 4-way, 64B line, 15-cycle hit la-
tency

MSHR entries Inst: 8, Data: 32, L2: 64

Memory
1/2/4/8 channels, 1/2/4/8/16
DIMMs/channel, 2 ranks/DIMM, 8
banks/rank

Memory con-
troller

64-entry buffer, 12ns overhead for
scheduling, 15ns overhead for schedul-
ing and timing

UDIC 4ns overhead for device timing
DDR3/UniMA
channel band-
width

800/1066/1333/1600 MT/s (Mega
Transfers/second), 8 bytes/channel

DDR3 DRAM
latency

DDR3-1066:8-8-8: precharge /row ac-
cess /column access: 15ns
DDR3-1600:11-11-11: precharge /row
access /column access: 13.75ns

Pseudo-PCM
parameter

Pseudo-PCM-1: 800Mhz data bus
speed; column access: 15ns; row ac-
cess: 66ns; precharge: 180ns
Pseudo-PCM-2: 800Mhz data bus
speed; column access: 15ns; row ac-
cess: 250ns; precharge: 2us

TABLE VI: Major simulation parameters for UniMA.

85

Workload Applications Workload Applications

MEM-1
swim,applu,
art,lucas

ILP-1
vortex,gcc, six-
track,mesa

MEM-2
fma3d,mgrid,
galgel,equake

ILP-2
gromacs,namd,
dealII,povray

MEM-3
milc,leslie3d,
libquan-
tum,lbm

ILP-3
povray,calculix,
sjeng,omnetpp

MIX-1
lucas,equake,
ammp,gap

MIX-2
gobmk,lbm,
hmmer,gamess

MIX-3
leslie3d,sjeng,
so-
plex,omnetpp

TABLE VII: Workload mixes for UniMA.

simulation is first fast-forwarded for one billion instructions, then the caches and memory sys-

tems are warmed up for 100 million instructions, and the detailed statistics are collected for the

next 100 million instructions. The performance is characterized using weighted speedup (80),

∑n
i=1(IPCmulti[i]/IPCsingle[i]), where n is the total number of applications running, IPCmulti[i]

is the IPC value of application i running under multi-core environment and IPCsingle[i] is the

IPC value of the same application running alone.

5.4 Experimental Results

In this section, we first evaluate and analyze the performance overhead of UniMA-based ho-

mogeneous memory systems. The results actually show that UniMA may improve performance

when the memory system is under heavy load. Then, we evaluate and analyze the performance

of UniMA-based heterogeneous memory systems.

86

,��%�� ������- ��
�����.���������� ����������� �����/�)���
0�123�20��&345"0"6"7'

8

89:

5

59:

0

09:

/

/9:

6

69:

�*�25 �*�20 �*�2/ �$,25 �$,20 �$,2/ ��;25 ��;20 ��;2/

)
��
��

��
��
�-

��
�	

-

0�15�0�<�������� � 0�15�0�<����� 0�10�0�<�������� �
0�10�0�<����� 0�16�0�<�������� � 0�16�0�<�����
0�17�0�<�������� � 0�17�0�<�����

Figure 24: Performance comparison of UniMA and conventional DDR3-1066 system as the
number of DIMMs per channel changes.

5.4.1 Performance with Homogeneous DDR3 Memory Devices

First, we will use our prototype UniMA design to show that a UniMA-based homogeneous

memory system works efficiently when compared with the conventional DDR3 memory system,

which has to be homogeneous. It represents the case that a UniMA-capable processor, which can

work with many types of memory modules, is used with UniMA-based DDRx memory modules

in a given system. We are interested in how much overhead that the UniMA may introduce.

Throughout the experiments, we use xCH-yD-zR to represent a system configuration of x

channels, y DIMMs per channel and z ranks per DIMM. The close page policy and XOR-based

mapping (95; 45) are used if not mentioned otherwise.

87

Figure 24 compares the performance of UniMA systems with DDR3-1066 devices and con-

ventional DDR3-1066 systems. The two different types of systems run at the same bus speed,

and both have two channels and two ranks per DIMM. The number of DIMMs per channel

varies from one to two, four and eight. The results show that, in general, the two types of

systems have comparable overall performance.

For MEM workloads, the UniMA outperforms the DDR3 memory system by 0.8% to 4.5%

(3.1% on average). The improvement comes from the additional parallelism at memory module

level: multiple UDICs can concurrently issue device commands to their local devices. In the

conventional DDR3 system, the time interval between read/write command and its data transfer

is fixed. The centralized scheduler has to delay a command if that would cause a future bus

conflict, which may delay other operations. This constraint is determined by the characteristics

of centralized scheduler and is removed in UniMA. As shown in the figure, as the number of

DIMMs per channel increases, the performance gain by the UniMA system increases, which

indicates that the UniMA system can better utilize the extra module-level parallelism from the

added DIMMs.

For MIX workloads, the UniMA system causes an average performance loss of 1.1% (from

0.6% to 1.8%) compared with the conventional DDR3 system. The performance penalty mainly

comes from the UDIC buffer latency and the overhead introduced by token passing. As shown

in the figure, as the number of DIMMs per channel increases, the performance of UniMA

generally increases first and then decreases compared to that of conventional DDR3 system.

This is a combined effect of both the increase of DIMM-level parallelism and the increase of

88

token passing overhead. Given that the buffer latency remains the same, the extra delay comes

from the longer time to pass the token to a ready DIMM when more DIMMs are connected

to a channel. This effect is not obvious for memory-intensive workloads because they tend to

have many busy DIMMs and it is very likely that the token can reach a ready DIMM before

the data bus becomes idle.

For ILP workloads, the performance degradation of UniMA compared to DDR3 ranges from

0.1% to 1.7% (0.8% on average). Although the ILP workloads may see more idle DIMMs and

thus longer token passing overhead, their performance is also less affected by memory system.

In addition, our prototype UniMA design includes a “Need Token” line to avoid unnecessary

token passing operations.

5.4.2 Overhead of Token Passing Mechanism

In this section, we further investigate the overhead of token passing. To demonstrate the

effect, we fix the number of DIMMs per channel to be sixteen and then vary the number of

channels from one to two and four. Figure 25 shows the percentage of cycles that a token is held

by a DIMM who doesn’t need the token (but the bus could be busy) as pt and a subset of that

with an additional condition that the bus is free as pt df . Note that only the second case may

cause potential performance loss and the delay is counted as the overhead of token passing. We

can see that, in general, although the possibility that the token is passed to a DIMM without

ready data is large (41.3% and 30.9% on average for MEM and MIX workloads, respectively),

our scheme that begins the token passing during the data transfer can successfully hide the

overhead. The possibility that the token cannot reach a DIMM with ready data when the data

89

�����,

����=����� ��%�������.����3�125>�20��&345"0"6'

8

895

890

89/

896

89:

89>

�*�25 �*�20 �*�2/ �$,25 �$,20 �$,2/ ��;25 ��;20 ��;2/

,

��
���
��

5�15>�0�<-� 5�15>�0�<-�<�% 0�15>�0�<-�
0�15>�0�<-�<�% 6�15>�0�<-� 6�15>�0�<-�<�%

Figure 25: Token passing overhead of UniMA with 16 DIMMs per channel.

bus becomes free is only 6.4% for MEM and 13.0% for MIX workloads on average, respectively.

The MIX workloads generate less memory traffic than the MEM workloads. Thus, the overhead

of token passing cannot be hidden as well as for MEM workloads. This is the reason that we see

larger performance loss on MIX workloads than on MEM workloads (1.1% loss vs. 3.1% gain on

average). Additionally, as the number of channels increases, the value of Pt decreases for MIX

workloads. This is because token passing is only triggered when another DIMM on the channel

needs the token and sets the “Need Token” line; and more channels means lower possibility

that the token passing is triggered for each channel. For the same reason, ILP workloads (with

very light memory traffic) have very low Pt values.

90

���� ���$ ��������� ��.��%��������� �����/� ��������

8

588

088

/88

688

:88

>88

?88

788

�
*�

252
��

�

�
*�

252
��
��
�

�
*�

202
��

�

�
*�

202
��
��
�

�
*�

2/2
��

�

�
*�

2/2
��
��
�

�$
,2
52�

��

�$
,2
52�

���
�

�$
,2
02�

��

�$
,2
02�

���
�

�$
,2
/2�

��

�$
,2
/2�

���
�

�
�;
252
��

�

�
�;
252
��
��
�

�
�;
202
��

�

�
�;
202
��
��
�

�
�;
2/2
��

�

�
�;
2/2
��
��
�

�
,�

��
��
��

���=����� � ���@	�	��� ���� ������ =-�� ���

Figure 26: Latency breakdown of conventional DDR3 memory system and UniMA.

5.4.3 Memory Access Latency

Next, we will discuss the impact of using UniMA on the memory access latency. Figure 26

shows the latency breakdown for conventional DDR3 and UniMA systems. We use the same

2CH-4D-2R configuration and DDR3-1066 memory devices in the experiments. “MC Overhead”

is the latency of memory controller scheduling; “MC Queuing” is the queueing delay in the

controller; “UDIC” is the buffer and operation overhead of UDIC; “on DIMM” is the queueing

delay on each DIMM, and “Operation” is the operation latency of memory devices. The “UDIC”

and “on DIMM” overhead for the conventional DDR3 memory system is zero.

91

In general, the overall latency for MEM workloads is smaller under UniMA than under

conventional DDR3 system (15.5% on average) due to the significant reduction on queueing

delay. This is because using UDIC increases the DIMM-level parallelism; and the queueing

delay on DIMM appears to be small because requests are distributed to each module. For MIX

and ILP workloads, UniMA may slightly decrease (as 2.8% for MIX-1 and 5.1% for MIX-2) or

slightly increase (as 8.0% on average for others) the overall latency. Because those workloads

have fewer concurrent memory requests and thus shorter queueing delay under the conventional

DDR3 system. The latency overhead of UDIC cannot be fully mitigated by the reduction on

queueing delay.

5.4.4 Impact of Scheduling Choices on UDIC

As discussed in Section 5.2.3, the UDIC does not perform request reordering to minimize

its cost and complexity. In this section, we evaluate the performance impact of this design

choice by comparing it to an ideal scheduling scheme: the memory controller and all the UDICs

perform request reordering as if the scheduling information is globally shared. Experiments are

done for both close page and open page modes. The memory organization is set to 2CH-4D-2R

with DDR3-1066 devices and 533MHz data bus. Figure 27 compares the performance with the

two scheduling implementations. The two schemes, without and with the local reordering, yield

almost the same performance (with up to 0.7% difference), for both the open and close page

modes. The results indicate that, when there are sufficient numbers of DIMMs on each channel

(four in this case), local request reordering is not necessary. Note that the memory controller

can still perform certain priority-based request reordering.

92

,��%�� ������- ��
���%�������	�������%%��������(�
�����������
,� �������.����0�126�20�

8

89:

5

59:

0

09:

/

/9:

6

69:

�*�25 �*�20 �*�2/ �$,25 �$,20 �$,2/ ��;25 ��;20 ��;2/

)
��
��

��
��
�-

��
�	

-

��
��- ���&��������������������� �������' ��
��- ���&������������������������'

-���- ���&��������������������� �������' -���- ���&������������������������'

Figure 27: Performance comparison of UniMA without and with request reordering at UDICs.

5.4.5 UniMA with DDR3 and Pseudo-PCM Devices

A unique advantage of the UniMA framework is that it opens the door to building het-

erogeneous memory systems, i.e. with memory devices of different technologies, data rates and

latencies in a single system; for example, a mix of PCM and DRAM memory modules. In this

section, we evaluate and analyze how the prototype UniMA design performs in such a setting.

The experiments use the same 2CH-4D-2R configuration as before, except that now each

channel has two DDR3-1600 DIMMs and two pseudo-PCM DIMMs. The pseudo-PCM devices

have the same data rate as the DDR3-1600 devices, but the PCM storage core has much longer

access latency than that of DRAM. A buffer may be put on each PCM DIMM to reduce its

93

average latency (and to improve write endurance), a common approach used in existing PCM

studies (41; 69; 99). We call them pseudo-PCM modules because our simulation does not model

low-level details except simple operations on PCM storage core and an optional, simple buffer.

A real PCM module may involve complicated PCM operations and a complex buffer, whose

details can be hidden from the memory controller by the UDIC in our design. The performance

comparison includes the results with and without an 8MB buffer on each pseudo-PCM DIMM.

The buffer works as a four-way set-associative cache with LRU replacement and a block size

of 64 bytes. The hit latency is set to fifteen memory cycles. Note that a real PCM module

may use a DRAM buffer of variant access latencies; in a conventional memory organization,

the cache tags plus DRAM buffer status must reside in the memory controller for performing

the centralized memory access scheduling.

As shown in Figure 28, the performance of a memory system of PCM1 modules (without

buffer) is on average 25.4%, 18.7% and 4.9% lower than that of the DRAM system for MEM,

MIX and ILP workloads, respectively. The performance of heterogeneous system with PCM1

and DRAM modules is only 16.0%, 13.2% and 3.2% lower than that of the DRAM system

for those workloads, respectively. When the buffer is included on pseudo-PCM1 modules, the

performance of the heterogeneous memory system is only 12.3%, 10.8% and 2.6% lower than

that of the DDR3 system, for MEM, MIX and ILP workloads, respectively. The results for

configurations using much slower pseudo-PCM2 device are similar. Note that we assume a

simple interleaving scheme of mapping programs’ memory pages evenly onto PCM and DRAM

devices. A real system may employ a sophisticated mapping scheme, which is out of the scope

94

,��%�� ������- ��
�����.������������ �����/� ���������.���
1��������	
�,
�	�2,��

8

89:

5

59:

0

09:

/

/9:

6

69:

�*�25 �*�20 �*�2/ �$,25 �$,20 �$,2/ ��;25 ��;20 ��;2/

)
��
��

��
��
�-

��
�	

-

��� ,��5 �,��5 ,��5A��� �,��5A���
,��0 �,��0 ,��0A��� �,��0A���

Figure 28: Performance comparison of traditional DDR3 system and UniMA with both pseudo-
PCM and DDR3 DIMMs. (PCMx stands for pure PCM module; bPCMx stands for configura-
tion of PCM module with an 8MB buffer).

95

of this study. Our intention here is to show that UniMA can support heterogeneous devices

efficiently at architecture level.

5.5 Conclusion

We have proposed a memory architecture framework, with localized memory access schedul-

ing, for universal interoperability between processors and memory modules. Such an architec-

ture is critical to the adoption of emerging memory technologies in real systems. To evaluate

the efficiency of such an architecture, which is a major concern at this time, we present a pro-

totype implementation of Universal Memory Architecture (UniMA) over the DDRx memory

channel. Our simulation results indicate that UniMA can be an efficient way of integrating

different memory technologies, and localized memory scheduling can actually improve memory

system efficiency for memory-intensive workloads. The potential of using heterogeneous mem-

ory modules inside a single system is particularly promising. The future research may include

memory channel re-design under UniMA, further study on coordinated bus scheduling, UDIC

design optimizations, memory modules with advanced cache structure, power optimization un-

der UniMA, and utilization of a heterogeneous memory systems.

CHAPTER 6

CONCLUSION

With the wide spread use of multi-core and many-core processors, current memory system

designers try to push the memory bandwidth and capacity to meet the user demands. A

negative side-effect is the continuous increase on memory power consumption. In addition,

main memory system design is severely limited by the rigid architecture that requires the

memory controller to track the internal status of all memory devices (chips) and schedule

the timing of all device operations. As a result, DRAM memory system is heading to the

scalability wall. New memory technologies such as Phase-Change Memory (PCM) and STT-

RAM emerge as potential alternatives to replace DRAM in future memory systems. Although

those technologies have better energy-efficiency and scalability than DRAM, they also suffer

from low write-endurance and long write-latency. Thus, new memory architectures are needed

for supporting future memory systems and balancing among performance, energy-efficiency,

capacity and lifetime.

To address the issue, we propose a systematic support for improving memory system ef-

ficiency at the architecture level by three steps. Firstly, a new DRAM scheduling algorithm

called Delayed Row Activation is proposed to make the DRAMmore energy-efficient by allowing

memory ranks stay at a low-power mode longer if the data bus ownership cannot be acquired

immediately after row activation finishes. Secondly, we present a heterogeneous mini-rank

memory architecture that allows concurrently running applications to have different sub-rank

96

97

widths based on their memory access behavior. By dynamically assigning and changing the

sub-rank configurations, the balance can be achieved between the performance and power sav-

ing, and large performance loss can be avoided. Lastly, we build a new memory architecture

framework called Universal Memory Architecture (UniMA) that can support different mem-

ory technologies in a computer system by decoupling the scheduling of device operations from

memory controller. A bridge chip is added to each memory module to perform device-specific

scheduling locally.

Throughout this thesis, we demonstrate that our schemes can save DRAM power, provide

optimal energy efficiency for mini-rank kind of design and integrate diverse memory technologies

into one memory system with small overhead. A combination of the techniques in this thesis is

straightforward and would be able to show a path to utilize both dominant and future memory

technologies in a single computer system.

Our future work includes how to efficiently manage the hybrid memory systems containing

diverse memory devices through scheduling and page mapping, and how to improve the write

performance of new multi-level cell PCM (MLC-PCM) technology by allowing inaccurate values

be stored into the MLC-PCM array and restoring the correct values later during memory read

operations. Those are all important issues for successful transition of memory systems to the

new era.

CITED LITERATURE

1. UMC free library. http://freelibrary.faraday-tech.com/.

2. Ahn, J. H., Jouppi, N. P., Kozyrakis, C., Leverich, J., and Schreiber, R. S.: Fu-
ture scaling of processor-memory interfaces. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis, pages 1–12,
New York, NY, USA, 2009.

3. Alameldeen, A., Chishti, Z., Wilkerson, C., Wu, W., and Lu, S.-L.: Adaptive cache
design to enable reliable low-voltage operation. IEEE Transactions on Computers,
60(1):50–63, January 2011.

4. Ausavarungnirun, R., Chang, K. K.-W., Subramanian, L., Loh, G. H., and Mutlu, O.:
Staged memory scheduling: achieving high performance and scalability in hetero-
geneous systems. In Proceedings of the 39th Annual International Symposium on
Computer Architecture, pages 416–427, 2012.

5. Beamer, S., Sun, C., Kwon, Y.-J., Joshi, A., Batten, C., Stojanovic, V., and Asanovic,
K.: Re-architecting DRAM memory systems with monolithically integrated sil-
icon photonics. In Proceedings of the 37th Annual International Symposium on
Computer Architecture, pages 129–140, 2010.

6. Binkert, N. L., Dreslinski, R. G., Hsu, L. R., Lim, K. T., Saidi, A. G., and Reinhardt,
S. K.: The m5 simulator: Modeling networked systems. IEEE Micro, 26(4):52–60,
2006.

7. Bivens, A., Dube, P., Franceschini, M., Karidis, J., Lastras, L., and Tsao, M.: Architec-
tural design for next generation heterogeneous memory systems. In 2010 IEEE
International Memory Workshop (IMW), pages 1–4, 2010.

8. Burger, D., Goodman, J. R., and Kagi, A.: Memory bandwidth limitations of future mi-
croprocessors. In Proceedings of the 23rd International Symposium on Computer
Architecture, pages 78–89, 1996.

9. Carter, J., Hsieh, W., Stoller, L., Swansony, M., Zhang, L., Brunvand, E., Davis, A., Kuo,
C.-C., Kuramkote, R., Parker, M., Schaelicke, L., and Tateyama, T.: Impulse:

98

99

Building a smarter memory controller. In Proceedings of the Fifth International
Symposium on High-Performance Computer Architecture, pages 70–79, January
1999.

10. Caulfield, A. M., De, A., Coburn, J., Mollov, T. I., Gupta, R. K., and Swanson, S.:
Moneta: A high-performance storage array architecture for next-generation, non-
volatile memories. In 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 385–395, December 2010.

11. Cho, S. and Lee, H.: Flip-n-write: A simple deterministic technique to improve PRAM
write performance, energy and endurance. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 347–357, 2009.

12. Clinton W. Smullen, I., Mohan, V., Nigam, A., Gurumurthi, S., and Stan, M. R.: Relaxing
non-volatility for fast and energy-efficient STT-RAM caches. In 17th International
Conference on High-Performance Computer Architecture, pages 50–61, February
2011.

13. Cuppu, V. and Jacob, B.: Concurrency, latency, or system overhead: Which has the
largest impact on uniprocessor DRAM-system performance? In Proceedings of
the 28th International Symposium on Computer Architecture, pages 62–71, June
2001.

14. Cuppu, V., Jacob, B., Davis, B., and Mudge, T.: A performance comparison of contempo-
rary DRAM architectures. In Proceedings of the 26th International Symposium
on Computer Architecture, pages 222–233, 1999.

15. Delaluz, V., Kandemir, M., Vijaykrishnan, N., Sivasubramaniam, A., and Irwin, M. J.:
DRAM energy management using software and hardware directed power mode
control. In Proceedings of the 7th International Symposium on High-Performance
Computer Architecture, pages 159–169, 2001.

16. Desikan, R., Lefurgy, C. R., Keckler, S. W., and Burger, D.: On-chip MRAM as a high-
bandwidth, low-latency replacement for dram physical memories. Technical report
tr-02-47, 2002.

17. Dhiman, G., Ayoub, R., and Rosing, T.: PDRAM: A hybrid pram and dram main memory
system. In 2009 46th IEEE Design Automation Conference, pages 664–669, July
2009.

CITED LITERATURE (Continued)

100

18. Diniz, B., Guedes, D., Wagner Meira, J., and Bianchini, R.: Limiting the power con-
sumption of main memory. In Proceedings of the 34th International Symposium
on Computer Architecture, pages 290–301, 2007.

19. Ebrahimi, E., Lee, C. J., Mutlu, O., and Patt, Y. N.: Prefetch-aware shared resource man-
agement for multi-core systems. In Proceedings of the 38th Annual International
Symposium on Computer Architecture, pages 141–152, June 2011.

20. Fan, X., Ellis, C., and Lebeck, A.: Memory controller policies for DRAM power
management. In Proceedings of the 2001 International Symposium on Low Power
Electronics and Design, pages 129–134, 2001.

21. Fan, X., Ellis, C., and Lebeck, A.: Modeling of DRAM power control policies using
deterministic and stochastic Petri nets. In Proceedings of the 2nd international
conference on Power-aware computer systems, pages 130–140, February 2002.

22. Fang, K., Chen, L., Zhang, Z., and Zhu, Z.: Memory architecture for integrating emerg-
ing memory technologies. In The Twentieth International Conference on Parallel
Architectures and Compilation Techniques, pages 1–10, Oct. 2011.

23. Fang, K., Zheng, H., Lin, J., Zhang, Z., and Zhu, Z.: Mini-rank: A power-efficient ddrx
dram memory architecture. IEEE Transactions on Computers, 99(PrePrints):1,
2012.

24. Fang, K., Zheng, H., and Zhu, Z.: Heterogeneous mini-rank: Adaptive, power-efficient
memory architecture. In Proceedings of the 2010 39th International Conference
on Parallel Processing, pages 21–29, 2010.

25. Fang, K. and Zhu, Z.: Conservative row activation to improve memory power effi-
ciency. In Proceedings of the 27th international ACM conference on International
conference on supercomputing, ICS ’13, pages 81–90, New York, NY, USA, 2013.
ACM.

26. Ganesh, B., Jaleel, A., Wang, D., and Jacob, B.: Fully-Buffered DIMM
Memory Architectures: Understanding Mechanisms, Overheads and Scal-
ing. In Proceedings of the 13th International Symposium on High-Performance
Computer Architecture, pages 109–120, February 2007.

27. Ghosh, M. and Lee, H.-H. S.: Smart Refresh: An enhanced memory controller design for
reducing energy in conventional and 3D Die-Stacked DRAMs. In Proceedings of

CITED LITERATURE (Continued)

101

the 40th International Symposium on Microarchitecture, pages 134–145, Decem-
ber 2007.

28. Guo, X., Ipek, E., and Soyata, T.: Resistive computation: avoiding the power wall with
low-leakage, STT-MRAM based computing. In Proceedings of the 37th Annual
International Symposium on Computer Architecture, pages 371–382, 2010.

29. Huang, H., Pillai, P., and Shin, K. G.: Design and implementation of power-aware vir-
tual memory. In Proceedings of the USENIX Annual Technical Conference 2003
on USENIX Annual Technical Conference, pages 57–70, 2003.

30. Huang, H., Shin, K. G., Lefurgy, C., and Keller, T.: Improving energy efficiency by
making DRAM less randomly accessed. In Proceedings of the 2005 International
Symposium on Low Power Electronics and Design, pages 393–398, 2005.

31. Hur, I. and Lin, C.: Adaptive history-based memory schedulers. In Proceedings of
the 37th International Symposium on Microarchitecture, pages 343–354, Decem-
ber 2004.

32. Hur, I. and Lin, C.: A comprehensive approach to DRAM power manage-
ment. In Proceedings of the 13th International Symposium on High-Performance
Computer Architecure, pages 305–316, 2008.

33. Platform 2015 - enterprise platform and integration concepts. White paper, INTEL Cor-
poration, 2005.

34. The problem of power consumption in servers. Technical report, INTEL Corporation,
2012.

35. Intel, Inc.: Large-Capacity, High-Bandwidth Memory Solution. http://cache-www.

intel.com/cd/00/00/27/84/278436 278436.pdf, 2006.

36. Joshi, M., Zhang, W., and Li, T.: Mercury: A fast and energy-efficient multi-
level cell based phase change memory system. In 17th International Conference
on High-Performance Computer Architecture (HPCA-17 2011), pages 345–356,
February 2011.

37. Kaseridis, D., Stuecheli, J., and John, L. K.: Minimalist open-page: a DRAM page-
mode scheduling policy for the many-core era. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 24–35, 2011.

CITED LITERATURE (Continued)

102

38. Kim, Y., Han, D., Mutlu, O., and Harchol-balter, M.: ATLAS: A
scalable and high-performance scheduling algorithm for multiple mem-
ory controllers. In Proceedings of the 16th International Symposium on High
Performance Computer Architecture, pages 1–12, 2010.

39. Kim, Y., Papamichael, M., Mutlu, O., and Harchol-Balter, M.: Thread
cluster memory scheduling: Exploiting differences in memory access be-
havior. In Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 65–76, 2010.

40. Lebeck, A. R., Fan, X., Zeng, H., and Ellis, C.: Power aware page allo-
cation. In Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 105–116,
2000.

41. Lee, B. C., Ipek, E., Mutlu, O., and Burger, D.: Architecting phase change memory
as a scalable dram alternative. In Proceedings of the 36th annual international
symposium on Computer architecture, pages 2–13, 2009.

42. Lee, H. G. and Chang, N.: Low-energy heterogeneous non-volatile memory systems for
mobile systems. Journal of Low Power Electronics - JOLPE, 1(1):52–62, 2005.

43. Li, X., Li, Z., David, F., Zhou, P., Zhou, Y., Adve, S., and Kumar,
S.: Performance directed energy management for main memory and disks.
In Proceedings of the 11th International Conference on Architectural support for
Programming Languages and Operating Systems, pages 271–283, 2004.

44. Lim, K., Chang, J., Mudge, T., Ranganathan, P., Reinhardt, S. K., and
Wenisch, T. F.: Disaggregated memory for expansion and sharing in
blade servers. In Proceedings of the 36th Annual International Symposium on
Computer Architecture, pages 267–278, 2009.

45. Lin, W., Reinhardt, S. K., and Burger, D.: Reducing DRAM latencies with an integrated
memory hierarchy design. In Proceedings of the Seventh International Symposium
on High-Performance Computer Architecure, pages 301–312, January 2001.

46. Malladi, K. T., Nothaft, F. A., Periyathambi, K., Lee, B. C., Kozyrakis, C., and
Horowitz, M.: Towards energy-proportional datacenter memory with mo-
bile DRAM. In Proceedings of the 39th Annual International Symposium on
Computer Architecture, pages 37–48, 2012.

CITED LITERATURE (Continued)

103

47. Mathew, B. K., McKee, S. A., Carter, J. B., and Davis, A.: Design of a parallel vector ac-
cess unit for SDRAM memory systems. In Proceedings of the Sixth International
Symposium on High-Performance Computer Architecture, pages 39–48, January
2000.

48. McKee, S. A., Wulf, W. A., Aylor, J. H., Salinas, M. H., Klenke, R. H., Hong, S. I., and
Weikle, D. A. B.: Dynamic access ordering for streamed computations. IEEE
Trans. Comput., 49(11):1255–1271, November 2000.

49. McKee, S. A. and Wulf, W. A.: Access ordering and memory-conscious cache
utilization. In Proceedings of the First IEEE Symposium on High-Performance
Computer Architecture, pages 253–262, January 1995.

50. McKee, S. A. and Wulf, W. A.: A memory controller for improved performance of
streamed computations on symmetric multiprocessors. In Proceedings of the 10th
International Parallel Processing Symposium, pages 159–165, April 1996.

51. MetaRAM, Inc.: MetaRAM product brief. http://www.metaram.com/pdf/briefs/

MetaRAM DDR3 PB.pdf.

52. Micron Technology, Inc.: DDR3 SDRAM System-Power Calculator. http://download.

micron.com/downloads/misc/ddr3 power calc.xls.

53. Micron Technology, Inc.: Double Data Rate (DDR) SDRAM Specification. http://

download.micron.com/pdf/misc/JEDEC79R2.pdf, March 2003.

54. Micron Technology, Inc.: HTF18C64-128-256x72D. http://download.micron.com/pdf/
datasheets/modules/ddr2/HTF18C64 128 256x72D.pdf, 2007.

55. Mishra, A. K., Dong, X., Sun, G., Xie, Y., Vijaykrishnan, N., and Das, C. R.: Architecting
on-chip interconnects for stacked 3d STT-RAM caches in cmps. In Proceedings of
the 38th Annual International Symposium on Computer Architecture, June 2011.

56. Mogul, J. C., Argollo, E. A., shah, M., and Faraboschi, P.: Operating system support for
NVM+DRAM hybrid main memory. Technical report hpl-2009-256, May 2009.

57. Mutlu, O. and Moscibroda, T.: Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In Proceedings of the 40th International Symposium on
Microarchitecture, pages 146–160, December 2007.

CITED LITERATURE (Continued)

104

58. Mutlu, O. and Moscibroda, T.: Parallelism-aware batch scheduling: Enhancing both
performance and fairness of shared DRAM systems. In Proceedings of the 35th
Annual International Symposium on Computer Architecture, pages 63–74, 2008.

59. Nesbit, K. J., Aggarwal, N., Laudon, J., and Smith, J. E.: Fair queuing CMP memory sys-
tems. In Proceedings of the 39th International Symposium on Microarchitecture,
pages 208–222, December 2006.

60. Nirschl, T., Philipp, J. B., Happ, T. D., Burr, G. W., Rajendran, B., Lee, M. H., Schrott,
A., Yang, M., Breitwisch, M., Chen, C. F., Joseph, E., Lamorey, M., Cheek, R.,
Chen, S.-H., Zaidi, S., Raoux, S., Chen, Y., Zhu, Y., Bergmann, R., Lung, H.-L.,
and Lam, C.: Write strategies for 2 and 4-bit multi-level phase-change memory.
2007 IEEE International Electron Devices Meeting, pages 461–464, Dec. 2007.

61. Pandey, V., Jiang, W., Zhou, Y., and Bianchini, R.: DMA-aware memory energy manage-
ment. In Proceedings of the 12th International Symposium on High-Performance
Computer Architecture, pages 133–144, February 2006.

62. Papandreou, N., Pozidis, H., Mittelholzer, T., Close, G., Breitwisch, M., Lam, C., and
Eleftheriou, E.: Drift-tolerant multilevel phase-change memory. In 3rd IEEE
International Memory Workshop (IMW), pages 1–4, May 2011.

63. Patel, A., Afram, F., Zeng, H., and Ghose, K.: MARSSx86 - micro-architectural and
system simulator for x86-based systems. http://www.marss86.org/index.php/

Home.

64. Patounakis, G., Li, Y. W., , and Shepard, K. L.: A fully integrated on-chip DC-DC
conversion and power management system. Solid-State Circuits, 39(3):443–451,
2004.

65. Phadke, S. and Narayanasamy, S.: MLP aware heterogeneous memory sys-
tem. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1–6, March 2011.

66. Qureshi, M. K., Franceschini, M., and Lastras, L.: Improving read perfor-
mance of phase change memories via write cancellation and write paus-
ing. In Proceedings of the 16th International Symposium on High Performance
Computer Architecture, pages 1–11, 2010.

CITED LITERATURE (Continued)

105

67. Qureshi, M. K., Franceschini, M. M., Lastras-Montano, L. A., and Karidis, J. P.: Mor-
phable memory system: A robust architecture for exploiting multi-level phase
change memories. In Proceedings of the 37th Annual International Symposium
on Computer Architecture, pages 153–162, 2010.

68. Qureshi, M. K., Karidis, J., Franceschini, M., Srinivasan, V., Lastras, L., and Abali,
B.: Enhancing lifetime and security of PCM-based main memory with start-
gap wear leveling. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 14–23, 2009.

69. Qureshi, M. K., Srinivasan, V., and Rivers, J. A.: Scalable high performance main memory
system using phase-change memory technology. In Proceedings of the 36th annual
international symposium on Computer architecture, pages 24–33, 2009.

70. Rambus, Inc.: Rambus Unveils Next Generation XDR Memory Interface. http://www.

rambus.com/us/news/press releases/2005/050707.html, 2005.

71. Raoux, S., Burr, G. W., Breitwisch, M. J., Rettner, C. T., Chen, Y.-C., Shelby, R. M.,
Salinga, M., Krebs, D., Chen, S.-H., Lung, H.-L., and Lam, C. H.: Phase-change
random access memory: A scalable technology. IBM Journal of Research and
Development, 52(4/5):465–479, July/September 2008.

72. Rixner, S.: Memory controller optimizations for web servers. In Proceedings of the 37th
International Symposium on Microarchitecture, pages 355–366, December 2004.

73. Rixner, S., Dally, W. J., Kapasi, U. J., Mattson, P., and Owens, J. D.: Memory access
scheduling. In Proceedings of the 27th International Symposium on Computer
Architecture, pages 128–138, June 2000.

74. Samsung, Inc.: Samsung Ships Industry’s First Multi-chip Package with a PRAM Chip
for Handsets. http://www.samsung.com/us/aboutsamsung/news/newsIrRead.

do?news ctgry=irnewsrelease&page=1&news seq=18828&rdoPeriod=

ALL&from dt=&to dt=&search keyword=, April 2010.

75. Schechter, S., Loh, G. H., Strauss, K., and Burger, D.: Use ECP, not ECC, for hard
failures in resistive memories. In Proceedings of the 37th Annual International
Symposium on Computer Architecture, pages 141–152, 2010.

76. Schrom, G., Hazucha, P., Hahn, J., Gardner, D. S., Bloechel, B. A., Dermer, G., Narendra,
S. G., Karnik, T., and De, V.: A 480-mhz, multi-phase interleaved buck DC-

CITED LITERATURE (Continued)

106

DC converter with hysteretic control. In IEEE 35th Annual Conference on Power
Electronics Specialists, volume 308, pages 4702–4707, 2004.

77. Seong, N. H., Woo, D. H., Srinivasan, V., Rivers, J., and Lee, H.-H.: SAFER: Stuck-at-
fault error recovery for memories. In 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 115–124, December 2010.

78. Shao, J. and Davis, B. T.: A burst scheduling access reordering mecha-
nism. In Proceedings of the 13th International Symposium on High-Performance
Computer Architecture, pages 285–294, February 2007.

79. Sherwood, T., Perelman, E., Hamerly, G., and Calder, B.: Automatically character-
izing large scale program behavior. In Proceedings of the Tenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 45–57, October 2002.

80. Snavely, A., Tullsen, D. M., and Voelker, G.: Symbiotic jobscheduling with priorities
for a simultaneous multithreading processor. In Proceedings of the 2002 ACM
International Conference on Measurement and Modeling of Computer Systems,
pages 66–76, 2002.

81. Standard Performance Evaluation Corporation: SPEC CPU2006. http://www.spec.org.

82. Sun, G., Dong, X., Xie, Y., Li, J., and Chen, Y.: A novel architecture of the 3d stacked
MRAM L2 cache for CMPs. In Proceedings of the 15th International Symposium
on High Performance Computer Architecture, pages 239–249, 2009.

83. Sun, G., Joo, Y., Chen, Y., Niu, D., Xie, Y., Chen, Y., and Li, H.: A hybrid solid-
state storage architecture for the performance, energy consumption, and life-
time improvement. In Proceedings of the 16th International Symposium on High
Performance Computer Architecture, pages 1–12, 2010.

84. Synopsys Corp.: Synopsys design compiler. http://www.synopsys.com/products/

logic/design compiler.html.

85. Udipi, A., Muralimanohar, N., Chatterjee, N., Balasubramonian, R., Davis, A., and
Jouppi, N.: Rethinking DRAM design and organization for energy-constrained
multi-cores. In Proceedings of the 37th Annual International Symposium on
Computer Architecture, pages 175–186, 2010.

CITED LITERATURE (Continued)

107

86. Vogt, P. and Haas, J.: Fully-Buffered DIMM technology moves enterprise platforms to the
next level. http://www.intel.com/technology/magazine/computing/fully-buffered-
dimm-0305.htm, 2005.

87. Wilkerson, C., Alameldeen, A. R., Chishti, Z., Wu, W., Somasekhar, D., and
Lu, S.-L.: Reducing cache power with low-cost, multi-bit error-correcting
codes. In Proceedings of the 37th Annual International Symposium on Computer
Architecture, pages 83–93, 2010.

88. Wu, X., Li, J., Zhang, L., Speight, E., Rajamony, R., and Xie, Y.: Hybrid cache archi-
tecture with disparate memory technologies. In Proceedings of the 36th Annual
International Symposium on Computer Architecture, pages 34–45, 2009.

89. Xu, W., Liu, J., and Zhang, T.: Data manipulation techniques to reduce phase change
memory write energy. In Proceedings of the 14th ACM/IEEE international
symposium on Low power electronics and design, pages 237–242, 2009.

90. Yoon, D. H., Chang, J., Muralimanohar, N., and Ranganathan, P.: Boom: Enabling mo-
bile memory based low-power server DIMMs. In Proceedings of the 39th Annual
International Symposium on Computer Architecture, pages 25–36, 2012.

91. Yoon, D. H. and Erez, M.: Virtualized and flexible ECC for main mem-
ory. In Proceedings of the Fifteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 397–408,
2010.

92. Yoon, D. H., Muralimanohar, N., Chang, J., Ranganathan, P., Jouppi, N., and
Erez, M.: FREE-p: Protecting non-volatile memory against both hard and
soft errors. In 17th International Conference on High-Performance Computer
Architecture, pages 466–477, February 2011.

93. Zhang, L., Fang, Z., Parker, M., Mathew, B. K., Schaelicke, L., Carter, J. B., Hsieh,
W. C., and McKee, S. A.: The Impulse memory controller. IEEE Transactions
on Computers, 50(11):1117–1132, November 2001.

94. Zhang, W. and Li, T.: Characterizing and mitigating the impact of process varia-
tions on phase change based memory systems. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 2–13, 2009.

CITED LITERATURE (Continued)

108

95. Zhang, Z., Zhu, Z., and Zhang, X.: A permutation-based page interleaving scheme to
reduce row-buffer conflicts and exploit data locality. In Proceedings of the 33rd
International Symposium on Microarchitecture, pages 32–41, 2000.

96. Zheng, H., Lin, J., Zhang, Z., Gorbatov, E., David, H., and Zhu, Z.: Mini-rank: Adap-
tive DRAM architecture for improving memory power efficiency. In Proceedings of
the 41st International Symposium on Microarchitecture, pages 210–221, Novem-
ber 2008.

97. Zheng, H., Lin, J., Zhang, Z., and Zhu, Z.: Decoupled DIMM: building high-bandwidth
memory system using low-speed DRAM devices. In Proceedings of the 36th
International Symposium on Computer Architecture, pages 255–265, June 2009.

98. Zheng, H. and Zhu, Z.: Power and performance trade-offs in contemporary dram system
designs for multicore processors. IEEE Transactions on Computers. accepted.

99. Zhou, P., Zhao, B., Yang, J., and Zhang, Y.: A durable and energy efficient main mem-
ory using phase change memory technology. In Proceedings of the 36th Annual
International Symposium on Computer Architecture, pages 14–23, 2009.

100. Zhu, Z. and Zhang, Z.: A performance comparison of DRAM memory system optimiza-
tions for SMT processors. In Proceedings of the 11th International Symposium
on High-Performance Computer Architecture, pages 213–224, 2005.

101. Zhu, Z., Zhang, Z., and Zhang, X.: Fine-grain priority scheduling on multi-
channel memory systems. In Proceedings the Eighth International Symposium
on High-Performance Computer Architecture, pages 107–116, February 2002.

CITED LITERATURE (Continued)

EDUCATION Ph.D. in Computer Engineering 08/2007 – 08/2013
Department of Electrical and Computer Engineering (ECE),
University of Illinois at Chicago (UIC), United States

M.E. in Computer Architecture 09/2005 – 05/2007
School of Computer Science and Technology (CS)
Huazhong University of Science and Technology (HUST), China

B.E. in Computer Science 09/2001 – 05/2005
School of Computer Science and Technology (CS)
Huazhong University of Science and Technology (HUST), China

B.E. in Communication Engineering 09/2001 – 05/2005
School of Computer Science and Technology (CS)
Huazhong University of Science and Technology (HUST), China

PUBLICATIONS Journal Papers
- Kun Fang, Hongzhong Zheng, Jiang Lin, Zhao Zhang, Zhichun Zhu, “Mini-Rank:

A Power-Efficient DDRx DRAM Memory Architecture,” IEEE Transactions on Com-
puters, 02 Oct. 2012. IEEE computer Society Digital Library. IEEE Computer Society,
http://doi.ieeecomputersociety.org/10.1109/TC.2012.240

Conference Papers
- Kun Fang and Zhichun Zhu, “Conservative Row Activation to Improve Memory

Power Efficiency”, The 27th International Conference on Supercomputing (ICS), Pages
81–90, Eugene, Oregon, June 10-14, 2013

- Kun Fang, Long Chen, Zhao Zhang and Zhichun Zhu, “Memory Architecture for
Integrating Emerging Memory Technologies”, The 20th International Conference on
Parallel Architectures and Compilation Techniques (PACT), Pages 403–412, October
10-14, 2011.

- Kun Fang, Hongzhong Zheng and Zhichun Zhu, “Heterogeneous Mini-rank: Adap-
tive, Power-Efficient Memory Architecture”, In Proceedings of the 2010 International
Conference on Parallel Processing (ICPP-2010), Pages 21–29, San Diego, CA, Septem-
ber 13-16, 2010.

PATENTS - Hai Jin, Zhiyuan Shao, Kun Fang, Shi Luo and Huacai Chen, “A Parallel Multi-CPU
Virtual Machine”, China Patent ZL200710168720.9, issued December 23, 2009.

RESEARCH
EXPERIENCES

Research Assistant with Prof. Zhichun Zhu 08/2007 – 06/2013
Department of Electrical and Computer Engineering, University of Illinois at Chicago,
Chicago
• Recent Research: Conservative row activation 06/2012 - 03/2013
- Delay activation to precharged rank to let it stay in low power mode longer to save

power if data bus is busy.
• Recent Research: Dynamic heterogeneous mini-rank 09/2011 - 05/2012

VITA

109

- Investigate how to dynamically manage and assign heterogeneous mini-rank config-
uration based on application bandwidth requirement.

- Provide a hardware/software support for efficiently utilize heterogeneous mini-rank
design.

- Port memory simulation module to MARSSx86 simulator.

• Past Research: Universal memory architecture 01/2010 - 03/2011
- Build a Universal Memory Architectural framework to support different memory

technologies in one system.
- Implement the proposed architecture framework and integrated into our memory

module.
- Cross compile SPEC2006 alpha binary on fedora 11 box.
- Build detailed memory simulation module for M5 2.0 simulator.

• Past Research: Heterogeneous mini-rank 11/2008 - 04/2010
- Making different mini-rank configurations co-exist in a memory system to obtain

near optimal power efficiency of memory system.
- Assigning difference memory configurations to applications to reduce memory power

while maintaining performance.
- Implement the proposed architecture and integrated into M5 1.0 simulator.

Research Assistant with Prof. Zhiyuan Shao 09/2005 – 05/2007
Key Lab of Services Computing Technology and System, the Ministry of Education
(SCTS)
Key Lab of Cluster and Grid Computing Lab, the Hubei Province (CGCL)
School of Computer Science and Technology (CS)
Huazhong University of Science and Technology (HUST), China
• Project: Parallelization of Boches functional simulator
- Making each simulated CPU of Boches simulator into threads and execute in parallel.

TEACHING
EXPERIENCE

Teaching Assistant ECE267: Computer Organization I Fall 2007, Spring 2008
• Computer organization; assembly language programming; memory, CPU and I/O

organization; programming techniques and tools; programming laboratory.
Teaching Assistant ECE367: Microprocessor Based Design Fall 2008
• Microprocessor architecture; micro programmed machines; control signals and tim-

ing; system buses; parallel and serial interfacing; interrupt processing.

WORKING
EXPERIENCE

GPU Architecture Intern NVIDIA Summer 2011
• Working on a detailed GPU simulator in memory system team.
• Implement functions for coordinating last level cache and frame buffer. Implement

new memory controller functions for supporting GDDR5 memory device.

AWARDS - Memory Scheduling Championship, Energy Track. 3rd JILP Workshop on Computer
Architecture Competitions (JWAC-3), 2012

- Excellent Undergraduate Student, HUST, 2005

VITA (Continued)
110

