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CONTRIBUTION OF AUTHORS 

 

Chapter 1 is an introduction to bearings, condition-based maintenance and acoustic emission.  

Chapter 2 is a literature review covering the state of the art techniques available for bearing fault 

diagnostics.  Chapter 3 provides motivation for the research presented herein.  Chapter 4 presents 

the methodology used for the results shown in Chapter 6.  The majority of the content is 

composed of previously published work (Van Hecke, B., Qu, Y., and He, D., 2014, “Bearing 

fault diagnosis based on a new acoustic emission sensor technique”, Proceedings of the 

Institution of Mechanical Engineers Part O: Journal of Risk and Reliability, Vol. 229, No. 2, 

DOI: 10.1177/1748006X14558900.; Van Hecke, B., He, D., and Qu, Y., 2014, “On the use of 

spectral averaging of acoustic emission signals for bearing fault diagnostics”, ASME Journal of 

Vibration and Acoustics, Vol. 136, No. 6, DOI: 10.1115/1.4028322.) for which I was the first 

author.  My advisor, Dr. David He supervised the research and edited the manuscripts and Dr. 

Yongzhi Qu aided in collection of the data.  Chapter 5 presents the experimental setup for the 

research presented in this dissertation.  Chapter 6 presents the results of multiple case studies.  

Section 6.1 and 6.2 present the data used for the results in this dissertation.  Section 6.3, 6.5 and 

6.6 are results from the aforementioned publications and section 6.4 presents results from 

another previously published manuscript (Van Hecke, B., Qu, Y., He, D., and Bechhoefer, E., 

2014, “A new spectral average-based bearing fault diagnostic approach”, Journal of Failure 

Analysis and Prevention, Vol. 14, No. 3, pp. 354– 362.) in which Dr. David He supervised the 

research and edited the manuscript, Dr. Yongzhi Qu assisted in data collection and Dr. Eric 

Bechhoefer suggested the investigation of Welch’s method.   Section 6.7 and 6.8 are unpublished 

investigations on low speed bearing diagnostics using AE sensors and planet gear carrier fatigue 

crack detection on a UH-60A helicopter using accelerometer data.  Finally, Chapter 7 provides a 

synthesis of the research presented in this dissertation.   
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SUMMARY 

 

Acoustic emission (AE) has proven to be an effective nondestructive technique to 

investigate the behavior of material under mechanical stress.  Compared with vibration 

techniques, AE offers several advantages.  For example, AE techniques are capable of incipient 

fault detection.  Additionally, it is sensitive to fault location, allowing its use for fault location 

detection.  When applied to rolling element bearings, it has been shown that AE techniques can 

detect faults earlier than other technologies (Mba and Rao, 2006; Yoshioka and Fujiwara, 1982).  

However, there are a number of challenges in the implementation of AE techniques.  Namely, in 

comparison with vibration sensors, AE sensors require a much higher sampling rate.  

Additionally, it requires significant storage and imposes a computational burden when the 

volume of data is large.  Lastly, the non-stationary behaviors of AE signals make traditional 

frequency analysis methods ineffective.       

In this research, novel AE based methodology and tools are developed that combine a 

heterodyned based frequency reduction technique, time synchronous resampling, and spectral 

averaging for bearing fault diagnostics.  AE signals from seeded fault bearings are acquired 

simultaneously with a tachometer signal using a frequency reduction technique on a bearing test 

rig.  Using the crossing times of the tachometer, the signal is time synchronously resampled and 

spectrally averaged.  Finally, after computation of several condition indicators (CIs), bearing 

fault diagnosis can be achieved. 
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SUMMARY (continued) 

For experimental purposes, a data acquisition system was developed to enable the testing 

of the proposed methodology.  For validation, steel type 6205-2RS bearings were seeded with 

inner race, outer race, cage, and ball faults for data collection.  Then, both AE and accelerometer 

data was acquired and processed to validate the fault diagnosis capability of the proposed 

methodology.  The results indicate that the proposed signal processing technique efficiently and 

effectively detects all of the various bearing fault types at both high and low shaft speed ranges.  

The outcome of this research is effective and efficient methodology and tools that extract bearing 

fault features for bearing fault diagnosis with validation using the AE and accelerometer signals 

of seeded fault bearings.  

The contributions of this research include: 

(1) Development of effective physics based methodology and tools for bearing fault 

diagnostics using AE sensors.  This methodology is developed based on spectral 

averaging and is the first attempt in applying a synchronous resampling based spectral 

averaging approach to quantify the AE signals for bearing fault diagnostics.  

Additionally, Current AE based bearing fault diagnostic methods are mainly based on 

data-driven approaches (He et al., 2011; Li et al., 2012).   

(2) Development of efficient AE based bearing fault diagnostic methodology and tools.  This 

methodology allows the AE signals to be sampled at a low sampling rate that is 

comparable to vibration techniques.  Current AE based fault diagnostic methodologies 

use high sampling rates up to 10 MHz.   
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SUMMARY (continued) 

(3) Validation of the developed AE based bearing fault diagnostic methodology and tools 

using steel bearings tested at low (2 – 10 Hz) and high speed (> 10 Hz) applications.  The 

diagnosis of all 4 bearing fault types in the low shaft speed range has not been reported in 

literature.     

(4) The methodology is validated for all 4 types of bearing faults: inner race, outer race, 

cage, and ball.  The current averaging based bearing diagnostic literature reported only 

inner race or outer race fault detection (McFadden and Toozhy, 2000; Siegel et al., 2012).  

(5) Current TSA based bearing fault diagnostic literature requires the need for multiple TSAs 

(McFadden and Toozhy, 2000; Siegel et al., 2012). By implementing a spectral averaging 

approach, the need for multiple TSAs is eliminated and potential bearing slippage and 

fluctuations in shaft speed are accounted for.     

(6) The methodology has been extended and validated for high speed bearing fault diagnosis 

using accelerometer data.  A comparison on the effectiveness of the methodology using 

AE and vibration data has been conducted which has not been reported in literature.   

(7) The methodology has been extended and validated for vibration based planet gear carrier 

fatigue crack detection for test cell and on-aircraft UH-60A helicopter data.  Successful 

results for on-aircraft data have not been presented in literature.   
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1. INTRODUCTION 

 

1.1 Rolling Element Bearings – A Brief Introduction 

 

A rolling element bearing is a bearing in which rolling elements, typically in the form of 

rolling balls, are confined between two bearing rings called the inner and outer races.  Rolling 

element bearings typically consist of the inner and outer raceways, the rolling balls, and the cage 

which limits the balls from sliding from their intended path.  Figure 1.1 presents the components 

of a rolling bearing.  Rolling bearings are constructed in such a way, that the balls can rotate with 

little resistance, while keeping them in their designated path.  One of the earliest known 

applications of rolling element bearings consisted of a set of logs below a large sheet of stone.  

As the stone was moved, the logs would rotate, allowing the effective relocation of very heavy 

objects.  Bearings can be found in numerous mechanical devices from the wheels of cars to 

virtually any mechanical object that has any type of rotational motion.   

 

 

Figure 1.1.  Components of a rolling bearing 

 

 

 

 

Inner race 

Outer race Rolling ball 

Cage 
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Rolling element bearings can be found in different forms, varying the size, weight, load 

capacity, durability, frictional capacity, etc.  They typically are designed to find the proper 

tradeoff of the above features that allow the job they are intended to accomplish to be achieved 

efficiently.  Such bearings are composed of many different materials such as plastic, steel, 

ceramic, or even hybrids of the above.  Additionally, rolling element bearings can contain 

lubricants such as oil to reduce heat and friction.  However, bearings such as the type 6205-RS 

plastic bearings used in the food industry do not contain such lubricants.  The material 

composition and parameter design is selected based on the intended use of the bearing.  For 

example, steel bearings are commonly used in automobiles and heavy machinery while plastic 

bearings have common uses in the food and medical industries.   

Rolling element bearings can vary in size and load capacity.  The inner and outer races 

are typically designed with grooves such that rolling balls have a slightly loose fit.  They are 

designed this way to keep them in a narrow path, but simultaneously limiting the ball contacts to 

limit friction.  Additionally, cages are often implemented to prevent the balls from rubbing 

against one another.  Besides preventing the contact between other balls, cages also reduce 

friction, wear, and increase the useful life of the bearing.   

1.2 Bearing Fault Diagnosis and Condition-Based Maintenance 

 

Most machines and mechanical devices that have any moving components are likely to 

contain at least some type of bearing.  Over time, these bearings can fail for varying reasons 

from both natural causes and user related issues.  In fact, it has been reported that roughly 40-

50% of bearing failure is the result of improper lubrication, 25-30% improper mounting, 20% 

from other causes, and less than 10% from reaching the natural fatigue limit (Applied Industrial 
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Technologies, 2009).  This clearly indicates that the majority of bearing failures are caused by 

the user and other modes of failure that are not the result of the intended design, resulting in 

numerous instances where failure could have been prevented.  More recently, it was reported that 

the global demand for bearings is projected to rise 7.3% annually to $104.5 billion in 2018 

(bearing-news, 2014).  Considering the above, it is clear that there is both a significant global 

demand for bearings, and a major source of failure is due to improper maintenance or the lack of.  

Thus, if bearings could be monitored and maintained, the remaining useful life could be 

maximized, possibly resulting in the reduction of significant repair/replacement expenditures.  

Hence, the development of methodology and tools that facilitate the maintenance and detection 

of bearing faults in the propagation stage has the potential to make a global impact in the 

industry.   

Because rolling element bearings typically are implemented in non-ideal working 

environments, minor problems can occur that can cause them to fail much quicker than designed.  

Such harsh conditions include various factors such as fatigue, wear, improper use or installation, 

lack of lubrication, harsh environmental conditions, etc. The introduction of such harsh 

conditions can equate to the development of abrasion, fatigue, and other types of bearing faults.  

Abrasion can occur when contaminants enter the inside of the bearing or get mixed in the 

lubricant.  When this occurs, such contaminants can scrape any of the interior components of the 

bearing. Although bearings are designed to have a specific lifespan, the introduction of harsh 

conditions can cause the parts of the bearing to wear out or fatigue.  When this occurs, the 

bearing can fail much earlier than intended.  Such conditions can cause failure or fault 

development in one or more of the bearing components.   
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Much research has been developed concerning the fault detection and diagnosis of rolling 

element bearings.  One successful implemented strategy in the field of machine fault diagnosis is 

condition-based maintenance (CBM).  In CBM, the health condition of the machine is observed 

via a health monitoring system.  The output of the health monitoring schedule can suggest when 

maintenance on a given machine is required.  However, before CBM can be implemented, 

efficient and effective fault diagnosis tools need to be developed.  Thus, the development of such 

tools is the focus of this research.  

To develop fault diagnostic tools, a number of tasks need to be accomplished.  The first is 

data acquisition.  This is typically accomplished through the use of sensors that can collect 

parameters such as acoustic emission, vibration, temperature, pressure, and so on.  For bearing 

fault diagnosis, traditional sensors include vibration and speed sensors.  Recently, newer sensors 

such as the acoustic emission sensor have gained attention.  This research focuses on AE signals 

and their use for bearing fault diagnosis.   

Once the data is acquired, the next step is to extract and process the signals.  In a working 

environment, the acquired signals typically contain a lot of noise.  To extract the fault signal, 

various techniques have been utilized.  Such developed techniques include the Hilbert transform, 

power spectral density, time synchronous averaging (TSA), and wavelet analysis among others.  

Various techniques have been applied to both vibration and acoustic signals.   

Lastly, after the data is acquired, and useful signal extracted, the condition of the bearing 

needs to be determined.  Many data-driven methods such as data mining and neural networks 

have been shown to be effective for bearing fault diagnosis (He et al., 2011a).  However, these 

methods require a significant amount of training data for their successful implementation.  A 
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different approach would be to move in the direction of online fault diagnosis, in which the 

condition can be determined without the need to train a model with known faulty information.  

To move in this direction, physics based approaches such as TSA can be investigated.    

To date, most bearing fault diagnosis systems are based on vibration signals, although 

other approaches have been investigated.  A detailed literature review of vibration, AE and other 

bearing fault diagnostic techniques is provided in section 2.          

1.3 AE Detection and Challenges 
 

Acoustic emission (AE) has proven to be an effective nondestructive technique to 

investigate the behavior of material under mechanical stress.  AE is commonly defined as 

transient elastic waves within materials that are caused by localized stress energy.  These waves 

are short lived bursts of energy that are caused by a sudden internal change of state within a 

material.  All materials have specific elastic properties.  Any imposed force on a material can 

cause strain or compression and the elastic properties determine how that material will return to 

its original condition.  When a crack propagates, a rapid release of energy called an AE event 

occurs.  This AE event corresponds to an AE burst signal in the collected data. Figure 1.2 

presents some AE bursts excited by a bearing seeded with a cage fault at a shaft speed of 15 Hz.     
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Figure 1.2.  Example of an AE burst signal 

 

The defects caused under stress are what generate the AE event.  Using an AE sensor, the 

AE events can be measured, recorded, and processed for analysis.  Typically, an AE system 

contains an AE sensor, preamplifier, and a data acquisition (DAQ) board.  The AE sensor 

converts the mechanical movement of the material into an electrical voltage signal.  The 

preamplifier amplifies the voltage output before the signal is fed to the DAQ board, and is also 

intended to reduce the background noise.  The location of the sensor results in a delay, or arrival 

time, of the AE burst.  By measuring this delay and the amplitude of the burst, the burst location 

can be approximated.  Figure 1.3 shows the typical AE signal features used for analysis.  

Amplitude is the greatest measured voltage of the waveform.  Rise time is the time interval 

between the first threshold crossing and the peak of the signal.  The duration is the time between 

the first and last threshold crossings.  Lastly, counts refer to the number of times the signal 

amplitude is greater than the threshold.    
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Figure 1.3.  AE signal features 

 

When applied to rolling element bearings, it has been shown that AE techniques can 

detect faults earlier than other technologies (Mba and Rao, 2006; Yoshioka and Fujiwara, 1982).  

Compared with vibration centered approaches, AE offers several advantages.  For example, AE 

techniques are capable of incipient fault detection.  Additionally, it is sensitive to fault location, 

allowing its use for fault location detection.  Also, AE sensors can retrieve information in 

frequencies that are much higher than vibration signals. However, there are a number of 

difficulties in the implementation of AE techniques.  Namely, in comparison with vibration 

sensors, AE sensors require a much higher sampling rate (typically above 1MHz).  Additionally, 

it requires significant storage and imposes a computational burden when the volume of data is 

large.  Lastly, the non-stationary behaviors of AE signals make traditional frequency analysis 

methods ineffective.       
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1.4 Objective 

 

This research is emphasized on the development of AE based bearing fault diagnostic 

tools explores the potential of future applications of AE based techniques for bearing fault 

diagnosis in industry.  These tools are developed with the goal of creating efficient and low cost 

diagnostic techniques that could be realistically applied in a commercial environment.   

For experimental purposes, a bearing test rig was developed and constructed in the 

Intelligent Systems Modeling and Development Laboratory.  Moreover, a data acquisition 

system was designed to enable the testing of the proposed methodology.  Multiple type 6205-

2RS steel bearings were seeded with the various fault types that have been observed and 

established in prior research and industry.  Additionally, AE and accelerometer data was 

acquired and processed to validate the fault detection and diagnostic ability of the implemented 

methodology.  The results indicate that the proposed signal processing technique efficiently and 

effectively detects all of the various bearing fault types, allowing fault diagnosis to be 

accomplished.  The outcome of this research is effective and efficient methodology and tools that 

extract bearing fault features for bearing fault diagnosis with validation using the AE and 

accelerometer signals of seeded fault bearings.  Validation was conducted at both low (2 – 10 

Hz) and high (> 10 Hz) shaft speed ranges.  Additionally, this research determined the 

quantitative relationship between the features of the various fault types that are common amongst 

instances of bearing failure as well as completed a comparative evaluation of AE against 

vibration centered techniques.  This research was also extended for planet gear carrier fatigue 

crack detection for the UH-60A helicopter using test cell and on-aircraft vibration data.  
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1.5 Outline 

 

The remainder of this dissertation is structured as follows.  Section 2 provides a detailed 

literature review of the current state of the art AE based bearing fault diagnostic techniques as 

well as vibration and microphone centered approaches and a review on low speed bearing 

analysis. Also, a review on UH-60A helicopter planet gear carrier fatigue crack detection 

techniques using vibration sensors is provided.  Section 3 presents the motivation as to why this 

research should be conducted.  In Section 4, the proposed methodology is explained in detail.  

Section 5 presents the experimental setup and explanation of the data collected.  Lastly, section 6 

presents the validation results and section 7 concludes this dissertation.   
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2. LITERATURE REVIEW 

 

2.1 Acoustic Emission Based Bearing Fault Diagnostics  

 

(Parts of the literature review in this chapter were previously published as Van Hecke, B., Qu, 

Y., and He, D., 2014, “Bearing fault diagnosis based on a new acoustic emission sensor 

technique”, Proceedings of the Institution of Mechanical Engineers Part O: Journal of Risk and 

Reliability, Vol. 229, No. 2, DOI: 10.1177/1748006X14558900. and Van Hecke, B., He, D., and 

Qu, Y., 2014, “On the use of spectral averaging of acoustic emission signals for bearing fault 

diagnostics”, ASME Journal of Vibration and Acoustics, Vol. 136, No. 6, DOI: 

10.1115/1.4028322.) 

2.1.1 Acoustic Emission – An Alternative to Vibration Analysis  

Acoustic emission (AE) is the generation of transient elastic waves resulting from a rapid 

release of strain energy caused by a deformity or damage propagation within or on the surface of 

a material under physical stress.  Through non-destructive testing, AE has been proven to be a 

critical tool for condition monitoring, which has resulted in studies that examine the use of AE 

for the early detection of machine faults.  However, the cost and difficulty of analyzing AE data 

has limited its application in the industry.  For years, vibration analysis has long been established 

in the field of machine condition monitoring.  It has successively been applied to the detection of 

faults, and many approaches of analysis have been validated.  As compared with AE data, 

vibration signals require a much lower sampling rate, making it cheaper to process and interpret. 

This equates to a lower cost alternative as opposed to the computational burden of AE analysis 

that is resultant of sampling rates as high as several MHz.  Also, one disadvantage of vibration 

analysis is that by the time a significant change in the signal is observed, the remaining useful 

life has been significantly depleted.  AE covers a wide frequency range (100 kHz to 1 MHz) and 

has been proven to be effective in the earlier detection of damage propagation.  To date, the 
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analysis of AE signals for machine fault diagnosis is currently a topic of interest in the field of 

condition based maintenance.  

Traditional AE parameters and diagnostic approaches have been well developed and 

reviewed comprehensively in the literature (Mba and Rao, 2006).  In the application to rotating 

machinery diagnosis, it has been shown that effective AE parameters include amplitude, rms, 

kurtosis, crest factor, energy, counts, and events (Mathews, 1983).  As mentioned previously, the 

frequency range of AE signals is so vast that it is difficult to analyze and has prevented the 

widespread success of its use in the field of condition based maintenance.  However, the ability 

for earlier fault detection and non-destructive testing has made AE a current topic of interest 

among researchers. 

2.1.2 Acoustic Emission – A Bearing Diagnostic Tool 

Many Studies have been conducted that monitor the AE response of bearings containing 

defects.  When production is complete, and bearings are implemented in industry, various stress 

factors cause failures and decrease their remaining useful life.  Examples of such factors include 

poor maintenance, improper lubrication schedules, incorrect installation or application, and harsh 

environmental conditions.  These factors can result in bearing failures such as spalling, pitting, 

bearing seizure, etc.  Because AE methods can detect damage at the early stage of development, 

its use as a bearing diagnostic tool has been a topic of investigation and nearly all research on 

this topic has been completed through the use of experimental test rigs.   

One of the first known studies that applied AE analysis to the detection of incipient 

failure in bearings utilized the AE counts per unit of time resulting from an experimental rig with 

bearings containing artificially seeded faults (Balderston, 1969).  The investigated fault types 

were inner race, outer race, and ball defects, as well as the absence of proper lubrication.  
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Balderston (1969) sought to make the comparison between vibration and AE signals in their 

respective frequency ranges.   He also noted that continuous AE features could be observed in 

bearings containing a low level of lubrication, and burst AE features could be attributed to the 

artificially seeded defects on both the inner and outer races as well as the rolling elements.  A 

decade later, AE was applied to investigate the condition of slowly rotating anti-friction bearings 

utilized on cranes that were implemented for gas production (Rogers, 1979).  Due to the low 

speed of the bearings and the low frequency range of vibration analysis, such techniques were 

found to be ineffective in that type of implementation, and it was concluded that AE analysis was 

more informative. 

Later, another study made the conclusion that signals obtained in the AE frequency range 

were indicative of bearing defects as opposed to other problematic sources such as misalignment 

and improper balance (Catlin Jr., 1983).   It was also found that since AE signals diminish 

rapidly, if the transducer is applied in a location close to the bearing, high frequency content 

resulting from bearing faults could be detected.   Other researchers have shown that AE 

parameters were able to identify bearing defects before their appearance in the vibration range 

(Yoshioka and Fujiwara, 1982 and 1984).  Additionally, this research combined AE features and 

vibration signals to afford the ability to measure the duration of crack propagation resulting from 

bearing fatigue tests.  This led to an investigation that used the AE technique for the detection of 

subsurface cracks resulting from rolling contact fatigue (Yoshioka, 1992).  The method provided 

the ability to determine the position of sub-surface fatigue cracks by relating the crack positions 

to the location of the AE signal source. 

Other researchers have focused on combining AE and pattern recognition techniques for 

the early detection of bearing faults (Li and Li, 1985).  This study was conducted by seeding 
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faults on the roller and outer race.  It was shown that AE events occurring at a rate equivalent to 

the bearing defect frequency provided enough evidence to determine the presence of a defect.  

Although the study could not achieve results for the rolling element, results for the outer race 

were presented.  However, it should be noted that this was the first attempt to utilize AE for 

roller defect diagnosis.   

The conclusions of Yoshioka (1982 and 1984) were later validated in a study that also 

made the observation that AE techniques are able to detect bearing faults earlier than vibration 

analysis methods (Hawman and Galinaitis, 1988).   This study obtained results by applying the 

transducer directly on the bearing outer race, and the conclusion was made by modulating the 

high frequency AE bursts that occurred at the defect frequency of the outer race.  By the early 

90’s, there were a number of studies that involved the use of AE analysis as a tool for bearing 

diagnostics.  Bansal et al. (1990) sought to investigate the quality of ball bearings using the AE 

technique, with the goal of making a comparison with the results when using shock impulse 

testing.  The study was concerned with the use of AE analysis as a quality inspection tool to 

classify new versus reconditioned bearings.  The conclusion was made that both methods were 

suitable for quality inspection purposes and that bearing conditions could be categorized using 

AE techniques.  Additionally, it was shown that the peak to peak amplitude level for both new 

and reconditioned bearings did not significantly increase as the loading increased; however, it 

was noted that in some cases, the peak values of reconditioned bearings were five times that of a 

new bearing.   

Another study used a resonant type transducer to investigate outer race faults by utilizing 

the peak amplitude and AE count parameters (Tandon and Nakra, 1990).  This study 

incorporated the use of increasing loads and rotational speeds, and it was found that AE counts 
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were only capable for fault detection when defects were less than 250μm.  However, it was also 

shown that peak amplitude could be utilized for this purpose regardless of the size of the defect.  

Around the same time period, another study developed a variation of the AE count parameter for 

fault diagnosis of different sized ball bearings (Tan, 1990).  This study not only established a 

threshold level for AE counts, but also showed that the value of the count is dependent on the AE 

signals frequency and that the rate of the count is reliant on the amplitudes of AE pulses.  

The aforementioned research led to a study that compared the use of current vibration and 

AE techniques for bearing fault identification (Tandon and Nakra, 1992).  It was shown that 

inner race defects were best identified by measuring AE counts when compared to using the AE 

peak amplitude or vibration envelope methods.  However, it was also noted that AE counts from 

inner race defects decrease rapidly as the bearing load is increased. For outer race detection, the 

envelope method provided the best results for high loading conditions, and in the case of low 

rotational speeds AE counts is the dominant method.  Lastly, for ball defect detection, it was 

shown the best results were achieved using the AE peak amplitude technique.  This comparison 

was later updated by comparing additional diagnostic developments such as vibration methods in 

both the time and frequency domains, alternate signal processing methods such as the high-

frequency resonance technique, as well as AE measurement techniques and newer developments 

such as wavelet transforms (Tandon and Choudhury, 1999).  This study presented the strengths 

and weaknesses of the various methods, with emphasis on vibration methods which have been 

widely accepted in the industry.  In regards to AE analysis, the reiteration that some studies have 

shown the ability to detect faults before vibration analysis was noted.  Also suggested was the 

use of demodulated AE signals for bearing defect detection and that the direction of the research 

has shifted towards a focus on pattern recognition methods and other data driven techniques.   
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Around the same time period, Yoshioka et al. (1999) developed a method to measure the 

time intervals of acoustic emission generation for the diagnostics of rolling bearings. It was 

found that the AE counts per minute began to increase hours before a significant increase in 

vibration rms levels was observed.  However, the AE count method was found to be highly 

dependent on the threshold set by the experimenter.  A year later, another study simulated faults 

in the roller and inner race using the spark erosion method (Choudhury and Tandon, 2000).  This 

investigation looked at both healthy and defective bearings of various sizes.  It was shown that 

for small defect sizes, ringdown counts of the AE signal provided the ability for fault detection 

on both the inner race and roller of the tested bearings.  However, it was also observed that 

counts ceased to increase after a certain defect size, and thus, counts could no longer provide any 

information on the progression of the fault.  It was also found that as fault size increases, more 

events occur and both peak amplitudes and ringdown counts also tend to increase. 

Another study modified an experimental test rig so that artificially seeded faults could be 

applied to both the inner and outer races of the test bearing (Morhain and Mba, 2003; Mba, 

2003).  The modified rig contained a significant amount of acoustic emission noise which 

provided a realistic atmosphere for diagnostic testing.  The diagnostic features used for this study 

included amplitude, rms, energy, and AE counts.  The results of the study concluded that rms and 

count values were robust methods capable of bearing fault detection.  It was also noted that rms 

and energy tended to correlate with increases in speed, load, and the size of the fault.  

Additionally, it was validated that although AE maximum amplitude tended to increase with 

speed, it did not correlate with load and defect size.  It was also noted that the threshold level 

should be at least 30 percent of the lowest speed and operating conditions; however, it was 

suggested that there is no threshold level that can be applied successfully for all operating 
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conditions.  In addition to validating the work of Choudhury and Tandon (2000), the results 

contradicted the conclusions of Tandon and Nakra (1990).  It was concluded that AE counts 

could be used for fault detection for lengths up to 15 mm and widths of 1 mm. 

Later, a study was conducted that focused on the use of the AE technique for the 

determination of defect sizes within radially loaded bearings (Mba, 2008).  This study focused on 

bearings with outer race seeded defects of various sizes.  The contribution was the relation of 

fault size with AE burst duration.  The conclusion was made that as the length of the fault was 

increased, an increase in burst duration was observed.  Another study focused on the extraction 

of the characteristic frequency of the bearing from the AE signal (He et al., 2009).  This study 

explored the used of standard parameters of the signals to explore the source characteristics and 

sensitivity of the bearing faults. Then, another study was conducted that investigated bearing 

fault diagnosis of machines rotating at 100 rpm or less (Sako and Yoshie, 2010).  This research 

proposed methods for on-site fault diagnostics based on the AE envelope waveform.  It was 

shown that the proposed method was successful at speeds as low as 1 rpm. 

By 2011, the cyclostationarity vibration analysis technique, a method based on statistical 

moments, had been validated to be advantageous for bearing defect diagnosis.  A study was 

conducted that investigated the cyclostationarity of AE signals observed from a faulty bearing 

(Kilundu et al., 2011).  Using a tool that determines the presence of cyclostationarity called 

cyclic spectral correlation, a comparison was made to the traditional envelope spectrum 

technique.  The results indicated that cyclic spectral correlation was most efficient for small 

outer race defects and ineffective for inner race defect detection.  It was also proposed that the 

cyclostationarity method was more sensitive when compared to traditional features such as rms, 

kurtosis, and crest factor.   
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In the same year, another study was conducted that compared the applicability of AE and 

vibration technologies for the monitoring of rolling bearing degradation (Eftekharnejad et al., 

2011).  This was the first know attempt to compare the use of the kurtogram and spectral kurtosis 

in both AE and vibration data from a faulty bearing.  It was concluded that AE was more 

sensitive for incipient fault detection when compared to vibration.  Also, the application of 

spectral kurtosis analysis and the use of the kurtogram were both shown to be effective for AE 

and vibration signals.   

Other research has also made the vibration and AE comparison by testing the same 

defective bearing under three rotary speeds (Liu et al., 2011).  This research utilized the envelope 

analysis method for fault diagnosis.  It was shown that as the rotation speed was reduced, the 

quality of the AE signal decreased much quicker than the vibration signal.  It was also noted that 

before an AE sensor is implemented to industrial machinery, comes the need to reduce the 

amplitude of the high frequency component of the AE signal.  The research also resulted in the 

conclusion that the AE method is superior to vibration at high speeds; however, vibration may be 

a better alternative in low speed applications.   

Other researchers have focused on the application of AE technology as a diagnostic tool 

for full ceramic bearings.  Previously, research in the area had mainly focused on steel ball 

bearings.  This research resulted in the development of AE based condition indicators (CI) for 

full ceramic bearing fault detection and diagnosis (He et al., 2011a; He et al., 2011b; Li et al., 

2012).  This method, based on the Hilbert Huang transform (HHT), extracted AE features using 

the empirical mode decomposition (EMD) method to obtain intrinsic mode functions (IMF) and 

develop CIs from AE burst signals (He et al., 2011b).  Then, the CIs were used to establish a 

data mining based fault classifier utilizing the k-nearest neighbor (KNN) algorithm.  Full ceramic 
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bearings were seeded with outer race, inner race, ball, and cage faults.  The AE features used in 

this research were rms, kurtosis, and peak value.  These features were extracted from the IMFs 

created from the EMD method.  The results indicated that the group average of kurtosis provided 

the lowest classification error; however, no individual CI was able to achieve classification 

accuracy over 90%.  Additionally, it was found that classification accuracy can be significantly 

improved if a combination of individual CIs is utilized.  The best combination found was the 

group average of rms and standard deviation of rms, resulting in classification accuracy over 

92%.  It was also noted that the new technique was comparable to the performance of a neural 

network based algorithm. 

More recently, a study was conducted that developed parameters in order to reduce the 

required amount of data (Nienhaus et al., 2012).  The goal of the research was to reduce the 

necessary amount of data such that the online monitoring of slowly rotating roller bearings could 

be managed more efficiently.  Using the AE parameters rise time and fall time, a threshold level 

was established and AE burst information was retained while making a significant reduction in 

the size of the data file. Then, utilizing the normalized regression curve of an AE burst, the new 

parameter was developed.  It was shown that using the two characteristics, it is possible to 

separate inner race from outer race damage, and the maintenance of slow rotating machines 

using the method is achievable.   

Another study developed an intelligence diagnostic method for bearing fault detection 

using a combination of principal component analysis, rough sets, and a back propagated neural 

network (Pan et al., 2012).  Using a normalized AE signal, 15 symptom parameters such as mean 

value, rms, etc. were calculated.  Then, principal component analysis was implemented on the 

symptom matrix to reduce the number of parameters, and rough set theory applied to establish 
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classification rules.  Lastly, a back propagated neural network was implemented to accurately 

distinguish between the various bearing fault types.  More recently, another study investigated 

the approximate entropy analysis of the AE from various defects in rolling element bearings (He 

and Zhang, 2012).  The results provided an effective feature parameter of the AE signal to use 

for bearing defect detection.                       

2.2 Vibration Based Bearing Fault Diagnostics  

2.2.1 Vibration Analysis  

Presently, the quantification of vibration sensor output is the industry standard for 

bearing fault detection and diagnosis.  This area of research has resulted in many advances in the 

bearing fault diagnostic field.  For example, it has been shown that both wavelet analysis and the 

Fast Fourier Transform (FFT) combined with envelope detection can efficiently detect some of 

the known types of bearing faults (Tse et al., 2001).  Moreover, the combination of wavelet 

analysis with the Fourier transform has been shown to be more effective than either method 

employed alone (Yan et. al., 2009).  Other data driven methods such as empirical mode 

decomposition (EMD) has also resulted in the successful extraction of bearing fault features 

using a series of intrinsic mode functions (IMFs) (Lei et al., 2008; He et al., 2012b).  Some 

researchers have sought to investigate the integration of different bearing fault diagnostic 

techniques and have shown improvements in both diagnostic accuracy and robustness of the 

diagnosis system (Wei and Zhan-Sheng, 2009).  More recently, Mutual information based 

feature selection has also been shown to yield promising bearing fault classification results 

(Kappaganthu and Nataraj, 2011) and another study used kurtosis-based adaptive bandstop 

filtering to achieve bearing fault diagnosis results for low signal-to-noise and signal-to-

interference environments (Zhang, et al., 2013).  In addition to the advancement of diagnostic 

algorithms, some researched have sought to improve the sensors used to collect the bearing 
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signals.  For example, one study developed a new accelerometer that was proven effective for 

low speed roller bearing monitoring (Hou et al., 2010).       

Recently, a new version of the Lempel-Ziv complexity was developed based on the 

continuous wavelet transform (Hong and Liang, 2009).  This technique was shown to effectively 

measure the severity of both inner and outer race faults.  Another study presented a rolling 

bearing fault diagnosis technique based on correlation matching (Liu et al., 2012).  In this study, 

the method parameters were optimized using maximum kurtosis criteria and minima smoothness 

index.  It was shown that although the approach is effective in the extraction of bearing fault 

impulses from noisy bearing vibration signals, it was unsuitable for the vibration signal at 

varying rotating speeds.   The research methodology presented in this dissertation is shown to 

achieve bearing fault diagnosis while accounting for fluctuations in shaft speed. In (Cui et al., 

2014), matching pursuit, and its use for roller bearing vibration signal processing and fault 

diagnosis was also discussed.  In this paper, an adaptive matching pursuit algorithm that utilizes 

a novel impulse dictionary was introduced.   The new dictionary model improved the original 

model by incorporating the rotational speed of the bearing, fault size, bearing dimension, and 

other parameters.   

Another recent development used an integrated autoregressive/autoregressive conditional 

heteroscedasticity model to characterize faulty bearing vibration signals (Wang et al., 2012). The 

authors used the normalized model coefficients as feature vectors to allow the use of clustering 

for bearing fault classification.  More recently, dynamic load analysis of a rotor-bearing system 

was used to develop a roller bearing fault signal model (Cong et al., 2013).  In this study, inner 

and outer race faults were investigated, and it was shown that the precision of a bearing fault 

signal model could be improved by incorporating the rotor system influence factor.  An adaptive 
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wavelet stripping algorithm to extract simulated fault impact transients from an original bearing 

fault signal was proposed in (Wang et al., 2013).  The methodology presented in this paper was 

shown to extract the transients from fault signals with both low and high signal to noise ratios 

while reducing the computation time of the original wavelet stripping algorithm.    

Recently, there have been several developments on the detection and diagnosis of bearing 

faults.  One recent study presented a rolling bearing fault diagnosis approach using neural 

networks and a time/frequency-domain vibration approach (Li, B. et al., 2000).  This study 

showed that neural networks can aid in the diagnosis of various motor bearing faults using 

vibration data generated from a bearing test rig.  Neural networks have also been shown to be 

effective for condition monitoring when using statistical-time features (Prieto et al., 2013).  

Another study focused on rotating machinery in general and used a model-based approach for the 

detection and diagnosis of mechanical faults (Loparo et al., 2000).  This research developed a 

nonlinear filtering technique to address complex nonlinear vibration responses due to factors 

such as unbalance, changes in stiffness, and damping of the rotor bearing system.  Validation of 

the aforementioned technique was accomplished via the use low signal-to-noise environment 

simulations.  Another investigation presented a fault detection approach based on stator current 

monitoring for in situ bearing faults (Zhou et al., 2008).  In this paper, bearing fault features 

were extracted using a combination of noise cancellation and statistical process control 

techniques to detect out of control samples due to the degradation of lubrication starved bearings.  

Other research has presented a two-step data mining approach to classify defects in plastic 

bearings (He et al., 2013).  This study effectively used empirical mode decomposition (EMD) to 

extract time domain condition indicators (CIs) which were used as inputs in a supervised 

learning algorithm to classify bearing defects.   Other studies have presented effective bearing 
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defect techniques through the use of local and nonlocal preserving projection (Yu, 2012), trace 

ratio linear discriminant analysis (Jin et al., 2014), or the power spectral density (PSD) analysis 

of amplitude and frequency current-demodulated bearing signals for direct-drive wind turbines 

(Gong and Qiao, 2013).   

 

2.2.2 Time Synchronous Average – A Brief Introduction 

The field of condition based maintenance (CBM) has resulted in the development of 

various methods that aid in determining the condition of equipment, allowing maintenance 

decisions to be made based on that current condition. Development of effective equipment fault 

diagnostic tools is a key to the success of the CBM.  One example of such developments is time 

synchronous averaging (TSA), a proven technique that extracts periodic waveforms for the 

analysis of vibration signals (Braun, 1975).  The computation of TSA requires the knowledge of 

either the repetition frequency of interest, or a synchronous signal that is free of noise.  Using 

either the repetition frequency or the synchronous signal, successive periods of the noisy signal 

can be sampled and averaged.   

The application of synchronous averaging to the tooth meshing vibration of gears within 

a gear box has been well developed (McFadden 1987a; 1987b; 1991).  It has been shown that by 

presenting the vibration signal as a function of the gears angle of rotation, a comparison can be 

made of healthy and presumably damaged teeth.  To perform the TSA on the vibration of a gear, 

the rotation of the gear is synchronized with a trigger signal. This trigger signal allows for the 

determination of the zero crossing times needed to calculate the synchronous average.  It has 

been shown that with the aid of the trigger signal, the zero crossing times can be calculated using 

various interpolation techniques (McFadden, 1989).  Approaches of obtaining the trigger signal 

include the use of a tachometer, as well as a tachometer-less approach.  The tachometer-less 
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approach uses the running speed and number of teeth on the gear to establish the one per 

revolution angular reference needed to simulate the trigger signal, which provides the zero 

crossing times and eliminates the need for a speed sensor (Combet and Gelman, 2007).  

Numerous TSA algorithms have been developed and documented that use alternative methods 

for establishing the zero crossing times (Bechhoefer and Kingsley, 2009).  Additionally, the 

aforementioned authors have reviewed other TSA techniques, based on which zero crossing time 

interpolation approach was implemented.  

2.2.3 Time Synchronous Average Applied to Bearing Fault Diagnostics 

TSA has been widely applied to vibration analysis of gears. However, only a small 

number of applications to the fault detection of bearings exist.  The first application as a 

diagnostic tool for bearings combined the high frequency resonance technique with synchronous 

averaging (McFadden and Toozhy, 2000).  For a detailed review of the high frequency resonance 

technique, the readers are referred to the work of McFadden and Smith (1984).  McFadden and 

Toozhy (2000) related the shaft rotation frequency 𝑓𝑟 and bearing defect frequency 𝑓𝑖 resulting 

from an inner race spall by:  

 𝑓𝑖 = [𝑍 2⁄ ][1 + (𝐷𝑒 𝐷𝑝)cos(ß)]𝑓𝑟⁄ = 𝑍(𝑓𝑟 −𝑓𝑐) (2.1) 

where 𝑍 is the number of rolling elements, 𝐷𝑒 the diameter of each rolling element, 𝐷𝑝 the 

diameter of the pitch circle, ßthe contact angle, and the cage rotation frequency represented by 

𝑓𝑐.   

A fundamental idea presented in the paper is that the envelope spectrum 𝑓 of the signal 

contains lines at frequencies that are harmonics of the inner race defect frequency 𝑓𝑖.  

Additionally, it has been shown that these lines are surrounded by modulation sidebands that 



24 
 

occur at multiples of the shafts rotation frequency 𝑓𝑟 (McFadden, 1984 and 1985).   Combining 

this feature with the former allows for the relation:  

 𝑓 = 𝑚𝑍(𝑓𝑟 −𝑓𝑐) + 𝑛𝑓𝑟 (2.2) 

which suggests that some of the previously mentioned spectral lines will occur at integer 

multiples of 𝑓𝑟 −𝑓𝑐, the rotation frequency of the shaft relative to the bearing cage. 

It was also shown that the synchronous average 𝑦(𝑡) of a time signal  𝑥(𝑡)  using a 

trigger signal with frequency 𝑓𝑡 is equivalent to the convolution (McFadden and Toozhy, 2000): 

 𝑦(𝑡) = 𝑐(𝑡) ∗ 𝑥(𝑡) (2.3) 

where 𝑐(𝑡) is a set of 𝑁 impulses of amplitude 1/𝑁.  The impulses are spaced at time intervals    

𝑇𝑡 = 1/𝑓𝑡, and formally defined as: 

 
𝑐(𝑡) =  (

1

𝑁
)∑ 𝛿(𝑡 + 𝑛𝑇𝑡)

𝑁−1

𝑛=0
. 

(2.4) 

The equivalent form in the frequency domain is the multiplication of the Fourier 

transform of 𝑋(𝑓) of the time signal by 𝐶(𝑓), the Fourier transform of 𝑐(𝑡). This is formally 

represented as: 

 𝑌(𝑓) = 𝐶(𝑓) · 𝑋(𝑓) (2.5) 

where 𝐶(𝑓) is a comb filter defined as: 

 
𝐶(𝑓) =  (

1

𝑁
)
𝑠𝑖𝑛(𝜋𝑁𝑇𝑡𝑓)

𝑠𝑖𝑛( 𝜋𝑇𝑡𝑓)
. 

(2.6) 

The results of the study were achieved by the frequency domain synchronous average of 

the envelope signal with a trigger signal that is synchronized with the rotation frequency of the 

shaft relative to the cage, i.e. 𝑓𝑡 = 𝑓𝑟 −𝑓𝑐.  By doing so, only frequencies that are integer 
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multiples of the rotation frequency relative to the cage were passed.  It was concluded that the 

synchronous average of a bearing with 𝑍 rolling elements, contained an impulse for each rolling 

element, and that variations in the impulses could be revealed. Thus, information about the 

damage distribution on the inner race of the bearing was obtained, and the authors were able to 

identify up to four spalls on the inner race.  It was also noted that if the damage on the inner race 

is greater than the angular separation between rolling elements, the damage distribution may not 

be  clear, possibly resulting in the inability to determine the location of a spall.  Additionally, this 

study only focused on damage to the inner race, and did not explore the ability to locate faults 

contained in the other components of the bearing. 

Christian et al. (2007) expanded on this approach by combining TSA with Support 

Vector machines (SVM) for the diagnosis of bearing faults.  In this study, TSA was obtained by 

convolving the raw vibration signal with a repeating trigger signal, in order to examine the 

presence of various bearing defect frequencies.  Then, twenty features were extracted from the 

envelope of the TSA signal using independent component analysis (ICA).  These features were 

input to SVM, a classification technique based on risk minimization, for the use of fault 

detection.  The reader is encouraged to reference the paper for further details on SVM and ICA.   

A key contribution was the use of the theoretical bearing fault frequencies (i.e. inner race, 

outer race, and ball pass roller frequency) as the repeating trigger signal.  As opposed to using 

the shaft rotation frequency, the use of the theoretical bearing fault frequency allowed for the 

implementation of a tachometer-less approach, that overcomes the limitation of the need for a 

speed sensor.  This resulted in the ability to classify faults in different locations within the 

bearing.  In this study, both drive and fan end faulty bearing signals were used for training.  The 

conclusion was made that when testing signals came from the same end as the training signals, 
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the classification results were 95% or higher in general.  However, performance significantly 

decreased to between 50% and 70% when training and testing signals came from different ends 

of the test rig.  The authors also examined the performance without the use of ICA as a 

preprocessing technique, and noted that the results were either quite similar or worse.  Thus, it 

was concluded that the faulty bearing location and signal transmission path are critical for 

diagnosis, and ICA may not be realistic to use for this type of application. 

Most recently, another study made a further contribution by developing a tachometer-less 

synchronously averaged envelope (TLSAE) signal processing and feature extraction technique 

that provides the ability to detect bearing degradation at varying levels of damage (Siegel et al., 

2012).  The method begins by first using a narrow band pass filter around a calculated bearing 

fault frequency of interest, and then takes the derivative of the phase of the Hilbert transform in 

order to generate a synthesized trigger signal.  Next, the envelope of the vibration signal is 

synchronously averaged by combining the calculated trigger signal with the high frequency 

envelope method to obtain a defect spectrum that highlights frequency content occurring at 

harmonics of the calculated fault frequency of interest.  This method is another TSA application 

that does not require a tachometer signal for the shaft or bearing cage.   

Interesting results were obtained from the study.  To verify the method, six bearings were 

tested: three normal bearings and three with increasing scratch levels on the outer race.  For 

comparison, the FFT method, traditional envelope method, and the TLSAE were all applied.  It 

was shown that although the traditional envelope method allowed for a clear distinction among 

levels of damage, the TLSAE proved to be more robust.  There was a larger separation amongst 

damage levels, and the results contained less variability in the calculated feature values.  This 

was further validated upon examining the results at the second harmonic of the ball pass outer 
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frequency.  In this case, the envelope method contained a smaller separation between the first 

and second damage levels and a significant amount of variability in the case of the third scratch 

level.  When compared with the TLSAE, the separations within damage levels were more 

distinct and a significant reduction in the variability was noted for the third scratch level.  This 

resulted in better input values for classification algorithms, highlighting the capability of the 

TLSAE method. 

2.3 Microphone Based Bearing Fault Diagnostics 

 

Acoustic signals recorded using microphones have also been investigated as bearing fault 

diagnostic tools.  In (Wang et al., 2014), the time-scale manifold ridge demodulation method 

using acoustic signals was investigated.  This paper presented an improvement to the 

aforementioned demodulation technique, called exchanged ridge demodulation of the time-scale 

manifold, for the enhancement of the diagnosis of both bearing defects and gear faults.  Another 

recent study presented an acoustic-based diagnostic technique that was constructed from near-

field acoustic holography and the gray level co-occurrence matrix (Lu et al., 2012).  Using an 

FFT based near-field acoustic holography, the sound fields and their corresponding acoustic 

images for different conditions were obtained.  Then, after feature extraction, the support vector 

machines algorithm was utilized to diagnose various types of rolling element faults.  In (He et 

al., 2013), a Wayside acoustic diagnostic scheme was presented that combines signal resampling 

and information enhancement.  In that study, the authors’ technique addressed the two problems 

of the wayside acoustic signal: Doppler shifting and heavy noise interference.   

However, the acoustic signals collected in (Wang et al., 2014; Lu et al., 2012; He et al., 

2013) and the acoustic emission signals collected to validate the methodology presented herein 
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are notably different.  For example, the acoustic signals used in (Wang et al., 2014; Lu et al., 

2012; He et al., 2013) were all acquired via one or more microphones whereas the acoustic 

emission signals acquired for the method presented in this paper were collected using a wideband 

AE sensor.  Acoustic emission (AE) sensors are generally piezoelectric devices designed to 

provide a voltage output when exposed to an ultrasonic motion at the surface to which they are 

coupled, usually generated from an elastic stress wave resulting from a defect or unwanted 

mechanism within the structure (Eitzen et al., 1987).  Thus, the information collected using an 

AE sensor is quite different than the microphones used in (Wang et al., 2014; Lu et al., 2012; He 

et al., 2013), which collect the signal information generated from the sound field produced by the 

object of interest.  Additionally, in (Raharjo et al., 2012), a microphone, vibration sensor, and 

AE sensor were investigated for scratch detection on a self-aligning spherical journal bearing and 

the conclusion was drawn that although all three sensors could be used to determine bearing 

conditions, the AE sensor was the most sensitive for the scratch bearing fault. Another notable 

difference is that the frequency response range of microphones (20 Hz to 100 kHz) is 

significantly lower than that of AE sensors (over 100 kHz).  Hence, acoustic signals collected via 

the use of microphones require much lower sampling rates than that of AE sensors.  For 

example, the acoustic signals collected via microphone in (Wang et al., 2014; Lu et al., 2012; He 

et al., 2013) all used sampling rates that are comparable to vibration based techniques (10 kHz or 

less) whereas AE sensors usually require sampling rates higher than 1 MHz.  In this research, a 

sampling reduction technique was implemented that downshifts the frequency response range of 

the AE sensor, allowing AE signals to be sampled at a rate comparable to vibration signals 

collected from accelerometers or acoustic signals collected using a microphone.  
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2.4 Low Speed Bearing Fault Detection and Diagnostics 

 

In many industries, the use of low speed rotating machines is a staple for successful 

operation.  Such machines can be found in steel and paper mills, biological applications, and 

wind turbines.  Thus, the monitoring of bearings, shafts and gears in such applications is critical 

for the proper maintenance of low speed equipment. In the low speed bearing fault diagnosis 

literature, the low speed has been referred to as in the range from 0.33 Hz to 10 Hz (Canada and 

Robinson, 1995), whereas significantly lower speed thresholds have been considered as a 

separate classification range.  For example, speeds below 0.5 Hz have been viewed as “ultra 

low” (Sako and Yoshie, 2010) and if below 0.83 Hz considered “extremely low” (Miettinen and 

Pataniitty, 1999).  In this dissertation, the shaft speed falling within the low speed range 

described in (Canada and Robinson, 1995) will be addressed.   

To date, the condition monitoring of rolling element bearings and other rotating 

equipment using vibratory analysis is an established technique and the industry standard.  One 

study investigated the use of parametric models of amplitude demodulated vibration signals, and 

the resulting frequency spectra, for bearing fault detection and diagnosis of roller bearings with 

defects at a shaft speed of 1 Hz (Mechefske and Mathew, 1992).   In that paper, a signal 

processing technique was first used to detect bearing defects and the frequency spectra were then 

used to classify the defects.  Although effective, this methodology required visual inspection of 

the frequency spectra to achieve fault diagnosis.  Later, another study developed a low speed 

technology system to measure vibrations resulting from low speed rotating machinery (Canada 

and Robinson, 1995).  This system was centered on separating the high frequency noise of the 

machine from the low frequency signatures of interest, and validation was presented using results 

from a low speed rotor and gearbox.  More recently, for low speed applications, a general model 
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of faulty bearing vibration signals has been established and it was shown that envelope-

autocorrelation can be observed in a faulty bearing, but not in the healthy bearing case (Wang 

and Kootsookos, 1998).  Others have sought to develop new accelerometers and have shown that 

with the aid of the resonance demodulation technique, low speed rolling bearing faults can be 

detected (Hou et al., 2010).  However, the successful use of vibrations is limited at low speed 

applications because the change in energy generated from faults at such speeds may not be 

detectable using traditional accelerometer based monitoring systems.  Thus, researchers have 

investigated the use of AE sensors and strain gauges for component monitoring at such low 

speed conditions.   

AE based studies have shown promising results for the incipient detection of faults and 

sensitivity to fault location, and recent studies have explored their use for low speed bearing 

monitoring.  One early investigation looked at the monitoring of bearings at low speeds (Smith, 

1982). In this study, results comparing acceleration, shock pulse transducer, acoustic emission 

and jerk measurements were presented.  Among other conclusions drawn, it was mentioned that 

AE resulted in clear detection of an outer track bearing defect at speeds as low as 0.17 Hz.  

However, it was also mentioned that the observed AE response could not be explained and that 

averaging methodologies could not be utilized because the signals did not repeat exactly on a 

once per revolution basis.     Another study reported the use of AE for monitoring rolling element 

bearings at extremely low shaft speeds from 0.0083 Hz to 0.083 Hz (Miettinen and Pataniitty, 

1999).  In this study it was found that AE measurement is quite sensitive for detecting bearing 

faults when the bearing is rotating at an extremely low speed, whereas the acceleration envelope 

was limited to detecting faults at the lowest shaft speed of 10 Hz.  This study utilized an AE 

pulse count and noted that using such an approach allowed the data to be manageable.  In this 
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paper, an approach that facilitates the use of low sampled AE signals is presented which make 

the use of continuous AE time signals manageable.  Jamaludin and Mba (2001) also explored the 

application of AE for the low speed monitoring of bearings.  This study used K-means clustering 

to classify line defects on a spherical roller bearing.  Although promising results were achieved, 

the study focused on the frequency range of 100kHz to 1MHz and also relied on a data mining 

technique which can be time consuming due the large data requirement for training and testing of 

the models.  (Widodo et al., 2009) also relied on a data mining approach, presenting a different 

classification technique based on relevance vector machines and support vector machines to 

diagnose bearing faults at shaft speeds ranging from 0.33 Hz to 1.33 Hz.  In another study, an AE 

sensor was used to investigate the incipient fault detection of low speed rolling element bearings 

in the frequency range up to 100kHz (Kim et al., 2007).   This study evaluated a number of time 

domain condition indicators using different filter bands to determine the best parameters that can 

distinguish between healthy and inner race faulty bearing signals.  However, the goal of this 

study was to determine effective filter band ranges and time domain condition indicators that can 

be used to evaluate the acquired AE signals.  Moreover, only an inner race fault was observed 

and the diagnosis of all four bearing fault types could not be confirmed using the respective filter 

band and CIs presented in the paper.  Later, Sako and Yoshie (2010) proposed a diagnostic 

method using the AE envelope waveform and achieved results at speeds less than 1.67 Hz. This 

study confirmed that the periodicity of outer ring flaking could be captured at speeds as low as 

0.17 Hz.  Recently, other studies investigated AE and its use for the condition monitoring of 

slow speed shafts and thrust ball bearings (Elforjani and Mba, 2010; Elforjani and Mba, 2011).  

These studies demonstrated the ability to use AE to detect crack initiation and growth and also 

mainly focused on the investigation of AE source location.  Moreover, the aforementioned 
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experiment focused on a single shaft speed of 1.2Hz and tested bearing condition under loading 

and starved lubricating conditions.  

Nonetheless, the aforementioned high frequency AE signals are accompanied by high 

sampling rates.  Moreover, for low speed bearing fault diagnostic applications, data acquisitions 

need to be relatively long to capture the mechanical defect frequencies.  The combination of high 

sampling rates with long data samples limits the feasibility of practical application of AE based 

approaches.  In this dissertation, an approach that facilitates the use of low sampled AE signals is 

presented which make the use of continuous AE time signals manageable.  It was found that the 

combination of a new analysis signal and different condition indicators were effective for the 

evaluated low shaft speeds from 2 to 10 Hz.  The diagnosis of all four bearing fault types at the 

presented shaft speeds has not been presented in literature.  That, in combination with the low 

sampling rate provides merit for the possibility of a practical implementation of an AE based 

bearing monitoring approach in industry. 

2.5 On-Aircraft Fatigue Crack Detection in a UH-60A Planet Gear Carrier Using 

Vibration Data  

 

The transmission of the UH-60A helicopter contains a planetary gear train in the final 

stage of the main rotor gear box.  In this configuration, torque is transmitted from the central sun 

gear through the planets to the planet carrier and from the planet carrier to the main rotor shaft.  

To ensure the safety of the aircraft and passengers, it is important to have tools to determine the 

condition of critical components.  Although difficult to analyze, one tool that can be used for 

health assessment of planetary gear trains is vibration.  The difficulty of assessing the health of 

planetary gear trains using vibration arises from many factors such as similar vibrations 

produced from multiple planet gears, and the various time-varying transmission paths from gear 
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mesh points to the sensors which are mounted on the gearbox housing.  Thus, conventional fault 

detection algorithms may not be as effective when applied to such complicated gear trains.   

In 2002, the main transmissions (2400 series) of two US Army UH-60A Black Hawk 

helicopters were found to contain fatigue cracks in the planet carriers.  When investigating the 

cause of repeated low transmission oil pressure warnings, a 250 mm hub-to-rim crack in the first 

carrier was found.  An 82 mm crack in the second carrier was found during an inspection.  These 

discoveries resulted in flight restrictions on many US Army UH-60A helicopters, and the 

investigation into cost effective tests that were capable to diagnosing this type of fault.     

A vibration test program was conducted by the US Army on the transmission containing 

the 82 mm crack.  The transmission was installed in a test cell at various torque settings and was 

also ground-run in a helicopter at 20% and 30% torque settings.  Vibration was also acquired 

from undamaged transmissions.   

The vibration data was first analyzed by applying planetary gearbox diagnostics to the 

time synchronous averages (TSAs) of the data (Keller and Grabill, 2003).  In this paper the 

epicyclic sideband index (SIe) and the epicyclic level factor (SLFe) were found to effectively 

detect the presence of the fault using test cell data, though neither were effective for the low-

torque on-aircraft conditions.  The same data was investigated using a combination of wavelet 

analysis and Morkov modeling (Dong et al., 2004).  This method was able distinguish the faulty 

component data from the healthy component data, though training of the data sets was required.  

Wu et al. (2004; 2005) and Saxena et al. (2005) presented crack detection results via frequency 

and wavelet domain processing of the raw data that was reported to be dependent on the location 

of the sensor and frequency band.  Mclnerny et al. (2003) processed the test-cell data similarly to 
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(Keller and Grabill, 2003) by applying a number of metrics to the TSAs of the data.    In this 

paper, statistics were also presented for the raw data and a new metric measuring the ratio in the 

planet carrier TSA at multiples of planet-pass frequency with the remaining energy in the 

average was developed.  Mclnerny et al. (2003) was able to detect the crack in the test cell 

though did not investigate their metrics to the on-aircraft data.  In (Blunt and Keller, 2006), two 

new methods of detecting the fatigue crack were developed.  These methods were based on 

changes to the modulation of the fundamental gear mesh vibration resulting from the crack.  

These methods were again found effective for the test-cell conditions as reported in (Keller and 

Grabill, 2003) and (Mclnerny et al., 2003), though ineffective for the on-aircraft conditions.          

The results presented in the aforementioned research provided motivation to develop a 

technique that can effectively detect the fatigue crack in the on-aircraft conditions that would not 

require the need to train the data sets. The research in this dissertation also involved analyzing 

the UH-60A vibration on-aircraft data using a TSR based spectral average approach.  These 

results are presented in section 6.8.    
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3. MOTIVATION 

 

Upon examination of current state of the art AE based bearing fault diagnostic methods, it is 

apparent that there is a need for effective and efficient AE signal processing techniques that are 

capable of extracting useful bearing fault features.  It has been shown that AE signals are more 

sensitive which provides the capability of incipient fault detection.  Also, AE signals are 

sensitive to fault location, providing the ability to detect fault positions.   However, there are 

numerous challenges in the application of AE based methods to bearing fault diagnostics.  One 

issue is the need for a high sampling rate due to the frequency range of AE signals.  Also, 

accompanied with a large volume of AE data is the need for a significant storage capacity and an 

imposed computational burden.  Additionally, AE signals contain non-stationary behavior that 

makes traditional frequency analysis methods ineffective.  If effective and efficient AE based 

diagnostic techniques can be developed, their implementation would allow fault detection in the 

propagation stage, ensuring the ability to perform maintenance before mechanical failure. 

Additionally, most of the current developments only deal with the use of accelerometer 

signals.  Literature to date does not contain any documented cases of synchronous averaging 

apporaches applied to AE signals for the use of bearing fault diagnostics.  Moreover, the current 

tachometer based TSA bearing applications only present results for inner race fault detection.  

This approach also requires the need to compute a TSA for each bearing fault type. Therefore, 

there is significant motivation to explore the use of similar noise reduction averaging methods 

and their diagnostic ability of multiple bearing fault types.  Also, if AE data could be collected 

and processed efficiently to take advantage of the sensor benefits, it would make a significant 

contribution to the field of condition based maintenance.   
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4. METHODOLOGY 

 

(The majority of the content in this chapter is composed of previously published work as Van 

Hecke, B., Qu, Y., and He, D., 2014, “Bearing fault diagnosis based on a new acoustic emission 

sensor technique”, Proceedings of the Institution of Mechanical Engineers Part O: Journal of 

Risk and Reliability, Vol. 229, No. 2, DOI: 10.1177/1748006X14558900. and Van Hecke, B., 

He, D., and Qu, Y., 2014, “On the use of spectral averaging of acoustic emission signals for 

bearing fault diagnostics”, ASME Journal of Vibration and Acoustics, Vol. 136, No. 6, DOI: 

10.1115/1.4028322.) 

4.1 Overview of the Proposed Methodology 

 

As previously mentioned, other studies that explored the use of time synchronous 

averaging as a bearing fault diagnostic tool have focused on the processing of accelerometer 

signals.  McFadden and Toozhy (2000) computed the synchronous average of the vibration 

signal envelope with a trigger signal that is synchronized with the rotation frequency of the shaft 

relative to the cage, and were successful in inner race fault detection.  This was a successful 

implementation of synchronous averaging using a tachometer signal for inner race detection; 

however, the study did not examine the diagnostic ability to detect other typical bearing fault 

types.  

Another successful study on computing the vibration based synchronous averaging for 

bearing fault detection utilizing a trigger signal was developed based on the theoretical bearing 

fault frequencies (Christian et al., 2007).  This research showed the bearing fault diagnostic 

capability of TSA using a tachometer-less approach, generating trigger signals based on bearing 

fault frequencies.  It was shown that multiple fault types can be detected, however multiple 

trigger signals need to be determined for each fault frequency type.   Siegel et al. (2012) also 

implemented a tachometer-less TSA approach that resulted in higher fault detection accuracy and 

less variability than other traditional bearing fault diagnostic methods.  However, the method 
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also required the calculation of multiple trigger signals to detect the various bearing fault types 

and only outer race fault detection results were provided.  In fact, literature to date contains no 

reports presenting the implementation of TSA to diagnose all four bearing fault types.   

This research implements a novel signal processing combination of time synchronous 

resampling and spectral averaging for bearing fault diagnosis seeking the evaluation and 

comparison by quantifying both AE and accelerometer data.  This method was also modified and 

validated to work for low speed AE bearing analysis and for the detection of UH-60A planet gear 

carrier fatigue cracks using vibration signals.  The result is an effective diagnostic approach that 

is accomplished via the computation of a single average which has not been presented in 

literature.   

Figure 4.1 and Figure 4.2 present respective overviews of the AE and vibration based 

signal processing methodology for this research.  Also, provided in Figure 4.3 is an overview of 

the low speed AE based methodology and Figure 4.4 presents the overview of the vibration 

based UH-60A planet gear carrier fatigue crack detection methodology.   

 

Figure 4.1.  The AE based methodology 
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Figure 4.2.  The vibration based methodology 

 

 

Figure 4.3.  The low speed AE methodology 

 

 

Figure 4.4. The vibration based UH-60A crack detection methodology 
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4.2 Heterodyne Based AE Signal Sampling and Tachometer Signal Acquisition 

 

The initial step in the methodology is the acquisition of both the tachometer and AE 

sensor signals from the test rig.  The data acquisition procedure is described in detail in the 

experimental setup section.  The tachometer records the rotational shaft speed and real time 

angle, while the AE sensor provides the AE signal, which is recorded at a sampling rate of 100 

kHz.  In comparison to other bearing fault diagnostic studies that have focused on AE burst data, 

this research will focus on the processing of continuous AE signals.  The successful 

implementation of the methodology requires the need to address the large volume of data and 

non-stationary behavior of the AE signal.   

One disadvantage of AE based approaches is the significant computational burden.  

Because the frequency of the output signal from AE sensors is typically as high as several 

megahertz, AE based techniques are usually accompanied with sampling rates as high as several 

to 10MHz.  In this dissertation, a heterodyne based sampling frequency reduction technique is 

employed that down-shifts the energy related to the signal so that a sampling rate comparable to 

vibration methods can be utilized.   This is significant because less data needs to be collected and 

stored on the computer.  Thus, the cost associated with data acquisition is reduced. 

The concept of heterodyne has long been utilized in the field of communications.  In 

radio, the carrier signal of typical amplitude modulated (AM) signals are often as high as several 

megahertz.  However, the frequency of the audio signal that is modulated to that carrier signal is 

often as low as a few kHz.  Through demodulation, the AM signal frequency is downshifted, 

allowing the audio to be sampled at a much lower rate.   The result is a reduction in not only the 

sampling rate, but also the computational power required to process the data.   



40 
 

The AE signal demodulator implemented in this paper works similarly to a radio 

quadrature demodulator: shifting the carrier frequency to baseband, followed by low-pass 

filtering.  The technique applied here is called heterodyne.   Mathematically, heterodyning is 

based on the trigonometric identity. For two signals with frequency 𝑓1 and  𝑓2 , respectively, it 

could be written as 

 
𝑠𝑖𝑛(2𝜋𝑓1𝑡) 𝑠𝑖𝑛(2𝜋𝑓2𝑡) =

1

2
cos[2𝜋(𝑓1 − 𝑓2)𝑡] −

1

2
𝑐𝑜𝑠[2𝜋(𝑓1 + 𝑓2)𝑡] 

(4.1) 

where𝑓1 is the AE carrier frequency and 𝑓2  is the reference signal frequency of the demodulator. 

For example, let 𝑓1 = 3Hz and 𝑓2 = 4Hz, and note 𝑦1 = 𝑠𝑖𝑛(2𝜋3𝑡) and 

𝑦2 = 𝑠𝑖𝑛(2𝜋4𝑡).   Then, their multiplication 𝑌 = 𝑦1𝑦2., is shown in Figure 4.5. 

 

Figure 4.5.  The multiplication of two sinusoid signals 

 

Next, as shown in Figure 4.6, the modulated signal is low-pass filtered to reject the high 

frequency image at frequency (𝑓1 + 𝑓2). 
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A detailed discussion of the heterodyne technique applied on the raw AE signal is given 

next.  In general, amplitude modulation is the major modulation form for AE signals.  Although 

frequency modulation and phase modulation are potentially present in the AE signal, they are 

considered trivial and will not be discussed here. The amplitude modulation function is given in 

Eq. (4.2). 

 

Figure 4.6.  The extraction of the heterodyned signal by frequency domain filtering 

 

 𝑈𝑎 = (𝑈𝑚 +𝑚𝑥)𝑐𝑜 𝑠 𝜔𝑐𝑡 (4.2) 

where, 𝑈𝑎 is the modulated signal, 𝑈𝑚 is the carrier signal amplitude,  𝜔𝑐 is the carrier signal 

frequency, 𝑚 is the modulation coefficient, and 𝑥 is the signal of interest.  With an amplitude 𝑋𝑚 

and frequency Ω, assume that 𝑥 can be expressed as  

 𝑥 = 𝑋𝑚𝑐𝑜𝑠Ω𝑡 (4.3) 
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Note that it is assumed that the frequency Ω of the signal 𝑥 is normally much smaller than 

the frequency 𝜔𝑐 of the carrier signal.  Then, with the heterodyne technique, the modulated 

signal will be multiplied by a unit amplitude reference signal cos(𝜔𝑐𝑡).  The result 𝑈𝑜 is given as 

following: 

 𝑈𝑜 = (𝑈𝑚 +𝑚𝑥) 𝑐𝑜𝑠(𝜔𝑐𝑡) 𝑐𝑜𝑠(𝜔𝑐𝑡) = (𝑈𝑚 +𝑚𝑥) [
1

2
+
1

2
𝑐𝑜𝑠(2𝜔𝑐𝑡)] (4.4) 

Then, after substituting Eq. (4.3) into Eq. (4.4): 

 

𝑈𝑜 =
1

2
𝑈𝑚 +

1

2
𝑚𝑋𝑚𝑐𝑜𝑠Ω𝑡 +

1

2
𝑈𝑚𝑐𝑜𝑠(2𝜔𝑐𝑡) 

+
1

4
𝑚𝑋𝑚[𝑐𝑜𝑠(2𝜔𝑐 + Ω)𝑡 + 𝑐𝑜𝑠(2𝜔𝑐 − Ω)𝑡] 

(4.5) 

Since 𝑈𝑚 does not contain any useful information related to the modulated signal, it can be set as 

0, or removed through detrending.  From Eq. (4.5), it can be seen that only the part 
1

2
𝑚𝑋𝑚𝑐𝑜𝑠Ω𝑡 

which is the signal of interest will be retained after low-pass filtering, and the high-frequency 

components around frequency 2𝜔𝑐 will be removed. A critical step in applying the heterodyne 

technique to AE signals is to select the appropriate frequency of the reference signal. The 

optimization procedure reported in (Qu et al., 2014) can be used to search for the optimal 

frequency of the reference signal using a linear chirp function as the demodulation input. The 

optimization process is to search for the best frequency such that the root mean square (RMS) of 

the demodulated signal is maximized.   

By adding a demodulation step, it can achieve the purpose of reducing the signal 

frequency to 10s of kHz.  This is close to the frequency range of general vibration signals.  Thus, 

any data acquisition board with a low sampling rate should be able to sample the pre-processed 

AE data. 
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4.3 Band Pass Filter Selection Procedure 

 

4.3.1 Filter Band Selection Based on Fundamental Defect Frequencies 

Upon data acquisition, the next step is to select a proper band pass filter range to extract 

the signal information related to the bearing fault.  Generally, a properly selected band pass filter 

removes the high frequency components and low frequency contents associated with shaft 

imbalance (Shirioshi et al., 1997).  Hence, when a band pass filter is executed properly, the 

information associated with the bearing fault is maintained. 

In theory, as a bearing rotates at a constant speed, its AE signal can be characterized by a 

periodical property.  In general, there are four fundamental defect frequencies to describe this 

motion.  The four defect frequencies are the fundamental train frequency (FTF), ball spin 

frequency (BSF), ball pass frequency outer (BPFO), and ball pass frequency inner (BPFI), 

respectively representing the defect frequencies of the cage, ball, outer race, and inner race 

(Felten, 2003).  Some bearing manufacturers provide these frequencies, or one of them 

accompanied with multipliers that assist in the calculation of the others.  However, if the 

frequencies are not provided, they can be calculated using the bearing parameters and the 

rotational speed of the shaft.  The required parameters for defect frequency calculations are: the 

diameter of the rolling elements𝐷𝑒, the pitch circle diameter 𝐷𝑝, the number of rolling elements 

𝑍, the contact angle ß in degrees, and the rotational speed of the shaft in revolutions per second 

𝜔.  Once the previously mentioned parameters have been acquired, the fundamental fault 

frequencies can be calculated using the following formulae: 

 𝐹𝑇𝐹 = [𝜔 2⁄ ][1 − (𝐷𝑒 𝐷𝑝⁄ )cos(ß)] (4.6) 

 

 𝐵𝑆𝐹 = [𝜔 𝐷𝑝 2𝐷𝑒⁄ ]{1 − [(𝐷𝑒 𝐷𝑝⁄ ) cos(ß)]2} (4.7) 
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 𝐵𝑃𝐹𝑂 = [𝜔𝑍 2⁄ ][1 − (𝐷𝑒 𝐷𝑝⁄ )cos(ß)] (4.8) 

 

 𝐵𝑃𝐹𝐼 = [𝜔𝑍 2⁄ ][1 + (𝐷𝑒 𝐷𝑝⁄ )cos(ß)] (4.9) 

 

If the bearing rotates at a constant shaft speed, the fundamental defect frequencies can be 

computed by multiplying the defect frequency multipliers by the rotational shaft speed.  In the 

absence of mechanical noise, the fault frequencies could be observed, leading to the selection of 

a filter band that contains the bearing fundamental defect frequencies. 

4.3.2 Filter Band Selection Based on Spectral Analysis 

If the fault frequencies cannot be observed in the spectrum due to noise in the system, 

they cannot be used as the basis for filter band selection.  However, upon examination of the 

spectrum a filter band range can be selected that contains the majority of the spectral content and 

energy related to the signal.  This technique was shown to be effective for the band pass filter 

selection of bearing vibration signals (Van Hecke et al., 2014c)     

4.3.3 Filter Band Selection Based on Highest Entropy 

In practice, bearing signals are in the presence of mechanical noise from surrounding 

mechanical components, which eliminates the possibility of identifying the defect frequencies, 

and therefore, the ability to select a filter band that encompasses them.  Thus, the filter band can 

be selected based on prior knowledge of the system or by utilizing some other criteria.  If a 

correct filter band is selected, the useful signal information related to the fault is extracted.  

Consequently, the filter band that can extract the signal information must be determined.  In this 

research, one tool used to select a filter band is Shannon’s entropy, which is defined as the 

average amount of information in a message. To select the proper filter band, different bands can 

be tested on healthy bearing signals.  After filtering with each filter band, the entropy in the 

resulting signal is measured.  Hence, the filtered signal that contains the highest level of 
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information can be used to select the filter band to implement before further processing. 

Shannon’s entropy is formally defined by: 

 

 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ 𝑥𝑖

2
𝑛

𝑖=1
ln(𝑥𝑖

2) 
(4.10) 

 

Where 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 is the Shannon’s entropy, or average amount of information in the dataset 𝑥, 

and 𝑥𝑖 is the 𝑖𝑡ℎ element of the dataset 𝑥.  

4.4 Spectral Averaging of AE and Accelerometer Signals 

 

In this section, spectral averaging, time synchronous resampling, and their relationship 

with TSA are discussed.  TSA is a proven technique for the extraction of periodic waveforms 

and has numerous applications to the tooth meshing vibrations for gear fault diagnosis 

(McFadden 1987, 1991).  Additionally, TSA has been effectively implemented in the processing 

of enveloped vibration signals for bearing fault diagnosis (McFadden and Toozhy, 2000; Siegel 

et al., 2012).    The concept is to compute the ensemble average of successive periods of a 

waveform of interest, resulting in a significant reduction of noise and an enhanced signal 

representing one period of the averaged waveform.  Braun (1975) formally expressed the TSA 

𝑦(𝑛𝑇) of a signal 𝑥(𝑡) sampled at interval 𝑛𝑇 by the following: 

 
𝑦(𝑛𝑇) = (1 𝑁⁄ )∑ 𝑥(𝑛𝑇 − 𝑟𝑚𝑇)

𝑁−1

𝑟=0
 

(4.11) 

where the averaged period is denoted by 𝑚𝑇.  More details concerning TSA can be found in 

(McFadden, 1987).   

The successful implementation of TSA to quantify the vibration signals for bearing fault 

diagnosis has created interest to use it for the processing of AE signals.  The successful 
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application of TSA requires the knowledge of either the repetition frequency of interest, or a 

synchronous signal that is free of noise.  Thus, two types of approaches have been presented in 

the literature, namely, the tachometer based TSA, and the tachometer less TSA.  When compared 

to TSA using a tachometer, the tachometer less approach uses the repetition frequency of interest 

to estimate the angular information from the accelerometer signal.  However, in the context of 

bearing fault diagnosis, this requires the computation of a trigger signal for each fault type.  This 

research applies a tachometer based averaging approach. 

Although TSA has been widely applied to gear fault analysis (Bonnardot et al., 2005; 

Bechhoefer, 2013; Qu et al., 2013a, 2013b), literature to date contains limited implementations 

for bearing fault diagnosis (McFadden and Toozhy, 2000; Christian et al., 2007; Siegel et al., 

2012).  Additionally, these applications have all been based on the quantification of vibration 

signals, and none have reported the ability to diagnose cage fault, only presenting results for 

inner race, outer race, or ball fault diagnosis.  Furthermore, these studies have focused on either 

multiple spalls of the same fault type or severity of damage and none have shown the ability to 

diagnose all four of the bearing fault types. Additionally, although it was shown that TSA can 

result in an improvement upon the envelope analysis technique (Siegel et al., 2012), it still 

requires the need for multiple averages for each of the investigated bearing fault types.  A 

number of difficulties need to be overcome to successfully apply TSA to quantify AE signals for 

bearing fault diagnosis.  For example, the tachometer signal must be synchronous with all 

bearing fault types.  Additionally, the large data volume and non-stationary behavior of the AE 

signals make the direct computation of TSA and real time condition monitoring unrealistic.  In 

this dissertation, time synchronous resampling and spectral averaging is used to overcome these 

challenges and results in the extraction of features that are used for bearing fault diagnostics.    
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In addition to the time domain TSA approach, frequency domain TSA algorithms have 

been presented in (Bechhoefer and Kingsley, 2009).  One challenge in a time domain TSA 

approach for bearings is the requirement of four TSAs to account for each bearing fault type. 

Additionally, bearings could experience fluctuations in speed during industrial operation, and 

due to slippage, fault rates based on bearing geometries could not be exact.  It has also been 

shown that by using a synchronous resampling technique (TSR) based on shaft revolutions, 

potential fluctuations in shaft speed can be accounted for, and the effect of spectral smearing 

reduced (Bechhoefer et al., 2013).  Thus, by resampling to an even number of points between 

trigger signal revolutions, a better FFT result was obtained.  In this research, a similar TSR 

approach is accomplished using the shaft ZCT’s and is expressed in the following.   

Formally, the resampling process is achieved by interpolating the 𝑟 number of data points 

in one shaft revolution, into 𝐿 number of data points, such that: 

 

 𝐿 = 2𝐶𝑒𝑖𝑙𝑖𝑛𝑔[𝑙𝑜𝑔2(𝑟)] (4.12) 

 

where 𝐿 is the number of interpolated points between ZCTs, and 𝑟 is the average number of 

points between shaft crossings before resampling.  Once 𝐿 is determined, each segment contains 

an equal number of data points for FFT computations and the spectral average can be 

implemented. 

The methodology presented in this paper combines the aforementioned TSR approach 

with spectral averaging to compute a single average which allows the extraction of effective CIs 

for bearing fault diagnosis.  Thus, the computation of a single spectral average eliminates the 

necessity to compute multiple TSAs.  Presented in Figure 4.7, is an overview of the spectral 

averaging approach.  The computation of the spectral average requires the data to be sectioned so 
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that the Fourier transform of each section can be computed and the ensemble average of the 

squared magnitude of the segments executed.   

 

Figure 4.7.  The spectral averaging approach 

 

Welch (1967) formally expressed the execution of this approach.  First, let 𝑍(𝑗), 𝑓𝑜𝑟𝑗 =

0, . . . , 𝑁 − 1 be a sample from a stationary, stochastic sequence whose mean is 0 and let 𝑍(𝑗) 

have a spectral density 𝑃(𝑓), |𝑓| ≤
1

2
, where 𝑓 is the normalized frequency.  Then, if one takes 

several possibly overlapping segments of length 𝐿 with starting points of the segments 𝑀 points 

apart and let 𝑍1(𝑗), 𝑗 = 0, . . . , 𝐿 − 1 be the first segment, then,  

 𝑍1(𝑗) = 𝑍(𝑗), 𝑓𝑜𝑟𝑗 = 0, . . . , 𝐿 − 1. (4.13) 

 Likewise,  

 𝑍2(𝑗) = 𝑍(𝑗 + 𝑀), 𝑓𝑜𝑟𝑗 = 0, . . . , 𝐿 − 1. (4.14) 

And finally,  

 𝑍𝐾(𝑗) = 𝑍(𝑗 + (𝐾 − 1)𝑀), 𝑓𝑜𝑟𝑗 = 0, . . . , 𝐿 − 1. (4.15) 
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The result is 𝐾 segments, 𝑍1(𝑗), . . . , 𝑍𝐾(𝑗), that cover the entire data sample 𝑍(𝑗).  Moreover, 

(𝐾 − 1)𝑀 + 𝐿 = 𝑁. 

Next, for each segment of length 𝐿 we obtain the Fourier transform.  In other words, we 

choose a data window 𝑊(𝑗), 𝑓𝑜𝑟𝑗 = 0, . . . , 𝐿 − 1, and take the Fourier transforms 𝐹1(𝑛), . . . , 

𝐹𝐾(𝑛), of the segments 𝑍1(𝑗)𝑊(𝑗), . . . , 𝑍𝐾(𝑗)𝑊(𝑗).  This is formally expressed in Eq. (4.16): 

 
𝐹𝑘(𝑛) = 

1

𝐿
∑ 𝑍𝑘(𝑗)𝑊(𝑗)𝑒−2𝑘𝑖𝑗𝑛/𝐿

𝐿−1

𝑗=0
 

(4.16) 

 

where 𝑖 =  (−1)
1

2.  The result is 𝐾 number of Fourier transforms 𝐵𝑘(𝑓𝑛), which correspond to 

the 𝐾 number of segments: 

 𝐵𝑘(𝑓𝑛) = 
𝐿

𝑆
|𝐹𝑘(𝑛)|

2, for 𝑘 = 1, 2, . . . , 𝐾. (4.17) 

Where,  

 𝑓𝑛 =
𝑛

𝐿
, 𝑓𝑜𝑟𝑛 = 0, . . . , 𝐿/2. (4.18) 

And, 

 
𝑆 = 

1

𝐿
∑ 𝑊2(𝑗)

𝐿−1

𝑗=0
. 

(4.19) 

Finally, the spectral average result, 𝑆𝐴(𝑓𝑛), is obtained by taking the average of the 𝐾 

Fourier transforms: 

 
𝑆𝐴(𝑓𝑛) = 

1

𝐾
∑ 𝐵𝑘(𝑓𝑛)

𝐾

𝑘=1
. 

(4.20) 

To implement Welch’s method, the signal must first be sectioned.  By using the shaft 

ZCTs to section and resample the AE signal, and then averaging the magnitude squared 

spectrums of the sections, the spectral average result is obtained.  In other words, the duration 

between shaft revolutions is utilized as the sectioning function to average the AE signal.  

Moreover, the data segment length 𝐿 is determined by the number of data points between ZCTs 

of the shaft after resampling. By resampling the segments to 𝐿 data points, an equal number of 
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data points are used for FFT computations. Hence, this methodology uses the ZCTs of shaft 

rotations to section and resample the AE signals and compute the ensemble average of the 

squared magnitude Fourier transforms of the sections.  This approach affords the ability to 

compute one spectral average and effectively diagnose any bearing fault that may occur.  

Moreover, the need to compute a single average also reduces the computational burden on the 

hardware, making on-line analysis and maintenance decision-making feasible.  After the 

computation of the spectral averaging of the AE signals, various bearing fault features are 

extracted and evaluated. 

4.5 Condition Indicators for Bearing Fault Diagnosis 

 

There are numerous bearing fault condition indicators in the literature that quantify 

accelerometer signals to aid in bearing fault diagnosis.  In addition, studies have developed 

effective CIs that accomplish bearing fault diagnosis through the quantification of AE signals 

(He et al. 2011a, 2011b).  A significant difference among the available CI feature extraction 

techniques is in the way the CIs are computed, i.e. features can be extracted from both the time 

and frequency domain.  Additionally, features can be extracted from the raw signal or after a 

signal processing technique such as TSA or spectral averaging.  For shaft speeds of 30 Hz and 

higher, the inverse Fourier transform of the spectral average in combination with the RMS and 

Peak CIs have been used to successfully diagnose bearing faults for both AE and vibration 

signals (Van Hecke et al., 2014a, 2014b, 2014c, 2014d).  However, because the aforementioned 

analysis signal and CIs tested in those studies were not effective for low speed analysis, such 

work was left for future investigation.  Thus, the inverse Fourier transform of the log of the 

spectral average result was used to investigate the potential of new CIs that allow the clear 

diagnosis of all four bearing fault types for low speed applications.  By introducing a log into the 
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inverse Fourier transform, the signal being analyzed is similar to a power cepstrum that has been 

utilized in (El Badaoui et al., 2001) for gear analysis.  It should also be mentioned that although 

the introduction of the log was found to be effective for the low speed application, it was not 

effective for the high speed data used in (Van Hecke et al., 2014a, 2014b, 2014c, 2014d).  

Moreover, the CIs used for the high speed investigations (RMS and Peak) were not effective for 

the low speed data.  Also, some of the low speed bearing CIs used in (Kim et al., 2007) were not 

effective for the high speed applications, but were found to work for the tested low shaft speeds 

when combined with the new analysis signal which takes the inverse Fourier transform of the log 

of the spectral average. The respective time domain input signals used for CI computation for 

high speed and low speed analysis are formally obtained by Eq. (4.21) and Eq. (4.22):  

 

 𝑥 = 𝑖𝑓𝑓𝑡[𝑆𝐴(𝑓𝑛)] (4.21) 

 

where 𝑥 is the time domain signal used for CI computations and 𝑖𝑓𝑓𝑡[𝑆𝐴(𝑓𝑛)] is the inverse 

Fourier transform of the spectral average result 𝑆𝐴(𝑓𝑛) obtained by Eq. (4.20). 

As previously mentioned, for low speed AE analysis, the time domain signal used for CI 

computation is obtained by the following: 

𝑥 = 𝑖𝑓𝑓𝑡{log[𝑆𝐴(𝑓𝑛)]} (4.22) 

  

where 𝑥 is time domain signal used for CI computations and 𝑖𝑓𝑓𝑡{log[𝑆𝐴(𝑓𝑛)]} is the inverse 

Fourier transform of the log of the spectral average result 𝑆𝐴(𝑓𝑛) obtained by Eq. (4.20). 

Additionally, CIs were evaluated using the energy operator (EO) of the spectral average 

results.  The EO is a type of residual of the autocorrelation function (Teager, 1992).  In 

discretized form, the mathematical formula is given as: 
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 𝐸𝑂[𝑥𝑖] =  𝑥𝑖
2 − 𝑥𝑖−1 · 𝑥𝑖+1 (4.23) 

Where 𝐸𝑂[𝑥𝑖] is the 𝑖𝑡ℎ element in the EO, and 𝑥𝑖 is the 𝑖𝑡ℎ element of dataset 𝑥 acquired using 

either Eq. (4.21) or Eq. (4.22). 

The CIs are also computed using the amplitude modulation (AM) signal, or Hilbert 

envelope of the signal obtained in Eq. (4.21) or Eq. (4.22).  The AM signal is formally obtained 

by the following: 

𝐴𝑀 = 𝑎𝑏𝑠[ℎ𝑖𝑙𝑏𝑒𝑟𝑡(𝑥)] (4.24) 

where 𝑎𝑏𝑠[ℎ𝑖𝑙𝑏𝑒𝑟𝑡(𝑥)]is the Hilbert envelope of the dataset 𝑥 acquired using either Eq. (4.21) or 

Eq. (4.22).  

In this research, a number of feasible CIs were explored for bearing fault diagnosis.  

Provided in  

Table 4.1 is the definitions of the investigated CIs.  Presented is the definition for root 

mean square (RMS), peak, crest factor (𝐶𝐹), kurtosis (𝐾𝑢𝑟𝑡), skewness (𝑆𝑘𝑒𝑤), Peak to peak 

(p2p), Shannon’s entropy, Log entropy, Histogram upper bound (UB), and Histogram lower 

bound (LB).  Each CI is evaluated on the signals computed using Eq. (4.21) through (4.24).   
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Table 4.1.  The definitions of the CIs 

  
Signal y  used to computed the CIs 

CI 

      Description 

 

 

Equation 

Input signal (𝑥) 
EO of input 

signal (𝑥) 
AM of input signal (𝑥) 

Root mean 

square (RMS) 
√(

1

𝑁
)∑ 𝑦𝑖

2
𝑁

𝑖=1
 𝑅𝑀𝑆: statistical measure of the magnitude of a varying quantity. 

peak 
(𝑦𝑚𝑎𝑥 −𝑦𝑚𝑖𝑛)

2
 𝑝𝑒𝑎𝑘: maximum value in the dataset. 

Crest factor 

(CF) 

𝑦𝑝𝑒𝑎𝑘
𝑦𝑟𝑚𝑠

 
𝐶𝐹: the ratio of peak to RMS; describes how extreme the peaks are in a 

waveform. 

Kurtosis (Kurt) 
𝑁∑ (𝑦𝑖 − �̅�)𝑁

𝑖=1
4

[∑ (𝑦𝑖 − �̅�)𝑁
𝑖=1

2
]2

 𝐾𝑢𝑟𝑡: describes the peakedness or smoothness of the dataset. 

Skewness 

(Skew) 

(
1
𝑁)

∑ (𝑦𝑖 − �̅�)3𝑁
𝑖=1

[√(
1
𝑁
)∑ (𝑦𝑖 − �̅�)2𝑁

𝑖=1 ]3
 

𝑆𝑘𝑒𝑤: measures the asymmetry of the data around its sample mean. A 

negative or positive value of Skew implies the data is spread to the left or 

right of the mean respectively. 

Peak to peak 

(p2p) 
(𝑦𝑚𝑎𝑥 −𝑦𝑚𝑖𝑛) 

p2p: measures the distance between the maximum and minimum value 

in the dataset. 

Shannon’s 

entropy 
−∑ 𝑦𝑖

2
𝑛

𝑖=1
ln(𝑦𝑖

2) Shannon’s entropy: average amount of information in the dataset. 

Log entropy ∑ ln(𝑦𝑖
2)

𝑛

𝑖=1
 Log entropy: log energy entropy in the dataset. 

Histogram 

upper bound 

(UB) 

𝑦𝑚𝑎𝑥 +
1

2
[
(𝑦𝑚𝑎𝑥 −𝑦𝑚𝑖𝑛)

(𝑁 − 1)
] UB: Highest frequency bin value in the dataset. 

Histogram 

lower bound 

(LB) 

𝑦𝑚𝑖𝑛 −
1

2
[
(𝑦𝑚𝑎𝑥 −𝑦𝑚𝑖𝑛)

(𝑁 − 1)
] LB: Lowest frequency bin value in the dataset. 

Note: 𝑦𝑖 is ith element of the input data𝑦; 𝑁 is the length of the input data𝑦;  𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the maximum and 

minimum values in the data 𝑦; �̅� is the mean value of the input data𝑦 defined as∑ 𝑦𝑖
𝑁
𝑖=1 /𝑁; 𝑦𝑝𝑒𝑎𝑘 and 𝑦𝑟𝑚𝑠 are the peak 

and RMS of the data 𝑦. 

 



54 
 

4.6 Bearing Fault Diagnosis 

 

Once the spectrally averaged waveform is obtained and CIs computed, bearing fault 

diagnosis can be accomplished.  The diagnosis is facilitated by examining the CI results for the 

healthy case and all four fault types to determine if differentiation amongst their levels can be 

observed.  If the faulty signals can be separated from the healthy case and from each other, 

bearing fault diagnosis is accomplished. 
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5. EXPERIMENTAL SETUP 

 

(Parts of this chapter were previously published as Van Hecke, B., Qu, Y., and He, D., 2014, 

“Bearing fault diagnosis based on a new acoustic emission sensor technique”, Proceedings of 

the Institution of Mechanical Engineers Part O: Journal of Risk and Reliability, Vol. 229, No. 

2, DOI: 10.1177/1748006X14558900. and Van Hecke, B., He, D., and Qu, Y., 2014, “On the 

use of spectral averaging of acoustic emission signals for bearing fault diagnostics”, ASME 

Journal of Vibration and Acoustics, Vol. 136, No. 6, DOI: 10.1115/1.4028322.) 

This section presents the experimental setup used to validate the proposed AE based bearing 

fault diagnostic methodology.  Figure 5.1 shows the experimental bearing test rig used for data 

collection along with its main components.  The motor controls the shaft which rotates the 

bearing located in the bearing housing.  The rig also contains a hydraulic loading mechanism that 

affords the ability to apply a lateral load to the bearing housing if needed.  

  

 

Figure 5.1.  The bearing test rig 

 

Motor control 

 

Bearing housing 

 

Motor 

 

Loading mechanism 
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Figure 5.2 is another view of the test rig that provides a better view of the location of the 

AE and vibration sensors and tachometer used for data collection.  The axially mounted AE 

sensor and radially mounted accelerometer provide the input signals needed for processing and 

the tachometer provides the trigger signal required for the synchronous averaging of the AE and 

vibration signals.   

 

 

Figure 5.2.  AE sensor and tachometer locations on bearing test rig 

 

A Mastech HY3003D DC power supply set at 16 V was implemented to power both the 

AE sensor and a Physical Acoustics Corporation 2/4/6 preamplifier which is shown in Figure 

5.3.  The purpose of the preamplifier is to enlarge the AE voltage output before it is fed to the 

 

 

AE sensor 

Tachometer 

 Vibration sensor 
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Analog Devices AD8339 demodulation board.  By increasing the voltage output, the desired 

signal output is increased resulting in an improvement in the signal to noise ratio.  For the 

purpose of data collection, the selected gain was set at 40 dB.  Simultaneous with AE signal 

collection was the signal acquisition of a radially mounted model 608A11 Industrial ICP 

accelerometer by IMI sensors.   

 

 

Figure 5.3.  Physical acoustics corporation 2/4/6 preamplifier 

 

Figure 5.4 shows the aforementioned AD8339 demodulation board and its power supply, 

as well as the function generator, and the NI-DAQ 6211 sampling board.   The demodulation 

board is responsible for the multiplication of the AE sensor signal and the reference signal output 

from the function generator.  Both the reference signal and AE sensor signal are the inputs to the 

board.  After filtering out the high frequency components, the output of the demodulation board 

is fed to the NI-DAQ 6211 sampling board.    In order to sample the data at 100 kHz, the AE 

signal is demodulated to shift the useful signal information below 50kHz.  Thus a sampling rate 
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of 100 kHz can effectively extract the information needed for bearing fault diagnosis. This step is 

needed because if the signal was not demodulated, the energy related information would remain 

in the high frequency range and lost when low-pass filtered.  To illustrate, consider the 

multiplication of two signals from different sources with respective frequencies𝑓1  and 𝑓2 to be 

modeled by Eq. (4.1), where 𝑓1 is the AE carrier frequency and 𝑓2  is the demodulator’s reference 

signal frequency.  The result is two new signals, one at the frequency 𝑓1 +𝑓2 and the other at the 

frequency 𝑓1 −𝑓2.  These new frequencies are called heterodynes, and the process of shifting a 

signal to a lower frequency range is called the heterodyne process.  After proper demodulation, 

the high frequency content at 𝑓1 +𝑓2 can be removed via a low-pass filter.  Thus, the useful fault 

information is shifted to a lower frequency range.  By identifying the AE carrier signal center 

frequency as 400kHz, it is used as the demodulation reference frequency.  Thus, the data can be 

sampled at 100kHz, while maintaining the necessary information needed for fault diagnosis.  The 

utilization of the demodulation and heterodyne process has been developed and a detailed 

explanation provided section 4.2.   

 

Figure 5.4.  Demodulation board, sampling board, and function generator 

 

Demodulation board 

power supply  
Function generator 

 
Demodulation board 

 Sampling board 
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Data acquisition of the AE signals was accomplished via NI LabVIEW SignalExpress.  

All AE signals were sampled at 100kHz at varying durations throughout the experiment. A wide 

band (WD) type AE sensor was mounted on the face of the bearing housing using instant glue.     

For data acquisition of the accelerometer, VibraQuest Pro by SpectraQuest, Inc. was used to 

digitize the continuous vibration signals at a sampling rate of 102.4 kHz.  An explanation of the 

data sets is provided in the validation results section.  A sample of the LabVIEW software 

interface for data acquisition is shown in Figure 5.5.  The blue signal is the tachometer signal, 

and the red is the AE signal.  Both are the voltage outputs of the sensors. 

 

 

Figure 5.5.  Sample LabVIEW software interface for data acquisition 
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The image in Figure 5.5 presents an example view of the interface during data 

acquisition.  The image is from a bearing seeded with a cage fault with a shaft frequency of 

60Hz.  Figure 5.6 shows a drawing of the type 6205-2RS bearing used for the experiment.   

 

 

Figure 5.6.  Drawing of the type 6205-2RS bearing 

 

For the validation results, type 6205-2RS steel FAG bearings were used for testing.  Four 

fault types were simulated on steel bearings: inner and outer race faults, rolling element fault, 

and cage fault (see Figure 5.7). The inner and outer race faults were generated by scratching the 

steel race surfaces with a diamond tip grinding wheel bit to cover the ball contact surface.  The 

scratches on both races were about 1/16 inch wide and 1/250 inch deep.  The ball fault damage 

was created by cutting the steel cage in one of the ball locations and then using the diamond tip 

grinding wheel bit to create a small dent in one of the steel balls.  The dent was about 20% of the 

ball volume.  For the cage fault, the steel cage was cut in between two ball locations.  The cut 

was about 50% of the ball diameter.  For all seeded fault tests, the bearing seal and grease was 

removed and replaced following the creation of the fault. 
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Figure 5.7.  The four type 6205-2RS steel bearing seeded faults 

 

For the type 6205-2RS steel bearings, the inner and outer races, balls, and cage are all 

composed of steel.  The type 6205-2RS bearing dimensions are provided in Table 5.1 and 

fundamental fault frequencies in Table 5.2. 

 

Table 5.1.  Type 6205-2RS/6205-RS bearing parameters 

Bearing 

Parameter 
Ball Diameter 

Pitch 

Diameter 

Inside 

Diameter 

Outside 

Diameter 
Thickness 

Number of 

Balls 

Value 8 (mm) 39 (mm) 25 (mm) 52 (mm) 15 (mm) 9 

 

 

Table 5.2.  Type 6205-2RS/6205-RS bearing fundamental fault multipliers 

Fundamental 

Frequency Type 
Inner Race Outer Race Cage Ball 

Fundamental 

Frequency (Hz) 
5.415 3.585 0.398 4.714 

  

Inner race fault Outer race fault Cage fault Ball fault 
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6. VALIDATION RESULTS 

 

6.1 Experimental Data Sets Used for Validation of Methodology 

 

Table 6.1.  Shaft speed, sample duration, and number of samples collected for all steel bearings 

Shaft Speed (Hz) Sample Duration (s) Number of Samples 

30 15 5 

45 12 5 

60 8 5 

 

Table 6.2.  Shaft speed, sample duration, and number of samples collected for steel bearing low 

speed experiment 

Shaft speed (Hz) Sample Duration (s) Number of Samples 

2 100 5 

4 50 5 

6 33 5 

8 25 5 

10 20 5 

 

6.2 UH-60A On-Aircraft Vibration Data 

 

Test-cell experiments were conducted in the Helicopter Transmission Test Facility (HTTF) 

at the Patuxent River Naval Air Station in Maryland, USA.  The transmission with the 82 mm 

planet carrier crack was tested along with a healthy transmission.  A total of six accelerometers 

and two tachometers were used for data acquisition.  Raw time domain data was collected over a 

range of torque levels at a sampling rate of 100 kHz for a length of 180 seconds.      

The on-aircraft vibration data was acquired using the US Army VMEP system (Grabill et 

al., 2001; Grabill et al., 2002; Grabill et al., 2003).  At the Corpus Christ Army Depot (CCAD), 

the transmission with the 82 mm cracked carrier was installed and tested in a UH-60A helicopter 

(Aircraft X).  Three unfaulted UH-60A helicopters (Aircraft A, B & C) were also tested from the 

Birmingham, Alabama National Guard (BNG).  For safety precautions, only ground runs at 20% 
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and 30% torque settings were completed and each aircraft was stabilized for 5 minutes at each 

state before vibration acquisitions were completed.  For all vibration measurements, the nose was 

pointed in the direction of the wind which was less than 10 knots.  It is also important to note 

that the cyclic stick position may have varied between acquisitions.   

The raw data was only acquired for Aircrafts A and X using the VMEP system.  

Additionally, only Accelerometers 3 and 5 from Figure 2 were recorded.  The sampling rate for 

the raw data was 48 kHz with a bandwidth of 18.75 kHz.  The acquisition lengths were 25 

seconds equating to data records of 1.2 million samples per acquisition.  Further information 

regarding planetary gear mesh vibration can be found in (Blunt and Keller, 2006).             

6.3 AE Based Fault Diagnosis Results 6205-2RS Steel Bearing 

 

(The results in this section are previously published as Van Hecke, B., Qu, Y., and He, D., 2014, 

“Bearing fault diagnosis based on a new acoustic emission sensor technique”, Proceedings of the 

Institution of Mechanical Engineers Part O: Journal of Risk and Reliability, Vol. 229, No. 2, 

DOI: 10.1177/1748006X14558900.) 

This section presents the validation results for the seeded fault tests conducted on the 

bearing test rig.  After heterodyne, the AE data was digitized at a sampling rate of 100 kHz.  The 

AE signal was acquired simultaneously with the tachometer signal which was a record of the 

shaft rotation.  Provided in Figure 6.1 is the tachometer and raw AE signal from the seeded inner 

race fault bearing recorded at a shaft speed of 30 Hz.  
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Figure 6.1.  Inner race fault raw AE and tachometer signal at 30 Hz shaft speed 

Before the spectral average of the AE signal could be computed, the bearing signals were 

band pass filtered. Upon examining the frequency spectrums, it was observed that the 

fundamental fault frequencies could not be identified.  Thus, the calculated fault frequencies 

could not be used as the basis for band pass filter selection.  However, to choose a proper filter 

band, Shannon’s entropy was computed on the resulting healthy bearing signals after the 

implementation of different filter bands.  Figure 6.2 presents an example of this technique 

applied to a healthy bearing signal.  Provided is the value of entropy or average amount of 

information in the signals for each filter band tested. As shown in Figure 6.2, the highest level of 

entropy is observed with the use of a 5 kHz to 20 kHz filter band.  

 

Figure 6.2.  Entropy of band pass filtered healthy bearing signal at 45 Hz shaft speed 
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Based on the results shown in Figure 6.2, a filter band of 5 kHz to 20 kHz was selected 

and utilized for the results presented in this section.  Thus, the AE signal was band pass filtered, 

time synchronously resampled, and spectrally averaged using the signal information contained 

between ZCT of the shaft.  Finally, the CIs were computed after the time domain representation 

of the spectral average result was acquired.     

Although a total of 10 CIs were tested, two were found to be effective: RMS and peak.  

Additionally, for comparison purposes and to exemplify the effectiveness of the selected filter 

band, results are presented for signals with and without the implementation of a band pass filter 

before additional processing.  Figure 6.3 presents the RMS CI results for all collected samples 

without the use of a band pass filter and Figure 6.4 presents the RMS CI results for all collected 

data samples after using the aforementioned filter band selection criteria.  Samples 1-5 

correspond to a shaft speed of 30 Hz, while samples 6-10 correspond to a shaft speed of 45 Hz 

and samples 11-15 correspond to a shaft speed of 60 Hz.   

 

Figure 6.3.  Steel bearing AE signal RMS by sample number without filter 
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Figure 6.4.  Steel bearing AE signal RMS by sample number with filter 

 

It should be noted that for the faulty bearing signals, the RMS CI value increases with 

shaft speed, regardless of fault type and whether or not a filter was utilized. Additionally, there is 

clear differentiation of any of the faulty bearing signals when compared to the healthy case for 

all acquisitions.  However, it should be noted that with the use of a filter, greater separation is 

observed between the cage and inner race results for samples 11 – 13 at the 60 Hz shaft speed.  

Additionally, a decrease in separation was observed at samples 14 and 15.  Moreover, at the 45 

Hz shaft speed, the filtered result provided better separation of the cage fault signal from inner 

and outer race fault signals.  The least amount of separation was observed at the 30 Hz shaft 

speed regardless of whether or not the filter was implemented.  To determine the diagnostic 

ability of the methodology, the RMS CI values for all signals were averaged and plotted versus 

shaft speed. The results for both the non-filtered and filtered data samples are presented in Figure 

6.5 and Figure 6.6 respectively.   
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Figure 6.5.  Steel bearing AE signal average RMS by shaft speed without filter 

 

 

Figure 6.6.  Steel bearing AE signal average RMS by shaft speed with filter 
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is observed at the 60 Hz shaft speed.  Additionally, without filtering the inner and outer race 

average switches at the 45 Hz shaft speed which was not problematic for the case when a band 

pass filter was utilized.   Similar results were observed for the peak CI and are shown in Figure 

6.7 and Figure 6.8. 

 

Figure 6.7.  Steel bearing AE signal Peak by sample number without filter 

 

 

Figure 6.8.  Steel bearing AE signal peak by sample number with filter 
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As shown above, the peak CI also effectively differentiates the faulty bearing signals 

from the healthy case.  Although the results appear similar, the average of the peak value versus 

shaft speed provides a better view for comparison.  The peak CI results are presented in Figure 

6.9 and Figure 6.10 respectively. 

 

Figure 6.9.  Steel bearing AE signal average peak by shaft speed without filter 

 

 

Figure 6.10.  Steel bearing AE signal average peak by shaft speed with filter 
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As with the average RMS CI results, the average peak CI also is effective in 

differentiating the faulty bearing cases from each other and the healthy case.  Additionally, it 

should be noted that the separation of cage and inner race faults when using the peak CI is 

greater than when using RMS, suggesting that peak value is a more effective CI for bearing fault 

diagnosis using this methodology.  Also, the previously mentioned switch of inner and outer race 

results at the 45 Hz shaft speed is distinct for the results obtained without filtering.  As with 

RMS, when the filtered results are utilized, this phenomenon did not occur.  Moreover, as with 

the previous case, the faulty results are clearly separable from the healthy case, with ball fault 

results indicating the largest level of separation.  However, it should be noted that although the 

inner race, outer race and cage faulty results are differentiated from the healthy bearing case, the 

separation from each other cannot be seen as distinctly as with the 45 and 60 Hz shaft speeds. 

Note that in Figure 6.6 and Figure 6.10, one can observe that the CI values of the faults are 

ranked in an increasing order as follows: outer race fault, inner race fault, cage fault, and ball 

fault.  This observed trend can be explained as following.  In the test rig, the bearing inner race 

moves with the shaft while the outer race is stationary.  Thus, as the components rotate, the outer 

race impacts are the least likely to occur, which is why the RMS and Peak CI values for the outer 

race acquisitions were the lowest amongst the failure modes.  Since the inner race is moving with 

the shaft, there are more opportunities for inner race impacts when compared to the outer race 

case which results in higher CI values.  This phenomenon is exaggerated with the cage fault 

bearing.  As the inner race rotates, the cage fault causes uncharacteristic movement of the cage 

and an increase in behavior in the AE signal which results in a higher value of both the RMS and 

peak value in the acquisitions when compared to the both of the bearing races.  On that note, the 

rolling elements are constantly spinning as the inner race rotates, so the missing ball volume in 
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seeded fault provides more opportunities for impacts and results in the ball fault bearing having 

highest observed RMS and Peak values amongst the acquisitions.  Conversely, the healthy 

bearing contains an absence of fault, so there were not any excitations in the signals that result in 

increasing RMS and Peak value with increments in shaft speed.  

In summary, the RMS and peak features extracted from the spectral average results 

effectively differentiate all four fault types from each other and from the healthy bearing case, 

which has not been presented in the literature.  Thus, the use of the TSR based spectral averaging 

approach exemplifies the effectiveness of implementing an AE based approach.  Additionally, 

the presented approach requires the computation of a single average, eliminating the need for 

multiple averages for each bearing component.  Hence, the results indicate that the presented 

technique is an effective and efficient approach to AE based bearing fault diagnostics.    

 

6.4 Vibration Based Fault Diagnosis Results 6205-2RS Steel Bearing  

 

(The results in this section are previously published as Van Hecke, B., Qu, Y., He, D., and 

Bechhoefer, E., 2014, “A new spectral average-based bearing fault diagnostic approach”, 

Journal of Failure Analysis and Prevention, Vol. 14, No. 3, pp. 354– 362.) 

 

This section presents the validation results for the seeded fault test conducted on the bearing 

test rig.  The vibration signals were digitized at a rate 102,400 kHz simultaneously with the 

tachometer signal which was a record of the shaft rotation.  Figure 6.11 shows a 1 second 

acquisition of a tachometer and raw vibration signal from the seeded cage fault bearing recorded 

at a shaft speed of 30 Hz. 
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Figure 6.11.  Cage fault raw vibration and tachometer signal at 30 Hz shaft speed 

 

Before the SA of the vibration envelope signal could be computed, the faulty bearing 

signals were band pass filtered.  Upon examination of the spectrums of the faulty bearing signals, 

it was observed that due to noise in the system, the fundamental fault frequencies could not be 

observed.  Thus, the aforementioned fundamental frequencies could not be used as the basis for 

filter band selection.  However, it was observed that the majority of the energy related to the 

signal was contained below 15 kHz.  Thus, a filter band of 1 Hz to 15 kHz was applied before the 

spectral average computation to extract the signal information related to the bearing defects.   

Provided in Figure 6.12 is an example spectrum for each faulty bearing type at a shaft speed of 

60 Hz.   
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Figure 6.12.  Vibration frequency spectrums for cage, inner race, outer race, and ball bearings 

 

Once the raw signal was band pass filtered, it then was enveloped, time synchronously 

resampled, and spectrally averaged using the signal information contained between ZCT of the 

shaft.  Then, after the time domain representation of the spectral average result was acquired, 

numerous CIs were computed.  Although a total of 10 CIs were tested, two were found to be 

effective: RMS and peak value.  Provided in Figure 6.13 is the RMS CI results for all collected 

data samples.  Samples 1-5 correspond to a shaft speed of 30 Hz, while samples 6-10 correspond 

to a shaft speed of 45 Hz, and samples 11-15 correspond to a shaft speed of 60 Hz.   
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Figure 6.13.  Steel bearing vibration signal RMS by sample number 

 

As shown in Figure 6.13, the RMS value for inner race, ball, and cage fault bearings 

increase with shaft speed.  This results in an increase of separation of the faulty from the healthy 

bearing case.   However, it should be noted that although a separation of the outer race fault 

bearing to the healthy case is observed, the increase in RMS is subtle compared to the other 

seeded fault bearing results.  Additionally, at the shaft speed of 30 Hz, the RMS values for ball, 

cage, and outer race fault bearings are close and do not follow the same level of separation 

observed at the 45 Hz and 60 Hz shaft speeds.  To determine the effectiveness of the RMS CI, 

the average values by shaft speed (Hz) are presented in Figure 6.14. 
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Figure 6.14.  Steel bearing vibration signal average RMS by shaft speed 

 

In Figure 6.14, it is observed that clear diagnosis of all four fault types can be 

accomplished at both the 45 Hz and 60 Hz shaft speeds.  Additionally, because the outer race 

faulty bearing RMS separation level is not as significant as the other faulty bearing cases; the 

lowest differentiation from the healthy bearing result is observed.  However, the peak CI proved 

to be a more effective CI than RMS and the result is shown in Figure 6.15. 

 

 

Figure 6.15.  Steel bearing vibration signal peak by sample number 
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As observed in Figure 6.15, it should be noted that for the faulty bearing signals, the peak 

CI value increases with shaft speed, regardless of fault type. Similar to the RMS results, the outer 

race signals provided the lowest increase in peak value as the shaft speed increased.  However, 

separation of the faulty bearing results from the healthy case is observed.  Additionally, the 

faulty bearing average peak values are separable from each other for all samples except for a 

switch of the cage and outer race results at the shaft speed of 30Hz.  As with the RMS CI, to 

determine the diagnostic ability of the methodology, the peak CI values for all signals were 

averaged and plotted versus shaft speed. This result is presented in Figure 6.16.   

 

 

Figure 6.16.  Steel bearing vibration signal average peak by shaft speed  

 

The results in Figure 6.16 indicate that peak value is an effective CI at the tested shaft 

speeds.  All fault types can be differentiated from each other and the healthy bearing case at all 

shaft speeds, except at 30 Hz, where the outer race peak value is higher than the cage peak value.  

Furthermore, the peak value provided a better result than RMS.  
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In summary, the results presented indicate that the use of RMS and peak value as CIs can 

accomplish bearing fault diagnosis with implementation of the presented methodology.  It was 

observed that although fault detection can be accomplished at the shaft speed of 30 Hz, the cage 

fault and outer race fault results cannot be distinguished.  However, at the shaft speeds of 45 Hz 

and 60 Hz, clear separation of all four fault types from the healthy bearing case and from each 

other is observed, providing merit for the diagnostic ability of the presented methodology.  Thus, 

the use of a TSR based spectral averaging approach results in the effective diagnosis of all four 

fault types from each other and from the healthy bearing case, which has not been reported in the 

literature.   

6.5 A Comparison Between Spectral Averaging and the Traditional Envelope Analysis 

Technique 

 

(The results in this section are previously published as Van Hecke, B., He, D., and Qu, Y., 2014, 

“On the use of spectral averaging of acoustic emission signals for bearing fault diagnostics”, 

ASME Journal of Vibration and Acoustics, Vol. 136, No. 6, DOI: 10.1115/1.4028322.) 

 

The envelope analysis technique has been well established for vibration based bearing 

fault diagnostics.  Thus, before implementing the presented methodology, the envelope analysis 

technique was applied to the AE signals for comparison.  For comparison purposes, Figure 6.17 

presents a visual representation of the presented methodology and how it compares to the 

traditional envelope analysis technique.  For envelope analysis, the path on the right is followed, 

where the AE signal envelope is the next step following band pass filtering.  Conversely, the 

presented methodology follows the path on the left where time synchronous resampling is the 

next step after band pass filtering.  
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Figure 6.17.  Comparison of the spectral averaging and envelope analysis techniques 

 

When applying the methodology to the AE data, the signal envelope of the band pass 

filtered signal appeared to hinder the result.  Thus, for spectral averaging of the AE signals, time 

synchronous resampling was accomplished after filtering.  After selecting the filter band, the 

signal acquisitions were band pass filtered, synchronously resampled, and spectrally averaged 

using the signal information contained between ZCTs of the shaft.  Then, after the time domain 

representation of the spectral average was acquired, numerous CIs were computed and evaluated.  

Although a total of 10 CIs were tested for both the spectral average and envelope analysis 
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results, two were found to be effective: RMS and peak.  Figure 6.18 presents the RMS CI results 

for all collected AE data samples using the presented methodology and the envelope analysis 

technique.   

  

Figure 6.18.  AE RMS by sample number using spectral average (left) and envelope analysis 

(right) 

 

As shown in Figure 6.18, samples 1-5 correspond to a shaft speed of 30 Hz, while 

samples 6-10 correspond to a shaft speed of 45 Hz, and samples 11-15 correspond to a shaft 

speed of 60 Hz.  It should be noted that for the faulty bearing signals, the RMS CI value 

increases with shaft speed, regardless of fault type or which methodology was applied.  There are 

some additional observations to mention regarding the RMS CI results.  Namely, as shown on 

the right in Figure 6.18, although envelope analysis can effectively separate the faulty bearing 

signals from the healthy case, the faulty signal separation at the 60 Hz shaft speed appears to be 
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less significant than the AE based spectral average results.  Moreover, for the envelope analysis 

results, switching of the outer race, inner race, and cage signals were observed at the shaft speed 

of 30 Hz.  Although the switching occurred for the spectral average results, the switching of 

levels was less significant.  The best separation among faulty bearing types is at the 60 Hz shaft 

speed for both AE centered methodologies. However, the separation of the faulty signals from 

each other and from the healthy case appeared to be more significant when using the spectral 

averaging approach.   To determine the diagnostic ability of the methodology, the RMS CI 

values for all signals were averaged and plotted versus shaft speed. The respective results are 

presented in Figure 6.19.   

  

Figure 6.19.  AE average RMS by shaft speed using spectral average (left) and envelope analysis 

(right) 
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The results in Figure 6.19 indicate that RMS is an effective CI at the tested shaft speeds. 

The AE centered envelope analysis provides the best separation of the faulty signals from the 

healthy.  However, with that approach, the cage, inner and outer racer results are close to one 

another and all three appear to switch at the 30 Hz shaft speed.  For the spectral average result, it 

should be noted that clear differentiation of the faulty signal results from each other and the 

healthy case is observed at both the 45 Hz and 60 Hz shaft speeds.  Also, although the separation 

of the inner race, outer race, and cage is the least significant at the 30 Hz shaft speed, the 

switching of the three was not as significant as when using the envelope analysis technique.  

Additionally, the ball fault signal is clearly separable at all three tested shaft speeds for both 

methodologies.  Similar results were observed for the peak CI and are presented in Figure 6.20 

with data sample corresponding to shaft speed in the same fashion as in Figure 6.18. 

  

 

Figure 6.20.  AE peak by sample number using spectral average (left) and envelope analysis 

(right) 
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As shown in Figure 6.20, the peak CI also effectively differentiates the faulty bearing 

signals from the healthy case.  Using the AE based envelope analysis; fault detection can be 

made, although there is a significant amount of variability and overlap amongst the faulty signal 

results.  As with the RMS CI, the AE spectral average result shown on the left in Figure 6.20 is 

the best.  In this case, clear differentiation of the faulty signals from each other is apparent at the 

both the 45 Hz and 60 Hz shaft speed which was not observed with the AE envelope analysis 

results.  More importantly, when using the presented approach, the highest level of separation of 

the faulty cases from the healthy case was also observed.  It is also important to note that 

although the cage, inner, and outer race results are close together at the 30 Hz shaft speed, they 

are all separated from the healthy case, allowing fault detection to be accomplished.  As with 

RMS, the peak CI average results are presented in Figure 6.21. 

  

Figure 6.21.  AE average peak by shaft speed using spectral average (left) and envelope analysis 

(right) 
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Similarly to the RMS CI results, the average peak CI also is effective in differentiating 

the faulty bearing cases from each other and the healthy case.  Additionally, it should be noted 

that the separation of cage and inner race faults when using the peak CI is greater than when 

using RMS, suggesting that peak value is a more effective CI for bearing fault diagnosis using 

this methodology.  Moreover, there is less apparent variability when using the spectral average 

results, suggesting a slight improvement than when applying the envelope analysis technique to 

the AE data.   

6.6 A Comparison Between AE and Vibration Based Approaches 

 

(The results in this section are previously published as Van Hecke, B., He, D., and Qu, Y., 2014, 

“On the use of spectral averaging of acoustic emission signals for bearing fault diagnostics”, 

ASME Journal of Vibration and Acoustics, Vol. 136, No. 6, DOI: 10.1115/1.4028322.) 

 

Additionally, the presented spectral averaging approach was applied to the vibration 

acquisitions. It was observed that for the vibration data, the utilization of the signal envelope 

before resampling improved the spectral average result.  Hence, all vibration acquisitions were 

enveloped before resampling. Additionally, for comparison purposes and to exemplify the 

effectiveness of the presented methodology, CI results are provided using both AE and vibration 

data.  Figure 6.22 presents the RMS CI results for the AE and vibration acquisitions.  
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Figure 6.22.  RMS by sample number for AE (left) and vibration (right) using spectral averaging  

 

As shown in Figure 6.22, the separation for the vibration results is fair at the 45 Hz and 

60 Hz shaft speeds.  Additionally, it should be noted that the best separation is of the inner race 

signal, which is distinctly separated from the healthy and faulty bearing cases.  Moreover, for 

vibration, the faulty bearing signals are all differentiable from each other and form the healthy 

case. However, the switching at the 30 Hz shaft speed is also observed as with envelope analysis 

results and the cage and outer race fault signals are close to the healthy at the 45 Hz and 60 Hz 

shaft speeds, which was not observed when using the AE based envelope analysis or spectral 

averaging approaches.  The vibration result in Figure 6.22 shows better separation of the faulty 

signals from each other but the least separation of the faulty from the healthy case.  It should also 

be noted that the separation of the faulty from the healthy bearing signals is greatest when using 
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the spectral averaging result.  The average RMS results by shaft speed are presented in Figure 

6.23.   

  

Figure 6.23.  Average RMS by shaft speed for AE (left) and vibration (right) using spectral 

averaging 

 

In Figure 6.23 it should be noted that the best separation of the faulty cases from the 

healthy case is observed at the 45 Hz and 60 Hz shaft speeds, with AE providing greater 

separation of the faulty signals from the healthy. Moreover, the faulty signals are clearly 

separable form each other at the aforementioned shaft speeds so fault diagnosis is achieved using 

both vibration and acoustic sensors.  Additionally, switching was observed at the 30 Hz shaft 

speed for both data types.  However, the switching is more significant for the vibration data, and 

switching of the cage and healthy case occurs which eliminates fault detectability at the 30 Hz 
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shaft speed. For AE, at the 30 Hz shaft speed, fault diagnosis is not accomplished but the 

separation of the faulty from the healthy allows clear fault detection.  The greater separation of 

the faulty signal results from the healthy case in combination with the detectability of fault at the 

30 Hz shaft speed suggests AE is a better approach.  Next, Figure 6.24 presents the peak CI 

results.      

  

Figure 6.24.  Peak by sample number for AE (left) and vibration (right) using spectral averaging 

     

As shown in Figure 6.24, fault detection can be accomplished at all 3 tested shaft speed 

when applying the spectral average approach to vibration or AE acquisitions.  However, it should 

be noted that the separation of the faulty bearing signals from the healthy case is more significant 

for the AE than the vibration case, suggesting that AE is a better approach when implementing 

the presented methodology.  Moreover, the switching occurring at the 30 Hz shaft speed is more 
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significant for the vibration acquisitions.   Additionally, the AE and vibration results obtained 

using the spectral average were better than the AE centered envelope analysis approach.  As with 

the previous cases, Figure 6.25 presents the average peak results versus shaft speed.      

  

Figure 6.25.  Average peak by shaft speed for AE (left) and vibration (right) using spectral 

averaging 

 

As shown in Figure 6.25, the peak CI is effective for both AE and vibration when using 

the spectral average approach.  However, AE is given a slight edge due to the greater separation 

of the faulty from the healthy bearing case and the less significant switch at the 30 Hz shaft 

speed.   

In summary, the RMS and peak features extracted from the spectral average results 

effectively differentiate all four fault types from each other and from the healthy bearing case, 
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which has not been presented in the literature.  Thus, the use of the TSR based spectral averaging 

approach exemplifies the effectiveness of implementing an AE based approach.  Additionally, 

unlike TSA, the presented approach requires the computation of a single average, eliminating the 

need for multiple averages for each bearing fault type.   

6.7 Low Speed AE Based Fault Diagnosis Results 6205-2RS Steel Bearing  

 

This section presents the validation results of the conducted low speed seeded fault tests.  

After heterodyning, the signals were collected at a 100 kHz sampling rate.  After DAQ, the 

signals were time synchronously resampled and spectrally averaged.  The result was then used 

for CI computations.  Although a total of 30 CIs were investigated, 4 were proven to clearly 

diagnose all four bearing fault types.  Shown in Figure 6.26 are the averaged AM shannon’s 

entropy CI values by shaft speed.  Each point presents the average value of the 5 samples for 

each bearing at every tested shaft speed.  Along with each average CI value is the 95% 

confidence error bar.    

 

Figure 6.26. Average AM shannon’s entropy by shaft speed (Hz) 
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As shown in Figure 6.26, the AM shannon’s entropy CI clearly diagnoses all four bearing 

fault types.  Because there is no overlap of the error bars, the separation of the failure modes 

from each other and the healthy bearing type is statistically validated.  Additionally, all bearing 

signals appear to contain similar upward trending of the CI values as shaft speed is increased.  

Another interesting observation is that the orders of the failure modes are consistent with the 

high speed diagnosis results found in the previous sections.  Next, Figure 6.27 presents the 

averaged EO shannon’s entropy CI values by shaft speed. 

 

 

Figure 6.27.  Average EO shannon’s entropy by shaft speed (Hz) 

 

The results in Figure 6.27 follow the same representation as those presented in Figure 

6.26.  Each point corresponds to the average CI value of the 5 acquired samples at each shaft 

speed, along with the 95% error bar.  This result validates the capability of the EO shannon’s 

entropy CI.  There is no overlap amongst any of the error bars which confirms statistical 

diagnosis of the bearings types.  Although diagnosis is accomplished, the separation does not 
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appear to be as significant as observed when using the AM shannon’s entropy CI.  Additionally, 

the bearing type order was maintained in the same fashion as Figure 6.26 as well as the 

aforementioned high speed bearing results.  Figure 6.28 below presents the averaged Shannon’s 

entropy results by shaft speed. 

 

 

Figure 6.28.  Average shannon’s entropy by shaft speed (Hz) 

 

As shown in Figure 6.28, the Shannon’s entropy CI also clearly diagnoses all bearing 

fault types.  The trending is similar to what was observed in Figure 6.26 and Figure 6.27 and the 

separation is statistically validated with the absence of overlap of the 95% error bars.  Moreover, 

the appearance of the separation appears to be greater than that of the result depicted in Figure 

6.27, though not as significant as the results presented in Figure 6.26.  However, all three results 

confirm the diagnostic potential of differing forms of the Shannon entropy CI.  Next, Figure 6.29 

presents the average histogram lower bound results by shaft speed.   
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Figure 6.29.  Average lower bound by shaft speed (Hz) 

 

As shown in Figure 6.29, the histogram lower bound CI also clearly differentiates all four 

bearing fault types from each other and the healthy bearing case.  This separation is also 

statistically validated by the results containing zero overlap of the error bars which was observed 

with the last three condition indicators.  Moreover, the same order of the bearing types was 

observed as with the previous figures.  One interesting thing to note is that the highest CI values 

were observed at the 2 Hz shaft speed and the trending went in the downward direction with 

increasing shaft speed to 10 Hz.   

To summarize, Figure 6.26 to Figure 6.29 show the ability of AM shannon’s entropy, EO 

shannon’s entropy, shannon’s entropy and histogram lower bound to be used for low speed 

bearing diagnostics when combined with a heterodyne based AE DAQ, and the presented signal 

processing methodology.  These results confirm that the use of low sampled AE data can achieve 

fault diagnosis at speeds less than 10 Hz.  Moreover, it should also be noted that for the 

shannon’s entropy CI results presented in Figure 6.26 to Figure 6.28, the trending and separation 
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of the failure modes increases with decreasing shaft speeds.  Thus, there is potential for the 

methodology to diagnose the bearing fault modes at shaft speeds lower than what was presented 

herein.  Hence, a novel effective and efficient AE based low speed bearing diagnosis approach 

has been validated. 

6.8 Detection of On-Aircraft Fatigue Crack in a UH-60A Planet Gear Carrier 

 

First, the results for the US Army test cell data will be discussed.  Of all the loading 

conditions, only the 20% torque test cell data for both transmissions was available for analysis.  

Thus, since only one acquisition of 180 seconds was available for each transmission, the data 

was segmented into 30 second intervals to provide more samples while ensuring enough 

tachometer revolutions for spectral average computations.  The result was 6 segments of 30 

seconds for each transmission at the aforementioned torque level and the methodology presented 

in Figure 4.4 was implemented.  Additionally, since sensor 5 was closest to the source, it was the 

only sensor investigated.  After the CIs were computed, 95% confidence intervals were obtained 

to determine the statistical significance of the CI values.  It was found that 4 CIs clearly 

differentiated the 82 mm crack transmission from the healthy transmission.  Figure 6.30 presents 

the average CI values for the 6 samples along with the 95% confidence intervals for sensor 5 test 

cell data.   
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Figure 6.30.  Average CI values with 95% confidence interval for sensor 5 test cell data 

 

Next, the results of the UH-60A on-aircraft VMEP data analysis are presented.  All 

VMEP acquisitions were processed following the methodology presented in Figure 4.4.  To 

determine if the fatigue crack was detectable for the on-aircraft data using the presented 

approach, the two sample CI values at each torque setting were averaged.  For sensor 3, the 

average CI values for each torque level are presented in Table 6.3.  Once the average CI values 

were computed, the percent difference in the CI values between Aircraft X and Aircraft A was 
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calculated.  For sensor 3, it was found that the 4 Aircraft X CI means were separable from 

Aircraft A CI means for both torque settings of 20% and 30%.  Then, to examine which CIs 

performed better in terms of the separation, they were ranked in Table 6.3 from the highest to the 

lowest percent difference.  It was found that the order of the CI ranking was the same for both 

torque settings which confirms torque independence of the CI values.   For sensor 3, the best CI 

was EO peak with percent differences of 86.794 and 105.375 for 20% and 30% torque 

respectively.  Figure 6.31 presents the average EO Peak CI values at the 20% and 30% torque 

settings for both Aircraft X and Aircraft A.   

Table 6.3.  Sensor 3 CI average results 

         Sensor 3

Aircraft X Aircraft A Aircraft X Aircraft A

CI                    20% torque setting % Diff                  30% torque setting % Diff

EO Peak 5.348 2.863 86.794 5.210 2.537 105.3745

EO UB 5.348 2.863 86.793 5.210 2.537 105.3728

RMS 0.030 0.026 17.094 0.029 0.024 19.997

EO CF 90.055 87.637 2.758 90.022 86.632 3.912  

 

Figure 6.31.  Average EO Peak CI by torque setting for sensor 3 
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The VMEP acquisitions for sensor 5 were processed in the same manner as sensor 3.  

Thus, the CI values at each torque level were averaged and percent difference between Aircraft 

X and Aircraft A computed.  The results for the sensor 5 CIs are presented in Table 6.4.  Similar 

to the sensor 3 results, the CI rankings were the same for both torque settings which again 

confirms torque independence of the CI values.  Also, the best CI for sensor 5 was EO Peak.  

The average EO Peak CI results are shown at both torque settings for both Aircraft X and 

Aircraft A in Figure 6.32.  It is important to note that the top 2 CIs for sensor 5 perform better 

than the top CI (EO Peak) for sensor 3 in terms of percent difference.  The reason for the higher 

percent difference using sensor 5 data is likely due to the fact that sensor 5 was much closer to 

the planet carrier fatigue crack.   

Table 6.4.  Sensor 5 CI average results 

        Sensor 5

Aircraft X Aircraft A Aircraft X Aircraft A

CI                 20% torque setting % Diff                   30% torque setting % Diff

EO Peak 3.121 1.083 188.246 3.021 1.013 198.265

EO UB 5.316 1.961 171.112 5.127 1.848 177.524

RMS 0.030 0.025 19.489 0.029 0.025 16.353

EO CF 51.556 49.045 5.119 51.646 48.360 6.795  
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Figure 6.32.  Average EO Peak CI by torque setting for sensor 5 

 

In this section, a new method for detecting an on-aircraft fatigue crack in a planet carrier of 

an epicyclic transmission was presented.  This method begins by time synchronously resampling 

vibration signals to segment the signals according to shaft crossing times such that an even 

number of data points are obtained to compute a spectral average.  Then, the result is used to 

extract features and evaluate numerous CIs for planet carrier fatigue crack detection.  The 

methodology was validated using the raw vibration test cell and on-aircraft data acquired from a 

number of US Army UH-60A Black Hawk helicopter main transmissions.  For the test cell data, 

analysis was done for sensor 5 at the 20% torque setting.  For the on-aircraft data, both sensor 3 

and sensor 5 acquisitions were processed.  For each sensor, two samples of data were analyzed 

for both the 20% and 30% torque settings.  The results indicate that using the presented 

approach, a total of 4 CIs can be used to detect the fatigue crack in a planet carrier for both the 

test cell and on-aircraft UH-60A vibration data.  The CIs were ranked in the order of percent 

difference of Aircraft X mean CI values from Aircraft A mean CI values.  The ranking for both 



97 
 

sensor data was constant regardless of torque setting, indicating that the CIs are torque 

independent.  Also, the EO Peak CI was the best for both sensors in terms of percent difference.  

The studies currently reported in the literature have had difficulty detecting the fatigue crack 

using the on-aircraft data.  The results in this section indicate that the presented approach can be 

utilized to address the detection of fatigue cracks in a planet carrier of a UH-60A helicopter 

using VMEP vibration data.         
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7. CONCLUSIONS 

 

In this dissertation, effective and efficient AE based techniques for bearing fault diagnostics 

were developed and validated using a bearing test rig and seeded fault tests.  A frequency 

reduction hardware solution was developed based on heterodyne that lower the AE signal 

frequency allowing the reduction of the sampling rate from several MHz to 100kHz.  Through 

this technique, the AE signals are demodulated and low-pass filtered to extract the useful fault 

frequencies needed for bearing health assessment.  AE sensors offer a number of advantages 

over their vibration counterparts which are standard to use in industry.  By reducing the sampling 

rate of AE sensors to a rate comparable to vibration sensors, AE can be feasibly applied in the 

field with much less storage and computational burden.  To extract useful features from the low 

sampled AE signals, a signal processing method based on synchronous resampling and spectral 

averaging was developed.  This was the first reported application of low sampled AE data in 

combination with a novel signal processing algorithm that was validated to diagnose all bearing 

fault types at both high and low speed ranges.    

This research has several significant contributions.  First, the sampling rate for AE sensors 

has been reduced to a rate comparable to vibration signals. This allows a reduction in 

computational burden while affording the ability to take advantage of AE benefits such as 

incipient fault detection and increased sensitivity.  Second, the time synchronous resampling and 

spectral averaging combination allows a single average to be computed and effectively diagnoses 

all four bearing fault types.  Other bearing techniques based on TSA require either multiple 

averages or multiple trigger signals to be computed for each bearing fault type.  This further 

reduces computation time.  Additionally, this method accounts for fluctuations in shaft speed and 
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bearing slippage which reduces variability amongst CI values and smearing in FFT 

computations.   

Through seeded fault tests, the research contributions have been validated.  The methodology 

has also been extended and validated for bearing fault diagnosis using accelerometer data.  When 

compared with the use of vibration sensors, AE outperforms the accelerometer results.  Also, this 

approach has been compared with and shows improvement against the widely used envelope 

analysis technique when applied to the collected AE signals.   Additionally, low speed diagnosis 

of all four bearing fault types has not been presented for the 2-10 Hz shaft speed range.  A 

modified algorithm that uses a different analysis signal and low speed condition indicators can 

statistically diagnosis all failure modes which has not been presented in literature.  Moreover, the 

developed technique has been extended and validated to detect fatigue cracks on a planet gear 

carrier in a UH-60A helicopter using test cell and on-aircraft vibration data.  Previous research 

has achieved results with test cell data but not with the on-aircraft data.  

In summary, this research shows AE sensors can be applied in industrial settings at a low 

cost and reduced computational burden.  Also, the new signal processing technique is effective 

for bearing fault diagnosis using AE and vibration sensors at low and high speed ranges.  Lastly, 

the technique is shown to be effective for on-aircraft UH-60A planet gear carrier crack detection 

as well.  
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