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SUMMARY

Chapter 1 introduces the basic statistics of energy consumption in U.S. It is indicated by

recent years’ data from Department of Energy that building sector consumes more energy than

any other sectors. To improve building energy efficiency, capability of integrating distributed

energy resources has transformed building from traditional consumer into prosumer that could

interact with power grid via two-way communication of ‘smart grid’&‘smart building’ tech-

nology. Motivated by potential of transactive operation of building with power grid, electric

vehicle and other buildings, this research focus on ‘efficient transactive control of grid-friendly

building clusters at distribution level’.

In Chapter 2 , the fundamental incentives for buildings to be clustered is clarified. Previous

research has indicated the collective benefits of building clusters, however, whether every par-

ticipated building could benefit from clustered operation has been neglected. Therefore, this

chapter investigates individual contribution and gain during the collaboration from the per-

spective of individual buildings, the possibility of ensuring relative and absolute fairness during

benefit distribution is revealed by our proposed analytical models. Possible energy transaction

price is also suggested.

Chapter 3 focuses on large scale transactive operation of building clusters. Although various

distributed decision frameworks have been developed for energy system operation, most of

existing distributed implementations have relative complex structures and could not realize

parallel autonomous operation. To make distributed parallel decisions and protect sensitive

ix



SUMMARY (Continued)

information for building agents, we propose a bi-level energy transaction framework, where

building agents operate their own energy systems driven by transactive decisions made by

distribution system operator. The proposed framework and algorithm are first evaluated on

small-scale building-charging station transaction, then tested on large scale building clusters

consisted of up to 256 buildings.

Chapter 4 deals with transactive operation of building clusters under uncertainties. Sce-

nario based stochastic programming is adopted to model uncertainties from electricity load and

solar radiation. In this chapter, except purchasing and buying electricity from electricity mar-

ket, building’s potential in ancillary service market is also modeled by providing different kinds

of operating reserves from power generating unit and electric storage of buildings. To decrease

the problem complexity, scenarios are trimmed by reduction algorithm and a model predic-

tive control or rolling horizon control approach is also embedded in the proposed distributed

stochastic transaction process to make online decisions.

Chapter 5 summarizes the main contributions of this thesis, and points out other extended

application areas that our proposed distributed decision framework could be applied on. Pos-

sible issues and improvements for current research are also put forward for future study.

x



CHAPTER 1

INTRODUCTION

Primary energy consumption of the United States in 2016 has a slight increase from 2015

level, totaled 97.4 quadrillion British thermal Units (Btu) (127). From the perspective of en-

ergy sources, fossil fuels made up 81% of the total consumption in 2016, slightly lower than

2015 levels, but down from 86% in 2005. Coal consumption decreased by 9%, nearly offsetting

increases in consumption of renewables, petroleum, natural gas, and nuclear fuel. Petroleum

consumption increased to 19.6 million barrels per day in 2016, led by increases in transportation

sector. Natural gas consumption increased to 27.5 trillion cubic feet, led by higher demand in

electric power and industrial sectors while it fell slightly in residential and commercial building

sectors, reflecting lower heating demand. On the other side, among all the main energy con-

sumption sectors, the building sector is responsible for more than 40% of U.S. primary energy

consumption since 2010, which is about 44% more than transportation sector and 36% more

than industrial sector in the U.S., it also accounts for 44% of carbon dioxide (CO2) emissions

in U.S. per year, more than any other sector (121).

1.1 Background and Motivation

The building sector plays a critical role in achieving transition to a low-carbon economy. At

the UN Framework Convention on Climate Change (Copenhagen, December 2009), more than

100 countries associated themselves with the Copenhagen Accords, which set the objective of

1
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holding “the increase in global temperature below two degrees Celsius”. This implies reducing

global CO2 emissions by 50% by 2050 and buildings must deliver a large part of this reduction

(54). To improve energy efficiency of buildings, several efforts have been made in past decades

worldwide from more stricter building standard codes, appliance standards, to energy certifi-

cation polices, for example, in countries of Asia-Pacific Partnership on Clean Development and

Climate (APP), building energy standards usually cover insulation, thermal and solar proper-

ties of building envelope (walls, roofs, windows and other areas where the interior and exterior

of a building interface). Most standards also cover heating, ventilation and air conditioning

(HVAC), hot water supply systems, lighting, and electrical power. Some cover additional issues

such as use of natural ventilation, renewable energy and building maintenance (34).

Within domestic of U.S., the Building Technologies Office (BTO) of Department of Energy

(DOE) supports the development and implementation of residential and commercial building

energy codes by engaging with government and industry stakeholders, and by providing tech-

nical assistance for code development, adoption, and compliance (122). Through advancing

building codes, BTO aims to improve building energy efficiency, and help states achieve max-

imum savings. For instance, on July 25 2017, DOE issued a preliminary determination that

Standard 90.1-2016 would achieve greater energy efficiency in buildings subject to the code.

DOE estimates national savings in commercial buildings of approximately 8.2% energy cost

savings, 7.9% source energy savings and 6.7% site energy savings (125). In additional, an es-

timated 75% of U.S. buildings will be new or renovated by 2035, building energy codes could

ensure efficient energy usage over the life of the building (122). The estimated potential energy
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savings by state from building energy codes and estimated potential electricity savings by state

from residential efficiency (126) is shown in Figure 1(a) and Figure 1(b).

(a) (b)

Figure 1: (a) Estimated achievable potential energy savings by state from building energy codes,
(b) Estimated economic potential electricity savings by state from residential efficiency

Generally, for buildings, the major areas of energy consumption are heating, ventilation,

and air conditioning − 35% of total building energy; lighting − 11%; major appliances (wa-

ter heating, refrigerators and freezers, dryers) − 18% with remaining 36% in miscellaneous

areas including electronics (108), see Figure 2. For each component of the building, there are

opportunities both from, 1) improving its own energy performance by new technologies, for

example, some new emerging technologies about hardware (128): high-efficiency heat pumps
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that reduce or eliminate the use of refrigerants that can lead to greenhouse gas (GHG) emis-

sions, thin insulating materials, windows and building surfaces with tunable optical properties,

high efficiency lighting devices, etc., and 2) improving the way they are controlled as a part of

integrated building systems, for example, improved software for optimizing building design and

operation (25), low cost energy harvesting sensors and controls, interoperable building commu-

nication systems and optimized control strategies, decision science issues affecting purchasing

and operating choices.

(a) (b)

Figure 2: (a) Primary energy usage distribution in residential and commercial buildings, (b)
Electricity sale for buildings
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Building efficiency must be considered as improving the performance of a complex system

designed to provide occupants with a comfortable, safe, and attractive living and work en-

vironment. It requires superior architecture and quality construction from design stage and

intelligent operations which usually include integration with sophisticated electric power grid

(108). For current buildings already built, comparing with higher capital cost investment on

efficiency-limited equipments, the cost of installing a smart building energy management system

is relatively low. However, electricity delivery in the U.S. depends on an aging and overburden

patchwork system, and some parts of the electric grid predate the turn of the 20th century (8).

To modernize the grid and make it “smarter”, concept of very promising “Smart Grid” tech-

nology has been proposed in past few years which make it possible by two-way communication

technologies, control systems, and computer processing (124). Through the use of smart grid

technologies, operators could reduce power outages, reduce storm impacts, and restore service

faster when outages occur. Utilities also benefit from modernized grid, including improved

security, reduced peak loads, increased integration of renewables and lower operational costs.

Consumers can better manage their own energy consumption profile and respond quickly to

market signals, especially for buildings with distributed energy generation sources and smart

energy management system (a.k.a., “Smart Building”).

Besides “Smart Grid” & “Smart Building” technologies, to unlock the true potential of

buildings, another initiative “Transactive Energy” is defined by the Gridwise Architecture

Council as “a set of economic and control mechanisms that allows the dynamic balance of

supply and demand across the entire electrical infrastructure using value as a key operational
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parameter”. It refers to the “combination of economic and control techniques to improve grid

reliability and efficiency. These techniques may also be used to optimize operations within a

customer’s facility” (44)(100)(43).

All of these technologies and initiatives urge the building sector to improve its energy ef-

ficiency, have better capabilities for interacting with the power grid, and drive the research

moving from a centralized control of individual buildings to collaborative/transactive con-

trol on a network of smart buildings (a.k.a., building clusters). The transactive control has

the following benefits (101): 1) electrical generation and load can be balanced more effectively

which can help preserve the grid reliability, 2) critical decision making can be accomplished

in a highly parallel and redundant manner to reduce single points of failure as the size of the

grid continues to grow, 3) consumers of the power can assess actual, real-time grid information

and power values and optimize their power use and local energy generator to accommodate

their own preferences, and 4) new distributed generation resources and managed loads can be

integrated into the grid more easily, with the impacts managed locally.

1.2 Smart Building Transactive Energy Management

“Buildings, as the largest electricity consumer, should work in synergy with and be re-

sponsive to the grid, and be at least grid-friendly to avoid putting additional stress on the

balance of power grids. The large load shifting capacity of buildings enables them to be the

most effective responsive loads and DR resources. Buildings have great flexibility or elasticity

in changing their power demands due to their cooling/heating load shifting potential (besides

other nonessential loads) as a result of passive and active thermal storages. The building loads



7

can then be altered in terms of both magnitude and time in response to the needs of power

grids. The change of power use (or even power export to grid) in a building might be activated

autonomously in response to time-of-use or dynamic electricity pricing, or controlled directly

by the grid operator (or third-party)” (132). The true potential of buildings participating in

power grid could be fully explored and exploited through the interaction between buildings

and power grid (B2G), integration of buildings and electric vehicles (V2B) and aggregation of

cooperative building clusters (B2B).

Demand response offers a solution to many of the challenges faced by electricity grids.

Commercial buildings are good candidates to DR programs for several reasons: 1) commercial

buildings constitute a significant portion of electricity load, 2) commercial buildings have many

predictable loads operating on repeating schedules, 3) many commercial buildings have central-

ized control, reducing the cost for integrating them in DR program (66). Using EnergyPlus, a

simulation model of a multi-purpose commercial building was developed and calibrated, then

DR strategies are evaluated for a number of building zones, which utilise different heating,

cooling and ventilation equipment (21). A day-ahead multi-objective optimization model is

proposed (120) for time-of-use (TOU) price based DR program, which integrates distributed

electricity generation sources in buildings to optimize the economy and occupants’ comfort by

synergetic dispatch of source-load-storage. A two-stage optimization framework for price-based

DR of commercial buildings is proposed (65) that include variable speed heat pumps (VSHPs).

The energy consumption and reserve provision of VSHPs, as well as plug-in electric vehicles,

are then co-optimized considering the operating conditions of distribution networks for pre-
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and post-contingency states of wind power generation. An innovative probabilistic method for

evaluating impact of residential DR choices is proposed (116), which considers uncertainties

related to load demand, user preferences, environmental conditions, house thermal behavior

and wholesale market trends. Interdisciplinary mechanism that combines machine learning,

optimization, and data structure design focus (141) on building a DR and home energy man-

agement system that can meet the needs of real life conditions. A novel control algorithm

is presented (67) for joint DR management and thermal comfort optimization in micro-grids

equipped with renewable energy sources and energy storage units. Effectiveness of the proposed

method is validated in a micro-grid composed of three buildings, a PV array, a wind turbine

and an energy storage unit.

To significantly reduce the energy consumption from the two main sectors, building and

transportation, the potential of vehicle-to-building (V2B) integration has attracted greater

attention recently. It is demonstrated that the V2B integration can achieve cost savings (39)

and CO2 emissions reductions (58) using appropriate operation decision strategy. Instead of

installing stationary energy storage system, the EVs can help buildings reduce peak energy

demand and energy cost (22). By using the V2B technologies, the benefits for demand side

management and outage management can be significantly improved (99)(117). Optimal sizing

of workplace charging stations is studied (53) considering probabilistic reactive power support

for PHEVs which are powered by solar photovoltaic (PV) units in medium voltage commercial

building networks. Charging and discharging process for multiple EVs in a building’s garage

are studied to optimize energy consumption profile of the building (89). An EV charging



9

algorithm is designed for smart homes/buildings to determine optimal schedules of EV charging

based on PV output and electricity consumption (134). The economic impacts of EVs under

various demand response strategies for smart households are studied in (32). The grid impact of

charging PHEVs in an existing office building is examined in (131). Different charging strategies

and charging power ratings are developed to allow a high number of EVs to be charged with a

lower grid impact and an increased self-consumption on renewable energy. The potential benefits

for V2B integration together with additional revenue through providing ancillary service can

be amplified (41). The benefits of optimizing EV and home energy scheduling considering

user preferences in a residential community are discussed in (81)(88). For commercial building

microgrids that containing EVs and PV system, a heuristic operation strategy, which is based

on real-time acquisition data without forecasting of PV output or EV charging demand, is

proposed to improve self-consumption of PV energy and reduce the impact of uncoordinated

EV charging on power grid (72).

Other than the large body of research on B2G and V2B, another noteworthy effort (B2B)

is appeared, which is to form transaction energy network to allow multiple micro-grids sharing

and exchanging energy for better energy performance. It is demonstrated that the building level

micro-grid clusters are more energy efficient than a single building level micro-grid (49), and the

first attempt to make operation decisions for micro-grid clusters is a memetic algorithm based

framework (49). The proposed framework is capable of deriving Pareto solutions for micro-grid

clusters in a decentralized manner. The high computational cost of memetic algorithm based

decision framework prohibits its use for short time scale (e.g., hourly) operation decisions of
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micro-grid clusters. To this end, a particle swarm optimization based decision framework is

proposed in (50) to enable short time scale operation decisions which can significantly improve

energy efficiency and achieve more energy cost savings. Other than cost savings, the micro-

grid clusters can also improve environmental sustainability, reduce primary energy consumption

and enhance micro-grid’s resilience capability to power disruptions and extreme events (23).

The micro-grid clusters can be self-organized to guarantee energy reliability of critical loads

and overall energy efficiency after extreme event which isolates the micro-grid clusters from

the main power grid (47). For example, each micro-grid can decide whether to connect to

the clusters depending on available generation resources, and negotiate with other micro-grids

in the clusters for optimal energy exchange. A hierarchical bi-level decision framework based

on the system of systems concept is proposed (60) to enable coordination between micro-grid

clusters and distribution grid, and optimally operate micro-grid clusters. A self-organizing

map based clustering algorithm is proposed in (56) to group different micro-grids into different

clusters based on their energy profiles, and a distributed decision model is proposed to study

homogeneous and heterogeneous micro-grid clusters.

1.3 Distribution Level Transactive Market Operation

“The rise of distributed generation and the transformation of the traditional consumer into

a prosumer are changing the way the revenue flows in the energy value chain and changing the

value chain itself”. “The prosumer is an electric customer who generates electricity and sells

excess back to the utility. This customer relies on the distribution grid to deliver electricity to

the utility in addition to back up services when on-site generation is insufficient to meet host
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demand”. “In the future electricity business model, all parties transact with each other using

tenders and transactions that are communicated and recorded on transaction platforms. Trans-

actions are for energy and transport product. The four types of entities in the business model

are: 1) Energy service parties own and control all facilities for the usage, production, and storage

of energy. A customer, prosumer, DER, and generator are energy service parties, 2) Transport

services parties own and control all facilities for transport of energy, distributed operators and

transmission operators, 3) Intermediaries provide exchange, market-making, matching, arbi-

trage, hedging, and financing services, 4) Transaction platform providers furnish transaction

platform information processing technology and are not a party to any tenders and transac-

tions or ownership and control of energy and transport facilities” (38). The emerging prosumer

and the energy transaction market of building clusters are shown in Figure 3(a) (source:(38))

and Figure 3(b) (source:(106)). Correspondingly, the research focus has transferred from seek-

ing optimal operation strategy of individual building to coordinated operation among multiple

interconnected buildings.

“Along with more and more technologies available to customers (e.g. buildings), the energy

distribution system are getting more and more complicated comparing with traditional one-

way street form faraway generators to electricity customers. After customers have the ability

to meet their own energy demands and exporting surplus electricity services to the power

grid, the distribution systems also needs a new kind of management with multiple options.

First one is an integrated distribution planning process which might need more investment

in infrastructures, second one is to transform utilities into a “Distribution System Platform”



12

(a) (b)

Figure 3: (a) traditional consumer transform to prosumer, (b) prosumer-based energy sharing

provider (DSP) who will look across all options to optimize the distributed system. A third

one is to establish an “Independent Distribution System Operator” (IDSO or DSO).

From the perspective of operating mode, DSP and DSO are similar somehow: one entity

co-optimizes all available distributed resources, which increases reliability and lowers costs. It is

ideally that existing distribution utilities should play this role as the DSPs. However, it may be

difficult to set up a regulatory environment that effectively incentivizes the distribution utility

to optimize across all possible DERs to find the least-cost, most reliable, cleanest option. One

possible regulatory option is true performance-based regulation, where the utility’s finances are

directly tied to quantitative outcomes in each of those categories. Alternatively, distribution

system optimization could be handled by an independent organization.

An Independent DSO would act as an independent market-maker for a diverse number

of behind-the-meter participants to buy and sell energy services, and it would not own any

physical assets itself. The DSO would optimize distributed energy resources (DERs) like en-
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ergy efficiency, demand management, demand response, distributed generation, electric vehicle

chargers, building management systems, and microgrids. It would provide a market that co-

ordinates and accurately compensates the owners of these DERs for the benefits they provide

to the grid, including avoiding alternative investments. By allowing DERs to compete with

more traditional energy service providers, the hope is that the least cost resource mix will be

uncovered, lowering costs for customers.

Introducing competition and creating a DSO would (1) integrate more DERs on the system;

(2) get the most out of existing grid resources; (3) give consumers more choice and control; and

(4) spur a more “transactive distribution system where independent agents can trade and com-

bine their services to meet specific customer needs, enabling the emergence of a whole new class

of energy market participants. Under the proposed framework, the Distributed System Opera-

tor would serve as a system optimizer on the local level, calling on least-cost resources to meet

distribution system goals. Those least-cost resources could be provided directly by customers,

but it’s more likely they would be provided by third-party aggregators (e.g., traditional Energy

Service Companies, new kinds of energy service businesses). Individual residential customers

are unlikely to ever interact directly with the DSO.

In addition to a local system optimizer, the DSO would also act as an aggregator, bidding

this optimized portfolio of resources into the traditional marketplace run by the Independent

System Operator or Regional Transmission Organization. So a DSO allows distributed energy

resources (DERs) to compete with traditional independent generators for ISO-level services and

bilateral energy services contracts. Meanwhile, the distribution utilities would retain ownership
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of the assets related to distribution, including primary responsibility to maintain and upgrade

the system subject to state laws on performance” (7).

1.4 Scope and Organization

As reviewed in Section 1.2, transactive potential of B2G (between building and power grid),

B2V (between building and electric vehicle) and B2B (between building and building) has been

revealed and studied. However, current research stays at small scale, transactive control at

distribution level has not been touched due to missing of large scale transaction architecture

and distributed coordination algorithms. Along with rising building prosumers, it’s necessary

to explore energy transaction at prosumer market.

To bridge these gaps, the reviewed B2B transaction (Section 1.2), especially at large scale,

is focused in this research. Decision models and algorithms are developed to study the collab-

orative decision of building clusters which can minimize the energy consumption and provide

possible ancillary services to ensure the reliability of distribution network. The overall research

map is described in Figure 4 and the research issues in each phase are in the following discussion.

Figure 4: Overall Research Map and Chapter Organization
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It is noticed that most of existing literature in energy efficient operation of buildings focuses

on energy system operation of single building or a very small scale building cluster (2-4 build-

ings). With the context of smart grid and transactive energy, the benefits of building clusters

to reduce energy consumption and the capabilities of building clusters to provide ancillary ser-

vice have been discovered very recently. Therefore, studying large scale transactive operation

for grid-friendly building clusters is necessary. In order to address this topic thoroughly, three

phases are planned and according research issues are proposed:

Phase I. Why do we need to pay more attention about buildings from demand

side? Are there enough incentives for individual buildings to be clustered together?

And how to achieve the optimal collective benefits while considering the interests

for participated individual buildings?

According to recent studies, building clusters can significantly reduce energy cost, improve

environmental sustainability and resilience capability to extreme events, most of the studies

focus on maximizing the collective interests, such as minimizing energy cost for the building

clusters. The individual interests of some buildings cannot be guaranteed. We propose four

operation decision models to study the transactive energy management for the building clusters

and balance the collective and individual interests (Chapter 2).

Phase II. For a community level application, the challenges are: how to construct

an efficient energy transaction framework? How to coordinate the transactive

process among buildings in the cluster? And how to protect privacy information

in this transactions?
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Although various distributed decision frameworks have been developed and applied for en-

ergy system operation, most of the existing distributed implementations are not absolutely

parallelized or have relatively complex structures such as peer-to-peer structure. It prohibits

their applications for large scale building clusters. In addition, the existing distributed deci-

sion frameworks require extensive information (e.g., detailed decision models) to be exchanged

among different decision agents which is not able to protect the private information of decision

agents. To bridge these research gaps, we propose a swarm intelligence based bi-level distributed

decision framework to model the energy transactions in the building clusters (Chapter 3).

Phase III. For this phase, we propose to study online transactive operation for

building clusters to provide ancillary services and minimize energy consumption.

There will be several main challenges here: 1) How to model ancillary services

provided by buildings, 2) How to deal with the uncertainties from energy demand

and other ambient parameters?, 3) How to make effective online decisions with

updated information?

To embrace the uncertainties from electricity load and solar radiation, scenario-based cen-

tralized two-stage stochastic operation model is firstly established. Electric storage and Power

Generating Unit (PGU) in Combined Cooling, Heating and Power (CCHP) system are assumed

to provide different kinds of operating reserves. The proposed swarm intelligence based dis-

tributed decision framework and coordination algorithm in Phase II are extended to incorporate

with stochastic programming. In order to further decrease model complexity of planning opti-
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mization and utilize updated information, a model predictive control (MPC) or rolling horizon

control approach is also embedded in the proposed energy transaction process (Chapter 4).



CHAPTER 2

DEVELOP LOCAL PROSUMER MARKET OF BUILDING CLUSTERS∗

The emerging technology, transactive energy network, can allow multiple interconnected

buildings (a.k.a. building clusters) to exchange energy for greater energy efficiency. Existing

research has demonstrated that the building clusters can achieve some collective interests (e.g.,

minimizing total energy cost). However, some buildings may have to make sacrifices of their

individual interests (e.g., increasing cost) for collective interests of the clusters. To bridge these

research gaps, we propose four different transactive energy management models for building

clusters where each building is allowed to have energy transactions with others. The first

model focuses on maximizing collective interests, both the collective and individual interests

are considered in the second model, and the last two models aim to maximize both the collective

and individual interests. The performances of the proposed models are evaluated using a cluster

of sixteen buildings with different energy profiles. It is demonstrated that 1) all of the four

models can maximize the collective interests, 2) the third model can maximize the relative

individual interests where each building can achieve the same percentage of cost savings as the

clusters, and 3) the fourth model can maximize the absolute individual interests where each

building can achieve the same amount of cost savings.

∗This chapter was previously published as: Chen, Y. and Hu, M.: Balancing Collective and Individual

Interests in Transactive Energy Management of Interconnected Micro-grid Clusters. Energy, 109:1075-1085,2016

18
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2.1 Energy Transaction among Interconnected Buildings

A typical smart building consists of distributed energy sources (such as power generators,

storage system, etc.) and loads, and is able to operate in parallel with, or independently

from, the mainpower grid (40). Specifically, smart buildings can utilize both distributed energy

generator, such as fuel cell, CCHP system, solar PV, and distributed energy storage, such as

electric and thermal storage, to satisfy electric, cooling and heating demand.

The research on individual building or building level micro-grid operation focuses on develop-

ing optimal operation strategies for the energy systems (e.g., distributed generator, distributed

energy storage) in the building. In general, two different models, such as deterministic and

stochastic models, are developed to study the micro-grid operation where the random issues in

the micro-grid are ignored in the deterministic models. An economic power dispatch decision

model for micro-grid with the objective of minimizing fuel cost during grid-connected operation

while ensuring stable operation after islanding (2) shows that a micro-grid can be economically

operated during grid-connected mode and operated in a near-optimal way during islanded mode

with cost increasing up to 0.7%. A multi-objective mixed integer nonlinear programming model

is proposed in Ref. (136) to find optimal operation decisions for a building level micro-grid and

enable further analysis of micro-grid under various load conditions. A novel double-layer coordi-

nated control approach for both grid-connected and stand-alone micro-grid energy management

is proposed in Ref. (57) where the simulation results for a typical micro-grid show good conver-

gence in either mode. It is demonstrated that the energy supply and demand in a residential

micro-grid can be balanced using a three-step methodology in advance planning and real-time
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control of domestic appliances (84). The stochastic operation decision models are developed

to mitigate the impacts of uncertainties to micro-grid operations. The energy scheduling of

micro-grid is formulated as MIP (mixed integer programming) problem in Ref. (42) under the

practical background of a low energy building where uncertainties in demand and renewable

energy sources are considered. A two-stage stochastic programming formulation is proposed in

Ref. (80) to study a building where responsive loads (residential, commercial and industrial

ones) and distributed generation units are applied to provide reserve for compensating fore-

cast errors of renewable energy, and reserve capacity allocation and optimal battery scheduling

are considered. An online optimal energy/power control method based on a MIP model using

rolling horizon window is presented (77) for the operation of energy storage in grid-connected

micro-grids, and a robust counterpart model is proposed to handle uncertainty in system states

prediction with a very modest increase in computational time.

It is demonstrated that the building clusters are more energy efficient than a single build-

ing (49), and the first attempt to make operation decisions for building clusters is a memetic

algorithm based framework (49). The proposed framework is capable of deriving Pareto solu-

tions for building clusters in a decentralized manner. The high computational cost of memetic

algorithm based decision framework prohibits its use for short time scale (e.g., hourly) opera-

tion decisions of building clusters. To this end, a particle swarm optimization based decision

framework is proposed in Ref. (50) to enable short time scale operation decisions which can

significantly improve energy efficiency and achieve more energy cost savings. Other than cost

savings, the building clusters can also improve environmental sustainability, reduce primary
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energy consumption and enhance building’s resilience capability to power disruptions and ex-

treme events (23). The micro-grid clusters can be self-organized to guarantee energy reliability

of critical loads and overall energy efficiency after extreme event which isolates the micro-grid

clusters from the main power grid (47). For example, each micro-grid can decide whether to

connect to the clusters depending on available generation resources, and negotiate with other

micro-grids in the clusters for optimal energy exchange. A hierarchical bi-level decision frame-

work based on the system of systems concept is proposed (60) to enable coordination between

micro-grid clusters and distribution grid, and optimally operate micro-grid clusters.

Although the building clusters can significantly reduce energy cost, improve environmental

sustainability and resilience capability to extreme events, most of the existing operation decision

models for building clusters focus on maximizing the collective interests, such as minimizing

energy cost for the building clusters. The individual interests of some buildings cannot be

guaranteed. For example, some buildings maybe more cost expensive if they join the clusters

to exchange and trade energy with other buildings. The transformation of building clusters

concept will be prohibited without a model to balance the collective and individual interests.

To bridge these research gaps, we propose four operation decision models to study the trans-

active energy management for the building clusters and balance the collective and individual

interests. In this research, the collective interest for the building clusters is to minimize the

total energy cost for the clusters, and the individual interest is defined to maximize the relative

percentage of cost savings or the absolute amount of cost savings for each building. In our

proposed models, each building has its own CCHP, PV, electric and thermal storage to sat-
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isfy its electric and thermal loads, and can freely share electric and thermal energy with other

buildings. The first model is developed to maximize the collective interests (e.g., minimize total

energy cost) only, and the second model is to maximize the collective interests and keep the

individual interests (e.g., the percentage of cost savings for each building) at satisfactory levels.

The third and fourth models aim to maximize both the collective and individual interests. The

individual interest in the third model is defined to maximize the relative percentage of cost

savings for each building. We model the price for the local transactive energy in the fourth

model, and define the individual interest as maximizing the absolute amount of cost savings

for each building. According to the study on a cluster of sixteen buildings, we can conclude

that: 1) all of the four models can maximize the collective interests, 2) all the buildings can

have the same percentage of cost savings as the building clusters using the third model, and

3) the absolute amount of cost savings can be evenly shared by each building and the local

energy transaction price can be determined using the fourth model. It can also be concluded

from this research that: 1) the first model is appropriate when all the buildings are operated by

one manager, 2) the second model is suitable when the buildings have heterogeneous individual

interests, 3) the third and fourth models are preferred when the buildings have homogeneous

individual interests and the fourth model is better to the highly cooperative building clusters.

In summary, the contributions of this research lie in three aspects: 1) a mathematical decision

framework is proposed to study the transactive energy management for the building clusters,

2) the first attempt to develop various models to study the balance between collective and indi-

vidual interests in various building clusters, and 3) the local energy transaction in the building
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clusters is modeled and an optimal local energy pricing strategy can be determined using the

proposed models.

2.2 System Architecture of the Building Clusters

In this section,we propose a framework to model the building clusters. Based on the model-

ing framework, a basic operation decision model for the building clusters is discussed in Section

2.2.1.

The modeling framework to study the building clusters with local energy transaction market

is shown in Figure 5, each building has three modules: 1) load module which considers electricity,

cooling and heating load, 2) generating module which considers solar PV panel and CCHP

system, and 3) storage module which considers electric and thermal energy storage. Each

building can share and exchange electric and thermal energy with other buildings through a

local transaction market. The solid line in Figure 5 represents electricity flow and the dashed

line represents thermal energy flow. The PGU (power generation unit) in the CCHP system

has a gas turbine as its prime mover to generate electricity and a recovery system to pro- duce

heating energy, an auxiliary boiler can convert fuel into heat to compensate the shortage of

cooling and heating loads. Power grid is assumed to support electricity purchasing and selling

while the local energy market can allow both electricity and thermal energy transactions. Hence,

electricity energy storage can be charged by electricity from PV, PGU, power grid and local

transaction market, and thermal storage can be charged by thermal energy from PGU, boiler

and local transaction market. For each building, its energy load should be satisfied while

minimizing its own operation cost.
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Figure 5: Overall schematic of the building clusters with local energy transaction

2.2.1 Mathematic Model for the Building Clusters

All the variables and parameters defined in the proposed mathematical model are summa-

rized and explained in Table I and Table II respectively. All the parameters and variables are

nonnegative. The variables defined to indicate the states of systems are binary variables, e.g.

energy transmission state, ON/OFF state and charging/discharging state. The mathematical

model presented in this section is a basic model for the building clusters operation decision

models presented in Section 2.3.

Objective function

fn =
∑

t(eGPn,t ·PGpt− eGsn,t ·PGsn,t) +
∑

t(fPGUn,t ·PPGUt + fBOn,t ·PBOt), ∀n (2.1)
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TABLE I: Decision variables in the proposed model

Variables for power grid
eGpn,t Electricity purchased from power grid by building n at time t
eGsn,t Electricity sold back to power grid by building n at time t
Variables for local transaction market
eT inn,t Electricity transmitted into building n from local transaction market at time t
eToutn,t Electricity contributed to local transaction market by building n at time t
qCLTinn,t Cooling energy transmitted into building n from local transaction market at time t
qCLToutn,t Cooling energy contributed to local transaction market by building n at time t
qHLTinn,t Heating energy transmitted into building n from local transaction market at time t
qHLToutn,t Heating energy contributed to local transaction market by building n at time t
xEinn,t Electricity transmission state of building n at time t
xEoutn,t Electricity contribution state of building n at time t
xCLinn,t Cooling energy transmission state of building n at time t
xCLoutn,t Cooling energy contribution state of building n at time t
xHLinn,t Heating energy transmission state of building n at time t
xHLoutn,t Heating energy contribution state of building n at time t
Variables for combined cooling, heating and power (CCHP)
fPGUn,t Fuel consumed by power generation unit in building n at time t
fBOn,t Fuel consumed by boiler in building n at time t
qCCn,t Thermal energy provided to cooling component in building n at time t
qHCn,t Thermal energy provided to heating component in building n at time t
ePGUn,t Electricity generated by power generation unit in building n at time t
xPGUn,t ON/OFF state of power generation unit in building n at time t
Variables for solar photovoltaic (PV)
ePVn,t Electricity generated by PV in building n at time t
Variables for battery storage (BS)
eBn,t Stored electricity in battery storage in building n at time t
eBdn,t Discharging rate of battery storage in building n at time t
eBcn,t Charging rate of battery storage in building n at time t
xBcn,t Charging state of battery storage in building n at time t
xBdn,t Discharging state of battery storage in building n at time t
Variables for thermal storage (TS)
qCTSn,t Thermal energy provided to thermal storage by CCHP in building n at time t
qTSn,t Stored thermal energy in thermal storage in building n at time t
qTScn,t Charging rate of thermal storage in building n at time t
qTSdn,t Discharging rate of thermal storage in building n at time t
qTSHn,t Thermal energy from thermal storage to heating component in building n at time t
qTSCn,t Thermal energy from thermal storage to cooling component in building n at time t
qcTSn,t Thermal energy from cooling process to thermal storage in building n at time t
qhTSn,t Thermal energy from heating process to thermal storage in building n at time t
xTSdn,t Discharging state of thermal storage in building n at time t
xTScn,t Charging state of thermal storage in building n at time t
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TABLE II: Parameters used in the proposed model

Parameters for power grid
PGpt Electricity purchasing price in power grid at time t
PGst Electricity selling price in power grid at time t
Parameters for building
PPGUt Fuel price for power generation unit at time t
PBOt Fuel price for boiler at time t
ELn,t Electricity load in building n at time t
QCLn,t Cooling load in building n at time t
QHLn,t Heating load in building n at time t
∆t Decision time interval, set to be 1 h
Parameters for combined cooling, heating and power (CCHP)
SPGUn Size of power generation unit in building n
SBOn Size of boiler in building n
ηPGU Efficiency of fuel-to-thermal conversion of power generation unit
ηBO Thermal efficiency of boiler
ηC Thermal efficiency of cooling component
ηH Thermal efficiency of heating component
aPGU Coefficient of fuel-to-electricity conversion of power generation unit
bPGU Coefficient of fuel-to-electricity conversion of power generation unit
Parameters for solar photovoltaic (PV)
Solt Solar radiation at time t
SPVn Size of PV in building n
ηPV Electricity generating efficiency of PV
Parameters for battery storage (BS)
SBSn Size of battery storage in building n
EOB Initial stored electricity in battery storage
ηBc Charging efficiency of battery storage
ηBd Discharging efficiency of battery storage
αBmin Coefficient for minimum storage limit of battery storage
αBcmax Coefficient for maximum charging limit of battery storage
αBcmin Coefficient for minimum charging limit of battery storage
αBdmax Coefficient for maximum discharging limit of battery storage
αBdmin Coefficient for minimum discharging limit of battery storage
Parameters for thermal storage (TS)
STSn Size of thermal storage in building n
QOTS Initial stored thermal energy in thermal storage
ηTSd Charging efficiency of thermal storage
ηTSc Discharging efficiency of thermal storage
αTSmin Coefficient for minimum storage limit of thermal storage
αTScmax Coefficient for maximum charging limit of thermal storage
αTScmin Coefficient for minimum charging limit of thermal storage
αTSdmax Coefficient for maximum discharging limit of thermal storage
αTSdmin Coefficient for minimum discharging limit of thermal storage
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The objective for each building is to minimize its energy cost including cost associated

with power grid (the first term) and cost associated with CCHP system (the second term) in

Equation 2.1

Constraints

Electricity load balance constraints

eGPn,t + ePVn,t + ePGUn,t + eBdn,t · ηBd + eT inn,t = ELn,t + eGsn,t +
eBcn,t
ηBc

+ eToutn,t,∀n, t

(2.2)

Electricity supply and demand should match at each time step for each building. On the left

side, it’s the energy coming from several supplies: purchased electricity from the power grid,

generated electricity of PV panel and PGU unit in the CCHP, discharging energy of battery

storage and transmitted electricity from the local transaction market. The electricity demand

on right side consists of: electricity load, electricity sold back to the power grid, charging energy

of battery storage and transmitted electricity into the local transaction market.

Thermal load balance constraints

(qCCn,t + qTSCn,t) · ηC + qCLTinn,t = QCLn,t + qCLToutn,t + qcTSn,t, ∀n, t (2.3)

(qHCn,t + qTSHn,t) · ηC + qHLTinn,t = QHLn,t + qHLToutn,t + qhTSn,t,∀n, t (2.4)

Similarly, thermal energy (cooling and heating) are balanced by constraints in Equation 2.3

− Equation 2.4. Cooling/heating energy are supplied by boiler unit in the CCHP, discharging



28

energy from thermal storage and transmitted thermal energy from the local transaction market

to satisfy thermal demand, transmitted thermal energy into the local transaction market and

charging energy of thermal storage.

Constraints for PV

ePVn,t ≤ SPVn · Solt · ηPV , ∀n, t (2.5)

Electricity generation of the PV panel can be estimated by its size, electricity generating

efficiency of the PV panel and solar radiation.

Constraints for CCHP

a) Fuel consumption constraints

fBOn,t ≤ SBOn,∀n, t (2.6)

fPGUn,t ≤ xPGUn,t · SPGUn,∀n, t (2.7)

Fuel consumed by boiler and PGU units in the CCHP are limited by their maximum ca-

pacities.

b) Electricity generation constraint

ePGUn,t ≤ (fPGUn,t − bPGU · xPGUn,t)/aPGU ,∀n, t (2.8)

Electricity generated by PGU is related to the fuel it consumed and its fuel-to-electricity

conversion coefficient.
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c) Thermal generation constraint

qCTSn,t + qCCn,t + qHCn,t ≤ ηPGU · fPGUn,t + ηBO · fBOn,t,∀n, t (2.9)

Thermal energy generated from PGU and boiler can be provided to cooling/heating com-

ponents instantly or stored in thermal storage for later use.

Constraints for battery storage

a) Constraint for charging/discharging state

xBcn,t + xBdn,t ≤ 1,∀n, t (2.10)

Battery storage cannot be charged and discharged at the same time.

b) Constraints for stored electricity

SBSn · αBmin ≤ eBn,t ≤ SBSn,∀n, t (2.11)

eBn,1 = EOB + (eBcn,1 − eBdn,1) ·∆t,∀n (2.12)

eBn,t − eBn,t−1 = (eBcn,t − eBdn,t) ·∆t,∀n, t ≥ 2 (2.13)

Electricity stored in battery storage should be kept between the permitted lowest level and

its capacity (constraint in Equation 2.11), and is determined by charging/discharging activities

(constraints in Equation 2.12 − Equation 2.13).
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c) Constraints for electricity charging/discharging power

SBSn · αBcmin · xBcn,t ≤ eBcn,t ≤ SBSn · αBcmax · xBcn,t,∀n, t (2.14)

SBSn · αBdmin · xBdn,t ≤ eBdn,t ≤ SBSn · αBdmax · xBdn,t,∀n, t (2.15)

Charging/discharging power cannot excess the range of lowest and highest level.

Constraints for thermal storage

a) Constraint for charging/discharging state

xTScn,t + xTSdn,t ≤ 1,∀n, t (2.16)

Thermal storage cannot be charged and discharged at the same time.

b) Constraints for stored thermal energy

STSn · αTSmin ≤ qTSn,t ≤ STSn,∀n, t (2.17)

qTSn,1 = QOTS + (qTScn,1 − qTSdn,1) ·∆t,∀n (2.18)

qTSn,t − qTSn,t−1 = (qTScn,t − qTSdn,t) ·∆t,∀n, t ≥ 2 (2.19)

Thermal energy stored in thermal storage should be kept between the permitted lowest

level and its capacity (constraint in Equation 2.17), and is determined by charging/discharging

activities (constraints in Equation 2.18 − Equation 2.19).
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c) Constraints for thermal charging/discharging power

qCTSn,t + qcTSn,t + qhTSn,t ≤ STSn,∀n, t (2.20)

qTSCn,t + qTSHn,t ≤ qTSdn,t · ηTSd, ∀n, t (2.21)

qTScn,t ≤ (qCTSn,t + qcTSn,t + qhTSn,t) · ηTSc, ∀n, t (2.22)

STSn · αTScmin · xTScn,t ≤ qTScn,t ≤ STSn · αTScmax · xTScn,t,∀n, t (2.23)

STSn · αTSdmin · xTSdn,t ≤ qTSdn,t ≤ STSn · αTSdmax · xTSdn,t, ∀n, t (2.24)

Constraint in Equation 2.20 defines that all the energy provided to thermal storage should

be less than or equal to its capacity. Constraint in Equation 2.21 indicates the charging rate

is constrained by the available energy to charge thermal storage. The amount of energy pro-

vided by thermal storage depends on its discharging rate (see constraint in Equation 2.22).

Constraints in Equation 2.23 − Equation 2.24 are similar to constraints in Equation 2.14 −

Equation 2.15.

Constraints for local transaction market

a) Constraints for electricity and thermal transaction state

xEinn,t + xEoutn,t ≤ 1,∀n, t (2.25)

xCLinn,t + xCLoutn,t ≤ 1, ∀n, t (2.26)
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xHLinn,t + xHLoutn,t ≤ 1,∀n, t (2.27)

At each time period, energy transmission states (in/out) are mutually exclusive in the

interaction of each building with local transaction market.

b) Constraints for electricity and thermal transaction

eT inn,t ≤M · xEinn,t, ∀n, t (2.28)

eToutn,t ≤M · xEoutn,t, ∀n, t (2.29)

qCLTinn,t ≤M · xCLinn,t,∀n, t (2.30)

qCLToutn,t ≤M · xCLoutn,t,∀n, t (2.31)

qHLTinn,t ≤M · xHLinn,t,∀n, t (2.32)

qHLToutn,t ≤M · xHLoutn,t,∀n, t (2.33)

Transmitted energy in the interaction of each building with local transaction market depends

on the mutually exclusive transmission states, and M is a big number, normally used in mixed

integer programming.

c) Balance constraints for local transaction market

∑
n eT inn,t =

∑
n eToutn,t,∀t (2.34)
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∑
n qCLTinn,t =

∑
n qCLToutn,t, ∀t (2.35)

∑
n qHLTinn,t =

∑
n qHLToutn,t, ∀t (2.36)

Constraints in Equation 2.34 − Equation 2.36 are used to balance energy supply and demand

for local transaction market.

2.3 Balancing Collective and Individual Interests

In this section, we propose four different operation decision models to study the transactive

energy management for the building clusters. The first model just focuses on maximizing the

collective interests of the building clusters, and the second model is developed to maximize the

collective interests and keep the individual interests at satisfactory levels. Both the collective

and individual interests are maximized in the third and fourth models.

2.3.1 Operation Decision Models for Transactive Energy Management

To compare the performance of the building clusters operation with single building opera-

tion, we develop a reference model to find the total energy cost for all the buildings when they

are disconnected and operated separately. The reference model is represented as:

[Reference Model]



minf0 =
∑

n f0,n

s.t.Equation 2.2− Equation 2.36

xEinn,t = 0, xEoutn,t = 0,∀n, t

xCLinn,t = 0, xCLoutn,t = 0,∀n, t

xHLinn,t = 0, xHLoutn,t = 0,∀n, t


(2.37)
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where f0,n is the energy cost for the nth building in the reference model which is calculated

using Equation 2.1.

Model I − maximizing collective interests

In the transactive energy network, each building can freely connect with other buildings

to share information and exchange energy. In this model, we will focus on maximizing the

collective interests of the building clusters which is to minimize the total energy cost. To this

end, a mixed integer programming model is developed to study the operation decisions for the

building clusters

[Model I]

 minfI =
∑

n fI,n

s.t.Equation 2.2− Equation 2.36

 (2.38)

where fI,n is the energy cost for the nth building in the model I which is calculated using

Equation 2.1.

Model II − maximizing collective interests subject to satisfactory individual

interests

Although the model I can maximize the collective interests, it may not be able to guarantee

the individual interest of each building which means some buildings have to spend more if they

join the clusters. To guarantee each building can have cost savings in the clusters, we extend

the model I by introducing a set of constraints.

fII,n ≤ f0,n · (1− θ), ∀n (2.39)
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where fII,n is the energy cost for the nth building in the model II which is calculated using

Equation 2.1, f0,n represents the energy cost of the nth building in the reference model, θ is

a parameter to indicate the percentage of cost savings expected by each building. The second

model to maximize collective interests and keep a satisfactory level of individual interest is

constructed as:

[Model II]

 minfII =
∑

n fII,n

s.t.Equation 2.2− Equation 2.36, Equation 2.39

 (2.40)

Model III − maximizing collective interests and relative individual interests

The second model considers both the collective and individual interests. However, the

second model cannot answer the research question: can we maximize both the collective and

individual interests. To address this question,we develop a third model based on min-max goal

programming to investigate what is the maximum cost saving percentage each building can

simultaneously achieve. In the proposed model, we introduce a variable η to represent the

goal of each building which aims to achieve the percentage of cost savings as η comparing to

the energy cost without joining the building clusters. One additional set of constraints are

introduced to model the cost saving percentage for each building.

fIII,n ≤ f0,n · (1− η), ∀n (2.41)

where fIII,n is the energy cost for the nth building in the model III which is calculated using

Equation 2.1. This model will maximize the cost saving percentage η to maximize the relative
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individual interest for each building in the clusters. The formulation of the proposed model is

expressed as:

[Model III]

 maxη

s.t.Equation 2.2− Equation 2.36, Equation 2.41

 (2.42)

Model IV − maximizing collective interests and absolute individual interests

In the fourth model, we introduce three parameters to model the local transaction market

which are LPEt, LPCt, LPHt representing the price for electricity, cooling and heating energy

of the local transaction market respectively. This model aims to evenly distribute the cost

saving of the building clusters to each building to maximize the absolute individual interests.

A variable φ and a set of constraints are introduced to model this cost saving.

fIV,n + φ ≤ f0,n, ∀n (2.43)

The local energy market is considered in the fourth model, and the energy cost for the nth

building fIV,n is calculated as

fIV,n =



∑
t(eGpn,t · PGpt − eGsn,t · PGsn,t) + +

∑
t(fPGUn,t · PPGUt + fBOn,t · PBOt)

+
∑

t LPEt · (eT inn,t − eToutn,t) +
∑

t LPCt · (qCLTinn,t − qCLToutn,t)

+
∑

t LPHt · (qHLTinn,t − qHLToutn,t)


(2.44)

Therefore, the formulation of the fourth model is expressed as
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[Model IV]


maxφ

s.t.Equation 2.2− Equation 2.36,

Equation 2.43, Equation 2.44

 (2.45)

2.3.2 Experimental Results Analysis for Operation Decision Models

In this research, we study a cluster of sixteen commercial building level buildings located

in Chicago, U.S. One-month data for electricity and thermal load profiles for these sixteen

buildings are collected. The basic information of these buildings and their reference load profiles

in the climate zone of Chicago can be found in Refs. (24)(96). Solar radiation for the Chicago

area in year 2010 is used (86). Commercial and industrial time-of-use rate from Ref. (75) is

adopted for electricity purchasing price from the power gird. Sizes of all the energy systems

are defined based on the buildings’ maximum load. All the other parameters have the same

settings as parameters in Ref. (23). All experiments implemented in this section are solved by

a MIP engine of CPLEX with a relative gap of 0.005.

Model I analysis

To study the cost savings of clustering buildings, we get the energy cost for each single

building without clustering as reference. After running the reference model, the energy cost of

each building is recorded in Table III. The total energy cost for these sixteen separate buildings is

$87,793.56. The negative value indicates that the building can gain revenue by selling surplus

energy to the power grid. Next, all the buildings are taken account into the first operation

decision model (see Equation 2.38) to explore the potential cost benefit of clustering. The
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result in Table III shows that there is 15.34% cost savings for these sixteen buildings if they

form clusters to exchange energy.

TABLE III: Analysis of the building clusters using the model I.

building index Cost in reference
model (f0,n)($)

Cost in model I
(fI,n)($)

Amount of cost
saving ($)

Percentage of cost
saving (%)

1 79.43 -38.77 118.20 148.81%
2 1465.71 291.77 1173.94 80.09%
3 21299.05 41033.72 -19734.67 -92.66%
4 -440.18 -6.88 -433.30 -98.44%
5 399.93 -52.45 452.38 113.12%
6 376.03 -12.77 388.80 103.40%
7 453.17 971.61 -518.44 -114.40%
8 11361.60 5170.06 6191.55 54.50%
9 3987.67 2532.37 1455.30 36.49%
10 680.01 144.75 535.25 78.71%
11 969.50 393.91 575.59 59.37%
12 32440.07 16852.13 15587.95 48.05%
13 4786.38 2477.27 2309.11 48.24%
14 1773.94 285.04 1488.90 83.93%
15 7395.27 4211.05 3184.22 43.06%
16 765.99 69.53 696.46 90.92%

Total cost 87793.56 74322.33 13471.23 15.34%

It is observed from Table III that some buildings cost more if they join the clusters, such as

building 3, 4, and 7. If all the buildings are operated by one operator, then it will be fine for

all the buildings to form clusters. Otherwise, high cost sacrificing for buildings 3, 4, and 7 will

prohibit their motivation to join the clusters. It is concluded that the first model can maximize

the collective interests, but the individual interests are ignored.

Model II analysis
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As shown in previous analysis, approximately 15.34% cost savings can be expected if the

electricity and thermal energy can be freely shared and exchanged among the buildings in the

clusters. To guarantee each building can have cost savings in the clusters, we will use the

second model developed in Section 2.3.1 to study the building clusters. We change the values

of q from 0, 0.05, 0.10, to 0.14 and run the second operation decision model. The percentages

of energy cost savings for each building in the clusters with different θ values are demonstrated

in Figure 6.

Figure 6: Percentages of energy cost savings for each building using the model II
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TABLE IV: Total energy cost comparison for the model I and II.

Decision model Total cost ($)

Reference model 87793.56
Model I 74322.33

Model II with θ=0 74272.72
Model II with θ=0.05 74205.79
Model II with θ=0.10 74241.39
Model II with θ=0.14 74300.87

As shown in Figure 6, varied percentages of cost savings occur for different buildings in the

clusters even with the same θ values. For example, building 1 has almost 70% cost savings at

θ=0.05 while the buildings 3 and 4 just have 5% cost savings. More buildings start to converge

to a same percentage of cost savings when the values of θ are increased. On the other hand, as

demonstrated in Table IV, the total energy costs of the building clusters with different θ values

stay the same as the building clusters in the model I. Please note due to the rounding errors,

we may see different values of total energy cost for different models. We consider the values

of the total energy cost are the same if their differences are within 0.5% (the relative gap we

defined in CPLEX). It is concluded that the model II can maximize the collective interests and

keep the individual interests of each building at satisfactory levels. The set of constraints in

Equation 2.39 can redistribute the cost savings of the clusters to each building to satisfy its

individual interests. We have another observation that the second model is infeasible when θ

is greater than 15.34% which indicates each building cannot simultaneously achieve the cost

saving percentage higher than the building clusters.

Model III analysis
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The third model is developed to study what is the maximum percentage of energy cost

savings each building can achieve simultaneously, and whether all the buildings can achieve the

same percentage of energy cost savings as the clusters. After running the model III, the energy

cost for each building are recorded in Table V. It is demonstrated that all the buildings have

the same percentage of energy cost saving percentage 15.34%. Please note due to the rounding

errors, we have different percentages of energy cost savings for the building clusters presented

in Table III (e.g., 15.34%) and Table V (e.g., 15.49%). We consider the values of the total

energy cost are the same if their differences are within 0.5% (the relative gap we defined in

CPLEX), therefore we can consider 15.34% and 15.49% as the same. It is concluded that all

the buildings can have the same percentage of energy cost savings as the building clusters, and

the model III can maximize both the collective and individual interests.

Model IV analysis

The third model developed in 2.3.1 defines the individual interest as the relative percentage

of energy cost savings to redistribute the cost savings to each building. However, it cannot

evenly distribute the absolute amount of cost savings to each building. One straightforward

thought to ensure absolute individual interests for each building is to divide the total cost

savings of building clusters evenly to each building, which is ($87793.56 - $74322.33)/16 =

$841.95. This value depends on the total energy cost of the building clusters which is not likely

to be known in advance.

In the fourth model, the prices of electricity and thermal energy are introduced into the

local transaction market to drive energy transaction behavior of each building. The best local
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TABLE V: Analysis of the building clusters using the model III.

building index Cost in reference
model (f0,n)($)

Cost in model III
(fIII,n)($)

Amount of cost
saving ($)

Percentage of cost
saving (%)

1 79.43 67.25 12.18 15.34%
2 1465.71 1240.91 224.80 15.34%
3 21299.05 18032.41 3266.64 15.34%
4 -440.18 -507.69 67.51 15.34%
5 399.93 338.59 61.34 15.34%
6 376.03 318.36 57.67 15.34%
7 453.17 383.67 69.50 15.34%
8 11361.60 9619.07 1742.53 15.34%
9 3987.67 3376.08 611.59 15.34%
10 680.01 575.71 104.29 15.34%
11 969.50 820.80 148.69 15.34%
12 32440.07 27464.73 4975.34 15.34%
13 4786.38 4052.29 734.09 15.34%
14 1773.94 1501.87 272.07 15.34%
15 7395.27 6261.05 1134.21 15.34%
16 765.99 648.51 117.48 15.34%

Total cost 87793.56 74193.62 13599.94 15.49%

energy transaction price will be the price that makes each local building saves around $841.95.

In this research, the price range (PGst ∼ PGpt, 0 ∼ $0.04, 0 ∼ $0.04) is considered for LPEt,

LPCt, LPHt, where PGst and PGpt are price of energy that sold back and purchased from

the main power grid. The value of $0.04 is the maximum price of cooling and heating that the

local energy market will consider, which is estimated by the fuel cost for generating one unit

cooling or heating energy. In this experiment, five different price levels from low to high are

examined, which are Level A: (PGst, 0, 0), Level B: (PGst + (PGpt-PGst)/4, 0.01, 0.01), Level

C: (PGst + (PGpt-PGst)/2, 0.02, 0.02), Level D: (PGst + 3·(PGpt-PGst)/4, 0.03, 0.03), and

Level E: (PGpt, 0.04, 0.04). The energy cost for each building and the total energy costs for

the building clusters under different price levels are shown in Table VI. The absolute amount
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of energy cost savings (φ) is increased and the total energy cost is decreased when the local

energy transaction price is changed from low to high. As it can be observed from Table VI,

there exists an optimal local transaction price that can ensure maximum absolute amount of

energy cost savings for each building in the clusters. The optimal price is in range between

(PGst + 3·(PGpt-PGst)/4, 0.03, 0.03) and (PGpt, 0.04, 0.04). It is concluded that the model

IV can maximize both the collective and individual interests where the individual interests are

defined as the absolute amount of energy cost savings for each building.

TABLE VI: Energy cost savings for the building clusters under different pricing levels using the
model IV.

building
index

Cost in
reference

model
(f0,n)($)

Cost under
level A ($)

Cost under
level B ($)

Cost under
level C ($)

Cost under
level D ($)

Cost under
level E ($)

1 79.43 -68.16 -494.49 -591.39 -761.49 -763.40
2 1465.71 1318.12 891.79 794.89 624.79 622.88
3 21299.05 21151.46 20725.13 20628.23 20458.13 20456.22
4 -440.18 -587.77 -1014.10 -1111.00 -1281.10 -1283.01
5 399.93 252.34 -173.99 -270.89 -440.99 -442.90
6 376.03 228.45 -197.89 -294.79 -464.89 -466.80
7 453.17 305.58 -120.75 -217.65 -387.75 -389.66
8 11361.60 11214.02 10787.69 10690.78 10520.68 10518.77
9 3987.67 3840.08 3413.75 3316.85 3146.75 3144.83
10 680.01 532.42 106.09 9.19 -160.91 -162.82
11 969.50 821.91 395.58 298.67 128.58 126.66
12 32440.07 32292.49 31866.16 31769.25 31599.15 31597.24
13 4786.38 4638.79 4212.46 4115.56 3945.46 3943.55
14 1773.94 1626.36 1200.02 1103.12 933.02 931.11
15 7395.27 7247.68 6821.35 6724.45 6554.35 6552.44
16 765.99 618.41 192.08 95.17 -74.93 -76.84
φ − 147.59 573.92 670.82 840.92 842.83

Total cost 87793.56 85432.20 78610.87 77060.43 74338.84 74308.26
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Results summary and discussion

The minimum, maximum, and average amounts of energy cost saving and percentages of

energy cost savings for the sixteen buildings and the total energy cost for the building clusters

using the four operation decision models are summarized in Table VII. It is demonstrated

that the model I, II, III and IV with appropriate local energy pricing settings can maximize

the collective interests of the building clusters. The model III can maximize the individual

interests in terms of the relative percentages of cost savings for each building, and the model

IV can maximize the individual interests in terms of the absolute amount of cost savings for

each building. The model III has a large variance of the amount of energy cost savings for each

building, and the model IV has a large variance of the percentage of energy cost savings for

each building.

TABLE VII: Results summary for models I ∼ IV

Model
Amount of cost savings ($) Percentage of cost savings ($)

Total Cost ($)
Min Max Average Min Max Average

Model I -19734.67 15587.95 841.95 -114.40% 148.81% 42.70% 74322.33
Model II, θ=0 0.00 5963.53 845.05 0.00% 58.18% 25.87% 74272.72
Model II, θ=0.05 22.01 6018.76 849.24 5.00% 70.30% 30.62% 74205.79
Model II, θ=0.1 28.34 3502.57 847.01 10.00% 54.26% 25.83% 74241.39
Model II, θ=0.14 11.12 4541.61 843.29 14.00% 28.26% 17.34% 74300.87
Model III 12.18 4975.34 850.00 15.34% 15.34% 15.34% 74193.62
Model IV, level A 147.59 147.59 147.59 0.45% 185.81% 25.87% 85432.20
Model IV, level B 573.92 573.92 573.92 1.77% 722.56% 100.59% 78610.87
Model IV, level C 670.82 670.82 670.82 2.07% 844.56% 117.57% 77060.43
Model IV, level D 840.92 840.92 840.92 2.59% 1058.71% 147.38% 74338.84
Model IV, level E 842.83 842.83 842.83 2.60% 1061.12% 147.72% 74308.26
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The first model can be applied in the scenarios that all the buildings are operated by one

manager. When the buildings are managed or operated by different managers, the second,

third and fourth models are more appropriate. The second model is preferred in the scenarios

that the buildings have heterogeneous individual interests (e.g., different satisfactory levels for

the percentages of energy cost savings), and the third and fourth models are for homogeneous

individual interests. The third model is better for the buildings to reach an equilibrium solution

to maximize each building’s percentage of energy cost savings. This is more appropriate to be

used in the scenarios that the contributions of each building to the clusters are ranked. The

fourth model is preferred in the scenarios that each building wants to obtain an equal amount of

energy cost savings. This model may not be fair to the buildings which have large contributions

to maximize the collective interests of the building clusters, and is more appropriate to the

highly cooperative building clusters.

2.4 Concluding Remarks

In the context of the smart grid, the building can cluster with other buildings in its neigh-

borhood to form transactive network to exchange and trade energy. It is demonstrated that the

building clusters can achieve some collective benefits, such as minimizing total energy cost, total

primary energy consumption, and total carbon dioxide emissions. Using the existing building

clusters operation decision models, some buildings may cost more if they join the clusters which

will significantly impact these buildings motivation to form clusters. In this research, we pro-

pose four different models to study the transactive energy management for building clusters.

The first model just focuses on maximizing collective interests, and the second model aims to
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maximize collective interests within a satisfactory level of individual interests. Both the collec-

tive and individual interests are maximized in the third and fourth models. The local energy

transaction market is modeled in the fourth model. It is concluded from the experimental

results that: 1) the building clusters can achieve 15.34% of energy cost savings comparing to

building without clustering, 2) each building can simultaneously achieve the same percentage

of energy cost savings as the building clusters, 3) each building can simultaneously achieve the

same amount of energy cost savings as the building clusters, and 4) the energy pricing in the

local energy market can be optimally determined using our proposed models.



CHAPTER 3

DISTRIBUTED DECISION APPROACH FOR DISTRIBUTION SYSTEM

OPERATOR

Recently, existing research has demonstrated that more benefits of energy cost saving, en-

vironmental sustainability and reliable power supply can be achieved by clustering buildings

together to freely exchange information and energy. To enable efficient transactive operation

among buildings in the cluster, both centralized and distributed decision approaches were de-

veloped in the recent decades. However, most of the existing approaches are only applicable

for small scale building clusters and/or the privacy of each stakeholder (e.g., building) is not

well protected. To bridge these research gaps, we propose a swarm intelligence based bi-level

distributed decision approach. A particle swarm optimizer is employed at the system level

to coordinate the transactive operations among buildings, and a mixed integer programming

model is developed for each building to simultaneously obtain operation decisions for its energy

systems. The only information exchanged between the system level and building level is the

marginal price of transactive energy which can protect the private information for each build-

ing. The performance of the proposed decision approach in terms of accuracy, scalability, and

robustness is evaluated using various building clusters with the number of buildings from 2 to

256. It is demonstrated that our proposed approach is very computationally efficient, scalable

and robust, and the computational complexity is O(n) where n is the number of buildings in

the cluster.

47



48

3.1 Transactive Operations for Cooperative Buildings

As reviewed in Section 1.2 that, building clusters or building level micro-grid clusters are

more energy efficient than a single building or micro-grid, and cooperation between multiple

buildings or micro-grids has been gained more and more attention very recently. As a promising

method to improve economic efficiency, buildings or micro-grids with complementary energy

profiles have motivation to cooperate with each other and perform direct energy trading due

to lower costs and power losses. A multi-party energy management model for smart building

cluster is proposed based on non-cooperative game theory (74). Coalitional game has been

formulated to study cooperative strategies between the micro-grids of a distribution network.

A three-stage algorithm based on coalitional game strategy is proposed which includes request

exchange stage, merge-and-split stage and cooperative transaction stage to enable micro-grids

to form coalitions and exchange power directly (90). In order to form cooperative micro-grids,

a hierarchical priority based coalition scheme is proposed to provide the optimal coalition,

where the optimality of the formed coalitions is proved by coalitional game theory (13) and

greedy based strategy is designed to perform network constrained energy exchange within a

formed coalition. Pricing mechanism for interconnected smart micro-grids is developed based

on game theory and the present mathematical model captures the energy losses, real-time cost

and production to optimize the overall losses and total production costs (9). Another price

mechanism is developed for the energy exchange among buildings which can guarantee the

fairness of all the buildings by introducing Lagrangian multipliers as the coordinated signals

(139). A distributed algorithm that supports autonomous operation for a set of isolated micro-
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grids is proposed using a complete information game theoretic approach via coalition formation

formulation (45). The proposed algorithm empowers the micro-grids to coordinate and match

significant part of energy demand and supply with cooperating micro-grids. Coalitional game

is formulated for a number of micro-grids that serve a group of consumers, and a cooperation

algorithm is proposed to allow the micro-grids autonomously cooperate and self-organize into

a partition composed of disjoint micro-grid coalitions (111). Self-adaptability to environmental

changes such as variations in the demand is also considered in the algorithm.

Excluding the coalitional game among multiple buildings or building level micro-grids, dif-

ferent coordination approaches have been developed for distributed decision framework where

buildings or micro-grids are treated as distributed intelligent agents. A self-organizing comput-

ing framework, based on self-organizing agents, is conceptualized and equipped with decentral-

ized consensus protocols for solving the fundamental control and monitoring problems of smart

micro-grids without the need for centralized data acquisition and processing (129). An agent-

based demand side management framework provides an intelligent solution to shorten supply-

demand gap in micro-grids by forming virtual market that allows neighboring micro-grids to

trade energy with each other (68). To encourage resource sharing among different autonomous

micro-grids and solve energy imbalance problems self-adaptively, layered cooperative control

framework is presented where corresponding negotiation algorithms are introduced based on

multi-agent system to model coordination behaviors of interconnected micro-grids (73). The op-

timal control problem of coupled micro-grids is modeled as a decentralized partially-observable

Markov decision process, and a coordinated dynamic programming algorithm is used to solve
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the problem sequentially by introducing a look-ahead dual multiplier mechanism as decentral-

ized control signals from centralized information (135). Hierarchical power scheduling approach

is investigated to optimally manage power trading, storage, and distribution in a smart power

grid with a macro-grid and cooperative micro-grids (133). The problem is decomposed into a

two-tier formulation solved by online and distributed algorithms.

In addition to the abovementioned distributed decision approaches that are popularly adopted

for cooperative buildings, some other distributed frameworks are also widely studied and ap-

plied in different areas, for example analytical target cascading (ATC) and collaborative op-

timization (CO). ATC and CO are utilized heavily for complex engineering design that can

be approached by decomposition (6; 118). In the chassis design of a sport-utility vehicle, ride

quality and handling targets are cascaded down to systems and subsystems utilizing suspension,

tire, and spring analysis models (64). For a typical nested solution strategy of ATC, coupled

sub-problems are solved in the inner loop and penalty multipliers are updated in the outer loop

where different penalty methods can be used, such as quadratic penalty function (82), expo-

nential penalty function (26), Lagrangian penalty function (119), etc. Based on ATC method,

security-constrained unit commitment problem is decomposed into several scalable zones which

are interconnected through tie lines (59; 60). By introducing a virtual zone and auxiliary

variables, master problem is formulated in order to coordinate and parallelize the solving of

subsystems iteratively using augmented Lagrangian function. A collaborative decision process

for an interdisciplinary low energy building design is studied where two disciplines at subsys-

tem level focus on initial envelope investment and total energy consumption respectively (18).
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After dividing the structural optimal design into three concurrent subspaces (structural layout

optimization, shape optimization and size optimization), concurrent collaborative optimization

technique is developed to solve the sub-problems independently at each iteration loop (140). A

goal-programming enhanced multi-objective collaborative optimization approach is put forward

to facilitate the optimization process over trade-off design spaces of engineering systems (118).

Although various distributed decision frameworks have been developed and applied for en-

ergy system operation, most of the existing distributed implementations are not absolutely

parallelized or have relatively complex structures such as peer-to-peer structure. It prohibits

their applications for large scale building clusters. In addition, the existing distributed deci-

sion frameworks require extensive information (e.g., detailed decision models) to be exchanged

among different decision agents which is not able to protect the private information of decision

agents. To bridge these research gaps, we propose a swarm intelligence based bi-level distributed

decision framework to model the energy transactions in the building clusters. At the system

level, a particle swarm optimizer (PSO) is employed to coordinate all the buildings to dispatch

shared energy and enable energy transactions in the clusters. Given the amount of transacted

energy determined from the system level, each building at the sub-system level will employ a

mixed integer programming model to obtain operation decisions for its energy systems, such

as distributed generators and energy storage systems. To enable efficient coordination among

different buildings and protect the private information of each building, a marginal price based

feedback strategy is proposed. After each building solves its local decision model, the marginal

prices for exchanged energy will be calculated and fed back to the system level. An updated
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energy transaction decision will be obtained based on the marginal prices received from all the

buildings. To demonstrate the accuracy, robustness and scalability of the proposed decision

framework, various building clusters with number of buildings from 2 to 256 are evaluated.

In summary, the contributions of this Chapter can be summarized as: 1) a distributed

decision model is developed to study the energy transactions among spatially distributed build-

ings in the clusters, 2) a computationally efficient, scalable, and robust distributed decision

framework based on swarm intelligence is developed, and 3) the proposed distributed decision

framework provides enabling technology for large scale building clusters operation which can

be extended for smart city applications.

3.2 Distributed Transactive Framework for Cooperative Buildings

Based on study in Chapter 2, a distributed modeling framework is developed for building

clusters (see Figure 7) to study energy transactions in local transaction market with multiple

buildings participated. Each building has three modules: 1) load module which considers elec-

tricity, cooling and heating load, 2) generating module which considers solar photovoltaic (PV)

panel and CCHP system, and 3) storage module which considers electric and thermal energy

storage. The details about electricity and thermal energy flow among these three modules

within each building can be found in Chapter 2. From an overall perspective, three kinds of

load (electricity, cooling and heating) within each building should be satisfied and each building

can share and exchange energy with other buildings through a local transaction market.

As shown in Figure 7, the proposed distributed energy transaction framework has two levels,

system level and subsystem level. Power grid is assumed to support electricity purchasing and
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Figure 7: Bi-level distributed energy transaction framework for building clusters

selling for buildings. At subsystem level, with the objective of minimizing its energy cost fm,

the operation model (Chapter 2) for each building m at each time period t is formulated using

six groups of constraints. The electricity load balance constraints is shown in Equation 2.2.

eGpm,t + ePVm,t + ePGUm,t + eBdm,t × η + eT inm,t

= ELm,t + eGsm,t +
eBcm,t
η

+ eToutm,t

On the left side of Equation 2.2, it’s the energy coming from several supplies: purchased

electricity from power grid (eGp), generated electricity from solar panel (ePV ) and generation

unit in CCHP (ePGU), discharged electricity of battery storage (eBd × η, discharging and

charging process are set to have same efficiency η) and transmitted electricity from local trans-
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action market (eT in). The electricity demand on right side consists of: electricity load (EL),

electricity sold back to power grid (eGs), charged electricity of battery storage (eBc/η) and

transmitted electricity into local transaction market (eTout). The connection between system

level and each building at subsystem level is the transmitted electricity (eT in and eTout). At

system level, total eT in and total eTout should be balanced (
∑M

m=1 eT inm,t =
∑M

m=1 eToutm,t

where M is the total number of buildings in the cluster). We assume eT in and eTout cannot

simultaneously exist for the building at each time period.

In an iterative solution approach, both eT in and eTout will be assigned to each building

after some balancing processes at the system level. Then at the subsystem level, each building

will make its own operation decisions depending on the assigned energy transaction. Different

from most of existing approaches, the distributed energy transaction framework proposed here

has three main advantages: 1) autonomous operation can be realized for participated buildings

at the subsystem level in a real parallel way, 2) comparing with peer-to-peer structure, the

bi-level structure can be easily expanded with more buildings joining or disjoining the cluster,

3) private information (e.g. load profile, energy system configuration, etc.) of each building can

be protected during the cooperation process. The coordination algorithm used at the system

level will be discussed in details in the following section.

3.3 Distributed Coordination Algorithm for DSO

Particle swarm optimization (PSO), a widely used swarm intelligence approach, was firstly

developed in 1995 (28; 61) which mimics a flock of birds that communicate together as they

fly. Since then, PSO has gained popularity increasingly implied by large amount of emerging
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literature. This is supported by extensive experimental studies (30; 46; 62; 31) which have

demonstrated that PSO may outperform other population-based evolutionary algorithms in-

cluding genetic algorithms, memetic algorithms, differential evolution, ant-colony optimization

and shuffled frog leaping in terms of solution quality and computational efficiency on some op-

timization problems (51; 52). A large number of PSO variants have been proposed for different

specific problems from improving basic PSO formulation, neighborhood topologies or learning

strategies for each particle (51). Due to its simplicity and outstanding performance, PSO is

adopted here for distributed transactive operation of building clusters.

3.3.1 Basic PSO and Marginal Price Overview

In canonical PSO with inertia weight, the velocity and position for particle p at iteration i

are updated as (115),

vi+1
p = w × vip + c1 × ri1,p ×

(
pip − xip

)
+ +c2 × ri2,p ×

(
pig − xip

)
(3.1)

xi+1
p = xip + vi+1

p (3.2)

where D-dimensional vector vip and xip are the velocity and position of the pth particle at

iteration i; pip is the best position found so far by the pth particle and pig is the best position

found so far by the swarm; w is the inertia weight which determines how much influence previous

velocity has on velocity for the next iteration; ri1,p and ri2,p are two independent random numbers

uniformly distributed on [0, 1]; c1 and c2 are two learning factors, representing the attractions
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that a particle has toward its own success pip and the swarm’s best position pig, called cognitive

learning factor and social learning factor respectively.
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Figure 8: Iteration process of a particle in PSO

As shown in Equation 3.1, the velocity of each particle p for the next iteration vi+1
p is

composed of three main parts: a memory of current flight direction (first term), self-cognition

coming from its own experience (second term) and social communication with neighbors in

the swarm (third term). In Equation 3.2, current position of each particle xip represents a

coordinate describing a point in the searching space and is evaluated as a problem solution. If

this solution xip is better than the best solution found so far by particle p, then it will be stored

as pip, and if this solution xip is better than the best solution found so far by all particles, it

will be stored as pig. The next coordinate of particle p, xi+1
p will be chosen by adding a step
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size vi+1
p to its current coordinate xip. The iteration process of the particle can be illustrated

in Figure 8.

In economics, marginal price (or marginal cost) equals to the extra cost of producing ex-

tra unit of product (97). This price includes any additional costs required to produce the

next unit, and it usually varies depending on current production level and time period be-

ing considered. However, in optimization area, for virtual optimization model where the

production maybe infinitely divisible or continuous, increment of one unit won’t be applied

anymore. To make the definition of marginal price consistent in general case, the differen-

tial meaning (d(Cost)/d(Quantity)) is usually adopted in literature (11; 105) instead of unit

change, if the cost function is not differentiable, the marginal price could be expressed as

∆(Cost)/∆(Quantity).

Marginal analysis plays a crucial role to support decision making in managerial economics.

The basic purpose of marginal analysis is to balance the costs and benefits of additional actions,

and the optimal activity level will be at the point where marginal cost equals to marginal benefit.

For example, in Figure 9, for a certain resource, the profit improving space can be defined by the

difference of marginal cost and marginal revenue, and the optimal production level to maximize

profit will be at Level 2 (L2) which can be sold at market price 2 (P2). It clearly shows about

how much of an activity should be undertaken to decision makers than average costs, fixed

costs and sunk costs or any other irrelevant costs.

Besides being primarily used in business management to either maximize profits or minimize

losses, marginal analysis also has been applied to other areas. For example, the concept is
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Figure 9: Profit space indicated by marginal price

applied to determine what number of contractors should be considered given fixed budget to

minimize cost without being inefficient (130). In health services, marginal effect could quantify

changes in terms of probability of readmission, number of prescriptions, number of hospital

admission days, number of physician office visits and days of survival (waiting time) due to

changes in independent variables of interest (95; 94). Marginal emission savings vs. additional

economic margins is analyzed to support policy making towards climate change mitigation goals

(78). Marginal value is also utilized in a dynamic, price-directed heuristic to find an optimal

cyclic schedule for classic sequence-dependent economic lot scheduling problem (1).

Despite of the wide range of applications, marginal price is only used to assist decision

making for a single agent in a single time stage mostly, and the potentials of utilizing marginal
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price to coordinate production level among multiple agents given scarce resources for better

collective interest haven’t been explored yet in current literature.

3.3.2 Marginal Price Based PSO for Distributed Decision

Considering cost saving potential reflected by marginal price, a marginal price based particle

swarm algorithm (MP-PSO) is proposed in this section for energy transaction. Two additional

modules are designed in the MP-PSO based decision framework: (1) Feasibility Module, and

(2) Feedback Module (filled blocks in Figure 10).

In MP-PSO, the real number encoded position particle is used to represent transactive

energy for the buildings at each time period and the fitness of the particle is the total system

cost of the building clusters. Since the transmitted energy eT inm,t and eToutm,t cannot exist

simultaneously for each building, eT inm,t and eToutm,t can be represent by only one value in

a D-dimensional position particle vector (eT) (suppose dimension d is corresponding to the

assigned energy transaction for building m at time period t, if the value at this dimension

eT(d) is positive, then eT inm,t = eT(d) and eToutm,t = 0; if eT(d) is negative, eT inm,t = 0

and eToutm,t = eT(d)). Learning factors c1, c2 and inertia weight w in MP-PSO are adjusted

at each iteration according to nonlinear acceleration strategy (103) and random generation

strategy (103; 29) separately. It is set to 1) mutate half of the particles’ positions and reset

each dimension of the chosen particles randomly when the improvement of total system cost is

lower than predefined tolerance in successive two iterations, and 2) stop the algorithm if the

improvement is lower than tolerance for successive four iterations.
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Feasibility Module is designed to balance supply and demand of transactive energy at the

system level for each time period. If the difference between total supply and total demand is not

within a tolerance, random surplus of supply or demand will be assigned to a randomly selected

building until it’s balanced. Thus, at each iteration of MP-PSO, the transactive decision has to

be checked through Feasibility Module to ensure that total supply equals to the total demand

at system level, and then passed down to building agents.

Algorithm 1 Update particle velocity in feedback module

Input: vi−1p , pi−1p , pi−1g , eTi−1
p , mpsi−1p

Output: vector vip for iteration i
1: Update vip using velocity equation (see Equation 3.1)

2: Transfer vip, mpsi−1p into matrix vp,im,t, mpsp,i−1m,t

3: for t = 1 to T do
4: Get maximum and minimum marginal prices MaxPm,t, MinPm,t
5: Get MidP =

(
MaxPm,t −MinPm,t

)
/2

6: for m = 1 to M do

7: if

(
mpsp,im,t > MidP and vp,im,t < 0

)
or

(
mpsp,im,t < MidP and vp,im,t > 0

)
then

8: Get a random number r ∈ [0, 1]
9: vp,im,t = vp,im,t × (−1)× int(r > 0.2)
10: end if
11: end for
12: end for
13: Transfer matrix vp,im,t into one dimension array vip

In the Feedback Module, two rules (see Algorithms 1 and 2) are put forward based on

marginal price signal (mps) of supplied energy to system level from each building as evolving
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Algorithm 2 Update particle position in feedback module

Input: vip, eTi−1
p , mpsi−1p

Output: vector eTi
p for iteration i

1: Update eTi
p using position equation (see Equation 3.2)

2: Transfer vip, eTi
p, mpsi−1p into matrix vp,im,t, eTp,i

m,t, mpsp,i−1m,t

3: for t = 1 to T do
4: if marginal prices are the same for all buildings then
5: for m = 1 to M do
6: Get a random number r ∈ [0, 1]
7: eTp,i

m,t = eTp,i
m,t × int(r < 0.2)

8: end for
9: end if
10: end for
11: Transfer matrix eTp,i

m,t into one dimension array eTi
p

guidance for particles’ velocity and position. The D-dimensional vector structure (e.g., position,

velocity, marginal price) are transformed into the matrix forms for convenience purpose (see

line 2 in Algorithms 1 and 2). It’s necessary to mention that hourly marginal price signal of

supplied energy (positive number as cost will intend to increase) and required energy (negative

as cost will decrease) from each building are opposite numbers if no energy loss is considered.

Thus only marginal price signal of supplied energy is collected here from each building for

the sake of convenience in dealing with positive numbers. For each time period, if marginal

price of supplied energy from one building is closer to the maximum price at this time period,

generally it means it’s not cost effective to make this building supplying more energy as the cost

will increase more comparing with supplying same amount energy from other buildings, thus

negative velocity is set to change direction with a probability of 0.8 (see lines 7-10 in Algorithm
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1). In addition, if all buildings have the same marginal price, it’s very likely that there won’t

need any more energy exchange at this time period, therefore current position is set to stay the

same with a probability of 0.8 (lines 4-9 in Algorithm 2).

3.4 Case Study and Algorithm Evaluation

Due to energy crisis and environmental factors, the number of electric vehicles (EVs) or

plug-in hybrid electric vehicles (PHEVs) is expected to rise considerably in near future (4). It

is expected that total number of EVs will reach about 62% in 2050 in the United States (35).

The city of Chicago and State of Illinois have partnered to deploy a comprehensive network of

charging station infrastructure to create densest network of direct current fast charging stations

in the world (102). On the other hand, building sector is responsible for more than 40% of

the domestic primary energy consumption of U.S. As reviewed in Section 1.2, the potential

of vehicle-to-building (V2B) integration is also a research hotspot. In the following section,

distributed operation of building and charging station is used as a case to demonstrate the

generality of proposed MP-PSO distributed based decision approach

3.4.1 Case Study: Building-Charging Station Cooperation∗

Although lots of efforts have been made on energy systems operation for buildings, charging

scheduling for EVs in charging stations or buildings network, more potential and benefits could

be exploited when connecting building network and expanding charging station network. In

∗This case study was previously published as: Chen, Y. and Hu, M.: A Guided Particle Swarm Optimizer

for Distributed Operation of Electric Vehicle to Building Integration. Proceedings of the ASME 2017
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most of the reviewed literature, centralized optimization is commonly adopted, which will be

time consuming for large scale application, some existing distributed structures and algorithms

are not suitable for complete autonomous operation and need more private information to be

exchanged. In this case study, an integrated optimization model for a commercial building and

an EV charging station is proposed to achieve more energy cost savings. Correspondingly, the

performance of our proposed distributed decision approach MP-PSO (Section 3.3) is compared

with two popular decomposition based distributed methods (collaborative optimization (19)

and analytical target cascading (59)).

3.4.1.1 Building-Charging Station Integration and Operation Model

Figure 11: Overall schematic of vehicle-to-building integration with energy transaction
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As shown in Figure 11, building has three modules: 1) load module which considers elec-

tricity, cooling and heating load, 2) generating module which considers solar PV panel and

CCHP system, and 3) storage module which considers electric and thermal energy storage, as

in Figure 5 (Section 2.2, Chapter 2). Charging station has solar PV for power generation and

several charging slots to satisfy charging load from electric vehicles. Power grid is assumed to

support electricity purchasing and selling while electricity energy can be freely shared between

building and charging station for a higher energy efficiency. To assist the collaboration between

building and charging station, a mathematical model of the collaborative operation with energy

transaction is developed below.

To be concise, the mathematical model of building operation is neglected here, details could

be found in Section 2.2.1, Chapter 2. The new variables, parameters for charging station

operation is defined in Table VIII.

Operating Constraints for Charing Station

Operation cost for Charging Station

fCS =
∑

t(eGP
CS
t · PGpt − eGsCSt · PGst)−

∑
v FC · (T̃EVv − TEVv ) (3.3)

The operation cost of charging station consists of electricity trading fee with power grid

(first term) and hourly income (e.g. parking fee, service fee) (second term).

Electricity load balance

eGPCSt + ePV CS
t + eT inCSt = eCVt + eGsCSt + eToutCSt ,∀t (3.4)
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TABLE VIII: Decision variables and parameters for charging station

Index for charging station
v Index for electric vehicles
Variables for charging station
eGpCS

t , eGsCS
t Electricity purchased from/sold back to power grid by charging station at time t

eT inCS
t , eToutCS

t Electricity transmitted into/out charging station from/to building at time t
ePV CS

t Electricity generated by PV panel of charging station at time t
eEEV

v,t Stored energy in electric vehicle v at time t
eEcEV

v,t , eEd
EV
v,t Charging, discharging rate of energy storages of electric vehicle v at time t

xEcEV
v,t , xEd

EV
v,t Charging, discharging state of energy storages of electric vehicle v at time t

eV Ct, eCVt Electricity from electric vehicle fleet to CS, from CS to electric vehicle fleet at time t
Parameters for charging station
SPV CS , ηCS

PV Size, generating efficiency of PV panel of charing station
IEEV

v , EREV
v Initial, required electricity level of electric vehicle v

SEEV , solt Size of storage of electric vehicles, solar radiation
ηEV
Bc , η

EV
Bd Charing, discharging efficiency of electric vehicles

αEV
Bmin, α

EV
Bmax Coefficient for minimum, maximum storage limit of electric vehicle

αEV
Bcmin, α

EV
Bcmax Coefficient for minimum, maximum charging limit of electric vehicle

αEV
Bdmin, α

EV
Bdmax Coefficient for minimum, maximum discharging limit of electric vehicle

TEV
v , T̃EV

v Arrival, departure time of electric vehicle v
FC,N Fixed cost, available charing slots in charging station

∑
v(eEc

EV
v,t /η

EV
Bc ) ≤ eCVt,∀t (3.5)

eV Ct ≤
∑

v(eEd
EV
v,t · ηEVBd ), ∀t (3.6)

In charging station, electricity load is mainly the charging requirement of EVs. Also, in

some circumstances, EVs could be discharged to power the building or sell energy back into

power grid.

Constraint for PV

ePV CS
t ≤ SPV CS · Solt · ηCSPV ,∀t (3.7)
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Similar as Equation 2.5, electricity generation from PV panel in charging station can be

estimated.

Constraints for EVs

xEcEVv,t + xEdEVv,t ≤ 1, ∀v, t (3.8)

eEEVv,1 = IEEVv + (eEcEVv,1 − eEdEVv,1 ), ∀v (3.9)

eEEVv,t − eEEVv,t−1 = (eEcEVv,t − eEdEVv,1 ), ∀v, t ≥ 2 (3.10)

SEEV · αEVBmin ≤ eEEVv,t ≤ SEEV · αEVBmax,∀v, t (3.11)

SEEV · αEVBcmin · xEcEVv,t ≤ eEcEVv,t ≤ SEEV · αEVBcmax · xEcEVv,t ,∀v, t (3.12)

SEEV · αEVBdmin · xEdEVv,t ≤ eEdEVv,t ≤ SEEV · αEVBdmax · xEdEVv,t , ∀v, t (3.13)

Similar as battery storage in building, the charging, discharging and stored electricity in

electric storage equipped in EVs are limited by Equation 3.8 − Equation 3.13. The basic

configuration (e.g. capacity, coefficient of storage limit and charging/discharging) of EVs is

assumed to be the same here.

Constraints for charging schedule

eEEVv,t−1 ≥ EREVv ,∀v, t = T̃EVv (3.14)

∑
v(xEc

EV
v,t + xEdEVv,t ) ≤ N, ∀t (3.15)
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xEcEVv,t + xEdEVv,t = 0, ∀v, t ≤ TEVv ort ≥ T̃EVv (3.16)

Equation 3.14 − Equation 3.16 define the charging/discharging state of electric vehicles

in the condition of their different available time and total available charging slots in charging

station.

For integrated operation of building and charging station, the centralized optimization prob-

lem could be constructed and represented as Cen-Opt.

[Cen-Opt]


minfcen = fBU + fCS

s.t.Equation 2.2− Equation 2.36

Equation 3.4− Equation 3.16

 (3.17)

where fcen is the total operation cost of building and charging station, fBU is the operation

cost of building (Equation 2.1). Please noted that, only electricity is allowed to be transacted

between building and charging station.

3.4.1.2 Decomposition Based Distributed Operation

For the experiments settings, a typical medium office in Chicago climate zone is chosen for

the building operation, energy load data (electricity, cooling and heating) could be collected

from Ref. (24)(96). All the parameter settings about building follow the same setting as Ref.

(15). For the charging station, maximum available charging slots are set to be 5 and around 10

EVs arrival for charging. Arrival time and initial stored energy of EVs are randomly generated

and all departure time are set to be 6 pm with a full charging requirement. Time period of one

typical day in July is considered.
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For one day’s operation, the optimum results of centralized optimization (model Cen-Opt

Equation 3.17) is -$107.581 (with operating cost $20.19 for building and -$127.77 for charging

station) while the total cost for separate operation is -$87.76 (with operating cost of $74.62 for

building and -$162.39 for charging station). Thus a saving around $20 could be expected in a

day when integrating building and charging station together.

For a complex optimization problem that involves several participants or stakeholders, its

reasonable to decompose the complicated task into subtasks to accomplish the overall objec-

tive in a distributed way. Here, we examine two extensively adopted decomposition methods:

Collaborative Optimization (CO) and Analytical Target Cascading (ATC).

The basic strategy of CO and ATC is to decompose the complex optimization into sub-

optimizations at subsystem level which are linked by shared or coupling variables, and in the

decision process, discrepancy between subsystem level and system level will be decreased it-

eratively (e.g. using penalty functions) to approach final decision (19; 79; 69; 107). In order

to compare the performance of these decomposition methods and our proposed distributed ap-

proach in Section 3, standard CO in Ref. (19) and ATC with augmented Lagrangian function

in Ref. (59) are conducted in this research. To keep it concise, the corresponding specific

decomposition procedure and solution process of CO and ATC could be referred to Ref. (19)

and (59).

To test the performance of decomposition methods, different groups of experiments are

conducted based on CO and ATC decomposition structure. For CO, the solution process

starts by assigning initial decisions from system level to all subsystem levels (19; 5), therefore,
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(a) (b)

Figure 12: (a) Iterative process of CO, (b) Iterative process of ATC

different initial decisions based on its feasibility are chosen for this testing. For example, if the

initial decisions from system level totally satisfy constraints at subsystem level then its feasible,

otherwise its infeasible. Stop criteria will be triggered if these conditions are satisfied together:

discrepancy between system level and all subsystem levels are less than a tolerance, absolute

solution gap for continuum two iterations is less than a tolerance. Maximum iteration number

is set to be 1,000 for CO. The iterative process of total system cost for CO is shown in Figure

(a). For the two starting points in the first several iterations, cost from CO firstly increases due

to the discrepancy coordination process between system level and subsystem level, then starts

to drop eventually.

In ATC with augmented Lagrangian function (59)(69), different settings about initial La-

grangian penalty multiplier (α,β) are chosen and updated following the same procedure in Ref.
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(59), the coefficient λ for updating penalty multiplier is same for the two settings (λ=1.2) which

are Setting 1 (α,β) = (1, 0.8), Setting 2 (α,β) = (5, 0.1). Stop criteria for ATC consists of

necessary-consistency condition and absolute gap checking. Maximum iteration number is also

set to be 1,000 for ATC. The iterative process of total system cost for ATC is shown in Figure

(b). Please note that, the cost of first iteration is deleted from Figure (b) because of a very

large initial penalty value. Due to the penalty function in objective, total cost from ATC drops

at first to decrease the penalty term and then starts to converge to the optimal solution with

near-zero penalty level.

As shown, the solution seeking processes of CO and ATC largely depend on their initial

settings. Also, the convergence will be a big issue as excessive copies of the shared variables

have to be made to realize concurrent execution. Therefore, the two decomposition methods

are more suitable and limited to lower dimensional distributed decision problems.

3.4.1.3 MP-PSO Based Distributed Operation

Different from the above decomposition methods, copies of shared variables wont be needed

in our proposed PSO based distribution decision approach and privacy can be protected. In

order to evaluate the performance, same parameter settings are applied to canonical PSO

and guided PSO. The only difference is that there is no information about marginal price for

canonical PSO. Similarly, two different settings about basic parameters in PSO are tested. In

first initial setting, (w0,c01,c
0
2) is fixed to be (0.2, 1.1, 1.8) (Equation 3.1), thus, there will be no

updating operation; in second initial setting, (w0,c01,c
0
2) is (0.6, 1.49, 1.49) initially and will be

updated at each iteration i according to random generation strategy (28)(104) and nonlinear
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acceleration strategy (104). For each initial setting, canonical PSO and guided PSO will run

five times independently. Maximum iteration number is set to be 50.

For the two versions of PSO, the filled areas for the five runs with two different initial

parameter settings are shown in Figure (a) and Figure (b) respectively. Please note that the

two PSOs both start from around -$87.76 (results of separate operation) because one random

particle is chosen in the swarm to represent zero transactive activities between building and

charging station, thus, it could make sure the swarm starts from a decision which is no worse

than separate operation.

(a) (b)

Figure 13: (a) Iterative process of canonical PSO, (b) Iterative process of guided PSO
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As shown in Figure (a) and Figure (b), for both two initial settings, two versions of PSO

could converge to the optimal solution for this problem. The performance of guided PSO with

additional marginal price information is more stable and more effective than canonical PSO

reflected by the filled areas and final iteration numbers when reaching convergence. It also

could be observed from the variance for each iteration in Figure 14, for example, guided PSO

has the smallest variance for both settings and converges in less ten iterations.

Figure 14: Variance in the iterative process
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To summarize and compare all the performances, basic statistical results of the four dis-

cussed distributed operation approaches are summarized in Table IX. For all the methods,

computation time is obtained by getting the max solving time from subsystem levels in each

iteration and summed up together for all iterations. For the two versions of PSO, average final

results, average iteration numbers and computation time when converging in the five running

are presented in Table IX.

TABLE IX: Basic statistical results of conducted experiments

Methods Iterations Cost ($) Time (s)

CO
Feasible point 1000 -56.62 1749

Infeasible point 389 -32.32 672

ATC
Multiplier setting 1 22 -100.61 116
Multiplier setting 2 12 -88.69 158

Canonical PSO
Initial setting 1 25 -107.25 1.47
Initial setting 2 20 -107.83 1.16

MP-PSO
Initial setting 1 10 -107.69 0.81
Initial setting 2 6 -107.85 0.96

In this case study, integration of building and charging station is proposed where energy

and information can be exchanged to achieve more cost savings. To operate the vehicle to

building integration more efficiently and make decisions in a distributed way, a guided PSO

based distributed decision approach is proposed where marginal prices of the energy trans-

action decisions are utilized to guide velocity and position updating. Then, the performance

of guided PSO based distributed decision approach is compared with canonical PSO and two
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decomposition based distributed methods. From all the experiments, guided PSO outperforms

the other approaches and demonstrates stability and efficiency.

Only two decision agents are considered in the integrated operation to demonstrate the

effectiveness of the marginal price guided PSO. For future research, more buildings will be

included to form a community level integration, the scalability of the proposed guided PSO

will be examined. Meantime, robustness of proposed algorithm will be tested based on more

realistic situation by considering uncertainties from energy load and possible communication

noises between system and subsystem levels.

3.4.2 Algorithm Evaluation: Effectiveness, Scalability and Robustness

In this subsection, three sets of experiments are conducted to evaluate the performances of

the MP-PSO based distributed decision approach proposed in Section 3.3. In the first set of

experiments, the effectiveness of the decision approach is tested firstly on distributed operation

of building clusters comparing with two distributed optimization frameworks (collaborative op-

timization, analytical target cascading) from existing literature. With exponentially increasing

of the number of buildings (from 2 to 256) in the cluster, scalability of the proposed deci-

sion approach is examined using cost saving performance and computational time performance

comparing with centralized optimization in the second set of experiments. In the third set of

experiments, robustness of the proposed decision approach is evaluated when communication

noises exist or the energy loads of buildings are uncertain.

In this research, the centralized optimization model for building clusters is adopted from

our previous study (15), and all the parameter settings are the same as in (15). The basic
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information of these buildings and their reference load profiles in Chicago area, U.S. can be

found in (123; 92). Solar radiation for Chicago area in year 2010 is used (85). Commercial and

industrial time-of-use rate from (76) is adopted for electricity purchasing price from power grid.

Time period of one typical day in July is considered in this research. All the experiments are

conducted on a PC with dual cores (CPU 2.00GHz and 2.50GHz) and 8GB RAM.

3.4.2.1 Effectiveness of MP-PSO based Distributed Decision Approach

In order to test the effectiveness of proposed MP-PSO based distributed decision approach

for transactive operation of building clusters, the canonical PSO (CPSO) based distributed

decision approach, collaborative optimization (CO) and analytical target cascading (ATC) are

also studied here for comparison.

ATC was initially developed as a product development tool and works by decomposing a

system into a hierarchy of subsystems and coordinating the optimization of subsystems so that

the joint solution is consistent and optimal for the overall system (119; 5). ATC propagates

targets using a model-based solution process, and targets are provided to design groups to

work towards. If the responses from design groups cannot meet the targets or if there are

consistency problems, the target propagation is revisited with new system targets and possibly

more accurate analysis models (5). On the other hand, CO is distinguished by its bi-level

structure and decomposes the problem along constituent disciplines, where consistency among

the disciplinary subsystems is enforced via equality constraints in a system-level problem that

coordinates the interdisciplinary coupling while trying to improve the system-level performance

objective (5; 3; 110).
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Both of these two decomposition methods have been studied and applied with respect to the

distributed structure for potential parallel execution. Typically, as mentioned in Section 3.1,

a distributed algorithm is proposed for security-constrained unit commitment problem based

on ATC method (59). Also, a concurrent collaborative optimization technique is developed

for structural optimization design (140). Based on the decomposition structure of ATC in

(59; 5) and CO in (18; 5), the total system cost is calculated for all the considered optimization

framework here, and compared in Table X where the number of buildings increases from 2 to

16. Summated cost of all buildings under separate operation and the optimal total system cost

from centralized optimization are also listed for reference.

TABLE X: Effectiveness test for small size building clusters

# of build-
ings

Separated
operation

Centralized
optimization

MP-
PSO

CPSO CO ATC

2 1249.41 1229.49 1227.34 1230.14 1473.55 1648.01

4 1148.23 1115.37 1117.32 1122.35 1312.86 3235.22

8 1426.85 1371.35 1377.23 1397.42 2625.41 -

16 1479.50 1395.25 1423.12 1464.35 - -

As shown in Table X, the framework of CO and ATC fail to optimize the building clusters

even when there are only two buildings participating in the transactive operation. The reasons

lie in several aspects: firstly, the strategy of decomposition methods is to partition a complex

system in different ways depending on the characteristic of the problem. In order to realize
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concurrent calculation, shared variables are usually made a lot of copies for every subsystem

that sharing the variables. The solution seeking process of ATC and CO largely depends on

the initial value settings of virtual shared variables passed down from system level. Secondly,

due to the excessive copies, these two decomposition methods are more suitable and limited

to low dimensional distributed decision problems (see Section 3.1) as convergence issue will

be significant when the decision vectors are high-dimensional. For CO, the objective of each

subsystem measures its discrepancy from system level and will be driven to zero by the con-

sistency constraints at system level. In ATC, the consistency of each shared variable between

parent level and children level is regularly modelled and then relaxed as a penalty function

(quadratic function, exponential function and Lagrangian function, etc.) in the optimization

process. Thus, the convergence difficulties are focused a lot in the reviewed relevant research.

Contrastively, different from the decomposition methods, the abovementioned problems

could be avoided within our proposed bi-level modelling framework where all the possible shar-

ing between any two subsystems are coordinated and dispatched at system level, thus distributed

autonomous operation for each subsystem could be realized. And with the marginal price feed-

back from subsystem level, MP-PSO could allocate the sharing resources more effectively at

system level. Please note that the cost of MP-PSO is slightly lower (when the number of

buildings is 2) than optimal cost from centralized optimization as a result of the relative gap

0.5% defined in CPLEX. Besides the effectiveness at current problem scale, the potentials of

proposed MP-PSO will be explored from different aspects in the following sections.
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3.4.2.2 Scalability of MP-PSO based Distributed Decision Approach

In most state-of-the-art literature reviewed in Section 3.1 about distributed buildings op-

eration with energy exchange, commonly adopted peer-to-peer implementation could seriously

restrict the practical application at community level with a large number of possible buildings

participated. As proposed for the bi-level distributed energy transaction framework, scalability

of the parallel coordination algorithm - MP-PSO is examined here from the perspectives of cost

saving and computational time performance.

Along with the involved buildings increasing from 2 to 256, total cost of separated operation,

centralized optimization, MP-PSO and CPSO are recorded in Table XI. ATC and CO are

dropped here due to poor performance in previous section. In consideration of the parallelism

of particles in PSO based framework, the maximum time in solving every building at subsystem

level is regarded as the time consumed by each particle and the maximum time cost of all

particles in particle swarm will be treated as the elapsed time for MP-PSO and CPSO at

current iteration.

It can be noticed from Table XI that the performance of CPSO becomes worse as the number

of buildings is equal and greater than 32. However, with the guidance of marginal price signal

only, particle swarm algorithm could still hold about 32.1% (≈(23642.57 - 23206.34)/(23642.57

- 22282.26)) optimizing effect of centralized optimization in total cost saving under the circum-

stances of lacking all the other information at a relatively large scale of 256 buildings.

From the view of computational time performance, the time elapsed during centralized op-

timization and MP-PSO based decision process shown in Table XI are fitted. According to the
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TABLE XI: Scalability test of large scale building clusters

#
of
build-
ings

Separated
operation

Centralized
Optimization

MP-PSO CPSO

Cost ($) Cost ($) Time
(sec.)

Cost ($) Time
(sec.)

Cost ($) Time
(sec.)

2 1249.41 1229.49 0.17 1227.34 4.87 1230.14 6.08

4 1148.23 1115.37 0.48 1117.32 6.52 1122.35 9.38

8 1426.85 1371.35 1.37 1377.23 5.41 1397.42 14.38

16 1479.50 1395.25 5.40 1423.12 6.66 1464.35 11.20

32 2951.23 2781.89 32.89 2876.36 7.36 2943.59 4.65

64 5890.76 5549.92 29.53 5745.60 8.78 5878.98 5.43

100 9049.92 8515.09 81.84 8858.56 11.12 9031.42 4.71

128 11796.05 11119.01 153.27 11569.37 10.47 11774.14 4.24

225 20687.83 19493.27 825.53 20296.69 13.15 20643.38 5.23

256 23642.57 22282.26 1554.33 23206.34 13.88 23593.23 5.49
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Figure 15: (a) Centralized optimization, (b) MP-PSO
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R-Square (coefficient of determination) and Residual Sum of Squares (27), the best-fit curves

are plotted with 95% confidence band in Figures 15(a) and 15(b) respectively. Indicated by

the fitted curve formulation, the computation time of centralized optimization grows exponen-

tially while that of MP-PSO falls in polynomial trend with second order. As a consequence,

computational time of centralized optimization framework is extremely sensitive to problem

scale in contrast to proposed distributed optimization framework. For instance, the predicted

computation time of centralized framework will be more than one hour when the number of

clustered buildings achieves 300.

Up to now, the conducted experiments have demonstrated the effectiveness and scalability

of MP-PSO in bi-level distributed energy transaction framework comparing with centralized

optimization and other decentralized optimization methods under complete certain information.

However, the stochasticity within the system and from outer environment may cause great

perturbation to the performance of decision framework. The ability of our proposed MP-

PSO based distributed optimization framework to tolerate such uncertainties, referred to as

robustness, will be evaluated next.

3.4.2.3 Robustness of MP-PSO based Distributed Decision Approach

As stated before, stochasticity from both internal and external will be considered here in

order to investigate the robustness of MP-PSO based decision framework. Since marginal price

signal is the only information utilized by MP-PSO based distributed optimization framework,

the potential signal distortion (e.g. natural noise or intended mislead) in the communication

process between system level and subsystem level will have to be paid more attention. Also,



82

another important source of uncertainty comes from possible energy load fluctuation of some

or all buildings.

To describe the uncertainty from communication process in distributed optimization frame-

work, Gaussian noise N
(
0, σ2

)
is added to the original marginal price signal of energy trans-

action decisions ET for all particles at every iteration of MP-PSO. According to the defi-

nition of signal-to-noise ratio (SNR = µ/σ, µ is the signal mean and σ is the standard

deviation of the noise) (114) adopted here, five different uncertainty levels of SNR (here,

σ ∈ {0.1µ, 0.2µ, 0.3µ, 0.4µ, 0.5µ}) are set. Since there is no marginal price of transacted energy

utilized in centralized optimization, the communication uncertainty will be directly added to

the energy transaction decisions ET after being made by centralized optimization unit. Need

to note that the change of energy transaction decisions ET is synchronously to the change of

their own marginal price, and the range of variation is set to be [ET × (1− α), ET × (1 + α)]

(α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}). On the other aspect, hourly energy load will be randomly gen-

erated from the range [EL × (1 − β), EL × (1 + β)], where EL is original hourly energy

load under deterministic circumstance and β is also assumed to have five different levels

(β ∈ {0.2, 0.3, 0.5, 0.7, 0.9}), this is the same for both distributed optimization and central-

ized framework.

The number of clustered buildings is set to be sixteen here. Communication uncertainty and

energy load uncertainty are considered for two randomly selected buildings among the sixteen

and all the sixteen buildings respectively. Thus, to test the robustness against communication

uncertainty, 10 groups of experiments (when communication uncertainty is considered for two
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selected buildings: 5 groups, represented by 2-CL1 ∼ 2-CL5; when communication uncertainty

is considered for all sixteen buildings: 5 groups, represented by 16-CL1 ∼ 16-CL5) are designed

for both distributed optimization framework and centralized optimization framework respec-

tively. Similarly, 10 groups of experiments are designed to test robustness against energy load

uncertainty (represented by 2-EL1 ∼ 2-EL5 and 16-EL1 ∼ 16-EL5) for these two optimization

frameworks. There is also a reference group (Ref0) of experiments where no uncertainty is

considered. In each group of experiment, 20 scenarios are generated based on the uncertainty

level of this group.

Based on all the experimental results collected above, statistical comparison is conducted

to measure the difference between populations under different uncertainty levels, and evalu-

ate the ability of tolerating uncertainties (a.k.a. robustness) further for the two optimization

frameworks. Due to the validity on small sample size (<30), Student’s t-test is used here (at a

0.05 level of significance) to perform pairwise comparison among all the groups of experiments.

Therefore, corresponding p-value matrix could be obtained for each two groups of experiments.

Since the test of two groups are symmetrical, for the sake of conciseness, lower triangular matrix

in Table XII is the p-values of t-test for MP-PSO based distributed decision approach under

communication noises while upper triangular matrix is the result for centralized optimization.

For example, in lower triangular part of Table XII, the p-value of group 2-CL2 and group Ref0

equals 0.02 (<0.05), which means the result difference is significant for MP-PSO with com-

munication noise (level 2, SNR=5) added for selected 2 random buildings and without any
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uncertainty. Similarly, p-values of the t-test under different levels of energy load uncertainties

for these two optimization approaches are presented in Table XIII for comparison.

TABLE XII: t-test for different levels of communication noises (lower triangle is p-value matrix
for MP-PSO based distributed decision approach, upper triangle is p-value matrix for centralized
optimization)

Ref0 2-
CL1

2-
CL2

2-
CL3

2-
CL4

2-
CL5

16-
CL1

16-
CL2

16-
CL3

16-
CL4

16-
CL5

Ref0 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2-CL1 0.033 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2-CL2 0.002 0.175 - 0.481 0.003 0.010 0.000 0.000 0.000 0.000 0.000
2-CL3 0.231 0.602 0.113 - 0.031 0.056 0.001 0.000 0.000 0.000 0.000
2-CL4 0.275 0.382 0.046 0.818 - 0.935 0.452 0.000 0.000 0.000 0.000
2-CL5 0.082 0.522 0.049 0.948 0.704 - 0.437 0.000 0.000 0.000 0.000
16-CL1 0.085 0.574 0.062 0.916 0.678 0.953 - 0.000 0.000 0.000 0.000
16-CL2 0.113 0.671 0.101 0.879 0.663 0.900 0.943 - 0.002 0.000 0.000
16-CL3 0.033 0.973 0.163 0.618 0.393 0.540 0.593 0.691 - 0.043 0.000
16-CL4 0.067 0.975 0.215 0.654 0.455 0.612 0.655 0.730 0.998 - 0.007
16-CL5 0.316 0.541 0.107 0.914 0.920 0.848 0.821 0.793 0.554 0.590 -

Except self-comparisons in Table XII and Table XIII, totally 55 intergroup comparisons are

proceeded for 11 columns for MP-PSO and centralized optimization separately. Then identical

rate could be calculated for these 55 comparisons based on 0.05 significant level, and adopted as

indicator for robustness. As it can be seen in p-value matrices, the identical rates for distributed

optimization framework with communication noise and energy load variation are 0.91 (= 50
55 ,

Table XII) and 0.98 (= 54
55 , Table XIII) while they are 0.09 (= 5

55 , Table XII) and 0.96 (= 53
55 ,

Table XIII) for centralized optimization framework. It’s safe to conclude that proposed MP-
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TABLE XIII: t-test for different levels of energy load uncertainties (lower triangle is p-value
matrix for MP-PSO based distributed decision framework, upper triangle is p-value matrix for
centralized optimization)

Ref0 2-
EL1

2-
EL2

2-
EL3

2-
EL4

2-
EL5

16-
EL1

16-
EL2

16-
EL3

16-
EL4

16-
EL5

Ref0 - 0.003 0.794 0.192 0.901 0.191 0.277 0.127 0.706 0.921 0.521
2-EL1 0.114 - 0.092 0.020 0.501 0.050 0.289 0.624 0.557 0.377 0.893
2-EL2 0.745 0.320 - 0.201 0.972 0.185 0.557 0.324 0.802 0.992 0.565
2-EL3 0.956 0.503 0.915 - 0.414 0.630 0.099 0.060 0.271 0.366 0.281
2-EL4 0.867 0.444 0.768 0.865 - 0.289 0.818 0.661 0.885 0.972 0.630
2-EL5 0.115 0.043 0.100 0.168 0.250 - 0.119 0.085 0.203 0.261 0.206
16-EL1 0.687 0.356 0.947 0.884 0.743 0.095 - 0.656 0.950 0.739 0.684
16-EL2 0.954 0.378 0.880 0.992 0.858 0.140 0.841 - 0.757 0.560 0.788
16-EL3 0.839 0.325 0.716 0.853 0.989 0.200 0.685 0.838 - 0.839 0.688
16-EL4 0.328 0.151 0.289 0.385 0.498 0.672 0.277 0.354 0.449 - 0.594
16-EL5 0.262 0.139 0.235 0.297 0.378 0.947 0.227 0.277 0.341 0.768 -

PSO for distributed optimization framework is more robust when communication noise exists

in optimization process or energy load is stochastic.

3.5 Concluding Remarks

In the context of clustered buildings, energy and information can be exchanged to achieve

more global benefit, such as lower energy cost, primary energy consumption and carbon emis-

sions. Due to sharply increased computational cost in centralized optimization, several dis-

tributed algorithms have been developed in very recent research. However, the peer-to-peer

topology is popularly adopted in current distributed decision framework, which is not suitable

for fully parallel execution, and information sharing between stakeholders including sensitive in-

formation (e.g., energy system configuration) can’t be avoided during the optimization process.

In this research, we propose a MP-PSO based bi-level distributed energy transaction framework

where interconnections are eliminated between any two decision making agents at subsystem
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level and MP-PSO is employed for overall coordination at system level. To allocate energy

resources more efficiently, marginal price of transactive energy in each building is returned to

system level to guide velocity and position updating for the particles. The performance of the

proposed MP-PSO based distributed framework and algorithm are evaluated from three aspects

of effectiveness, scalability and robustness.



CHAPTER 4

ONLINE TRANSACTIVE OPERATION FOR BUILDING CLUSTERS

WITH UNCERTAINTIES

Driven by potential energy and cost savings, local buildings or micro-grids tend to form net-

worked clusters with others for energy transaction. To enable efficient transactive operation,

both centralized and distributed decision approaches are explored in the past decades. How-

ever, real-time distributed stochastic transactive operation has been less studied. To bridge the

research gaps, we propose a bi-level distributed stochastic model predictive control framework

to study the transactive operations of building clusters where a system level agent is employed

to coordinate multiple building agents at the sub-system level. The energy transaction is op-

timized by a marginal price-based particle swarm optimizer at the system level. Given the

energy transaction decisions, each building can independently solve a scenario-based two-stage

stochastic model to optimally dispatch the electricity and ancillary services for optimal en-

ergy performance. The effectiveness of the proposed framework and coordination algorithm are

demonstrated in deterministic, stochastic, and real-time operations as comparing with central-

ized decisions using several set of experiments. In addition, the proposed approach can realize

autonomous transactive operation and be extended to community level building clusters in a

plug-and-play way.

87
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4.1 Online Operation Optimization for Building Clusters

Buildings is playing a critical role in transformation of current power grid to future smart

grid. It could improve the power system economics by utilizing a variety of local generation

resources, energy storage systems, and adjustable loads along with energy purchase from the

main grid, and increase the reliability of local loads by ensuring an uninterrupted energy sup-

ply when the main grid power is not available (63). Centralized optimization-based scheduling

approaches are popular for use in energy management systems for standalone building or inter-

connected buildings. For instance, popular modeling and solution approaches include mixed-

integer programming (55), multi-objective optimization (109), genetic algorithm (87), benders

decomposition (63), etc. To incorporate randomness, different methods are proposed to describe

uncertainties. For example, stochastic programming models with risk neutral and averse op-

tions (36), scenario-based robust method for grid-connected micro-grid (138) where uncertainty

is described as an uncertain set produced by interval prediction, fuzzy multi-objective opti-

mization methods (71), probabilistic minimal cut-set-based iterative methodology for optimal

planning of interconnection among micro-grids (14).

Besides centralized decision framework, distributed coordination approaches have gained

more attention when multiple micro-grids could cooperate together to achieve more collective

benefits. Energy trading among multiple interconnected micro-grids in a competitive mar-

ket is modeled as hierarchical multileader-multifollower stackelberg game (70). Multi-layered

control architecture is presented to coordinate power sharing efficiently among interconnected

micro-grids (113) by optimizing operational cost of each micro-grid separately while sharing
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power with neighboring micro-grids whenever possible. To provide more economic operation

options, it is suggested that adjustable power should also be informed to community energy

management in addition to surplus and shortage information (12). Robust distributed control

strategy is proposed for power exchanging of cooperating micro-grids (10) based on partially

nested information to minimize the maximum divergence from an agreed power exchange among

micro-grids. A bi-level optimal control scheme is proposed for stochastic optimal operation of

interconnected micro-grids where lower level decision makers (or micro-grids) solve a stochastic

optimization problem following available information at local level and references from upper

level (83).

To further decrease model complexity of planning optimization and utilize updated infor-

mation, model predictive control (MPC) or rolling horizon control approaches have also been

proposed for building or micro-grid energy management. A hierarchical outage management

scheme is proposed in (37), micro-grids schedule their available resources in first stage using

MPC-based algorithm and then distribution system operator coordinates possible power trans-

fers among micro-grids in second stage. In a two-layer MPC method for island micro-grid

operation (112), first layer presents an optimal control for energy dispatch, to improve robust-

ness toward prediction errors, a boundary value problem is solved to adjust diesel generator

power in second layer. A stochastic-predictive energy management system for isolated micro-

grid is proposed (93) where unit commitment variables (first stage decisions) are determined

by solving stochastic mixed-integer linear programming model and optimal power flows (second

stage decisions) are refined using a nonlinear programming formulation. The optimal control
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problem of coupled micro-grids is modeled as a decentralized partially-observable Markov deci-

sion process (135) where a look-ahead dual multiplier-based decentralized control mechanism is

proposed using centralized information. A three-stage MPC-based decision framework is devel-

oped for energy sharing under uncertainty (48), including decisions generation stage, decision

execution stage and data fusion-based prediction calibration stage.

As reviewed, sizeable research has been conducted for optimal scheduling problem of build-

ings using centralized approaches, distributed approaches and online optimization, several issues

still need to be addressed including topology issue and coordination issue. Peer-to-peer con-

nection topology (98) is commonly adopted for power exchange in current literature, however,

the complexity will increase exponentially along with number of involved buildings and thus

such topology is not scalable for large scale application. In addition, some distributed coor-

dination algorithms (70) are actually sequential process and usually too much energy system

information has to be shared in coordination which is not favorable for privacy protecting and

will burden communication network. To address these issues, scalable network topology and

parallel coordination algorithm are focused in this research. Contributions of this research can

be summarized from three aspects: 1) a two-stage stochastic model is developed for centralized

transactive operation of building clusters where electricity and ancillary services are simultane-

ously optimized, 2) a bi-level distributed energy transaction framework is proposed to enable

real-time stochastic model predictive control which transforms the peer-to-peer structure into

the hierarchical structure, and a decision problem involving multiple agents can be implemented

with fewer concern of the scalability issue, and 3) a novel marginal price-based coordination
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algorithm using particle swarm optimizer is employed at system level to balance energy trans-

active decisions which significantly reduces the amount of information shared among buildings.

4.2 Stochastic Operation Model for Building Clusters

Centralized model is firstly established as a basic reference for optimal operation strategy of

building clusters where information and energy (only electricity is considered for now) could be

exchanged freely to achieve more collective interests. Without loss of generality, each building

is assumed to have six modules (15): 1) two load modules: electricity and thermal load (cooling

and heating), 2) two generating modules: PV and CCHP system, and 3) two storage modules:

battery and thermal storage. Power grid is assumed to support electricity purchasing and selling

for buildings, and different operating reserve services (20) could be provided by CCHP system

and battery, and sold into ancillary market. All the variables and parameters are defined in

Table XIV

4.2.1 Two-stage Stochastic Model

At the first stage, all discrete control decisions (here-and-now) have to be made before the

uncertainty of input random variables is realized. The uncertain variables include electricity

loads and solar radiation level in the study horizon. These uncertainties are represented using

scenario-based sampling techniques. In the second stage, continuous dispatch decisions (wait-

and-see) are generated.

Objective Function:

fTotalcost =
∑

s Prs · (fOcost + fEcost − fRprof ) (4.1)
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TABLE XIV: Decision variables and parameters for Stochastic Model

Indices
n, s, t Index for buildings, scenarios, time
CCHP Combined cooling, heating, power system
GU,BO Power generating unit, boiler in CCHP
CP,HP Cooling, heating component in CCHP
BS, TS, PV Battery, thermal storage, solar panel
Parameters for stochastic model
δ, S Efficiency, size of different energy systems
Pp, Ps, Fp Price of electricity purchasing, selling, fuel
Pur, Pdr, Pnr Price for three kinds of operating reserves
CE,Ctax Emission conversion factors, carbon tax

ẼL, S̃R Stochastic electric load and solar radiation
CL,HL Cooling, heating load for buildings
SE, IE Size and initial level of energy storages
a, b Fuel-to-electricity conversion parameters
ηc, ηd, ηl Charging, discharging, line efficiency
α, α Coefficient of max, min storage limit
αc, αc Coefficient of max, min charging rate
αd, αd Coefficient of max, min discharging rate
αGU , αGU Coefficient of max, min generating rate
QPD,QSC Quick start discharging, generating rate
MUSR,MDSR Max upward, downward spinning limit
Variables for stochastic model
ep, es Electricity purchased, sold to power grid
eT i, eTo Electricity transmitted in and out
fGU, fBO Fuel consumed by GU , BO in CCHP
eGU, ePV Electricity generated by GU , PV
qTC, qTH Thermal energy from TS to CP , HP
qCT, qCC, qCH Thermal from CCHP to TS, CP , HP
eE, eEc, eEd Stored energy, charging, discharging rate
usr, dsr, nsr Spinning up, down, non-spinning reserve
pg, pg Max, min available capacity of GU

eEc, eEc Max, min available charging rate

eEd, eEd Max, min available discharging rate
xEi, xEo IN/OUT state of electricity transaction
xGU, xEc, xEd ON/OFF, charging, discharging state
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fOcost =
∑

n,t(eps,n,t · Ppt − ess,n,t · Pst) +
∑

n,t(fGUs,n,t · Fpt + fBOs,n,t · Fpt) (4.2)

fEcost =
∑

n,t(eps,n,t · CEPG + fGUs,n,t · CEGU + fBOs,n,t · CEBO) · Ctax (4.3)

fRprof =
∑

n,t[(usr
CCHP
s,n,t +usrBSs,n,t)·Pur+(dsrCCHPs,n,t +dsrBSs,n,t)·Pdr+(nsrCCHPs,n,t +nsrBSs,n,t)·Pnr]

(4.4)

In this research, total system cost of building clusters is the objective to be minimized which

consists of system operation cost fOcost, carbon emission cost fEcost and profit made by selling

reserve services into ancillary market fRprof .

Constraints:

1) Electricity load balance

eps,n,t+ePVs,n,t+eGUs,n,t+eEd
BS
s,n,t·ηBSd +eT is,n,t·ηl = ẼLs,n,t+ess,n,t+

eEcBSs,n,t
ηBSc

+eTos,n,t (4.5)

2) Thermal load balance

(qCCs,n,t + qTCs,n,t) · δCP = CLn,t (4.6)

(qCHs,n,t + qTHs,n,t) · δHP = HLn,t (4.7)

3) Constraint for PV

ePVs,n,t ≤ SPVn · S̃Rs,t · δPV (4.8)

4) Constraint for CCHP
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a) Fuel consumption constraints

fBOs,n,t ≤ SBOn (4.9)

fGUs,n,t ≤ SGUn · xGUn,t (4.10)

b) Electricity generation constraints

eGUs,n,t ≤
(fGUs,n,t − bGU · xGUn,t)

aGU
(4.11)

SGU · αGU ·xGUn,t ≤ pg ≤ eGUs,n,t

≤ pg ≤ SGU · αGU · xGUn,t

(4.12)

c) Thermal generation constraints

qCTs,n,t ≤ STSn (4.13)

eEcTSs,n,t ≤ qCTs,n,t · ηTSc (4.14)

qTCs,n,t + qTHs,n,t ≤ eEdTSs,n,t · ηTSd (4.15)

qCTs,n,t + qCCs,n,t + qHCs,n,t ≤ fGUs,n,t · δGU + fBOs,n,t · δBO (4.16)
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5) Constraints for battery and thermal storage

xEcn,t + xEdn,t ≤ 1 (4.17)

eEs,n,1 = IE + (eEcs,n,1 − eEds,n,1) (4.18)

eEs,n,t − eEs,n,t−1 = eEcs,n,t − eEds,n,t (4.19)

SE · α ≤ eEs,n,t ≤ SE · α (4.20)

SE · αc · xEcn,t ≤ eEcs,n,t ≤ eEcs,n,t ≤ eEcs,n,t ≤ SE · αc · xEcn,t (4.21)

SE · αd · xEdn,t ≤ eEds,n,t ≤ eEds,n,t ≤ eEds,n,t ≤ SE · αd · xEdn,t (4.22)

This group of constraints should be applied to both battery and thermal storage.

6) Constraint for reserve service

a) Reserve provided by battery storage

dsrBSs,n,t ≤ (eEc
BS
s,n,t − eEcBSs,n,t) + (eEdBSs,n,t − eEdBSs,n,t) (4.23)

usrBSs,n,t +nsrBSs,n,t ≤ (eEBSs,n,t−SEBS ·αBS) + (eEcBSs,n,t− eEcBSs,n,t) + (eEd
BS
s,n,t− eEdBSs,n,t) (4.24)

usrBSs,n,t+nsr
BS
s,n,t ≤ SEBS ·QPD·(1−xEcBSn,t −xEdBSn,t )+(eEcBSs,n,t−eEcBSs,n,t)+(eEd

BS
s,n,t−eEdBSs,n,t)

(4.25)
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b) Reserve provided by CCHP

dsrCCHPs,n,t ≤ eGUs,n,t − pg (4.26)

dsrCCHPs,n,t ≤ SGU ·MDSR · xGUn,t (4.27)

usrCCHPs,n,t + nsrCCHPs,n,t ≤ pg − eGUs,n,t (4.28)

usrCCHPs,n,t +nsrCCHPs,n,t ≤ SGU ·MDSR · xGUn,t

+ SGU ·QSC · (1− xGUn,t)
(4.29)

More details of modeling reserve service of battery and CCHP can be found in reference

(20).

7) Constraints for local transaction market

eT is,n,t ≤ xEin,t ·M (4.30)

eTos,n,t ≤ xEon,t ·M (4.31)

xEin,t + xEon,t ≤ 1 (4.32)

∑
neT is,n,t =

∑
neTos,n,t (4.33)

Transmitted electricity depends on the mutually exclusive transmission IN/OUT states, and

it should be balanced. Electricity transaction will not be allowed in the cluster if transmission
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states are all set to be 0, which is equivalent with conducting optimization for all building

agents separately. M is a large number.

4.2.2 Scenario Sampling and Reduction

Simulating random variables requires generation of appropriate values in accordance with

their respective probability distributions. Taking energy load sampling as an instance, without

loss of generality, we assume that hourly electricity load of each building is a random variable

that follows normal distribution xt ∼ N(µ, σ2), and thus, electricity load for a sample period T

(i.e. 24 hours) follows multivariate normal distribution X = [x1, x2, . . . , xT ] ∼ NT (µ,Σ), µ is a

T -dimensional mean vector, and Σ is a T × T covariance matrix. µ and Σ could be obtained

from historical data. The process is similar for solar radiation sampling.

To achieve computation tractability while capturing the main stochastic information of

random distribution embedded in the original scenario set as much as possible, simultaneous

backward method (91) is implemented to trim down the number of deteriorated scenarios. 1000

scenarios are sampled initially and will be reduced to different numbers based on the reduction

algorithm.

TABLE XV: Result comparison of different scenarios (with energy transaction)

# of scenarios Mean SD CI (95%) RE (%) CV (%) Expected Objective VSS

20 1773.91 45.11 19.77 1.06 0.56 1857.93 445.38

40 1772.13 38.63 11.97 0.64 0.34 1869.67 424.03

60 1772.69 35.55 8.99 0.47 0.25 1877.21 406.71

80 1775.96 36.44 7.98 0.42 0.22 1884.82 411.03

With energy transaction - optimal deterministic solution: 1664.92
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TABLE XVI: Result comparison of different scenarios (without energy transaction)

# of scenarios Mean SD CI (95%) RE (%) CV (%) Expected Objective VSS

20 2260.84 64.93 28.45 1.20 0.64 2361.84 146.23

40 2262.49 52.23 16.18 0.68 0.36 2372.15 140.94

60 2266.29 47.97 12.14 0.51 0.27 2378.41 142.19

80 2268.12 48.95 10.72 0.45 0.24 2383.22 141.00

Without energy transaction - optimal deterministic solution: 2008.38

Coefficient of variation (CV) (91) cvf =
σf

µf
√
Ns

is utilized to determine whether the esti-

mation seems to be accurate enough and stop scenarios trimming process, where σf and µf

are the standard deviation and mean values of the output random variable f , respectively. If

the value of cvf is less than a pre-specific tolerance (i.e. between 0.1% and 1%, 0.25% is used

here), then the outcomes can be considered as acceptable results and number of scenarios can

be determined (See Table XV and Table XVI). The other indexes such as Mean, Standard

Deviation (SD), 95% Confidence Intervals (137), Relative Error, Expected Objective, and the

Value of Stochastic Solution (VSS) (33) for different inducted number of scenarios are also

calculated. The value of Mean and SD comes from statistics of all objective values after solving

stochastic model deterministically for each single scenario, and Expected Objective is the op-

timal objective value of two-stage stochastic model. To evaluate the benefit of using stochastic

programming over deterministic model, VSS has been widely used in related literature. It is

an indicator of the impact of uncertain variables on the solution (33). Indicated by a much

larger VSS, it’s more necessary to adopt stochastic programming approach when energy could

be transacted among buildings.
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4.3 Distributed Stochastic MPC and Algorithms

In centralized stochastic model developed for networked building clusters, the only inter-

action among all building agents is their possible electricity transaction (eT i,eTo). To avoid

sharply increased computational cost, a bi-level distributed decision framework is employed,

in which transaction decisions are made at the system level and all building agents at the

subsystem level could optimize its own operations autonomously, see Figure 7.

Different from most of the existing approaches, our proposed distributed energy transaction

framework has three main advantages: 1) autonomous operation can be realized for participated

buildings at the subsystem level in a real parallel way, 2) comparing to fully connected (peer-to-

peer) structure, it can be easily expanded with more buildings joining or dis-joining the cluster,

3) private information (e.g. load profile, energy system configuration, etc.) of each building can

be protected during the cooperation process. Online MPC approach could be embedded within

the proposed bi-level distributed decision framework. In MPC, the optimization problem could

be solved for a sequence of control actions over the whole finite horizon at each time step and

only the decisions for next time step is implemented. The use of MPC considers the impact of

future conditions on the present operation of the buildings, and accounts for the uncertainty of

input data (forecasts of load and solar radiation) by continuously updating the optimal dispatch

based on most recent available information (93).

The stochastic MPC approach can be integrated with proposed bi-level distributed decision

framework according to the following procedures:
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(i) before current time step t, sample uncertainty for future horizon window t + w, reduce

scenario number to desirable level;

(ii) solve stochastic optimization problem for time dimension t+w using the proposed bi-level

decision framework;

(iii) fix first-stage control variable, solve corresponding deterministic model when the informa-

tion become certain in time step t;

(iv) obtain energy level of battery and thermal storage in time step t which are used as inputs

for next iteration in t+ 1;

(v) repeat (i) − (iv) until the last time step.

4.3.1 Swarm Intelligence Based Coordination Algorithm

To serve the purpose of balancing transaction decisions at the system level and protect sen-

sitive information for each building agent, a guided particle swarm optimizer (PSO) is designed

and proposed by adopting the concept of marginal price which plays a crucial role to support

decision making in managerial economics. In our case, the hourly marginal price of energy

transaction decisions will be collected, then this information will be used to guide velocity

and position updates in the expectation of more stable and effective performance. The overall

process flow of proposed stochastic MPC for transactive operation is shown in Figure 16.

Three stages are included in proposed stochastic MPC process: (1) Prediction Stage: un-

certainties about energy load and solar radiation level in near future are simulated by scenarios

sampling and modeled by two-stage stochastic programming. Details of step 1 and 2 are ex-

plained in Section ??; (2) Guided PSO Stage, the guided PSO is mainly designed to efficiently
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Figure 16: Overall process flow of the proposed stochastic MPC for transactive operation

solve two-stage stochastic model proposed in the Prediction Stage in a distributed way; (3) Re-

course Stage, here-and-now decisions (control variables) from Prediction Stage will be applied

and corresponding deterministic operation model will be optimized after the uncertainties are

realized.

In step 5, swarm size P , learning factors c1, c2 and inertia weight w are initialized and

will be adjusted in each iteration i according to nonlinear acceleration strategy (103) and

random generation strategy (29) separately. Real number encoded particle is used to represent

energy transaction decisions and the fitness of the particle is the total system cost. Since the

transmitted energy eT i and eTo cannot exist simultaneously, they can be represented by only

one D-dimensional position vector (eT) (positive number will be assigned to eT i, absolute
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value of negative number will be assigned to eTo). In step 6, a random particle k is chosen

as reference particle where its position is set to be 0, which means there is no cooperation or

electricity transaction among all building agents. By doing this, a better cooperative solution

can be guaranteed in iterative small fitness-picking process.

Then steps 7 and 8 are designed to balance transactive energy at the system level for each

time period to maintain the solution feasibility. If the difference between supply and demand is

not within a tolerance, random surplus of supply or demand will be assigned to random decision

agent (building) until it’s balanced. Balanced transaction decisions are evaluated by solving

stochastic model in step 3 using mature mixed integer programming (MIP) engine. In the first

iteration, the decisions about hourly purchasing and selling electricity from and to power grid

(ep and es) based on the reference particle are used as new upper and lower boundaries of

position vector eT. In this way, energy transaction decisions of PSO could be limited in a most

reasonable range defined by non-cooperative solution since the building will not provide energy

for other buildings in the cooperative operation if it doesn’t have surplus energy sold back to

power grid in non-cooperative operation.

Hourly marginal prices of energy transaction decisions (or position vector eT), byproduct of

solving stochastic model in step 3, are collected in step 4. Two rules are put forward as evolving

guidance for velocity and position update of particles in designed feedback function (steps 4,

9 and 10). For each time period, when the marginal price is positive, then a higher marginal

price generally means it’s not cost effective to let this decision agent supply more energy as

the cost will increase more comparing with supplying same amount energy from other decision
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agents, thus negative velocity is set to change direction with a high probability. In addition,

if all decision agents have the same marginal price, it’s very likely that there won’t need any

more energy exchange at this time period, therefore current position is set to stay the same

with a high probability. Individual best position and global best position are updated in step

11. Different mutation/stop criteria could be designed in step 12.

In Recourse Stage, first stage decision variables (control variables) of global best solution in

current time t is fixed and the corresponding deterministic models are solved distributely after

uncertainties are realized in this hour t. At last, stored energy levels in BS and TS are updated

for the next period of model predictive control.

4.4 Distributed Stochastic Online Experiments

In this subsection, sets of experiments are conducted to evaluate and compare the per-

formance of proposed distributed approaches under different conditions. Three commercial

buildings (Large Office, Primary School and Hospital) in Chicago climate zone are chosen, en-

ergy load data (electricity, cooling and heating) and other parameter settings (i.e. electricity

price, fuel price, etc.) follow the same setting as in (15; 20). Time period of one typical day

in July is considered in this research. All experiments are conducted on the same workstation

under same system settings.

4.4.1 Day-ahead Transactive Operation

Day-ahead transactive operation without uncertainties is firstly considered. Under this cir-

cumstance, the steps 1 and 2 in the Prediction stage, and the Recourse stage are not needed

(see Figure 16). Step 3 will be “Solve deterministic model for all buildings parallelly”. When
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uncertainties are included in day-ahead transactive operation, step 1 in Figure 16 needs to sam-

ple scenarios for 24 hours. After the uncertainties are realized, which we assume the expected

values of all random variables (solar radiation and electricity load) in each hour consist of the

realized scenario, the first stage control variables are fixed to solve day-ahead deterministic

models.

Centralized optimization framework is used as comparison reference for all experiments.

Thus, based on different optimization frameworks (Cen: Centralized, Dis: Distributed), tak-

ing uncertainties into account or not (Det: Deterministic, Sto: Stochastic), whether electricity

transaction is allowed among buildings or not (Tran: with transaction, Ntran: without trans-

action), totally six different possible optimization approaches are constructed and solved for

day-ahead transactive operation. Due to the nature of swarm intelligence, the best and worst

cases (W: Worst, B: Best) have been chosen out of five continuous runs. According results are

recorded in Table XVII, relative gap tolerance of MIP engine in CPLEX is set to be 0.001.

Stop criteria for guided PSO is set based on the improvement of fitness value in ten successive

iterations.

In term of objective value, Approach A and C serve as the upper and lower bounds of

Approach B because of step 6 in Figure 16, Similarly, Approach D and F bound Approach E. The

computation time grows dramatically for scenario-based stochastic approaches as the number

of variables explodes along with the number of scenarios. Please note that, in consideration

of the parallelism of particles in PSO algorithm, the maximum time in solving every building

at subsystem level is regarded as the time consumed by each particle and the maximum time
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TABLE XVII: Day-ahead transactive planning using different optimization approaches

Approach Objective Iterations Time (s)

(A) Cen-Det-Ntran 2008.38 − 3.79

(B) Dis-Det-Tran
(W) 1735.40
(B) 1688.29

22
40

12.72
29.15

(C) Cen-Det-Tran 1664.92 − 3.20

(D) Cen-Sto-Ntran 2075.71 − 4478.50

(E) Dis-Sto-Tran
(W) 1875.64
(B) 1815.42

30
33

21898.91
24430.57

(F) Cen-Sto-Tran 1736.60 − >34238.06

cost of all particles in swarm is treated as the elapsed time at current iteration. The time for

distributed approach B and E in Table XVII are the time summation over all iterations.

The only information shared in proposed coordination algorithm is marginal price of trans-

active decisions, which could reflect potential change on objective value given extra unit of

energy. Hourly marginal price is a single value but contains comprehensive system information

in current state. To illustrate the relationship between hourly marginal price ( ˙eT i, ˙eTo) of

transaction variable (eT i, eTo) and electricity transaction, the original marginal price when

there are no transaction among buildings (Figure 17) and the optimal electricity transaction

results if transaction is allowed (Figure 18) are shown for deterministic situation. Economically

speaking, the marginal price (or marginal cost) equals to the extra cost of producing extra unit

of product (first derivative). In this sense, ˙eT i ≤ 0, ˙eTo ≥ 0 and the absolute value | ˙eT i| = ˙eTo

if line loss is not included in electricity load balance. However, with line coefficient ηl in the

model, the hourly marginal prices satisfy | ˙eT i| + 0.001 = ˙eTo in our case. It needs to be

emphasized that hourly ˙eTo changes along with hourly decision eTo because of marginal effect.
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It is observed from Figure 17 that, when there is no energy transaction (set eT i = eTo = 0),

hourly marginal prices ( ˙eTo) have the trend Large Office > Hospital > Primary School, which

means that, if energy transaction is allowed, the cost of Large Office will increase more than

Hospital and much more than Primary School by providing same amount of electricity under

current situation, and on the other side, the total system cost has more potential to be lower

if transferring electricity from Primary School to Large Office. The centralized optimal trans-

action results in Figure 18 have backed up this viewpoint. However, the rigorous transaction

amount is limited by many other factors together like the capacity of their energy systems,

available renewable energy, etc.

By utilizing marginal price information, guided PSO performs more effectively with less

iterations and more stable than canonical form of PSO (17). Comparing with centralized opti-

mization framework, the private information of energy systems configuration will not be shared

within the proposed distributed framework, and the computational cost could be decreased via

parallel computing, especially when more buildings are involved.

4.4.2 Stochastic MPC for Transactive Operation

Indicated by the results of stochastic day-ahead planning in Table XVII, the computational

costs are extremely high due to uncertainty samplings which makes it not suitable for transaction

operating at real-time scale. In this subsection, our proposed stochastic MPC decision process

is implemented to make real-time transaction decisions.

Based on the accuracy of predicted information for time window t + w (current time step

t), three modes of MPC are recognized here: 1) MPC with prefect prediction, prediction is
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assumed to be perfectly accurate in this mode, 2) MPC with next-hour calibration, comparing

with mode 1), calibration is conducted for each time step t, and thus information in time step t

is assumed to be accurate (only one scenario) after calibration but stochastic for time window

w; 3) MPC with stochastic prediction, in this mode, the uncertainties are sampled for time

window t + w. Different prediction length (1 hour, 4 hours and 8 hours) are tested for each

mode. Maximum prediction length of 8 hours is chosen for comparison in consideration of the

balance between objective improvement and computation cost. Results from centralized and

distributed optimization approaches are recorded for each mode in Table XVIII, Table XIX,

Table XX. Since MPC process needs to iterate through and update each hour of one day

iteratively, the max iteration number and max elapsed time in all 24 time periods of MPC are

focused.

TABLE XVIII: Transactive operation using stochastic MPC with perfect prediction

Approach
Pred-
iction

Objective
Max
Iters

Max
Time (s)

(A) Cen-Sto-Ntran
1 h
4 h
8 h

2183.64
2127.48
2102.54

−
−
−

0.05
0.16
0.92

(B) Dis-Sto-Tran

1 h

4 h

8 h

(W) 1954.10
(B) 1953.44

(W) 1891.14
(B) 1883.77

(W) 1888.27
(B) 1834.08

10
10

10
12

14
14

1.59
1.10

1.56
1.43

4.17
4.54

(C) Cen-Sto-Tran
1 h
4 h
8 h

1954.73
1874.57
1796.25

−
−
−

0.32
0.55
1.01
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TABLE XIX: Transactive operation using stochastic MPC with next-hour calibration

Approach
Pred-
iction

Objective
Max
Iters

Max
Time (s)

(A) Cen-Sto-Ntran
1 h
4 h
8 h

2183.64
2126.46
2113.05

−
−
−

0.45
2.70
9.06

(B) Dis-Sto-Tran

1 h

4 h

8 h

(W) 1955.94
(B) 1954.26

(W) 1917.87
(B) 1904.62

(W) 1922.59
(B) 1902.03

10
10

14
15

19
19

7.39
7.89

15.80
12.74

57.67
56.79

(C) Cen-Sto-Tran
1 h
4 h
8 h

1954.73
1900.36
1861.04

−
−
−

0.40
4.56
19.01

If electricity transaction is not allowed among building agents, the objective values of ap-

proach Cen-Sto-Ntran are very close for different accuracy settings of prediction with same

length 1 hour, 4 hours and 8 hours. Take 8 hours as an instance, the cost objective drops

only about 20 from 2133.94 (Table XX) to 2113.05 (Table XIX) when information becomes

accurate after calibration in very near feature, and stays at 2102.54 even with perfect predic-

tion with max improvement 31. On the other hand, the maximum improvement could be 124

from 1920.08 (Table XX) to 1796.25 (Table XVIII) when transaction is allowed. Thus accurate

prediction is more valuable when energy could be transacted locally, similarly for prediction

length. With prediction calibration for next time step, about 7200 variables could be eliminated

from stochastic model and the computational cost of centralized stochastic MPC decreases from

2161 seconds (Table XX) to only 19 seconds (Table XIX). However, when one more building

join in, about 19200 variables will be added, the time cost of centralized optimization frame-
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TABLE XX: Transactive operation using stochastic MPC with stochastic prediction

Approach
Pred-
iction

Objective
Max
Iters

Max
Time (s)

(A) Cen-Sto-Ntran
1 h
4 h
8 h

2190.33
2133.28
2133.94

−
−
−

0.37
34.79
932.30

(B) Dis-Sto-Tran

1 h

4 h

8 h

(W) 2045.36
(B) 2039.72

(W) 1976.17
(B) 1959.52

(W) 1974.05
(B) 1948.86

10
10

13
14

15
14

12.54
12.31

104.12
99.89

939.40
755.42

(C) Cen-Sto-Tran
1 h
4 h
8 h

2032.43
1939.06
1920.08

−
−
−

0.52
98.54

2161.62

work will change dramatically in contrast with the proposed distributed optimization approach.

Overall, without knowledge of centralized information, our proposed distributed approach has

competitive performance from aspects of solution quality and computation time.

4.5 Concluding Remarks

To enable efficient transactive operation and protect sensitive information, a bi-level dis-

tributed stochastic model predictive control framework is proposed for networked micro-grids

and swarm intelligence is employed at system level to balance energy transactive decisions. To

allocate energy resources more efficiently, marginal price of transactive energy in each micro-

grid is returned to system level to guide velocity and position updating for the particles. The

performance of the proposed distributed approach is evaluated and compared in day-ahead and

real-time transactive operations. Experimental results show that it’s validated using marginal
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information to guide swarm intelligence in coordinating cooperative agents and prediction ac-

curacy could greatly improve performances in real-time decision making.



CHAPTER 5

CONCLUSIONS

In this thesis, the emerging local energy transaction of prosumer (building) at distribution

level is focused. Decision models and efficient algorithms are developed to study the collabora-

tive energy transaction decisions of building clusters in three research phases.

Number of research has demonstrated that building clusters can achieve more benefits like

lower total energy cost, however, some buildings have to make sacrifices of their own interests for

collective interests for the clusters. To motivate individual buildings, we propose four different

transactive energy management models in first phase where each building is allowed to have

energy transaction with others while individual requirement has to be satisfied. The first model

focuses on maximizing collective interests and this model is appropriate when all the buildings

are operated by one manager, both collective and individual interests are considered in second

model which is suitable when different buildings have heterogeneous individual interests. The

third and fourth models aim to maximize both collective and individual interests, this two

models are preferred when buildings have homogeneous individual interests (e.g. same saving

percentage or absolute saving amount).

Then next, in second phase, large scale (e.g. community level) building clusters is stud-

ied. To enable more efficient transactive operations among prosumers, we propose a swarm

intelligence based bi-level distributed decision approach. Particle swarm optimizer is employed

at system level to coordinate all the buildings to dispatch shared energy while each building

112
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at sub-system level will employ a mixed integer operating model to obtain operation decisions

for its energy systems, such as distributed generators and storage systems. For the purpose

of accelerating convergence of swarm algorithm, a marginal price based feedback strategy is

proposed. During each iteration, each building will solve its local decision model, the marginal

prices for exchanged energy will be collected and fed back to system level to guide velocity and

position updating of particle swarm. Proposed distributed approach is applied on distributed

control for building-charging station integration as a case study, and then it is evaluated in

terms of accuracy, scalability and robustness. It is demonstrated that proposed approach is

very computationally efficient, scalable and robust, and the computational complexity if O(n)

where n is the number of buildings in the cluster.

To deal with uncertain information about electricity load and solar radiation, scenario-based

centralized two-stage stochastic operation model is firstly established at third research phase,

where electric storage and power generating unit are assumed to provide different kinds of

operating reserves in ancillary market. Proposed swarm intelligence based distributed decision

framework and coordination algorithm from previous phase are extended to incorporate with

stochastic programming. In order to further decrease model complexity of planning optimization

and utilize updated information, model prediction control approach is embedded in proposed

energy transaction process to make online decisions.

In summary, this thesis has proposed a swarm intelligence based methodology of coordinat-

ing buildings’ transactive operation at distribution level. The main idea is to utilize marginal

information from individual optimization to allocate resources more effectively for collective
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optimality. This methodology could be adopted for more applications, such as robots swarm

coordination, etc. There are, however, several issues that could be addressed in future investiga-

tions. For example, only electricity transaction is allowed in research phase II and III, multiple

transacted energy resources (heating, cooling and electricity) will be considered, and the corre-

lation between different kinds of energy resources will be emphasized. In addition, the energy

transaction price of local transaction market is assumed based on transparent information in

research phase I. Pricing negotiation mechanism will be worth developed based on game theory

to optimally determine local energy transaction price. More broadly, from system perspective,

uncertainty coupling and propagation from different sources may have great impacts on the

algorithm performance, also communication between system level and subsystem agents may

be delayed and missing, therefore distributed coordination algorithm should be robust when

facing with such unexpected conditions in practice.
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APPENDIX

Chapter 2 was firstly published in Energy , and is cited as (15) in References. Section 3.4.1

in Chapter 3 was firstly published in ASME proceeding 2017 , and is cited as (16) in References.

The permission to include these two previous publications are attached here.

Figure 19: Permission 1
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Figure 20: Permission 2
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