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SUMMARY

Neutrophils are an important factor in host defense. Excessive neutrophil
accumulation can lead to deleterious effects on neighboring cells as well as tissue
damage. Hence, neutrophil accumulation is tightly regulated and the mechanism is
not well known. Understanding mechanisms that contribute to regulation of
neutrophil migration and accumulation could lead to novel ways to treat diseases.
Directional Sensing is critical during an inflammatory response and is mediated
through G protein coupled receptors. These seven-membrane-spanning G-protein
coupled receptors are important for detection of the chemoattractant. The ability of
a neutrophil to sense a chemoattractant and move in the direction of a chemical cue
is termed chemotaxis. This process is not only important for the recruitment of
leukocytes to the site of inflammation or infection, but also important during
embryogenesis, wound healing, and neuronal patterning (Parent & Devreotes,
1999). Directed migration is maintained via chemotactic factors such as formylated
peptides, proteolytic fragments of complement proteins, leukotriene By, interleukin
8, RANTES, and chemokines, which evoke various responses from leukocytes (Loitto
etal, 2001). The chemotactic factors are initiators not only of leukocyte trafficking
but also of the microbiocidal functions of activated leukocytes, such as phagocytosis,
degranulation, and oxidative production. Two mechanisms have been proposed to
explain directional sensing. The first is temporal sensing, involving sequential
measurements of the gradient, and the second, spatial sensing, involving

simultaneous measurements. Directional sensing draws on mechanisms related to



intracellular and membrane receptor asymmetry (Loitto et al., 2001). The multistep
process of neutrophil chemotaxis is not well defined, but it is our belief that
myeloperoxidase plays a critical role in aiding neutrophil chemotaxis.
Myeloperoxidase is an enzyme stored in azurophilic granules in the cytoplasm of the
neutrophil, and in an activated cell myeloperoxidase is released through
degranulation along with other enzymes. Myeloperoxidase’s major function is to
generate hypochlorous acid and aid in the destruction of foreign particles. In recent
years, myeloperoxidase has been shown to attract leukocytes through its
electrostatic properties. It also has been shown to aid in the destruction of
methionine containing peptides by methionine oxidation. Mice deficient in
myeloperoxidase exhibit an obvious defect in migration in the presence of formyl
peptides. Our studies demonstrate that MPO is needed at different stages of
neutrophil migration. It not only aids in bacterial killing but also is necessary for

sustained neutrophil chemotaxis.
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LITERATURE REVIEW

1. Cell Migration

Cells have the ability to migrate from one area to another under specific
conditions. The phenomenon has raised the question of why cells bother to migrate,
how they do so, and what serves as the stirring wheel, engine, wheels, and the GPS
system when they decide to go on a road trip. These are questions that have for
decades intrigued scientists, who recently have been able to disentangle many of the
mechanistic details underlying cell migration. Neutrophils are a subset of migrating
cells. They are also key contributors to innate immunity and host defense. The
migration mechanism is a vital factor during inflammation and infection. Without
migration the cells would never move to the site of infection or inflammation and
the body would have no immediate protection from deleterious agents such as

pathogens.

2. Innate vs. Adaptive Immunity

The body’s ability to fight and clear infectious material depends on innate
immunity, and the ability to avoid infection depends on the adaptive immune
response. Innate immunity is important in inflammation and is the first line of
defense. It recognizes new and foreign material such as bacteria (Zhang et al., 2000).

A single bacterium produces multiple offspring, depending on the doubling time.



Therefore, it is critical that the body have a first line of defense in the first couple of
hours or day of exposure to protect against infectious material. The innate immune
response depends solely on proteins and phagocytic cells to recognize conserved
pathogen-associated molecules and label them for destruction. The innate immune
response provides an immediate defense and is not specific to a particular pathogen
as compared to the adaptive immune response (Zaas & Schwartz, 2005; Grandvaux
etal, 2007). Adaptive immune response is not very effective against new pathogens
because this response is slow to develop, taking up to a week or so before becoming
effective. The adaptive immune response prevents infection by remembering a

previous encounter with a specific pathogen (Romani et al,, 1996).

3. Inflammation

Inflammation is the biological response to a threat. Inflammation is the
body’s approach to protecting itself from harmful stimuli by establishing a physical
barrier and containing the threat (Kobayashi et al., 2003). It assists in destruction
and clearing of pathogens, which all in all leads to repair and healing (Nathan,
2002). The biological response consists of vascular responses, activation,
infiltration, migration of leukocytes, and mediator release (Wagner & Roth, 2000).
An inflammatory response occurs in the presence of harmful agents. Blood flow
increases in the affected area and this extra perfusion aids in increasing the supply
of nutrients, fluid, and white blood cells, all of which are necessary for the healing
and elimination of the pathogen. The initial inflammatory response is termed acute

inflammation and is beneficial to the host, because it wards off the invader (Ward &



Lentsch, 1999), while a prolonged response is termed chronic inflammation and can
be deleterious to the host. When the systemic response is prolonged over an
extended period, the body starts to harm itself. Then inflammation becomes self-
perpetuating and causes uncontrolled inflammation.

Acute inflammation directs resources to the injurious site and can be
categorized as a nonspecific response. Acute inflammation eliminates dead tissue,
protects against local infections, and allows for the immune system to gain access to
the site of injury or attack. Many factors can cause acute inflammation such as
thermal injury, mechanical trauma, electrical injury, chemical burns, irradiation
injury, and biological factors. The biological factors include fungal, viral, and
bacterial infections (Ward & Lentsch, 1999). A principle pertaining to acute
inflammation is the increase in blood flow in the small vessels supplying the affected
area. The endothelial cells then begin to swell allowing for blood vessel leakiness.
Exudates are free to pass through the blood vessel wall, and chemical mediators
allow for margination of the neutrophils to the blood vessel walls and
transmigration through the blood vessel wall toward the affected area (Hurley &
Spector, 1965). During an inflammatory response, the affected area is engulfed with
transient acute inflammatory exudates. The components of the exudates are what
destroys and eliminates the causative agent. The exudates consist of protein-rich
fluid and cells from local blood vessels, which have been carried to the affected area
to mediate local defense. The fluid in exudates contains salts and a high
concentration of protein and fibrin, and the cellular constituents include

neutrophils, macrophages, and lymphocytes. Acute inflammation is controlled by



transitory production of chemical messengers produced by the damaged tissue and
the exudates.

The dark side of inflammation is chronic inflammation. When the switch for
acute inflammation does not cease, inflammation becomes chronic. It is the inability
to switch off acute inflammation that subsequently causes a repeated and prolonged
ongoing response. Chronic inflammation is characterized by its persistence and its

lack of ability to clear harmful agents in a timely manner.

4. Neutrophil Function

Neutrophils are essential players in the innate immune system. They provide
the most assistance during host defense (Nathan, 2006). Neutrophils are also
termed PMNs (Polymorphonuclear leukocytes) and are the key leukocytes of the
innate immune system in peripheral blood (Simmons et al., 1974). Their counts in
the peripheral blood range from 40-70% under normal conditions (Borregaard,
2010). The maturation process for neutrophils takes place in the bone marrow and
this process takes approximately 2 weeks. In the first week, PMN precursors
undergo five divisions, differentiate into myeloblasts, progress to promyelocytes,
and finally reach the neutrophilic myelocytic stage. The latter stage of neutrophil
differentiation consists of metamyelocytes, band cells, and segmented cells. During
the metamyelocyte stage, tertiary granules and secretory vesicles are formed. The
PMN granules are very important during the immune response, because they
package the machinery needed for the inflammatory response (Borregaard et al.,

1987). There are 3 subsets of PMN granules, categorized as primary, secondary, and



Blood Vessel Wall

Rolling Adhesion

. . . Diapedesis

Phagocytosis

Figure 1. Schematic Illustration of Neutrophil Function. In the inactive state,
neutrophils roll along the blood vessel wall, but in the active state, cell surface
adhesion molecules such as integrins bind to selectins on the blood vessel wall
permitting firm adhesion. The activated neutrophil then enters the tissue by a
process termed diapedesis, where it is attracted to invading microbes that are
phagocytosed and destroyed



tertiary granules along with secretory vesicles. Approximately 300 proteins are
packaged in these granules, which are released during an inflammatory response via
a process called degranulation (Borregaard & Cowland, 1997).

Neutrophils are the most abundant of the white blood cells and have a
shorter half-life than macrophage phagocytes. The average life span of a neutrophil
in the blood stream is approximately 5 days and the life span of the neutrophil once
it reaches tissue is 1-2 days (Jamuar & Cronkite, 1980). The average diameter of
neutrophils is approximately 8-9 pm (Doerschuk, 2000). Neutrophils are a subtype
of white blood cells, which play an important role in the acute inflammatory
response. They are a part of the leukocyte family, which includes basophils,
eosinophils, lymphocytes, and monocytes (Blumenreich, 1990). In their inactive
state, neutrophils roll along blood vessel walls. The release of mediators initiates the
activation of neutrophils, which adhere to the blood vessel wall and morphologic
change results. The neutrophils shed adhesion molecules such as L- selectin, which
is involved in rolling and soft adhesion, and integrins traffic to the cell surface. The
endothelial counter receptor, ICAM1 (intercellular adhesion molecule 1) is
upregulated on the blood vessel wall in response to inflammatory mediators, and
this initiates the binding of integrins to ICAM1. Integrin binding to the blood vessel
wall causes firm adhesion and initiates diapadesis of the neutrophil through the
blood vessel wall (Jannat et al., 2010). After transmigration, the neutrophil then
migrates toward the foreign pathogen and phagocytosis subsequently occurs.
Phagocytosis is a process by which the foreign pathogen is engulfed, and a

phagosome is formed around the pathogen exposing it to reactive oxygen species as



well as antimicrobial molecules released from granules (Figure 1) (Simon et al,,

1995; Brinkmann et al., 2004; Jannat et al., 2010).

5. Formyl Peptide Receptor (FPR)

The Formyl Peptide Receptors (FPR) is primarily expressed in monocytes
and neutrophils. They are seven - transmembrane - domain -G -protein coupled
receptors and are important to the innate immune function of polymorphonuclear
and mononuclear monocytes. Binding of the agonist to the receptor initiates cellular
responses, which include cytoskeletal reorganization, superoxide generation,
degranulation, and calcium mobilization (Le et al.,, 2002). In the resting state the
receptors are distributed uniformly over the cell membrane of the neutrophil. Once
the neutrophil is activated, the cell forms a “leading edge,” where the majority of the
receptors are redistributed. Once the receptor is occupied, it undergoes
desensitization and phosphorylation (Van Epps et al, 1990). The receptor is
internalized into the phagosome, which eventually fuses with the lysosome, and
hydrolytic enzymes are released to aid in the detachment of the ligand from the
receptor as well as to target the ligand for destruction. Subsequently, if the receptor
is not targeted for destruction in the lysosome, it is then thought to be recycled and
to facilitate the reactivation of the receptor (Van Epps et al., 1990). Experimental
studies that exposed the FPR receptor to wheat germ agglutinin, as a treatment to
block receptor recycling, inhibited chemotaxis, suggesting that recycling is

important for sustained chemotaxis of neutrophils (Perez et al., 1986).



Chemotaxis is the ability of a cell to sense and migrate up a chemotactic
gradient (Xu et al, 2003). After receptor-ligand interaction, the receptor can take 3
different paths. The first path of the receptor is internalization into the endosome.
From there, the receptor can travel to the lysosome to be degraded or travel to the
Golgi apparatus to be processed. Lastly, the ligand can dissociate from the receptor
and be recycled to the membrane (Steinman et al., 1983).

In humans, FPR1, FPR2, and FPR3 are members of the FPR receptor family,
and human neutrophils express FPR1 and FPR2. FPR3 receptors in humans are
expressed in monocytes and macrophages (Ye et al., 2009). Mice FPR receptors are
far more complicated; the 8 identified members of this family include Fpr1, Fpr2,
Fpr-rsl, Fpr-rs3, Fpr-rs4, Fpr-rs5, Fpr-rs6, and Fpr-rs8 (Gao et al, 1998; Ye et al.,
2009). mFpr2 and mFpr-rs1 have strong homology to the human FPR2/ALX and
FPR3 (Takano et al, 1997). Some members of the murine Fpr family do not encode
functional formyl peptide receptors. For example, Fpr-rs5 has been considered to be
a pseudogene and Fpr-rs8 is thought to affect the life expectancy of the cell (Tiffany
etal,2011). mFpr-rs3, 4, 5, and 7 have been shown to be expressed by vomeronasal
sensory neurons and function as chemoreceptors, while Fpr1, 2, and rs1 are
expressed in murine neutrophils and have a high degree of homology to human
FPRs at the protein level (Gao et al., 1999; Liberles et al., 2009; Riviere et al., 2009).

The FPR receptor has been described as a functional receptor due to the
ability of N formyl peptides to stimulate chemotaxis as well as initiate lysosomal
enzyme release in neutrophils (Schiffmann et al,, 1975a; Zigmond, 1977). The Fpr

receptor was identified as a chemotactic receptor, and during the 1970’s



neutrophils were shown to migrate directionally to a point source of N-formylated
peptide derived from E. coli (Aswanikumar et al., 1977). The fMLP ligand binds with
high affinity to the human FPR receptor activating the receptor in the picomolar and
low nanomolar concentration ranges, and has been demonstrated in chemotaxis and
calcium mobilization assays (He et al.,, 2000). Other agonists have also been shown
to activate the FPR receptor, as for example, the W-Peptide (WKYMVm) that has
been shown to bind to FPR at 1 nM, FPRL1 at 1 pM, FPRL2 at 5 nM, mFPR1 at 50
nM, mFPR2 at 1 nM (Le et al, 1999; Karlsson et al., 2006). Fpr-rs8-/- mice displayed
a remarkably shorter life span when compared to wild type (Tiffany et al., 2011).
Other studies have demonstrated that Fpr1-/-mice are more susceptible to Listeria
monocytogenes when compared to wild type. These mice also displayed impairment
in chemotaxis in the presence of fMLP, which indicates that the FPR receptor aids in
innate host defense. Fpr-rs2 receptors in mouse neutrophils have been shown to be
important for protection against Listeria Monocytogenes. Fpr-rs2-/- mice were
challenged with Listeria Monocytogenes and none of the mice survived, while in the

same experiment, 50% of the WT mice survived (Liu et al., 2012).

6. Formyl Peptides

A. Escherichia coli Derived Formyl Peptides
The observation of a neutrophil’s ability to detect bacteria after invasion of
tissue led to the discovery of formyl peptides (Harris, 1954). Formyl peptides were

initially defined in the 1970’s and were discovered by purification from E. coli
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cultures. It was suggested that the formyl peptides were derived from E. coli during
protein synthesis and that the resulting peptides induced neutrophil activity. Early
studies demonstrated that the formyl peptides are essential mediators during
inflammatory reactions and are potent chemoattractants during neutrophil
chemotaxis (Schiffmann et al., 1975b).

The derivatives generated by E. Coli displayed chemotactic activity after their
purification using High Performance Liquid Chromatography (HPLC). Marasco et al.
were able to obtain the amino acid sequence N-formyl methionine-leucine-
phenylalanine (fMLP) by performing dipeptidyl carboxypeptidase gas
chromatography-mass spectrometry. During the HPLC experiment, 5 distinctive
peaks were observed that also contained biological and antigenic activity.
Subsequently, the 5 peaks were investigated through a purification procedure using
carboxypeptidase to digest the peptides after purification from cultures. Amino acid
sequences were identified following carboxypeptidase digestion through o-
pthaldialdehyde (OPA) derivatization and reverse phase chromatography. This
resulted in these 5 peptide sequences: fMet-Ser-Leu, fMet-Phe-Leu, fMet-Met-Ile-
Ala, fMet-Gly-Met-Ile, and fMet-Val,-Phe-Ile-Leu-Leu. fMet-Leu-Phe displayed most
of the total activity of the mixture and still remains the prototype for formyl
peptides (Marasco et al., 1984).

Schiffman et al. were able to demonstrate that N-formyl methionine groups
are chemotactic when compared to non-formylated methionine groups. It was
demonstrated that di- and tri-peptides containing formyl methionine were stronger

attractants than formyl methionine by itself (Schiffmann et al., 1975a). It was also
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observed that the formyl methionine peptide was derived from the NH; -terminal of
newly synthesized bacterial proteins. [t was this observation that lead to the
hypothesis that N-Formyl peptides could activate neutrophil chemotaxis
(Schiffmann et al., 1975a).The results suggested that the formylated methionine
peptides derived from the amino terminus of bacterial proteins are vital
contributors and mediators that are responsible for the leukocyte response to

prokaryotic invasion (Marasco et al., 1984).

B. Staphylococcus Derived Formyl Peptides

Chemotactic peptides were also isolated and purified from Staphylococcus
aureus cultures. The supernatants from S. aureus cultures were analyzed using
reverse phase HPLC. The filtrates made from supernatants of cultures displayed 9
distinct activity peaks, none of which seemed to be identical to the E. coli derived
peptide fMLP (Rot et al.,, 1986).The initial chemotactic peptide seemed to display
equimolar amounts of methionine, leucine, phenylalanine, and isoleucine. This
particular peptide was tested on the human FPR and was compared to the
properties of fMLP. This peptide displayed higher efficacy and potency for the
human FPR. Subsequently, six additional peptides were synthesized and tested for
binding, efficacy, and potency for reactive oxygen species (ROS) generation and
chemotaxis. 2 of the 6 peptides were stronger activators of the FPR than the
remaining 4 peptides. The 2 peptides were the tetrapeptides fMIFL and fMLFI (Rot
et al,, 1987). From these studies, Rot et al. concluded that tetrapeptides derived

from S. aureus cultures are the most biologically active peptides (Rot et al., 1989).
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C. Listeria Monocytogenes Derived Formyl Peptides

Another bacterial source that has been studied for neutrophil activation is
the L. monocytogenes. It is known that L. monocytogenes can adapt to live in
intracellular vacuoles and the cytoplasm (Garifulin & Boyartchuk, 2005). L.
monocytogenes can move from cell to cell without ever being introduced to the
extracellular environment. From this information, it is known that neutrophils do
not need to detect a formyl peptide in the extracellular environment. This led to the
idea that N-formyl peptides derived from L. monocytogenes are used as antigens
presented by the MHC, also known as human leukocyte antigens (HLA). MHC is the
major histocompatibility complex, which mediates interaction of leukocytes with
other leukocytes. To be more specific, they are presented by the class 1b molecule,
H2-M3, to CD8+ cytolytic T lymphocytes (Pamer et al., 1992). The supernatant from
L. monocytogenes cultures was analyzed using a mass spectrometer. The peptide
fMIVIL was directly released into the supernatant of cultures and characterized

using the mass spectrometer (Gulden et al., 1996).

D. Mitochondria Derived Formyl Peptides

Formyl peptides can also be derived from the mitochondria. It is known that
the mitochondria originally evolved from a prokaryotic cell, which eventually
adapted to thrive inside a eukaryotic cell (McDonald et al., 2010). Because of its

prokaryotic origin, the initial step in mitochondrial protein synthesis in a eukaryotic
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cell is similar to protein synthesis in prokaryotic cells, suggesting that the
machinery for protein synthesis stayed intact. The mitochondria begin protein
synthesis with an N-formyl methionine, which serves as a potent chemoattractant
for the FPR on neutrophils. These results were impressive, and this led to the
discovery that N-formyl peptides produced in the mitochondria can initiate

chemotaxis at a site of sterile inflammation and necrosis (Carp, 1982).

7. Formyl Peptide Receptor Signaling for fMLP

N-formylated peptides derived from bacteria and the mitochondria have
been shown to be potent agonists for the FPR. Agonist binding and signaling has
been extensively studied and has been shown to activate downstream signaling in
the neutrophil via the FPR. In an inactive state, the Gai and the GBy subunits are
associated with each other. Once the FPR is activated, the Gy subunit dissociates
from Gai. The GBy subunit then initiates the activation of heterotrimeric G proteins,
small GTPases, Protein Kinase C, PI3K, and MAPKs (Haslam et al, 1993; Liet al,,
2003; Southgate et al., 2008).

The fMLP-FPR interaction activates the downstream enzyme PLC
(phospholipase C) and phosphoinositide 3 kinase (PI3K). PLC then cleaves
phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol
1,4,5-trisphosphate (IP3). The cleaved product IP3 is then released into the cytosol

to bind IP3 receptors
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Figure 2. Schematic Representation of the Formyl Peptide Receptor (FPR) in
Neutrophils. The FPR is a seven-transmembrane domain receptor. When activated,
the Gy subunit dissociates from the Ga subunit. This leads to activation of
downstream signals. Activation of PLC-Beta leads to the production of the second
messengers, DAG and IP3. DAG activates PKC, and IP3 binds to the IP3R, which
results in calcium mobilization from intracellular stores. The MAPK cascade is
activated as a result of FPR activation. The MAPK cascade leads to Erk1/2 activation,
which results in phosphorylation of p47phox . The receptor ligand interaction also
activates multiple subunits of NADPH oxidase to produce ROS. The FPR receptor
additionally activates Rho GTPase, which induces actin reorganization. PI3K is
activated in response to the ligand-receptor interaction. PI3K leads to the
production of PIP3, which, in turn, leads to the activation of Rac and Cdc42 resulting
in actin polymerization with involvement of WASP and ARP2/3.
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(IP3R), resulting in upregulation of intracellular calcium (Bokoch, 1995). The influx
of intracellular calcium regulates Calmodulin and Calcineurin (Frohlich et al,, 1998).
The phosphatase Calcineurin dephosphorylates its substrate protein, transcription
factor NFAT, thereby activating its target genes, which include chemokine genes.
DAG is compartmentalized in the membrane and works in conjunction with calcium
to activate PKC. PKC is then translocated from the cytosol to the plasma membrane
as aresult of increases in membrane DAG. The kinase PKC phosphorylates [kBa
unmasking the nuclear localization signal resulting in posttranslational modification
of IkBa, which leads to the activation of NF-kB and the degradation of IkBa (Graham
etal, 2007). The MAPK cascade is also activated as a result of activation of the FPR.
Activation of MAPK cascades leads to ERK1/2 production, which is probably the
most studied pathway in the MAPK system. ERK1/2 phosphorylates p47Phox
activating the transcription factor ELK1 and chemokine gene expression. p47phox
is an important regulator of NADPH. It is one of the subunits needed for the
activation of NADPH oxidase, which produces reactive oxygen species (ROS) (Figure

2)(Zarbock & Ley, 2008; Wong et al., 2010).

8. Two Mechanisms for Detecting a Gradient

It has been suggested that there are two distinct mechanisms by which an
organism can detect a gradient. They are termed temporal and spatial sensing.
Spatial sensing is characterized by concurrent comparison of the intensity of the
activated receptor at different loci on the cell. Temporal sensing is characterized by

comparison of the activated receptor at different time points. During spatial sensing
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the cells have the ability to detect the gradient while simultaneously directing the
organism to move in the correct direction, whereas, in temporal sensing the
organism compares the environment surrounding each area it has moved to
(Dusenbery, 1998). These sensing mechanisms were originally studied in bacteria
and became the foundation for our understanding of the sensory system (Spudich &
Koshland, 1975). Evidence identified bacterial receptors as chemoreceptors (Adler,
1969). It was suggested that these receptors sensed the direction of the stimulus
and then communicated the information to the flagella (Adler et al., 1973; Aswad &
Koshland, 1975). It has been suggested with respect to spatial sensing that it is
much easier for a larger organism to detect a gradient, because the receptors are
distributed over a larger area of the cell. The receptors on the cells are able to make
this comparison because they are further apart, permitting the cell to move at a
much faster pace.

Bacteria such as E. coli use temporal sensing to decide whether they are
moving in the right direction. This phenomenon was tested in neutrophils during
the 1970’s (Schiffmann et al., 1975a; Schiffmann et al., 1975b). It was suggested that
neutrophils use the spatial mechanism in a chemotactic gradient. Unlike bacteria, a
neutrophil’s receptors do not display asymmetrical morphology, but the majority of
them are redistributed to the leading edge of the cell (Serrador et al., 1998). It is
believed that neutrophils initiate neutrophil chemotaxis in 3 distinct steps . The first
step incorporates the interaction between the ligand and receptor. The second step
sends the signal to the motility elements, and the last step is the activation state of

the motility elements to produce cell migration (Cicchetti et al., 2002).
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9. Neutrophil Chemotaxis

Chemotaxis is defined as directional migration of a cell towards a chemical
stimulus in the environment. Neutrophils, which are a type of white blood cell, are
the primary leukocytes in the innate immune system. Polymorhponuclear (PMN)
leukocytes are also the primary phagocytes. Neutrophils migrate toward a chemical
stimulus at rates ranging from 15-30 pum per minute (Schwiebert & Zsembery, 2003;
Bokoch, 2005; Abbracchio et al., 2006). They are also able to detect a gradient as
shallow as 1% across the length of the cell (Chen et al, 2004). When neutrophils are
introduced into a chemoattractant gradient, they produce a bell-shaped dose-
response curve. At the peak of the curve is the optimal concentration needed for cell
migration (Ye et al., 1992). The general idea behind cell migration is that the
receptor senses the external signal and migration proceeds in the direction of the
chemical cue. If the receptor becomes saturated or desensitized, then the cell loses
responsiveness. Polarization, adhesion, and different signaling pathways also aid in
the ability of a neutrophil to migrate (Zigmond, 1980; Stossel, 1994; Janetopoulos &
Firtel, 2008). When neutrophils are activated, they polarize forming a distinct front
and back. Many studies have characterized actin polymerization as being the reason
the cells are able to protrude/extend towards the chemical signal. The small GTPase
Rho promotes actin polymerization, which initiates the accumulation of F-actin at

the front and contractile actin-myosin at the back (Downey, 1994).

A. Leading Edge
Chemotaxis is initiated when the FPR is activated; the Gy subunit then

dissociates from the Gai subunit. The Gy subunit mediates downstream signaling
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(Rickert et al., 2004) (Parent & Devreotes, 1999). Inhibition of GBy impairs
neutrophil chemotaxis (Neptune et al, 1999). Studies in D. discoideum showed
impairment of directional movement when the GBy subunit was genetically deleted.
This supported the theory that Gy is important for directional sensing. The Gy
subunit activates downstream signals such as PI3K, heterotrimeric G proteins, small
GTPases, PKC, and MAPKs (Haslam et al., 1993; Li et al, 2003). The Gy subunit
activates PI3K at the leading edge, which has been shown to assist in the
progression of actin polymerization. There are 3 classes of PI3K, but class [ appears
to be the most important for cell adhesion, cytoskeletal rearrangement, cell growth
and survival (Stephens et al.,, 1994; Stephens et al.,, 1997; Suire et al., 2005). Class I is
also thought to be the only class involved in neutrophil migration. Activated PI3K
phosphorylates the phospholipids PIP2 and PIP3. The production of PIP3 regulates
the signaling pathways that control cell adhesion, growth and survival.

There are 4 isoforms of PI3K, a, 3, §, and y. PI3Ky is known to be directly
activated by the Gy subunit. Experimental studies inhibiting PI3K using
Wortmannin and LY294002 demonstrated that degranulation, polarization, and
oxidation were affected, but not PLC and the calcium response (Arcaro & Wymann,
1993; Nijhuis et al, 2002). There have been conflicting results about the
involvement of PI3K in neutrophil chemotaxis (Niggli & Keller, 1997; Coffer et al.,
1998). These reports have demonstrated inhibition of neutrophil chemotaxis when
exposed to the inhibitor, while others have shown no effect on chemotaxis. In
addition, studies have been done in PI3Ky deficient mice, which showed a significant

reduction in the production of PIP3 (Hirsch et al, 2000; Li et al., 2000). Chemotaxis
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assays were also performed in this model, revealing a significant decrease in
chemotaxis, but it was not completely abolished, suggesting that PI3K was involved
in chemotaxis by mediating adequate organization and orientation of the actin
cytoskeleton.

As mentioned above PI3K activates the production of PIP3, which recruits
PKD1 and AKT to the plasma membrane. The downstream effectors of PI3K include
AKT/PKB, which can be inhibited by treatment with PI3K inhibitors. AKT/PKB
production was also studied in PI3K deficient neutrophils. After stimulation, these
neutrophils did not activate AKT/PKB (Sasaki et al., 2000). AKT has been used as a
marker to determine the localization of PIP3 during neutrophil migration.
Transfection studies were carried out in HL-60 cells differentiated into neutrophil
like cells. Transfection of PH-AKT-GFP revealed that PIP3 localized at the leading
edge. Downstream of PI3K are the guanine nucleotide exchange factors (GEFs) for

small guanosine triphosphate (GTP) binding proteins along with the MAPKs.

B. Rho Family of Small GTPase-Binding Proteins

The Rho family of GTPases has been shown to regulate actin polymerization,
actin cytoskeleton, and adhesion during neutrophil chemotaxis (Kaibuchi et al.,
1999). These small GTP-binding proteins regulate the shift of exchange proteins
from an inactive state to an active state and vise versa. These small GTPases are
inactive in the guanosine diphosphate (GDP) bound state and active in the GTP-
bound state. The switch from GDP to GTP is regulated by GEFs, GTPase-Activating

Proteins (GAPs), and guanosine nucleotide dissociation inhibitors (GDIs). GEFs are
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responsible for the activation of the Rho GTPases and GAPs are responsible for their
inactivation by hydrolyzing the bound GTP. The GDIs act by binding to the GDP-
bound form of the small GTPases inhibiting their activation. There are a number of
small GTPase-binding proteins in neutrophils, for example, Ras, Rac1, Rac2, Cdc42,
and Rho. Some regulators of small GTPase binding proteins include DOCK2, PIX,
Vav1/3, Sos, p120-GAP and RhoGDI (Bokoch et al, 1994; Dusi et al., 1996; Zheng et
al., 1997; Stephens et al, 2008). Among these, Rac, Cdc42, and Rho have been
thoroughly investigated during neutrophil chemotaxis. Studies have shown that in
an activated neutrophil Rac and Cdc42 localize to the plasma membrane, where they
are then activated by GEFs (Quinn et al, 1993; Philips et al., 1995).

Activation of Rac and Cdc42 differ from that of PI3K in that activation is
initiated by the Gai subunit rather than the Gy subunit (Li et al., 2000). Rac and
Cdc42 activation were investigated using PI3K inhibitors, which did not completely
inhibit activation of the two, indicating that there are PI3K dependent and
independent pathways for activating Cdc42 and Rac (Benard et al., 1999). In PI3Ky
deficient mice, Rac2 activity was not altered suggesting there is a PI3Ky
independent pathway for activation of Rac2 (Li et al., 2000). Cdc42 has been thought
to regulate actin polymerization by Arp2/3, an actin nucleating protein.
Experiments were done in neutrophil lysates to investigate whether activation of
Cdc42 induced actin nucleation and F-actin polymerization. These studies
demonstrated that activation of Cdc42 did indeed induce actin nucleation and F-
actin polymerization (Zigmond et al, 1997; Machesky & Insall, 1998; Machesky &

Gould, 1999).
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There are 2 isoforms of Rac, Rac1 and Rac2, which have been identified in
neutrophils. Rac2 seems to be the more abundant of the 2 and has been extensively
studied in neutrophils (Quinn et al.,, 1993). Experimental studies in Rac2 deficient
mice showed inhibition of chemotaxis and actin polymerization after chemotactic
stimulation (Roberts et al.,, 1999). In contrast Rho has been shown to be important
for the uropod or the back of the cell during neutrophil migration. It functions to
form the uropod and to release it from the substratum.

Experimental studies with C3 exoenzyme to inhibit Rho impaired neutrophil
chemotaxis, but initiation of actin polymerization was not altered (Stasia et al.,
1991; Ehrengruber et al., 1995; Niggli, 1999; Yoshinaga-Ohara et al.,, 2002). This
inhibition does not affect the protrusion of the cell, but the tails of the neutrophil
seem to strongly adhere to the substratum, causing the cell body to become
elongated. ROCK and atypical PKCé isoform have been implicated as downstream
effectors of Rho. ROCK inhibition had similar effects to Rho inhibition on
neutrophils, suggesting that ROCK mediates and modulates myosin II in the
generation of actin-myosin contractility during neutrophil chemotaxis (Kent et al,,
1996; Laudanna et al., 1998; Kawaguchi et al,, 2000).

As mentioned previously, Rac, Rho, and Cdc42 regulate neutrophil
chemotaxis. Rac and Cdc42 regulate chemotaxis by regulating actin polymerization
and lamellipodia formation, while Rho regulates the actin-myosin contractile
machinery and uropod release from the substratum. The enzyme PAK links the two

different pathways. This enzyme inactivates MLCK to induce relaxation at the
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uropod. The two pathways work in concert so that protrusion is followed by

retraction (Dharmawardhane et al., 1999; Sanders et al., 1999).

C. Mitogen-Activated Protein Kinase (MAPK)

There are a number of MAPK enzymes that regulate motility in neutrophils,
the most extensively studied being (ERK1/2), c-Jun amino-terminal kinases 1 to 3
(JNK1 to -3), and p38 (a, 3, v, and 6). The small GTP-binding protein, Ras, is
important for the activation of the MAPK cascade and is activated in neutrophils
upon N-formyl peptide stimulation by Gi-protein dependent pathways (Worthen et
al, 1994; Knall et al., 1996). The fact that Ras can be activated in the presence of
inhibitors of tyrosine kinases, PI3K, or PKC, rules out the possibility that these
molecules are acting upstream of Ras activation. In other cell systems, Ras functions
as an initiator of the mitogen-activated protein kinase (MAPK) cascade, which has
been considered to be the same in neutrophils. Inhibition of MEK1/2, the ERK1/2
module, fails to inhibit neutrophil chemotaxis when stimulated with N-formyl
peptide, suggesting that this pathway is not essential for the migratory function of
neutrophils (Coffer et al., 1998; Zu et al., 1998). In contrast, inhibitors of p38 MAP
kinase impair neutrophil chemotaxis to N-formyl peptide (Knall et al.,, 1997; Zu et
al, 1998). The mechanism proposed is that p38MAP kinase activated by N-formyl

peptide relieves Hsp27-mediated inhibition of actin polymerization.
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10. Degranulation

Neutrophils contain granules that are important in the elimination of foreign
particles during host defense (Baggiolini et al., 1985). The granule content is
released into the phagosome to aid in microbicidal activity (Chertov et al., 2000).
PMN granules are released in a hierarchical order (Pryzwansky & Breton-Gorius,
1985). Secretory vesicles are released immediately upon contact between the PMN
and the endothelium. Tertiary granules are mobilized once the PMN transmigrates,
and the primary and secondary granules are released in the inflamed site. These
proteins are liberated when needed, during PMN to phagocytosis and bacterial
killing. These proteins are released into the extracellular space and can functionally
affect inflammatory cells in their vicinity (Bentwood & Henson, 1980; Sengelov et

al, 1993; Borregaard & Cowland, 1997).

A. Secretory Vesicles

Secretory vesicles include a pool of membrane-associated receptors, which
are incorporated into the plasma membrane after the release of vesicles. HBP, FPR,
CR1, CD16, CD14, B2 Integrin’s, and the metalloproteinase leukolysin all can be
found in the secretory vesicles. Once the receptors are incorporated into the
membrane, the phenotype of the PMN changes. Therefore, an inactive PMN rolling
along the endothelium is not the same as an active cell, which is capable of
interacting with the endothelium, monocytes, and dendritic cells to gain the

information needed from the extracellular environment (Tapper et al., 2002).



24

B. Secondary and Tertiary Granules

The secondary and tertiary granules are also known as specific granules.
They have overlapping content but can be differentiated by the difference in their
buoyancy when centrifuged in density gradient. It is thought that these granules
play an important role in the initiation of the inflammatory response (Nicolaides,
2005). These granules include lactoferrin and matrix proteins along with other
substances. When compared to secondary granules, tertiary granules are more
easily exocytosed, which indicates the importance of these granules as a reservoir
for matrix degrading enzymes, while the secondary granule content contributes
mainly to antimicrobial activities (Jesaitis et al., 1990; Kjeldsen et al., 1992;

Mollinedo et al.,, 1997).

C. Primary Granules

Primary Granules are also known as azurophilc granules, and have been
characterized by their lysosomal content that is important in the digestion of
phagocytosed material (Rice et al, 1987). They are termed primary granules
because they are the first granules produced during the development of neutrophils.
The contents of azurophilic granules include myeloperoxidase, phospholipase A2,
acid hydrolases, elastase, defensins, neutral serine proteases,
bactericidal/permeability-increasing protein, lysozyme, cathepsin G, proteinase 3,
and proteoglycans. These granules are characterized by their arsenal of molecules
needed for antimicrobial activity in the phagosome (Pryzwansky & Breton-Gorius,

1985; Sinha et al., 1987).
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11. Phagocytosis

Activated neutrophils are attracted to a particle such as a bacterium via
chemical attractants. They migrate to the particle; engulf it, and target it for
destruction. This process is initiated through receptor ligand interactions, which
leads to internalization, surface remodeling, and lipid metabolism (Niedergang &
Chavrier, 2004). The phagosome is formed by endocytosis of the foreign particle
(Mukherjee et al., 1997). To engulf the foreign material, the cell has to change its
shape. The cell sends out projections called pseudopodia. These projections then
make contact with the particle to ingest it. Thereafter, the pseudopodia form around
the foreign particle and capture it when the plasma membrane surrounds and
isolates the foreign particle from the extracellular environment (Underhill &
Ozinsky, 2002). The pathogen is initially internalized and sequestered into a
compartment that originated from the plasma membrane called the phagosome.
The foreign particle is then compartmentalized and transported to the lysosome
where it fuses with the lysosome to target the foreign particle for destruction.

The endosome differs from the phagosome in that it is formed from liquid
material or much smaller particles. The endosome is also formed by endocytosis.
The endocytosed material is compartmentalized and travels deeper in the cell. This
compartment is unable to perform the activity of a mature phagosome and,
therefore, must undergo a maturation process. While traveling deeper into the cell,

the compartment becomes more acidic and matures into a late endosome. The late
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endosome then fuses with the lysosome to target the foreign material for
degradation (Mellman, 1992; Rabinowitz et al., 1992; Vieira et al., 2002).

These compartments utilize microtubules and move along them where they
then recognize and begin to fuse with endocytic organelles (Blocker et al., 1997;
Desjardins & Descoteaux, 1997; Jahraus et al., 1998). The V-ATPase pump is
required for acidification of most intracellular compartments such as the endosome,
lysosome, and golgi derived vesicles (Grinstein et al,, 1992). This pump is thought
to be the main source of acidification of the phagosome in leukocytes. The V-ATPase
pump contributes to the destruction of the pathogen and also prevents further
infection. The V-ATPase along with hydrolytic enzymes and NADPH oxidase
contribute to the microbicidal activity of the lysosome (Mellman, 1992; Claus et al,,

1998)

12. Respiratory Burst

After membrane sealing, the phagosome does not have any bactericidal
activity. It is not until it fuses with the lysosome that harm comes to the foreign
particle. The phagosome fused with lysosome has a very low pH and contains
hydrolytic enzymes, bactericidal peptides, and can generate superoxide (Vieira et
al, 2002). The microbicidal activity depends on the activation of NADPH oxidase
(Werner, 2004). NADPH oxidase is able to generate superoxide anion through a Rac
dependent pathway (Bokoch & Diebold, 2002). NADPH oxidase produces reactive

oxygen species in the phagosome, which contribute to the regulation of signal
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Figure 3. Schematic Representation of the NADPH Oxidase during a
"Respiratory Burst." In the inactive state, the NADPH oxidase of the phagocyte
consists of two membrane subunits (p22phox and gp91phox) and four cytosolic
subunits (p67phox, p47phox, p40phox, and Rac-GTPase). In the active state,
p47phox is phosphorylated, and the cytoplasmic subunits are translocated to the
cell membrane, where the functional NADPH oxidase enzyme system is assembled
from the membrane and cytosolic subunits. Activated NADPH oxidase catalyzes the
reduction of molecular oxygen Oz into Oz". Superoxide is dismutated by SOD
(superoxide dismutase) to form hydrogen peroxide. MPO then catalyzes the
synthesis of HOCI (hypochlorous acid) from hydrogen peroxide and chloride.
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transduction, bacterial killing, and oxidative damage. NADPH oxidase is a 5-
component complex that includes gp91phox, p22phox, p40phox, p47phox, p67phox,
and the inactive form of Rac. In an inactivated neutrophil, gp91phox and p22phox
are located on the membrane while p67phox, p47phox, p40phox, and Rac GTPase
are found in the cytosol (Dinauer et al., 1990; Sheppard et al, 2005). Once the cell is
stimulated, the cytosolic components p47 and p67 become phosphorylated, and
nucleotide exchange converting Rac GDP (inactive) to Rac GTP (active) allows for
translocation of the cytosolic components to the cell membrane (Heyworth et al,,
1994). This complex then produces superoxide by transferring electrons from
NADPH across the membrane where the electrons couple with molecular oxygen to
form superoxide anions. Superoxide is considered to be a primary reactive oxygen
species and is produced in large amounts to kill invading pathogen. Superoxide
dismutase then allows for the dismutation of superoxide producing hydrogen
peroxide. In the presence of hydrogen peroxide and chloride, MPO generates a
cytotoxic reactive oxygen species called hypochlorous acid (Figure3) (Floris &
Wever, 1992; Hampton et al., 1998; Furtmuller et al., 2000). Hypochlorous acid can
react with other radicals amplifying the effects of reactive oxygen species and

ultimately causing tissue damage (Floris & Wever, 1992).

13. Introduction to Myeloperoxidase (MPO0)
Agner first described myeloperoxidase approximately 70 years ago. It was
first described in patients with tuberculosis empyema: purification revealed an

intensely green product, which was initially named verdoperoxidase (Agner, 1947),
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because verida means green in Spanish. Verdoperoxidase was later changed to
myeloperoxidase when it was discovered that expression of this peroxidase is
restricted to cells of the myeloid lineage (Agner, 1958; Schultz, 1958).
Approximately 30 years thereafter, the functional role of myeloperoxidase was
explored by Klebanoff. (Klebanoff, 1968, 1970). He demonstrated that MPO in
combination with its substrates, hydrogen peroxide and a halide, constitute a potent
antimicrobial system.

MPO belongs to a superfamily of mammalian heme peroxidase enzymes,
which include eosinophil peroxidase (EPO) and lactoperoxidase (LPO) (O'Brien,
2000; Furtmuller et al, 2006). MPO is a key enzyme in polymorphonuclear
leukocytes (PMN) and monocytes; however, polymorphonuclear leukocytes contain
much more of the enzyme than monocytes. MPO was highly purified in the 1940s
and was shown to be present in neutrophils at a concentration of 1-2% of their dry
weight (Schultz & Kaminker, 1962; Schultz & Shmukler, 1964; Schultz et al., 1965;
Floris & Wever, 1992; Hampton et al,, 1998). Another study was done and reported
MPO concentration to be 5% of the dry weight (Kinkade et al, 1983). MPO has a
very distinctive green color and is what gives pus its color. MPO is released from
azurophilic granules upon activation of the neutrophil. In conjunction with NADPH
oxidase, MPO generates reactive oxygen species within the phagosome (Kinkade et

al, 1983).



30

A. Myeloperoxidase Properties

MPO is released from azurophilic granules and matures in these granules
during cell differentiation (DeLeo et al., 1998). In the bone marrow, synthesis of
MPO primarily occurs during the promyelocytic stage, which results in an inactive
precursor, apopro-MPO. During maturation, apopro-MPO has to go through a
process of binding to chaperone proteins such as calrecticulin and calnexin, which
allow for the incorporation of heme. Mature MPO is predominately expressed in
neutrophils, whereas levels in monocytes are much lower. In humans, MPO levels
range from 2-5% of cellular protein, and the main cellular source of this protein is in
neutrophils (Klebanoff, 2005). The main function of these short-lived cells is to
migrate, ingest, and destroy invading pathogens, such as bacteria, fungi, and
protozoa (Nathan, 2006; Dale et al, 2008). The nonspecific neutrophil response
usually is accompanied by tissue damage, but they are also recognized for their
importance in initiating and shaping the immune response and tissue repair
(Nathan, 2006). After migration and ingestion, neutrophils form phagolysosomal
compartments and due the phagosome fuses with intracellular granules, one of
which contains the MPO protein (Faurschou & Borregaard, 2003). During
degranulation of primary, secondary, and tertiary granules, various bactericidal
components are released into the phagosome. These granules contain material that
aids in the destruction of foreign particles. In conjunction with the acidic pH that is
maintained in the granules, this creates a bactericidal environment (Borregaard &
Cowland, 1997; Borregaard et al., 2007). At the same time, the neutrophilic NADPH

complex is activated and recruited to the phogolysosome as well as to the plasma
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membrane. The activation of this complex produces superoxide anions that are used
as a substrate for H202. MPO then uses H20> as a substrate to produce hypochlorous
acid. All of the components previously mentioned are necessary to produce the
bactericidal environment to destroy foreign pathogens (Babior et al, 2002; Babior,

2004).

B. Enzymatic Properties of Myeloperoxidase

The binding of heme causes a conformational change in the protein, yielding
pro-MPO, which is considered to be enzymatically active. In its native form, the
heme center is in the ferric state, but in the presence of H;0 the redox
intermediate, compound I, is formed. Compound I readily oxidizes halides, such as
bromide, chloride, and iodide. When Compound I reacts with these halides, it is
reduced back to its ferric state. Compound I is transformed into Compound II due to
oxidation of organic and inorganic substrates (Davies et al., 2008). Compound III can
also be formed through reaction with the native enzyme, superoxide or through
reactions with Compound I and III by one-electron reduction.

An excess of active MPO can be deleterious to tissue during chronic
inflammation. An uncontrollable inflammatory response leads to the release of MPO
into the extracellular milieu, which exposes neighboring cells to its toxic effects and
oxidizes tissues and proteins. This oxidative stress is due to the overproduction of
ROS and impairment of the capacity of the biological system to detoxify the reactive
intermediates (Edwards et al, 1987; King et al, 1997). MPO can be inactivated by

products of the respiratory burst and can be cleared from the extracellular
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environment by macrophages (Edwards et al, 1987; Shepherd & Hoidal, 1990).
MPO is very basic and therefore binds to negatively charged surfaces. Not only does
MPO contribute to bactericidal activity, but also to enhance association of
macrophages with coated cells, to which MPO adheres strongly, once it is released

into the extracellular milieu.

C. Properties of Myeloperoxidase in Modulating Immune Responses and
Inflammation

The over production of MPO and other peroxidases can lead to tissue damage
in many diseases. Evidence suggests that enzymatically active MPO together with 3-
chlorotryrosine, a tissue marker for HOCl mediated damage, has been detected in
diseased tissues (Witko-Sarsat & Descamps-Latscha, 1994). In addition to its toxic
effects, it is also known that MPO can modulate the activity and function of an array
of immune cells. In vitro in T and B cells, it was shown that the product of the MPO
system HOCL can activate nuclear factor-xB and tyrosine phosphorylation, thus
leading to increased calcium mobilization, increased production of tumor necrosis
factor a, reduction of mitogen-induced proliferation, and a decrease in cytotoxic
activity (el-Hag et al, 1986; el-Hag & Clark, 1987; Schoonbroodt et al, 1997;
Schieven et al, 2002). This information demonstrates that MPO derived oxidants
can modulate immune responses as well as inflammatory reactions.

In recent studies, it has become clear that MPO plays a role beyond its
enzymatic activity. Lefkowitz et al. provides evidence that MPO modulates the

immune response via activation of macrophages. Exposure of macrophages to MPO
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leads to the release of TNF-a and interferon -y (IFN-y) in in vitro studies. In in vivo
studies, mice were intravenously injected with MPO resulting in a similar response,
namely an increase in the circulating levels of TNF-a and interferon-y (Lefkowitz et
al, 1992; Lefkowitz et al, 1993; Lefkowitz et al, 1999). Furthermore, there is
evidence that introduction of MPO to macrophages increases micro- and
bactericidal activity in these cells (Lincoln et al, 1995; Lefkowitz et al., 1996).

Other functions of MPO include its role in cell-cell interactions and adhesion
of leukocytes. The evidence for this possibility was obtained in dHL-60 cells and
peripheral human leukocytes. When these cells were placed on a substratum
containing MPO, adhesion increased, and this effect was not blocked by mannan, an
inhibitor of peroxidase activity. However, when monoclonal antibodies against
CD11b and CD18 were used to inhibit these integrins, adhesion to MPO was
inhibited, suggesting that MPO plays a vital role in integrin mediated adhesion. This
evidence also suggests that MPO may be essential for leukocyte migration and

infiltration during an inflammatory response.

14. Conclusion

MPO has been shown to play a role in both health and disease. In health, MPO
is an important component present in neutrophils and macrophages. MPO catalyzes
the production of very reactive halides derived from oxidants and aids in the
annihilation of digested phagocytosed pathogens. In diseases characterized by the

development of inflammation and oxidative stress, MPO is involved in the initiation
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and continuation of the inflammatory response. These responses suggest that MPO
may be a therapeutic target. Using 4-ABH as a selective inhibitor of MPO, it has been
demonstrated that pathogens are capable of thriving in cells (Kettle et al., 1995;
Burner et al, 1999). Also, patients deficient in the MPO enzyme proved to be more
susceptible to bacterial infection. They are able to fight off the infection, but at a
slower rate compared to an individual who is not deficient in the enzyme (Klebanoff,
2005).

However, it would be great to see if the development of MPO inhibitors
would be beneficial in situations in which inflammation becomes self-perpetuating
and chronic. Does MPO have other functions that could be beneficial to the host?
Our lab proposes that MPO is involved in the regulation of chemotaxis through
inactivation of the ligand on the receptor. It is our belief that unoccupied receptors
act as the “eyes” of the cell. When the eyes are closed, the cell is unable to determine
its direction. The same applies to neutrophils: when the receptors are occupied, it is
as if the ligand has closed the eyes of the neutrophils, thus making it hard for them
to determine their direction. It is our hypothesis that MPO helps to maintain a
reasonable population of unoccupied receptors. It does so by inactivating the
methionine-containing agonist peptide and changing the strength with which the
ligand binds. This frees the receptor from the ligand, or by analogy, reopens the eyes

of the cell.



MATERIAL AND METHODS

Reagents and Mice.

Reagents. Human fibronectin was purchased from BD BioSciences. N-formyl-Met-
[le-Phe-Leu (fMIFL) was synthesized at the Protein Research Laboratory at the
University of Illinois, purified to 290% homogeneity, and identified using mass
spectrometry. fMLF (290% purity) was purchased from Sigma-Aldrich. Calcein AM
was purchased from Invitrogen. FLIPR calcium reagents were purchased from
Molecular Devices. Percoll was purchased from GE Healthcare. Wild-type C57BL/6
mice were from Charles River Laboratories. MPO-/- mice were from Jackson
Laboratory. Mice were bred and housed in a pathogen-free environment with free
access to food and water at the University of Illinois at Chicago Animal Care Facility.
All experimental procedures complied with University of Illinois at Chicago and

National Institutes of Health guidelines for animal use.

Isolation of Mouse Neutrophils

C57BL/6 and MPO-/- mice were used in all experiments. Mice of 8-10 wk of age
were euthanized by CO2 inhalation, followed by cervical dislocation. Femurs and
tibias were removed and then rinsed in HBSS-prep (Ca2+/Mg2+ with 20 mM HEPES,
0.2% BSA). The bones were then flushed with HBSS-prep using a 25G 5/8" needle.
Subsequently after flushing, marrow was passed through a 70-um cell strainer to
remove aggregated cells. Cells were pelleted at 1500 rpm for 5 min and then re-

suspended and washed in 50 ml of HBSS-Prep. Cells were pelleted again and re-
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suspended in 3 ml of HBSS-Prep. The recovered bone marrow was layered onto a
discontinuous gradient consisting of 3 ml of 1.077 Nycoprep, which in turn was
layered over 3 ml of 72% Percoll, and then centrifuged at 2400 rpm for 25 min at
room temperature with no acceleration and no brake. Neutrophils were removed
from the Nycoprep/Percoll interface and washed twice with HBSS. After the final
wash, cells were resuspended in the appropriate assay buffer for further use. All
experiments involving the use of mice were conducted according to protocols
approved by the Institutional Animal Care and Use Committee at University of

[llinois, Chicago.

Micropipette Assay

The micropipette assay was used to determine real time chemotaxis in HL-60 cells.
Coverslips were pretreated with 50 pg/ml fibronectin for 1h at room temperature.
Control or 4-ABH treated HL-60 cells were added to fibronectin (50 pg/ml)
pretreated coverslips for 5 min. Non-adherent cells were washed away with HBSS.
Chemoattractant (fMLP) was loaded into the micropipette at a concentration of 100
uM. A chemoattractant gradient was formed by slow release of the fMLP from the
tip of the micropipette into the medium. Cell migration was observed using a light
microscope with a 40X objective. Frames were taken every 10 seconds for 30 min.
All migration images were collected with CarlZeiss AxioCam and analyzed by Image]
software. Directionality was calculated as net migration distance from origin divided
by total length of the migration path. Migration speed was calculated from migration

distance divided by elapsed time.
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EZ-TAXIScan Chemotaxis Assay

The EZ-taxiscan was used to visualize and research real time chemotaxis in mouse
neutrophils. The EZ-taxiscan consists of two compartments, a silicone substrate and
a glass plate. Coverslips were pretreated with 50 pug/ml of fibrinogen and placed on
the glass plate of the lower compartment. The chamber was assembled with a 260
or 130 pm wide, 4-pm thick silicon chip on a 2 mm? treated glass base. Purified bone
marrow derived WT (C57BL/6) or MPO /- PMNs were added to the lower reservoir
of each of the 6 channels. The cells were lined up on the chip by removing
approximately 100 pl of buffer from the upper reservoir. At the top of the individual
channels, 1 pl of 10 nM fMIFL was added in the upper reservoir. Chemotaxis was
recorded at 30-sec intervals at 37° C for 30 min. Data were analyzed by Image]

software.

Peritoneal Transmigration

For analysis of peritoneal transmigration of neutrophils, wild type (C57BL/6) and
MPO -/-mice were injected intraperitoneally with 100 pl of 10 nM fMIFL for 4 hr. The
mice were then anesthetized and the peritoneal cavity flushed. Neutrophils were
recovered via peritoneal lavage. Total leukocytes were counted with a HEMA VET.

Results are presented relative to the total population.
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Neutrophil Adhesion to Endothelial Cells

Mouse lung vascular endothelial cells were isolated and grown to confluence in 96-
well, gelatin-coated plates. Isolated bone marrow neutrophils were resuspended at
a density of 1X107/ml and labeled by incubation with calcein AM for 30 min. After
this incubation, cells were washed in PBS to reduce background signal from the
fluorescent dye and resuspended in PBS containing 0.1 % BSA. 100 pl of the cells
were added to the endothelial monolayers. Adhesion to the endothelial cells was
induced by stimulation with 10 nM fMIFL for 4h. Cells were washed 1-7 times with
PBS to remove non-adherent cells. Adhesion was determined at excitation and

emission maxima of 494 nm and 517, respectively.

Neutrophil Adhesion to Substratum/Fibrinogen

I[solated bone marrow neutrophils were resuspended at a density of 1X107 /ml.
Freshly isolated PMNs from wild type (C57BL/6) and MPO -/-mice were loaded with
calcein AM for 30 min. After this incubation, the cells were washed in PBS to reduce
background signal produced by the fluorescent dye and resuspended in PBS
containing 0.1 % BSA. Cells were added to fibronectin (50 pg/ml) pretreated 96 well
plates for 10 minutes. Cells were washed 1-7 times and read at excitation and

emission maxima of 494 nm and 517, respectively.

Neutrophil Lung Sequestration
Wild type (C57BL/6) and MPO -/-mice were anesthetized using ketamine (100

mg/kg) and xylazine (2.5 mg/kg). Surgical procedures were performed after
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verifying deep anesthesia. Mice received positive pressure ventilation via a tracheal
cannula. PMNs were labeled with indium !11In-oxine for 30 min. Cells were washed,
centrifuged, and re-suspended in HBSS to minimize background radioactivity.. The
right jugular vein was surgically exposed. 1 x 106 111 Indium-oxine labeled cells
were injected into the jugular vain. Mice simultaneously received 10 nM fMIFL i.t. to
induce lung PMN sequestration. 4 hr post injection, mice were euthanized and
sacrificed. BAL fluid was collected; lungs were cleared of vascular tracer and then
excised. Lung tissue and lavage fluid samples were counted with the aid of a gamma

counter. PMN uptake into the lung was expressed as a fraction of total injected cpm.

Calcium Mobilization Assay

Black/clear-bottom 96-well assay plates were coated with 50 pg/ml of fibrinogen
for 1 hr at room temperature. Mouse bone marrow PMN were suspended at 5 x 10"6
cells/ml in HBSS containing 0.5% BSA, and 80 pl of the cell suspension was added to
each well. Cells were loaded for 1 hr at 37°C with FLIPR calcium sensitive dye,
according to the manufacturer’s protocol. Addition of agonist was robotically
controlled, and samples were read on a FlexStation (Molecular Devices). Cells were
excited at 485 nm, and CaZ2+ fluorescence was detected at an emission wavelength
of 525 nm. All CaZ2+ mobilization assays were conducted with the use of a FLIPR

Calcium Plus Kit (Molecular Devices).
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Competitive Binding Assay (111251 fMIFL)

The assay is based on the ability of unlabeled ligand (1nM -100uM fMIFL) to
compete with labeled ligand [125]]-fMIFL (specific activity 200 ug/uCi) at the FPR
receptor. To do this, labeled ligand was added to isolated PMNs from wild type
(C57BL/6) and MPO /- mice. Subsequently, unlabeled ligand was added to the cells
at various concentrations from 1 nM to 100 uM. The assay was performed at 4° C
under conditions permitting rapid addition of the unlabeled and labeled ligand.
After addition of the ligands, the tubes were mixed by very slow inversion. The cells
were incubated at 4° C for 30 min. Following this incubation, the cells were washed
to remove free unbound ligand. The cells were then pelleted and read using a
gamma counter. Agonist competition curves were constructed by plotting specific
binding of the radiolabeled agonist against log concentration of the competing
ligand. Nonspecific binding was taken as the cell-associated counts in the presence
of excess (10-4 M) unlabeled ligand. IC50 values were extracted from the raw data

with the aid of Prism 6 software.

Methionine Oxidation Analysis

Isolated PMNs were challenged with the chemoattractant fMIFL for 30 min at room
temperature. The cells were pelleted and resulting supernatant read via the Mass
Spectrometer. An Agilent Technologies (Sanat Clara, CA) 1260 HPLC system
coupled to an Agilent 6410 triple quadrupole was employed. Chromatographic
separation was carried out using a Waters Acquity UPLC BEH C18 column

(100 x 2.1 mm, 1.7 pm, Waters, Milford, MA), which was maintained at 40 °C within



41

the column oven. A linear gradient consisting of acetonitrile and 0.1% formic acid
(5:95, v/v) to (95:5, v/v) over 8 min was used, at a flow rate of 300 pL/min and an
injection volume of 10 pL. The total run time with column re-equilibration was 15
min. This method employs electrospray ionization in positive ion mode, operated in
multiple ion monitoring (MRM) mode at unit resolution, and uses Nitrogen as the
bath gas. The optimal MS parameters obtained were as follows: capillary voltage at
+4.kV, gas temp 350 °C, nebulizing gas pressure 40 psi, gas flow 12.0 L/min. Specific
transitions were selected for the singly protonated peptide at m/z 551.3 to 86.0 and
551.2 to 120.2 each with a collision energy set to 30 V and fragmentor set to 10 V.
The oxidized peptide species was identified within sample sets as the m/z 567.3 to
567.3 (collision energy 0 V and fragmentor set to 10 V). Mass Hunter version B.0.3

was used for instrument control and data analysis.

Statistical Analysis.
Statistical comparisons were made with the two-tailed Student t-test. All results
represent at least 3 independent experiments. Statistical significance was defined at

P<0.05. Error bars in the figures represent standard error of the mean.



RESULTS

Myeloperoxidase is Essential for Sustained Neutrophil Migration

Innate immunity is important in the protection of the host from microbial
infection. In the host, inactive neutrophils roll along the blood vessel wall until
activated by a chemoattractant. The active cells become firmly adherent to the
endothelial cell surface and transmigration occurs. Once through the blood vessel
wall, the cells are able to migrate toward the invading microorganisms, because the
microbes release chemoattractants to form a gradient that the neutrophil can detect
and follow to the source.

We wanted to determine the effects of MPO deficiency on neutrophil
transmigration in vivo. WT and MPO-/-mice aged 8-10 weeks received an
intraperitoneal injection of 10 nM fMIFL, a peptide chemoattractant released by
Staphylococcus aureus. Five hr post injection, neutrophils attracted to the peritoneal
cavity were recovered and quantified as described in Materials and Methods.
Neutrophil transmigration from the bloodstream into the peritoneal cavity was
significantly decreased in MPO -/- mice when compared to WT (Figure 4).

Next, we asked whether this phenotype is due to a defect in the adhesive
properties of neutrophils. We first carried out an ex vivo adhesion assay (see
Materials and Methods) to quantify PMN adhesion to cultured endothelial
monolayers. MPO deficiency had no significant effect on PMN adhesion to the

endothelial monolayer relative to the WT control (Figure 5). Thus, the observed
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inhibition of migration of MPO -/-neutrophils was probably not the result of
decreased neutrophil binding to the endothelium.

To evaluate the in vivo relevance of these observations, we compared binding
of WT and MPO /- PMNs to intact mouse lung microvessels. WT or MPO deficient
PMNs were labeled with 111Indium oxine and injected into the jugular vein of WT
mice as described in the Materials and Methods section. At approximately the same
time, the chemoattractant fMIFL was introduced into the lung via the trachea.
Bronchioalveolar lavage fluid (BALF) was collected from the mice 4 hr later and
counted for gamma-radioactivity. The results showed significantly lower
sequestration of MPO-/- neutrophils in the lung compared to WT (P< 0.05 vs. WT
neutrophils; Figure 6A). To show that the observed reduction in PMN sequestration
was not due to a defect in the neutrophil’s ability to adhere to the endothelium, we
assessed binding of labeled PMNs to perfused lung microvessels, as described in
Materials and Methods. The results showed no significant difference between WT

and MPO deficient PMNs in their ability to adhere to the lung (Figure 6B).

Inactivation of Myeloperoxidase Activity Impairs Neutrophil Chemotaxis

The generally recognized physiological function of MPO is to aid in the
destruction of foreign microorganisms during a respiratory burst. However, its
function during neutrophil chemotaxis is not well understood. Our goal was to
investigate the function of MPO during chemotaxis. Human promyelocytic leukemia
cells (HL-60) were induced to differentiate into neutrophils to create a model

system for studying the function of MPO in migrating cells. Spontaneous
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Figure 4. Comparison of fMIFL-Induced Peritoneal Sequestration of PMNs in
WT and MPO-/- Mice. WT or MPO-/-mice were injected intraperitoneally with 100
ul of 10 nM fMIFL or with an equivalent volume of PBS (control). 4 hr post-injection,
sequestration of PMNs was quantified by peritoneal lavage with the aid of the
HEMAVET. *indicates significant reduction in PMN sequestration (p < 0.05; n=7

per group).
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Figure 5. Lack of Influence of Myeloperoxidase Deletion on PMN Adhesion to
Lung Endothelial Cell Monolayers. Mouse endothelial cells were first isolated and
cultured as monolayers on a 96-well plate. PMNs were isolated from WT or MPO -/-
mice. To quantify PMN adherence, the PMNs were fluorescently labeled with calcein
AM. Then, labeled PMNs were layered onto the monolayers (10¢ PMNs per well),
treated with or without 10 nM fMIFL, and allowed to adhere for 4 hr. Non-adherent
cells were washed away and fluorescence of adherent cells read at excitation and
emission wavelengths of 494 and 517 nm, respectively. Bar graph shows
background fluorescence (15t pair of bars), adhesion of unstimulated PMNs to
monolayer (2" pair), and adhesion of fMIFL-stimulated PMNs to monolayer (34
pair). Note that MPO genetic deletion has no effect on PMN adhesion. N=3 per group.
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Figure 6. Influence of Myeloperoxidase Expression on Binding and
Transmigration of fMIFL Stimulated PMNs in the Lung. PMNs either from WT or
MPO-/- mice were isolated or radiolabeled with 111In-oxine. Under anesthesia, mice
received an injection of 10° Indium-labeled PMNs via the jugular vein. Then,
i.t.(intratracheal) fMIFL (50 pl, 10 nM) was immediately administered by
instillation. 4 hr post injection, a blood sample was withdrawn, and the lung was
purged of unbound PMNs. Radioactivity in the airway was recovered in BALF (3
flushes with 1 ml PBS). The radioactivity in the various samples and lung tissue was
counted with the aid of a gamma counter. A: Bar graph showing that MPO deletion
significantly reduces PMN transmigration. The number of transmigrating PMNs was
computed as the fraction of total injected counts recovered in BALF times 106. *,
significant reduction in transmigration (p < 0.05; n = 5 per group). B: Bar graph
showing that MPO deletion has no effect on binding of radiolabeled PMNs to lung
microvessels. The fraction of bound PMNs was obtained from the ratio of tissue
counts to total counts injected. 3 independent experiments were conducted per

group.
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differentiation of the HL-60 cells into granulocytes was obtained with the addition
of 1.3 % DMSO into HL-60 cell culture. Over a period of 6-8 days the cells developed
a mature neutrophil morphology.

4-ABH, a specific inhibitor of MPO, was used to block MPO activity in
differentiated HL-60 cells (dHL-60). Chemotaxis was monitored using the
micropipette assay in dHL-60 cells treated with or without 4-ABH. The micropipette
contained fMLP at a concentration of 100uM, which when lowered into the medium,
generated a gradient emanating from the micropipette tip. fMLP is an E. coli derived
tetrapeptide shown to be a potent agonist for the FPR in dHL-60 cells. Untreated
dHL-60 cells rapidly migrated to the point source of fMLP. By contrast, 4-ABH
treated dHL-60 cells were disoriented in the fMLP gradient. Unlike control HL-60
cells, the 4-ABH treated cells did not display directed cell movement (Figure 7A),
thus indicating that MPO inhibition influences chemotaxis. Additional experiments
were conducted to help pinpoint the defect caused by loss of MPO activity. These
cells were able to polarize but were unable to sense the fMLP gradient and home to
the point source. The Chemotaxis Index was significantly lower in cells treated with
the inhibitor (P< 0.05; Figure 7B), but there was no significant difference in speed
(Figure 7C). To evaluate the orientation of the cells in relation to the micropipette
tip, their leading edge in (Figure 8A) was traced in red and the trailing edge traced
in green. Three min after placement of the pipette, the orientation of the cells was
quantified as the percentage of cells whose leading edge was directed toward the

point source. In the presence of 4-ABH, approximately 40% of the cells were
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Figure 7. Influence of Myeloperoxidase Inhibition on Neutrophil Chemotaxis
and Migration Speed in Differentiated HL-60 Cells. HL-60 cells were
differentiated into neutrophils as described in Materials and Methods. Micropipette
assay (see Materials and Methods) was performed to determine chemotaxis and
migration speed of the differentiated cells. The cells were pretreated for a period of
30 min with the MPO inhibitor 4-ABH (50 pg/ml) or vehicle (control). Then, they
were plated on fibronectin (50 pg/ml) treated coverslips and allowed to adhere for
5 min. Next, non-adherent cells were washed away, and the micropipette containing
100 uM fMLP as chemoattractant was introduced into the medium. A chemotactic
gradient formed as a result of slow release of fMLP from the tip of the micropipette.
Cell migration was observed using a light microscope with a 40X objective. A, Top
row: time series following exposure of untreated HL-60 cells to chemotaxin from
micropipette. Note clustering of cells around pipette tip in the 740 sec frame.
Bottom row: time series following exposure of 4-ABH treated HL-60 cells to
chemotaxin from micropipette. Note that treated cells fail to migrate to the pipette
tip. Color tracings show the trajectory of individual cells. The intersection of the
orthogonal lines represents the location of the pipette tip. B: Chemotactic index for
fMLP stimulated cells in the presence and absence of 4-ABH. Cl is the ratio of the net
displacement of a migrating cell to the length of its actual path. The 4-ABH treated
HL-60 cells showed a significant decrease in the CI when compared to control
(p<0.05; n=3). C: Migration speed of fMLP stimulated cells in the presence or
absence of 4-ABH. Speed is calculated as the total migration distance divided by
elapsed time. 4-ABH treated HL-60 cells exhibited no difference in speed compared
to controls (n=3).
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Figure 8. Influence of Myeloperoxidase Inhibition on Neutrophil Orientation in
a Chemotactic Gradient. HL-60 cells were differentiated into neutrophils as
described in Materials and Methods. Micropipette assay (see Materials and
Methods) was performed to determine chemotaxis and migration speed of the
differentiated cells. The cells were pretreated for a period of 30 min with the MPO
inhibitor 4-ABH (50 pg/ml) or vehicle (control). Then, they were plated on
fibronectin (50 pg/ml) treated coverslips and allowed to adhere for 5 min. Next,
non-adherent cells were washed away, and the micropipette containing 100 uM
fMLP as chemoattractant was introduced into the medium. A chemotactic gradient
formed as a result of slow release of fMLP from the tip of the micropipette. Cell
migration was observed for a 3-minute period using a light microscope with a 40X
objective, and cell orientation was noted. A: Illustration of cell orientation. Leading
and trailing edges of the PMNs shown are traced in red and green, respectively, and
the point source of chemoattractant is represented by the black dot. Note that the
majority of leading edges of MPO impaired cells are not oriented toward the
micropipette. B: Quantification of cell orientation as the percentage of cells oriented
toward the point source of chemoattractant. MPO blockade caused a significant
decrease in the percentage of cells oriented toward the micropipette at the 3 min
time point (p<0.05; n=3).
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Figure 9. Influence of Myeloperoxidase Deletion or Blockade on Chemotactic
Index and Migration Speed in Isolated Mouse PMNs Placed in an fMIFL
Gradient. PMNs were isolated from WT and MPO-/- mice as described in Materials
and Methods. EZTAXIScan (see Materials and Methods) was performed to
determine the chemotactic index and migration speed. WT or MPO-/- PMNs were
added to the lower reservoir and fMIFL (10 nM) added to the upper reservoir to
produce a chemotactic gradient. A: Individual trajectories of untreated and 4-ABH
treated WT PMNs (1st and 274 rows) and MPO-/- PMNs (314 row). Note that 4-ABH
treated and MPO-/- cells did not migrate to the upper reservoir and stop. B:
Chemotactic index for fMIFL stimulated cells in untreated and 4-ABH treated WT
PMNs and MPO-/- PMNs. Cl is the ratio of the net displacement of a migrating cell to
the length of its actual path. The 4-ABH treated WT and MPO-/- cells showed a
significant decrease in the CI when compared to WT controls (p<0.05; n=3). C:
Migration speed of fMIFL stimulated cells in untreated and 4-ABH treated WT PMNs
and MPO-/-PMNs. Speed is calculated as the total migration distance divided by
elapsed time. 4-ABH treated WT cells showed no significant difference in speed from
controls (n=3), but there was a significant increase in speed in MPO-/- PMNs
(p<0.05; n=3).
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oriented toward the fMLP point source (Figure 8B). This value may be compared to

a control value of 90%.

Myeloperoxidase is Required for Neutrophil Migration

In innate immunity the ability of a neutrophil to detect a chemotactic
gradient and polarize is an important initial step during cell migration. To evaluate
whether MPO-/- and 4-ABH treated PMNs display a similar phenotype as the HL-60
cells, we investigated the impact of deficient MPO expression or inhibition of MPO
activity on the ability of the PMN to detect a gradient when challenged with fMIFL.
The EZ-TAXIScan Scan was used to determine the migratory characteristics of
murine PMNs. Bone marrow derived PMNs have been shown to have similar
physiological and functional characteristics as the circulating PMNs in the blood
stream, and is therefore a good working model with which to study PMN function
(Boxio et al., 2004). MPO-/- and WT PMN were loaded at the bottom of the reservoir
and baited with a continuous gradient of the chemoattractant fMIFL as described in
Materials and Methods (Figure 9A). MPO-/- and 4-ABH treated PMNs displayed
impairment of their directional orientation when compared to WT. WT PMNs
possessed a normal phenotype whereby they were able to migrate to the highest
concentration on the gradient and stop. The Chemotaxis index was significantly
lower than control in cells treated with the inhibitor (P< 0.05; Figure 9B), but there
was no significant difference in speed (Figure 9C). MPO-/- and 4-ABH treated PMNs
differed from WT in that the MPO impaired cells migrated in different directions and

never came to a complete stop at the concentration maximum on the gradient,
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suggesting that MPO is not only important in the respiratory burst but also during

chemotaxis.

The Effect of Myeloperoxidase on Cell-PMN Adhesion

Adhesion is an important factor in cell migration. Adhesion to the
endothelium is due to the up regulation of selectins on endothelial cells lining the
blood vessel wall and up regulation of integrins on the neutrophil, but once the PMN
has transmigrated through the endothelium, cell adhesion depends on an
underlying layer termed the substratum. PMN spread more extensively during
chemotaxis and generate tension against the underlying substrate. The cell must
possess the ability to extend lamellipodia and grab hold of the substrate, and the
trailing edge must be released to ensure appropriate cell migration. In our
experiments the substratum that we chose was fibrinogen, which we applied at a
concentration of 50 pug/ml. There was no significant difference in adhesion between

MPO-/-and WT PMN (Figure 10).

Effect of Non -Methionine Containing Peptide’s on PMN Migration.

Previous studies have shown that formyl peptides are potent agonists for the
FPR receptor, and the initial step in protein synthesis in bacteria usually begins with
a formyl methionine. Supporting research has shown that the MPO system is
required for methionine oxidation, which aids in the process of bacterial killing. The
MPO system oxidizes the methionine residues on the peptide to methionine

sulfoxide. This process is necessary for bactericidal activity. The NLE peptide was
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Figure 10. Influence of Myeloperoxidase Genetic Deletion on Cell Adhesion to
a Fibrinogen Matrix. 96 well plates were pretreated with 50 ug/ml fibrinogen for 1
hr at room temperature. Subsequently, PMNs were isolated from WT or MPO-/-mice.
To quantify PMN adhesion, the PMNs were fluorescently labeled with calcein AM.
Then, labeled PMNs were plated onto the fibrinogen treated plates (10® PMNs per
well), treated with or without 10 nM fMIFL, and allowed to adhere for 10 min. Non-
adherent cells were washed away and their fluorescence read at excitation and
emission wavelengths of 494 and 517 nm, respectively. Bar graph represents
background fluorescence (15t pair of bars) and adhesion of fMIFL-stimulated PMNs
to fibrinogen (214 pair). Note that MPO genetic deletion has no significant effect on
PMN adhesion. N=3 per group.



55

1.1 4
0.9 -
0.7 -
0.5 -
0.3 -

0.1 -
WT MPO-/-

N
3]
J

MPO--
N

WT
PRSI - ]
= TNT
—_—
Chemotaxis
Index

-—

o :
o =~
1

100nM NLE

Migration Speed
(Mm/min)

WT MPO-/-

Figure 11. Effect of Non-Methionine Containing Peptide (NLE) on Chemotactic
Index and Migration Speed in Mouse MPO-/- Cells. PMNs were isolated from WT
and MPO-/- mice as described in Materials and Methods. EZTAXIScan (see Materials
and Methods) was performed to determine chemotaxis and migration speed. WT or
MPO-/-PMNs were added to the lower reservoir and the chemoattractant NLE (100
nM) added to the upper reservoir to generate a chemotactic gradient. A: Individual
trajectories for NLE stimulated WT (15t row) and MPO-/- PMNs (2" row). B:
Chemotactic index for NLE stimulated WT and MPO-/- PMNs. CI is the ratio of the net
displacement of a migrating cell to the length of its actual path. The NLE stimulated
MPO-/- PMNs showed no significant difference in the CI compared to WT (n=3). C:
Migration speed of NLE stimulated WT and MPO-/- PMNs. Speed is calculated as the
total migration distance divided by elapsed time. MPO-/- cells showed no significant
difference in speed compared to WT (n=3).
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chosen based on the findings of Rosen et al. (Rosen et al, 2009). NLE is a synthetic
peptide that also binds to the FPR receptor. We set out to confirm that MPO deletion
has no impact on the activity of the NLE peptide since this peptide lacks methionine.

To evaluate this, we performed chemotaxis assays with an NLE peptide (100
nM) gradient. As previously stated, cells were added to the lower reservoir of the
EZ-TAXIScan chip and the chemoattractant, to the upper reservoir. Image j software
was used to track individual cells during migration (Figure 11A). There was no
difference in the chemotaxis index for MPO/- PMN (Figure 11B) when compared to
WT and no significant difference in speed (Figure 11C). The results imply that MPO
is required for directed migration along a chemotactic gradient in the presence of

formyl methionine containing peptides.

Competitive Binding between 125]-fMIFL and unlabeled fMIFL in Isolated PMNs

Neutrophils have been suggested to use spatial cues to navigate in a
chemotactic gradient. In polarized cells, receptors that initially sense the gradient
are distributed to the leading edge of the cells during migration (Schiffmann 1982).
By oxidizing methionine, MPO could play a role in limiting agonist concentration at
the FPR and thereby maintaining receptor sensitivity. To test the importance of
MPO expression to the binding properties of the FPR, we performed a competitive
binding assay using isolated PMNs from WT or MPO-/- mice, in which unlabeled
fMIFL was used to displace 125I-labeled fMIFL from the FPR . Results showed that
MPO deletion shifted the ICso for labeled fMIFL to lower concentrations (Figure12)

by a factor of about 10, i.e., the affinity of agonist for the FPR receptor was increased.
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Figure 12. Competitive Binding Assay Performed with Isolated PMNs from WT
and MPO-/- mice. Competitive binding assays were performed to determine
agonist-binding affinity to the FPR receptor. WT and MPO-/- PMNs were isolated
from mouse bone marrow and suspended in saline (60 pl) at 106 cells per tube. 125]-
labeled fMIFL was added to the WT or MPO-/- PMNs together with unlabeled fMIFL
at various concentrations from 1 nM to 100 uM for a 30-min period at 4° C. After
incubation, cells were washed to remove any free unbound ligand, and then read
with a gamma counter. The curve shown represents the specific binding of 125I-
labeled fMIFL as a function of unlabeled ligand concentration. Specific binding is the
difference between total and nonspecific binding, the latter taken as the cell
associated counts remaining in the presence of excess (10-* M) unlabeled fMIFL.
IC50 values were determined from the raw data with the aid of Prism 6 software.
Table shows the IC50 values obtained for WT (1.824 x 10-7) and MPO-/- PMNs (3.443
x 10-8). Hence, there was a ~10-fold decrease in the IC50 of MPO-/- cells compared
to WT.



58

Hence, IC50 values were 3.443 x 10-8 M in MPO-/- PMNs and 1.824 x 10-7M in the WT
control (Figure 12). Since the assay was performed at 4° C (see Materials and
Methods), and internalization of the agonist occupied receptor is known to be
temperature sensitive, the results cannot be attributed to differences in receptor

internalization.

Effects of Myeloperoxidase Deletion on Calcium Mobilization Induced by
Activation of FPRs in PMNs

The activated FPR induces calcium mobilization from intracellular stores in
neutrophils. To see if the observed increase in ligand binding affinity in MPO
depleted PMNs (see above) affects functional responses to agonists, we evaluated
dose-response curves for agonist-induced calcium rise. In the experiments
conducted, neutrophils isolated from MPO /- mice or WT controls were loaded using
a Calcium 5 kit (see Materials and Methods) and subsequently challenged with
fMIFL. Original recordings of calcium transients obtained from WT and MPO-/-
PMNs in response to 10 nM fMIFL are shown in Figure 13A. Transients in MPO
deficient cells were increased, as expected. Calcium transients were quantified from
the area under the curve (Figure 13B). As can be seen, the transients on average
were significantly elevated in the MPO mutant. Additional calcium mobilization
assays were done using the non-methionine containing peptide NLE. MPO deletion
had no effect on the calcium transient induced by 100 nM NLE (Figure 14A) and
mean area values did not differ significantly from WT (Figure 14B). The dose

response curve was determined from the peak amplitude of the calcium transient in
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Figure 13. Calcium Mobilization Induced by fMIFL in Isolated PMNs from WT
and MPO-/- Mice. 96 well plates were pretreated with 50 pg/ml fibrinogen for 1 hr
at room temperature. Bone marrow PMNs were isolated from WT and MPO-/-mice.
The PMNs (5 x 106 per well) were loaded with the FLIPR calcium sensitive dye for 1
hr at 37° C (see Materials and Methods). FlexStation, a microplate reader with an
integrated multichannel pipettor, was programmed to add the chemoattractant
fMIFL at a predetermined time, to read the resulting change in cell fluorescence as a
function of time (excitation and emission wavelengths of 485 and 525 nm) and to
integrate the area under the calcium transient. A: Calcium transients induced by 10
nM fMIFL displayed as plots of relative Ca?* fluorescence (ratio of readings at 525
nm before and after agonist injection) vs. time (sec). Note that the peak calcium
transient is of greater amplitude in MPO-/- cells than WT. B: Bar graph of total area
under the curve in A. MPO-/- cells showed a significant increase in total area under
the curve when compared to WT (p<0.05; n=5).
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Figure 14. Calcium Mobilization Induced by NLE in Isolated PMNs from WT
and MPO-/- Mice. 96 well plates were pretreated with 50 ug/ml fibrinogen for 1 hr
at room temperature. Bone marrow PMNs were isolated from WT and MPO-/-mice.
The PMNs (5 x 106 per well) were loaded with the FLIPR calcium sensitive dye for 1
hr at 37° C (see Materials and Methods). FlexStation, a microplate reader with an
integrated multichannel pipettor, was programmed to add the chemoattractant NLE
at a predetermined time, to read the resulting change in cell fluorescence as a
function of time (excitation and emission wavelengths, 485 and 525 nm) and to
integrate the area under the calcium transient. A: Calcium transients induced by
100 nM NLE are displayed in plots of relative Ca?* fluorescence (ratio of readings at
525 nM before and after agonist injection) vs. time (sec). B: Bar graph of total area
under the curve in A. MPO/- cells showed no significant difference in total area
under the curve when compared to WT (n=5).
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Figure 15. Dose Dependent Activation of Calcium Mobilization in Isolated
PMNs at Various Concentrations of fMIFL. 96 well plates were pretreated with 50
pg/ml fibrinogen for 1 hr at room temperature. Bone marrow PMNs were isolated
from WT and MPO-/-mice. The PMNs (5 x 10° per well) were loaded with FLIPR
calcium sensitive dye for 1 hr at 37° C (see Materials and Methods). FlexStation, a
microplate reader with an integrated multichannel pipettor, was programmed to
add the chemoattractant fMIFL at a predetermined time, to read the resulting
change in cell fluorescence as a function of time (excitation and emission
wavelengths of 485 and 525 nm) and to integrate the area under the calcium
transient. Graph: Dose-response curve for the effect of fMIFL on amplitude of
calcium transients. Table: The EC50 values calculated from the dose-response curve
are 2.307 x 107 for WT and 2.877 x 10-8 for MPO-/~. Note the 10-fold decrease in the
EC50 value in MPO-/- cells when compared to WT (n=5).
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Figure 16. Dose Dependent Activation of Calcium Mobilization in Isolated
PMNs at Various Concentrations of NLE. 96 well plates were pretreated with 50
pg/ml fibrinogen for 1 hr at room temperature. Bone marrow PMNs were isolated
from WT and MPO-/-mice. The PMNs (5 x 10° per well) were loaded with FLIPR
calcium sensitive dye for 1 hr at 37° C (see Materials and Methods). FlexStation, a
microplate reader with an integrated multichannel pipettor, was programmed to
add the chemoattractant NLE at a predetermined time, to read the resulting change
in cell fluorescence as a function of time (excitation and emission wavelengths of
485 and 525 nm) and to integrate the area under the calcium transient. Graph:
Dose-response curve for the effect of NLE on amplitude of calcium transients. Table:
The ECso values calculated from the dose-response curve are 1.627 x 107 for WT
and 1.089 x 10-7 MPO-/-. Note lack of difference between EC50 values in MPO-/- cells
and WT (n=5).



63

response to increasing concentrations of fMIFL and NLE. Analysis of the curves
showed that fMIFL activated the FPR with a 10-fold higher potency. The ECso values
obtained were 2.307 x 107 M (WT) and 2.877 x 10-8 M (MPO-/-)(Figure 15),
consistent with the ligand binding study (above). In contrast to fMIFL, NLE gave
closely similar ECsovalues of 1.627 x 107 M (WT) and 1.089 x 10-7 fM (MPO-/*)
(Figure 16), indicating that MPO deletion has no effect on responses to NLE. This

result is expected since NLE lacks methionine and is not subject to oxidation.

Quantification of Methionine Oxidation in Isolated Bone Marrow PMNs
Methionine oxidation has been shown to be a key contributor to the
bactericidal activity of PMNs. Methionine is an amino acid that contains sulfur and is
oxidized during the respiratory burst (Ling et al, 1978). In our studies, we used
mass spectrometry to prove that MPO causes methionine oxidation in normal PMNs.
Oxidation is easily assessed by mass spectrometry, because the addition of oxygen
to methionine would increase its molecular weight by 16. In the experiments
conducted we assessed the ability of a standard number of PMNs (WT or MPO-/) to
oxidize fMIFL. We expressed extent of oxidation as the measured ratio between a
non-oxidized fragment of fMIFL containing methionine and oxidized fMIFL (see
Materials and Methods). The results showed that MPO deletion causes a 10-fold
decrease in methionine oxidation compared to WT, suggesting that MPO is a major
contributor to oxidation of methionine in PMNs (Figure 17). Since the oxidation
product was recovered from the external medium after spinning out the cells, PMNs

must have released oxidants into the extracellular space.
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Figure 17. Oxidation of the Methionine Residue in fMIFL. Bone marrow PMNs
isolated from WT and MPO-/- mice were suspended at 10° cells per tube.
Subsequently, cells of each genotype were challenged with 10 nM fMIFL for 30 min
at room temperature. Cells were then pelleted and the supernatant collected for
analysis by mass spectroscopy (see Materials and Methods). Graph quantifies the
ratio of an unmodified peptide fragment (FW, 120) to the oxidized methionine-
containing peptide (FW, 567). MPO-/- PMNs show significantly less oxidation of the
methionine residue than that of WT. (**, p<0.005; n=3).



DISCUSSION

Neutrophils are required for protection of the host from pathogens during an
inflammatory response, and function as the initial defense against invading
microorganisms. They sense chemical cues in the bloodstream and have the ability
to follow a chemical gradient to its source (chemotaxis)(Harris, 1954). Neutrophils
go through three different steps to activate chemotaxis. The first step is ligand-
receptor interaction, resulting in adhesion to substrate and cell polarization; the
second step involves signaling to motility elements (actin polymerization and
myosin contractility); and the terminal step is activation of the motility elements
that produce cell migration (Downey, 1994; Cicchetti et al., 2002). Our
understanding of cell migration has significantly improved in recent years.
However, our understanding of how neutrophils achieve spatial sensing at the
molecular level and in particular the role of cell surface receptors remains limited. It
has been reported that, in the neutrophil, FPRs accumulate at the leading edge of the
migrating cell and are required for directional sensing (Zigmond et al., 1981;
Cassimeris & Zigmond, 1990). Saturation and desensitization of the receptor hinder
the neutrophil, which may become nonresponsive to the chemoattractant, implying
the importance of unoccupied receptors in sensing the chemotactic gradient. It is
also suggested that receptor recycling is required for adequate cell migration. Most
MPO-related research thus far has focused on the enzyme’s physiological function in
the phagosome, where it produces deleterious agents to aid in destruction of

invading microorganisms (Klebanoff, 2005). One of those agents is the superoxide
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anion, Oz" (Babior et al, 2002). It was demonstrated that inhibition of NADPH
oxidase interferes with PMN chemotaxis (Hattori et al., 2010). Interestingly,
superoxide is almost immediately dismutated to H202, which in turn serves as an
MPO substrate along with chloride ions (Graham et al., 2007). These considerations
gave rise to the possibility that limitation of MPO substrates may lead to impairment
of chemotaxis. Hence, the question arose whether MPO also plays a role in
chemotaxis. In this study, we identify a novel mechanism for MPO in mediating
proper directional sensing.

The initial observation in support of such a mechanism was the loss of
neutrophil chemotaxis toward fMLP upon inhibition of MPO. For screening
purposes and to provide proof of concept, these early studies made use of
differentiation of HL60 cells into neutrophils as an inexpensive in vitro model of
PMN chemotactic behavior. In our studies, we inhibited myeloperoxidase activity
in these primary neutrophils with 4-ABH (50 pM), a blocker of MPO (Kettle et al.,
1997), and the results demonstrated loss of chemotaxis in treated HL-60 cells. To
show the physiological significance of these observations, we tested the chemotactic
behavior of isolated PMNs. PMNs isolated from MPO /- mice exhibited a striking
loss of chemotaxis in an fMIFL gradient compared to WT counterparts, thus
demonstrating for the first time the importance of MPO in PMN chemotaxis. The
agonist fMIFL was used because it is the most potent chemoattractant in the case of
murine PMNs, whereas fMLP is optimal in the human case (i.e., HL60 cells)
(Southgate et al., 2008). Although depletion of MPO impaired neutrophil

chemotaxis, the cells still displayed responsiveness to the chemoattractant. In this
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study, we noted the presence of agonist-induced chemokinesis (nonvectorial
locomotion in response to a chemoattractant) in both WT and MPO impaired PMNs,
suggesting that MPO deficiency did not ablate the FPR. Our binding data (see
below) support such an inference.

Having provided in vitro and ex vivo data supporting the role of MPO
expression in neutrophil chemotaxis, we obtained evidence for an in vivo role of
MPO in two different models of neutrophil infiltration. The in vivo setting is rather
different from the in vitro or ex vivo situations in that there is a barrier (i.e., the
vessel wall) interposed between the vascular neutrophil and the chemotactic source
(Harris, 1954; Wong et al., 2010). However, there is abundant evidence in the
literature that chemoattractants, including formyl peptides, not only attract PMNs
but also activate them, thus promoting adhesion to and migration across the vessel
wall (Harris, 1954; Le et al, 2002; Wong et al., 2010). As expected, we showed that
i.p. fMIFL attracted substantially fewer migratory neutrophils to the peritoneal
cavity in MPO deficient mice than in the WT counterpart. It was not clear whether
this result could be attributed to differences in the size of circulating PMN
populations in WT and MPO deficient mice, since those data are not available for the
mouse to our knowledge. However, in a second experimental series, we
circumvented this problem by injecting known numbers of labeled PMNs into the
circulation via the jugular. All of the injected PMNs must initially pass through the
pulmonary vascular bed before reaching the systemic circulation. We determined
neutrophil migration by recovering labeled neutrophils from BALF after baiting

them with i.t. fMIFL. As significantly fewer migratory neutrophils with MPO
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deficiency were recovered relative to the control, the results clearly confirmed that
MPO deficiency impairs PMN migration in vivo.

It is well known that neutrophil adhesion to substratum is necessary for
normal cell motility. Migrating neutrophils cyclically attach to substrate at the
leading edge and detach at the trailing edge to pull themselves toward a
chemoattractant (Cassimeris & Zigmond, 1990; Munevar et al, 2001). Therefore, we
conducted in vitro experiments to see if MPO genetic deletion alters the
adhesiveness of PMNs to the endothelial monolayer. These experiments showed
that MPO deletion did not affect adhesion of mouse neutrophils to the endothelial
monolayer. The experimental system used had the virtue of permitting direct
observation of PMN adhesion, but did not address the in vivo relevance of the
observations. Therefore, additional experiments were conducted to see if MPO
deficits affect binding of autologous PMNs to mouse lung microvessels. In the
studies conducted, we introduced labeled PMNs via the jugular vein and
subsequently collected the lung tissue after purging unbound neutrophils from the
pulmonary circulation. This protocol assured that only firmly bound PMNs were
counted. We found that binding of labeled PMNs to lung microvessels was
statistically indistinguishable between WT and MPO-/- mice, thus confirming that
MPO deficiency does not impair binding of PMNs in vivo. Hence, this mechanism is
ruled out as a potential explanation for the strong impact of MPO impairment on
PMN chemotaxis.

Another possible explanation that was not excluded related to the fact that

the chemoattractant fMIFL contains a formyl-methionine group that is susceptible
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to oxidation (Rosen et al, 2009). We therefore tested if MPO deletion affects the
response to a selective peptide agonist of FPR lacking methionine. In the
experiments conducted, we compared the chemoattractant properties of NLE
toward WT and MPO deficient mouse PMNs. Interestingly, MPO deletion did not
affect the migration of PMNs in an NLE gradient, thus indicating that MPO activity
affects responses only to formyl-methionine containing agonists. These findings
also imply that MPO most likely acted by modifying the agonist through oxidation
rather than by impairing the FPR receptor.

We next investigated if MPO deletion modifies receptor binding properties,
by conducting binding assay on isolated mouse PMNs using iodinated fMIFL. These
studies demonstrated that FPRs in MPO deficient cells have 10-fold higher agonist
affinity than the WT control. The binding maxima and slope of the steepest region
of the curves were statistically indistinguishable in WT and MPO depleted cells,
suggesting that the effect of MPO deletion on receptor function was limited to
affinity increase. We can also ruled out differences in receptor internalization, which
is well known to occur at physiologic temperature (Hofman et al.,, 2010), since the
binding studies were conducted at a temperature of 4°C. The observation of
increased agonist affinity in the MPO /- cells has an important functional
implication. In a chemotactic gradient, a higher affinity receptor will saturate
sooner and thereby impair chemotaxis. This inference is borne out by the dose-
response curve of calcium mobilization, which was also shifted to the left by a factor
of 10 in the MPO-/- cells and was thus observed to saturate sooner (see Fig. 15). As

expected, MPO deletion failed to alter dose-response curves to the FPR agonist NLE
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in the calcium mobilization assay. This observation confirms the importance of the
methionine residue in agonists such as fMIFL in the effects of MPO deletion.

Lastly, to establish the importance of MPO in the oxidation of methionine
residues, we performed mass spectroscopy to quantify oxidation of fMIFL by WT or
MPO-/- PMNs. In these studies, we incubated identical numbers of WT or MPO /-
PMNs with fMIFL. By using this technique, we were able to verify that WT PMNs
indeed oxidize fMIFL and that MPO deficiency substantially curtails oxidation by a
factor of about 10. We infer from these direct observations that hypochlorous acid
(HOCI), the chief product of the MPO system, is required for efficient formyl-
methionine oxidation to formyl-methionine sulfoxide in PMNs. These results are
physiologically important because it is well established in the literature that, once
agonist is oxidized, it loses activity at the FPR (Clark et al, 1980; Rosen et al., 2009).
In principle, the oxidized agonist, which was reported in the above studies to
function as an extremely weak partial agonist, might be expected to contribute to a
rightward shift in the dose-response curve for formyl peptide agonists. Such an
explanation dovetails with the results of our calcium mobilization assay, in which
the WT curve was shifted to the right.

In conclusion, we examined the molecular properties of MPO as they affect
neutrophil chemotaxis, calcium mobilization, formyl-methionine oxidation, and FPR
binding affinity both in vitro and in vivo. MPO is necessary for and mediates
sustained neutrophil chemotaxis by helping to maintain FPR availability. MPO
proves to be important in chemotaxis only when challenged with a methionine

containing N-formyl peptide. The present study demonstrated that HOCl is the



likely agent of methionine oxidation that inactivates FPR agonists. The probable
function of oxidation of methionine containing agonists may be to prevent
premature saturation of FPRs in a chemotactic gradient, thereby facilitating the

bacterial clearance function of PMNs.
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