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SUMMARY

Vehicles nowadays are increasingly being equipped with computers, sensors, and communi-

cation capabilities. These devices on cars lead to the rise of novel applications that aid travelers

in their daily travels. The vehicle itself becomes a mobile device and tool that can be used in

many different ways. The vehicle has the capability of receiving updates on the driving condi-

tions around it or data about locations across the city. With this updated traffic information

travelers can be assisted to make optimal decisions while driving. For example, the driver can

be assisted in choosing an optimal route to his/her destination or could search for places of

interest around the vehicle’s current location.

The urban transportation system as a whole can also be improved by using the computing

capabilities that vehicles have. Vehicles can act as sensors that collect data and share with the

system. City and transportation planning agencies can use this data to aggregate and share

with other users or to make assessments on how the system is being used. Systems can also be

implemented that guide or incentivize vehicles to make decisions that benefit the transportation

system. For example, a city can implement congestion pricing on roads to reduce congestion

on specific areas of a city. Or in emergency situations, vehicles can be guided through an

evacuation planning system to be able to drive outside of an area in an organized and timely

manner.

In this work we will study such an application. We will study the very common transporta-

tion problem of searching for resources in an urban space. The problem has been formulated
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SUMMARY (Continued)

as a spatio-temporal matching problem in which agents are looking to obtain a resource in a

transportation network. We have studied the problem by modelling the problem as a compe-

tition between the agents for the resources in various settings. We formulated the matching

problem as a game and were able to compute a Nash Equilibrium in a complete information

context. For the incomplete information case, we presented a heuristic based on a gravitational

algorithmic paradigm. We also presented two pricing schemes for this matching problem in

which agents are incentivized to act in a system optimal way that is beneficial for the system

and the environment. We then presented another version of the problem that has access only

to limited data that could have missing information and erroneous information, where only a

fraction of the agents in the transportation system report on available resources. We were able

to adapt our gravitational algorithmic paradigm to this setting as well.

Through simulations we showed the effectiveness of our proposed heuristics. The simulations

were based on real-world data that was obtained from the SFPark project. The simulations

showed how our gravitational approaches can attain up to 25% improvements over other ap-

proaches that use probability maximization in the uncertain case, and up to 40% when the

agents have access to the ground truth data. This meant that, according to previous studies,

with our navigation heuristics we would potentially be saving up to 68.8 million vehicle miles

traveled per year, 3.35 million gallons of gasoline, and over 51, 600 tons of CO2 emission (in the

certain case with 40% improvement).
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CHAPTER 1

INTRODUCTION

The problem addressed in this work concerns mobile agents searching for stationary re-

sources in space. Each resource has a fixed spatial location, and each agent is moving through

space to procure exactly one resource. A search problem of this nature arises in applications

that are very commonplace in a typical urban transportation system such as the following:

◮ A set of taxicabs (mobile agents) are looking to pick up clients (stationary resources) in

a given urban area.

◮ A set of travelers in vehicles (mobile agents) are looking for available parking slots (sta-

tionary resources).

Another more recent scenario in which this type of search problem is applicable is the bike-

sharing initiatives in cities (1). In this scenario, travelers on bicycles are the mobile agents,

and each such traveler needs to find an available docking station (stationary resources) for

her/his bicycle. A similar situation also arises when travelers in electric vehicles are searching

for charging stations. In all these scenarios the agents move based on a database of spatial

information reflecting the locations and availabilities of of the resources; the database changes

dynamically as more and more information about the availability of resources is received. It

bears mentioning that these resources are different from points-of-interest (POI’s) that are

1
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studied in various search problems. These resources studied in this work can be used by only

one agent at a time, whereas POI’s are unlimited in this sense.

There are four possible scenarios that could be studied for the search problem studied in

this dissertation, depending on on the information that can be obtained by the mobile agents.

We illustrate these scenarios below with the help of Figure 1.

10

20

50

80

a1agent� �

�

r1

resource I

r2

resource �

a2 agent
��

�

Figure 1. An example of two mobile agents a1 and a2 and two stationary resources r1 and r2.

The numbers represent (in seconds) the travel times for the agents to reach the corresponding

resources.

1.1 Zero Information (Oblivious) Scenario

The most common situation that happens in an urban transportation system is that vehicles

(agents) are not aware of the positions of their desired resources. Then each agent wanders

around until it comes upon an available desired resource. This is a case in which no information

about the resources are available to the agents. The zero-information case is similar to the
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deterministic version of the so-called “honey-pot searching” problem originally motivated by

U.S. Navy operations during the second world war (2; 3; 4).

In the example shown in Figure 1, in the zero-information case both the agents wander

around trying to find a resource. Clearly, the agents would benefit from having some information

available about the resources to make better decisions.

1.2 Incomplete Information Scenario

The proliferation of mobile devices, location-based services and wireless sensors has given

rise to applications that can help the agents to find their desired resources. For instance, in

the taxicab example potential clients (resources) could report to a server, by using their cell

phones, and the server could share the location information of the clients with the taxicab

drivers (agents) that use their service. For the example of bike-sharing initiatives in cities,

one could have sensors embedded in the docking stations informing a server of the locations of

available docks (resources), and this location information could then be shared with the bike

riders (agents) that wish to dock their bikes. Similar applications can also be found in the

context of finding parking for vehicles (5; 6). In a nutshell, these are examples of applications

that share resource availability data with the agents, and the agents in turn use this data to

make intelligent decisions find resources. Thus, in the incomplete information scenario, the

agents are aware of the location of the available resources, and act selfishly to optimize their

own performances.

In the example shown in Figure 1, in the incomplete information case with each agent

looking to minimize its immediate travel time to obtain a resource, both a1 and a2 will travel
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towards the resource r1 to obtain it. However, only one of them, namely a1, will be satisfied

with the outcome by obtaining the resource, and the other agent a2 will have to travel extra

time to look for the next available resource r2.

1.3 Complete Information Scenario

In a complete information scenario, each agent is able to obtain all the information that is

necessary to make its decision, and agents may make choices that are a best response to what

they know other agents may be doing. For example, the agents may receive information not

only on the locations of the resources but also about the locations of the other agents as well.

For the example shown in Figure 1, in the incomplete information scenario a2 was left

unsatisfied because of a wasted trip to grab resource a1 only to find out that it was taken by a1

ahead of its arrival. If a2 had been aware of the proximity of a1 to r1, a2 could have chosen to

visit r2 directly to save a wasted trip to r1. Thus, with this additional information available to

a2, both the agents are left satisfied: a1 because its travel time was minimized and a2 because

it did as best as it could, given all the information.

The agent-resource assignment of a1 to r1 and a2 to r2 is actually a so-called Nash equilib-

rium, i.e., an assignment such that no agent can unilaterally further improve its performance by

deviating from the assigned resource and selecting another resource instead (with other agents

keeping their selection of assigned resources). For example, in Figure 1, a1 cannot decrease its

travel time by trying to obtain resource r2 and a2 cannot decrease its travel time by trying to

obtain resource r1 (since a1 is closer to r1 than a2).
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1.4 Complete Information with Currency Exchange Scenario

The Nash equilibrium discussed in the preceding section for the complete information sce-

nario is an equilibrium situation in which agents act selfishly for their own purposes. This

stands in sharp contrast to the so-called system optimal assignment of agents to resources for

the greater good of the entire system; instead of agents optimizing their own performances, the

objective now is to minimize the overall performance of the system even if this requires sacri-

fice of individual performances of some agents. For example, in Figure 1, the system optimal

assignment matches a1 to r2 and a2 to r1 with a total travel time of 70 (as opposed to 90 as in

the Nash equilibrium assignment). Thus, in this assignment, a1 sacrificed its own performance

for the good of the entire system.

However, a system optimal assignment may be very difficult to achieve in practice since

mobile agents move around freely and make decisions on which resources to visit without

thinking of helping anyone but themselves. Nevertheless, a system optimal assignment may

have important environmental implications such as that of reducing the travel time of vehicles

on the road. Thus, transportation authorities are often interested in obtaining these types

of assignments when it comes to mobile agents looking for these resources. Suppose that now

besides having the complete information of the system, the agents could also exchange currency.

Then we could foresee a scenario in which a2 could pay a1 some money in exchange for the

guarantee that a1 will not visit r1. For example, suppose that each second is worth one cent to

any agent, and a2 offers a1 20 cents for the right to take r1. In this case a1 will be even happier

than before if she/he accepts because a1 will pay the cost of driving (20 cents) but will also
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earn 20 cents from a2 and thus a1 breaks even and pays no cost in this situation (as opposed

to 10 cents before). On the other hand, a2 will be even happier than before by paying a total

of 70 cents (50 cents for driving to r1 and 20 cents given to a1) as opposed to 80 cents before.

Finally, now the total system costs are also minimized due to the negotiation that occurred

between a1 and a2.

1.5 Summary of Our Contribution and Outline

In this work, we study the four possible scenarios for our search problem as mentioned in

Sections 1.1–1.4. We improve upon the state-of-the-art (zero information) scenario by studying

more refined models that are feasible based on the type of information available to the agents and

the ability to exchange currency, and presenting algorithms for these models that are shown to

be efficient through simulations over real-world data. We study these models in several contexts,

such as in game-theoretic contexts (where the goal is to compute and study properties of a Nash

equilibrium) and in the context of datasets with missing information in which there are either

errors in the resource availability data that is received by the agents or that not all of the data

is available because not every available resource can be sensed as available or unavailable.

The rest of the dissertation is organized as follows.

◮ In Chapter 2, we summarize prior research works related to the topics studied in this

work.

◮ In Chapter 3, we provide notations and preliminary definitions related to the methods

and algorithms studied subsequently.
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◮ In Chapter 4, we define the system optimal model and describe an algorithm for computing

a system optimal assignment.

◮ In Chapter 5, we provide basic concepts and terminologies for a game theoretic setup of

our problems.

◮ In Chapter 6, we discuss our results on computing a deterministic Nash Equilibrium

strategy profile for the complete and incomplete scenarios for our search problem.

◮ In Chapter 7, we discuss the gap that exists between the System Optimal and Nash

Equilibrium formulations of our problem.

◮ In Chapter 8, we discuss our results on designing mechanisms for resource pricing schemes

that apply to the complete information with currency exchange scenario.

◮ In Chapter 9, we present distributed algorithms for a practical setting of the incomplete

information scenario by using a gravitational paradigm that navigates the agents towards

resources in an efficient manner.

◮ In Chapter 10, we present algorithms in the context of uncertain and missing data about

resource availability.

◮ In Chapter 11, we present our simulation methodologies that are based on real-world

data, and the results of the evaluations of our algorithms.

◮ Finally, in Chapter 12 we present some concluding remarks.



CHAPTER 2

PRIOR RELATED WORK

Approaches for monitoring and sensing available spatial objects are commonplace nowadays

due in part to the proliferation of GPS-enabled mobile devices. Information about the locations

of these resources can be obtained via collection of the data using client-server architectures (7)

or via decentralized data dissemination (8). In (7), remote sensing of spatial resources is

presented in which users report to a server to request services (such as a taxi service). On

the other hand, peer-to-peer (P2P) mobile ad-hoc networks are used in (8) for spatial resource

discovery in a decentralized fashion.

Our work in this dissertation focuses on navigation towards available resources. However,

our work depends on having some type of resource availability data. Approaches for parking

availability detection have been presented recently as well. In (9), ultrasonic sensor technology

is used to determine the spatial dimensions of open parking slots, whereas wireless sensors

are used in (10) to track open parking slots in a parking facility. These two works show

how one can detect open slots. In (11), the authors couple detection with the sharing of the

parking slot information in a mobile sensor network by presenting a methodology for vehicles

driving past curbside parking slots to detect open ones and generating a map view of parking

slot availability, as opposed to having to spend on equipping each parking slot individually

with wireless sensors for monitoring. Crowdsourcing methods using end-user smartphones have

appeared for the problem of detecting the availability of parking spaces, because it is easy

8
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to implement, and inexpensive for larger scale (such as citywide) services. For example, by

classifying mobility patterns of smartphone users (12) or using Wi-Fi signature matching (13),

parking and unparking activities for individual smartphone users and hence vehicles can be

detected. In (14), Xu et al. introduce PhonePark, a software solution for detecting parking

availability in blocks by using mobile phones and detecting mobility patterns of the mobile

phone users. In this work, we assume that vehicles can receive information about open parking

slots at any time using one of these parking availability detection approaches.

The value of having location information of spatial resources like parking was tested in a

P2P environment in (15). Kokolaki et al. show through simulations how vehicles with access

to data about available resources have an advantage over vehicles that do not. In (16), the

relevance of parking reports in a vehicular ad-hoc network was studied.

Some prior work was performed on dissemination of reports of open parking slots in (17).

In (17), a parking choice algorithm was presented that selected parking slots based on a relevance

metric that included the age of the open parking report. Their work assumed that a driver

knew the expected time a slot would remain available from the current time, and also knew

how long it would take to travel there. In our context, this is similar to an agent a knowing

the probability of another agent arriving at the resource before a. This is a strong assumption

that we do not make in this work. Furthermore, the focus of (17) was on peer-to-peer (P2P)

dissemination of parking reports.

Wireless ad-hoc networking was also used in (18) to search for open parking slots. The

authors in (18) presented an algorithm based on the time-varying Traveling Salesperson problem
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to compute a tour of the open slots in order for each vehicle to search for parking in the order of

the computed tour. Similar to (17), their approach depended on knowing the probability that

the parking slot will still be open after some time. These approaches assume that the locations

of slots are known, do not consider the missing information and errors that the availability

data might have and in principle can be thought of a using a framework of the so-called prize-

collecting Traveling Salesperson problem (19).

In (20; 21; 22), reservation systems for parking slots were studied. A centralized reservation

system was presented in (20) in which a server collects information from road-side units and

other vehicles and reserves slots for vehicles. In (21), the reservation system was distributed

amongst peers in a vehicular ad-hoc network and slots were reserved by requesting slots to a

specified peer called the coordinator for each slot. In (22), a reservation system was proposed

in which vehicles were matched to parking slots by solving a mixed integer linear program that

optimized based on the current state of the parking information. Also, in (23), a service-oriented

architecture is presented in which a server matches requests for a service or resources from users.

These systems attempt to circumvent the competition for parking slots by using reservations.

In our work, we design algorithms for parking that assume the parking system is competitive.

Indeed, existing parking systems are inherently competitive rather than reservation-based.

In (24), the problem of matching spatial datasets is considered. In this problem a centralized

server assigns ”customers” to ”service providers” such that the total distance of the assignment

is minimized. This problem is similar to the centralized problem presented in Chapter 4. The

authors of (24) reduce their problem to the minimum cost network flow (MCNF) problem as we
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do. They present an efficient algorithm to solve the MCNF problem by various optimizations

such as pruning the distance-based bipartite graph. Their algorithm could be used to solve the

MCNF problem formulation from Chapter 4.

Pricing of resources to obtain some system-wide objectives, studied in this work, was also

studied in the past in other contexts of transportation applications. In the transportation

literature this is commonly known as “congestion pricing” (25). The most common type of

congestion pricing is that of toll-like prices assessed on major urban areas or major roads to

decrease the demand of entering to these areas and roads, and pricing strategies of similar type

has been famously implemented in the central business district of Singapore (26) and in other

major cities across the world. This work investigates the pricing problems in the context of

algorithmic game theory which has a rich history (e.g., see textbooks such as (27)).

Some of our algorithms in this work are based on using gravitational force to model the

attractiveness of regions with resources. Gravitational models have been employed in other

computing applications that use Euclidean data. For example, in (28; 29) such models were

used for clustering data in the Euclidean space.



CHAPTER 3

BASIC NOTATIONS AND PROBLEM SETUP

The general setup of our spatio-temporal matching problem is as follows:

◮ Throughout this work, we will use 0 to indicate a sufficiently large positive number; the

precise nature of the “largeness” of 0 will be specified when needed.

◮ There are the following two types of objects:

⊲ We have a set of n agents A = {a1, a2, . . . , an}.

⊲ We have a set of m stationary resources R = {r1, r2, . . . , rm}, and a dummy resource

ΞΞΞ
def
= rm+1. It is commonplace to use such dummy items in algorithmic game theory

applications to simplify description and case analysis, e.g., see (27, Section 11.4.3)1.

◮ The locations of the agents in A and the resources in R over all given times are points in

some connected spaceM. The dummy resource Ξ is not located inM.

◮ The following parameters are associated with each agent ai ∈ A:

⊲ a start time tAi , namely the time when ai starts to look for a resource,

1The reader may think of Ξ as an artificial resource introduced for simplifying descriptions and case
analysis in proofs much in the same manner as dummy records are used as sentinels in data structures
to simplify description of algorithms that manipulate them.

12
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⊲ a location ℓAi (t), namely the location of ai at any time t ≥ tAi , and

⊲ a starting location ℓai
def
= ℓAi

(
tAi

)
, namely the location of ai at the start time tAi .

◮ The following parameters are associated with each resource rj ∈ R ∪ {Ξ}:

⊲ a start time tRj , namely the time when rj becomes available, and

⊲ a location ℓRj of rj that does not change over time.

For the dummy resource Ξ
def
= rm+1, t

R
Ξ

def
= tRm+1 = 0, and ℓRΞ

def
= ℓRm+1 is used only as a

symbol without any value.

◮ A resource in R can be used by at most one agent at any given time, and the agent has

to be located at the same place as the resource in order to use it. This means that an

agent has to travel, for some travel time, to a resource to use it; and the resource has to

be available for use. If agent ai uses resource rj , then the earliest time at which ai starts

using rj , i.e. max{tAi + ˚tˇi‹m`e(ℓai , ℓ
R
j ), t

R
j }, is called the time when the agent obtains the

resource. The ˚tˇi‹m`e function is a travel time between two locations and will be defined

below.

The dummy resource Ξ can be used by any number of agents at a specific time.

◮ The following three functions are used in our setup:

Travel time function ˚tˇi‹m`e :M×M 7→ R
+ ˚tˇi‹m`e(x, y) is the time taken by any agent

to travel from location x ∈ M to location y ∈ M.
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For the dummy resource Ξ, we assume that ˚tˇi‹m`e
(
ℓAi (t), ℓ

R
Ξ

)
= 0 for any agent

ai ∈ A and for any time t, where 0 ≫
n∑

i=1

m∑

j=1
˚tˇi‹m`e (ai, rj) is a sufficiently large

positive number.

Matching function g : A 7→ R g is a partial function that is bijective (one-one corre-

spondence). Essentially, g(ai) = rj ∈ R indicates that agent ai is supposed to obtain

resource rj , and in this case we will often loosely use the term “agent ai was matched

with resource rj” to indicate that ai obtained or will obtain rj.

If the partial function did not assign a value to g (ai) for some ai ∈ A, then we

will often describe it by saying that “g(ai) = Ξ
def
= rm+1 ” or by saying that “ai was

assigned to Ξ ” or also by saying that “ai was not assigned”.

Cost function `c´oşfi˚t : A×R× R
+ 7→ R `c´oşfi˚t (ai, rj , t) denotes the cost incurred by an

agent ai ∈ A to find and obtain some available resource rj ∈ R at time t. This cost

may depend on the locations ℓAi (t) and ℓRj of ai and rj. The exact value of the cost

is obviously dependent on the application being considered1. Some factors that may

influence the cost function are:

⊲ travel time to the resource,

⊲ price of a resource, and

⊲ the safety of the location of the resource.

1We assume that `c´oşfi˚t (ai,Ξ, t) = 0, for a sufficiently large positive integer 0 ≫
∑n

i=1

∑m

j=1
maxt{`c´oşfi˚t (ai, rj , t)}+

∑n

i=1
tAi , corresponding to the dummy resource Ξ.
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◮ Broadly speaking, each agent looks to minimize her/his cost of obtaining a resource.

Specific details of the objective will be spelled out in the relevant context.

We characterize this setup as a Spatio-temporal matching problem. The spatial component of

the matching arises from the locations that the agents and resources have over the space M.

The temporal component of the matching comes from the instances when the agents request

or start to look for the resources, from the instances when the resources become available, and

from the time duration it takes for an agent to obtain a resource.

As was discussed in Section 1.4, we will study two separate methods of computing a good

matching between agents and resources. They are differentiated by the way that the mobile

agents will make decisions. In a system optimal setting, some centralized authority makes

routing decisions for the agents. In a Nash equilibrium setting, agents are selfish and make

their own choices. In the following chapters, we will provide algorithms for computing these

matchings in the problem setup we described above.



CHAPTER 4

SYSTEM OPTIMAL SPATIO-TEMPORAL MATCHING

(CENTRALIZED MODEL)

In this chapter we give algorithms for computing a system optimal matching for our problem.

In the context of algorithmic game theory, this approach is usually referred to as optimizing

the social welfare. A system optimal matching is realized by a model in which a centralized

authority (e.g., a transportation authority) is interested in optimizing the total performance

of all the agents in the system. In our case, we need to compute a matching that minimizes

the total costs accrued by all the agents, i.e., we seek to find a matching function g between

the agents and resources that minimizes the total cost
∑n

i=1 `c´oşfi˚t
(
ai, g (ai) , t

A
i

)
. We can easily

compute such a mapping g in polynomial time by reducing our problem to an instance of the

minimum-cost network flow problem on a directed bipartite graph.

Theorem 1. A mapping g that minimizes
n∑

i=1
`c´oşfi˚t

(
ai, g (ai) , t

A
i

)
can be computed in O

(
(n +

m)3
)
time complexity.

Proof. We reduce our problem to an instance of the minimum-cost network flow problem on

a directed graph G = (V,E) for which a polynomial time exact solution is well-known (e.g.,

see (30)). G has the following n+m+ 2 nodes:

• a node ai for every agent ai ∈ A,

• a node rj for every resource rj ∈ R,

16
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• a source node u and

• a sink node v.

Furthermore, G has the following nm+ n+m directed edges:

• a directed edge (ai, rj) of capacity 1 and cost `c´oşfi˚t (ai, rj) for every resource-agent pair

ai ∈ A, rj ∈ R, and

• a set of n + m directed edges { (u, ai) | 1 ≤ i ≤ n } ∪ { (rj, v) | 1 ≤ j ≤ m }, each of zero

cost and capacity 1.

Letting flow : E 7→ R
+ denote the flow function, our social welfare optimization problem is

equivalent to the following minimum-cost network flow problem:

find a minimum-cost flow of value
∑n

i=1 flow ( (u, ai) ) =
∑m

j=1 flow ( (rj, v) ) = min{m,n}

from u to v in G.

Since all the edge capacities are integral (0 or 1), the flow function is integral-valued (e.g.,

see (31)), and therefore, due to capacity constraints, flow(e) is 0 or 1 for any edge e ∈ E. The

desired mapping g can now be easily computed as

g (ai) =







rj, if flow ( (ai, rj) ) = 1, for any j

Ξ, otherwise
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Remark 2. Since our `c´oşfi˚t function is of a very general nature, it can model social welfare op-

timization in many alternate optimization objectives that are of interest in urban transportation

systems. We provide three such examples below.

Minimizing total driving time A system optimal matching that minimizes the total driving

time of all the agents is one which a centralized authority would be interested in because

minimizing the total driving time of all agents is good for an urban transportation system

(less congestion) and also for the environment (less pollution). This can be computed by

setting `c´oşfi˚t
(
ai, g (ai) , t

A
i

)
= ˚tˇi‹m`e

(

ℓai , ℓ
R
g(ai)

)

.

Minimizing the total travel and wait time to obtain resources We can also compute a

system optimal matching that is affected by the arrival times of agents and availability

times of resources. In this case, a central authority wants to minimize the total (driving

plus waiting) time it takes for all the agents to obtain their resources. Minimizing this

total time is not the same as just minimizing the total driving time since in the former

case an agent could potentially wait for a resource to become available if waiting for that

resource is more cost-effective than driving to obtain another resource that is currently

available. This case is easily captured in our formulation by setting:

`c´oşfi˚t
(
ai, g (ai) , t

A
i

)
=







tRj − tAi , if tAi + ˚tˇi‹m`e

(

ℓai , ℓ
R
g(ai)

)

≤ tRj

˚tˇi‹m`e

(

ℓai , ℓ
R
g(ai)

)

, otherwise

The first case in the above equation is one in which the resource will not be available to

the agent upon arrival to it and she/he will have to wait some time for the resource to
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become available, whereas the second case is one in which the resource is already available

by the time that the agent could reach it.

Minimizing the sum of the times when resources are obtained If the central author-

ity wants to minimize the sum of the times when the agents obtain their resources, this

can be done by setting

`c´oşfi˚t
(
ai, g (ai) , t

A
i

)
=







tRj , if tAi + ˚tˇi‹m`e

(

ℓai , ℓ
R
g(ai)

)

≤ tRj

tAi + ˚tˇi‹m`e(ℓai , ℓ
R
g(ai)

), otherwise



CHAPTER 5

GAME THEORETIC SETUP – BASIC CONCEPTS AND

TERMINOLOGIES

System optimal agent-resource assignments, as discussed in Chapter 4, show some desirable

properties such as being efficiently computable, and may also serve a good purpose for the

environment and for the welfare of all agents, but they are difficult to justify in practice in

distributed settings. For example, a system optimal assignment in Figure 1 (a1 assigned to r1

and a2 assigned to r1) forces agent a1 to sacrifice for the good of others since a1 could pay

lesser costs (10 instead of 20) by making its own decision rather than following the choice that

is suggested by a system optimal assignment. In a distributed setting agents make their own

(selfish) choices instead of following a system optimal choice to minimize only their own costs.

This type of setting can be modeled and analyzed using game theoretic concepts such as a

Nash Equilibrium. Informally, a game has three essential components: a set of players, a set

of possible strategies (choices) for the players, and a payoff (cost) function (32). The payoff

function determines the cost incurred by each player for a given strategy profile, where a strategy

profile refers to a vector in which the ith component represents the strategy selected by the ith

player. More formally, we define the components of the game for our spatio-temporal matching

problem as follows:

⊲ The set of players is A (the set of n agents).

20
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⊲ In this work, we will consider only deterministic strategies for agents. A (deterministic)

strategy for an agent ai will be denoted by the variable ˚rffli ∈ R ∪ {Ξ} with the following

convention:

˚rffli =







rj, if agent ai opts for the resource rj ∈ R

Ξ, if agent ai does not opt for any resource

or equivalently ai opts for the dummy resource Ξ

The vector of variables
−→
˚rffl = (˚rffl1, ˚rffl2, . . . , ˚rffln) is called a strategy profile vector; a specific

strategy profile is obtained from this vector by assigning a specific value to each ˚rfflj for

1 ≤ j ≤ n.

⊲ The payoffs (costs) for each player (agent) in this game can be defined by the `c´oşfi˚t function

introduced in Section 3. Let S = (˚rffl1, ˚rffl2, . . . , ˚rffln) ∈ (R∪ {Ξ})n be a strategy profile

chosen by the players, i.e., ˚rffli ∈ R∪{Ξ} is the chosen resource by agent ai for 1 ≤ i ≤ n.

Then the cost (payoff) to the player ai corresponding to this strategy profile S, which we

will denote by `c´oşfi˚tS(ai), is as follows:
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• `c´oşfi˚tS(ai) = `c´oşfi˚t
(
ai, ˚rffli, t

A
i

)
if and only if agent ai would obtain the resource ˚rffli

before1 any other agent aj that also opted for this resource, i.e., for any aj such that

˚rfflj = ˚rffli.

• Otherwise, `c´oşfi˚tS(ai) = 0 for a sufficiently large positive number

0≫
n∑

i=1

m∑

j=1
`c´oşfi˚t

(
ai, rj , t

A
i

)
.

For notational convenience, let `c´oşfi˚tS =
∑n

i=1 `c´oşfi˚tS(ai).

The Nash equilibrium (33) is a standard desired strategy profile that is used to model the sta-

bility of individual choices of players in a game. In such a strategy profile, no player can further

improve its performance by changing its own strategy unilaterally. For a strategy profile S =

(˚rffl1, ˚rffl2, . . . , ˚rffln), let S−i denote the set of strategy profiles
{

( ˚rffl1, ˚rffl2, . . . , ˚rffli−1, ˚rfflα, ˚rffli+1, . . . , ˚rffln)

| ˚rfflα 6= ˚rffli

}

. The standard definition of a deterministic Nash equilibrium translates to the fol-

lowing definition for our spatio-temporal matching problem.

Definition 3 (Deterministic Nash equilibrium for our spatio-temporal matching problem). A

strategy profile S is a Nash equilibrium strategy profile if and only if the following holds:

∀ 1 ≤ i ≤ n ∀ T ∈ S−i : `c´oşfi˚tS (ai) ≤ `c´oşfi˚tT (ai)

1If a resource is available and two or more agents are at distance zero from the resource, then we
assume that the agent with the earliest arrival time obtains the resource before the others; and if two or
more agents have the same arrival time at the resource, then the agent with the smallest index obtains
the resource before the others.
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For the remainder of the dissertation, equilibrium and Nash equilibrium will be used inter-

changeably. A Nash equilibrium strategy profile stands in sharp contrast to a system optimal

matching because of the distributed selfish nature of the mobile agents in real-world trans-

portation applications. Indeed, agents in transportation applications act according to their

own self-interests.



CHAPTER 6

COMPUTATION OF A DETERMINISTIC NASH EQUILIBRIUM

STRATEGY PROFILE

In this chapter, we provide our results related to computing a deterministic Nash equilibrium

for the game theoretic setup of our spatio-temporal matching problems as described in the

previous chapter.

6.1 Complete Information Scenario

The complete information scenario was described in Section 1.3. In terms of the general

setup of our spatio-temporal matching problem described in Chapter 3, this scenario ensures

that each agent has knowledge of all the parameters of the setup (including those belonging

to other agents) as described in the setup. Note that this framework is more general than the

framework in our previous research works in (34; 35) because of introduction of parameters

such as tAi , ℓ
A
i (t) and tRj . These new parameters could be especially useful for spatio-temporal

matching applications that have reserved pickups or reservation times for resources, e.g., in the

application involving taxicabs and clients mentioned before, a client (resource) rj ∈ R could

ask a cab for pickup at a specific time tRj .

We show below how to compute a deterministic Nash equilibrium strategy profile for this

complete information scenario in polynomial time. For this purpose, we will use the well-known

concept of a stable matching.

24
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Definition 4 (Stable matching between agents and resources). Assume that each agent ai ∈ A

has an associated strict total order relation ≺ai
def
= ri1 ≺ai ri2 ≺ai · · · ≺ai rim ≺ai Ξ over

R ∪ {Ξ} (the “preference list” for agents), and similarly each resource r ∈ R ∪ {Ξ} has an

associated strict total order ≺r
def
= aj1 ≺r aj2 ≺r · · · ≺r ajn over A (the “preference list” for

resources). The matching function g defines a stable matching1 between agents and resources

if and only if there are no two matched pairs (ai, g (ai) ) and (aj , g (aj) ) such that both of the

following conditions hold:

⊲ aj prefers g (ai) over g (aj), i.e., g (ai) ≺aj g (aj), and

⊲ g (ai) prefers aj over ai, i.e., aj ≺g(ai) ai.

Any matching function g defines a natural strategy profile Sg = ( ˚rfflg1, ˚rffl
g
2, . . . , ˚rffl

g
n ) where

˚rffl
g
i = g (ai). The Gale-Shapley deferred acceptance algorithm in (36) can be used to compute

a stable matching between agents and resources in polynomial time. To use the above concept

of a stable matching, we then need to define preference lists for all the agents and resources.

This is done as follows.

⊲ (agent preference lists) For later notational convenience, let xai,r = `c´oşfi˚t
(
ai, r, t

A
i

)
for

r ∈ R ∪ {Ξ}. The preference list ≺ai
def
= ri1 ≺ai ri2 ≺ai · · · ≺ai rim ≺ai Ξ for agent ai is

defined by

∀ is ∈ {i1, i2, . . . , im−1} : ris ≺ai ris+1
≡ xai,ris ≤ xai,ris+1

1Recall that g (ai) = Ξ if ai was not matched to any resource.
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Intuitively, this means that each agent orders the resources increasingly by their cost.

⊲ (resource preference lists) Let yai,rj = tAi + ˚tˇi‹m`e(ℓai , ℓ
R
j ) be the earliest possible time when

an agent ai ∈ A may arrive to obtain resource rj ∈ R if she/he chooses it as a strategy.

Then, the preference list ≺rj
def
= aj1 ≺rj aj2 ≺rj · · · ≺rj ajn for a resource rj ∈ R is

defined by

∀ js ∈ {j1, j2, . . . , jn−1} : ajs ≺rj ajs+1
≡ yajs ,rj ≤ yajs+1

,rj

Intuitively, this means that each resource orders the agents increasingly by the earliest

time they could obtain the resource.

The preference list ≺Ξ for the dummy resource Ξ is simply the n agents in A listed in an

arbitrary order.

We can now prove the following result.

Theorem 5 (Stable matching and Nash equilibrium). If g is a stable matching between agents

and resources with the agent preferences determined by the ordered agent preference lists ≺ai ’s

and the resource preferences determined by the ordered resource preference lists ≺rj ’s and ≺ Ξ,

then the strategy profile Sg is a Nash equilibrium strategy profile.

Proof. Let g be a stable matching between agents and resources with the agent preferences

determined by the ordered agent preference lists ≺ai ’s and the resource preferences determined

by the ordered resource preference lists ≺rj ’s and ≺Ξ. Note that g−1(rj) is defined for every

resource rj ∈ R in any stable matching.
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We prove the result by contradiction. Suppose for contradiction that Sg = ( ˚rfflg1, ˚rffl
g
2, . . . , ˚rffl

g
n )

is not a Nash equilibrium strategy profile. Then there exists an index i and a strategy

T = ( ˚rffl1, ˚rffl2, . . . , ˚rffli−1, ˚rfflα, ˚rffli+1, . . . , ˚rffln) ∈ S
g
−i such that `c´oşfi˚tS (ai) > `c´oşfi˚tT (ai). Note that

`c´oşfi˚tS (ai) > `c´oşfi˚tT (ai) implies ˚rfflα 6= Ξ and also implies that agent ai must be able to obtain

the resource ˚rfflα before any other agent that also opted for this resource. We now show below

that the existence of T violates the conditions of a stable matching.

• Since agent ai obtains ˚rfflα before any other agent that also opted for this resource, yai,˚rfflα <

yg−1(˚rfflα),˚rfflα , which in turn implies

ai ≺g( g−1(˚rfflα) ) g
−1 (˚rfflα) (6.1)

• Since `c´oşfi˚tT (ai) < `c´oşfi˚tS (ai), xai,˚rfflα < xai,˚rffli , which in turn implies

g
(
g−1 (˚rfflα)

)
= ˚rfflα ≺ai ˚rffli = g (ai) (6.2)

If we consider the matched pairs (ai, g (ai) ) and
(
g−1 (˚rfflα) , ˚rfflα

)
, relations (Equation 6.1) and

(Equation 6.2) provide a violation of the stability of the matching (c.f. Definition 4).

6.1.1 Examples and Discussion

Here we demonstrate the use of the last theorem and the fact that the introduction of

different starting times changes the Nash equilibrium matching. Assume that the cost function

of an agent is the earliest time when it obtains a resource. Consider again the example shown
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in Figure 1 which has no start times for the agents and resources (or, equivalently, all the start

times are zero). A system optimal matching and a Nash equilibrium strategy profile for this

example can be computed by using the algorithms in (34). They are as follows:

• A system optimal assignment matches a1 to r2 and a2 to r1 with a total travel time of 70.

• As observed before in Section 1.3, a Nash equilibrium strategy profile can be obtained by

a1 opting for r1 and a2 opting for r2 with a total travel time of 90. The corresponding

matching function gne is given by gne(a1) = r1 and gne(a2) = r2.

Now let us consider the same example but with start times for all the objects. Figure 2

shows the new example. Assume that the objective of each agent is to minimize the time when

it obtains a resource, i.e.,

`c´oşfi˚t
(
ai, rj , t

A
i

)
=







tRj , if (tRj − tAi ) ≥ ˚tˇi‹m`e(ℓai , ℓ
R
j )

tAi + ˚tˇi‹m`e(ℓai , ℓ
R
j ), otherwise

To compute a Nash equilibrium strategy profile we first need to compute the xai,rj and yai,rj

values used in fixing the agent and resource preference lists (since the number of agents is equal

to the number of resources, calculations involving the dummy resource Ξ is not needed). These

values are as follows:

xa1,r1 = 81 xa1,r2 = 90 xa2,r1 = 81 xa2,r2 = 82

ya1,r1 = 80 ya1,r2 = 90 ya2,r1 = 52 ya2,r2 = 82
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a1agenttA1 = 70tA1 = 70tA1 = 70
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tR1 = 81tR1 = 81tR1 = 81
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resource
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a2 agent tA2 = 2tA2 = 2tA2 = 2

Figure 2. An example of two mobile agents a1 and a2 and two stationary resources r1 and r2.

The numbers on edges represent (in seconds) the travel times for the agents to reach the

corresponding resources. tA1 , t
A
2 , t

R
1 and tR2 are the start times for agent a1, agent a2, resource

r1 and resource r2, respectively.

It can be verified that the only matching that is stable according to these values is the one that

matches a1 with r2 and a2 with r1. It can be easily verified that none of the agents has an

incentive to deviate from their choices:

• If a1 deviates to opt for r1, she/he will not obtain it because a2 will obtain it first.

• If a2 deviates to opt for r2, she/he will obtain it a 1 time unit later than before so she/he

has no incentive to deviate.

The corresponding new matching function g′ne is given by g′ne(a1) = r2 and g′ne(a2) = r1. We

can thus see how adding start times for the objects changes the Nash equilibrium matching.
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A greedy algorithm to compute a Nash equilibrium strategy profile (i.e., the function gne)

in the static context (i.e. with identical start times) was presented in (34). The algorithm

sorts the weights (travel times) of the edges in the bi-partite graph of agents and resources, and

matches agents and resources in that order. A straight-forward adaptation of such an algorithm

would not work in the dynamic context, i.e., with start times, regardless of the `c´oşfi˚t function

used.

6.2 Incomplete Information Scenario

In the game theoretic formulation of this scenario, the agents do not have parametric in-

formation to compute the payoff function. This means that an agent does not know what its

payoff will be in a given strategy profile since, for example, it does not know the locations and

start times of the other agents.

In (34) we introduced a formulation in which each agent makes probabilistic assumptions

about the locations and start times of the other agents in the game; and the analysis done

based on the expected performances. In other words, this scenario leads to computing the Nash

equilibrium strategy profiles in a Bayesian setting, where the selfish goal of an agent is to to

minimize its expected cost conditional on the above-mentioned prior distributions. This will be

further discussed in chapter 9.



CHAPTER 7

STUDYING THE GAP BETWEEN THE SYSTEM OPTIMAL AND

NASH EQUILIBRIUM FORMULATIONS

In this chapter we will explore the gap that exists between the system optimal and Nash

Equilibrium formulations of our problems. We will present a theoretical study of this gap, by

means of the computation of the price of anarchy, and a practical study that was performed

through simulations.

7.1 Theoretical Gap

The price of anarchy (POA) of a game is the ratio of the total cost paid in the equilibrium

assignment over the total cost paid by the players in the assignment that minimizes the social

welfare (system optimal assignment) (27). The POA of the class of games defined in chapter

5 will be the largest such ratio that could be found for an instance that type of game. In this

chapter we show that the POA of these games with complete information is unbounded. This

is a fundamental result which indicates that for the resource search problem studied here, when

travelers are selfish and make their own choices, costs can get arbitrarily worse than the optimal

assignment. More specifically, the ratio between the costs of the equilibrium and system optimal

assignments can grow unboundedly as the size of the problem increases.

Theorem 6. The Price of Anarchy in the Complete Information Resource-search game is

unbounded.

31
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Proof. Consider a game with n agents and n available resources. Let D = {dij} form a matrix,

where the entry dij = `c´oşfi˚t(ai, rj , t
A
i ).

Let the cost function be defined by the following matrix:

{`c´oşfi˚t(ai, rj , t
A
i )} =















n 2n · · · n · n

n2 2n2 · · · n · n2

...
...

. . .
...

nn 2nn · · · n · nn















Then `c´oşfi˚t(ai, rj , t
A
i ) = jni. Any matching in this game will lead to a total cost (adding

the costs of all players) of some polynomial of degree at least n. In this case, also assume that

˚tˇi‹m`e(ℓAi , ℓ
R
j ) = `c´oşfi˚t(ai, rj , t

A
i ).

The equilibrium assignment will be one that is obtained by performing the Gale-Shapley

Algorithm. In this special case, the smallest entry, dij , in the matrix will be computed and ai

will be assigned to resource rj . Then that column and row will be removed from the matrix

and the smallest entry will be computed in this updated matrix. It’s clear that the polynomial

that is obtained from this algorithm will be the one that adds up the diagonal entries of matrix

A. Then the equilibrium assignment will have a total cost of:

EQ =

n−1∑

k=0

(n− k)nn−k = nn+1 +

n−1∑

k=1

(n− k)nn−k (7.1)
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Then, the equilibrium solution leads to a total cost that is given by a polynomial of degree

n+ 1.

Now consider an assignment that tries to choose the smallest distance for the larger cost

agents. So then for an, resource r1 will be assigned so as to minimize the large cost factor

that it has of nn. This assignment chooses the diagonal that starts on position dn1 and ends

in position d1n. For this special assignment, ai is assigned slot rn−i+1. Let the cost of this

assignment be defined as X. Then:

X =
n−1∑

k=0

(k + 1)nn−k = nn +
n−1∑

k=1

(k + 1)nn−k (7.2)

If we take the ratio of EQ/X then we get a polynomial of degree 1 which is a function

of n. Let OPT be the cost of the assignment that optimizes the social welfare. By definition

OPT ≤ X. Therefore EQ/X ≤ EQ/OPT and then EQ/OPT will be greater than some

function of n. Therefore, the POA given by the EQ/OPT ratio will be unbounded because an

instance of our game can be constructed by the previous construction that will be larger than

any proposed bound.

The price of anarchy is also used for computing bounded approximations to problems in

a distributed manner when the POA is bounded (e.g. (37; 27)). When the POA is bounded,

individual agents using Nash equilibrium strategies compute an approximation for the optimal

problem with the POA being the approximation ratio. The fact that the POA is unbounded

makes this technique impossible for this problem.
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7.2 Practical Gap

In this section we use simulations to determine empirically, on average, the benefits of system

optimal matching over nash equilibrium matchings.

7.2.1 Simulation Setup

The goal of our simulation is to empirically ascertain how much better off is the transporta-

tion system and the environment, when agents make choices in a system optimal manner.

Our simulations were run on a road network (grid) that was embedded in an Euclidean

space. The positions of the agents, the motion of the agents and locations of the resources

were restricted to be on the network. The number of agents (n) was a parameter of the

simulation. The values of n that were tested were n = 25k for k = {1, 2, . . . , 12}. A system

optimal assignment and a Nash equilibrium were computed for each configuration of agents

and resources, and the total distance traveled by all the agents based on these two assignment

was saved. This means that the cost for these simulations was simply the driving distance

(˚tˇi‹m`e(ℓAi , ℓ
R
j )) between the agents and the resources. This choice was made to determine what

are the environmental benefits that are obtained from system optimal agent movement.

We also tested a varying number of competitive ratios. Say now that there are m available

resources and n agents. Then define the competitive ratio as n/m. The higher the competitive

ratio, the bigger the competition for the available resources.

We also tested a varying number of regional skews of the locations of resources. In reality,

available resources are not uniformly distributed across a road network. Thus, we generate

skewness as follows. The map is partitioned into 16 equal-sized square regions. A random
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permutation of the regions is generated (uniform distribution) and is used as the ranking of the

popularity of each region for available resources. To choose the location of each of the available

resources, first a random number is generated to determine in which region to place the slot.

The Zipf distribution with its skew parameter and the regional popularity previously generated

are used to generate this random number. Then a random position in the grid (uniform) is

chosen from the region denoted by the Zipf number. The n agents’ initial positions are generated

using the uniform distribution on the grid.

For each value of simulation configuration under consideration, 1000 different simulation

runs were tested and averaged. Each test was done to compute what is basically an average

price of anarchy (PoA). PoA is the ratio of the total cost in the Nash equilibrium assignment

to the total cost of the system optimal assignment (27). In these simulations we computed the

average PoA to determine the average benefit of system optimal agent choices.

The parameters for the simulation are:

• n - the number of agents.

• n/m - the competitive ratio between agents and resources.

• skew - the regional skew of the Zipf distribution.

The values that were tested for each parameter are detailed in table Table I. For each

configuration of the parameters, 100 different simulation runs were generated and tested.

7.2.2 Simulation Results

Figure 3 shows the results for the average POA computation for various values of n. It also

shows the results for varying values of competitive ratio (n/m).
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Parameter Symbol Range

Agents n {25,50,...,275,300}

Competitive Ratio n/m {2,43 ,1}

Regional Skew - {0, 1, 2, 3}

TABLE I

PARAMETERS TESTED ON PRICE OF ANARCHY SIMULATION

We can see that the highest values of average POA were attained when the competitive ratio

was lowest (n/m = 1). This means that as the availability of resources increases, so does the

congestion cost incurred by the system based on the Nash equilibrium assignment compared to

the System optimal assignment.

We can see that at n = 300 and n/m = 1, the average POA that was obtained was around

1.3. This was the highest POA obtained in all simulations. This means that for every mile

traveled by each agent with the system optimal assignment, the agents will travel 1.3 miles when

using the Nash equilibrium assignment on an average. That in turn means that the percent

improvement of the system optimal assignment can be up to 1− 1/1.3 ≈ 23%.

Figure 4 shows some results with varying skew. We can also see that the highest values of

average POA were obtained when the skew was 0, i.e. slots were distributed uniformly across

the road network.
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Figure 3. Average POA with varying values of n and varying competitive ratio (skew = 0).
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CHAPTER 8

DESIGNING PRICING MECHANISMS FOR COMPLETE

INFORMATION WITH CURRENCY EXCHANGE SCENARIO

In chapter 6, we sought to compute a Nash equilibrium strategy profile assuming that the

agents in transportation applications are inherently selfish and seek to optimize their own costs

only. However, as we also have observed before in Section 6.1 and elsewhere, this is sub-optimal

for the transportation system as a whole. And in some applications, sub-optimality can have

major societal and environmental implications.

Take our parking application for example. Cruising for parking by driving around an urban

area looking for available parking slots has been shown to be a major cause of congestion

in urban areas. For example, in (38), studies conducted in 11 major cities revealed that the

average time to search for curbside parking was 8.1 minutes, and cruising for these parking

slots accounted for 30% of traffic congestions in those cities. This means that each parking

slot would generate 4, 927 vehicle miles traveled (VMT) per year (39). For example, in a big

urban city like Chicago with over 35, 000 curbside parking slots (40), the total number of VMT

becomes 172 million VMT per year due to cruising while searching for parking. Furthermore,

this would account for a waste of 8.37 million gallons of gasoline, and over 129, 000 tons of CO2

emissions.

To reduce these environmental costs, it would be great to have agents guided towards system

optimal matchings. The results from chapter 7 show that there is a clear gain in having agents

38
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make choices in a system optimal way, rather than a selfish way. However, as has been discussed

before, this is difficult to justify in practice because of the individual costs that the some

agents could end up sacrificing. Furthermore, computing a system optimal matching requires

complete information, but agents do not necessarily have incentives to share information about

their locations (for privacy concerns or other reasons). Therefore, our aim in this section is

to combat the problem in a different way. The central question that we wish to tackle can be

described informally as:

can we propose a pricing scheme on the resources that will incentivize the agents to

move in a system optimal manner?

8.1 Mechanism Design for Agent-Independent Resource Pricing Scheme

In this subsection we address the following question: How to impose an agent-independent

monetary toll on using the resources, such that the Nash equilibrium matching when considering

the toll-cost (i.e. the original cost plus the toll) is a system optimum (or as close as possible to

it) when considering the cost alone. Doing so would imply that selfish agents in an anarchical

system would naturally settle into a system optimum matching, regardless how the non-toll cost

is defined. By agent-independence we mean that the toll imposed on a resource is the same,

regardless of the agent using the resource. This is similar to a metered parking slot, which has

the same price for any driver that uses it, and different from the tolls discussed in the next

section.
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Let gopt be a system optimal matching function that gives a system optimal total cost of

value OPT, i.e.,

OPT =

n∑

i=1

`c´oşfi˚t
(
ai, g

opt (ai) , t
A
i

)
= min

g : A7→R

{
n∑

i=1

`c´oşfi˚t
(
ai, g (ai) , t

A
i

)

}

An agent-independent resource pricing scheme is a vector P = (p1, p2, . . . , pm) where pi is the

extra price for resource rj ∈ R that any agent must pay to use it, i.e., with the pricing scheme

introduced, the cost of agent ai to obtain resource rj is now modified to

`c´oşfi˚tP
(
ai, rj , t

A
i

)
= `c´oşfi˚t

(
ai, rj , t

A
i

)
+ pj

Ideally, we would like to compute a matching function gP : A 7→ R that matches each agent ai

to a resource gP (ai) such that:

`c´oşfi˚tP
(
ai, gP (ai) , t

A
i

)
= min

1≤k≤m

{
`c´oşfi˚tP

(
ai, rk, t

A
i

) }
(8.1)

If this is possible, then agent ai would have no incentive to deviate to another strategy and

thus this strategy would be a Nash equilibrium strategy for ai. If furthermore this condition

holds for all agents with their matched and obtained resources, then such a matching is indeed

a Nash equilibrium strategy profile. In addition, we of course would like to bound the difference
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between the sum of the costs of all the agents in this new matching gP and the original system

optimal cost OPT, i.e., we would like to find a ∆ (the smaller the better) such that

n∑

i=1

`c´oşfi˚t
(
ai, gP (ai) , t

A
i

)
≤ OPT+∆ (8.2)

If, for example, the cost function `c´oşfi˚t reflects a measure of environmental pollution created by

driving, then the above bound indicates that the pricing scheme makes sure that the new level

of pollution increases by at most ∆ above the minimum possible.

Then, as is the norm in the algorithms community, we are led to investigate a bi-criteria ap-

proximation of these two goals. For this purpose, we consider a relaxed version of (Equation 8.1)

by introducing the notion of a ε-approximate equilibrium in a manner similar to that in the

algorithmic game theory community (e.g., see (41; 42; 43)). Let ε > 0 be a positive num-

ber. Then, define an agent ai as being in ε-almost at equilibrium or being in an ε-approximate

equilibrium provided

`c´oşfi˚tP
(
ai, gP (ai) , t

A
i

)
≤ min

1≤k≤m

{
`c´oşfi˚tP

(
ai, rk, t

A
i

) }
+ ε (Equation 8.1’)

For a given pricing scheme, we say that an agent-resource matching is ε-almost at equilibrium

(or is at ε-approximate equilibrium) when the above condition (Equation Equation 8.1’) holds

for all agents with their matched and obtained resources. For notational convenience, let

µ = maxi,j
{
`c´oşfi˚t

(
ai, rj , t

A
i

) }
. We prove the following result.
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Theorem 7. For every ε > 0, we can compute an agent-independent pricing scheme P =

(p1, p2, . . . , pm) and a matching function gP : A 7→ R in O (n2µ/ε) time that satisfy both the

following:

(♠) gP induces a ε-approximate equilibrium, i.e.,

`c´oşfi˚tP
(
ai, gP (ai) , t

A
i

)
≤ min

1≤k≤m

{
`c´oşfi˚tP

(
ai, rk, t

A
i

) }
+ ε

(♠♠)
n∑

i=1
`c´oşfi˚t

(
ai, gP (ai) , t

A
i

)
≤ OPT+ n ε.

Proof. Our algorithm is based on the auction algorithm in (44). The algorithm executes in

“rounds” or iterations starting with an arbitrary initial matching. We assume that we start

with all prices set to 0. In this discussion we assume that m = n, however, as (44) indicates, this

requirement can be relaxed. There is a matching and a set of prices at the end of each round.

If all the agents are at ε-almost equilibrium with their matched resources at the end of any

round then the algorithm terminates. Otherwise, an agent that is not ε-almost at equilibrium,

say agent ai, is selected. Let rj be the resource that has minimal cost for ai, i.e., let

α = `c´oşfi˚t
(
ai, rj , t

A
i

)
+ pj = min

1≤k≤m

{
`c´oşfi˚t

(
ai, rk, t

A
i

)
+ pk

}
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and let rq (with q 6= j) be the resource that has second minimal cost for ai (the resource second

most preferred by ai), i.e., let

β = `c´oşfi˚t
(
ai, rq, t

A
i

)
+ pq = min

1≤k≤m
k 6=j

{
`c´oşfi˚t

(
ai, rk, t

A
i

)
+ pk

}
for some q 6= j

Then the following steps are executed:

⊲ ai exchanges slots with the agent assigned to rj at the beginning of the next round.

⊲ ai increases the price of his/her best resource rj from the current value of pj to the new

value pj + (β −α) + ε. Basically, β −α+ ε is the highest value to which rj ’s price can be

increased while still being ai’s preferred resource in an ε-almost equilibrium. Note that

β − α+ ε ≥ ε.

This algorithm continues in a sequence of rounds until all agents are at ε-almost equilibrium.

The complete algorithm is shown in Figure 5. The iterative approach can be viewed as an

auction where ai raises the price of his/her bid on resource rj by the bidding increment β−α+ε.

An analysis similar to that in (44) shows that the auction algorithm in Figure 5 is guaranteed

to terminate in O (nµ/ε) rounds, and a naive implementation of each round gives a total running

time of O (n2µ/ε). Since the algorithm terminates when all agents are ε-almost at equilibrium,

it also computes an ε-approximate equilibrium for the agent-resource matching induced by gP
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(∗ initialization ∗)

set pj ← 0 for all 1 ≤ j ≤ m

let gP : A 7→ R be an arbitrary agent-resource matching

(∗ rounds of auctions ∗)

while not all agents are at ε-almost equilibrium do

let i be an index such that `c´oşfi˚tP
(
ai, gP (ai) , t

A
i

)
> min

1≤k≤m

{
`c´oşfi˚tP

(
ai, rk, t

A
i

) }
+ ε

(∗ compute bid increment ∗)

let α← `c´oşfi˚tP
(
ai, rj , t

A
i

)
= min1≤k≤m

{
`c´oşfi˚tP

(
ai, rk, t

A
i

) }

let β ← `c´oşfi˚tP
(
ai, rq, t

A
i

)
= min1≤k≤m

k 6=j

{
`c´oşfi˚tP

(
ai, rk, t

A
i

) }
for some q 6= j

set pj ← pj + (β − α) + ε

(∗ reassign resources ∗)

set gP
(
g−1
P (rj)

)
← gP (ai)

set gP (ai)← rj

endwhile

(∗ output ∗)

return P = (p1, p2, . . . , pm) and gP as the solution

Figure 5. The algorithm for pricing resources in Theorem 7, based on the auction algorithm in

(44).
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which proves condition (♠). Thus, it only remains to prove condition (♠♠). Using condition

(♠) of the auction algorithm and simple algebraic manipulation, we get

∀ i : `c´oşfi˚tP
(
ai, gP (ai) , t

A
i

)
≤ min1≤k≤m

{
`c´oşfi˚tP

(
ai, rk, t

A
i

) }
+ ε

=⇒ ∀ i : `c´oşfi˚t
(
ai, gP (ai) , t

A
i

)
+ pgP (ai) ≤ `c´oşfi˚t

(
ai, g

opt (ai) , t
A
i

)
+ pgopt(ai) + ε

=⇒
n∑

i=1

[

`c´oşfi˚t
(
ai, gP (ai) , t

A
i

)
+ pgP(ai)

]

≤
n∑

i=1

[

`c´oşfi˚t
(
ai, g

opt (ai) , t
A
i

)
+ pgopt(ai) + ε

]

=⇒
n∑

i=1
`c´oşfi˚t

(
ai, gP (ai) , t

A
i

)
≤

n∑

i=1

[

`c´oşfi˚t
(
ai, g

opt (ai) , t
A
i

) ]

+ n ε = OPT+ n ε

since
n∑

i=1
pgP (ai) =

n∑

i=1
pgopt(ai) =

n∑

j=1
pj

This proves (♠♠) and concludes the proof.

Remark 8 (Primal-dual interpretation of the auction algorithm). Readers familiar with the

primal-dual approach for solving linear programs by iteratively satisfying complementary slack-

ness conditions (30) will realize that the auction algorithm in Figure 5 can be interpreted as a

primal-dual schema in the following manner: start with a feasible (not necessarily optimal) so-

lution of the dual linear program for the spatio-temporal matching problem (27, Section 11.3.1)

by, for example, setting all the dual variable (prices) to zeroes and iteratively increase dual

variables until all complementary slackness conditions are satisfied.
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(
a2, r2, t
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)
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tR1 = 1tR1 = 1tR1 = 1

r2
resource

tR2 = 0tR2 = 0tR2 = 0

a2 agent
tA2 = 2tA2 = 2tA2 = 2

system optimal matching gopt

gopt (a1) = r2 gopt (a2) = r1
total cost of all agents is 70

Nash equilibrium matching gne

gne (a1) = r1 gne (a2) = r2
total cost of all agents is 90

Figure 6. An example of two mobile agents a1 and a2 and two stationary resources r1 and r2.

The numbers on edges represent the travel times for the agents to reach the corresponding

resources. Assume that these travel times also represent the costs for the agents to obtain the

corresponding resources.

8.1.1 Examples and Discussion

Now we demonstrate the pricing algorithm. Consider the example shown in Figure 6.

Successive rounds of the algorithm in Figure 5, with all starting prices at 0 and with the initial

matching as the system optimal matching shown in Figure 6, are as follows:

Initialization (before round 1) p1 = 0 p2 = 0 gP (a1) = r2 gP (a2) = r1

after round 1 p1 = 10 + ε p2 = 0 gP (a1) = r1 gP (a2) = r2

after round 2 (final round) p1 = 30 + ε p2 = 0 gP (a1) = r2 gP (a2) = r1
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Thus, at the conclusion of the algorithm, r1 has a price of 30 + ε and r2 is free. Indeed it

is easy to see that for these prices, the equilibrium matching when considering the prices and

costs (a1 obtains r2, and a2 obtains r1) is a system optimum when considering the costs alone.

The reader may wonder if it is possible to set ε = 0 in the algorithm in Figure 5. Unfortu-

nately, it is easy to adopt an example from (44) to show that the algorithm will run forever for

this example input if ε = 0.

8.2 Mechanism Design for Agent-dependent Resource Pricing Scheme

The agent independent pricing scheme has a disadvantage in the sense that the agents are

not incentivized to participate in the scheme, since the resource-prices constitute an additional

tax. In this subsection we remedy the situation by showing how to impose the tax, and refund

it, in a way that guarantees that each agent is better off than in an anarchical system.

To achieve this, the resource prices imposed are agent-dependent. This means that a

resource-price (or toll) may depend on the agent that obtains the resource. In contrast, in the

agent-independent previous scheme discussed in the previous section, the price of a resource

does not depend on the agent that was matched to it.

Thus, an agent-dependent pricing scheme can be denoted by P = (P1,P2, . . . ,Pn), where

each Pi for 1 ≤ i ≤ n is a vector (pi,1, pi,2, . . . , pi,m), and each pi,j represents the price that

agent ai would have to pay to obtain rj. The prices in this scheme will again be designed to

incentivize agents into making resource choices in a system optimal manner. Similar to the
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previous section, with the agent-dependent pricing scheme introduced, the cost of agent ai to

obtain resource rj is now modified to

`c´oşfi˚tP
(
ai, rj , t

A
i

)
= `c´oşfi˚t

(
ai, rj , t

A
i

)
+ pi,j

We use the following notations:

⊲ gopt : A 7→ R denotes a system optimal matching function that gives a system optimal

total cost of value OPT before pricing, i.e.,

OPT =
n∑

i=1

`c´oşfi˚t
(
ai, g

opt (ai) , t
A
i

)
= min

g : A7→R

{
n∑

i=1

`c´oşfi˚t
(
ai, g (ai) , t

A
i

)

}

⊲ gne : A 7→ R denotes a Nash equilibrium matching function before pricing.

8.2.1 The Pricing Scheme

Let 0 ≫
n∑

i=1

m∑

j=1
`c´oşfi˚t

(
ai, rj , t

A
i

)
be a sufficiently large number. Given a Nash equilibrium

matching gne, consider the following pricing scheme P:

pi,j =







max
{
0, `c´oşfi˚t

(
ai, gne (ai) , t

A
i

)
− `c´oşfi˚t

(
ai, rj, t

A
i

)}
, if gopt (ai) = rj

0, otherwise

(8.3)

We can immediately observe that the pricing given by (Equation 8.3) has the following desirable

property.
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Lemma 9. gopt is a Nash equilibrium matching function when pricing is used, i.e., when `c´oşfi˚tP

is used as the cost function.

Proof. Straightforward; since 0 is sufficiently large, each ai has no incentive to choose another

resource over gopt (ai).

8.2.2 Compensation for Unhappy Agents by the Pricing Authority

Two important consequences for the pricing scheme in (Equation 8.3) are the following:

Happy agents: If `c´oşfi˚t
(
ai, gne (ai) , t

A
i

)
≥ `c´oşfi˚t

(
ai, g

opt (ai) , t
A
i

)
then agent ai has

to pay an extra cost of `c´oşfi˚t
(
ai, gne (ai) , t

A
i

)
− `c´oşfi˚t

(
ai, g

opt (ai) , t
A
i

)
in addition

to the original cost `c´oşfi˚t
(
ai, g

opt (ai) , t
A
i

)
. Thus, the total cost, namely the sum

of these two costs, incurred by ai is exactly `c´oşfi˚t
(
ai, gne (ai) , t

A
i

)
, which is the

cost (before pricing) that it would have paid originally with the assignment

gne. We call such an agent a happy agent since she/he does not pay any extra

amount.

Unhappy agents: However, if `c´oşfi˚t
(
ai, gne (ai) , t

A
i

)
< `c´oşfi˚t

(
ai, g

opt (ai) , t
A
i

)
then

agent ai gets its resource at no cost, but it ends up paying `c´oşfi˚t
(
ai, g

opt (ai) , t
A
i

)
,

which is strictly more than the cost (before pricing) `c´oşfi˚t
(
ai, gne (ai) , t

A
i

)
that

it would have paid originally with the assignment gne. We call such an agent

an unhappy agent.
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We now explain how such an unhappy agent can be compensated. Consider the following

compensation method:

(⋆⋆⋆) The (central) pricing authority pays back to each unhappy agent ai the amount

of `c´oşfi˚t
(
ai, g

opt (ai) , t
A
i

)
− `c´oşfi˚t

(
ai, gne (ai) , t

A
i

)
.

Then agent ai will end up paying a total of

`c´oşfi˚t
(
ai, g

opt (ai) , t
A
i

)
−
(

`c´oşfi˚t
(
ai, g

opt (ai) , t
A
i

)
− `c´oşfi˚t

(
ai, gne (ai) , t

A
i

) )

= `c´oşfi˚t
(
ai, gne (ai) , t

A
i

)

which is precisely the cost ai would have paid originally with the Nash equilibrium matching

gne. This therefore would make ai a happy agent.

Thus, it follows that with this reimbursement scheme all the agents will be happy because

they will simply pay the same cost that they would have paid originally with the Nash equi-

librium matching. The only question that is left to be answered is if the pricing authority will

also make a profit as well. The following lemma answers this question in the affirmative.

Lemma 10. The agent-dependent pricing scheme in (Equation 8.3) along with the reimburse-

ment of costs by the pricing authority as described in (⋆⋆⋆) yields a non-negative total profit for

the pricing authority.

Proof. Using simple algebraic manipulations, the total profit (payment received minus payment

made) for the pricing authority can be ultimately written as:
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∑

i : `c´oşfi˚t(ai,gne(ai),tAi )> `c´oşfi˚t(ai,gopt(ai),tAi )

[

`c´oşfi˚t
(
ai, gne (ai) , t

A
i

)
− `c´oşfi˚t

(
ai, g

opt (ai) , t
A
i

) ]

−−−
∑

i : `c´oşfi˚t(ai,gopt(ai),tAi )≥ `c´oşfi˚t(ai,gne(ai),tAi )

[

`c´oşfi˚t
(
ai, g

opt (ai) , t
A
i

)
− `c´oşfi˚t

(
ai, gne (ai) , t

A
i

) ]

=
∑

i : `c´oşfi˚t(ai,gne(ai),tAi )> `c´oşfi˚t(ai,gopt(ai),tAi )

[

`c´oşfi˚t
(
ai, gne (ai) , t

A
i

)
− `c´oşfi˚t

(
ai, g

opt (ai) , t
A
i

) ]

+++
∑

i : `c´oşfi˚t(ai,gopt(ai),tAi )≥ `c´oşfi˚t(ai,gne(ai),tAi )

[

`c´oşfi˚t
(
ai, gne (ai) , t

A
i

)
− `c´oşfi˚t

(
ai, g

opt (ai) , t
A
i

) ]

=
n∑

i=1

[

`c´oşfi˚t
(
ai, gne (ai) , t

A
i

)
− `c´oşfi˚t

(
ai, g

opt (ai) , t
A
i

) ]

=
n∑

i=1

[

`c´oşfi˚t
(
ai, gne (ai) , t

A
i

) ]

−
n∑

i=1

[

`c´oşfi˚t
(
ai, g

opt (ai) , t
A
i

) ]

≥ 0

where the last inequality follows from the fact that a system optimal matching has a total

minimum cost.

Remark 11. Thus, based on the results in Lemma 10 and 9, the pricing authority could act as

a broker in the following sense:

• it collects payments from the agents that incur a lower cost (compared to equilibrium) in

a system optimal matching,

• it pays agents that incur a higher cost in a system optimal matching, and
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• it makes a profit.

Since the agents pay exactly what they would have paid originally with the Nash equilibrium and

the pricing authority is also making a profit, everybody is “happy”. Furthermore, the pricing

authority could potentially make the agents even “happier” by splitting a fraction of the profits

with them and still keeping the other fraction of the profits for itself. In this case each agent

will pay a total cost that is lower than the one that they would have paid by being selfish.

8.2.2.1 Example

Consider again the example in Figure 6 but with our new agent-dependent pricing scheme.

The following prices are obtained by the scheme:

p1,1 = 0 p1,2 = 0 p2,1 = 30 p2,2 = 0

This means that the pricing authority will charge 80−50 = 30 to a2 for r1, pays back 20−10 = 10

to a1, and makes a net profit of 30−10 = 20 as a broker. This net profit of 20 could potentially

be used to further compensate the agents for driving optimally by giving them a fraction of it.

8.3 Some Remarks on Trust Issues and Strategy-proof Mechanism Designs

The pricing schemes presented in the previous two sections fulfill the purpose for which they

are designed by incentivizing agents to move in a system optimal manner. However, they do

have the following shortcoming:

when using these schemes, agents may have an incentive to lie to the pricing au-

thorities about their costs and locations.
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Consider again the example in Figure 6. If a2 lies to the pricing authority about its start

time tA2 or its initial location ℓai such that `c´oşfi˚t
(
a2, r1, t

A
2

)
decreases, then the pricing authority

will still think that the system optimal matching will be to send a2 to r1 as before, but it will

actually charge the agent a lesser price than before. Then the agents can lie to possibly pay

less or to possibly obtain resources that they would otherwise not obtain.

To circumvent these types of problems, these schemes therefore need to be accompanied

with some assurances about trust in the location/costs reported by the agents. Finding such

pricing schemes that are strategy-proof (i.e., agents have no incentive to lie) is discussed in

(45; 46).



CHAPTER 9

DISTRIBUTED ALGORITHMS FOR THE INCOMPLETE

INFORMATION SCENARIO

The model studied in previous chapters assumes that knowledge about the locations and

the arrival times of all agents and resources are available to all agents and the central authority

in the system. This assumption may be difficult to justify in practice for various reasons. For

example, it raises privacy and security concerns because some agents may not wish to share

their location information with other agents.

In this as well as the next chapter, we study our problem in a setting where the location

and start time of an agent is not known to other agents. This is a more realistic setting for our

spatio-temporal matching problem. Each agent therefore would act as if she/he is computing

her/his destination dynamically in an online fashion based on her/his receipt of dynamic updates

of resource availability without any knowledge about the arrivals or locations of other agents.

Thus each agent only has partial or incomplete information to make her/his decision regarding

which resources to visit and try to obtain.

9.1 Incomplete Information Game in Simple Scenarios

In the incomplete information version of our game, agents will now make some prior prob-

abilistic assumptions about the locations of the other agents in the game and the analysis is

performed based on the expectations given by the prior distributions. One can compute the

54
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expected costs based on the distribution that is used to denote the location of an agent. Then

an agent will be looking to minimize its expected cost. In this context, the analysis will compute

the Nash equilibrium strategies for the players but considering expected costs. This equilibrium

is analogous to the Nash equilibrium for but instead of using cost given by the cost functions,

it uses expected cost.

In this section we develop equilibrium strategies for two simple scenarios in terms of game

setup and compare them with a näıve strategy. These games will be played on the number line

and will only have two players.

9.1.1 2 vehicles, 3 slots on the Line

a) Game Setup and Expected Cost Formula

Consider the incomplete information resource search game played in the [0,1] line. Let n = 2

and let one player be named ax and the other named ay. Let x ∈ [0, 1] and y ∈ [0, 1] be the

locations of the players respectively. Let m = 3, where the location of r1 is 0 (left end of line)

and the location of r2 and r3 is 1 (right end). In this model, each player does not know the

location of the other and assumes that its location is distributed uniformly in [0, 1].

We’ll assume that the strategies can be randomized (mixed) and that they will depend on

the players’ locations. In randomized strategies players choose each strategy with a probability.

Let p : [0, 1]→ [0, 1] be a function that maps the location of a player to a probability. In other

words, p(x) defines the probability that ax chooses to move to the left to find a resource and

1 − p(x) will be the probability of him moving to the right. Since the game is symmetric, in

terms of the players, we assume that the function will be the same for each player.
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Denote by C∗(x) the expected cost of ax finding a resource under the condition that ax is

at location x. For this simple scenario this expected cost will be based solely on the distance

traveled by ax. C
∗(x) can be computed as follows. When x ≤ 1/2,

C∗(x) =

∫ x

0
{p(y)[p(x)(1 − x+ 2y) + (1− p(x))(1− x)]

+(1− p(y))[p(x)(x) + (1− p(x))(1 − x)]}dy

+

∫ 1
2
+x

x
{p(y)[p(x)(x) + (1− p(x))(1 − x)]

+(1− p(y))[p(x)(x) + (1− p(x))(1 − x)]}dy

+

∫ 1

1
2
+x
{p(y)[p(x)(x) + (1− p(x))(1− x)] (9.1)

+(1− p(y))[p(x)(x) + (1− p(x))(2 + x− 2y)]}dy

When 1/2 < x ≤ 3/4,

C∗(x) =

∫ x

0
{p(y)[p(x)(1 − x+ 2y) + (1− p(x))(1 − x)]

+ (1− p(y))[p(x)(x) + (1− p(x))(1− x)]}dy

+

∫ 3
2
−x

x
{p(y)[p(x)(x) + (1− p(x))(1 − x)]

+ (1− p(y))[p(x)(x) + (1− p(x))(1− x)]}dy

+

∫ 1

3
2
−x
{p(y)[p(x)(x) + (1− p(x))(1− x)] (9.2)

+ (1− p(y))[p(x)(3 − x− 2y) + (1− p(x))(1− x)]}dy
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When 3/4 < x ≤ 1,

C∗(x) =

∫ 3
2
−x

0
{p(y)[p(x)(1 − x+ 2y) + (1− p(x))(1 − x)]

+ (1− p(y))[p(x)(x) + (1− p(x))(1− x)]}dy

+

∫ x

3
2
−x
{p(y)[p(x)(1 − x+ 2y) + (1− p(x))(1− x)]

+ (1− p(y))[p(x)(3 − x− 2y) + (1− p(x))(1− x)]}dy

+

∫ 1

x
{p(y)[p(x)(x) + (1− p(x))(1 − x)] (9.3)

+ (1− p(y))[p(x)(3 − x− 2y) + (1− p(x))(1− x)]}dy

b) Nash Equilibrium Strategy

Now let p∗(x) be defined as follows:

p∗(x) =







1 if x ≤ 3/8

0 if x > 3/8

(9.4)

This strategy is: if the agent is at position 3/8 or smaller, with probability 1 move to the

resource at 0; otherwise move to the resources at 1 with probability 1.

Theorem 12. In an incomplete information resource-search game played on the [0,1] line with

n = 2, m = 3, with the location of the slots at 0,1, and 1; the strategy p∗(x) (as defined by

Equation 9.4) is a Nash equilibrium strategy.
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Proof. Let n = 2 with agents named ax and ay with x ∈ [0, 1] and y ∈ [0, 1] being their positions

respectively. Let m = 3 with the positions of each slot being 0,1, and 1.

Suppose that x < 3/8 and suppose that ay uses strategy p∗. We prove the theorem by

showing that the smallest expected cost for ax is attained by using the same strategy. Using

Equation 9.1 and based on ay’s strategy choice, the expected cost becomes:

C∗(x) =

∫ x

0
[p(x)(1 − x+ 2y) + (1− p(x))(1− x)]dy

+

∫ 3/8

x
[p(x)(x) + (1− p(x))(1 − x)]dy

+

∫ 1

2
+x

3/8
[p(x)(x) + (1− p(x))(1 − x)]dy (9.5)

+

∫ 1

1

2
+x

[p(x)(x) + (1− p(x))(2 + x− 2y)]dy

Now after simplifying the updated equation we obtain a linear function in terms of p(x). Then

the expected cost equation becomes of the form C∗(x) = ap(x) + b. In this case a = 2x − 3
4 .

When a < 0, p(x) = 1 is optimal for ax and when a > 0 then p(x) = 0 is optimal for ax.

Then solving for x when a < 0 gives us that p(x) = 1 when x < 3/8 and p(x) = 0 when

x > 3/8, in which case p(x) = p∗(x). Thus it turns out that randomized strategies are not

needed. Based on the player’s location, he’ll know which strategy to choose.

The same result holds when x > 3/8.

c) Comparison with Näıve Strategy
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We define a näıve strategy in this incomplete information game to be one where each player

simply moves to the closest available slot. Formally, for the setup on the line, the näıve strategy

p(x) is defined as follows:

p(x) =







1 if x ≤ 1/2

0 if x > 1/2

(9.6)

By plugging p(x) from Equation 9.6 into Equation 9.1, Equation 9.2, and Equation 9.3 and

integrating from 0 to 1 for all possible values of x, we can compute the expected cost for ax

when using the näıve strategy:

∫ 1/2

0

[∫ x

0
(1− x+ 2y)dy +

∫ 1

x
xdy

]

dx

+

∫ 1

1/2

∫ 1

0
(1− x)dydx =

1

3
≈ 0.333 (9.7)

Similarly by plugging p∗(x) from Equation 9.4 into Equation 9.1, Equation 9.2, and Equa-

tion 9.3 and integrating from 0 to 1 for all possible values of x, we can compute the expected

cost of ax when using the equilibrium strategy:

∫ 3

8

0

[∫ x

0
(1− x+ 2y)dy +

∫ 1

x
xdy

]

dx

+

∫ 1
2

3
8

[
∫ 1

2
+x

0
(1− x)dy +

∫ 1

1
2
+x

(2 + x− 2y)dy

]

dx

+

∫ 1

1

2

[∫ 1

0
(1− x)dy

]

dx =
163

512
≈ 0.318 (9.8)
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This gives the Nash equilibrium strategy an expected percent improvement of approximately

4.5% over the näıve (greedy) strategy for this example.

9.1.2 2 vehicles, 2 slots on the Line

If we take the same example as in the previous section but remove one of the slots on the

right end of the line then the following theorem applies:

Theorem 13. In an incomplete information resource-search game played on the [0,1] line with

n = 2, m = 2, with the location of the slots at 0 and 1; the näıve strategy as defined in

Equation 9.6 is a Nash equilibrium strategy.

9.2 Basic Gravitational Algorithmic Paradigm

Solving the incomplete information game for arbitrary values of n and m is difficult in

general because of the different combinations of strategies to consider from all players when

constructing the expected cost formula. The general number of resources also increases the

number of strategies for each agent and further complicates the expected cost formula. We

then wish to propose a heuristic based on the results of section 9.1 with which vehicles can

compute their strategies in an incomplete information context. The heuristic we will introduce

is based on a gravitational force model.

Before presenting our heuristic approach, let us discuss the suitability of several alternative

approaches. One technique that could be suitable for this problem is greedy algorithms. We

will test our algorithm against a greedy approach that chooses to move towards the closest

resource at all times. An approach that models the problem as a Traveling Salesman problem

(18) would not be suitable because the availability of resources changes as the agent is traveling
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and therefore there is no point of planning a tour that visits all the resources. Dynamic

programming methods would also be unsuitable because the problem cannot be broken up into

smaller subproblems due to the lack of information. Flow-based methods would not work either

because there is no notion of flow when an agent does not know the locations of other agents.

From the examples on the line, we know that the equilibrium strategies are ones in which

a player should always choose a resource (no randomization) depending on his location on the

map. For the example in section 9.1.2 the player should always choose r1 (move left) if he’s

located in [0, 1/2] and move right otherwise. For the problem in section 9.1.1 he will move left

when located in [0, 3/8] and move right otherwise. So then the fact that there are two available

parking slots on the right changes the bounds at which it will be more profitable for the player

to choose to move left or right.

This observed phenomenon can be modeled as resources having some type of gravitational

pull on the agents. In physics, gravitational force is determined by the masses of the objects

(resources and agents) and the distance between them. If we set the masses of all resource and

agents to be constant then it is expected that in the n = 2, m = 2 problem in section 9.1.2 the

point where the forces are equal would be right in the middle of the line segment (distances

are the same). This point changes when adding the third available resource because the two

resources to the right will have more gravitational pull than the lone slot in the left. That is

why it is an equilibrium for a player to move to the right whenever it is located anywhere in

(3/8, 1].
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The heuristic algorithmic approach we describe here then is one that pushes the agents

towards areas where they are most likely to find a resource or areas with a higher density of

available resources, taking into account the agent’s location and its proximity to the surrounding

resources. Assuming the agents to be distributed uniformly across space, this is expected to

increase the agent’s probability of finding a resource by arriving in an area with a larger number

of resources. The Gravitational Parking Algorithm (Gpa), a heuristic using the gravitational

algorithmic paradigm, was originally introduced in (34) and encompasses these properties. Gpa

was used in (34) to guide agents towards areas of the map when they do not have information

about other agents that are competing with them for the resources. Though Gpa was originally

designed for parking applications in (34), it can also be applied to the general framework

presented in this work involving agents and resources.

In Gpa resources are said to have a gravitational pull on the agents. At any point in time,

each resource has a gravitational force vector acting on the agent whose magnitude and direction

depend on the distance of the resource from the agent and the spatial location of the resource.

Then, all of these vectors are added and the agent moves in the direction of the resultant vector

(total gravitational force) for a specified time interval and the same process is repeated at the

beginning of the next time interval. The intuition behind this approach is that agents are

expected to be pulled towards areas with a higher density of available resources, thus increasing

the probability of finding one. A schematic diagram for this approach is shown in Figure 7.
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−−→
F1,1

−−→
F1,2

−−→F
1,3

−−→
F1,4

−→
F

a1

r1

r2

r3

r4

Figure 7. A schematic diagram of the basic gravitational algorithmic paradigm.

−−→
F1,1,

−−→
F1,2,

−−→
F1,3,

−−→
F1,4 are the force vectors induced on agent a1 by resources r1, r2, r3, r4,

respectively, and
−→
F =

−−→
F1,1 +

−−→
F1,2 +

−−→
F1,3 +

−−→
F1,4 is the resultant force vector.

The following simplified formula1, which did not include the masses of the objects or a

gravitational constant like in the classical Newton’s law of gravitation, was used to generate

the magnitudes of the gravitational force vectors in (34):

∣
∣
∣
−−→
Fi,j

∣
∣
∣
def
=

∣
∣
∣
−−−−−−→
F (ai, rj)

∣
∣
∣ =

1
[

˚tˇi‹m`e

(

ℓAi (t), ℓ
R
j

) ]2 (9.9)

where
−−−−−−→
F (ai, rj) is the force vector generated by resource rj on agent ai. Note that in Equa-

tion 9.9, ℓAi (t), the location of the agent at time t, is a function of time and therefore changes

continuously as the agent moves. Thus the Gpa approach as described here is really a naviga-

1|−→a | denotes the magnitude of a vector −→a .
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Figure 8. Force field generated by 5 slots

tion algorithm rather than just an algorithm that computes an agent-resource matching. For

general costs given by our `c´oşfi˚t function, (Equation 9.9) can be generalized to the following:

∣
∣
∣
−−→
Fi,j

∣
∣
∣
def
=

∣
∣
∣
−−−−−−→
F (ai, rj)

∣
∣
∣ =

1
[
`c´oşfi˚t (ai, rj, t)

]2 (9.10)

With (Equation 9.10), one can compute the force vector by considering the current general cost

as opposed to simply using the current travel time between an agent and the resources. This

general cost could potentially include many additional factors such as the walking time from

the resource to the actual destination of the agent or the price of the resource.
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Figure 8 shows what a gravitational force field generated by five sample resources would look

like. The arrows represent the direction at which an agent will move when it is located at the

start point of the arrow and the small dots represent the resources. This diagram gives us an

idea of how agents move across the map when using Gpa and it shows that they will eventually

converge to a resource. Also, it shows how if we changed the locations of the resources, the

field would also change as well, and thus the strategies will be affected.

In (34) and (35), the Gpa approach was evaluated in simulations that were performed in

a general free-space and with synthetic data. The evaluation of the approach here in this

dissertation will be left until chapter 11, where the evaluation will use real-world data and will

be done for the version of the algorithm which works with movement that is restricted to a

road network (presented in the next section).

9.3 Revising the Gravitational Algorithmic Paradigm for Road Networks

The Gpa approach presented in the previous section was shown to work well in the two-

dimensional Euclidean plane. However, in a real transportation network, movements of agents

are restricted to the available roads. Thus, the direction of the resultant vector F , while posing

no problem for the Euclidean plane, may actually point to a direction that does not coincide

with one of the available roads. Then the gravitational algorithmic paradigm as discussed above

needs to be revised.

Let G = (V,E) be the directed graph representing the given road network with edges in E

representing roads and nodes in V representing intersections of these roads. On such a graph G

we will still use a gravitational algorithmic approach based on (Equation 9.10). However, now
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an agent can change her/his routing direction only upon arrival to an intersection (i.e., a node

in G) as opposed to any time in the case of the Euclidean plane. Therefore, (Equation 9.10)

will be used by an agent to update its routing only at each intersection.

For any node v ∈ V , let location(v) denote the actual physical location of v. Also, suppose

that at time t an agent ai is at this intersection (node) v (i.e. ℓAi (t) = location(v)) and v has κ

outgoing edges e1 = (v, v1) , e2 = (v, v2) , . . . , eκ = (v, vκ) ∈ E. Let `c´oşfi˚teq(ai, rj , t) denote the

value of `c´oşfi˚t (ai, rj , t) assuming that the agent ai first travels through edge eq. Furthermore,

there will be κ direction vectors
−→
D1,
−→
D2, . . . ,

−→
Dκ where

−→
Dq will point to the direction of edge eq.

The initial magnitudes of all these κ vectors are set to zeroes. Then, for each available resource

rj ∈ R and each possible direction corresponding to each
−→
Dq, the agent performs the following

computations:

• first computes the cost of rj assuming that ai’s travel will begin
1 with the edge eq.

• then computes the magnitude of force vector
−−→
Fi,j using this value of `c´oşfi˚t (ai, rj , t) in

(Equation 9.10), and

• then updates
∣
∣
∣
−→
Dq

∣
∣
∣ to

∣
∣
∣
−→
Dq

∣
∣
∣←

∣
∣
∣
−→
Dq

∣
∣
∣+

∣
∣
∣
−−→
Fi,j

∣
∣
∣.

This computation is summarized in Algorithm 1 for the convenience of the reader.

After repeating this procedure for each available resource and edge that exits v, the agent

uses the computed direction vectors
−→
D1,
−→
D2, . . . ,

−→
Dκ to make its route choice. There are various

1In the case when the general cost reflects the travel time, i.e., when `c´oşfi˚t (ai, rj , t) = ˚tˇi‹m`e
(
ℓAi (t), ℓ

R
j

)
,

this step corresponds to computing a shortest path from ℓAi (t) to ℓRj that begins with the edge eq.
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ALGORITHM 1: Algorithm for computing the magnitudes of the κ direction vectors

for agent ai ∈ A at time t. Instead of adding up all the vectors for all available resources

(as in the Euclidean plane), ai aggregates the force vectors for all resources into spatial

direction vectors corresponding to each possible direction out of the intersection.

(∗ location(v) denote the location of node v ∈ V ∗)

(∗ For v ∈ V , `c´oşfi˚tv (ai, rj , t) is equal to `c´oşfi˚t (ai, rj , t) assuming ℓAi (t) = location(v) ∗)

(∗ For e = (u, v) ∈ E, `c´oşfi˚te(ai, t) is equal to `c´oşfi˚t (ai, rj , t) assuming ℓRj = location(v) ∗)

(∗ Agent ai is in node v at time t; v has κ outgoing edges e1 = (v, v1) , . . . , eκ = (v, vκ) ∈ E

∗)

∣
∣
∣
−→
D1

∣
∣
∣←

∣
∣
∣
−→
D2

∣
∣
∣← · · · ←

∣
∣
∣
−→
Dκ

∣
∣
∣← 0

for all rj ∈ R do

for all q = 1, 2, . . . , κ do

`c´oşfi˚t (ai, rj, t)← `c´oşfi˚teq (ai, rj , t)

∣
∣
∣
−→
Dq

∣
∣
∣←

∣
∣
∣
−→
Dq

∣
∣
∣+

1
[
`c´oşfi˚t (ai, rj , t)

]2

end for

end for
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options for choosing the direction of travel according to the magnitudes of these vectors. In (47),

several options were experimentally tested, and the Deterministic Magnitude Gravitational

(Dm-Gra) algorithm was found to show the best results. In Dm-Gra, the agent travels from v

along the edge having the vector
−→
Dq of largest magnitude. Algorithm 2 shows the specification

of Dm-Gra.

ALGORITHM 2: Deterministic Magnitude Gravitational (Dm-Gra) algorithm for

choosing travel direction.

compute direction vectors
−→
D1,
−→
D2, . . . ,

−→
Dκ using Algorithm 1

let q be the index such that
∣
∣
∣
−→
Dq

∣
∣
∣ = max

1≤j≤κ

{ ∣
∣
∣
−→
Dj

∣
∣
∣

}

agent ai moves along edge eq



CHAPTER 10

SPATIO-TEMPORAL MATCHING WITH MISSING OR ERRONEOUS

INFORMATION

The methods that have been described so far depend on the existence of real-time availability

data, i.e., every available resource and its location is accounted for in the database at any point

in time. The collection of this resource availability data depends on wireless sensors. For

example, in the context of finding parking for vehicles, applications such as (5; 6) make use

of static sensors that are embedded in the road pavement and detect whether the resource

(parking slot) is available or not in real-time. These sensors then can be used by applications

for resource discovery, giving the agents a complete and real-time view of the resource availability

data. Nevertheless, the implementation and maintenance of these sensors present many difficult

challenges, e.g., they may have a very high monetary cost and so it is infeasible to cover a whole

city with these static sensors. Thus, other methods are often needed for collection of resource

availability data.

To overcome the difficulties of employing static sensors, various other methods exist for

collection of this availability data that make use of mobile devices. For example, in (48) mobile

phones are used to detect automatically when a traveler parks or de-parks from a parking slot

in an urban setting. Even for a spatial resource search application such as the application

involving taxicabs and clients mentioned before, one could have travelers requesting taxicabs

by using their mobile phones as described above. In both these applications, the mobile phone

69
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acts as a sensor that determines the availability of a resource. Applications like these have

been shown to be quite useful (14). However, these applications do suffer from having a low

penetration rate (or ratio). The penetration rate for these mobile applications is the percentage

of users of the transportation system that use their mobile phones as sensors for collecting the

availability data. Then an important question to ponder about is: how useful can these mobile

sensors be in the face of low penetration rate and the limited availability data?

In the previous sections we studied the problem of how to navigate users in the road network

to find their desired resources given complete and correct resource availability data. The meth-

ods presented there work well for settings that have full access to the ground truth data about

resource availability. However, in more practical settings, it is usually infeasible to have access

to this type of data. Real-life systems will have access to uncertain or inaccurate availability

data. The uncertainty stems from the fact that, when a resource is reported to be available by

some sensor, one does not know if the resource is still available when a user will search for it

because perhaps some other user that does not report to the system (due to a low penetration

rate) has taken the resource. Uncertainty may also stem from the fact that a resource that

is reported to be unavailable may actually be available because reports are missing from users

that do not report to the system. In a nutshell, the resource availability data may be erroneous

and incomplete (with missing information.

The uncertainty and errors in the resource availability data may come in various forms such

as:
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Missing reports: A resource was last reported to be available according to the database but

it is no longer available, or a resource was last reported to be unavailable according to

the database but it is available.

Erroneous reports: These reports are due to errors in sensing, i.e., the mobile device detects

availability or unavailability in an incorrect manner.

Unknown exact locations: We may not know the exact location of an individual resource

inside a block of resources (edge of the network). Thus we assume that a reportedly

available individual resource lies somewhere inside the block.

Given the existence of limited and uncertain resource availability data, we wish to investigate

how the agents should move across the road network to obtain their desired resources. In this

section we develop methods for this setting with missing and erroneous reports. In the next

section we will test these methods via simulation in a setting that is based on real-world ground

truth data.

10.1 Setup and Preliminary Definitions for Spatio-Temporal Matching with Missing

and Erroneous Reports

Our setup uses the following definitions and terminologies, which are in addition to those

presented in chapter 3 and pertain only to this section and the experiments that were run:

⊲ Let G = (V,E) be the directed graph representing a road network with edges in E

representing roads and nodes in V representing intersections of these roads. We will also
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use the term block to refer to these edges, as in, a block of resources that is contained in

an edge.

⊲ Blocks of resources are available on some edges of the network. Each block contains a set

of resources. For each block (vi, vj) ∈ E, there exists a ground-truth resource availability

number Ki,j ≥ 0.

⊲ The set of agents are split into two separate groups: the sensing agents and the non-

sensing agents.

⊲ The penetration rate of the system is the percentage of agents in the system that are

sensing agents.

⊲ A database receives reports about availability or unavailability of resources from the

sensing agents. The non-sensing agents do not provide any reports. The reports can be

classified as:

Resource-level Availability : A new resource has been sensed as available or

made available by one of the sensing agents.

Resource-level Unavailability : A previously available resource has been sensed

as unavailable by one of the sensing agents.

Block-level Unavailability : No available resources were found when a sens-

ing agent passed through a block.

⊲ The reports that the agents send to the database contain the following information:
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Classification : resource-level availability or unavailability, or block-level un-

availability.

Block : the location of the block where the report originates.

Timestamp: the time when the report originated.

⊲ After T time units have passed from the creation of a report in the database, the report

is discarded and is no longer considered to be relevant in the database. T is a parameter

of the system that is used to determine when the received reports become stale.

⊲ The sensing agents will have the resource availability data to help them make their routing

decisions. This data could contain erroneous reports and will not contain reports that

are missing due to non-sensing agents not sharing any reports. For each block (edge)

(vi, vj) ∈ E, they will have access to the following quantities (which in some cases will

have to be estimated):

ki,j: the number of resources that are reportedly available in the block (vi, vj) ac-

cording to previous resource-level reports from other sensing agents, which

are still not stale.

ui,j: the number of resources that are reportedly unavailable in the block (vi, vj)

according to previous resource-level reports from other sensing agents, which

are still not stale.

⊲ If the database receives a block-level unavailability report, at some time t, for block

(vi, vj) ∈ E, then ki,j is set to 0 and ui,j is set to its maximum value (the number of
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resources that exist in the block). Also, availability reports, that were received before t,

are marked as stale.

⊲ If an agent passes by a block (vi, vj) and Ki,j > 0, then the agent will stop its search

and obtain an available resource. If Ki,j = 0, then the agent will continue its search in

other blocks of the road network and, if the agent is also a sensing agent, she/he will

send a block-level unavailability report for this block, stating that no parking is currently

available in that block.

10.2 Navigation Using Only Availability and Block-Unavailability Reports

As stated before, there are two types of resource-level reports that the database receives:

the availability reports and the unavailability reports. Availability reports are received when

a sensing agent makes a resource available (e.g. leaves a parking slot), whereas unavailability

reports are received when a sensing agent occupies a previously available resource. The database

can also receive block-level unavailability reports.

In this section we consider a setting that has access only to the resource-level availability

reports and to the block-level unavailability reports. For example, in the context of finding

parking for vehicles this is a system that can only detect when vehicles leave a parking spot,

but it does not collect data about when a spot is taken. This system can also detect block-level

unavailability reports whenever a sensing agent, that is searching for a resource, passes by a

block and does not obtain a resource.

This type of system is somewhat akin to the system presented in (11). They present a

system in which vehicles act as mobile sensors of availability by driving past curbside parking
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slots to detect open ones. These mobile sensors generate a map view of parking slot availability.

Thus this type of system generates availability reports but not unavailability reports. In the

application involving taxicabs and clients, this is a system in which a client (the resource being

searched for) requests a cab service, but does not notify the service if she/he found another

taxi.

Here we present two algorithms for navigation in this setting based on the gravitational algo-

rithmic paradigm discussed in the previous section. One uses merely the number of reportedly

available slots; the other uses in addition the age of each of the availability reports.

10.2.1 Gravitational Navigation Without Aging

We will use this same gravitational algorithm that was presented in Section 9.3 but now we

also incorporate the uncertainty of availability values for each block in the algorithm. Before,

the gravitational forces were computed individually for each resource but now the gravitational

forces will be aggregated at the block level. For this purpose, we modify (Equation 9.10) in the

following manner. The magnitude of the gravitational force of a block (vp, vq) ∈ E to an agent

ai ∈ A is now defined as

∣
∣
∣
−−−→
Fi,p,q

∣
∣
∣
def
=

∣
∣
∣
−−−−−−−−→
F (ai, vp, vq)

∣
∣
∣ =

kp,q
[
`c´oşfi˚t (ai, rj, t)

]2 with ℓRj =







midpoint of the line connecting

location (vp) and location (vq)

(10.1)

where we assume that the location of the block coincides with the location of the midpoint of

the line connecting nodes vp and vq. Also, the value of kp,q is the number of availability reports
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that have been received, and are not stale. The agent then again proceeds in the direction of

the block with the highest accumulated gravity force as in Section 9.3.

10.2.2 Gravitational Navigation With Aging

We can refine our approach discussed in the preceding section by incorporating the age of

the resource-level availability reports in (Equation 10.1). We can do so by giving a relevance

score to each availability report according to its age. The older the availability report the less

relevant it should be since the probability that somebody has obtained the resource increases

over time, i.e., the newer the report is, the higher the relevance score should be. We assume a

linear decay for the relevance score of a report. That is, if t′ ≤ T is the age of an availability

report q then the relevance score R(q) for q is defined as:

R(q) = 1−
t′

T

Note that R(q) linearly decreases from a value of 1 when t′ = 0 to a value of zero when t′ = T .

Let Qi,j = {q1, q2, . . . , qk} be the set of k resource availability reports that are still relevant

(i.e., of age no more than T ) for a block (vi, vj) ∈ E, and let tℓ be the age of report qℓ ∈ Qi,j.

Then we can compute the estimated availability at block (vi, vj) as:

Ei,j =

k∑

ℓ=1

(

1−
tℓ
T

)
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We then redefine the gravitational pull of a block, when considering the age of reports, for an

agent ai ∈ A by modifying (Equation 10.1) as:

∣
∣
∣
−−−→
Fi,p,q

∣
∣
∣
def
=

∣
∣
∣
−−−−−−−−→
F (ai, vp, vq)

∣
∣
∣ =

Ei,j
[
`c´oşfi˚t (ai, rj , t)

]2 (10.2)

This new gravitational force may then be used in the same way as in the previous section.

10.3 Navigation Using Both Availability and Unavailability Reports

In this section we discuss navigation algorithms that use both resource-level availability and

unavailability reports. This would be a system like the one described in (48) where both types

of activities (availability as well as unavailability) are detected. As in the previous section,

the database will also receive block-level unavailability reports. In this setting, we need to

compute an estimated availability value, based on all of the received reports, to be used by a

gravitational algorithm. In Section 10.2 we had only availability reports to deal with, but now

we also need to process the resource-level unavailability reports and combine them with the

availability reports in a suitable manner.

10.3.1 Computing the Estimated Availability – A Queue-based Approach

Recall that the database keeps only those reports that were received within the last T time

units and aggregates these reports at the block level. Thus, for each block e = (vi, vj) ∈ E,

we have a sequence of reports, say d in number, of the form: 〈c1, e, t1〉, 〈c2, e, t2〉, . . . , 〈cd, e, td〉

where ci is the classification of the report (available or unavailable), e is the identification of

the block where the report originated, and ti is the time when the report was created. From
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this sequence of reports, it is impossible to exactly compute the true availability Ki,j in the

block because we only keep reports from the last T time units and because of the inherent

uncertainty of the information (due to the penetration rate). Since we do not know which

resources are still available or unavailable, given a sequence or reports for a block, we could

compute different true availabilities for any given sequence of reports. Therefore we need to

compute an estimated availability that is based only on the information that we have access to

(aggregated resource-level reports).

In this section we propose a queue-based approach. We have a queue for each block. Initially

all the queues are empty. We continue to process the reports as they come. Whenever an

availability report for some block is received, the report is added (enqueued) to that block’s

queue (increasing its size by one). If an unavailability report is received for a block and the

queue for that block is not empty, then the oldest report is deleted (dequeued) from that block’s

queue. Whenever a report that is in any queue reaches an age greater than T , the report is

removed from the queue as well. Then, at any point in time, the availability estimate for the

block is simply the current size of the queue.

The block-level unavailability reports are not necessarily saved and are just processed as

denoted in section 10.1, i.e. all availability reports received before the time of the block-level

unavailability report, are marked as stale. In this queue-based approach this would be equivalent

to emptying the queue whenever this type of report is received (denoting that the estimate of

availability should be 0).
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10.3.2 The Navigation Algorithm

The algorithm that will be used for navigation will be the same gravitational approach

discussed in the preceding section, except that the numerator ki,j in (Equation 10.1) will be

replaced by the current size of the queue for the block (vp, vq) ∈ E.



CHAPTER 11

SIMULATIONS AND EXPERIMENTAL RESULTS WITH

REAL-WORLD DATA

In this section we experimentally evaluate the previously presented algorithms in a simula-

tion framework that uses real-world data from the SFPark project (5).

11.1 Simulation Data

In this section we describe the real-world data that is used in this work to test our spatio-

temporal matching algorithms. The source of the data is a project developed by the San

Francisco Municipal Transportation agency called SFPark (5; 6). They have embedded wireless

sensors on the pavement of parking slots to determine their availability on a real-time basis,

and publish real-time data of availability changes, at a per-block level, for each block that

their sensors cover. As described before, the problem of finding parking for vehicles is a prime

example of our spatio-temporal resource matching problem and thus this SFPark dataset is

very relevant for our purposes.

A tuple in this SFPark database has the schema 〈blockId, availability, timestamp〉, and

is a report that at time timestamp the availability on the block blockId has changed to the

given availability. We then transform this database into a database of availability reports by

scanning these tuples in order, and saving the previous availabilities for each block. Then,

when checking the current availability for a given block, if the previous availability is smaller

80
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than the current one then we publish a deparking event (resource-level availability) report to

the reports database, and if the current value is smaller than the previous availability then we

publish a parking event (resource-level unavailability) report to the reports database. Thus,

after scanning the whole database, we have created a reports database where each tuple is of the

form 〈event, blockId, timestamp〉 with event ∈ {parking, deparking} indicating a classification

of an unavailability or availability report.

To generate data to test the algorithms presented in Section 10, suppose that a given

penetration rate is 0 ≤ p ≤ 1. Then, to simulate this given penetration rate p for the system,

all we need is to choose to keep each tuple with probability p. This would give us a reports

database with a penetration rate of p.

We can also use the original database to compute all values of Ki,j (the ground truth) at

any point in time. To do this, we search for the previous tuple that occurs in the database, for

that block, before the current time stamp. We use this method of querying the database to test

our algorithms with certain information. To test our algorithms that use missing information,

we may also use this ground truth to determine if an agent can obtain the resource (parking

slot) that the agent is passing by on a block.

Since no exact locations of parking slots are available, we make a simplifying assumption

that the available slots on a block are located in the middle of the block, which is consistent

with (Equation 10.1).



82

11.2 Simulation Setup

Our simulation tests the spatio-temporal search algorithms presented previously. We test

these algorithms against a greedy algorithm that moves the agents to the closest reportedly

available resource. The simulation uses real-world data from the SFPark (5) database (as

described before). The availability reports from the SFPark data were taken for the tourist

area of San Francisco called the Fisherman’s Wharf. We built a graph of the Fisherman’s

Wharf region having 40 nodes and 63 edges based on the block data given by the SFPark

database.

We created n vehicles (agents) at the beginning of each simulation run, and placed them at

uniformly distributed random locations in the graph. These n created agents are all classified

as sensing agents. The simulation starts at a given time t0 of the day. After placing all the

vehicles, each resource search navigation algorithm was tested.

The agents (vehicles) move through the network over time at a constant speed of 20 mph,

following the navigation algorithm being tested. If an agent passes by a block and there is

parking (resource) available while it is in the middle of the block, then the vehicle is parked

(i.e., the agent is matched with this resource). If no parking is available on the block then

the agent continues to move through the network and she/he sends a block-level unavailability

report to the database. When an agent finds an available resource, the time it took for it to

find that resource is saved. The simulation stops when all agents are able to obtain a resource

(i.e., when all vehicles are parked). The average time to park all the vehicles is also computed

and saved.
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It bears mentioning that there exists a distinction between these n created agents and the

real agents, which created the original dataset. These real agents are an implicit part of the

simulation since they are the ones that created the original park/depark reports. They also

influence the simulation because some reports occur at the time when the simulation is ran.

For example, say that the simulation uses simulation data from a specific day at 4pm of that

day, then every report that is received in that hour, and that exists in our database, was sent

by one of these real agents.

Then, these real agents differ from our created agents in various ways. The created agents

can send park and depark reports, whereas the created agents only send a report when they

finally park (and then they are no longer part of the simulation). Also, the created agents

are allowed to send a ZERO-PARKING report when they pass by a block which contains zero

available resources (parking spots). Also, the real agents are not controlled by our simulation

either, they are just implicitly part of the simulation (based on the SFPark data that was used).

For each experiment, 10, 000 different simulation runs were generated and evaluated for each

of the tested algorithms.

11.3 Tested Algorithms

The algorithms that were tested are labeled as follows for subsequent referral:

ZeroInfo: In this algorithm the vehicles have no information about resource availability. The

algorithm searches blindly across the network, using a random walk approach, until it

finds a resource. In this random walk approach, the agent chooses randomly (using a

uniform distribution) among all the possible edges that it can take at each intersection,
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excluding the edge that it just came from (i.e. no U-turns). This algorithm models a

vehicle without a navigation system.

Gravity : This is the basic gravitational algorithm presented in Section 9.3 with access to the

ground truth data about resource availability.

Greedy : In this algorithm the agents, with access to the ground truth data about resource

availability, move towards the closest available slot. This is a naive approach for searching

resources in that it has no guarantee of obtaining a resource, but it is a very common

strategy for searching resources.

SysOpt : This is the system optimal algorithm for matching between agents and resources

(presented in chapter 4). It does not require the navigation aspect that is described

above. For these tests, agents are simply assigned to their system optimal resources. This

approach is tested here to motivate the efficiency of the system when using the pricing

schemes presented in chapter 8. This algorithm uses complete information about the

locations of the agents and resources, which means that the penetration rate for these

tests is 100%.

UGravityQ: This is the queue-based algorithm presented in Section 10.3.1 that uses the grav-

itational algorithmic paradigm. This algorithm has access only to a dataset with missing

information (reports), i.e., the availability data is based on a given penetration ratio and

the value of T .
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UGravity : This is the approach presented in Section 10.2.1. It uses the gravitational algorithm

but with only the received availability reports. This algorithm has access only to a dataset

with missing reports.

PM : This is a probability maximization approach which was introduced in (49). This algo-

rithm aims to choose a path with the maximum overall probability of finding a resource.

We should note that the algorithm that was presented in section 10.2.2, which takes into

consideration the age of the received reports, was tested in the simulations but is not included

here because it did not significantly alter the results.

The PM algorithm, which is tested for the setting with missing or erroneous information,

seeks to compute paths that maximize the probability of finding available resources. The

probabilities that they compute are based on both historical data and real-time availability

data. For the historical component, they seek to compute two metrics: 1/λ is the expected

time an available resource remains available, and 1/µ is the expected time a consumed resource

remains in this consumed state. We were able to compute these two metrics from the historical

SFPark data for each block in the tested urban area. Then, we incorporate the values of λ and

µ into the probability computations which have a time component of when a resource became

available or consumed, to be able to then compute the availability probabilities for each block

in our road network (given the current availability reports for each block). The algorithm

from (49) that we use for comparison is the G2 algorithm. Like our gravitational navigation

algorithm it uses a greedy approach and thus is a suitable comparison for our method. It is a

heuristic that computes a path by extending the path with edges that maximize the probability
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of finding the resource, but also taking into account the distance traveled. It keeps extending a

path until a probability of obtaining a resource on that path is greater than some threshold ρ.

11.4 Tested Parameters

The following parameters are varied in the simulations as mentioned below:

nnn The number of agents that are generated. The values that were tested for this parameter

were n ∈ {1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}.

ppp The penetration ratio of the system, i.e., the percentage of agents in the trans-

portation system that are assumed to be sensing agents in the scenarios with miss-

ing and erroneous information. The values that were tested for this parameter were

p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0}.

TTT The time threshold for discarding reports from the database in scenarios with missing

data. This parameter is tunable and a representative one was chosen for the presen-

tation of results. The values that were tested for this parameter (in minutes) were

T ∈ {5, 15, 30, 45, 60, 75, 90, 105, 120}.

The PM algorithm that was tested for comparison purposes keeps extending a path until

a probability of obtaining a resource on that path is greater than some threshold ρ. For the

simulation we decided to choose a value of ρ = 0.9, which was the largest value that was tested

in (49).
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11.5 Simulation Results for Various Environments

In the remaining subsections of this section, we discuss the results of our simulation in

various environments and parameter settings.

11.5.1 Results for Algorithms with Access to Ground Truth Data

These simulations were run in an environment in which the algorithms had access to the

ground truth data of resource availability. For this case, the algorithms that were tested were

ZeroInfo, Gravity, Greedy, and SysOpt. These algorithms did not depend on the values of T

and p. The ZeroInfo algorithm did not have access to any data but we wanted to compare it

to these approaches to be able to see the contrast between having and not having access to the

ground truth data.

Figure 9 shows results for the average time to park for vehicles using different algorithms.

As expected, the ZeroInfo algorithm serves as an upper bound for the time to park. We also

observe that for all algorithms, except the SysOpt algorithm, the time to find parking increases

as the number of vehicles that are looking for parking increases; for the SysOpt algorithm

this increase is marginal and imperceptible in the graph due to scaling. Also observe that the

Gravity algorithm has better time to find parking over the Greedy algorithm, and the growth

rate of average time to find parking is smallest (excluding the SysOpt algorithm) for the Gravity

algorithm as the number of vehicles increases.

Figure 10 shows the percentage improvement of the SysOpt and the Gravity algorithm over

the Greedy algorithm. The improvement keeps increasing for both algorithms as the number

of vehicles increases. Observe that the Gravity algorithm achieves a significant improvement
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Figure 9. Average time to park for algorithms with access to the ground truth data of

resource availability.

on the average time to find parking (up to 40%) over Greedy even though, unlike the SysOpt

algorithm, it does not have access to the information of the locations of all other vehicles

in the system. Nevertheless, the clear winner in improving environmental and driving times,

as expected, is the SysOpt algorithm. This further motivates the use of the pricing schemes

presented in Section 8.
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Figure 10. Percentage improvement of the average time to park for SysOpt and Gravity over

Greedy.

11.5.2 Simulation Results for Algorithms with Missing or Erroneous Information

Figure 11 shows some of our obtained results for algorithms that use a dataset with missing

information due to different values of penetration ratio. These algorithms can be classified

into two categories: those that make use of both the resource availability and the resource

unavailability reports (using the queue-based approach for handling these reports), and those



90

0.2 0.4 0.6 0.8 1.0

1
0
0

1
5
0

2
0
0

n=30, T=120

Penetration Rate

A
ve

ra
g
e
 T

im
e
 t

o
 P

a
rk

 (
s
)

ZeroInfo
PM
UGravityQ
UGravity
Gravity

Figure 11. Average time to park for the tested algorithms, when n = 30 and T = 120.

that have access only to availability reports. The algorithm that makes use of the queue-based

approach is UGravityQ.

In Figure 11 we see the results for varying values of the penetration ratio, with n = 30 and

T = 120. It also includes the results for the ZeroInfo algorithm and the Gravity algorithm

(gravitational approach with access to all the information). We show this so one can see the

gaps that are present in the performance of the algorithms.

So for this case we can see that the Gravitational approaches are around two and a half to

three times better than the ZeroInfo algorithm. This gives of an idea of what is the value of
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having access to data, since the ZeroInfo algorithm does not have access to any data. For our

gravitational approaches, this ratio of the average time an agent can find a resource with the

ZeroInfo algorithm, over the time it takes with the gravitational approaches, ranged between

2 and 3 for most test cases.

In Figure 11, we can also see the gap between the gravitational approaches that have access

to the dataset with missing or erroneous information against the Gravity algorithm which had

access to all the perfect information. This gives us an idea of what is the price or the penalty

for not having access to all of the data about parking and deparking events. If we were to define

a ratio of the average time an agent can find a resource with one of the UGravity algorithms

over the time it took for the Gravity algorithm, this ratio ranged between 1.2 and 1.6 for most

of the cases that were tested.

Combining the results from the previous two paragraphs we can see that the value of using

our gravitational algorithms even in cases with low penetration rate, over the ZeroInfo algo-

rithm, is much larger than the penalty or price we get for not having access to all of the data

(like with the Gravity algorithm).

This figure is a good representation of all the simulations that were executed. In almost all

cases, the gravity algorithms outperformed their probability maximization counterpart (PM ).

Except in the very extreme cases of the penetration ratio being at its lowest and the competitive

ratio (n) being at its highest. For this graph we chose the highest value of T because this was

a system parameter and the all the algorithms performed at their best with the higher value of

T .



92

0.2 0.4 0.6 0.8 1.0

−
2
0

−
1
0

0
1
0

2
0

Penetration Rate

P
e
rc

e
n
t 

Im
p
ro

ve
m

e
n
t 

o
ve

r 
P

M
 A

lg
o
ri

th
m

n=60
n=35
n=10
n=1

Figure 12. Percentage improvement of the average time to park of UGravity over PM with

T = 120.

In Figure 11 the best performing algorithms were the gravitational algorithms and both

versions of the gravitational algorithms showed very similar type of performances. We then

further wanted to quantify the level of improvement that we obtain with these approaches over

the PM algorithm in their setting. We selected UGravity and compared it to its counterpart

PM. This PM algorithm is a suitable comparison for UGravity because it works with uncertain

data by having access to probabilities and choosing paths that maximize the probability of

finding a resource. This PM approach depended on computing probabilities of finding parking

in each block from the accesible reports.
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Figure 12 shows the percentage improvement of the average time to park of UGravity over

PM with differing values of penetration rate p and number of vehicles n. We observe that,

as p increases, the percentage improvement over the baseline algorithm also increases implying

that, as more and more data are available, UGravity can make better choices. However, even

for very small values of p, in most cases UGravity was better than PM.

Figure 12 also shows that as the level of competition for resources increases (i.e., higher val-

ues of n) the performance of UGravity also improves since gravitational navigation algorithms

are very likely to direct vehicles towards spatial areas with higher probabilities of finding re-

sources. This is especially important when dealing with datasets with missing information.

The datasets with missing data can be interpreted in a probabilistic manner, so leading agents

towards areas with higher probabilities of resource availabilities is very important for a good

performance of any navigation algorithm. This observation holds except when the level of com-

petition is the highest (n = 60) and penetration ratios are low (p = 0.1 or p = 0.2). Observe

that, for this extreme case of competition, having access to data becomes even more important.

The simulation results discussed above show improvements of of the average time to park

of over 20%. We now provide estimates of the environmental impact of such improvements.

In (38) studies conducted in 11 major cities revealed that the average time to search for curbside

parking was 8.1 minutes and cruising to find these parking slots accounted for 30% of the traffic

congestion in those cities. This means that each parking slot would generate 4, 927 vehicle miles

traveled (VMT) per year and thus the total VMT generated would be this number multiplied

by the number of parking slots in the city. For example, in a big urban city like Chicago with
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over 35, 000 curbside parking slots (40), the total number of VMT generated would be 172

million VMT per year due to cruising to search for parking, and would therefore account for

a waste of 8.37 million gallons of gasoline and over 129, 000 tons of CO2 emission. Then, with

the gravitational algorithms and an improvement of over 20%, we would be saving over 34.4

million VMT per year, 1.67 million gallons of gasoline, and over 25, 800 tons of CO2 emission.



CHAPTER 12

CONCLUSION

In this dissertation we have studied a spatio-temporal matching problem in which agents

are looking to obtain a resource in a transportation network. We have studied the problem by

modelling the problem as a competition between the agents for the resources in various settings.

We formulated the matching problem as a game and were able to compute a Nash Equilibrium in

a complete information context. For the incomplete information case, we presented a heuristic

based on a gravitational algorithmic paradigm. We also presented two pricing schemes for

this matching problem in which agents are incentivized to act in a system optimal way that

is beneficial for the system and the environment. We then presented another version of the

problem that has access only to limited data that could have missing information and erroneous

information, where only a fraction of the agents in the transportation system report on available

resources. We were able to adapt our gravitational algorithmic paradigm to this setting as well.

Finally, through simulations we showed the effectiveness of our proposed heuristics. The

simulations were based on real-world data that was obtained from the SFPark project. The

simulations showed how our gravitational approaches can attain over 20% improvements over

probability maximization approaches in the uncertain case, and up to 40% when the agents

have access to the ground truth data. This meant that, according to previous studies, with our

navigation heuristics we would potentially be saving up to 68.8 million vehicle miles traveled

per year, 3.35 million gallons of gasoline, and over 51, 600 tons of CO2 emission (in the certain

95
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case with 40% improvement). If the pricing schemes were used to incentivize vehicles to search

for the resources optimally, the improvements would be even higher.
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20. Boehlé, J., Rothkrantz, L. J. M., and van Wezel, M.: Cbprs: A city based parking and
routing system. ERIM Report Series Reference No. ERS-2008-029-LIS, May 2008.

21. Delot, T., Ilarri, S., Lecomte, S., and Cenerario, N.: Sharing with caution: Managing
parking spaces in vehicular networks. Mobile Information Systems, 9:69–98, 2013.

22. Geng, Y. and Cassandras, C. G.: A new “smart parking” system based on optimal
resource allocation and reservations. In Proc. of 14th Intl. Conf. on Intelligent
Transportation Systems (ITSC), pages 1129–1139, Washington, DC, USA, Octo-
ber 5-7 2011. IEEE.

23. Tilly, M. and Reiff-Marganiec, S.: Matching customer requests to service offerings in real-
time. In Proc. of the 2011 ACM Symposium on Applied Computing, pages 456–
461, 2011.

24. Hou, L., Mouratidis, K., Yiu, M. L., and Mamoulis, N.: Optimal matching between spatial
datasets under capacity constraints. ACM TODS, 35(2), 2010.

25. Wie, B. W. and Tobin, R. L.: Dynamic congestion pricing models for general traffic
networks. Transportation Research Part B - Methodological, 32(5):313–327, 1998.

26. Phang, S.-Y. and Toh, R. S.: Road congestion pricing in singapore: 1975 to 2003.
Transportation Journal, 43(2):16–25, 2004.

27. Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V.: Algorithmic Game Theory.
New York, NY, USA, Cambridge University Press, 2007.

28. Gomez, J., Dasgupta, D., and Nasraoui, O.: A new gravitational clustering algorithm.
In Proc. of SIAM Conf. on Data Mining (SDM), pages 83–94, San Francisco, CA,
2003. SIAM.

29. Wright, W. E.: Gravitational clustering. Pattern Recognition, 9:151–166, 1977.

30. Cook, W. J., Cunningham, W. H., Pulleyblank, W. R., and Schrijver, A.: Combinatorial
Optimization. New York, NY, John Wiley & Sons, 1998.

31. Papadimitriou, C. H. and Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Upper Saddle River, New Jersey, Prentice-Hall, Inc., 1982.



100

32. Rasmusen, E.: Games and Information. Hoboken, New Jersey, Blackwell Publishing, 4th
edition, 2006.

33. Nash, J.: Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences, 36(1):48–49, 1950.

34. Ayala, D., Wolfson, O., Xu, B., Dasgupta, B., and Lin, J.: Parking slot assignment
games. In Proc. of the 19th Intl. Conf. on Advances in Geographic Information
Systems (ACM SIGSPATIAL GIS 2011), pages 299–308, Chicago, IL, November
2011. ACM.

35. Ayala, D., Wolfson, O., Xu, B., DasGupta, B., and Lin, J.: Parking in competitive settings:
A gravitational approach. In Proc. of 13th Intl. Conf. on Mobile Data Management
(MDM), pages 27–31, Bengaluru, India, July 23-26 2012. IEEE.

36. Gale, D. and Shapley, L. S.: College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15, 1962.

37. Marden, J. R. and Roughgarden, T.: Generalized efficiency bounds in distributed resource
allocation. In IEEE CDC, pages 2223–2238, Atlanta, GA, Dec. 2010.

38. Shoup, D.: The High Cost of Free Parking. Chicago, IL, American Planning Association,
2005.

39. Shoup, D.: Cruising for parking. Transport Policy, 13:479–486, 2006.

40. Transportation Alternatives (www.transalt.org): , New York, NY Pricing the Curb: How
San Francisco, Chicago and Washington D.C. are reducing traffic with innovative
curbside parking policy, July 2008.

41. Even-Dar, E., Kesselman, A., and Mansour, Y.: Convergence time to nash
equilibria. In Proc. of the 30th Int. Conference on Automata, Languages and
Programming, pages 502–513, Eindhoven, The Netherlands, 2003. Springer Verlag.

42. Kearns, M. and Mansour, Y.: Efficient nash computation in large population games with
bounded influence. In 18th Conference in Uncertainty in Artificial Intelligence,
pages 259–266, Edmonton, Alberta, Canada, 2002. Morgan Kaufmann.



101

43. Lipton, R. J., Markakis, E., and Mehta, A.: Playing large games using simple strategies. In
4th ACM Conference on Electronic Commerce, pages 36–41, San Diego, CA, 2003.
ACM.

44. Bertsekas, D. P.: The auction algorithm for assignment and other network flow problems:
A tutorial. Interfaces, 20(4, The Practice of Mathematical Programming):133–149,
July 1990.

45. Wolfson, O. and Lin, J.: A marketplace for spatio-temporal resources and truthfulness
of its users. In Proc. of the 7th ACM SIGSPATIAL International Workshop on
Computational Transportation Science, pages 1–6, Dallas, Texas, November 2014.
ACM.

46. Zou, B., Kafle, N., Wolfson, O., and Lin, J.: A mechanism design based approach to solving
parking slot assignment in the information era. Transportation Research Part B,
conditionally accepted, 2015.

47. Ayala, D., Wolfson, O., Xu, B., DasGupta, B., and Lin, J.: Spatio-temporal match-
ing algorithms for road networks. In 20th International Conference on Advances
in Geografic Information Systems (ACM SIGSPATIAL GIS), pages 518–521, Re-
dondo Beach, CA, November 6-9 2012. ACM.

48. Stenneth, L., Wolfson, O., Xu, B., and Yu, P. S.: Phonepark: Street parking using mobile
phones. In Proc. of 13th Intl. Conf. on Mobile Data Management (MDM), pages
278–279, Bengaluru, India, 2012. IEEE.

49. Josse, G., Schmid, K. A., and Schubert, M.: Probabilistic resource route queries
with reappearance. In Proc. of 18th Intl. Conf. on Extending Database Technology
(EDBT), pages 445–456, Brussels, Belgium, 2015.

50. McVitie, D. G. and Wilson, L. B.: Stable marriage assignment for unequal sets. BIT
Numerical Mathematics, 10(3):295–309, 1970.

51. Delot, T., Cenerario, N., Ilarri, S., and Lecomte, S.: A cooperative reservation protocol for
parking spaces in vehicular ad hoc networks. In Proc. of the 6th Int. Conference
on Mobile Techonology, Application and Systems, Nice, France, September 2009.

52. http://faspark.com/: ,



102

53. Ma, S., Zheng, Y., and Wolfson, O.: T-share: A large-scale dynamic taxi rideshar-
ing service. In Proceedings of the 29th IEEE International Conference on Data
Engineering (ICDE), 2013.

54. Roth, A. E. and Sotomayor, M. A. O.: Two-sided Matching: A Study in Game-theoretic
Modeling and Analysis. Econometric Society monographs. Cambridge, UK, Cam-
bridge University Press, 1990.

55. Yoon, J. W., Pinelli, F., and Calabrese, F.: Cityride: a predictive bike sharing journey advi-
sor. In Proc. of 13th Intl. Conf. on Mobile Data Management (MDM), Bengaluru,
India, July 23-26 2012.

56. Yuan, N. J., Zheng, Y., Zhang, L., and Xie, X.: T-finder: A recommender system for
finding passengers and vacant taxis. IEEE Transactions on Knowledge and Data
Engineering, 2013.



103

VITA

Daniel Ayala

Email: dayalar@gmail.com

Education

• Ph.D. Computer Science, University of Illinois at Chicago, 2017.

Advisor: Dr. Ouri Wolfson

• M.C.S. Computer Science, University of Illinois at Urbana-Champaign, 2008.

• B.S. Computer Science, Universidad de Puerto Rico - Recinto de Rı́o Piedras, 2003.

Research Interests

Mobile Data Management, Intelligent Transportation Systems, Algorithms for improving

Urban Transportation Systems

Employment

• ASSISTANT PROFESSOR

Department of Computer and Mathematical Sciences

Lewis University

January 2015 – present

• SENIOR RESEARCHER

HERE Inc. (Nokia)



104

Part of a Research and Analytics group in the Automotive Cloud Services Division of the

Connected Driving department

July 2014–December 2014

• RESEARCH ASSISTANT & NSF-IGERT FELLOW

Computational Transportation Science Program

Department of Computer Science, UIC

advised by Dr. Ouri Wolfson

August 2007–July 2014.

• COMPUTER & BIOINFORMATICS CONSULTANT

High Performance Computing facility

University of Puerto Rico

October 2004–July 2007

Teaching

Lewis Univ.

• 70-471: Machine Learning, Fall 2015 (undergraduate level)

• 13-310: Discrete Mathematics, Fall 2015 (undergraduate level)

• 13-511: Concepts of Statistics I,

Spring 2015 and Fall 2015 (graduate level course for Data Science masters students)



105

• 70-460: Programming Languages, Spring 2015 (undergraduate level)

UIC

• CS 581: Spatial Database Management Systems,

Spring 2014, co-taught with Dr. Ouri Wolfson

(graduate level course).

• CS 480: Database Systems,

Spring 2013, co-taught with Dr. Ouri Wolfson

(senior undergraduate and graduate level course).

Advising & Mentoring

• Masters students (mentored along with Dr. Ouri Wolfson at UIC):

Pavan Kumar Reddy Jaya (2013) - Parking Navigator App for Android Smartphones

Vijay Bhojwani (2013) - Parking Space Prediction Model

Publications

Working Papers

1. Daniel Ayala, Ouri Wolfson, Bhaskar DasGupta, Jie Lin, and Bo Xu, Spatio-temporal

Matching for Transportation Applications, in preparation

Peer-reviewed Conference Papers

1. Yunjie Zhao, Daniel Ayala, Dongwook Jang, Gavril Giurgiu, Smart Recommendation For

Drivers: A Refueling Application, Intelligent Transportation Systems World Congress 2015,

Bordeaux, France, October 2015.



106

2. Qing Guo, Ouri Wolfson, Daniel Ayala, A Framework on Spatio-Temporal Resource Search,

Proceedings of the 11th IEEE International Wireless Communications & Mobile Com-

puting Conference (IWCMC 2015), Dubrovnik, Croatia, August 2015.

3. Daniel Ayala, Ouri Wolfson, Bo Xu, Bhaskar DasGupta and Jie Lin, Pricing of Parking

for Congestion Reduction, 20th International Conference on Advances in Geografic Infor-

mation Systems (ACM GIS 2012), November 6-9, 2012, Redondo Beach, California.

4. Daniel Ayala, Ouri Wolfson, Bo Xu, Bhaskar DasGupta and Jie Lin, Spatio-temporal

Matching: Algorithms for Transportation Applications, 20th International Conference on

Advances in Geografic Information Systems (ACM GIS 2012), November 6-9, 2012, Re-

dondo Beach, California.

5. Daniel Ayala, Ouri Wolfson, Bo Xu, Bhaskar DasGupta and Jie Lin, Stability of Mar-

riage and Vehicular Parking , 2nd International Workshop on Matching Under Preferences

(MATCH-UP 2012), Budapest, Hungary, July 19-20, 2012.

6. Daniel Ayala, Ouri Wolfson, Bo Xu, Bhaskar DasGupta and Jie Lin, Parking in Compet-

itive Settings: A Gravitational Approach, 13th International Conference on Mobile Data

Management (IEEE MDM), , Bengaluru, India, July 23-26, 2012.

7. Daniel Ayala, Ouri Wolfson, Bo Xu, Bhaskar Dasgupta and Jie Lin, Parking Slot As-

signment Games, 19th ACM SIGSPATIAL International Conference on Advances in Ge-

ographic Information Systems, 299-308, 2011.



107

8. Daniel Ayala, Jie Lin, Ouri Wolfson, Naphtali Rishe, and Masaaki Tanizaki, Communica-

tion Reduction for Floating Car Data-based Traffic Information Systems, Proc. of the The

Second International Conference on Advanced Geographic Information Systems, Applica-

tions, and Services (GeoProcessing2010), St. Maarten, Netherlands Antilles, Feb. 2010,

pp. 44-51 (Best Papers Award).

Patents

• Daniel Ayala, Bhaskar DasGupta, Jie Lin, Ouri Wolfson, Bo Xu, System and Methods for

Improved Selection of a Resource among Available Resources, US patent publication number

US20140122190 A1, May 2014.

Presentations

Invited Presentations

• Parking Slot Assignment Games, at Universidad de Puerto Rico - Recinto de Rı́o Piedras,

San Juan, PR on March 10, 2014.

• Parking Slot Assignment Games, at Lewis University, Romeoville, IL on February 19, 2014.

• Parking in Competitive Settings: A Gravitational Approach, at Nokia, Chicago, IL on

September 13, 2012.

Conference and Workshop Presentations

• Pricing of Parking for Congestion Reduction, at 20th International Conference on Advances

in Geografic Information Systems (ACM GIS 2012), November 6-9, 2012, Redondo Beach,

California.



108

• Spatio-temporal Matching: Algorithms for Transportation Applications, at 20th International

Conference on Advances in Geografic Information Systems (ACM GIS 2012), November

6-9, 2012, Redondo Beach, California (poster presentation).

• Stability of Marriage and Vehicular Parking , at 2nd International Workshop on Matching

Under Preferences (MATCH-UP 2012), July 19-20, 2012, Budapest, Hungary.

• Parking in Competitive Settings: A Gravitational Approach, at 13th International Conference

on Mobile Data Management (IEEE MDM), July 23-26, 2012, Bengaluru, India.

• Parking Slot Assignment Games, at 19th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems, November 2011.

• Communication Reduction for Floating Car Data-based Traffic Information Systems, at Proc.

of the The Second International Conference on Advanced Geographic Information Sys-

tems, Applications, and Services (GeoProcessing2010), St. Maarten, Netherlands Antilles,

Feb. 2010.

Honors, Awards, & Fellowships

• NSF-IGERT Fellowship in Computational Transportation Science

University of Illinois at Chicago, 2007–2014

• National Collegiate Computer Science Award, U.S. Achievement Academy, 2002–2003

• National Collegiate Mathematics Award, U.S. Achievement Academy, 2003

• The National Dean’s List, 2001–2003

• University of Puerto Rico Computer Science NSF Fellowship, 2001



109

References

• Available upon request


