
Supporting Effective Collaborative Learning in a Computer Science

Intelligent Tutoring System

by

RACHEL HARSLEY
B.S., Vanderbilt University, 2011

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2017

Chicago, Illinois

Defense Committee:
Barbara Di Eugenio, Chair and Adviser
Thomas Moher
Cynthia Taylor
Susan Goldman, Psychology
Davide Fossati, Emory University
Tiffany Barnes, North Carolina State University

Copyright by

RACHEL HARSLEY

2017

This thesis is dedicated to my grandpa, Walter Peterson, who believed I would

become a doctor long before I could even imagine...

ii

ACKNOWLEDGMENTS

I’d like to thank God for the strength and wisdom to complete this journey.

Barbara Di Eugenio, as my advisor and head of the Natural Language Processing Group

at UIC, you have been a constant source of inspiration and counsel from the moment I first

considered attending UIC. Since then, you have continued to help me to define my research

topic and in my overall professional and personal development. You are the type of adviser

any student would want. This dissertation would not be possible without your responsiveness,

smarts, and kindness.

Thank you to Nick Green and Sabita Acharya for your help with in-class experiments.

Nick, you have worked with me to think through classes and research since the moment we

met at orientation. The remainder of the NLP Group is awesome as well. Thank you all for

your ideas. Also, thank you to the additional members of my committee, Tom Moher, Susan

Goldman, Cynthia Taylor, Davide Fossati, and Tiffany Barnes for your guidance on my research

direction.

Thank you so much to my parents, Tommie and Vanassa, for your prayers and constant

support. I love you all. Your example and persistence has made this journey possible for me.

Thank you to my siblings, Robert (Ericka) and Thomas, and my best friends Jon and Janna.

You all have been there for me for as long as I can remember. Also, to LaShonda, you have

consistently upheld me with your love and encouragement. Thank you.

iii

ACKNOWLEDGMENTS (Continued)

Finally, if you had any part in my progression and development, if you are family, a friend,

or an associate, thank you. Special thanks to my grandparents for your continued prayers.

This work was supported by the Intel GEM Fellowship 2012–2013, Abraham Lincoln Fel-

lowship 2015–2016 from the University of Illinois at Chicago, and Award NPRP 5–939–1–155

from the Qatar National Research Fund.

REH

iv

CONTRIBUTION OF AUTHORS

Chapter 4 presents a published manuscript (Harsley et al., 2017) for which I was the primary

author. Davide Fossati and Barbara Di Eugenio assisted in the editing and revision process.

Nick Green collected and shared data for the individual ChiQat condition.

Chapter 5 presents two published manuscripts (Harsley et al., 2016; Harsley et al., 2017)

for which I was the primary author and driver of the research. Barbara Di Eugenio contributed

to discussions about system design and edited the manuscript. Davide Fossati assisted in the

editing and revision process. Sabita Acharya and Nick Green helped facilitate the classroom

experiment and data collection.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Supporting Collaboration . 2
1.1.1 Interaction . 3
1.1.2 Structure . 3
1.1.3 Modelling . 5
1.2 Learning on Multiple Fronts . 6
1.3 Research Contributions . 7
1.4 Outline . 10

2 RELATED WORK . 11
2.1 Intelligent Tutoring Systems . 11
2.1.1 Structure of ITSs . 13
2.2 Computer Supported Collaborative Learning 16
2.2.1 Structure of CSCL . 18
2.3 Collaborative Intelligent Tutoring Systems 19
2.4 CS Education . 21
2.4.1 Linked Lists . 22
2.4.2 Pair Programming . 23
2.5 Building on Our Previous Work 25
2.5.1 Standard ChiQat Tutoring System 25
2.5.2 A Baseline Dataset from KSC-PaL 27

3 COLLAB-CHIQAT: APPLICATION OF A FRAMEWORK FOR
COLLABORATIVE INTELLIGENT TUTORING SYSTEMS . 30
3.1 Summary . 30
3.2 CITs Framework . 30
3.2.1 Unstructured CIT . 32
3.2.2 Semi-structured CIT . 35
3.2.3 Fully Structured CIT . 35
3.3 Collab-ChiQat Overview . 36
3.4 Architectural Design Choices in Collab-ChiQat 39
3.4.1 Voice to Text Interpreter . 40
3.4.2 Student Model . 40
3.4.3 Collaborative Interaction Model and Feedback Manager . . . 41
3.4.4 Graphical User Interface . 45

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4 MEASURING THE EFFECT OF COLLABORATION ON STU-
DENT LEARNING AND INTERACTION 48
4.1 Summary . 48
4.2 Evaluating Collaboration in CS 49
4.3 Experiment Design . 50
4.4 Findings . 54
4.4.1 Learning . 54
4.4.2 Example Use . 55
4.4.3 Timing . 56
4.4.4 Coding Efficiency . 59
4.4.5 Engagement . 62
4.4.6 Satisfaction . 63
4.5 Conclusion . 63

5 THE ROLE OF CIT DESIGN ON LEARNING AND COLLAB-
ORATIVE INTERACTION . 66
5.1 Summary . 66
5.2 Evaluating CIT Design Choice 67
5.3 Experimental Design . 68
5.4 Learning Outcomes . 69
5.5 Dataset . 70
5.5.1 System Log Features . 70
5.5.2 Audio Discourse Features . 73
5.6 Contrastive Analysis . 74
5.6.1 Dialogue . 74
5.6.2 Example Use and Coding Efficiency 78
5.6.3 Tutorial Use . 79
5.6.4 Time to Start . 80
5.7 Modeling Learning . 81
5.7.1 Phase One Modeling . 83
5.7.2 Phase Two Modeling . 88
5.7.2.1 Symmetry and Planning . 88
5.7.2.2 Simple Speech Signals . 90
5.8 Student Perceptions from Survey 91
5.9 Conclusion . 97

6 USING DATA TO DESIGN FOR EFFECTIVE COLLABORA-
TIVE LEARNING . 98
6.1 Summary . 98
6.2 Measuring Collaborative Learning 98
6.2.1 Knowledge Convergence Outcomes 99
6.2.2 Dialogue Analysis . 104

vii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

6.3 Hybrid Collab-ChiQat . 110
6.4 Design Changes and Rationale 111
6.4.1 Turn Taking . 111
6.4.2 Time to Start . 112
6.4.3 Keyword Detection . 114
6.5 Experimental Design . 115
6.6 Outcomes . 116
6.6.1 Learning . 116
6.6.2 User Satisfaction . 117
6.7 Audio Analysis . 119
6.8 Conclusion . 122

7 CONCLUSIONS & FUTURE WORK 123
7.1 Contributions . 123
7.2 Future Research Directions . 125
7.3 Long Term Research Directions 126

APPENDICES . 128
Appendix A . 129
Appendix B . 130
Appendix C . 132
Appendix D . 137
Appendix E . 139
Appendix F . 141
Appendix G . 142

CITED LITERATURE . 147

VITA . 159

viii

LIST OF TABLES

TABLE PAGE
I DETAILED CLASSIFICATION SCHEME FOR CITS WHICH

INCLUDES CRITERIA FOR THE FIVE DIMENSIONS. 34
II TYPE OF COLLABORATION FEEDBACK SUPPORTED IN

COLLAB-CHIQAT ALONG WITH RATIONALE. 44
III SELECT SHARED INTERACTION DATA SET FEATURES BE-

TWEEN INDIVIDUAL AND PAIR CONDITIONS. 53
IV INDIVIDUAL AND PAIR LEARNING GAINS 55
V T-TEST AVERAGE EXAMPLE DURATION (SECONDS) BE-

TWEEN THE INDIVIDUAL AND PAIRED CONDITION 60
VI T-TEST AVERAGE NUMBER OF COMPILE ERRORS BETWEEN

THE INDIVIDUAL AND PAIRED CONDITION 62
VII COMPARISON OF LEARNING GAINS BETWEEN Collab-CHIQAT

VERSIONS AND HUMAN TUTORS. 70
VIII ADDED FEATURES TO MEASURE COLLABORATIVE IN-

TERACTION . 72
IX COMPARISON OF NUMBER OF OCCURENCES OF DOMAIN

WORDS BETWEEN UNSTRUCTURED AND SEMISTRUCTURED
SCORERS . 75

X EXAMPLE QUESTIONS FROM PAIR DIALOGUE 77
XI T-TEST COMPARISON OF FEATURES BETWEEN UNSTRUC-

TURED AND SEMISTRUCTURED SCORERS 82
XII MOST IMPORTANT FEATURES FROM REGRESSION TREE

WHEN MODELLING ALL DATA USING ALL POSSIBLE FEA-
TURES . 85

XIII POST-TEST SCORE MODELS USING PRE-TEST, STANDARD
FEATURES, COLLABORATIVE FEATURES, AND COURSE PER-
FORMANCE FOR THE UNSTRUCTURED CONDITION. 86

XIV POST-TEST SCORE MODELS USING PRE-TEST, STANDARD
FEATURES, COLLABORATIVE FEATURES, AND COURSE PER-
FORMANCE FOR THE SEMI-STRUCTURED CONDITION. . . . 87

XV POST-TEST SCORE MODELS USING TIME TO START AS
CO-VARIATE . 89

XVI POST-TEST SCORE MODELS USING DOMAIN WORD COUNTS
AS CO-VARIATE . 91

XVII T-TEST COMPARISON RESULTS OF KNOWLEDGE CONVER-
GENCE BETWEEN PROBLEM ONE OF PRE AND POST TESTS. 103

ix

LIST OF TABLES (Continued)

TABLE PAGE

XVIII T-TEST COMPARISON OF ENTRAINMENT SCORES AND
ENTRAINMENT CHANGE BETWEEN HIGH AND LOW SCOR-
ERS . 108

XIX PEARSON CORRELATION RESULTS FOR ENTRAINMENT
AND GROUP POST-TEST PERFORMANCE 110

XX COMPARISON OF LEARNING GAINS BETWEEN UNSTRUC-
TURED AND HYBRID COLLAB-CHIQAT. 117

XXI TOP 12 MOST FREQUENT DOMAIN WORDS BETWEEN FALL
2015 MANUAL TRANSCRIPTION AND FALL 2016 AUTOMATIC
TRANSCRIPTION. 121

XXII LIST OF STANDARD FEATURES USED IN MULTIPLE LIN-
EAR REGRESSION MODELS ALONG WITH THEIR DESCRIP-
TIONS. 138

XXIII COMPARISON OF LEARNING GAINS BETWEEN ALL EX-
PERIMENTS. 141

x

LIST OF FIGURES

FIGURE PAGE
1 Structure vs Collaboration Guidance in role of the CIT 5
2 View of the four-module ITS architecture. This representation is

standard for current ITS after the fourth module, User Interface became
recognized as a basic component. 14

3 Scripts components and mechanisms. 18
4 Example of a linked list. 23
5 Standard, non-collaborative ChiQat Architecture 26
6 The KSC-PaL interface. Distributed, student pairs worked on coding

and communicated via a chat interface. 29
7 Collab-ChiQat pair programming setup. The pair share a single

workstation and switch between navigator and driver roles. 38
8 Collab-ChiQat architecture with newly added components highlighted. 39
9 Collab-ChiQat graphical interface with feedback, problem panel, graph-

ical state representation, and coding area, including code owner. 45
10 The collaboration panel introduced in Collab-ChiQat. 46
11 Student pairs using Collab-ChiQat. 52
12 Comparison of problem attempts between individual and collabora-

tive conditions. 56
13 Comparison of problem duration between individual and pair pro-

gramming conditions for those who solved the problem. Statistically
significant differences in bold. 57

14 Comparison of example usage duration between individual and pair
programming conditions for those who used examples. Statistically sig-
nificant differences in bold. 59

15 Breakdown of student survey responses to question: “Do you feel
that (Collab)ChiQat helped you learn about linked lists?” 64

16 Breakdown of student survey responses to question: “Do you feel
that working with (Collab)ChiQat was interesting?” 64

17 Data available for each student . 71
18 Tutor proactive question to aid student in node declaration. 78
19 Student lesson tutorial use. 80
20 Excerpt of student dialogue at the beginning of problem four in the

semistructured condition. 90
21 Student responses to survey question: “Do you feel that (Collab)ChiQat

helped you learn about linked lists?” . 93
22 Unstructured (left) and semistructured (right) most important at-

tribute of a pair programming team. 93

xi

LIST OF FIGURES (Continued)

FIGURE PAGE

23 Visualization of student responses to traits of good programming
pairs for the Unstructured condition. 94

24 Visualization of student responses to traits of good programming
pairs for the Semi-structured condition. 95

25 Percentage of students whose converges increase, remains the same,
or decreases based on total test performance (left) and problem one (right). 104

26 Comparison of entrainment in first and second half of session between
high and low performers. 107

27 Tutor feedback to promote role-switching after imbalance detected. 112
28 Tutor prompt for student planning of solution approach at onset of

problem. 113
29 Tutor response after keyword loop detected during discussion time. . 115
30 Student responses to survey question: “Do you feel that (Collab)ChiQat

helped you learn about linked lists?” . 118
31 Unstructured (left) and hybrid (right) most important attribute of a

pair programming team. 119

xii

LIST OF ABBREVIATIONS

ASR Automatic Speech Recognition

CIT Collaborative Intelligent Tutoring System

CS Computer Science

CSCL Computer Supported Collaborative Learning

CSE Computer Science Education

GUI Graphical User Interface

ITS Intelligent Tutoring System

xiii

SUMMARY

The standard paradigm of an Intelligent Tutoring System (ITS) exclusively affords one-on-

one learning between a student and a computer tutor. However, the benefits of collaborative

learning are extensive and include learning for transfer and development of higher order thinking

skills such as planning. With this research as motivation, my work shifts the ITS paradigm to

accommodate multiple-student, computer-mediated learning. The primary research objective

is to investigate how design choice within a Collaborative Intelligent Tutoring System (CIT)

impacts student learning and interaction.

To begin, we synthesized research from Computer Supported Collaborative Learning and

ITSs to develop a framework for design and evaluation of CITs. From there, we grounded

our development and assessment of three versions of our CIT based on this framework. Over

200 students used the systems in the classroom and on average experienced significant learning

gains. We compared our collaborative ITS to its one-on-one counterpart and found that students

learn equivalently while being more efficient in timing, example use, and code correctness.

Additionally, the evaluations showed that design choice influences student interaction such

as symmetry, planning, and on-topic discussion. Finally, we discovered that dialogue-based

analysis can provide significant correlations to measures of group cognition.

Overall, my current research is motivated by my personal experience as an underrepresented

student in the field with a strong desire to be connected to others as I learn CS.

xiv

CHAPTER 1

INTRODUCTION

Intelligent Tutoring System (ITS) research explores how to provide educational, tutorial

services in user adaptive ways to benefit learning. In examining its counterpart, human tu-

toring, we understand that the effectiveness of the tutor often coincides with their ability to

accurately assess a student’s knowledge on an ongoing basis and adaptively (both proactively

and reactively) share their expertise, all in real-time. Much is to be said of the great strides

Intelligent Tutoring Systems (ITSs) have made in replicating this non-trivial human tutoring

process. Some ITSs have even reached and surpassed student learning gains achieved in com-

parison to human-tutoring interactions (Fletcher and Morrison, 2012); (Fossati et al., 2009);

(Kulik and Fletcher, 2015); (Ritter et al., 2007).

ITSs have traditionally been geared toward one-to-one student learning. Originally a con-

straint due to physical hardware ability, this feature of the one-to-one model is baked into the

framework of ITS literature (Carbonell, 1970); (Paviotti et al., 2012). Moreover, given the

support of the education research community which demonstrates the superiority of one-to-one

student teaching in comparison to one-to-many and other models, the goal of individual support

for learning has become widespread (Bloom, 1984); (Kaptelinin, 1999).

Yet, in recent years, the paradigm has begun to shift and researchers have started to design

and evaluate ITSs that support collaborative learning. The distinct but related field of Com-

puter Supported Collaborative Learning (CSCL) explores how students learn in collaborative

1

2

settings and how technology can support this collaboration. Benefits of collaborative learning

include increased group performance as well as individual performance. Moreover, collaborative

problem solving is consistently associated with higher order thinking skills including planning,

reflection, and metacognition (Kaptelinin, 1999).

Domains of intervention in this newly synthesized area of Collaborative Intelligent Tutoring

Systems (CITSs) include math, science, and even Computer Science education. A CITS aims

to capitalize on the same power of human ability as stated above. However, it extends its scope

and allows students, as a team of tutees, to mutually assess their knowledge on a continuous

basis and adaptively share expertise in real time along with the tutor. The tutor thus aims to

ameliorate this natural interaction in addition to promoting domain learning just as a standard,

non-collaborative ITS.

This dissertation aims to address the following research questions:

1. How can we support collaborative learning in an ITS in the domain of computer science?

2. What is the effect of collaborative support on student learning and interaction?

3. What are the salient aspects of student interaction that correlate to learning?

In the remainder of this chapter, I will provide additional background to motivate the

research, an outline of my approach to answering the questions at hand, and an overview of

remaining chapters.

1.1 Supporting Collaboration

With the benefits of collaboration in mind, it would seem fine to simply place two students

together and allow them to work with the ITS just as if they were engaging with the system

3

one on one. However, for both practical and theoretical reasons this setup would not be ideal.

Practically, systems created for individual use do not always lend themselves to collaboration

without designer adaption of the system. Moreover, theoretically, collaborative learning and

CSCL literature shows that collaboration in and of itself does not guarantee more effective

learning (Dillenbourg et al., 2009); (Kaptelinin, 1999). Instead, the tutoring system must

provide activities which trigger learning and cognitive mechanisms (Dillenbourg, 1999).

1.1.1 Interaction

Given that effective collaboration does not necessarily follow simply by placing students in

groups, CSCL research has focused on understanding and promoting collaborative interactions

that yield meaningful learning outcomes for students. These outcomes can be measured across

the particular learning domain of the CSCL exercise (i.e. math, or CS education) and even the

student’s collaborative behaviors themselves.

Thus, in a CITS, the role of the tutor extends to include an analogous human role of a

group facilitator, in addition to the adaptive domain-centered feedback that drives most ITSs.

Moreover, the learners’ social context and interactions become an object of analysis and design

for the CITS (Israel and Aiken, 2007); (Kaptelinin, 1999). In this regard, the tutor becomes

responsible for ensuring group dynamics are such that domain learning is optimal along with

collaborative skill practice.

1.1.2 Structure

The role of the CITS in serving as a facilitator lies on a scale as depicted in Figure 1. On the

far left, the CITS is hands off in terms of collaborative interaction management, or guidance.

4

In this capacity, the CITS focuses on domain learning just as a standard ITS. Though students

may work as collaborators while using the system, the CITS does not aid them in collaborative

activities. However, on the other end of the scale, the CITS fully manages both domain learning

and the state of collaboration. The CITS’s role is then to ensure student’s 1) collaborate

effectively 2) learn domain content 3) learn better collaborative behaviors.

As CITS research is moderately new, the question arises as to wherein on the spectrum

students benefit the most. Certainly, in the research field of CSCL, it has been established that

students gain from the system’s collaboration guidance (Dillenbourg et al., 2009). However, this

may not be the case for a CITS. Perhaps the guided and adaptive nature already provided by

necessity and as part of standard ITS design in itself provides enough structure for collaborators

to succeed.

5

Figure 1: Structure vs Collaboration Guidance in role of the CIT

1.1.3 Modelling

A key part of the ITS is its student modeling component. In plain terms, this is equivalent

to a human tutor’s ability to gather whether or not a student understands a given topic.

For example, if the topic were exponents, a human tutor may make sure the student has a

knowledge of multiplication and division as necessary building blocks. In the ITS community,

the student model accomplishes this same task. It is the system’s computational representation

of a student’s knowledge, even down to the particular problems the student may have solved

or left incomplete.

6

Depending on the nature of the ITS task, accommodating more than one student may

be simple. For example, a system where students work individually on problem sets could

yield a complementary CITS implementation through the addition of a shared communication

portal for collaboration. Even systems where students participate in different, assigned roles

in distributed settings afford more straightforward crossover from ITS to CITS in terms of

modelling because student actions are easily delineated and tracked (Walker et al., 2009b).

Unfortunately, difficulty arises once students are in a collocated space and sharing the same

desktop state. Unlike a human tutor, the standard ITS has no innate method of determining

who is performing what actions and thus assessing and aligning the proper knowledge level to

a given collaborator.

1.2 Learning on Multiple Fronts

It is clear that the role of the CITS includes assisting students in domain specific learning and

in their ability to collaborate. In some sense, the CITS can be seen as a coach for collaboration,

especially as the amount of structure increases. In many fields of study, the knowledge of how

to collaborate is just as essential as the domain knowledge itself. Though viewed as a soft

skill, the implications for computer scientists with high and low collaborative abilities are far

reaching (ACM/IEEE-CS Joint Task Force on Computing Curricula, 2013). It is essential for

programmers to learn how to effectively collaborate both in large and small scale projects. Even

more, a growing industry standard of “pair programming” motivates the need for addressing

collaborative skill building. In this practice, two users share the same computer, keyboard and

mouse. One user serves as the driver while the other serves as the navigator. Both users work to

7

solve a given problem or programming task. The driver’s role is to control keyboard and mouse,

to physically type the code, and to reason about solutions. The navigator’s role is to think about

the direction of the code and help the pair avoid possible pitfalls and reach a solution. Benefits of

pair programming are well documented and include increases in student enjoyment, confidence,

learning, learning speed, and coding efficiency (Salleh et al., 2011a) (Porter et al., 2013) (Pears,

2010). According to a survey of industry pair programmers, the most commonly recognized

traits of a successful pair programming partnership include communication and respect (Ally

et al., 2005).

1.3 Research Contributions

My research objective is to investigate and understand which design choices for a collabo-

rative ITS for CS Education better support learning of domain content and promote effective

collaborative behaviors. In keeping with its collaborative objective and the system from which

it has been extended, it is named Collab-ChiQat. My research questions are the following:

1. How can we support collaborative learning in a Computer Science ITS?

2. What is the effect of collaborative support on student learning and interaction?

3. What are the salient aspects of student interaction that correlate to learning?

In order to address question (1) I have developed a framework which sets forth three

paradigms for supporting collaboration in an ITS (Harsley, 2014). As the area of CITs re-

search is relatively new it combines important themes in CSCL and ITS including: modeling of

the student and domain, group dynamics, collaboration and pedagogical guidance, and technol-

8

ogy. Further, in addressing question (1), I created two versions of the Collab-ChiQat system,

unstructured and semistructured, each aligned with a CITS paradigm. These conditions were

developed in parallel.

To address question (2), I conducted experimental studies in the classroom in order to com-

pare the standard non-collaborative intervention with the collaborative system and to compare

the two methods of collaboration structuring themselves. Over 150 students participated in

these studies. In each experiment, students faced the same domain-learning task, a founda-

tional CS education concept. Students were introduced to the concept of pair programming

through a brief video before the intervention. Students were then able to choose and switch

their roles for engaging with the system throughout the intervention. The means of outcome

measurement for the system encompassed individual learning via pretest and posttest as well

as analysis of the collaborative process and perceptions.

Finally, the data from these studies was used for interaction analysis to understand both the

collaborative and learning process and derive a model of effective learning and collaboration.

This analysis necessitated logging of all peer-to-peer and student-tutor interactions. This in-

cludes, but is not limited to, speech interaction; turn taking behavior, interface interactions, and

problem solving steps. This analysis and subsequent model of learning addresses question (3).

Moreover, it motivated the design decisions and features instrumented in a subsequent system

system iteration labeled hybrid. I evaluated the hybrid system with a final classroom exper-

iment where an additional 100 students used the system and experienced significant learning

gains.

9

Both students and the research community have benefited from this work. Notable contri-

butions include the following:

• I developed a framework for designing and classifying CITSs based on established ITS

and CSCL research

• I reconceptualized and extended an existing tutoring system to create Collab-ChiQat

which supports collaborators as they learn a foundational CS topic

• I designed and implemented multiple strategies for facilitating collaboration through tu-

toring system feedback based on CITSs paradigms.

• I evaluated three different versions of the collaborative system which allowed over 200

students to learn about linked lists with significant gains equivalent to those working

individually

• I collected and analyzed log data in order to model important features leading to student

learning and effective collaboration.

• I collected, transcribed, annotated, and analyzed a corpus of student dialogue as they

solve problems with the CITS

• I operationalized CSCL concepts of planning and symmetry as actionable features for

tutor feedback generation.

• I validated the role of initiative shifts as proxies for detecting knowledge co-construction

and subsequent student learning

10

• I analyzed knowledge convergence and lexical entrainment as operationalized measures of

group cognition, a primary CSCL collaborative learning outcome

1.4 Outline

This dissertation is organized as follows:

• Chapter 2 provides a description of the research areas conjoined in the synthesis of this

work, specifically CSCL, ITS, and Computer Science Education (CSE). Moreover, we

introduce the standard ChiQat tutoring system along with non-traditional CITs.

• Chapter 3 describes a framework for collaborative ITS as well as the design of Collab-

ChiQat in application of two structuring paradigms

• Chapter 4 offers perspective on the effect of collaboration through a contrastive analysis

of learning and system interaction outcomes in comparison of Collab-ChiQat users and

users of the standard, non-collaborative system.

• Chapter 5 compares the effects of design choice on student’s collaborative learning process

and outcome. It then describes a subsequent model of important features correlated to

learning in our CIT.

• Chapter 6 presents results on the effectiveness of the collaboration from the perspective

of group cognition. It then offers the design and evaluation of a hybrid version of the

system which aims to automatically improve collaborative learning.

• Chapter 7 gives conclusions as well as directions for future study and long-term research.

CHAPTER 2

RELATED WORK

2.1 Intelligent Tutoring Systems

With the demand for CS talent at an all time high and growing body of work in computing

education, there has been an increase of interest in teaching computing in engaging, automated,

and scalable methods (Monge et al., 2015). One such method is the use of an Intelligent Tu-

toring System. Intelligent Tutoring Systems mark the forefront of research in applied artificial

intelligence to education. The origins of this interdisciplinary field date back to the early 1970s

(Nwana, 1990). For at least two decades, the term “ITS” has been used to replace the phrase

“Intelligent Computer-Aided Instruction” (ICAI) of the same meaning. Traditional ITSs aim

to provide user-adapted support during problem-solving processes in a manner resembling of a

human tutor (Tchounikine et al., 2010). The intelligent tutor compares student actions to a

domain model and uses the subsequent contextual awareness to tailor instructional activities

and offer relevant help (Walker et al., 2009a). Although ITSs have not mastered the same level

of effectiveness achieved by expert human tutors, especially in regards to cross-domain exper-

tise and pedagogical strategies, multiple research studies show the impact of these systems to

significantly increase learning (Fletcher and Morrison, 2012); (Fossati et al., 2009); (Koedinger

et al., 1997); (Ritter et al., 2007)

11

12

Intelligent Tutoring Systems provide adaptive, user-centric feedback to students as they

learn a given topic. The tutors are trained experts in domain content. Corbett, Koedinger, and

Anderson (1997) explain the role of the tutoring system this way,

The goal of intelligent tutoring systems (ITSs) would be to engage the students

in sustained reasoning activity and to interact with the student based on a deep

understanding of the student’s behavior. If such systems realize even half the impact

of human tutors, the payoff for society promised to be substantial. (Corbett et al.,

1997)

Much of the work of an Intelligent Tutoring System designer lies in shaping the tutor

to interact with the student in a way that meets and hopefully transcends the abilities of

a human tutor. Intelligent tutoring systems provide several benefits to enhancing student

learning including: 1) avoid the one-to-many student teacher model and free teachers to more

effectively triage student needs 2) provide students with individual, customized support tailored

to their level of proficiency 3) allow students to reach common proficiency goals in an efficient

and verifiable manner.

Classical definitions such as the one provided by Conati (2009) often limit the scope of the

tutor to interactions and modeling of an individual learner:

Intelligent Tutoring Systems (ITS) is the interdisciplinary field that investigates

how to devise educational systems that provide instruction tailored to the needs of

individual learners, as many good teachers do. (Conati, 2009)

13

Research in this field has provided both techniques and systems that adaptively support

students as they learn and problem solve in a plethora of domains (Conati, 2009). Moreover,

the focus of ITS on an individual learner (depicted in Figure 3) is an important distinction

between ITS and Computer Supported Collaborative Learning (CSCL).

2.1.1 Structure of ITSs

Early work in ITS research led Self to argue that computer aided instruction needed a

representation of “what is being taught, who is being taught, and how to teach him/her” (Self,

1974). This led to the acceptance of a three-module architecture for ITS. The current standard

for ITS construction now includes a fourth module, “user interface” and is depicted in Figure

4 (Nkambou et al., 2010); (Nwana, 1990). Methods of ITS implementation vary greatly while

they remain consistent to this baseline architectural framework.

14

Figure 2: View of the four-module ITS architecture. This representation is standard for current

ITS after the fourth module, User Interface became recognized as a basic component.

The domain knowledge module, also known as the expert knowledge module, allows the

tutor to represent and reason regarding the learning domain to be conveyed. Three standard

types of knowledge models frequently used are rule-based, constraint based, and expert system

(Paviotti et al., 2012). Historically, much work has gone into discovering and building adequate

domain knowledge representation. However, recent research efforts have begun to explore how

this knowledge could be automatically sourced through machine learning, such as extraction

15

from the work of previously tutored students (Floryan and Woolf, 2013). The knowledge module

is also used to assess the tutee’s overall progress via comparison to the knowledge module.

The student model module dynamically represents the knowledge and skills of the student.

The model works in conjunction with the knowledge module to infer progress in problem solving

as well as estimations of knowledge acquisition (Kersey et al., 2009); (Nwana, 1990, p. 10). Self’s

list, as summarized by Nwana (1990), of a student model functions, though non-exhaustive, is

helpful for understanding the model’s potential roles:

(1) Corrective: to help eradicate bugs in the student’s knowledge.

(2) Elaborative: to help correct ’incomplete’ student knowledge.

(3) Strategic: to help initiate significant changes in the tutorial strategy other than

the tactical decisions of 1 and 2 above.

(4) Diagnostic: to help diagnose bugs in the student’s knowledge.

(5) Predictive: to help determine the student’s likely response to tutorial actions.

(6) Evaluative: to help assess the student or the ITS.

Over the last twenty years, several studies have focused on the design and testing of user

profiles as means to model the student. These profiles contain information regarding the char-

acteristics and habits of the students such as personality, behavior, learning style and affective

states (Paviotti et al., 2012). Much research emphasis is placed on inferring characteristics that

are not directly explicated beyond the student knowledge level. As a whole, accurate student

modelling is essential for adaptable and supportive ITS.

16

The tutoring module both encompasses and enacts the instructional design paradigm of the

ITS. Linkage with the student module enables it to decide when, how, and what pedagogical

activities to present. These cover a wide range from hints to explanations, to changes in

activities or tasks. Thus, the tutor module is the ultimate source for pedagogic interventions

(Nwana, 1990). Just as with the other components, subtle changes to this module can drastically

affect tutoring outcomes. For example, in some situations, it may be best to allow the student

extended time in solving a problem before interrupting, while in others a student may become

lost without guided and proactive assistance.

The user interface module controls interaction between the student and system. It bi-

directionally connects the ITS’s internal representation to communicate with the student. Cur-

rent ITSs provide a variety of interface mechanisms through graphics, text-entry, key-board,

and mouse-driven events and menus (Ahuja and Sille, 2013).

2.2 Computer Supported Collaborative Learning

The field of Computer Supported Collaborative Learning focuses on how students learn

in collaborative settings and how technology can enhance collaborative peer interaction and

work (Dillenbourg et al., 2009; Tchounikine et al., 2010; Magnisalis et al., 2011). Longstanding

research has shown that both cooperative and collaborative interactions among students are

beneficial to learning (Lehtinen et al., 1999). In fact, the learning gains are often more profound

than those achieved by the best of individual learners (Kaptelinin, 1999). Students also benefit

from development of higher order thinking skills such as planning, reflection, and metacognition,

and they experience learning for transfer (Kaptelinin, 1999; Walker et al., 2009b). According

17

to Woolf (Woolf, 2010), Collaborative strategies emphasize “positive interdependence (of task,

identity, role and goals), individual and group accountability (challenging and motivating every

student), and authentic interaction (brainstorming, planning, social and team building skills,

and solidarity)” . This definition is shared by several CSCL and learning scholars (Dillenbourg,

1999; Soller, 2001; Strijbos, 2011).

However, assigning students to a group and charging them with a task does not ensure

that students will engage in effective collaborative learning behavior (Kobbe et al., 2007; Soller,

2001). It is not uncommon for groups to struggle with dysfunction that often stems from an

unbalance of participation, lack of leadership, understanding, and encouragement (Soller, 2001).

Thus, CSCL requires careful construction of the collaboration so that interactions benefit the

individual and group (Dillenbourg, 1999).

Research in CSCL accounts for the social and construction elements of the learning process

in its application of technology (Nkambou et al., 2010). Soller’s work to understand the social

interactions that support learning shows that students must ask questions, explain and justify

opinions, articulate reasoning, and elaborate and reflect on knowledge (Soller, 2001). Further,

Dillenbourg states that “knowledge generative” interactions such as giving explanations, en-

gaging in argumentation, negation, conflict resolution, or mutual regulation lead to positive

learning outcomes (Dillenbourg et al., 2009). Studies also suggest these kinds of interactions

lead to deep learning, or the process of learning for transfer (Walker et al., 2009a). As these

interactions do not necessarily emerge without guidance, CSCL applications structure group

activity in order to promote these behaviors (Magnisalis et al., 2011); (Tchounikine et al., 2010).

18

2.2.1 Structure of CSCL

The classical approach to providing support in collaborative settings has been through

macro-scripts, or pedagogical scripts (Tchounikine et al., 2010). The scripts introduce struc-

ture and constraint, and guide the collaborative interaction between students mediated by a

computer-based system, whether in part or whole (Tchounikine et al., 2010). They track stu-

dents’ progress with the script sequences, prompt engagement in activities, and offer additional

resources as needed (Kobbe et al., 2007). Thus, the work of the CSCL system rests in the

design and implementation of situation, interaction, and processes that promote collaborative

learning (Dillenbourg, 1999)

Kobbe’s work synthesizes this objective in a concise framework intended to increase the

reusability of scripts among researchers and practitioners (Kobbe et al., 2007). The work

describes a thorough description of the components and mechanisms of a script as seen in

Figure 5.

Figure 3: Scripts components and mechanisms.

19

Script components consist of participants, “the activities that they engage in, the roles they

assume, the resources that they make use of, and the groups they form” (Kobbe et al., 2007).

Script mechanisms include group formation (the distribution of participants over groups), com-

ponent distribution (the distribution of components over participants) and sequencing (the

distribution of components and groups over time (Kobbe et al., 2007).

Until recently, traditional script support has been fixed in that the same level of support is

consistent across students regardless of ability or interaction (Walker et al., 2009a). Due to the

nature of fixed support, the same script may provide insufficient support for poor collaborators,

unnecessary support for experienced collaborators, and on-target support for others (Walker

et al., 2009a). Recent developments in CSCL research have shifted their focus to developing

systems that offer dynamic adaption to student interaction conditions. Magnisalis describes this

type of CSCL system as “a helpful experienced partner who intervenes unobtrusively and just

in time to support group learners in achieving a productive level of interaction and therefore in

accomplishing their task” (Magnisalis et al., 2011).

2.3 Collaborative Intelligent Tutoring Systems

Both the CSCL and ITS community shape the current context of technology-enhanced

learning. CSCL shows that students learn effectively in groups and computational environments

can support collaboration. Further, ITS purposes to offer adaptive learner support that models

an individual user, the learning domain, and the tutoring strategy. Tchounikine (2010) soundly

juxtaposes the fields as follows:

20

Whereas Intelligent Tutoring Systems address issues such as the analysis and under-

standing of learners’ activity and production, problem solving or interaction control,

classical CSCL systems have not addressed these issues at all. Whereas ITS research

has, since its inception, leveraged Artificial Intelligence techniques, CSCL research

has instead focused on HCI issues related to providing students with a good expe-

rience of communicating with their fellow students. (p. 459)

Recently, research efforts have focused on merging the affordances of both areas to capital-

ize on the benefits of group learning and adaptive support (Magnisalis et al., 2011). Several

researchers in the CSCL community are exploring how adaptivity, automated analysis, and

feedback integrate into CSCL approaches (Tchounikine et al., 2010). Similarly, ITS researchers

are extending their individual use ITS systems to accommodate collaborative support through

tools such as topic detection and feedback in group chat (Kumar and al, 2007; Walker et al.,

2009b; Olsen et al., 2014; Olsen et al., 2015). The CSCL community’s work on shaping effective

collaboration must guide the creation of ITS systems and their integration of collaborative ca-

pabilities. In general, the creation of these Collaborative Intelligent Tutoring Systems (CITS)

is considered to be more laborious than a typical ITS because it accounts for group dynamics

and social relations in addition to pedagogical considerations (Magnisalis et al., 2011). In any

case, researchers are motivated by the established benefits of collaborative learning along side

adaptive support.

21

2.4 CS Education

The push for widespread computer science education (CSE) has received much publicity

in recent years and has coincided with initiatives from the White House down (Richtel, 2014).

The demand for workers with Computer Science (CS) skills is at an all-time high. Tech leaders

across the industry, including Facebook CEO Mark Zuckerberg, have been quite vocal and

supportive of the need for CSE beginning even at the K-12 level (Richtel, 2014). Cities such

have Chicago have embraced this push and launched programs with the support of the National

Science Foundation to prepare their students with computer science skills (Foundation, 2016).

At the same time, coding “bootcamps” have emerged for older CS learners that place them in

immersive, extensive, and expedited learning experiences (Gonzalez, 2015).

Researchers have implemented several automated and adaptable approaches to supporting

student CS learners. Early work on ITSs for CS education focused on dialogue-based interaction

to discuss a novice’s program design (Lane and VanLehn, 2004). More recent ITSs such as

JavaTutor help students learn introductory CS through feedback on their problem solving as

well as affective states (Ezen-Can and Boyer, 2014; Wiggins et al., 2015). While other focus on

tutoring for SWL and database design through use of worked out examples and eye tracking

(Najar and Mitrovic, 2013).

Additionally, the growing model of CS Education has shifted to an emphasis on collaborative

work which has been correlated to both higher retention rates of underrepresented students and

better learning (Porter and Simon, 2013; Porter et al., 2013). Specifically, CS educators have

adopted the practice of pair-programming for the classroom (Porter et al., 2013; Salleh et al.,

22

2011b) which is discussed more extensively in Section 2.4.2. Peer instruction has also become

another successful methods of student support (Porter et al., 2011; Porter et al., 2016). In this

pedagogy, students are active participants in the course through individual consideration and

small group discussion of conceptual questions.

At the university level, CS has traditionally suffered from high attrition rates (Porter et

al., 2013). This is especially true for underrepresented groups including women and minorities

(Washington et al., 2015). A factor that has contributed to low retention is the student difficulty

in grasping foundational CS concepts. This, in turn, leads to low performance and subsequently

low motivation in pursuing the discipline (Beaubouef and Mason, 2005; Howles, 2009; Lewis,

2010). The most fundamental data structures and the algorithms used to manipulate them

include linked lists, binary search trees, and recursion. Moreover, the joint task force of the two

major CS professional societies, ACM and IEEE, have both noted the difficulty of these topics

for students (ACM/IEEE-CS Joint Task Force on Computing Curricula, 2013).

2.4.1 Linked Lists

The domain of focus for my intervention is the linked list data structure. Linked lists allow

for data to be stored in individual nodes and connected to each other via pointers. Access to

the data must occur through pointer reference and requires sequential traversal of the data to

perform common operations including search, insertion, and deletion.

The list is often depicted in a graphical representation as boxes (nodes of data) and arrows

(pointers). This representation aids in disambiguating the complexity of the data structure,

especially for novice CS learners. An example list is shown in Figure 2.

23

Figure 4: Example of a linked list.

2.4.2 Pair Programming

Pair programming is a practice that situates two coders at a single workstation. The coders

assume the roles of driver and navigator. The driver types the code while the navigator checks

for errors and plans the overall coding strategy. The practice began as an extreme programming,

agile software development methodology within industry, and has subsequently found success

in the classroom.

Many reports set forth the benefits and drawbacks of pair programming along and its usage

within both industry and education (Maguire et al., 2014; Rodriguez and Boyer, 2015; Williams

and Kessler, 2000; Walle and Hannay, 2009; Braught et al., 2011). These benefits include in-

creases in student enjoyment, confidence, learning, learning speed, and coding efficiency (Salleh

et al., 2011a; Porter et al., 2013; Pears, 2010). However, the benefits of pair programming

are often met with apprehension on the part of instructors and some students. Traditionally

24

viewed as an individual task, coding has a stigma of solitude that influences instructors to

believe learning can only occur while designing, coding, debugging and testing individually.

In fact, working with others on a program is often labeled “cheating” (Van Toll et al., 2007).

Moreover, instructors often fear that if two student work together, only one student will do all

of the work leaving the other with little engagement and learning (Chigona and Pollock, 2008).

Williams served as the catalyst for exploring the role of pair programming in education after

its introduction as an extreme programming, agile software development methodology (Williams

et al., 2000). Since then, preparing students to effectively collaborate and work in teams has

become a core component of CS curriculum and accreditation requirements (Commission, 2014)

(ACM/IEEE-CS Joint Task Force on Computing Curricula, 2013).

Within industry, an earlier study of pair programming paired programmers randomly and

measured programmers productivity in terms of code produced over time and code error rate

(Jensen, 2003). A development team consisting of 10 individuals, five pairs, experienced a 127

percent gain in code production per month and a decline of three orders of magnitude in coding

errors.

In terms of pair programming use in the classroom, its benefits have also concerned increases

in coding quality and speed. In Williams’ foundational work on classroom pair programming,

both students’ self reported time spent on assignments and coding quality (based on the per-

centage of test cases which passed) were assessed (Williams and Upchurch, 2001). A more

recent study compared individual versus pair programmers in terms of duration and effort in

solving two coding problems in two sessions (Gmez et al., 2013). Duration captured the total

25

time spent coding while effort denoted the amount of person-hours, thus duration*2 for pairs.

The study examined seven pairs and seven individuals and found that pair programmers had

significantly less duration while individual programmers had significantly less effort.

Pair programming has also been shown to improve student confidence and enjoyment in CS

courses. In McDowell’s work, students were assigned to a programming lab that either held

individual or pair programming exercises for the duration of the semester. The study showed

that (McDowell et al., 2006) pair programmers had higher program quality (measured via scores

on programming assignments), course enjoyment levels, and significantly higher confidence in

their programming solutions. With these types of outcomes, use of pair programming has

helped to spur retention of CS students in introductory and subsequent courses (Porter and

Simon, 2013) (Porter et al., 2013). In terms of benefits to individual students participating in

classroom pair programming, Braught has shown that individual programming skills of lower

SAT students improve, and pair programmers are more confident in their work and are more

likely to successfully complete the course (Braught et al., 2010).

2.5 Building on Our Previous Work

2.5.1 Standard ChiQat Tutoring System

Standard, non-collaborative ChiQat is an ITS for CS Education developed by the NLP

Group at UIC. It aims to improve a student’s practical learning of the linked list data structure

among other foundational CS data structures and algorithms. In the linked list lesson, a problem

is presented to a student in both textual and graphical representation. The student is then able

to programmatically solve the problem. Moreover, the system provides relevant positive and

26

negative feedback to the student in a manner analogous to the one-on-one human tutoring

experience from which the system was derived. Example problem types involve linked list node

insertion and removal in addition to other more complicated operations such as searching for a

node in the list. The architecture of standard ChiQat is depicted in Figure 5 and is comprised of

six major components as follows: graphical user interface, problem model, constraint evaluator,

feedback manager, procedural knowledge model, and student model which are each described

further in Section 3.3. There is abundant reference detailing the architecture, tutoring strategy,

and subsequent learning outcomes of students using the system (Fossati et al., 2008; Fossati et

al., 2009; Fossati, 2013; Green et al., 2015; AlZoubi et al., 2015; Harsley et al., 2016a)

Figure 5: Standard, non-collaborative ChiQat Architecture

27

2.5.2 A Baseline Dataset from KSC-PaL

Prior work in our research lab evaluated a collaborative tutoring system through the design

of a simulated peer learning agent. KSC-Pal, the thesis work of Cynthia Kersey, situated

students with a virtual peer as they learn foundational CS topics including linked lists, stacks,

and binary search trees. Thus, my research serves as the second examination of collaborative

learning for the UIC NLP group. My work differs from Kersey in that I do not aim to simulate

a peer. Instead, the CITS will facilitate more productive human-human pair interaction and

still function as an expert tutor for domain content. Nonetheless, Kersey’s work provides a

baseline data source for analyzing the features of collaborative interaction that lead to student

learning.

Kersey’s overarching goal was to create a virtual peer which would act in lieu of one of the

students. In order to design the agent, Kersey first examined human-human pair interaction

all captured through the KSC-Pal interface (see Figure 6). In KSC-PaL’s initial data collection

phase, students were situated in separate physical locations and communicated through the

system’s chat interface as they worked to solve programming problems. Her corpus consisted of

15 pairs. For each problem, students either corrected or synthesized code as a pair. GUI changes

and chats were automatically logged for analysis. The subsequent analysis of the human-human

interaction then motivated the design of the peer learning agent.

Kersey examined the role of two types of initiative shifts. Dialogue-initiative tracks the

conversation leader through exchange type (i.e. assertions, commands, questions, and prompts)

while task initiative tracks leadership in problem solving (Kersey-Howard et al., 2015). Task

28

initiative encompasses “any action by a participant to either achieve a goal directly, decompose

a goal or reformulate a goal” (Kersey-Howard et al., 2015). Kersey hypothesized that initiative

shifts are correlated to knowledge co-construction, or episodes in which students build a shared

meaning of a concept during problem solving (Kersey-Howard et al., 2015). KCC episodes are

known as a pivotal markers of overall learning during collaborative exercise. She coded the

corpus for dialog initiative, task initiative, and knowledge co-construction episodes.

Ultimately, Kersey’s work found that task initiative shifts were indeed indicative of KCC

episodes and that both dialogue and task initiative were significant correlates to learning. Thus,

she was able to design a virtual peer that monitored the number of initiative shifts in the chat

dialogue and proactively encouraged task initiative if the level of initiative shifts fell below a

given threshold (Kersey-Howard et al., 2015). In doing this, the virtual peer was created in

such a way to encourage KCC.

29

Figure 6: The KSC-PaL interface. Distributed, student pairs worked on coding and communi-

cated via a chat interface.

CHAPTER 3

COLLAB-CHIQAT: APPLICATION OF A FRAMEWORK FOR

COLLABORATIVE INTELLIGENT TUTORING SYSTEMS

(This chapter includes and expands on portions of my paper previously published in Harsley,

Rachel. 2014. “Towards a Collaborative Intelligent Tutoring System Classification Scheme.” In

Proceedings Of The 11th International Conference On Cognition And Exploratory

Learning In The Digital Age (Celda 2014)).

3.1 Summary

In order to critically review and analyze any work effectively, a method of evaluation is

necessary. This is especially true when the work spans multiple, broad areas of research as do

Collaborative Intelligent Tutoring Systems (CITs). Thus, a primary contribution of this thesis

was a comparative analysis between multiple studies in this domain resulting in a pioneering

classification scheme for CITs that blends ITS and CSCL frameworks (Harsley, 2014). This

analysis motivated the structuring of the subsequent investigation of how design choices in a

CS CIT influence learning and collaborative interaction. The framework and our investigation’s

experimental design choices and motivation are presented in this chapter.

3.2 CITs Framework

The scheme consists of three categories: unstructured, semi-structured, and fully struc-

tured. These categories serve as points of reference across a spectrum of design choices from

30

31

far left CITs with limited structuring to far right CITs with expansive structuring. Moreover,

we acknowledge that while some interventions fall on a point outside of the three categories,

many of the design choices that define the intervention are captured in the scheme dimensions

nonetheless. Thus, the classification scheme is intended to support the design and analysis of

CITs. 1 Overall, a CIT can be defined and analyzed via the following dimensions:

1. Modeling: how the system models learners and whether the learning domain includes

collaborative behavior skills.

2. Group Dynamics: how groups and roles are determined

3. Collaboration Cues: the impetus of the initial collaboration and the timing of ongoing

communication.

4. Pedagogical Guidance: how the topic is determined and how feedback and activity facili-

tation is implemented

5. Technology: the tools of the system for interaction

This classification scheme encompasses the main operational dimensions of a CIT. A CIT

is a technological, collaborative learning tool (technology) that provides systematic support

to learners (pedagogical guidance) working within groups (group formation) either assigned

or at-will (collaboration cues) and maintained in computational representations as they work

1We define the scope of CITs to collaboration to human-human collaborators who work with a
tutoring system, not the simulation of a virtual peer(s) with an individual.

32

to achieve a learning goal (modeling). Table I provides detailed criteria for the classification

dimensions along with a mapping to classification classes.

The modeling dimension encompasses the student and domain modules which are compo-

nents of the basic ITS architecture (as discussed in 2.1.1). The group dynamics dimension

accounts for the participants, groups, and roles components and the group formation mech-

anism characteristic of CSCL architecture. The collaboration cues dimension deals with the

sequencing mechanisms of CSCL architecture. The pedagogical guidance dimension concerns

both the tutoring module of the basic ITS Architecture and its counterpart within CSCL design,

the activities component of scripts. This additional emphasis beyond the modeling dimension

is due to the added significance of tutor modeling for collaborative interaction. Finally, the

technological guidance dimension entails the resources component and distribution mechanisms

of CSCL architecture along with the user interface component of basic ITS architecture.

3.2.1 Unstructured CIT

In the unstructured CIT, like a standard ITS, the system’s focus still remains on student

grasp of domain knowledge. However, the system accommodates for collaborative work. There

is no modeling of the group or pedagogical directives in relation to assisting collaborative be-

haviors. In this type of CIT, group formation and role forming is also left to the students.

Moreover, the students determine the nature of their collaboration in terms of when they com-

municate and the tools to facilitate their collaboration. For example, while working with a

Math CIT, the students may elect to speak with others during each step of problem solving

or after an incorrect solution notification. Finally, the pedagogical strategies of the system do

33

not focus on bettering collaboration. Overall, the students must determine how to collaborate

with each other without the guidance of the system. Examples of unstructured collaboration

interventions include allowing casual collaboration as students work individually with a math-

ematics tutor and even the addition of a social network with chat and user profiles in another

math tutoring system (Arroyo et al., 2012; Virvou and Sidiropoulos, 2013).

34

TABLE I: DETAILED CLASSIFICATION SCHEME FOR CITS WHICH INCLUDES CRI-

TERIA FOR THE FIVE DIMENSIONS.

35

3.2.2 Semi-structured CIT

In semi-structured collaboration, the system offers a mix between assisting students in

their domain learning and their collaborative interaction. In this class, the modeling uses a

combination of individual and group metrics to support collaboration. Moreover, both measures

are also used to support domain learning. The group formation and role forming is still left to

the students. However, the collaboration cues are such that the system prompts students when

to collaborate in addition to allowing for students’ at-will interaction. The impetus for the

collaboration can follow a range from student’s voluntary grouping to the system mandating

groups. Finally, the system guides the students on how to provide support to others, and can

offer activities to guide the collaboration as well as the tools for the collaboration. In the

biology tutoring system, Rashi, students are guided in a semi-structured manner with system

guidance on more and when to collaborate (Dragon et al., 2010). Moreover, another example

of semi-structured collaboration includes the COMET tutoring system which emulates the

human-tutored medical PBL session which typically occurs in group settings on a whiteboard

(Suebnukarn and Haddawy, 2007)

3.2.3 Fully Structured CIT

In the most structured CIT type, fully structured, the system treats collaborative skill

learning as a full learning objective in addition to domain learning. The system models both the

individual and the group in order to provide domain learning support and improve collaborative

behaviors. Further, the system requirements determine the groups as well as functional roles

within the group. For example, the system may intend for users of the same prior knowledge

36

level work together and they each take turns acting in a pre-defined role of peer tutor and

tutee as in the collaborative version of the well-known Cognitive Tutor Algebra (Walker et al.,

2009b).

In the fully structured design, collaboration is required for the system task completion.

Additionally, the system will prompt the students in regards to when to communicate. The

system offers activities, normally in relation to the assigned roles, and the system guides the

students on how to provide support to their co-collaborators. Finally, the system restricts

students to a set of tools for their collaboration (i.e. chat interface). These tools are provided

for system tracking of collaboration and domain learning status. The COLLECT-UML tutor,

another example of the fully-structured collaboration class, offers students guidance on both

effective collaboration behavior and learning UML modeling (Baghaei et al., 2007).

3.3 Collab-ChiQat Overview

The CIT classification analysis work shows that CITs exist across a spectrum of modelling

options. Thus, the CIT classification scheme served as a necessary tool to guide design choices

in the investigation of their effect on learning and collaboration. The newly adapted system,

Collab-ChiQat, was initially evaluated across two different types of collaboration structuring,

unstructured and semi-structured. After discovering statistically equivalent learning gains re-

sults from these version, we elected to not to pursue the fully-structured intervention in this

thesis work. Instead, we designed a third, hybrid, system which lies on the middle of the

spectrum between unstructured and semistructured.

37

Our choice not to implement the fully-structured version is primary due to our emphasis

on “real-world”, classroom ready tutoring support. Both logistical concerns and our current

findings cause reservation for pursuing this version. While many of the challenges of the fully

structured system are addressed in the semistructured system (ie aspects of modeling group

interaction), certain aspects of the extension of Collab-ChiQat to this level of collaboration

are restricted by technical and logistical constraints. Namely, multiple experiments attested

to the poor quality of the automatic speech recognition in the classroom setting. Moreover,

the necessary ability for the system to guide group assignments was infeasible given unplanned

student absences as this was a one-time intervention. In any case, our current work provide

insight as to the possible outcomes in the fully-structured system from a theoretical perspective.

Firstly, we created Collab-ChiQat to support learning between pairs of students. The design

choice to facilitate pair collaboration naturally extended from the positive body of research in

support of pair programming. Two students share a single computer workstation as seen in

Figure 7. Each of the students in the pair is equipped with a microphone headset. Before

students begin using Collab-ChiQat, they are introduced to pair programming via a short

video describing pair programming (see Appendix B).

38

Figure 7: Collab-ChiQat pair programming setup. The pair share a single workstation and

switch between navigator and driver roles.

In terms of architectural design decisions, Collab-ChiQat maintains all of the major compo-

nents present in standard ChiQat. However, the collaborative system differs from the standard

version in its design of the graphical user interface, student model, and feedback management.

In Collab-ChiQat, a joint student model, collaboration panel, collaboration feedback manager

and collaborative interaction model are introduced to the system architecture. These modifica-

tions are necessitated by Collab-ChiQat’s added objective which is to measure, evaluate, and

provide feedback regarding collaborative behavior in addition to supporting domain learning.

The architecture is depicted in Figure 8.

39

Figure 8: Collab-ChiQat architecture with newly added components highlighted.

The extent to which collaboration is facilitated by the system varies across the collaborative

system: unstructured or semi-structured. Thus, the system’s use of the collaborative compo-

nents also differs across these versions. More detailed description of the Collab-ChiQat system

versions is given in Section 3.4.

3.4 Architectural Design Choices in Collab-ChiQat

In unstructured Collab-ChiQat, students focus on CS domain learning with no system-

provided support for collaborative interaction. However, in the semi-structured version of

40

Collab-ChiQat, students focus on CS domain learning and have feedback regarding their col-

laboration. While the system relies on several key, standard ChiQat components, distinct design

decisions required for the collaborative implementation are described below.

3.4.1 Voice to Text Interpreter

The Voice to Text Interpreter translates each student’s spoken utterances to text in real-

time. The model is driven by the Google Speech API (Google, 2013). The textual represen-

tation is accompanied by time-stamps which allows for the student-to-student dialogue to be

reconstructed by the system. The text corpus of peer dialogue interaction is then used by the

collaboration interaction model to estimate the student’s progress toward effective collabora-

tion.

3.4.2 Student Model

The student model works as the storehouse of information pertaining to a student’s problem

solving behavior. The system monitors all GUI interactions as well as the timing of these

actions. For example, the system tracks the time between code-submission attempts, coding

error and success rates, and automated estimates of the number of spoken utterances. The

collection of information available in both the joint and individual student models is used by

both the domain and collaboration feedback manager to synthesize relevant and properly timed

feedback.

In both conditions, the system equates individual knowledge of domain content with the

group knowledge. The modelling for unstructured ChiQat closely emulates standard ChiQat.

41

However, there are several adjustments to accommodate for the student pair which are outlined

below.

Joint Student Model: In Collab-ChiQat, the Joint Student Model is equivalent to the

individual student model in standard ChiQat. In effect, the JSM treats the student pair as a

single student in terms of the following behaviors:

1. history of students’ actions (i.e. GUI clicks and code submission steps)

2. timing of students’ actions (i.e. between GUI interactions, between code submissions)

3. feedback (i.e. # of syntax feedback, # positive/negative proactive/reactive feedback)

4. “undo/redo” behavior

5. # problem attempts and problems solved

Individual Student Models: In the case of unstructured Collab-ChiQat, the individual

student model serves as the source of data regarding students’ individual actions. This includes

code ownership and code compilation error and success rates and spoken interactions. In partic-

ular, a rough estimation of the number of speaking turns (utterances) is derived automatically

from the transcribed speech.

3.4.3 Collaborative Interaction Model and Feedback Manager

The collaborative interaction model maintains information about the health of the pair’s

collaborative behavior. The collaboration interaction model uses data from the student model

and voice to text interpreter in order to create meaningful metrics for monitoring collaboration.

In turn, these metrics inform the collaboration feedback manager which provides feedback to

42

the student relative to their collaborative behavior. Metrics used to monitor the collabora-

tion include code ownership rates, spoken utterance rates, and received peer bonuses. The

unstructured condition does not provide collaboration feedback.

The design choice for feedback in the semi-structured condition is grounded by both CSCL

and ITS research. One such method of feedback is via the display of group and individual

performance (Phielix et al., 2010; Phielix et al., 2011; Jrvel et al., 2015). These finding inspired

the design of the coding compilation performance bar graph. Further, visualization of individ-

ual participation and peer feedback have also led to higher signs of engagement and improved

performance (Janssen et al., 2007; Phielix et al., 2011; Janssen et al., 2011; Gabelica et al.,

2014). Specifically, through Dillenbourg’s work, we recognize that the role of our collaborative

technology tools is not simply to mimic face-to-face conversation, but to instead avoid the imi-

tation game and conversely augment the experience of collaborators (Dillenbourg, 2005). This

work described how both archival tools (message history) and GUI mirroring of interactions

(graphs of individual opinions and system interactions) could augment collaborator experience.

Thus we adapted a similar rationale in our design of the participation pie chart, performance

overview graph, and peer bonus tool. Specifically, our work archives student success in coding

over time and we plot participation (of code and speech) as a mirror into group dynamics.

Finally, CSCL literature has also shown that promotive interdependence, when students un-

derstand individual success is tied to a common group goal, is a central tenant of effective

collaboration (Dillenbourg, 1999; Soller, 2001; Strijbos, 2011). Thus, we provide students with

an overall rating of the collaborative performance.

43

Furthermore, our design choices are also motivated by analysis of the KSC-Pal data-set. This

data was intended to inform the design of KSC-PaL, a simulated peer learning agent, however, it

is applicable to Collab-ChiQat as it consists of log and chat data from two collaborators working

with an a ITS for CS Education. Overall analysis and evaluation of the KSC-PaL collaboration

data confirmed that tracking partner contribution in the form of number of spoken utterances,

code submissions, and GUI interactions is a valid metric for modeling learning within our

domain. This result was also confirmed in another study regarding learning gains and pair

programming process (Rodrguez et al., 2017). Additionally, the data showed that balance in

pairs significantly correlated to learning. The list of manager supported feedback and rationale

is given in Table II below.

44

Feedback

Type

Explanation Collab-

ChiQat

Component

Description

Student

Partici-

pation

The manager tries to promote equal

sharing of ideas among collaborators.

If one student has not spoken for some

time or a student is monopolizing the

conversation, the manager will present

appropriate feedback. This can be

seen as a load balancing task with the

goal of symmetry.

Pie Chart Compares # of spoken utterance and code sub-

missions between collaborators. Intended to

showcase individual performance contribution

and promote balance.

Group

Process-

ing

The manager encourages group pro-

cessing along with group and self as-

sessment of performance by providing

individual and group evaluation.

Bar Graph Displays # of coding compile errors vs # suc-

cessful compilations. Visualizes group perfor-

mance per problem.

Sentence

Openers

Text input area for brief explanation of part-

ner’s achievement using sentence openers i.e.:

encouraged me by

explained

improved our solution by

Encourages individual assessment and reflection

on self-performance.

Promotive

Interde-

pendence

The manager connects individual ac-

tions to the overall success of the

group. Thus a team member can only

perform highly if their partner does as

well.

Collaboration

Score

Offers linear metric based on system-detected

collaboration events.

TABLE II: TYPE OF COLLABORATION FEEDBACK SUPPORTED IN COLLAB-CHIQAT

ALONG WITH RATIONALE.

45

3.4.4 Graphical User Interface

The Collab-ChiQat graphical user interfaces (GUI) handle student interaction with the

underlying system. It is composed of the problem’s textual and graphical representations. It

also contains the tutor feedback panel as well as an area for the students to type and submit

code in order to solve the problem. It is shown in Figure 9.

Figure 9: Collab-ChiQat graphical interface with feedback, problem panel, graphical state

representation, and coding area, including code owner.

46

In Collab-ChiQat, a secondary GUI, the collaboration panel, is introduced. The panel serves

as the view for collaboration feedback. The panel is shown in Figure 10.

Figure 10: The collaboration panel introduced in Collab-ChiQat.

47

In unstructured Collab-ChiQat, the main GUI remains the same as standard ChiQat with

the addition of code owner selection for each submission. The collaboration panel is introduced

in semi-structured Collab-ChiQat. The collaboration panel serves as a visualization of indi-

vidual participation and group performance. The panel showcases the components listed in

Table II.

CHAPTER 4

MEASURING THE EFFECT OF COLLABORATION ON STUDENT

LEARNING AND INTERACTION

(This chapter includes and expands on portions of my paper previously published in Hars-

ley, Rachel, Davide Fossati, Barbara Di Eugenio, and Nick Green. 2017. “Interactions of

Individual and Pair Programmers with an Intelligent Tutoring System for Computer Science.”

In Proceedings of the 48th ACM Technical Symposium on Computing Science Ed-

ucation.)

4.1 Summary

A primary contribution of this thesis is the evaluation of a collaborative ITS intervention

in terms of the benefits and drawbacks as compared to interventions intended for individual,

one-on-one use. In this chapter we compare the interactions of student programmers working

as individuals and as pairs to solve coding problems using either standard ChiQat or Collab-

ChiQat. Chapter 5 examines the effect of design choices within the pair programming condition

in comparison of unstructured and semistructured Collab-ChiQat. 1. Our analysis encompassed

over 53,000 log events from 116 students. To our knowledge this study is the first of its kind

to explore on a large scale pair and individual programming interaction in fine-grained detail,

1As will be discussed in Chapter 5, there were no significant difference in learning gains between the
unstructured and semistructured conditions. Thus, for this comparative analysis, we combine the two
conditions into a single condition labeled ’pair programming’.

48

49

including timing, example usage, compile success, and coding efficiency. We used unpaired t-

tests to discover statistically significant differences in interactions between individuals and pairs.

We discovered that the collaborative learners used fewer system-provided examples, completed

problems faster and more efficiently, and showed higher indications of engagement with the

task. Also, the majority of students in each condition reported satisfaction with the activity.

Just as importantly, in both conditions, students experienced significant learning gains.

4.2 Evaluating Collaboration in CS

As described in Chapter 2, interest in collaborative student engagement continues to grow

as Computer Science institutions and instructors in higher education and beyond look for ways

to improve student retention. One such medium of collaboration has been pair programming.

This method has many documented benefits, however, it is still often met with apprehension

on the part of instructors and some students.

Our study puts both the benefits and concerns of pair programming to the test, and shows

the advantages of collaborative learning at a fine-grained system interaction level. We compared

individual programmers to pair programmers as they solved coding problems using our ChiQat-

Tutor Intelligent Tutoring System (Green et al., 2015). Over 53,000 interactions were captured

as 116 students participated. We assessed students’ learning gain, problem solving time, reliance

on system examples, coding efficiency, and signs of engagement within the activity. Finally, we

compared students’ perceptions of the system gathered from surveys. We discovered that while

both groups exhibited significant learning gains, pair programmers completed problems more

quickly, relied less heavily on system-provided examples, coded more efficiently, and showed

50

higher signs of engagement. Moreover, students in both conditions found the system equally

helpful.

Of the studies which examine pair programming, none are both large scale and fine-grained

allowing for the ability to analyze line by line code and system interaction. With the exhaustive

trace of interactions we gather while students work with the tutoring system, we explore details

such as error rate, coding redo/undo behavior, copy and pastes, time to task completion, and

signs of on-task engagement. Furthermore, our outcomes concern a one-time intervention. To

our knowledge, this is the first study of its kind.

4.3 Experiment Design

Our study took place during two single interventions of an undergraduate level introductory

Computer Science programming lab. The individual programming condition occurred in the

spring of 2015, while the pair programming condition occurred in the fall of 2015 of the same

course. The course was taught by a single professor with adherence to identical curriculum

and pedagogical strategy across both semesters. The course focuses on introducing students to

software development tools and practices. Additionally, it focuses on implementing foundational

data structures and algorithms such as stacks, linked list, and depth first search to solve real-

world problems. For example, one week, students are given a project to implement a linked

list in C++ with support for insert, delete, and find operations. The following week they

are required to implement a program which uses the linked list to store a waiting list for a

restaurant.

51

In both Spring and Fall, our experiments ran over four different sessions of the course. In

both conditions, students were given 12 minutes to individually complete identical pre and post

tests regarding linked lists. The test covered key concepts such as node deletion and insertion

and debugging errors. Students also completed a brief survey regarding their overall experience

with the system. Students chose partners at the onset of the collaborative activity. In both

cases, students used the system for a total of 40 minutes. Seven coding problems were available

for students to solve.

Prior to beginning the pre-test, students in the collaborative condition collectively watched

a three-minute video on pair programming (AgileAcademyAus, 2011). This video was shown

in lieu of an additional pre-test on collaboration knowledge in order to avoid pre-test effect

(Little and Bjork, 2012); (Richland et al., 2009). In the collaborative condition, students chose

their own partners and each pair was stationed at a single workstation. Each student was also

equipped with a headset as seen in Figure 11. Upon completing post-tests, students were given

an exit survey regarding their perception of Collab-ChiQat and their abilities, their attitudes

towards CS and the course, and their understanding of successful pair programming traits (see

Appendix C). As the survey in itself introduces collaboration terms, this survey could not be

used as a pre-test measure. The survey was derived from Braught’s survey administered to

students after a semester of pair programming (Braught et al., 2011).

All student interactions with the systems were exhaustively logged for both the individual

and collaborative conditions. This includes a time-stamped trace of student activity such as

clicks and keyboard events allowing us to later retrace the students’ activity on a fine grained

52

Figure 11: Student pairs using Collab-ChiQat.

level. The two conditions shared a common feature set of 106 items, many of which are typical

for all ITSs, such as time spent on a problem and number of errors. In total, 53,585 events were

mined for our current analysis. Table III outlines key features collected in both conditions.

There were a total of 116 students analyzed in the final data set with 75 in the individual

condition and 41 in the paired condition. In the paired condition, we restricted our dataset to

students who had consented to the study and who were new to the system along with their

partner (n=41).

53

TABLE III: SELECT SHARED INTERACTION DATA SET FEATURES BETWEEN INDI-

VIDUAL AND PAIR CONDITIONS.

Problem Usage Coding Example Usage

Correct solution submitted Operation executed Example started

Incorrect solution submitted Operation pasted Example completed

Problem duration Operation undone Example duration

Problem restarted Operation redone Example step taken

Problem solved Syntax help requested

Navigation and GUI Interaction Tutor Interaction

New problem selected Feedback given

Problem list requested Correct answer response to feedback

Scratch pad next requested Incorrect answer response to feedback

Scratch pad prev requested Tutor feedback question given

Widget moved Feedback acknowledged

Window maximized

Window minimized

54

The goal of this study is to present a comparative analysis of how individuals and pairs

interact with the system, engage in programming, and subsequently learn. In order to gain

insight on similarities and differences between conditions, we performed unpaired t-test between

each of the logged features including those listed in Table III. In our findings, we analyze those

features with significant and notable distinctions between the conditions.

4.4 Findings

In this section, we describe the differences in condition that arose, arranged by theme.

4.4.1 Learning

The primary goal of our system is to help students learn computer science. We use our prior

study of human tutoring data as a comparison baseline for students’ learning gain and adopt

the following measure of learning gain:

gain = postTestScore− preTestScore (4.1)

In the human tutoring work, students achieved an average learning gain of .14. Results of

the current study showed student learning gains to be .10 and .11 for the individual and pair

conditions respectively. Notably, the difference in pre and post test was significant in both

cases though shy of the human tutoring baseline. There was no significant difference in the

learning gain between conditions. Additionally, we note that the difference in pre-test scores

between conditions was not significant. This allows us to attribute the results to factors beyond

the incoming knowledge level of students. Details of student test scores are given in Table IV.

55

Tutor N
Pre-test Post-test Gain

µ σ µ σ µ σ

Human 54 .40 .26 .54 .26 .14 .25

Individual 75 .49 .20 .59 .20 .10 .18

Pair 41 .51 .20 .62 .20 .11 .17

TABLE IV: INDIVIDUAL AND PAIR LEARNING GAINS

With outcome showing significant learning gain, it is safe to establish that students knowledge

of linked lists benefited from the exercise in both the individual and pair conditions.

4.4.2 Example Use

We discovered that as a whole, pairs requested significantly less (p < .01, t = 4.79) system-

provided examples than individuals. However, of the examples that were started, individuals

and pairs completed the examples at a similar rate of around 96% (Note: equal completion rate

does not signify equal time to complete as discussed below in Section 4.4.3). As students in both

conditions solve the same number of problems, the lack of example usage among pairs shows that

they are able to reason about the problem on their own. In other words, the pairs do not suffer

from the absence of examples. This finding should serve as motivation for instructors fearful of

implementing pair programming. In this paradigm, the teacher (or intelligent tutoring system)

56

is not the sole source of technical information. Instead, students can rely on their partner and

collective reasoning.

4.4.3 Timing

We examined both the time students spent on solving problems and the time spent inter-

acting with system-provided examples. On average, students in both conditions successfully

completed the first four problems leaving the remaining three problems incomplete. This is

shown in Figure 12.

Figure 12: Comparison of problem attempts between individual and collaborative conditions.

57

Figure 13: Comparison of problem duration between individual and pair programming condi-

tions for those who solved the problem. Statistically significant differences in bold.

In five out of the seven problems, the pair programmers successfully completed the problem

in less time than individuals. The difference was significant in two cases (Problem 1: p < .01, t

= 2.85; Problem 3: p < .05, t = 2.33). In particular, in the first problem, there is a significant

difference of 131% in the time to solve the problem. The difference shows that the pair is able

to drastically decrease ramp up time. They accomplish both system acclimation and problem

solving. Yet, if this difference solely allude to the pairs’ ability to problem-solve through an

unknown user interface more quickly, the result is nonetheless important.

58

Notably, the two cases in which individuals spend less time than pairs are problem five and

seven. Though the differences in timing are not significant, both of these problems offer a shift

in the problem type and skills required to solve. For example, problem five combines multiple

skills from the prior problems (node creation, list traversal, node deletion) in addition to a new

skill (node value comparison). In problem five, none of the pairs elected to use the example,

while only 6% of the individual users did. Given that example use did not seem to be the cause

of the individuals’ timing advantage, this result suggests that while pairs were able to initially

ramp up to the overall task more quickly than individuals, they also reached a plateau. Thus,

the individuals were able to adapt and display the new skills required to solve problem five

at a rate similar to the pairs. The pairs once again translated the knowledge from the prior

problem more quickly than individuals as evidenced in problem six. Finally, in problem seven,

the most difficult of the set, a total of only 22 students completed the problem (12 in individual

condition, and 10 in pairs condition). Of this small portion of students, individuals once again

completed the problem faster (though not significantly). Figure 13 shows the time spent on

each problem.

Timing is also a factor in regards to students’ use of system provided examples. In each

of the seven problems, individuals use examples for more time than pairs. This difference is

significant in four out of the seven examples as shown in Table VI . We infer that pairs used

examples as a catalyst for discussion or hint for problem approach. Thus, engagement with

examples was short, and minimal (as shown in Section 4.4.2). On the other hand, individuals

took time to more thoroughly examine examples, and they relied on examples to a greater

59

degree for each problem. The graphical comparison of example usage duration is shown in

Figure 14. Our future work, will examine the discussion of pairs to gain a better understanding

of their example use and timing.

Figure 14: Comparison of example usage duration between individual and pair programming

conditions for those who used examples. Statistically significant differences in bold.

4.4.4 Coding Efficiency

We measured coding efficiency by examining the number of operations required to reach

a successful solution, the number of undo/redo operations, the number of problem restarts,

60

Example

Number

Individual µ Pair µ p-value t-value

One 92.28 61.55 p = 0.07 t = 1.76

Two 62.65 29.83 p = 0.00 t = 3.04

Three 57.87 8.00 p = 8.36e-06 t = 6.60

Four 47.00 4.50 p = 0.00 t = 4.05

Five n/a n/a n/a n/a

Six 43.28 13.92 p = 0.00 t = 4.22

Seven 35.75 31.27 p = 0.62 t = 0.50

TABLE V: T-TEST AVERAGE EXAMPLE DURATION (SECONDS) BETWEEN THE IN-

DIVIDUAL AND PAIRED CONDITION

61

the number of programming errors, and the number of bad submissions. Pair programmers

were significantly (p < .01, t = 4.63) more efficient in terms of the number of operations per

solution. While individuals required around 23 operations per solution, pairs required only 13,

a difference of 174%. Along the same line, individuals performed around four times more undos

and redos than pairs, a significant difference (p < .01, t = 6.41; p < .05, t = 2.26). This suggests

that individuals were more uncertain of their solution than pairs. In contrast, pairs had the

ability of the navigator to plan and strategize over the direction of the solutions, causing fewer

undos, redos, and overall operations to result.

Further, we analyzed the difference in problem restarts, coding errors, and bad submissions

in order to further quantify coding efficiency. Students submitted their code to verify that

their overall solution to solve the problem was correct. Additionally, once a student entered

each individual line of code, it was compiled. In each problem, individuals had more compile

errors than pairs. This difference was significant (p < .01) in all but problems five and seven.

Moreover, across all of the problems, individuals submitted more incorrect overall solutions

than pairs. This difference was significant in problems two, three, four, and six. Each of these

problems were similar to the prior problem with a slight increase in difficulty. While pairs were

able to transpose the prior knowledge into the new problem, individuals struggled. Finally,

individuals requested significantly more problem restarts than individuals (p < .01, t = 3.35).

This also signifies the lack of certainty in direction and solution strategy for individuals.

62

Problem

Number

Individual µ Pair µ p-value t-value

One 8.07 3.16 p = 3.04e-06 t = 4.90

Two 3.91 2.06 p = 0.00 t = 3.23

Three 2.14 0.65 p = 8.36e-06 t = 4.64

Four 1.33 0.54 p = 0.00 t = 3.23

Five 0.49 0.32 p = 0.17 t = 1.36

Six 3.07 0.36 p = 0.00 t = 3.25

Seven 1.72 1.33 p = 0.45 t = 0.75

TABLE VI: T-TEST AVERAGE NUMBER OF COMPILE ERRORS BETWEEN THE IN-

DIVIDUAL AND PAIRED CONDITION

4.4.5 Engagement

As signals to quantify user engagement, we explored the students’ use of the lesson tutorial

and resilience to working through a problem. The lesson tutorial was the same for both condi-

tions and walked students through the features of the system including how the command line

editor related to the graphical list representation. Students were invited to launch the lesson

tutorial at the onset of the activity. Pairs elected to proceed through the lesson tutorial for

significantly longer than individuals (p < .01). We believe this is a valid signal to suggest that

63

pairs were 1) more interested in knowing how to use the system and 2) thus more engaged in

the activity. In general, individuals requested the problem list (the primary interface used to

switch problems) significantly more (p < .01) than pairs. Individuals acted on this impulse to

switch problems significantly more as well (p < .01). They switched problems an average of 10

times, though only four problems were solved on average. However, pairs chose a new problem

seven times. Once faced with difficulty in solving a problem, pairs continued to work through

the problem while individuals switched problems.

4.4.6 Satisfaction

Finally, we outline students reported perceptions of the systems based on survey feedback.

Both conditions expressed satisfaction with their experience using the system. The majority of

students in both conditions found the system helpful as shown in Figure 15. There was also

no significant differences in whether students found working with the system to be interesting

Figure 16b. We find this results surprising given the reported research which typically links pair

programming with enhanced enjoyment. We believe this difference may be found in time with

repeated use. Our study was a one-time intervention in a lab session without pair programming

activities and it may have been an uneasy adjustment for students.

4.5 Conclusion

In this chapter, we presented a quantitative study comparing the fine-grained interactions of

individual programmers versus pair collaborators as they work to solve coding problems using

standard ChiQat and Collab-ChiQat respectively. We collected data from over 115 students

resulting in more than 53,000 log events. We discovered that while both individual and pair

64

(a) Individuals (b) Pair Programmers

Figure 15: Breakdown of student survey responses to question: “Do you feel that (Col-

lab)ChiQat helped you learn about linked lists?”

(a) Individuals (b) Pair Programmers

Figure 16: Breakdown of student survey responses to question: “Do you feel that working with

(Collab)ChiQat was interesting?”

65

programmers had equivalent learning gains, students in the collaborative condition took signifi-

cantly less time on most problems, consulted fewer examples, coded more efficiently, and showed

more signs of engagement. Signals such as coding efficiency seem to attest to the superiority of

pair programming. However, we acknowledge that this result may also simply signify that indi-

viduals learn through trial-and-error, a “best” approach when lacking a co-programmer. Thus,

though the individual approach is less efficient, trial-and-error can be a meaningful strategy

in and of itself for those individuals. Lastly, we found that the majority of students in both

conditions found the system to be helpful and interesting.

CHAPTER 5

THE ROLE OF CIT DESIGN ON LEARNING AND COLLABORATIVE

INTERACTION

(This chapter includes and expands on portions of my papers previously published in Hars-

ley, Rachel, Barbara Di Eugenio, Nick Green, Davide Fossati, and Sabita Acharya. 2016.

“Integrating Support for Collaboration in a Computer Science Intelligent Tutoring System.” In

Proceedings of the 13th International Conference on Intelligent Tutoring Systems.

and Harsley, Rachel, Barbara Di Eugenio, Davide Fossati and Nick Green. 2017. “Collabora-

tive Intelligent Tutoring Systems: Comparing Learner Outcomes Across Varying Collaboration

Feedback Strategies.” In Proceedings of the Computer Supported Collaborative Learn-

ing (CSCL) Conference.)

5.1 Summary

In the last chapter, we examined the differences in students’ collaborative use of an ITS in

comparison to individual use. In this chapter, we aim to understand how different methods of

structuring the collaborative condition using the CITs design framework affects student learning

and interaction. While the unstructured Collab-ChiQat does not provide students with feedback

on their collaboration, the semistructured version offers a visualization of group performance

over time, partner contribution comparison and feedback, and general tips on collaboration.

In this portion of the thesis, we first present a contrastive analysis of the student learning

66

67

and interaction outcomes between unstructured and semistructured Collab-ChiQat. We then

describe interactions that were statistically correlated to student learning gains both within

and across conditions. Finally, we explore students reported perceptions of both systems. We

found that students in both conditions have significant learning gains and equivalent efficiency

in coding and limited reliance on system examples. However, unstructured users are more

on-topic in their conversational dialogue while semistructured users exhibit better planning

skills as problem difficulty increases. We discovered that several behaviors consistent with

CSCL literature on effective collaboration also correlate to learning in our intervention. These

behaviors include planning and team symmetry.

5.2 Evaluating CIT Design Choice

It is well accepted that effective collaboration and student learning does not necessarily fol-

low simply by placing students in groups. Instead, broadly, much CSCL research has examined

how collaborative activities can be designed and structured in order to facilitate the most de-

sirable outcomes. Moreover, we recognize that the role of the tutor in structuring collaboration

can widely range from limited structure with no collaboration feedback to high structuring with

role definitions, group formation, and even timing of communication (Harsley, 2014).

Our study contrasts two distinct methods of supporting collaboration through an ITS. In

one condition, unstructured, students do not receive feedback on their collaboration, while

in the second condition, the tutor provides automated feedback regarding performance and

participation. 102 students used the system to solve computer science coding problems and we

collected over 39,000 interactions. Analysis of student learning gain and behaviors allowed us

68

to further understand the effect of CIT design choice. Students in both conditions experienced

significant learning gains, however, there were also significant differences in their example and

tutorial use, time to start problems, and dialogue-based activity. Furthermore, we examined

features with significant correlations to learning and found that students’ practice of planning

and symmetry, known characteristics of effective collaboration within CSCL, was significantly

correlated to learning. Finally, students in both conditions found the system to be helpful and

interesting.

5.3 Experimental Design

As described in Chapter 4, an experiment involving student participants was conducted

in Fall of 2015 in a second year Computer Science programming course. At the onset of the

experiment, students chose their own partners. Our decision to allow student choice in partners

follows the specification of the CIT framework for unstructured and semistructured systems.

Then, the pair was randomly assigned to either the unstructured or semistructured condition.

Each pair was stationed at a single workstation and individually equipped with a headset.

They were given 40 minutes to work with the system. Student interaction with the system was

continually logged. Students were given an exit survey regarding their perception of Collab-

ChiQat, their abilities, their attitudes towards CS and the course, and their understanding of

successful pair programming traits. Students were allowed 12 minutes to perform the pre and

post tests individually. We used the same measure of learning gain presented previously to

assist in our analysis of learning.

69

A total of 102 students used Collab-ChiQat during the study. However, given the extensive

use of ChiQat across several courses over the last two years, a large portion of the students

had used the non-collaborative ChiQat system previously. Their data, along with their partner

(totaling n=60), is held out from our analysis and reserved for future work. Thus, we narrowed

our current analysis to students who who were new to the system along with their partner and

who had consented to the study (n=41).

5.4 Learning Outcomes

Of foremost importance in evaluating the effectiveness of the intervention is the answer to

the question of whether students learned. In answer to this question, the students did learn in

both of the conditions. Overall, student post test scores were significantly better than pre-test

scores (p=.0003). Moreover, the significant difference held across each conditions individually.

Students achieved learning gains averaging .12 in the unstructured condition (p=.007) and .11

in the semistructured condition (p=.018). It is worth noting, the learning gains approach our

prior results for human tutoring1 as shown in Table VII, despite higher average student pre-test

scores.

1The human tutoring condition measured learning gains of students after one 40-minute session of
working with a human computer science tutor.

70

Tutor N
Pre-test Post-test Gain

µ σ µ σ µ σ

Human 54 .40 .26 .54 .26 .14 .25

Unstructured Collab-ChiQat 22 .46 .20 .58 .21 .12 .19

Semi-Structured Collab-ChiQat 19 .57 .23 .67 .24 .11 .28

TABLE VII: COMPARISON OF LEARNING GAINS BETWEEN Collab-CHIQAT VER-

SIONS AND HUMAN TUTORS.

5.5 Dataset

Subsequent to the question of whether students learned, we explored the questions of 1) how

did students interactions compare across conditions and 2) what factors contributed to their

learning. Overall, we are able to take into account several distinct features in regards to the

disposition of the student and their interaction with the system in answer to these questions.

Figure 17 depicts our representation of the student from a known data perspective. These data

points are used as the basis for comparison and correlation analysis.

5.5.1 System Log Features

Collab-ChiQat exhaustively logs all student interaction. This includes time-stamped traces

of student clicks, keyboard events, time to start problems, undo operations, and even number of

lines coded before switching driver, in addition to proactive and reactive tutor feedback. This

71

Figure 17: Data available for each student

allows for later recreation of the students activity on a fine grained level. Post-intervention,

exhaustively logged data provides another point to measure differences in student interaction

and discover predictors of learning.

The standard, processed log features1 common to Collab-ChiQat and non-collaborative

ChiQat include raw counts of undo/redo, error rate, and example usage. However, the standard

features do not account for interactions unique to pairs. Thus this feature set was enhanced in

order to accommodate collaborative learning. The enhanced collaboration feature set is shown

in Table VIII and includes metrics such as coding turn length and time to start a problem.

1The full listing of standard metrics is given in Appendix D.

72

Collaborative Features by Type

Coding Turn Taking

Partner’s Total Turn Length

Difference Between Partner’s Total Turns

Sum of Turns Between Partners

Number of Turns of Length N

Speech

Number of Total Utterances

Number of Partner’s Total Utterance

Difference Between Partner’s Total Utterances

Sum of Utterances Between Partners

Percentage of Utterance Contribution

Domain-related Words

Utterance Types

Initiative Shifts

Timing

Time to Start Problem N

Action Density for Problem N

TABLE VIII: ADDED FEATURES TO MEASURE COLLABORATIVE INTERACTION

73

5.5.2 Audio Discourse Features

The discourse data available consists of an audio recording of a student pair during their 40-

minute session using Collab-ChiQat. Collab-ChiQat provides automated, real-time transcrip-

tion of dialogue via the Google Speech API (Google, 2013). However, after discovering poor

transcription reliability of the automated process, an undergraduate researcher and I manually

transcribed the audio data. Manual transcription resulted in over 9,000 spoken utterances and

over 40,000 words.

Following this, we generated transcription-based features including counts of domain-related

words and number of utterances. We distinguished a set of words as domain-related words for

our analysis. These words were extracted based on those syntactically required for code (ie

Node and link) and those presented in the worked out examples (ie “connect the node” and

“insert into the list”). We believed they were representative of the overall coding task and could

serve as a general meter for assessing whether students were off-topic as shown in (Friedberg et

al., 2012). Moreover, we automatically labeled each transcribed utterance as either 1) question

2) command 3) prompt or 4) assertion following Walker and Whitakers utterance based control

rules (Walker and Whittaker, 1990). These labels were then used to track shifts in linguistically-

based initiative. In particular, we examine two types of initiative as follows the work of KCC-

PaL (Kersey-Howard et al., 2015). Dialogue initiative tracks the leader in conversation by

changes in utterance types (assertion, command, prompt and question) (Kersey-Howard et al.,

2015). Dialogue initiative occurs when a speaker contributes new content (including questions)

to the conversation that are not in response to the other participant. On the other hand, task

74

initiative tracks the leader in problem solving (Kersey-Howard et al., 2015). Thus, both forms

of initiative are methods of tracking which speaker is leading the conversation, its focus, and

problem solving efforts.

5.6 Contrastive Analysis

In this section we present findings from our contrastive analysis between the unstructured

and semistructured conditions. We performed unpaired t-tests between every feature across

conditions. For example, we compared the time to start problem one in the unstructured con-

dition versus the semistructured condition. This analysis allowed us to establish how different

methods of structuring collaboration guidance affect the pair’s interaction between themselves

and the system. Overall, we found that the conditions were similar in terms of example use and

coding efficiency. However there were distinct differences in student dialogue, tutorial use, and

time taken to start writing code. Specifically, unstructured users had more on-topic conversation

and used the lesson tutorial more while students using the semistructured system showed some

signs of competitiveness and urgency in submitting code. Furthermore, semistructured users

also took time to plan before beginning more difficult problems. We attribute these observed

differences to the alterations in the system structuring which effect collaborative interaction.

5.6.1 Dialogue

There were several key distinctions between the conditions in terms of linguistic features. To

begin, students in the unstructured condition spoke significantly more than the semistructured

students and averaged around 2,700 words per session. Also, t-test comparison revealed that

students using the unstructured version used both a significantly higher volume and proportion

75

of domain related words. This suggests that students in the semistructured condition were more

off-topic, however, as shown, this was not detrimental to their learning.

Further analysis revealed which specific domain words were used more significantly. These

words include node, list, link, and new as shown in Table IX. However, one key domain-related

word semistructured used significantly more was submit (p <.05). Submit was used in reference

to code execution. We believe semistructured students were much more conscientious of the

role of submissions due the its effect on the collaboration panel feedback. Students’ submissions

affected their participation comparison chart and overall group performance breakdown.

Feature Unstructured µ Semistructured µ p-value t-value

node 30.30 19.85 p = 0.02 t = 2.36

list 7.95 4.64 p = 0.00 t = 2.97

link 36.15 21.64 p = 0.01 t = 2.51

new 10.7 5.0 p = 0.01 t = 1.81

submit 1.30 2.83 p = 0.00 t = -2.96

TABLE IX: COMPARISON OF NUMBER OF OCCURENCES OF DOMAIN WORDS BE-

TWEEN UNSTRUCTURED AND SEMISTRUCTURED SCORERS

76

Students in the unstructured condition asked significantly more questions than those in

the semistructured condition. Examples of observed student question types are given in Ta-

ble X. We used the Pearson Coefficient test to find correlations between our feature set and the

number of questions that pairs asked. The data shows several viable explanations for this phe-

nomena. Firstly, we discovered that the number of domain words and the frequency of domain

words is significantly correlated to the number of questions. This held true when examin-

ing the semistructured condition (R=0.9233029, p<.001) and all combined data (R=0.7594092,

p<.001). This correlation clearly demonstrates that students who are on-topic, are asking ques-

tions. Thus, because students in the semistructured condition were off-topic more frequently

than students in the unstructured condition, they did not ask as many questions.

The analysis also showed that the number of questions asked in the semistructured condition

is strongly negatively correlated to code owner changes (R= -0.8669467, p<.001). Code owner

changes occur when students revisit a line of code and change the driver to be the other partner.

These alterations suggest that students who asked fewer questions were also concerned about

having balanced participation levels displayed in the collaboration feedback panel. Moreover,

these same students were motivated to “learn by doing” because each action improved their

performance rating in the collaboration panel. Thus, we believe their inquiry was through ac-

tions as opposed to simply question and answering between pairs. This hypothesis is supported

by the fact that semistructured students not only discussed and considered code submissions

more frequently but also committed more overall interface actions in problems four and five

(the most difficult problems that the majority of students reached). In both of these problems,

77

Student Question Type

You get it? Check for partner understanding

Did you connect? Coding navigation

We dont remove it? Coding navigation

This should get here right? Elicit confirmation

What did I do? Express confusion

Wait, what? Express confusion

How would you do that? Seek help

Can you send the execute command? Request action

Can you draw it? Request action

TABLE X: EXAMPLE QUESTIONS FROM PAIR DIALOGUE

semistructured students had significantly more action density (summation of node clicks, code

hints, code executions) than unstructured students (Problem Four: p = 0.02, t = -2.29; Problem

Five: p=0.05, t = -2.02).

Finally, we found that the number of questions asked is negatively significantly correlated

to the number of correct answers to the tutor’s proactive question prompts in problem one (R=

-0.8945217, p<.001). An example of proactive tutor question prompt is shown in Figure 18.

The number of questions asked is also significantly negatively correlated to the amount of

78

positive tutor feedback 1 in problem one (R= -0.768932, p<.001). Though the meaning of

these findings must be further validated, it may suggest that after students do well on problem

one, they are less inclined to reach out to each other for help as evidenced through questioning.

Alternatively, they may simply be more knowledgeable about the lesson and subsequently have

fewer questions.

Figure 18: Tutor proactive question to aid student in node declaration.

5.6.2 Example Use and Coding Efficiency

There was not a significant difference between conditions on time spent with worked out

examples and neither was there a difference in the amount of examples requested. Furthermore,

our measures of coding efficiency showed no significant differences. These included the number

of operations required to reach a successful solution, the number of undo/redo operations,

1Positive tutor feedback results when a student performs a correct action.

79

the number of problem restarts, the number of programming errors, and the number of bad

submissions. Overall, both conditions allowed pairs to benefit from having an external meta-

cognizer in terms of avoiding errors and relying less on the system for guidance.

5.6.3 Tutorial Use

Students in the unstructured condition viewed the lesson tutorial significantly more than

students using the semistructured version as shown in Figure 19. Once students first begin

the lesson, the tutoring system invites them to do the tutorial. The tutorial provides students

with information on navigating the interface and the relationship between their code and its

visual representation. Our hypothesis is that the semistructured students felt more pressure to

perform (in terms of code submissions and other actions) once presented with the collaboration

panel also at the onset of the exercise. The panel feedback remains fully visible throughout the

session without window activation 1 Conversely, unstructured students felt more relaxed and

able to explore the system. In support of this hypothesis, we found that, in spite of continued

window visibility, semistructured users still activated the collaboration panel an average of

three times throughout the lesson. Though we were unable to track students full attention to

the panel via measures such as eye tracking, this simple measure gives credence to the fact

that students did consider the panel. Finally, analysis of the student dialogue also supports

the notion that semistructured students heightened sense of urgency to participate may be the

cause of their neglect of the tutorial.

1Activation occurs once the window is clicked and subsequently brought into focus.

80

(a) Unstructured (b) Semistructured

Figure 19: Student lesson tutorial use.

5.6.4 Time to Start

The difference in the total time to start all problems and the average time to start per

problem was trending towards significance with unstructured students taking more time. The

time to start a problem is the time spent between when the problem is introduced and when

students submit their first line of code. We use the time to start as an intuitive approxima-

tion for planning time. Moreover, given our audio analysis, this time was indeed most often

spent discussing the meaning of the problem and proposing a solution approach. Students in

the unstructured condition did take significantly more time to start problem one. In general,

students took a similar amount of time to start problems two and three. However, in problems

four and five, semistructured students took significantly more time before they began to code.

As a reminder, each problem was given in order of difficulty and students were required to

81

solve each problem in order to advance. Students from both conditions averaged completion of

around four problems. Notably, semistructured students began an attempt to solve problems

four and five double the amount of times as the unstructured condition, a significant difference.

Multiple attempts signify that either the problem was explicitly restarted or a prior problem

was revisited before returning. We believe these findings suggest that not only did semistruc-

tured students spend ample amount of time planning their approach to harder problems, but

that the collaboration feedback served as their motivation for restarting (or revisiting) these

problems more frequently. This is because the problem restarts also reset the visualized group

performance metric of coding error rate for the particular problem. These findings suggest

that students wanted to maintain a favorable group performance rating and accomplished this

through resetting the problem or visiting a prior problem to reflect on the solution. As will be

discussed in section 5.7.2.1, this planning time paid off in terms of learning gains.

5.7 Modeling Learning

With the premises established that the system is effective in helping students to learn and

that structure influences learning and student interaction, our focus shifts to understanding

how learning occurs. As standard for ITS research, we aim to model learning in order to

design the system’s student and tutor modules. Because Collab-ChiQat is derived from non-

collaborative ChiQat, much of its internal modeling and tutoring strategy is informed based on

prior modeling of one-on-one student use of the system. In this paradigm, the student works

individually with the tutoring system and learning results as a correlated side-effect of problem

solving. Instead, in a CIT, the tutoring system must provide activities which trigger learning

82

Feature Unstructured µ Semistructured µ p-value t-value

Tutorial Views 1.27 .37 p = 0.00 t = 2.93

Time to Start P1 (ms) 215639.00 56669.35 p = 0.02 t = 2.51

Time to Start P4 (ms) 19819.05 40758.31 p = 0.04 t = -2.08

Time to Start P5 (ms) 18357.36 37657.75 p = 0.04 t = -2.15

TABLE XI: T-TEST COMPARISON OF FEATURES BETWEEN UNSTRUCTURED AND

SEMISTRUCTURED SCORERS

and cognitive mechanisms and not simply rely on the group setting to innately produce effective

collaboration (Dillenbourg, 1999).

Our choices in both activities and model features for unstructured and semistructured

Collab-ChiQat are grounded in research from both the CSCL and ITS communities. However,

future system iterations must be derived based on our corpus of data as well as established

literature. Namely our model of learning through collaborative interaction plays an essential

role in influencing the system design.

In order to model learning, we used multiple linear regression with the post-test score as

the dependent variable. Linear regression allows us to find statistically verifiable correlations

between what students do and how much they learn. In phase one, we first used feature selection

to narrow down our number of model attributes from our entire set of available attributes. We

83

then found the best fit (highest Adjusted-R2) model for learning using (a subset of) these

features. The goal of this phase was to establish whether our feature set was sufficiently

explanatory for our data 1. In phase two, we created a model with each feature along with a

students pre-test score as a co-variate. Phase two was needed because the feature selection in

phase one does not allow for all possibly significant features to be explored due to our dataset

size. Thus, this step allowed us to test individual significance of features. Overall, our aim

in this two-part analysis was to establish which features were significant correlates to student

learning and thus be empowered to use this insight to inform future system design.

5.7.1 Phase One Modeling

Our available feature set consists of the standard features used for log analysis in the single

user version of ChiQat along with the additional features for collaboration. However, the

number of measured features exceeds the number of examples per condition (n=22 & n=19).

Therefore, we needed to find a smaller set of features in order to create a multiple regression

model. In order to determine important features to comprise this smaller set, we created a

regression tree for learning gain. The regression tree was derived using recursive partitioning

(Therneau et al., 2015). From this point, we derived a linear additive model using the smaller

subset of important features capable of being added to the model. This yielded a standard

multiple regression model. We show and discuss best fit models resulting in the highest adjusted

1In the proposal, we showed that the feature set needed to be enhanced given its low Adjusted-R2

values. Use of our standard model features in the collaborative case results in insufficient model fit for
both methods of structuring the collaboration (Adjusted-R2=.37 for unstructured, Adjusted-R2=.14 for
semistructured.)

84

R2 after completing this process for our available feature sets. For example, in the case of the

standard analysis feature set, there are over 130 features. We narrowed this set to n features

using the regression tree, and all possible model combinations using these n features were

compared for best fit. The size of n depends on whether we examine all data or only the

unstructured or semistructured condition. In the case of all data, the top 20 most important

features from all categories after obtaining the regression tree are shown in Table XII.

I began by performing modeling with each individual feature along with the pre-test as a

measure of prior knowledge. I also performed the model fit using student course performance.

This is a student’s calculated grade in the course up to that point in the semester on a scale of 0-

100. At this point, there is no automated grading of pre-tests, thus the course performance could

serve as valid input to the system in future implementations. Finally, the standard analysis and

collaboration features were individually modeled then added to these prior knowledge features

to compare fits. The models which combine the semistructured and collaborative features

obtained the best fits for both conditions as seen in Table XIII and Table XIV. Moreover, these

models were just as effective without use of students’ prior knowledge. The full models can be

found in Appendix E.

85

Features

Pre Test

P7 Number of Turns

Total Turn Length

P5 Number of Turns

P6 Number of Turns

Max Turn Length

P5 Difference in Number of Turns

Problem One Duration

create (Spoken Word)

Operation Undone

Undo Operation Requested

P1 Undos

Action Density P1

Partnership Total Utterances Difference

Percentage Utterance Contribution

Example Completed

Example Started

Template Help Requested

Problem List Requested

TABLE XII: MOST IMPORTANT FEATURES FROM REGRESSION TREE WHEN MOD-

ELLING ALL DATA USING ALL POSSIBLE FEATURES

86

Model Adjusted-R2

Pre-test .37

Course Performance -.06

Standard Features .44

Collaboration Features .73

Standard + Pre-test + Course Performance .54

Collaboration Features + Pre-test + Course Performance .56

Standard Features + Collaboration Features .94

Standard Features + Collaboration Features + Pre-test + Course Performance .94

TABLE XIII: POST-TEST SCORE MODELS USING PRE-TEST, STANDARD FEATURES,

COLLABORATIVE FEATURES, AND COURSE PERFORMANCE FOR THE UNSTRUC-

TURED CONDITION.

87

Model Adjusted-R2

Pre-test .57

Course Performance -.08

Standard Features .29

Collaboration Features .83

Standard + Pre-test + Course Performance .61

Collaboration Features + Pre-test + Course Performance .80

Standard Features + Collaboration Features .95

Standard Features + Collaboration Features + Pre-test + Course Performance .92

TABLE XIV: POST-TEST SCORE MODELS USING PRE-TEST, STANDARD FEA-

TURES, COLLABORATIVE FEATURES, AND COURSE PERFORMANCE FOR THE

SEMI-STRUCTURED CONDITION.

Overall the best fit models showed that our collaborative feature set drastically improves on

features that originated from one-on-one tutoring. Given the tight fit of the models, we believed

our feature sets were sufficiently explanatory for understanding the mechanisms influencing

student learning with Collab-ChiQat.

88

5.7.2 Phase Two Modeling

5.7.2.1 Symmetry and Planning

In phase two, we modeled post-test performance using each individual feature along with pre-

test score as co-variate. We examined all possible features, not just those considered important

from the regression tree creation. Our analysis revealed that symmetry plays an important role

in student learning. We measured symmetry in terms of balance in initiative taken in student

dialogue and in coding turns. Overall, the number of times a student took dialogue initiative

was significantly positively correlated to learning (p = 0.00, Adjusted-R2 =0.59). However,

in the semistructured condition, the amount of times a partner took initiative was negatively

significantly correlated to learning. This implies that the semistructured condition did not

promote a balanced, or symmetric relationship, one in which learning was not inhibited by a

partner’s initiative. Intuitively, as students work to solve the problem together, the initiative

should shift between students. As expected, learning occurs as a student takes initiative.

However, in the case of the semistructured condition, learning suffered as their partner took

initiative. This lack of symmetry was confirmed with analysis of student turn taking behavior

while writing code. In the semistructured condition, the difference in coding turns between

partners is significantly positively correlated to learning (p = 0.04, Adjusted-R2 = 0.73). This

means that as one student had a larger amount of coding turns than their partner, or one student

dominated, their learning improved. This was not the case for the unstructured condition.

We also discovered that planning played a key role in modeling learning. The time to start

problems four through seven was positively significantly correlated to learning as described in

89

Table XV. Given the significant difference between unstructured and semistructured conditions

in the time to start problems four and five described in Section 5.6.4, these findings suggest

that students in the semistructured condition engaged in more planning as problem difficulty

increased. Examination of student transcription provides evidence of this phenomenon as shown

in Figure 20. We hypothesize that students in the semistructured condition were motivated

by the group performance feedback to keep their coding error rates minimal. Thus, they took

time to plan. Further, as the problems increased in difficulty, the majority of students did not

complete problems six and seven, thus we find no significant difference between conditions in

these problems.

Model Adjusted-R2 p-value

Time to Start P4 0.63 p = 0.000

Time to Start P5 0.60 p = 0.002

Time to Start P6 0.60 p = 0.003

Time to Start P7 0.59 p = 0.003

TABLE XV: POST-TEST SCORE MODELS USING TIME TO START AS CO-VARIATE

90

Figure 20: Excerpt of student dialogue at the beginning of problem four in the semistructured

condition.

5.7.2.2 Simple Speech Signals

Due to the fact that students use Collab-ChiQat in “real-world”, classroom settings in order

to learn, we aim to explore tractable solutions to automating our feedback in real-time. The

use of automatic speech recognition (ASR) signals from students as they work in pairs is one

such method. Thus, our regression with collaboration features also includes assessments of the

quality of dialogue features for modeling learning. We used raw counts of our domain-related

keywords as features. Analysis revealed that use of the words loop and while were significantly

91

correlated to learning in the unstructured condition (shown in Table XVI). As described in

Section 5.6.1, the unstructured condition had the higher volume of domain word usage. These

words with significant correlations to learning are intuitively important as they are essential for

understanding how to solve the problems with increasing difficulty. Furthermore, pair use of

the word undo was significantly negatively correlated to learning (p <.05). We believe a pairs’

use of the word undo showed that they were confused or uncertain about the direction that the

code should take.

Model Adjusted-R2 p-value

loop 0.555 p = 0.00

while 0.55 p = 0.00

undo 0.43 p = 0.05

TABLE XVI: POST-TEST SCORE MODELS USING DOMAIN WORD COUNTS AS CO-

VARIATE

5.8 Student Perceptions from Survey

Finally, we examined the student responses to survey questions to see their perceptions of

collaborative coursework, themselves as practitioners of computing, and Collab-ChiQat. We

92

also performed the exit survey in order to capture students’ understanding of the skills needed

for effective collaboration. The complete survey questionnaire is given in Appendix C.

Survey results from students revealed that roughly the same proportion of students found

the system helpful and interesting across conditions as depicted in Figure 21 . However, students

in each condition had distinct perspectives on the attributes of a good pair programming team.

Students were asked to rank a set of attributes of a good pair programming team in order

of most to least important. These attributes were based on a prior survey conducted with

Microsoft developers and engineering managers (Begel and Nagappan, 2008). Students in the

unstructured condition ranked Common Goals, Good Communication, and Fast and Efficient to

be the top three attributes. Contrastingly, students in the semistructured condition ranked No

Ego, Common Goals, and Flexibility as top attributes. This suggests that the semistructured

attributes place importance on individual acts that may be perceived as deference to their

partner (No Ego and Flexibility). On the other hand, unstructured users focus on group process

and outcomes. Both groups share an understanding of the importance of Common Goals. A

visualization of student responses is given in Figure 22.

This same trend persists in students’ free responses to top attributes. Students in the

semistructured condition used words such as understanding, code, and confidence which do not

appear at all or as frequently in unstructured student responses. Instead, the unstructured

responses such as respect and trust, which do not appear in semistructured, allude to more

natural group symmetry. These free responses are visualized in Figure 23 and Figure 24. We

believe the semistructured students were much more cognizant of individual performance and

93

(a) Unstructured (b) Semistructured

Figure 21: Student responses to survey question: “Do you feel that (Collab)ChiQat helped you

learn about linked lists?”

Fast	and	Efficient	
24%

Common	 Goals	
28%Flexibility

5%

Compatible	
Personalities

5%

Complementary	
Skills
9%

Good	
Communication

24%

No	Ego	
0%

Team	Works	
Effectively	

5%

(a) Unstructured

Fast	and	
Efficient	
5%

Common	 Goals	
26%

Flexibility
16%

Compatible	
Personalities

5%

Complementary	
Skills
5%

Good	
Communication

11%

No	Ego	
32%

Team	Works	
Effectively	

0%

(b) Semistructured

Figure 22: Unstructured (left) and semistructured (right) most important attribute of a pair

programming team.

94

contribution to the group due to the collaboration feedback. Thus, their responses reflect much

more of an attitude of self-sacrifice and endurance for the sake of the team.

communication (9)

listening (6)

patience (5)

cooperation (4)

ideas (4)

knowledge (3)

respect (3)

teamwork (3) trust (3)

collaborate (2)

hard-work (2)

open (2)

smart (2)

work (2)

ability (1) agree (1) approaches (1) better (1)

critical (1) decision (1) different (1)

discipline (1) empathy (1) enjoy (1) ethic (1) experience (1) explain (1) explanations (1)

fewer (1) final (1) focus (1) general (1) hard (1) help (1)

intelligent (1) involvement (1) kindness (1)

leadership (1) level (1)

love (1) minded (1)

practice (1) reliability (1)

several (1) sharing (1) skill (1) suggestions (1) talk (1)

understanding (1) vocal (1)

Figure 23: Visualization of student responses to traits of good programming pairs for the

Unstructured condition.

95

communication (10)

knowledge (6)

patience (6)

collaboration (4)

listening (4)

teamwork (4)

understanding (5)

code (3)

hard-

work (3)

willing (3)

confidence (2)

cooperation (2)

else (2)

openness (2)

patient (2) quality (2)

read (2) skill (2) someone (2)

accept (1) attitude (1) best (1) bugs (1) chemistry (1) clear (1)

compatibility (1) complementary (1)

criticism (1) dedication (1) design (1) economics (1)

explanation (1) fewer (1) flexibility (1) friendly (1)

helping (1) higher (1) humility (1) java (1) keeping (1)

learn (1) level (1)

logic (1) mind (1)

powerful (1)

satisfaction (1) spreads (1) state (1)

stuff (1)

updated (1)

Figure 24: Visualization of student responses to traits of good programming pairs for the

Semi-structured condition.

96

We also examined the relationship between students’ self reported survey confidence and

their learning using the Pearson Correlation Analysis. There was a trending correlation (R=0.29,

p <.10) between answer to the question of whether working with groups gave the student added

confidence and learning gain. Moreover, there was a significant correlation (R=.29, p <.05)

between confidence in ChiQat code submission correctness and post test performance. There

was also significant correlation between confidence in post test performance and actual post

test scores. Overall, student confidence plays a major role in their learning experience.

There was a significant correlation (R=0.3996805, p <.01) between student’s perception of

ChiQat’s helpfulness and their post test scores. Additionally, the correlation between student’s

perception of the benefit of taking time to help others and their post test results was trending

toward significance (R=-0.25, p <.10). This trend shows that students who find spending time

to help others to be useful, also scored higher on the post test.

Lastly, we explored student’s perception of Collab-ChiQat in relation to their sentiment in

regards to working with partners in general. As intuition would suggest, there was a significant

correlation (R=.44, p<.001) between students who valued spending time helping others and

those who found Collab-ChiQat to be helpful. Along the same line, there was a significant

negative correlation (R=-.30, p<.05) between agreement that it takes more time to work with

a partner than to work alone and those who found working with Collab-ChiQat to be helpful.

In short, if students felt working with a partner was more time consuming, they also tended

not to find Collab-ChiQat to be helpful.

97

5.9 Conclusion

In this chapter, we compared the effects of collaborative intelligent tutoring system design

choice on students’ interaction and learning process. Over 100 students used the unstructured

and semistructured Collab-ChiQat systems in the classroom and achieved significant learning

gains. We discovered that added collaborative feedback can promote planning before problem

solving. Moreover, in comparing the effects of the two collaborative systems, there was a

significant difference in students’ dialogue features such as the number of questions asked and

the frequency of domain-related word use. While we attribute the added collaborative feedback

to differences in features such as planning time and symmetry there is still more work to be

done in correlating which exact features of the collaboration panel produce these effects. For

example, both the compile error and success rate graph and the collaboration score may lead

students in the semistructured condition to take more time to start, and the relative effective of

either is currently not distinguished. Though intuition and prior research has led our analysis

to this point, ongoing work would benefit from deeper exploration.

Finally, the majority of students in both conditions found the intervention to be helpful and

interesting, especially those who favored working in teams. However, these distinctions did not

result in a significant differences in learning gains between the versions.

CHAPTER 6

USING DATA TO DESIGN FOR EFFECTIVE COLLABORATIVE

LEARNING

6.1 Summary

In this chapter we explore how data can be used to design for effective collaborative learning.

We begin by presenting our analysis of modeling effective collaboration. We borrow from the

literature on learning and discussions on what constitutes relevant outcomes for collaborative

learning and thus narrow our focus to group cognition (Stahl, 2005; Strijbos, 2011). Moreover,

we operationalize this paradigm through the metric of knowledge similarity, which we measure

via convergence of partner scores in pre and post-test. We also connect it to the the linguistic

phenomenon of entrainment. We present outcomes for both metrics. Following this discussion,

we then present our design of hybrid Collab-ChiQat, which incorporates our models of learning

presented in Chapter 5 and our understanding of interactions leading to collaborative learning.

6.2 Measuring Collaborative Learning

While the goal of the system is ultimately that students achieve the highest possible individ-

ual learning gain, the goal of the system is also to serve as a facilitator of effective collaboration

through guidance of situation, interactions, and processes (Dillenbourg et al., 2009). These

goals are not necessarily tangential, but instead may align with each other as evidenced in the

modeling of student learning in Chapter 5 where we showed that planning and symmetry of

98

99

action lead to higher learning gains. Thus, we believe, and CSCL literature supports, that as

the system is better able to facilitate collaboration, irrespective of the degree of structuring,

the students individual learning should benefit.

There are several commonly accepted criteria for assessing collaborative learning outcomes.

They span three major perspectives; motivational, social (cohesion), and cognition (Strijbos,

2011). We focus our current outcome analysis on group cognition. The construct of group

cognition concerns itself with the act of collective meaning making in group settings (Stahl,

2006; Akkerman et al., 2007). It’s evaluation spans multiple psychological and educational

frameworks and thus, the spectrum of theoretical positions on the proper unit of assessment

vary from individual(cognitivist) to group (socio-cultural) units (Stahl, 2006; Akkerman et al.,

2007). In particular, we examine group knowledge convergence (also known as consensus,

mutuality, equivalence, similarity in the literature), dialogue-based initiative shifts, and lexical

entrainment (alignment, adaption).

6.2.1 Knowledge Convergence Outcomes

Knowledge convergence is a measure of the amount of knowledge students have in common

following a collaborative learning exercise. While complete convergence (students have the

same individual knowledge) is often the goal, it is also unlikely to occur (Strijbos, 2011). Thus,

knowledge similarity, or the knowledge level becoming more similar between partners, is more

likely to occur, while, knowledge divergence is also a possible outcome of interaction. We

measure knowledge convergence as the difference between partner S1 and partner S2 post-test

scores as below:

100

conv = |postTestScoreS1 − postTestScoreS2| (6.1)

where conv = 0 is perfect convergence.

Given the role of group cognition as an accepted outcome for assessing the effectiveness

of student collaboration within the CSCL and learning community, knowledge convergence is

a reasonable measure. In order to establish a lower bound for knowledge convergence which

results from the collaborative learning exercise, we calculated the convergence score for both

the pre-test and post-test. We also introduced an additional metric, convergence change, which

is the difference in pre-test and post tests convergence scores. Convergence change allows us to

establish whether students’ shared knowledge improved. The formula for convergence change,

conv’, is given below.

conv′ = |postTestScoreS1 − postTestScoreS2| −|preTestScoreS1 − preTestScoreS2| (6.2)

Paired t-test analysis revealed that there was no significant difference between the pre and

post test convergence scores when considering the conditions both individually and combined.

However, using conv’, we noted that 50% of students increased their level of convergence between

the pre and post test, 10% remained the same, and 40% decreased convergence as depicted

in 25a. Moreover, because the problem difficulty increases as students progress in both the

tests and tutoring problems, we believed it would be worthwhile to examine convergence per

individual test problem. In fact, students did have significant changes (µ=.65, p=0.003) when

101

individually examining convergence scores for the first of the three test questions as detailed in

Table XVII and Figure 25. As most students did not complete all tutoring problems, they may

be unable to establish significant changes in convergence beyond the first problem which more

closely emulates the problems they encountered during the tutoring. As a final measure, we

tested for by-problem convergence in the unstructured and semistructured conditions separately.

Results showed that there was a significant, positive change in convergence for test problem

one in both the unstructured and semistructured conditions. This means both methods of

collaboration structuring allowed students to build shared knowledge of certain concepts.

Further exploration would benefit from explicit definition and assessment of student mas-

tery regarding specific knowledge components. Our current pre/post test is a sound method for

evaluating student’s working knowledge of linked lists from a cumulative, applied-learning per-

spective. However, we do not explicitly track knowledge components, which are smaller units

of cognitive structures and processes that a student uses. For example, knowledge components

for our domain might include the following:

• Facts such as the structure of a list consists of nodes which have links and data.

• Procedures such as list traversal through use of links.

• Rules such as in-order node insertion.

Evaluation of student knowledge component mastery would enable us to more clearly assess

knowledge convergence at a micro-level, one which is more in line with mental models. In any

case, the current analysis provides compelling rationale for further exploration of changes in

group cognition resulting from the intervention.

102

We also aimed to determine if students converged in the proper direction. This would allow

us to determine the strength of knowledge convergence as a metric in terms of improvements

to student learning. In order to explore this, we examined, among those students whose level

of convergence improved, was there any negative learning gain. Our analysis revealed that in

only two groups where convergence improved, a student in the pair had negative learning gains.

Moreover, in both cases, this student had a perfect pre-test score. Thus, essentially the student

that was most knowledgeable about the topic may have became misinformed through their

interaction with their partner and thus did not perform as well. Alternatively, these students

may have tired on the post-test and opted not to fully recite information they had previously

shared in the pre-test without the benefit of the tutoring. Ultimately, this exploration provided

further support for knowledge convergence as a valuable metric for assessing the strenght of

collaboration.

103

Method
Pre-Test

Problem

One

Post-Test

Problem

One

p-value t-value

µ σ µ σ

Unstructured 0.95 1.17 0.50 .80 p = 0.02 t = 2.48

Semistructured 1.88 1.59 .94 1.18 p = 0.05 t = 2.11

All 1.34 1.42 .68 .99 p = 0.00 t = 3.07

TABLE XVII: T-TEST COMPARISON RESULTS OF KNOWLEDGE CONVERGENCE BE-

TWEEN PROBLEM ONE OF PRE AND POST TESTS.

104

(a) All Problems (b) Problem One

Figure 25: Percentage of students whose converges increase, remains the same, or decreases

based on total test performance (left) and problem one (right).

6.2.2 Dialogue Analysis

Given the critical nature of linguistic cues as building blocks of cognition in a collabora-

tive problem solving task, we hypothesized that dialogue features can be indicators of group

level cognition, our measure of effective collaboration. This section investigates both individual

and socio-cultural measures of group cognition through analysis of dialogue during collabora-

tive problem solving. In particular, we examine lexical entrainment (alignment, adaption) and

dialogue-based initiative shifts. While lexical entrainment measures the subconscious align-

ment of speech signals between conversational partners, dialogue initiative tracks the leader in

determining the focus of the conversation (Chu-Carroll and Brown, 1997; Jordan and Di Euge-

105

nio, 1997; Nenkova et al., 2008). Both of these are socio-cultural measures. However, we also

analyze their relationship to group knowledge measures.

Our analysis presented in Chapter 5 revealed that initiative shifts play an important role

in individual learning. Further, we discovered that the correlation between the difference in

total initiative shifts between partners halfway through the session and the difference in final

learning gains between partners is trending toward significance (p <.10, t = 1.772). Moreover,

the difference in initiative between partners at halfway point is also significantly correlated

to the difference in pre-test scores between partners (p <.05, t = 2.1448). Thus, tracking

initiative shifts is a valid metric for assessing group dynamics such as prior knowledge level and

the progression of knowledge gain.

In our analysis we also examined lexical entrainment, which measures the alignment of

speech signals between conversational partners. In effect, lexical entrainment captures how

the words that interlocutors use throughout a conversation become more similar with time.

Research has shown that interlocutors converge on multiple levels including amplitude, syntactic

and semantic constructions, and even sentence complexity when conversing (Nenkova et al.,

2008; Xu and Reitter, 2016). Moreover, researchers have linked lexical entrainment to task

success in game scores and semester-long team performance scores for students (Nenkova et

al., 2008; Friedberg et al., 2012). Ultimately, the level of lexical entrainment may serve as an

indicator of the extent to which a group shares a mental modal of a concept, in this case, their

mental model, or internal representation, of linked lists (Friedberg et al., 2012). Thus, we believe

106

lexical entrainment is another method of assessing group cognition outcomes in collaborative

learning.

In this analysis, we aimed to assess if entrainment correlated to a group’s post-test per-

formance, knowledge convergence, and knowledge convergence change scores. Our measure of

entrainment follows the work of (Nenkova et al., 2008). It is the negation of the absolute value

of the difference in the proportion that speaker one S1 uses word w subtracted from speaker

two’s (S2) proportional use. The formula for entrainment, entr(w), is as follows:

entr(w) = −
∣∣∣∣countS1(w)

ALLs1)
− countS2(w)

ALLS2

∣∣∣∣ (6.3)

We measured entrainment scores for two equal halves of the intervention and calculated

our entrainment score using only the domain-related words (ie node, click, link) described in

Chapter 5 as done in related work (Friedberg et al., 2012). From this, we derived an additional

metric, entrainment change, as the difference in entrainment scores between the final half and

first half of the session. This metric allows us to understand the change in entrainment over

time similar to our measure of knowledge convergence change above.

We first used a t-test to discover if there were significant difference in entrainment scores

between the high and low group performers. The group performance was calculated based on

the sum of post-test scores. High performers achieved more than the median sum of post-

test scores while and low performance did not. Following this analysis, we calculated the

Pearson Coefficient to measure the correlation between entrainment and group performance.

107

The average entrainment in the first and second half of the intervention for both high and low

post-test performers is shown in Figure 26.

Figure 26: Comparison of entrainment in first and second half of session between high and low

performers.

There was not a significant difference in the final entrainment score between high and

low performers. However, there was a significant difference in the entrainment change score

between these groups as shows in Table XVIII. In order to understand the nature of this

result, we performed an additional paired t-test analysis to compare the first and second half

108

entrainment scores within conditions. This test revealed that there was a significant difference

(p <.05) between halves for low performing students. Specifically, the level of entrainment for

low-performing students decreased. Thus, these results signify that low performing teams do

not improve on their shared mental model as evidenced through entrainment. Instead, their

lexical alignment significantly decreases as their use of the tutoring system progresses. Because

we do not know the causal relationship between entrainment and performance, this result may

suggest that either students are low performing because they are not entraining, or that they

lack entrainment because they are low performing.

Method
Score for Low Team Score for High Team

p-value t-value
µ σ µ σ

Half Entrainment Score -.057 .013 -.067 .023 p=0.248 t = 1.20

Final Entrainment Score -.072 .019 -.064 .023 p=0.457 t = 0.76

Entrainment Change -.014 .016 -0.003 .011 p=0.028 t = 2.43

TABLE XVIII: T-TEST COMPARISON OF ENTRAINMENT SCORES AND ENTRAIN-

MENT CHANGE BETWEEN HIGH AND LOW SCORERS

109

A Pearson Correlation test showed no significant correlation between the group performance

and the final entrainment score though the correlation was trending toward significance (p<.10).

On the other hand, there was a significant correlation between a group’s post test performance

and their entrainment change (R= .75, p <.01). This further evidenced the notion that lower

performing teams entrain less and to such an extent that their entrainment is an indicator of

their performance. This result is shown in Table XIX. These findings are consistent with prior

literature which found entrainment could predict task success and that higher performing teams

entrain more than their lower performing counterparts (Reitter et al., 2006; Friedberg et al.,

2012).

In order to better understand the relationship between entrainment and group performance,

our work would benefit from exploration of how the teams entrain. This includes analysis of

the actual domain words used and the context in which they are used. For example, in a low

performing team, one student may ask many questions and these questions may be laced with

domain words. While, on the other hand, the partner may only respond with uncertainty of

their own such as “I’m not sure”. This pattern of interaction would decrease their level of

entrainment over time. Thus, this example demonstrates that the context in which the groups

uses the domain words and subsequently entrain (or not) is a valuable area to explore. It will

allow us to better understand where the differences in the pair’s mental models occur and how

the system can help to support students.

110

Method Pearson Correlation Coefficient p-value

Final Entrainment .439 p=0.088

Entrainment Change .757 p=0.000

TABLE XIX: PEARSON CORRELATION RESULTS FOR ENTRAINMENT AND GROUP

POST-TEST PERFORMANCE

6.3 Hybrid Collab-ChiQat

Our investigation of effective collaborative learning outcomes in addition to analysis pre-

sented in prior chapters led us to the design of an additional Collab-ChiQat version, hybrid. The

hybrid version, as its name suggests, is the intermediary between unstructured and semistruc-

tured Collab-ChiQat, which purposes to benefit from the strengths of each. Whereas students in

the unstructured condition were on-topic and asked more questions, students in the semistruc-

tured condition took time to plan before coding. Moreover, both groups experienced significant

knowledge convergence in relation to key concepts. Thus, the hybrid system design was cre-

ated in order to integrate our findings in a new system and further investigate the effects on

collaboration and learning.

In terms of updates, the hybrid system no longer has the collaboration panel interface. We

discovered that the panel served two primary purposes for students, 1) increase awareness of

individual participation and turns 2) motivate planning in order to improve group performance.

111

We believed that we could accomplish these things without the collaboration panel in itself.

We also saw that while the panel may have motivated students students in the semistructured

condition to engage in problem solving, their gains were not significantly higher or different

than the unstructured condition. Thus, we follow the guidance of Occams Razor and remove

the panel in favor of a simpler interface. We describe further changes in design choice for hybrid

Collab-ChiQat below with reference to supporting rationale.

6.4 Design Changes and Rationale

6.4.1 Turn Taking

Hybrid Collab-ChiQats collaboration feedback aims to promote symmetry of participation.

In particular, the system monitors code turn taking patterns. Group symmetry is not only

a theoretical sign of effective collaboration, but it is also a correlate to learning as evidenced

through our experimentation. Our model of learning shows that when students in both con-

ditions took coding turns of length four, the students learned (p <.01, Adjusted-R2 = 0.59).

This is also supported by the well-accepted paradigm of role-switching within CSCL literature.

Role switching promotes turn-taking behavior that contributes to social grounding (Inaba and

Mizoguchi, 2004; Soller, 2001)). Notably, role-switching often coincides with activities such as

asking questions, clarifying views, and commenting on peer work.

With this motivation for implementing turn taking feedback, we updated the system in

order to monitor student turns. At the launch of each problem, if one student has fallen more

than four coding turns behind another student, then the system prompts students to switch

112

roles as driver and navigator. The tutoring feedback is displayed in a modal popup as shown

in Figure 27.

Figure 27: Tutor feedback to promote role-switching after imbalance detected.

6.4.2 Time to Start

Our prior analysis of learning revealed that taking time before coding in problems four

through seven was significantly positively correlated to learning (Section 5.7.2.1. Moreover, this

analysis also showed that the amount of time students take to begin problem one is trending

towards a significant negative correlation to learning. Given the literature which endorses

planning as an indicator of effective collaboration and these findings as substantiation, we

implemented tutoring feedback to promote planning. First, we calculated average time to start

for problems one and four through seven. Then, the tutoring strategy was updated to suggest

113

that students take an allotted amount of time before coding to discuss their approach. The

time was based on the calculated averages. The tutor also provides students with a discussion

starter question which are relevant to the particular problem. A sample tutor prompt for this

strategy is shown in Figure 28.

Figure 28: Tutor prompt for student planning of solution approach at onset of problem.

114

6.4.3 Keyword Detection

Though automatic speech recognition is not without flaws, we believe a moderate approach

to its future use could be the detection of keywords. Collab-ChiQat, and indeed ASR technology,

has not reached the point to which we can implement full-scale natural language understanding

of the pairs dialogue. However, our model of learning allowed us to understand ways to support

students through simple keyword detection. In particular, we focused on detecting the words

while, loop, and undo. Within the contexts of students problem solving activity, we used

detection of these words to provide relevant feedback. For example, if the system detects

repeated use (n=2 within same problem) of the word undo, it triggers proactive feedback.

Further, when given time to discuss solutions for problems six and seven, if a student does not

mention the word while the tutor reminds them that the while-loop conditional structure could

help with list traversal. Conversely, if they do mention the structure, they are provided positive

feedback in regards to the while-loops applicability for the problem. An example intervention

prompt is shown in Figure 29

115

Figure 29: Tutor response after keyword loop detected during discussion time.

6.5 Experimental Design

We evaluated the hybrid Collab-ChiQat system in an experiment that took place in Fall of

2016. Our goals was to investigate the effect of design choice and enhanced modeling in the

hybrid Collab-ChiQat system. The setting was the same second year Computer Science course

as in prior experiments. However, the study took place later in the semester than in the prior

experiments. At the time of this study, students had already been introduced to linked lists via

an in-class lab exercises and a take-home project.

116

There were two conditions in the experiment, the unstructured and hybrid versions of the

system. The unstructured version was the same as in the prior experiment. Additionally,

other aspects of the experimental setup remained the same as in prior experiments. Students

chose their partners and used the system for 40 minutes. Students chose partners, individually

performed pre-test, post-test, and an exit survey, and they watched the informational pair

programming video (detailed in Appendix B) at the onset of the class. In total, 114 students

elected to participate in the study and share their data. 58 students were in the unstructured

condition while 56 while were in the hybrid condition. Regrettably, due to server errors, we

were unable to capture the extensive log data which allowed us to retrace students time with

the system.

6.6 Outcomes

6.6.1 Learning

We began by understanding the impact of structure on student learning. We evaluated

learning gain based on the difference between post and pre test as previously.

gain = postTestScore− preTestScore (6.4)

The learning gain results showed that both the unstructured and hybrid groups experienced

significant learning gains with no significant difference in learning gains between the two condi-

tions. As expected, due to the experiment’s timing, the pre-test scores were significantly higher

than in our prior experiments (p <.05). The full learning gain results are listed in Table XX.

117

Tutor N
Pre-test Post-test Gain

µ σ µ σ µ σ

Unstructured Collab-ChiQat 58 .64 .22 .77 .16 .13 .14

Hybrid Collab-ChiQat 56 .56 .25 .66 .21 .10 .12

TABLE XX: COMPARISON OF LEARNING GAINS BETWEEN UNSTRUCTURED AND

HYBRID COLLAB-CHIQAT.

6.6.2 User Satisfaction

The exit surveys showed that the majority of students in each condition found the system

to be both helpful and interesting as shown in Figure 30. Unsurprisingly, students’ perceptions

of the system’s helpfulness was significantly correlated to their perceptions of the benefits of

working in teams. Specifically, students who believed they work more thoroughly on their own

(Response 11, R= -.20, p=.02) and who find that working with a partner takes more time

(Response 13, R= -.19, p=.03), also did not think the system was as helpful.

118

(a) Unstructured (b) Hybrid

Figure 30: Student responses to survey question: “Do you feel that (Collab)ChiQat helped you

learn about linked lists?”

Additional exit survey analysis revealed that 47% of hybrid system users choose Good Com-

munication as top trait for successful pair programmers as opposed to 27% in the unstructured

condition (shown in Figure 31). In the prior experiment, 24% of students in the unstrucutred

condition and 11% in the semistructured condition chose Good Communication as the top

trait. We believe this difference is indicative of the influence of the “Time to Start” interven-

tion which emphasized student discussion. Notably, this choice of communication also coincides

with an industry survey of Microsoft developers and managers in which they also chose “Good

Communication” as the top trait (Begel and Nagappan, 2008).

119

Fast	and	Efficient	
6%

Common	 Goals	
25%

Flexibility
0%

Compatible	
Personalities

2%
Complementary	

Skills
8%

Good	
Communication

27%

No	Ego	
21%

Team	Works	
Effectively	

11%

(a) Unstructured

Fast	and	Efficient	
7%

Common	 Goals	
12%

Flexibility
5%

Compatible	
Personalities

5%
Complementary	

Skills
5%

Good	
Communication

41%

No	Ego	
20%

Team	Works	
Effectively	

5%

(b) Hybrid

Figure 31: Unstructured (left) and hybrid (right) most important attribute of a pair program-

ming team.

6.7 Audio Analysis

The goal of our audio analysis was to further assess the quality of the automatic transcrip-

tion provided through the Google Speech API. We first began with a comparison of the most

frequently occurring words between the auto-transcription of the Fall 2016 session and the man-

ual transcription of the Fall 2015 session. Though we expected differences, we believed that

evidence of a high quality automatic transcription would yield more similarities between the

two experiments. The results of the comparison of the top 15 most frequently occurring domain

words are in Table XXI. Words in bold were in the top most-frequent manual transcription,

but not in the automatic transcription.

The analysis revealed that the auto-transcription recognizes some domain-related words,

however, it may miss a large portion of them. Words included in the most frequent Fall 2015

120

manual transcription such as node, null, and link did not appear in the Fall 2016 list until

much later in order of frequency. However, for example, in the case of link, there were several

words present in the auto-transcription that may have been a misinterpretation of link such as

linkedin, linkin, linkange, xlinked,slink and outlink. Furthermore, the automatic transcription

had difficulty with the tutoring system’s variable names such as L, L1 and L2. Though they

were occasionally recognized, their frequency did not match the expected amount of student’s

usage based on the prior experiment.

Overall, a t-test revealed an extremely significant difference (p <0.0001, ’15 µ = 0.103 σ

=0.026; ’16 µ=0.049 σ= 0.015) between the domain word frequencies between Fall 2015 and

Fall 2016. However, because the system was able to recognize a large portion of words, though

not as consistently, we are encouraged by the results of the auto-transcription. Further, we

recognize that future work would benefit from informing the ASR with a language model that

is more trained to programmatic speech. We can also consider similar words, i.e. link and slink,

to be equivalent in our real-time system processing.

121

Fall 2015 Fall 2016

Manually-Transcribed Word Frequency Auto-Transcribed Word Frequency

node 0.79% next 0.49%

link 0.73% equals 0.42%

L 0.55% equal 0.40%

equals 0.54% point 0.36%

equal 0.47% if 0.20%

point 0.47% while 0.20%

next 0.37% node 0.17%

null 0.30% L 0.16%

if 0.25% delete 0.12%

new 0.25% list 0.15%

delete 0.22% pointer 0.11%

pointer 0.20% new 0.09%

TABLE XXI: TOP 12 MOST FREQUENT DOMAIN WORDS BETWEEN FALL 2015 MAN-

UAL TRANSCRIPTION AND FALL 2016 AUTOMATIC TRANSCRIPTION.

122

6.8 Conclusion

In this chapter we addressed the issue of modeling of collaborators during joint problem

solving through the metrics of knowledge convergence, dialogue initiative, and lexical alignment.

Our analysis revealed that students converged on some knowledge topics. Moreover, our analysis

showed that shifts in initiative correlate to cognitive measures of group knowledge assessed

both prior to and following the tutoring intervention. Moreover, we discovered that lexical

entrainment of interlocutors has distinct changes between halves and is significantly correlated

to group knowledge. Finally, the results of this analysis and those presented in prior chapters

motivated the design of the hybrid Collab-ChiQat system which over 100 students used and

experienced significant learning gains.

CHAPTER 7

CONCLUSIONS & FUTURE WORK

7.1 Contributions

This dissertation offers contributions to multiple research communities including CSCL,

ITS, and CS Education. This work provides clear validation of the effectiveness of collaborative

learning, in particular as supported through an ITS. It advances the depth of knowledge in

regards to CITs, an emergent field that combines the benefits of CSCL and ITS for enhanced

student learning.

In order to arrive at our collaborative ITS reconceptualization, I provided a practical design

and evaluation framework for collaborative tutoring systems. It resulted from an extensive

review and synthesis of literature of CSCL and ITS research. Thus, the dissertation investigated

multiple, grounded methods for supporting collaboration based on this framework, each with

their own influence on student interaction.

I originally developed two collaborative versions of our ITS for CS Education. The semistruc-

tured version provides automated feedback on student collaboration through visualization of

group performance, individual contribution, and peer review, while the unstructured version

allows students to work in pairs and does not offer feedback on their collaboration. Over 100

students used the systems in the classroom and achieved significant learning gains while hav-

123

124

ing higher coding efficiency and speed with fewer worked out examples use as compared to

individual learners.

We discovered that two of the CSCL and learning community’s markers of effective collabo-

ration, group symmetry and planning, also significantly correlate to learning in our intervention.

Moreover, we discovered that added collaborative feedback can promote planning, and that key-

words in student dialogue such as undo and while can also indicate a students’ level of learning.

In comparing the effects of the two collaborative systems, there was a significant difference in

students’ dialogue features such as the number of questions asked and the frequency of domain-

related words. However, these distinctions did not result in a significant differences in learning

gains between the versions. We also explicitly analyzed the effect of design choice on group cog-

nition, an accepted outcome of collaborative learning. We operationalized this notion through

the metrics of knowledge convergence and lexical entrainment.

With these findings as motivation, we then developed a third system version, hybrid. This

system promoted symmetry in turn taking, use of planning time, and it implemented keyword

detection for feedback triggering. Over 100 students used this system in the classroom as well

and experienced significant learning gains. Further, the majority of students using either of the

three versions found the system to be both helpful and interesting.

Overall, researchers across our areas of synthesis have already found value in this work.

Findings discussed in this dissertation have also been published in notable peer-reviewed venues

(Harsley, 2014; Harsley, 2015; Harsley et al., 2016c; Harsley et al., 2016; Harsley et al., 2016b;

Harsley et al., 2017; Harsley et al., 2017). Lastly, it is my hope that this work will continue to

125

help students to learn, remain in, and contribute to the CS discipline, especially those looking

to connect with others during their studies.

7.2 Future Research Directions

There are several noteworthy avenues open for furthering this work. This following list

provides an overview of promising possibilities:

• Student transcription analysis would greatly benefit from time-synchronization to student

problem-solving activity including knowledge of current student roles. This can be accom-

plished through a smaller-scale study in which data is also video recorded. Additionally,

as ASR technology improves, the quality of the system real-time transcription would also

provide exact time-stamps correlated to system time. A time and system-action synced

dialogue corpus would allow us to further analyze the roles, turn taking behavior, and

much more in regards to student interaction.

• A key next-step for the investigation of the role of design choice in collaborative learning is

the implementation of additional collaboration-centered feedback. This requires modeling

for early-detection of collaboration issues as well the creation of further “goodness” of

collaboration metrics just as we monitor progress in student code. This real-time model

will be informed by our current work, such as the operationalization of mental models

through lexical entrainment, and must also take further advantage of additional dialogue

components of the interaction.

• Group formation is an important topic in collaborative learning. In order to account for

group dynamics in the system, there are two approaches. 1) Develop an ability to suggest

126

group or group types to professors using ChiQat based on a students’ course performance

or 2) develop automatic pre-test grading to detect group dynamics. The second option

is more viable given the large amount of student-test data we have collected. The data

we have collected to date can serve as the basis for a machine learning approach to

automatic grading. Finally, analysis of group dynamics in our current data can also

inform development of tutor strategy.

7.3 Long Term Research Directions

There are also multiple areas of consideration for the long term research direction of this

work. We would be remiss if not to explore affective aspects of student interaction, including

motivation. In performing the manual transcription of student dialogue, I noticed a plethora

of dialogue cues that may relate to the affective state of the students, including excitement,

frustration, and anger. These may not all be automatically ascertained through currently

available sentiment analysis methods. Annotation and analysis of these features would be a

necessary step for gaining a better understanding of the nature of student collaboration and

how it relates to learning.

An additional area for further work is an investigation of long-term CIT use. To date, all

of our Collab-ChiQat interventions have lasted a single class period of no more than 1.5 hours

including pre and post tests along with exit survey. An extended study is needed in order to tie

our CIT use to larger metrics of student retention and perception of themselves as practitioners.

With this mandates the creation of additional problem sets and topics beyond the lessons we

currently support.

127

Finally, with the emergence of online CS learning tools, the future of this work may rest

in retooling the system to be an extension for such systems. In this pattern, Collab-ChiQat’s

functionality would be serviced through an API with optional GUI components. To begin, the

other CS learning tool would simply pass its dataset of problems and prior student interactions

to the Collab-ChiQat API. From there, Collab-ChiQat would adapt and be able to provide

feedback to students through either notifications or subsequent API calls. This approach would

rely heavily on both data mining and machine learning in addition to our foundations in learning

theory. Moreover, as is the nature for Machine Learning based approaches, the quality of

feedback and performance would improve with increased use among the learning tool providers.

APPENDICES

128

129

Appendix A

PRE/POST TEST

130

Appendix B

PAIR PROGRAMMING VIDEO TRANSCRIPT

“Agile in Practice: Pair Programming” (AgileAcademyAus, 2011)

Hi and welcome to the Agile Academy in this agile in practice talk we’d like to show you

how developers on an actual team use peer programming tool or defects help deliver faster and

produce higher quality work. Let’s have a look at how this practice works. The way developers

are collaborating is a bit like driving a car on a rally. One of you is driving while the other is

navigating reading a map while the driver is keeping their eyes on the road. The navigator is

focusing on the destination and how to get there.

Regardless of the kind of work to do you may want to try out collaborating in the same

way. Especially when you’re dealing with a difficult task. It works better if both people are

peers sharing the same role and having a similar style and experience level.

Here are Bill and Liz, two developers from the agile team who delivering a new employee

performance review system for the HR department. They’ll be working together side by side at

the scene computer solving the same problem. They take turns using the keyboard and mouse.

At the moment, Liz is the driver. While she is writing the code and performs test on that

code Bill as a navigator observes her work considering the strategic direction, the next steps,

and potential pitfalls. He also considers is this the simplest design possible and comes up with

ideas for improvement.

131

Appendix B (Continued)

After a period of time, they swap roles and Liz navigates while Bill drives. Because they

are constantly communicating and reviewing together, they produce higher quality work at a

faster pace than either of them could do on their own it. Also ensures that more than just one

developer knows each part of the system. Pairs swap places frequently throughout the day and

also new pairs are formed to promote sharing of knowledge throughout the team.

At the same time a uniform style of planning is carried out which makes working together

easier. It also creates an ownership and commitment to the collective code.

Despite the benefits, pair programming is not always easy. As a driver you have someone

observing you constantly and when you’re navigating you need to refrain from rushing to point

out details like missing semicolons or typos. Instead you need to get the driver time to write

on rewrite the work while you focus on the direction the work is going.

Also you should consider that peer programming is is suitable for all tasks or situation.

But if you choose to do it you need to respect each other, communicate, and make it easy on

yourself by using a computer with a big screen.

Enjoy the ride!

132

Appendix C

EXIT SURVEY

1. Major (if anticipated, mark Anticipated):

2. Gender:

3. Today is the first time I’ve used the Linked List lesson in ChiQat.
True
False
4. Do you feel that ChiQat-Tutor helped you learn about linked lists?

1. Strongly Agree

2. Agree

3. Neither Agree nor Disagree

4. Disagree

5. Strongly Disagree

5. Do you feel that working with ChiQat-Tutor was interesting?

1. Strongly Agree

2. Agree

3. Neither Agree nor Disagree

4. Disagree

5. Strongly Disagree

6. When I submitted code for ChiQat, I was confident it was correct:

1. Strongly Agree

2. Agree

3. Mildly Agree

4. Mildly Disagree

5. Disagree

6. Strongly Disagree

133

Appendix C (Continued)

7. I am confident I did well on the post-test exam:

1. Strongly Agree

2. Agree

3. Mildly Agree

4. Mildly Disagree

5. Disagree

6. Strongly Disagree

8. Right now my plan is to:

1. Take another CS Course

2. Take several CS Courses

3. Minor in CS

4. Major in CS

5. I’m Unsure

6. Not take any more CS

9. I enjoy this class.

1. Strongly Agree

2. Agree

3. Mildly Agree

4. Mildly Disagree

5. Disagree

6. Strongly Disagree

10. I am good with computers

1. Strongly Agree

2. Agree

3. Mildly Agree

4. Mildly Disagree

5. Disagree

6. Strongly Disagree

134

Appendix C (Continued)

11. When I encounter difficulties with an assignment I always find a way to work
though them.

1. Strongly Agree

2. Agree

3. Mildly Agree

4. Mildly Disagree

5. Disagree

6. Strongly Disagree

12. I enjoy hearing a variety of ideas for how to solve a problem that I am working
on.

1. Strongly Agree

2. Agree

3. Mildly Agree

4. Mildly Disagree

5. Disagree

6. Strongly Disagree

13. My work is more thorough when I work alone than when I work with a partner
or group.

1. Strongly Agree

2. Agree

3. Mildly Agree

4. Mildly Disagree

5. Disagree

6. Strongly Disagree

135

Appendix C (Continued)

14. Working with a partner or a group gives me more confidence in the correctness
of our work than when I work alone.

1. Strongly Agree

2. Agree

3. Mildly Agree

4. Mildly Disagree

5. Disagree

6. Strongly Disagree

15. Taking extra time to explain course material to someone else is worthwhile
because it helps me to learn the material more thoroughly.

1. Strongly Agree

2. Agree

3. Mildly Agree

4. Mildly Disagree

5. Disagree

6. Strongly Disagree

16. For me, completing a project with a partner takes more time than working
alone.

1. Strongly Agree

2. Agree

3. Mildly Agree

4. Mildly Disagree

5. Disagree

6. Strongly Disagree

136

Appendix C (Continued)

17. Fill in Multiple Blanks: Three attributes of a good pair programming partner-
ship are [X], [Y], and [Z].
X:
Y:
Z:
18. Rank the attributes of a pair programming team in order of importance.

1. Team Works Effectively

2. Complementary Skills

3. Good Communication

4. Compatible Personalities

5. No Ego

6. Fast and Efficient

7. Flexibility

8. Common Goals

137

Appendix D

STANDARD FEATURE SET DESCRIPTIONS

Feature Description

Collection Duration The time, in milliseconds, that the user used the system

(from log in to logout)

Example Completed The user has completed viewing of the example

Example Requested The user requests an example from the system

Example Started An example has started to be played to the user

Executing Example Step The user has clicked the ’next’ button during an example,

moving the example onto the next step

Feedback Given Feedback has been given to the user

Final Pre The pre-test score

Node Clicked The user clicked on a node within the graphical problem

solving area

Operation Execution Submitted The user has submitted an operation, such as a line of

code, for a problem

Operation Redone The user elects to redo a step that was previously undone

Operation Undone The user elects to undo a previously submitted step

Continued on next page

138

Appendix D (Continued)

Table XXII – continued from previous page

Feature Description

Question Answer Response The intelligent tutor has responded to an answer that the

user has given to a posed question

Question Given A question has been posed to the user from the intelligent

tutor

Solution Submitted A problem solution has been submitted for validation by

the user to the intelligent tutor

Solved Problems The total number of problems the user has solved

Template Help Item Selected The user clicked on a code template item in order to help

them write code for problem solving

Template Help Requested The user has requested to see all commands that can be

used in solving the related problem

Tutorial Duration The total duration that the user viewed the lesson tutorial

User Acknowledge User clicks on the intelligent tutor’s ’ok’ button, signify-

ing that they have acknowledged any feedback

TABLE XXII: LIST OF STANDARD FEATURES USED IN MULTIPLE LINEAR REGRES-

SION MODELS ALONG WITH THEIR DESCRIPTIONS.

139

Appendix E

BEST FIT REGRESSION MODELS

Unstructured Model: Standard Features + Collaboration Features

R2=.94

140

Appendix E (Continued)

Semi-structured Model: Standard Features + Collaboration Features

R2=.95

141

Appendix F

ALL EXPERIMENT LEARNING GAINS

Tutor N
Pre-test Post-test Gain

µ σ µ σ µ σ

Human 54 .40 .26 .54 .26 .14 .25

Unstructured Collab-ChiQat F’15 22 .46 .20 .58 .21 .12 .19

Semi-Structured Collab-ChiQat F’15 19 .57 .23 .67 .24 .11 .28

Unstructured Collab-ChiQat F’16 58 .64 .22 .77 .16 .13 .14

Hybrid Collab-ChiQat F’16 56 .56 .25 .66 .21 .10 .12

TABLE XXIII: COMPARISON OF LEARNING GAINS BETWEEN ALL EXPERIMENTS.

142

Appendix G

COPYRIGHTS

143

Appendix G (Continued)

144

Appendix G (Continued)

145

Appendix G (Continued)

146

Appendix G (Continued)

CITED LITERATURE

ACM/IEEE-CS Joint Task Force on Computing Curricula: Computer Science Curricula 2013.
Technical report, ACM Press and IEEE Computer Society Press, December 2013.

AgileAcademyAus: Agile in Practice: Pair Programming, May 2011.

Ahuja, N. J. and Sille, R.: A Critical Review of Development of Intelligent Tutoring Systems:
Retrospect, Present and Prospect. International Journal of Computer Science Issues
(IJCSI), 10(4), 2013.

Akkerman, S., van den Bossche, P., Admiraal, W., Gijselaers, W., Segers, M., Simons, R. J.,
and Kirschner, P. A.: Reconsidering group cognition: From conceptual confusion to
a boundary area between cognitive and socio-cultural perspectives?, 2007.

Ally, M., Darroch, F., and Toleman, M.: A Framework for Understanding the Factors Influ-
encing Pair Programming Success. In Extreme Programming and Agile Processes in
Software Engineering, eds. H. Baumeister, M. Marchesi, and M. Holcombe, number

3556 in Lecture Notes in Computer Science, pages 82–91. Springer Berlin Heidelberg,
2005.

AlZoubi, O., Fossati, D., Di Eugenio, B., Green, N., Alizadeh, M., and Harsley, R.: A Hy-
brid Model for Teaching Recursion. In Proceedings of the 16th annual ACM SIGITE
conference on Information technology education, Chicago, IL, USA, October 2015.

Arroyo, I., Woolf, B. P., and Shanabrook, D.: Casual Collaborations while Learning Math-
ematics with an Intelligent Tutoring System. Collaborative Learning Environments
Workshop at ITS 2012, 2012.

Baghaei, N., Mitrovic, A., and Irwin, W.: Supporting collaborative learning and
problem-solving in a constraint-based CSCL environment for UML class dia-
grams. International Journal of Computer-Supported Collaborative Learning, 2(2-
3):159–190, September 2007.

Beaubouef, T. and Mason, J.: Why the high attrition rate for computer science students:
some thoughts and observations. ACM SIGCSE Bulletin, 37(2):103–106, 2005.

147

148

Begel, A. and Nagappan, N.: Pair Programming: What’s in It for Me? In Proceedings of
the Second ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, New York, NY, USA, 2008. ACM.

Bloom, B. S.: The 2 Sigma Problem: The Search for Methods of Group Instruction as
Effective as One-to-One Tutoring. Educational Researcher, 13(6):4–16, June 1984.

Braught, G., MacCormick, J., and Wahls, T.: The Benefits of Pairing by Abil-
ity. In Proceedings of the 41st ACM Technical Symposium on Computer Science
Education, SIGCSE ’10, pages 249–253, New York, NY, USA, 2010. ACM.

Braught, G., Wahls, T., and Eby, L. M.: The Case for Pair Programming in the Computer
Science Classroom. Trans. Comput. Educ., 11(1):2:1–2:21, February 2011.

Carbonell, J.: AI in CAI: An Artificial-Intelligence Approach to Computer-Assisted Instruc-
tion. IEEE Transactions on Man-Machine Systems, 11(4):190–202, December 1970.

Chigona, W. and Pollock, M.: Pair programming for information systems students new to pro-
gramming: Students’ experiences and teachers’ challenges. In Portland International
Conference on Management of Engineering Technology, 2008. PICMET 2008, pages

1587–1594, July 2008.

Chu-Carroll, J. and Brown, M. K.: Tracking Initiative in Collaborative Dialogue Interactions.
In Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics and Eighth Conference of the European Chapter of the Association for
Computational Linguistics, ACL ’98, pages 262–270, Stroudsburg, PA, USA, 1997.
Association for Computational Linguistics.

Commission, A. C. A.: Criteria for Accrediting Computing Programs, 2016-2017 | ABET.
ABET, November 2014.

Conati, C.: Intelligent Tutoring Systems: New Challenges and Directions. In Proceedings of
the 21st International Jont Conference on Artifical Intelligence, IJCAI’09, pages 2–7,
San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

Corbett, A. T., Koedinger, K. R., and Anderson, J. R.: Chapter 37 - Intelligent Tutoring
Systems. In Handbook of Human-Computer Interaction (Second Edition), ed. M. G.
H. K. L. V. Prabhu, pages 849–874. Amsterdam, North-Holland, 1997.

149

Dillenbourg, P.: What do you mean by collaborative learning. Collaborative-learning:
Cognitive and computational approaches, 1:1–15, 1999.

Dillenbourg, P.: Designing Biases That Augment Socio-Cognitive Interactions. In Barriers
and Biases in Computer-Mediated Knowledge Communication, eds. R. Bromme,

F. W. Hesse, and H. Spada, number 5 in Computer-Supported Collaborative Learning
Series, pages 243–264. Springer US, 2005. DOI: 10.1007/0-387-24319-4 11.

Dillenbourg, P., Jrvel, S., and Fischer, F.: The evolution of research on computer-supported
collaborative learning. In Technology-enhanced learning, pages 3–19. Springer, 2009.

Dragon, T., Floryan, M., Woolf, B., and Murray, T.: Recognizing Dialogue Content in
Student Collaborative Conversation. In Intelligent Tutoring Systems, eds. V. Aleven,
J. Kay, and J. Mostow, number 6095 in Lecture Notes in Computer Science, pages
113–122. Springer Berlin Heidelberg, January 2010.

Ezen-Can, A. and Boyer, K. E.: Combining task and dialogue streams in unsupervised dia-
logue act models. In Proceedings of the 15th Annual SIGDIAL Meeting on Discourse
and Dialogue, pages 113–122, 2014.

Fletcher, J. D. and Morrison, J. E.: DARPA Digital Tutor: Assessment Data (IDA Document
D-4686). Alexandria, VA: Institute for Defense Analyses, 2012.

Floryan, M. and Woolf, B. P.: Authoring Expert Knowledge Bases for Intelligent Tutors
through Crowdsourcing. In Artificial Intelligence in Education, eds. H. C. Lane, K.
Yacef, J. Mostow, and P. Pavlik, number 7926 in Lecture Notes in Computer Science,
pages 640–643. Springer Berlin Heidelberg, January 2013.

Fossati, D., Di Eugenio, B., Brown, C., Ohlsson, S., Cosejo, D., and Chen, L.: Supporting
Computer Science Curriculum: Exploring and Learning Linked Lists with iList. IEEE
Transactions on Learning Technologies, 2(2):107–120, April 2009.

Fossati, D.: ChiQat: An intelligent tutoring system for learning computer science. Qatar
Foundation Annual Research Forum Proceedings, (2013):ICTP 020, November 2013.

Fossati, D., Di Eugenio, B., Brown, C., and Ohlsson, S.: Learning linked lists: Experiments
with the iList system. In Intelligent tutoring systems, pages 80–89. Springer, 2008.

150

Fossati, D., Eugenio, B. D., Brown, C. W., Ohlsson, S., Cosejo, D. G., and Chen, L.: Sup-
porting computer science curriculum: Exploring and learning linked lists with iList.
Learning Technologies, IEEE Transactions on, 2(2):107–120, 2009.

Foundation, N. S.: NSF awards $25 million in new projects in support of the Computer
Science for All Initiative, September 2016.

Friedberg, H., Litman, D., and Paletz, S. B.: Lexical entrainment and success in student engi-
neering groups. In Spoken Language Technology Workshop (SLT), 2012 IEEE, pages
404–409. IEEE, 2012.

Gabelica, C., Van den Bossche, P., De Maeyer, S., Segers, M., and Gijselaers, W.: The effect
of team feedback and guided reflexivity on team performance change. Learning and
Instruction, 34:86–96, 2014.

Gonzalez, R.: Having Success With Code Bootcamps: A Guide For Employers And Bootcamp
Grads, November 2015.

Google: Voice Driven Web Apps: Introduction to the Web Speech API |, 2013.

Green, N., AlZoubi, O., Alizadeh, M., Di Eugenio, B., Fossati, D., and Harsley, R.:
A scalable intelligent tutoring system framework for computer science education.
In CSEDU 2015 - 7th International Conference on Computer Supported Education,
Proceedings, pages 372–379. SciTePress, 2015.

Gmez, O. S., Batn, J. L., and Aguilar, R. A.: Pair versus Solo Programming – An Ex-
perience Report from a Course on Design of Experiments in Software Engineering.
SOURCEInternational Journal of Computer Science Issues (IJCSI), page p.734, Jan-
uary 2013. arXiv: 1306.4245.

Harsley, R.: Towards a Collaborative Intelligent Tutoring System Classification
Scheme. In Proceedings Of The 11th International Conference On Cognition And
Exploratory Learning In The Digital Age (Celda 2014), pages 290–291, Porto, Portu-
gal, October 2014.

Harsley, R.: Learning Together: Expanding the One-To-One ITS Model for Computer Sci-
ence Education. In Proceedings of the Eleventh Annual International Conference on
International Computing Education Research, ICER ’15, pages 263–264, New York,

NY, USA, 2015. ACM.

151

Harsley, R., Di Eugenio, B., Fossati, D., and Green, N.: Collaborative Intelligent Tu-
toring Systems: Comparing Learner Outcomes Across Varying Collaboration Feed-
back Strategies. In Proceedings of the Computer Supported Collaborative Learning
(CSCL) conference, volume 2, 2017.

Harsley, R., Di Eugenio, B., Green, N., Fossati, D., and Acharya, S.: Integrating Support for
Collaboration in a Computer Science Intelligent Tutoring System. In Proceedings of
the 13th International Conference on Intelligent Tutoring Systems, Croatia, 2016.

Harsley, R., Fossati, D., Di Eugenio, B., and Green, N.: Interactions of Individual
and Pair Programmers with an Intelligent Tutoring System for Computer Sci-
ence. In Proceedings of the 48th ACM Technical Symposium on Computing Science
Education, Seattle, WA, USA, 2017. ACM.

Harsley, R., Green, N., Alizadeh, M., Acharya, S., Fossati, D., Di Eugenio, B., and AlZoubi,
O.: Incorporating Analogies and Worked Out Examples as Pedagogical Strategies
in a Computer Science Tutoring System. In Proceedings of the 47th ACM Technical
Symposium on Computer Science Education (SIGCSE), Memphis, TN, USA, 2016.

Harsley, R., Green, N., Alizadeh, M., Acharya, S., Fossati, D., Di Eugenio, B., and AlZoubi,
O.: Incorporating Analogies and Worked Out Examples as Pedagogical Strategies
in a Computer Science Tutoring System. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, pages 675–680, Memphis, TN, USA,

2016. ACM.

Harsley, R., Green, N., Di Eugenio, B., Acharya, S., Fossati, D., and AlZoubi, O.: Collab-
ChiQat: A Collaborative Remaking of a Computer Science Intelligent Tutoring Sys-
tem. In CSCW ’16: Computer Supported Cooperative Work and Social Computing
Companion Proceedings, San Francisco, CA, USA, March 2016.

Howles, T.: A study of attrition and the use of student learning communities in the computer
science introductory programming sequence. Computer science education, 19(1):1–13,
2009.

Inaba, A. and Mizoguchi, R.: Learners Roles and Predictable Educational Benefits in Col-
laborative Learning. In Intelligent Tutoring Systems, eds. J. C. Lester, R. M. Vicari,
and F. Paraguau, number 3220 in Lecture Notes in Computer Science, pages 285–294.
Springer Berlin Heidelberg, August 2004. DOI: 10.1007/978-3-540-30139-4 27.

152

Israel, J. and Aiken, R. M.: Supporting Collaborative Learning With An Intelligent Web-
Based System. IJ Artificial Intelligence in Education, 17(1):3–40, 2007.

Janssen, J., Erkens, G., Kanselaar, G., and Jaspers, J.: Visualization of Participation: Does
It Contribute to Successful Computer-supported Collaborative Learning? Comput.
Educ., 49(4):1037–1065, December 2007.

Janssen, J., Erkens, G., and Kirschner, P. A.: Group awareness tools: Its what you do with
it that matters. Computers in human behavior, 27(3):1046–1058, 2011.

Jensen, R. W.: A pair programming experience. CrossTalk, 16(3):22–24, 2003.

Jordan, P. W. and Di Eugenio, B.: Control and initiative in collaborative problem solv-
ing dialogues. In Working Notes of the AAAI Spring Symposium on Computational
Models for Mixed Initiative, pages 81–84, 1997.

Jrvel, S., Kirschner, P. A., Panadero, E., Malmberg, J., Phielix, C., Jaspers, J., Koivuniemi,
M., and Jrvenoja, H.: Enhancing socially shared regulation in collaborative learning
groups: designing for CSCL regulation tools. Educational Technology Research and
Development, 63(1):125–142, February 2015.

Kaptelinin, V.: Learning together: Educational benefits and prospects for computer support.
Journal of the Learning Sciences, 8(3-4):499–508, 1999.

Kersey, C., Di Eugenio, B., Jordan, P., and Katz, S.: KSC-PaL: A Peer Learning Agent That
Encourages Students to Take the Initiative. In Proceedings of the Fourth Workshop
on Innovative Use of NLP for Building Educational Applications, EdAppsNLP ’09,

pages 55–63, Stroudsburg, PA, USA, 2009. Association for Computational Linguis-
tics.

Kersey-Howard, C., Jordan, P., Di Eugenio, B., and Katz, S.: Shifting the Load: a Peer
Dialogue Agent that Encourages its Human Collaborator to Contribute More to Prob-
lem Solving. International Journal of Artificial Intelligence in Education, pages 1–29,
2015.

Kobbe, L., Weinberger, A., Dillenbourg, P., Harrer, A., Hmlinen, R., Hkkinen, P., and Fischer,
F.: Specifying computer-supported collaboration scripts. International Journal of
Computer-Supported Collaborative Learning, 2(2-3):211–224, September 2007.

153

Koedinger, K. R., Anderson, J. R., Hadley, W. H., and Mark, M. A.: Intelligent tutoring goes
to school in the big city. International Journal of Artificial Intelligence in Education
(IJAIED), 8:30–43, 1997.

Kulik, J. A. and Fletcher, J. D.: Effectiveness of Intelligent Tutoring Systems A Meta-Analytic
Review. Review of Educational Research, page 0034654315581420, April 2015.

Kumar, R. and al, e.: Tutorial Dialogue as Adaptive Collaborative Learning Support. 2007.

Lane, H. C. and VanLehn, K.: A Dialogue-Based Tutoring System for Beginning Program-
ming. In FLAIRS Conference, pages 449–454, 2004.

Lehtinen, E., Hakkarainen, K., Lipponen, L., Rahikainen, M., and Muukkonen, H.: Computer
supported collaborative learning: A review. The JHGI Giesbers reports on education,
10, 1999.

Lewis, C.: Attrition in Introductory Computer Science at the University of California, Berke-
ley. Berkeley: University of California, Berkeley, 2010.

Little, J. L. and Bjork, E. L.: Pretesting with multiple-choice questions facilitates learning.
In Proceedings of the annual meeting of the cognitive science society, 2012.

Magnisalis, I., Demetriadis, S., and Karakostas, A.: Adaptive and Intelligent Systems for Col-
laborative Learning Support: A Review of the Field. IEEE Transactions on Learning
Technologies, 4(1):5–20, 2011.

Maguire, P., Maguire, R., Hyland, P., and Marshall, P.: Enhancing collaborative learning us-
ing pair programming: Who benefits? AISHE-J: The All Ireland Journal of Teaching
and Learning in Higher Education, 6(2), June 2014.

McDowell, C., Werner, L., Bullock, H. E., and Fernald, J.: Pair Programming Improves
Student Retention, Confidence, and Program Quality. Commun. ACM, 49(8):90–95,
August 2006.

Monge, A. E., Fadjo, C. L., Quinn, B. A., and Barker, L. J.: EngageCSEdu: Engaging and
Retaining CS1 and CS2 Students. ACM Inroads, 6(1):6–11, February 2015.

Najar, A. S. and Mitrovic, A.: Do novices and advanced students benefit differently from
worked examples and ITS. In Proceedings of International Conference Computers in
Education, pages 20–29, 2013.

154

Nenkova, A., Gravano, A., and Hirschberg, J.: High Frequency Word Entrainment in
Spoken Dialogue. In Proceedings of the 46th Annual Meeting of the Association for
Computational Linguistics on Human Language Technologies: Short Papers, HLT-

Short ’08, pages 169–172, Stroudsburg, PA, USA, 2008. Association for Computational
Linguistics.

Nkambou, R., Bourdeau, J., and Mizoguchi, R.: Advances in intelligent tutoring systems,
volume 308. Springer, 2010.

Nwana, H. S.: Intelligent tutoring systems: an overview. Artificial Intelligence Review,
4(4):251–277, December 1990.

Olsen, J. K., Aleven, V., and Rummel, N.: Adapting Collaboration Dialogue in Response
to Intelligent Tutoring System Feedback. In Artificial Intelligence in Education, eds.
C. Conati, N. Heffernan, A. Mitrovic, and M. F. Verdejo, Lecture Notes in Computer
Science. Springer International Publishing, June 2015.

Olsen, J. K., Belenky, D. M., Aleven, V., and Rummel, N.: Using an Intelligent Tutoring Sys-
tem to Support Collaborative as well as Individual Learning. In Intelligent Tutoring
Systems, eds. S. Trausan-Matu, K. E. Boyer, M. Crosby, and K. Panourgia, number

8474 in Lecture Notes in Computer Science, pages 134–143. Springer International
Publishing, June 2014.

Paviotti, G., Rossi, P. G., and Zarka, D.: Intelligent Tutoring Systems: an Overview. Pensa
Multimedia, 2012.

Pears, A.: Enhancing student engagement in an introductory programming course. In 2010
IEEE Frontiers in Education Conference (FIE), pages F1E–1–F1E–2, October 2010.

Phielix, C., Prins, F. J., and Kirschner, P. A.: Awareness of Group Performance in a
CSCL-environment: Effects of Peer Feedback and Reflection. Comput. Hum. Behav.,
26(2):151–161, March 2010.

Phielix, C., Prins, F. J., Kirschner, P. A., Erkens, G., and Jaspers, J.: Group Awareness of
Social and Cognitive Performance in a CSCL Environment: Effects of a Peer Feedback
and Reflection Tool. Comput. Hum. Behav., 27(3):1087–1102, May 2011.

Porter, L., Bailey Lee, C., Simon, B., and Zingaro, D.: Peer Instruction: Do Students
Really Learn from Peer Discussion in Computing? In Proceedings of the Seventh

155

International Workshop on Computing Education Research, ICER ’11, pages 45–52,
New York, NY, USA, 2011. ACM.

Porter, L., Bouvier, D., Cutts, Q., Grissom, S., Lee, C., McCartney, R., Zingaro, D., and
Simon, B.: A Multi-institutional Study of Peer Instruction in Introductory Comput-
ing. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, SIGCSE ’16, pages 358–363, New York, NY, USA, 2016. ACM.

Porter, L., Guzdial, M., McDowell, C., and Simon, B.: Success in Introductory Programming:
What Works? Commun. ACM, 56(8):34–36, August 2013.

Porter, L. and Simon, B.: Retaining Nearly One-third More Majors with a Trio of Instruc-
tional Best Practices in CS1. In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education, SIGCSE ’13, pages 165–170, New York, NY, USA,
2013. ACM.

Reitter, D., Keller, F., and Moore, J. D.: Computational Modelling of Structural Prim-
ing in Dialogue. In Proceedings of the Human Language Technology Conference of
the NAACL, Companion Volume: Short Papers, NAACL-Short ’06, pages 121–124,

Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.

Richland, L. E., Kornell, N., and Kao, L. S.: The pretesting effect: Do unsuccessful re-
trieval attempts enhance learning? Journal of Experimental Psychology: Applied,
15(3):243–257, 2009.

Richtel, M.: Reading, Writing, Arithmetic, and Lately, Coding. The New York Times, May
2014.

Ritter, S., Kulikowich, J., Lei, P.-W., McGuire, C. L., and Morgan, P.: What evidence
matters? A randomized field trial of Cognitive Tutor Algebra I. Frontiers in Artificial
Intelligence and Applications, 162:13, 2007.

Rodriguez, F. J. and Boyer, K. E.: Discovering Individual and Collaborative Problem-
Solving Modes with Hidden Markov Models. In Proceedings of the 17th International
Conference on Artificial Intelligence in Education (AIED). 2015.

Rodrguez, F. J., Price, K. M., and Boyer, K. E.: Exploring the Pair Programming Process:
Characteristics of Effective Collaboration. 2017.

156

Salleh, N., Mendes, E., and Grundy, J.: Empirical Studies of Pair Programming for CS/SE
Teaching in Higher Education: A Systematic Literature Review. IEEE Transactions
on Software Engineering, 37(4):509–525, July 2011.

Salleh, N., Mendes, E., and Grundy, J.: Empirical Studies of Pair Programming for CS/SE
Teaching in Higher Education: A Systematic Literature Review. IEEE Transactions
on Software Engineering, 37(4):509–525, July 2011.

Self, J. A.: Student models in computer-aided instruction. International Journal of
Man-Machine Studies, 6(2):261–276, March 1974.

Soller, A.: Supporting social interaction in an intelligent collaborative learning sys-
tem. International Journal of Artificial Intelligence in Education (IJAIED), 12:40–
62, 2001.

Stahl, G.: Group cognition in computer-assisted collaborative learning. Journal of Computer
Assisted Learning, 21(2):79–90, April 2005.

Stahl, G.: Group Cognition: Computer Support for Building Collaborative Knowledge
(Acting with Technology). Cambridge and London, The MIT Press, April 2006.

Strijbos, J.-W.: Assessment of (Computer-Supported) Collaborative Learning. IEEE
Transactions on Learning Technologies, 4(1):59–73, January 2011.

Suebnukarn, S. and Haddawy, P.: COMET: A Collaborative Tutoring System for Medical
Problem-Based Learning. IEEE Intelligent Systems, 22(4):70–77, 2007.

Tchounikine, P., Rummel, N., and McLaren, B. M.: Computer Supported Collabora-
tive Learning and Intelligent Tutoring Systems. In Advances in Intelligent Tutoring
Systems, pages 447–463. Springer, 2010.

Therneau, T., Atkinson, B., and port), B. R. a. o. i. R.: rpart: Recursive Partitioning and
Regression Trees, June 2015.

Van Toll, T., Lee, R., and Ahlswede, T.: Evaluating the Usefulness of Pair Programming in
a Classroom Setting. In 6th IEEE/ACIS International Conference on Computer and
Information Science, 2007. ICIS 2007, pages 302–308, July 2007.

157

Virvou, M. and Sidiropoulos, S.-C.: An Intelligent Tutoring System over a social network
for mathematics learning. In 2013 Fourth International Conference on Information,
Intelligence, Systems and Applications (IISA), pages 1–4, 2013.

Walker, E., Rummel, N., and Koedinger, K. R.: CTRL: A research framework for pro-
viding adaptive collaborative learning support. User Modeling and User-Adapted
Interaction, 19(5):387–431, November 2009.

Walker, E., Rummel, N., and Koedinger, K. R.: Integrating Collaboration And Intelligent Tu-
toring Data In The Evaluation Of A Reciprocal Peer Tutoring Environment. Research
and Practice in Technology Enhanced Learning, 04(03):221–251, November 2009.

Walker, M. and Whittaker, S.: Mixed Initiative in Dialogue: An Investigation into Dis-
course Segmentation. In Proceedings of the 28th Annual Meeting on Association for
Computational Linguistics, ACL ’90, pages 70–78, Stroudsburg, PA, USA, 1990. As-
sociation for Computational Linguistics.

Walle, T. and Hannay, J.: Personality and the nature of collaboration in pair pro-
gramming. In 3rd International Symposium on Empirical Software Engineering and
Measurement, 2009. ESEM 2009, pages 203–213, October 2009.

Washington, A. N., Burge, L., Mejias, M., Jean-Pierre, K., and Knox, Q.: Improving Un-
dergraduate Student Performance in Computer Science at Historically Black Col-
leges and Universities (HBCUs) Through Industry Partnerships. In Proceedings of
the 46th ACM Technical Symposium on Computer Science Education, SIGCSE ’15,

pages 203–206, New York, NY, USA, 2015. ACM.

Wiggins, J. B., Boyer, K. E., Baikadi, A., Ezen-Can, A., Grafsgaard, J. F., Ha, E. Y.,
Lester, J. C., Mitchell, C. M., and Wiebe, E. N.: JavaTutor: An Intelligent Tutoring
System That Adapts to Cognitive and Affective States During Computer Program-
ming. In Proceedings of the 46th ACM Technical Symposium on Computer Science
Education, SIGCSE ’15, pages 599–599, New York, NY, USA, 2015. ACM.

Williams, L., Kessler, R. R., Cunningham, W., and Jeffries, R.: Strengthening the case for
pair programming. IEEE Software, 17(4):19–25, August 2000.

Williams, L. and Upchurch, R. L.: In Support of Student Pair-programming. In
Proceedings of the Thirty-second SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’01, pages 327–331, New York, NY, USA, 2001. ACM.

158

Williams, L. A. and Kessler, R. R.: All I Really Need to Know About Pair Programming I
Learned in Kindergarten. Commun. ACM, 43(5):108–114, May 2000.

Woolf, B. P.: Building intelligent interactive tutors: Student-centered strategies for
revolutionizing e-learning. Morgan Kaufmann, 2010.

Xu, Y. and Reitter, D.: Convergence of Syntactic Complexity in Conversation. In The 54th
Annual Meeting of the Association for Computational Linguistics, page 443, 2016.

VITA

159

160

Rachel E. Harsley P a g e | 2

6. Harsley, R., Green, N., Di Eugenio, B., Aditya, S., Fossati, D., & Al Zoubi, O. (2016). Collab-
ChiQat: A Collaborative Remaking of a Computer Science Intelligent Tutoring System. In Proceedings of
the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion (pp. 281–
284). San Francisco, CA, USA: ACM.

7. AlZoubi, O., Fossati, D., Di Eugenio, B., Green, N., Alizadeh, M., & Harsley, R. (2015). A Hybrid
Model for Teaching Recursion. In Proceedings of the 16th annual ACM SIGITE conference on Information
technology education. Chicago, IL, USA.

8. Di Eugenio, B., Green, N., Alizadeh, M., Harsley, R., & Fossati, D. (2015). Worked-out Examples in
a Computer Science Intelligent Tutoring System. In Proceedings of the 16th annual ACM SIGITE conference
on Information technology education. Chicago, IL, USA.

9. Green, N., Fossati, D., Di Eugenio, B., Harsley, R., AlZoubi, O., & Alizadeh, M. (2015). Student
Behavior with Worked-out Examples in a Computer Science Intelligent Tutoring System. Presented at
the 3rd International Conference on Educational Technologies, Florianópolis, Santa Catarina, Brazil.

10. Harsley, R. (2015). Learning Together: Expanding the One-To-One ITS Model for Computer
Science Education. In Proceedings of the Eleventh Annual International Conference on International Computing
Education Research (pp. 263–264). New York, NY, USA: ACM.

11. Harsley, R., Green, N., Alizadeh, M., Tandon, A., & Prabhu, A. (2015). Sick Kitty – Toward
Promoting Deductive Reasoning through an Embodied Medical Diagnosis Game. In Proceedings of the
Games+Learning+Society (GLS) Conference. Madison, WA: ETC Press.

12. Alizadeh, M., Di Eugenio, B., Harsley, R., Green, N., Fossati, D., & AlZoubi, O. (2015). A study of
analogy in computer science tutorial dialogues. In CSEDU 2015 - 7th International Conference on Computer
Supported Education, Proceedings (pp. 232–237). SciTePress.

13. Green, N., AlZoubi, O., Alizadeh, M., Di Eugenio, B., Fossati, D., & Harsley, R. (2015). A scalable
intelligent tutoring system framework for computer science education. In CSEDU 2015 - 7th
International Conference on Computer Supported Education, Proceedings (pp. 372–379). SciTePress.

14. Harsley, R. (2014). Towards a Collaborative Intelligent Tutoring System Classification Scheme,. In
Proceedings Of The 11th International Conference On Cognition And Exploratory Learning In The Digital Age
(Celda 2014) (pp. 290–291). Porto, Portugal.

POSTERS & INVITED TALKS

• Harsley, R. et al. (2015). Navigating Academia and the Technical Internship Process. Panel
presentation at Google Chicago. Chicago, IL.

• Harsley, R. (2013). Leveraging Mobile Technology for Computer Science Learning in Low
Socioeconomic and Minority Communities. Poster presentation at the CRA-W Graduate Cohort
Workshop. Boston, Massachusetts.

• Harsley, R. et al. (2013). Voices from the Field. Panel presentation at the Illinois GEM Grad Lab.
Chicago, IL.

MEDIA & PRESS
• 2016 WinTrust Business Lunch Guest WGN Radio
• 2016 “10 Unique Black Women-Owned Tech Startups” Black Enterprise Magazine
• 2016 “A UIC PhD Student Made a Messaging App That Doesn’t Leave a Digital Trail” ChicagoInno
• 2014 “Women in STEM” National Society of Black Engineers News
• 2014 University Promotional Video UIC Office of the Chancellor
• 2014 “Computer Science Students Among 50 for the Future” UIC News
• 2014 Featured Student UIC Engineering News Magazine

161

Rachel E. Harsley P a g e | 3

SKILLS • Creative thinker and problem solver with ability to plan and implement;

• Strong leadership and communication ability with valuable research and industry experience
• C++, Java, Objective-C, C, C#, JavaScript, HTML, CSS, SQL, Python, Lisp;

TEACHING EXPERIENCE
University of Illinois at Chicago, Chicago, IL 2011-2012, 2014
Teaching Assistant, Department of Computer Science (4.61/5 Student Evaluation Rating Spring ‘14)

Northwestern University, Chicago IL November, 2013
Java Course Instructor, Center for Talent Development

University of Illinois at Chicago, Chicago, IL 2012-2013
Tutor & Student Coordinator of the African American Academic Network Learning Resource Center

HONORS & AWARDS
NSBE Graduate Student of the Year
ACM-W Scholarship
Chicago RECESS Pitch 1st Place
UIC Startup Challenge 1st Place
Chicago Urban League Leading Woman in Tech Award
UIC Abraham Lincoln Fellowship
Xerox Technical Minority Scholarship
NSBE Region IV - Living the NSBE Mission Scholarship
Tapia Scholarship Travel Grant Award
Illinois Technology Foundation Fifty for the Future Award
Microsoft NSBE Scholarship
CRA-W Grad Cohort Travel Scholarship
National GEM Consortium GEM Fellowship
UIC C.S. Department Grace Hopper Travel Scholarship
Vanderbilt University Chancellor’s Scholar Award

2017
2017
2016
2016
2015
2015

2013, 2015
2013
2013
2013
2012
2012

2012-2013
2011

2007-2011

SERVICE & LEADERSHIP EXPERIENCE
STEM Education Advocate & Motivational Speaker 2015 - present
Christian Education Teacher; Grace New Covenant Church, St. Louis, MO 2011, 2015
Media Ministry Volunteer; Apostolic Faith Church, Chicago, IL 2013
Student Government Secretary; Georgia Tech-Lorraine, Metz, France 2011 (spring)
Residential Advisor; Vanderbilt University, Nashville, TN 2008-2011
Executive Board Member; Vanderbilt University Chapter of NSBE, Nashville, TN 2007-2011

Reviewer:

• Games + Learning + Society Conference (2015)
• International Conference on Intelligent Tutoring Systems (2014)
• International Conference on Artificial Intelligence in Education (2013, 2015);

PATENTS

• Harsley, R. (2015, May 8). System and Method for Stateless Communication Device Control. U.S.
Provisional Patent Appl. 62/159,091

162

Rachel E. Harsley P a g e | 4

INDUSTRY EXPERIENCE

 Maychild Technologies LLC, St. Louis, MO 2012-present

Founder and CEO
Developed Clean Slate Messenger, a messaging platform for private, instant chat. In three months since the
soft-launch on iOS, the app gained grew to users in ten countries organically via word of mouth.
http://maychildtechnologies.com/

Google Incorporated 2014, 2015 (summer)
Software Engineering Intern, Machine Intelligence

Built an applied machine learning approach to predict Google Ad Exchange platform search ranking results.
https://www.doubleclickbygoogle.com/solutions/digital-marketing/ad-exchange/

Improved predictive neural network’s visualizer by altering the underlying architecture to utilize Google
Brain’s deep learning technology. Resulted in enhanced traceability and debugability of approach.
http://research.google.com/pubs/ArtificialIntelligenceandMachineLearning.html

 General Electric Global Research, San Ramon, CA 2013(summer)
R&D Intern, Mobility and Collaboration Lab

Wrote significant portions of Objective-C code included in official mobile application release.
http://www.geglobalresearch.com/innovation/predix-software-platform-industrial-internet

Intel Corporation, Bellevue, WA 2012(summer)
Software Intern Graduate Level

Developed Windows gadget application to alert software developers in real-time of status and updates
concerning assigned bugs in Intel Clover Trail atom chip release.
http://ark.intel.com/products/codename/53606/Cloverview

AT&T Incorporated, St. Louis, MO 2011(summer)
Student Intern – Technical I

Created graphical interface for Java-based Application Resource Optimizer and demoed Agile
accomplishments in bi-weekly retrospective for clients resulting in a $1.2 million budget increase for further
enhancements.
https://developer.att.com/application-resource-optimizer

Grace New Covenant Church, St. Louis, MO 2010(summer)
Administrative Intern

Served as general technology advisor. Responsible for the creation of the church website which has seen over
6,000+ unique visitors and showcases a high quality community presence and brand.
http://www.gracenewcovenantchurch.org/

Save-A-lot Corporate Headquarters, St. Louis, MO 2008, 2009(summer)
IT Department Intern

Responsible for testing and debugging of Java applications for a wide variety of usages.

