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SUMMARY

Networks have become an indispensable data abstraction that captures the nature of

a diverse list of complex systems, such as on-line social interactions, email and cell phone

communications, or protein interactions in a cell. All these systems are inherently dy-

namic and change over time. The abstraction of choice for incorporating time has been the

“dynamic network”, a time series of graphs, each representing an aggregation of a small

discrete time interval of the stream of interactions. While in many cases the system under

observation naturally suggests the size of such a time interval, it is more often the case

that the aggregation is arbitrary and is done for the convenience of the data representation

and analysis. However, it is clear that the choice of the time interval at which the network

is discretized and aggregated has great implications on the structures observed, analysis

performed, and inference made about the nature of the network and the processes on it.

This thesis is the first to establish a framework for the problem of Temporal

Scale Inference (TSI) for dynamic networks. We formally define the TSI problem and

explicitly present some of its associated challenges. We present an analytical framework for

studying the characteristics of special cases of interaction streams as probabilistic processes.

We give characterizations of a null model and define the notion of the “right” temporal scale

of a list of structured interaction streams including the general class of oversampled, noisy

stationary streams. We present an axiomatic framework that formalizes desired properties

of the “right” temporal scale. This framework serves as a common ground for consistently

xi



SUMMARY (Continued)

comparing the performance of different heuristics for the TSI problem. We present two

heuristics for identification of the inherent temporal scale of interaction streams. Overall,

this thesis focuses on the analysis of the scale of dynamic networks with the objective to

make the “art of looking at the right scale” more scientific.

xii



CHAPTER 1

INTRODUCTION

1.1 Overview

Complex systems arise in various domains such as sociology, biology and technology, to

name but a few. These systems are often abstracted and analyzed as networks. Networks are

graphs with nodes representing entities, such as people or proteins, and edges representing

interactions between pairs of entities, such as, email communications between two people or

participation of proteins in the same regulatory process. Complex systems are inherently

dynamic and change in time. Their temporal dynamics are often analyzed by embedding

the concept of network in time.

Whether it is on-line communications (12; 36; 35), animal social interactions (17; 21; 54;

62), or gene regulatory processes (27), the dynamic systems they represent have inherent

rhythms at which they function. Some of these inherent rhythms come from the system

itself, others are imposed by outside circumstances. Circadian patterns of cell regulatory

systems, seasonality in mobility patterns of animals, daily and weekly communication pat-

terns of humans are just a few examples of these characteristic temporal scales. Not only do

these complex systems have inherent rhythms, different patterns within them form and live

at different scales (34). For example, when analyzing animal population behavior three tem-

poral scales are considered to be important for capturing the hierarchical nature of its social

1
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structure (23): the scale of the interactions themselves, the scale of patterns of interactions

(relationships), and, finally, the scale of patterns of relationships (network structures). In

this context, grooming interactions of baboons usually have a temporal scale ranging from

seconds to minutes, mother to infant or peer to peer relationships have a scale extending

over years, while an individual troop membership, splitting or formation of new troops

extends from years to decades (59). Similarly, in human social behavior, the patterns of in-

teraction of conversations, friendships, and kinship occupy different temporal scales. Every

dynamic complex system exhibits this kind of multi-scalar behavior.

We view the system through the filter of the data we collect. These data are typically

collected opportunistically, with the temporal rate of data not always matching that of

the system. In order to ask questions about these systems, the tools we use to answer the

questions, and the temporal scale of analysis have to match the temporal scale of the process

underlying the question. Whether the question of interest is the detection of anomalies, the

understanding of cohesiveness and persistence of interactions, or the prediction of the system

behavior, the temporal scale at which the analysis is applied needs to reflect the temporal

scale that captures what is essential for the question. When we analyze millions of IP

network traces in order to detect outlying behavior, should we analyze their communication

patterns every five minutes, every hour, every day? How long should social interactions

persist to be considered meaningful relationships in a social network (23; 46)? Just like the

cell has the “capacity” to compute the temporal scope of mRNA expression (66), we would
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like to develop an understanding of how to estimate the tempo of a given dynamic system by

analyzing its expression as a series of interactions occurring in time (i.e. temporal stream).

1.1.1 The Dynamic Network Abstraction

The abstract representation of choice for modeling a dynamic system has been that of

the dynamic network, also referred to as temporal network (25; 29; 31; 37; 38). A dynamic

network is a time series of network snapshots. Each snapshot represents a state of the

system over the interval of time such as a minute, a day, or a year in the life of the system.

The duration of the snapshot represents the temporal scale of the dynamic network since

all the interactions are lumped together discarding their order in time. Little thought, to

date, has been given to matching this temporal scale to that of the system under study. A

snapshot of a year is not appropriate for analyzing human conversation, but maybe right

for understanding kinship relations, minute-long snapshots could be suitable for analysis

of gene regulatory systems, but too fine for the baboon troop membership. How, then,

should we go about finding the “right” temporal scale for the dynamic network?

This is the central question of this thesis.

In the abstraction of the dynamic network, the temporal ordering of interactions within

a snapshot is lost. All these interactions are represented as living in the same temporal

scale, whether we have the finer temporal information or not. In some instances, the

data already comes as a series of aggregated snapshots; in other instances, we are given a

stream of interactions in time which we have to aggregate. We have to make sure that as

we transition from the temporal interaction stream or a collection of finer snapshots to a
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dynamic network representation, the information that we discard is not critical. It is not

clear how to decide what the right temporal scale of dynamic networks should be. While

in many cases the system under observation naturally suggests the size of such a temporal

scale (37), it is more often the case that the choice of temporal scale is arbitrary and is done

for the convenience of the data representation and analysis. For example, it is convenient

and sometimes meaningful to analyze human interaction patterns in calendaric scales, but

it does not always make sense to analyze animal social interactions in similar scales. Studies

of periodic behavior of animals have shown that animals do not care much about week days

and weekends (37).

Within the complex system there are subsets of interactions that form functional units

that naturally co-occur together and their analysis as a cohesive unit allows us to see crit-

ical system behavior such as collective emergent behavior (46; 47; 52; 66). For example,

when studying molecular mechanisms of diseases, it is important to study the interactions

of relevant genes concurrently in order to observe their temporal coordination (66). Simi-

larly, epidemiological studies show that analysis of concurrent relations allows for a more

accurate estimation of the magnitude of spread of an infectious agent (47; 52). In all these

scenarios, analysis of interactions as series of network snapshots allows us to uncover inher-

ent concurrent sets of interactions while maintaing only the critical temporal orderings. In

this transition from data streams to dynamic networks we have to know to discard the little

noisy perturbations of functional units, while retaining the meaningful temporal ordering

at the scale of natural functionality as a whole.
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1.1.2 Empirical Motivation

The level of aggregation of the temporal stream has great implications on the patterns

observed in the corresponding dynamic network and the inference made about the network

and the processes on it (15; 25; 31; 34; 46; 60; 11). As Moody, McFarland, and Bender-

deMoll (46) point out, if analysis is applied at too fine temporal resolution, we end up

observing a network that has lots of temporal detail, yet the interesting and meaningful

co-occurring patterns, such as communities, may not be fully formed. On the other end

of the spectrum, when we aggregate the network at a too coarse of a temporal scale, we

loose critical temporal information and cannot observe meaningful temporal changes to the

system or processes over it. For example, ecologists Baldock et al. (2) have shown that

analyzing plant pollinator interactions at a daily temporal scale misses temporal variations

during the span of the day that are critical for correctly interpreting interactions as either

competitive or facilitative. Figure 1(a) gives an illustration of the effect of the level of

aggregation on the kind of network structures that we observe (image reprinted from (7),

with authors’ permission). Figure 1(b) also illustrates how measures computed over the

dynamic network critically depend on the level of aggregation that generated this network

(image reprinted from (15), with authors’ permission).

1.1.3 Data Collection

Data about dynamic interaction systems is often collected as a sequence of interactions

together with temporal information about their occurrences. Depending on the nature of

the dynamic system, it might be more meaningful to represent the temporal dynamics as a
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Figure 1: Representation of a social network aggregated at different windows of aggrega-
tion (a), and network measures of the Reality Mining dataset as functions of the window of
aggregation (b).

stream of instantaneous interactions (i.e point-based interaction streams). At other times,

a stream of interactions with temporal durations (i.e. interval-based interaction streams)

is more suitable. For systems such as email communications, point-based streams offer a

better representation. On the other hand, friendships in a social network or grooming in

baboon troops are better characterized as interval-based streams. Interval-based interaction

streams can be viewed as a generalization of point-based interaction streams, where we can

think of the duration time as zero. In this thesis, we analyze both instances of interaction

streams and show that their unique characteristics lead to different characterizations of the

“right” temporal scale such as order invariance and persistence of structure. Figure 2 gives

an illustration of both types of interaction streams.

Whether the collected data comes from GPS sensors, digital recording of emails, or

human observation of animals grooming, most often, what we record is the instantaneous
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times at which the interactions were observed to be present. This process often introduces

different kinds of artificial noise that can be described both in terms of topological structure

and in terms of temporal structure. Topological noise arises when we attempt to represent

continuous behavior discretely (GPS). We might miss interactions that should be present

in the network. At the same time, we might record interactions that occur spuriously, but

are not meaningful. For example, when collecting proximity-based networks of students at

MIT using bluetooth devices or zebras in Kenya using GPS collars, an interaction, then,

is being at the same place at the same time for a sufficiently long interval. If two zebras

happen to cross paths without actually interacting, devices that sample positions sufficiently

frequently will record this occurrence even though this “interaction” should not be included

in the network. On the other hand, observing baboon interactions once a day, will miss

many important dynamics.

!
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(a) Interval-based interactions.
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(b) Point-based interactions.

Figure 2: Illustration of two different representations of time in interaction streams.
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1.1.4 Oversampling of Temporal Streams

Oversampling is an aspect of the data collection process that can help with the issue of

representing continuous time discretely. Oversampling helps reduce the number of missing

or spurious interactions. It allows us to better understand what interactions are persis-

tent in the network. On the other hand, oversampling affects our ability to distinguish

between local noisy temporal orderings and critical temporal ordering. For example, when

we observe human interactions at much higher rate than necessary, it is maybe hard to dis-

tinguish between interactions that develop independently of each other and those that are

transient. When emails arrive within seconds of each other, is their ordering meaningful?

Is it important in what order people walk in to a meeting room or is it more important to

know that they were present at the meeting? With the advent of electronic data collection

of interactions using communication devices, GPS, and proximity sensors, it is often the

case that data are oversampled at orders of magnitude higher temporal resolution than the

temporal scale of the underlying process. Therefore, it is important that the aggregation

process correctly accounts for the oversampling effects.

So far we have discussed scenarios when the aggregation of interactions streams into

a series of network snapshots is useful in capturing both the topological and temporal

structure of the underlying system. The characteristic of the system that makes the dynamic

network the right abstraction is the notion of local concurrency or temporal independence.

In dynamic systems where the temporal ordering of the interactions is absolutely critical,
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and there are no hidden concurrencies buried due to the data collection process, aggregation

is not a useful tool.

In addition, we have discussed how temporal networks have an inherent rhythm that

governs their dynamics. This is one natural way to define what is the right temporal

scale. An alternative way would be to define the right temporal scale in terms of what is

useful about networks. This leads to an orthogonal approach which is application driven.

For example, the identification of the most frequent sub-graphs, or the identification of

dynamic communities are useful applications that give us meaningful insight about the

network. The natural question that arises here is to identify the optimal temporal scale at

which application-specific patterns become detectable.

In summary, the dynamics of complex systems evolve at characteristic temporal scales.

Understanding the mapping between structure and the temporal scale at which it lives is

critical, and when done appropriately can lead to meaningful and insightful analysis. The

subtle interplay between the temporal concurrency and temporal ordering is at the core

of what is essential about the right temporal resolution for analysis of dynamic networks.

The notions of temporal concurrency and temporal ordering depend on the context of

analysis and they often lead to discovery of complex multi scalar nature of the structure.

When temporal concurrency is something inherent to the system or analysis, aggregation

of interactions streams helps in capturing this aspect of system functionality.

Although we have illustrated the challenges related to temporal scale identification in

the context of dynamic complex systems, the problem of identifying the right resolution
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for analysis of temporal data in general is very broad and covers many research areas.

The relevant literature spans fields from signal processing (20; 50) and information theory

(57) to time series analysis, time series segmentation (30; 49; 51), and model granularity

(5; 22; 53). While the literature mentioned in this section offers a solid foundation for the

problem of temporal scale identification in general, it does not explicitly address data that

are represented as networks. It is not clear, for example, how techniques like aggregation or

smoothing of numerical values relate to the same techniques applied to network structures

(11; 43; 60). There is, however, the opportunity for great research in trying to translate

and adapt these methods for the analysis of temporal scale of networks. Caceres, Berger-

Wolf and Grossman (11) show that for special classes of network generative processes, the

class of linear network measures (such as density and average degree) capture essential

characteristics of the network at different scales, while Miller, Bliss and Wolfe (43) aim to

develop a general signal processing theory for networks (graphs).

1.2 Main Contributions and Findings

The understanding and identification of the right temporal scale of dynamic networks is

a nascent area of research. This thesis is the first to establish a framework for the problem

of Temporal Scale Inference (TSI) for dynamic networks. The following is a more detailed

list of contributions of this thesis:

• We formally define the Temporal Scale Inference (TSI) problem for dynamic networks

and explicitly present some of its associated challenges.

• We present an analytical framework to study the TSI problem.
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• We give characterization of a null model for the TSI problem.

• We define the notion of the ”right” temporal scale of a list of structured interaction

streams including the general class of oversampled, noisy stationary streams.

• We present an axiomatic framework that formalizes desired properties of the ”right”

temporal scale. This framework serves as a common framework for consistently com-

paring the performance of different heuristics for the TSI problem.

• We present two heuristics for identification of the inherent temporal scale of interaction

stream.

1.3 Thesis Outline

The outline of the thesis is as follows:

Chapter 2 (Literature Review) We review existing literature related work to the TSI

problem.

Chapter 3 (Problem Formulation for TSI) We present some basic definitions and de-

scriptions of concepts used throughout the thesis, as well as formally define the TSI

problem.

Chapter 4 (Special Cases of Interaction Streams) We study special cases of interac-

tion streams and illustrate important characteristics of the notion of the right tempo-

ral scale. In addition, we present a formal analytical approach for studying the TSI

problem.
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Chapter 5 (Axiomatic Framework) We formally define a list of desired properties for

the ”right” temporal scale of interaction streams.

Chapter 6 (Inherent Timescale) We present two approaches for identification of the

inherent temporal scale of interaction streams.

Chapter 7 (Future Work and Conclusions) We discuss directions for future work for

the TSI problem and give concluding remarks.

1.4 List of Publications and Manuscripts

Some of the research presented in this thesis has appeared in or will appear in refer-

eed conferences and journals. Here, we list the relevant publications associated with each

chapter.

Chapter 4 (Special Cases of Interaction Streams)

• R. S. Caceres, T. Berger-Wolf and R. Grossman. Temporal scale of processes

in dynamic networks. In ICDMW ’11. Vancouver, CA. 2011. [Ref. (11)]

Chapter 5 (Axiomatic Framework)

• R. Sulo, T. Berger-Wolf. Temporal Scale for Dynamic Networks. In P. Holme

and H. Saramäki (Eds.). Temporal Networks. Springer Complexity Series. 2012 (to

appear)

Chapter 6.1 (Inherent Timescale)

• R. Sulo, T. Berger-Wolf and R. Grossman. Meaningful selection of temporal

resolution for dynamic networks. In MLG ’10. New York, NY. 2010. [Ref. (60)]



CHAPTER 2

RELATED WORK

Following is a brief review of related work in the areas of signal processing, information

theory and time series analysis.

2.1 Signal Processing & Information Theory

Temporal aggregation is a natural pre-processing step when the frequency at which the

data are generated is lower than the frequency at which the data are sampled. Usually the

approach involves formulating a trade-off between loss of information and reduction of noise

present in the signal. The goal in this context is to identify the window at which the original

continuous signal can be fully recovered from the discretized signal. The Nyquist-Shannon

sampling theorem (57) gives a necessary condition for the length of the sampling window

in this context.

Minimum description length (MDL) is another information theoretic technique that is

used to find the best granularity for data analysis (22; 53; 5). In this context, information

is defined in terms of its algorithmic complexity. It assumes that the best hypothesis for

a given set of data is the one that leads to the largest compression. Several works have

used MDL principal to learn the best model granularity. Identifying the intrinsic temporal

scale of time series can be viewed as a special case of model granularity and there are a

few approaches that apply the MDL concept directly to such data (26; 63). In the next

13
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section we review the approach by Sun et al. (61) that applies the MDL concept to dynamic

networks.

2.2 Time Series Smoothing

Smoothing techniques are prevailing in the domain of time series analysis. In this

context, some of the variation in the data is assumed to be due to random noise. The goal

of the smoothing techniques is, therefore, to cancel some of the variations and to reveal

inherent properties of the time series, such as trends or seasonal and cyclic behavior. The

two main groups of smoothing methods are the averaging methods and the exponential

smoothing methods.

While the literature mentioned in this chapter offers a solid foundation on how to prop-

erly aggregate data for analysis, it does not explicitly address datasets that are represented

as networks and, furthermore, it does not address the dynamic nature of these networks.

In our line of research, we focus explicitly on understanding how the process of aggregation

or smoothing of interaction streams affects the quality of dynamic network that we get.

2.3 Temporal Scale of Dynamic Networks

The problem of identifying the right temporal scale for dynamic networks has only

recently started getting the deserved attention. James Moody explicitly points out the

problem in (46). Existing literature on the topic is preliminary and mainly of empirical

nature. Clauset and Eagle (15) illustrate the effect of the aggregation window in under-

standing the periodic dynamics of the Reality Mining dataset (18). They recommend the

use of Fourier Transform analysis and auto-correlation analysis of time series of network
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measures. While these techniques have been successfully applied to understand stationary

time series, their application to time series of measures originating from highly dynamic

and complex networks might not be appropriate. It is not clear how the aggregation of

time series of measures in networks relates to the underlying aggregation of interactions.

Caceres et al. (11) theoretically show that for the special class of oversampled stationary

processes and the special class of linear network measures (such as density and average

degree), there is a direct relation between the two. We do not know, however, whether

the same is true for more general dynamic network processes and network measures. Sulo,

Berger-Wolf and Grossman (60) propose a heuristic that applies aggregation at the level of

the dynamic network rather than at the level of time series of network measures in order

to preserve as much of the network structure. They also give an explicit formulation of the

optimal window of aggregation using the information theoretic framework.

The approach by Sun et al., (61) developed initially for the purpose of efficiently cluster-

ing dynamic networks consists of grouping similar network snapshots into one time interval

using the Minimum Description Length principle. The idea of compressing the graph to

maintain only the more relevant aspects is very promising and relevant for the problem of

aggregating at the right time scale and is similar to the approach in (60). The contribution

of the method by Sun et al., (61) is to use drastic changes in the time series of compression

levels to segment the timeline of the temporal network. Rather than focusing explicitly on

change detection, the goal of the research in (60) is more general, that is, identifying the
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inherent temporal scale that governs the overall dynamics of the network, as well as the

changes in that scale.



CHAPTER 3

PRELIMINARIES AND PROBLEM FORMULATION

In this section we present some basic definitions and descriptions of concepts used

throughout this thesis.

3.1 Definitions and Notation

Let V be a set of vertices and E the set of edges defined over V ×V . For ∀eij ∈ E, i, j ∈ V

and t ∈ [1, . . . , T ], the pair (eij , t) is the time labeled instance of eij .

Definition 3.1.1. A temporal stream of edges Et is a sequence of edges ordered by their

time labels:

Et = {(eij , t)|eij ∈ E, t ∈ [1, . . . , T ]}

Let Xijt be a random variable representing the existence of an edge eij in the stream

Et at time t:

Xijt =


1 if (eij , t) ∈ Et

0 if (eij , t) /∈ Et

Let P be a partition of the timeline [1, . . . , T ]:

P = [t0, t1), [t1, t2), . . . , [tk, T ]

17
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As a special case, we consider the uniform partition Pω, where each interval pi has length

ω:

Pω = {pk} s.t.∀pk, |pk| = ω

Definition 3.1.2. A dynamic graph DG is a sequence of graphs defined over stream Et

and a fixed partition P of Et:

DG : 〈(V,Ekt )〉

DG = 〈G1, G2, . . . , Gk, . . . G|P |〉

with Ekt = {(eij , t)|eij ∈ Et, t ∈ pk} and each Gk is associated with the kth interval pk in

P.

We now define the operation of aggregation of a temporal stream of edges into the time

series of graphs comprising a dynamic network. Given the temporal stream of edges Et,

and a fixed partition of the stream P, we define the aggregation function that takes as an

input the temporal stream of edges and the partition and outputs a time series of graphs.

Definition 3.1.3. An aggregation function A on a temporal stream Et, and a fixed partition

P is defined as:

A : Et × P → 〈(V,Ek)〉

A(Et,P) = DG
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G1 G2

 t=1  t=3   t=4  t=5   t=2   t=6 

Figure 3: Aggregation of a temporal interaction stream with window of aggregation ω = 3.

The aggregation function A takes all the edges occurring in a stream within a time

interval pk ∈ P and constructs a graph. Consider the scenario when A is applied to the

uniform partition Pω. Figure 3 shows an illustration of the aggregation function when the

window of aggregation ω is 3. Note, that edges can occur within each temporal window

more than once, but they get represented in the corresponding aggregated graph at most

once. Throughout this thesis, we use this definition for the aggregation function. Another

possible extension to this definition of A could take the multiplicity of edge occurrence into

account. In a more general sense, an aggregation function could also use as a parameter a

“goodness of fit” measure µ, that allows to map an interval pk ∈ P to the best fit graph G∗k

with respect to µ:

A(Et,P, µ) = 〈G∗k〉

Note that in the general definition, G∗k does not necessarily have to include all the edges

that occur during pk.
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Let Q be a function that measures the quality of this dynamic graph:

Q : P ×DG→ R+

Quality function Q maps the pair (P, DG) to the set of non-negative real numbers so that

these values capture how “good” the dynamic network is. Q can also be used to compare

different dynamic network representations of the same temporal stream. The notion of the

quality function is different from that of the objective function for a particular algorithm

that generates a dynamic network. Thus, the use of quality function as a model selection

tool allows us to use it for comparing different algorithms on the same data.

Linear functions defined over the edges of a graph G(V,E) are of particular interest

when analyzing structural properties of the graph. Let f be such a function:

f : E → R+

f =
∑
i,j∈V

aijXij ,

where Xij is the event of an edge eij being present in the graph. An example of a linear

function is density, the proportion of the number of edges present in a graph relative to

the possible number of edges
(|V |

2

)
. In this case case, aij = 1/

(|V |
2

)
for all edges eij . Other

graph measures on graphs, can be defined similarly and are of great interest when studying

graphs that evolve in time.
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The following is a list of definitions of other graph theoretic measures. Some of these

measures represent more complex (nonlinear) functions on the edges of the graph.

Number of Connected Components: a connected component is a set of nodes mutu-

ally reachable by paths in the graph.

Size of Giant Component: the size of the largest connected component.

Geodesic between a pair of nodes: the path with the smallest number of edges.

Eccentricity of a node: the greatest geodesic between the node and any other node in

the graph.

Diameter: the maximum eccentricity of any node in the graph.

Radius: the minimum eccentricity of any node in the graph.

Average Path Length: the length of the average geodesic between any pair of nodes.

Clustering Coefficient: the number of triangles over the number of possible triangles in

the graph (48).

Clique Number: the size of the largest clique.

Spectral Gap: the difference between the first and the second eigenvalue of the Laplacian

of the graph (14). The Laplacian of graph G(V,E) is defined as

L = D −A
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where D = diag(d1, ..., dn) is the degree matrix of G and A is the adjacency matrix.

Spectral gap of L is known to capture the connectivity properties of the graph (14) .

3.2 Problem Formulation

The abstraction and identification of the right temporal scale for transitioning from a

dynamic stream of interactions into a meaningful and representative dynamic network is not

a straight forward task. One natural way to define the “right” temporal scale of dynamic

systems is as the scale of the inherent rhythm that governs their dynamics. Alternatively,

one can argue that the definition of the temporal scale depends on the analysis objective

for a given dynamic network. In either case, there is an implicit notion of a quality function

that characterizes the optimal aggregation of the interaction stream. Ultimately the goal is

to identify the temporal resolution that corresponds to either global or local optima of this

quality function. With this in mind, we now formally define the Temporal Scale Inference

problem:

Definition 3.2.1. Temporal Scale Inference (TSI) Problem: Given a temporal

stream Et and a quality function Q, find the partition P∗ of the timeline [1, . . . , T ], and the

corresponding dynamic graph DG∗, that optimizes the quality function Q:

〈P∗, DG∗〉 = arg max
P,DG

Q(〈P, DG〉).

Now that we have given the definitions and stated the problem, we are ready to discuss

in more detail some results for the TSI problem.



CHAPTER 4

EXAMPLES AND SPECIAL CASES

We have been discussing in general the temporal scale for dynamic networks and the

definition is not straightforward. In this chapter, we study a collection of interaction streams

for which we have some intuitive understanding on what is the “right” temporal scale. As

we carefully define their generative processes and the properties they inherit, the goal is

to understand more rigorously, and gain insight into what happens as we aggregate the

streams at different temporal scales. We discuss examples ranging from the very simple

constant stream with no temporal scale, to realistic interaction streams coming from real-

world data. Each one of the examples touches on different aspects of temporal scale and

helps us formalize the notion the “right” temporal scale.

4.1 Constant Streams

Constant streams are the simplest possible temporal streams and one might even argue

whether they are indeed temporal at all. They are streams where the same set of interactions

occurs at each time step. The corresponding static graph SG is defined as follows:

Definition 4.1.1. Static Graph (SG) is the graph G(V,E′, p) defined over the set of nodes

V and the set of edges E′ ⊆ V × V . Each edge in this graph occurs with probability p = 1

at any time t:

∀(eij , t) ∈ E′ ⊆ V × V, Pr[(eij , t) ∈ G)] = 1

23
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! < T

! = T

Figure 4: Aggregation of a static stream at different levels of aggregation.

Clearly there is no dependence on time and no algorithm should choose a particular

temporal scale other than the entire time line. More explicitly, as illustrated in Figure 4,

any aggregation of the constant stream over any aggregation window will produce a network

identical to the original stream.

A more interesting case of a “stream with no temporal scale” is the stream where the

set of interactions that appear at each step is not constant, yet, the occurrence of each

interaction does not depend on time.

4.2 Random Unstructured Streams

4.2.1 DynUR Streams

We define the Dynamic Uniform Random Graph (DynUR) as the graph where each edge

occurs at any time uniformly at random with probability p. This is the temporal equivalent

of the Erdös-Rényi graph.
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Definition 4.2.1. Dynamic Uniform Random Graph (DynUR) is the graph G(V,Et, p)

with a constant probability 0 ≤ p ≤ 1 for all edges

∀(eij , t) ∈ 〈E, T 〉 Pr[(eij , t) ∈ G)] = p.

Consider what happens when the aggregation function A (Definition 3.1.3) is applied

to the DynUR stream with aggregation window ω. The result is a time series of graphs,

which we call DynURω = A(DynUR,Pω). Intuitively it is clear that the DynURω graph

is generated by a process with no temporal dependencies or correlations. The following

Lemma shows that DynURω is a time series of instances of the same Erdös-Rényi graph.

Lemma 4.2.1. Every Gk ∈ DynURω is a G(|V |, q) Erdös-Rényi graph, where q = 1− (1−

p)ω.

Proof. By definition, Gk ∈ DynUR is an Erdös-Rényi graph if each edge eijt ∈ Gk exists

with equal probability independently of other edges. The independence condition is trivially

satisfied by the definition of the DynUR graph. We now show that the Pr[(eij , t) ∈ Gk] is

also the same ∀(eij , t) ∈ Gk.

An edge (eij , t) exists in Gk, if it exists in at least one of the w time values representing

the time window for Gk: t ∈ [kω, (k + 1)ω). By definition, at any time t, Pr[(eij , t) ∈

DynUR] = p. Therefore, Pr[(eij , t) ∈ Gk] = 1− (1− p)ω.

Note, that for ω = 1, DynUR1 represents the original stream of temporal edges with

t ∈ [1, ..., T ] and each Gk = Gt is a G(|V |, p) Erdös-Rényi graph.
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Figure 5: Time Series of a function f computed over a dynamic network.

4.2.1.1 Stationarity of functions on DynUR Streams

Let f be a linear function on edges of a graph as described in Section 3.1. Let F be the

resulting time-series that we get by applying function f to the dynamic graph DynURω

(illustrated in Figure 5). The following lemma shows that F is a covariance-stationary time

series for any value of aggregation window ω:

Lemma 4.2.2. F (DynURω) is covariance-stationary. That is, for some constants µ, γ,

and τ :

(1) Ek[f(Gk)] = µ,

(2) Cov(f(Gk), f(Gk+τ )) = γτ , ∀0 < k < T, τ > 0

Proof. Let Gk be a graph in DynURω. Let Xk
ij be the indicator variable for the event

(eij , t) ∈ 〈Ek, T 〉 for any t ∈ [kω, (k+1)ω). Then, f(Gk) =
∑

i,j∈V aijX
k
ij . Recall that while
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edge eij can occur more than once in interval [kω, (k + 1)ω), it shows up at most once in

the aggregated graph Gk.

(1) E[f(Gk)] = E[
∑
i,j∈V

aijX
k
ij ]

=
∑
i,j∈V

aijE[Xk
ij ], by linearity of expectation

=
∑
i,j∈V

aijPr(X
k
ij)

=
∑
i,j∈V

aijq, by Lemma 4.2.1

= µ

where µ is a constant with respect to the time index t.

(2) Let Xk+τ
ij = 1 if (eij , t) ∈ 〈Ek+τ , T 〉 for any t ∈ [(k + τ)ω, (k + τ + 1)ω). By

the definition of DynUR, Xk
ij , X

k+τ
ij are independent variables. f(Gk) =

∑
i,j∈V aijX

k
ij

and f(Gk+τ ) =
∑

i,j∈V aijX
k+τ
ij are independent variables as well, since they are de-

fined as linear combinations of independent variables. Therefore, Cov(f(Gk), f(Gk+τ )) =

E[f(Gk), f(Gk+τ )]−E[f(Gk)]E[f(Gk+τ )] = E[f(Gk)]E[f(Gk+τ )]−E[f(Gk)]E[f(Gk+τ )] = 0

It is important to note that for the class of functions f , the property of stationarity is true

at any value of aggregation of the DynUR graph.
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4.2.1.2 Temporal Order Invariance of DynUR Streams

Recall that the probabilistic permutation function π chooses at random a pair of edges

〈(ei1j1 , t1), (ei2j2 , t2)〉 from the temporal stream Et and swaps their timestamps (Defini-

tion 5.1.1). Lemma 4.2.3 shows that reordering of edges according to function π has no

effect on the outcome of aggregation of the DynUR stream.

Lemma 4.2.3. Aggregation of DynURω is invariant under π :

A(Et,Pω) = A(π(Et,Pω))

Proof. Let 〈(ei1j1 , t1), (ei2j2 , t2)〉 be the pair of edges chosen i.i.d. from Et, by the permuta-

tion function π. We consider the two cases:

Case 1: kω ≤ t1, t2 < (k + 1)ω, 0 ≤ k = T
ω − 1. By the definition of the aggregation

function A, both edges ei1j1 , ei2j2 belong to the same graph Gk, in the time-series DynURω.

Therefore, even after π permutes the time labels of ei1j1 , ei2j2 , the aggregation function A

will place them in the same graph Gk. Hence the resulting time series of Gk graphs will be

identical before and after the permutation.

Case 2: t2− t1 > ω We now compute the Pr[(eij , t) ∈ Gk] after permutation. Lets consider

the following mutually exclusive events:

1. Edge eij was selected by π, and it got swapped out from graph Gk.

2. Edge eij was not in graph Gk and it was not selected by π.
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Let r=Pr[eij selected by π] = Pr[eij selected by π|eij exists] = p

(Et2 )
. If edge eij was removed

from Gk after it was selected by π, that means, edge eij occurred in exactly one time step

during the time interval corresponding to Gk. Therefore, probability of event 1 happening

is : Pr[event 1] = rwp(1− p)w−1.

Let us now compute the probability of event 2. Probability of edge eij not occurring in

GK is 1− q, where q represents the probability of edge eij being present in Gk by Lemma

4.2.1. Probability of edge eij not being selected by π is 1 − r. Therefore, probability of

event 2 is: Pr[event 2] = (1− q)(1− r).

The event of edge eij being present in Gk after the permutation is the complementary

event of the union of event 1 and 2. Therefore, Pr[(eij , t) ∈ Gk] after permutation is :

Pr[(eij , t) ∈ Gk] after permutation =

= 1− (Pr[event 1] + Pr[event 2])

= 1− rωp(1− p)ω−1 − (1− q)(1− r)

= 1− rωp(1− p)ω−1 − (1− p)ω(1− r)

= 1− rωp(1− p)ω−1 − (1− p)ω + (1− p)ωr. (4.1)

The result from Lemma 4.2.3 shows that even though the permutation process changes

the probability of an edge existing in each partition, the type of graph representing each

partition is still an Erdös-Rényi graph, but more importantly, it is the same type of graph
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across all the partitions. Also, note this result is true regardless of the value of the aggre-

gation window, a unique characteristic of the DynUR graph.

The results of Lemmas 4.2.1, 4.2.2, 4.2.3 all point to an inherent characteristic of the

DynUR stream, the uniformity of behavior across windows of aggregations. Whether we

analyze DynUR at the graph level as a series of Erdös-Rényi graphs, or at the function

level by looking at the class of functions f , the behavior of DynUR is invariant with

respect to the window of aggregation. With this respect, DynUR is an example of a more

general class of interaction streams: the streams with no temporal scale. Even though we

do not explicitly define all the generative processes that could lead to streams in this class,

we believe that “the invariant behavior with respect to aggregation at any scale” is an

important characterization.

Any stream with no temporal scale and in particular DynUR can be looked as a repre-

sentation of the null model for the TSI problem. In general, a null model provides a baseline

and a sanity check for evaluating any algorithm claiming to solve a problem or assessing

the significance of any discovered pattern. For static networks, the Erdös-Rényi graph has

been used as the simplest null model (19). It is a simple graph where each edge occurs

independently at random with the same probability p. This model generates a network

where each vertex has the same expected degree. More sophisticated null models that can

approximate the skewed degree distribution of empirical networks (4) have been proposed

by Molloy and Reed (44; 45), and later on by Chung-Lu (13).
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The definition of the null model becomes more complicated when we add time. In

addition to correctly representing the relevant topological structure of the network, these

models need to incorporate aspects of the temporal structure such as order, concurrency,

and delay of interactions, among others. Null models for temporal networks have been

proposed by Holme (24) and Karzai (28; 16). They use temporal reshuffling as a tool to

generate streams where different aspects of temporal structure get randomized. Holme and

Karzai discuss these null models in the context of analyzing processes, such as spread of

a virus or information, over the temporal stream (to which they refer to as the contact

sequence). Holme in (25) points to the issue that scale plays a role in capturing the critical

temporal correlations:

. . . there are several kinds of possible temporal correlations and several time

scales where the correlations are important, and thus no single, general-purpose

null model can be designed (the temporal configuration model). Rather, by

designing appropriate null models, one may switch off selected types of corre-

lations in order to understand their contributions to the observed time-domain

characteristics of the empirical temporal network.

In the absence of knowing the right temporal scale for the given temporal stream or the

spread process over it, permutations at all the scales need to be tried and tested in order to

generate the relevant null model. A null model is a way to test the importance of structure

found at any given scale. It does not allow us, however, to find the temporal scale (or scales)
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in and of itself. We can use a null model in conjunction with a quality function to do so.

In Chapter 5 we formalize and generalize this observation for any quality function.

4.3 Structured Temporal Streams

4.3.1 Periodic Streams

We will now consider periodic streams for which we expect the period to be related to

the concept of the “right” temporal scale. We give a general definition of the corresponding

probabilistic graph, the Dynamic Mixture (DynMix) graph.

Definition 4.3.1. Dynamic Mixture Graph (DynMixM,{wl}) on M fixed probability distri-

butions (DynMixM,{wl}). Given M probability distributions {Pl}Ml=1 and a set of temporal

windows {wl}Ml=1 such that W =
∑M

l=1wl, the Dynamic Mixture Graph DynMixM,{wl} is

the graph G(V,Et, Pl), such that

∀(eij , t) ∈ Et Pr[(eij , t) ∈ G)] = plijt

where

plijt = Pl(Xijt) and l = modM

⌊
t

W

⌋
.

The Dynamic Mixture Graph is a repeating sequence of Dynamic Graphs. Consider

two special cases for the probability distribution functions generating the DynMixM,{wl}

graph:
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Figure 6: Illustration of two cases of the DynMix graph with three alternating probability
distributions (M=3). Subfigure (a) illustrates Case 1 of DynMix with a cycle of constant
probabilities for each edge, and Subfigure (b) illustrates Case 2 of DynMix with a cycle of
Erdös-Rényi graphs.

Case 1: A sequence of constant probability distribution Pl, so the probability of an edge

elij does not depend on the time index t:

Pr[(eij , t) ∈ DynMixM,{wl}|(eij)] = plij .

Figure 6 (a) gives an illustration of such a Dynamic Mixture Graph when the number

of repeating probability distributions M is 3.

Case 2: A sequence of DynUR-s, where for any given probability distribution Pl, and a

given time index t, the probability of all edges elij at t is the same:

Pr[(eij , t) ∈ DynMixM,{wl}|t] = pt ∀i, j ∈ V.
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Figure 6 (b) gives an illustration of such a Dynamic Mixture Graph with M=3.

Note that DynUR can be viewed as a special instance of both Case 1 and Case 2 of the

DynMixM,{wl} graph with plij = pt = p for all tuples {l, i, j, t}.

We will first consider Case 1 of the DynMixM,{wl}. Recall that in Case 1, probability

of an edge elij does not depend on time index t, for any given probability distribution Pl:

Pr[(eij , t) ∈ DynMixM,{wl}|(eij)] = plij . We consider what happens when the aggregation

function A is applied to a temporal stream of edges, each of them representing an edge

in the DynMixM,{wl} graph. The result of aggregating DynMixM,{wl} is a time series

of graphs which we call DynMixω = A(DynMixM,{wl}, ω). We will show that in the

case of DynMixω, stationarity of a linear function on edges is guaranteed only when the

aggregation is done at the period level W =
∑M

l=1wl (or any multiple of the period).

Lemma 4.3.1.

a) The time series F (DynMixω) is covariance-stationary when the window of aggregation

ω is a multiple of W , ω = nW , where W =
∑M

l=1wl, and n ∈ Z.

b) If ω 6= nW , ∃ω s.t. F (DynMixω) is not covariance-stationary.

Proof. a) Let n = 1, ω = W . Let Gk be a graph in DynMixW . Then, f(Gk) =∑
i,j∈V aijX

k
ij , where Xk

ij is the indicator variable for the event (eij , t) ∈ Ek,t〉 for

any t ∈ [kW, (k + 1)W ). Therefore, Xk
ij = 1, if (eij , t) is generated from P1, or
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P2, or ..., PM . By this observation, the probability of an edge eij being in Gk is

Pr[Xk
ij = 1] =

∑M
l=1 plij . Then the expectation of function f(Gk) is:

E[f(Gk)] = E[
∑
i,j∈V

aijX
k
ij ]

=
∑
i,j∈V

aijE[Xk
ij ]

=
∑
i,j∈V

aij

M∑
l=1

plij

= µ, where µ doesn’t depend on k.

Note that the proof trivially generalizes to ω = nW for arbitrary values of n ∈ Z.

By the periodicity of DynMix, Xk
ij = Xk+τ

ij , and furthermore f(Gk) = f(Gk+τ ) =∑
i,j∈V aijX

k+τ
ij . Therefore, Cov(f(Gk), f(Gk+τ )) = V ar(f(Gk))

b) Now consider the case when DynMixω is aggregated at windows ω 6= nW . We will

show, by giving an explicit example, that there exists a window of aggregation ω at



36

which the time series F (DynMixω) is not stationary. For simplicity, assume wl = w

for each Pl. Let the window of aggregation ω = w.

E[f(Gk)] = E[
∑
i,j∈V

aijX
k
ij ]

=
∑
i,j∈V

aijE[Xk
ij ]

=
∑
i,j∈V

aijplij

= µ

Since the value of plij depends on the value of k, µ is not constant with respect to k.

Therefore, the time series F (DynMixw) is not stationary. Similar results can follow

for Case 2 of probability distribution functions {Pl}. Recall that in Case 2, each Pl is

a function that is constant over the edges and only depends on time index t. Following

similar arguments as in the proof of Lemma 4.3.1, it can be shown that time series

F is stationary for any window of aggregation ω = nM,n ∈ Z, and that for values

aggregation ω 6= nM , there exist some ω when the corresponding time series F is not

stationary.

We showed that for a periodic stream, a linear function on the corresponding dynamic

graph becomes stationary at specific windows of aggregation. These windows of aggregation
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correspond to the period (or any multiple of the period) of the underlying edge probability

process.

4.3.2 Stationary Streams

One of the most intuitive properties that we want the dynamic network to have is

stability or stationarity (34; 9). In physics this property is typically referred to as steady

state, while in statistics they it is called stationarity. Whether we are trying to identify

long term trends or typical behavior, or whether we want to predict new behavior, a stable

system is a necessary condition for a meaningful analysis if we wish to infer something

about the system from a history of observations. Furthermore, as perturbation analysis

has increasingly become a powerful tool for untangling the complex structure of networks

(28; 24), it is important to apply such analysis over a stable system. Otherwise, it is

difficult to distinguish between changes due to the instability of the systems and changes

due to the perturbation (9). Stability is a property analyzed extensively in the context of

numerical time series. The interest in our work is to understand this property in the context

of temporal interaction streams. Ultimately, the goal is to be able to identify aggregation

levels (temporal scales) of the interaction stream so that the corresponding dynamic system

represents a system in a steady state and, therefore, appropriate for analysis.

In this chapter, we will use the statistical definition of stability. More precisely, we

define a stationary probabilistic function that generates the temporal stream.

Let Pt be the general case of a (weak) stationary probability distribution function gen-

erating the stream of edges Et = {(eij , t), eij ∈ E, t ∈ [1, ..., T ]}. That is,
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1. E[pijt] = µij , s.t. µij does not depend on t.

2. Cov(pijt, pij(t+τ)) = γij , s.t. γij does not depend on t.

4.3.3 Theseus Ship Streams

So far we have discussed streams whose structure is stable over time. We now turn our

attention to a stream that appears to be stable, yet it changes slowly over time. What kind

of issues does a stream like this introduce to our problem of scale? The notion of an object

changing slowly over time is an old one, and is illustrated by the Theseus Ship paradox

(56).

The ship wherein Theseus and the the youth of Athens returned [from Crete]

had thirty oars, and was preserved by the Athenians down even to the time of

Demetrius Phalereus, for they took away the old planks as they decayed, putting

in new and stronger timber in their place, insomuch that this ship became a

standing example among philosophers, for the logical question of things that

grow; one side holding that the ship remained the same, and the other contending

that is not the same. [Plutarch, Life of Theseus]

The Theseus Ship paradox raises the question of whether the identity of an object

fundamentally changes when all of the object’s components have changed. Many great

minds from ancient Greece to the present have struggled to find the right answer to the

dilemma posed by this paradox. A translation of the Theseus Ship paradox in the framework
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of dynamic networks has been discussed in (64) to describe the notion of communities whose

members change over time.

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 

! = 2

! = 4

Figure 7: Aggregation of Theseus Ship stream at different scales. The original Theseus Ship
stream has no interactions as the base set and one interaction changes every time step.

There is an analog of this paradox in the context of temporal interaction streams. Con-

sider a process, where every k time steps, the same set of interactions occurs, except for a

small change; one of the occurring interactions is replaced with a new interaction (illustrated

in Figure 7). After enough time steps, the initial set of interactions is replaced completely

with a new set of interactions. The question that arises here is “What is the right temporal

scale for aggregating such a stream?” At a fine temporal scale we observe change that is
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too gradual. At the same time, we are able to capture the persistence structure of the

network. At a coarser temporal scale, we will loose this persistence structure, but we will

be able to identify periodicity. This is a good example of the complexity of the definition of

the “right” temporal scale. The dichotomy of persistence versus periodicity motivates the

position that the definition of the “right” temporal scale is context- and question-specific.

Furthermore, the aggregation the Theseus Ship stream illustrates the multi scalar nature

property of temporal streams. Depending on the magnitude of change we want to observe

in such a stream, different levels of aggregation are suitable for the analysis.

4.3.4 Oversampled Streams

Another property of the streams that is critical for the TSI problem is the oversampling

property. The assumption that the process is oversampled is a natural one for any good

data set. An under-sampled process cannot be guaranteed to contain sufficient information

for analysis, by definition. Furthermore, given the pervasiveness of fast and automated data

collection systems, oversampling is more of a realistic property rather than a wishful one.

It does, however, introduce some unwanted side effects, such as artificial time orderings

and spurious patterns. Naturally, we are interested in identifying aggregation levels of the

stream that take the oversampling factor into consideration. At such temporal scale, the

oversampling noise has been smoothed out, and the corresponding dynamic network is a

true representative of the underlying dynamics. Specifically, if we have an existing stream

where we know the optimal window of aggregation is ω, then, intuitively, if we over-sample

by a factor of α, the new optimal window of aggregation should be αω. Although the size of
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Figure 8: Oversampled periodic stream.

the window of aggregation changes proportionally to the oversampling factor, the process of

finding the optimal window should not be sensitive to the oversampling factor. In this sense,

uniformly modifying the frequency of interactions should not affect the relative temporal

distances between interactions.

We now formally define the process of oversampling of interaction streams. Let Pt be

the probability distribution function generating the stream of edges Et = {(eij , t), eij ∈

E, t ∈ [1, . . . , T ]}.

Definition 4.3.2. An α-streching mapping φα of the time line [1, . . . , t, . . . , T ], where α > 0,

is defined as follows:

φα : [1, . . . , t, . . . , T ]→ [1, . . . , t′, . . . , αT ]

t′ = [tα− (α− 1), tα− (α− 2), . . . , tα]
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Definition 4.3.3. An oversampled probabilistic interaction process Pt′ , over the time se-

quence t′ ∈ [1, . . . , αT ], and probability function Pt, is defined as follows:

Pt′ = Pφα(t) =
1

α
Pt

An illustration of a simple oversampled periodic stream is given in Figure 8. Note that

an oversampled periodic stream is still periodic (in this case period W = 2 and oversampling

factor is α = 3). The right scale for such a process takes into account the oversampling rate

and recaptures what is essential about this process, whether that is the alternating change

(ω∗ = αW2 = 3) or the stationarity (ω∗ = αW = 6).

As an additional example, consider the oversampled version of the DynUR stream, we

expect the properties of such a stream under aggregation to be invariant to oversampling.

Corollary 4.3.1. Aggregation of DynURω is invariant under the oversampling process:

A(Et,Pω) = A(Eφα(t),Pω)

Proof. Based on Definition 4.3.3, the probability of each edge in the oversampled DynUR

stream Et′ would now be p
α , and Lemma 4.2.2 (stationarity of linear functions at any scale)

will be trivially satisfied.

Throughout this work, we are assuming oversampling at a uniform rate. In reality, data

and the processes they represent are messy and oversampling could happen at nonuniform
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rates. Although, we do not explicitly address this scenario in the thesis, analysis of streams

at nonuniform oversampling rate presents an important direction for future work.

4.3.5 Noisy Streams

Similar to the definition of structure in dynamic networks, noise comes in two flavors:

topological and temporal. Topological noise has to do with the presence or absence of

an observed interaction (or a set of interactions) that does not reflect the behavior of

the underlying system. The addition of time adds to the complexity of noise in dynamic

networks. Specifically, the occurrence time of an interaction could be noisy as well as the

ordering of this occurrence time with respect to that of other interactions. Alternatively,

we can view noise as the antithesis of structure. In this context, we discussed in Section

4.2.1 the charactistics for the DynUR stream, the completely structureless stream.

In general, the topological and temporal aspects of noise are coupled in ways that make

it difficult to analyze them individually. Yet, throughout Chapter 4, we attempt to state

the characteristics of temporal noise more explicitly. In Section 4.3.6, we analyze a simple

case of temporal noise, by introducing gaussian noise to the temporal probabilities of each

interaction. In addition, throughout the thesis, we use perturbation analysis as a way to

detect noisy temporal orderings of interactions. Clearly, in real-world datasets, noise is

generated by much more complex models and can have other manifestations that we do

not consider in this thesis. In addition, we would expect the magnitude of noise to have an

effect on the “right” level of aggregation. We would expect that, at some threshold, the large

magnitude of noise overwhelms structure and the stream essentially becomes the DynUR
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stream. Despite the fact that we do not address here these aspects of noise explicitly, they

provide interesting and important directions for future work.

4.3.6 Oversampled, Noisy Stationary Streams

A periodic process is just one example of a stationary process. Now that we have also

discussed oversampled and noisy streams individually, we can discuss a much more general

class of interaction streams: the oversampled noisy stationary streams.

Let Pt be the general case of a (weak) stationary probability distribution function gen-

erating the stream of edges Et = {(eij , t), eij ∈ E, t ∈ [1, . . . , T ]}. An oversampled noisy

probabilistic process Pt′ defined over time sequence [1, . . . , t′, . . . , αT ], and probability func-

tion Pt is defined as follows:

Pt′ =
1

α
Pt + ε,

with ε ∈ N(0, σ) representing Gaussian noise. Let Et′ be the stream of edges generated by

Pt′ . Note that if Pr[(eij , t) ∈ Et] = pijt, then Pr[(eij , t
′) ∈ Et′ ] = pijt′ =

pijt
α + ε. Therefore,

1. E[pijt′ ] = E[
pijt
α + ε] =

µij
α ,

2. Cov(pijt′ , pij(t′+τ)) = E[pijt′ × pij(t′+τ)]− E[pijt′ ]E[pij(t′+τ)] = 0, because pijt′ , pij(t′+τ)

are independent variables.

Let DGPt′ ,ω be the dynamic graph defined over Et′ at window of aggregation ω :

DGPt′ ,ω = A(Et′ ,Pω)

DGPt′ ,ω = 〈G0, G1, ..., Gk, ...GαT/ω−1〉
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Let F be the resulting time-series that we get by applying function f on DGPt′ ,α:

F = 〈f(G0), f(G1), ..., f(Gk), ...f(GαT/ω−1)〉

In Theorem 4.3.6 we show that the time series of linear functions on the dynamic net-

work corresponding to an oversampled, noisy stationary stream, become stationary only

for particular windows of aggregation. Furthermore, we show that there are windows of

aggregation that are not suitable to capture the stationarity of the stream.

Theorem 4.3.6. Let DGPt′ ,ω be a dynamic graph which is the result of aggregation over

a window ω of a stream of edges, generated by a noisy covariance-stationary process over-

sampled at a rate of α. Let F (DG) be the time series of a linear function over the edges of

DGPt′ ,ω. Then:

a) F (DGPt′ ,ω) is covariance-stationary when the window of aggregation ω is a multiple of

α;

b) There exists ω which is not a multiple of α, s.t. F (DGPt′ ,ω) is not covariance-stationary.
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Proof. a) Let ω = α, (n = 1)

(1) E[f(Gk)] =
∑
k

f(Gk)Pr[f(Gk)] ,k ∈ [0, . . . , T − 1]

=
∑
k

f(Gk)Pr[

(k+1)α∑
t′=kα

∑
i,j∈V

aijt′Xijt′ ], by the definition of f,Gk,

=
∑
k

f(Gk)

(k+1)α∑
t′=kα

∑
i,j∈V

aijt′Pr[Xijt′ ]

=
∑
k

f(Gk)

(k+1)α∑
t′=kα

∑
i,j∈V

aijt′Pt′(Xijt′)

=
∑
k

f(Gk)α
∑
i,j∈V

aijt(
pijt
α

+ ε), where t = b t′αc

=
∑
k

f(Gk)
∑
i,j∈V

aijkα(pijkα + αε), where t = kα

= µPt′ ,α, a constant with respect to t′.

The proof generalizes trivially to ω = nα, for arbitrary values of n ∈ Z

(2) Cov(f(Gk), f(Gk′+τ)) = 0, τ > 0, follows by similar arguments used in the proof of

Lemma 4.3.1.

(b) Let ω 6= nα. Consider the simple case of an underlying periodic process generating

the temporal stream of edges. Let the period be α. Then, by Lemma 4.3.1, there exists a

window of aggregation ω < α such that F is not covariance-stationary.
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4.3.7 Real-World Streams

The following is a list of real-world datasets that represent temporal streams observed

in different context.

Enron Email is a publicly available dataset of e-mails sent between employees of the

Enron corporation (58). Each email address represents a vertex and an email exchange

represents an edge. Timestamps were extracted from message headers for each day

of e-mail activities. We are using a cleaner version of the dataset covering email

exchanges from October 1998 to February 2003.

Reality Mining network consists of social interactions among 90 MIT students and faculty

over a nine month period (18). The dataset is designed based on the idea that spatial

proximity between people implies a social interaction. Participants are equipped with

Nokia 6600 smart phones and an edge between two participants exists if a blue tooth

connection is recorded. The original quantization time step is four hours.

Haggle Infocomm network consists of social interactions among attendees at an IEEE In-

focom conference (55). There were 41 participants and the duration of the conference

was 4 days. The original quantization step is 10 minutes.

4.4 Experimental Results

In this section, we investigate empirically how the window of aggregation of interaction

streams affects the kind of structures we observe on the corresponding dynamic network.

In particular, we analyze the behavior of linear functions on edges of the dynamic network.
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The goal is to empirically identify the difference in behavior of these functions when they

measure processes that have temporal structure and those that do not. We use density

and the average degree as examples of popular network measures that can be naturally

expressed as linear functions on the edges of the network. We then analyze the time series

of density and average degree as functions of the window of aggregations.

While there are several sophisticated methods to determine the stationarity of a time

series, there is no standard, agreed process to do this. Often times, existing methods require

artful tweaking of parameters. Since the goal in this work is not to determine stationarity

per se, but to establish the differences between the different kind of streams, we use the

variance of the time series as a simple proxy for stationarity. The following section gives a

brief description of two simulated dynamic networks used for analysis:

DynUR network is a simulated dynamic network where each edge is present at any time

t with some fixed probability p.

DynMix network is a simulated oversampled dynamic network, containing edges gener-

ated by two alternating fixed probability distribution functions. For our simulations,

we used the Beta prime and the Gaussian distributions, and oversampling factor

α = 5.

The descriptions of the rest of the datasets used for the experimental analysis were described

in detail in Section 4.3.7.

Figure 9 shows the plot of the variance of density as a function of the window of ag-

gregation for each of the datasets mentioned above. The most immediate result illustrated
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Figure 9: Variance of the network density measure as a function of the window of aggregation
for the DynUR, DynMix, Reality Mining and Haggle datasets.

in these plots is the fact that the variance function behaves distinctively different in the

network with no temporal scale (DynUR), and the structured networks (DynMix, Haggle,

and Reality Mining). The variance function is almost constant when computed over the

DynUR network (Figure 9 (a)). On the contrary, in the case of the structured networks, the

variance function stabilizes only for particular windows of aggregation and there is a visible

trend. As illustrated in Figure 9 (b), the variance of the density for the DynMix network

becomes stationary at window of aggregation 5 (and higher). This value corresponds to the

oversampling factor used for simulating the DynMix network. In the case of the Reality

Mining and Haggle networks (Figure 9 (c), (d)) there is a correspondence between the

periodicity of the dataset (1 day for Reality Mining and 30 minutes for Haggle), and the

times when the variance function either approaches 0 or stabilizes. The behavior of the

average degree function is almost identical to the behavior of density across all the datasets

analyzed above.
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4.5 Analytical Framework for the TSI problem

Throughout Chapter 4, we have used a consistent analytical framework for analyzing

different classes of temporal interaction streams. Figure 10 gives a pictorial summary of this

framework. We have presented different instantiations for each component in the frame-

work. For example, we have given explicit formal definitions for special cases of generative

probabilistic processes and their corresponding temporal streams. In addition, we have de-

fined one version of the aggregation function A (Definition 3.1.3) that converts the temporal

stream into a dynamic network.

Probabilistic  
Process 

Stream of Edges Dynamic Network 

  Sampling Function  Aggregation Function  

Graph-Theoretic 
Measures 

 ω = ? 

 Structure Function  

Figure 10: Analytical framework for analyzing the temporal scale of interaction streams.

This analytical framework led to some useful insights about the formal definition(s) of

the “right” temporal scale for dynamic network. Detailed abstractions and applications of
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these insights are discussed in detail through Chapters 5-6. Furthermore, this analytical

framework can be easily extended to include definitions of other temporal streams, aggre-

gation functions or network structural functions. The formal language that we have set

up can be used to analyze more complex scenarios of temporal interaction streams, while

maintaining a principled approach to the TSI problem.



CHAPTER 5

AXIOMATIC FRAMEWORK

In Chapter 4, we demonstrated some intuitive properties one would expect to observe

for temporal streams. We showed that for a stream with no temporal scale, the re-ordering

of interactions along the time line had no effect on the resulting dynamic network. We

described some simple cases of interaction streams (e.g. DynUR and constant stream) for

which we have a clear understanding of the right temporal scale. Finally, we illustrated the

effect of oversampling on the aggregation of different temporal streams and how it intuitively

relates to the notion of the “right” temporal scale.

We now propose an axiomatic approach to capture this collection of insights in a formal

way and to allow future rigorous analysis of the TSI problem. The axiomatic approach has

recently gained a lot of interest in the field of spatial clustering. Similar to the TSI problem,

the goal of spatial clustering is to postulate important sets of properties both in terms of

the optimal partitioning (33), and in terms of the qualitative functions over such partitions

(1; 6). The axiomatic view has also been applied to the analysis of graphs in the context of

graph clustering (42) and graph complexity (10).

The TSI problem shares many of the characteristics and challenges of the clustering

problem, both in metric and non-metric space, yet an axiomatic framework that synthesizes

the characteristics of the TSI problem is lacking.

52



53

5.1 Axiomatic Framework: desired properties of the quality function Q

In the formulation of the TSI problem in Section 3.2, we defined the optimal temporal

scale through the proxy of the quality function. This shifts the burden from finding the

“real” temporal scale to optimizing the quality function. Ideally the two are the same.

What properties, then, should the quality function possess in order to correctly reflect the

behavior of the underlying temporal scale?

Here we present a set of axioms that delineate desired properties of the quality function

Q. Let Ω be the set of all temporal streams Et defined over the fixed set of vertices V and

the finite time line [0, . . . , T ]. Since V is a fixed set and [0, . . . , T ] is finite, there is a finite

number of temporal streams in Ω. Therefore, Ω is a discrete probability space and we can

define any suitable probability over it. Let A be a TSI algorithm, that takes as input a

temporal stream Et and outputs a set of pairs 〈P, DG〉 as solutions:

A : {V × V, [1, . . . , T ]} → {〈P, DG〉}

We can then think of Q as a random variable defined over the set {〈P, DG〉}. The range

of Q is [0, Q∗], where Q∗ is the maximal value of quality associated with a specific partition

P of Et, and the corresponding dynamic network DG (here we think of P and DG as being

equivalent to the probability space Ω):

Q : Ω→ R+
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Let Φ be a transformation function on the temporal stream Et:

Φ : Et → Et.

An example of a transformation function is the permutation function π defined as follows:

Definition 5.1.1. Given a temporal stream Et, a fixed partition P of the stream, a prob-

abilistic permutation function π picks a pair of edges 〈(ei1j1 , tl), (ei2j2 , tk)〉, at random from

Et and swaps their timestamps:

π : Et → Et

〈(ei1j1 , tl), (ei2j2 , tk)〉 → 〈(ei1j1 , tk), (ei2j2 , tl)〉

We consider two special cases of function π:

• The within-interval permutation function πw chooses the pair of edges from the same

interval pi ∈ P such that tl, tk ∈ pi.

• The across-interval permutation function πa chooses the pair of edges from two dif-

ferent intervals pi, pj ∈ P such that tl ∈ pi and tk ∈ pj .

The goal of the following axioms will be to characterize the change in the quality of dy-

namic network DG defined over a given temporal stream Et due to transformation function

Φ. Let ε ≥ 0 represent a fixed threshold parameter characterizing the amount of change in

quality. If the change is less or equal ε, we consider the change “small”. Let δ ≥ 0 be a
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confidence parameter about the probability of the change in Q being small (δ may depend

on the size of the problem (|V | and T )). We are now ready to formally define the axioms.

[Q1] Within Interval Order Invariance: For an optimal partition, permutations

of interactions within the same interval do not drastically change the quality of the

dynamic graph.

Formally, let P∗, DG∗ be the optimal (with respect to a particular quality function Q)

partition and the optimal dynamic graph for the temporal stream Et. Let P∗′ , DG∗′

be the optimal partition and optimal dynamic graph corresponding to the perturbed

stream E′t = πw(Et,P∗). Then, with high probability, the change in the quality

function after the perturbation is small:

∀πw, ∀pi ∈ P∗, P (|Q(DG∗)−Q(DG∗
′
)| ≤ ε) ≥ 1− δ.

Intuitively, the process of aggregating temporal interactions into a dynamic graph

has the effect of assigning the same time to interactions within each partition, while

preserving the temporal ordering across partitions. At the optimal temporal scale, the

temporal ordering of interactions that fall within the same partition is not essential.

The fact that, locally, some interactions are observed happening in a particular order

is an artifact of looking at them at too fine of a temporal resolution. They could have

happened in any order as long as they happened within a certain time frame.
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[Q2] Across Interval Order Criticality: For an optimal partition, permutations of

edges across different intervals change the quality of the partition.

Formally, we define the neighborhood of a given interval pi ∈ P the following way:

N(pi) = {pj | |i− j| ≤ r, r > 0}.

Let DG∗
′

be the optimal dynamic graph corresponding to E′t = πa(Et,P∗):

Then, with high probability, the change of the quality function after the permutation

is substantial:

∃πa,∀pi ∈ P∗, pj ∈ N(pi), P (|Q(DG∗)−Q(DG∗
′
)| > ε) ≥ 1− δ.

Intuitively, at the optimal temporal scale, the temporal ordering of sets of interac-

tions across the partitions is crucial and reflects the time dependence of the network

structures. While this might not be true for all edges, there must exist a subset of

interactions for which the ordering is critical. Otherwise, time does not play a role in

the structure of the interactions.

[Q3] Measure Unit Invariance: Uniform scaling of the oversampling factor does not

change the quality of the dynamic network.

Formally, let Et and E′t be two temporal streams generated by oversampling the same

underlying process at rates α and α′, such that α 6= α′. Let DG∗ and DG∗
′

be the
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optimal dynamic graphs for Et and E′t respectively. Then, with high probability, the

change in the quality function is small:

P (|Q(DG∗)−Q(DG∗
′
)| ≤ ε) ≥ δ.

This axiom bears resemblance to the scale invariance axiom in spatial clustering.

In this context, the partitioning of the data into clusters does not depend on the

units of the distance function. The oversampling invariance axiom represents an

analogous intuition: oversampling rate is a measure of the time unit used to measure

how far apart interactions occur along the timeline. In this sense, uniformly modifying

the frequency of interactions should not affect relative temporal distances between

interactions.

[Q4] Constant Stream: The constant stream has no time scale, the optimal partition is

the whole timeline.

A constant stream is the stream for which the same set of edges occurs at every time

step. Let DG be a dynamic graph over the constant stream. Let DG′ be a coarsening

of DG. Then, the quality function of the coarsening is better:

∀DG,DG′, Q(DG) < Q(DG′).
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Consequently, the optimal DG∗ with respect to the quality function Q on the constant

stream is the aggregation of the whole timeline.

[Q5] Stream with no Temporal Scale: The quality function is the same for any

partition of the stream with no temporal scale.

Formally, let DG and DG′ be any two dynamic networks corresponding to any two

partitions P and P ′ of the stream with no temporal scale. Then, the quality function

of the two dynamic networks should not be different:

∀DG,DG′, |Q(DG)−Q(DG′)| ≥ ε.

We have given only one explicit example of a stream with no temporal scale: the

DynUR stream, and the statement in this axiom should be considered in this context.

[Q6] Temporal Shift Invariance: A shift of the time line of a temporal stream, does

not drastically change the quality of the dynamic network. The optimal partition of

the stream is independent of the time line’s starting point.

Formally, let [0, . . . , T ] be the time line of the temporal stream Et. Let [∆, . . . , T +∆]

be the new timeline shifted by parameter ∆ > 0. Let DG∗ represent the optimal

dynamic network for Et and DG∗
′

be the optimal dynamic network for the shifted

temporal stream. Then, the change of the quality function due to the shift is small:

|Q(DG∗
′
)−Q(DG∗)| < ε.
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An interval in a partition of the stream identifies a temporal cohesive unit in the

dynamic network, similar to the notion of a building block. It is more important

that interactions happen a specific time apart rather than where in the stream they

happen. Temporal shift invariance is a strong assumption, considering the absolute

time dependency of complex systems. For example, empirical analysis of mobile phone

calls (34) shows that, especially for a finer time scale, the start time of the partition

matters a lot. In general, it is of great interest to characterize interaction streams

(and their generative mechanisms) that are independent of the start time, and those

streams that are highly sensitive.

5.2 Discussion

Axioms [Q1] and [Q2] view the underlying dynamic process and the temporal struc-

ture it contains as a sequential process. These axioms specify when the ordering of the

interactions matters and when it is just temporal noise. Axioms [Q3] through [Q5] are

formalizations of intuitive observations about the TSI problem. As a collection, the axioms

presented here are not exhaustive of all the properties characterizing the temporal scale of

interaction streams. Yet, these axioms provide a starting point for formally addressing the

TSI problem in a rigorous and consistent manner. The axioms serve as external evaluators

of the quality of a dynamic network, in the sense that they do not depend on the type of the

partitioning algorithm used, objective function, or the generative process of the temporal

stream. Therefore, the usefulness of the axiomatic framework is two-fold. The framework

can be used to:
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1. evaluate the performance of a partitioning algorithm in a unbiased way.

2. provide a taxonomy of different partitioning algorithms.

In Chapter 6, we present two such algorithms and analyze their behavior in the context

of the axiomatic framework.



CHAPTER 6

INHERENT TIMESCALE

This chapter presents two approaches for identifying the “right” window of aggrega-

tion/“optimal” partition of the temporal stream. We use insights and formulations devel-

oped in Chapters 4 and 5 to design two heuristics that apply our current understanding of

notions of noise, structure and quality of a dynamic network as they relate to the problem

of temporal scale.

6.1 Information Theoretic Approach

In this section, we relate the notion of the “right” temporal scale to that of information

embedded in a dynamic network. Not surprisingly, the notion of information in networks

is ambiguous and ill-defined, especially when we take into consideration the complex and

non-linear structures that networks can represent(48; 8; 29; 40). The complimentary notion,

noise (lack of structure) in temporal streams suffers from the same ambiguity of definition.

In Chapter 4, we looked at specific examples of noise and defined an instantiation of this

concept. The results from this analysis gave us insights on how unstructured temporal

interactions are different from structured ones. We are now ready to apply some of these

insights to design a constructive approach for identifying the temporal scale which is most

informative.

61



62

The concept of “information” embedded in interaction streams is general and includes

stationarity as one of its special cases. Here we take the perspective of information theory,

where we define the notions of “meaningful” or “informative” in the context of the best

trade-off between noise and compressibility inherent in a dynamic network. This approach

offers the benefit of defining the “right” temporal scale irrespective of a specific learning

objective. The resulting dynamic network generated from this analysis should, therefore,

be a good representation for the underlying stream of interactions in a wide variety of

applications. One way of evaluating results of this approach would be to use a network

where we know the right timescale. It is at that scale that events such as communities or

anomalies can be detected. An orthogonal method of evaluation would be to consider the

performance of the approach in the context of the axiomatic approach. In the following

section, we will use some of the ideas discussed here and present an information theoretic-

based heuristic for the TSI problem.

6.1.1 TWIN Heuristic

The TWIN (Temporal Window In Networks) heuristic uses graph-theoretic measures

as proxies of different aspects of network structure. Given a temporal stream of edges

and a graph-theoretic measure (Figure 11), the heuristic generates time series of graphs

(dynamic graphs) at different levels of aggregation. It then computes the variance and

compression ratio for each time series. Finally, the algorithm analyzes the compression ratio

and variance as functions of window size and selects the window size for which compression

ratio and variance are close or equal to each other. TWIN analyzes a variety of graph-



63

theoretic measures, definitions of which can be found in Chapter 3. The list of measures is

not exhaustive of all measures that can be used to analyze network structural properties.

Rather, the goal is to illustrate the effect of aggregation window on the behavior of a wide

range of measures each revealing unique and interesting properties of the network. Analysis

of this framework can easily be extended to other network measures not mentioned here. In

addition to the analysis of different network measures, TWIN considers different types of

temporal streams, from synthetic streams discussed in detail in Chapter 4 to more complex

real-world streams described in Chapter 3.

d1 d2 d3 d4

· · ·

· · ·
· · ·

· · ·

Variance (V ), Compression (R)

! ! ! !

Figure 11: Illustration of computation of variance and compression ratio for a given level
of aggregation (ω), and a given graph-theoretic measure d (diameter).

We now formally define the measures that can be used to quantify noise and information

in a dynamic network. Given a fixed window of aggregation ω, let DGω be the corresponding
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Variance Compression 

Temporal Scale 

Uninteresting Range Interesting Range 

Figure 12: Trade-off plot of noise and compression measures.

dynamic network. Let f be a graph-theoretic measure such as density, clustering coefficient,

etc., and Fω its corresponding time series computed over DGω, the dynamic network defined

over the uniform partition of the time line:

Fω(DGω) = [f(G1), f(G2), ..., f(Gt), ..., f(GT
ω
−1)]

Let V (Fω) be the variance of Fω:

V (Fω) =
1
T
ω−1

T
ω−1∑
t=1

[fω(Gt)− µ(fω)]2,

where µ(Fω) = 1
T

∑ T
ω−1

t=1 fω(Gt).

We can think of the V (Fω) as a measure of noise present in Fω. Large values of variance

indicate Fω changes drastically in time making it hard to distinguish between the occurrence
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of a meaningful change and a noise effect. On the other hand, small values of variance

indicate Fω is smooth and noise is removed.

Compression Ratio deserves a little bit more careful consideration to measure com-

putationally. In general, let u be the length of the string representation of Fω in some

representation system. Let c be the length of the compressed representation of Fω in the

same representation system produced by a data compression algorithm. Let R(Fω) be the

compression ratio of Fω defined as:

R(Fω) =
u

c

R(Fω) is one of the ways to represents information encoded in Fω. A small value of R(Fω)

represents a lot of randomness or noise in signal Fω, while a large value of R(Fω) comes as

a result of redundancies in Fω. In the information theoretic sense, redundancies correspond

to low entropy and low entropy corresponds to high information.

Variance and compression ratio are not mathematical compliments of each other, but

they do have opposite behavior as functions of window size. As illustrated in Figure 12,

when we increase the value of ω, we expect the variance to decrease and compression rate

to increase. There is a region in Figure 12 where variance is very small and compression

is very high. However, low variance and high compression in this region are achieved

artificially by aggregating the underlying stream at too coarse a scale, so that all the critical

temporal information is removed. We call the range of window sizes that fall in this region

“uninteresting”. Instead, there is a range of window sizes for which we can expect both
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relatively low variance and relatively high compression levels of time series Fω. This insight

allows us to formulate the process of finding the range of appropriate discretization window

sizes as a search problem guided by the values of variance and compression.

Algorithm 1 TWIN Heuristic:

Require: Temporal stream Et, graph-theoretic measure f , user-defined “goodness mea-
sure” γ, maximum window size analyzed ωmax.

Ensure: List of appropriate window sizes {ω}
1: for ω = 1 to ωmax do
2: Compute the time series of graphs DGω : [G1, G2, ..., Gt, ..., GT

ω
−1]

3: Compute the time series Fω : [f(G1), f(G2), ..., f(Gt), ..., f(GT
ω
−1]

4: if V (Fω)−R(Fω) < γ then
5: Output ω
6: end if
7: end for

6.1.2 Experimental Setup

In this section, we first demonstrate the importance of the window of aggregation in the

analysis of dynamic networks. We then evaluate the results of our heuristic across datasets

coming from different domains (simulations, sociology, communication) in order to show

the breadth of the applicability of the results. For these datasets, the ground truth comes

either from domain knowledge or embedded structure in the case of synthetic data. Through

simulation and ground truth that comes from domain knowledge, we show that our heuristic

produces meaningful and consistent levels of temporal aggregation. We compare our method
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with GraphScope, in the context of event detection, and FFT analysis for identifying the

scale of temporal dynamics and demonstrate that our results are equally robust and some

times better when detecting events and patterns in dynamic networks. Finally, we illustrate

that TWIN’s performance is consistent with respect to axioms Q1, Q2, Q3 (Section 5).

For the synthetic datasets, we generate both realizations of the DynUR stream and

the DynMix stream. We generate the DynUR stream using number of vertices n =

100, probability of an edge p = 0.01 and number of time steps T = 100. We generate

the DynMix stream using two alternating versions of the beta distribution. For the first

distribution, we use shape parameters α = 5, β = 1 which lead to the generation of a dense

temporal stream. For the second distribution, we use parameters α = 1, β = 3 which lead

to the generation of a sparse temporal stream. We alternate each distribution every 20

steps. Once the probability of an edge is generated, it is kept the same through out the 20

time steps. The intention here is to obtain as persistent a stream as possible by minimizing

changes due to the randomness of the generative process.

6.1.3 Experimental Results

6.1.3.1 Real-world Dynamic Networks

We begin with Enron dataset and radius as a measure. Figure 13 shows the plot of

variance V and compression ratio R of network radius times series as a function of time.

Note that R increases as ω increases, while V (overall) decreases. The plot suggests that

an appropriate window for analyzing the radius of the Enron network is in the range of

4-7 days, where variance is relatively small and compression is relatively high. Figures 14
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displays the time series of radius for the Enron dataset at ω = 1 (high aggregation level),

ω = 5 (aggregation level within the range 4-7 days suggested by TWIN) and ω = 12

(coarse aggregation level), correspondingly. As seen in Figure 14(a), the drastic variations

of the radius time series at 1-day aggregation make it impossible to detect any pattern in

the dynamics of email exchanges of the Enron employees. As we increase the aggregation

window to 5 days (Figure 14(b)), some peaks corresponding to important events in the

lifetime of the Enron company become clear. For example, the peak at timestep 950 (Event

1) represents the time when Karl Rove sold off his energy stocks, the peak at timestep

1100 (Event 2) represents the unsuccessful attempt of Dynegy to acquire the bankrupt

Enron, while the peak at timestep 1150 (Event 3) represents the resignation of Enron’s

CEO in January 2002, and the beginning of the FBI investigation. When we aggregate the

dynamic network beyond the 4-7 day range, as in Figure 14(c), we notice that the time

series becomes smoother, but at the same time, some critical temporal events are lost. For

example, the collapse of the Dynegy deal represented by a sharp peak at aggregation level

ω = 5 is not identifiable anymore. Similar behaviors were observed for measures computed

on the Reality Mining and Haggle datasets (illustrated on Figure 15(a), and Figure 15(b)).

Also, summaries of the appropriate window ranges for the Enron, Reality Mining, Haggle,

Grevy’s and Plains datasets are given in Table I.

6.1.3.2 Synthetic Dynamic Networks

Figure 16 displays results of TWIN for the DynUR stream. Note that in the trade-off

plot (Subfigure (a)) variance does not show a trend of decreasing as t → T . Therefore,
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Figure 13: TWIN’s trade-off plot of variance (V) and compression rate (R) of network
radius with respect to window of aggregation ω.

TWIN is not able to identify an optimal window of aggregation. In Figure 16 (b) we see the

time series of the graph density function for DynUR at different windows of aggregation

(ω = 1, 2, 3). Just as we expect, the time series look similarly noisy across the different

scales. Figure 17 shows the results of TWIN for the DynMix dataset. We notice that at

window ω = 20, we get a sharp decrease of the variance followed by the stabilization of its

value. ω = 20 corresponds to half the period of the DynMix stream (when the alternation

of the two probability functions happens). Furthermore, note that both scales ω = 5 and

ω = 20 capture the periodicity of the stream correctly and have smoothed out the noise

present at ω = 1. Yet, ω = 20 seems qualitatively better, because at this scale the peaks

of the time series are just as pronounced as in ω = 1. This is exactly the result that would
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(a) ω = 1 day (b) ω = 5 days (c) ω = 12 days

Figure 14: Network radius time series for the Enron dataset at three levels of aggregation: (a)
fine level of aggregation, ω = 1 day, (c) coarse level of aggregation, ω = 12 days, (b) the
right level of aggregation, ω = 5 days.

like to achieve when we aggregate at the right scale. We would like to smooth out only the

noise, without affecting the quality of the actual signal (information) in the data.

6.1.3.3 Comparison with Graphscope and FFT Method.

Graphscope analysis on the Enron dataset partitions the time line on intervals that

vary from 2 weeks to 6 weeks, during the eventful period of November 2001-May 2002.

Some of the major events are captured using this partitions. There are however, several

important events that get smoothed out and can not be spotted when analyzing the time

series aggregated at such coarse levels (Figure 18 (a)). Since GraphScope focuses on

variations of graph compression levels, it is the magnitude of change in the graph structure

that drives the time line partitioning. TWIN analyzes the regularity of compression levels
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(a) (b)

Figure 15: Network density for the Reality Mining dataset (a) and Haggle dataset (b) at
three levels of aggregation: too fine level of aggregation(top picture), the right level of
aggregation (middle picture) and too coarse level of aggregation (bottom picture).

of different metrics on the graph, and therefore, it is the rate of change, not the magnitude,

that will have the most effect in the aggregation.

A nice feature of the Graphscope heuristic is the fact that it generates a non-uniform

partitioning of the time line. The non-uniform partitioning is a more realistic representation

of real-world interaction streams which are commonly characterized by bursty behavior (3;

32). On the other hand, Graphscope determines this partitioning for a fixed aggregation step

and it does not take into account the effect the aggregation step has on the computation of

the compression cost. The estimation of persistent structures leading to the low compression

costs is highly sensitive to the size of aggregation level. TWIN overcomes this dependency
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(a) Trade-off plot for the variance and com-
pression ratio of network density.
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(b) Time series of graph density at different
windows of aggregation.

Figure 16: TWIN’s results for the measure of network density of the DynUR stream.

by analyzing the persistent nature of the stream across different scale, and picking those

scales where persistence is more pronounced.

Figure 18 (b) shows the clique number for the Enron dataset when the underlying

temporal graph is aggregated at 4 days, as recommended by the TWIN heuristic, and 7

days, following the predominant cycle identified by the FFT analysis. We notice that at 7

days important peaks of the signal are not as easy to identify or completely disappear. Since

the rate of change in a temporal graph does not follow a simple pattern, using periodicity (i.e.

FFT method) to determine the right aggregation levels might not always be appropriate.
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(a) Trade-off plot for the variance and com-
pression ratio of graph density.
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Figure 17: TWIN’s results for the measure of network density of the DynMix stream.

6.1.4 TWIN in the Context of the Axiomatic Framework

6.1.4.1 Perturbation Analysis

Recall that in Chapter 5 we described several desired properties of the optimal partition

and optimal dynamic network for a given temporal stream. In particular, axioms [Q1] and

[Q2] describe when the re-ordering of interactions in time matter and when it is an artifact of

the data collection process. [Q1] states that at the optimal partition, any re-ordering within

an interval of this partition does not change the quality of the dynamic network. On the

other hand, [Q2] states that re-orderings across intervals of the partition can significantly

change the quality of the dynamic network. Definition 5.1.1 formalizes the two types of the

permutation function: πw (permutations within an interval) and πa (permutations across

intervals).
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(a) Clique number for Enron dataset at ω = 4 days and
ω = 7 days

(b) Average path length for Enron dataset at ω = 5
days and ω = 14 days

Figure 18: Comparison of TWIN heuristic to Graphscope heuristic (a) and FFT method (b).

We will now analyze the performance of TWIN in the context of axioms [Q1] and [Q2].

Let ω∗ be the output of TWIN for the given temporal stream Et. Let Ewt = πw(Et,P∗ω) be

the perturbed stream using function πw, where a fraction η of edges has been re-ordered

in time. Let Eat = πa(Et,P∗ω) be the perturbed stream using function πa, where a fraction

θ of edges has been re-ordered in time. If ω∗ is indeed an optimal window of aggregation,

applying the TWIN heuristic to stream Eat should theoretically produce the same optimal

window of aggregation ω∗. In contrast, applying the TWIN heuristic to stream Ewt will

significantly change the optimal window of aggregation ω∗. Given the noise present in real-

world networks and the fact TWIN is a heuristic rather than an optimization algorithm, the

perturbations due to πw are not guaranteed to produce identical answers, but hopefully the
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TABLE I: Results of TWIN heuristics for the Enron, Reality Mining, Haggle.

Measure Enron Dataset Reality Mining Haggle

Density 4-5 5-10 -

Number of connected components 3-5 10-14 35-50

Size of the giant component - 45-55 38-58

Diameter 6-8 12-25 3-45

Radius 4-7 15-35 10-45

Average Path Length 6-10 20-30 3-20

Clustering Coefficient - 12-25 38-55

Clique Number 2-4 - -

Spectral Gap - - 5-10

Graph Compression Ratio - 2-5 5-35

answers will be close enough. On the other hand, perturbations due to πa should produce

a noticeably different answer. We also expect the amount of perturbation to have an affect

on the how much TWIN-s output changes. Naturally, very high levels of perturbation can

change the topological structure of the underlying network so much that the output of TWIN

might change drastically to reflect the new topological structure. In Figure 19, we give an

illustration of TWIN’s behavior under the two different types of edge permutations for the

measure of graph average path length for the Enron dataset. The perturbation factors used

for the analysis are η = θ = 10%. In Figure 19(a), we notice that TWIN identifies window

size ω = 4 as the right level for aggregation. When the input is the stream with edge

temporal re-ordering within intervals of length 4 (Figure 19(b)), TWIN identifies the same

window of aggregation as in the original stream. On the other hand, when TWIN analyzes
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the stream with re-orderings across intervals of length 4 (Figure 19(c)), it selects ω = 6 as

the right window of aggregation. Furthermore, from a qualitative point of view, we notice

that the variance curve does not nicely stabilize anymore as t→ T . Figure 20 demonstrates

similar results when perturbation analysis is applied to the Haggle and Reality Mining

datasets.

Figure 21 shows how TWIN behaves when re-orderings of edges are applied to the

DynUR and DynMix streams. Note that in the case of the DynUR stream, re-orderings

within and across intervals lead to almost identical outputs from TWIN (Figure 21 (b), (c)).

This behavior is just what we should expect, since the DynUR stream has no temporal scale

(i.e. the temporal order of edges is not important). In the case of DynMix, we do observe

the consistency of the output when re-orderings of the edges happen within the same interval

(Figure 21 (d) (e), (f)). However, we do not observe the expected sensitivity to re-orderings

across intervals. This behavior is unvarying for all the other graph theoretic measures (e.g.

density, average degree, radius) and for other values of perturbation parameters (η = θ =

15%, 20%).

6.1.4.2 Oversampling Analysis

We now analyze the behavior of TWIN in the context of the oversampling axiom [Q3].

Recall that the oversampling axioms states that oversampling the initial temporal stream

at a uniform rate should not change the quality of the resulting dynamic network in a

substantial way. In order to test the performance of TWIN with respect to this axiom, we

oversample a given stream and compare the results on the new and original stream. We
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(a) Original (b) Within Perturbations (c) Across Perturbations

Figure 19: Average Path Length of original network (a), network perturbed within each
partition (b), and network perturbed across partitions (c) for the Enron dataset.

would expect that TWIN selects the same (or very similar) window of aggregation in both

cases.

Figure 22 shows the behavior of TWIN when the DynMix stream is oversampled by a

factor of α = 4. Note that the trade-off plot for the average path length measure stretches

correspondently by a factor of 4. Similar results can be observed for the Reality Mining

stream (Figure 23).

6.1.5 Summary

The empirical framework of TWIN offers the following contributions:

• It gives a quantitative trade-off criterion for identifying the appropriate window size

for discretizing a dynamic networks. By choosing windows of aggregation that bal-

ance between the minimization of noise and loss of temporal structural information,
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(a) Haggle: Original
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(b) Haggle: Within Perturbations
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(c) Haggle: Across Perturbations
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(d) Reality Mining: Original
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(e) Reality Mining: Within Perturba-
tions
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(f) Reality Mining: Across Perturba-
tions

Figure 20: Perturbation analysis of TWIN’s performance for the Reality Mining and Haggle
datasets.

TWIN’s approach offers a systematic framework to empirically discover interesting

network dynamics that would otherwise be lost.

• The framework presented here does not restrict the analysis to one network statis-

tic. We show that different aggregation levels are appropriate for different network

measures. Not only this is not a drawback of our method, but it is a desirable fea-
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(a) DynUR: Original
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(b) DynUR: Within Perturbations
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(c) DynUR: Across Perturbations
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(d) DynMix: Original
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(e) DynMix: Within Perturbations
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(f) DynMix: Across Perturbations

Figure 21: Perturbation analysis of TWIN’s performance for the DynUR and the DynMix
datasets.

ture, since each measure reveals distinct properties of the network. Furthermore, it is

another illustration of the fact that interesting network behavior happens at various

temporal resolutions and our method automatically reveals those interesting temporal

scales.
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Figure 22: Average path length of original DynMix stream(a), and oversampled stream(b)
with oversampling factor α = 4.

Figure 23: Clustering Coefficient of original Reality Mining stream (a), and oversampled
stream (b) with oversampling factor α = 5.

• The heuristic produces consistent results for datasets arising from different domains

and different underlying network dynamics.

• Finally, TWIN performs well when analyzed in the context of the axiomatic approach.

In particular, TWIN’s performance is stable with respect to temporal re-ordering

within its optimal window of aggregation and sensitive to temporal re-ordering across.
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This indicates that TWIN is able to select windows of aggregation that correspond

to inherent scales of the dynamics of the underlying system. In addition, TWIN’s

performance is not sensitive to uniformly increasing the oversampling factor of the

interaction stream. This demonstrates TWIN’s robustness with respect to noise re-

sulting due to oversampling of the stream.

6.2 Persistence-based Approach

Interactions observed fleetingly along the time line of a stream are often not interesting

and they usually indicate that the data collection process is noisy. On the other hand,

interactions that persist for awhile truly represent what is more “essential” for the under-

lying system. What is, then, the “right” temporal scale that can capture the persistence

of structure in time, while smoothing out the random fluctuations? Consider, for example,

the event of the onset of the FBI investigation of the Enron Corporation and the flurry of

emails that followed. Intuitively, we would like to analyze this collection of emails together

as one temporal unit. This temporal unit represents the right granularity to capture the

temporal causality in this scenario.

In social network analysis, one point of view considers persistent interactions over time

as defining more complex sociological structures such as relationships or kinship (46). In

another context, the notion of persistence is critical in extending the static definition of

communities to that of dynamic communities (64). The common thread of the definition of

persistence across the different disciplines and applications within them is that persistence is

a property that allows us to construct a network with the “core” interactions, discarding the
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noisy transient interactions. Therefore, the notion of persistence lends itself to yet another

formulation of the “right” temporal scale: the temporal scale at which the underlying

network is most persistent in time.

6.2.1 DAPPER Heuristic

In general, persistence can be thought as a local property of temporal data since temporal

dependencies tend to weaken over longer time intervals. Here we describe a new approach

for the TSI problem that uses the notion of persistence as a local qualitative measure.

The DAPPER (Dynamic Approach for identifying Pattern Persistence) heuristic exploits

the local persistence (quality) of interaction streams to navigate towards a globally optimal

partition of the timeline. This approach can generate optimal partitions that are not uniform

along the time line. In this respect, the DAPPER heuristic is a departure from the TWIN

heuristic and offers a more realistic representation of temporal streams.

6.2.1.1 Measuring Local Persistence

There are many ways to measure local temporal persistence. One way is to use the

changes in edge frequency values as a proxy. By focusing on the edge frequencies over

time, we avoid having to make any assumptions about other more complex structures in

the underlying network. Without any additional information or specified objective, using

the information of volume of edges in time is the best thing we can do. At a greater

computational cost, the frequency approach can be extended to any fixed substructure that

is deemed more relevant for the analysis. We intuitively expect that the network structure

that persists over time is a manifestation of more or less the same set of edges occurring
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consistently. Therefore, such persistent structure is characterized by small changes of the

edge frequency vector, but equally important, these small changes persist over time. Once

we have the individual edge occurrence counts, we express the total frequency score of the

underlying network as a linear combination of individual edge frequencies. This assumes

independence of edge occurrences. Assuming edge independence is a starting point and can

be generalized later. Intuitively, high persistence of network structure implies persistence of

edge frequency values, but the converse is not necessarily true. In Figure 24, we illustrate

such a situation. Intervals pi and p′i both have the same frequency values, yet interval

p′i has higher persistence. In Section 6.2.5.2, we discuss two intuitive properties (internal

consistency and local monotonicity) that could potentially be used as part of a post-hoc

analysis to filter out any intervals that might have high frequency values, but are not

persistent enough.

pi

p0i

Figure 24: Two examples of intervals with same frequency, but different persistence pattern.
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Let ω represent the length of the interval we will use to obtain an initial uniform partition

Pω of the time line. Let p = [l, l+ω) be an interval in Pω and freq(p) the frequency vector

representing the number of times each edge e ∈ E occurs in p:

freq(p) = (
1

ω

∑
l≤t<l+ω

Xijt)|E|,

where Xijt is the indicator variable representing edge eij being present at time t. Note that

we normalize the number of edge occurrences within an interval by the length of the interval.

The normalization step is important when we compare the quality of intervals of different

lengths. Also, the normalized edge counts directly relate to the notion of edge probabilities

and, in this sense, we can think of function freq as an estimation of the probability function

generating the stream.

Let fd be the frequency difference function representing the amount of change in edge

frequencies between two consecutive time intervals:

fd(pi−1, pi) = ||freq(pi−1)− freq(pi)||p

Figure 25 gives an illustration of how DAPPER computes the endpoints of two con-

secutive intervals along the time line. Note that unlike the implementation of the TWIN

heuristic, here consecutive intervals are overlapping and parameter s controls the amount of

overlap. Overlapping consecutive intervals are a natural generalization that is intended to

give smoother measurements of the temporal characteristics of the stream. In the current
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DAPPER implementation we compute the l1 norm of the fd vector (p = 1). Other norms

can be used, but careful consideration needs to be given to the effect the value of p has on

representing the magnitude of change in edge frequencies.

t + !t t + s t + s + !

freq([t + s, t + s + !))

freq([t, t + !))

Figure 25: Illustration of the temporal bounds of the edge frequency function freq for
window size ω = 3 and shift parameter s = 1.

Let LM be the set of local maxima:

LM = {i : fd(i) >= fd(i+ /− j), i− r ≤ j ≤ i+ r}

where r is the local parameter. The definition of local depends indirectly on the value of ω.

For ω = 1, local means comparing the value of fd with r timesteps before and r timesteps

after. As the value of ω increases, so does the temporal scope of what is considered local.

The choice of the local parameter, similarly to the shift parameter s is related to the trade-off
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between computational efficiency and accuracy. In the current implementation of DAPPER

we are using r = 1.

Following, we characterize two types of intervals whose quality we want to capture:

Type 1: (l, r) ∩ LM = ∅. There are no local maxima inside interval (l, r). Type 1

intervals partition [0, . . . , T ], and LM ∪{0, T} equals the set of endpoints of the Type

1 intervals. If we modify function fd by adding a little noise, then LM may gain some

values in (l, r), but min(fd) on (l, r) will be quite similar to the old value of min(fd).

This motivates the following definition for the quality function q1 of Type 1 intervals:

q1 =
min{fd(l), fd(r)} −min{fd(x) : l < x < r}

r − l .

In other words, we make a rectangle with left side x = l, right side x = r, top

y = min{fd(l), fd(r)}, and bottom y = min{fd(x) : l < x < r}, and q1 is the slope

of its diagonal.

Type 2: (l, r) ∩ LM 6= ∅. There are local maxima inside interval (l, r). Let m be the

value in (l, r) such that fd(m) is maximized. Note that m ∈ LM . (For simplicity, we

assume that m is unique.) We then make a rectangle with left side at x = l, right

side at x = r, bottom at y = fd(m) and top at y = min{fd(l), fd(r)}. Intuitively,
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when this box is deeper, we have a better interval. To quantify this, we define quality

function q2 of Type 2 intervals as follows:

q2 :=
min{fd(l), fd(r)} − fd(m)

r − l .

We hope that Type 1 and Type 2 intervals can capture all the locally high-quality

intervals along the time line. However, we can expect that not all Type 1 and Type

2 intervals will necessarily be of high quality. The presence of noise in the stream

may cause Type 1 intervals to be too small (too fine). If there are long high-quality

intervals, Type 1 will not suffice to capture them. Furthermore, if the persistent

structure of the stream is multi-scalar, Type 1 intervals can only possibly detect

persistence at the smallest scale. Our hope is that Type 2 intervals will address some

of these challenges.

Some additional work is required to synthesize the highest quality intervals among

Type 1 and Type 2 intervals that can give us the global partition of the time line

(explained in more detail in Section 6.2.2). Note that the requirement that we output

a partition might mean that not all the intervals in the final answer will be of the

highest quality. If instead of one global partition, we were interested in multi-scalar

output, a different kind of analysis is required. One idea would be to generate a set

of “fuzzy” partitions, where at each temporal scale, only high-quality intervals are

reported. If these intervals do not cover the whole time line, we label the remaining
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regions of the time line as “fuzzy”. This is a direction that we would like to further

explore in the future.

6.2.2 Outline of the DAPPER Heuristic

In this section we give an outline of the steps the DAPPER heuristic follows to compute

Type 1 and Type 2 intervals, and how it then uses their quality measures to generate a

global partition of the time line.

1. Generate potential breakpoints using the concept of local maxima:

(a) Compute Type 1 Intervals: Consider the frequency difference function fd(t)

as t advances from 0 to T to find the set of local maxima LM (as well as Type 1

intervals) and the minimum value of fd(t) for each Type 1 interval. Last, since

we have the min(fd(t)), we can also compute the value of q1 for each Type 1

interval.

(b) Compute Type 2 Intervals: Let LM∗ be a copy of LM . We will manipulate

this list to find and create the Type 2 intervals. First, we sort LM so that fd(t)

is in non-decreasing order. At each iteration, we consider m ∈ LM , starting with

m where fd(m) is smallest. At each step, we remove m from LM∗. Let l be the

element in LM∗ preceding m and let r be the element following m. We output

the Type 2 interval [l, r] associated with m and its quality value q2.

2. Synchronize Type 1 and Type 2 intervals to generate a partition:

(a) Take the union of Type 1 and Type 2 intervals and their corresponding q values.
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(b) Sort the intervals by their q-values in non-increasing order, with ties broken

arbitrarily.

(c) Initialize the set of breakpoints B := ∅.

(d) Iterate: Starting with the interval with the highest quality value (either q1 or

q2), add the endpoints of the corresponding interval. Let [l, r] be the next un-

processed interval. If the endpoints of the unprocessed interval fall inside any

of the intervals already added to B, ignore the interval and move to the next

unprocessed interval.

(e) When the procedure quits: if B = {b1, . . . , bk} with b1 < . . . < bk, then our final

answer is the set of intervals [0, b1), [b1, b2), . . . , [bk, T ].

6.2.3 Experimental Setup

We generate instances of the DynMix Stream using two alternating probability distri-

butions: the beta distribution and gaussian distribution. We alternate each distribution

every 20 steps. Once the probability of an edge is generated, it is kept the same through

out the 20 time steps. The intention here is to obtain as persistent a network as possible

by minimizing changes due to the randomness of the generative process. For the beta dis-

tribution, we use shape parameters α = 1, β = 3 which lead to the generation of a sparse

temporal stream. The gaussian distribution, on the other hand, generates a DynUR-like

temporal stream.
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6.2.4 Experimental Results

Figure 26 shows the results of the DAPPER heuristic for the DynMix Stream for three

windows of aggregation ω = 1, 2, 3. At ω = 1, DAPPER correctly identifies the critical

breakpoints at every 20 time steps corresponding to the times the underlying probabilistic

process alternated from the beta to the gaussian distributions. However, at this temporal

scale, DAPPER generates additional breakpoints in temporal regions where there are no

changes to the underlying generative process. Interestingly, these regions, all correspond to

high frequency differences associated with the DynUR stream. Since the DynUR stream is

essentially noise, it overwhelms the analysis of DAPPER at ω = 1. When we increase the

window size to ω = 2, DAPPER is able to identify the correct partitioning. We are able

to see the effect aggregation has in smoothing out some of the noisy fluctuations in edge

frequency values. DAPPER performs equally well for window sizes ω > 2.

Figure 27 shows the results of the DAPPER heuristic for the Haggle Stream. Recall from

Section 4.3.7, the Haggle dataset represents proximity-based interactions of participants in

the IEEE Infocom ’06 conference for a period of four days. Note that for window size

ω = (which corresponds to a 10 minute interval), DAPPER generates a very fine partition

of the time line. The over-partitioning during the four pronounced peaks (corresponding

to the four conference days) is somewhat to be expected due to the multi-scalar nature

of the Haggle dataset. One can think of 20 minute talks, 30 minute talks, or morning

and afternoon sessions as equally “natural” temporal intervals for the partitioning of the

time line. However, for the temporal intervals corresponding to the evening and night times
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(a) ω = 1 (b) ω = 2

(c) ω = 3

Figure 26: Partitioning of the DynMix stream by the DAPPER heuristic. The red vertical
lines represent the partitioning points along the time line.

(regions with very low and stable frequency difference values), DAPPER still over-partitions

at ω = 1. This problem seems to be corrected as the value of ω is increased and we notice

that for ω = 4 (40 minute intervals), we see a clear separation between the day and night

frequency patterns (Figure 27(c)). Also, note that some of the finer partitions at this scale,

do indeed correspond to intervals of length 20 minutes, 30 minutes, 50 minutes and about

3-4 hours. The results map consistently to the temporal organization of the conference and
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in this sense, DAPPER captures the right scale of the underlying dynamics of the Haggle

dataset.

(a) ω = 1 (b) ω = 2

(c) ω = 4

Figure 27: Partitioning of the Haggle stream by the DAPPER heuristic. The red vertical
lines represent the partitioning points along the time line.
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Figure 28 shows the results of DAPPER for the Reality Mining Stream. Recall from

Section 4.3.7, the Reality Mining stream represents proximity-based interactions of students

at MIT during an academic year. The original temporal scale of the temporal stream is 4

hours. As illustrated by Figure 28, DAPPER generates a very fine partition of the time

line. It seems the increase of ω is not able to smooth out the temporal noise present in

this dataset. Even for a relatively high window size (ω = 40 corresponding to about 1 week

along the Reality Mining time line), the partition is very similar to what we get for ω = 1.

6.2.5 Discussion

6.2.5.1 Challenges for Larger Values of ω

As discussed in Section 6.2.1.1, when the interaction stream has a lot of noise, the

frequency difference function fd will often be fairly high for very small values of ω (in

particular for ω = 1). If there are two consecutive intervals with different behavior, but

which are not very different from each other, or where the change from one interval to the

other is gradual, then this will not show up very strongly in fd, even in the absence of noise.

Thus, in the presence of noise, the break between the two intervals may be impossible to

detect (with ω = 1).

By considering a larger ω, the noise is averaged out (just as when we are dealing with

oversampling), but the difference in the consecutive intervals is not averaged out, so it

becomes easier to detect true breakpoints along the time line. We gave an illustration of

this observation in Section 6.2.4, when we applied DAPPER on the DynMix and Haggle

datasets. However, there are some complications that arise when considering larger values of
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(a) Time series of the fd function (b) ω = 1

(c) ω = 2 (d) ω = 40

Figure 28: Partitioning of the Reality Mining stream by the DAPPER heuristic. The red
vertical lines represent the partitioning points along the time line.

ω. Currently, we consider overlapping consecutive intervals (s = 1), but such an approach

is computationally expensive. In the future, we would like to compare non-overlapping

consecutive intervals of the form [kω, kω+ω) and [kω+ω, kω+2ω). This form of partitioning

creates a few issues:
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1. We might miss a good breakpoint. For example, for ω = 10, we might find a breakpoint

at t = 80, but it turns out that the real breakpoint is at t = 79 or t = 83. One

possible way to fix this problem would be to search locally (to the left and right of

the breakpoint) to see if there is any nearby points that are better choices for the

breakpoint.

2. Some values of ω may be too big to detect any real structure. If we do not recognize

that ω is too big, we might assume that the output indicates a good breakpoint, when

in fact it is just caused by looking for data at the wrong scale. A useful feature of

the algorithm would be to automatically decide whether a particular value of ω is too

big and should be ignored (or should be ignored for another reason). Note that this

means that one possible output for each ω should be “Nothing useful found” (For

example, in the case of the DynUR stream, this should be the case for every window

size.)

3. Synthesizing results across different scales to get a global partition of the time line

is not straightforward. This issue is connected to the previous two issues. This

statement presupposes that for each ω, we will get some output that is independent of

what the algorithm does for other ω, and the outputs are only combined in the end.

The outputs could be a set of intervals, each one with a quality Q, or it could even be

a partition of the entire time line. Perhaps a better approach would be to integrate

the process of partitioning at different scales rather than trying to merge the outputs

at the end.
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6.2.5.2 Desired Properties of a Local Quality Measure

In Section 6.2.1.1 we defined two ways to measure the local quality of intervals with

respect to the notion of temporal persistence (q1, q2). Similarly to the definition of the

global quality Q of a partition (discussed in Section 5), there are many ways to going about

defining what local quality means in the context of temporal scale of interaction streams.

Here we discuss two intuitive properties that we would like any local quality function to

have. More formally, let q represent a persistence-based local quality function. Then q takes

as input an interval pi in the timeline [0, . . . , T ], the set of edges Eit that occur during this

interval, and outputs a quality score about the persistence of edges that occur during pi:

q : (pi, E
i
t)→ R+

The first property we discuss here summarizes the observation that persistent structure is

spread out in a sequential fashion (see Figure 24 for illustration). The second property

states our preference of choosing longer persistent intervals.

[p1] Internal Consistency: Let p∗ be an interval in an optimal (with respect to q) partition

P∗ of temporal stream Et. Consider a “big enough” subinterval pi ⊆ p∗, such that

|pi| > |p∗|/2 (Figure 29(a)). Then, with high probability, the quality of subinterval pi

is close to the quality of the interval p∗:

∀pi ⊆ p∗ s.t. |pi| > |p∗|/2, Pr[|q(p∗, E∗t )− q(pi, Eit)| ≤ ε] ≥ 1− δ.
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[p2] Local Monotonicity: Let p∗ be an interval in an optimal (with respect to q) partition

P∗ of temporal stream Et. Consider two “big enough” subintervals pi, pj ⊆ p∗, such

that |pi|, |pj | > |p∗|/2 and |pi| ≥ |pj | (Figure 29(b)). Then, with high probability, the

bigger subinterval has higher quality:

∀pi, pj ⊆ p∗ s.t. |pi|, |pj | > |p∗|/2, |pi| ≥ |pj |, Pr[q(pi, E
i
t) ≥ q(pj , Ejt )] ≥ 1− δ

We could think of q1 and q2 as estimations of the rate of change of the edge probability

function. Intuitively, we would expect that during an interval with“optimal persistence”,

the parameters of the edge probability functions stay the same throughout the interval, and

therefore its rate of change is essentially constant. In this sense, we hope both q1 and q2

can capture well at least property p1.

pi

p⇤

(a)

pj

pi

p⇤

(b)

Figure 29: Illustration of the internal consistency and local monotonicity properties.
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6.2.5.3 Comparison of the DAPPER Heuristic with TWIN and Graphscope

Heuristics

The use of a local quality function represents an important difference between the DAP-

PER approach and the TWIN approach. The TWIN heuristic selects the best partition

based on a global criterion of quality. Both variance and compression rate are qualitative

measures of the whole timeline. In contrast, the DAPPER heuristic takes the view that

a global partition with high quality is a sequence of intervals with high quality. In ad-

dition, the TWIN heuristic assumes a uniform partition of the timeline. The underlying

implication is that data occurs and is collected at a uniform rate along the time line. Such

an assumption might be too strong when considering real-world systems. For example, we

would expect the email communications of Enron employees to be more dense during the

week days, and much more sparse over the weekend. Naturally, a non-uniform partition of

the time line would be a better representation of scenarios like this. The DAPPER heuristic

does not restrict the optimal solutions to the set of uniform partitions of the time line. To

this extent, it represents a more general and more realistic mode for partitioning temporal

streams.

The DAPPER heuristic is similar to the Graphscope heuristic (61) in that it uses the

notion of the persistence to segment the time line. Graphscope identifies change points

based on identifying intervals with ”good” compression level. The compression function

used by this heuristic is related to the persistence-based quality function that the DAPPER

heuristic uses.
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There is, however, an important difference between the approach of DAPPER and

Graphscope. Graphscope computes the “best” partition of the timeline on one swipe of the

temporal stream (i.e. one fixed temporal scale). On the other hand, the DAPPER heuristic

looks at persistence across the timeline, as well as, persistence across temporal scale. In

this sense, DAPPER can be thought as a generalization of the Graphscope approach. The

justification for the DAPPER approach is two fold: 1. the initial temporal resolution of the

data might not be the most appropriate scale at which persistence is revealed, 2. persis-

tence structure usually persists at different scales. Therefore, merging persistent intervals

across scales is more robust; it will ignore those intervals that are persistent only in few

scales (persistence might be an artifact, rather than an inherent characteristic), and it will

merge intervals that “consistently” appear as persistent.



CHAPTER 7

FUTURE WORK AND CONCLUSIONS

7.1 Directions for Future Work

The TSI problem for interaction streams has only until recently received the deserved

attention. The analytical framework we have presented in this thesis focused on preparing

the groundwork for rigorously defining and solving the TSI problem. We would like to

extend this framework in a several directions:

7.1.1 Analysis of Special Cases of Interaction Streams

As illustrated in this thesis, the analysis of special cases of interaction streams, where

we either understand the structural or generative properties of the temporal stream, or we

know what the “right” temporal stream should be (e.g. domain knowledge), can lead to

important insights for the TSI problem. We would like to continue in this direction by

studying more general and complex cases of interaction streams:

Markov-based streams: These are streams where the probabilities of edges occurring

within a window of aggregation only depend on the probabilities of edges occurring in

the previous window of aggregation. This kind of generative model explicitly incor-

porates temporal dependencies often observed in real-world interaction streams. The

Markov model is well-studied in many contexts and it has the potential to allow us

to say something precise for the TSI problem.
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Streams with topological interaction dependence: In the current framework, we as-

sume interactions in the network occur independently of each other. This is a strong

assumption, especially when we try to apply our analysis to real-world networks. As

a first step towards improving our framework, we can start with introducing a simple

case of edge dependence, such as dependence between pairs of interactions. The goal

is then to study implications of this generalization on the TSI framework.

Streams with fractal-like temporal structure: The topological structure of fractal-

like networks (e.g. Kronecker graphs) has recently gained a lot of interest (39). Sim-

ilarly, we would like to study and define the temporal scale properties of fractal-like

interaction streams. Intuitively we would expect such streams to be invariant with

respect to the aggregation process (i.e. no matter the level of aggregation, the result

is always a time series of self-similar graphs). To this extend, the DynUR stream can

be thought as a special case (although not a very interesting one). More generally, we

would like to study streams that have the fractal behavior with respect to temporal

scale, yet they have topological structure embedded in them.

7.1.2 Extensions to Perturbation Analysis Framework

In this thesis, we have developed two techniques for testing the quality of the solu-

tion from a TSI algorithm: temporal re-orderings and oversampling. There are multiple

directions to extend and generalize these techniques:

Topologically non-uniform temporal re-orderings: In the current framework, we se-

lect the subset of edges to be re-ordered uniformly at random. An extension to this
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technique would be to bias the selection by taking into account the topology of the

interactions (i.e homophily, communities).

Modification of the rate of occurrence through oversampling The rate of oversam-

pling in the current framework is uniform along the time line. A possible generalization

would be to consider non-uniform over-sampling.

7.1.3 Objective-based Formulations of TSI Problem

We have illustrated how dynamic networks have inherent rhythms that govern their

dynamics. This is one natural way to define what is interesting about them. An alternative

way would be to define the interestingness of the network based on what is useful about

them. This leads to an orthogonal approach that is application driven. For example, the

identification of the most frequent sub-graphs, or the identification of dynamic communities

are useful applications that give us meaningful insights about the network.

It is often the case that the algorithms designed for these applications rely on the fact

that the temporal dynamics of the network are represented at the appropriate temporal

scale for their analysis. For example, defining dynamic communities depends on identifying

co-occurring sets of interactions that persist together in time (64). Naturally, the concept

of what is considered persistent depends on the temporal scale at which the network is

analyzed. Since different patterns can develop at different temporal scales, it is natural

to ask the following question: At what temporal scale does a pattern of interest become

detectable in the dynamic network? What is the right dynamic network representation that
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captures what is essential about the pattern of interest? We briefly give some preliminary

intuition of the TSI problem in a objective-specific setting.

7.1.3.1 Algorithmic-specific Formulation of TSI Problem

Given a specific learning objective on a dynamic network, and an algorithm designed

to achieve it, the goal is to identify the temporal scale at which the performance of the

algorithm is maximized. More formally:

Let A be a learning algorithm taking as input DG and giving as output a solution O. Let

O∗ be the optimal solution for the learning objective. Then we can define the TSI problem

with respect to algorithm A as follows:

〈P∗, DG∗〉 = argmin
P,DG

[A(DG)−O∗]

7.1.3.2 TSI Problem for Dynamic Community Identification

The notion of a dynamic network community is very elusive. There are a lot of definitions

offered in the existing literature. Intuitively, a community is a cohesive collection of nodes.

The notion of cohesiveness if often defined as interactions among nodes inside the collection

having greater strength or frequency than interactions with nodes outside the collection (65).

This intuitive notion can be thought as a governing rule and a discerning characteristic of

what is a network community.

The introduction of the temporal component in the analysis of communities allows us

to observe the community as it changes and involves in time. Nevertheless, the property
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of cohesiveness stays intact in time. Intuitively, a dynamic community is easier to detect

when temporal perturbations that are noise do not change too much the structure of the

community. At the optimal temporal scale, temporal re-orderings of edges within the same

network partition (temporal unit) do not cause drastic changes in the dynamic network

structure. However, temporal re-orderings of edges across partitions fundamentally modify

the underlying structure. It is of interest to investigate if the notion of “stability under

temporal perturbation” could be a useful criteria in identifying the optimal temporal scale

for community identification.

7.1.3.3 TSI Problem for Dynamic Link Prediction

The Dynamic Link Prediction problem can be summarized by the following two objec-

tives: 1) Given an already seen interaction, predict when it will occur again; 2) given a

historic stream of interactions, predict whether an unseen interaction will occur (illustrated

in Figure 30). Prediction is a learning task that relies on identifying a generalizable repre-

sentation of “historic” data. In the context of TSI problem we ask: at what temporal scale

is the “historic” dynamic network best for predicting future interactions?

Since the temporal delay between interactions within a partition is artifactual, aggre-

gation at the right window allows for separation of noise from the essential delay. As

consequence of this property, the problem of link prediction based on time delays (37) be-

comes identical to the problem of link prediction based on the actual time occurrence of

interactions (41). In this context, the optimal partition of the interaction stream can be de-
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Figure 30: Illustration of Dynamic Link Prediction Problem

fined as the partition at which the discrepancies between the two link prediction approaches

are minimized.

7.2 Conclusions

There is both an intuitive understanding and mounting empirical evidence that the

temporal scale of interaction streams plays an important role in their analysis. Moreover,

it is clear that many interaction streams have a set of relevant scales and that those may

change over time. Some of the scales are inherent to the dynamics of the interactions, while

others are only relevant depending on the context of the analysis performed on the stream.

All of this makes the problem of identifying and inferring the temporal scale of interaction

streams important, yet equally elusive and difficult to state.

In this thesis, we brought together the various interpretations of the concept of temporal

scale and pointed out the evidence that supports those interpretations. We formalized the

problem of the temporal scale inference, defined some intuitive properties of the “right”

temporal scale, and proposed two heuristics for solving the problem.
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We hope this thesis brings the problem of temporal scale of interaction streams to the

forefront of research consciousness, makes the problem explicit, and provides the tools for

making progress in this area. Understanding the rhythm of interacting systems is not only

necessary for the proper analysis of these systems, but will provide us with the fundamental

insight into what makes these systems tick. It is an important, challenging, and worthy

endeavor.
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