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SUMMARY

This thesis is concerned with problems that arise in learning theory as well as with an inves-

tigation of a popular commonsense knowledge base that is publicly available online (ConceptNet

4) with the tools of network analysis and reasoning with the knowledge that is available in the

database.

In Chapter 3 we study the evolvability of monotone conjunctions under the uniform distri-

bution through an intuitive neighborhood that was suggested by Leslie Valiant in his seminal

paper that introduced evolvability. In that paper Valiant proved the evolvability of monotone

conjunctions under the uniform distribution in O (n lg(n/ε)) iterations using total sample size

O
(
(n/ε)6

)
. We give a structure theorem of best approximations and improve this result in

O (lg(1/ε) + n lg(1/δ)) iterations using total sample size Õ
(
n2/ε2 + n/ε4

)
, where Õ (·) is ig-

noring poly-logarithmic factors. We examine the same algorithm under µ-nondegenerate prod-

uct distributions and show the existence of local optima. We then switch to covariance as the

fitness metric and show that a similar structure theorem for best approximations holds under µ-

nondegenerate product distributions. We prove the evolvability of short monotone conjunctions

under µ-nondegenerate product distributions in O ((n/µ) ln(1/ε) + n ln(1/δ)) iterations using

total sample size Õ
(
n(1/µ)5(1/ε)(4/µ) ln(1/µ)

)
, where again Õ (·) is ignoring poly-logarithmic

factors.

In Chapter 4 we study halfspaces under the multiple instance learning (MIL) framework.

Using points from the moment curve (cyclic polytopes) it is shown that the VC dimension of

xvii
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d-dimensional halfspaces is Ω(d lg r) improving the previous lower bound of Sabato and Tishby

of Ω(lg r) and matching the upper bound. Using in addition Ramsey theory this result is

also shown to hold over any large point set in general position. Further, it is shown that the

hypothesis finding problem is NP-complete when the bags of instances are drawn from arbitrary

distributions. However, the actual learning problem of d-dimensional halfspaces under the MIL

setup occurs when the bags of instances are drawn from product distributions.

In Chapter 5 we examine the disagreement coefficient of monotone conjunctions under the

uniform distribution. The disagreement coefficient was introduced by Hanneke in the framework

of active learning. It is a combinatorial parameter that depends on the concept class, the

distribution, and the actual target being learned. We study the the disagreement coefficient of

monotone conjunctions under the uniform distribution and give the following results. For targets

of size 0 and 1 we compute the disagreement coefficient exactly and it is 2− 21−n. For targets

of size 2 6 k 6 ⌊n/2⌋ it is shown that the disagreement coefficient is Θ
(
2k
)
. For targets of

size ⌊n/2⌋+ 1 we give a lower bound of Ω
(
1
n · 2(H(1−(⌊n/2⌋+1)/n)−(1−(⌊n/2⌋+1)/n))n

)
, where

H (a) is the binary entropy of a, and an upper bound of O
(
2⌊n/2⌋+1

)
. For targets of size

⌊n/2⌋ + 2 6 k 6 2n/3 we give a lower bound of Ω
(
1
n · 2(H(1−k/n)−(1−k/n))n

)
and an upper

bound of O
(
2(H(1−k/n)−(1−k/n))n

)
, where again in both cases H (a) is the binary entropy of

a. Finally, for targets of size k > 2n/3 we give a lower bound of Ω
(

1
n ·
(
3
2

)n)
and an upper

bound of O
((

3
2

)n)
.

In Chapter 6 we are investigating the commonsense knowledge base ConceptNet 4 which is

publicly available online. We use the tools of network analysis and identify various properties
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of the induced directed and undirected multigraphs and graphs. Our findings identify missing

links from the database, locate spurious links that already exist in the database, as well as

provide additional knowledge to be added in the knowledge base. We also use the database for

question answering. In this direction we apply variants of spreading activation techniques. Our

approach gives explanations for bad results that were obtained for some questions in a previous

study that applied a similar algorithm in a low-rank approximation of the adjacency matrix and

improves the candidate answers for the same questions. In addition, we mine frequent rules

from the database. This rule mining approach suggests some interesting possibilities. First

of all, the primary aim of this rule mining approach is to add general rules that would allow

further or more elaborate reasoning. Moreover, this rule mining approach can be used as an

additional tool for identifying wrong assertions that are introduced in the database. Finally,

we also identify rules that may make sense as factual statements about the world but not in

terms of natural language usage.

Primary Subject Category: Computer Science

Secondary Subject Category: Mathematics, Artificial Intelligence

Keywords: evolvability, multiple-instance learning, active learning, knowledge bases, network

analysis, Boolean functions
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CHAPTER 1

INTRODUCTION

Computer science was arguably established formally by Turing in (135) but its roots are

really old and most likely co-exist with mathematics. In contrast to other sciences, but similar

to mathematics, computer science has proofs and theorems. In other words, we are not dealing

with natural laws that are not known with certainty. Knuth describes computer science as

“the study of algorithms” (78). Computational complexity1 (125; 105) captures the idea of

analyzing the requirements of time and space of algorithms solving specific problems, or even

at a more fundamental level whether specific problems are solvable or not. However, the

practical performance of specific algorithms is also of interest even when we do not have sharp

bounds on the analysis, guarantees for finding solutions and/or their quality, or more broadly,

simply because we want to examine the behavior of an algorithm, where the ‘behavior’ will be

a concrete notion related to a problem of interest2. In particular, randomization in algorithms

tends to bring elegance and compactness into the proofs and typically translates to simple,

1Theory of computation is a synonym to the term ‘computational complexity’ in this context.

2For example, another interpretation of the ‘behavior’ of an algorithm can be its practical running
time, as opposed to its theoretical worst running time. For instance, it was known for years that the
simplex algorithm behaves well in practice despite its worst case exponential running time. Eventually
this was justified by Spielman and Teng in their influential paper (129) which set the foundations of
smoothed analysis of algorithms.

1
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robust, and efficient code for real-world applications. One of the main themes of this thesis will

be the analysis of randomized algorithms (97) in a specific context which will be clear below.

Turing, in his pioneering paper (136), set the foundations for the development of machines

that exhibit intelligence, thereby, introducing the field that is nowadays known as artificial

intelligence (113; 52). Throughout the years artificial intelligence has expanded to a large

field by being inspired and absorbing results and theories from different branches of sciences

such as biology, cognition, and psychology. However, reflecting our opinion and our view,

artificial intelligence is to the biggest extent a sub-field of modern computer science. Towards

the development of machines that act in an intelligent manner the notions of learning and

reasoning are of foremost importance.

In computer science terminology the notion of ‘learning’ is typically further divided into

machine learning (96) and computational learning theory (5; 76) although this distinction is not

always very clear. Essentially, computational learning theory refers to the field that performs

a rigorous analysis of algorithms used in machine learning and this is why it is considered

to fall under the heading of theoretical computer science, while machine learning is typically

considered to be a branch of artificial intelligence. A crucial term, which also acts as a guide for

this thesis, is the notion of the efficiency of a learning algorithm. In this thesis, unless otherwise

stated, an algorithm will be called efficient in space and efficient in time if its space and time

requirements respectively are bounded from above by some polynomial expression of the input
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parameters1. Under that perspective, the foundations of computational learning theory were

set in Valiant’s seminal paper (137) even though theoretical investigations had been made in

the past that did not take efficiency into account; see e.g., (54). The first part of this thesis

will be concerned with the analysis of randomized algorithms that arise in various frameworks

in the context of computational learning theory.

As far as ‘reasoning’ is concerned, we refer to the problem of knowledge representation and

common-sense reasoning with the represented knowledge (11; 17). Even though Turing’s work

in (136) implicitly sets the problem of reasoning with represented knowledge, McCarthy in

his seminal paper (93) made this problem explicit, thereby, establishing the field of knowl-

edge representation and common-sense reasoning. It is widely accepted that large amounts of

common-sense data are required for common-sense reasoning. This in turn has resulted in the

generation of common-sense knowledge bases which are also publicly available in recent years,

such as Cyc (84; 83) and ConceptNet (87; 128). Moreover, there is an increased interest in

common-sense reasoning because of its potential applications to different fields, such as web

search and robotics. Our focus is on ConceptNet. In particular, in this thesis we will use

the tools of network analysis (18; 44; 99) in order to understand better the structure of such

networks. Even though this exploration is interesting in its own right, our primary goal is to

develop methods that are potentially useful for improving the performance of the knowledge

1We may simply state that an algorithm is efficient if it is clear from the context whether we refer
to space or time requirements. Moreover, note that if an algorithm is efficient in time, then it is also
efficient in space.
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base on various common-sense reasoning tasks. For instance, one possibility of improving the

performance is the identification of missing or incorrect links in the database. Going one step

beyond, our results can be considered as the first step towards the formation of a bigger collec-

tion of knowledge facts that can in turn be used as additional tools for reasoning with the aid of

the databases. Finally, we also address the problem of question answering by using our imple-

mentation of a spreading activation (107; 25; 3) method noting that knowledge representation

and reasoning are often weak spots for question answering (11, p. 780).

1.1 Instead of Contents

In Chapter 2 we present background knowledge and tools that are necessary for the results

that follow in the rest of the thesis. The main tools for probabilistic analysis are different

versions of the Chernoff bounds (21) (see also (58)) and the Hoeffding bound (69) in order to

restrict bad events in the analysis. These tools are used in Chapter 3. We also present basic

approximation and bounding techniques which are typically used in the analysis that follows.

In particular we emphasize on the bounds for binomial coefficients as well as sums of binomial

coefficients. These bounds on the binomial coefficients are used extensively in Chapter 5.

Further, we also present the definitions of the moment curve, the cyclic polytopes, and a

Ramsey theorem (57) which are used in the analysis of Chapter 4. We conclude Chapter 2 with

a brief presentation of Valiant’s Probably Approximately Correct (PAC) model of learning (137)

and Sauer’s lemma (116; 122; 141) from VC theory (140; 141).

Chapter 3 deals with Valiant’s recently introduced framework for learning called evolv-

ability (138; 139) which has already attracted the attention of people working in theoretical
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computer science and complexity (1; 46; 47; 48; 94; 73; 72). It suggests a formal theory based

on Darwin’s theory of evolution (30). The purpose is to allow and explain the evolution of com-

plex mechanisms in realistic population sizes within realistic time periods. Evolution is treated

as a form of computational learning from examples (experiences). Learning is influenced only by

the fitness of the hypotheses on the examples, and not otherwise by the specific examples. This

is of primary importance because of the idea that the relationship between the genotype and

phenotype may be extremely complicated, and the evolutionary algorithm does not understand

it. Traditional terminology would characterize evolvability as a special type of local search.

Feldman showed in (46) that evolvability is equivalent to learning with correlational statistical

queries (19) which is a restricted form of PAC learning (137); see also (76; 5; 96) and Chapter 2.

However, this characterization result is the product of a simulation argument that most likely

does not capture how evolution is performed by nature, in the sense of intuitive algorithms.

Under that perspective, evolvability is still at its infancy and our work focuses on intuitive

algorithms for Boolean functions. In particular we will examine the evolvability of monotone

conjunctions under the uniform distribution. We will then examine the same algorithm under

µ-nondegenerate product distributions and show the existence of local optima. Finally we will

switch to covariance as the fitness metric and study the same algorithm under µ-nondegenerate

product distributions for short monotone conjunctions. The results of this chapter appeared

in (40).

Chapter 4 deals with multiple instance learning (MIL) which is another variant of the

PAC model introduced by Dietterich, Lathrop, and Lozano-Pérez in (36) who investigated the
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problem of drug activity prediction. In MIL the learner receives bags of examples instead of

individual examples. The label of a bag is positive if the bag contains at least one positive

example, and negative otherwise. The learning task is to infer the requirements for the ob-

served classification of bags and predict the classification of other bags. A basic tool on the

characterization of the difficulty of a problem is the VC dimension; see (141; 16) and Chap-

ter 2. The VC dimension of d-dimensional halfspaces is d + 1. Our work studies this problem

for halfspaces in the MIL setting where we give an explicit construction for the lower bound

and we also show that the same lower bound holds for halfspaces over any large point set in

general position. The results rely on points from the moment curve (cyclic polytopes) (90), and

the second result also uses Ramsey theory (57). To the best of our knowledge this is the first

application of cyclic polytopes in learning theory. Finally, we show that the hypothesis finding

problem is NP-complete using a variant of the reduction that was used in Kundakciouglu, Seref,

and Pardalos (81). This contrasts with the polynomial time algorithm of Blum and Kalai (14)

for multi-instance learning any class learnable with statistical queries, which thus applies to

halfspaces as well. The fine point for this distinction is that our result implies non-learnability

if the distribution on the bags can be arbitrary, while in Blum and Kalai’s setting the bags of

instances come from a product distribution, which is the actual learning problem. The results

of this chapter appeared in (39).

Chapter 5 deals with active learning (AL) (119; 63) which is yet another variant of PAC

learning developed in recent years together with the significant increase of unlabeled data for

all sorts of tasks which are often available through the World Wide Web. Without loss of
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generality, in AL the learner queries points from a pool with unlabeled data points. The objec-

tive is to minimize the number of labels requested and form a good hypothesis. An important

combinatorial parameter for the label complexity in AL is the disagreement coefficient, which

was introduced by Hanneke in (62). The disagreement coefficient depends on the concept class,

the distribution, and the actual target being learned. However, the disagreement coefficient has

so far been studied only for continuous concept classes. To the best of our knowledge, in this

thesis the disagreement coefficient is studied for the first time for Boolean concept classes. More

broadly, apart from a very recent paper of Balcan, Berlind, Ehrlich, and Liang (8), we are not

aware of any other study of Boolean functions in the framework of active learning. In Chapter 5

we give the following results for the disagreement coefficient of monotone conjunctions under the

uniform distribution. For targets of size 0 and 1 the disagreement coefficient is 2−21−n in every

case. For targets of size 2 6 k 6 ⌊n/2⌋ it is shown that the disagreement coefficient is Θ
(
2k
)
.

For targets of size ⌊n/2⌋+1 we give a lower bound of Ω
(
1
n · 2(H((⌈n/2⌉−1)/n)−(⌈n/2⌉−1)/n)n

)
,

where H (a) is the binary entropy of a, and an upper bound of O
(
2⌊n/2⌋+1

)
. For targets of size

⌊n/2⌋ + 2 6 k 6 2n/3 we give a lower bound of Ω
(
1
n · 2(H(1−k/n)−(1−k/n))n

)
and an upper

bound of O
(
2(H(1−k/n)−(1−k/n))n

)
, where again in both cases H (a) is the binary entropy of

a. Finally, for targets of size k > 2n/3 we give a lower bound of Ω
(

1
n ·
(
3
2

)n)
and an upper

bound of O
((

3
2

)n)
.
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Chapter 6 deals with our investigation of ConceptNet 4 that was described earlier. We

perform a detailed computational study of the graphs induced by ConceptNet 4 1 using the tools

of network analysis. Moreover, our work continues the work of Ohlsson et al. (101). We have

studied various versions of the spreading activation algorithm and its relationship to algorithms

running on various low-rank approximations of the matrix representing the knowledge base. Our

past and ongoing work aims to address such fundamental, and so far less understood questions

such as how far can one go with the information contained in the knowledge bases in terms of

question answering. For example, using questions on IQ tests for children, how do the statistical

and logical approaches compare in terms of their question answering power, and what are useful

ways to combine these approaches in the context of question answering? Spreading activation

in semantic networks and link analysis techniques have been used in many contexts such as

information retrieval and web search; e.g., (27; 2; 115). Commonsense reasoning in knowledge

bases appears to provide interesting new aspects for studying these and similar techniques, for

example, for the identification of missing data and the correction of errors in the knowledge

base. The results of this chapter appeared in (38; 12).

1Homepage: http://csc.media.mit.edu/docs/conceptnet/ .



CHAPTER 2

TOOLS AND BACKGROUND

In this chapter we will see some basic notions and tools from probability theory. Some of

these will be used later on in applications. Moreover, a brief introduction to PAC learning will

be given together with some basic facts from VC theory.

2.1 Basics

Definition 2.1.1 (Probability Mass Function (PMF)). The PMF pX of a discrete random

variable X is a function that describes the probability mass of each (discrete) value x that X can

take; that is

pX(x) = Pr (X = x) .

2.1.1 Discrete Random Variables

Definition 2.1.2 (Bernoulli Random Variable). Let X be a Bernoulli random variable that

takes two values 0 and 1 depending on the outcome of a random process (e.g. tossing a coin

once). For some p with 0 6 p 6 1, its PMF is

pX(x) =






p , if x = 1,

1− p , if x = 0.

The expected value of X is E [X] = p, while the variance is Var [X] = p(1− p).

9
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Definition 2.1.3 (Binomial Random Variable). Let Y be a Binomial random variable with

parameters N and p that is constructed by N Bernoulli random variables X1, . . . , XN, each of

which is 1 with probability p. It is defined as the sum Y =
∑N

i=1 Xi. Its PMF is

pY(k) = Pr (Y = k) =

(
N

k

)
pk(1− p)N−k, k = 0, 1, . . . ,N.

The expected value of Y is E [Y] = Np, while the variance is Var [Y] = Np(1− p).

Note that
∑N

k=0 pY(k) = 1 .

Definition 2.1.4 (Geometric Random Variable). Given a sequence of Bernoulli random vari-

ables X1, X2, . . . , each of which is 1 with probability p, Z is a Geometric random variable

expressing the minimum i such that Xi = 1. Its PMF is

pZ(k) = (1− p)k−1p, k = 1, 2, . . . .

The expected value of Z is E [Z] = 1/p, while the variance is Var [Z] = 1−p
p2 .

Note that
∑∞

k=1 pZ(k) = 1 .

Definition 2.1.5 (Poisson Random Variable). Let S be a Poisson random variable with pa-

rameter λ > 0 and PMF given by

pS(k) = e−λλ
k

k!
, k = 0, 1, . . . ,N .

The expected value of S is E [S] = λ, and the variance is also Var [S] = λ.
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Note that
∑N

k=0 pS(k) = 1 .

2.1.2 Bernoulli Process

Informally it is a sequence of independent coin tosses.

Definition 2.1.6 (Bernoulli process). It is a sequence X1, X2, . . . of independent Bernoulli

random variables Xi such that for every i it holds:






Pr (Xi = 1) = Pr (success at the ith trial) = p

Pr (Xi = 0) = Pr (failure at the ith trial) = 1− p

2.2 Approximating and Bounding

Basic tools on approximating and bounding quantities are presented below.

2.2.1 The Cauchy-Schwartz Inequality

(
n∑

i=1

xiyi

)2

6

(
n∑

i=1

x2i

)(
n∑

i=1

y2
i

)
(2.1)

2.2.2 Bounding Combinations

Let 1 < k < n, with k, n ∈ N. Then,

(n
k

)k
<

(
n

k

)
<
(n · e

k

)k
and e ·

(n
e

)n
< n! < e ·

(
n+ 1

e

)n+1

(2.2)

One can also bound a binomial coefficient with the help of the binary entropy function as

shown below.
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Proposition 2.2.1 (Bounding a Binomial Coefficient with the Binary Entropy). Let 0 < k < n,

with k, n ∈ N. Moreover, let k/n = α ∈ (0, 1). Then,

2H(α)·n

n+ 1
<

(
n

k

)
=

(
n

α · n

)
< 2H(α)·n ,

where H (a) is the binary entropy of a; that is, H (a) = −a · lga − (1 − a) · lg(1 − a) and lga

is the logarithm of a in base 2.

Proof. We examine each inequality separately.

Lower Bound. Let f(k) =
(
n
k

)
· αk · (1− α)n−k. We have

f(k+ 1) − f(k) =

(
n

k+ 1

)
· αk+1 · (1− α)n−k−1 −

(
n

k

)
· αk · (1− α)n−k

=

(
n

k

)
· αk · (1− α)n−k ·

(
(n− k)

(k+ 1)
· α

(1− α)
− 1

)

Note that the denominator is positive since α ∈ (0, 1). Hence we have f(k+ 1) − f(k) > 0⇐⇒

(n−k) ·α−(k+ 1) · (1−α) > 0⇐⇒ α ·n−α ·k−k+α ·k− 1+α > 0⇐⇒ k < α ·n−(1−α).

Again we note that α ∈ (0, 1) and hence 0 < 1 − α < 1. Since k is an integer, it follows

that f(k + 1) > f(k) for every k < α · n. Moreover, with the same argument we have that

f(k + 1) < f(k) for every k > α · n. As a consequence, the function f(k) attains its maximum
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for k = α ·n. We will now use this fact. By the binomial theorem we have 1 = (α+(1−α))n =

∑n
i=0

(
n
i

)
· αi · (1− α)n−i < (n+ 1) ·

(
n
α·n
)
· αα·n · (1− α)n−α·n. In other words

(
n

α · n

)
>

α−α·n · (1− α)−(1−α)n

(n+ 1)
=

2H(α)·n

n+ 1
.

Upper Bound. Again from the binomial theorem we have 1 = (α + (1 − α))n =
∑n

i=0

(
n
i

)
·

αi · (1− α)n−i >
(

n
α·n
)
· αα·n · (1− α)n−α·n . In other words

(
n

α · n

)
< α−α·n · (1− α)−(1−α)·n = 2H(α)·n .

The proposition follows by combining the above two cases.

In fact, as we will see below, one can do better and give the same upper bound for the entire

summation of the binomial coefficients up to k = ⌊α · n⌋, where α ∈ (0, 1/2].

Proposition 2.2.2 (Upper Bound on the Sum of Binomial Coefficients with the Binary En-

tropy). Let n > 1 and 0 < α 6 1/2. Then,

⌊α·n⌋∑

k=0

(
n

k

)
< 2H(α)·n ,

where H (a) is the binary entropy of a; that is, H (a) = −a · lga − (1 − a) · lg(1 − a) and lga

is the logarithm of a in base 2.

Proof. Before we proceed with the actual proof we note that for α ∈ (0, 1/2] it holds lg(α) −

lg(1−α) 6 0. This follows immediately since the function f(x) = lg(α)−lg(1−α) for α ∈ (0, 1/2]
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is monotone increasing and f(1/2) = 0. Now let i ∈ [0, ⌊α · n⌋] and hence the quantity (α ·n−i)

is non-negative. Then, we have

(α · n− i) · lg(α) − (α · n− i) · lg(1− α) 6 0

−α · n · lg(α) + i · lg(α) + α · n · lg(1− α) − i · lg(1− α) > 0

i · lg(α) − i · lg(1− α) > α · n · lg(α) − α · n · lg(1− α) .

Adding n · lg(1− α) on both sides we get

i · lg(α) + (n− i) · lg(1− α) > n · α · lg(α) + n · (1− α) · lg(1− α) ,

where by using the definition of the entropy function we have

αi · (1− α)n−i
> 2−n·H(α) . (2.3)
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We are now ready to proceed with the actual proof of the statement. Using the binomial

theorem we have

1 = (α+ (1− α))n =

n∑

i=0

(
n

i

)
· αi · (1− α)n−i

>

⌊α·n⌋∑

i=0

(
n

i

)
· αi · (1− α)n−i

>

⌊α·n⌋∑

i=0

(
n

i

)
· 2−n·H(α)

= 2−n·H(α) ·
⌊α·n⌋∑

i=0

(
n

i

)
,

where in the third line we used (Equation 2.3). The proposition follows.

Finally, another useful bound for the sum of the binomial coefficients is given below.

Proposition 2.2.3 (General Upper Bound on the Sum of Binomial Coefficients). Let 0 < d <

n, with d, n ∈ N. Then,
d∑

k=0

(
n

k

)
<
(e · n

d

)d
.

Proof. Since 0 < d/n < 1 we may write

(
d

n

)d

·
d∑

i=0

(
n

i

)
<

d∑

i=0

[(
n

i

)
·
(
d

n

)i
]
<

n∑

i=0

[(
n

i

)
·
(
d

n

)i
]
= (1+ d/n)n 6 ed .

The proposition follows.
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2.2.3 Common Approximations

Very often in the analysis we want to bound expressions of the form (1 − x)n from above,

with x ∈ (0, 1); typically x will be a probability of a good event happening. In such cases we

will use the inequality

(1− x)n 6 e−x·n (2.4)

without any further justifications. Note that (Equation 2.4) is valid, since for every x ∈ R it

holds 1+ x 6 ex. We also note here that for x ∈ [0, 1/2] it holds

1− x > e−2x . (2.5)

Proposition 2.2.4 (Poisson Approximation). The Poisson PMF with parameter λ is a good

approximation for a binomial PMF with parameters N and p, provided that λ = Np, N is very

large, and p is very small.

2.2.4 Bounding Probabilities

Proposition 2.2.5 (Union Bound). Let Y1, Y2, . . . , YS be S events in a probability space. Then

Pr

(⋃S
j=1 Yj

)
6

∑S
j=1 Pr

(
Yj
)
. The inequality is equality for disjoint events Yj.

Proposition 2.2.6 (Markov’s Inequality). Any non-negative random variable X satisfies

Pr (X > α) 6
E [X]

α
, ∀α > 0 .
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Proposition 2.2.7 (Chebyshev’s Inequality). Let X be a random variable with expected value

µ and variance σ2. Then

Pr (|X− µ| > α) 6
σ2

α2
, ∀α > 0 .

Remark 2.2.8 (Chebyshev vs. Markov). The Chebyshev inequality tends to give better bounds

than the Markov inequality, because it also uses information on the variance of X.

Theorem 2.2.9 (Weak Law of Large Numbers). Let X1, . . . , XN be a sequence of independent

identically distributed random variables, with expected value µ. For every ǫ > 0:

Pr

(∣∣∣∣∣
1

N

N∑

i=1

Xi − µ

∣∣∣∣∣ > ǫ

)
→ 0, as N→∞ (2.6)

Proof. Let X1, . . . , XN be a sequence of independent identically distributed random variables,

with expected value µ and variance σ2. Define the random variable Y = 1
N

∑N
i=1 Xi. By lin-

earity of expectation we get E [Y] = 1
N

∑N
i=1 E [Xi] = µ. Since all the Xi are independent, the

variance is Var [Y] = 1
N2

∑N
i=1 Var [Xi] =

σ2

N . We now apply Chebyshev’s inequality and obtain

Pr (|Y − µ| > ǫ) 6 σ2

Nǫ2
, for any ǫ > 0.

2.2.4.1 Concentration and Tail Inequalities

In this section we examine a series of tools for estimating the concentration and bounding

the probability of the tails.
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Proposition 2.2.10 (Hoeffding Bound (69; 35)). Let X1, . . . , XR be R independent random

variables, each taking values in the range I = [α,β]. Let µ denote the mean of their expectations.

Then

Pr

(∣∣∣∣∣
1

R

R∑

i=1

Xi − µ

∣∣∣∣∣ > ǫ

)
6 e−2Rǫ2/(β−α)2 .

Proposition 2.2.11 (Chernoff Bound for Upper Tail). Assume X1, X2, . . . , Xt are independent

Poisson trials. Let X =
∑t

i=1 Xi, and µ = E [X]. Then, for γ ∈ (0, 1) it holds

Pr (X > (1+ γ)µ) 6 e−µγ2/3 .

Proposition 2.2.12 (General Chernoff Bound for Upper Tail). Assume X1, X2, . . . , Xt are

independent Poisson trials. Let X =
∑t

i=1 Xi, and µ = E [X]. Then, for γ > 0 it holds

Pr (X > (1+ γ)µ) 6 e−µγ2/(2+γ) .

Proposition 2.2.13 (Chernoff Bound for Lower Tail). Assume X1, X2, . . . , Xt are independent

Poisson trials. Let X =
∑t

i=1 Xi, and µ = E [X]. Then, for γ ∈ (0, 1) it holds

Pr (X < (1− γ)µ) 6 e−µγ2/2 .
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Proposition 2.2.14 (General Chernoff Bound for Lower Tail). Assume X1, X2, . . . , Xt are

independent Poisson trials. Let X =
∑t

i=1 Xi, and µ = E [X]. Then, for γ > 0 it holds

Pr (X < (1− γ)µ) 6 e−µγ2/(2+γ) .

The following lemma will prove to be useful.

Lemma 2.2.15. Tossing a biased coin that gives H with probability p for t =
⌈
2
p

(
κ+ ln

(
1
δC

))⌉

times guarantees at least κ H with probability at least 1− δC.

Proof. Let Xi be the indicator random variable that is 1 if we observe H in the i-th coin-toss,

and 0 otherwise. We have µ = tp, and we set γ = 1− κ/µ = 1− κ/(tp). By Proposition 2.2.13

we have Pr (X < κ) 6 e−(tp−κ)2/(2tp) . We now require to bound this quantity from above by

δC, and want to solve for t; i.e. we want to satisfy t2 − 2
p ·
(
κ+ ln

(
1
δC

))
· t +

(
κ
p

)2
> 0 .

Regarding the positive root of the last equation we have

t =

2
p ·
(
κ+ ln

(
1
δC

))
+

√(
2
p ·
(
κ+ ln

(
1
δC

)))2
− 4

(
κ
p

)2

2

6

2
p ·
(
κ+ ln

(
1
δC

))
+

√(
2
p ·
(
κ+ ln

(
1
δC

)))2

2

=
2

p
·
(
κ+ ln

(
1

δC

))
.

The lemma follows.
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2.3 Polyhedral Combinatorics

A simplex in R
d is the convex hull of an affinely independent point-set. A face of a convex

polytope P is defined as either P itself, or a asubset of P of the form P ∩ H, where H is the

hyperplane such that P is fully contained in one of the closed halfspaces determined by H. For

a d-dimensional polytope P, we call 0-faces as vertices, 1-faces as edges, (d− 2)-faces as ridges,

and (d− 1)-faces as facets.

Definition 2.3.1 (Moment Curve). The curve γ = {(t, t2, . . . , td) : t ∈ R} in R
d is called the

d-dimensional moment curve.

Lemma 2.3.2. Any hyperplane H intersects the moment curve γ in at most d points. If there

are d intersections, then H can not be tangent to γ, and thus at each intersection, γ passes

from one side of H to the other.

Definition 2.3.3 (Cyclic Polytope). The convex hull of points x(t1), . . . , x(tn) on the d-

dimensional moment curve, for t1 < . . . < tn, with n > d+ 1, is called a cyclic polytope.

For any I ⊆ [n], |I| = k 6 ⌊d2 ⌋, the polynomial

∏

i∈I

(u− ti)
2 =

2k∑

j=0

aju
j

is 0 at every ti, i ∈ I and positive at every ti, i 6∈ I. Thus the halfspace −
∑2k

j=1 ajuj > a0

contains every point x(ti), i ∈ I, and none of the points x(ti), i 6∈ I. Thus every set of at most

⌊d2 ⌋ vertices forms a face of a cyclic polytope.
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Proposition 2.3.4 (Gale’s Evenness Criterion). Let V be a vertex set of a cyclic polytope

P considered with the linear ordering 6 along the moment curve (larger vertices have larger

values of the parameter t). Let F = {u1, u2, . . . , ud} ⊆ V be a d-tuple of vertices of P, where

u1 < u2 < · · · < ud. Then F determines a facet of P if and only if for any two vertices

u, v ∈ V \ F, the number of vertices vi ∈ F with u < vi < v is even.

The facets (i.e., (d− 1)-dimensional faces) of cyclic polytopes are described by Gale’s even-

ness condition: for ti1 < · · · < tid the vertices x(ti1), · · · , x(tid) form a facet if and only if for

any two other vertices x(tu) and x(tv) there are an even number of values tij between tu and

tv. This is proven by considering the hyperplane
∑d

j=1 ajw
j = −a0 defined by

d∏

j=1

(w− tij) =

d∑

j=0

ajw
j.

The condition follows by counting the number of sign changes between tu and tv.

2.4 Ramsey Theory

We will need the following Proposition.

Proposition 2.4.1 ((57)). There is a function R(u, v) such that if the u-subsets of a set of

size at least R(u, v) are two-colored then there is a subset of size v with all its u-subsets colored

the same.
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2.5 Learning Theory

Below we give a brief description of the basic notions of the Probably Approximately Correct

(PAC) model of learning due to Valiant (137) (see also (5; 76; 96)) as well as the VC dimension

and Sauer’s lemma. These notions will be useful in later chapters.

2.5.1 The Probably Approximately Correct (PAC) Learning Model

Let X be a set called the instance (input) space which is the set of encodings of instances

in the learner’s world. Typically we will subscript with n to indicate the dimension; that is, we

write write Xn. A concept c over X is just a subset c ⊆ X. A target concept is the concept that

the learner wants to learn. In particular, c : Xn → {0, 1} (or c : Xn → {negative,positive}),

with c(x) = 1 (or positive) indicating that x is a positive example of c, and c(x) = 0 (or

negative) indicating that x is a negative example of c. A concept class C over X is a collection

of concepts over X. We will denote with Dn the (target) distribution over Xn. A hypothesis

concept h is a guess or an approximation of c. A hypothesis concept class H (over Xn) is a

collection of h over Xn. If H = C we call the setting proper learning. The error of h with

respect to c is expressed by:

error (h) = Pr
x∈Dn

[c(x) 6= h(x)] .

In a Venn diagram (over Xn) this represents the region c △ h; see Figure Figure 1. Typically

the learner is given an accuracy 0 < ε 6 1 and the goal is to come up with a hypothesis such

that the error of the hypothesis is less than the accuracy; that is, error (h) 6 ε. Finally, we also
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have the notion of confidence δ with 0 < δ 6 1 which expresses the probability of failure that

the learner will come up with a hypothesis that has small error. The goal of the learner in PAC

learning is to satisfy the equation

Pr (error (h) 6 ε) > 1− δ . (2.7)

h

c

+

−

Figure 1: A comparison between hypothesis h and the target concept c. The shaded region
indicates the error region; i.e. where h and c disagree.

2.5.2 VC Dimension

We say that a training sample S of length m is shattered by the hypothesis class H, or that

H shatters S, if all 2m possible classifications of S can be accomplished with hypotheses in H1.

1Clearly, we are talking about distinct samples, otherwise no H can shatter S.
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A hypothesis class H has Vapnik-Chervonenkis dimension (or VC dimension) d, denoted as

VCdim (H) = d, if there is a training sample of length d shattered by H, and there exists no

training sample of size at least d+ 1 shattered by H. If there is no such maximum, we say that

the VC dimension is infinite.

The growth function is defined by ΠH(m) = max{ΠH(x) : x ∈ Xm} .

Lemma 2.5.1 (Sauer’s Lemma (116; 122; 141; 5; 76)). Let d > 0 and m > 1 be given integers

and let H be a hypothesis space with VCdim (H) = d. Then

ΠH(m) 6 1+

(
m

1

)
+

(
m

2

)
+ · · ·+

(
m

d

)
= Φ(d,m).

Proposition 2.5.2 ((5; 76)). For all m > d > 1,

Φ(d,m) <
(em

d

)d
,

where e is the base of the natural logarithms.

Theorem 2.5.3 (Finite VC Dimension and Sample Size; (5; 76)). Let C be a concept class,

and H a representation class of VC dimension d > 1. Then any learning algorithm that takes

as input

m >

⌈
4

ε
·
(
d · ln 12

ε
+ ln

2

δ

)⌉

labeled examples of a concept in C, and produces as output a concept h ∈ H that is consistent

with the m examples is guaranteed to have small error with high probability.
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Theorem 2.5.4 (Lower Bound; (45)). Assume 0 < ε 6 1/8 and 0 < δ 6 1/100. Let C be a

concept class with VC dimension d > 2. Then, any PAC learning algorithm for C must use

sample size

m >
d− 1

32 · ε = Ω (d/ε) .



CHAPTER 3

EVOLVABILITY

A model relating evolution to learning was introduced by Valiant (138) in 2007. It assumes

that some functionality is evolving over time. The process of evolution is modelled by updating

the representation of the current hypothesis, based on its performance for training examples.

Performance is measured by the correlation of the hypothesis and the target. Updating is done

using a randomized local search in a neighborhood of the current representation. The objective

is to evolve a hypothesis with close to optimal performance.

As a paradigmatic example, Valiant (138) showed that monotone conjunctions of Boolean

variables with the uniform probability distribution over the training examples are evolvable.

Monotone conjunctions are a basic concept class for learning theory, which have been studied

from several different aspects (74; 76; 110). Valiant’s algorithm, which is referred to as the

swapping algorithm in this chapter, considers mutations obtained by swapping a variable for

another one, and adding and deleting a variable1, and chooses randomly among beneficial

mutations (or among neutral ones if there are no beneficial mutations).

Valiant also established a connection between the model and learning with statistical queries

(Kearns (74), see also (76)), and studied different versions such as evolution with and without

initialization. Valiant noted that concept learning problems have been studied before in the

1These mutations may be viewed as swapping a variable with the constant 1.

26
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framework of genetic and evolutionary algorithms (e.g., Ros (111)), but his model is different

(more restrictive) in its emphasis on fitness functions which depend on the training examples

only through their performance, and not on the training instances themselves. His model

excludes, e.g., looking at which bits are on or off in the training examples.

Feldman (46; 47) gave general results on the model and its different variants, focusing on

the relationship to statistical queries. In fact Feldman showed equivalence between evolvability

and correlational statistical queries. The translation, as noted by Feldman, does not lead to the

most efficient or natural1 evolutionary algorithms in general. This is the case with monotone

conjunctions: even though their evolvability follows from Feldman’s result, it is still of interest

to find simple and efficient evolution procedures for this class. Michael (94) showed that decision

lists are evolvable under the uniform distribution using the Fourier representation.

In general, exploring the performance of simple evolutionary algorithms is an interesting

direction of research; hopefully, leading to new design and analysis techniques for efficient

evolution algorithms. The swapping algorithm, in particular, appears to be a basic evolutionary

procedure (mutating features in and out of the current hypothesis) and it exhibits interesting

behavior. Thus its performance over distributions other than uniform deserves more detailed

study.

In this chapter we continue the study of the swapping algorithm for evolving monotone

conjunctions. A modified presentation of the algorithm for the uniform distribution is given,

1Of course, we do not use the term ‘natural’ here to suggest any actual connection with evolutionary
processes in nature.
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leading to a simplified analysis and an improved complexity bound (Theorem 3.3.8). We give

a simple characterization of best approximations by short hypotheses, which is implicit in the

analysis of the algorithm.

We then consider the swapping algorithm for product distributions. Product distributions

generalize the uniform distribution, and they are studied in learning theory in the context

of extending learnability results from the uniform distribution, usually under non-degeneracy

conditions (see, e.g. (51; 59; 71; 118)). We show that the characterization of best approximations

does not hold for product distributions in general, and that the fitness function may have local

optima.

It is shown that the picture changes if we replace the correlation fitness function with co-

variance. (Using fitness functions other than correlation has also been considered by Feldman

(47) and Michael (94); the fitness functions discussed in those papers are different from covari-

ance.) In this case there is a characterization of best approximations similar to the uniform

distribution with correlation. This leads to two positive results for the evolvability of monotone

conjunctions under product distributions.

Theorem 3.5.8 shows that in the unbounded-precision model of evolution, the swapping

algorithm using covariance as the fitness function, is an efficient algorithm for monotone con-

junctions over arbitrary product distributions. Thus this result applies to a very simply defined

(though clearly not realistic) evolution model, and analyzes a very simple and natural evolution

algorithm (swaps using covariance) over a whole class of distributions (product distributions

without any restrictions). Therefore, it may be of interest as an initial example motivating
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further models and algorithms, such as the introduction of short and long hypotheses in order

to work with polynomial sample size estimates of performances. Theorem 3.5.9 shows that

the swapping algorithm works if the target is short and the underlying product distribution is

µ-nondegenerate.

The rest of this chapter is structured as follows. Section 3.1 has an informal description of the

swapping algorithm. As we are focusing on a single algorithm and its variants, we do not need

to define the evolution model in general. The description of the swapping algorithm and some

additional material given in Section 3.2 contain the details of the model that are necessary for

the rest of this chapter. Section 3.3 contains the analysis of the swapping algorithm for the case

of uniform distribution. The performance of the swapping algorithm for product distributions

is discussed in Section 3.4. In Section 3.5 we turn to the swapping algorithm using covariance

as fitness function. Finally, Section 3.6 contains some further remarks and open problems.

3.1 An Informal Description of the Swapping Algorithm

Given a set of Boolean variables x1, . . . , xn, we assume that there is an unknown target c,

a monotone conjunction of some of these variables. The possible hypotheses h are of the same

class. The truth values true and false are represented by 1 and −1. The performance of a

hypothesis h is

PerfUn
(h, c) =

1

2n

∑

x∈{0,1}n

h(x) · c(x), (3.1)
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called the correlation of h and c. Here Un denotes the uniform distribution over {0, 1}n. The

evolution process starts with an initial hypothesis h0, and produces a sequence of hypotheses

using a random walk type procedure on the set of monotone conjunctions.

Each hypothesis h is assigned a fitness value, called the performance of h. The walk is

performed by picking randomly a hypothesis h ′ from the neighborhood of the current hypothesis

h which seems to be more fit (beneficial) compared to h, or is about as fit (neutral) as h. Details

are given in Section 3.2.

Some care is needed in the specification of the probability distribution over beneficial and

neutral hypotheses. Moreover, there is a distinction between short and long conjunctions,

and the neighborhoods they induce. Valiant uses a threshold value q = O (log(n/ε)) for this

distinction. Section 3.3.2 has details.

Valiant showed that if this algorithm runs for O(n log(n/ε)) stages, and evaluates perfor-

mances using total sample size O((n/ε)6) and different tolerances for short, resp. long conjunc-

tions, then with probability at least 1− ε it finds a hypothesis h with PerfUn
(h, c) > 1− ε.

3.2 Preliminaries

The neighborhood N of a conjunction h is the set of conjunctions that arise by adding a

variable, removing a variable, or swapping a variable with another one, plus the conjunction

itself1. The conjunctions that arise by adding a variable form the neighborhood N+, the

conjunctions that arise by dropping a variable form the neighborhood N−, and the conjunctions

1As h will be clear from the context, we write N instead of N(h).
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that arise by swapping a variable form the neighborhood N+−. In other words we have N =

N− ∪N+ ∪N+− ∪ {h}. As an example, let our current hypothesis be h = x1 ∧ x2, and n = 3.

Then, N− = {x1, x2}, N
+ = {x1∧x2∧x3}, and N+− = {x3∧x2, x1∧x3}. Note that |N| = O(n2)

in general.

Lemma 3.2.1 (General Neighborhood). The size of the neighborhood for a hypothesis of size

|h| = k is |N| = (k+ 1) · n+ 1− k2.

Proof. There are (n − k) ways to add a variable, k ways to remove a variable, and k · (n − k)

ways to swap a variable in the current hypothesis.

Similarity between two conjunctions h and c in an underlying distribution Dn is measured

by the performance function1 PerfDn
(h, c) which is evaluated approximately, by drawing a

random sample S and computing 1
|S|

∑
x∈S h(x) · c(x). The goal of the evolution process is to

evolve a hypothesis h such that:

Pr (PerfDn
(h, c) < PerfDn

(c, c) − ε) < δ. (3.2)

The accuracy parameter ε and the confidence δ are treated as one in (138).

1See the end of this section for the specific performance functions considered in this chapter. For
simplicity, we keep the notation Perf for a specific performance function.
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Given a target c, we split the neighborhood in 3 parts by the increase in performance that

they offer. There are beneficial, neutral, and deleterious mutations. In particular, for a given

neighborhood N and real constant t (tolerance) we are interested in the sets






Bene = N ∩
{

h ′ | PerfDn

(
h ′, c

)
> PerfDn

(h, c) + t
}

Neut = N ∩
{

h ′ | PerfDn

(
h ′, c

)
> PerfDn

(h, c) − t
}
\ Bene.

(3.3)

A mutation is deleterious if it is neither beneficial nor neutral.

The size (or length) |h| of a conjunction h is the number of variables it contains. Given a

target conjunction c and a size q, we will be interested in the best size q approximation of c.

Definition 3.2.2 (Best q-Approximation). A hypothesis h is called a best q-approximation of

c if |h| 6 q and ∀h ′ 6= h, |h ′| 6 q : PerfDn

(
h ′, c

)
6 PerfDn

(h, c) .

Note that the best approximation is not necessarily unique.

In this chapter the following performance functions are considered; the first one is used

in (138) and the second one is the covariance of h and c1:

PerfDn
(h, c) =

∑

x∈{0,1}n

h(x)c(x)Dn(x) = E [h · c] = 1− 2 · Pr (h 6= c) (3.4)

Cov [h, c] = PerfDn
(h, c) − E [h] · E [c] . (3.5)

1A related performance function, not considered here, is the correlation coefficient.
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3.3 Monotone Conjunctions under the Uniform Distribution

Given a target conjunction c and a hypothesis conjunction h, the performance of h with

respect to c can be found by counting truth assignments. Let

h =

m∧

i=1

xi ∧

r∧

ℓ=1

yℓ and c =

m∧

i=1

xi ∧

u∧

k=1

wk. (3.6)

Thus the x’s are mutual variables, the y’s are redundant variables in h, and the w’s are undis-

covered, or missing variables in c. Variables in the target c are called good, and variables not

in the target c are called bad.

The probability of the error region is (2r + 2u − 2)2−m−r−u and so

PerfUn
(h, c) = 1− 21−m−u − 21−m−r + 22−m−r−u . (3.7)

For a fixed threshold value q, a conjunction h is short (resp., long), if |h| 6 q (resp., |h| > q).

The following lemma and its corollary show that if the target conjunction is long then every

long hypothesis has good performance, as both the target and the hypothesis are false on most

instances.

Lemma 3.3.1 (Performance Lower Bound). If |h| > q and |c| > q + 1 then PerfUn
(h, c) >

1− 3 · 2−q.

Proof. Apply (Equation 3.7) with m+ r = q, m+u > q+ 1. PerfUn
(h, c) > 1− 2 · 2−(m+u) −

2 · 2−(m+r) > 1− 2 · 2−q−1 − 2 · 2−q = 1− 3 · 2−q
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Corollary 3.3.2. Let q > lg(3/ε). If |h| > q, |c| > q+ 1 then PerfUn
(h, c) > 1− ε.

Proof. By Lemma 3.3.1 PerfUn
(h, c) > 1− 3 · 2−q > 1− 3 · 2lg(ε/3) = 1− ε.

3.3.1 Properties of the Local Search Procedure

Local search, when switching to h ′ from h, is guided by the quantity

∆ = PerfUn

(
h ′, c

)
− PerfUn

(h, c) . (3.8)

We analyze ∆ using (Equation 3.7). The analysis is summarized in Figure Figure 2, where the

node good represents good variables and the node bad represents bad variables. Note that ∆

depends only on the type of mutation performed and on the values of the parameters m,u and

r; in fact, as the analysis shows, it depends on the size of the hypothesis |h| = m+ r and on the

number u of undiscovered variables.

Comparing h ′ ∈ N+ with h. We introduce a variable z in the hypothesis h. If z is good,

∆ = 2−|h| > 0. If z is bad, ∆ = 2−|h|(1− 21−u).

Comparing h ′ ∈ N− with h. We remove a variable z from the hypothesis h. If z is good,

∆ = −21−|h| < 0. If z is bad, ∆ = −21−|h|(1− 21−u).

Comparing h ′ ∈ N+− with h. Replacing a good with a bad variable gives ∆ = −21−|h|−u.

Replacing a good with a good, or a bad with a bad variable gives ∆ = 0. Replacing a bad

with a good variable gives ∆ = 22−|h|−u.



35

good bad

(a) u > 2

badgood

(b) u = 1

good bad

(c) u = 0

Figure 2: Arrows pointing towards the nodes indicate additions of variables and arrows pointing
away from the nodes indicate removals of variables. Note that this is consistent with arrows
indicating the swapping of variables. Thick solid lines indicate ∆ > 0, simple lines indicate
∆ = 0, and dashed lines indicate ∆ < 0. Usually Figure 2a applies. When only one good
variable is missing we have the case shown in Figure 2b. Once all good variables are discovered,
Figure 2c applies; hence two arrows disappear. Note that an arrow with ∆ > 0 may correspond
to a beneficial or neutral mutation, depending on the value of the tolerance t.

Correlation produces a perhaps unexpected phenomenon already in the case of the uniform

distribution: adding a bad variable can result in ∆ being positive, 0 or negative, depending on

the number of undiscovered variables.

Now we turn to characterizing the best bounded size approximations of concepts, implicit

in the analysis of the swapping algorithm. The existence of such characterizations seems to be

related to efficient evolvability and so it may be of interest to formulate it explicitly. Such a

characterization does not hold for product distributions in general, as noted in the next section.

However, as shown in Section 3.5, the analogous characterization does hold for every product

distribution if the fitness function is changed from correlation to covariance.

Theorem 3.3.3 (Structure of Best Approximations). The best q-approximation of a target c

is c if |c| 6 q, or any hypothesis formed by q good variables if |c| > q.
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Proof. The claim follows directly from the definitions if |c| 6 q. Let |c| > q. Let h be a hypothesis

consisting of q good variables. Then both deleting a variable or swapping a good variable for a

bad one decrease performance. Thus h cannot be improved among hypotheses of size at most

q. If h has fewer than q variables then it can be improved by adding a good variable. If h has

q variables but it contains a bad variable then its performance can be improved by swapping

a bad variable for a good one. Hence every hypothesis other than the ones described in the

theorem can be improved among hypotheses of size at most q.

3.3.2 Evolving Monotone Conjunctions under the Uniform Distribution

The core of the algorithm for evolving monotone conjunctions outlined in Section 3.1 is

composed by the Mutator function, presented in Algorithm 1. The role of Mutator is, given

a current hypothesis h, to produce a new hypothesis h ′ which has better performance than h

if Bene is nonempty, or else a hypothesis h ′ with about the same performance as h, in which

case h ′ arises from h by a neutral mutation. Hence, during the evolution, we have g calls to

Mutator throughout a sequence of g generations. We pass some slightly different parameters

in the Mutator from those defined in (138), to avoid ambiguity. Hence, Mutator receives as

input q, the maximum allowed size for the approximation, sM,1, the sample size used for all

the empirical estimates of the performance of each conjunction of size up to q, sM,2 the sample

size used for conjunctions of length greater than q, and the current hypothesis h. We view

conjunctions as objects that have two extra attributes, their weight and the value of their

performance. GetPerformance returns the value of the performance, previously assigned by

SetPerformance. The performance of the initial hypothesis has been determined by another
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similar call to the SetPerformance function with the appropriate sample size. Weights are

assigned via SetWeight. Hence, SetWeight assigns the same weight to all members of {h} ∪

N− ∪N+ so that they add up to 1/2, and the same weight to all the members of N+− so that

they add up to 1/2. Finally, RandomSelect computes the sum W of weights of the conjunctions

in the set that it has as argument, and returns a hypothesis h ′ from that set with probability

wh ′/W, where wh ′ is the weight of h ′.

Note that the neighborhoods and the tolerances are different for short and long hypotheses,

where a hypothesis h is short if |h| 6 q, and

q =

⌈
lg

3

ε

⌉
. (3.9)

In order to prove Theorem 3.3.8 below we will need the following lemmas.

Lemma 3.3.4 (Lower Bound on Additions for Short Hypotheses). For the non-zero differences

of ∆ when we add a variable it holds |∆| > 2−1−m−r, where m+ r 6 q− 1.

Proof. We can add a variable only if |h| = m + r 6 q − 1. If the variable is good, then

∆ = 2−|h| = 2−m−r > 21−q. If the variable is bad, then |∆| = |2−|h|(1−21−u)| > 2−m−r ·2−1 =

2−1−m−r > 2−q.

Lemma 3.3.5 (Lower Bound on Removals for Short Hypotheses). Removing a variable from

a hypothesis that has identified all the good variables changes the performance by at least |∆| =

21−m−r, where m+ r 6 q.
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Proof. We are interested in the case where u = 0. Regardless of what the variable is, then

|∆| = 21−|h| = 21−m−r > 21−q.

Lemma 3.3.6 (Lower Bound on Swaps for Short Hypotheses and Short Targets). Let h be a

hypothesis that is short. For the beneficial mutations when u > 1 as well as all the non-zero

differences ∆ when u = 0 it holds that |∆| > 21−m−r−u.

Proof. Swapping a good with a good variable or a bad with a bad we have ∆ = 0. Swapping a

good with a bad variable gives |∆| = 21−|h|−u > 21−q−(q−1) > 22−2q. Swapping a bad with a

good variable gives ∆ = 22−|h|−u > 22−q−q = 22−2q.

Lemma 3.3.7 (Upper Bound on ∆ for Long Hypotheses). Any mutation of a long hypothesis

does not change the performance by more than 2−q.

Proof. Note, that it holds |h| > q + 1. When we remove a good variable, |∆| = 21−|h| 6

21−(q+1) = 2−q. When we remove a bad variable, |∆| = 21−|h|(1 − 21−u) 6 21−(q+1) · 1 =

2−q.

Theorem 3.3.8. For every target conjunction c and every initial hypothesis h0 it holds that

after O
(
q+ |h0| ln

1
δ

)
iterations, each iteration evaluating the performance of O (nq) hypothe-

ses, and each performance being evaluated using sample size O
((

1
ε

)4 (
lnn+ ln 1

δ + ln 1
ε

))
per

iteration, equation (Equation 3.2) is satisfied.

Proof. The analysis depends on the size of the target and the initial hypothesis.

Short Initial Hypothesis and Short Target. Note first that for any hypothesis h and for

any target c such that |h|, |c| 6 q, by Lemmas 3.3.4, 3.3.5, and 3.3.6 |∆| > 22−2q. Tolerance for
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short hypotheses is t = 1
22

2−2q = 21−2q. Hence as long as the estimate of the performance

is within t of its exact value, beneficial mutations are identified as beneficial. Therefore it is

sufficient to analyze the signs of ∆ along the arrows in Figure Figure 2. Note that deleting a

good variable is always deleterious, and so u is non-increasing.

If there are at least two undiscovered variables (i.e., u > 2, corresponding to Figure 2a),

then beneficial mutations can only add or swap variables. Each swap increases the number

of good variables, and so after |c| − 1 many swaps there is at most one undiscovered variable.

Hence, as long as u > 2, there can be at most q− |h0| additions and at most |c|− 1 swaps.

If there is one undiscovered variable (i.e., u = 1, corresponding to Figure 2b), then, in 1

step, the first beneficial mutation brings this variable into the hypothesis, and all variables

become discovered.

If all variables are discovered (i.e., u = 0 , corresponding to Figure 2c) then beneficial

mutations are those which delete bad variables from h0. After we get to the target, there are

no beneficial mutations, and the only neutral mutation is the target itself, hence there is no

change. Thus the number of steps until getting to the target is at most q− |c|.

Summing up the above, the total number of steps is at most 2q− |h0| 6 2q.

Short Initial Hypothesis and Long Target. As long as |h| < q, we have u > 2, corre-

sponding to Figure 2a. Therefore adding any variable is beneficial. Note that replacing a bad

variable by a good one may or may not be so, depending on the size of c. The same analysis

as above implies that after at most 2q beneficial mutations we reach a hypothesis of size q.
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If |c| > q + 2 then u > 2 continues to hold, and so all beneficial or neutral mutations will

keep hypothesis size at q. However, by Corollary 3.3.2, all those hypotheses have performance

at least 1− ε.

If |c| = q + 1 then after reaching level q there is one undiscovered variable, corresponding

to Figure 2b. Swaps of bad variables for good ones are beneficial. Combining these mutations

with the ones needed to reach level q, we can bound the total number of steps until reaching a

hypothesis of q good variables by 2q (using the same argument as above). After that, there are

only neutral mutations swapping a good variable with another good one, and again all those

hypotheses have performance at least 1− ε.

As a summary, if we start from a short hypothesis and all the empirical tests perform as

expected, then, we are always at a good hypothesis after 2q iterations. This will not be the

case when we start from a long hypothesis.

Complexity Analysis for Short Hypotheses. From the previous two paragraphs, we

have seen that this phase requires at most 2q steps regardless whether the target is a short

or a long hypothesis. In each of these steps, by Lemma 3.2.1, the algorithm generates a

neighborhood no larger than |N| = (q+1)n+1−q2. For simplicity we assume ε < 3/2 (i.e. q =

⌈lg 3
ε⌉ > 2), and hence, |N| 6 2qn. This implies that we have to estimate the performance

of no more than (2q) · (2qn) = 4q2n hypotheses, each one of them within accuracy ǫ =

t = 2−2q 6 ε2/9. By the Hoeffding Bound (Proposition 2.2.10) when setting α = −1, β =

1, ǫ = ε2/9, the performance of each hypothesis is not estimated within ǫ = ε2/9 of its true

value with probability e−Rε4/18. By the Union Bound (Proposition 2.2.5) the performance
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of each hypothesis is computed within ǫ = ε2/9 of its true value with probability at least

1 −
∑

all hypotheses e
−Rε4/162 > 1 − 4q2ne−Rε4/162. We require now this probability to be

at least 1 − δ/2 and hence it is enough if each empirical estimate is computed with at least

R >
⌈
162
ε4 ln

(
8q2n

δ

)⌉
samples; i.e. we require O

(
1
ε4 ·

(
lnn+ ln 1

δ + ln lg2 1
ε

))
samples for the

approximation of the performance of each hypothesis. Hence, the total number of samples for

this phase is O
(
n ·
(
1
ε

)4 · lg2 1
ε ·
(
lnn+ ln 1

δ + ln lg2 1
ε

))
.

Long Initial Hypothesis. For long hypotheses the neighborhood consists of hypotheses

obtained by deleting a variable, and the hypothesis itself. We set the tolerance in such a way

that every hypothesis in the neighborhood is neutral. This guarantees that with high probability

in O
(
|h0| ln

1
δ

)
iterations we arrive at a hypothesis of size at most q, and from then on we can

apply the analysis of the previous two cases. The model assumes that staying at a hypothesis

is always a neutral mutation, hence it is possible to end up in a hypothesis of size bigger than

q.

Complexity Analysis for Evolving a Short Hypothesis from a Long Initial Hypoth-

esis. We have to take care of two different phenomena in this phase of the algorithm. One is to

guarantee that with high probability after a certain number of generations the algorithm will

evolve to a hypothesis with size at most q, and second, that with high probability, every em-

pirical estimate for the performance of each hypothesis in the neighborhood of each generation

is computed within accuracy ǫ = 2−q = ε/3.

Regarding the first phenomenon, and assuming that all the hypotheses in each neighborhood

are classified as neutral, then, for a hypothesis h, such that |h| = k, there are k+1 hypotheses in
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the neighborhood, and k of them lead to a shorter hypothesis. Hence, with probability k/(k+1)

we are led to a hypothesis of smaller size in each step. We need |h0| − q 6 |h0| such successes,

each of which happens with probability
|hi|

|hi|+1
>

q+1
q+2 >

3
4 , since q > 2. We apply Lemma

2.2.15 with p = 3
4 , κ = |h0|, and δC = δ

4 . We get t =
⌈
8
3 ·
(
|h0|+ ln

(
4
δ

))⌉
; i.e. O

(
|h0|+ ln

(
1
δ

))

generations are enough.

Regarding the second phenomenon, we have a similar argument as earlier. We use Propo-

sition 2.2.10 with α = −1, β = 1, ǫ = ε/3. The performance of any hypothesis is not computed

within ǫ = 2−q = ε/3 of its true value with probability e−Rε2/18. The entire process lasts for

t =
⌈
8
3 ·
(
|h0|+ ln

(
4
δ

))⌉
steps, and in each step the neighborhood has size |hi|+ 1 6 n+ 1. By

the Union Bound (Proposition 2.2.5) the probability that any empirical estimate is not within

ǫ = ε/3 of its true value is at most (n+1) · t ·e−Rε2/18. We now require to bound this quantity

from above by δ/4 and hence we need R >
⌈
18
ε2 · ln

(
4(n+1)t

δ

)⌉
samples per empirical estimate

computation; that is, we need O
((

1
ε

)2 (
lnn+ ln |h0|+ ln 1

δ

))
samples for the approximation

of the performance of each hypothesis. As a consequence, the total number of samples for this

phase is O
(
n ·
(
|h0|+ ln 1

δ

)
·
(
1
ε

)2 ·
(
lnn+ ln |h0|+ ln 1

δ

))
.

3.4 Monotone Conjunctions under Product Distributions using Correlation

A product distribution over {0, 1}n is specified by the probabilities p = (p1, . . . , pn), where

pi is the probability of setting the variable xi to 1. The probability of a truth assignment

(a1, . . . , an) ∈ {0, 1}n is
∏n

i=1 p
ai

i · (1−pi)
1−ai . For the uniform distribution Un the probabil-

ities are p1 = . . . = pn = 1/2. We write Pn to denote a fixed product distribution, omitting p

for simplicity.
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Let us consider a target c and a hypothesis h as in (Equation 3.6). Let index (z) be a

function that returns the set of indices of the participating variables in a hypothesis z. We

define the sets M = index (h)∩ index (c) ,R = index (h) \M, and U = index (c) \M. We can

now define

M =
∏

i∈M

pi, R =
∏

ℓ∈R

pℓ, and U =
∏

k∈U

pk.

Finally, set |M| = m, |R| = r, and |U| = u. Then (Equation 3.7) generalizes to

PerfPn
(h, c) = 1− 2M(R+U− 2RU). (3.10)

We impose some conditions on the pi’s in the product distribution.

Definition 3.4.1 (Nondegenerate Product Distribution). A product distribution Pn given by

p = (p1, . . . , pn) is µ-nondegenerate if

• min{pz, 1− pz} > µ for every variable z

• the difference of any two members of the multiset {p1, 1 − p1, . . . , pn, 1 − pn} is zero, or

has absolute value at least µ.

The following lemma and its corollary are analogous to Lemma 3.3.1 and Corollary 3.3.2.

Lemma 3.4.2 (Performance Lower Bound). Let a hypothesis h such that |h| > q − 1 and a

target c such that |c| > q+ 1. Then, PerfPn
(h, c) > 1− 6.2 · e−µq.
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Proof. The setup of the lemma implies m+r > q−1, and m+u > q+1. Using (Equation 3.10)

we have:

PerfPn
(h, c) > 1− 2MR− 2MU (by (Equation 3.10))

> 1− 2e−µ(m+r) − 2e−µ(m+u) (Definition 3.4.1)

> 1− 2e−µqeµ − 2e−µqe−µ (m+ r > q− 1,m+ u > q+ 1)

= 1− 4e−µq cosh(µ) (eµ + e−µ = 2 cosh(µ))

Since 1 6 cosh(µ) < 1.55 ∀µ ∈ [0, 1], we have PerfPn
(h, c) > 1− 6.2e−µq.

Corollary 3.4.3. Let q > 1
µ ln

(
6.2
ε

)
, |h| > q− 1, |c| > q+ 1 ⇒ PerfUn

(h, c) > 1− ε.

Proof. By Lemma 3.4.2 PerfPn
(h, c) > 1 − 6.2 · e−µq > 1 − 6.2 · e−µµ−1 ln(6.2/ε) = 1 − 6.2 ·

eln(ε/6.2) = 1− ε.

3.4.1 Properties of the Local Search Procedure

We want to generalize the results of Section 3.3.1 by looking at the quantity

∆ = PerfPn

(
h ′, c

)
− PerfPn

(h, c) (3.11)

which corresponds to (Equation 3.8). We use (Equation 3.10) for the different types of muta-

tions.

The signs of ∆ depend on the ordering of the probabilities pi. A variable xi is smaller

(resp., larger) than a variable xj if pi < pj (resp., xi > xj). If pi = pj then xi and xj are

equivalent. Analyzing ∆, we draw the different cases in Figure Figure 3. However, when
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?

bad

bad

bad

good

good

good

?

(a) U < 1/2

good

bad

bad

bad

good

good

(b) U = 1/2

bad

good

good

good

bad

bad

(c) U > 1/2

Figure 3: The style and the directions of arrows have the same interpretation as in Figure
Figure 2. The middle layer represents variables that have the same probability of being satisfied
under the distribution; i.e. p good = p bad. A node x that is one level above another one y

indicates higher probability of satisfying the variable x; i.e. px > py. Here we distinguish the
three basic cases for U; for two arrows in the first case we have a ? to indicate that ∆ can not
be determined by simply distinguishing cases for U.

U < 1/2, two arrows can not be determined. These cases refer to mutations where we replace a

bad variable with a bigger good one, or a good variable with a smaller bad one. Both mutations

depend on the distribution; the latter has ∆ = −2MR(pin/pout − 1 + 2U(1 − pin)), where out

is a good variable and in is the bad smaller variable. One application of this equation is that

the Structure Theorem 3.3.3 does not hold under product distributions. The other application

is the construction of local optima.

The first idea on constructing local optima is to require the difference ∆2 that is achieved

when we insert a bad variable to be more than the difference ∆1 that is achieved when we

insert a good variable. For simplicity, and reasons that will be apparent later on, assume all
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the good literals have probability g of being satisfied and all the bad literals have probability b

of being satisfied. Implementing the above idea we require 2MR(1− b)(1− 2U) > 2MR(1− g).

Simplifying, for u undiscovered literals, this reduces to:

b < g · 1− 2gu−1

1− 2gu
(3.12)

By (Equation 3.12) we have that for u > 2 there are values of b and g such that the inequality

is satisfied. Also note that as u increases, then the right hand side of (Equation 3.12) also

increases. Hence, from now on we will focus on u = 2. We require

b < g · 1− 2g

1− 2g2
. (3.13)

For x0 = 1 −
√
2/2 ≈ 0.2929, the function f(x) = x(1 − 2x)/(1 − 2x2) achieves its maximum.

In order to keep the numbers simple we can set g = 1/3 and b = 1/10. This implies that if

there are at least two undiscovered good variables, adding a bad variable is more beneficial than

adding a good one. Hence, for short targets, whenever we have a hypothesis h which misses

at least two good variables, the algorithm will be more inclined, than not, to introduce a bad

variable instead of a good one, and therefore will go towards local optima as long as there are

at least q+ 1 bad variables in our domain.
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... 2/q−2

1/q−1

0/q0/q−1

1/q−2

2/q−3

0/i

1/i−1

2/i−2

0/3

1/2

2/1

0/2

1/1

2/0

0/1

1/0

0

...

...

... ...

...

Figure 4: The lattice where the search is performed. In every state there is another arrow
leading to the same state, representing neutral mutations with the same amount and quality
(i.e. good and bad) of variables. This arrow is not drawn for clarity.

Performance with 0 Good and i Bad Variables. Any hypothesis h with 0 good and i bad

variables has performance

PerfPn
(h, c) = 1− 2(10−i + 3−2 − 2 · 10−i3−2)

=
7

9
−

14

9
10−i (3.14)

Hence, as i ↑=⇒ PerfPn
(h, c) ↑.
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Performance with 1 Good and i Bad Variables. Any hypothesis h with 1 good and i bad

variables has performance

PerfPn
(h, c) = 1− 2 · 3−1(10−i + 3−1 − 2 · 10−i3−1)

=
7

9
−

2

9
10−i (3.15)

Hence, as i ↑=⇒ PerfPn
(h, c) ↑.

Performance with 2 Good and i Bad Variables. Any hypothesis h with 2 good and i bad

variables has performance

PerfPn
(h, c) = 1− 2 · 3−2(10−i + 1− 2 · 10−i)

=
7

9
+

2

9
10−i (3.16)

Hence, as i ↑=⇒ PerfPn
(h, c) ↓.
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...

sink

0/q 0/q−1 0/q−2 0/2 0/1 0/0...

1

1

2
n

2
n−1

2
n−2

2
n+2−q

2
n+1−q

n−2
n

n−3
n−1

n−4
n−2

n+1−q
n+3−q

n−q
n+2−q

n−1−q
n+1−q

Figure 5: When tolerance is small and everything is determined.

The transition probability matrix (in canonical form) is

P =




I O

R Q


 =




1 0 0 · · · · · · · · · 0

0 1 0 · · · · · · · · · 0

n−1−q
n+1−q

2
n+1−q 0 · · · · · · · · · 0

0 2
n+2−q

n−q
n+2−q 0

...

0 2
n+3−q 0 n+1−q

n+3−q 0
...

...
...

...
. . .

. . .
. . .

...

0 2
n 0 · · · 0 n−2

n 0




. (3.17)
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The fundamental matrix (see (77) for the definition) of the chain is

N = (I−Q)−1 =




1 0 · · · · · · · · · 0

n−q
n+2−q 1 0 · · · · · · 0

∏3
j=2

n−2−(q−j)
n−(q−j)

n+1−q
n+3−q 1 0 · · · 0

∏4
j=2

n−2−(q−j)
n−(q−j)

∏4
j=3

n−2−(q−j)
n−(q−j)

n+2−q
n+4−q 1

. . .
...

...
...

...
. . .

. . . 0

∏q
j=2

n−2−(q−j)
n−(q−j)

∏q
j=3

n−2−(q−j)
n−(q−j)

∏q
j=4

n−2−(q−j)
n−(q−j)

· · · n−3
n−1 1




.

(3.18)

The absorption probabilities are given by the matrix

B = N · R =




n−1−q
n+1−q

2
n+1−q

∏2
j=1

n−2−(q−j)
n−(q−j)

1−
∏2

j=1
n−2−(q−j)
n−(q−j)

∏3
j=1

n−2−(q−j)
n−(q−j)

1−
∏3

j=1
n−2−(q−j)
n−(q−j)

...
...

∏q
j=1

n−2−(q−j)
n−(q−j)

1−
∏q

j=1
n−2−(q−j)
n−(q−j)




(3.19)

Note that the closed form products in the first column are formed by multiplying positive

numbers which are strictly less than 1; hence, the products obtain smaller values as more and

more terms are included. Therefore, starting from any hypothesis that does not contain any
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good variables, the swapping algorithm will reach a local optimum in at most q steps with

probability Pr (Local Optimum) at least

q∏

j=1

n− 2− (q− j)

n− (q− j)
=

q−1∏

r=0

(
1−

2

n− r

)
=

(n− q)(n− q− 1)

n(n− 1)
. (3.20)

Moreover, limn→∞ Pr (Local Optimum) = 1. The example below gives a summary.

Example 1. Let Pn be a distribution such that p1 = p2 = 1/3, and the rest of the n − 2

variables are satisfied with probability 1/10. Set the target c = x1 ∧ x2. A hypothesis h formed

by q bad variables has performance PerfPn
(h, c) = 1 − 2Pr (error region) < 1 − 2/9 = 7/9.

Note that, for the nonzero values of ∆, it holds |∆| > 2µq+2. Hence, by setting the tolerance

t = µq+2, and the accuracy on the empirical tests on conjunctions of size at most q, equal to

ǫM = t = µq+2, all the arrows in the diagrams can be determined precisely.

Let denote a mutation. Starting from h0 = ∅, there are sequences of beneficial mutations

in which the algorithm inserts a bad variable in each step, e.g. h0 = ∅  h1 = x3  . . .  

hq =
∧q+2

ℓ=3 xℓ. This is a local optimum, since swapping a bad variable with a good one yields

∆ < 0. Note that µ = 1/10, q = ⌈10 ln(62)⌉ = 42, and for ε = 1/10 the algorithm is stuck in a

hypothesis with PerfPn
(hq, c) < 1− ε.

Under the setup of the example above, the algorithm will insert q bad variables in the first

q steps, with probability Γ =
∏q−1

r=0

(
1− 2

n−r

)
=

(n−q)(n−q−1)
n(n−1)

. Requiring n >
⌈
2q
δ

⌉
we have

Γ > 1− δ. Hence, starting from the empty hypothesis, the algorithm will fail for any ε < 2/10,

with probability 0.9, if we set n > 840.
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3.4.2 Special Cases

Although for arbitrary targets and arbitrary product distributions we can not guarantee

that the algorithm will produce a hypothesis h such that (Equation 3.2) is satisfied, we can

however, pinpoint some cases where the algorithm will succeed with the correct setup. These

cases are targets of size at most 1 or greater than q+ 1
µ ln 2, and heavy targets; i.e. targets that

are satisfied with probability at least 1/2 which are presented below.

3.4.2.1 Heavy Targets (Special Case of Short Targets)

bad

good

good

good

bad

bad

(a) U = 1/2

bad

good

good

good

bad

bad

(b) U > 1/2

Figure 6: The style and the directions of arrows have the same interpretation as earlier. Same
is true about the probability of satisfying good or bad variables depending on their height.

Heavy targets are targets such that
∏

pj >
1
2 . A first consequence of this definition is that

the target is composed by a few variables, since the weight of any target with k variables is
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upper bounded by the quantity e−µk. Hence, requiring e−µk > 1/2⇒ k 6 1
µ ln 2. The second

consequence is that for any hypothesis the weight of the subcube of the undiscovered variables

has weight at least 1/2. Hence, Figures 6a and 6b capture the entire evolution process. These

figures that dictate the local search are identical to the case where we use the covariance as a

fitness function; see Figures 10a and 10b. Hence, in order to show that the bounds presented

in Section 3.5 also hold here as upper bounds, we have to show that the beneficial set for short

hypotheses is nonempty with a polynomial tolerance in the case of the mutations that introduce

a good variable; either by adding a good variable or swapping a bad variable to a good one.

We have

Adding a Good Variable w. In this case the difference in performance is ∆ = 2MR(1−pw) >

2 · 12 · R · µ = Rµ > µq−1µ = µq.

Swapping variables.

Bad y→ Good w: In this case the difference in performance is ∆ = 4MRU(1/py − 1) +

2MR(1− pw/py), and since U > 1/2, we have ∆ > 2MR · 1−pw

py
> 2µqµ = 2µq+1.

Good w→ Bad y: This is the inverse process from above. Here we can use the following

argument. Consider the sequence of mutations m1,m2 such that m1 := y → w and

m2 := w → y; i.e. h
m1−→ h1

m2−→ h2 = h. Then, clearly after the application of these two

mutations there has been no change in the performance of the hypothesis. However, it

holds 




PerfPn
(h1, c) = PerfPn

(h, c) + ∆1

PerfPn
(h2, c) = PerfPn

(h1, c) + ∆2
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Adding the above two, we get PerfPn
(h2, c) = PerfPn

(h, c) + ∆1 + ∆2. However, since

PerfPn
(h2, c) = PerfPn

(h, c), we obtain ∆2 = −∆1. Hence, the lower bound that we

have for ∆1 from the previous case, is a lower bound on the absolute value of ∆2 for any

mutation m2.

Good out→ Good in: We have ∆ = 2M ·
(
1− pout

pin

)
· (R+U). Hence, for the non-zero values

of ∆ (i.e. pout 6= pin) and since R+U > R > µq, we have |∆| > 2 · 12 · µ · µq = µq+1.

Bad out→ Bad in: In this case we have ∆ = 2MR ·
(

pin

pout
− 1
)
· (2U − 1). The non-zero

values of ∆ are obtained when both pin 6= pout and U 6= 1/2. However, for a hypothesis

that does not contain any good variables, the quantity U can be arbitrarily close to 1/2.

Hence, a beneficial such mutation may be characterized as neutral, since U can be super-

polynomially away from 1/2. On the other hand, this is the only case, when a beneficial

mutation is not characterized as beneficial. Let s be a positive super-polynomially small

quantity close to zero. Then, for targets whose weight can be arbitrarily close to 1/2, when

the hypothesis contains at least one good variable in, then it holds 2U ′ − 1 = 2 U
pin

− 1 =

2
1
2+s

pin
− 1 > 1

pin
− 1 = 1−pin

pin
>

µ
1−µ > µ. In other words, we can give a lower bound for

this quantity only when at least one good variable appears in the hypothesis. By Lemma

3.5.3 and the above observation we have |∆| > 2µqµµ = 2µq+2.

Concluding, the analysis is similar to that of the case where covariance is used as the fitness

function; again in the first step of short hypotheses we bring one good variable in the hypothesis

(in case there is none), and from that point on, all the beneficial arrows in the Figures 6a and

6b are characterized as such. Hence, with a similar analysis, in O
(
n2
)

steps in the worst case,
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the hypothesis will evolve to the target, or to an optimal q-approximation of the target. Here,

the term optimal is used to indicate that it will satisfy the Structure Theorem 3.5.6. From

that point and on, deleting a good variable, or swapping a good variable to a bad one will be

characterized as deleterious. Hence, the only neutral mutations, are the ones which swap a good

variable to another good variable and at the same time keep the value of the product
∏

i∈M pi

unchanged (minimum). All these will happen if we set the tolerance for the neighborhood equal

to µq+2.

As a note here, of course, now that we know the lower bounds in the analysis above, we

can set the tolerance equal to 1
2µ

q+1, which will maintain all the good mutations that arise

in the beneficial sets, and possibly excluding some of the bad swaps that are characterized as

beneficial with the previous setup. This will hopefully save some time in the convergence to

the target, however, in terms of worst case analysis we can say nothing more.

3.4.2.2 Empty Targets

In this case there are no good variables, and hence it holds M = U = 1. Hence, any

hypothesis is composed only by redundant variables, and as a consequence the performance of

such a function is PerfPn
(h, c) = −1+2R. Again, we look on the differences ∆ = PerfPn

(
h ′, c

)
−

PerfPn
(h, c), and the results are shown on the diagram on the side. Moreover, we are also

interested in lower bounds for the mutations that arise for hypotheses up to size q, as well as

an upper bound for the performance fluctuation for hypotheses larger than q. We have:

Adding a Variable z: In this case ∆ = −2R(1− pz). Hence, |∆| > 2µq−1µ = 2µq.

Removing a Variable z: In this case ∆ = 2R(1/pz − 1) > 2µqµ = 2µq+1.
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bad

bad

bad

Figure 7: The diagram in the case of the empty target.

Swapping Variables: A variable z is introduced in place of w. Then, ∆ = 2R
(

pz

pw
− 1
)

. For

the non-zero values of ∆ (i.e. pz 6= pw) it holds |∆| > 2µqµ = 2µq+1.

Short Initial Hypothesis. Hence, if we use tolerance t = 1
2 · 2µq+1 = µq+1, and we

approximate the performance of each hypothesis with accuracy ǫ = t = µq+1, then, with high

probability all the mutations will be characterized correctly. The analysis is similar to that of

the proof of covariance, and in O
(
n2
)

steps all the bad variables will have been removed and

our hypothesis will be the empty conjunction as desired.

Long Initial Hypothesis. The arguments are similar to those in the previous sections and

in O
(
|h0|+ ln 1

δ

)
we will form a hypothesis of size at most q with probability 1 − δ/2. Then,

we apply the analysis above.
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3.4.2.3 Targets of Size 1

In this case the target is c = x. We assume that px < 1/2, since otherwise, c is a heavy

target, and the analysis of Section 3.4.2.1 can be used to identify the target. Essentially, there

are two cases; either the hypothesis contains the good variable x, or it does not.

bad

good

good

good

bad

bad

(a) U = px < 1/2 (M = 1)

good

bad

bad

bad

(b) U = 1 (M = px)

Figure 8: The style and the directions of arrows have the same interpretation as earlier. Same
is true about the probability of satisfying good or bad variables depending on their height.

Adding a Variable. If the variable is good (x), then ∆ = 2R(1−px)⇒ ∆ > 2·µq−1 · 12 = µq−1.

On the other hand, if the added variable is bad (y), then ∆ = 2R(1−py)(M− 2px). Hence,

if x is undiscovered, M = 1, and we can not give a lower bound on ∆, although ∆ > 0. On the

other hand, if x is already in the hypothesis, then M = px, and ∆ = −2R(1 − py)px < 0. In

this case, |∆| > 2µq−1µµ = 2µq+1.
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Deleting a Variable. If the deleted variable is good, then, ∆ = −2R(1 − px) < 0. Moreover,

|∆| > 2µqµ = 2µq+1. However, this is a looser lower bound, and we can use the cyclic argument,

in which case the lower bound becomes µq−1.

If the deleted variable is bad, then, ∆ = −2R
(

1
py

− 1
)
(M− 2px) . If x is contained in the

hypothesis, M = px (Figure 8b), and ∆ > 2µqµµ = 2µq+2. Again, here a cyclic argument,

together with the lower bound on the equivalent insertion above, gives a better bound. On

the other hand, if x is not contained in the hypothesis, then M = 1 (Figure 8a), and ∆ =

−2R
(

1
py

− 1
)
(1− 2px) < 0. However, again this time we can not give a lower bound on |∆|.

Swapping Variables.

Good x→ Bad y: In this case ∆ = −2R(1− px) − 4Rpx(1− py) < 0. Moreover, |∆| > 2R(1−

px) > 2 · µq · 12 = µq.

Bad y→ Good x: In this case ∆ = 2 R
py
· (px(1− py) + py(1− px)) > 0. However, a good

lower bound for such a mutation is accomplished with a cyclic argument and the lower

bound in the case above.

Bad y→ Bad z: In this case it holds ∆ = −2 · R ·
(

pz

py
− 1
)
· (M− 2px). If pz = py, then

∆ = 0 in any case. If pz 6= py, then we have to distinguish cases on M. If M = 1, then

∆ > 0 if pz < py, and ∆ < 0 if pz > py. Note however, that in neither of these cases

we can give a lower bound on ∆, since the quantity (1 − 2px) can be arbitrarily close to

0. On the other hand, if M = px, then ∆ = 2 · R · px ·
(

pz

py
− 1
)
, in which case ∆ > 0 if

pz > py, and ∆ < 0 if pz < py. Moreover, in this case we can give a lower bound. In

particular, |∆| > 2µqµµ = 2µq+2.
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Complexity Analysis for Short Initial Hypothesis. We set the tolerance (at most) equal

to 1
2µ

q. Then, in O
(
n2
)

generations all possible bad → bad beneficial swaps as well as bene-

ficial insertions of bad variables are exhausted, and the single good variable is inserted in the

hypothesis. Note that adding the good variable or swapping a bad variable to the single good

one is always identified as a beneficial mutation.

We are now in Figure 8b, and after at most O
(
n2
)

generations all possible beneficial muta-

tions are exhausted and we have formed the required hypothesis. Note that for all the deletions

of bad variables we have a lower bound by the previous analysis.

Hence, in total we require O
(
n2
)

generations for this part.

Complexity Analysis for Long Initial Hypothesis. The argument is similar like in every

other case and in O
(
|h0|+ ln 1

δ

)
we will form a hypothesis of size at most q with probability

1− δ/2. Then, we apply the analysis above.

3.4.2.4 Long Targets of Size Greater Than q+ 1
µ ln 2

In this case we deal with targets c such that |c| > q+ 1
µ ln 2. This implies that any hypothesis

of size at most q has u > |c| − q > 1
µ ln 2 undiscovered good variables. As a consequence, for

the weight of the undiscovered cube U for short hypotheses it holds U 6 (1 − µ)u 6 e−µu <

e−µ· 1µ ln2 = 1
2 .

Hence, the diagram that guides the search is shown in Figure Figure 9, which is the same

as Figure 3a.

The idea is that adding a good variable in the hypothesis is always a beneficial mutation, and

hence, after a sufficient amount of time, with high probability, the hypothesis can not contain
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?

bad

bad

bad

good

good

good

?

Figure 9: The diagram above is the same as in Figure 3a.

less than q− 1 variables. As a consequence, such a hypothesis, by Corollary 3.4.3 satisfies the

goal of (Equation 3.2).

Short Initial Hypothesis We now prove that adding a good variable in a hypothesis of size

at most q − 1 is always beneficial, and in fact we can give a lower bound on the increase in

performance in this case.

Adding a Good Variable z. It holds ∆ = 2MR(1−pz) > 2µ|h|µ > 2µq−1µ = 2µq > 0. This

result holds regardless of the case we have shown in Figures Figure 9.

Adding a Bad Variable z. It holds ∆ = 2MR(1− pz)(1− 2U). Hence, in the case of Figure

Figure 9 we have ∆ > 0.

Complexity Analysis for Short Initial Hypothesis. The first goal is to form a hypothesis

with at least q − 1 variables. At every step of this part of the evolution, the insertion of good

variables is characterized as beneficial with high probability if we set the tolerance equal to

t = µq. As long as |h| 6 q−2 there are at least 3 good variables in the beneficial set that arises
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due to additions of variables. That set has cumulative probability 1
2 ·

|N+|

|N+|+1
>

1
2 · 34 = 3

8 . Also

note, that removals of variables are not characterized as beneficial. Hence, by Lemma 2.2.15 for

p = 3
8 , κ = q− 1, and δC = δ/4 after t =

⌈
16
3

(
q− 1+ ln

(
4
δ

))⌉
= O

(
1
µ ln 1

ε + ln 1
δ

)
iterations,

there have been performed q− 1 additions of variables with high probability.

Once the hypothesis contains q− 1 variables, it will keep on oscillating between hypotheses

of size q − 1 and q. The reason is that when a hypothesis is consisted of q − 1 variables then

the beneficial set is non-empty and is formed by additions of variables and possibly swaps, but

not with removals of variables, and hence the hypothesis can not shrink. For hypotheses of size

q it may be the case that a removal of a bad variable is classified as neutral when the search is

guided by the neutral set and hence the size of the hypothesis drops to q− 1.

Long Initial Hypothesis. Below we examine the complexity starting from a long initial

hypothesis.

Complexity Analysis for Long Initial Hypothesis. The argument is similar like in every

other case and in O
(
|h0|+ ln 1

δ

)
we will form a hypothesis of size at most q with probability

1−δ/2. Then, we apply the analysis above, where the hypothesis always has size between q−1

and q.

3.5 Covariance as a Fitness Function

The discussion in the previous section shows that there are problems with extending the

analysis of the swapping algorithm from the uniform distribution to product distributions. In

this section we explore the possibilities of handling product distributions with a different fitness

function, covariance, given by (Equation 3.5).
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Using the same notation as in (Equation 3.6), and with M,R, and U representing the sets

of indices as in the previous section, the first term is given by (Equation 3.10). Furthermore,






E [h] = −1+ 2 ·∏i∈M pi ·
∏

ℓ∈R pℓ = −1+ 2MR

E [c] = −1+ 2 ·∏i∈M pi ·
∏

k∈U pk = −1+ 2MU

(3.21)

Thus from (Equation 3.10) and (Equation 3.21) we get

Cov [h, c] = 4MRU (1−M) . (3.22)

Note that Cov [h, c] = 4MRU(1−M) ∈ [0, 1].

Lemma 3.5.1 (Maximality of Target). (∀h 6= c) [Cov [h, c] < Cov [c, c]] .

Proof. For h 6= c, Cov [h, c] = 4MRU(1−M) < 4M(1−M) = Cov [c, c] .

Lemma 3.5.2 (Trivial Targets). Approximating targets c such that |c| = q > ⌈ 1µ ln
(
4
ε

)
⌉ is

trivial.

Proof. When the target is composed by q > ⌈ 1µ ln
(
4
ε

)
⌉ variables, then MU =

(∏
i∈M pi

)
·

(∏
k∈U pk

)
=

∏
j∈M∪U pj 6 (1− µ)q 6 e−µq 6 e−µ 1

µ ln( 4
ε) = ε

4 . Hence, for any h, Cov [h, c] 6

4 · ε4 · R · (1−M) = ε · R · (1−M) 6 ε.

We want to use (Equation 3.22) to examine the difference ∆ = Cov
[
h ′, c

]
−Cov [h, c] . Before

we do that though, we will need the following three lemmas that will be useful for giving us

lower bounds on the non-zero values of the difference ∆.
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Lemma 3.5.3. Let x, y ∈ Pn (µ non-degenerate); i.e. x, y ∈ [µ, 1− µ]. Then, for the non-zero

values of f(x, y) = 1− x
y it holds |f(x, y)| =

∣∣∣1− x
y

∣∣∣ > µ.

Proof. We have f(x, y) = y−x
y . For x 6= y (so that f(x, y) 6= 0), we have |f(x, y)| =

∣∣∣y−x
y

∣∣∣ =

|y−x|
|y|

. The fraction takes its minimum non-zero value when |y − x| is minimum and |y| is

maximum. Hence we have |f(x, y)| > µ
1−µ > µ.

Lemma 3.5.4. Let x, y ∈ Pn (µ non-degenerate); i.e. x, y ∈ [µ, 1−µ], c ∈ (0, y], and f(x, y) =

x− 1+ c · (1− x/y). Then |f(x, y)| > µ.

Proof. First of all, note that the analysis of Section 3.5 guarantees that f(x, y) < 0 ∀(x, y) ∈

[µ, 1−µ]× [µ, 1−µ]. Hence, the minimum non-zero value of |f(x, y)| is obtained either in a local

optimum in the interior, or on the boundary of the domain. We have ∂f
∂x = 1− c

y and ∂f
∂y = cx

y2 .

Hence, a candidate solution for a local optimum is the point (0, c) where the partial derivatives

vanish. However, (0, c) 6∈ [µ, 1−µ]× [µ, 1−µ]. So, we have to examine the boundary only. We

have:

x = µ: Then, f(µ, y) = µ − 1 + c(1 − µ/y), with ∂f/∂y = cm/y2 > 0. Hence, f(µ, y) achieves

its maximum (and as a consequence |f(m,y)| its minimum) when y = 1 − m. We have

f(µ, 1 − µ) = µ − 1 + c(1 − µ/(1 − µ)) = µ − 1 + c ·
(
1−2µ
1−µ

)
6 µ − 1 + (1 − µ) · 1−2µ

1−µ =

µ− 1+ 1− 2µ = −µ.

x = 1− µ: Then, f(1−µ, y) = 1−µ−1+c(1−(1−µ)/y). Again ∂f/∂y > 0, hence, f(1−µ, 1−µ) =

−µ is the maximum value of f along this boundary.
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y = µ: Then, f(x, µ) = x − 1 + c(1 − x/µ). We have ∂f/∂x = 1 − c/µ > 0. If c = µ, then

f(x, µ) = −1 + µ 6 −µ. If c < µ, then ∂f/∂x > 0, so we look at f(1 − µ, µ), for which it

holds f(1− µ, µ) = −µ− c1−2µ
µ 6 −µ.

y = 1− µ: Then, f(x, 1−µ) = x− 1+ c(1−x/(1−µ)), with ∂f/∂x = 1− c/(1−µ). If c = 1−µ,

then f(x, 1 − µ) = −µ, while if c < 1 − µ, then ∂f/∂x > 0, and hence the maximum is

obtained for x = 1− µ, which is f(1− µ, 1− µ) = −µ.

So, in every case we have that f(x, y) 6 −µ, ∀(x, y) ∈ [µ, 1− µ]× [µ, 1− µ].

Lemma 3.5.5. Let x, y ∈ Pn (µ non-degenerate); i.e. x, y ∈ [µ, 1−µ], c ∈ (0, 1], and f(x, y) =

1/x− 1+ c · (1− y/x). Then |f(x, y)| > µ.

Proof. Again, by the analysis of Section 3.5 it holds that f(x, y) > 0 ∀(x, y) ∈ [µ, 1−µ]×[µ, 1−µ].

Hence, the minimum non-zero value of |f(x, y)| is obtained either in a local optimum in the

interior, or on the boundary of the domain. Like in the previous case, there is no point in the

interior of the domain that can make both of the derivatives vanish simultaneously. Hence, we

have to examine again only the boundary. We have:

x = µ: Then, f(µ, y) = 1/µ − 1 + c(1 − y/µ), with ∂f/∂y = −c/µ < 0. Hence, the minimum is

obtained for y = 1−µ, where it holds f(µ, 1−µ) = 1−µ
µ −c·

(
1−2µ

µ

)
>

1−µ
µ −1−2µ

µ = 1 > µ.

x = 1− µ: Then, f(1− µ, y) = 1/(1− µ) − 1+ c(1− y/(1− µ)), with ∂f/∂y = −c/(1− µ) < 0.

Hence, the minimum is obtained for y = 1− µ, where it holds f(1− µ, 1− µ) = µ
1−µ > µ.

y = µ: Then, f(x, µ) = 1/x−1+c(1−µ/x), with ∂f/∂x = −(1−µc)/x2 < 0. Hence, we examine

f for x = 1− µ, where it holds f(1− µ, µ) = µ
1−µ + c((1− 2µ)/(1− µ)) > µ/(1− µ) > µ.
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y = 1− µ: Then, f(x, 1−µ) = 1/x− 1+ c(1− (1−µ)/x), with ∂f/∂x = −
1−c(1−µ)

x2 < 0. Hence

we examine f for x = 1− µ, but we have already shown above that f(1− µ, 1− µ) > µ.

So, in every case, f(x, y) > µ, ∀(x, y) ∈ [µ, 1− µ]× [µ, 1− µ].

We are now ready to proceed with the analysis of the difference ∆.

Comparing h ′ ∈ N+ with h. We introduce a variable z in the hypothesis h. If z is good,

then ∆ = 4M2RU (1− pz) > 0. If z is bad, then ∆ = (pz − 1)Cov [h, c] 6 0. We have equality

if m = 0; i.e. M = 1. Lower Bound: When adding a good variable we have ∆ = 4WhWc(1−

pz) > 4µ2q, since |h| 6 q−1. When adding a bad variable we have |∆| = 4MRU(1−M)(1−pz) >

4(MR)(MU)(1−M)(1− pz) = 4WhWc(1−M)(1− pz) > 4µq−1µqµ · µ > 4µ2q+1.

Comparing h ′ ∈ N− with h. We remove a variable z from the hypothesis h. If z is good,

then ∆ = −4M2RU(1/pz − 1) < 0. If z is bad, then ∆ = (1/pz − 1)Cov [h, c] > 0. We have

equality if m = 0; i.e. M = 1. Lower Bound: When removing a good variable we have |∆| >

4WhWc(1/pz− 1) > 4µ2q(1/pz− 1) > 4µ2q µ
1−µ > 4µ2q+1. When removing a bad variable we

have ∆ = 4MRU(1−M)(1/pz− 1) > 4(MR)(MU)(1−M)(1/pz− 1) > 4µqµqµ µ
1−µ > 4µ2q+2.

Upper Bound: Note, that it holds |h| > q + 1. When we remove a good variable, then

|∆| = 4WhWc(1/pz − 1) 6 4e−µ(q+1)(M/pz)U(1 − pz) 6 4e−µ(q+1)e−µ = 4e−µ(q+2). When

we remove a bad variable, then ∆ = (1/pz − 1)4MRU(1−M) = 4(1− pz)M(R/pz)U(1−M) 6

4e−µe−µq · 1 · 1 = 4e−µ(q+1) 6 4e−µe−µ 1
µ ln 4

ε = 4 · ε4 = ε.

Comparing h ′ ∈ N+− with h. We swap a variable out with a variable in.

If out is good and in is good, then ∆ = 4M2RU(1− pin/pout).

If pout 6 pin, then ∆ 6 0, with ∆ = 0 if pout = pin. If pout > pin ⇒ ∆ > 0.
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If out is good and in is bad, then ∆ = 4MRU · ((pin − 1) +M · (1− pin/pout)). We now examine

the quantity κ = (pin − 1) +M · (1− pin/pout):

pout 6 pin: Then (1− pin/pout) 6 0, and (pin − 1) < 0. Therefore ∆ < 0.

pout > pin: Note M 6 pout. Hence, κ < pin − 1+ 1− pin/pout = pin(1− 1/pout) < 0.

If out is bad and in is bad, then ∆ = (pin/pout − 1) · Cov [h, c] and Cov [h, c] > 0:

pout 6 pin: In this case, ∆ > 0, and ∆ = 0 when m = 0, or pout = pin.

pout > pin: In this case ∆ 6 0, and ∆ = 0 when m = 0.

If out is bad and in is good, then ∆ = 4MRU(1/pout − 1 +M(1 − pin/pout)). We examine the

quantity κ = 1/pout − 1+M(1− pin/pout):

pout < pin: Note M 6 1. Hence, κ > 1/pout − 1+ 1− pin/pout = (1− pin)/pout > 0.

pout > pin: In this case pin/pout 6 1⇒ κ > 0⇒ ∆ > 0.

Lower Bound: Swapping a good out with a good in yields |∆| = 4M2RU · |1− pin/pout| =

4WhWc · |1− pin/pout|. So, by Lemma 3.5.3 we have |∆| > 4µqµqµ = 4µ2q+1. Swapping a bad

out with a bad in yields |∆| = |pin/pout − 1| · Cov [h, c] > |pin/pout − 1| · 4(MR)(MU)(1 −M),

and by Lemma 3.5.3 we get that ∆ > µ · 4µqµqµ = 4µ2q+2. Swapping a good out with

a bad in yields ∆ = 4MRU · ((pin − 1) + M · (1 − pin/pout)). Hence, by Lemma 3.5.4 we

have |∆| > 4(MR)(MU)µ > 4µqµqµ = 4µ2q+1. Swapping a bad out with a good in yields

∆ = 4MRU(1/pout−1+M(1−pin/pout)). Hence, by Lemma 3.5.5 we have ∆ > 4(MR)(MU)µ >

4µqµqµ = 4µ2q+1.
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good

bad

bad

bad

good

good

(a) M = 1

bad

good

good

good

bad

bad

(b) M < 1

Figure 10: The style and the directions of arrows have the same interpretation as in the previous
figures. Similarly, the hierarchy of nodes on levels has the same interpretation. Some arrows
are missing in the left picture since there are no good variables in the hypothesis; i.e. M = 1.

The effects of the different mutations are summarized in Figure Figure 10. Compared to

Figure Figure 3, it is remarkably simple and uniform, and can be summarized as follows. If

there are some mutual variables (i.e. good) in the hypothesis, then

• ∆ > 0 if a good variable is added, a bad variable is deleted, a bad variable is replaced

by a good one, a good variable is replaced by a smaller good one, and a bad variable is

replaced by a larger bad one,

• ∆ < 0 if a good variable is deleted, a bad variable is added, a good variable is replaced by

a bad one, a good variable is replaced by a larger good one, and a bad variable is replaced

by a smaller bad one,

• ∆ = 0 if a good variable is replaced by an equivalent good one, and a bad variable is

replaced by an equivalent bad one.
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If there are no mutual variables in the hypothesis, then

• ∆ > 0 if a good variable is added, or a good variable replaces a bad one.

• ∆ = 0 if a bad variable is added, deleted, or replaced by a bad one.

Note that the beneficiality or neutrality of a mutation is not determined by these obser-

vations; it also depends on the tolerances. Nevertheless, these properties are sufficient for an

analogue of Theorem 3.3.3 on the structure of best approximations to hold for product distri-

butions and the covariance fitness function.

Theorem 3.5.6 (Structure of Best Approximations). The best q-approximation of a target c,

such that |c| > 1, is c itself if |c| 6 q, or any hypothesis formed by q good variables, such that

the product
∏q

i=1 pi is minimized if |c| > q.

As mentioned earlier, the existence of characterizations of best approximations is related

to evolvability. This relationship is now illustrated for product distribution and the covari-

ance fitness function. First we introduce an idealized version of evolution algorithms, where

beneficiality depends on the precise value of the performance function.

Definition 3.5.7 (Unbounded-Precision Evolution Algorithm). An evolution algorithm is un-

bounded-precision if, instead of (Equation 3.3) it uses






Bene = N ∩
{

h ′ | PerfDn

(
h ′, c

)
> PerfDn

(h, c)
}

Neut = N ∩
{

h ′ | PerfDn

(
h ′, c

)
= PerfDn

(h, c)
}

, (3.23)
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or, equivalently, arbitrary tolerance to determine which hypotheses are beneficial, neutral or

deleterious. All other parts of the definition are unchanged.

Consider the following unbounded-precision evolution algorithm: starting from an arbitrary

initial hypothesis, apply beneficial mutations as long as possible. Then beneficial mutations

can add a good variable, delete a bad variable, replace a bad variable by a good one, replace

a good variable by a smaller good one or replace a bad variable by a larger bad one. The

amortized analysis argument of Theorem 3.5.9 in the next section shows that the number of

steps is O(n2). Hence the following result holds.

Theorem 3.5.8. The swapping algorithm using the covariance fitness function is an efficient

evolution algorithm for monotone conjunctions over product distributions.

3.5.1 Evolving Short Monotone Conjunctions under Product Distributions

The problem with applying the unbounded-precision algorithm to the bounded-precision

model is that the presence of the U factor in ∆ may make the performance differences su-

perpolynomially small. If we assume that the product distribution is µ nondegenerate and the

target is short then this cannot happen, and an analysis similar to Theorem 3.3.8 shows that we

indeed get an efficient evolution algorithm. In Section 3.6 we give some remarks on possibilities

for handling long targets. We set

q =

⌈
1

µ
ln

4

ε

⌉
.

Theorem 3.5.9. Let Pn be a µ-nondegenerate product distribution. The swapping algorithm,

using the covariance fitness function, evolves non-empty short (1 6 |c| 6 q) monotone con-
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junctions starting from an initial hypothesis h0 in O
(
nq+ |h0| ln

1
δ

)
iterations, each iteration

examining the performance of O (nq) hypotheses, and each performance being evaluated using

sample size

O

((
1

µ

)4(
1

ε

)(4/µ) ln(1/µ)(
lnn+ ln

1

δ
+ ln

1

µ
+ ln

1

ε

))
.

Proof. The analysis of the proof is similar to that of Theorem 3.3.8.

Short Initial Hypothesis. Again, we are interested in the non-zero values of the quantity ∆

so that, given representative samples, we can characterize precisely all the mutations. For the

nonzero values of ∆ we have:

|∆| > 4µ2q+2.

Therefore, we set the tolerance t = 2µ2q+2, and require accuracy for the empirical estimates

ǫ = t = 2µ2q+2.

Initially we want to exclude the case shown in Figure 10a; that is, form a hypothesis with at

least one good variable. By selection of t, ǫM, all the arrows in both cases shown in Figure Fig-

ure 10 are determined correctly. Therefore, if the algorithm is in state shown in Figure 10a,

the set of beneficial mutations is composed either by adding a good variable or swapping a bad

variable with a good one. In any case, in one step, the algorithm will reach the state shown in

Figure 10b.

The algorithm is in the state shown in Figure 10b with a hypothesis h1 =
∧m

i=1 xi∧
∧r

ℓ=1 yℓ

such that m > 1 and m + r 6 q. Evolution will stop when there are no further beneficial

mutations. We split the set of beneficial mutations to 2 further subsets. The first subset changes
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the quantities m, r and is composed by those mutations that introduce a good variable, remove

a bad variable, or swap a bad variable with a good one. The second subset is composed by the

other beneficial mutations which retain these values. Note that throughout the evolution the

number of good variables is non-decreasing, and the number of bad variables is non-increasing.

Regarding mutations from the first subset, we add good variables or swap bad to good at

most |c| − m times since this is the amount of missing good variables. Moreover, removing a

bad variable will happen at most r = |h1|−m times. Hence, at most |c|+ |h1|− 2m mutations

from the first subset can occur throughout the evolution.

We now look on the mutations from the second subset in discrete time frames of the evolution

where the quantities m and r remain unchanged. In particular, regarding swaps that interchange

bad with bad variables, we split the evolution in r = |h1|−m phases where the number of bad

variables remain unchanged in each phase. During each such phase, consider the bad variables

as members of a sorted array of size r. The algorithm will start with a configuration

a1 a2 · · · ar

y1 y2 · · · yr

such that Pr (y1 = true) 6 Pr (y2 = true) 6 . . . 6 Pr (yr = true) , and will end the current

phase with a configuration

a1 a2 · · · ar

y ′
1 y ′

2 · · · y ′
r
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such that Pr
(
y ′
1 = true

)
6 Pr

(
y ′
2 = true

)
6 . . . 6 Pr (y ′

r = true) , where in case of equali-

ties order the variables with lexicographic ordering. We now look on the structure of the bad

array throughout all r phases; see Table Table I. Consider the entries of the arrays in a

right to left fashion throughout all r phases. The crucial observation is that every entry ai

of the array, as long as it exists, follows a non-decreasing order throughout evolution. Hence,

the entry ar can take at most n − |c| − r different values, the entry ar−1 can take at most

n − |c| − r − 1 different values, and in general, the entry ar−i can take at most n − |c| − r − i

different values, where i ∈ {0, 1, 2, . . . , r− 1}. Hence the number of swaps between bad variables

can be at most
r−1∑

i=0

(n− |c|− r− i).

We compute:

r−1∑

i=0

(n− |c|− r− i) = r(n− |c|− r) −

r−1∑

i=1

i

= r(n− |c|− r) −
r(r− 1)

2

= r (n− |c|− 3r/2+ 1/2)

and the bound is tight for distributions where all the pi’s are distinct.

Finally, regarding swaps that interchange good with good variables, we follow a similar

procedure. We split the evolution in |c|−m phases where the number of good variables remain

unchanged in each phase. This time we have the sequence of arrays shown in Table Table II.

We now look on the entries of the array in the same direction (right to left). This time, each
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entry ai of the array follows an non-increasing order throughout evolution. Hence, entry a|c|

can take at most 1 different values, a|c|−1 can take at most 2 different values, and in general

the entry ai can take at most |c|+ 1− i different values. Summing up we get

|c|∑

i=1

(|c|+ 1− i).

In other words we have at most
∑|c|

i=1 i = |c|(|c| + 1)/2 swaps, and the bound is tight for

distributions where all the pi’s are distinct.

Complexity Analysis for Short Initial Hypothesis. Summing up over all the possibilities

that were analyzed we obtain 1 + (|c| + |h1| − 2m) + r(n − |c| − 3r/2 + 1/2) + |c|(|c| + 1)/2 6

1+(2q− 2)+ r(n− 1− 0+ 1/2)+q(q+ 1)/2 6 2q− 1+ rn− r/2+q2/2+q/2 6 2q− 1+qn+

q2/2+q/2 6 qn+2q2 steps in the worst case. In each of these steps, by Lemma 3.2.1, we have

neighborhoods of size at most |N| 6 2qn. Hence, for the entire process we have to estimate

the performance of no more than (qn + 2q2) · (2qn) = 2q2n2 + 4q3n hypotheses, each one

of them within accuracy ǫ = t = 2µ2q+2. By the Hoeffding Bound (Proposition 2.2.10) when

setting α = −1, β = 1, ǫ = 2µ2q+2, the performance of each hypothesis is not estimated within

ǫ = 2µ2q+2 of its true value with probability e−2Rµ4q+4
. By the Union Bound (Proposition

2.2.5) the performance of each hypothesis is computed within ǫ = 2µ2q+2 of its true value

with probability at least 1−
∑

all hypotheses e
−2Rµ4q+4

> 1− (2q2n2 + 4q3n) · e−2Rµ4q+4
. We

require now this probability to be at least 1 − δ/2 and hence it is enough if each empirical

estimate is computed with at least R >

⌈
1
2 ·
(

1
µ

)4q+4

· ln
(
4q2n2+8q3n

δ

)⌉
samples; i.e. we



74

require O

((
1
µ

)4
·
(
1
ε

) 4
µ ln 1

µ ·
(

ln 1
µ + ln ln 1

ε + lnn+ ln 1
δ

))
samples for the approximation of

the performance of each hypothesis. Hence, the total number of samples for this phase is

O

(
(q2n2 + q3n) ·

(
1
µ

)4
·
(
1
ε

) 4
µ ln 1

µ ·
(

ln 1
µ + ln ln 1

ε + lnn+ ln 1
δ

))
.

Long Initial Hypothesis. The arguments are similar to those in Theorem 3.3.8, and in

O
(
|h0|+ ln 1

δ

)
stages the algorithm forms a short hypothesis of size q. Then, we apply the

analysis above.

In particular, regarding the shrinking process of the evolution, again by Lemma 2.2.15 we

get that t =
⌈
8
3 ·
(
|h0|+ ln

(
4
δ

))⌉
generations are enough in order to guarantee |h0| successes

in the coin tossing process with probability at least 1 − δ/4. In other words, O
(
|h0|+ ln

(
1
δ

))

generations are enough.

Similarly, we want to guarantee throughout the entire shrinking process all the empirical

estimates of the performance of each hypothesis is within accuracy ǫ = 4e−µ(q+1) of their true

values with probability at least 1−δ/4. Again we use Proposition 2.2.10 with α = −1, β = 1, ǫ =

4e−µ(q+1). The performance of any hypothesis is not computed within ǫ = 4e−µ(q+1) of its

true value with probability e−8Re−2µ(q+1)
. The entire process lasts for t =

⌈
8
3 ·
(
|h0|+ ln

(
4
δ

))⌉

steps, and in each step the neighborhood has size |hi| + 1 6 n + 1. By the Union Bound

(Proposition 2.2.5) the probability that any empirical estimate is not within ǫ = 4e−µ(q+1)

of its true value is at most (n + 1) · t · e−8Re−2µ(q+1)
. We now require to bound this quantity

from above by δ/4 and hence we need R >
⌈
1
8 · e2µ(q+1) ln

(
4(n+1)t

δ

)⌉
samples per empirical

estimate computation. Noting that e2µ 6 e, as well as e2µq = e2µ⌈ 1µ ln 4
ε⌉ 6 e2µ( 1

µ ln 4
ε+1) =

e2µ · 16
ε2 6

16e
ε2 it follows that R >

⌈
2 · e2

ε2 · ln
(
4(n+1)t

δ

)⌉
samples are enough for every empirical
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estimate. In other words, we need O
((

1
ε

)2 (
lnn+ ln |h0|+ ln 1

δ + ln ln 1
δ

))
samples for the

approximation of the performance of each hypothesis. As a consequence, the total number of

samples for this phase is O
(
n ·
(
|h0|+ ln 1

δ

)
·
(
1
ε

)2 ·
(
lnn+ ln |h0|+ ln 1

δ + ln ln 1
δ

))
.

3.6 Further Remarks

It appears that from the perspective of learning theory, one of the remarkable features of

Valiant’s new model of evolvability is that it puts basic, well-understood learning problems in

a new light and poses new questions about their learnability. One of these new questions is the

performance of basic, simple evolution mechanisms, like the swapping algorithm for monotone

conjunctions. The results of this chapter suggest that the analysis of these mechanisms may be

an interesting challenge.

There seem to be many interesting directions of study for the future. For example, there is

a similar swapping-type learning algorithm for decision lists, where a single step exchanges two

tests in the list (124; 20). Can such an algorithm be used in the evolution model? A positive

answer could give an alternative to Michael’s Fourier-based approach (94). Another idea would

be the study of an algorithm with an intuitive neighborhood on the Fourier spectrum, like in

Michael’s case (94), but for a different Boolean function.
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Algorithm 1: The Mutator Function under the Uniform Distribution

Input: q ∈ N
∗, samples sM,1, samples sM,2, a hypothesis h, a target c.

Output: a new hypothesis h ′

1 if |h| > 0 then Generate N− ;
2 else N− ← ∅;
3 ;
4 if |h| < q then Generate N+ ;
5 else N+ ← ∅;
6 ;
7 if |h| 6 q then Generate N+− ;
8 else N+− ← ∅;
9 ;

10 vb ← GetPerformance(h);
11 Initialize Bene, Neutral to ∅;
12 if |h| 6 q then t← 2−2q;
13 else t← 21−q; /* set tolerance */

14 ;
15 for x ∈ N+, N−, N+− do
16 SetWeight(x, h, N+, N−, N+−);
17 if |x| 6 q then SetPerformance(x, c, sM,1); /* sM,1 examples */

18 ;
19 else SetPerformance(x, c, sM,2); /* sM,2 examples */

20 ;
21 vx ← GetPerformance(x);
22 if vx > vb + t then Bene ← Bene ∪ {x};
23 ;
24 else if vx > vb − t then Neutral ← Neutral ∪ {x};
25 ;

26 SetWeight(h, h, N+, N−, N+−);
27 Neutral ← Neutral ∪ {h};
28 if Bene 6= ∅ then return RandomSelect(Bene);
29 ;
30 else return RandomSelect(Neutral);
31 ;
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TABLE I: The sequence of bad arrays throughout evolution.

a1 a2 a3 · · · ar−1 ar

Phase 1:
y1,1 y1,2 y1,3 · · · y1,r−1 y1,r

y ′
1,1 y ′

1,2 y ′
1,3 · · · y ′

1,r−1 y ′
1,r

Phase 2:
y2,1 y2,2 · · · y2,r−2 y2,r−1

y ′
2,1 y ′

2,2 · · · y ′
2,r−2 y ′

2,r−1

...

. . .
...

...
...

. . .
...

...

Phase r− 1:
yr−1,1 yr−1,2

yr−1,1 yr−1,2

Phase ℓ:
yr,1

y ′
r,1

TABLE II: The sequence of good arrays throughout evolution.

a1 · · · am am+1 · · · a|c|

Phase 1:
x1,1 · · · x1,m
x ′
1,1 · · · x ′

1,m

Phase 2:
x2,1 · · · x2,m x2,m+1

x ′
2,1 · · · x ′

2,m x ′
2,m+1

...
...

...
...

...
. . .

Phase |c|−m:
x|c|−m,1 · · · x|c|−m,m x|c|−m,m+1 · · · x|c|−m,|c|

x ′
|c|−m,1 · · · x ′

|c|−m,m x ′
|c|−m,m+1 · · · x ′

|c|−m,|c|



CHAPTER 4

MULTIPLE INSTANCE LEARNING

Multiple-instance or multi-instance learning (MIL) is a variant of the standard PAC model of

concept learning where, instead of receiving labeled instances as examples, the learner receives

labeled bags, that is, labeled sets of instances. A bag is labeled positive if it contains at least one

positive example, and it is labeled negative otherwise. Instances in a bag are usually assumed

to be independent and identically distributed. This setting, introduced by Dietterich et al. (36),

is natural for several learning applications, for example, in drug design and image classification.

In drug design, a bag may consist of several shapes of a molecule and it is labeled positive

if some shape binds to a specific binding site. In image classification, a bag may be a photo

containing several objects and it is labeled positive if it contains some object of interest.

Blum and Kalai (15) showed that every learning problem that is efficiently learnable with

statistical queries is also efficiently learnable in the MIL model, and, more generally, the same

holds for problems efficiently learnable with one-sided random classification noise. This implies

the efficient multi-instance learnability of all known efficiently PAC-learnable classes. A detailed

study of sample sizes in the MIL model was initiated Sabato and Tishby (114). They proved

a general upper bound for the VC dimension of bags, and a lower bound for the concept class

of halfspaces. Kundakcioglu et al. (81) considered margin maximization for bags of halfspaces

and gave NP-completeness and experimental results.

78
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In this note we continue the study of multi-instance learning of halfspaces. We improve

the VC dimension lower bound of (114) from Ω(log r) to Ω(d log r), where d is the dimension

and r is the bag size, which is optimal up to order of magnitude. We also show that the same

lower bound holds for bags over every sufficiently large point set in general position. Thus the

situation is somewhat analogous to standard halfspaces, where every simplex forms a maximum

shattered set. The proofs are based on cyclic polytopes. We also show that hypothesis finding

for bags of halfspaces is NP-complete, using a variant of the construction of (81). These two

results, in view of the well-known relationship between PAC-learnability, VC dimension and

hypothesis finding, indicate differences between the PAC and MIL-PAC models.

Active learning is another variant of PAC learning. In this model the learner can decide

whether to request the label of a random instance, and the complexity of an algorithm is

measured by the number of label requests (see, e.g., Dasgupta (31)). Multi-instance active

learning (MIAL) has been proposed by Settles et al. (121) and has been studied in several

machine learning papers. We observe that the general active learning results of Hanneke (62)

and Friedman (49) apply to the multi-instance setting as well.

There are several open problems related to the multi-instance learning of halfspaces. Some

of these are discussed in the concluding section of the chapter.

A halfspace in R
d is given as H = {x ∈ R

d : w · x > t}, for weight vector w ∈ R
d and

threshold t ∈ R. A bag of size r, or an r-bag, is an r-element multiset B = {x1, . . . , xr} of Rd.

An r-bag B is positive for H if B ∩ H 6= ∅, and B is negative for H otherwise. A set of bags

B = {B1, . . . Bs} is shattered by halfspaces if for every ± labeling of the bags there is halfspace
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that assigns the same labels to the bags in B. The VC dimension of r-bags for d-dimensional

halfspaces is the largest s such that there are s shattered bags. For r = 1 one gets the usual

notion of VC dimension of halfspaces and it is a basic fact that this equals d+ 1.

4.1 The VC Dimension of r-Bags for d-Dimensional Halfspaces

Sabato and Tishby (114) showed that the VC dimension of r-bags for any concept class

is essentially at most a log r factor larger than the VC dimension of the concept class. We

formulate their result in a slightly different form.

Theorem 4.1.1 ((114)). For any concept class of VC dimension d̃, the VC dimension of r-bags

is O(d̃ log r).

Proof. Let B = {B1, . . . Bs} be a shattered set of r-bags. Then B contains at most r ·s instances,

and by Proposition 2.5.2 those can be classified by concepts in the class in at most ((ers)/d̃)
d̃

many ways. The classification of the instances in the bag determines the classification of the

bags. Thus

2s 6

(
ers

d̃

)d̃

.

Writing x = s/d̃ this becomes 2x/x 6 er. The function 2x/x is monotone if x > 1/ ln 2. Thus

it is sufficient to show that 2x/x > er for x = log r + 2 log log r, if r is sufficiently large, which

follows directly.

Sabato and Tishby showed that the VC dimension of r-bags of halfpaces in the plane is

at least ⌊log r⌋ + 1, which implies the same bound for higher dimensions. We now prove a
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lower bound by adding the ‘missing’ factor d, which is optimal in order of magnitude by

Theorem 4.1.1.

Theorem 4.1.2. The VC dimension of d-dimensional halfspaces over bags of size r is at least

⌊d/2⌋(⌊log r⌋+ 1).

Proof. Let ℓ ∈ N and consider n = ⌊d/2⌋ · 2ℓ+1 points on the moment curve. Let t1 < · · · < tn

be arbitrary and consider the set of n instances X = {x(t1), . . . , x(tn)}. Divide X into ⌊d/2⌋

blocks of size 2ℓ+1 each, as this is shown in Figure Figure 11, i.e., let

Xi = {x(tj) : (i− 1) · 2ℓ+1 < j 6 i · 2ℓ+1}, i = 1, . . . ,

⌊
d

2

⌋
.

2ℓ+1 points

⌊d/2⌋ blocks

Xi

Figure 11: Start with n =
⌊
d
2

⌋
· 2ℓ+1 points on the moment curve, in

⌊
d
2

⌋
blocks of size 2ℓ+1

each.
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Let fi : Xi ֌→ 2{(i−1)·(ℓ+1)+1, i·(ℓ+1)} be a bijection between Xi and the powerset of

{(i− 1) · (ℓ+ 1) + 1, i · (ℓ+ 1)}, and create s = ⌊d/2⌋ · (ℓ+ 1) bags so that

Bk = {x(tj) : k ∈ fi(x(tj))}

for every k such that (i − 1) · (ℓ + 1) < k 6 i · (ℓ + 1)}. We claim that {B1, . . . , Bs}, with

s = ⌊d/2⌋ · (ℓ+1), is a family of bags of size r = 2ℓ shattered by d-dimensional halfspaces. Each

bag is of size r = 2ℓ as it contains a half of a block. For any subset of the bags S ⊆ {1, . . . , s} let

Si = S∩ {(i− 1) · (ℓ+ 1) + 1, i · (ℓ+ 1)} and let x(tj(i)) be the point such that fi(x(tj(i))) = Si,

for i = 1, . . . , ⌊d/2⌋. Then the set {x(tj(i)) : i = 1, . . . , ⌊d/2⌋} can be separated from the rest

of X by a halfspace, and that halfspace classifies precisely those bags Bk as positive for which

k ∈ S. Thus the family of bags is indeed shattered by halfspaces. The VC dimension bound

follows directly from the definition of s and r.

Now we prove a strengthening of Theorem 4.1.2. A finite subset of Rd is in general position

if all its (d + 1)-subsets are affinely independent, i.e., have no linear combination equal to 0,

with coefficients adding up to 0. Halfspaces in R
d shatter every simplex, i.e., every set of (d+1)

points in general position. In analogy to this fact, we prove a VC dimension lower bound similar

to Theorem 4.1.2 for bags of halfspaces when the instances are restricted to any sufficiently

large subset in general position. The proof uses another property of cyclic polytopes. The

following lemma is referred to as “unpublished ‘folklore’ ” and proven in an oriented matroid
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version by Cordovil and Duchet (26) 1. It is also given as an exercise in Matousek (90). Again,

we give a simple proof for completeness.

Lemma 4.1.3. (See (26; 90).) There is a function f(d, n) such that every set A of m > f(d, n)

points in general position in R
d contains n > d + 1 points such that their convex hull has the

same structure as a d-dimensional cyclic polytope on n vertices.

Proof. The orientation of a d-dimensional ordered simplex (a0, . . . , ad) is the sign (+ or -) of

the determinant with columns a1 − a0, . . . , ad − a0, or, equivalently, with columns a ′
0, . . . , a

′
d,

where the primes denote an added first component of 1 to each vector.

Consider a d-dimensional cyclic polytope and let x(ti1), . . . , x(tid+1
) be d+1 vertices of the

polytope. The orientation of the simplex formed by these points using the increasing ordering

of the parameters is +, as the corresponding determinant is a Vandermonde determinant.

Put f(d, n) = R(d+ 1, n) in Proposition 2.4.1 and consider a set A of m > f(d, n) points in

general position. Fix an arbitrary ordering < of the elements of A. Color each (d + 1)-subset

of A with the orientation (+ or −) of the corresponding simplex, ordered according to the

fixed ordering. Note that the determinant that gives the orientation of every simplex is always

non-zero, as these are points in general position. Then there is a subset {a1, . . . , an} of A such

that all ordered simplices from that subset have the same orientation.

Consider an arbitrary ordered d-subset v1 < . . . < vd of A. Denote by H the hyperplane

determined by these points. Then for any other point v ∈ A, the orientation of the ordered

1The paper is an updated version of an unpublished, but circulated, manuscript from 1986/87.
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simplex (v, v1, . . . , vd) determines which side of H contains v. Thus vertices v1, . . . , vd form a

facet if and only if the sign of the determinant det(v ′, v ′1, . . . , v
′
d) is the same for every vertex v.

This, however, is the same as Gale’s evenness condition. Thus the face structure of the convex

hull of {a1, . . . , an} is the same as that of a cyclic polytope on n vertices.

Theorem 4.1.4. There is a function g(d, r) such that for every set A of m > g(d, r) points

in general position in R
d, halfspaces over bags of size r from A have VC dimension at least

⌊d/2⌋(log r+ 1).

Proof. The result follows by combining the construction of Theorem 4.1.2 with Lemma 4.1.3,

setting g(d, r) = f(d, dr).

4.2 NP-Completeness of Hypothesis Finding

The hypothesis-finding problem for r-bags for d-dimensional halfspaces is the following:

given a set of labeled r-bags in R
d, is there a halfspace that assigns these labels to the bags?

The reduction below is a variant of a reduction in Kundakciouglu et al. (81).

Theorem 4.2.1. The hypothesis finding problem for r-bags of d-dimensional halfspaces is NP-

complete for every fixed r > 3.

Proof. We give a reduction from 3-SAT (containment in NP is trivial). Let C1, . . . , Cm be

an instance of 3-SAT over variables x1, . . . , xd. Let ei be the i’th unit vector in R
d. For

j = 1, . . . ,m let Bj be a positive bag containing ei if xi is in Cj, and −ei if ¬xi is in Cj.

For i = 1, . . . , d let B ′
i be a positive bag containing ei and −ei. Finally, let B∗ be a negative
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bag containing 0. We claim that the original formula is satisfiable iff the there is a consistent

hypothesis for the set of bags described.

Let (a1, . . . , ad) be a satisfying truth assignment. Then the halfspace w1u1+. . .+wdud > 1

is consistent, where wi = 1 if ai = 1 and wi = −1 otherwise, for i = 1, . . . , d.

In the other direction, let w1u1 + . . . +wdud > t be a consistent hypothesis. Then t > 0

as B∗ is negative. Also, wi 6= 0, as B ′
i is positive. It follows directly that the truth assignment

defined by ai = sign(wi) satisfies the formula.

Note that this construction uses bags of size at most 3 (or r in the general case). Adding

points to the bags sufficiently close to the given ones and slightly modifying the threshold one

can get the same result for bags of the same size.

4.3 Further Remarks and Open Problems

We showed that the VC dimension of r-bags of d-dimensional halfspaces is Θ(d log r) over

every sufficiently large point set in general position and hypothesis finding for r-bags of d-

dimensional halfspaces is NP-complete. This means that, unlike the case of learning halfspaces,

one does not get an efficient PAC learning algorithm by drawing O(d log r) random bags and

finding a consistent hypothesis. On the other hand, the result of Blum and Kalai (15) does

provide an efficient algorithm with sample size polynomial in r and d.

This raises two open questions. What is the minimal sample size of r-bags sufficient for

efficiently learning d-dimensional halfspaces? What is the minimal sample size of r-bags for

PAC learning d-dimensional halfspaces without taking computational complexity into account?

For the second question note that distributions over bags generated from arbitrary distributions
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over instances form a subclass of all possible distributions over bags1, thus the VC dimension

only provides an upper bound. Multi-instance learning under more general settings has been

discussed by Auer et al. (7) and by Sabato and Tishby (114).

Further discussion related to MIL will be presented in Chapter 7 because we need some

notions from active learning that are introduced in Chapter 5.

1This explains why, unlike the standard setting, the efficient PAC learning algorithm of Blum and
Kalai (15) does not lead to an efficient hypothesis finding algorithm for bags.



CHAPTER 5

A REMARK ON ACTIVE LEARNING OF MONOTONE

CONJUNCTIONS

Active learning (AL) is another variant of the standard PAC model of concept learning.

The aim of AL is to reduce the number of queries needed in order to learn a target concept.

This is achieved by allowing the learner to choose the samples from which it learns. There are

three main settings under which AL is performed.

Membership Query Synthesis. In the membership queries framework (4) the learner re-

quests the labels of any data point in the input space. In this framework there is no underlying

distribution, but rather the learner generates the instances for which the label will be requested.

However, in real-world applications this approach may result in strange situations, since the

automated algorithm may generate instances that no expert oracle can classify. An example

illustrating this problem is given by Lang and Baum in (82) where they encountered query

images generated by the learner that contained only artificial symbols with no natural meaning

as characters.

Stream-Based Selective Sampling. In stream-based selective sampling (6; 24) a sequence

of data points from the input space is presented to the learner and at each step the learner

decides whether to query the label of the specific instance or not. There are different ways by

which one can decide whether to query a specific instance or not. For example one approach

is to query the more informative instances with higher probability (29). Another example is

87



88

to compute a region of uncertainty and only query the points that fall within that region (24).

In this last example a natural approach is to consider the version space (95; 96) of the target

concept class and only query the points that can be labeled both ways among the remaining

hypotheses in the version space. Real-world problem domains where stream-based selective

sampling has been studied include part-of-speech tagging (29), sensor scheduling (80), learning

ranking functions for information retrieval (146), and word sense disambiguation (50).

Pool-Based Sampling. In pool-based sampling (86), the learner is given access to a large

pool of unlabeled data points and the aim is to choose only a fraction of those points in order to

deduce the target concept. Apart from text classification (86; 92; 133; 70) pool-based sampling

has been studied in other real-world problem domains such as information extraction (131; 120),

image classification and retrieval (132; 147), video classification and retrieval (145; 65), speech

recognition (134), and cancer diagnosis (88) to name a few. Note that the main difference

between pool-based AL and stream-based AL is that pool-based AL evaluates and ranks the

whole collection of the available examples and decides which is the best query, rather than

taking this decision online and decide whether to query an individual example or not as it is

done in the stream-based case.

Typically, there is a further distinction for each problem the learner is facing. This dis-

tinction refers to the separable versus the non-separable case. In the separable case we assume

that the training points can be classified correctly by our hypothesis space H, while in the

non-separable case we do not assume that all of the training points can be classified correctly
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by our hypothesis space H. Note that this distinction has similar flavor to proper learning

versus agnostic learning (75). Related work in agnostic active learning includes (32; 9; 60).

5.1 The Mellow Algorithm

Cohn, Atlas, and Ladner introduced in (24) an algorithm for actively learning separable

data; see also (31). This algorithm is referred to as the mellow algorithm or simply CAL due

to the initials of its authors. The mellow algorithm is constantly maintaining the version space

that is consistent with all the training examples seen so far. Hence, at time step t > 1 the

algorithm maintains the version space Ht ⊆ H. When the new training point xt is presented,

the mellow algorithm queries this point only if there are hypotheses h1,h2 ∈ Ht−1 such that

h1(xt) 6= h2(xt), otherwise, all the hypotheses in the version space agree about the label yt of

xt and hence no queries are needed. Algorithm 2 has the details.

Algorithm 2: The Mellow Algorithm

Input: The hypothesis space H.
Output: At time step t, the version space Ht that is consistent with all the training

examples x1, x2, . . . , xt.
1 t ← 0;
2 H0 ← H;
3 while true do
4 t ← t+ 1;
5 Receive unlabeled data point xt;
6 if disagreement in Ht−1 about xt’s label then
7 query label yt of xt;
8 Ht ← {h ∈ Ht−1 : h (xt) = yt};

9 else
10 Ht ← Ht−1;
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Algorithm 3: The Mellow Algorithm without explicitly maintaining the version space
Ht

Input: ∅
Output: At time step t, the set S of training points together with their labels

1 t ← 0;
2 S ← ∅; /* points seen so far */

3 while true do
4 t ← t+ 1;
5 Receive unlabeled data point xt;
6 if learn(S ∪ (xt,−1)) and learn(S ∪ (xt,+1)) both return an answer then
7 query label yt of xt;
8 else
9 set yt to whichever label succeeded;

10 S ← S ∪ (xt, yt);

In fact, one does not necessarily need to explicitly maintain the entire version space Ht,

since maintaining the training points that have been presented together with their, possibly

inferred, labels, implicitly gives the most general consistent version space with these training

points. Algorithm 3 has the details.

Algorithms 2 and 3 were taken from (31).

5.2 Disagreement Coefficient

Below we describe the combinatorial notion of the disagreement coefficient which was in-

troduced by Hanneke in (62).

Definition 5.2.1 (Ball of Radius ε). For a target concept c, a ball BD (c, ε) of radius ε is

defined to be the set of all the hypotheses which have error at most ε with respect to the target

c under the distribution D.
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For the uniform distribution; that is, D = U, we will write BU (c, ε).

Definition 5.2.2 (Disagreement Region). For a target concept c and a ball BD (c, ε), the

disagreement region is defined to be the set of all the instances that can be classified in more

than one way by the hypotheses found in the ball BD (c, ε).

Definition 5.2.3 (Disagreement Coefficient (62; 31)). The disagreement coefficient is defined

to be

ρc,Dn
= sup

ε>0

Pr (DIS (BD (c, ε)))

ε
.

5.2.1 The Mellow Algorithm and the Disagreement Coefficient

We follow the notation in (31). Let Lcal (ε, δ) be the smallest integer t0 such that for all

t > t0 the probability that some hypothesis h ∈ Ht has error more than ε is less than or equal

to δ. Since the dependence of Lcal (ε, δ) upon δ is modest, at most polylog(1/δ), the following

theorem ignores δ and speaks only of Lcal (ε).

Theorem 5.2.4 (Label Complexity of Mellow Algorithm; (62)). Suppose H has finite VC

dimension d, and the learning problem is separable, with disagreement coefficient ρ. Then,

Lcal (ε) 6 Õ

(
ρ · d · log

1

ε

)
,

where the Õ (·) notation suppresses terms logarithmic in ρ, d, and log(1/ε).

The important point of Theorem 5.2.4 is that while a typical supervised learner would need

Ω (d/ε) examples to achieve error less than ε with high probability (see Theorem 2.5.4), in
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the active learning setting, this particular theorem has linear dependence with respect to the

disagreement coefficient ρ and hence when the disagreement coefficient has at most logarithmic

dependence on ε, Hanneke’s bound implies that the mellow algorithm achieves an exponential

speedup compared to traditional supervised learning. Moreover, quoting Dasgupta (31), this is

done “without any effort at finding maximally informative points!”

5.2.2 Summary of Results for the Disagreement Coefficient

In Section 5.3 we compute bounds for the disagreement coefficient of monotone conjunctions

under the uniform distribution Un by studying the disagreement region.

• We compute the exact value for the empty target and the target of size 1. This is done

in Theorems 5.3.1 and 5.3.2 respectively.

• For targets of size k such that 2 6 k 6 n − 1 we give a general upper bound of O
(
2k
)
.

This is done in Theorem 5.3.14.

• For targets of size k such that 2 6 k 6 ⌊n/2⌋ we show that the disagreement coefficient

of these targets is Θ
(
2k
)
. This is done in Theorem 5.3.16.

• A lower bound of Ω
(
1
n · 2(H(1−k/n)−(1−k/n))n

)
is given for targets of size k such that

⌊n/2⌋ + 1 6 k 6 2n/3. For targets of size 2n/3 < k 6 n − 2 we give a lower bound of

Ω
(

1
n ·
(
3
2

)n)
. Both of these bounds are given in Lemma 5.3.17.

• An upper bound of O
(
2(H(1−k/n)−(1−k/n))n

)
is given for targets of size k such that

⌊n/2⌋ + 2 6 k 6 2n/3. For targets of size 2n/3 < k 6 n − 2 we give an upper bound of

O
((

3
2

)n)
. Both of these bounds are given in Lemma 5.3.18.
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• Theorem 5.3.19 gives a summary of the bounds for targets of size k such that ⌊n/2⌋+1 6

k 6 n − 2. Note that the upper bound for the case where k = ⌊n/2⌋ + 1 is not given by

Lemma 5.3.18, but instead from Theorem 5.3.14.

• For targets of size n − 1 and n we give in both cases lower bounds of Ω
(

1
n ·
(
3
2

)n)
and

upper bounds of O
((

3
2

)n)
. This is done in Theorems 5.3.13 and 5.3.6 respectively.

5.3 Disagreement Coefficient for Monotone Conjunctions under Un

Here we examine the disagreement coefficient of monotone conjunctions under the uniform

distribution Un. Apart from the very recent paper of Balcan, Berlind, Ehrlich, and Liang (8), to

the best of our knowledge, Boolean functions have not been studied in the framework of AL. In

the case of targets of size k > ⌊n/2⌋+2 we are going to make extensive use of Proposition 2.2.2

in order to upper bound sums of binomial coefficients. Similarly, in the case of targets of size

k > ⌊n/2⌋ + 1, for lower bounding sums of binomial coefficients we are going to use the lower

bound of Proposition 2.2.1 for the biggest binomial coefficient that appears in each sum and

use this bound for the entire sum every time.

Given a target conjunction c and a hypothesis conjunction h, the probability of the error

region of h with respect to c can be found by counting truth assignments; see also Chapter 3

and (Equation 3.6). Let

c =
∧

i∈M

xi ∧
∧

j∈U

yj and h =
∧

i∈M

xi ∧
∧

ℓ∈R

wk , (5.1)
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where |M| = m, |U| = u, and |R| = r. Thus the x’s are mutual variables, the y’s are undiscovered

variables and the w’s are redundant variables appearing in h. Variables in the target c are called

good, and variables not in the target c are called bad.

The probability of the error region is

ε = 2−m−u + 2−m−r − 21−m−u−r

= 2−|c| + 2−|h| − 21−|h|−u

= 2−|c| + 2−|h|
(
1− 21−u

)
. (5.2)

5.3.1 Empty Target

Theorem 5.3.1 (Disagreement Coefficient for Empty Target). The disagreement coefficient of

the empty target is

2− 21−n .

Proof. When the target is empty, then m = u = 0 and (Equation 5.2) gives ε∅ = 1 − 2−r, for

r ∈ {0, 1, . . . , n}. As r increases, the error ε∅ increases. We will consider these values for error

in turn.

First when ε∅ = 0, that is r = 0, the only hypothesis that achieves this error is h = c = ∅.

Hence, the disagreement region is empty in this case. However, we are not interested in this

particular case, since in the Definition 5.2.3 we only care about positive values of the error.
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When r > 1, any truth assignment that is different from the all 1’s truth assignment

belongs to the disagreement region. To see this consider the first 0 occurrence in that truth

assignment and a hypothesis composed of only one variable, specifically that one where we have

the first occurrence of 0. Then that particular hypothesis outputs false for this particular truth

assignment, while the empty hypothesis outputs true. Then, the number of truth assignments

in the disagreement region is 2n − 1, which has probability weight equal to 1− 2−n. Hence the

candidate values for the disagreement coefficient are

1− 2−n

1− 2−r
, for r > 1 .

Maximizing the quantity over all the positive values of error, that is r > 1, it follows that we

want to minimize r. As a consequence we choose r = 1.

5.3.2 Target of Size One

Theorem 5.3.2 (Disagreement Coefficient for Target of Size 1). The disagreement coefficient

of a target of size 1 is

2− 21−n .

Proof. Let c = x. We distinguish cases based on the number of undiscovered variables. The

two possible values are u = 0 and u = 1.
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Error < 1/2. In this case the hypotheses have zero undiscovered variables and are extensions of

the target with at most n−1 additional variables. Hence, m = 1, u = 0 and r ∈ {0, 1, . . . , n−1},

which in turn implies m+ r = |h| ∈ {1, 2, . . . , n}. Then (Equation 5.2) gives the error

2−1 − 2−|h| .

Again, the minimum error is 0 when |h| = 1 ⇒ r = 0 and hence the only hypothesis that

achieves this much error is the target. As r increases, so does the error. Moreover, all the truth

assignments for which we have a 0 in the position of x do not belong to the disagreement region

since all the hypotheses return false as x is falsified. So, we restrict our attention to the truth

assignments where x = 1. Then, apart from the all 1’s truth assignment all the other truth

assignments belong to the disagreement region. To see this, consider the first occurrence of 0 in

such a truth assignment. Let y 6= x be the variable associated with this 0. Then the hypothesis

h = x∧ y is falsified by this specific truth assignment, while the hypothesis h = c = x returns

true. This implies 2n−1 − 1 truth assignments in the disagreement region and hence the first

sequence of candidate values for the disagreement coefficient is given by

2−1 − 2−n

2−1 − 2−|h|
, for |h| ∈ {2, . . . , n} .

This ratio is maximized when the denominator is minimized, that is |h| = 2, in which case we

get
(
2−1 − 2−n

)
/
(
2−2

)
= 2− 22−n.
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Error 1/2. The error of the hypotheses of this form is precisely 1/2 regardless of the number of

redundant variables. This value of error is obtained by all the hypotheses that are missing the

single variable which belongs to the target. In particular the hypothesis h = ∅ always returns

true. Hence all the 2n−1 truth assignments that were not included in the previous case in

the disagreement region are now included, since for every one of them the hypothesis h = ∅

returns true, while the hypothesis h = c = x returns false for all of them since x is falsified.

Again, for the all 1’s truth assignment all the hypotheses return true, so this truth assignment

is not in the disagreement region again. As a consequence we have 2n − 1 truth assignments

in the disagreement region and the error is precisely 1/2. This gives the last candidate for the

disagreement coefficient to be

(
1− 2−n

)
/(1/2) = 2− 21−n ,

which is larger among all the previous maximum value by an additive factor of 21−n and hence

is the value that we are looking for.
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5.3.3 Target of Maximum Size

The target has size |c| = n > 2. We distinguish cases based on the number of undiscovered

variables. Note that a hypothesis of size |h| = n − λ always identifies n − λ variables from the

target. The error of such hypotheses (which are different from the target itself) is given by

error (h) =






2−n , |h| = n− 1 ,

2−|h| − 2−n , |h| ∈ {0, 1, . . . , n− 2}.

(5.3)

Lemma 5.3.3 (Disagreement Region for Target of Maximum Size). For the target of size n

and error strictly less than 2λ−n, with λ ∈ {1, 2, . . . , n}, the size of the disagreement region is

λ∑

i=1

(
n

n− i

)
= −1+

λ∑

i=0

(
n

n− i

)
. (5.4)

Proof. We study the disagreement region as the error grows. In other words, we split the whole

process into n steps, and in each step we allow hypotheses of smaller size to be in the ball of

radius ε which determines the disagreement region.

Let us begin with the case where λ = 1. In this case the error is strictly less than 21−n.

Hence, the hypotheses that we have in a ball of radius ε are all the hypotheses of size n − 1.

Clearly the truth assignment that is the all 1’s truth assignment can not be in the disagreement

region because any hypothesis returns true. So for a truth assignment to be in the disagreement

region it has to contain at least one 0. Moreover, any truth assignment that has at least two

0’s can not belong to the disagreement region for this error because all the hypotheses (plus
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the target) return false. On the other hand, any truth assignment that has precisely one zero

belongs to the disagreement region. To see this note that the target returns false for that

particular truth assignment, but there is a hypothesis of size n − 1 which satisfies it, namely

the hypothesis that is missing the only variable that is 0. Hence, by counting the number of

1’s in the truth assignment, the contribution to the disagreement region from this step is

(
n

n− 1

)
.

The same argument holds for arbitrary λ ∈ {1, 2, . . . , n}. So, when the error is strictly less

than 2λ−n we are dealing with hypotheses that are of size at least n − λ. Then any truth

assignment that has at least (n− λ) 1’s can be satisfied by a hypothesis in our ball of radius ε.

In particular, the contribution to the disagreement region in every such step of increasing the

error is
(

n

n− λ

)
.

Lemma 5.3.4 (Critical Quantity). Let H (x) be the binary entropy of x; that is, H (x) =

−x lg(x) − (1 − x) lg(1 − x). The quantity H (x) − x with x ∈ (0, 1/2] is maximized for x = 1/3

with value fmax = H (1/3) − 1/3 ≈ 0.5849625. Moreover, it holds that 2fmax = 3/2.
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Proof. Let f(x) = H (x) − x = −x · lg x− (1− x) · lg(1− x) − x, with x ∈ (0, 1/2]. The derivative

of f is

f ′(x) = −
1

ln 2
− lg x+ lg(1− x) +

1

ln 2
− 1 = −1+ lg

(
1− x

x

)
.

We observe that for x = 1/3 it holds f ′(1/3) = 0. Moreover,

f ′′(x) =
x

(1− x) ln 2
· (−x− 1+ x)

x2
= −

1

x(1− x) ln 2
.

In other words, f ′′(x) < 0 ∀x ∈ (0, 1/2]. Hence, f ′(x) > 0 for x ∈ (0, 1/3), f ′(x) = 0 for x = 1/3,

and f ′(x) < 0 for x ∈ (1/3, 1/2]. As a consequence, the maximum value of f is obtained for

x = 1/3, which is fmax = f(1/3) = H(1/3) − 1/3 ≈ 0.5849625.

Finally we note that 2fmax = 2−
1
3 lg(1/3)− 2

3 lg(2/3)−1/3 =
(
1
3

)−1/3 ·
(
2
3

)−2/3 · 2−1/3 =
3
√
3 ·

3

√
32

22 · 1
3√
2
=

3√
33

3√
23

= 3
2 .

Lemma 5.3.5 (Useful Lower Bounds). Let H (x) be the binary entropy of x; that is, H (x) =

−x lg(x) − (1− x) lg(1− x) and let n ∈ N such that n > 13. Moreover, let x0 ∈
(
1
3 ,

1
3 + 1

n

)
and

x1 ∈
(
1
3 ,

1
3 + 1

n−1

)
. Then it holds






2(H(x0)−x0)n > 1
2 ·
(
3
2

)n

2(H(x1)−x1)(n−1) > 1
2 ·
(
3
2

)n−1

.

Proof. Let x0 = 1/3 + y, with y ∈ (0, 1/n). Then 2(H(x0)−x0)n = 2(H(x0)−1/3−y)n =

2(H(x0)−1/3)n · 2−yn > 2(H(x0)−1/3)n · 2−1. Since n > 12, H (x) is monotone increasing
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for x ∈ [1/3, 1/3+ 1/n). It follows that the last quantity is at least 1
2 · 2(H(1/3)−1/3)n which is

1
2 ·
(
3
2

)n
due to Lemma 5.3.4.

Let x1 = 1/3+y, with y ∈ (0, 1/(n−1)). Then 2(H(x1)−x1)(n−1) = 2(H(x1)−1/3−y)(n−1) =

2(H(x1)−1/3)(n−1) · 2−y(n−1) > 2(H(x1)−1/3)(n−1) · 2−1. Since n > 13, H (x) is monotone

increasing for x ∈ [1/3, 1/3 + 1/(n − 1)). It follows that the last quantity is at least 1
2 ·

2(H(1/3)−1/3)(n−1) which is 1
2 ·
(
3
2

)n−1
due to Lemma 5.3.4.

Theorem 5.3.6 (Disagreement Coefficient for Target of Maximum Size). For sufficiently large

n, for the disagreement coefficient ρc,Un
of the target c of (maximum) size n it holds that






1
2(n+1)

·
(
3
2

)n
< ρc,Un

< 2 ·
(
3
2

)n
, n (mod 3) = 0

1
4(n+1)

·
(
3
2

)n
< ρc,Un

< 2 ·
(
3
2

)n
, n (mod 3) 6= 0

.

Proof. Similarly to the preceding analysis we consider hypotheses of size |h| = n− λ.

When λ = 1 the error is 2−n and the disagreement region has size
(

n
n−1

)
. Hence, the

first candidate value for the disagreement coefficient is n/2n

2−n = n. However, this value will be

dominated.

For larger values of λ, that is λ ∈ {2, 3, . . . , n}, we want to maximize the quantity

(
−1+

∑λ
i=0

(
n

n−i

))
· 2−n

2λ−n − 2−n
=

(
−1+

∑λ
i=0

(
n
i

))
· 2−n

2λ−n − 2−n
.

First consider values of λ such that λ > n/2. The candidate values for the disagreement

coefficient based on these values of λ are relatively small compared to what we can achieve with
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smaller values of λ. In particular, the probability of the disagreement region is never more than

1, and the error is at least 2−1−n/2 = 1
2 · 2−n/2 = 1

2 ·
(√

2
)−n

. It follows that the candidate

values in that region can never be more than 1
1
2 ·(

√
2)

−n = 2 ·
√
2
n
. However, we will see below

that the disagreement coefficient, for smaller values of λ, can be Ω
(

1
n+1 ·

(
3
2

)n)
, which is

asymptotically larger than 2 ·
√
2
n

.

Below we distinguish cases according to the value of n (mod 3).

Upper Bound. For λ = α · n, with α ∈ (0, 1/2) such that α · n is an integer we have

∑α·n
i=0

(
n
i

)
6 2H(α)n, and hence by Lemma 5.3.3 the disagreement region has size less than

2H(α)n. Moreover, for the permissible values of α (that is, α · n is an integer) the error is at

least 2α·n−n−1 = 1
2 · 2−(1−α)n. As a consequence, the candidate values for the disagreement

coefficient are less than

2H(α)n · 2−n

1
2 · 2−(1−α)n

= 2 · 2(H(α)−1+(1−α))n = 2 · 2(H(α)−α)n .

By Lemma 5.3.4 it follows that no matter what the permissible values of α are, for α = 1/3 the

disagreement coefficient is for sure less than 2 ·
(
3
2

)n
.

Lower Bound when n (mod 3) = 0. In this case n is a multiple of 3. For λ = α · n, such

that λ > 2, the disagreement region has size at least 2H(α)n/(n+ 1) and moreover the error is

less than 21+α·n−n = 21−(1−α)n. As a consequence, the disagreement coefficient is bigger than

1

n+ 1
· 2

H(α)n · 2−n

21−(1−α)n
=

1

2(n+ 1)
· 2(H(α)−α)n .
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By Lemma 5.3.4 it follows that for α = 1/3 the disagreement coefficient is bigger than 1
2(n+1)

·
(
3
2

)n
.

Lower Bound when n (mod 3) 6= 0. We select the unique α0 ∈ (1/3, 1/3 + 1/n) such

that λ = α0 · n is an integer which is at least 2. Then, the disagreement region has size

at least 2H(α0)n/(n + 1) and moreover the error is less than 21+α0·n−n = 21−(1−α0)n <

21−(1−1/3−1/n)n = 22−2n/3. As a consequence, the disagreement coefficient is bigger than

1

n+ 1
· 2

H(α0)n · 2−n

22−2n/3
=

1

4(n+ 1)
· 2(H(α0)−1+2/3)n >

1

4(n+ 1)
· 2(H(1/3)−1/3)n ,

where the last inequality follows because H (x) is monotone increasing for x ∈ (0, 1/2). By

Lemma 5.3.4 it follows that the disagreement coefficient is bigger than 1
4(n+1)

·
(
3
2

)n
.

5.3.4 Target of Size One Less Than Maximum

The target has size |c| = n−1. We study of the disagreement region based on the permissible

values of error in increasing order.

Lemma 5.3.7 (Disagreement Region Contribution for Tiny Error (2−n) Hypotheses). For the

target of size n − 1 and error at most 2−n, the contribution to the size of the disagreement

region is

1 .

Proof. Since the error is strictly less than 21−n which is the weight of the target, we are dealing

with hypotheses that are specializations of the target. There is only one such hypothesis,
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namely the hypothesis h = c ∧ x, where x is the only variable missing from the target. As a

consequence, the only truth assignment that is introduced into the disagreement region is the

truth assignment where x is 0 and all the other variables are equal to 1.

Lemma 5.3.8 (Disagreement Region Contribution for Small Error
(
21−n

)
Hypotheses). For

a target of size n − 1 and error at most 21−n, the contribution to the size of the disagreement

region is

2 ·
(
n− 1

n− 2

)
.

Proof. This value of error allows hypotheses that are missing at most one variable from the

target. Hence, any truth assignment that has at least two 0’s among the good variables does

not belong to the disagreement region because all the hypotheses return false. Regarding the

truth assignments that have precisely one 0 among the good variables, all of them belong to

the disagreement region regardless of whether or not they satisfy the variable x that is missing

from the target. Counting the number of 1’s in the segment of the truth assignment that deals

with good variables gives the lemma.

Lemma 5.3.9 (Disagreement Region Contribution for Error at most 21+λ−n where λ ∈ {1, 2, . . . , n−2}).

For a target of size n−1 and error at most 21+λ−n, where λ ∈ {1, 2, . . . , n−2}, the contribution

to the size of the disagreement region at step λ is






(
n−1
n−3

)
, λ = 1,

(
n−1

n−2−λ

)
+
(

n−1
n−1−λ

)
, λ > 1 .
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Proof. When the error is at most 21−n + 21+λ−n(1 − 2−λ) = 21+λ−n we are dealing with

hypotheses of size at least n− 1− λ, where λ ∈ {1, 2, . . . , n− 2}. Let x be the bad variable.

Let λ = 1. We have just introduced in our ball the hypotheses of size n− 2 that are missing

λ+ 1 = 2 variables from the target. This is only accomplished when the hypotheses have n− 3

good variables and the variable x. Such hypotheses are satisfied by truth assignments where

x as well as the n − 3 good variables are satisfied. The number of such truth assignments is

(
n−1
n−3

)
.

Now fix a λ > 1. In every such step we are introducing into the disagreement region two

kinds of truth assignments. The first kind is similar to the previous case; that is, we have

(n − 2 − λ) 1’s among the good variables and moreover x is satisfied. The other kind of truth

assignments has (n−1−λ) 1’s among the good variables and x is falsified. The number of such

truth assignments is
(

n−1
n−2−λ

)
+
(

n−1
n−1−λ

)
.

Lemma 5.3.10 (Disagreement Region Contribution for Error at Most 1− 21−n). For a target

of size n − 1 and allowing the maximum error possible
(
1− 21−n

)
, the contribution to the

disagreement region is

1 .

Proof. In this last step of the expansion of the error the empty hypothesis also appears in

our ball of radius ε. This hypothesis classifies the last truth assignment that has not been

introduced into the disagreement region, which is the all 0’s truth assignment. (Of course the

other truth assignment that has not been introduced into the disagreement region is the all
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1’s truth assignment, but that particular truth assignment can never be into the disagreement

region.)

Lemma 5.3.11 (Lower Bound for Disagreement Coefficient for Target with Size One Less than

Maximum). Let n > 13. For the disagreement coefficient ρc,Un
of the target of size n − 1 it

holds 




1
n ·
(
3
2

)n−1
, n (mod 3) = 1

1
2n ·

(
3
2

)n−1
, n (mod 3) 6= 1

.

Proof. Let λ > 2. We will use Lemmas 5.3.7, 5.3.8, and 5.3.9. When we have error at most

21+λ−n the size of the disagreement region is

1+ 2 ·
(
n− 1

n− 2

)
+

(
n− 1

n− 3

)
+

λ∑

i=2

((
n− 1

n− 2− i

)
+

(
n− 1

n− 1− i

))
.

Rewriting 1 = 2 ·
(
n−1
n−1

)
− 1 and breaking the second sum we have

−1+ 2 ·
(
n− 1

n− 1

)
+ 2 ·

(
n− 1

n− 2

)
+

(
n− 1

n− 3

)
+

λ∑

i=2

(
n− 1

n− 2− i

)
+

λ∑

i=2

(
n− 1

n− 1− i

)
,

which is

−1+

(
n− 1

n− 2− λ

)
+ 2 ·

λ∑

i=0

(
n− 1

n− 1− i

)
> 2 ·

λ∑

i=0

(
n− 1

n− 1− i

)
.
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Consider permissible values of α such that λ = α · (n − 1) is an integer with α ∈ (0, 1/2)

and moreover λ > 2. Then the disagreement region is at least

2 ·
λ∑

i=0

(
n− 1

n− 1− i

)
= 2 ·

λ∑

i=0

(
n− 1

i

)
> 2 ·

(
n− 1

λ

)
= 2 ·

(
n− 1

α · (n− 1)

)
>

2

n
· 2H(α)(n−1) .

The error is at most 21+α(n−1)−n = 2α(n−1)−(n−1) = 2−(1−α)(n−1). As a consequence,

candidate values for the disagreement coefficient are bigger than

2

n
· 2

H(α)(n−1) · 2−n

2−(1−α)(n−1)
=

1

n
· 2(H(α)−1+(1−α))(n−1) =

2(H(α)−α)(n−1)

n
.

Case n (mod 3) = 1. Since n (mod 3) = 1 it follows that 1
3 · (n− 1) = n/3− 1/3 is an integer.

Hence, setting λ = 1/3 · (n − 1), by Lemma 5.3.4 it follows that there are candidate values for

the disagreement coefficient that are bigger than 1
n ·
(
3
2

)n−1
.

Case n (mod 3) = 2. Since n (mod 3) = 2 it follows that there is a unique integer in the

interval (n/3, n/3+ 1), namely (n+ 1)/3. We now select α1 so that λ is equal to that integer;

that is, α1(n − 1) = (n + 1)/3 ⇒ α1 = n+1
3(n−1)

= 1
3 +

2/3
n−1 . Hence α1 ∈

(
1
3 ,

1
3 + 1

n−1

)
.

By Lemma 5.3.5 it follows that 2(H(α1)−α1)(n−1) > 1
2 ·
(
3
2

)n−1
. As a consequence, there are

candidate values for the disagreement coefficient which are bigger than 1
2n ·

(
3
2

)n−1
.

Case n (mod 3) = 0. Since n (mod 3) = 0 it follows that n/3 is an integer. We now select

α1 so that λ is equal to that integer; that is, α1(n − 1) = n/3 ⇒ α1 = n
3(n−1)

= 1
3 +

1/3
n−1 .

Hence α1 ∈
(
1
3 ,

1
3 + 1

n−1

)
. By Lemma 5.3.5 it follows that 2(H(α1)−α1)(n−1) > 1

2 ·
(
3
2

)n−1
. As
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a consequence, there are candidate values for the disagreement coefficient which are bigger than

1
2n ·

(
3
2

)n−1
.

Lemma 5.3.12 (Upper Bound for Disagreement Coefficient for Target with Size One Less than

Maximum). The disagreement coefficient of the target of size n− 1 is at most

4 ·
(
3

2

)n−1

.

Proof. We examine candidate values for the disagreement coefficient that correspond to increas-

ing values of the error.

Error 2−n. This is the case of Lemma 5.3.7. The probability of the disagreement region is

2−n and the error is 2−n. Hence, the candidate value for the disagreement coefficient is 1.

Error 21−n. This is the case of Lemma 5.3.8. The size of the disagreement region is 1 + 2 ·
(
n−1
n−2

)
= 1+ 2(n− 1) = 2n− 1 < 2n. Hence, the probability of the disagreement region is less

than 2n · 2−n. As a consequence, the candidate value for the disagreement coefficient from this

particular value of error is less than (2n · 2−n)/21−n = n · 21−n−1+n = n.

21−n < Error 6 2−1. This is the case of Lemma 5.3.9. The permissible values of error are

separated by considering hypotheses of different sizes, and within such intervals there is an

additional refinement on the permissible values for the error which depend on the number of

undiscovered variables in the hypotheses of certain size. Since we are aiming for an upper bound,

we will overestimate the probability of the disagreement region and we will underestimate the

permissible error which allows the disagreement region of interest.
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Regarding the big gaps for the error, these are obtained by considering hypotheses of size

n− 1− λ, where λ ∈ {1, 2, . . . , n− 2}.

Now, let λ > 2 and λ+1 = α · (n−1), with α ∈ (0, 1/2). By Lemmas 5.3.7, 5.3.8, and 5.3.9,

for a fixed such λ the disagreement region is

1+ 2 ·
(
n− 1

n− 2

)
+

(
n− 1

n− 3

)
+

λ∑

i=2

((
n− 1

n− 2− i

)
+

(
n− 1

n− 1− i

))
,

which is

−1+

(
n− 1

n− 2− λ

)
+ 2 ·

λ∑

i=0

(
n− 1

n− 1− i

)
< 2 ·

λ+1∑

i=0

(
n− 1

n− 1− i

)
= 2 ·

α·(n−1)∑

i=0

(
n− 1

i

)
.

This last quantity is at most 2 · 2H(α)(n−1) .

For every particular λ the minimum error is obtained by minimizing the number of undis-

covered variables among the hypotheses of the particular size that were just introduced. For

any λ > 2, the number of undiscovered variables in hypotheses of size n − 1 − λ is at least 2.

Hence, by (Equation 5.2) the error is at least 21−n+2−(n−1−λ) ·2−1 > 2λ−n = 2α·(n−1)−n−1 =

2−2−(1−α)(n−1).

As a consequence of these last observations the candidate values for the disagreement coef-

ficient are less than

2 · 2H(α)(n−1) · 2−n

2−2−(1−α)(n−1)
=

2H(α)(n−1) · 2−(n−1)

2−2−(1−α)(n−1)
= 22 ·2(H(α)−1+(1−α))(n−1) = 4 ·2(H(α)−α)(n−1) .
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Hence by Lemma 5.3.4, for α = 1/3, the candidate values for the disagreement coefficient are

bounded from above by 4 ·
(
3
2

)n−1
.

For larger values of λ, that is λ > ⌈n/2⌉, the probability of the disagreement region is

a constant, and in any case at most 1. On the other hand, the error is at least 2−⌊n/2⌋−2,

and hence the candidate values for the disagreement coefficient are not more than 4 · 2⌊n/2⌋ 6

4 ·
(√

2
)n

.

Error 1 − 21−n. This is the case of Lemma 5.3.10. The probability of the disagreement

region is 1 − 2−n and the error is 1 − 21−n. Hence the disagreement coefficient in this case is

(1− 2−n)/(1− 21−n) = 1+ 1/(2n − 2).

Theorem 5.3.13 (Disagreement Coefficient for Target with Size One Less than Maximum).

For the disagreement coefficient ρc,Un
of a target of size n− 1 it holds






1
n ·
(
3
2

)n−1
< ρc,Un

< 4 ·
(
3
2

)n−1
, n (mod 3) = 1

1
2n ·

(
3
2

)n−1
< ρc,Un

< 4 ·
(
3
2

)n−1
, n (mod 3) 6= 1

.

Proof. Immediate from Lemmas 5.3.11 and 5.3.12.

5.3.5 General Cases

We are now ready to proceed with the general cases.
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Theorem 5.3.14 (General Upper Bound on the Disagreement Coefficient). Consider a target

of size k such that 2 6 k 6 n − 1. Then the disagreement coefficient of this target is strictly

less than

2k .

Proof. We distinguish cases for the values of error.

Error < 2−k. First consider values of error strictly smaller than the weight of the target

c. By (Equation 5.2), such values are possible only when we consider hypotheses that are

specializations of the target (plus the target itself); that is u = 0 in (Equation 5.2). In particular,

by (Equation 5.2) the minimum non-zero error is obtained by specializations of the target of

precisely one more variable and is equal to 2−1−k. On the other hand, the truth assignments

that belong to the disagreement region have to satisfy all k variables that appear in the target,

otherwise, all the hypotheses return false for these truth assignments. Among the rest n − k

positions of the truth assignments, we want to avoid the all 1’s extension, since the resulting

truth assignment is the all 1’s truth assignment and any hypothesis returns true for this truth

assignment. On the other hand, if the extension has at least one 0, then the truth assignment

belongs to the disagreement region. To see this, consider the first occurrence of 0 in such an

extension, and let the variable u be associated with that particular zero. Then the hypothesis

h = c ∧ u returns false for this particular truth assignment while c classifies this particular

truth assignment as true.
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Moreover, as the error ε increases, but is still less than 2−k, all that really happens is that we

allow more hypotheses in our balls of radius ε, but the disagreement region remains unchanged.

Hence, the candidate values for the disagreement coefficient drop as ε increases.

In any case, the number of truth assignments in the disagreement region is 2n−k−1 and the

error is at least 2−1−k. Hence, the maximum candidate value for the disagreement coefficient

among errors that are strictly less than 2−k is

(
2n−k − 1

)
· 2−n

2−1−k
=

2−k − 2−n

2−1−k
= 2− 2k+1−n .

Error 2−k. Let the error be precisely 2−k. Then, the hypotheses in our ball of radius ε are all

the hypotheses that we have in the previous case plus the hypotheses that are missing precisely

one variable from the target. First we note that any truth assignment that has less than (k−1)

1’s among the k variables that appear in the target is classified as false by any hypothesis in

our ball, and hence all these truth assignments do not belong to the disagreement region. On

the other hand, any truth assignment that has precisely one 0 among these k positions belongs

to the disagreement region. To see this note that the target classifies all such truth assignments

as false, while on the other hand we have at our disposal a hypothesis that can classify this

particular truth assignment as true. Hence, the total number of truth assignments that belong
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to the disagreement region is
(
k
k

)
·2n−k−1+

(
k

k−1

)
·2n−k = (k+ 1) ·2n−k−1. As a consequence,

the candidate value for the disagreement coefficient in this case is

(
(k+ 1) · 2n−k − 1

)
· 2−n

2−k
= (k+ 1) − 2k−n .

Error > 2−k. Let the error be strictly more than 2−k. Since, the probability of the disagree-

ment region is at most 1, candidate values for the disagreement coefficient for these values of

error are strictly less than

1

2−k
= 2k .

The claim follows from this last case.

Lemma 5.3.15 (Lower Bound on the Disagreement Coefficient of Short Targets). Consider a

target of size k such that 2 6 k 6 ⌊n/2⌋. Then, the disagreement coefficient of this target is

more than

1

4
· 2k .

Proof. For a target c of size k such that 2 6 k 6 ⌊n/2⌋, let Hk
>2 be the set of hypotheses

that are missing missing at least least two variables from the target and are of size at least

k. Moreover, let H1 be the set of hypotheses that are missing precisely one variable from the

target, and note that all these hypotheses have size at least k − 1. Finally, let H0 be the set

of hypotheses that are missing no variables from the target. Note that all these hypotheses in

H0 are of size at least k. Let the maximum error obtained from the hypotheses in Hk
>2 be
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ε. These hypotheses form our ball of radius BU (c, ε) = H0 ∪H1 ∪Hk
>2. We now study the

disagreement region for this particular error ε.

• Pick a random truth assignment σ that has at least k 1’s. Then, as long as

σ 6= 11 . . . 11︸ ︷︷ ︸

all 1’s

,

the claim is that this truth assignment belongs to the disagreement region.

– If c (σ) is false, then it is easy to find a hypothesis that satisfies this truth assign-

ment. The reason is that σ has at least k 1’s and we have at our disposal all the

hypotheses of size at least k. In particular we take the hypothesis that contains the

variables that are set to 1 in the truth assignment.

– If c (σ) is true, recall that σ has at least one 0. Let the variable of the first occurrence

of 0 in σ be the variable x. Then the hypothesis h = c ∧ x classifies σ as false.

The number of truth assignments considered in this case are −1+
∑n

i=k

(
n
i

)
.

• Now pick a random truth assignment σ that has at most (k − 2) 1’s. The claim is that

σ does not belong to the disagreement region. Clearly c (σ) is false. Moreover, all the

hypotheses in our ball of radius ε contain hypotheses of size at least k − 1. Hence, any

such hypothesis h also returns false as at least one variable is falsified in every one of

them. The number of truth assignments considered in this case are
∑k−2

i=0

(
n
i

)
.
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• Finally pick a random truth assignment σ that has precisely (k − 1) 1’s. Clearly c (σ)

is false. In order for such a truth assignment to belong to the disagreement region we

must be able to find a hypothesis such that h (σ) is true. The only hypotheses that we

have of size k− 1 are the hypotheses of that particular size that are missing precisely one

variable from the target c. Hence, among the
(

n
k−1

)
truth assignments considered in this

case, only
(

k
k−1

)
= k belong to the disagreement region.

By the above analysis, the number of truth assignments that belong to the disagreement

region is

k− 1+

n∑

i=k

(
n

i

)
>

n∑

i=k

(
n

i

)
>

n∑

i=⌊n/2⌋

(
n

i

)
> 2n−1 .

In other words, the probability of the disagreement region is at least 1/2.

On the other hand, by (Equation 5.2) the error for the above analysis is strictly less than

2−k + 2−k = 21−k. As a consequence, the disagreement coefficient for targets of size k such

that 2 6 k 6 ⌊n/2⌋, is

ρ >
1/2

21−k
=

1

4
· 2k ,

which implies the statement of the lemma.

Theorem 5.3.16 (Disagreement Coefficient for Short Targets). Consider a target c of size k

such that 2 6 k 6 ⌊n/2⌋. Then, for the disagreement coefficient ρc,Un
of this target it holds

1

4
· 2k < ρc,Un

< 2k .
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Proof. Immediate from Theorem 5.3.14 and Lemma 5.3.15.

Lemma 5.3.17 (Lower Bound on the Disagreement Coefficient of Long Targets). Consider a

target c of size k such that ⌊n/2⌋+ 1 6 k 6 n− 2. Then, for the disagreement coefficient ρc,Un

of this target it holds

ρc,Un
>






1
2(n+1)

· 2(H(1−k/n)−(1−k/n))n , ⌊n/2⌋ < k 6 2n/3

1
4(n+1)

·
(
3
2

)n
, 2n/3 < k 6 n− 2 and n (mod 3) = 0

1
8(n+1)

·
(
3
2

)n
, 2n/3 < k 6 n− 2 and n (mod 3) 6= 0

.

Proof. Let k = n−αn, with α ∈ (0, 1/2). For reasons that will soon be apparent we distinguish

cases when ⌊n/2⌋+ 1 6 k 6 2n/3 and 2n/3 < k 6 n− 2.

Size k such that ⌊n/2⌋ < k 6 2n/3. Note that in this case α ∈ [1/3, 1/2). We consider the

value of error that is obtained by hypotheses of size k. Note that for this value of error we

have hypotheses in our ball of radius ε that are missing at least two variables. Moreover for

this value of error we also have at our disposal the hypotheses that are missing precisely 0 or

1 variable from the target. In particular, these last hypotheses have size at least k and k − 1

respectively.

The proof is similar to that of Lemma 5.3.15.

• A truth assignment that has at least k 1’s and is different from the all 1’s truth assignment

belongs to the disagreement region.
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• A truth assignment that has at most (k − 2) 1’s does not belong to the disagreement

region.

• Finally, among the
(

n
k−1

)
truth assignments that have precisely (k−1) 1’s, only

(
k

k−1

)
= k

belong to the disagreement region.

Hence, the number of truth assignments that belong to the disagreement region is

k− 1+

n∑

i=k

(
n

i

)
>

n∑

i=k

(
n

i

)
=

n∑

(1−α)n

(
n

i

)
=

α·n∑

i=0

(
n

i

)
>

2H(α)n

n+ 1
.

By (Equation 5.2) the error is strictly less than 2 · 2−k = 21−(1−α)n. As a consequence, for

the disagreement coefficient it holds

ρc,Un
>

2H(α)n

n+1 · 2−n

21−(1−α)n

=
1

2(n+ 1)
· 2(H(α)−1+(1−α))n

=
1

2(n+ 1)
· 2(H(α)−α)n

Size k such that 2n/3 < k 6 n − 2. Note that α ∈ (0, 1/3). We consider the value of error

that is obtained by hypotheses of size s = k − βn − 1 = n − (α + β)n − 1 6 k − 1, such that

α + β < 1/2. Note that for this value of error we have hypotheses in our ball of radius ε that

are missing at least two variables. Moreover for this value of error we also have at our disposal

the hypotheses that are missing precisely 0 or 1 variable from the target. In particular, these

last hypotheses have size at least k and k− 1 respectively.
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Again, the proof is similar to that of Lemma 5.3.15.

• A truth assignment that has at least s 1’s and is different from the all 1’s truth assignment

belongs to the disagreement region.

• A truth assignment that has at most (s − 1) 1’s does not belong to the disagreement

region.

Hence, the number of truth assignments that belong to the disagreement region is

−1+

n∑

i=s

(
n

i

)
= −1+

(
n

s

)
+

n∑

i=s+1

(
n

i

)
>

n∑

i=n−(α+β)n

(
n

i

)
=

(α+β)n∑

i=0

(
n

i

)
>

2H(α+β)n

n+ 1
.

By (Equation 5.2) the error is dominated by the weight of the minimum size hypotheses.

The error is strictly less than 2 · 2−s. Since s is an integer and moreover s = (1 − (α +

β))n − 1, which is strictly less than k, by (Equation 5.2) it follows that the error is less than

2 · 21−(1−(α+β))n = 22−(1−(α+β))n. Recall that k = n − αn ⇒ α = (n − k)/n. Hence,

s = n − (n − k) − βn − 1 = k − βn − 1, where β is such so that β · n is an integer. As a

consequence, for the disagreement coefficient it holds

ρc,Un
>

2H(α+β)n

n+1 · 2−n

22−(1−(α+β))n

=
1

4(n+ 1)
· 2(H(α+β)−1+(1−(α+β)))n

=
1

4(n+ 1)
· 2(H(α+β)−(α+β))n

Before we continue with the proof we observe that α ·n is an integer by the definition of α.
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Case n (mod 3) = 0. We set β = 1/3 − α = 1/3 − (1 − k/n) = k/n − 2/3. Then, β · n is

also an integer since n (mod 3) = 0. Moreover, α+β = 1/3. Hence, by Lemma 5.3.4 there are

candidate values for the disagreement coefficient for this case that are bigger than 1
4(n+1)

·
(
3
2

)n
.

Case n (mod 3) = 1. We set β = k
n − 2

3 + 2
3n . First note that β · n = k − 2n/3 + 2/3 =

k − 2 · (n−1)
3 which is an integer since k is an integer and (n − 1) (mod 3) = 0. Moreover,

α + β = 1 − k/n + k/n − 2/3 + 2/(3n) = 1
3 +

2/3
n . By Lemma 5.3.5 it follows that there are

candidate values for the disagreement coefficient which are bigger than 1
8(n+1)

·
(
3
2

)n
.

Case n (mod 3) = 2. We set β = k
n− 2

3+
1
3n . First note that β ·n = k−2n/3+1/3 = k− 2n−1

3

which is an integer since k is an integer and 2n− 1 (mod 3) = 0. Moreover, α+β = 1− k/n+

k/n − 2/3 + 1/(3n) = 1
3 +

1/3
n . By Lemma 5.3.5 it follows that there are candidate values for

the disagreement coefficient which are bigger than 1
8(n+1)

·
(
3
2

)n
.

Lemma 5.3.18 (Upper Bound on the Disagreement Coefficient of Long Targets). Consider a

target c of size k such that ⌊n/2⌋+ 2 6 k 6 n− 2. Then, for the disagreement coefficient ρc,Un

of this target it holds

ρc,Un
<






2 · 2(H(1−k/n)−(1−k/n))n , ⌊n/2⌋+ 2 6 k 6 2n/3

2 ·
(
3
2

)n
, 2n/3 < k 6 n− 2

.

Proof. We examine the candidate values for the disagreement coefficient for increasing values

of the error.

Error < 2−k. The maximum candidate value for the disagreement coefficient among errors

that are strictly less than 2−k is 2− 2k+1−n. See the equivalent case in Theorem 5.3.14.



120

Error 2−k. The candidate value for the disagreement coefficient in this case is (k+ 1)− 2k−n.

Again see the equivalent case in Theorem 5.3.14.

Error > 2−k. This is the important case from where we will obtain the upper bound. Let

k = n − αn, with α ∈ (0, 1/2). We distinguish cases when ⌊n/2⌋ + 2 6 k 6 2n/3 and

2n/3 < k 6 n− 2 similarly to Lemma 5.3.17.

Size k such that ⌊n/2⌋+ 2 6 k 6 2n/3. Note that in this case α ∈ [1/3, 1/2). As long as we

consider increasing values of error that are less than 2 · 2−k = 21−k, we are introducing

in our ball of radius ε hypotheses that are missing at least two variables from the target

with successively smaller sizes but their sizes is at least k. During this process, the

disagreement region increases, but in any case is bounded from above by the size of the

disagreement region that is formed when we introduce hypotheses of size at least k which

are missing as many variables from the target as possible. In that case the disagreement

region is (see for example Lemma 5.3.17)

k− 1+

n∑

i=k

(
n

i

)
< n+

n∑

i=(1−α)n

(
n

i

)
= n+

αn∑

i=0

(
n

i

)
6 n+ 2H(α)n < 21+H(α)n ,

where the last inequality follows since H (α) > 9/10 for α ∈ [1/3, 1/2) and lgn < 9n/10

for every n > 2. As a consequence, the candidate values for the disagreement coefficient

in this region of error are less than

21+H(α)n · 2−n

2−k
=

21+H(α)n · 2−n

2−(1−α)n
= 2 · 2(H(α)−1+(1−α))n = 2 · 2(H(α)−α)n .
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Now let us consider values of error that are at least 21−k and less than 2−k+2−(⌊n/2⌋+1).

By (Equation 5.2) any such permissible value of error belongs to an interval of the form

[2−k+2−1+λ−k, 2−k+2λ−k), where k−λ is the minimum size of the hypotheses. Moreover,

let λ = βn such that (α + β)n 6 ⌊n/2⌋. The disagreement region for such an error is

bounded from above by the disagreement region of the maximum error that is less than

2−k + 2λ−k. Excluding the all 1’s truth assignment, the disagreement region is thus

bounded from above by the number of truth assignments that have at least (k − λ) 1’s

which is −1+
∑n

i=k−λ

(
n
i

)
6

∑n−k+λ
i=0

(
n
i

)
=

∑αn+βn
i=0

(
n
i

)
6 2H(α+β)n. For every such λ

the error is at least 2−k + 2−1+λ−k > 2−1+λ−k = 2−1+βn−(1−α)n = 2−1−(1−(α+β))n. It

follows that the candidate values for the disagreement coefficient in this region of error

are less than

2H(α+β)n · 2−n

2−1−(1−(α+β))n
= 2 · 2(H(α+β)−1+(1−(α+β)))n = 2 · 2(H(α+β)−(α+β))n .

However, by Lemma 5.3.4 the function H(x)−x is monotone decreasing for x ∈ (1/3, 1/2].

Since α > 1/3 and α + β 6 1/2, it follows that β should be minimized, and hence the

candidate values for the disagreement coefficient are less than 2 · 2(H(α)−α)n.

Finally consider values of error that are at least 2−k+2−1−(⌊n/2⌋+1). Then the probability

of the disagreement region is at most 1 and the error is at least 2−2−⌊n/2⌋. As a conse-

quence the candidate values for the disagreement coefficient are less than 4 · 2⌊n/2⌋. On

the other hand, the function H (x)−x is monotone decreasing for x ∈ [1/3, 1/2], with min-
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imum value H (1/2) − 1/2 = 1− 1/2 = 1/2. Therefore, since α < 1/2⇒ H (α) −α > 1/2,

for sufficiently large n it holds that 4 · 2⌊n/2⌋ 6 2 · 2(H(α)−α)n.

Size k such that 2n/3 < k 6 n− 2. Note that in this case α ∈ (0, 1/3). Again, in the first

case we consider increasing values of error that are less than 2 · 2−k = 21−k. The size of

the disagreement region is again bounded from above by the quantity

k− 1+

n∑

i=k

(
n

i

)
.

However, this time α ∈ (0, 1/3) and hence we can not give the same bound as before. On

the other hand, it holds

k− 1+

n∑

i=k

(
n

i

)
<

(
n

k− 1

)
+

n∑

i=k

(
n

i

)
=

n∑

i=(1−α)n−1

(
n

i

)
=

αn+1∑

i=0

(
n

i

)
6 2H(α+1/n)n .

Regarding the error, it is at least 2−k = 2−(1−α)n and hence the candidate values for the

disagreement coefficient are less than

2H(α+1/n)n · 2−n

2−(1−α)n
= 2(H(α+1/n)−1+(1−α))n = 2 · 2(H(α+1/n)−(α+1/n))n .

Now let us consider values of error that are at least 21−k and less than 2−k+2−(⌊n/2⌋+1).

Again by (Equation 5.2) any such permissible value of error belongs to an interval of the

form [2−k + 2−1+λ−k, 2−k + 2λ−k), where k − λ is the minimum size of the hypotheses.

Moreover, let λ = βn such that (α + β)n 6 ⌊n/2⌋. The disagreement region for such an
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error is bounded from above by the disagreement region of the maximum error that is less

than 2−k + 2λ−k. Excluding the all 1’s truth assignment, the disagreement region is thus

bounded from above by the number of truth assignments that have at least (k − λ) 1’s

which is −1+
∑n

i=k−λ

(
n
i

)
6

∑n−k+λ
i=0

(
n
i

)
=

∑αn+βn
i=0

(
n
i

)
6 2H(α+β)n. For every such λ

the error is at least 2−k + 2−1+λ−k > 2−1+λ−k = 2−1+βn−(1−α)n = 2−1−(1−(α+β))n. It

follows that the candidate values for the disagreement coefficient in this region of error

are less than

2H(α+β)n · 2−n

2−1−(1−(α+β))n
= 2 · 2(H(α+β)−1+(1−(α+β)))n = 2 · 2(H(α+β)−(α+β))n .

However, by Lemma 5.3.4 the function H(x)−x achieves its maximum when α+β = 1/3.

As a consequence, the candidate values for the disagreement coefficient are bounded from

above by the quantity

2 · 2(H(1/3)−1/3)n = 2 ·
(
3

2

)n

.

Finally, as the error increases even further, the candidate values that we obtain for an

upper bound are smaller. Similarly to the case before, we obtain an upper bound of the

form O
(
2⌊n/2⌋), which is asymptotically smaller than the O

((
3
2

)n)
that we have from

the previous interval of errors.

Hence, in the case where ⌊n/2⌋+2 6 k 6 2n/3 the upper bound is 2·2(H(1−k/n)−(1−k/n))n,

while when 2n/3 < k 6 n− 2 the upper bound is 2 ·
(
3
2

)n
. Note that if n is divisible by 3 then

for k = 2n/3 the two bounds are the same.
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Theorem 5.3.19 (Disagreement Coefficient for Long Targets). Consider a target c of size k

such that ⌊n/2⌋+1 6 k 6 n−2. Let α = 1−k/n. Then, for the disagreement coefficient ρc,Un

of this target it holds






2(H(α)−α)n

2·(n+1)
< ρc,Un

< 2k , k = ⌊n/2⌋+ 1

2(H(α)−α)n

2·(n+1)
< ρc,Un

< 21+(H(α)−α)n , ⌊n/2⌋+ 2 6 k 6 2n/3

(3/2)n

4·(n+1)
< ρc,Un

< 2 · (3/2)n , 2n/3 < k 6 n− 2 and υ = 0

(3/2)n

8·(n+1)
< ρc,Un

< 2 · (3/2)n , 2n/3 < k 6 n− 2 and υ 6= 0

,

where υ = n (mod 3).

Proof. For the lower bounds we use Lemma 5.3.17 in every case. When k = ⌊n/2⌋ + 1 we use

Theorem 5.3.14 for the upper bound, while, for all the other values of k we use Lemma 5.3.18

for the upper bound.



CHAPTER 6

NETWORK ANALYSIS OF KNOWLEDGE BASES

Enabling computers to do common-sense reasoning is one of the basic challenges in AI,

implicit in the work of Turing, and made explicit by McCarthy (93). The availability of large

amounts of common-sense knowledge is widely accepted to be a necessary condition for such

reasoning. It is an important and relatively recent development that large common-sense knowl-

edge bases such as Cyc and ConceptNet are publicly available. This availability, combined with

potential new applications in web search, robotics, human-computer interaction and other areas,

has led to an increased interest in common-sense reasoning.

ConceptNet, on which we focus in this chapter, is a semantic net of triples of the form

(concept1, relation, concept2), with every relation coming from a fixed set of about two

dozen relations, such as IsA and Causes (67; 66). Its data was initially collected via the web in

the form of sentences, and turned into statements using NLP tools. The triples are represented

as a sparse matrix with concepts as rows and relation-concept pairs as columns. Low-rank

approximations of a condensed version of the matrix, called AnalogySpace, are also available

(127). Thus, ConceptNet allows for both symbolic and statistical reasoning.

ConceptNet has been used for various applications (e.g., (123)), including query answering

(79). Moreover, ConceptNet was recently evaluated for its ability in answering IQ-tests for

children, which was proposed as a general evaluation method for common-sense knowledge bases.

ConceptNet’s verbal IQ corresponded to an average 4-year old (101; 102). The algorithms used
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for answering the IQ-test items were quite simple; that work was also intended to evaluate the

ease of use of the system.

Thus, the ConceptNet system is an example of a large knowledge base that has had at least

some success in some common-sense tasks, and is a suitable target for studying properties of

large common-sense knowledge bases.

6.1 Network Analysis of Knowledge Bases

Here we explore the properties of ConceptNet using the tools of network analysis (18; 44; 99).

Social, collaboration, and information networks are major well-studied classes of networks. Net-

work analysis has been applied also to biological, infrastructure, and transportation networks.

Knowledge networks, such as word association networks and WordNet have also been studied to

some extent (33; 130). The recent work of (64) on automated generation is a potential source

of many new networks.

To date, however, there appears to be no general understanding of the characteristics of large

knowledge networks. The availability of ground truth in common-sense knowledge networks,

provided by the meaning of concepts, is an unusual, useful feature for network analysis. Ground

truth, for example, allows one to evaluate and compare the quality of groupings found by

various community inference algorithms. For example, the reader can immediately see that the

community of concepts in Figure Figure 15 (inferred by the clique percolation algorithm (34))

is meaningful, while in a social network it is typically difficult to tell whether a group of people

is, in fact, a community.
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A detailed network analysis of ConceptNet is given in (38). Here we give a small sam-

ple of the results. There are many different ConceptNet-based networks to consider (di-

rected/undirected edges, multiple edges and loops allowed or not, all relations are considered or

just a specific subset of them). In general, those networks have a highly skewed degree distribu-

tion and the small world property 1. Cores form a nested structure of increasing density, similar

to other large networks (85). It is likely that an inner core contains more important concepts,

and those could perhaps be given closer attention for additional processing. Among the many

community finding algorithms (109; 100; 106; 53; 22; 143; 13; 108; 112) that are implemented

in igraph (28) as well as the clique percolation community finding algorithm of Palla et al. (34)

which is implemented as CFinder (104), clique percolation for appropriate clique sizes seems

to give interesting communities. These communities can be useful for finding missing entries

and identifying new concepts. The seminal paper (130) proposed cognitive science applications

of network information for semantic networks, such as relevance for the age of acquisition of

concepts. Cores, communities and other specific structures found by network analysis could

be of interest in this context as well. There is theoretical computer science work on exploiting

structural properties to get faster algorithms for problems which are hard for large networks

(see, e.g., (56)). Such problems include versions of centrality which may also be relevant for

cognitive science (33).

1A graph has the small-world property if the distance between two randomly chosen nodes is small,
typically logarithmic in the number of nodes.
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6.2 Potential Benefits for Common-Sense Reasoning

We believe the network analysis of ConceptNet and other such networks has potential ben-

efits for common-sense reasoning applications of ConceptNet. The most difficult question type

for ConceptNet in the IQ testing was Comprehension, which tests the comprehension of con-

cepts using why-questions like Why do we put on sunscreen in summer? Answering WPPSI-III

Comprehension questions has overlap with the area of open-domain question answering, of

Jeopardy! fame, which involves information retrieval, natural language processing and human-

computer interaction (91). In general, however, knowledge representation and reasoning are

often weak spots for question answering (11, p. 780), and those abilities seem to be absolutely

necessary to answer questions like the one about sunscreen. Incidentally, answering specifically

why-questions is considered a difficult task (142).

Answering why-questions with ConceptNet remains an important and interesting challenge

and it serves as one motivation for the explorations described in this chapter. Improving the

results and being able to answer test questions for older children is likely to require using more

involved test-answering algorithms and improving and enhancing the knowledge base, for exam-

ple, by adding missing entries, correcting incorrect entries and providing additional knowledge.

Additional knowledge could include additional facts, but also new general knowledge, and ca-

pabilities for doing different forms of common-sense reasoning. These issues are also discussed

in the papers on ConceptNet (67; 66; 127); here we propose some further approaches.

ConceptNet provides spreading activation as a tool to find semantically related concepts.

This, in turn, can be used as a tool for question answering. The answers obtained using
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spreading activation are often meaningful, especially if one considers not only the highest ranked

answer, but also the best answer among the highest ranked ones. This suggests refined search

procedures, where one analyzes the detailed results of spreading activation to rank candidate

answers and to identify errors.

Moreover, ConceptNet provides a rich body of knowledge about similarity, ontologies,

causality and other notions. It would be useful to enhance this body of knowledge adding

further reasoning tools. As a first step, one could build a ‘microtheory’ of the relations used,

for example, that IsA is transitive: (a, IsA, b), (b, IsA, c) → (a, IsA, c). As there are a large

number of possible rules, one could try to mine ConceptNet for such rules. We mention some

results of rule mining and give observations for possible applications.

6.3 ConceptNet 4

By “ConceptNet” (67; 66; 127) we mean specifically the version of ConceptNet 4 released in

March 2012. In fact, there are two versions of ConceptNet. One, which we call the large graph,

contains roughly 280,000 English-language concepts, and is released in SQLite database format.

The other, which we call the small graph, contains roughly 22,000 concepts, and is released as

part of a Python package called Divisi, which in general is “a general-purpose tool for reasoning

over semantic networks”(http://csc.media.mit.edu/analogyspace) and working with large

sparse matrices (126). When unspecified, in this paper we refer to the large graph. Divisi

also contains tools for creating truncated singular value decomposition (SVD) forms of the

small graph, which its authors refer to as AnalogySpace. The work on IQ-testing ConceptNet

(101; 102) was done primarily with AnalogySpace and made no use of the large graph.
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Both the large graph and the small graph are sparse, with the large graph being considerably

sparser. The small graph was formed from the large graph by dropping some combination

of triples that had relatively few users supporting them and concepts that had very little

connectivity to the rest of the graph. (The AnalogySpace graph, which we do not discuss here,

is dense.)

ConceptNet triples are called assertions. Each assertion also has a score, frequency, and

polarity. The score measures the reliability of an assertion, based on the amount of user support

it received. Frequency expresses how often the assertion is true, in the range of “never” to

“always”. Polarity is a coarse-grained version of the frequency and is positive or negative. For

example the statement Penguins are not capable of flying has negative polarity. Roughly 3.5%

of assertions have negative polarity. Associated with each assertion there is at most one sentence

and raw assertion. The sentence is actual user input that generated or supported the assertion,

and the raw assertion is a lightly processed sentence put into one of a large number of standard

frames.

6.4 Network Analysis of ConceptNet 4

The prevalence of large networks such as the Web, the internet and online social networks,

has led to the explosive growth of research and the development of computational approaches

for network analysis and algorithms for large networks, with central concepts such as highly

skewed node degree distribution, small world property (144) and algorithms like PageRank

(103). The main insight gained is that, perhaps surprisingly, networks coming from completely

different disciplines have quite similar structural properties. In this section we apply this
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methodology to ConceptNet with an eye toward exploiting its properties for knowledge base

algorithms. We expect similar properties to hold for future versions of ConceptNet and other

knowledge bases as well. We use igraph (28) for most of the network analysis tasks, CFinder

(104) for computing communities by percolating cliques, and the software that is available

online (http://tuvalu.santafe.edu/ aaronc/powerlaws/) for the maximum likelihood esti-

mate (MLE) for power law fitting described in (23).

Among the many possibilities for viewing ConceptNet as a network, for degree distribution

we consider the directed multigraph with self-loops formed by assertions with a positive score

(and arbitrary polarity). There are 279, 497 concepts appearing in such assertions in the English

language version. Figure Figure 12 presents the degree distributions of both the large and small

graphs in a log-log plot. The network has a highly skewed node degree distribution, as is the case

in pretty much all other networks. Applying the MLE for power law fit we obtain 1.82572 and

1.90602 respectively for the exponents. However, the quality of the fit is poor; see (38, Chapter

4) for details. The average degree of the large graph is about 3.5. The induced directed and

undirected graphs in this case have both average degrees about 3.0. The average degree of the

small graph is about 40.7 while the induced directed and undirected graphs have respectively

average degrees of about 16.0 and 15.1.

Large networks typically have a giant component. For the directed graph induced by asser-

tions with any polarity, there is a giant component with 228, 784 vertices, and the remaining

32, 701 connected components have size at most 55, including 16, 922 singletons. For strongly
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Figure 12: Total degree distribution in ConceptNet 4 and Divisi.

connected components, there is a giant component with 14, 025 vertices, and the remaining

265, 373 components have size at most 3, including 265, 276 singletons.

The maximal distance in the undirected graph induced by assertions with both polarities is

16. The pair returned by igraph with distance 16 is anti-charm quark and double-breasted

de fursac jacket 1. The average distance in the giant component is 4.28. Thus the graph

exhibits a small-world property. Details for the distances are given in (38).

1Google’s only reference for this concept is to ConceptNet, so this may already be an instance of an
AI system creating concepts.
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TABLE III: Number of vertices and average degree of undirected subgraphs; positive polarity
only, self-loops are neglected.

coreness > 0 > 2 > 5 > 8 > 11 > 14 > 17 > 20 > 23 > 26

vertices 279, 497 41, 659 11, 483 6, 750 4, 634 3, 407 2, 617 2, 007 1, 514 869

avg. degree 2.872 9.682 22.421 30.093 35.839 40.278 43.515 45.984 47.384 47.241

The k-core of a graph is obtained by iteratively removing vertices of degree less than k

while such vertices exist (117). In each step there may be several choices, but it turns out

that the final result is independent of those choices. The maximum coreness of a graph is the

largest k for which the k-core is nonempty. The maximum coreness of the graph induced by

the assertions with positive polarity is 26 and there are 869 concepts belonging to that core.

Table Table III gives data on the core structure.

Now we turn to cliques, i.e., complete subgraphs, which are the strongest possible form of

community 1. There are 107, 100 cliques with positive polarity, out of which there is only one

clique of size 12, composed of the concepts person, build, house, home, apartment, room,

live room, couch, table, chair, cat, and dog. 2 There are also 23 cliques of size 11. It turns

out that all these 24 cliques are created from 36 concepts. Table Table IV shows some of those

cliques. Examining the overlap of cliques is also interesting as it can uncover different meanings

1Network analysis literature uses the terms community, cluster and module interchangeably.

2The interpretation (surface form) of ConceptNet’s live room is living room, or in a living

room, etc., and of build is a building.
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of a concept (see also (104)) and other useful relationships. Figure Figure 13 gives an example

of two overlapping communities corresponding to different meanings of the concept cut.

TABLE IV: Concepts participating in maximal cliques with positive polarity and frequency in
the range {5, . . . , 10}. The cliques are obtained from English-language assertions with positive
score. The first clique has size 12. Among all cliques of size 11 or 12 we show those where the
concept apartment appears.

clique
concept 1 2 3 4 5 6 7 8 ✓

apartment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
bed ✓ 1
bedroom ✓ ✓ ✓ 3
build ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
cat ✓ ✓ ✓ ✓ ✓ 5
chair ✓ ✓ ✓ ✓ ✓ ✓ 6
city ✓ ✓ ✓ 3
couch ✓ ✓ 2
dog ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
home ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
house ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
human ✓ ✓ ✓ 3
live room ✓ ✓ 2
person ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
room ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
table ✓ ✓ ✓ 3
town ✓ ✓ ✓ ✓ ✓ 5

For community-finding, the clique-percolation algorithm (34; 104) produced interesting re-

sults. Let S be a k-clique. Clique percolation with parameter k builds a community starting

from clique S and taking the union of all cliques reachable by k-chains from S, where a k-chain
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Figure 13: Overlapping communities for different meanings of cut.

is a sequence of k-cliques such that each clique has k − 1 vertices in common with the previ-

ous one 1 We found the following communities: 362 using triangles, 290 using K4’s (cliques of

size 4), 287 using K5’s, 209 using K6’s, 120 using K7’s, 84 using K8’s, 16 using K9’s, 12 using

K10’s, 6 using K11’s, and of course one community by percolating K12’s. Figures Figure 14 and

Figure 15 present communities that occur by percolating cliques of various sizes. Communities

could be presented to the user for suggesting a new concept or link. For example, the concept

dishonesty could be suggested for the community shown in Figure Figure 14, resulting in the

1The edge set of a community is the union of the edge sets of the cliques involved. This is not an
induced subgraph in general; there can be nested communities as well.
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addition of new assertions. Figure Figure 15 already contains religion, but the user might

suggest the addition of an assertion involving belief and prayer.

Figure 14: Community ‘dishonest/dishonesty’. Eight nodes by percolating cliques of size 5;
dishonest/dishonesty itself is missing from the community.

6.5 Spreading Activation

Spreading activation is a technique inspired by neural models, for identifying related nodes

(25), used for example, in information retrieval (27). It is related to PageRank (103) and

other similar algorithms. Recently, it has also been used in knowledge network acquisition

(64). We illustrate the application of spreading activation for query answering in the case of
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Figure 15: Community ‘religion’. Fourteen nodes by percolating cliques of size 7; missing link
between belief and prayer.

Comprehension queries, using a variant of Harrington’s approach. Refined versions of such

algorithms may be useful for improving the quality of the answers obtained.

Spreading activation can be started by activating several concepts which simultaneously

spread activation values in rounds to their neighbors. The nodes also propagate their labels to

neighboring nodes. The firing thresholds of the nodes and the decay factors are parameters of

the process. We implemented different versions depending on the type of the underlying graph,

the firing regime and the termination criterion. After the activation process is terminated, we

find paths with a significant amount of activation; again, we implemented different algorithms

for finding such paths. One may then start a second round of spreading activation from nodes
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on the significant paths, and finally look for assertions with the highest levels of activation

along those paths.

We illustrate the application of spreading activation on the question Why do we put on

sunscreen is summer? This turned out to be a difficult question for ConceptNet. More precisely,

it turned out to be a difficult question for the AnalogySpace-based algorithm used in (101). The

answers received included UsedFor/cook and Causes/strike match with large weight. As

we will see below, ConceptNet in fact contains sufficient information to answer the question

correctly, the problem is ‘only’ how to find it. We also get an answer to the unexpected

appearance of cook.

Running spreading activation from the concepts put sunscreen and summer, the first phase

activates 6, 700 concepts and the three intermediate nodes where both labels appear are heat,

hot, and fall. The undirected primary paths, involving 7 different nodes, are:

• put sunscreen — go swim — heat — summer,

• put sunscreen — go swim — hot — summer,

• put sunscreen — go fish — fall — summer.

The top ten most activated nodes in the network in the first round are, in that order,

summer, put sunscreen, heat, season, hot, winter, hot weather, after spring, spring,

and camp. The top ten most activated nodes in the network after the second round are, in

that order, summer, heat, put sunscreen, hot, fall, go swim, go fish, fire, person, and

winter.
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The top ten activated pairs of concepts 1 after the first round involve the concepts summer,

heat, season, hot, winter, hot weather, after spring, spring, camp, warm season, and

hot month. After the second round, the concepts go swim, go fish, and put sunscreen

appear in the corresponding list. In particular, the assertion (go swim, HasPrerequisite, put

sunscreen) ranks in the 30th place.

Now we make some more observations on specific relations, which are relevant in the context

of ‘why’ questions. Let us start with the relation HasPrerequisite. In both rounds the top

two most activated assertions with this relation connect the pairs of concepts (go swim, put

sunscreen) and (go fish, put sunscreen).

Regarding the relation CausesDesire, at the end of the first round the top three assertions

in this relation connect the concepts (summer, play baseball), (summer, fish), and (summer,

go walk). After the second round, the assertions (heat, CausesDesire, go swim) and (hot,

CausesDesire, go swim) move to the top two positions, from positions four and five for this

relation. So, we can build a slightly better justification since heat causes desire to go swimming,

and going for swimming has as prerequisite to put on sunscreen.

Finally, for the Causes relation, in both rounds the top three assertions for this relation

connect the pair of concepts (heat, fire), (fire, heat), and (sun, heat).

Examining other relations shows how some of the incorrect answers received in (101) are

caused by multiple meanings. For example, in the first round of the spreading activation process,

1A pair of concepts typically involves several assertions due to different relations connecting the
concepts.
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the top assertion for the relation HasLastSubevent connects cook meal and season, while in

the end of the second round it connects climb to fall. Apparently, the problem arises due

to a lack of disambiguation for the concepts season and fall, both of which should be used

here as three-month periods. However, season is used as the act of putting seasonings while

cooking meals and fall is used as the verb “to fall”. Moreover, the idea of sunscreen in the

summer typically activates nodes that are related to heat and water, which in combination

with seasonings further justifies why cooking meals appears. Finally, the problem remains in

the second round but due to fall that appears along a primary path.

6.6 Rule Mining

In this section we discuss the application of data mining towards the automated construction

of a background theory for the relations used in the knowledge base. We consider rules of the

simplest form, mainly for computational considerations.

A rule is given by an ordered triple of relations (X, Y, Z), where X, Y are the premisses and

Z is the conclusion. For such a triple we consider triples of concepts (a, b, c) such that the

assertions

(a, X, b) and (b, Y, c)

are in the knowledge base. Such triples form the support of the rule. If (a, Z, c) is also in the

knowledge base then (a, b, c) is a success for the rule (X, Y, Z), otherwise it is a failure. The

success rate of a rule is the percentage of successes in the support. Consider, for example, the

rule (Desires, LocatedNear, AtLocation) and the triple of concepts (human, drink, bar). The

assertions (human, Desires, drink) and (drink, LocatedNear, bar) are both in the knowledge
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base. Therefore, we check whether the assertion (human, AtLocation, bar) is in the knowledge

base. It is, so (human, drink, bar) is a success for the rule (Desires, LocatedNear, AtLoca-

tion).

A triple of concepts (a, b, c) is valid for a rule (X, Y, Z) if the claim

(a, X, b) and (b, Y, c) therefore (a, Z, c)

makes sense as a reasoning step. Otherwise (a, b, c) is invalid. Making sense is a subjective

judgement and its intended meaning is up for discussion. In what follows we use the sense “given

that the premisses hold it is reasonable to assume that the conclusion holds”. For example,

(human, drink, bar) is valid for the rule (Desires, LocatedNear, AtLocation). Note that by

the nature of its definition, deciding about validity requires an (often ambiguous) decision by

a human and so computing precise statistics about it is difficult.

We performed an exhaustive test for all possible rules involving relations that have at least

300 assertions with positive score regardless of their polarity. We searched for frequent rules,

with support at least 300 and success rate at least 5% 1. Success rates are expected to be low

even for correct rules due to the sparsity of the network. There are 76 such triples of relations.

We give examples of some such relations, plus an interesting one with low success rate, and

comment on issues raised by these examples.

Our first example is the rule (Desires, LocatedNear, AtLocation). This is the highest

scoring rule with 251 successes and support 2050 (12% success rate). The triples (human, drink,

1For rules involving more than three concepts such an exhaustive search is not feasible, and it will
be necessary to use more advanced data mining techniques.
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bar) and (bird, seed, garden) are successful and valid. The triple (human, love, heart) is

successful but invalid. The triple (bird, seed, plant garden) is a failure but it is valid. The

reason for the failure is that the assertion (bird, AtLocation, plant garden) is missing from

the knowledge base. This is an example of using the mined rules to identify missing entries.

The rule (AtLocation, PartOf, AtLocation) has 2,394 successes and support 27,917 (8.5%

success rate). The triple (text book, classroom, school) is successful and valid. On the other

hand, (text book, classroom, school system) is a failure. In contrast to the failure discussed

for the first rule above, this is not due to a missing assertion, because the triple is invalid. This

points to a general problem with this rule: it is only expected to hold if the third concept is a

physical object, like school and unlike school system. Thus examining this example suggests

a weakening of the rule.

The rule (PartOf, AtLocation, AtLocation) is similar to the previous one. However, its

success rate is much smaller, only 1.4% (with support 78,804, but only 1,112 successes). A

possible explanation of the discrepancy can be illustrated by the triple (engine oil, car,

town). It is a failure as the assertion (engine oil, AtLocation, town) is not in the knowledge

base. Its validity depends on the status of (engine oil, AtLocation, town). This assertion is

not to be expected as input from a user (or from a text). On the other hand, it is reasonable

as a factual statement about the world.
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Let us elaborate on the difference between the two rules. For (AtLocation, PartOf,

AtLocation), the combined facts that a is an appropriate1 left argument for AtLocation,

b is an appropriate right argument for AtLocation, and (b, PartOf, c) mean that if c is an

appropriate right argument for AtLocation (like school but unlike school system) then the

assertion (a, AtLocation, c) makes sense both as a factual statement about the world and in

terms of natural language usage. By way of contrast, for (PartOf, AtLocation, AtLocation),

things that are appropriate as left arguments for PartOf are normally not thought of as appro-

priate left arguments for AtLocation; if they do occur as such a left argument then they occur

as being AtLocation of the thing they are part of. Thus, in this case (a, AtLocation, c) may

make sense as a factual statement about the world but not in terms of natural language usage.

Thus, the observed difference between the success rates of two similar rules points to a possible

mismatch between natural language usage and intended question answering applications. This

may be an issue to consider for further knowledge base development.

The rule (LocatedNear, PartOf, IsA) does not make much sense even if it has 253 successes

and support 4252 (6% success rate). Most successes we examined are false or nonsensical. This

is an example of a rule with high success rate but with many successful, invalid triples. An

example is the triple (desk, classroom, school). The wrong assertion (desk, IsA, school)

comes from the sentence Schools have desks through the intermediate form Desk is a type

of school. Thus the problem presumably comes from a programming error and fixing it might

1By appropriate we mean “makes common sense for users asked to give natural language statements”.
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eliminate many wrong assertions. Hence this in an example where rule mining can be used to

correct mistakes.



CHAPTER 7

CONCLUSION

In the case of evolvability, we saw that even simple evolutionary mechanisms like the swap-

ping algorithm for monotone conjunctions, pose interesting questions about the learnability of

well-understood concept classes. We consider the study of monotone conjunctions, even under

specific distributions, the first step on a tour of exploration of more Boolean functions through

evolutionary mechanisms that comply with similarly intuitive neighborhoods. For each one

of these Boolean functions we can think of two “natural” mutations for the neighborhoods in

terms of proper learning; manipulating variables or manipulating the Fourier coefficients for

their natural representation in a spirit similar to Michael’s for 1-decision lists (94). Moreover,

we have not yet seen an algorithm that uses a random-walk type of argument, instead of the

strictly beneficial steps followed until convergence. Perhaps this would be an important break-

through. Working with different fitness functions is another promising avenue as it is suggested

by using covariance in Chapter 3. Finally, Kanade in (72) extended the evolvability frame-

work by allowing recombination. However, this interesting variant of evolvability is virtually

unexplored.

Regarding MIL, the first idea for extending our work is the study of the learnability of

Boolean functions under this particular setting. For instance what is the exact VC dimension

of conjunctions under MIL? What about the VC dimension of other Boolean concept classes
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studied under MIL? What about specific algorithms tailored for specific Boolean concept classes

under the MIL setting?

Another interesting direction, which was actually our original motivation for studying both

MIL as well as AL, is the combined setup of multiple-instance active learning (MIAL) setting.

This particular setting (MIAL) has received some attention in machine learning, but, as far as

we know, has not been considered so far in learning theory. We point out the applicability of

some recent active learning results in the context of multi-instance learning, without giving a

detailed definition of the notions involved.

There are several possibilities for formulating a model of active learning in the multi-instance

model, such as querying bag labels, or various ways of querying instance labels within bags,

and these variants may be relevant in different learning scenarios (see Settles, Craven, and

Ray (121)). Here we assume that the learner gets unlabeled r-bags and then is charged for

querying the label of a bag.

The mellow algorithm which was discussed in Section 5.1 queries the label of a bag iff its

label is not determined by the labels of the previously queried bags. Hanneke’s bound for the

analysis of the label complexity of the mellow algorithm has linear dependence with respect to

the disagreement coefficient ρ; see Theorem 5.2.4. Hence, when the disagreement coefficient

has at most logarithmic dependence on ε, Hanneke’s bound implies that the mellow algorithm

achieves an exponential speedup compared to traditional supervised learning. Friedman (49)

proved a general bound for the disagreement coefficient. In particular, his results, and therefore

Hanneke’s bounds, apply to the learning of hyperplanes over smooth distributions. Friedman



147

assumes a smoothness condition for the combined parametrized representation of instances and

concepts, but he also gives several extensions to cases where such assumptions do not hold.

Multi-instance learning of r-bags of d-dimensional halfspaces corresponds to learning concepts

in (rd)-dimensional space of the form

{(x11, . . . , x
1
d, . . . , x

r
1, . . . , x

r
d) : w1x

i
1 + . . .+wdx

i
d > t for some i, 1 6 i 6 i}.

Among the extensions discussed by Friedman, this class is covered by, for example, the result

of Balcan, Hanneke, and Wortman (10) on the union of exponential rate classes. Thus we

conclude that halfspaces are actively learnable from bags at an exponential rate.

The mellow algorithm for active learning has an efficient implementation whenever hypoth-

esis finding can be done efficiently; see Algorithm 3 in Section 5.1. A new instance has to be

queried iff the previously queried labels are consistent with both labels for the new instance.

This, again, does not work for bags of halfspaces. Thus it seems to be an open problem whether

there is an efficient active learning algorithm with exponential error rate.

Ultimately we would like to study Boolean concept classes under the joint MIAL framework.

Regarding active learning specifically, we consider the analysis of the disagreement coefficient

of monotone conjunctions under the uniform distribution Un in Chapter 5 as the first step on

an exploratory journey of Boolean concept classes under the AL framework. In particular, as

the accuracy ε decreases over time, is there a refined analysis of Hanneke’s theorem for the

mellow algorithm (see Theorem 5.2.4) that is based on the study of the disagreement region



148

which was presented in Chapter 5? As a reminder, targets of size k such that 2 6 k 6 ⌊n/2⌋

have a disagreement coefficient that is Θ
(
2k
)
. Requiring accuracy Θ

(
2−k

)
implies that we

have to identify these targets precisely and that the disagreement coefficient is Θ (1/ε). As a

consequence, the current bound of Hanneke in Theorem 5.2.4 does not imply an improvement

over the traditional supervised learning setup. To see this, first note that the VC dimension

of monotone conjunctions is n; see for example (98). By Theorem 2.5.4, traditional supervised

learning, for arbitrary distributions, requires Ω (d/ε) = Ω (n/ε) = Ω (n · 2α·n) examples in

order to identify such a target precisely. Hence, an improved bound on the label complexity

of the mellow algorithm that is based on the complete study of the disagreement region for

monotone conjunctions under Un would be an interesting new result in AL.

However, it appears that even if such an analysis does not yield a better bound, one can

actually hope for a better bound through a different route. The teaching dimension (55) and

in particular the extended teaching dimension considered by Hegedüs in (68) appears to be a

promising avenue of research1. Letting d denote the extended teaching dimension of a concept

class C, Hegedüs has proved in (68) that the number of membership queries required for concept

learning a target c ∈ C is bounded from above by O (d · lg|C|). Hence, studying the different

variations of the halving algorithm (68) in the framework of AL, just like Hegedüs did in the

framework of the membership query model, seems to be an important alternative for the analysis

of AL; see (61).

1Both of these combinatorial parameters have been studied in the traditional membership query model
of learning (4); see also (89).
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In the case of knowledge bases and reasoning, in Chapter 6, we considered the ConceptNet

knowledge base from the point of view of network analysis. We discussed degree distribution,

small world property, cores, cliques and communities. We also discussed spreading activation

and rule mining for the relations used in ConceptNet. The results that occurred through

network analysis suggest possible applications to improved question answering. For example,

the inclusion of communities in order to find missing assertions, using spreading activation

to find answers and explanations for why-questions, and using rule mining to find missing

assertions and correct errors.

The mined rules, such as the transitivity of IsA, could be used to add many new assertions.

However, adding all these assertions is neither feasible, nor desirable, as it would make the

knowledge base denser. The rules appear to be more useful as a background theory, to be used

in deriving and refining answers. This could be one instance of building additional knowledge

into the system.

ConceptNet provides a possibility to combine statistical and logic-based approaches to com-

monsense reasoning, exemplified by SVD and spreading activation. Exploring ways of combining

the two approaches to enhance performance is an interesting research direction.

Finally, how much commonsense reasoning capability is implicit in a large commonsense

knowledge base like ConceptNet? In other words, using the familiar metaphor, does this ap-

proach lead to the moon or is it just a tree (hopefully, at least a tall one in that case)? Of

course it is too early to even guess an answer, but we hope that the explorations outlined in

this paper might prove to be useful towards answering this fundamental question.
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Appendix A

PERMISSIONS

The content of Chapter 3 is based on (40). Since the author of this thesis is also one of the

authors in (40), the author of this thesis is allowed to include part or all of the content that

appeared in the original article in (40). The license numbered 3191970208570 was obtained on

July 18, 2013, through the Copyright Clearance Center’s RightsLink service, and is between

Dimitrios Diochnos and Springer. Permission for reusing the figures that appeared in (40) was

obtained through the license number 3191971334671 on July 18, 2013, through the Copyright

Clearance Center’s RightsLink service, and is between Dimitrios Diochnos and Springer.

The content of Chapter 4 is based on (39). Since the author of this thesis is also one of the

authors in (39), the author of this thesis is allowed to include part or all of the content that

appeared in the original article in (39). The license numbered 3191950770851 was obtained on

July 18, 2013, through the Copyright Clearance Center’s RightsLink service, and is between

Dimitrios Diochnos and Elsevier.

The content of Chapter 6 is based on (12) as well as on (38). Neither of these two works,

that is (12) and (38) is subject to any copyrights and hence their content is used without any

further permissions or licenses.
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