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SUMMARY

This thesis work is organized as follows. Chapter 1 introduces linear codes and low-density

parity-check (LDPC) codes. Chapter 2 describes all LDPC families that will be used throughout

this thesis. Chapter 3 shows all possible encoding techniques for LDPC codes. Chapter 4

describes two FPGA encoder implementations: a block circulant quasi-cyclic encoder and an

IEEE 802.11n encoder. The former is used as reference to make a complexity comparison with

the latter. Finally, chapter 5 presents my conclusions.
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CHAPTER 1

INTRODUCTION TO LOW DENSITY PARITY CHECK CODES

1.1 Linear block codes

Channel coding is employed to correct errors due to a noisy communication channel. In

this scenario linear codes add a certain amount of redundancy to the messages by means of

extra bits that have to be sent in order to correct or detect possible errors. From now on we

will concentrate our attention on binary linear codes, but the reader has to know that also

nonbinary alphabets can be employed in the development of linear codes. A message made of

k bits u = [u1 u2 . . . uk] will be encoded to form a codeword c = [c1 c2 . . . cn] with n ≥ k.

As shown in Figure 1, this codeword will be sent through the channel and the received message

r = [r1 r2 . . . rn] will be decoded in order to retrieve the original message. This decoded

message u’ could be different from the sent one due to the noisy channel.

Figure 1. Communication system

1
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We are going to describe linear systematic codes, in which the first k bits of the codeword

correspond to the message bits

c1 = u1, c2 = u2, . . . , ck = uk

and the other n-k bits correspond to the so-called check bits

ck+1, . . . , cn

For c = [c1 c2 . . . cn] to be a codeword the equation HcT = 0 must be satisfied, where H is a

(n− k) x n parity check matrix :

H



c1

c2

...

cn


= HcT = 0 (1.1)

with

H = [A In−k]

where A is a (n − k) x k matrix and In−k is the (n − k) x (n − k) identity matrix. The

parameter m is usually used instead of (n − k). The arithmetic operations in Equation 1.1

have to be performed in modulo-2, that is 1 + 0 = 1, 1 + 1 = 0, −1 = 1. These codes are
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called linear because the linearity property is respected, that is, given two codewords a and b,

H(a+ b)T = HaT +HbT = 0.

For the sake of clarity we are going to describe the easiest channel coding technique, the

single parity check code (SPC). In this code only one additional bit is employed. There are two

possible configurations: even parity, where the check bit is set so that there is an even number

of 1s, and odd parity, where the total number of 1s has to be odd. Serial communication is one

of the applications of this code, where, messages made of 7 or 8 bits plus other control bits are

sent through the channel. Using the even parity configuration and a message of 7 bits, the final

codeword will be:

c = [c1 c2 c3 c4 c5 c6 c7 c8]

where the extra bit c8 is one of the control bits and it has to be chosen in order to satisfy the

so called parity check equation:

c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8 = 0 (1.2)

where all additions are performed modulo-2.

This code is only able to detect an odd number of bit inversions. A codeword with an even

number of errors will satisfy the Equation 1.2 causing a decoding error. In addition, this code

cannot correct any bit errors. This is the reason why more check bits and additional parity

check equations are needed.
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Example 1.1 For instance, given the following parity check equations

c1 + c2 + c4 = 0

c2 + c3 + c5 = 0

c1 + c3 + c6 = 0

these can be rewritten in a matrix form

H =


1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1


where the obtained matrix is the parity-check matrix, with

A =


1 1 0

0 1 1

1 0 1


All the codewords that satisfy these parity-check equations form a code C with k = 3 and

n = 6.
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The original message u = [u1 u2 u3] will be encoded as c = [c1 c2 c3 c4 c5 c6], where

c1 = u1, c2 = u2 and c3 = u3. The other three check bits will be chosen accordingly to the

equation HcT = 0,

c4 = −c1 − c2

c5 = −c2 − c3

c6 = −c1 − c3

If the message is u = [0 0 1], then c1 = 0, c2 = 0, c3 = 1 and

c4 = 0, c5 = −1 = 1, c6 = −1 = 1

Therefore the final codeword is c = [0 0 1 0 1 1]. In every code, there are 2k possible codewords.

Thereby, in this example there are 23 = 8 codewords:

000000 100101

001011 101110

010110 110011

011101 111000

A more formal definition (1) of a linear code is:
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Def. Let H be any binary matrix. The linear code C [n,k] with parity check matrix H consists

of all vectors c such that HcT = 0 (where this equation has to be interpreted modulo-2).

At the same time, c = [c1 c2 . . . cn] is a codeword if and only if HcT = 0. If the form of H

is [A In−k], the codeword will be

c = [ c1 . . . ck︸ ︷︷ ︸
message bits

ck+1 . . . cn︸ ︷︷ ︸
check bits

]

Given a message u = [u1 u2 . . . uk] we want to generate the codeword c = [c1 c2 . . . cn].

To do this we can use the equation

c = uG (1.3)

where

G = [Ik AT]

is the generator matrix, where Ik is the k x k identity matrix and AT is the k x (n−k) transpose

matrix of A. The steps to get the form of the matrix G from the parity check matrix H are

shown in (1) (page 5). The Equation 1.3 means that a codeword c can be obtained as a linear

combination of the rows contained in the generator matrix G. Furthermore, from the previous

properties HGT = 0 and GHT = 0.

A code can have different generator matrices and any maximal set of linearly independent

codewords forms a generator matrix. In the same way, any maximal set of linearly independent

parity check equations can be employed as a parity check matrix H. It is important to remember
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that the bits of a parity check equation have to sum modulo-2 to zero. In addition, a parity

check matrix can have any number of parity check equations, but only n-k will be linearly

independent, where n-k is the rank of the parity check matrix H, that is the number of linearly

independent rows.

Example 1.2 Referring to the example 1.1, the generator matrix is:

G = [I3 AT ] =


1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1


The messages are encoded using c = uG, that is

c = u1Grow1
+ u2Grow2

+ u3Grow3

Let’s encode the message u = [1 0 1],

c = Grow1
+Grow3

= [1 0 0 1 0 1] + [0 0 1 0 1 1] = [1 0 1 1 1 0]

where all additions are performed modulo-2.
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1.2 Parameters of a linear code

1. First of all, the rate or efficiency of a code C [n,k] is equal to

R =
k

n

recalling that k is the number of message bits and n is the length of the codeword c.

Def. Given two binary vectors a = [a1a2 . . . an] and b = [b1b2 . . . bn], the Hamming

distance is the number of places where they differ.

E.g. [1 0 1 1 0 1] and [0 1 1 1 0 0], dist = 3

Def. Given a binary vector a = [a1a2 . . . an], the Hamming weight is the number of

non-zero bits.

E.g. [1 0 1 1 0 1], weight = 4

In addition, the distance between two binary vectors is equal to the weight of their dif-

ference: dist(a,b) = weight(a− b).

2. Given the previous definitions, an important parameter is the minimum distance of a

code C (1):

dmin = mindist(cx, cy) = minweight(cx − cy) cx ∈ C, cy ∈ C, cx 6= cy

where cx and cy are two codewords from code C.
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It is not necessary to determine the distance between every pair of codewords, because

if both cx and cy belong to the same code, the modulo-2 difference cx − cy is also a

codeword, therefore

dmin = min
c∈C,c 6=0

weight(c)

This means that the minimum distance of a code is the minimum weight between all

non-zero codewords.

3. The error correction capability (1) of a code C with minimum distance dmin is of

⌊1
2
(dmin − 1)

⌋
errors

where bxc is the floor function. If dmin is even, 12(dmin − 2) errors can be corrected and

1
2dmin errors can be detected.

Example 1.3 The modulo-2 difference between two codewords from example 1.1:

[1 0 0 1 0 1] - [0 1 0 1 1 0] = [1 -1 0 0 -1 1] = [1 1 0 0 1 1]

is another codeword. In this case, dmin = 3, hence only one error can be corrected.

A linear code can be represented graphically using a Tanner graph (2), which is a bipartite

graph where the two kinds of vertices are bit nodes and check nodes. Every row in

the parity check matrix H is represented by a check node, while every column of H is

represented by a bit node. An edge connects a check node with a bit node if Hr,c = 1,
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that is the bit c in the parity check equation r is 1. Obviously, the number of edges is

equal to the number of 1s in the parity check matrix H.

4. A cycle is a path that starts from one node and ends on the same node, passing through

each other vertex only once. The number of edges contained in a path is the cycle length

and the minimum cycle length in a Tanner graph is called girth. In literature the term

n-cycle is used to indicate a cycle of length n. Moreover, the degree of a node is the

number of edges that are connected to that node.

Figure 2. Tanner graph example 1.1

Example 1.4 The Tanner graph of the example 1.1 can be seen in Figure 2, where the path

in bold is a 6-cycle.
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1.3 Error detection

Let’s assume the message u = [u1 u2 . . . uk] is encoded into the codeword c = [c1 c2 . . . cn].

This codeword is sent through a noisy channel, and the received codeword r = [r1 r2 . . . rn]

could be different from c.

We can define the error vector as

e = r− c = [e1 e2 . . . en]

and p as the error probability of having ei = 1. This happens when sending a bit b the reversed

value b is received, with b = 0 or 1.

To check if a received vector r contains errors we can compute the (n− k) vector:

S =



s1

s2

...

sn−k


= HrT

that is called syndrome of r. By means of this vector we can know which parity check equations

are not satisfied. If HrT = 0, r is a correct codeword in C.

Given r = c+ e with c ∈ C

S = HrT = H(c+ e)T
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and thanks to the linearity property

S = HcT +HeT

where by definition HcT = 0, so

S = HeT =
∑
i

eiHi

with Hi equal to the i-th column of the parity-check matrix. In plain words, the syndrome is

the sum of the parity-check columns where the errors happen.

If the probability of error is lower than 1
2 , an error vector of lower weight is more likely

to be obtained than one with higher weight, therefore a possible way to decode is to choose

the codeword with the lowest Hamming distance (the nearest one) with respect to the received

codeword. This decoder is called maximum likelihood (ML) decoder. The simplest decoding

scheme is to use a brute force approach. That is, given a received vector, we can take as decoded

codeword the closest vector between all possible 2k codewords of the code. The problem is that

this method becomes unfeasible as k becomes larger.

A fundamental concept, related to a noisy communication system, is Shannon’s channel

coding theorem, which states that if the code rate R = k/n is less than the capacity of the

channel, an error correction code that is able to make the probability of error arbitrarily small

exists. In other words, we could also say that given a noise level nth such that the code rate

R = C(nth), nth represents the noise threshold for all codes with rate R and it is usually called

the Shannon limit. This theorem is important because it proves the existence of good codes,
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which can transmit information over a noisy channel with no errors (provided that the code rate

is less than the channel capacity). However, the original paper by Shannon failed to describe

any explicit codes achieving channel capacity. The capacity of the channel is the upper bound

on the amount of information that can be sent through a channel and it is measured in bits per

second.

1.4 LDPC codes

Low density parity check (LDPC) codes are a particular kind of linear codes in which the

number of 1s in the parity check matrix H is very small. It is this characteristic that allows to

have near-capacity performance and low complexity encoders/decoders.

An LDPC code is regular if its parity check matrix Hm x n contains wc 1s in each column

and wr 1s in each row, that is every bit is just present in wc parity check equations and wr

bits are present in each parity check equation. Thereby, there will be nwc = mwr ones in the

parity check matrix.

An irregular LDPC code has not a fixed number of 1s. In this case the degree distribution

has to be defined: we indicate with λi the fraction of edges connected to degree-i bit nodes with

respect to the total number of edges and with ρi the fraction of edges connected to degree-i

check nodes with respect to the total number of edges.

The polynomials that describe the degree-distribution are:

λ(x) =

dc∑
i=1

λix
i−1
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ρ(x) =

dr∑
i=1

ρix
i−1

where dc indicates the maximum bit node degree, while dr is the maximum check node degree.

It is easy to show that
∑dc
i=1 λi = 1 and

∑dr
i=1 ρi = 1.

Example 1.5 For the irregular code of example 1.1,

λ(x) = λ1 + λ2x, with λ1 =
3

9
=
1

3
λ2 =

6

9
=
2

3

and

ρ(x) = ρ3x
2 = x2, ρ3 = 1

Another approach to determine the degree-distribution is to compute vi, the fraction of

columns of weight i, and hi, the fraction of rows of weight i. In this case there are n(
∑
i i ·vi) =

m(
∑
i i · hi) ones in the parity check matrix.

Example 1.6 An irregular code with parity check matrix

H =


1 0 1 0 0

0 1 0 1 0

1 1 0 0 1



has v1 =
3
5 , v2 =

2
5 and h2 =

2
3 , h3 =

1
3 .
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1.5 LDPC code-construction

There are different approaches to construct a LDPC code. We can choose between algorith-

mic and mathematics techniques. The first class includes all computer-based methods, while

the second one is about graph theory, combinatorial design or finite geometries.

We will now concentrate on algorithmic methods. First of all, we have to know that the

LDPC concept was first introduced by Gallager in his PhD thesis (3) at MIT in 1963. His

original definition of a regular code is based on the following matrix structure:

H =



H1

H2

...

Hwc


where H is the usual m x n matrix with wc ones in each column and wr ones in each row. Each

of the submatrices Hi, i = 1 . . . wc is a r x rwr matrix with row weight wr, unitary column

weight and where r is just a constant greater than one.

H1 has to be created as follows: the j-th row (j = 1, 2, . . . , r) contains all the wr 1s in the

positions from (j− 1)wr + 1 to jwr. The other submatrices are obtained from random column

permutations of H1.



16

Example 1.7 A parity check matrix with wr = 3, wc = 2 and r = 3:

H =



1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

0 1 0 0 1 0 0 0 1

1 0 1 0 0 0 1 0 0

0 0 0 1 0 1 0 1 0



Another construction method is the one invented about 35 years later by MacKay (4) and

Neal. In this case the parity check matrix is created adding one column at a time from left to

right depending on the degree distribution we want to obtain. The positions of 1s in any new

column are chosen randomly between the rows that are still free.

Example 1.8 A parity check matrix with wr = 3 and wc = 2, generated by means of the

MacKay and Neal algorithm could be:
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H =



1 2 3 4 5 6 7 8 9

1 1 0 0 1 0 0 1 0 0

2 0 0 1 0 1 0 0 1 0

3 0 1 0 0 0 1 0 0 1

4 1 0 0 1 0 0 1 0 0

5 0 0 1 0 0 1 0 0 1

6 0 1 0 0 1 0 0 1 0


where adding the 8th column we can choose between 2nd, 3rd, 5th and 6th rows. In this

example the 2nd and 6th rows have been chosen.

Another approach is to work directly on the Tanner graph. A possible algorithm is the

Progressive Edge Growth (PEG) that maximizes the local girth in order to guarantee good

iterative decoding performance. It starts with a list of variable nodes, check nodes and the

desired degree distribution, then the algorithm adds progressively one edge at a time in order

to connect a variable node with a check node trying to maximize the local cycles length. Another

alternative is the bit filling algorithm, that is similar to the PEG algorithm, but in this case

an edge will be added if the minimum cycle length requirement is satisfied without maximizing

the local girth.

A different technique is to start from a small matrix Hb of size mb x nb and then expand

it to obtain a larger matrix of size Zmb x Znb. Each item of the base matrix Hb is replaced
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with a Z x Z submatrix. If each submatrix is a weight-1 circulant matrix, a quasi-cyclic code

is obtained. The base matrix is equivalent to a protograph graph, which is a bipartite graph

that is copied for a certain number of times and whose edges are permuted according to the

degree distribution to obtain the expanded graph. In a protograph there can be more than one

edge between a variable node and a check node, these parallel edges will disappear in the final

expanded graph, for example creating a weight-n circulant matrix for a set of n parallel edges.

Example 1.9 A common base matrix is the one of the Accumulate Repeat 3 Accumulate

(AR3A) code:

Hb =


1 1 2 0 0

0 2 1 2 0

0 1 2 0 2


Its protograph can be seen in Figure 3. Another base matrix is the one of the AR4A code:

Hb =


1 0 2 0 0

0 3 1 2 0

0 1 3 0 2


where the corresponding protograph is shown in Figure 4.
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Figure 3. AR3A protograph

Figure 4. AR4A protograph
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1.6 Iterative Decoding

1.6.1 Message passing

The decoding algorithms used for LDPC codes are based on the principle of the message

passing. In order to make this concept clear I will use the soldier counting problem as in (5)

(chapter 5). This is further described in MacKay’s book (6).

Referring to Figure 5, each soldier has to respect the following rules:

• If there are not soldiers in front or behind you pass the number 1 to the only soldier close

to you. This is the case of the first and last soldiers in the line.

• If a number is received from another soldier, add 1 to it and pass the result to the soldier

in front or behind you.

Obviously, a meaningful result will be obtained only at the end of the line.

Figure 5. Soldiers line
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Let’s consider now the Figure 6. In this case the message that a soldier A has to pass to a

neighbor soldier B is the sum of all incoming messages, plus one for itself, minus the message

that the soldier B has passed to A. We can summarize this process as:

MA→B =
∑

X∈N(A)

MX→A +MA −MB→A =
∑

X∈N(A)−B

MX→A +MA (1.4)

where N(A) is the set of all neighbors of the soldier A, MA→B is the extrinsic information,

that is information that a node does not already have and MA is the intrinsic information. In

this example MA is equal to one.

For instance, the message from the soldier S3 to the soldier S2 in Figure 6 will be

MS3→S2 = (MS4→S3 +MS6→S3 +MS2→S3) +MS3 −MS2→S3 = (MS4→S3 +MS6→S3) +MS3

MS3→S2 = (2+ 2+ 2) + 1− 2 = (2+ 2) + 1 = 5

It is easy to show that if a cycle is present the message will be added infinitely and so the

algorithm will not work.

1.6.2 Gallager Sum-Product Decoding

The goal of this decoding algorithm is to compute the maximum a posteriori probability

(MAP) that a specific bit in the transmitted codeword c = [c1 c2 . . . cn] is equal to 1, given

the received codeword r = [r1 r2 . . . rn]. The codeword c is the one that has to be sent
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Figure 6. Soldiers tree

through the channel, while r is the one received at the output of the channel. The a posteriori

probability for a generic codeword bit ci can be defined as:

P(ci = 1|r)

while the log-likelihood ratio (LLR) is computed as

L(ci|r) = log

(
P(ci = 0|r)

P(ci = 1|r)

)

where log is the natural logarithm. If P(ci = 0|r) > P(ci = 1|r), L(ci|r) is positive. Instead if

P(ci = 1|r) > P(ci = 0|r), L(ci|r) is negative. Furthermore, the greater one term is compared to

the other, the higher the magnitude of L(ci|r) will be. In this way the sign of the log-likelihood
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ratio will tell us the value that the bit ci has to take on and its magnitude represents the

reliability on taking that decision.

This algorithm is a message-passing algorithm because the messages are sent along the edges

of a Tanner graph and it is iterative because it requires a certain number of steps to reach the

final result.

Each bit node and each check node can be thought as independent decoders. The bit

node decoder (Figure 7) has an edge Lj coming directly from the channel. Lj represents the

intrinsic information and it is called the a priori probability, because it is known in advance

due to its strict dependence from the channel parameters. As in Equation 1.4, the extrinsic

information Lj→i is computed only using the messages coming from the neighbor check nodes

and the channel. The message Li→j is indeed not used, since it should otherwise be subtracted.

The same happens for the check node decoder (Figure 8). Indeed, Lj→i is not needed in the

computation of the extrinsic information Li→j.
The log-likelihood ratios returned by this algorithm are correct only if the Tanner graph is

cycle free. If this is not possible, it will be just an approximation of the a posteriori probability

for each bit. This is due to the independence assumption, according to which all log-likelihood

ratios received at one node are independent. This assumption is not more respected when the

intrinsic information Lj reaches the corresponding bit node bj by means of a cycle in the Tanner

graph. This condition occurs if the number of iterations is equal or greater than half of the

graph girth.
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Figure 7. Bit node Figure 8. Check node

According to (5) a bit node can be seen as a repetition code. This code has a single infor-

mation bit that is repeated n times. Thus, only two codewords are possible: [0 0 . . . 0] and

[1 1 . . . 1].

Let’s assume that a length d vector r contains the bits received after a bit c has been sent

d times through a memoryless channel. The log-likelihood ratio is

L(c|r) =
d−1∑
l=0

L(rl|c)

where L(rl|c) = log P(rl|c=0)
P(rl|c=1)

. The decision will be c = 0 if L(c|r) ≥ 0, and c = 1 if L(c|r) < 0.

In our case, the previous expression has to be rewritten as

Lj→i = Lj + ∑
i ′∈N(j)−{i}

Li ′→j
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that has the same structure of the message passing Equation 1.4. The extrinsic information

Lj→i from a bit node bj to a check node ci is equal to the sum of the LLRs coming from the

neighbor check nodes excluded ci and the intrinsic information. It means that if the majority

of LLRs are positive, the final value of Lj→i will be positive and so we are dealing with a zero

bit. Similarly, if the majority of LLRs is negative, the corresponding bit will be one.

The intrinsic information Lj is computed as

Lj = L(cj|rj) = log

(
P(cj = 0|rj)

P(cj = 1|rj)

)

At the end of the algorithm the total LLR has to be found as:

Ltotalj = Lj +
∑
i∈N(j)

Li→j

Let’s now model a check node as a single parity check (SPC) code, in which there is just

one parity bit. First of all, a result present in the Gallager’s PhD thesis states that given a

vector of m independent binary digits with Pl = P{lth bit in the vector is 1}, the probability

that an even number of digits is 1 can be computed as

1

2
+
1

2

m∏
l=1

(1− 2Pl)
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Let’s consider the transmission of a SPC codeword c of length n through a memoryless

channel and define with r the received vector. There must be an even number of 1s in the

codeword c. The probability that a generic bit cl in the codeword c is equal to 0 is

P(cl = 0|r) = P{{c− {cl}} contains an even number of 1s|r}

it means that if cl is equal to 0 all the other bits have to contain an even number of 1s to

respect the SPC constraint and thanks to Gallager’s result we can write that as

P(cl = 0|r) =
1

2
+
1

2

∏
j, j 6=l

(1− 2P(cj = 1|rj))

and using the equivalence P(cl = 0|r) = 1− P(cl = 1|r)

1− P(cl = 1|r) =
1

2
+
1

2

∏
j, j 6=l

(1− 2P(cj = 1|rj))

1− 2P(cl = 1|r) =
∏
j, j 6=l

(1− 2P(cj = 1|rj))

Then thanks to the relation

1− 2p1 = tanh

(
1

2
LLR

)

we can write

tanh

(
1

2
L(cl|r)

)
=

∏
j, j 6=l

tanh

(
1

2
L(cj|rj)

)
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or better

L(cl|r) = 2 tanh−1

∏
j, j 6=l

tanh

(
1

2
L(cj|rj)

)
The bit cl will be equal to 0 if L(cl|r) ≥ 0 and cl = 1 if L(cl|r) < 0. The final equation can be

adapted for a LDPC code obtaining the extrinsic message that will be sent from a check node

ci to a bit node bj

Li→j = 2 tanh−1

 ∏
j ′∈N(i)−{j}

tanh

(
1

2
Lj ′→i

)
The decoding algorithm can be summarized in the following steps:

1. Initialization step: for all j = 1, 2, . . . , n, initialize Lj as follows

Lj = L(cj|rj) = log

(
P(cj = 0|rj)

P(cj = 1|rj)

)

and for each pair (i,j) for which the corresponding parity check matrix item Hi,j is equal

to 1 set Lj→i = Lj.
2. Check messages: for each check node compute

Li→j = 2 tanh−1

 ∏
j ′∈N(i)−{j}

tanh

(
1

2
Lj ′→i

)

3. Bit messages: for each bit node compute

Lj→i = Lj + ∑
i ′∈N(j)−{i}

Li ′→j
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4. Total LLR: for j=1, 2, . . . , n compute

Ltotalj = Lj +
∑
i∈N(j)

Li→j

5. Test: for j = 1, 2, . . . , n, determine the decoded codeword d setting dj = 0 if Ltotalj ≥ 0

and dj = 1 otherwise. If HdT = 0 (d is a valid codeword) or the maximum number of

iterations is reached stop the algorithm, otherwise go back to step 2.

Figure 9. Binary symmetric channel

Example 1.10 The initialization process depends on the employed channel model. For the

binary symmetric channel (BSC) in Figure 9, we have probability of error

p = P(receive 1| 0 was sent) = P(receive 0| 1 was sent)
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Thus, assuming that the values of cj are equally likely (P(cj = 0) = P(cj = 1)) the LLR for

rj = 1 will be

L(cj|rj = 1) = log

(
P(cj = 0|rj = 1)

P(cj = 1|rj = 1)

)

Using the Bayes theorem

P(cj = 0|rj = 1) =
P(rj = 1|cj = 0)P(cj = 0)

P(rj = 1)

P(cj = 1|rj = 1) =
P(rj = 1|cj = 1)P(cj = 1)

P(rj = 1)

Therefore,

L(cj|rj = 1) = log

(
P(rj = 1|cj = 0)

P(rj = 1|cj = 1)

)
= log

(
p

1− p

)

Similar operations are done for rj = 0

L(cj|rj = 0) = log

(
P(cj = 0|rj = 0)

P(cj = 1|rj = 0)

)
= log

(
P(rj = 0|cj = 0)

P(rj = 0|cj = 1)

)
= log

(
1− p

p

)



CHAPTER 2

LDPC CLASSES

There are three main classes of LDPC codes: random, cyclic and quasi-cyclic. The random

codes have the best decoding performance, but they have not a predefined structure. Hence,

these codes are really hard to encode and decode. Some construction techniques for random

codes have been shown in section 1.5.

2.1 Quasi-cyclic codes

In a quasi-cyclic code a cyclic shift of a codeword by x positions gives another codeword of

the code. A cyclic code is a subclass of quasi-cyclic codes where x is equal to 1. In quasi-cyclic

codes the parity check matrix H is made of an array of circulants.

H =


C1,1 . . . C1,n

...
...

...

Cm,1 . . . Cm,n


Each circulant Ci,j is a square matrix created such that a row r is a cyclic shift of the above

row r-1 and the first row is a cyclic shift of the last row.

30
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2.1.1 Row-circulant QC codes

For the sake of simplicity, we are going to introduce a quasi-cyclic code with only one row

of circulants:

H = [C1 C2 . . . Cl]

where C1, C2, . . . Cl are Z x Z circulant matrices.

A circulant matrix can be represented by the polynomial

a(x) = a0 + a1x+ · · ·+ aZ−1xZ−1

and so the matrix H is characterized by the polynomials

a1(x) a2(x) . . . al(x).

Let’s assume that Cl is invertible, but it is sufficient that at least one of these circulant

matrices is invertible. Thus, the generator matrix is:

G =



(C−1
l C1)

T

IZ(l−1) (C−1
l C2)

T

...

(C−1
l Cl−1)

T


(2.1)
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The resulting code C [n, k] has n = Z l and k = Z (l − 1). For further information see (7)

(page 90).

Example 2.1 A quasi-cyclic code with Z = 4 and l = 2. The first circulant matrix is repre-

sented by a1 = 1+ x
3 and the second circulant by a2 = 1+ x.

H =



1 0 0 1 1 1 0 0

1 1 0 0 0 1 1 0

0 1 1 0 0 0 1 1

0 0 1 1 1 0 0 1



This results in a [8,4] code with a rate R = 4
8 =

1
2 .

2.1.2 Block-circulant QC codes

In this part of the section I will just give a hint about block circulant quasi cyclic codes.

A possible implementation is the array code (8). The parity check matrix of this code is the

following:

H =



I I I . . . I

I I1 I2 . . . Iq−1

I I2 I4 . . . I2(q−1)

...
...

... . . .
...

I Ir−1 I(r−1)2 . . . I(r−1)(q−1)


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where q is a prime number, r is a positive number such that r ≤ q and Ix is a cyclic shift to

the right by x positions of a L x L identity matrix with 0 ≤ x < L. The parity check matrix

will have size m = L r and n = Lq with L = q. The code rate is R = k
n = n−m

n = 1− m
n ≥ 1−

r
q

due to linear dependence between the rows of H.

This is a regular code because the parity check matrix contains r-weight columns and q-

weight rows, since each circulant has weight-1 rows/columns and there are r circulants in each

column and q circulants in each row. The identity matrix can be seen as a circulant I0.

Another way (9) to create a quasi cyclic code is to choose a prime number m, two positive

numbers a and b, a < m, b < m, with multiplicative orders j and k, respectively. The

multiplicative order is the smallest positive number k such that ak = 1 mod m. The parity

check matrix will be a j x k matrix

H =



I1 Ia Ia2 . . . Iak−1

Ib Iab Ia2b . . . Iak−1b

...
...

... . . .
...

Ibj−1 Iabj−1 Ia2bj−1 . . . Iak−1bj−1


where, as before, Ix is a cyclic shift to the right by x positions of a m x m identity matrix. Also

in this case, we are dealing with a regular LDPC code, because of the k-weight rows and the

j-weight columns. The code rate is R ≥ 1 − j
k due to the linear dependence between the rows

of H.
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In order to make this code irregular (9) we can start from a regular j x k parity check matrix

and then for all the rows except the last two rows j − 2 and j − 1 we replace the last j − i − 1

circulant matrices with m x m zero matrices, where i is the row on which we are working on

and 0 ≤ i ≤ j− 3.

For an efficient encoding, a modified array code (10) has been proposed, which has the

following parity check matrix:

I(j−1)(k−j) I(j−1)(k−j−1) I(j−1)(k−j−2) . . . Ij−1 I 0 0 0 . . . 0

I(j−2)(k−j+1) I(j−2)(k−j) I(j−1)(k−j−1) . . . . . . Ij−2 I 0 0 . . . 0

...
...

... . . . . . . . . . . . . I 0 . . . 0

I2(k−3) I2(k−4) I2(k−5) . . . . . . . . . . . . I2 I 0 0

I(k−2) I(k−3) I(k−4) . . . . . . . . . . . . . . . I1 I 0

I I I . . . . . . . . . . . . . . . . . . . . . I

(2.2)

where Ix is a L x L identity matrix cyclically shifted to the right by x positions. A prime

number q has to be chosen and q ≥ k ≥ j. This is an irregular LDPC code with L = q and

without 4-length cycles. The parity check matrix Hm x n, with m = q j and n = qk, is full rank

because of its lower triangular form and the code rate is R = 1− j
k .

To make the matrix creation clearer I have created a simple MATLAB® (11) script:

q = 30 ;
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v_p = primes ( q ) ;

% q r ep r e s en t s the c i r c u l a n t s i z e and i t has to be a prime

% take the c l o s e s t prime to q

q = v_p ( end ) ;

% n = k

k = q−1;

% m = n−k = j

% R = k/n = (n−m)/n = 1− j /k

R = 2/3 ;

j = f l o o r ((1−R ) ∗k ) ;

% NaN = a l l −zero matrix

% c r ea t e the base matrix with s h i f t amounts

Hb = nan (j , k ) ;

r1 = 1 ;

x = 0 ;

f o r r = j−1:−1:1

c1 = 1 ;

f o r c = k−j+x :−1:0

Hb ( r1 , c1 ) = r∗c ;

c1 = c1+1;

end

x = x+1;

r1 = r1+1;

end

Hb (j , : ) = 0 ;

% c r ea t e pa r i t y check matrix

H = ze ro s ( q∗j , q∗k ) ;

f o r r = 1 : j
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f o r c = 1 : k

i f i snan ( Hb (r , c ) )

H ( q ∗(r−1)+1:q∗r , q ∗(c−1)+1:q∗c ) = ze ro s (q , q ) ;

e l s e

H ( q ∗(r−1)+1:q∗r , q ∗(c−1)+1:q∗c ) = circshift ( eye ( q ) , [ 0 Hb (r , c ) ] ) ;

end

end

end

An example of a 348 x 696 parity check matrix obtained with this algorithm is shown in

Figure 10.

Figure 10. BC-QC full rank PCM
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The generator matrix G can be easily computed from a full rank parity matrix H(n−k) x n

in the following way: first of all, a matrix M is created with the columns from k + 1 to n of

the matrix H, then the inverse matrix of M is computed. Finally, the systematic version of the

matrix H is found as Hsys =M
−1H. The matrix Hsys has the form [A(n−k) x k I(n−k)], thereby,

the systematic form of the generator matrix is Gsys = [Ik AT ].

2.2 Repeat-Accumulate codes

Repeat Accumulate (RA) codes are another kind of LDPC codes, where the parity check

matrix has the form

H = [H1 H2]

where H1 is a m x k sparse matrix and H2 is a m x m matrix with (m − 1) weight-2 columns

(only the last column has unitary weight) arranged in a staircase pattern as the following 5 x 5

matrix:

H2 =



1 0 0 0 0

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1


A regular RA (c,a) code has fixed weight-c columns and fixed weight-r rows in the matrix H1.

Nevertheless, the matrix H will be LDPC irregular due to the last column of weight-1 in the

matrix H2. An irregular RA will have a matrix H1 with an irregular degree distribution.



38

Example 2.2 A (2,2) regular RA parity check matrix for a [8,4] code could be:

H =



1 0 1 0 1 0 0 0

0 1 0 1 1 1 0 0

0 1 1 0 0 1 1 0

1 0 0 1 0 0 1 1


The first four columns are related to the message bits. The parity check equations are:

c5 = c1 + c3 c6 = c5 + c2 + c4

c7 = c6 + c2 + c3 c8 = c7 + c1 + c4.

Thanks to the dual-diagonal form of the matrix H2, each parity check bit can be computed using

only the message bits and the previously computed parity check bit in a recursive manner.

To make it clearer, given the matrix

H = [H1 | H2] =



h11,1 h11,2 . . . h11,k 1 0 . . . 0

h12,1 h12,2 . . . h12,k 1 1 0 0

...
...

...
... 0

. . .
. . . 0

h1m,1 h1m,2 . . . h1m,k 0 . . . 1 1


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and using the equation HcT = 0 the parity check bits can be found as

p1 = h11,1u1 + h11,2u2 + · · ·+ h11,kuk

p2 = h12,1u1 + h12,2u2 + · · ·+ h12,kuk + p1

...

pm = h1m,1u1 + h1m,2u2 + · · ·+ h1m,kuk + pm−1

with all additions performed modulo-2.



CHAPTER 3

ENCODING TECHNIQUES

We have seen in Chapter 1 that when the parity check matrix H is in the systematic

form Hsys = [A(n−k) x k In−k], the generator matrix is equal to Gsys = [Ik AT ]. Given any

parity check matrix H, the systematic form can be found using Gauss-Jordan elimination. This

operation has to be done only once and then the encoder will work on the generator matrix,

while the decoder will work on the parity check matrix. After that the encoding can be done

using the well known expression c = uG. The main disadvantage is that most of the time G is

not sparse and the matrix multiplication will have order n2 complexity.

3.1 Richardson/Urbanke Encoding Algorithm

The goal of this method (12) is to encode a message using the parity-check matrix instead

of the generator matrix. First of all, the matrix is put into approximate lower triangular form

Halt (Figure 11) by means of row and column permutations. The matrix T is a lower triangular

matrix with all ones on the main diagonal and all zeros above the diagonal. The g rows at the

bottom of the matrix are called the gap of the matrix.

After that, the matrix E is transformed in an all-zero matrix by means of Gauss-Jordan

elimination. This operation can also be done multiplying Halt by another matrix as follows:

Hsalt =

Im−g 0

ET−1 Ig

Halt =
A B T

C1 D1 0


40
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Figure 11. Approximate lower triangular form

with C1 = ET
−1A+ C and D1 = ET

−1B+D. Actually, it should be −ET−1, but the minus can

be ignored due to modulo-2 operations. This new matrix form is called systematic approximate

lower triangular. All the matrices remain unchanged, except for the matrices C1 and D1 that

could not be sparse.

The codeword is made up of three parts

c = [u p1 p2]
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where u = [u1 u2 . . . uk] is the message with k = n −m, p1 = [p11 p12 . . . p1g] is a vector

with the first g parity bits and p2 = [p21 p22 . . . p2m−g] is another vector with the other m−g

parity bits. Using the equation Hsaltc
T = 0

A B T

C1 D1 0



u

p1

p2

 =

0
0



the following two equations can be found

Au+ Bp1 + Tp2 = 0

C1u+D1p1 = 0

If D1 is invertible, p1 can be computed as:

p1 = D1
−1C1u

and p2 can be found from p1 as

p2 = T−1(Au+ Bp1)

The parity vector p2 can also be computed using back-substitution, thanks to the lower

triangular form. It means that each parity bit p2i can be found as a function of the message

bits and previously computed parity bits.
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The complexity order of this algorithm is O(n + g2), and therefore the smaller the gap g

the lower the encoding complexity will be.

3.2 ALT form using a greedy algorithm

This is a modified version of the algorithm (13) that is used to put a generic parity check

matrix Hm x n into the approximate lower triangular (ALT) form shown in Figure 11.

First of all, in the initialization step the column with the smallest positive number k0 of

1s is found. In case there are more columns with the same number of 1s, randomly pick one.

After that, swap this column with the n-th column. At this point, the k0 rows with a one in

the new n-th column have to be moved to the bottom of the matrix H. To avoid to excessively

modify the matrix a row ri will be swapped only if its row number ri is lower than m− k0 + 1.

This means that if the 1s are already at the bottom of the matrix the corresponding rows will

not be moved. If ri < m − k0 + 1 the first ”free” row starting from the m-th row, that is the

row with a zero in the n-th column, will be found and then the row ri will be swapped with this

”free” row. For the rows left, the search for the ”free” row will start from the one on the top of

the last swapped row. After all the rows are properly moved the gap is set to g = k0 − 1 and

two new variables p = n− 1 and j = 1 are created. At this point the first element on the main

diagonal of the matrix T, starting from the bottom, is in the n-th column at the (m − g)-th

row.

After that, the step 1 starts and the column with the smallest positive number of 1s kj

will be found between the columns from 1 to p taking into account only the rows from 1 to

m − g − j. As before, if more columns have the same number of 1s, randomly pick one. Next
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swap the found column with the p-th column. If there is just one 1 or one of the 1s in the new

column p is already on the main diagonal do nothing, otherwise swap the corresponding row

with the m− g− j-th row. If more than one 1 are present append the remaining rows kj − 1 to

the bottom of H and update g with g = g+ kj − 1.

Then update j = j + 1 and p = p − 1 and go back to the step 1 until m − g − j ≥ 1. At

the end of this step the matrix will be in ALT form. At this point the Richardson/Urbanke

algorithm can be applied.

% f ind column with sma l l e s t number o f 1 s

% between columns from 1 to c l im

% and rows from 1 to r l im

func t i on [ m , min_col ] = min1s_col (H , c_lim , r_lim )

cnz = zero s (1 , c_lim ) ;

f o r i=1:c_lim

cnz ( i ) = nnz ( H ( 1 : r_lim , i ) ) ;

end

cnz (˜ cnz ) = NaN;

[ m , min_col ] = min ( cnz ) ;

[ m , n ] = s i z e ( H ) ;

%% i n i t i a l i z a t i o n

% f i nd column with sma l l e s t number o f 1 s ( k0 )

[ k0 , min_col ] = min1s_col (H , n , m ) ;
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% swap min co l and the n−th c o l

H ( : , [ min_col , n ] ) = H ( : , [ n , min_col ] ) ;

% move k0 rows with a 1 in the n−th c o l to the bottom of H

% f ind row indexes where the re are the se 1 s

pos = f ind ( H ( : , n ) ) ;

s = m ;

f o r i = 1 : s i z e ( pos , 1 )

% i f i−th row i s a l r eady below the m−k0+1 row do not move i t

i f ( pos ( i ) < m−k0+1)

%otherwi s e f i nd the f i r s t f r e e row where to move the i−th row

whi le ( H (s , n ) == 1)

s = s − 1 ;

end

% move the row

H ( [ pos ( i ) , s ] , : ) = H ( [ s , pos ( i ) ] , : ) ;

s = s − 1 ;

end

end

% gap

g = k0−1;

%% Step 1

p = n−1;

j = 1 ;

whi l e (m−g−j >= 1)

% n ones = number o f 1 s on or above the main d iagona l

[ n_ones , min_col ] = min1s_col (H , p , m−g−j ) ;
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% swap min co l and the p−th c o l

H ( : , [ min_col , p ] ) = H ( : , [ p , min_col ] ) ;

% f i nd row indexes where the re are the 1 s

pos = f ind ( H ( 1 : m−g−j , p ) ) ;

% swap pos (1 )−row with the row with index m−g+j ( on the d iagona l )

i f ismember (m−g−j , pos )

% i f one o f the items i s a l r eady on the d iagona l

% move i t in pos (1 ) , so i t w i l l be not taken in to account

% in the f o l l ow i n g step

% f i nd index o f the m−g−j−th item in pos

index = f ind ( pos == m−g−j ) ;

pos ( [ index , 1 ] ) = pos ( [ 1 , index ] ) ;

e l s e

% swap pos (1 )−th row with the row on the d iagona l

H ( [ pos (1 ) ,m−g−j ] , : ) = H ( [ m−g−j , pos (1 ) ] , : ) ;

end

i f n_ones > 1

% swap the remaining r j rows to the bottom of H

f o r i=2:n_ones

% append pos ( i )−th row at the bottom of the matrix

H ( m+1 , :) = H ( pos ( i ) , : ) ;

% remove pos ( i )−th from the o ld po s i t i o n

H ( pos ( i ) , : ) = [ ] ;

% subt rac t a l l the indece s o f vec to r pos , because

% a l l i tems have been moved up o f 1 po s i t i o n

pos = pos−1;
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% inc r e a s e the gap

g = g+1;

end

end

j = j+1;

% the next search w i l l be done on ( 1 : p−1) columns

p = p−1;

end

Figure 12. ALT form via greedy algorithm

An example of the parity check matrix obtained after this algorithm has been executed is

shown in Figure 12. This is a 40 x 80 matrix with g = 3 and where there are 240 non-zero

elements. Then the Richardson/Urbanke algorithm is applied on this matrix giving as result
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Figure 13. Matrix after Richardson/Urbanke algorithm

the matrix in Figure 13. As it is possible to see the number of ones increases to 294 and the

matrices C and D are no more sparse.

3.3 Adaptive Message Length Encoding

The adaptive message length encoding (14) represents a valid alternative to the Richard-

son/Urbanke algorithm. This method is called adaptive because the dimension of the matrix A

is not fixed and depends on the size of the matrix T, which changes according to the randomly

generated parity check matrix. As before, the matrix H is put into the lower triangular form

(Figure 14), for example by means of the previous algorithm. The obtained matrix has the

following structure:

Halt =

A T

B C


where A is v x (n− v), T is v x v, B is (m− v) x (n− v) and D is (m− v) x v.
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Figure 14. Lower triangular form for AML encoding

The codeword is divided in two parts

c = [u p]

where u = [u1 u2 . . . uk] is the message and p = [p1 p2 . . . pv] is the parity vector. Using the

equation Haltc
T = 0 A T

B C


u
p

 =

0
0


the following two equations are obtained

AuT + TpT = 0

BuT + CpT = 0
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From the first equation the parity bits can be computed as

pT = T−1AuT

This new method has two big advantages over the Richardson/Urbanke algorithm. The

former is that if we first compute AuT and then we multiply the result by T−1, the overall

complexity is O(n) instead of O(n + g2) as in the Richardson/Urbanke algorithm. The latter

is related to the memory required to store the parity check matrix. Indeed, the matrices B and

C can be ignored and the matrix to be stored becomes

H = [A T ]

3.4 Quasi-Cyclic encoding

3.4.1 Row Circulant QC encoding

As we have seen in section 2.1.1 a circulant matrix can be represented by a polynomial.

Given the generator matrix in Equation 2.1, the polynomials

c−1l c1, c−1l c2, . . . , c−1l cl−1

can be used to create an encoder made of (l− 1) left cyclic shift registers, each with L bits. All

the parity bits will be ready after m clock cycles.

The example 3.1 will make all clear.
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Figure 15. Row circulant QC encoder example 3.1

Example 3.1 Given the following polynomials:

c1(x) = 1+ x
2 + x6

c2(x) = x+ x
5 + x7

c3(x) = 1+ x
4 + x9
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a code with l = 3 and L = 10 has been created, where l is the number of circulants and each

circulant has size L x L. The code rate is R = 2
3 and the final code length is n = 30. The parity

check matrix is H = [C1 C2 C3]. The polynomial c3(x) is invertible and it is equal to

c3(x)
−1 = x2 + x7 + x9

Therefore,

c3(x)
−1c1(x) = 1+ x

4 + x5 + x6 + x7

c3(x)
−1c2(x) = 1+ x+ x

3 + x4 + x7 + x8 + x9

At this point the generator matrix is

G =


(C−1

3 C1)
T

I20

(C−1
3 C2)

T


and the corresponding encoder implementation is shown in Figure 15. A new parity bit will be

computed at each clock cycle starting from c21 up to c30.

3.4.2 Block Circulant QC encoding

The encoding for a block circulant QC code requires a generator matrix in the systematic

form. A possible parity check matrix is the one of Equation 2.2 from which the systematic form
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of the generator matrix Gsys can be found as seen in section 2.1.2. The general structure of a

systematic generator matrix is:

Gsys =



G1

G2

...

Gkb


=

I 0 . . . 0 G1,1 G1,2 . . . G1,mb

0 I . . . 0 G2,1 G2,2 . . . G2,mb

...
...

. . .
...

...
...

...
...

0 0 . . . I Gkb,1 Gkb,2 . . . Gkb,mb




I A

where each Gi,j is a circulant matrix of size L x L and mb = nb − kb. The matrix Gsys is of

size Lkb x Lnb, and it contains a matrix A of size Lkb x Lmb and an identity matrix ILkb .

As shown in (15), the message to be encoded is divided in blocks of L bits

u = [u1 u2 . . . ukb
] = [u1 u2 . . . uLkb ]

and the corresponding codeword is

c = [u1 u2 . . . ukb
p1 p2 . . . pmb

]
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where each pi contains L bits. Assume that gi,j is the last row of a circulant Gi,j and gi,j
x the

left cyclic shift by x positions of gi,j. The codeword is obtained using the equation

c = uGsys = u1G1 + u2G2 + · · ·+ ukb
Gkb

where ui = [u(i−1)L+1, u(i−1)L+2 u(i−1)L+3, . . . uiL] with 1 ≤ i ≤ kb.

The j-th block of parity bits, with 1 ≤ j ≤ mb, is computed as

pj = u1G1,j + u2G2,j + · · ·+ ukb
Gkb,j (3.1)

where for i = 1, 2, . . . , kb

uiGi,j = u(i−1)L+1gi,j
(L−1) + u(i−1)L+2gi,j

(L−2) + · · ·+ uiLgi,j0 (3.2)

The encoder implementation (15) to compute a block of parity bits pj is shown in Figure 16.

The information bits are shifted out one at a time starting from the last bit uLkb . The

encoding process consists of the following steps:

• the left cyclic shift register B is initialized with gkb,j
0 = gkb,j, that is the last row of the

circulant (no shifted) and the content of accumulator register A is set to zero;

• the information bit uLkb is shifted out and the product uLkbgkb,j is computed by the AND

gates;
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Figure 16. CSRAA encoder

• the result of the AND gates is added by means of the XOR gates to the vector of zeros

stored in the register A.

• After that, the register B is cyclically shifted to the left by 1 position and its new value

is gkb,j
1;

• at this point the bit uLkb−1 is shifted out and the product uLkb−1gkb,j
1 is performed;

• the result at the output of the ANDs is added to the previous vector stored in the register

A as shown in Equation 3.2. The final result is uLkb−1gkb,j
1 + uLkbgkb,j.

• These operations continue until the last bit uL(kb−1) of the block ukb
is shifted out. At

this time the register A stores the partial sum ukb
Gkb,j of Equation 3.1.
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• The next thing to do is to store in B the following circulant generator gkb−1,j
0 = gkb−1,j;

• then the previous operations are repeated until all the bits of the block ukb−1 are shifted

out. At this point the content of the register A is ukb−1Gkb−1,j + ukb
Gkb,j.

• All these steps are iterated until the last information bit u1 is shifted out and the content

of the register A is exactly the j-th block of parity bits pj.

This implementation is called cyclic shift register adder accumulator (CSRAA). In order

to compute all the parity blocks, mb CSRAA will be employed as will be shown in the next

chapter.

3.5 Repeat-Accumulate encoding

As we have seen in section 2.2, the matrix H1 is related to the information bits ui. Let’s

assume we are dealing with a regular RA code, that is a code with a matrix H1 with a fixed

row weight a and a fixed column weight q. Then it means that each message bit ui will be

repeated q times and a of these repeated bits will be summed together modulo-2 in order to

create a check node. The connection between the repeated bits and the check nodes will be

decided by a component called the interleaver. The form of the matrix H2 indicates that the

parity bits have to be added two at a time, except for the first parity bit. The component in

charge of doing this operation is called the accumulator.

The encoder structure is shown in Figure 17.
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Figure 17. Repeat-Accumulate systematic encoder

As it is described in (7), the message u = [u1 u2 . . . uk] is repeated q times and the output

of the repetition code has the form:

r = [r1, r2, . . . , rqk] = [u1, u1, . . . u1︸ ︷︷ ︸
q

, u2, u2, . . . u2︸ ︷︷ ︸
q

, . . . , uk, uk, . . . uk︸ ︷︷ ︸
q

]

After this step, a permutation of the bits in the vector r is found following the content of the

interleaver vector Π = [Π1, Π2, . . . , Πqk], where each Πi is a positive number indicating the

new position in the vector i of the bit ri. The output of the interleaver is a vector

i = [i1, i2, . . . , iqk] = [r(Π1), r(Π2), . . . , r(Πqk)]

where r(Πi) is the entry of the vector r at the position Πi. At this point, the combiner adds

modulo-2 ”a” bits at a time in the following way

xj = i(j−1)a+1 + i(j−1)a+2 + · · ·+ ija
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with j = 1, 2, . . . , m and m = qk
a , giving as output the vector x = [x1, x2, . . . xm]. In the

last step the parity bits p = [p1, p2, . . . pm] are found by means of the expressions:

p1 = x1 pi = pi−1 + xi with i = 2, 3, . . . , m

The systematic codeword at the output of the encoder is c = [u1 u2 . . . uk p1 p2 . . . pm].

Example 3.2 Assume our initial message is made of 4 bits u = [u1 u2 u3 u4] = [1 0 1 0],

q = 3 and a = 2. So, r = [1 1 1 0 0 0 1 1 1 0 0 0]. Let’s write the bits of the vector r row-wise

in a 3 x 4 matrix, and read it out column wise, as follows:


r1 r2 r3 r4

r5 r6 r7 r8

r9 r10 r11 r12


thus the interleaver vector is Π = [1 5 9 2 6 10 3 7 11 4 8 12]. At this point

i = [r(Π1), r(Π2), . . . , r(Π12)] = [r1 r5 r9 r2 r6 r10 r3 r7 r11 r4 r8 r12]

i = [1 0 1 1 0 0 1 1 0 0 1 0]

and

x = [1+ 0, 1+ 1, 0+ 0, 1+ 1, 0+ 0, 1+ 0] = [1 0 0 0 0 1]
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With p1 = x1 = 1,

p2 = p1 + x2 = 1+ 0 = 1 p3 = p2 + x3 = 1+ 0 = 1

p4 = p3 + x4 = 1+ 0 = 1 p5 = p4 + x5 = 1+ 0 = 1

p6 = p5 + x6 = 1+ 1 = 0

and therefore p = [1 1 1 1 1 0]. The equivalent parity check matrix can be found looking at

the interleaver pattern Π. In the 6 x 4 matrix H1 there should be a = 2 1s in each row and

q = 3 1s in each column. For example the first row is represented by the first two numbers 1

and 5 of the vector Π, that indicate the bits d 1qe = d
1
3e = 1 and d 53e = 2, the second row by the

following two numbers 9 (d 93e = 3rd bit) and 2 (d 23e = 1st bit), etc.

H =



1 1 0 0 1 0 0 0 0 0

1 0 1 0 1 1 0 0 0 0

0 1 0 1 0 1 1 0 0 0

1 0 1 0 0 0 1 1 0 0

0 1 0 1 0 0 0 1 1 0

0 0 1 1 0 0 0 0 1 1


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The chosen interleaver is really simple and it will affect the decoding performance due to all

the 4-cycles introduced in the matrix H. The 1s in bold in the matrix H are just two 4-cycles.

Better interleaver implementations can be found in (16).

3.6 Encoding using erasure decoding

The encoding can also be done using the erasure decoding algorithm (7) (page 52) as it has

been shown in (17). In this algorithm the messages are binary numbers and not probabilities

as in the sum product decoding algorithm. The message bits are put in place of k linearly

independent bit nodes and the other n − k bit nodes are set as erased bits. The encoding will

work properly if no stopping sets are present in the erased bits. A stopping set is a set of code

bits such that a check node that checks on one bit in this set, checks on at least two bits of

this set. Otherwise, if the bit nodes in the stopping set are erased bits, the decoding algorithm

will fail. Indeed, in this case the parity check equations cannot be solved because at least two

erased bits are included in the corresponding parity check equations. However, a big advantage

of this implementation is to save hardware resources, because the encoding and the decoding

operations could be done with the same circuit.



CHAPTER 4

ENCODER IMPLEMENTATIONS ON ALTERA FPGA

The software used to analyze and synthesize the VHDL code is the Quartus® II Web

Edition v12.1 Service Pack 1 (18). This is a free version from Altera® that allows to compile

a HDL design for a specific device. I have used an Altera® FPGA of the family Cyclone® II,

whose name is EP2C35F672C6. It has 33216 logic elements, 483840 memory bits, 70 embedded

multipliers and 475 I/O pins. Furthermore, the software to simulate the design using different

stimuli is the ModelSim®-Altera Starter Edition 10.1b (19), which is also provided by Altera®.

4.1 Cyclone FPGA

The Cyclone II structure is shown in Figure 18. As described in (20), it contains pro-

grammable logic components called logic array blocks (LABs) which are linked together via

reconfigurable interconnects. Furthermore, embedded memory blocks and embedded multipli-

ers are present. All these elements are arranged according to a row-column structure.

The Cyclone II FPGA also presents a global clock network and a maximum of four phase-

locked loops (PLLs). The M4K memory blocks are dual-port memory with 4K of data bits plus

other 4608 parity bits. These memory blocks can be used both as dual-port and single-port

memory.

The logic arrays consist of LABs, where each LAB contains 16 logic elements (LEs). The

logic element is the smallest unit of logic inside this FPGA and it used to efficiently implement

61
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Figure 18. Cyclone II device structure

logic functions. As shown in Figure 19, each logic element contains: a four-input look-up table

(LUT), which can implement any logic function of four variables, a programmable register and

other components used for the interconnection with other LEs. It is important to note that

in case of combinational logic, the LUT output bypasses the register going directly to the LE

outputs.

4.2 Block Circulant QC encoder

Given a block circulant QC code with a generator matrix Gsys = [Ik Ak x m] made of kb x nb

circulants, a possible encoder implementation is shown in Figure 20. The components required

are mb CSRAA, whose structure is described in detail in section 3.4.2, a parallel input serial

output (PISO) shift register for the k-bit message and a ROM memory made of kb words, each
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Figure 19. Cyclone II logic element structure
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containing m bits. Given a generator matrix as the one in section 3.4.2, a row of the ROM

memory g rom contains the L-th row of all the circulants Gi,j with j = 1, 2, . . . , mb starting

from the last row of circulants (i = kb) up to the first row of circulants (i = 1).

For instance, given a code with rate R = 1/2 and L = 4

G =

I 0 G1,1 G1,2

0 I G2,1 G2,2

 =



1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0

0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0

0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1

0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1

0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0

0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1

0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0


the ROM will be made of the two 8-bit rows in bold, starting from the bottom

1st row 1 1 0 0 0 1 1 0

2nd row 1 0 0 1 0 1 0 1

In addition, the 2nd 4-bit vectors (1001 and 1100) are written before the 1st ones (0101 and

0110), because of the big-endian notation used in the VHDL design, according to which the

(N − 1)-th bit is the leftmost bit (MSB), while the 0-th bit is the rightmost bit (LSB). As we

can see only two out of eight rows have to be saved with an enormous storage saving.
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Figure 20. Block circulant QC encoder

After the ROM content is correctly initialized, the encoding process starts loading the

message u into the msg shifter component. The FPGA contains a limited number of I/O pins

(475), thus, I decided to load L message bits at a time. Indeed, when the ld signal of the

msg shifter is set to one the content of the register is shifted to the right by L bits and the

message block ub is loaded in the first L bits. This step finishes when all the kb message blocks

are loaded inside the k-bit msg shifter, which after the initialization process will right shift out

one bit at each clock cycle.

After that, the start signal is enabled and the first row of the ROM memory is read out and

it is divided in mb blocks of L bits (Gi,j), one for each circulant matrix (j = 1, 2, . . . , mb).
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These blocks are the inputs of the registers B inside each CSRAA circuit. All the operations

performed in in the CSRAA components are described in detail in section 3.4.2.

Figure 21. ASM QC encoder
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The algorithmic state machine (ASM) chart can be seen in Figure 21, where each rectangular

box represents a state in the finite state machine. All the signals not specified in the state boxes

are set to zero, except for the en msg and the local reset signal rst l n that are initialized to

one.

As seen in section 3.4.2, the content of the register B has to be shifted L times before a new

gi,j can be loaded. Nevertheless, in the state W1 the condition count = L-4 is present rather

than count = L-1, where count starts from 0. This happens because 3 clock cycles are needed

to obtain the new values gi,j from the ROM memory. More precisely, the involved states are

W2, I1 n and I2 n, where in W2 the following ROM address is generated, in I1 n the row with

the new gi,j values is read from the memory and finally in I2 n the values gi,j are written in

the respective registers B. Meanwhile, at each clock cycle every register B continues to cyclic

left shift its content and every register A loads a new input coming from the XOR gates. These

two registers do not need any enable signal to perform their operations. This is done to have

less control signals in the FSM. The operations done in the states I1 i/I2 i and I1 n/I2 n are

the same except for the fact that the first two states are used only once at the beginning. In

addition, the state I1 i has the control signal en msg set to zero to synchronize the message

bits with the values gi,j. Indeed, without the state I1 i the first message bit is shifted out one

clock cycle before the gkb,j values are loaded in the registers B.

Two counters (Figure 22) are used to keep track of the number of times the registers B has

been shifted (count) and how many rows are read out from the ROM memory (rows count).
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Figure 22. Internal counters of the QC encoder

The circuit finishes its operation when all kb rows are read from the ROM memory, that is

when the counter rows count = KB − 1.

At this point, DONE becomes the new state and a kind of handshaking protocol is used

to restart the encoding process. In fact, the signal start has to be reset to zero before a new

message can be encoded setting again this signal to one.

This encoder implementation requires [2Lmb + k] FFs for the registers, Lmb ANDs and

XORs, a ROM memory with kb rows each with m bits, a modulo-L up counter (dlog2 Le FFs)

and a modulo-kb up counter (dlog2 kbe FFs). In addition, k clock cycles are required to encode

a message without considering the initialization step.
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A simulation of the BC-QC encoder has been done using a code with n = 28 bits and rate

R = 1/2. The message to encode is u = [1 0 0 1 0 0 1 0 0 1 0 0 1 0] and the content of the ROM

memory related to the generator matrix is:

1st row 0 0 1 0 1 0 0 1 0 1 0 0 1 0

2nd row 0 1 0 0 1 0 0 0 0 1 0 0 1 1

The waveform window of the ModelSim simulation can be seen in Figure 23. The resulting

parity blocks are p(0) = [1 0 0 1 1 0 0], the first parity block and p(1) = [1 1 1 1 1 1 0], the

second parity block.
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4.3 IEEE 802.11n encoder

4.3.1 Encoding algorithm

A quasi cyclic irregular repeat accumulate (QC-IRA) code is employed in the IEEE 802.11n

standard (21). The parity check matrix presents a block circulant structure, where each circu-

lant can be a zero matrix or a cyclic right shift of an identity matrix. The matrix H can be

described by a base matrix Hb, as we have seen in section 1.5. An example of a base matrix

for a code with n = 648 bits and R = 1
2 is shown in Figure 24. Each circulant has size Z = 27

and the character ”-” represents an all-zero matrix. The parity check matrix consists of two

submatrices, the matrix H1 that is related to the message bits and H2, which is related to the

parity bits. The second matrix H2 has a dual-diagonal form and its first column presents the

following structure

[1 - . . . - 0 - . . . - 1]T

for all the matrices defined in the standard (21). This property allows to significantly reduce

the encoder complexity (22). The standard defines 12 different codes, with three different code

lengths N=648, 1296 and 1944 and four possible code rates for each code length (R = 1/2, 2/3,

3/4 and 5/6).

As seen in (22), the message bits are divided in kb blocks of length Z, u = [u0 u1 . . . ukb−1],

while the parity bits are divided in mb blocks of length Z, p = [p0 p1 . . . pmb−1]. Therefore,

c = [u p]. Using the equation HcT = 0
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Figure 24. Standard IEEE 802.11n matrix R=1/2 N=648 Z=27



h0,0 h0,1 . . . h0,kb−1 1 0 - - . . . . . . . . . -

h1,0 h1,1 . . . h1,kb−1 - 0 0 - - . . . . . . -

...
... . . .

...
... . . .

. . .
. . .

...
...

...
...

hx,0 hx,1 . . . hx,kb−1 0 - -
. . .

. . .
...

...
...

... . . .
... -

...
... . . .

. . .
. . .

...
...

... . . .
...

...
...

...
... . . .

. . .
. . .

...

hmb−1,0 hmb1,1 . . . hmb−1,kb−1 1 - . . . - - - - 0





u0

u1

...

ukb−1

p0

p1

...

pmb−1



= 0
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where the x-th row is the one with the 0 entry (no shifted identity matrix) in the first

column of H2, the following equations are obtained:

kb−1∑
j=0

h0,juj + p0
1 + p1 = 0 0-th equ.

kb−1∑
j=0

hi,juj + pi + pi+1 = 0 i=1, . . . , x-1, x+1, . . . , mb-2

kb−1∑
j=0

hx,juj + p0 + px + px+1 = 0 x-th equ.

kb−1∑
j=0

hmb−1,juj + p0
1 + pmb−1 = 0 (mb-1)-th equ.

where p0
1 is a circular left shift of p0 by one position. If we sum all the previous equations

together, we have

p0 =

mb−1∑
i=0

kb−1∑
j=0

hi,juj

This thanks to the fact that all the matrices of the IEEE 802.11n standard have an even number

of rows and that the sum of two identity matrices, both no shifted or shifted, is equal to the

all-zero matrix. Indeed, the only item that remains in the matrix H2 after the sum of all the

rows is the no shifted identity matrix corresponding to the p0 parity block (Figure 25). In

addition, the sum of the rows of the matrix H1 is exactly
∑mb−1
i=0

∑kb−1
j=0 hi,juj.

If we define λi =
∑kb−1
j=0 hi,juj,

p0 =

mb−1∑
i=0

λi (4.1)
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Figure 25. Matrix H2 from code N=648 R=2/3

and

p1 = λ0 + p0
1 (4.2)

pmb−1 = λmb−1 + p0
1 (4.3)

After we have computed p1 and pmb−1, we can find the other parity blocks as follows

pi = pi−1 + λi−1 i=2, . . . , x-1 (4.4)

pi = pi+1 + λi i=mb-2, . . . , x+1 (4.5)
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starting from the 2nd parity block and going forwards for the first equation, while starting from

the (mb − 2)-th parity block and going backwards for the second equation. After that, when

we reach the x-th position, the corresponding parity block can be obtained from

px = p0 + px+1 + λx (4.6)

4.3.2 Encoder architecture

The term hi,juj indicates a left circular shift of the message block uj by as many positions as

defined in the base matrix item hi,j. For example if uj = [1 0 0 1] and hi,j = 3, hi,juj = [1 1 0 0],

that is the left cyclic shift of uj by 3 positions.

After this observation, we can start to analyze the encoder architecture of Figure 26, which

numbers on the wires are related to an encoder for a code with n=648 bits, rate R=1/2 and

Z=27, which, from now on, will be used as example. Obviously, this encoder structure will work

for all matrices of the IEEE 802.11n standard. This is possible using a conditional compilation,

that allows to remove some hardware components that are not needed for the code rates R = 3/4

and R = 5/6.

1. First of all, the ROM sha rom contains all the items hi,j converted in binary present in the

matrix H1. These values hi,j are the shift amounts previously seen. I’ve assigned Zw = dlog2(Z)e

bits for each item of the matrix H1. Thanks to the fact that the value Z is not present in

any of the standard matrices, the item ”-” of the base matrix, corresponding to the all zero

matrix, is saved in the ROM just as the value Z. Our base matrix (Figure 24) has the following
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parameters nb = 24, kb = 12 and mb = 12, therefore each row of the ROM memory contains

dlog2(Z)ekb = 5 · 12 = 60 bits and there will be mb rows. The output B of the ROM memory

also has dlog2(Z)ekb bits.

2. The encoding of a message u = [u0 u1 . . . ukb−1] = [u1 u2 . . . uk] with k = kbZ, begins

saving all the message blocks ui with i = 0, 1, . . . , kb − 1 in the Z-bit registers msg reg i one

block at a time. During this operation the control signal ld u has to be equal to one until all

the message blocks are loaded and the demux selector sel c has to be set to the corresponding

message block number we want to select (0, 1, . . . , kb − 1). Then the signal ld u has to be set

to zero in order not to modify the content of the registers msg reg i and the signal start of the

FSM has to be put to one in order to let the encoding process begin.

3. After that, the first row of the ROM memory is read out and the message blocks are

left cyclic shifted by the components b shifter i by as many positions as specified in the

bits [BiZw , BiZw+1, . . . , B(i+1)Zw−1] at the output of the ROM memory sha rom, with i =

0, 1, . . . , kb − 1. In case an all zero item is found (value Z=27), the output of the b shifter i

is a Z-bit all-zero vector. At this point all the outputs of the b shifter i are added together

modulo-2 and the result (λ0) is saved in the lambda ram at the i-th address. The address of

the shift amounts memory (sha rom) is generated by the modulo-MB shAddr up counter, while

the address of the lambda ram comes from the modulo-MB lambdaAddr up counter with the

d addr selector set to zero as can be seen in Figure 28.

4. The operations of step 3 are repeated for all the rows in the ROM memory until all the λi

are saved in the RAM memory. This happens when the lambdaAddr up counter reaches the
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value MB − 1. To save time, each time a value λi is saved in the memory, it is also read out

and added to the content of the accumulator register reg p0, initially set to zero. In this way at

the end of these two steps (3 and 4) we have both all lambda values and the first parity block

p0 as seen in Equation 4.1.

5. Then the parity block p1 is obtained from the sum of the value λ0 coming from the RAM

memory with the left cyclic shift of p0 by one position coming from the component rol1 just

as it is shown in Equation 4.2. To speed up the circuit the lambda RAM has two output ports,

therefore the parity block pmb−1 is computed at the same time summing λmb−1 coming from

the second port of lambda ram with the cyclic shifted parity block p0 at the output of rol1 as

indicated in Equation 4.3. These two parity blocks will be saved into different registers, reg p1

and reg pmb 1 respectively. To get the values λ0 and λmb−1, the direct addresses d lambdaAddr1

and d lambdaAddr2 (Figure 28) are set to 0 and MB− 1 respectively. In the meanwhile, d addr

is set to one, while sel dir n is set to zero such that the signal lambdaAddr 1 is connected to

d lambdaAddr1, while the signal lambdaAddr 2 is connected to d lambdaAddr2. The signals

lambdaAddr 1/2 are connected to the address ports of the lambda ram memory.

6. After that, the register reg p forward is initialized with the parity vector p1, while the

register reg p backward is initialized with the parity vector pmb−1. At this point, as seen

in Equation 4.4 and Equation 4.5, the parity vectors pi with iforward = 2, . . . , x − 1 and

ibackward = mb − 2, . . . , x + 1 are obtained from the modulo-2 sum between the previously

computed parity blocks and the lambda vectors coming from the lambda ram. Also this time,

the forward and backward parity blocks are computed at the same time thanks to the double



79

output RAM. At each clock cycle two new parity blocks are present at the outputs p forward

and p backward. These two values are used to compute the following parity vectors in a recursive

fashion. The addresses of the λi values are generated by the f addr up counter for the forward

parity blocks which counts from 1 to X−1 and the b addr down counter for the backward parity

bits which counts from MB − 2 to X+ 1.

7. Finally, the parity block px is found as shown in Equation 4.6, where the vector px+1 comes

from the last computed p backward vector, p0 comes from the register reg p0 and λx is obtained

setting d lambdaAddr1 equal to X. At this point, as in the QC encoder the new state becomes

DONE. The encoder remains in this state until the signal start is one, when it becomes zero

the FSM returns in the state R, where all the components are opportunely reset.

Figure 27. FSM component
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Figure 28. Internal counters of the IEEE 802.11n encoder
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The datapath of the encoder in Figure 26 is managed by the finite state machine (FSM)

shown in Figure 27. This component generates all the control signals and the addresses needed

by the sha rom SHift Amounts ROM and the lambda ram.

The ASM chart can be seen in Figure 29. All the signals not present in the rectangular

boxes are set to zero, except for the rst l n which is set to one as default. The addresses are

generated by means of different counters (Figure 28), whose control signals are also managed

by the FSM.

This encoder structure requires [(kb+6)Z] FFs for the registers, (kb+1) Z-bit cyclic shifters

(Z FFs), [(kb+6)Z] XORs, one ROM memory with 2dlog2mbe rows, each with dlog2 Zekb bits, one

RAM memory with 2dlog2mbe rows, each with Z bits and two modulo-mb counters (dlog2mbe

FFs). The counters for the forward and backward parity vectors computation are needed only

for the code rates R = 1
2 and R = 2

3 (log2 (
mb−4
2 ) FFs).

The number of clock cycles required is [6 + 2mb + (mb − 4)/2] for code rates R=1/2, 2/3

and 3/4, and [6+ 2mb] for R=5/6.

The ModelSim simulation of this encoder is shown in Figure 30. The employed code has

n = 648 bits and rate R = 1/2. The message to encode is 324 bit long, and it is divided in 12

message blocks, where the leftmost block is defined as msg g(11), while the rightmost one is

defined as msg g(0). The resulting parity blocks: p0, p1, pmb−1, px, the four vectors pforward

and the other four vectors pbackward are shown in Figure 31. The first values of pforward and

pbackward in the clock cycle from 42 ns to 43 ns are just the initialization values p1 and pmb−1.
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Figure 29. ASM IEEE 802.11n encoder
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In addition, px is still zero in the clock cycle from 47 ns to 48 ns, because in this extra cycle

the value λx is read from the memory.
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4.4 Comparison

The two encoder implementations have been synthesized using the same code parameters. I

have decided to use the twelve possible code parameters defined in the standard IEEE 802.11n

both for the block circulant QC encoder and the IEEE 802.11n encoder in order to make the

comparison more straightforward. This standard defines three different code lengths (648, 1296

and 1944), each one with four possible code rates (1/2, 2/3, 3/4 and 5/6). The circulant sizes

Z for these code lengths are 27, 54 and 81, respectively. The circulant size L in the QC encoder

has been set equal to Z.

The number of FPGA logic elements (LEs) is shown in Figure 32. It is clear that the IEEE

802.11n encoder requires a higher number of LEs for all the code lengths. The strange behavior

of the LEs curves of the IEEE 802.11n encoder at the rate R = 5/6 depends on the fact that

at this rate the hardware required for the computation of the forward and backward parity

blocks is not more needed. In this manner the encoder architecture for this rate is significantly

simplified.

The same trend can be seen in the registers comparison of Figure 33. However, the number

of registers of the two encoders related to the code rate R = 1/2 is really close. This is due to

the fact that during the synthesis of the IEEE 802.11n encoder for this code rate, the Quartus

Compiler is able to infer a RAM with a size compatible with the RAM blocks present inside

the Altera FPGA, thereby reducing the number of registers required. Also in this case the

number of registers for the IEEE 802.11n encoder with code rate R = 5/6 decreases because of

the simplied HW structure.
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Figure 32. Logic elements comparison

Figure 33. Registers comparison
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The number of combinational functions can be seen in Figure 34. The IEEE 802.11n encoder

has a lower or equal number of combinational logic at rates R = 1/2 and R = 5/6, but it presents

a higher number at rates R = 2/3 and R = 3/4 with respect to the QC encoder.

Figure 34. Combinational functions comparison

The parallel structure of the block circulant QC encoder allows an average frequency of

346 MHz, while the IEEE 802.11n encoder presents an average frequency of 159 MHz. The

computation time in µs of the IEEE 802.11n encoder is shown in Figure 35, while the one of

the QC encoder is in Figure 36.



89

Figure 35. Computation time IEEE 802.11n encoder

Figure 36. Computation time QC encoder
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The computation time of the IEEE 802.11n encoder depends on the number of base matrix

rows mb and so it decreases as higher code rates are used. On the other hand the computation

time of the QC encoder increases if a higher code rate is employed because of its dependence

on the number of information bits k. In addition, the compution time of the IEEE 802.11n

encoder is one order of magnitude lower than the one of the QC encoder.

The initialization time of the message to encode is not taken into account in the computation

time graphs because it is equal for the two encoders as I’ve decided to load L/Z message bits

at a time. This is due the limited number of I/O pins present in my FPGA. Obviously the

initialization step can be speeded up loading more than L/Z bits at a time.

For what concerns the decoding performance the IEEE 802.11n QC-IRA codes behave better

than the BC-QC codes with a parity check matrix in the form of Equation 2.2 as it is possible

to see in Figure 37 and Figure 38. The decoding performance has been found using a code with

n = 648 bits with rate R = 1/2, a BPSK modulation and a Additive White Gaussian Noise

(AWGN) channel model. The message vector is first encoded, then the BPSK modulation has

been applied mapping each zero to the value As = 1 and each one to the value −As = −1.

Then, the received vector is computed adding a White Gaussian Noise with zero mean and

standard deviation σn to the modulated signal. Finally, the received signal is decoded using

the sum-product algorithm. These operations are repeated for different values of signal-to-noise

ratio (SNRdB) (0 to 10 dB with increments of 0.5 dB) and for each SNRdB, 2000 frames (message
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vectors) are used. Then for each value of SNRdB, the total number or errors over all frames is

saved in the variable errors and the BER for a value of SNRdB is found as

BER =
errors

frames · n
=

errors

2000 · 648

with

SNRdB = 10 log10

(
As

σn

)2
= 10 log10

(
1

σn2

)

where As = 1.

Figure 37. Decoding performance n=648 R=1/2
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Figure 38. Number of correctly decoded codewords n=648 R=1/2

Finally, both the BC-QC encoder and the IEEE 802.11n encoder require a very low storage

space. Indeed, for the BC-QC code, only kb out of k rows, each with m bits, must be saved in

the memory. While for the IEEE 802.11n code the shift amounts, each with dlog2 Ze bits, have

to be saved instead of the Z x Z circulants. Therefore, the BC-QC encoder is able to save

[(
1−

kb
k

)
100

]
%

of the storage space, while the IEEE 802.11n encoder is able to save

[(
1−
dlog2 Ze
Z2

)
100

]
%
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of the required memory.



CHAPTER 5

CONCLUSION

5.1 Final Results

Block-Circulant Quasi-Cyclic (BC-QC) codes and Repeat-Accumulate (RA) codes are the

most used LDPC codes, because it has been shown that they have really good decoding perfor-

mance and very low complexity encoders. In this thesis, two different encoder implementations

have been analyzed. The BC-QC encoder has been used as reference and it has the following

advantages:

• it works with a general BC-QC matrix in the systematic form;

• it has a very parallel and uniform architecture;

• it saves 96-99% of storage space;

• it has good decoding performance.

Its main drawback is related to the fact that the generator matrix is required to encode a

message vector. This means that the parity check matrix has to be full rank in order to easily

find a generator matrix still in the BC-QC form.

The IEEE 802.11n encoder works with matrices in the standard form as seen in section 4.3.1

and it presents the following advantages:

• it has really low computation time (one order of magnitude less than the QC encoder);

94



95

• it saves 99% of storage space;

• it has better decoding performance than the BC-QC code employed in this thesis.

The main disadvantage is that it requires more HW area on the FPGA as it is shown in

Figure 39. Nevertheless, a maximum of about 5.5% extra LEs seems a reasonable price to

pay for the improved performance. The percentage of extra LEs is computed as the difference

between the LEs of the IEEE 802.11n encoder and the LEs of the QC encoder over the 33216

LEs present in the employed FPGA.

Figure 39. Percentage extra LEs for IEEE 802.11n encoder



96

This encoder structure can be easily adapted to work with the IEEE 802.16 standard (23).

This standard supports 19 code lengths (from 576 bits to 2304 bits), and for each code length

the same code rates of the IEEE 802.11n standard are defined (R=1/2, 2/3, 3/4 and 5/6).

Nevertheless, the IEEE 802.16 standard defines two different code matrices for the code rates

R=2/3 (A and B) and R=3/4 (A and B).

As in the IEEE 802.11n standard, the base matrix size is fixed to nb = 24 for all the codes.

This base matrix is divided in two parts:

Hb = [H1mb x kb | H2mb x mb
]

where H1 corresponds to the message bits, while H2 corresponds to the parity check bits.

The submatrix H2 has the following form:

H2 = [hb|H2
’] =



hb0 0 - . . . . . . . . . -

- 0 0 - . . . . . . -

... - 0
. . . - . . . -

hbx - -
. . .

. . . - -

- . . . . . . -
. . .

. . . -

...
...

...
...

...
. . . 0

hbmb−1 - . . . . . . . . . - 0


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The two items hb0 and hbmb−1 have to be equal (same shift amount), while hbx must have

a different shift value. In the IEEE 802.11n standard hb0 = hbmb−1 = 1 and hbx = 0 for all

the code matrices. The character ”-” represents an all-zero matrix. Each number hbi,j in the

base matrix represents a right cyclic shift by hbi,j positions of an identity matrix of size Z = n
24 ,

where n is the length of the code. All the ”0” items in the matrix Hb are no shifted identity

matrices.

The standard defines a base matrix only for the code length n = 2304 of each code rate.

All the other matrices are directly determined using these matrices. The circulant size of the

code n = 2304 is defined as Z0 =
2304
24 = 96.

At this point, the shift amounts hbi,j of the base matrix for all other code lengths are

obtained as

hbi,j =

⌊
hbi,jZ

Z0

⌋
(5.1)

for code rates 1/2, 2/3 B, 3/4 A/B and 5/6, where Z = n
24 , and with

hbi,j = mod(hbi,j, Z) (5.2)

for code rate 2/3A.

The all-zero matrices indicated by the ”-” character remain zero matrices in the expanded

matrix. These matrices are indicated with the value −1 in the standard (23). An example

of the base model matrix for the rate R = 1/2 is in Figure 40. As said before, this matrix is
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defined for the code n = 2304, therefore the base matrices for the other code lengths have to

be computed scaling the values hbi,j in this matrix with Equation 5.1.

Figure 40. IEEE 802.16 base model matrix for n=2304 R=1/2

As we can see in Table I the values hb0 and hbmb−1 are different for all the code rates, while

hbx = 0 for all code rates except of rate R = 3/4B. Hence, the only component that has to be

modified in the structure of Figure 26 is rol1, that has now to left cyclic shift by hb0/hbmb−1

positions the parity vector p0 to properly compute p1 and pmb−1. The rest of the architecture

can be left as before. This change will work for all code rates except of R = 3/4B. For this rate



99

p0 has to be left cyclic shifted by hbx to compute px. In this case Equation 4.2, Equation 4.3

and Equation 4.6 become:

p1 = λ0 + p0

pmb−1 = λmb−1 + p0

px = p0
hbx + px+1 + λx

where p0
hbx is a circular left shift of p0 by hbx positions.

TABLE I

HB VALUES
PPPPPPPPPrate

hi,j hb0/hbmb−1 hbx

1/2 7 0

2/3 A 1 0

2/3 B 95 0

3/4 A 48 0

3/4 B 0 80

5/6 80 0

The right part of a modified architecture is shown in Figure 41 and it is able to work with all

rates of the IEEE 802.16 standard. The only component that has been added is the multiplexer

inside the circle. The rest of the structure is the same of Figure 26. If the selector p0 sh of
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the new multiplexer is set to zero the output is the no shifted parity vector p0, otherwise the

output is the vector p0 shifted by hb0/hbmb−1 positions for all rates except R = 3/4B and by

hbx positions for the code rate 3/4B. Furthermore, for all code rates except R = 3/4B the signal

p0 sh has to be set to one while the parity vectors p1 and pmb−1 are being computed. After

that, it has to be set to zero to compute px. As for the code rate R = 3/4B, the signal p0 sh

has to be first set to zero during the computation of p1 and pmb−1 and then to one in order to

determine px.

Figure 41. Right part of the modified IEEE 802.11n encoder
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5.2 Applications

So far, we have seen the LDPC codes used in both the IEEE 802.11n standard for wireless

local area network (WLAN) and the IEEE 802.16 standard for wireless metropolitan area

network (WMAN). However, LDPC codes are employed in a lot of applications.

Another example are the DVB-S2 and DVB-T2 standards. The former is the Digital Video

Broadcasting – Satellite 2nd generation (DVB–S2) standard also known as ETSI EN 302 307

(24) and the latter is the Digital Video Broadcasting – Terrestrial 2nd generation (DVB–T2)

standard or ETSI EN 302 755 (25) used for the digital terrestrial television.

Irregular Repeat Accumulate (IRA) codes are used in these two standards. The IRA parity

check matrix has the form H = [H1m x k H2m x m], where H1 is a matrix with an irregular

degree distribution and H2 is a dual-diagonal matrix. More information about RA codes can be

found in section 2.2. The codeword of this IRA code has a systematic form, that is c = [u p].

The DVB-S2 standard supports two different code lengths (16200 bits and 64800 bits), each

with different code rates (R=1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6 and 8/9). The rate 9/10

is only defined for the code length n = 64800 bits. As before, the DVB-T2 standard defines

two code lengths: 16200 bits and 64800 bits. The former with code rates R=1/4, 1/2, 3/5, 2/3,

3/4, 4/5, 5/6, 1/3, 2/5 and the latter with code rates R=1/2, 3/5, 2/3, 3/4, 4/5, 5/6.

The message bits in the matrix H1 are divided in group of M = 360 bits. All the bit nodes in

a group x must have the same weight wx. The connection between the first bit node of a group

and its wx check nodes is determined in a pseudo-random way. Let’s define i = [i1 i2 · · ·wx ] as
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the positions of the check nodes connected to the first bit node. Then the connection between

the other M-1 bit nodes in a group and the corresponding check nodes is determined using

(i1 + j q) mod m, (i2 + j q) mod m, . . . , (iwx + j q) mod m

with j = 1 . . . M − 1 and q = m/M. Thus, in the matrix H1 a new column pattern appears

each 360 columns and the columns in the middle are just cyclic shift of the new column to the

bottom by q positions.

For instance using a DVB-S2 code with n = 64800, R = 1/4 and q = 135 the first column

(j=0) of the matrix H1 is defined in the Annex B of the standard (24) and has ones in the

positions

i = [540 1140 6226 18148 18510 20879 23606 23802 28859 36098 42014 47088]

while the second column (j=1) has ones in the positions (ix + q) mod m = (ix + 135)

mod 48600, where ix is a generic element of the vector i with x = 1, 2, . . . 12. This means

that the ones in the second column are in the following positions

[675 1275 6361 18283 18645 21014 23741 23937 28994 36233 42149 47223].
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The Tanner representation of these IRA codes is shown in Figure 42, where the edge con-

nections between the check nodes and the parity nodes corresponds to the dual diagonal form

of the matrix H2. Two encoder implementations for DVB-S2 codes can be found in (26) and

(27).

Figure 42. Tanner graph for DVB IRA codes

A LDPC code with k = 1723 and n = 2048 is also used in the IEEE 802.3an standard

for ethernet communications. Cryptography represents another possible application of LDPC

codes. One example is a modified McEliece Cryptosystem Based on QC-LDPC Codes (28).
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5.3 Future Directions on the Design of LDPC Encoders

A possible enhancement is to make the IEEE 802.11n encoder programmable to let it work

with all kind of code rates avoiding to recompile the circuit for a new set of code parameters.

Furthermore, the two encoder implementations could be synthesized using the Synopsys® DC

Ultra™ tool, which allows one to compile a RTL (Register Transfer Level) design optimizing

timing, area and power consumption. Obviously, the ASIC (application-specific integrated

circuit) obtained using Design Compiler will have a better performance with respect to a FPGA

implementation. A FPGA requires a larger area because it contains a really high amount of

logic elements. The reason is that a FPGA should be general purpose and reusable. Similarly, a

FPGA circuit consumes more power due to its extra components. In addition, an ASIC design

can have a higher clock rate because of the custom interconnections. Nevertheless, a higher

time to market is required for ASIC designs and the overall cost will be reasonable only with

large-volume sales.
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