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SUMMARY

Human Genome Project provided new avenues for advances in medicine and biotechnology

by revealing the genetic blueprint of human cells. Our understanding on how biological func-

tions are encoded in genome has therefore been largely based on analysis of one-dimensional

DNA sequences. This understanding is now rapidly shifting towards more complex, multi-

dimensional models of genome upon the discovery of epigenomic profiles of cells through many

high-throughput experimental techniques. Important cellular functions such as gene expression

and regulation are largely due to the epigenetic changes in our genome. With the success of

The Encyclopedia of DNA Elements (ENCODE) project, there is a tremendous amount of in-

formation available on the epigenetic properties of human genome across different cell types.

While the quantity of this information is increasing rapidly, the overwhelming question becomes

what can be learned from this vast trove. Computational 3D models can provide great help in

understanding the mechanisms of gene regulations through construction of three-dimensional

chromosome structures using this data. However, it is challenging to computationally construct

chromosome structures due geometrical difficulties to satisfy constraints derived from experi-

ments. My research has been focusing on applying principles in physics, biology and computer

science to address the important question of how chromosomes are confined in the severely

small nuclear environment and how cellular functions are influenced by this organization.

During my PhD training, I have developed novel sampling tools to construct spatial struc-

tures of chromosomes, to understand fundamental mechanisms of regulation of gene expression

xx
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involving the effect of nuclear space in maintaining the epigenetic state of the cell, long-distance

DNA loopings that promote cell-specific gene expression, and the main physical factors and

mechanisms that determine the genome organization.

Investigation of genome studies must be carried out with the consideration of its physical

environment, namely cell nucleus. However, it is unclear how the architecture of cell nucleus

and its small dimension affect the organization of chromosomes. This is largely due to the chal-

lenges in computational techniques to properly sample three-dimensional structures in severely

confined spaces. We developed a geometrical algorithm based on the Importance Sampling

technique to generate ensembles of three-dimensional chromosome chains in the severe con-

finement of cell nucleus. Our model, named Constrained Self-Avoiding Chromatin (C-SAC),

showed how experimentally observed physical behavior of human chromosome folding emerges

from the confinement of cell nucleus. Our findings further highlight the importance of nuclear

size as a potential regulator of epigenetic programming of cells as in the case of transitioning

from stem cells to differentiated cells.

Detailed understanding of different cellular states in mammalian cell differentiation requires

comprehensive analysis of the interactions in the whole genome. Well-studied budding yeast

is an excellent starting system for genome-wide chromatin construction, as its transcription

machineries have been shown to be largely influenced by nuclear architecture. We developed

a model that uses constraints derived from microscopy experiments to mimic the nuclear en-

vironment and its effects on the folding of yeast genome. We showed that the organization

of individual chromosomes of yeast genome is dictated by the confinement of the cell nucleus.
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The relative organization of chromosomes in 3D space, however, is largely determined by the

centromere clustering in nuclear substructures. We also used these computationally captured

interactions arising from the polymer effects under the constraints of nuclear architecture to

extract biologically specific interactions from experimental data for further investigation of

transcription regulatory mechanism in budding yeast.

Chromosome Conformation Capture (3C) and related techniques are remarkable sources for

capturing the pairwise chromatin interactions. Experimentally captured interactions are often

sparse and incomplete due to the locations of restriction enzyme sites or sequence mappability

issues. Random interactions arising from non-specific formaldehyde fixation introduce further

complexity. We further improved our method to remove non-specific spatial interactions from

the experimental measurements and incorporate remaining specific interactions in our polymer

model to study the differential levels of gene expression in different cell lines. We applied

our method on folding of α-globin locus in different cells with different expression levels to

understand how spatial organization of genome and epigenetic profiles of highly interacting

genomic elements affect the expression level of important genes. Our computational modeling

revealed insights that there might be a relationship between levels of expression of α-globin

genes in different cell lines and the folding landscape of chromatin. We showed that some of the

predicted interactions that were not in the original data are shown to have biological importance

by other independent studies.

Finally, we studied the minimum required chromatin interactions in a locus to achieve the

transcriptional functions of the cell. Identifying interactions that facilitate the formation of
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promoter-enhancer interactions is important to understand the role non-coding DNA. Such

pairs involved in these interactions are denoted hotspots. Constructing 3D structures and

perturbing these structures with virtual mutations can help to identify hotspots that are not

obvious from the experimental measurements. I further developed a computational method

that enables virtual mutations. I introduce a repulsion between sites of interest and compare

the resulting ensemble with the wild type ensemble obtained by using Hi-C interactions as

constraints. This helps to identify the hotspots whose interactions facilitate the interactions

between promoters and enhancers. Combined with epigenetic profiling data of the CCL locus,

my method revealed that structural hotspots of chromatin do not correlate with their interaction

frequencies measured by 3C studies. I further showed the importance of CTCF binding on the

regulation of interactions between promoters and enhancers and demonstrated that evolutionary

conservation of these bindings sites is a major determinant of the importance of chromatin

interactions.

Overall, in this thesis, I use computational methods to construct three-dimensional struc-

tures of chromatin, both in genome and locus level. I, first, demonstrated the effects of nuclear

space on the organization of chromosome and how it dictates the overall scaling properties of

genome. I, then, studied the effects and contribution of nuclear landmarks, confinement as well

as the biochemical factors on the folding of budding yeast genome. I, furthermore, focused

on the detailed spatial structures of α-globin locus in different gene expression levels to study

the effect of three-dimensional organization of chromatin on level of gene expression. I, lastly,
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defined the minimum structural units of CCL locus in order to achieve necessary promoter-

enhancer interactions.
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CHAPTER 1

INTRODUCTION

As we continue to seek to understand the origin of life, we now know that DNA (deoxyri-

bonucleic acid) is the essential unit of every living system. It caries the genetic information

and passes it down from one generation to the next. DNA encodes the physical characteristics

of every living organism such as height, skin color, eye color, etc. Consequently, a detailed

understanding of organization of DNA and how it is assembled is essential to gain insights into

how living organisms function. In this thesis, you may not be able to find the answers related

to origin of life, but, to the most of my ability, I have demonstrated the large-scale organization

of this essential unit of life (DNA) and inferred some understanding of the mechanism behind

this organization. These findings are obtained through development of novel computational

approaches.

This introductory chapter is organized as follows. We begin reviewing the structural or-

ganization and fundamental folding principles of DNA. Through a brief historic review, we

visit recent achievements in experimental techniques that built the foundations of our current

knowledge of organization of this complex macromolecule. We will then revisit the hierarchi-

cal organization of DNA in cell nucleus with the aid of available experimental measurements.

Finally, we introduce the aims of the research presented here and its significance, concluding

with the outline of the remaining chapters of the dissertation.

1
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1.1 From DNA to Chromosome

In a haploid human cell, there are 23 chromosomes, which are about 3.2 billion base pairs

long in total. The fully extended length of about 2 m of human DNA is confined into a cell

nucleus, which is only 5-20 µm in diameter (Alberts, 2002). DNA is found to be in the form of

chromosome in cell nucleus. Chromosome is the higher-order organization of DNA that provides

relevant genetic information readily accessible and transmits that information to the subsequent

generations. As cycle of cell life is divided into periods, the organization of chromosome in

different periods helps with the function of DNA. For example, the organization of chromosome

in interphase and metaphase prevents DNA becoming an unmanagable tangle. The organization

of chromosome during mitosis further helps transmitting the genetic information to subsequent

generations. Most of the metabolic functions of a cell take place during the interphase and

a typical cell spends most of its life in interphase. Chromosome organization in interphase

also makes relevant genetic information readily accessible. In this dissertation, my studies are

related to the organization of chromosome in interphase, which is also called “chromatin”.

How is chromosome formed from DNA? There are certain proteins called histones in the

eukaryotic nucleus that compact DNA. Histones fold DNA using the energy from electrostatic

interactions (Youngson, 2006; Lehninger et al., 2005). The positively charged histones (H1,

H2A, H2B, H3, and H4) interact with negatively charged DNA, in such a way that DNA

molecule wraps around the histones and form an octomer. The resulting DNA-histones complex

is called nucleosome (Youngson, 2006; Lehninger et al., 2005). The eight histone molecules along

with 146 basepairs of tightly wrapped DNA form a nucleosome. In detail, H2A, H2B, H3, and
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Figure 1. The formation of nucleosome DNA (blue ribbon) wraps around eight histone
molecules twice and forms a nucleosome. String of beads appearance is also depicted.

H4 histones form an octamer (Lehninger et al., 2005; Hartl et al., 1988). DNA binds to this

octomer and wraps 1.7 turns, which is equivalent to 146 basepairs (Figure 1). Each chromosome

is formed from thousands of nucleosomes, and these nucleosomes are linked through 20 base

pairs long linker DNA. Each chromosome is therefore a collection of nucleosomes with linker

DNA in between. This yields the appearance of a string of beads (Figure 1) when viewed

using an electron microscope (Farkas and American Association for Clinical Chemistry, 1996).

Nucleosomes then fold to form a dense, tightly packed structure, called chromatin fiber (Hartl

et al., 1988).
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With the completion of human genome project (Lander, 2011), extensive understanding of

sequence of human DNA was gained. However, how this information directs gene expression

programs and how spatio-temporal changes in the genome take place remain unanswered. Un-

derstanding the mechanism behind the nuclear activities is important not only for understanding

the small regulatory units but also essential for studying phenotypic variations between cells

and the underlying mechanisms behind many human diseases. Growing evidence suggest that

the three-dimensional organization of genome along with its sequence orchestrate the unique

gene expression machinery in cells.

1.2 Genome in three-dimensional space

The genome is confined within a cell nucleus in eukaryotes. Nucleus is an organelle that

separates the transcriptional machinery of cell and cytoplasm. Genome organization is compert-

mentalized because of the attachment of nuclear substructures such as nuclear envelope (NE)

and its lamina. NE is enriched with transmembrane proteins that have affinity to bind to

the lamin proteins. binding between these transmembrane proteins and lamin proteins forms

the nuclear lamina. The interactions between the chromatin and the nuclear lamina deter-

mine the nuclear positioning of the chromosomes (Fawcett, 1966; Amendola and van Steensel,

2014; Zuleger et al., 2011). These interactions are between lamin-associated domains (LADs)

that are transcriptionally inactive and NE (Prokocimer et al., 2009). LADs are found to be

conserved among different cell types (Meuleman et al., 2013), however can also be specific to lin-

eage and cell type. Another substructure is nuclear pore complexes (NPCs) that play key roles

in determining the organization of chromosomes. They are responsible for the transportation
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between the cytoplasm and the nucleus and are important for regulation of gene expression.

The chromatin around NPCs are different from the chromatin interacting with the NE. There

are gaps in the inactive chromatin (also called heterochromatin) around NPCs and these gaps

are filled with transcriptionally active chromatin (also called eurochromatin) (Ptak et al., 2014).

Nucleolus is another landmark of cell nucleus that is involved in organization of genome in 3D

space. Nucleolus is responsible for RNA polymerase I (RNAPI) transcription, and several rDNA

genes are clustered in this substructure (Nmeth et al., 2010). We will first review the experi-

mental tools used to analyze and visualize the organization of genome in nucleus, and then will

describe the hierarchical genome organization inferred from the measurements of experimental

tools in some detail.

1.2.1 Experimental tools to analyze genome organization

At a first level, nuclear landmarks dictate genome organization. But, at a finer resolu-

tion, specific chromatin interactions within and between chromosomes mediated by biochem-

ical factors guide the genome organization. These interactions often facilitate regulating the

expression of genes and may be specific to different cell types and developmental stages. Cur-

rent understanding of genome organization is based on the data obtained using two different

experimental approaches: Flourescence in situ hyridization (FISH) and chromosome confor-

mation capture (3C). The former is a visualization technique and often uses super-resolution

light microscopy. It measures the spatial distances between different loci. The latter quantifies

frequency of interactions between different loci of a cell population.
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1.2.1.1 Flourescence in situ hybidridization

FISH is the predominant technique to infer chromatin organization that precedes the de-

velopment of 3C technique and its derivatives. This technique is based on preparation of

fluorescent probes, which are complementary nucleotide sequences for chromatin regions of

interest. The spatial distances between the fluorescent probes are then measured under the mi-

croscope (Beliveau et al., 2014). Recently, FISH with live-cell imaging enabled observation that

transcriptionally active regions of chromosome move from the periphery of nucleus to interior

nuclear positions (Chuang et al., 2006; Wang et al., 2016). FISH with live imaging also revealed

the compartmentalization of chromatin and large conformational changes in the chromatin that

occur during different differentiation stages (Jhunjhunwala et al., 2008).

1.2.1.2 Chromosome conformation capture

The 3C Method. The frequency at which chromatin segments interact with each other

in cell populations can now be measured using the technique of chromosome conformation cap-

ture (Dekker et al., 2002). This technique is based on chromatin fragmentation and proximity

cross-linking. Several of derivatives of 3C are available to quantify chromatin interactions.

These techniques always measure the interactions in a population of cells. This is contrary to

how FISH is performed, which is at single-cell level. after the collection of a population of cells,

they are treated with formaldehyde, which creates covalent bonds between chromatin segments.

This enables the fixation of the chromatin interactions. These cross-linked segments are then

cut using a restriction enzyme. This is followed by the dilution and ligation of digested chro-

matin, which produce unique junctions that can be measured by various methods such as PCR.
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The 3C technique is used for small scale analysis, as it measures the interaction frequencies

between two single loci (Dekker et al., 2002).

The 4C Method. Chromosome conformation capture-on-chip technique is a more de-

veloped version of 3C in terms of the throughput and resolution (Simonis et al., 2006). This

technique can capture interactions between a single locus, called the anchor site, and all the

loci on the entire genome. The interaction partner of the anchor are usually quantified using

microarrays or sequencing techniques. After the ligation process of 3C, the final products are

further cut with a restriction enzyme. Re-ligation of digested ligation products into circular

DNA is then applied. Finally, PCR technique is used to amplify the resulting circular DNA

and amplified products are located using deep sequencing (Simonis et al., 2006).

The 5C Method. Chromosome conformation capture carbon copy (5C) technique is

designed to capture interactions between many restriction fragment pairs simultaneously. In

this variation of 3C technique, primers are computationally constructed for the region of interest

that contains restriction enzyme sites. They are then annealed to targeted 3C fragment ends.

If the primers are next to each other on a 3C junction, they can be ligated together. The final

products are called the 5C library. The frequency of interactions between restriction fragments

are then quantified using PCR amplification, followed by high-throughput sequencing. This

process allows quantification of all chromatin interactions in the region as long as primers are

designed for them. 5C can capture chromatin interactions only for the restriction fragments

that are covered by the primer library (Fraser et al., 2009).
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Hi-C method or genome-wide chromosome conformation capture can directly quantify the

chromatin interaction frequencies of an entire genome. The main advantage of Hi-C technique

is usage of high-throughput sequencing for proximity ligation products. Hi-C libraries are

produced in a very similar fashion to the 3C libraries, where cross-linking with formaldehyde,

and chromatin digestion with restriction enzymes are performed. The restriction fragments

are then tagged with biotin. The cross-linked fragments are joined by blunt-end ligation.

A purification step follows the reverse cross-linking, which produces the final Hi-C products.

These products are sonicated and sequenced to capture their locations in the genome. The

organization of human genome have been quantified at resolutions from 1 Mb to 1 kb using this

technique (Lieberman-Aiden et al., 2009; Rao et al., 2014).

ChIA-PET Method captures interactions mediated by a transcription factor or an ar-

chitectural protein by incorporating chromatin immunoprecipitation (ChIP) technique with

3C across the entire genome. As in the previously described techniques, cells are fixed with

formaldehyde. Sonication are then used on fixed cells for ChIP of the transcription factor or a

protein of interest. Biotinylation of coimmunoprecipitated DNA segments are then performed,

followed by ligation. These ChIA-PET products are then digested with restriction enzymes.

This is followed by purication and paired-end sequencing. With ChiA-PET, interactions of

all the loci on the genome that also contain binding affinity for transcription factors, RNA

polymerases, as well as architectural proteins can all be captured (Fullwood et al., 2009).
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1.2.2 Inferring genome organization

With the advances in these experimental techniques, the chromosomes are found to be or-

ganized hierarchically at different length scales. Chromosomes fold within themselves to form

distinct chromosome territories (CTs). Within the territories, chromosomes are composed of

compartments A and B, which are active and silent, respectively. There are preferential inter-

actions within each compartment. The higher level of organization after the compartments is

topologically associated domains (TADs). They are mostly conserved at different developmental

stages and cell types. Below I provide a brief summary of how genome is organized from smaller

scales based on the current understanding, from chromosome territories to promoter-enhancer

interactions.

1.2.2.1 Chromosome territories

Early light microscopy studies showed that chromosomes form distinct territories in nu-

cleus, with inter-chromosomal interactions minimized. The techniques based on irradiation

also showed the emergence of CTs (Cremer et al., 1996). FISH was also used to visualize

chromosomes and demonstrated the formation of CTs (Bolzer et al., 2005). Although inter-

chromosomal interactions are minimized in the nucleus, interactions between chromosomes in

the neighboring territories do exist. Several loci that are on open chromatin and found to be

active in expression were shown to loop out of their territories to make interactions with other

chromosomes. This intermingling between different CTs were shown to be cell specific (Branco

and Pombo, 2006). Since locations of CTs are cell type specific, it suggests that the posi-
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tions of chromosomes and the boundaries shared between chromosomes in the nucleus might

be functionally relevant (Roix et al., 2003).

1.2.2.2 Chromosome compartments

The first Hi-C study was carried on using two human cell lines in 1 Mb resolution. The

heaptmaps of interaction frequencies displayed a checkerboard-like pattern, exhibiting inter-

actions between megabase long regions across large genomic distances (Lieberman-Aiden et

al., 2009). Principal component analysis (PCA) was then performed to aggregate the inter-

action frequencies into principle axes and the formation of two types of compartments were

discovered. Compartment A is enriched in genes, transcriptional activity, and is made of open

chromatin. In contrast, compartment B is transcriptionally inactive and is made of closed

chromatin (Lieberman-Aiden et al., 2009).

1.2.2.3 Topologically Associated Domains

The analysis of the chromatin organization at finer scales based on the data obtained using

5C or Hi-C techniques lead to the discovery of blocks of dense chromatin that interacts more fre-

quently with itself than the neighboring regions (Sexton et al., 2012). These are called Topolog-

ically Associated Domains (TADs). This finding is also supported by FISH experiments (Nora

et al., 2012). TADs are visible in the heatmaps of frequency of interactions measured from 5C

and Hi-C techniques and their average size is between 0.5 and 1 Mb (Dixon et al., 2012). Genes

that are located within single TAD are often found to be coexpressed (Dixon et al., 2012). In

addition, the distribution of TADs correlate with the position of epigenetic marks related to
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activation or repression of gene activities. Factors such as CCCTC (CTCF) along with cohesin

are found to be largely bound at boundaries of TADs (Nora et al., 2012).

1.2.2.4 Chromatin loops

While researchers investigate the existence of large scale structural units such as CTs, com-

partments or TADs, chromatin interactions behind the transcriptional activation span a few

kilobases and often involve binding of several transcription factors and RNA polymerases. These

interactions are often between promoter of genes and their enhancers. Chromatin looping is one

of the most studied structural unit of genome organization, as it directly relates to transcrip-

tional activities, thus cellular functions (Sanyal et al., 2012). As promoters and their enhancers

usually are not in sequential proximity, it is important to measure the physical interactions

at this finer scale to understand the organizational principles behind transcriptional regula-

tion (Fudenberg and Mirny, 2012). It is also known that a single enhancer can have more than

one target genes, and a single gene can be targeted by multiple enhancers. These looping in-

teractions of enhancers and promoters are stabilized by the binding of several factors (such as

CTCF and cohesin), transcription factor complexes, or RNA polymerases (Farrell et al., 2002).

1.3 Thesis outline and Project Overview

My research focuses on developing novel computational tools to construct spatial structures

of chromosomes for understanding of mechanisms of gene regulation. Specifically, I study the

effects of nuclear space in maintaining the epigenetic state of the cell, long-distance DNA loop-

ings that promote cell-specific gene expression, and the main physical factors and mechanisms

that determine genome organization. The research described in this dissertation is organized as
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follows: In chapter 2, I study the effect of nuclear confinement on the folding properties of hu-

man genome to asses how severe nuclear confinement plays important roles on chromatin folding

and compaction. A fundamental challenge in studying genome organization is the attrition in

sampling of three-dimensional structures in severely confined spaces. My Ph.D. work overcame

this problem with the development of the technique of geometric sequential importance sam-

pling (g-SIS), with which self-avoiding chromatin chains are grown sequentially. I developed a

detailed computational model, named Constrained Self Avoiding Chromatin (C-SAC), for deci-

phering the folding properties of chromosomes. With C-SAC, nuclear confinement is explicitly

modeled and ensemble of chromatin chains are generated inside the cell nucleus. Analysis of C-

SAC ensemble shows that the spatial confinement is one of the major determinant of chromatin

architecture in cell nucleus. This research further highlights the importance of nuclear size as a

potential regulator of epigenetic programming of cells as in the case of transitioning from stem

cells to differentiated cells. This chapter has been done in collaboration with former student of

Liang lab, Dr. Yun Xu. He helped with the development of the chain growth software described

in Section 2.2.2. This chapter is partially based on the publications (Please see appendices for

necessary permissions):

• Gürsoy, G., Xun, Y., Kenter, A., Liang, J.: Spatial confinement is a major determinant

of folding landscape of human chromosomes. In Nucleic Acids Research, 42(13):8223-30,

2014.

• Gürsoy, G., Xu, Y., Liang, J.: Computational predictions of structures of multichromo-

somes of budding yeast. In Conf Proc IEEE Eng Med Biol Soc. 3945-8, 2014.
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Chapter 3 is devoted understanding the effects of nuclear landmarks and nuclear confine-

ment on the genome organization of budding yeast. Detailed understanding of different cellular

states in mammalian cell differentiation and cancer cell formation require comprehensive analy-

sis of the interactions in the whole genome. Well-studied budding yeast is an excellent starting

point for genome-wide chromatin construction, as its transcription machineries are shown to be

largely dictated by genome organization. With further improvement of the multi-chromosome

Constrained Self-Avoiding Chromatin (mC-SAC) model, I studied the effects of nuclear envi-

ronment on the folding of multi-chromosome yeast genome. Comparison of ensembles of folded

chromosomes from mC-SAC model with those from 3C-based studies shows that the majority

of measured interactions regulating important cellular functions are captured (at an accuracy of

92%). Further analysis of the folded model genomes shows a high propensity of double stranded

DNA breaks to cluster in three-dimensional space. This finding likely has implications in cancer

biology and can potentially aid in understanding cancer-promoting translocations due to DNA

breaks observed in human genome. This chapter is partially based on the publications (Please

see appendices for necessary permissions):

• Gürsoy, G., Xu, Y., Liang, J.: Computational predictions of structures of multichromo-

somes of budding yeast. In Conf Proc IEEE Eng Med Biol Soc. 3945-8, 2014.

• Gürsoy, G., Xu, Y., Liang, J.: Spatial organization of budding yeast genome in cell nucleus

and identification of specific chromatin interactions from multi-chromosome constrained

chromatin model. Submitted.
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Chapter 4 focuses on understanding the differences in the folding of a chromatin locus be-

tween different expression levels. Identifying the difference in chromatin interactions between

cell types is key to understanding the phenotypical differences arising from cell-specific gene

expression. Constructing 3D structures of a gene locus can help to obtain detailed structural

understanding of promoter-enhancer interactions and how they may affect transcriptional ma-

chineries and regulate cellular epigenetic states. However, experimental data from Chromosome

Conformation Capture (3C) and related techniques are often sparse and incomplete due to sys-

tematic biases inevitable in experimental designs and other challenges. It is also challenging

to distinguish biologically relevant interactions from non-specific collision of genomic elements

in nucleus. I further improved the sampling method so non-specific spatial interactions from

the experimental measurements can be removed and remaining specific interactions can be in-

corporated in a polymer model to study the underlying causation behind how gene expression

levels change at different cell states. My computational modeling combined with analysis of

epigenetic profiling data provides insights into the understanding of differential expression of

important genes. These results show that gene expression is highly influenced by the folding

landscape of chromatin. I have further identified novel chromatin interactions that were not

captured by 3C data but were shown to have biological importance by other independent stud-

ies. This chapter has been studied with equal contribution from Dr. Yun Xu, who helped with

the method and pipeline development described in Section 4.2. This chapter is partially based

on the publication:
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• Xu, Y., Gürsoy, G., Kenter, A., Liang, J.: Constructing 3D chromatin ensembles and

predicting functional interactions of -globin locus from 5C data. In preparation.

Chapter 5 answers the question of minimum required chromatin interactions in a locus

to achieve the transcriptional functions of the cell. Identifying interactions that facilitate the

formation of promoter-enhancer interactions is important to understand the role non-coding

DNA. I call such interaction pairs hotspots. Constructing 3D structures and perturbing these

structures with virtual mutations can help to identify hotspots that are not obvious from the

experimental measurements. I further developed a computational method that enables virtual

mutations. I introduce a repulsion between sites of interest and compare the resulting ensemble

with the wild type ensemble obtained by using Hi-C interactions as constraints. This helps

to identify the hotspots whose interactions facilitate the interactions between promoters and

enhancers. Combined with epigenetic profiling data of the CCL locus, my method revealed that

structural hotspots of chromatin do not correlate with their interaction frequencies measured by

3C studies. I further showed the importance of CTCF binding on the regulation of interactions

between promoters and enhancers and demonstrated that evolutionary conservation of these

bindings sites is a major determinant of the importance of chromatin interactions. Arianna

Girardi collected the necessary Hi-C data, as well as the epigenetics data required for this

Chapter, and helped with the null model. This chapter is partially based on the manuscript:

• Gürsoy, G., Girardi, A., Liang, J.: Computational prediction of chromatin hotspots using

n-Constrained Self-Avoiding Chromatin model. In preparation.
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Finally, in chapter 6, I review the main topics of this dissertation, highlight the novel

contribution of my method, strength and weaknesses of my modeling approach. I also provide

perspectives on potential future developments.



CHAPTER 2

SPATIAL CONFINEMENT IS A MAJOR DETERMINANT OF THE

FOLDING LANDSCAPE OF HUMAN CHROMOSOMES

2.1 Introduction

Human cells must accommodate approximately 6 billion base pairs of DNA in a small nucleus

of a diameter of 6 to 20 µm (Alberts, 2002). Comprehensive understanding of chromosome

organization is important for studying cellular functions (Fraser and Bickmore, 2007). A major

task is to understand the rules that govern the regulation of long-range chromatin interactions

(Fraser and Bickmore, 2007; Lieberman-Aiden et al., 2009; Dostie et al., 2006; Helmink and

Sleckman, 2012).

FISH and 3C related techniques revealed a wealth of information about spatial chromatin

structures across different genomic regions for different cell types (Lieberman-Aiden et al.,

2009; Goetze et al., 2007; Mateos-Langerak et al., 2009; Zhao et al., 2006; Gavrilov et al.,

2009; Jhunjhunwala et al., 2008; Sexton et al., 2012). A key outcome of FISH experiments

is the relationship between the mean-square spatial distance, R2, and genomic distance, s, of

two chromosome loci (Goetze et al., 2007; Mateos-Langerak et al., 2009; Jhunjhunwala et al.,

2008). The folded structures of chromatin fibers follow a scaling relationship of R2(s) ∼ s2ν . In

human Chr 1 and 11, the exponent ν is ∼ 0.33 at smaller genomic (0.4–2 Mbp) distances, but

levels off (ν ∼ 0) at larger genomic distances (>10 Mbp) (Mateos-Langerak et al., 2009). In

17
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mouse Chr 12, ν is found to be ∼0.25 and ∼0.37 for two different cell types at smaller genomic

distances (< 0.5 Mbp), and levels off at larger genomic distances (> 0.5 Mbp) (Jhunjhunwala

et al., 2008). The leveling-off effects indicate that chromosomes are trapped to a space that is

much tinier than volume of nucleus (Mateos-Langerak et al., 2009; Jhunjhunwala et al., 2008).

This reflects the requirement that chromosomes must fit into localized territories (Cremer and

Cremer, 2001).

Results from genome-wide 3C (Hi-C) experiments showed that the contact probability

(Pc(s)) between two sites that are a genomic distance s away from each other follows a power

law of Pc(s) ∼ 1/sα. The exponent α is ∼ 1.08 at genomic distances between 0.5−7 Mbp, when

averaged across all chromosomes in a human cell line (Lieberman-Aiden et al., 2009). Further

analyses showed that chromosome 11 and 12 exhibit the average human genome scaling be-

havior, with an exponent α ∼ 1.08 (Lieberman-Aiden et al., 2009; Barbieri et al., 2012), while

exponents of chromosomes X and 19 have values significantly deviating from the average, with

α ∼ 0.93 and ∼1.30, respectively (Barbieri et al., 2012). Similar results were obtained from a

different Hi-C study (Kalhor et al., 2012) (see also (Barbieri et al., 2012) for analyses).

In order to gain understanding of the principles of spatial organization of chromatin, sev-

eral polymer models have been developed (Sachs, 1995; Bohn et al., 2007; Tark-Dame et al.,

2011). The fractal globule (FG) model (Lieberman-Aiden et al., 2009; Mirny, 2011) offers an

explanation of the scaling of Pc(s) and R2(s) with s at short genomic distances, although it

does not account for the leveling-off effects observed in FISH studies (Mateos-Langerak et al.,

2009; Jhunjhunwala et al., 2008). The FG model also does not explain the observed variation in
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α among different chromosomes. By attaching diffusible binders to chromatin, the Strings and

Binders Switch (SBS) model can account for both the leveling-off effects and the heterogeneous

scaling of α (Barbieri et al., 2012). However, individual scaling properties can exist only under

carefully tuned conditions of binder concentrations and binding site distributions, which are

unknown a priori. In addition, the SBS model does not exhibit multiple scaling exponents

occuring simultaneously under one set of conditions.

The most important factor that determines how chromosomes fold in the cell nucleus is the

amount of available space. In a recent study, spatial constraints were shown to be sufficient

to produce the overall structural architecture of budding yeast genome (Tjong et al., 2012),

although the general effects of spatial confinement on chromatin folding of human genome are

unknown. Polymer models can provide important insights into chromatin compaction in cell

nucleus (Hahnfeldt et al., 1993; Heermann et al., 2012; Iyer and Arya, 2012). However, a major

obstacle in studying chromatin fibers confined in a small volume is the difficulty in generating

a large number of unbiased model chromatin fibers in the form of self-avoiding chains with

appropriate physical and spatial properties (Liu and Chen, 1998; Zhang et al., 2003; Lin et al.,

2011).

In this chapter, we examined the effects of spatial confinement on chromosome folding using

the constrained self-avoiding chromatin (C-SAC) model. We developed a novel algorithm that

can generate large ensembles of diverse model chromatin chains in severe spatial confinement,

with full excluded volume effect incorporated. We find that spatial confinement is plausibly

responsible for much of the observed overall scaling behavior of human chromosome folding.
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The heterogeneous ensemble of folded model chromatin chains under spatial confinement also

predicts chromosome-specific scaling relationships, as well as formation of highly interactive

substructures that might give rise to the formation of topological domains. Our findings high-

light the importance of nucleus size in regulating the folding landscape of chromosomes.

2.2 Materials and Methods

2.2.1 Model and parameters

In our C-SAC model, a chromatin fiber is a collection of beads that make up a self-avoiding

polymer chain. Each bead has a diameter of 30 nm and is 3,000 base pairs long (Wedemann and

Langowski, 2002). Every 5 beads form a persistence unit, which corresponds to a persistence

length of 150 nm (Figure 2A) (Wedemann and Langowski, 2002). Our model chain is 4,996

beads long, equivalent to about 15 Mb of DNA.

Each chromatin chain is generated in a confined space of nucleus, which we modeled as a

sphere. The sphere diameter, D, is selected to be proportional to the size of the human cell

nucleus. We assumed an average nucleus size of a diameter of ∼ 11 µm for 6 billion base pairs

of human DNA (Alberts, 2002). The diameter of the nucleus for a 15 Mb long chromatin chain

is therefore about 1.5 µm. With this model, we grow our chromatin chains sequentially in a

sphere of a diameter of D = 1.5 µm (Figure 2A). We overcame the difficulties of generating

folded chromatin chains inside a small volume by sequentially growing self-avoiding chains one

persistence unit at a time using the technique of geometric sequential importance sampling (Liu

and Chen, 1998; Zhang et al., 2003; Lin et al., 2011). Subsequently, D was changed to D = 2.5,
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D = 5.0, D = 7.5, D = 10.0, D = 30.0, and D = 500.0 µm to explore the effects of size of

confined space on the spatial organization of chromatin.

2.2.2 Growing chromatin chains using geometric sequential importance sampling

The chromatin chains in three-dimensional space are generated following a chain growth

approach (Liu and Chen, 1998; Liang et al., 2002; Zhang et al., 2003; Lin et al., 2008b; Lin et

al., 2008a; Zhang et al., 2009; Lin et al., 2011). A chromatin chain contains n persistence units,

with the location of the i-th persistence unit denoted as xi = (ai, bi, ci) ∈ R3. The configuration

x of a full chromatin chain with n persistence units is:

x = (x1, · · · , xn).

The target distribution π(x) is a uniform distribution, in which all chromatin chains within

the given confinement can be sampled. To generate a chromatin chain, we grow the chain one

persistence unit at a time, ensuring the self avoiding property along the way, namely, xi 6= xj

for all i 6= j. We use a k = 100-state off-lattice discrete model (see (Liang et al., 2002; Zhang

et al., 2003; Lin et al., 2008b; Lin et al., 2008a; Zhang et al., 2009; Lin et al., 2011) for more

details). The new persistence unit added to a growing chain with the current persistence unit

located at xt is placed at xt+1, which is a persistence length Lp distance away from xt. xt+1 is

randomly taken from one of the unoccupied k-sites neighboring xt. As random selection from

available empty neighboring sites introduce bias for sampling from π(x), we keep track of the
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bias and assign each successfully generated chain a proper weight w(x). Details can be found

in references (Liang et al., 2002; Zhang et al., 2003; Lin et al., 2008b).

Each persistence unit further contains [(Lp/df ) − 1] number of monomer beads, where

Lp = 150 nm, and the fiber diameter df is 30 nm. These monomers are connected by a

chain, and their positions are interpolated as if they are on a rigid rod (Figure 2A). This is

to mimic the persistence behavior of the chromatin fiber. We again enforce the self-avoiding

property, such that these beads will not intersect with any other beads in the partial chain

that has already been grown. All together, there are N ′ = N + (N − 1) · [(Lp/df ) − 1] =

1, 000 + 999 · [(150/30) − 1] = 4, 996 monomer beads for a N = 1, 000Lp unit long chain. For

larger confinement space, we generated chains up to N = 8, 100Lp.

2.2.3 Model Validation:Scaling of C-SAC chains without confinement

We first used our geometric sequential importance sampling technique to generate free

space self-avoiding C-SAC chains without confinement, as their scaling behavior is well un-

derstood (de Gennnes, 1979). We generated 10,000 C-SAC chains of different length N , for

N ∈ {100, 200, · · · , 1000}. Figure 2B and C show the scaling relationship R(N) ∼ Nν and

Pc ∼ Nα. The scaling exponents are found to be ν ∼ 0.59 and α ∼ −1.88, which are very close

to the expected values of ν ∼ 3
5 and α ∼ −3ν (de Gennnes, 1979).

2.2.4 Resampling.

To improve the success rate of generating full length chromatin chains, we employ the

technique of resampling (Liu and Chen, 1998; Liang et al., 2002; Zhang et al., 2003; Lin et al.,

2008b; Lin et al., 2008a; Zhang et al., 2009; Lin et al., 2011). When there is no unoccupied
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Figure 2. The physical model of C-SAC chains and scaling properties of chains
without confinement. (A) Cartoon representation of the C-SAC model. Fiber of

chromatin is modeled as collection of beads with a persistence length Lp. Purple spheres are
the beads at the boundaries of a persistence unit. Spheres in-between are the interpolated

beads inside a unit of Lp. Polymers are grown as chains inside a spherical confined space of a
diameter D. Beads are not allowed to cross each other or grow beyond the boundary of the
spherical volume. (B) R(N) vs. N relationship in log-scale. Each data point is derived from
an ensemble of 10,000 chains of length N . The exponent ν is found to be 0.59, similar to the
theoretical exponent for three-dimensional SAWs in good solvent (de Gennnes, 1979). (C) Pc

vs. N relationship in log-scale. The scaling expoent α is approximately −1.88, similar to the
theoretical exponent of −3ν = −1.8 for three-dimensional SAWs in good solvent (de Gennnes,

1979).
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neighboring sites inside the confined space for xt of a partially grown chain, there is no place

to grow xt+1 the next persistence unit. In this case, we go back one step and re-grow the chain

at xt−1 from the (t − 1)th monomer. There are also chains with small weights due to biased

sampling. They contribute little to the estimation of properties of the population of chromatin

chains.

We employ a simple resampling scheme to address these issues. At each t-th step of the

chain growth process, we sort all chains by their weights, and divide them into k fractions. The

fraction of chains with the lowest weights are then replaced by copies of chains in the fraction of

the highest weights. Weights of these chains are then adjusted accordingly. We then continue

to grow chains of this new population. This is repeated until all chains reach full length. We

use t=10 and k=3. Details of the resampling strategies can be found in references (Liu and

Chen, 1998; Liang et al., 2002; Zhang et al., 2003; Lin et al., 2008b; Lin et al., 2008a; Zhang et

al., 2009; Lin et al., 2011).

We also employ a dynamic resampling scheme (Liu and Chen, 1998) when the chain length

N is large and/or the sphere diameter D is small. We calculated effective sample size for every

step of the growth process (Liu and Chen, 1998) as:

ESS =

(

M
∑

j=1
wi

)2

M
∑

j=1
w2
i

,

where M is the total number of chains. If ESS < 0.3M , we assign a probability p(i) to each

partial chain i as p(i) = exp(wi − max
1≤i≤M

wi) and sample M chains with replacement according
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to p(i) and adjust the weights of each selected chain k as w∗
k = wk

p(k) . We then continue to grow

chains of this new population. This is repeated until all chains reach full length.

2.2.5 Chromatin properties.

With m successfully generated chromatin chains, we can calculate the physical properties of

the population of chromatin fibers. Denote the configurations of the j-th successfully generated

chromatin chain as x(j) = (x
(j)
1 , · · · , x

(j)
n ), and its associated weight w(j). To calculate the mean

value of a physical property h̄(x), we have:

h̄(x) = Eπ(x)[h(x)] =

m
∑

j=1
h(x(j)) · w(j)

m
∑

j=1
w(j)

.

2.2.6 Mean end-to-end distance.

The mean end-to-end distance R(N) is the mean Euclidean distance between the beginning

and the end of the chain of a length N . For the jth chromatin chain, we have:

R(N)(j) = ‖x
(j)
1 − x

(j)
N ‖.

The mean end-to-end distance is then calculated for the set of m chromatin chains as:

R̄(N) =

m
∑

j=1
R(j)(N) · w(j)

m
∑

j=1
w(j)

.
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2.2.7 Mean-square spatial distance.

The mean-square spatial distance R2(s) is the mean-square Euclidean distance between

genomic regions with a genomic separation s, here in units of persistence length. For the jth

chromatin chain, we have:

R2(s)(j) =

∑

i=1, j=i+s
‖x

(j)
i − x

(j)
j ‖2

N − s
,

in which the denominator N − s is total number of all possible such interactions with s-

separations. The mean-square spatial distance is then calculated for the set of m chromatin

chains as:

R̄2(s) =

m
∑

j=1
R2

(j)(s) · w
(j)

m
∑

j=1
w(j)

.

2.2.8 Contact probability.

The contact probability Pc(s) is the probability of two genomic regions separated by genomic

distance s to be in spatial proximity of each other for chain of length N . Following Lieberman-

Aiden et al. (Lieberman-Aiden et al., 2009), it is calculated by counting the number of times

that the Euclidean distance between two regions separated by genomic distance s is smaller

than a distance threshold dθ, divided by the number of all such candidate contacts. Let I
(k)
c (s)

be the observed number of i and j contacts that satisfies the condition ‖xi − xj‖ ≤ dθ, with

j − i = s in chain k. Let Iall(s) be the number of all possible contacts of two regions separated
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by a genomic length of s and is equal to N − s. An estimate of contact probability P
(k)
c (s) for

chain k of length N is:

P̂ (k)
c (s) =

I
(k)
c (s)

Iall(s)
.

The mean value from the weighted ensemble average is then calculated as:

P̄c(s) =

∑

k

P
(k)
c (s) · w(k)

∑

k

w(k)
.

2.2.9 Reweighting.

As chromatin chains are generated following the uniform distribution π(x) of all geomet-

rically realizable chains, these samples need to be reweighted in order to calculate ensemble

properties of chromatin chains following a different distribution π′(x).

To asses the effect of specific binding on the population of chromatin chains, we recalcu-

late the associated weights of each chain for chromatin following the new distribution π′(x),

which is the Boltzmann distribution after incorporating energies of binding interactions. For a

chromatin chain with interactions mediated through protein binder, each interaction between

any (i, j) pairs of sites contributes to the weight of the chain by the Boltzmann factor of

exp(E(k)(i, j)/kBT ). Here E(k)(i, j) is the binding energy if both i and j contain binding sites
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and are mediated by the binder protein, otherwise E(k)(i, j) = 0. The total weight of the kth

chain previously sampled from the uniform distribution is then re-calculated as:

w(k) =
∏

(i, j)

exp(E(k)(i, j)/kBT ).

2.2.10 Clustering.

We clustered the generated chromatin chain conformations according to their pairwise dis-

tances between persistence units using a k-means clustering algorithm (Hartigan and Wong,

1976). For k-means clustering, we need to calculate the Euclidean distances between persistence

units. As we have a population of m=10,000 chains, each with N = 1, 000 persistence units,

this amounts to n = N × (N − 1)/2 = 499, 500 number of pairwise distances to be calculated.

Since the algorithm is of O(mnk+1 logm)-complexity, we coarse-grained each chain to speed up

the computation. We take sequentially every 33 persistence units as our new unit. This gives

30 connected units, where the number of pairwise distances is now n = 30 × 29/2 = 435. We

set the number of clusters k to 20.

2.3 Results

2.3.1 C-SAC model gives observed scaling behavior of human chromosomes

We generated ensembles of 10,000 independent self-avoiding model chromatin chains for

different chain length N of 50, 100, 200, and then up to 1,000, with increments of 100 confined

to a region of D = 1.5 µm. Our C-SAC model chromatin chains exhibit experimentally observed

scaling properties. The mean-square spatial distance R2(s) of partial chains of length s from
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10,000 chains of length N = 1, 000Lp follows the relationship of R2(s) ∼ s2ν , with an exponent

ν of ∼ 0.34 at shorter genomic distances, but levels off with ν = 0 at larger genomic distances.

The experimentally observed ν = 0.33 was derived from FISH data between 0.4 Mb and 2.0

Mb. In our C-SAC model, ν = 0.34 is derived accordingly between 5 and 25Lp, by matching

the onset points of the leveling-off effect (10 Mb in the FISH study, and 125Lp in C-SAC

chains) (Mateos-Langerak et al., 2009) (Figure 3A). Since the mass density of chromatin and

how it varies in different loci and different chromosomes are unknown, the regime that the

exponents are extracted are not directly comparable by genomic distance to the experimental

data. The mass density used in this study is an average property, and it may differ from the

actual mass density at the loci measured in the FISH experiments (Mateos-Langerak et al.,

2009). In the FISH study of ref. (Jhunjhunwala et al., 2008), spatial distances between different

loci with different genomic separation s were measured on two different subchromosomal regions

of Chr 12 of mouse pre-pro-B cells and pro-B cells. Our non-linear fit (Figure 3) gives a scaling

exponent of ν ∼ 0.37 when s < 0.5 Mb for pre-pro-B cells, and ν ∼ 0.27 when s < 0.5 Mb

for pro-B cells. The leveling-off effects takes place at s = 0.5 Mb in mouse Chr 12 of both

pre-pro-B cells and pro-B cells.

In the FISH study of human Chr 11 and Chr 1 (Mateos-Langerak et al., 2009), ν was reported

to be ∼ 0.33 in both human Chr 11 Chr 1 when 0.4 < s < 2 Mb. The leveling-off effects were

reported to takes place at s ≥ 10 Mb in Chr 11 and s ≥ 3 Mb in Chr 1 (Mateos-Langerak et

al., 2009).
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It was also reported in ref. (Barbieri et al., 2012) that the FISH study of mouse Chr 14 in

ref. (Langmead and Salzberg, 2009) exhibits a ν ∼ 0.5 when s < 3.5 Mb, beyond which the

leveling-off effects may take place.

In C-SAC chains of length N = 1, 000 with the confinement of D = 1.5 µm, the leveling-off

effects are found to take place at around s = 125Lp. We calculated the scaling exponent ν of

R(s) ∼ sν between s = 5Lp and s = 25Lp. This choice of 25Lp is based on the ratio of 25/125,

which is the same as the ratio of 2Mb/10Mb between the distance threshold where ν was

fitted and the distance threshold beyond which the leveling -off effects occurred in human Chr.

11 (Mateos-Langerak et al., 2009), which was also used in the study of refs. (Lieberman-Aiden

et al., 2009; Mirny, 2011). We found ν ∼ 0.34 when 5Lp ≤ s ≤ 25Lp.

As discussed above, there are some variations in the reported values of the scaling exponent

ν from existing FISH studies. Similarly, we found that ν also varies depending on the regime

where the exponents were fitted. If s ≤ 60Lp, ν is found to be ∼ 0.25, and ν ∼ 0.5 if s ≤ 15Lp.

To characterize the scaling relationship of contact probability Pc(s) and contour length s

between two loci, we harvested partial chains of length s from independent ensembles of dif-

ferent full chain lengths and estimated Pc(s). As contact probability Pc(s) between loci of

s genomic distance were derived from fragments from different chromosomes in Hi-C stud-

ies (Lieberman-Aiden et al., 2009), partial chains from independent ensembles of varying full

lengths are necessary to remove self correlations, which may occur when subchains are taken

from the same ensemble of chains with a fixed full length as in (Lieberman-Aiden et al., 2009).
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Figure 3. The mean-square spatial distance vs. genomic distance relationship of
C-SAC chains. (A) The scaling of mean-square spatial distance R2(s) from 10,000 chains of

length 1,000Lp in log10 scale. R2(s) follows a power law of ∼ s2ν , with ν ∼ 0.34 (95%
confidence interval: [0.30, 0.38]), similar to measured ν of ∼ 0.33 (Mateos-Langerak et al.,
2009; Jhunjhunwala et al., 2008). (B) The scaling behavior of R(s) of FISH data spanning 3
Mb when the probe is anchored in genomic element BAC (Jhunjhunwala et al., 2008) (red
triangle) in pre-pro-B cells chromosome 12 of mouse genome. (C) The scaling behavior of
R(s) of FISH data when the probe is anchored in genomic element h1 (Jhunjhunwala et al.,
2008) (red triangle) in pre-pro-B cells chromosome 12 of mouse genome. (D) The scaling

behavior of R(s) of FISH data when the probe is anchored in genomic element
BAC (Jhunjhunwala et al., 2008) (red triangle) in pro-B cells chromosome 12 of mouse
genome. (E) The scaling behavior of R(s) of FISH data when the probe is anchored in

genomic element h1 (Jhunjhunwala et al., 2008) (red triangle) in pro-B cells chromosome 12 of
mouse genome.
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Our C-SAC model can reproduce the scaling relationship of contact probability Pc(s) ∼ 1/sα,

with an exponent α of ∼ 1.05 (Figure 4A), which is in excellent agreement with α ∼ 1.08

measured in Hi-C studies (Lieberman-Aiden et al., 2009).

Our C-SAC model also captures observed deviations in α from the average in individual

chromosomes (Barbieri et al., 2012). After clustering the 10,000 C-SAC chains of length N =

1, 000Lp according to their spatial similarities measured in pairwise bead distances, the resulting

20 clusters have exponent α ranging from 0.79 to 1.3 (Table 1). The exponents of these clusters

give the full range of α observed experimentally. For example, exponents of cluster 10, 15 and

17 agree well with those of Chr 19, X and 11/12, respectively (Figure 4B) (Barbieri et al., 2012;

Lieberman-Aiden et al., 2009). These results are obtained without using any characteristics

specific to Chromosome X, 19, 11 or 12. Complex scaling property of human genome arises fully

from structural clusters resulting from the spatial confinement. Overall, our results indicate

that the restriction of volume imposes strong constraints, and chromatin chains under such

confinement exhibit experimentally observed scaling behavior of human chromosomes.

2.3.2 Nuclear size determines chromosomal scaling behaviour

To examine the effects of the spatial confinement, we generated independent ensembles of

10,000 C-SAC chains of length N inside a sphere D. Here N is varied from 50, 100, and

then up to 1,000, with increments of 100. The sphere diameter D takes the value of 2.5,

5.0, and 7.5 µm, in addition to 1.5 µm. We independently generated 3 different ensembles

of 10,000 C-SAC chains at each of the combination of N and D values. Altogether, we have

4× 11 = 44 independent ensembles of 10,000 C-SAC chains for calculating contact probability.
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Figure 4. The contact probability vs. genomic distance relationship of C-SAC
chains. (A) The scaling of contact probability Pc(s). Pc(s) follows a power law of ∼ 1/sα,

with α ∼ 1.05 (95% confidence interval: [1.15, 0.95]), similar to the measured α of
1.08 (Lieberman-Aiden et al., 2009). (B) Comparison of exponent α of contact probability,

Pc(s), between C-SAC and Hi-C data (Lieberman-Aiden et al., 2009). Values of α for different
chromosomes from refs. (Barbieri et al., 2012; Lieberman-Aiden et al., 2009) were compared
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chains. Purple bars denote the experimentally observed exponent α for Chr 19, Chr 11, Chr X
and the average α across all chromosomes in human genome. Blue bars are αs from the

corresponding C-SAC clusters and the average α of entire population.
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TABLE I

SCALING EXPONENTS OF THE 20 CLUSTERS OF CHROMATIN CHAINS
Cluster Size α ν

1 458 0.99 0.37

2 122 NA NA

3 70 NA NA

4 816 1.02 0.37

5 806 1.13 0.37

6 436 1.13 0.38

7 232 0.87 0.36

8 86 NA NA

9 560 1.17 0.37

10 560 0.96 0.37

11 666 1.16 0.37

12 388 1.14 0.37

13 496 1.05 0.38

14 332 0.79 0.37

15 374 1.08 0.38

16 1078 1.14 0.37

17 534 1.28 0.37

18 882 1.03 0.37

19 284 1.12 0.40

20 820 1.14 0.38

The average scaling exponents α and ν of each cluster, along with the size of the cluster are listed
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We used partial chains of length s from the ensemble of 10,000 chains of N = 1, 000 of different

D for the calculation of mean-square spatial distance R2(s), following the approach used in

the FISH studies (Mateos-Langerak et al., 2009; Jhunjhunwala et al., 2008). We found that

both exponents α and ν increase with D (Figure 5). Furthermore, chromatin chains tend to

adopt more open conformation as D increases. At the same time, the leveling-off effect at

larger genomic distances disappears (Figure 5B). Further clustering of chromatin structures at

different nuclear sizes showed that even with the smallest nucleus size of D = 1.5 µm, there

exists a substantial amount of open chromatin structures (10.9%), while the compact structures

and in-between structures are 18.6% and 70.5% of the population, respectively. As the size of

the nucleus increases, the percentage of open-like structures in the population increases. These

results therefore suggest that nuclear size is a major factor in influencing the overall folding

landscape of chromatin, via modulation of the spatial confinement scale D.

2.3.3 Formation of highly interactive substructures upon confinement and topological

domains

We used the C-SAC model to further explore structural properties of chromatin fibers.

Topological domains were previously observed in electron microscopy studies (Cremer and Cre-

mer, 2001; Cook, 1999; Kreth et al., 2004) and in recent 3C-based studies (Hi-C) (Dixon et al.,

2012; Nora et al., 2012). Such domains are distinctive regions along the chromatin chain with

significantly elevated interactions within region (Dixon et al., 2012). Their DNA content range

from a few kbp to 1 Mbp, and they occupy a volume of 300 to 800 nm in diameter (Cremer et

al., 2000). To examine whether C-SAC chains contain domain-like substructures, we calculated
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the number of consecutive persistence units in spheres of 800 nm diameter along the chromatin

chain. If a sphere contains chromatin fragments that contain more than 400 kbp DNA, it is

regarded as a highly interactive substructure. We further define two types of substructures:

1) Interactive substructures in which more than 20% of their persistence units are in spatial

proximity with those of other interactive substructures, and 2) independent substructures in

which none of their units are in spatial proximity with any units of other substructures (Figure

6A).

On average, there are about ∼6.5 substructures per chain, which occupies around 21%

of the entire 15 Mbp C-SAC chain. 41% of these substructures are interactive, whereas the

rest of them are independent substructures (Figure 6B). Existence of these highly interactive

substructures are also observed from interaction matrices and three-dimensional conformations

of individual chains (Figure 6C-D).

In summary, there exist distinct substructures in C-SAC chromatin chains with elevated

interactions. These results are observed without requiring special simulation conditions or

specific binding sites as in other chromatin models (Barbieri et al., 2012; Lieberman-Aiden et

al., 2009; Mirny, 2011). Their existence suggests that the confinement of the cell nucleus is

sufficient to induce tentative formation of highly interactive substructures along the chromatin

chains, which could further give rise to the formation of topological domains.
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Figure 6. Formation of domain-like substructures upon confinement. (A) Illustration
of substructures on C-SAC chains, where consecutive monomers are contained in spheres of
800 nm diameter (gray circles). Two independent substructures with no interaction between

them, as well as two interactive substructures with more than 20% of their monomers
participating interaction (interface shaded in yellow) are shown. (B) The distribution of

number of substructures per chain containing different amount of DNA for both
independent (red) and interactive (blue) categories are shown. (C) A random C-SAC

chromatin chain with independent substructures. The rotated and zoomed-in substructure
shows a singular domain-like conformation. The domain-like substructures can also be seen in
the corresponding distance matrices, where the spatial distances between different loci of the
C-SAC model chains are color coded in red, with darker red representing interactions between
chromatin beads. The chromatin chain contains two highly interactive substructures that do
not interact with each other. (D) A random C-SAC chromatin chain with substructures are
shown. There are two small interactive substructures, as can be seen in the rotated and

zoomed-in conformation. The domain-like substructures can also be seen in the corresponding
distance matrices, where the spatial distances between different loci of the C-SAC model

chains are color coded in blue, with darker blue representing interactions between chromatin
beads. The chromatin chain contains two highly interactive substructures that interact with

each other. Circles highlight regions of interactions.
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2.3.4 Scaling behavior of human chromosomes is not altered by random binder-mediated

looping interactions

Several polymer models of long-range chromatin organization are based on the introduction

of explicit looping probability or looping through binder-mediated interactions (Barbieri et al.,

2012; Bohn and Heermann, 2010). To assess how chromatin looping in addition to confinement

would affect the scaling behavior of chromatin chains, we distribute different numbers of binding

sites randomly along the chromatin chains, which cover from 10 to 50% of the total number of

persistence units in the chromatin fiber. Chromatin structures with a large number of binding

sites in spatial proximity are subject to binder-mediated interactions. These structures will then

have lower energy and therefore higher probability of presence in the chromatin population. We

calculated the distribution of the chromatin chains with such binder interactions, in which the

binding energy of connecting two interacting sites is assigned to be 6kBT (Barbieri et al.,

2012; Renda and Pedone, 2007). This allows us to assess the scaling properties of different

populations of chromatin chains under different looping conditions.

Our results showed that there is virtually no change in the scaling exponents α and ν in

C-SAC chains after introducing binders compared to the original C-SAC chains, where the

only constraint is the spatial confinement of the cell nucleus (Figure 7). These results indicate

that random self-avoiding chromatin chains folded inside a confined space have an intrinsic

propensity to form loops, without the explicit introduction of additional binders. Overall, our

results indicate that the confinement at the scale D is the dominant factor in determining the

average scaling behavior of chromatin structures.
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Figure 7. Scaling exponents α and ν when different fractions of C-SAC chromatin
chains are covered by binding sites. The binding energy is assigned to 6kBT (Barbieri et
al., 2012) for two relative temperatures (T in red, 10T in blue). Neither scaling exponents

experiences significant changes as the binder coverage increases.
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2.3.5 Relevant size regime of chromatin confinement for the spatial organization

of chromosomes

Chromosomes are found to occupy localized territories of the size of ∼ 2 µm diameter (Cre-

mer and Cremer, 2001). To span a chromosome territory, only a short fragment of chromatin

fiber (ca. 150 kb, assuming 30 nm diameter and 150 nm persistence length) is required, which

is well below the range of 0.5–7.0 Mb measured in Hi-C studies (Lieberman-Aiden et al., 2009).

Studying the scaling behavior of the self-avoiding polymer chains in the correct confinement

is therefore key to construct the relevant model for understanding chromosome folding. We

used C-SAC model to explore the relationship between the size of confinement and the scaling

properties of confined chromatin chains, as the calculated scaling exponents of C-SAC chains in

the relevant size regime (α ∼ 1.05) is well below the theoretical scaling exponent of self-avoiding

polymer chains in confinement (α ∼ 1.50) (de Gennnes, 1979).

We generated independent ensembles of C-SAC chains in equilibrium and calculated the

relationship between the chain length and the end-to-end distance, as well as the relationship

between contact distance and the contact probability. In total, we generated chains with dif-

ferent length N of 50 , 100 , · · · , 1,000 at increment of 100 each with 5 different confinement

D (D = 1.5, 2.5, 10, 30 and 500 µm). We also generated C-SAC chains of length N from 50

to 8,100 at different increments for two different confinement D (D = 5.0 and 7.5 µm) (Figure

8). We found that chromatin chains exhibit confinement-dependent scaling behaviour, with ν

ranging from 0.30 to 0.60 (Figure 8A). That is, the mean end-to-end distance of self-avoiding

C-SAC chains in a spherical confinement is a function of both the chain length N and the
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confinement diameter D, when the length of N is larger than D. This confinement-dependent

regime is illustrated in Figure 8 for both mean end-to-end distance and contact probability.

Figure 6B includes data presented in Figure 5, with additional data for D of 10, 30 and 100

µm to depict comprehensively the relationship between α and the genomic distance. This helps

to illustrate the important issue of the cross-over regime for self-avoiding chromatin and the

convergence of the scaling exponent α. The asymptotic relationship of α = 3ν (de Gennnes,

1979) is well-satisfied at larger D value, but less so at smaller D, as the leveling-off effects take

place at shorter chain lengths with more severe confinement at smaller D.

Severe spatial confinement has pronounced effects on the conformations of self-avoiding

polymers. Overall, we find that the effective scaling exponent slowly changes with increasing D,

reflecting a rather slow convergence to the asymptotic behavior expected from simple polymer

scaling theory (de Gennnes, 1979).

2.4 Discussion

Chromosomes reside within the severely confined space of the cell nucleus. However, the

direct effects of nuclear confinement on chromatin folding and compaction are unknown. A

major challenge is the extreme difficulty in adequate sampling of long self-avoiding chromatin

chains in the confinement of the cell nucleus. Our C-SAC model enabled us to generate a large

number of chromatin conformations in confinement.

Our results showed that the spatial confinement of ∼ 15 Mb chromatin within regions of

diameter D of 1.5µm gives rise to the chromosomal scaling relationships of the average α ∼ 1.05

and the average ν ∼ 0.34, as well as the leveling-off effects observed experimentally (Mateos-
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Figure 8. Scaling properties of self-avoiding C-SAC chains in confinement. (A)
Relationship between the mean end-to-end distance and the chain length. Each data point is
an average of 10,000 chains of different length under specific confinement of diameter D. As D
increases, the scaling behaviour of self-avoiding walks converges to that of ideal SAW (ν=0.6).
(B) Relationship between mean contact probability and partial chain length s. Each data
point is an average of 10,000 chains of different length N under different confinement of
diameter D. (C) Relationship between R(N) and N/D3 of C-SAC chains in confinement.

Each data point is an average of 10,000 chains of length N under a specific confinement of D.
Under severe confinement when D is small, R(N) is influenced not only by the length of the

polymer but also the size D of the confinement.



44

Langerak et al., 2009; Jhunjhunwala et al., 2008; Lieberman-Aiden et al., 2009). Our model also

captured the complex folding behavior of the chromosome-specific variation in scaling (Barbieri

et al., 2012). In addition, the tentative formation of domains (Cremer and Cremer, 2001; Cook,

1999; Kreth et al., 2004; Dixon et al., 2012; Nora et al., 2012) also emerged in C-SAC model as

highly interactive substructures, without the need of introducing additional binder molecules

and fine tuning of their concentrations. These interactive substructures could be stabilized by

introducing more specific interactions through evolutionary selection pressure to form functional

topological domains.

We found that D, and therefore nuclear size, is a major factor in influencing the overall

folding landscape of chromatin. As nuclear size changes, there are significant differences in

the chromosome architecture, which are reflected in variations in the scaling exponents. These

conclusions are in good agreement with results from Hi-C studies using different cell lines (Bar-

bieri et al., 2012). For example, lines of differentiated cells (GM06990 (Lieberman-Aiden et al.,

2009), GM12878 (Kalhor et al., 2012), IMR90 (Dixon et al., 2012)) have similar overall average

scaling behavior, with α ∼ 1.08, while embryonic stem cells (hESC) (Dixon et al., 2012) behave

differently, with an α close to 1.6. A characteristic property of an hESC nucleus is that it occu-

pies almost the entire cell volume (Zwaka and Thomson, 2003; Dahl et al., 2008) and is plastic

and deformable (Pajerowski et al., 2007). This provides an enlarged space for chromosome

organization. As a result, hESC chromatin is largely diffuse (Zwaka and Thomson, 2003). Our

calculation also showed an increase in α when the confined space is enlarged. This observed

variation in scaling corresponds well with the confinement of different nucleus sizes.
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The average compactness of the chromatin chains and the fractions of open, compact, and

in-between chromatin structures are all different when the nuclear size is changed. Nuclear size

likely alters the overall structural organization of chromosomes, allowing previously unlikely

long-range interactions to occur, at the same time prohibiting certain other genomic interactions

present at a different nucleus size. Thus, nuclear confinement may bias distant sites towards

spatial proximity.

Our results showed that randomly placed binders do not affect directly the scaling be-

haviour. Biological binders such as CTCF may play more specific roles of modifying or biasing

chromosomes towards formation of specific domains required for cell function. Future work

on the selection of properly placed CTCF binding and its effects will likely be fruitful for

understanding the effects of biochemical binding on spatial organization of chromosome

We compared predictions from C-SAC models with those from other chromatin models. As

experimentally observed ν ∼ 0.3 deviates significantly from the expected ν of 0.5 for sub-chains

in equilibrium globule, chromatin fibers were conjectured to be in non-equilibrium fractal glob-

ule (FG) state, in which the exponent of ν ∼ 0.3 would be retained at every scale (Lieberman-

Aiden et al., 2009; Mirny, 2011). The lack of leveling-off effects in Pc(s) with s observed

in (Lieberman-Aiden et al., 2009) is consistent with the prediction of the FG model. However,

leveling-off effects are observed in FISH studies on different chromosomes at several different

length scales (Mateos-Langerak et al., 2009; Jhunjhunwala et al., 2008). These leveling-off ef-

fects are not accounted for by the FG model. In addition, the significant variation of exponent



46

α among different chromosomes of human cells (Lieberman-Aiden et al., 2009; Barbieri et al.,

2012) is not explained by the FG model.

An important consideration in studying the scaling relationship of chromosomes is the rele-

vant size regime dictated by experimental observations. An average of 50–100 Mbp chromosome

occupies a territory of size ∼ 2 µm (Cremer and Cremer, 2001). As a result, a chromatin must

traverse back and forth many times in the chromosome territory, and severe spatial confine-

ment is at play and will have pronounced effects on the folding and scaling of chromatin fibers.

General asymptotic scaling analysis of polymers is overly simplistic to offer much insight under

such strong effects of finite sizes. Conventional simulation studies based on Metropolis Monte

Carlo are also challenged to generate adequate samples to study the equilibrium ensemble of

severely confined chromatin chains in the relevant regime.

Simulation using the novel technique of geometric sequential importance sampling allows

the effects of finite size of confinement to be examined in detail. Our results offer an alternative

explanation on the scaling relationship of chromosomes to the existing FG and SBS models.

Overall, our results show that equilibrium ensemble of C-SAC chromatin chains under severe

confinement of scale D = 1.5 µm exhibit scaling behavior consistent with known experimental

data, which are different from that of asymptotic random chains in the relevant biological scale.

A useful result that can be inferred from our analysis is that chromosomes are restricted

via confinement of sub-chromosomal regions of size about 15 Mb, each within a D of about

1.5 µm-diameter region. Therefore, it may be useful to consider the nucleus to be made up of

close-packed regions of size D, each containing ∼ 15 Mb of DNA. For example, one can consider
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whole chromosomes to be made up of individual units of 15 Mb of DNA, confined to spherical

regions of diameter ∼ 1.5 µm. The whole human nucleus containing ∼ 6 Gbp of DNA can be

considered to be a collection of ∼ 6, 000/15 = 400 such units, which can be fit into a nucleus of

diameter ∼ 4001/3D ≈ 7.4D ∼ 11µm, compatible with the observed size of human cell nuclei

(Alberts, 2002). Therefore, the subchromosome confinement parameter D, namely, the size of

a region containing 15 Mb of DNA, is an important parameter in our structural model.

As spatial confinement is a dominant factor in determining chromosome folding, the specific

epigenetic state of genes and transcription activities in different cell types are likely influenced

by the degree of nuclear confinement. Cell nucleus size at different developmental stages or

physiological states may be altered to induce different chromosome folding landscape, enabling

different genetic programming to be activated. Overall, how nuclear size and shape relate to cell

size and shape, and how their relative ratio or pattern regulate the epigenetic programs of the

cells at different developmental stages are important problems requiring further investigations.

Although our approach can generate a large ensemble of chromatin chains under spatial

confinement, there still exists uncertainty in the physical parameters used in the current C-

SAC model, including the persistence length, the chromatin fiber diameter, and the mass

density (Fussner et al., 2012). In addition, current chromatin models are based on growing

a single chromosome chain, and cannot be used to study inter-chromosomal interactions. An-

other question is how the 15 Mb sequence scale, and the parameter D are controlled in the

cell. These issues will likely be resolved when chromosomal properties are better understood

and the C-SAC algorithm is further improved. It is interesting that our simplistic model can
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capture complex folding characteristic of human genome. The current study highlighted the

importance of spatial confinement in dictating the chromatin folding landscape. With the accu-

mulation of high resolution chromosome conformation capture data, it is envisioned that more

specific spatial information inferred from 3C-based studies can be incorporated into the C-SAC

model, and realistic ensemble of chromatin conformations reflecting 3C-based information can

be reconstructed to gain insight into the structural basis of gene regulation and expression.



CHAPTER 3

SPATIAL ORGANIZATION OF BUDDING YEAST GENOME FROM

LANDMARK CONSTRAINTS AND IDENTIFICATION OF

BIOLOGICAL CHROMATIN INTERACTIONS

3.1 Introduction

Genome organization largely determines important nuclear activities such as repair, recom-

bination, and replication of DNA, as well as the control of transcriptional status of genes (Fraser

and Bickmore, 2007; Taddei and Gasser, 2012). The overall organization of genome has been

shown to be compartmentalized in the form of chromosome territories (Cremer and Cremer,

2001), topologically associated domains (Nora et al., 2012; Dixon et al., 2012), and spatial lo-

calization of individual gene loci (Berger et al., 2008). Such compartmentalization affects the

expression levels of genes in eukaryotes such as yeast (Taddei and Gasser, 2012) and mam-

malians (Fraser and Bickmore, 2007). With the well understood nuclear architecture and tran-

scriptional machineries (Taddei and Gasser, 2012), budding yeast provides an excellent model

system for investigating cellular activities related to genome organization. Furthermore, there

is now clear evidence that important nuclear events such as cancer-promoting chromosomal

translocations observed in human nuclei and relocation of genomic elements upon breaks of

double stranded DNA observed in budding yeast originate from analogous underlying cellular

machineries (Taddei and Gasser, 2012).

49
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Studies using electron microscopy techniques revealed detailed structures of architectural

landmarks of budding yeast nucleus. These include the spindle pole body (SPB), the nu-

cleolus, and the nuclear envelope (NE) (Hediger et al., 2002; Taddei et al., 2004; Taddei et

al., 2009; Mekhail and Moazed, 2010; O’Toole et al., 1999; Yang et al., 1989; Dvorkin et al.,

1991; Bystricky et al., 2005; Berger et al., 2008). SPB is functionally equivalent to centro-

some in mammalian nuclei, where all heterochromatic centromeres are attached to throughout

interphase (O’Toole et al., 1999). Nucleolus, where ribosome synthesis and assembly take

place, contain clusters of ribosomal DNA (rDNA) repeats (Yang et al., 1989; Dvorkin et al.,

1991; Bystricky et al., 2005; Berger et al., 2008; Mekhail and Moazed, 2010; Taddei et al.,

2010). NE, where telomeric regions of yeast chromosomes are anchored, facilitates silencing

of telomeric genes (Hediger et al., 2002; Taddei et al., 2004; Taddei et al., 2009; Mekhail and

Moazed, 2010). In addition, microscopy experiments further revealed the dynamics behavior of

important genes of budding yeast (Berger et al., 2008).

With genome-wide studies using Chromosome Conformation Capture (3C) technique (Duan

et al., 2010; Lieberman-Aiden et al., 2009), large-scale long-range chromatin looping interac-

tions across the budding yeast genome have been revealed (Duan et al., 2010). Studies of poly-

mer modeling of both human (Sanborn et al., 2015; Chiariello et al., 2016; Trieu and Cheng,

2014; Zhang and Wolynes, 2015; Meluzzi and Arya, 2013) and yeast (Tjong et al., 2012; Wong et

al., 2012; Wang et al., 2015; Tokuda et al., 2012) genomes have revealed important information

on the folding principle of genome. For example, recent computational studies demonstrated

that chromosomes of budding yeast behave as randomly folded flexible self-avoiding polymer
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chains that are subject to the constraints of nuclear landmarks and nuclear confinement (Tjong

et al., 2012; Wong et al., 2012). It was shown that tethering of genomic elements such as

centromeres and telemores to the nuclear landmarks gives rise to the preferential localization

of functional loci in nucleus (Tjong et al., 2012; Wong et al., 2012). However, the correla-

tions of modeled inter-chromosomal interactions with experimentally captured interactions are

modest at best (Tjong et al., 2012; Wong et al., 2012). In addition, these volume exclusion

models (Tjong et al., 2012; Wong et al., 2012) may be able to capture only interactions aris-

ing from generic polymer effects. After correction of measured interaction frequencies using a

statistical null model, budding yeast genome no longer exhibit properties of randomly folded

polymer chains under constraints (Ay et al., 2014). The question whether the organization of

yeast genome is dictated by physical tethering of landmarks and the excluded-volume effects as

argued in (Tjong et al., 2012; Wong et al., 2012), with specific protein-mediated interactions

playing negligible roles, remains unanswered. Overall, the exact roles of nuclear landmarks,

volume confinement, biochemically mediated interactions, as well as their relative contributions

to the overall organization of yeast genome are unclear.

In this study, we explored computationally the structural properties of budding yeast genome

under different combinations of landmark constraints and nuclear confinement. Our goal is to

answer these questions: (1) how does the confinement of cell nucleus affect the organization of

yeast genome, (2) to what extent genome organization is determined by the physical architec-

ture of the nucleus through landmarks, (3) what are the contributions of the individual nuclear

landmarks on overall genome organization, (4) how can we distinguish chromatin looping in-



52

teractions arising from biochemical factors from those arising from generic polymer properties.

Our study is based on the multi-chromosome Constrained Self-Avoiding Chromatin (mC-SAC)

method and the generation of ensembles of ∼150,000 model genomes using the geometrical

Sequential Importance Sampling technique (g-SIS) (Gürsoy et al., 2014a; Gürsoy et al., 2014b).

Our results showed that indeed the overall patterns of chromatin interactions of budding

yeast genome are well captured when only polymer effects under the spatial confinement of

cell nucleus and landmark constraints are considered (row-based Pearson correlation coeffi-

cient R of 0.95). We found that the size of the nuclear confinement is the key determinant

of intra-chromosomal interactions, while centromere tethering is responsible for much of the

observed inter-chromosomal interactions and correlation of pairwise telomere distances to chro-

mosomal arm lengths. Furthermore, novel chromatin interactions undetected in experimental

studies (Duan et al., 2010) can be uncovered from the ensemble of model genomes generated

with nuclear confinement and landmark constraints, and are found to be stabilized by bind-

ing of a transcription factor and RNA polymerase. In addition, we found there are important

specific genomic elements enriched with tRNA genes that were not captured by polymer prop-

erties under landmark constraints, but are detected in experimental studies (Duan et al., 2010).

Overall, our findings define the specific roles of confinement and individual landmarks, and can

uncover likely biologically relevant interactions from genome-wide 3C measurements that are

beyond polymer effects.
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3.2 Materials and Method

3.2.1 Model and parameters

Budding yeast nuclear architecture is composed of NE, SPB, nucleolus and 16 chromosomes.

The locations of SPB, NE and nucleolus are fixed according to the imaging experiments (Fig-

ure 9A) (Hediger et al., 2002; Taddei et al., 2004; Taddei et al., 2009; Mekhail and Moazed,

2010; O’Toole et al., 1999; Yang et al., 1989; Dvorkin et al., 1991; Bystricky et al., 2005; Berger

et al., 2008) and the locations of the 16 chromosomes are modeled as independent but interacting

polymer chains (Gürsoy et al., 2014b).

In our mC-SAC model, we used 30 nm chromatin fiber model (Bystricky et al., 2004;

Wedemann and Langowski, 2002; Gürsoy et al., 2014a; Gürsoy et al., 2014b), in which each

monomer of the polymer chain is modeled as spheres with 30 nm diameter and corresponds to

a 3 kb of DNA (Bystricky et al., 2004; Wedemann and Langowski, 2002). Every 5 monomers

form a persistence unit that corresponds to a persistence length Lp of 150 nm (Bystricky et al.,

2004; Wedemann and Langowski, 2002). The entire budding yeast genome is modeled a total

of 796 Lp (3990 monomers) divided into 16 chromosomes.

3.2.2 Chain growth by geometrical Sequential Importance Sampling (g-SIS)

The mC-SAC model is developed based on our single C-SAC chain growth model (Gürsoy et

al., 2014a; Gürsoy et al., 2014b). First, we mapped the locations of centromeres, telemores and

rDNA repeats onto the polymer chains that corresponds to each chromosome. Each chromosome

is the divided into right and left arms from their centromeres, except Chr 12 (Figure 9D). The
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polymer chain representing Chr 12 is divided into three segments to accommodate for the

nucleolus constraint (Figure 9D).

The budding yeast genome is therefore composed of 33 chromosomal arms, each represented

by a polymer chains. The genome γ = (x1, x2, ..., x33) is a collection of chromosomal arms, where

each arm xk consists of n units as xk = (xk1 , x
k
2 , ..., x

k
n). The three-dimensional location of the

i-th unit of the k-th chromosome arm is denoted as xki = (aki , b
k
i , c

k
i ) ∈ R3.

To generate a chromosomal arm, we grow the mC-SAC chain one unit at a time, ensuring the

self avoiding property along the way, namely, xki 6= xlj for all i 6= j. We use a s = 1640-state off-

lattice discrete model (see (Liang et al., 2002; Zhang et al., 2003; Gürsoy et al., 2014a; Gürsoy

et al., 2014b) for more details). The new unit added to a partial chain is placed at xkt+1,

taken from one of the unoccupied s-sites neighboring xkt , with a probability of growth g(x),

which is the trial distribution. This selection introduce bias away from the target distribution

π(x), therefore the bias is corrected by assigning each successfully generated genome a proper

weight w(x) = π(x)/g(x). Details can be found in references (Liang et al., 2002; Zhang et al.,

2003; Gürsoy et al., 2014a; Gürsoy et al., 2014b).

Multiple chain growth process starts with a random selection of a chromosomal arm and

placement of its corresponding centromere at a random location in the SPB. We then employ

the chain growth strategy to grow chromosomal arms until the telomere of the corresponding

arm reaches to the target location, i.e. NE. In the case of Chr 12, we select a random location on

the nucleolus to place the rDNA repeats and grow the chain towards to the target location(i.e.

NE or SPB). We repeat this process until all 33 chromosomal arms are completely generated.
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3.2.3 Target distribution

The target distribution π(x) is Boltzmann distribution, in which all chains are self avoiding,

their centromeres are attached to the SBP, the rDNA repeats are in the nucleolus and telomeres

can be attached to NE at any point of growth. The first persistence unit of each chromosomal

arms (except for Chr12) are randomly attached to any location in the SPB. Each partial chro-

mosomal arm xkt is grown from centromeres according to the target distribution π(xt) based

on the geometrical constraints derived from experimental data by conserving the self-avoiding

property and confinement of cell nucleus.

The target distribution π(xkt ) of a partial chain follows Boltzmann distribution as

π(xkt ) = exp(−E(xkt )/kBT ),

where E(xkt ) is an energy like term that is derived from the landmark constraints.

(1) Potential from telomere closing constraints

This potential is designed to obtain model genomes where the telemores are either attached

to the NE when the full arm length is reached or can be attached to the NE at any point of

chain growth,

Let H1(x
k
t ) be the potential from telomere closing probability constraints. For each candi-

date node xtm that does not violate the self-avoiding property and inside the nuclear confinemet,

we calculate the energy-like term as
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H1(x
k
t ) = ||‖ xtm ‖ −R| − (N − t)× Lp − dthres|, (3.1)

where Lp is the persistence length, N is the total number of nodes in a chromosomal arm,

R is the nuclear radius and dthres is the threshold distance which was taken as 50 nm.

(2) Potential from centromere tethering constraints.

This potential is used only for the Chr12 chromosomal arms where the rDNA repeats are

sampled from nucleolus and designed to obtain model genomes where the centromere are either

in the SPB when the full arm length is reached or can be in the SPB at any point of chain

growth,

Let H2(x
k
t ) be the potential from centromere tethering constraints. For each candidate

node xtm that does not violate the self-avoiding property and inside the nuclear confinemet, we

calculate the energy-like term as

H2(x
k
t ) = ||‖ xtm − xSPB ‖ −RSPB| − (N − t)× Lp|, (3.2)

where xSPB is the center coordinates of SPB, Lp is the persistence length, N is the total

number of nodes in a chromosomal arm, and RSPB is the radius of SPB as we modeled as a

sphere.
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3.2.4 Trial distribution

Trial distribution is designed to introduce a bias to chose the highest probability partial

chain xkt with respect to the target distribution π(xkt ). The trial distribution g(xkt ) of a partial

chain xkt is

g(xkt ) = exp(π(xkt )− max
t=1,...,1640

π(xkt ))

.

3.2.5 Random model

An ensemble of 150,000 model genomes with only excluded volume constraint and nuclear

confinement are generated. To improve the sampling efficiency, we employ a dynamic resampling

technique that is described in Chapter 2 (Gürsoy et al., 2014a).

3.2.6 Statistical properties of model genomes

With m successfully generated model genomes, the physical properties of the ensembles of

model genomes are calculated. If the configurations of the j-th successfully generated model

genome as x
(j) = (x

(j)
1 , · · · , x

(j)
n ), and its associated weight w(j). To calculate the mean value

of a physical property h̄(x) such as the spatial distance between genomic elements, we have:

h̄(x) = Eπ(x)[h(x)] =

m
∑

j=1
h(x(j)) · w(j)

m
∑

j=1
w(j)

.
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3.2.7 Normalization and calculation of propensity

We normalized the interaction frequencies of experiments and the model ensembles following

the previous work (Tjong et al., 2012; Lieberman-Aiden et al., 2009; Duan et al., 2010). Let

fij be the interaction frequencies between the genomic elements i and j. We obtained the

normalized interaction frequency as

fn
ij = fij ×

∑N
k=1

∑N
l=k+1 fkl

∑N
k=1 fik

∑N
k=1 fkj

,

where N is the total number of the genomic elements. All the calculations in this paper are

employed after normalization of experimental and model ensembles.

The propensity of an interaction is the observed/expected for the experiment and the mod-

eled ensembles. First, we calculated the probability of an interaction in the experimental

interaction matrix, interaction matrix of modeled ensemble and random model as following,

qexp(ij) =
f exp(ij)

∑N
i=1

∑N
j=1 f

exp(ij)

qmodel(ij) =

∑

k wkI(i, j)
∑N

i=1

∑N
j=1

∑

k wkI(i, j)
,

qrandom(ij) =

∑

k wkI(i, j)
∑N

i=1

∑N
j=1

∑

k wkI(i, j)
,

where N is the total number of genomic elements, wk is the weight of the kth chain in the

ensemble and I(i, j) is an indicator function, which equals to 1 when elements i and j interacts,

equals to 0 otherwise. We calculated the propensity of each interaction as,
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propenexp(ij) =
qexp(ij)

qrandom(ij)

propenmodel(ij) =
qmodel(ij)

qrandom(ij)

3.2.8 Calculation of p-value for the correlation between experimental matrix and

model ensemble matrix

We shuffled the each row of the experimental interaction matrix for 1000 times and generated

1000 shuffled interaction matrices. We calculated the mean row-based Pearson correlation co-

efficient between each shuffled matrix and the modeled ensemble and calculated the probability

of obtaining mean row-based Pearson correlation coefficient of 0.95 as the p-value.

3.2.9 Mean combined occupancy enrichment

We mapped the genome-wide occupancy enrichment of RNAPIII and TFIIS on to beads.

We used a geometrical mean approach for the coupled enrichment of pairs. Mean enrichment

value for each pair can be measured as

enmean(i) =

√

√

(enRNAPIII(i) ∗ enRNAPIII(j) ∗
√

enTFIIS(i) ∗ enTFIIS(j)

3.3 Results

3.3.1 mC-SAC model of budding yeast genome

We model the chromatin fiber of budding yeast as chained beads, where each bead corre-

sponds to 3 kb of DNA (Bystricky et al., 2004; Gerchman and Ramakrishnan, 1987; Wedemann
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and Langowski, 2002). Following previous studies (Tjong et al., 2012; Wong et al., 2012; Gürsoy

et al., 2014b), we used light microscopy data to model the architecture of yeast nucleus. The

nucleus is modeled as a sphere of a diameter of 2 µm and contains the Spindle Pole Body (SPB),

the Nuclear Envelope (NE, modeled as a shell of thickness of 0.5 nm), the nucleolus, and 16

chromosomes (Figure 9A,B and D) (Gürsoy et al., 2014b). Chromosomes all reside inside the

nucleus as independent but interacting self-avoiding chromatin fibers. The entire budding yeast

genome is modeled as a total of 3,990 beads divided into 16 different chromosomes (Figure 9B).

An ensemble of ∼150,000 independent model genomes are generated that are subject to

the nuclear confinement, centromere clustering at SPB, telomere attachment at the NE, and

rDNA repeat clustering at the nucleolus. This is achieved by sequentially growing self-avoiding

chromatin chains one unit at a time using the technique of geometrical Sequential Importance

Sampling (g-SIS) (Gürsoy et al., 2014a; Gürsoy et al., 2014b; Liang et al., 2002; Lin et al.,

2008b). We call this fully-constrained ensemble of mC-SAC chains. In addition, we examined

the effect of individual landmark constraints and generated four separate ensembles of ∼150,000

independent model genomes, after turning off each of the three separate constraints and with

only the constraint of centromere tethering imposed (see Table II). As an overall control, we

also generated a random ensemble of ∼150,000 model genomes, which is subject only to the

constraint of nuclear confinement (see Table II).
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Figure 9. Nuclear architecture of budding yeast and the mC-SAC model of
budding yeast genome. (A) Schematic representation of the nucleus and nuclear

landmarks of budding yeast and their corresponding coordinates and the dimensions. (B) An
example 3D structure of mC-SAC genome confined in the cell nucleus. (C) Correlation
between genome-wide chromatin conformation capture interaction frequencies and the

interaction frequencies measured from the fully-constrained mC-SAC ensemble of model yeast
genomes. (D) Yellow chromosome represents the Chr12 where the rDNA elements are
highlighted as blue spheres and the centromere is highlighted as red sphere. Purple

chromosome represents the rest of the chromosomes where centromere is highlighted as red
sphere. The direction of chain growth is shown with the arrows. (E) Schematic representation
of the chromosomes and the special case of Chr 12 where we used 3 chromosomal arms for
chain growth process. (F) Histogram of the mean row-based correlation coefficients between

shuffled experimental data and the model ensemble. (G) Heatmap of the interaction
frequencies measured in the fully-constrained mC-SAC ensemble. Darker color indicates

higher interaction frequency. (H) Heatmap of the interaction frequencies from the
experiment. (I) Heatmap of interactions in the fully-constrained mC-SAC ensemble The

interactions between restriction fragments of the genome-wide 3C experiment (Duan et al.,
2010) are shown for direct comparison between the predicted model and experiment. (J)
Heatmap of the interaction frequencies of the fully-constrained mC-SAC ensemble that are

corrected after removal of non-specific interaction frequencies. (K) Heatmap of the
interaction frequencies of the genome-wide 3C experiments that are corrected by expected
interaction frequencies. (L) Correlation between genome-wide chromatin conformation
capture interaction frequencies and interaction frequencies from the fully-constrained

mC-SAC ensemble after removal of expected interactions.
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TABLE II

THE EFFECTS OF DIFFERENT CONSTRAINTS ON THE FOLDING OF BUDDING
YEAST GENOME

mC-SAC without telomere without nucleolus without centromere with only centromere Random
Overall 0.82 0.83 0.90 0.90 0.81 0.77
Inter 0.91 0.90 0.92 0.76 0.90 0.54
Intra 0.82 0.84 0.90 0.92 0.82 0.80

Correlation coefficients between the interactions of different ensembles and the genome-wide chromosome

conformation capture experiments at 15 kb resolution. Spatial confinement of a nucleus of diameter 2 µm is

imposed for all cases.

3.3.2 mC-SAC model with nuclear confinement and landmark constraints recapitulates

long-range chromatin interactions of budding yeast genome

Recent genome-wide Chromosome Conformation Capture (3C) studies have quantified the

frequency of chromatin looping interactions of budding yeast genome that can be summarized by

an interaction frequency matrix (Duan et al., 2010). To examine how well our model can capture

the overall genome organization, we calculated the correlation between interaction frequency

matrices from the fully-constrained ensemble and from genome-wide 3C experiment (Duan

et al., 2010) following previous studies (Tjong et al., 2012; Wong et al., 2012). Interaction

frequency matrices obtained from our predicted ensemble (Figure 9G and I) and from genome-

wide 3C experiments (Figure 9H) are highly correlated, with an R of 0.83 at 15 kb resolution (as

calculated in (Wong et al., 2012), with R of ∼ 0.60 reported) and a row-based R of 0.94 at 15

kb (as calculated in (Tjong et al., 2012), with R of 0.94 at 32 kb reported, Figure 9C, p-value ¡

0.001, Figure 9F). Furthermore, the calculated inter-chromosomal interaction frequencies in the
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fully-constrained ensemble and those observed in genome-wide 3C experiments are in excellent

agreement, with an R of 0.91 at 15 kb resolution, compared to previously reported R of 0.54 at

32 kb resolution (Tjong et al., 2012). The heatmaps obtained from experiments (Duan et al.,

2010) and from mC-SAC ensemble have nearly identical patterns (Figure 9G–I).

To eliminate the effect of proximity interactions and non-specific interactions arising from

nuclear confinement of self-avoiding chromatin chains, we used our random ensemble as the

null model to calculate the propensity (observed/expected) of each interaction in both fully-

constrained ensemble (Figure 9J) and the genome-wide 3C data (Figure 9K). After removal

of non-specific interactions, the propensities from the fully-constrained ensemble and propen-

sities from genome-wide 3C measurements has strong correlation, with an R of 0.96 at 15 kb

resolution (Figure 9I).

Overall, our fully-constrained models of budding yeast genome showed that model genomes

generated under the constraints of nuclear confinement and all three nuclear landmarks can

capture much of the experimentally measured intra- and inter-chromosomal interactions. These

results suggest that nuclear confinement and nuclear landmarks play key roles in determining

the overall organization of yeast genome.

3.3.3 Nuclear size is a major determinant of overall spatial chromatin interactions

in the budding yeast genome

Effects of confinement on patterns of genome-wide interactions.

To understand the effects of the nuclear confinement on chromatin interactions, we examined

the frequency of interactions of model yeast genome with different degrees of confinement in
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nuclei of diameters of 2, 4 and 16 µm, respectively, each with and without landmark constraints.

A total of 6 ensembles, each with ∼150,000 model genomes are generated. As the nuclear diam-

eter increases, the correlation between the interaction frequencies of fully-constrained ensemble

and those of genome-wide 3C experiments decreases from R of 0.83 to 0.55 (Figure 10A). When

the landmark constraints are removed, the interaction frequencies of random ensemble and

frequencies of genome-wide 3C experiments decreases from R of 0.77 to 0.25 as the nuclear

diameter increases from 2 µm to 16µm (Figure 10A). These results showed that the degree

of confinement is a major source of the organization of budding yeast genome, as when only

nuclear confinement constraint is employed, the correlation R is still quite strong at R = 0.77,

so long as the appropriate confinement size is imposed.

Effects of confinement on pairwise distances between telomeres.

Fluorescence imaging data suggested that telomeres are positioned on the nuclear periphery

according to their armlengths (Therizols et al., 2010). The distance between two telomeres

increases as the length of the chromosomal arms increase (Therizols et al., 2010). The function

that represents this relationship can be represented by two linear regimes, with a change in the

slope at around the arm length of 310–326 kb (Therizols et al., 2010).

We examined the origin of this correlation. In the fully-constrained ensemble at a nuclear

diameter of 2µm, the median telomere-telomere distances and chromosome arm lengths are

linearly correlated in two regimes, with a change in the slope at around 356 kb for small

chromosomes, and 396 kb for longer chromosomes (Figure 10B). This behavior is fully consistent

with experimental findings (Therizols et al., 2010) as well as results from a previous polymer
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Figure 10. Effects of confinement on the overall folding behavior of budding yeast
genome. (A) Overall correlation coefficient of the frequencies between genome-wide 3C
measurements and modeled ensemble. As the nuclear size increases, correlation decreases.
(B) Effects of nuclear size and chromosomal arm length on the median distances between
telomeres. Relationships between arm length and median telomere distances at different
nuclear sizes for the fully-constrained ensemble, with different telomeres as references are

shown. Two linear regimens becomes one linear regime as D increases from 2 µm to 4 and 16
µm.

model (Tjong et al., 2012). However, we found that only long chromosomal arms can be

mapped to two linear regimes when cell nuclei is enlarged to D=4 and D=16 µm (Figure 10B).

For shorter arm lengths, telomere distances and chromosomal arm lengths have a single linear

regime (Figure 10B). In contrast to suggestions from a previous study (Therizols et al., 2010)

that the telomeres of budding yeast genome are not positioned randomly, our results suggest

that telomeres indeed positioned randomly on the nuclear envelope. The size of the nucleus

and the chromosomal arm lengths largely determine the random positioning of telomeres.
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3.3.4 Attachment of centromeres to SPB is a major determinant of inter-chromosomal

interactions

After turning off individual constraints one or more at a time, we generated ensembles of

∼150,000 model genomes to understand the specific roles of each landmark on the folding pat-

tern of budding yeast genome. In total, we have 4 ensembles for the conditions of “without

telomere”, “without nucleolus”, “without centromere”, and “with only centromere” constraints,

and the nuclear confinement and self-avoiding property of chromatin are imposed in each case.

The overall correlation between the interaction frequencies from each ensemble and frequencies

from experimental measurements is strong (R ¿ 0.80, Table II), suggesting again nuclear con-

finement and excluded-volume effects that are common to all four ensembles are the dominant

factors in determining the overall interaction patterns of the budding yeast genome.

Inter-chromosomal interactions in most of ensembles, except the ones in which centromere

tethering is off, are also highly correlated with experimentally captured inter-chromosomal inter-

actions. These findings suggest that imposing the constraint of centromere tethering to the SPB

in addition to the volume confinement is sufficient to capture inter-chromosomal interactions

observed in genome-wide 3C experiments. We further examined the importance of centromere

tethering on the pairwise distances between telomeres. When the centromeres are not attached

to the SPB, the linear relationship between pairwise telomere distances and chromosomal arm

lengths that was observed in fluorescence imaging experiments disappears (Figure 11).

Overall, our results showed that centromere attachment to the SPB largely determines

the chromosome-chromosome interactions, hence the chromosomal positioning in the nucleus.
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Figure 11. The effect of centromere tethering on the median distances between
telomeres. (A)Relationship between chromosome armlength and median telomere distances
for the random model. No correlation between armlength and the median telomeric distances

was observed. (B) Relationship between chromosome armlength and median telomere
distances for the “centromere=off” ensemble. No correlation between armlength and the

median telomeric distances was observed.
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The folding landscape of individual chromosomes, on the other hand, is largely determined by

the crowding effects due to nuclear confinement and volume exclusion. Furthermore, telemore

attachment to the NE has insignificant effects on the overall structural properties of the genome.

In addition, nucleolus constraint has effects only on the folding of Chromosome 12 (Figure 12).

3.3.5 Spatial location of eight important genes are determined by their genomic

distances to the centromeres.

The spatial locations of genes affect their transcriptional status (Fraser and Bickmore, 2007).

The relative locations of eight important budding yeast genes with respect to the SPB were

measured in a fluorescent imaging study (Berger et al., 2008). We compared experimentally

observed relative positions of these genes with positions measured from the fully-constrained

ensemble. Overall, they are in excellent agreement (R2 =0.95, Figure 13A).

The relative position of these genes were found to be inversely correlated with their genomic

distances to corresponding centromeres in a previous study (Berger et al., 2008). The same

relationship is also observed in our model (Figure 13B and Figure 13C). We hypothesise that the

relative locations of these genes are determined by their genomic distances to centromeres. To

test this hypothesis, we generated two artificial genomes that have the same overall genome size

and architecture as the budding yeast nucleus. Artificial Genome 1 (AG1) has the same number

and lengths of chromosomes as the budding yeast genome, but with randomized locations of

the centromeres. Artificial Genome 2 (AG2) has only 12 chromosomes, with the locations of

centromeres also randomized. We found the same cross-like pattern in the interaction frequency

heatmap as the budding yeast genome for AG1 and AG2 (Figure 13D and E), suggesting that
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Figure 12. Effects of different constraints on the interaction profiles of different
genomic elements. (A) Interactions between the centromere of Chr II and the other

genomic elements in the yeast genome. The interactions between the centromere of Chr II and
the other centromeres are the same for the ensembles, in which centromere constraint is on.

Despite the high-correlation coefficient between the experiment and the ensemble of
centromere =off, this ensemble fails to capture the centromere-centromere interactions. (B)
Interactions between the telomere of Chr VII and the other genomic elements in the yeast
genome. The interactions between the telomere of Chr VII and the other telomeres are the
same for the ensembles, in which telomere constraint is on. However, since the frequency of
telomere-telomere interaction is low, the ensembles, in which telomere constraint is off still
have high correlation with Hi-C data. (C) Interactions between a random locus on Chr XII
and the other genomic elements in the yeast genome. The intra-chromosomal interactions

within Chr XII differs for all the ensembles.
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the number and the length of the chromosomes have little effects on the overall pattern of yeast

genome organization.

However, when the genomic locations of the eight genes were mapped to the artificial

genomes, their relative positions deviate significantly from the experimentally measured po-

sitions (R2=0.16 and R2=0.11 for AG1 and AG2, respectively, Figure 13F). Surprisingly, the

inverse relationship between the genomic distance to the corresponding centromere and the

relative positions of these genes observed in wild type yeast is preserved (R2 = −0.87 and

R2 = −0.91 for both artificial genomes, respectively, Figure 13G).

We further compared experimentally measured relative positions of these genes with their

positions obtained from the ensembles of “with only centromere” and “without centromere”

to explore the roles of centromere tethering on genome organization. The ensemble of “with

only centromere” captured the relative spatial positions of these genes quite well (R2 = 0.88,

Figure 13H), whereas the relative positions in the ensemble of “without centromere” do not

correlate well with experimental measurements (R2=0.11, Figure 13I).

Overall, these results further suggest that centromere tethering is a key determinant of the

folding of yeast genome and the positions of several important genomic elements are largely

determined by their genomic distances to their corresponding centromeres.

3.3.6 Chromosomal fragile sites are clustered in three-dimensional space

In eukaryotes, chromosome can break at specific locations when DNA replication is per-

turbed (Song et al., 2014). These specific locations are called fragile sites. A recent genome-
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Figure 13. Relationship between sequence and spatial positions of eight genes.
(A) The correlation between the relative positions of these genes by electron

microscopy (Berger et al., 2008) (x-axis) and by fully-constrained ensemble (y-axis). (B) The
relationship between the experimentally measured relative spatial positions of the important
genes and their distance to the corresponding centromeres. The two locations of genes that
correlate poorly are on Chr12 and telomere, which are subject to nucleolus and telomere
attachment constraints. (C) The same relationship can be seen from computationally

generated fully-constrained ensemble. (D) Heatmap of interaction frequencies of Artificial
Genome 1 (AG1) with 16 total chromosomes. (E) Heatmap of interaction frequencies

Artificial Genome 2 (AG2) with 12 total chromosomes. (F) The correlation between the
relative position of the genes measured experimentally and measured from AG1 (blue) and

AG2(red) ensembles. (G) The relationship between the relative positions of the genes
measured from AG1 (blue) and AG2 (red) ensembles and their distances to the corresponding
centromeres. (H) The correlation between the relative positions of the genes measured by
electron microscopy (Berger et al., 2008) and by “with only centromere” ensemble. (I) The
same correlation between the positions measured by electron microscopy (Berger et al., 2008)

and by “without centromere” ensemble.
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wide study of fragile site mapping revealed all breakable sites of budding yeast genome with

high-resolution (Song et al., 2014).

We mapped all 201 experimentally identified fragile sites to beads in our polymer model

of yeast genome and calculated the mean interaction frequencies among them. Only non-local

interactions between fragile sites that are more than 45 kb apart are considered, so proximity

effects are eliminated in our consideration. Overall, the mean interaction frequency between the

95 mapped beads containing fragile sites is 35.9. The random probability of observing similar

or higher frequency is p < 0.001 (Fig Figure 14A), which is estimated through bootstrapping

of 10,000 sets of 95 random beads that are at least 45 kb apart. These results showed that

fragile sites have high propensity of clustering spatially together in the nucleus (Figure 14B and

C), indicating that the underlying mechanism of double-stranded DNA breaks coming together

in 3D space to create a repair foci (Lisby et al., 2003) may be facilitated by the centromere

tethering and the confinement of the cell nucleus.

3.3.7 Predicting novel long-range chromatin interactions of budding yeast genome

While genome-wide 3C technique has identified many long-range pairwise chromatin in-

teractions in budding yeast (Duan et al., 2010), these interactions are incomplete due to the

distribution of restriction enzyme sites and lack of full mappability of the fragments. Our

fully-constrained ensemble can be used to predict novel interactions that are not captured by

genome-wide 3C experiments. In addition, as much of the spatial organization of budding yeast

genome is likely dictated by the landmark constraints and nuclear confinement, it would be
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Figure 14. Interactions among fragile sites and their distribution in the budding
yeast genome. (A) Mean interaction frequency between fragile sites (shown as thick green
line) and the histogram of mean interaction frequencies between 10,000 sets of 95 random

sites. (B) The distribution of fragile sites in the 16 chromosomes. (C) Heatmap of interaction
frequencies between fragile sites as computed from the fully-constrained ensemble. The length

of each chromosome is proportional to the number of fragile sites it contains. All high
frequency interactions (red) are predicted to occur between different chromosomes, except

those on the diagonal.

important to identify biologically specific interactions captured in genome-wide 3C studies but

are unaccounted for by landmark constraints and nuclear confinement.

Predicted genomic interactions involving RNAPIII and TFIIS.

There are 14 interactions occurring between 10 loci that appear in more than 15% of the

chains in the fully-constrained ensemble but are absent in the genome-wide 3C data (Fig-

ure 15A). We examined the available ChIP-chip study of RNAPIII and TFIIS binding ((Ghavi-

Helm et al., 2008), see SI Methods) and found that there is an enrichment of 182.10 on average

in binding of these factors to the 10 loci. This is higher than the enrichment of 112.25 at a

significance level p < 10−2 (Figure 15B), which is estimated from 10,000 sets of 14 random
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TABLE III

LANDMARK GENES THAT ARE SPECIFIED IN THE YEAST DATABASE.
Chr1 FLO9, CLN3, MAK16, CYS3, ADE1, PHO1
Chr2 ILS1, MCM2, RAD16, SUP45, MET8
Chr3 HMLALPHA1, MATALPHA1, HMRA1
Chr4 CDC9, CDC2, SIR4, XRS2, TRP1
Chr5 CAN1, CUP5, FCY2, MET6, RAD3
Chr6 YPT1, SMC1, HIS2, HXK1
Chr7 ADH4, CUP2, TRP5, GCD2, PFK1
Chr8 SPOII, ARD1, CUP11, FUR1, ERG9
Chr9 SUC2, HIS5, BCY1, LYS1
Chr10 TPK1, ARG3, CYR1, CYC1, ECM17
Chr11 URA1, APE2, ELM1, VPS1, SIR1
Chr12 CDC25, LEU23
Chr13 HMG1, NDC1, MCM1, PFK2, ADE4
Chr14 DAL82, KEX2, RPC31, TOP2, LYS9
Chr15 HXT11, TOP1, DED1, PPO2, RAD17
Chr16 GAL4, TPK2, PEP4, ERG10, HTS1, RPC40

interactions of loci pairs. In addition, all 14 interactions are between centromeres and contain

at least one tRNA gene (Table V). Only 3 out of 14 interactions have enrichment of RNAPIII

and TFIIS lower than the mean enrichment of random interactions (112 ± 21). These findings

are consistent with the observation of the tRNA gene localization at centromeres (Iwasaki et

al., 2010), as well as the association of elongation factor TFIIS with RNAPII that are important

for tRNA gene expression (Ghavi-Helm et al., 2008). These findings showed that a subset of

computationally predicted interactions may have originally arisen from confinement and land-

mark constraints, but were subsequently stabilized through evolution with binding of RNAPIII

and binding of TFIIS. The abundance of tRNA genes involved points to likely biological roles

of these genomic interactions.
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TABLE IV

PREDICTED 14 INTERACTIONS BETWEEN CENTROMERES OF CHROMOSOMES,
WHETHER THEY CONTAIN TRNA GENE, AND THEIR COMBINED ENRICHMENT

VALUE OF RNAPIII AND TFIIS
Chr tRNA gene Chr tRNA gene enrichment
II yes XIII yes 56.98
II yes XV yes 127.24
II yes XVI no 61.53
IV yes XVI no 163.63
V yes XVI no 204.64
VII no XV yes 183.53
X yes XIV yes 372.52
X yes XV yes 373.15
X yes XVI no 180.46
XI no XV yes 134.95
XIII yes XV yes 146.34
XIII yes XVI no 70.77
XIV yes XV yes 326.23
XV yes XVI no 158.03

Origin of tRNA-tRNA gene interactions.

Genome-wide 3C experiments and polymer modeling strongly suggests that tRNA genes

cluster together in 3D space (Duan et al., 2010; Tjong et al., 2012; Wong et al., 2012). However,

the origin of this clustering is unclear, as clustering could arise from the landmark constraints,

or alternatively, from biological factors such as cohesin (Mizuguchi et al., 2014) and/or con-

densin (Haeusler et al., 2008). We sort all possible tRNA gene interactions according to their

average separation distance from the corresponding centromeres, and find that mean spatial

distances between tRNA genes are smaller when the their average genomic distances from their

corresponding centromeres are within 30 kb (Figure 15C). While association of tRNS genes
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with condensin is suggested to mediate the tRNA gene clustering in yeast nucleus (Haeusler et

al., 2008), our results indicate that to a large extent, the clustering of tRNA genes is likely a

consequence of the spatial clustering of centromeres to the SPB.

Biologically specific interactions beyond polymer effects.

We further identify chromatin interactions that are unaccounted for by random polymer

interactions and are likely biologically significant. We computed propensities of interactions in

the fully-constrained ensemble and in the genome-wide 3C experimental measurements using

the random ensemble under the constraint of confinement only as the null model. There are 19

experimentally captured interactions with a propensity ≥3.5 in genome-wide 3C data but <1

in the fully-constrained ensemble (Figure 15D, see also SI Methods). Among the 19 interaction

pairs, 4 are between tRNA genes. To further confirm that these interactions are not due

to polymer effects, we calculated the correlation of the frequencies of these 19 interactions

between fully-constrained ensemble and genome-wide 3C data, and found a small R value of

0.11. Furthermore, there are 70 important genes considered to be landmark genes in the budding

yeast genome according to literature (Cherry et al., 2012) (for a list see Table III). We found

that 8 of the identified 19 specific interactions are between these landmark genes (see Table V).

Among these pairs, the genetic interaction between genes CYS3 and ADE4 has already been

recently reported (Chen and Gartenberg, 2011), although the genetic relationship of the rest of

the interacting landmark genes require further experimental investigations.



77

TABLE V

PREDICTED INTERACTING LANDMARK GENES. EACH ROW CONTAINS A PAIR
OF INTERACTING GENES, IDENTIFIED FROM GENOME-WIDE 3C

MEASUREMENTS USING FULLY-CONSTRAINED ENSEMBLE AS NULL MODEL.
gene gene
CYS3 ADE4
TRP1 TOP2
SMC1 CYC1
SPOII CYC1
FUR1 PEP4
ARG3 RAD17
MCM1 PEP4
PFK2 TOP1
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Figure 15. tRNA gene interactions and differentiating biologically specific
interactions from non-specific interactions arising from polymer effects. (A)

Distribution of frequencies of interactions enriched in fully-constrained ensemble, but absent
in genome-wide 3C data. The 14 novel interactions with significant amount of interaction
frequencies are encircled. The x-axis is the interaction frequencies and the y-axis is the

number of interactions that these frequencies are observed. (B) Histogram of enrichment of
RNAPIII and TFIIS binding. Mean enrichment of predicted interactions are shown with solid
green line, along with the histogram of enrichment of 10,000 random sets of 14 interactions.
(C) Distribution of mean-spatial distances between tRNA genes grouped according to their
genomic distances to centromeres. (D) Interaction propensities of genome-wide 3C data

(x-axis) and the fully-constrained ensemble (y-axis) calculated using random ensemble as null
model. Interactions enriched in genome-wide 3C data over the fully-constrained ensemble are

enclosed in the black circle.
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3.4 Discussion

Genome in eukaryotes reside within the confined space of cell nucleus. Genome organiza-

tion is directed by interactions with substructures called nuclear landmarks. With the advent

of genome-wide chromosome conformation capture techniques (Duan et al., 2010), previous

computational studies (Tjong et al., 2012; Wong et al., 2012) have already shown that random

configurations of tethered chromosomes can reproduce measured interaction patterns (Duan et

al., 2010) of budding yeast genome, although the correlation between modeled and measured

inter-chromosomal interactions is not strong. The direct effects of individual nuclear landmarks

on genome folding, as well as the origin of inter-chromosomal interactions are unknown. A ma-

jor technical challenge is the extreme difficulty in adequate sampling of multiple chromatin

chains subject to landmark constraints and the confinement of the cell nucleus. The mC-SAC

model, developed in this study, which is based on a novel sampling technique (Gürsoy et al.,

2014a; Gürsoy et al., 2014b) enabled us to generate large ensembles of model genomes with

different combinations of landmark constraints in the nuclear confinement.

Our results showed that nuclear confinement and excluded-volume effects alone largely de-

termine intra-chromosomal interaction patterns of individual yeast chromosomes, without the

requirement of centromere tethering to the SPB and attachment of telomeres to the NE. This

is in agreement with the results from the polymer-diffusion studies (Rosa and Everaers, 2008).

Our results also highlight the importance of nuclear size on the patterns of interactions of ge-

nomic elements. When the nuclear size is enlarged, the experimentally captured interaction

patterns disappeared. Our results further demonstrated that centromere tethering to the SPB,
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along with the nuclear confinement and excluded-volume effect, are sufficient to capture the

patterns of inter-chromosomal interactions. Measured inter-chromosomal interactions are en-

riched with interactions between pericentromeric regions, hence a cross-like pattern originating

from centromeres is observed. Our results also showed that, with only the landmark constraint

of centromere tethering to the SPB is introduced, measured patterns of inter-chromosomal in-

teractions can be reproduced. Our results suggest that gene-regulatory systems originating

from long-range chromatin interactions might have been inherited from the telephase of bud-

ding yeast, and the key difference in the regulatory machineries between the telophase and the

interphase cells might be the silencing of telemoric genes through attachment to the NE. Such

attachment, however, has no significant effects on the overall genome organization of budding

yeast (Figure 12).

Previous studies showed the presence of co-localization and clustering of important genomic

elements such as early replicating sites or tRNA genes (Duan et al., 2010; Tjong et al., 2012).

However, the origin of such clustering remained unclear. Here, we showed that this clustering

is largely due to the attachment of centromeres to the SPB. Except genes on Chr 12 and

telomeres, positions of genomic elements on the chromosomes relative to the SPB are strongly

correlated with their genomic distances to their corresponding centromeres. We also showed

that the relative positions of genes can be reproduced, as long as their genomic distances to the

corresponding centromeres are given. This finding may be useful for predicting spatial positions

of important genes from their genomic locations. For example, the spatial distances between

tRNA genes decrease as their genomic distances to the centromeres decrease (Figure 15C).
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Our results are consistent with the suggestion that genomic locations of important elements in

budding yeast were selected by evolutionary pressure (Tjong et al., 2012)

Our model of budding yeast can be used to make biological inference of the organization of

yeast genome. Fully constrained ensemble not only can reproduce the pattern of spatial inter-

actions from genome-wide 3C studies, but can also provide additional details by filling the gaps

in the sparse interaction matrices. We found that there are interactions arising from landmark

constraints, but are absent in the genome-wide 3C data. These interactions are enriched with

transcription factor TFIIS as well as RNAPIII. They are located in pericentromeric regions

of chromosomes, and contain significant amount of tRNA genes. These results suggest that

chromatin interactions arising from landmark constraints may be subsequently stabilized by

biological factors through evolution. We also found that chromosomal fragile sites are clustered

together in three–dimensional space, most likely as a result of their location on pericentromeric

sites and a consequence of centromere clustering at the SPB. As SPB functionally corresponds

to centrosome in mammalian cell nuclei, where the centromeres are attached during metaphase,

our results raised the question whether fragile sites of human genome form spatial clusters and

are also in genomic proximity to the centromeres. It is possible that translocations due to

the errors in mitosis in human genome that may be cancer promoting may also be related to

centromere clustering.

Because of the dominant effects of landmark constraints and confinement on the folding

patterns of budding yeast genome, it is challenging to uncover the specific spatial interactions

that are due to biological factors. One approach to identify such interactions is to generate
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ensembles of model genomes that are subject to landmark constraints. Taking this ensemble

as a null model, one could in principle subtract polymer effects from interactions captured

in genome-wide chromosome conformation capture study. However, current polymer models

are inadequate for such a task, as they failed to reproduce the inter-chromosomal interaction

patterns (Tjong et al., 2012). Previous studies also suggested that volume exclusion mod-

els capture only expected interactions when such expected interactions were removed, there

was no strong correlation between model genomes and experimental measurements (Ay et al.,

2014). Our findings reveal that this correlation can be improved significantly with better sam-

pling techniques. To further understand whether the budding yeast genome organization are

dictated by landmark constraints, we removed the interactions arising from excluded-volume

effect, chain connectivity and nuclear confinement from both experimental measurements and

fully-constrained ensemble, and compared the remaining interaction frequencies. Our results

suggest that remaining experimentally measured interactions are in excellent agreement with

the remaining interactions of fully-constrained ensemble of modeled genomes. Nevertheless,

there exist a small set of interactions that are high frequency in genome-wide 3C data but

almost absent in the fully-constrained ensemble. These interactions turn out to involve several

important genes. That is, we were able to extract interactions of potential biological interest

from the interaction frequencies of genome-wide 3C data, a very challenging task due to the

dominance of polymer effects in experimental measurements.

In summary, we showed that much of the folding patterns of budding yeast genome can

be recapitulated by our constrained mC-SAC polymer model. Our model can also be used to
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identify novel interactions that are not measured experimentally. It can also extract biologically

specific interactions that are unaccounted by polymer effects. Because of the coarse-grained

nature of both current polymer models and genome-wide 3C techniques, our model does not

contain detailed spatial information of yeast genome. Inferring structural units of gene reg-

ulatory machineries that span just a few kilo bases requires chromatin models of much finer

resolution. As the advances in theory, model, and experimental measurements continues, it is

envisioned that high resolution models of yeast genome can be computed.



CHAPTER 4

CONSTRUCTING 3D CHROMATIN ENSEMBLES AND PREDICTING

FUNCTIONAL INTERACTIONS OF α-GLOBIN LOCUS FROM 5C

DATA

4.1 Introduction

Understanding the spatial organization of the genome inside a cell nucleus and how 3D

genome folding dictates important cell activities such as gene expression are important prob-

lems to adress in biology (Fraser and Bickmore, 2007). Recent advent of chromosome confor-

mation capture (3C) and related techniques (4C, 5C, Hi-C) enabled large-scale discovery of

long-range chromatin looping interactions among distant chromosomal elements (Dekker et al.,

2002; Hagge et al., 2007; Lieberman-Aiden et al., 2009; Duan et al., 2010; Montefiori et al.,

2016). The discovery of topologically associated domains (TADs) with elevated chromatin in-

teractions (Nora et al., 2012; Dixon et al., 2012) suggests a detailed structural network involving

binding of architectural proteins (Phillips-Cremins et al., 2013). These findings point to likely

3D structural units of chromatin that accommodate spatial clustering of different regulatory

elements and transcription factors important for cell activities.

Chromatin is highly dynamic and experiences significant conformational changes (Lucas

et al., 2014). As 3C data are from collection of cell populations and may reflect a mixture

of different conformations at a particular moment, it is important to uncover an ensemble of

84



85

3D structures of a gene locus that collectively best describe the bulk measurements (Ay and

Noble, 2015). This would enable precise structural measurements and identification of spatial

organizational units of genomic elements. However, it is difficult to generate well-sampled

ensembles of detailed chromatin chains using many constraints from 3C-related data.

To overcome the limitations of the pairwise nature of Chromosome Conformation Cap-

ture data and to gain detailed mechanistic understanding of gene regulation, there have been

significant efforts in constructing 3D structures of chromatin. 3D polymer models based on

minimal physical assumptions revealed important information on general rules genome organi-

zation (Lieberman-Aiden et al., 2009; Tokuda et al., 2012; Barbieri et al., 2012; Tjong et al.,

2012; Wong et al., 2012; Gürsoy et al., 2014a; Kang et al., 2015; Goloborodko et al., 2016; Fu-

denberg et al., 2016; Sanborn et al., 2015; Chiariello et al., 2016). Modeling of 3D ensemble

of chromatin chains using 3C-related (4C/5C/Hi-C) data (Giorgetti et al., 2014; Rousseau et

al., 2011; Ay et al., 2014; Bau et al., 2011; Wang et al., 2015; Trieu and Cheng, 2014; Zhang

and Wolynes, 2015; Meluzzi and Arya, 2013; Tjong et al., 2016), transcription factor binding

information (Junier et al., 2012; Brackley et al., 2016), as well as epigenomic states of the

chromosomes (Jost et al., 2014) provided rich information on biological properties of genomic

elements. Specifically, experimentally obtained interaction patterns can be reproduced compu-

tationally with simple assumptions (Tjong et al., 2012; Wong et al., 2012; Zhang and Wolynes,

2015; Meluzzi and Arya, 2013; Giorgetti et al., 2014; Ay et al., 2014; Tjong et al., 2016; Kalhor

et al., 2012; Goloborodko et al., 2016; Fudenberg et al., 2016; Sanborn et al., 2015; Chiariello

et al., 2016), with co-localization of co-expressed genes uncovered (Ay et al., 2014). The for-
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mation of TADs (Brackley et al., 2016; Jost et al., 2014) and their boundaries (Tjong et al.,

2016) can also be predicted. Nevertheless, current methods based on the general folding prin-

ciples of genome do not generate detailed spatial structures for understanding the underlying

mechanism of differential gene expression (Ay et al., 2014; Zhang and Wolynes, 2015; Meluzzi

and Arya, 2013; Brackley et al., 2016; Jost et al., 2014; Goloborodko et al., 2016; Fudenberg

et al., 2016; Sanborn et al., 2015). Other methods have limited resolution for capturing struc-

tural differences of a small locus (Tjong et al., 2016; Kalhor et al., 2012; Chiariello et al.,

2016), as they are designed to study overall genome organization or a larger genomic region.

In addition, difficulties in sampling of chromatin conformations poses additional challenges for

unbiased assessment of populations of chromatin structures (Rousseau et al., 2011; Giorgetti et

al., 2014; Bau et al., 2011).

In this study, we describe the n Constrained-Self-Avoiding Chromatin (nC-SAC) computa-

tional method for predicting configurations of ensembles of chromatin chains with spatial details

based on the interaction frequencies of the α-globin locus measured by the 5C technique (Bau

et al., 2011). While Hi-C measurement is emerging as a method of choice in studying chro-

matin structures at high-resolution (Rao et al., 2014), currently it comes at a great cost and

is not yet widely accessible. With focus on a specific genomic region of interest, 5C technique

can provide valuable information on biologically important interactions through specifically de-

signed primer for a particular locus. However, computationally reconstructing 3D structures

of chromatin from 5C study is challenging, as experimentally captured interactions are often

sparse and incomplete due to the locations of restriction enzyme sites and uneven distribution
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of primers. Another significant problem in using 5C as well as other 3C related data for con-

structing 3D chromatin ensembles is the added complexity due to random interactions arising

from non-specific collision of chromosomal regions to one another (Belmont, 2014).

Our nC-SAC model first generates 100,000 random self-avoiding chromatin chain confor-

mations inside the crowded cell nucleus, which are used as the null model to distinguish the

most significant 5C interactions from non-specific interactions in the α-globin locus. Overcom-

ing severe sampling problems using the geometrical Sequential Importance Sampling (g-SIS)

technique, the nC-SAC model then generates two large ensembles of 3D chromatin chains of the

α-globin locus for two cell lines with different expression levels. These ensembles satisfy ∼ 90%

of the imposed constraints of significant 5C interactions. Our model predicts a large number

of novel looping interactions with spatial details that were not captured by the original 5C

experiment due to lack of primer coverage. A subset of our predicted interactions were shown

in two independent ChIA-PET studies to be mediated by proteins such as CTCF, RNAPII,

RAD21 and are associated with concurrent histone modifications (Li et al., 2012; Heidari et

al., 2014). Our model further suggests the existence of a many-body structural unit involving

α-globin gene, enhancers HS40/46/48, and POL3RK gene for regulating α-globin expression in

the silent cell line. Furthermore, our models uncover global differences in the spatial structures

of the α-globin in cells with high and low expression. Our findings suggest that a homogeneous

and dominant structural population of the locus may be associated with the high expression

level of the α-globin.
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4.2 Materials and Methods

The overall computational pipeline of nC-SAC is illustrated in Figure 16. The interaction

frequencies obtained from the 5C study (Bau et al., 2011) (Figure 16A) are compared to the

interaction frequencies of random C-SAC ensemble. For this purpose, an ensemble of 100,000 C-

SAC chains (Gürsoy et al., 2014a) confined to a spherical confinement is generated (Figure 16B).

This ensemble is then bootstrapped for 1,000 steps. p-value of observation of the experimentally

captured interaction frequency in the random ensemble is calculated. The correction for multiple

hypothesis testing is then employed (Figure 16C). The significant 5C interaction frequencies at

the False Discovery Rate of α < 5% (Figure 16D) are converted into spatial distances using a

half-Gaussian model (Figure 16E) and an ensemble of 10,000 3D chromatin chains that satisfy

these spatial distance constraints are generated using the technique of g-SIS (Figure 16F). A full

resolution interaction map is computed from the generated ensemble of structures (Figure 16G).
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Figure 16. The nC-SAC computational pipeline to predict structural ensembles of
chromatin chains from 5C data. (A) 5C interactions are compared with (B) the

interactions of a random 3D ensemble of 105 C-SAC chains in cell nucleus that is generated to
obtain a contact matrix of random interactions. (C) 1,000 bootstrapped random contact
matrices to calculate the p-value of each 5C interaction. (D) After FDR adjustment for

multiple hypothesis testing, non-specific 3D random interactions are excluded. (E) Remaining
significant 5C interactions are normalized and converted into distances using a half-Gaussian
model. (F) An ensemble of > 104 3D-chains of the locus is then generated and (G) a full

resolution contact map is computed.
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4.2.1 Mapping 5C data on to a polymer chain.

Our polymer model consists of monomers that are modeled as spheres with 30 nm diameter

and a genome density of 2,727 bp. Each HindIII fragments that are used in the original 5C

study (Bau et al., 2011) corresponds to a fragment unit, which is modeled as a non-bendable

collection of monomers. The last monomer of each fragment unit corresponds to a primer site.

The maximum fragment length is used as 150 nm (Bystricky et al., 2004), which corresponds

to 5 monomers (13,635 bp of DNA). The HindIII fragments that are larger than 13,635 bp are

divided into multiple fragment units that are not larger than 5 monomers and a virtual node

is placed onto the last monomer of artificially divided unit. This is done to give the bending

property to the chromatin (Figure 21A). In total, α-globin locus polymer chain contains 53

nodes and ∼183 monomers. The interaction frequency f5C
cell(i, j) between each nodes i and j is

mapped and a total of 367 and 425 unique pairwise chromatin interactions are obtained for the

K562 and GM12878 cell lines using the 5C data (Bau et al., 2011).

4.2.2 Exclusion of non-specific physical interactions.

An ensemble of 100,000 randomly folded polymer chains that have the same physical prop-

erties as α-globin locus (53 nodes, 183 monomers, 150 nm maximum fragment length and 2,727

bp/30 nm DNA density) are generated inside a confined space of nucleus using previously de-

scribed C-SAC model using a chain growth method (Gürsoy et al., 2014a) to asses the statistical

significance of each 5C interaction. The size of the confined space is the volume that 500 kb

DNA occupies, which is calculated to be proportional to a diploid human nucleus. This allows
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us the determine the interaction frequency fnull(i, j) between each nodes i and j that occur

due to the available space in cell nucleus, excluded volume effect and the chain connectivity.

First, we normalized the interaction frequencies by total number of 5C interaction frequen-

cies for each cell line and random model as following,

q5Ccell(i, j) =
f5C
cell(i, j)

∑N
i=1

∑N
j=1 f

5C
cell(i, j)

qnull(i, j) =

∑

k wkI(i, j)
∑N

i=1

∑N
j=1

∑

k wkI(i, j)
,

where N is the total number of nodes, wk is the weight of the kth chain in the ensemble

and I(i, j) is an indicator function, which equals to 1 when nodes i and j interacts, equals to 0

otherwise. We calculated the propensity of each 5C interaction as,

prop5Ccell(i, j) =
q5Ccell(i, j)

qnull(i, j)

and by bootstrapping the random ensemble for 1,000 time, we calculated a p-value for

each interaction that satisfies prop5Ccell(i, j) > 1. After a multiple hypothesis testing through

FDR (Benjamini and Hochberg, 1995) with an α = 0.05, any interaction that cannot pass

FDR are excluded from the original 5C data (Figure 16A–C). Assuming an inverse relationship

between propensity and spatial distance, we applied a Gaussian model to convert prop5Ccell(i, j)

to d5Ccell(i, j), where d5Ccell(i, j) stands for the spatial distance between node i and j.



92

4.2.3 nC-SAC model: Incorporation of significant 5C interactions.

nC-SAC model is an extension of C-SAC model where n spatial distances (d5Ccell(i, j)) used

as constraints during the chain growth process with geometrical Sequential Importance Sam-

pling (Gürsoy et al., 2014a; Liang et al., 2002; Zhang et al., 2003; Lin et al., 2008b; Lin et al.,

2008a; Zhang et al., 2009). The configuration x of a full chromatin chain with N nodes, with

the location of the i-th node denoted as xi = (ai, bi, ci) ∈ R3, is:

x = (x1, · · · , xN ).

The target distribution π(x) is a Boltzmann distribution of chromatin chains that the spatial

distances between nodes, dpredcell (i, j), is equal to spatial distances derived from 5C interaction

frequencies, d5Ccell(i, j), while ensuring the self avoiding property. To generate a chromatin chain,

we grow the chain one node at a time, by using a k = 640-state off-lattice discrete model. The

new node added to a growing chain with the current node located at xt is placed at xt+1, which

is a persistence unit Lp distance away from xt. xt+1 is taken from one of the unoccupied k-sites

neighboring xt according to a probability distribution that favors the dpredcell (i, j) = d5Ccell(i, j)

and self-avoiding property, namely, xi 6= xj for all i 6= j. As satisfying the d5Ccell(i, j) where (i, j)

pair is far away from each other on genome is extremely challenging, we introduce a look-ahead

bias to our selection from available empty neighboring sites for (i, j) pairs that do not have

constraints. We keep track of the bias and assign each successfully generated chain a proper

weight w(x).
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4.2.4 Details of exclusion of non-specific physical interactions from 5C Data

4.2.4.1 Bootstrap and False Discovery Rate

Calculation of p-value.

To test if the interaction between nodes i and j is significant, we compare how many times

q5Ccell(i, j) (the normalized interaction frequency between nodes i and j in 5C data) is less than

qnull(i, j) by bootstrapping 1000 times of 100,000 random C-SAC chains with replacement.

qnull(i, j)m =

∑

k′ wk′I(i, j)
∑

i

∑

j

∑

k′ wk′I(i, j)
is the normalized interactions frequency of nodes in the

random C-SAC ensemble, and wk′ is the weight of k
′th random chain from themth bootstrapped

100,000 samples with replacement. The p-values pij of interaction is:

pij =

∑M
m=1 I(q

5C
cell(i, j) < qnull(i, j)m)

M
,

where M = 1000, and I(·) is a indicator function, which equals to 1 when condition is

satisfied, equals to 0 otherwise. FDR correction is employed for each interactions with a genomic

separation s = |i − j|. For each constant s, we sorted pij ascendantly to get new p-value set

{p
(m)
ij }, such that p

(1)
ij 6 p

(2)
ij 6 · · · 6 p

(m)
ij are ordered, where m is the total number of the

p-values in the set {K|K = j− i}. We then used Hochberg adjustment method (Benjamini and

Hochberg, 1995) to adjust p-values p
(m)
ij ,

p̃
(l)
ij =















p
(m)
ij for l = m,

min(p̃
(l+1)
ij , ml p

(l)
ij ) for l = m− 1, . . . , 1.
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After the FDR adjustment, the null hyphothesis is rejected with significance level of α =

5%.

4.2.5 Details of nC-SAC Model

4.2.5.1 Obtaining Distance Constraints from Significant 5C Interaction Frequencies

After the calculation of propensities described in the Methods section, we assume that the

relationship between the propensity propij and the distance constraint dij between node i and

j follows half Gaussian distribution,

propij
max propij

= exp
−(dij − µ)2

2σ2
, and dij > µ.

where σ = dc−µ
√

2 log
max propij

min propij

. In equation 4.2.5.1, dij is an entry of matrix D, corresponds to

a spatial distance constraint of interaction of i and j and can be calculated as

dij = µ+

√

2σ2 log
max propij
propij

, and propij > 0.

where µ is 30 nm which is the minimum possible distance between any node i and j and

max propij is the maximum propensity. The maximum possible distance between any node i

and j is taken as 80 nm following experimentally determined threshold (Giorgetti et al., 2014).



95

4.2.5.2 Geometrical Sequential Importance Sampling Algorithm for nC-SAC Model

Conformations that satisfy the spatial distance constraints can be generated by minimizing

an error function. This function measures the deviations from the desired spatial distances, i.e.

distance constraints derived from 5C frequencies.

E(x(k)
n ) =

∑

(i,j)∈Pxn

|‖ xi − xj ‖ −di,j|

∑

(i,j)∈Pxn

di,j
,

in which Pxn is list of i-j interactions with distance constraint dij and i,j = 1,...,n. Our

objective is to generate chromatin chains that satisfy distance constraints, hence follow target

distribution π(xn),

π(xn) = exp(−E(xn))

xt = (x1, . . . , xt) is a vector defining the three-dimensional coordinates of nodes. We place a

node t at coordinate xt that follows a growth function gt(xt|xt−1). Growth function is designed

in a way that candidate positions have different probabilities, which helps the sampling effi-

ciency, as well as approximation of target distribution. The growth function of a conformation

with t nodes at coordinate x1, . . . , xt is

gt(xt) = g1(x1)g2(x2|x1) . . . gt(xt|xt−1).
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Final sample chain xn is weighted to remove the biases originating from the design of the

trial distribution, so that target distribution π(xn) can be recovered (Liang et al., 2002; Liu

and Chen, 1998). The assigned weight is

w(xn) = π(xn)/gn(xn)

The statistical mean of physical properties such as interaction probabilities can be repre-

sented by h(xn) of chain xn that follows the target distribution π(xn) that follows as

Eπ(h(xn)) ≃

∑m
k=1w(x

(k)
n ) · h(x

(k)
n )

∑m
k=1w(x

(k)
n )

,

where k=1,..,m is the number of chains in the ensemble. The algorithm that is used in this

work is adopted from (Zhang et al., 2004; Lin et al., 2011; Lin et al., 2008b; Lin et al., 2008a)

Trial Distribution.

The growth function gt(xt|xt−1) (also called trial distribution) for the partial chain xt−1

takes the form of priority score β
(l)
t in the g-SIS algorithm. It biases the chain to grow towards

to the regions that will potentially satisfy the target distribution. A growth function is required

since the distance constraints of the future nodes can only be used when all the participating

nodes are being generated. The priority score is calculated from three components: growth

functions of excluded volume constraints, distance constraints and loop consideration.

The priority score β
(l)
t for chain x̃

(l)
t is set as
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β
(l)
t = exp

[

−
λ1f1(x̃t

(l)) + λ2f2(x̃t
(l)) + λ3f3(x̃t

(l))

T

]

where λ1, λ2, and λ3 are coefficients and T is temperature (we used λ1 = λ2 = λ3 = T = 1

in this study).

(1) Growth function of excluded volume constraints.

This function is designed to maintain the self-avoiding property of a 30 nm chromatin fiber.

If f1(xt) is the growth function of excluded volume constraint, then

f1(xt) =
∑

Bxt−1

h1(xt, Bxt−1
, r0),

where h1 is the loss function to quantify the violation of excluded volume of xt with its

previous partial chain Bxt−1
.

h1(xt, Bxt−1
, r0) = I(||xt − x̃i|| < r0), any x̃i ∈ Bxt−1

,

where I(·) is an indicator function, such that h1(xt, Bxt−1
, r0) = 0, when ||xt − x̃i|| > r0,

and h1(xt, Bxt−1
, r0) = 1, when ||xt − x̃i|| 6 r0, and r0 = 30 nm, adapted from experimentally

verified threshold (Giorgetti et al., 2014).

(2) Growth function of distance constraints.

A partial chain xt−1, the coordinates of the current node t (xt /∈ xt−1) is determined

according to the distance constraints derived from 5C interactions. If f2(xt) is the growth

function of distance constraints, then
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f2(xt) = h2((‖ xi1 − xt ‖, . . . , ‖ xiK − xt ‖), (di1,t, . . . , diK ,t)),

where ik is the kth node that has distance constraint dikt with the node t and K is the total

number of nodes that have distance constraints dikt with the current node t in the partial chain

xt−1. h2 is the loss function to quantify the error between distances between the nodes in the

chain and their corresponding distance constraints.

h2((‖ xi1 − xt ‖, . . . , ‖ xiK − xt ‖), (di1 ,t, . . . , diK ,t)) =

∑

ik∈Pt

|‖ xik − xt ‖ −dik,t|

∑

ik∈Pt

dik ,t
,

(3) Growth function of loop constraints.

Due to the sparseness of 5C interactions, there are several nodes that do not have any

distance constraints. For a node t with no distance constraints from 5C data in the partial

chain xt−1, we employ a loop constraint to enforce node t to follow triangle inequality. If f3(xt)

is the function of loop constraints, then

f3(xt) = h3(xt, Ot),

where Ot = {(tik , tjk) | interaction pair tik and tjk and tik < t < tjk}, and, h3 is a loss

function to quantify the triangle inequality,
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h3(xt, Ot) =
∑

(tik ,tjk )∈Ot

I(
∣

∣

∣
‖ xt − xtik ‖ −dtjk ,tik

∣

∣

∣
>

tjk−1
∑

l=t

dl,l+1),

dl,l+1 is the length of segment between node l and l + 1, l from t to tjk − 1, and I(·) is an

indicator function such that it is equal to 1, when the distance between node t and node tik is

greater than the sum of the rest of the segment length between the node t and node tjk , it is

equal to 0 otherwise.

Target distribution.

The target score γ
(l)
t that represents the target distribution for chain x̃

(l)
t is

β
(l)
t = exp

[

−
λ1f1(x̃t

(l)) + λ2f2(x̃t
(l))

T ′

]

,

where λ1, λ2 are coefficients. T ′ is temperature, and T ′ = 1
2T .

4.2.5.3 Density-based algorithm for clustering

A density based algorith is adopted to cluster the chromatin conformations according to

their similarities for each cell line. The details of this algorithm can be found in (Ester et al.,

1996).

The RMSD between pair of conformations are calculated and used as a similarity measure

for clustering. The minimum RMSD required to cluster two conformations together is taken as

34 nm. A conformation i belongs to the cluster ck, if i has more than 5 similar conformations

in the cluster ck.

RMSD is calculated as following,
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RMSD(cm, cn) =

√

∑l
k=1 ||c

k
m − ckn||

2

l
, (4.1)

in which cm = {d(i, j)|(i, j) are nodes} is the set of spatial distances between nodes of mth

predicted conformation, l is number of interactions in total and ckm is the kth distance element

in the set cm.
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4.3 Results

4.3.1 Identifying the most significant 5C interactions by the nC-SAC method

To build three-dimensional chromatin chains of the α-globin locus, we use published 5C data

from the K562 (α-globin expressing) and GM12878 (silent) cell lines where HindIII restriction

digestion was used for preparation of 5C libraries (Bau et al., 2011). We remove 5C interactions

associated with short (<2.7 kb) fragments as they are considered to be unreliable (Naumova et

al., 2012). We also remove interactions between consecutive fragments as they are likely due to

proximity effects (Dekker et al., 2002).

We use the C-SAC polymer model (Gürsoy et al., 2014a) to model the α-globin chromatin

chain. In this model, we represent the chromatin as a collection of beads and the chain is

constrained by 5C interaction frequencies and the crowding effects in the cell nucleus. We

divide the 500 kb locus into 184 beads, each corresponds to 2.7 kb DNA. We used fragment

units to mimic the HindIII restriction fragmentation. Each fragment unit is equal to the size of

the HindIII fragments in the 5C study and is modeled as a rigid body consisting of a maximum

of 5 beads. To incorporate the bending properties of chromatin, we divide the fragment units

that are longer than 5 beads (∼ 13.5 kb) into 13.5 kb or shorter units. We call the last bead

in each unit a node, and the node number is used as the identifier of the unit (Figure 21A). In

total, we have 54 fragment units for the 500 kb α-globin locus.

During the construction of 3C chromatin libraries, formaldehyde treatment can covalently

link genomic elements within certain spatial distances, regardless whether specific interactions

exist (Belmont, 2014). We hypothesize that a significant number of such interactions arise from
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Figure 17. Mapping 5C interactions onto C-SAC model chromatin chains,
identifying non-specific interactions, and predicting novel interactions between
genomic elements in α-globin locus. (A) Mapping the 500 kb α-globin locus and 5C

interactions onto the C-SAC polymer model of chromatin chain. Up and down arrows in the
linear diagram of the α-globin locus represent reverse and forward primers at ends of HindIII

fragments (Bau et al., 2011), respectively. Fragments between primer sites 25 and 32 are
enlarged to demonstrate details of the C-SAC model. Alternating fragments are shown in

pink and yellow. HindIII fragments are mapped onto fragment units, with which bending can
occur at the primer sites (darker blue) or every 6-th bead (pink) for fragments mapped onto
one or more units. Ensemble of random C-SAC chromatin chains are generated through

chain-growth one bead at a time in a confined sphere representing the cell nucleus (Gürsoy et
al., 2014a). Representative partial and full C-SAC chains in spherical confinement are shown.
(B) All reported 5C interactions between elements in the α-globin locus (Bau et al., 2011).
(C) Significant 5C interactions remaining after non-specific interactions were identified. (D)
Comparison of statistically significant 5C interactions (red circle) and interactions predicted
by the nC-SAC model (beige circles). 5C interactions that were not captured by the nC-SAC
model are indicated (numbers in parenthesis). Among predicted interactions (beige circles),
many are novel predictions (in italic) that are not measured in the original 5C study. (E)
Interaction profiles of selected nodes in both cell lines and in the random ensemble. x-axis

denotes the nodes and y-axis is the propensity of interaction between the anchor node and the
rest of the locus. The interactions between α-globin gene and the nodes 12,13 and

14 (enhancers HS40/46/48) are highlighted in the dotted box. (F) Conversion of ensemble by
the sampled number of chains. The Pearson Correlation between the interaction frequencies

of full ensemble and partial ensembles with different sampling rates. The heatmaps of
interaction frequencies of a partial ensemble where only 10% of 10,000 chains were sampled

and the heatmap of interaction frequencies of the full ensemble.
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self-avoiding chromatin chains confined in the crowded cell nucleus (Kang et al., 2015; Gürsoy

et al., 2014a). As loci from different chromosomes can coexist inside the cell nucleus, the nuclear

confinement as well as the crowding effects result in limited available space for individual locus.

We hypothesized that many 5C interactions are of non-specific nature. To identify such non-

specific interactions, we generated an ensemble of 100,000 random C-SAC chains using a chain

growth strategy (Gürsoy et al., 2014a) (Figure 21A). Without a prior information, we assume

the 500 kb (5 × 105 bp) α-globin locus occupies (5 × 105) � (6 × 109) of the available space

of ∼ 7.53 µm3 inside average cell nucleus of ∼ 103 µm3 with a diploid human genome size of

2× 3× 109 bp. This corresponds to a sphere of a diameter of 330nm.

We bootstrap the chains in the random ensemble to generate 1,000 ensembles of 100,000 C-

SAC chains and calculate the probabilities of observing normalized 5C interaction frequencies in

these random ensembles and used these probabilities as p-values subject to correction of multiple

hypothesis testing at the False Discovery Rate (FDR) of α < 5% (Materials and Methods). A

total of 293 of 425 experimentally captured 5C-interactions (77%) in the GM12878 cell line and

284 of 367 5C-interactions (87%) in the K562 cell line are not statistically significant and are

therefore not used as spatial constraints (Figure 21B and C). Recognizing that the available

space may not be perfectly spherical, we use a stringent FDR criteria to ensure that we only

identify the most significant interactions, which will be present even if there are deviations from

the ideal spherical shape.

We then asked whether the 5C interactions identified as significant are generally in line with

the general findings of distant chromatin interactions of the locus. Interactions of α-globin gene
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with its enhancer HS40, as well as interactions with neighboring hypersensitive sites HS48 and

HS46 were identified as key factors determining the expression levels of α-globin gene in globin

expressing mouse cells in prior knock-out and 3C studies (Zhou et al., 2011; Vernimmen et al.,

2009). We found that indeed pairwise interactions involving the α-globin gene and the enhancers

HS40, HS46 and HS48 are all preserved after excluding non-specific interactions (Figure 21E).

4.3.1.1 nC-SAC can generate large ensemble of chromatin chains of α-globin locus

To build structural models of the α-globin locus, we developed the nC-SAC algorithm to

generate 3D chromatin chains that satisfy 5C interactions identified as significant. Our goal

is to generate conformations from a Boltzmann distribution, which all geometrically possible

chromatin chains that satisfy the significant 5C interactions are properly sampled. Following

previous studies (Bau et al., 2011; Duan et al., 2010; Rousseau et al., 2011; Ay et al., 2014),

we assume an inverse relationship between 5C frequencies and spatial distances, and employ a

simple half-Gaussian model to map frequencies of significant 5C interactions to spatial distances

between nodes (detailed in Materials and Methods). These spatial distances are then regarded

as physical constraints that the 3D chromatin chains need to satisfy. Two separate ensembles

of 10,000 chromatin chains of the α-globin locus are then generated for the GM12878 and the

K562 cell lines (Figure 21F).

We first assessed the statistical significance of the interactions in these ensembles by using

random C-SAC ensemble as our null model. After temporarily excluding interactions that do

not pass FDR test, we captured a total of 78 out of 83 (94 %) significant 5C interactions for K562
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cells and 113 out of 132 (86 % ) for GM12878 cells (Figure 21D). 113 and 78 temporarily excluded

5C interactions for the GM12878 and K562 cell lines also re-appeared in predicted structural

configurations, respectively. These observations suggest that while our conservative approach

for excluding non-significant interactions are stringent and only the most significant interactions

are used as constraints, the resulting 3D chromatin chains contain many moderately strong 5C

interactions, which may be biologically relevant. Furthermore, the predicted chromatin chains

of the α-globin locus exhibit many novel interactions not present in the original 5C data (278

and 301 interactions in the GM12878 and K562 cell lines, respectively).
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4.3.1.2 nC-SAC uncovers structural differences of α-globin locus

There are global structural differences in the organization of the α-globin gene locus between

K562 and GM12878 cells, as seen in heatmaps of spatial interactions from predicted α-globin

chains (Figure 18A). Overall, α-globin locus of the silent GM12878 cell line forms a single

compact chromatin globule. In contrast, chains of the active K562 cell line are extended, forming

two non-interacting globules, which exhibit two separate domains in the heatmap (Figure 18A).

These findings are consistent with previous results (Bau et al., 2011).

Our model predicts additional global structural differences in chromatin chains between

the two cell lines. Using a density based clustering algorithm (Ester et al., 1996), which does

not require specification of the number of clusters a priori, we partitioned the ensemble of 3D

chromatin chains of each cell line into clusters based on their pairwise structural similarity

(Materials and Methods). Chromatin chains with structural similarity above a threshold are

grouped into the same cluster. The ensemble of the α-globin expressing K562 cell line is

remarkably homogeneous. There is overall a small number of clusters (a total of ∼13), with

the most populated cluster accounting for ∼97% of the chromatin chains in the ensemble. In

contrast, the ensemble of the non-expressing GM12878 cell line is structurally diverse, with

many different clusters (a total of ∼148). The most prominent cluster accounts for only ∼24%

of the whole ensemble. Figure 18b depicts representative 3D chromatin chains of the 1st and

the 2nd most populated clusters in both cell lines. While the exact number of the clusters are

subject to choices of the clustering technique used, our results indicate that there are significant

differences in subpopulation heterogeneity of chromatin chains in the two cell lines. While a
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folding landscape of diverse chromatin chains with many subpopulations is evident for the

nonexpressing cell line, a major structural subpopulation dominates the α-globin chains in the

active cell line.

4.3.1.3 nC-SAC predicts novel interactions that are mediated by proteins and associated

with concurrent histone modifications

To determine the biological relevance of the predicted long range α-globin interactions ab-

sent in 5C measurements, we examined results from two independent ChIA-PET studies of K562

cells (Li et al., 2012; Heidari et al., 2014) and an independent ChIA-PET study of GM12878

cells (Heidari et al., 2014). ChIA-PET is a 3C-based technique that incorporates chromatin

immunoprecipitation analysis to capture looping interactions mediated by proteins or interac-

tions that are associated with histone modifications (Fullwood et al., 2009). Recent ChIA-PET

studies revealed looping interactions in the α-globin locus mediated through RNAPII, CTCF

and RAD21 binding, as well as interactions associated with histone modifications (Li et al.,

2012; Heidari et al., 2014).

Among the 68 RNAPII-mediated interactions in K562 cells detected by ChIA-PET (Li et

al., 2012) (Figure 19A, blue circle in the Venn diagram and Figure 19B1, blue and grey arcs),

33 are also predicted by nC-SAC (Figure 19A, orange circle). Notably, 21 of the 33 predicted

interactions are novel interactions absent in the 5C measurements (Figure 19B2, red arcs) and

12 are interactions captured by 5C measurements (Figure 19B3, green arcs). Among the 35

RNAPII-mediated interactions undetected by nC-SAC (Figure 19B1, gray arcs), 26 have no

primer coverage and therefore are not reflected in the 5C data. The remaining 9 RNAPII-
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Figure 18. Ensembles of predicted 3D chromatin chains of the α-globin locus.
Interactions between genomic elements of the α-globin locus from predicted structural

ensembles of 10,000 chromatin chains in the silent GM12878 and the active K562 cell lines.
(A) Heatmaps of spatial interactions of α-globin locus including raw 5C counts, most

significant 5C counts after exclusion of non-specific interactions, and counts from the modeled
structural ensembles. The normalized frequency of i−j interactions after exclusion of

non-specific interactions is color coded. Red intensity indicates increased frequency. (B) The
histogram (top) shows the proportion of structures associated with different structural
clusters (K562, blue; GM12878, red). The predominant three dimensional structures

associated with structural clusters 1 and 2 are also shown for both cell lines.
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mediated interactions have low or no 5C interactions, imposing very weak constraints for our

model. A separate ChIA-PET study (Heidari et al., 2014) revealed two more RNAPII mediated

interactions between α-globin gene (node 21) and HS40 (node 12), which is also predicted by

nC-SAC and is present in 5C measurements (Table VI).

TABLE VI

THE INTERACTIONS THAT ARE CAPTURED BY CHIA-PET STUDY IN K562 CELL
LINE. GENOMIC LOCATIONS ARE IN BASEPAIRS AND REFERENCE GENOME IS

HG18.
Genomic Location 1 Genomic Location 2 Node 1 Node 2 Factor Status
55,200-56,599 169,200-171,999 7 21 H4K4me3 New prediction
55,000-56,999 351,800-354,999 7 39 H4K4me1 Not predicted / not in 5C
96,800-98,199 124,000-130,599 12 16 H4K4me3 New prediction
96,600-98,599 132,000-135,599 12 18 H4K4me2 New prediction
96,600-98,599 167,200-168,799 12 21 H4K427ac Predicted / in 5C
94,200-96,199 169,200-172,199 12 21 H4K4me1 Predicted / in 5C
96,800-98,199 169,200-171,999 12 21 H4K4me3 Predicted / in 5C
94,897-95,586 170,079-171,864 12 21 PolII Predicted / in 5C
96,798-97,306 170,079-171,864 12 21 PolII Predicted / in 5C
96,600-98,599 169,200-172,199 12 22 H4K4me1 Predicted / in 5C
96,600-98,599 169,200-173,399 12 22 H4K427ac Predicted / in 5C
96,600-98,599 167,200-172,199 12 22 H4K4me2 Predicted / in 5C
100,400-101,199 167,200-168,799 13 21 H4K427ac Predicted / in 5C

We also examined CTCF-mediated interactions in K562 cells detected by ChIA-PET (Li

et al., 2012). Among the 11 reported interactions (Figure 19C, blue circle in the Venn dia-

gram and Figure 19D1, blue and grey arcs) (Li et al., 2012), 8 are predicted by the nC-SAC

model (Figure 19C, orange circle). Of those, 6 are absent in the 5C study (Figure 19D2, red
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arcs) and 2 interactions are captured by 5C (Figure 19D3, green arcs). The 3 CTCF-mediated

interactions detected by ChiA-PET but undetected by nC-SAC (Figure 19D1, gray arcs) either

have no 5C frequency or have no primer coverage, hence impose no constraints for our model.

In addition, we examined RAD21-mediated interactions in K562 cells detected by a recent

ChIA-PET study (Heidari et al., 2014). Among the 8 reported interactions (Figure 19E, blue

circle in the Venn diagram and Figure 19F1, blue and grey arcs), 5 are predicted by the nC-

SAC model (Figure 19E, orange circle), 3 of them are novel interactions that are absent in 5C

measurement (Figure 19F2, red arcs) and 2 interactions are captured by 5C (Figure 19F3, green

arcs). The 3 RAD21-mediated interactions detected by ChiA-PET but undetected by nC-SAC

(Figure 19F1, gray arcs) have no 5C coverage, imposing no constraints for our model.

We then examined the interactions that are found to be associated with histone modifica-

tions in K562 cells in a recent ChIA-PET study (Heidari et al., 2014). Among the 7 reported

interactions, 6 of them are predicted by nC-SAC model, 3 of them are novel interactions that

are absent in 5C measurement, and 3 of them are captured by 5C study. The only undetected

interactions has no 5C coverage ( Table VI).

We further examined RAD21-mediated interactions in the silent GM12878 cells detected

by ChIA-PET study (Heidari et al., 2014). Among the 4 reported interactions (Figure 19G,

blue circle in the Venn diagram and Figure 19H1, blue and grey arcs), 3 are predicted by the

nC-SAC model (Figure 19G, orange circle), including one novel interaction absent in the 5C

study (Figure 19H2, red arcs), as well as 2 interactions captured by 5C (Figure 19H3, green
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arcs). The only undetected interaction (Figure 19H1, gray arcs) has no 5C coverage, imposing

no constraints for our model.

Overall, our nC-SAC method has predicted 52% of the 68 RNAPII-mediated interactions,

75% of the 11 CTCF-mediated interactions, 62% of the 8 RAD21-mediated interactions in

K562 cell line, 86% of the 7 interactions that are associated with histone modifications in K562

cell line, and 80% of the 5 RAD21-mediated interactions in GM12878 cell line (Table VII-

Table X). In total, 89 interactions are detected by ChiA-PET in K562 cell line and 52 of

them are among 457 predicted significant interactions. A randomization test is then carried

out and the probability of finding any 52 or more interactions out of the 89 ChIA-PET detected

interactions by random chance is found to be p < 0.01 (Figure 19I), indicating that our discovery

is highly significant.
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TABLE VII

DETAILS OF THE PREDICTIONS AND COMPARISON WITH CHIA-PET RNAPII
DATA IN K562 CELL LINE

Node Node New Prediction Already in 5C Data No Primer Site No Record in 5C 5C Count

5 11 $
6 16 $
6 26 +
6 54 0
8 22 +
8 38 +
8 40 0
8 54 5
9 22 #
9 23 +
9 27 +
9 40 33
9 41 #
11 22 +
12 22 -
13 17 -
14 21 -
14 22 -
15 20 +
15 22 +
16 18 $
17 24 +
17 44 $
18 39 $
20 22 $
21 32 #
21 36 +
22 24 37
22 27 #
22 54 6
23 26 +
26 28 +
26 31 $
26 38 +
26 39 $
27 36 +
27 39 $
28 31 +
29 31 +
30 39 $
31 34 +
31 38 $
31 39 $
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TABLE VIII

DETAILS OF THE PREDICTIONS AND COMPARISON WITH CHIA-PET RNAPII DATA

Node Node New Prediction Already in 5C Data No Primer Site No Record in 5C 5C Count

34 38 +
35 37 #
35 39 $
35 44 $
36 39 $
37 41 27
38 40 #
38 44 $
39 42 $
39 44 $
39 54 $
40 43 23
40 54 #
41 44 #
41 54 2
42 52 +
42 54 +
43 54 -
44 50 $
44 52 $
44 54 $
46 51 $
46 54 +
49 54 +
50 54 +
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TABLE IX

DETAILS OF THE PREDICTIONS AND COMPARISON WITH CHIA-PET CTCF DATA
IN K562 CELL LINE

Node Node New Prediction Already in 5C Data No Primer Site No Record in 5C 5C Count

8 40 0
8 11 +
8 22 +
9 11 +
9 22 #
11 40 $
11 22 +
12 22 -
13 22 -
15 22 +
43 52 +

4.3.1.4 nC-SAC predicts detailed 3D structural interactions

Expression of the α-globin gene is thought to be regulated through enhancer-promoter in-

teractions (Bau et al., 2011). Indeed, the interaction between the α-globin gene and enhancers

HS40/46/48 are found in 90% of predicted chains of the active K562 cells. However, this repre-

sents an increase by a factor of only 1.29 compared to the silent GM12878 cells, as this interac-

tion is also present in 69.8% of predicted chains of the GM12878 cells (Figure 20A). Our finding

is consistent with a previous ChIA-PET study, in which interactions between HS40 and α-globin

gene is found to be mediated by RAD21 in the silent GM12878 cell line (Figure 19G,H) (Heidari
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Figure 19. Predicting novel interactions between genomic elements in α-globin
locus and validation of their biological relevance.

(A,C,E,G) Comparing looping interactions detected by ChIA-PET (Li et al., 2012) and
nC-SAC 3D ensemble predicted interactions in K562 cells. The Venn diagrams show

ChIA-PET measured (blue circles) and nC-SAC predicted (orange circles) interactions.
(B1,D1,F1,H1) The circos diagrams show interactions detected by ChIA-PET (blue arcs for
captured interactions by 3D model and gray arcs for interaction that are absent in the 3D
model), (B2,D2,F2,H2) nC-SAC predicted interactions detected by ChIA-PET but absent
in 5C (red arcs), (B3,D3,F3,H3) interactions predicted by nC-SAC and captured by the 5C
and ChiA-PET techniques (green arcs). (I) Histogram of number of interactions among the
89 ChiA-PET interactions that are found in the 100,000 sets of randomly generated 457

interactions. p-value of obtaining 52 out of 89 among 457 interactions is 0.006
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TABLE X

DETAILS OF THE PREDICTIONS AND COMPARISON WITH CHIA-PET RAD21 DATA
IN K562 CELL LINE

Node Node New Prediction Already in 5C Data No Primer Site No Record in 5C 5C Count

7 21 + 0
7 39
11 21 +
12 21 -
26 38 -
33 38 $
43 51 $
43 52 +

et al., 2014). These observations indicate that α-globin promoter-enhancer interactions alone

do not determine the expression level and additional regulatory elements may be at play.

We examined nC-SAC predicted 3D structures for K562 and GM12878 cells to assess the

presence of other looping interactions, which may regulate α-globin expression (Figure 20A–

D). While it is difficult to compare absolute interaction frequencies between cell lines, we can

compare the relative fractions of chromatin chains containing specific interactions in each cell

line. We analyze interactions that both α-globin gene and enhancers participate simultaneously

for both cell lines and identified the differential interactions (Figure 20E). We then overlapped

the epigenetic profiles of each of the differentially interacting nodes and found the ones that

are associated with epigenetic marks (Figure 20E and F). As a result, our nC-SAC study

predicts that the POL3RK gene engages in a three-way interaction with the α-globin gene
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TABLE XI

DETAILS OF THE PREDICTIONS AND COMPARISON WITH CHIA-PET RAD21 DATA
IN GM12878 CELL LINE

Node Node New Prediction Already in 5C Data No Primer Site No Record in 5C 5C Count

7 10 + 0
12 21 -
14 21 -
26 39 #

and enhancers in 70% of α-globin chromatin structures from GM12878 cells. In contrast, the

POL3RK gene has a much lower three-way interaction frequency (18%) with the α-globin gene

and enhancers in K562 cells (Figure 20A). The interaction between POL3RK and enhancers was

not detected in the original 5C study due to primer design strategy (Bau et al., 2011). With

explicitly generated 3D structures, we can measure the exact Euclidean distances between

genomic elements in individual chains and can calculate their ensemble averages. We found

chains from GM12878 cells with POL3RK:α-globin:enhancers three-body interaction all have

average pair-wise distances between elements (50.1 ± 20 nm, 62.4 ± 18 nm, and 80.0 ± 5nm)

shorter or near the threshold of interaction (∼80±5 nm) given in previous studies (Giorgetti et

al., 2014) (Table XII, Figure 20D). In contrast, the averaged spatial distances of POL3RK:α-

globin (∼135±20 nm) and POL3RK:enhancers (∼140±18 nm) are both much longer than this

threshold in active K562 cells (Table XII).
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TABLE XII

THE AVERAGE SPATIAL DISTANCES BETWEEN NODES IN THE CHAINS WITH
THREE-WAY INTERACTION IN GM12878 CELL LINE AND IN THE CHAINS

WITHOUT THREE-WAY INTERACTION IN K562 CELL LINE
Node(s) Node Distance in GM12878 (nm) Distance in K562 (nm)

12/13/14 (HS40/46/48) 21 (α-globin gene) 80±5 74.9±5.1
12/13/14 (HS40/46/48) 5 (POL3RK) 50.1±20.0 134.6±30.2

21 (α-globin gene) 5 (POL3RK) 62.4±18.5 140.1±28.2

We speculate that the three-way looping interaction of POL3RK with the α-globin gene and

enhancers may occlude access of transcription factors to the α-globin transcriptional elements,

thus silencing the α-globin expression (Figure 20B–D). This denial of access could be aggravated

when transcription factors bound to the POL3RK gene occupies much of the available space.

This scenario is consistent with epigenetic data, in which POLR3K in the silent GM12878 cells

is enriched for the binding of transcription factors Pu.1 and Sp1 and for histone modifications

H2A.Z and H3Kme2, both of which are related to transcriptional activation (Figure 20F) (EN-

CODE Project Consortium, 2012). Furthermore, it is also consistent with the observed lack of

H3Kme2 modifications on α-globin enhancers in the silent cells, which is related to abundance

of transcription factor binding, and with the lack of RNAPII enrichment, which is related to

absence of gene expression (Figure 20F).

4.4 Discussion

We describe a method that can transform 2D maps of 5C frequencies of interactions into

a population of 3D chromatin chains. Our method identifies the most significant spatial inter-
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Figure 20. Three-way interaction of POL3RK:α-globin gene:enhancers is likely a
unique feature in the non-expressing GM12878 cells. (A) Pie charts depicting the

percentages of the ensembles that have two way (α-globin:enhancer) and three-way
(POL3RK:α-globin gene:enhancers) interactions in both GM12878 and K562 cell lines. (B)

The spatial structures of α-globin locus chromatin were reconstructed from nC-SAC predicted
3D chromatin chains, with the enhancers HS40/46/48 (red), POL3RK (orange), and the

α-globin gene (blue) depicted. The depicted structures are drawn from the most populated
clusters of GM12878 and K562 cells. (C) A schematic representation of the three-body

interaction of α-globin gene (blue), enhancer (red), POL3RK (orange) observed in GM12878
cells. (D) The spatial distances between the enhancers HS40/46/48 (red), POL3RK (orange),
and the α-globin gene (blue) of the three-way interaction unit in the representative structure
depicted in (b). (E) Interaction profiles of enhancers, α-globin gene and POL3RK gene in the
constructed 3D ensembles. x-axis denotes the nodes and y-axis is the propensity of interaction
between the anchor node and the rest of the locus. The interactions between enhancers and
the rest of the locus in the GM12878 cell line, K562 cell line and the difference between these
cell lines are depicted, respectively. The interactions between α-globin gene and the rest of
the locus in the GM12878 cell line, K562 cell line and the difference between these cell lines
are depicted, respectively. The interactions between POL3RK gene and the rest of the locus

in the GM12878 cell line, K562 cell line and the difference between these cell lines are
depicted, respectively. (F) Chip-Seq enrichment peaks obtained from ENCODE

database (ENCODE Project Consortium, 2012). Red bars denote the enrichments in the
silent GM12878 cell line and the blue bars denote the enrichments in the active K562 cell line.
Enrichment for transcription factor Pu.1 on node 5 (POL3RK) is highlighted in dashed box,
where more than 2 fold increase is measured in the silent GM12878 cell line compared to the

active K562 cell line.
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actions, overcomes the sampling problem, and generates a large number of properly sampled

self-avoiding chromatin chains that satisfy constraints imposed by 5C interactions. While its

resolution is limited to that of the HindIII fragments in this study (5–13 kb) and no direct

information is provided on chromatin dynamics, this method enables us to examine structural

properties of the α-globin locus, allowing structural and distance measurements at the popula-

tion level in a manner consistent with the basic requirement of the physical chromatin chains

and the 5C interactions.

Our results show that non-specific spatial interactions arising from nuclear confinement and

crowding effect are pronounced in 5C measurements, as up to ∼50–70% of 5C interactions can

be accounted for when self-avoiding chromatin chains are confined in the available space of

the crowded nucleus. To eliminate false positives, we focus on long-range interactions detected

with the strongest statistical confidence. As this strategy is rather conservative, a portion of

the 5C interactions that are temporarily excluded do appear subsequently in the constructed

3D ensemble structures, likely resulting from constraints from the stronger interactions and

the confinement of the self-avoiding chromatin chains. Biology may take advantage of such

interactions and endow them with functional roles. While the reappearance of such interactions

in our model does not guarantee that we will detect all functionally relevant moderate or

weak interactions, we recognize that their detection with high precision and recall is an overall

challenging task in the field. In fact, a randomization test in which 100,000 sets of 457 random

i-j interaction pairs are generated shows that the probability of finding any ≥ 52 out of 89

ChIA-PET detected interactions by random chance is p < 10−2. Thus, we can conclude that
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nC-SAC can predict distant chromatin interactions, which are mediated with proteins or are

associated with histone marks. Furthermore, our approach is not overly sensitive to the choice

of parameters such as the diameter of the spherical confinement. While recent studies showed

that confinement of nucleus is a key determinant of the chromosome organization (Gürsoy et

al., 2014a; Kang et al., 2015), as much of the scaling rules including the exponent of looping

probability can be explained by the confinement of the self-avoiding chromatin chains, the

scaling exponent α changes only slowly as the nuclear diameter in the relevant size regime

changes (Gürsoy et al., 2014a). Therefore moderate changes in nuclear diameter and deviations

from the spherical shape will likely not affect the identification of the most significant 5C

interactions as our criteria are rather stringent.

Our model further predicts global differences in the chromatin chains between cells at dif-

ferent expression levels. It predicts that this locus adopts more homogeneous configurations in

the active cells. This finding suggests a common structural scaffold in the active cell line that

is required for α-globin expression. The nC-SAC model further allows structural examination

of subpopulations of chromatin chains adopting different configurations. As demonstrated by

recent single cell studies, cells with identical hormonal stimulation may exhibit diverse levels

of gene expression, highly expressed genes at the population level may exhibit bimodal distri-

butions, and epigenetic modifications may be highly heterogeneous (Shalek et al., 2014; Shalek

et al., 2013; Rotem et al., 2015). Access to 3D chromatin structures of subpopulations of cells

will help to gain understanding of the structural diversity of chromatin chains associated with

the heterogeneity of gene expression and epigenetic modifications.
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Our method can make detailed predictions of spatial interactions between distant genomic

elements, which are validated by available ChIA-PET studies. Excluding locations that lack 5C

coverage or locations where ChIA-PET and 5C measurements disagree, our model recovered all

remaining RNAPII, CTCF, and RAD21 mediated long-range chromatin interactions, as well as

the interactions associated with concurrent histone modifications. While we cannot extrapolate

to declare all novel interactions predicted by our model are biologically important, the overall

validation by ChIA-PET suggests that our method can make detailed predictions accurately.

Our method can also suggest highly specific and testable mechanistic models of gene regu-

lation. While 5C measurement has identified many important chromatin interactions, details

of our predicted chromatin chains suggest a complex many-body mechanism of gene regulation

that is beyond a simple gene-enhancer model. Although the α-globin gene and the enhancers

HS40/46/48 interact in both cell lines, the enhancers interact strongly with POL3RK in the

silent but not in the active cells. As POL3RK is observed to have bound transcription factors,

we speculate it may occlude access of enhancers to factors necessary for α-globin activation in

the silent cells. This mechanism of gene inactivation through denial-of-access is also consistent

with the epigenetic profiles of the enhancers and the POL3RK gene in both cell lines. Analo-

gous to the mechanism of a multi-gene complex for co-transcription, in which the promoter of

the first gene acts as an enhancer of the second gene (Li et al., 2012), a multi-gene complex

for inactivation may be at play. Since the accessibility of transcription factor binding is a key

determinant of gene regulation (Fraser and Bickmore, 2007), the POL3RK gene in this case

may act on the enhancers of α-globin gene as a silencer through denial of access of transcription
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factors. Although these predictions are rather speculative, they can be tested by genetic per-

turbation of the identified multi-body structural unit. While recent Hi-C studies (Rao et al.,

2014) can identify chromatin interactions at high resolution, the discovery of this many-body

mechanism would not be possible without constructing 3D ensemble of structures because of

the pairwise capture of Hi-C technique. The importance of 3D model of chromatin interactions

was also demonstrated in a recent study, where a many-body interactions between Sox9 and

Kcnj2 genes were discovered (Chiariello et al., 2016).

Our study also suggests that integrating 3D models of chromatin chains with epigenetic data

can reveal mechanistic insight into the regulation of cell activities. While genome-wide epige-

netic studies such as CTCF enrichment and histone modification point to potential regulatory

elements and suggest possible long-range interactions along the one-dimensional genome (EN-

CODE Project Consortium, 2012), it is challenging to interpret and integrate such information.

Recent studies showed that important organizational properties of genome such as the formation

of TADs can be inferred from the integration of epigenome data with 3D structure construc-

tion (Jost et al., 2014; Brackley et al., 2016; Junier et al., 2012). By projecting epigenetic

data onto predicted 3D chromatin chains, we showed one can gain better understanding of the

complex many-body machineries of gene regulation that involves multiple genomic elements.

nC-SAC method can be used to determine configurations of other gene loci, hence it is gen-

eral. However, successful predictions are limited by the availability, consistency, and resolution

of experimental measurements. In addition, while our method can predict novel interactions,

such predictions can only be made in neighborhoods with rich contact information. As the



124

density of experimentally captured interactions decreases, successful predictions become less

likely. In regions devoid of primer coverage, spatial interactions will likely go undetected. For

instance, a subset of ChIA-PET identified interactions in regions with no primer coverage or

low 5C frequencies are undetected by our method. Regions where no predictions can be made,

however, can be identified a priori through analysis of primer distribution and 5C frequencies.

In principle, any 3C and related data (4C/5C/Hi-C) can be used as spatial constraints to infer

3D chromatin ensembles. Recent high-resolution (∼ 1 kb) Hi-C studies provide great resources

of information on 3D genome folding of different cells (Rao et al., 2014). With additional

algorithm development, the nC-SAC method can be further improved so it can generate 3D

ensembles of chromatins from high resolution Hi-C data. In summary, the nC-SAC method can

model chromatin structures of gene loci in cell populations and subpopulations with different

expression levels. It can also provide a powerful new approach for identifying spatial structures

and interactions and for assessing their roles in regulating gene activities. These results point

to exciting opportunities of leveraging limited and pairwise chromosome conformation capture

data through modeling of 3D chromatin structures to gain additional knowledge on long-range

interactions. Combined with further genetic manipulation, we expect future studies will lead

to novel findings on organization of the genome.



CHAPTER 5

COMPUTATIONAL PREDICTIONS OF CHROMATIN HOTSPOTS

USING N-CONSTRAINED SELF-AVOIDING CHROMATIN MODEL

5.1 Introduction

Recent development of 3C and related techniques enabled large-scale discovery of distant

chromatin contacts among chromosomal locations (Dekker et al., 2002; Lieberman-Aiden et

al., 2009; Duan et al., 2010; Montefiori et al., 2016). Understanding the 3D organization of

genome using such data is crucial for inferring biological functions such as transcription (Fraser

and Bickmore, 2007). The detailed analysis of pairwise interaction frequencies of chromatin re-

vealed the understanding of likely 3D structural units of chromatin that accommodate spatial

clustering of different regulatory elements and transcription factors important for cell activi-

ties (Phillips-Cremins et al., 2013).

Chromosomes in interphase show a collection of DNA interactions arising from topological

constraints, architectural protein binding and significant conformational changes due to the

dynamics property of chromatin fiber (Lucas et al., 2014). 3C data are averaged over cell

populations and reflect a mixture of different conformations at a particular moment (Ay and

Noble, 2015). Therefore, it is challenging to dissect the structural core units of 3D genome

organization in the cell nucleus from the analysis of the data. The pairwise nature of 3C poses

additional challenges to de-convolute the organization of genome into small units that mediates
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the overall folding of chromosomes and are important for transcriptional activation (Dekker et

al., 2013).

Current 3D structure modeling approaches that are based on minimal physical assump-

tions (Gürsoy et al., 2014a; Lieberman-Aiden et al., 2009; Barbieri et al., 2012; Tjong et al.,

2012; Wong et al., 2012; Kang et al., 2015; Tokuda et al., 2012; Rousseau et al., 2011; Kalhor et

al., 2012; Meluzzi and Arya, 2013; Ay et al., 2014; Trieu and Cheng, 2014; Zhang and Wolynes,

2015; Wang et al., 2015; Tjong et al., 2016), chromosome conformation capture data (Giorgetti

et al., 2014), transcription factor binding (Junier et al., 2012; Brackley et al., 2016) and epige-

nomic states of chromatin (Jost et al., 2014) revealed a wealth of information on the driving

forces behind the overall genome organization as well as identification of locus specific interac-

tions that may be important for biological functions. Recent study by Giorgetti et al. (Giorgetti

et al., 2014) further established the notion of important loci that determine the structure of

a topologically associating domain through virtual mutations of 5C interactions. However, a

study that dissects the internal structure of a locus using both epigenetics data and Hi-C mea-

surements in an effort to identify structural hotspots that are responsible for promoter-enhancer

interactions is still necessary.

In this chapter, we used n Constrained-Self-Avoiding Chromatin (nC-SAC) computational

method for constructing configurations of chromatin chains at the level of large ensembles

based on the Hi-C interaction frequencies of the 1 Mb long CCL locus at 3 kb resolution.

The interaction frequencies of our nC-SAC ensemble and the interaction frequencies of Hi-

C measurements correlate with an R of 0.80 at 10 kb resolution. Our model identifies the



127

interactions between promoters of CCL genes and distant genomic elements that are subject

to histone modifications related to enhancer activity. Majority of identified enhancers are in

excellent agreement with experimental studies (Jin et al., 2013; Bonello et al., 2011). We further

predicted putative enhancers that have elevated interactions with promoters of genes and are

subject to necessary histone modifications, but have not been identified by Hi-C study (Jin et al.,

2013). Our findings point to spatially clustered transcriptional units that are composed of many

active genomic elements and further show highly variable conformations of these units in the cell

population. We further integrated epigenomic profiles of the genomic elements to hypothesize

putative structural hotspots that determine the internal structure of CCL locus. Using the

nC-SAC method, we created virtual mutations at hypothesized hotspots and measured the

resulting changes in the chromatin structure. We proposed that a small number of genomic

elements that are highly conserved and enriched with CTCF and cohesin determine the internal

structure of the locus as well as are responsible for the interactions between the promoters and

enhancers.

5.2 Materials and Methods

5.2.1 Model and Parameters

The overall computational pipeline of nC-SAC model is described and illustrated in Chapter

4. The generation of null model, the calculation of p-values for Hi-C interactions as well as

the FDR procedure are done following Chapter 4 Materials and Methods section. The chain

growth algorithm is also in Chapter 4 except instead of enforcing distances between monomers,
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we enforced an interaction (any spatial distance ≤ 850 nm between the monomers that are

selected according to interaction probability of their corresponding HindIII fragments.

5.2.1.1 Mapping Hi-C data on to a polymer model

Following Chapter 4, we model CCL lcus chromatin as a polymer chain consisting of

monomers that are spheres with 30 nm diameter and 3 kbp genome density. Each HindIII

fragment of Hi-C study (Jin et al., 2013) is mapped to several monomers according to their

lengths (Figure 21). In total, CCL locus polymer chains contains 340 monomers, spanning 575

HindIII fragments.

5.2.1.2 Converting Hi-C interaction frequencies into probability constraints

Following previous studies (Giorgetti et al., 2014; Kalhor et al., 2012), we assumed a di-

rect relationship between Hi-C interaction frequencies and probability of interactions between

monomers. For an interaction frequencies fm,n between HindIII fragments m and n, the inter-

action probability pm,n is

pm,n = α ∗ fm,n

,

pm,n = 1 if fm,n = fmax

where α is the normalization constant. Beginning of each chain generation process, we decide

if the interaction between fragments m and n will happen according to their probability. After

deciding the occurrence of interaction, we randomly select monomers i and j in fragments m and

n, respectively and enforce an interaction between these monomers (spatial distance between
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them is less then 850 nm) during chain growth process. We repeat this procedure for all 30,000

chains of ensemble (Figure 22C).

5.2.1.3 Enforcing repulsive constraints for mutations

When we do a virtual mutation between sites, we make sure that every chain of the ensemble

do not have the mutated interaction. During the chain growth process, we enforce that the

monomers that are mutated have a spatial distance ≥ 850 nm between them.

5.3 Results

5.3.1 Structural modeling of Hi-C data

We used our nC-SAC model that enables to construct realistic ensembles of fiber con-

formations, which reproduce the interaction frequencies experimentally observed in chromo-

some conformation capture data sets. The same computational scheme was used to model 5C

data (chapter 4) and can be used to model 3C or 4C data; here, we describe its application

to Hi-C. A statistical interpretation of data is adopted, where Hi-C interaction frequencies are

considered to be proportional to the probability of two genomic elements physically contacting

each other within a cell population (See Materials and Methods).

We use the C-SAC polymer model (Gürsoy et al., 2014a) to model the CCL chromatin

chain. In this model, we represent the chromatin as a collection of beads. We divide the 1

Mb locus into 340 beads, each corresponds to 3 kb DNA (Figure 21A). The original Hi-C data,

based on pairs of interacting fragments that are 5–10 kb long, is thereby converted into a list

of interacting pairs of beads (Figure 21A).
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Figure 21. Mapping Hi-C interactions onto polymer model and identifying
non-specific interactions in CCL locus. (A) Mapping the 1 Mb CCL locus and Hi-C
interactions onto the polymer model of chromatin chain. Linear diagram of Chr 17 is shown
and the genomic location of CCL locus (hg18:Chr17:29,500,000-30,500,000) is denoted in red
box. HindIII restriction fragments within the locus are mapped onto sequences of adjacent

beads in polymer model. (B) All reported Hi-C interactions between genomic elements in the
CCL locus and significant Hi-C interactions remaining after interactions due to the polymer
effect are excluded. (C) Details of mapping and chain generation process. After mapping the
HindIII fragments onto beads, we select a bead from each fragment and assign an intreaction
probability proportional to Hi-C interaction frequency. This procedure is repeated for every

chain generated.
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Before modeling 3D structures from Hi-C data, we excluded the interactions arising from the

generic effects of constrained polymer chains as they will be intrinsically modeled in our polymer

chains without further addition of Hi-C constraints (Belmont, 2014; Kang et al., 2015; Gürsoy

et al., 2014a). To locate such interactions, we generated an ensemble of 100,000 random C-SAC

chains using a chain growth strategy (Gürsoy et al., 2014a) (Figure 21B). Without a prior

information, we model the confinement as a sphere of a diameter of 0.55 µm. This diameter is

calculated from the volume that is expected to be occupied by a 1 Mb long DNA, assuming 6

billion bp of DNA is confined in an available space of diameter of 10 µm in crowded cell nucleus,

which is in range of the size of an average human nucleus with a diameter of 6–20µm (Alberts,

2002). We bootstrap the chains in the random ensemble to generate 100,000 random ensembles

of 100,000 C-SAC chains and calculate the probability of observing Hi-C interaction frequencies

in these random ensembles and used these probabilities as p-values for the correction of multiple

hypothesis testing at the False Discovery Rate (FDR) of α < 5%. A total of 540 interactions

are assessed for their statistical significance and 194 Hi-C interactions (36%) are found to be

enriched in constrained polymer chains and are therefore not used as constraints.

To build structural models of the CCL locus, we used nC-SAC algorithm that is discussed

in detail in Chapter 4. Our goal is to construct chromatin chains from a distribution of samples

that satisfy the interaction probabilities derived from Hi-C interaction frequencies. Following

previous studies (Giorgetti et al., 2014; Kalhor et al., 2012), we assume a direct relationship

between Hi-C interaction frequencies and the interaction probabilities, and map frequencies

of significant Hi-C interactions to interaction probabilities between monomers ( Figure 21C).
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Every time a chain is generated, a subset of significant interactions are selected according

to their probability and these interactions are regarded as physical constraints that the 3D

chromatin chain needs to satisfy. An ensemble of 30,000 chromatin chains of CCL locus are then

generated. The performance of model is determined by comparing the interaction frequencies of

constructed ensemble with the Hi-C interaction frequencies and found a Pearson Correlation of

0.80 at 10 kb resolution ( Figure 22A). The high resolution (3 kb) heatmap of contacts reveals

several looping interactions associated with CTCF/cohesin binding as well as several histone

modifications ( Figure 22B) in perfect agreement with the original Hi-C study (Jin et al., 2013).

5.3.1.1 Identification of enhancers of CCL genes

Looping interactions between cis-regulatory elements and gene promoters were determined

to be important for regulation of transcription (Fraser and Bickmore, 2007; Lieberman-Aiden

et al., 2009; Dostie et al., 2006; Helmink and Sleckman, 2012). The identification of chromatin

interactions of CCL locus in 3 kb resolution allowed us to examine the distal enhancers of the

promoters of CCL genes. For this purpose, we generated virtual 4C plots for each CCL gene

from the ensemble of structures we constructed using the nC-SAC approach and analyzed the

long-range interactions of anchored gene promoters ( Figure 23). We first identified the long-

range regulatory genomic elements for all gene promoters. These are (black stars in Figure 23)

the interactors of promoters that are also identified by the Hi-C study and are associated with

CTCF binding as well as histone marks related to enhancer activity.

We first found that the promoters that are in close genomic proximity are regulated by

same enhancers. For example, CCL2 and CCL7 genes are regulated by same enhancer, which is
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Figure 22. Ensembles of predicted 3D chromatin chains of the CCL locus.
Interactions between genomic elements of the CCL locus from predicted structural ensembles
of 30,000 chromatin chains and comparison against Hi-C and ChIP-Seq data. (A) Heatmaps
of spatial interactions of CCL locus including Hi-C interaction frequencies and frequencies

from the modeled structural ensembles. Red intensity indicates increased frequency in 10 kb
resolution. (B) Heatmap of spatial interactions of CCL locus from the modeled structural

ensemble in 3 kb resolution is depicted along with the available ChIP-Seq data on
CTCF/cohesin binding as well as histone modifications.



134

around 75 kb away from these genes. We also found that genes CCL13 and CCL11 interact with

multiple enhancers that are as far as ∼0.5 Mb apart from the promoters. These promoters and

enhancers are also associated with CTCF binding sites. We also predicted potential long-range

regulatory elements for CCL13 and CCL1 genes (red and green stars in Figure 23), located

on the 3’ and 5’ of the locus. These putative enhancers were not captured by Hi-C due to

the distribution of restriction enzyme sites, but are associated with CTCF/cohesin binding as

well as histone marks related to enhancer activity. However, they rather make less frequent

interactions with the genes compared to other identified enhancers. This analysis also showed

that CCL13 and CCL1 genes might be regulated by multiple enhancers, some of which are

almost 0.5 Mb away from these genes.

Shared Enhancers:

We first examined whether genes share the same enhancers simultaneously. For example,

promoter of the CCL2 and CCL7 genes interact with an enhancer ∼150 kb upstream of them.

We found that CCL2-enhancer and CCL7-enhancer interactions are observed simultaneously in

19.7% of the 3D models and this enhancer interacts with either of the CCL2 and CCL7 genes

independently in more than 80% of the 3D models. Promoters of CCL11, CCL8, CCL13 and

CCL1 genes interact with an enhancer as far as ∼180 kb downstream of CCL1 gene (black star

in Figure 23). We found that this enhancer interacts with all four genes simultaneously only

in 0.5% of the ensemble. It interacts with any three genes simultaneously in the 5.6% of the

ensemble, with any two genes simultaneously in the 35.8% of the ensemble.
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Multiple Enhancers:

We then examined the fraction of 3D models in the ensemble that multiple interactions

between enhancers and a promoter of a gene are simultaneously observed. For example, pro-

moter of CCL3 gene significantly interacts with three enhancers, two of which are speculated

by our study (Figure 23). Among all 30,000 3D models, there is no single chain that all three

interactions happen simultaneously. Only 5.5% of the ensemble have any two interactions simul-

taneously. Similarly, the promoter of CCL1 gene interacts with 2 other enhancers at the same

time only in 5.3% of the ensemble and we observe each interaction independently in ∼90% of the

ensemble for both CCL13 and CCL1 gene promoters. These results suggest a transcriptional

activation mechanism that are independently backed-up by different enhancers.

These findings suggest that the conformation of the CCL locus is highly variable in the

ensemble. A wide variety of locus configurations coexist within the ensemble, ranging from

consisting of multiple promoter-enhancer interactions to single promoter-enhancer interaction.

In the case of shared enhancers for CCL2 and CCL7 genes, additional single-cell data will shed

light into the mechanism of whether these genes are active or not in the same cell simultane-

ously. For CCL13 and CCL1 genes that interact with multiple but same enhancers, additional

experimental investigation will be fruitful to examine if a back-up transcription mechanism is

at play for the competition between the promoters and the same enhancers.

5.3.1.2 CTCF on the folding of CCL locus chromatin

As the CTCF is an important element for the genome organization (Phillips and Corces,

2009) and is highly enriched on promoters and enhancers of CCL locus (Jin et al., 2013),
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Figure 23. Virtual 4C plots for the genes on CCL locus. Interactions between
promoters of the important genes and the rest of the locus is depicted along with the available

ChIP-Seq data both in the nC-SAC ensemble and Hi-C data. Black stars denote the
enhancers that are identified by nC-SAC model but absent in Hi-C data.
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we examined the role of CTCF on determining the overall configuration of the locus. We

first generated an ensemble of chromatin chains by allowing the interactions only between

CTCF binding sites determined by genome-wide ChIP-Seq experiments and referred it CTCF

ensemble (Figure 24A). We compared the interaction frequencies of CTCF ensemble with the

interaction frequencies of the ensemble that we obtained by using Hi-C interactions which we

will refer as the wild type (Figure 24A). We found that using just CTCF sites as interaction

pairs is not adequate enough to capture the interaction patterns of the locus. Specifically, the

interactions between the promoter of the genes and the enhancers cannot be captured by this

CTCF ensemble ( Figure 24B). To quantify the how different the wild type is from the CTCF

ensemble, we counted the number of contacts that are lost at least in 15% of the ensemble and

found that 380 interactions are observed more in wild type ( Figure 24A). That is, the linear

ChIP-Seq maps of CTCF binding sites do not provide information on which CTCF binding

sites interact with each other. This result in a structural ensemble that equally satisfies all

256 possible CTCF binding site pairs and misses the other interactions measured by Hi-C

experiment.

We then generated another ensemble by using all significant Hi-C interactions except the

ones between CTCF sites. We enforced a repulsion between CTCF binding sites that are ob-

served in Hi-C data and kept the rest of Hi-C constraints as they are during chain generation

process. We generated an ensemble of chains and referred it noCTCF ensemble ( Figure 24A).

The comparison between wild type and noCTCF ensembles showed that a total of 350 interac-

tions are observed in wild type significantly more than those in noCTCF ensemble. This shows
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that mutations on the CTCF binding sites has less effects on the overall configurations of locus

compared to effects of the ensemble generated using only CTCF binding site pairings (loss of

350 interactions vs. 380 interactions). These results suggest that CTCF interactions alone do

not determine the 3D configuration of the locus.

We also compared the interactions of the promoters in the CTCF, noCTCF and wild type

ensembles ( Figure 24C). We already knew that promoter of the genes and enhancers are

enriched with CTCF binding. CTCF alone is not adequate enough to drive the formation of

the interactions between promoters and enhancers as those interactions are lost in the CTCF

ensemble. However, CTCF still plays a key role in formation of these interactions as they are

lost in noCTCF ensemble as well ( Figure 24C). We concluded that even though CTCF is

a major player of the promoter-enhancer interactions and overall configuration of the locus,

remaining Hi-C interactions that are probably mediated by some other factors are necessary

for bringing the promoters and enhancers spatially together.

5.3.1.3 Evolutionary conservation determines promoter-enhancer interactions and

the internal structure of the CCL locus

Following Giorgetti et. al (Giorgetti et al., 2014), we asked the question whether we can

identify important structural hot spots that are responsible of bringing the promoter-enhancer

interactions together and determining the internal structure of CCL locus. After identifica-

tion of interaction peaks that are also enriched with important histone modifications from the

high-resolution (3 kb) heatmaps of ensemble of constructed CCL conformations ( Figure 25a),

we systematically constructed ensembles by adding repulsion between the beads of mutated
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Figure 24. The effect of CTCF on internal structure of CCL locus
(A) Heatmap of interactions of the ensemble constructed using CTCF binding sites as

interaction constraints. Bars show the CTCF enrichment in ChIP-Seq data. (B) Heatmap of
difference of interactions between the CTCF ensemble and the wild type. Red intensity

indicates that the interaction is enriched more in wild type and blue intensity indicates that
the interaction in enriched more in CTCF ensemble. (C) Heatmap of interactions of the
ensemble constructed using Hi-C interactions that are not between CTCF binding sites as

constraints. (D) Heatmap of difference of interactions between the noCTCF ensemble and the
wild type. Red intensity indicates that the interaction is enriched more in wild type and blue

intensity indicates that the interaction in enriched more in noCTCF ensemble. (E)
Interactions between promoters of the important genes and the rest of the locus is depicted

for the wild type, CTCF and noCTCF ensembles for comparison.
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regions while leaving other Hi-C interactions unchanged. This ensures that the resulting en-

semble never contains the interactions between mutated sites. We first calculated the number

of affected interactions by identifying the interactions that are lost in more than 10% of the

ensemble after these virtual mutations. We found that there is no correlation between the Hi-C

frequencies and the number of interactions that are lost after mutations. For example, when

we removed the interactions between sites II and III (mutation d), which has the highest Hi-C

interaction frequency among other interactions (Figure 25A), no loss of interactions between

other sites ( Figure 25B) were observed and the rest of the structure of the locus remained un-

changed. We found that disrupting the interactions between sites II and V (mutation c) results

in loss of 281 other interactions Figure 25B). These lost interactions encapsulate the ones be-

tween promoters and enhancers. The removal of interactions between sites I and III (mutation

b) also causes disruption of internal structure of locus with loss of 228 other interactions ( Fig-

ure 25B). Further analysis of these hotspots yield that sites II and V contain CTCF/cohesin

enrichment peaks as well as high conservation scores. Similarly, site I and II have the highest

conservation scores among all other sites.

This analysis suggests that a small number of hotspots control the overall organization of

CCL locus and promote the interactions between important genes and their enhancers. Al-

though, CTCF and cohesin are highly enriched architectural proteins in the locus, removal of

interactions between the evolutionarily conserved CTCF binding sites result in bigger archi-

tectural changes in the structure of locus compared to the CTCF binding sites that are not

conserved. We also showed that the interactions between conserved CTCF binding sites are
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not necessarily the only key architectural elements of the locus, but other key loci that are

highly conserved and might be mediated by other factors are important determinants the in-

ternal structure of the CCL chromatin, as well as promoting the contacts between enhancers

and promoters of CCL genes.

5.4 Discussion

In this study we used our nC-SAC method (Chapter 4, Materials and Methods) to decipher

the important structural components of CCL locus chromatin along with its sequence properties

obtained from publicly available ChIP-Seq data (Jin et al., 2013). Our method generates large

number of properly sampled self-avoiding chromatin chains that satisfy constraints imposed by

Hi-C interactions as well as creates chromatin chains without selected interactions mimicking

knock-out experiments. Consequently, this method enables us to examine structural properties

of the CCL locus allowing exact comparison between knock-outs and wild type and to dissect

structural hotspots associated wit h important epigenomic marks. Our results showed that

interactions frequencies of our nC-SAC ensemble are correlated with Hi-C interaction frequen-

cies with an R of 0.80 at 10 kb resolution. We further mapped the linear ChIP-Seq data on

high-resolution heatmap of chromatin interactions and found an enrichment of CTCF/Cohesin

binding as well as histone modifications on genomic regions with elevated interaction frequen-

cies, in excellent agreement with original Hi-C and ChIP-Seq study (Jin et al., 2013).

We further predict enhancers for the important CCL genes using our detailed interaction

frequencies and epigenomic data. We identified enhancers that are also identified by the orig-

inal Hi-C study (Jin et al., 2013) an d other experimental studies (Bonello et al., 2011), as
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Figure 25. Identification of hotspots of CCL locus
(A) Selecting highly interacting pairs from the nC-SAC ensemble of CCL locus structures.

Each candidate hotspot interaction is coded with letters, while sites are coded with numbers.
(B) Bar plots of number of interactions that are lost due to the disruption of potential hotspot
interactions. (C) Conservation, CTCF and RAD21 binding scores per 3 kb fragment of CCL
locus. (D) Heatmaps of difference between the interaction frequencies of virtual mutations and
wild type. Red color intensity indicates that the interactions are lost due to the mutations.
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well as putative enhancers that are enriched with necessary histone marks. We speculated the

abundance of two types of transcriptional units that are composed of (1) shared enhancers for

multiple genes, and (2) multiple enhancers for a single gene. We showed that these transcrip-

tional units are consequences of population-averaged nature of Hi-C data. Each unit takes

several different configuration of chromatin fiber and only small amount of chromatin chains

forms these multiple interactions simultaneously. Additional single-cell studies will be fruitful

in understanding of expression of multiple genes are whether simultaneous or independent as

well as if multiple enhancers are at play simultaneously in a single cell.

A major advantage of our sampling technique that we can generate of ensemble of structures

with desired chromatin interactions. Here we exploited the role of CTCF in detail by generating

ensemble of structures that contain only CTCF interactions and another ensemble of structures

that are composed of Hi-C interactions that are not between CTCF enriched sites. We showed

that linear maps of CTCF enrichment cannot provide enough information to generate ensembles

of structures that capture the measured interactions. That is, it is extremely important to know

which CTCF sites interact a priori. On the other hand, the ensemble with Hi-C interactions

that are not between CTCF sites also do not capture the interactions between promoters and

enhancers, while capturing the interaction patterns of rest of the locus. We concluded that as

much as CTCF is a key player on shaping the 3D configuration of CCL locus, other interactions

that are maybe mediated by other proteins or factors are as important for chromatin folding.

We also exploited other genomic elements that have elevated interactions with each other

and overlap with epigenomic data. By creating virtual disruptions and generating ensembles
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for each disruption, we measured the changes in the resulting chromatin structures compared

against wild type ensemble. We unexpectedly found that interaction frequency of disrupted

interactions has no correlation with the resulting changes in the ensemble. In contrast, we

observed the largest changes in the configuration of the locus, when we disrupted low frequency

interactions. This shows that the structural hotspots that shape the overall configuration of

locus cannot directly be revealed from pairwise Hi-C data.

Another unexpected prediction was that the evolutionary conservation play important roles

in the 3D structure of CCL locus. We found that mutations of only conserved CTCF binding

sites or just conserved regions have more dramatic effects on the interaction patterns of CCL

locus, specifically on the interactions between promoters and enhancers, than the mutations of

other CTCF binding sites. This points to the importance of integration of epigenomics data

with genomics variation and superimposing them on model 3D structures of chromatin.

By combining 3D structure modeling with epigenomics data, we have been able to dissect the

structural hotspots of CCL locus and reveal information on configurational differences of single

chromatin chains at the population level. Having defined key genomic elements establishing

the interactions between promoters and enhancers, we can now suggest experimentally testable

hypothesis on trasncriptional machinery of CCL locus. In summary, the nC-SAC approach

along with the virtual mutations provide a powerful tool deciphering the structural units of

chromatin present in cell population and exploring their impact on gene regulation.



CHAPTER 6

CONCLUSIONS

In this thesis, we have developed computational methods to construct model three-dimensional

structures of chromatin for an understanding of gene regulation mechanisms involving the ef-

fect of nuclear space in maintaining the epigenetic state of the cell, long-distance DNA loopings

that promote cell-specific gene expression, and the main physical factors and mechanisms that

determine the genome organization.

6.1 Folding principles of human chromosomes

We have characterized the role of nuclear confinement on the overall organization of human

chromosomes. We found that nuclear space that is available for genome is a major determinant

of the statistical properties of genome that are observed experimentally. As nuclear size changes,

there are significant differences in the chromosome architecture, which are reflected in variations

in the scaling exponents. We showed that tentative formation of TADs mainly dictated by the

polymer effects under the constraints of cell nucleus without the need of introducing additional

binder molecules and fine tuning of their concentrations. Analysis of our predicted ensemble

of three-dimensional structures showed that we can both capture the overall scaling properties

of genome as well as the variation between different chromosomes. In addition, we have shown

that randomly placed binders do not affect directly the scaling behavior. Biological binders such

145
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as CTCF may play more specific roles of modifying or biasing chromosomes towards formation

of specific domains required for cell function.

6.1.1 Future Work

As spatial confinement is a dominant factor in determining chromosome folding, the specific

epigenetic state of genes and transcription activities in different cell types are likely influenced

by the degree of nuclear confinement. Cell nucleus size at different developmental stages or

physiological states may be altered to induce different chromosome folding landscape, enabling

different genetic programming to be activated. How nuclear size and shape relate to cell size

and shape, and how their relative ratio or pattern regulate the epigenetic programs of the cells

at different developmental stages are important problems requiring further investigations.

In addition, current chromatin models are based on growing a single chromosome chain,

and cannot be used to study inter-chromosomal interactions. Another question is how the 15

Mb sequence scale, and the parameter D are controlled in the cell. These issues will likely be

resolved when available algorithm is further improved.

6.2 Folding principles of yeast genome

In this study, we explored computationally the structural properties of budding yeast genome

under different combinations of landmark constraints and nuclear confinement. Our results

showed that the overall patterns of chromatin interactions of budding yeast genome are well

captured when only polymer effects under the spatial confinement of cell nucleus and land-

mark constraints are considered. We found that the size of the nuclear confinement is the

key determinant of intra-chromosomal interactions, while centromere tethering is responsible
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for much of the observed inter-chromosomal interactions and correlation of pairwise telomere

distances to chromosomal arm lengths. Furthermore, novel chromatin interactions undetected

in experimental studies can be uncovered from the ensemble of model genomes generated with

nuclear confinement and landmark constraints, and are found to be stabilized by binding of a

transcription factor and RNA polymerase. In addition, we found there are important specific

genomic elements enriched with tRNA genes that were not captured by polymer properties un-

der landmark constraints, but are detected in experimental studies. Overall, our findings define

the specific roles of confinement and individual landmarks, and can uncover likely biologically

relevant interactions from genome-wide 3C measurements that are beyond polymer effects.

6.2.1 Future Work

Although we showed that experimentally measured interactions can be recapulated by con-

straining random self-avoiding chromatin chains with nuclear confinement and landmarks, be-

cause of the coarse-grained nature of both current polymer models and genome-wide 3C tech-

niques, our model does not contain detailed spatial information of yeast genome. Inferring

structural units of gene regulatory machineries that span just a few kilo bases requires chro-

matin models of much finer resolution. As the advances in theory, model, and experimental

measurements continues, it is envisioned that high resolution models of yeast genome can be

computed in the future.

6.3 Identification of gene regulatory units of α-globin locus

We describe a method that can transform 2D maps of 5C frequencies of interactions into

a population of 3D chromatin chains. Our method identifies the most significant spatial inter-
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actions, overcomes the sampling problem, and generates a large number of properly sampled

self-avoiding chromatin chains that satisfy constraints imposed by 5C interactions. The model

described here allowed structural and distance measurements at the population level in a manner

consistent with the basic requirement of the physical chromatin chains and the 5C interactions.

Our results showed that non-specific spatial interactions arising from nuclear confinement

and crowding effect are pronounced in 5C measurements, as up to ∼50–70% of 5C interactions

can be accounted for when self-avoiding chromatin chains are confined in the available space

of the crowded nucleus. Our model further predicts global differences in the chromatin chains

between cells at different expression levels. Our method can make detailed predictions of spatial

interactions between distant genomic elements, which are validated by available ChIA-PET

studies. While 5C measurement has identified many important chromatin interactions, details

of our predicted chromatin chains suggest a complex many-body mechanism of gene regulation

that is beyond a simple gene-enhancer model.

6.3.1 Future Work

The resolution of our model is limited to that of the HindIII fragments in this study (5–

13 kb) and no direct information is provided on chromatin dynamics. These issues will likely

be resolved with high resolution data as well as modeling. Live cell imagin techniques has

been emerging lately, incorporating such data to the models will give further information on

chromatin dynamics. Our method can be used for construction of configurations of other gene

loci. However, successful predictions are limited by the availability, consistency, and resolution

of experimental measurements. In addition, while our method can predict novel interactions,
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such predictions can only be made in neighborhoods with rich contact information. As the

density of experimentally captured interactions decreases, successful predictions become less

likely. In regions devoid of primer coverage, spatial interactions will likely go undetected.

Recent high-resolution (∼ 1 kb) Hi-C studies provide great resources of information on 3D

genome folding of different cells (Rao et al., 2014). With additional algorithm development,

the nC-SAC method can be further improved so it can generate 3D ensembles of chromatins

from high resolution Hi-C data.

6.4 Identification of chromatin hotspots of CCL locus

In this chapter, we used n Constrained-Self-Avoiding Chromatin (nC-SAC) computational

method for constructing configurations of chromatin chains at the level of large ensembles based

on the Hi-C interaction frequencies of the 1 Mb long CCL locus at 3 kb resolution. The interac-

tion frequencies of our nC-SAC ensemble and the interaction frequencies of Hi-C measurements

correlate with an R of 0.80 at 10 kb resolution. Our model identifies the interactions between

promoters of CCL genes and distant genomic elements that are subject to histone modifications

related to enhancer activity. Majority of identified enhancers are in excellent agreement with

experimental studies. We further predicted putative enhancers that have elevated interactions

with promoters of genes and are subject to necessary histone modifications, but have not been

identified by Hi-C study. Our findings point to spatially clustered transcriptional units that are

composed of many active genomic elements and further show highly variable conformations of

these units in the cell population. We further integrated epigenomic profiles of the genomic ele-

ments to hypothesize putative structural hotspots that determine the internal structure of CCL
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locus. Using the nC-SAC method, we created virtual mutations at hypothesized hotspots and

measured the resulting changes in the chromatin structure. We proposed that a small number

of genomic elements that are highly conserved and enriched with CTCF and cohesin determine

the internal structure of the locus as well as are responsible for the interactions between the

promoters and enhancers.

6.4.1 Future Work

By combining 3D structure modeling with epigenomics data, we have been able to dissect the

structural hotspots of CCL locus and reveal information on configurational differences of single

chromatin chains at the population level. Having defined key genomic elements establishing

the interactions between promoters and enhancers, we can now suggest experimentally testable

hypothesis. We will benefit from the experimental verification of these hypothesis, and will

better understand the structural regulatory machineries in functional loci.
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