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SUMMARY 

 

Existing multibody system (MBS) algorithms treat articulated system components that are not 

rigidly connected as separate bodies connected by joints that are governed by nonlinear algebraic 

equations. As a consequence, these MBS algorithms lead to a highly nonlinear system of coupled 

differential and algebraic equations. Existing finite element (FE) algorithms, on the other hand, 

do not lead to a constant mesh inertia matrix in the case of arbitrarily large relative rigid body 

rotations. In this thesis, new FE/MBS meshes that employ linear connectivity conditions and 

allow for arbitrarily large rigid body displacements between the finite elements are introduced. 

The large displacement FE absolute nodal coordinate formulation (ANCF) is used to obtain 

linear element connectivity conditions in the case of large relative rotations between the finite 

elements of a mesh. It is shown that a linear formulation of the planner pin (revolute) joints that 

allow for finite relative rotations between connected elements can be systematically obtained 

using ANCF finite elements. The algebraic joint constraint equations, which can be introduced at 

a preprocessing stage to efficiently eliminate redundant position coordinates, allow for 

deformation modes at the pin joint definition point, and therefore, this new joint formulation can 

be considered as a generalization of the planner pin joint formulation used in rigid MBS analysis. 

The new pin joint deformation modes, that are the results of 0C  continuity conditions, allow for 

the calculations of the pin joint strains which can be discontinuous as the result of the finite 

relative rotation between the elements. This type of discontinuity is referred to in this thesis as 

non-structural discontinuity in order to distinguish it from the case of structural discontinuity in 

which the elements are rigidly connected. Because ANCF finite elements lead to a constant mass 

matrix, an identity generalized mass matrix can be obtained  for the FE mesh despite the fact that  
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SUMMARY (continued) 

the finite elements of the mesh are not rigidly connected. The relationship between the non-

rational ANCF finite elements and the B-spline representation is used to shed light on the 

potential of using ANCF as the basis for the integration of computer aided design and analysis 

(ICADA). When cubic interpolation is used in the FE/ANCF representation, 0C  continuity is 

equivalent to a knot multiplicity of three when computational geometry methods such as B-

splines are used. Nonetheless, B-spline and NURBS representations cannot be used to effectively 

model T-junctions that can be systematically modeled using ANCF finite elements that employ 

gradient coordinates that can be conveniently used to define element orientations in the reference 

configuration.  

 This thesis also examines the limitations of using B-spline representation as an analysis 

tool by comparing its geometry with the nonlinear finite element absolute nodal coordinate 

formulation (ANCF) geometry. It is shown that while both B-spline and ANCF geometries can 

be used to model non-structural discontinuities using linear connectivity conditions, there are 

fundamental differences between B-spline and ANCF geometries. First, while B-spline geometry 

can always be converted to ANCF geometry, the converse is not true; that is, ANCF geometry 

cannot always be converted to B-spline geometry. Second, because of the rigid structure of the 

B-spline recurrence formula, there are restrictions on the order of the parameters and basis 

functions used in the polynomial interpolation; this in turn can lead to models that have 

significantly larger number of degrees of freedom as compared to those obtained using ANCF 

geometry. Third, in addition to the known fact that B-spline does not allow for straight forward 

modeling of T-junctions, B-spline representation  cannot  be used in a straight forward manner to  
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SUMMARY (continued) 

model structural discontinuities. It is shown that the planner ANCF linear joints can be extended 

to  the spatial analysis and  new spatial chain models, governed by linear connectivity conditions, 

can be developed. The modes of the deformations at the definition points of the joints that allow 

for rigid body rotations between ANCF finite elements are discussed. Similar to the planner case, 

the use of the linear connectivity conditions with ANCF spatial finite elements leads to a 

constant inertia matrix and zero Coriolis and centrifugal forces. The fully parameterized 

structural ANCF finite elements used in this thesis allow for the deformation of the cross section 

and capture the coupling between this deformation and the stretch and bending. A new chain 

model that employs different degrees of continuity for different coordinates at the joint definition 

points is developed. In the case of cubic polynomial approximation, 1C continuity conditions are 

used for the coordinate line along the joint axis; while 0C continuity conditions are used for the 

other coordinate lines. This allows for having arbitrary large rigid body rotation about the axis of 

the joint that connects two flexible links.  

 The ideal compliant joints developed can be formulated, for the most part, using linear 

algebraic equations, allowing for the elimination of the dependent variables at a preprocessing 

stage, thereby significantly reducing the problem dimension and array storage needed. 

Furthermore, the constraint equations are automatically satisfied at the position, velocity, and 

acceleration levels. When using the proposed approach to model large scale chain systems, 

differences in computational efficiency between the augmented formulation and the recursive 

methods are eliminated, and the CPU times resulting from the use of the two formulations 

become similar regardless of the complexity of the system. The elimination of the joint 

constraint equations and the associated dependent variables also contribute  to  the  solution  of  a  
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SUMMARY (continued) 

fundamental problem encountered in the analysis of closed loop chains and mechanisms by 

eliminating the need to repeatedly change  the chain or  mechanism independent coordinates. It is 

shown that the concept of the knot multiplicity used in computational geometry methods, such as 

B-spline and NURBS (Non-Uniform Rational B-Spline), to control the degree of continuity at 

the breakpoints is not suited for the formulation of many ideal compliant joints. As explained in 

the thesis, this issue is closely related to the inability of B-spline and NURBS to model structural 

discontinuities. Another contribution of this thesis is demonstrating that large deformation ANCF 

finite elements can be effective, in some MBS applications, in solving small deformation 

problems. This is demonstrated using a heavily constrained tracked vehicle with flexible link 

chains. Without using the proposed approach, modeling such a complex system with flexible 

links can be very challenging. The analysis presented in the thesis also demonstrates that adding 

significant model details does not necessarily imply increasing the complexity of the MBS 

algorithm.  

 A new simplified spatial elastic Euler-Bernoulli beam force model was developed in an 

attempt to improve the computational efficiency of the flexible link chain tracked vehicle. The 

developed force model accounts for the coupling between bending and axial deformations. The 

model can be considered as a generalization of the two-dimensional force model developed by 

Berzeri et al (2001). Despite the simplicity of the proposed force model, it accounts for the 

elastic nonlinearity in the strain-displacement relationship. This force model can be used in the 

case of small deformations and only accounts for bending and axial deformations. It employs 

constant stiffness matrices that can be calculated at a preprocessing stage. This helps in reducing 

the  computational  effort  needed  to  evaluate  the elastic  forces. The simplified Euler-Bernoulli  
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SUMMARY (continued) 

elastic force model is compared to the elastic line and continuum mechanics approaches. This 

comparison serves as a verification of the proposed model. The comparison  is  held  using a  

heavily constrained tracked vehicle with flexible link chains. The track chain links are connected  

using linear absolute nodal coordinate joints. It is shown that the Euler-Bernoulli force model 

results are in a good agreement with the elastic line and continuum mechanics approaches 

results. It is also shown that the proposed force model is computationally more efficient 

compared to both these elastic force models.  
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CHAPTER 1 

INTRODUCTION 

 Most existing finite element (FE) algorithms allow for developing meshes in which the 

finite elements are rigidly connected. In the case of finite rigid body rotations, some of the 

existing finite element algorithms employ an incremental solution procedure based on a co-

rotational formulation that leads to a highly nonlinear mesh inertia matrix. These FE meshes are 

routinely used to describe mechanical system components which, in general, have complex 

shapes that cannot be described using smooth geometry. When the FE method is used in the 

multibody system (MBS) analysis (Roberson and Schwertassek, 1988; Schiehlen, 1997), it is 

useful to distinguish between two types of geometric discontinuities; structural discontinuities, 

and non-structural discontinuities. Conventional finite element meshes have only structural 

discontinuities that represent T-, V-, and L-junctions. This type of discontinuities, as previously 

mentioned, is described in conventional FE/MBS analysis using finite elements that are rigidly 

connected; that is, the relative motion between the elements is pure deformation. Structural 

geometric discontinuities have represented a fundamental issue in flexible MBS analysis for 

decades. Figure 1 (Shabana, and Wehage, 1984) shows an example of a vehicle that was 

analyzed approximately three decades ago by using MBS computational methods. Figure 2 

(Shabana, and Wehage, 1984) shows the twist of two different models of the vehicle that have 

two different frame designs. 
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Figure 1 Torsion of the truck frame  

(Shabana and Wehage, 1984)   

 

Figure 2 Comparing of frame twist of two vehicle designs  

(Shabana and Wehage, 1984) 

 The interest three decades ago was to develop a new flexible MBS formulation to study 

the torsional characteristics of the new frame of this vehicle, shown in Fig. 3 (Shabana, and 

Wehage, 1984), when the vehicle components including the frame experience arbitrary rigid 
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body displacement (Shabana and Wehage, 1984). This frame, as shown in the figure, has 

structural geometric discontinuities that define T- and V-junctions.  

 

Figure 3 T-Junctions of the truck frame 

(Shabana and Wehage, 1984)   

 The challenge at this time was to develop an accurate kinematic representation of the 

complex geometry of this frame that is invariant under rigid body rotations. This was a 

challenging problem since structural finite elements (beam, plates, and shells) that existed at this 

time employed infinitesimal rotations as nodal coordinates, and as a result, these elements 

produced shapes that are not invariant under general rigid body displacement. Therefore, the goal 

was to be able to connect elements (segments) defined by local polynomials that are not invariant 

under rigid body displacement and develop a formulation in which the structure deformed shape 

is invariant under such a displacement. This fundamental geometry and analysis problem was 

solved using the FE floating frame of reference (FFR) formulation that allows modeling T- and 

V-junctions even when the local polynomials cannot correctly describe rigid body displacements. 

The FE/FFR formulation also defines a local linear problem that can be used to filter out 
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insignificant high frequency modes of vibration while preserving the invariance properties in the 

case of rigid body displacements. Crucial to preserving the rigid body invariant property in the 

case of structural discontinuities is the use of the concept of the intermediate element coordinate 

system. This coordinate system has an origin that is rigidly attached to the origin of the structure 

coordinate system and has axes that are initially parallel to the axes of the finite element 

coordinate system. Using this coordinate system, the finite elements that can have different 

orientations can be connected rigidly using linear algebraic constraint equations at a 

preprocessing stage. Therefore, the FE/FFR formulation provided a general solution for 

accurately modeling structural geometric discontinuities even in cases when the local 

polynomials define shapes that are not invariant under rigid body rotations.  

 The second type of discontinuities represents non-structural discontinuities that 

characterize the motion of MBS applications; example of which is chain of links connected by 

pin joints as the one shown in Fig. 4. Each link is permitted to undergo an independent rigid 

body rotation. If the links are considered to be flexible bodies, the relative motion between the 

links is a combination of rigid body and deformation displacements. Nonetheless, the dynamics 

of a simple planar rigid-link chain is governed by highly nonlinear equations as the result of the 

geometric nonlinearities due to the finite relative rotations.  

 

Figure 4 Eight-link chain system 
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Existing FE algorithms and computer programs, however, do not allow for generating a FE mesh 

for such chains using linear connectivity conditions. One of the goals of this thesis is to 

demonstrate that a FE mesh of such chains that consist of flexible links can be developed. This 

will allow developing one FE mesh that includes one or more chains with flexible links, each of 

which can have independent relative finite rotations. For a tracked vehicle as the one shown in 

Fig. 5, the two chains can be described using one FE mesh in which connectivity conditions 

between the links are described using linear algebraic constraint equations. Such a finite element 

mesh can be systematically developed using the large displacement FE absolute nodal 

coordinate formulation (ANCF) that has a representation that is equivalent to the representation 

used in the computational geometry and computer aided design (CAD) methods such as B-

splines (Piegl and Tiller, 1997, Sanborn and Shabana, 2009; Lan and Shabana, 2010; Mikkola et 

al, 2013); both representations are related by a linear transformation.  

 

Figure 5 Tracked vehicle 
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 ANCF finite elements have several desirable features and correctly describe rigid body 

motion; that is, the shape of the element is invariant under a rigid body displacement, and such a 

displacement does not change the strain state of the element (Dmitrochenko.and Pogorelov, 

2003; Dufva et al., 2005; Garcia-Vallejo et al., 2008; Kerkkänen et al., 2006; Schwab and 

Meijaard, 2010; Tian et al., 2009, 2010; Yoo et al., 2004; Yakoub and Shabana, 2001; Shabana 

and Mikkola, 2003; Shabana, 1998; Abbas et al., 2010). The connectivity conditions between 

ANCF finite elements in the case of some mechanical joints such as pin and spherical joints can 

be described using linear algebraic constraint equations that can be imposed at a preprocessing 

stage to eliminate the dependent variables. Furthermore, the FE element mesh developed using 

ANCF finite elements has a constant mass matrix and zero Coriolis and centrifugal forces. Since 

the mass matrix is constant, the ANCF large displacement Cholesky coordinates can be used to 

obtain an identity generalized inertia matrix for the FE mesh in which the elements can 

experience arbitrary relative rotations with respect to each other (Shabana, 1998). For articulated 

systems, the proposed procedure allows for treating a subsystem or the entire system using one 

FE mesh (one flexible body). Existing MBS algorithms are not designed to handle such a FE 

mesh since MBS components which are not rigidly connected are treated as separate bodies 

connected by joints governed by nonlinear algebraic equations. It is explained in this thesis how 

such a linear FE mesh can be developed.  

 Having nonlinear joint constraints is not the only problem with existing finite element 

formulations. Another problem, that might be more serious, is the geometry description used 

which cannot be exactly converted to the geometry developed by computational geometry 

methods such as B-spline and NURBS (Non-Uniform Rational B-Splines) representations. This 

fact has motivated researchers in the computational mechanics community to adopt the methods 
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of computational geometry as analysis tools instead of using conventional FE formulations. 

While the methods of computational geometry, such as B-spline, have several desirable analysis 

features; these methods have serious limitations when used as analysis tools. The B-spline 

recurrence formula and the rigid definition of the knot vector make B-spline less attractive as 

compared to the absolute nodal coordinate formulation (ANCF) geometry description. While B-

spline geometry can always be converted exactly to ANCF geometry (Piegl and Tiller, 1997, 

Sanborn and Shabana, 2009; Lan and Shabana, 2010; Mikkola et al, 2013), the converse is not 

always true. ANCF geometry does not restrict the order of the parameters or the number of basis 

functions used in the interpolating polynomials. This advantage, as will be demonstrated in the 

thesis, allows for developing finite elements with fewer degrees of freedom as compared to those 

developed using the B-spline geometry.  

 
Figure 6 Structural and non-structural discontinuities 

 Another fundamental difference between B-spline and ANCF geometric descriptions lies 

in modeling discontinuities. Figure 6 shows a chain which has a structural discontinuity at point 

C  and non-structural discontinuity at point O . At the junction at C , only deformation degrees 

of freedom are allowed, while at point O , relative rigid body rotation is permitted. Nonetheless, 
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the degree of continuity at both points is 0C . B-spline can be used as an analysis tool to describe 

the non-structural 0C  discontinuity at point O , but because of its rigid recurrence structure and 

the definition of its knot vector and knot multiplicity, B-spline cannot be used in the motion 

analysis of structural 0C  continuity at point C  since B-spline 0C  description leads to a rigid 

body mode; that is, the elimination of one control point by reducing the knot multiplicity by one 

is not sufficient for eliminating the modes of rigid body rotations between two B-spline 

segments. ANCF geometry, on the other hand, can be used in the analysis of both structural and 

non-structural discontinuities (Hamed et al., 2011; Shabana et al, 2012). 

Important multibody system (MBS) applications that can be used to shed light on the 

fundamental differences between B-spline and ANCF geometries are chain applications. Chains 

are highly nonlinear systems that are subjected to repeated impulse forces during their functional 

use. Geometric nonlinearities are the result of the large relative displacements between the chain 

links. The repeated impulsive forces as the result of the chain link contact with the rollers and 

other system components introduce high frequencies to the nonlinear chain dynamic model. For 

these reasons, the nonlinear dynamic analysis of chain systems represents one of the most 

challenging computational problems. In fact the simplest rigid-link chains are highly nonlinear 

because of the large relative rotations between the chain links (Roberson and Schwertassek, 

1988; Schiehlen, 1997). In the case of rigid-link chains, the geometric nonlinearities that result 

from these rotations lead to highly nonlinear chain inertia forces that include the quadratic 

velocity Coriolis and centrifugal forces. Furthermore, the contact between the rigid-chain links 

and the sprockets and rollers that may exist in the system is often described using compliant 

force models; leading to high frequencies that require the use of very small time integration step 
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in order to accurately capture the changes in the velocities, accelerations, and forces. For these 

reasons, efficient and accurate modeling of chain systems remains a challenging MBS 

computational problem even in the simpler case in which the chain links are assumed to be rigid. 

Because of the geometric nonlinearities and the high frequencies, it is important to use an 

efficient solution algorithm if the flexibility of the chain links is considered. Flexible-link chains 

require the use of significantly larger number of degrees of freedom in order to capture the link 

deformation modes. Some of these deformation modes may also introduce high frequencies in 

addition to the high frequencies resulting from the contact between the chain links and rollers as 

well as other components in the system. It is also important in some applications to capture 

certain coupled deformation modes that cannot be captured using conventional structural finite 

elements such as beams and plates that are based on simplified kinematic assumptions. For 

example, in tracked vehicle applications, the chain links are subjected to significant tensile and 

compressive forces. The coupling between the deformation of the link cross section and other 

modes of deformation can be significant and must be taken into account in order to develop a 

more realistic model. It is, therefore, important to employ FE formulation that captures the effect 

of these coupled deformation modes and allows for an efficient MBS implementation. As 

mentioned earlier, ANCF finite elements are used in the thesis to develop new FE meshes for 

chain applications. In these FE meshes, the flexible-link pin joints are defined using linear 

connectivity conditions despite the large relative rotation allowed between the chain links. This 

leads to an efficient elimination of the dependent variables at a preprocessing stage. Furthermore, 

the use of the linear connectivity conditions with ANCF finite elements leads to a constant chain 

inertia matrix and zero Coriolis and centrifugal forces. It is demonstrated for the first time that a 

three-dimensional flexible-link chain model that is based on linear connectivity conditions and 
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has a constant mass matrix and zero Coriolis and centrifugal forces can be developed using 

spatial fully parameterized ANCF finite elements. 

 The use of The ANCF formulation comes at the expense of having more complex elastic 

force expressions. It is for this reason that many investigations have been devoted to proposing 

new and analyzing existing elastic force models aimed at the precise and efficient description of 

beams, plates, shells, and solid elements. Earlier works on ANCF beams dealt with continuum 

mechanics (CM) (Omar and Shabana, 2001; Yakoub and Shabana, 2001) and elastic line (EL) 

formulations (Hussein et al, 2007; Dmitrochenko et al, 2009; Schwab and Meijaard, 2010). The 

study of beams using continuum mechanics is computationally expensive due to the fact that it 

demands a three-dimensional numerical integration and includes some higher-frequency modes 

of deformation that are not always significant in the application under consideration. A 

simplification of three-dimensional continuum mechanics formulations became popular with 

application to ANCF (Schwab and Meijaard, 2005; Hussein et al, 2007; Dmitrochenko et al, 

2009; Schwab and Meijaard, 2010). The use of the absolute coordinates to define Green-

Lagrange strains and curvatures is the basis for what is called the elastic line approach. In this 

method, strain components are defined on of the beam centerline, while the curvature expression 

is used to define the bending strains. The elastic line was proved to offer good results and lower 

the computation time significantly. In addition, several successful attempts using variational 

principles to match the EL beam dynamics with existing finite-element formulations were 

documented in the literature (Schwab and Meijaard, 2005; 2010). Other force models based on 

Euler-Bernoulli beam theory were also introduced in the literature (Berzeri et al, 2001; 

Gerstmayr and Shabana, 2006; Gerstmayr and Irschik, 2008; Hamed et al, 2014). A simple force 

model, which can be used in the analysis of small deformation based on a three-dimensional 
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ANCF Euler-Bernoulli beam is introduced. The developed force model accounts for the coupling 

between bending and axial deformations. The model can be considered as a generalization of the 

two-dimensional force model developed by Berzeri et al (2001). Despite the simplicity of the 

proposed force model, it accounts for the elastic nonlinearity in the strain-displacement 

relationship. The new simplified force model is verified by comparing its results with the results 

obtained using more general elastic force formulations. It is shown that the new force model is 

very efficient compared to the continuum mechanics and elastic line approaches. However, it is 

important to mention that the proposed force model can be only used in the small deformation 

analysis and it does not consider shear and cross section deformations. 

1.1. Scope and Organization of the Thesis  

 This thesis is organized in six chapters including this introductory chapter. In this section, 

the organization and scope of the thesis as well as a summary of the contents and contributions 

of its chapters are presented. 

 Chapter 2 explains how the linear FE meshes can be developed for planar applications. 

It starts by discussing the nonlinearities of the large rotation constraints in existing FE algorithms 

and computer codes. After which, the concept of knot multiplicity used in computational 

dynamics is discussed. The chapter then introduces how the ANCF formulation can be used to 

model both structural and nonstructural discontinuities using linear constraints. It is also shown 

that higher degrees of continuity can be applied between the ANCF elements using linear 

constraint equations. The main contributions of this chapter can be summarized as follows: 

1. It is demonstrated that the concept of the knot multiplicity used in computational 

geometry methods can be used with ANCF finite elements to model plannar pin joints. 
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The conclusions made are not applicable only to pin joints, but apply to both structural 

and non-structural discontinuities. This general approach will allow for developing 

different types of joints with different degrees of continuity, including 0C  continuity that 

allows for relative rigid body rotation. This general approach will allow developing 

joints in which coordinates of the same types (such as gradient vectors) are subjected to 

different continuity conditions. 

2. The deformation modes resulting from imposing lower degree of continuity using ANCF 

finite elements will be discussed. Numerical results will be presented to demonstrate 

how these deformation modes can be captured using ANCF finite elements. These 

deformation modes were not discussed in the work of Garcia-Vallejo et al. (2003) which 

was focused on planar pin joint only.  

3. This chapter also demonstrates that T-junctions, which represent a special case of 

structural discontinuity, can be modeled using ANCF finite elements. It is shown, with 

an example, that one model can include T-junction representing special case of structural 

discontinuity and pin joints representing non-structural discontinuities.   

  Chapter 3 introduces a generalization of the proposed plannar joint formulation to the 

spatial analysis. It is shown that the constraints equations of the spherical and revolute (pin) 

joints will remain linear in the spatial analysis. This chapter also examines the limitations of 

using B-spline representation as an analysis tool by comparing its geometry with the nonlinear 

finite element absolute nodal coordinate formulation (ANCF) geometry. The chapter starts by 

explaining how surfaces can be defined in B-spline representation. This introduction is followed 

by a discussion of the limitations of using B-spline representation as analysis tool in comparison 
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with ANCF analysis. The proposed linear meshes which can be used in modeling structural and 

nonstructural discontinuities are also introduced in this chapter which ends with a numerical 

results section, in which, belt and chain drives are used to demonstrate the use of the 

formulations developed. The main contributions of this chapter can be summarized as follows. 

1. The chapter addresses the important issue of using computational geometry methods 

such as B-spline and NURBS as analysis tools. As demonstrated in this thesis, the B-

spline recurrence formula has several drawbacks when used as an analysis tool. This fact 

is used to demonstrate the generality of the ANCF geometry.  

2. This chapter also presents a new three-dimensional continuum based pin joint model that 

leads to linear connectivity conditions and constant mass matrix when used with ANCF 

finite elements. The proposed new class of ideal joints account for the distributed inertia 

and elasticity at the joint definition point. Additional degrees of freedom are introduced 

in order to capture modes of deformation that cannot be captured using existing 

formulations that employ rigid triads or unit vectors to formulate the joint equations. 

 Chapter 4 continues discussing the limitations of using B-spline surfaces as analysis tool 

(Iso-geometric analysis) in comparison to the absolute nodal coordinate formulation (ANCF). 

The limitations are discussed by extensively examining the new class of ideal compliant joints 

which accounts for the distributed inertia and elasticity. This is demonstrated using a heavily 

constrained tracked vehicle with flexible link chains. Without using the proposed approach, 

modeling such a complex system with flexible links can be very challenging. The analysis 

presented in this chapter also demonstrates that adding significant model details does not 

necessarily imply increasing the complexity of the MBS algorithm. The chapter starts with a 
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brief introduction about different multibody finite element formulations and a brief literature 

review of the tracked vehicle multibody models. This is followed by a discussion about modeling 

different types of discontinuities in multibody system analysis. This section explains the 

differences of the computational algorithms used in simulation of ANCF chains when linear and 

nonlinear constraints are used. The chapter then expands on the discussion of the linear 

compliant joints by introducing linear pin joint model that can be used with the Euler-Bernoulli 

beam element. It also proposes a new sliding joint model that employs a set of linear and simple 

nonlinear constraints. The proposed sliding joint model is used, accompanied with other factors, 

to show the generality of using ANCF as analysis tool in comparison to Iso-geometric analysis. 

Later on, the reasons why ANCF is the educated choice, when modeling small deformation 

flexible link tracked vehicle, are discussed. A simplified Euler-Bernoulli visco-elastic force 

model that accounts for the coupling between axial and bending deformation is proposed. The 

chapter ends with a numerical results section, in which heavily constrained tracked vehicle 

models are used to demonstrate the use of the formulations developed. The main contributions of 

this chapter can be summarized as follows. 

1. It is shown that when the ideal compliant joints developed are used, linear connectivity 

conditions are used to eliminate the dependent variables at a preprocessing stage. Hence, 

the constraint equations are automatically satisfied at the position, velocity, and 

acceleration levels. Therefore, when using the proposed approach to model large scale 

chain systems, differences in computational efficiency between the augmented 

formulation and the recursive methods are eliminated, and the CPU times resulting from 

the use of the two formulations become similar regardless of the complexity of the 

system. 
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2. Furthermore, the elimination of the joint constraint equations and the associated 

dependent variables contribute to the solution of a fundamental singularity problem 

encountered in the analysis of closed loop chains and mechanisms. It is known that in the 

case of closed loop chains and mechanisms, the set of independent coordinates must be 

repeatedly changed in order to avoid singularity of the constraint Jacobian matrix 

(Nakanishi and Shabana, 1994). This problem can be avoided by using the new ANCF 

finite element meshes that allow for the elimination of the constraint equations and the 

dependent variables at a preprocessing stage.  

3. While small deformation MBS problems can be effectively solved using the FFR 

approach that allows for filtering out high frequency contents, there are small 

deformation problems that can be solved more efficiently using large deformation 

formulation such as the absolute nodal coordinate formulation (ANCF). In these small 

deformation problems, the inclusion of high frequency modes may be necessary. An 

example of these problems is a flexible-link chain of a tracked vehicle where each link is 

modeled using one finite element only. The use of ANCF finite elements can be 

advantageous as compared to the use of the FFR formulation.  

4. The necessity of using the new concepts developed in modeling complex systems is 

demonstrated using a heavily constrained tracked vehicle with flexible-link chains. 

Without using the proposed approach modeling such a complex system with flexible 

links can be very challenging. 

5. In order to efficiently simulate the complex tracked vehicle model, a simplified force 

model, which can be used in the analysis of small deformation based on a three-

dimensional ANCF Euler-Bernoulli beam, is introduced. The developed force model 
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accounts for the coupling between bending and axial deformations. The model can be 

considered as a generalization of the two-dimensional force model developed by Berzeri 

et al (2001). 

 A verification of the proposed Euler-Bernoulli elastic force model is introduced in 

Chapter 5. The force model is verified by comparing its results to both the continuum 

mechanics and elastic line approaches. It is shown that the new elastic force model is very 

efficient compared to the other force models. The chapter starts by briefly explaining the 

continuum mechanics and elastic line force formulation approaches. The main differences 

between the proposed Euler-Bernoulli force model and the other force models are also explained. 

The chapter ends with a numerical results section, in which, heavily constrained tracked vehicle 

models are used in the verification of the elastic force model.  

The thesis ends with Chapter 6, which gives summary of and conclusions drawn from 

this thesis. 
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CHAPTER 2 

CONCEPTS OF LINEAR ANCF JOINTS 

Materials presented in this chapter are taken from "Hamed, A.M., Shabana, A.A, Jayakumar, P., 

Letherwood, D.M.: Non-structural Geometric Discontinuities in Finite Element/Multi-body 

System Analysis. Journal of Nonlinear Dynamics, 2011." Please refer to Appendix A for 

copyright transfer. 

 

 Existing multibody system (MBS) algorithms treat articulated system components that 

are not rigidly connected as separate bodies connected by joints that are governed by nonlinear 

algebraic equations. As a consequence, these MBS algorithms lead to a highly nonlinear system 

of coupled differential and algebraic equations. Existing finite element (FE) algorithms, on the 

other hand, do not lead to a constant mesh inertia matrix in the case of arbitrarily large relative 

rigid body rotations. In this chapter, planner FE/MBS meshes that employ linear connectivity 

conditions and allow for arbitrarily large rigid body displacements between the finite elements 

are introduced. The large displacement FE absolute nodal coordinate formulation (ANCF) is 

used to obtain linear element connectivity conditions in the case of large relative rotations 

between the finite elements of a mesh. It is shown in this chapter that a linear formulation of 

plannar pin (revolute) joints that allow for finite relative rotations between the connected 

elements can be systematically obtained using ANCF finite elements. The algebraic joint 

constraint equations, which can be introduced at a preprocessing stage to efficiently eliminate 

redundant position coordinates, allow for deformation modes at the pin joint definition point, and 

therefore, this new joint formulation can be considered as a generalization of the pin joint 

formulation used in rigid MBS analysis. The new pin joint deformation modes, that are the 

results of 0C continuity conditions, allow for the calculations of the pin joint strains which can be 

discontinuous as the result of the finite relative rotation between the elements. This type of 
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discontinuity is referred to in this thesis as non-structural discontinuity in order to distinguish it 

from the case of structural discontinuity in which the elements are rigidly connected. Because 

ANCF finite elements lead to a constant mass matrix, an identity generalized mass matrix can be 

obtained for the FE mesh despite the fact that the finite elements of the mesh are not rigidly 

connected. The relationship between the non-rational ANCF finite elements and the B-spline 

representation is used in this chapter to shed light on the potential of using ANCF as the basis for 

the integration of computer aided design and analysis (ICADA). When cubic interpolation is 

used in the FE/ANCF representation, 0C  continuity is equivalent to a knot multiplicity of three 

when computational geometry methods such as B-splines are used. Nonetheless, B-spline and 

NURBS representations cannot be used to effectively model T-junctions that can be 

systematically modeled using ANCF finite elements that employ gradient coordinates that can be 

conveniently used to define element orientations in the reference configuration. Numerical 

results are presented in order to demonstrate the use of the new formulation in developing new 

chain models.  

2.1.  Large Rotation Nonlinearities 

 Existing FE algorithms and computer codes allow for developing meshes in which the 

finite elements are rigidly connected. In the case of arbitrarily large relative rigid body rotations 

between the finite elements of one mesh, incremental solution procedure based on a co-rotational 

formulation is used. This FE solution procedure leads to a highly nonlinear inertia matrix and 

due to the nature of the incremental approach used and the set of coordinates employed, existing 

FE algorithms and computer programs are not suited for the analysis of complex multibody 

systems that are characterized by geometric nonlinearities that result from the independent rigid 
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body rotations of the finite elements. In most formulations, including rigid body dynamics 

formulations, such non-structural geometric discontinuities are governed by nonlinear algebraic 

constraint equations which lead to highly nonlinear inertia matrix. For such articulated systems, 

components which are not rigidly connected are treated as separate bodies when MBS algorithms 

are used. Consider, for example, the simple planar double-pendulum example shown in Fig. 7.  

 

Figure 7 Double pendulum example 

 The pendulum consists of two rigid bodies, i  and j , connected by a pin (revolute) joint 

at point P  whose local position vector is defined in the two body coordinate systems by the 

vectors i

Pu  and j

Pu , respectively. The global position vector of this point in terms of the 

coordinates of bodies i  and j  are denoted as 
i

Pr
 
and j

Pr , respectively. In this simple planar rigid 
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body example, the kinematic constraint conditions of the pin joint can be written as j

P

i

P rr  . This 

equation can be written more explicitly in terms of the coordinates of bodies i  and j  as  

j

P

jji

P

ii uARuAR                                                           (2.1) 

where i
R  and j

R  define the global position vector of the origins of the coordinates systems of 

the two bodies, and i
A  and j

A  are the transformation matrices that define the orientations of the 

two bodies. In the planar analysis, the vectors and matrices that appear in Eq. 2.1 can be written 

as  
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 The geometric nonlinearities of the connectivity conditions of Eq. 2.1 characterize all 

MBS formulations including the augmented and embedding techniques. In the augmented 

formulation, the technique of Lagrange multipliers is used to adjoin the nonlinear constraint 

equations to the dynamic equations of motion. The resulting coupled system of 

differential/algebraic equations is highly nonlinear. In the embedding technique, on the other 

hand, redundant coordinates are systematically eliminated using the nonlinear algebraic 

constraint equations. Using the embedding technique, one can show that the two equations of 

motion of the planar rigid body double pendulum shown in Fig. 7 can be written as 
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 In this equation, m k 
and kl  are, respectively, the mass and length of link , ,k k i j ; k  is 

the angular acceleration of link k ; ij i j    ; and g is the gravity constant. It is clear from 

Eq. 2.3 that the equations of motion for a simple planar rigid body double pendulum are highly 

nonlinear as the result of the nonlinear connectivity conditions. The resulting inertia coefficients 

are also highly nonlinear because of the geometric nonlinearities that result from the non-

structural discontinuities. Such non-structural geometric discontinuities also lead to more 

geometric nonlinearities when the deformation of the links are considered using the FE/FFR 

formulation due to the dynamic coupling between the reference motion and the elastic 

deformations. In the FFR formulation, 
k

Pu  is expressed in terms of the elastic coordinates and the 

number of equations of motion increases by the number of these elastic coordinates.  

2.2.  Computational Geometry and Knot Multiplicity 

 The pin joint connectivity conditions used in the preceding section ensure 0C  continuity 

that allows for non-structural discontinuity due to the relative rotation. This non-structural 

discontinuity can be converted to structural discontinuity by imposing a constraint on the relative 

rotation between the two links. The degree of continuity in computational geometry methods is 

controlled using the concept of knot multiplicity. For example, in B-spline representation, any 

curve can be represented as a combination of several polynomial segments. Generally, B-spline 

curves can be defined using following equation (Piegl and Tiller, 1997): 

          0, 0 1, 1 , ,

0

( ) ( ) ( ) ...... ( ) ( )
n

p p n p n i p i

i

u N u N u N u N u


    r P P P P                         (2.4)       

where )(, uN pi  
are the B-spline basis functions of degree p , u  is the parameter, and Pi are the 

control points that define the control polygon. The basis functions can be defined as 
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                                         (2.5)    

where 1i iu u  , and U={ 0u
1u …. 1 pnu } is called the knot vector. The elements of the knot 

vector need not be distinct. Each nonzero span corresponds to a B-spline segment defined by two 

knot points called in this case breakpoints that represent distinct knot values. The number of 

equal knots at a point is referred to as the knot multiplicity. If the vector U takes the form










 11

1....1 0....0
pp

, the B-spline reduces to a p-order Bezier curve, and therefore, Bezier curve can be 

considered as a special case of B-spline. One may consider the knot multiplicity as a measure of 

the degree of continuity. For example, in case of cubic B-spline curve ( 3p  ), one can always 

define, at each knot point, the vectors 2 2, ,u u   r r r , and 3 3u r . A knot multiplicity of 

four at a knot point implies 1C  continuity, that is, the two segments at this point are not 

connected and the coordinates and derivatives are discontinuous. A knot multiplicity of three 

implies 0C  and only the vector r  is continuous at that point. This is equivalent to imposing a set 

of constraints similar to the pin joint constraints that allow for the elimination of one control 

point and reducing the problem dimension. A knot multiplicity of two ( 1C  continuity) ensures 

that r  and r/u are continuous at this point. This condition is equivalent to eliminating two 

control points. A knot multiplicity of one ( 2C  continuity) ensures the continuity of , u r r , and 

2 2u r . Finally, knot multiplicity of zero in case of cubic polynomials ( 3p  ) implies 

continuity of all the derivatives, and in this special case, two segments blend together forming 
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one larger segment. Note that the B-spline description is fundamentally different from the FE 

description since control points do not, in general, represent material points. 

2.3.  ANCF Finite Elements and Derivative Continuity 

 B-spline geometry can be converted to ANCF representation using a linear coordinate 

transformation. Nonetheless, the use of the gradients as nodal coordinates in the ANCF 

representation allows for defining element orientations and preserves the control point polygon 

structure when the mesh deforms. In the case of structural discontinuity, different coordinate 

lines can be systematically used with the ANCF representation, thereby allowing for modeling T 

and V junctions systematically. The standard ANCF assembly process ensures continuity of both 

position and gradient coordinates when two finite elements are rigidly connected. This is 

equivalent to a knot multiplicity of two in the cubic B-spline representation. Continuity of 

curvature and its derivative in B-Spline curves can be achieved by using knot multiplicity of one 

and zero, respectively. This degree of continuity can also be achieved in the ANCF 

representation using algebraic constraint equations that eliminate some nodal variables and 

reduce the model dimension. In order to demonstrate the use of ANCF finite elements in the 

formulation of linear connectivity conditions that ensure the continuity of higher derivatives, the 

planar two-node shear deformable beam element is used. Each of the element nodes has six 

degrees of freedom; two translational coordinates defined by the two-dimensional vector 

 T 

21  rrr , and four gradient coordinates defined by the two vectors  T 

x21  rrxx r  and 

 T

1 2  y y yr r   r . The vector of nodal coordinates e  can then be written as 

 T
T T T T T T          A A A B B B

x y x y
   e r r r r r r

                                               (2.6)
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 In this equation, A  and B  refer to the end points of the finite element. Using this vector 

of nodal coordinates, the ANCF displacement field is defined as 

     , ,x y x y tr S e                                                                    (2.7) 

where S is the element shape function matrix defined for the planar shear deformable element as 

  IIIIIIS 654321                         s sssss                                                      (2.8)    

 In this equation, I is the identity matrix, and s , 1,2, ,6i i   are shape functions defined as  
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                           (2.9) 

where l  is the element length, 
l

x
 , and .

l

y
  

Structural discontinuities can be systematically modeled using ANCF finite elements by 

using the proper gradient transformations. The gradient transformations, which are different from 

vector transformations, enter into the formulation of the element dynamic equations. 

Furthermore, constraints on higher derivatives can also be imposed at a preprocessing stage 

using linear algebraic equations; allowing for having a higher degree of continuity. For example, 

one can define the second derivative of the position vector at the two nodes of the element as 
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                  (2.10) 

 These equations can be used to develop linear constraint relationships that eliminate the 

gradient vector xr  at the interface of two elements. This is equivalent to reducing the number of 

independent B-spline control points by one, or equivalently decreasing the knot multiplicity by 
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one. Similarly, continuity conditions for the third derivative of the position vector can be 

achieved by equating 3 3x r  at the node connecting two finite elements. In this case, since a 

cubic polynomial is used, the two elements blend together forming one longer finite element. 

2.4.  Structural and Non-structural Discontinuities 

 As previously mentioned, in the structural FE meshes developed using existing computer 

codes, the structural finite elements such as beams, plates and shells are assumed to be rigidly 

connected. That is, the finite elements are not allowed to have independent large relative rigid 

body displacements with respect to each other. This is mainly due to the fact that in most FE and 

rigid body dynamics formulations, relative rotations are source of geometric nonlinearities as 

explained in Section 2.1 using a simple planar double pendulum example. Relative rigid body 

rotations between the elements in a FE mesh lead to non-structural discontinuities since the 

gradients at the interface node are not continuous. Most existing formulations cannot be used to 

obtain linear connectivity conditions in the case of non-structural discontinuities. Nonetheless, 

ANCF finite elements allow for developing a kinematically linear mesh in which each finite 

element can have arbitrarily independent rotation. In ANCF/FE meshes, the element connectivity 

conditions in the case of non-structural discontinuities are formulated using linear algebraic 

constraint equations. This is an important ANCF feature since it can significantly reduce the 

number of nonlinear algebraic constraint equations and the associated Lagrange multipliers in 

many MBS applications including tracked vehicles. The development of such a kinematically 

linear ANCF mesh is demonstrated in this section using the pin joint as an example. The 

resulting modes of deformations of the new joint are also discussed in this section. 
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2.4.1. Joint Formulation 

 When two ANCF finite elements are connected by a pin joint, one has 0C  continuity that 

ensures only the continuity of the position coordinates. The two finite elements can have 

arbitrarily large rigid body rotation with respect to each other. In the case of a planar pin joint 

between two finite elements i  and j , the algebraic joint constraint equations can be written as 

, ,i A j Br r                                                                 (2.11)         

where A  and B  refer to the joint node on the finite elements i  and j , respectively. The 

preceding constraint equations eliminate the relative translation between the two finite elements. 

However, since ANCF structural finite elements can correctly describe arbitrary rigid body 

rotations, applying the linear algebraic equations of Eq. 2.11 at a preprocessing stage allows for 

developing a FE mesh in which each finite element can have an independent rotational 

displacement. Note that, while the pin joint constraints in the case of rigid body dynamics are 

highly nonlinear as demonstrated in Section 2.1, the ANCF pin joint constraints defined by Eq. 

2.11 are linear. It will be shown in later chapters that similar linear equations can be developed 

for the spherical joint in the spatial analysis. Also, linear algebraic equations can be obtained for 

the spatial pin joint using ANCF finite elements by requiring two points on the two elements to 

coincide and two gradient vectors on the two elements to remain parallel and equal in magnitude.   

2.4.2. Deformation Modes 

 The ANCF pin joint allows deformation modes at the joint definition point. The gradient 

vectors of the two elements can change their magnitude and orientation allowing for stretch and 

shear deformations at the joint node. Furthermore, when the fully parameterized beam element 

presented in the preceding section is used, the change in the cross section due to deformation can 
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be captured at the joint node. Because of the non-structural discontinuity, the strain field is not 

continuous. The modes of deformations at the joint nodes can be examined using the Green-

Lagrange Strain tensor ε  which can be written as 

  IJJε
T 

2

1
                                                             (2.12) 

where J  is the matrix of position vector gradients, and I  is the identity matrix. Because the 

strain tensor ε  is symmetric, one can define the strain vector     v xx yy xy     
T

ε , where xx , yy

and xy
 
are, respectively, the normal strain in the x direction, the normal strain in the y direction, 

and the shear strain. These strains components are defined in terms of the gradients as follows: 

                     
1 1 1

1 , 1 ,
2 2 2

xx x x yy y y xy x y      T T T
r r r r r r                               (2.13) 

 These strain components are continuous inside the element and discontinuous at the joint 

nodes because of the discontinuity of the position vector gradients at these nodes.   

The cross section deformation at the joint nodes can be captured using Nanson’s formula 

which can be written as follows (Ogden, 1984; Shabana, 2008; Hussein et al., 2009): 

 
1

2
n n

J
ds dS

T T
n JJ n

                                                    (2.14)         

 In this equation, S  and s  are, respectively, the cross section area in the reference and 

current configurations, nn
 
is a unit vector in the direction normal to the cross section, and J is 

the determinant of the matrix of position vector gradients J. In the case of the planar shear 
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deformable beam presented in the preceding section, one can show that Nanson’s formula 

reduces to 

yds dS r                                                           (2.15) 

 Since the displacement gradients at the joint nodes are discontinuous, the preceding two 

equations show that the cross section areas of the two finite elements at the joint nodes can vary 

independently. 

2.4.3. Structural Discontinuities 

 In the case of structural geometric discontinuities that include T- and V-junctions, rigid 

body displacements between the finite elements is not permitted. In this case, gradient 

transformations are used to assemble the finite elements of the flexible body mesh. Structural 

discontinuities can be modeled using fully parameterized and gradient deficient ANCF finite 

elements (Shabana, 2008). For both fully parameterized and gradient deficient ANCF finite 

elements, independent coordinate lines can always be defined and used to define the gradient 

transformation as described in the literature (Shabana and Mikkola, 2003; Shabana, 2010). In 

Section 2.6, a chain example that includes both structural and non-structural geometric 

discontinuities is presented. In this example, the entire chain system is described using one FE 

mesh. 

2.5. Equations of Motion 

 The dynamic equations of motion of body i  in a MBS can be written as follows 

(Roberson and Schwertassek, 1988; Schiehlen, 1997; Shabana, 1998): 

i

e

ii
FλCeM e  T                                                         (2.16) 
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where i
M  and i

eF  are, respectively, the mass matrix and the generalized force vector that 

includes the nodal forces, 
T

eC  is the Jacobian matrix of the nonlinear kinematic constraint 

equations  , t C e 0 , λ  is the vector of Lagrange multipliers, and 
ie  is the vector of ANCF 

nodal accelerations. Using ANCF finite elements, the mass matrix is constant, For an element k  

of the finite element mesh of body i , the mass matrix is defined as  
ik

ik ik ik ik ik

V
dV 

T
M S S , 

where ik  is the element density, ikV  is the element volume, and ikS  is the element shape 

function. Since the mass matrix of the ANCF finite elements is constant, the Coriolis and 

centrifugal force vector is identically equal to zero. As previously discussed, linear connectivity 

conditions between ANCF finite elements in the case of structural and non-structural 

discontinuities can be imposed during the finite element assembly process at a preprocessing 

stage. The use of this procedure allows for efficient elimination of the dependent nodal variables 

before the start of the dynamic simulation. Therefore, since joint constraints between ANCF 

finite elements are imposed at a preprocessing stage, these constraints are not included in the 

vector  , t C e 0  which has only nonlinear constraint equations. If the body is not subjected to 

nonlinear constraint equations, the body equations of motion are defined as i i i

eM e F . 

Furthermore, by using the large displacement ANCF Cholesky coordinates, one obtains an 

identity generalized mass matrix that leads to an optimum sparse matrix structure for the system 

dynamic equations. Therefore, a chain system, for example, in which the chain links can have 

independent rigid body displacements, can be represented by one FE mesh (one flexible body) in 

which the connectivity conditions are imposed at a preprocessing stage using linear algebraic 

equations. Such a FE mesh will have an identity inertia matrix if the large displacement ANCF 
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Cholesky coordinates are used. In fact, several chains can be represented by one FE mesh since 

ANCF finite elements correctly describe rigid body displacements, as previously mentioned. 

2.6. Numerical Results 

 It will be demonstrated in this section that ANCF meshes that allow relative motion 

between the finite elements can be developed. In these ANCF meshes, the finite elements are 

connected using linear algebraic equations and the mesh mass matrix remains constant. Chain 

examples characterized by structural and non-structural discontinuities are considered. The links 

of the chains used are assumed to be flexible with mass density of 7200 kg/m
3
, and a Poisson 

ratio of 0.3. Two different values of the modulus of elasticity,  102 8 and  102 11 N/m
2
, are 

used in the simulations. The elastic forces of the ANCF elements are formulated using a general 

continuum mechanics approach that employs a Hookean constitutive model. In all examples 

discussed in this section, the system is represented by one FE mesh (one flexible body). 

2.6.1. Multi-Link Chain 

 Figure 8 shows a multi-link chain that has an overall length of 1 m. The chain consists of 

8 links that are connected by pin joints. These pin joints ensure 0C  continuity and allow for 

independent relative rotations and deformation modes at the joint nodes. In computational 

geometry, this case of non-structural discontinuities at the joint nodes corresponds to knot 

multiplicity of 3 when cubic polynomials are used for the finite elements. Each link in this chain 

is represented by one planar shear deformable beam element. Therefore, the chain has 80 degrees 

of freedom; 8 degrees of freedom represent rigid body relative rotations, and the remaining 72 

degrees of freedom represent deformation modes; with 9 deformation modes for each link. The 

chain is subjected to a base excitation defined by the function ) 1.0sin(01.0 tX  . All the 
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links of the chain are assumed to be initially horizontal. The effect of the link gravity is 

considered. 

 

Figure 8 Eight-link chain system 

In order to verify the obtained results, a simulation of a very stiff pendulum is carried out 

first, and the results are compared with the results of a rigid link chain model.  For the very stiff 

chain, a modulus of elasticity of 
211 N/m 102  is used for the finite elements. Figure 9 shows the 

vertical position of the center of the last link as function of time for both cases of the rigid and 

stiff chains. Figure 10 shows the absolute rotation of the last link of the chain about an axis 

parallel to the pin joints axes. The results presented in Figs. 9 and 10 show a good agreement 

between the results obtained using the rigid and very stiff link chain models. For the rigid link 

chain model, nonlinear algebraic equations are used to define the pin joints and the resulting 

generalized mass matrix associated with the system degrees of freedom is highly nonlinear. For 

the flexible ANCF chain model, the chain is represented by one FE mesh (one flexible body), the 

pin joint constraints are linear, and the mass matrix is constant.  
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Figure 9 Vertical displacement of the center of link 8   

( Flexible link chain, ---- Rigid link chain) 

 
Figure 10 Rotation of link 8 

( Flexible link chain, ---- Rigid link chain). 
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Figure 11 shows the vertical displacement of the tip point of link 8 of the chain when the 

modulus of elasticity is reduced to 
28 N/m 102 . Figures 12 and 13 show the chain 

configurations at different time points. Figure 14 shows the relative rotation between links 7 and 

8 of the flexible chain as function of time. Figures 15 and 16 show the distribution of the normal 

strain components xx  and yy .  It is clear from the results presented in these figures that the 

strains are discontinuous as the result of the non-structural discontinuities at the joints; the strains 

are continuous within the elements, and xx  decreases since the links at the beginning of the 

chain are subjected to higher gravity forces as compared to the links at the end of the chain. It is 

important, however, to point out that for fully parameterized ANCF finite elements, one can 

always define, at an arbitrary point inside the element, coordinate lines in which there are 

continuous strain components regardless of the shape of the structure. 

 

 
Figure 11 Vertical displacement of the tip point of link 8 of the flexible chain  
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Figure 12 Chain configurations for 0t   to 0.9t   s 

 

Figure 13 Chain configurations for 1t   to 1.6t   s 
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Figure 14 Relative rotation between last two chain links 

 

Figure 15 Distribution of the normal strain xx  
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Figure 16 Distribution of the normal strain yy  

2.6.2. Structural and Non-Structural Discontinuities 

 Another example that includes both structural and non-structural geometric 

discontinuities is shown in Fig. 17. The system shown in this figure consists of 6 bodies 

including the ground. It has five pin joints that allow arbitrarily relative rotations between the 

links. The T-shaped section is modeled using three ANCF finite elements, while all other links in 

this chain system are modeled using one ANCF finite element. Therefore, the system which has 

5 moving components is represented by one FE mesh (one flexible body) that has 7 ANCF beam 

elements. The pin joints in this example represent non-structural discontinuities, while the T-

junction is an example of structural discontinuity. The cross-sectional area of all the finite 

elements is assumed to be 0.1 × 0.1 m
2
, the length of each beam element is assumed to be 0.55 

m, and the mass density is 7200 kg/m
3
. The results obtained using very stiff beams with modulus 
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of elasticity equal to  102 11 N/m
2
 were found to be in a good agreement with the results 

obtained using the rigid body model. After this verification, the modulus of elasticity was 

reduced to  102 8 N/m
2
.  

 
Figure 17 System with structural and non-structural discontinuities 

 Figure 18 shows motion simulation of the mechanism at different time points. The figure 

shows clearly the behavior of the structural and non-structural joints. The T-shaped section has 

structural geometric discontinuity that is described using ANCF gradient constraints (Shabana 

and Mikkola, 2003). This type of structural discontinuities is different from the non-structural 

discontinuities due to the pin joints that allow for arbitrary relative rotation between the chain 

links as demonstrated in Fig. 19. Figures 19 and 20 show, respectively, the trajectory of the 

centroid (Point C ) of the T shaped beam and the trajectory of point B . 

  



 

38 

 

 

 

 
Figure 18 Dynamic simulation 
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Figure 19 Trajectory of the centroid (point C ) of the T shaped beam 

 

 
Figure 20 Trajectory of point B  
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2.7. Concluding Remarks 

 Existing MBS algorithms and computer programs do not allow structural finite elements 

(beams, plates, and shells) of a mesh to have arbitrarily large relative rigid body displacements 

that can introduce non-structural geometric discontinuities. Most algorithms and computer codes 

define structural FE meshes in which the elements are rigidly connected. In MBS algorithms, 

components which are not rigidly connected are treated as separate bodies, and nonlinear 

algebraic equations are used to define the joints that connect these bodies. Furthermore, the mesh 

inertia matrix becomes highly nonlinear in the case of rigid body rotations. Similarly, relative 

rigid body rotations lead to highly nonlinear kinematic constraint equations and inertia forces in 

the case of rigid body dynamics, as demonstrated in this chapter using a simple example. FE 

algorithms, on the other hand, employ co-rotational formulations that lead to highly nonlinear 

inertia matrix in the case of rigid body motion. For the most part, FE computer programs employ 

an incremental solution procedure that is not designed for solving MBS differential/algebraic 

equations. This thesis proposes the development of new FE meshes that can be effectively used 

in MBS dynamic analysis. The proposed ANCF procedure can be effectively used for modeling 

non-structural geometric discontinuities by allowing the structural finite elements of a mesh to 

have arbitrarily large relative rigid body displacements. Connectivity conditions between the 

finite elements are defined using linear algebraic constraint equations which can be introduced at 

a preprocessing stage before the dynamic analysis in order to eliminate redundant coordinates; 

thereby significantly reducing the number of algebraic equations and the associated Lagrange 

multipliers. Using ANCF finite elements that correctly describe rigid body displacements and do 

not require the use of the co-rotational formulation, one obtains a FE mesh that has rigid body 

degrees of freedom and at the same time has a constant mass matrix. The relationship between 
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these ANCF continuity conditions and the concept of knot multiplicity used in computational 

geometry methods such as B-splines and NURBS is discussed and demonstrated using several 

examples. The examples presented in this chapter show that ANCF finite elements can be used to 

systematically model non-structural discontinuities as well as structural discontinuities including 

T- and V-junctions. 
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CHAPTER 3 

COMPARISON WITH COMPUTATIONAL GEOMETRY METHODS 

Materials presented in this chapter are taken from "Shabana, A.A., Hamed, A.M., Mohamed, A. 

A., Paramsothy Jayakumar, Letherwood, D.M: Use of B-spline in the Finite Element analysis: 

Comparison with ANCF Geometry. Journal of Computational and Nonlinear Dynamics, 2012." 

Please refer to Appendix B for copyrights transfer. 

 

 In previous chapter, it was shown that a linear formulation of the perfect plannar pin 

joints that allow for finite relative rotations between the connected elements can be 

systematically obtained using ANCF finite elements. This Chapter introduces a generalization of 

the proposed plannar joint formulation to the spatial analysis. It is shown that the constraints 

equations of the spherical and revolute (pin) joints will remain linear in the spatial analysis. This 

chapter also examines the limitations of using B-spline representation as an analysis tool by 

comparing its geometry with the nonlinear finite element absolute nodal coordinate formulation 

(ANCF) geometry. It is shown that while both B-spline and ANCF geometries can be used to 

model non-structural discontinuities using linear connectivity conditions, there are fundamental 

differences between B-spline and ANCF geometries. First, while B-spline geometry can always 

be converted to ANCF geometry, the converse is not true; that is, ANCF geometry cannot always 

be converted to B-spline geometry. Second, because of the rigid structure of the B-spline 

recurrence formula, there are restrictions on the order of the parameters and basis functions used 

in the polynomial interpolation; this in turn can lead to models that have significantly larger 

number of degrees of freedom as compared to those obtained using ANCF geometry. Third, in 

addition to the known fact that B-spline does not allow for straight forward modeling of T-

junctions, B-spline representation cannot be used in a straight forward manner to model 

structural discontinuities. It is shown that ANCF geometric description can be used to develop 



 

43 

 

new spatial chain models governed by linear connectivity conditions which can be applied at a 

preprocessing stage allowing for an efficient elimination of the dependent variables. The modes 

of the deformations at the definition points of the joints that allow for rigid body rotations 

between ANCF finite elements are discussed. The use of the linear connectivity conditions with 

ANCF spatial finite elements leads to a constant inertia matrix and zero Coriolis and centrifugal 

forces. The fully parameterized structural ANCF finite elements used in this study allow for the 

deformation of the cross section and capture the coupling between this deformation and the 

stretch and bending. A new chain model that employs different degrees of continuity for 

different coordinates at the joint definition points is developed. In the case of cubic polynomial 

approximation, 1C  continuity conditions are used for the coordinate line along the joint axis; 

while 0C  continuity conditions are used for the other coordinate lines. This allows for having 

arbitrary large rigid body rotation about the axis of the joint that connects two flexible links. 

Numerical examples are presented in order to demonstrate the use of the formulations developed 

in this chapter. 

3.1. B-spline Surfaces 

 B-spline surfaces are defined using the product of basis functions, two parameters, and 

two knot vectors. They can be defined in the following parametric form (Piegl and Tiller, 1997): 

, , ,

0 0

( , ) ( ) ( )
n m

i p j q i j

i j

u v N u N v
 

r P                   (3.1) 

where u  and v  are the parameters; )(, uN pi  and , ( )j qN v  are B-spline basis functions of degree 

p  and q , respectively; and ,i jP  are a set of bidirectional control points. The B-spline basis 

functions )(, uN pi  are defined as  
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i j i i j i

u u u
N u

u uu u
N u N u N u

u u u u



 

  

   

  
  
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
  

  

                                (3.2) 

where ,  0,1,2, , 1 iu i n p   are called the knots; and 1i iu u  . The vector 

0 1 1{ }n pu u u  U  is called the knot vector. Similar definitions can be introduced for 

, ( )j qN v  with another knot vector 0 1 1{ }m qv v v  V . Note that the orders of the 

polynomials in the u  and v  directions can be different; for example, a cubic interpolation can be 

used along u  while a linear interpolation can be used along v . As in the case of B-spline curves, 

the knots of B-spline surfaces do not have to be distinct; distinct knots are called breakpoints and 

define surface segments with non-zero dimensions. The number of the non-distinct knots in U  

and V  at a point is referred to as the knot multiplicity associated, respectively, with the 

parameters u  and v  at this point. At a given breakpoint, the multiplicity associated with u  can 

be different from the multiplicity associated with v ; allowing for different degrees of continuity 

for the derivatives with respect to u  and v . For cubic ,i pN  ( 3p  ), 0 1,C C , or 2C  conditions 

correspond, respectively, to knot multiplicity of three, two, and one; while in the case of linear 

interpolation of ,j qN , the highest continuity degree that can be demanded is continuity of the 

gradients. When zero multiplicity is used at a breakpoint, the segments blend together at this 

point. 

 In B-spline surface representation, there is a relationship between the polynomial degree, 

the number of knots, and the number of control points. This relationship must be fully 
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understood if B-spline geometry will be used as an analysis tool. If 1r   is the number of knots 

in U  and 1s   is the number of knots in V , then in B-spline geometry, one must have 

1, 1r n p s m q           (3.3) 

These formulas imply that, for a given polynomial order, if the number of knots decreases, the 

number of control points (degrees of freedom used in the analysis) must also decrease. A 

decrease in the knot multiplicity by one is equivalent to eliminating one control point. This can 

also be equivalent to increasing the degree of continuity since eliminating a control point can be 

the result of imposing algebraic equations that relates the derivatives at a certain breakpoint. 

From the bidirectional structure used in Eq. 3.1, a surface which has cubic interpolation along u  

( 3, 3, 1 8p n r    ) and a linear interpolation along v ( 1, 1, 1 4q m s    ), should have 

   1 1 8n m     control points; this is regardless of whether the surface is two- or three-

dimensional. Manipulation of the B-spline surface of Eq. 3.1 shows that these eight control 

points are the result of using the alternate basis set 2 2 3 31, , , , , , ,u v uv u u v u u v . That is, B-spline 

representation and the formulas of Eq. 3.3 do not allow for the use of the basis set  

2 31, , , , ,u v uv u u  which can be effectively used to develop a shear deformable beam model. If a 

cubic interpolation is used for both u  and v  (thin plate), the B-spline representation will require 

16 control points because the expansion must include all terms ; , 0,1,2,3k lu v k l   regardless of 

whether the shape of deformation of the plate is simple or complex; one must strictly follow the 

B-spline rigid structure. This can be of disadvantage in the analysis since such a geometric 

representation can unnecessarily increase the dimension of the analysis model and leads to the 

loss of the flexibility offered by the FE method or modal analysis techniques. As the degree of 

the polynomial interpolation increases, the problem gets even worse. Another important and 
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interesting issue with regard to the use of B-spline as an analysis tool is capturing discontinuities; 

this is discussed in the following section. 

3.2. Generality of ANCF Geometry 

 While B-spline geometry can always be converted to ANCF geometry, the converse is 

not true. ANCF geometry does not impose restriction on the basis functions that must be 

included in the interpolating polynomials. This allows for developing finite elements that have 

less coordinates as compared to those developed using the B-spline representation. Furthermore, 

ANCF geometry can be used to model both structural and non-structural discontinuities 

(Shabana and Mikkola, 2003; Shabana, 2010; Hamed et al., 2010), while the rigid recurrence B-

spline representation cannot be used to model structural discontinuities in a straightforward 

manner. The basic differences between ANCF and B-spline geometries are demonstrated in this 

section using a planar beam example. The displacement field of the shear deformable beam used 

in this section can be written as      , ,x y x y tr S e , where x  and y  are the element spatial 

coordinates, t  is time, S  is the element shape function matrix, and e  is the vector of the element 

nodal coordinates. The shape function matrix for the element considered in this section is defined 

as 

 1 2 3 4 5 6

j s s s s s sS I I I I I I     (3.4) 

where the shape functions , 1,2, ,6is i   are defined as (Omar and Shabana, 2001) 

   

 

2 3 2 3

1 2 3

2 3 2 3

4 5 6

1 3 2 , 2 , 1 ,

3 2 , ,

s s l s l

s s l s l

      

    

        


      

      (3.5) 
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 In this equation, ,x l y l   . ANCF finite elements employ gradient vectors as 

nodal coordinates. For the element used in this section, the vector of nodal coordinates is defined 

as 

           
1 1 1 2 2 2

T
T T T T T T

x y x y         
 

e r r r r r r   (3.6) 

where   , 1,2
k

k   indicates variables evaluated at node k  of the element. Note that the 

element defined by the preceding equations is based on a cubic interpolation for x  and a linear 

interpolation for y . This element has been widely used in the analysis of large deformation 

problems. 

 The finite element described in this section is an example of ANCF elements that cannot 

be converted to B-spline representation. This element is based on a polynomial expansion that 

does not have the two basis functions 2x y  and 3x y . These terms can be systematically included 

in ANCF geometry by adding nodal coordinates allowing for converting B-spline representation 

to ANCF representation. Similar comments apply to ANCF thin plate elements that do not have 

to include all the basis functions ; , 0,1,2,3k lx y k l  . This flexibility offered by ANCF geometry 

allows for developing finite elements that have smaller number of coordinates compared to those 

elements developed by B-spline geometry. 

 As mentioned earlier in Chapter 2, one can also show that ANCF finite elements can 

describe structural and non-structural discontinuities. Non-structural discontinuities that allow 

for large rigid body rotations can be described using a 0C  model obtained by imposing 

constraints on the position coordinates only. For example if two elements i  and j  are connected 
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by pin joint at a node, one can apply the algebraic equations i jr r  at this node. These algebraic 

equations can be imposed at a preprocessing stage to eliminate the dependent variables and 

define FE mesh that has a constant mass matrix and zero Coriolis and centrifugal forces despite 

the finite rotations allowed between the finite elements of the mesh. As previously mentioned, 

non-structural discontinuities can also be described using B-spline geometry by reducing the 

knot multiplicity at the joint node by one. Note that in the case of non-structural discontinuities, 

no constraints are imposed on the gradient vectors, and therefore, the state of strain is not unique 

at the joint node. Each of the Lagrangian strains    1 2, 1 2T T

xx x x yy y y    r r r r , and 

2T

xy x y  r r  have two values at the joint node; one defined on element i  and the other is defined 

on element j . 

 The concept of degrees of freedom widely used in mechanics is not considered in 

developing the recurrence relationships on which B-spline and NURBS geometry are based. This 

represents another serious limitation when these computational geometry methods are used as 

analysis tools; as evident by the fact that B-spline geometry cannot describe structural 

discontinuities. This type of discontinuities, while it remains of the 0C  continuity type, requires 

imposing additional constraints on the gradients; these constraints cannot be captured by the B-

spline recurrence formula since they require the elimination of additional vectors. In the case of 

B-spline, 0C  continuity is achieved by reducing the knot multiplicity by one, and this eliminates 

one control point leading to the definition of a pin joint (non-structural discontinuity). ANCF 

geometry, on the other hand, allows for imposing constraints on the gradients using the tensor 

transformation    1 2    r x r x A , where  1 1 1

T
x yx  and  2 2 2

T
x yx  are two sets of 
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coordinate lines, and A  is the matrix of coordinate line transformation. Using this tensor 

gradient transformation, the structural discontinuities can be systematically modeled using 

ANCF finite elements (Shabana and Mikkola, 2003; Shabana, 2010).  For example, if the axis of 

a beam element j  makes an angle   with the axis of another element i  and the two elements 

are rigidly connected at a node, the structural discontinuity conditions that eliminate all the 

relative rigid body displacements can be written at the joint node as 

cos sin
,

sin cos

i i j j
i j

i i j jx y x y

 

 

        
      

        

r r r r
r r                       (3.7) 

where,  is the angle between the two connected bodies. 

 These six scalar algebraic equations can be used to eliminate a position coordinate vector 

and two gradient vectors, defining a unique strain state at the node of connectivity between the 

ANCF finite elements. The algebraic conditions of Eq. 3.7 that allow ANCF finite elements to 

describe two types of 0C  discontinuity cannot be automatically captured by the B-spline 

recurrence formula. Note that, these algebraic conditions are linear in the ANCF finite element 

coordinates, and therefore, they can be applied using a standard FE assembly procedure at a 

preprocessing stage of the analysis. These conditions lead to a relative motion, between the finite 

elements, that is pure deformation displacement. 

 It is important to point out that the coordinate line transformation of Eq. 3.7 need to be 

applied only in the case of structural discontinuities. Such a transformation is not required in the 

case of non-structural discontinuities despite the fact that the elements can have arbitrary 

orientation relative to each other. This is due to the facts that non-structural discontinuity does 
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not impose constraints on the gradient vectors, ANCF geometry is invariant under an arbitrary 

rigid body displacement, and each ANCF finite element has its own independent parameters. 

Similarly, in the case of curved shapes as in belt applications, the coordinate transformation used 

in Eq.3.7 is not required since there are no structural discontinuities and the gradients at all 

points on the belt can be defined with respect to the same coordinate lines. In the curved sections 

of the belt, one must provide the appropriate values of the gradient vectors that define the correct 

shape. Recall that a curve, regardless of its shape, requires only one parameter; while a surface, 

regardless of its shape, requires only two parameters.  

3.3. Three-Dimensional Non-structural Discontinuities 

 In this section, it is shown how fully parameterized ANCF three-dimensional finite 

elements can be used to develop spatial joint models that allow large relative rigid body rotation 

between the finite elements. ANCF finite elements connected by this joint can be assembled 

using linear connectivity conditions leading to FE mesh that has a constant mass matrix and zero 

Coriolis and centrifugal forces. The fully parameterized three-dimensional ANCF beam element 

is used in this investigation to demonstrate the development of such joint models. The 

displacement field of the element can be written as      , , , ,x y z x y z tr S e  where ,x y , and z  

are the element spatial coordinates. The shape function matrix of this element is defined as 

(Yakoub and Shabana, 2001; Shabana, 2008) 

  1 2 3 4 5 6 7 8s s s s s s s sS I I I I I I I I    (3.8) 

where the shape functions , 1,2, ,8is i   are defined as 
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      (3.9) 

 In this equation, , ,x l y l z l     . The element has two nodes; each node has 12 

nodal coordinates defined by the vector 
T

k kT kT kT kT

x y z
   e r r r r , where k  is the node 

number. The ANCF finite element defined by Eqs. 3.8 and 3.9 captures the cross section 

deformation and its coupling with extension and bending. Therefore, this element can be used to 

develop general models for belt drives and rubber tracked vehicles. 

 The three-dimensional beam element presented in this section is another example that can 

be used to demonstrate the generality of the ANCF geometry. This element is based on cubic 

interpolation in x  and linear interpolation in y  and z . Nonetheless, one can show that the four 

basis functions 2 3 2 3, , ,x y x y x z x z  are not used in developing the displacement field of this 

widely used ANCF beam element. Therefore, the geometry of this element cannot be converted 

to B-spline volume geometry. These missing basis functions can be systematically included in 

the development of another ANCF finite element that can be converted to B-spline volume 

geometry. However, such an element will lead to 50% increase in the number of the element 

nodal coordinates.  

 A planar pin joint between rigid or flexible bodies is an example of 0C  continuity, as 

previously discussed. A pin joint between two rigid bodies in the spatial analysis also allows for 

only one degree of freedom, which is a relative rotation about the joint axis. Since the pin joint 

eliminates five degrees of freedom in the rigid body analysis, its formulation requires five 
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algebraic constraint equations that eliminate three relative translation displacements and two 

relative rotations between the two bodies. In the case of flexible bodies, an infinitesimal volume 

can have 12 modes of displacements; three rigid body translations, three rotations, and six 

deformation modes. In this section, a new model of pin joint between ANCF finite elements is 

introduced. The formulation of this pin joint between elements i  and j  employs the following 

six scalar equations defined at the joint node: 

,i j i j

  r r r r       (3.10) 

 Here   is the coordinate line that defines the joint axis;   can be ,x y , or z  or any 

other coordinate line as discussed later in this section. The six scalar equations of Eq. 3.10 

eliminate six degrees of freedom; three translations, two rotations, and one deformation mode. 

This joint model ensures 1C  continuity with respect to the coordinate line   and 0C  continuity 

with respect to the other two parameters. It follows that the Lagrangian strain component 

 1 2T

    r r  is continuous at the joint definition point, while the other five strain 

components can be discontinuous. 

 While the algebraic constraint equations of a pin joint between two rigid bodies are 

highly nonlinear, the algebraic constraint equations of Eq. 3.10 are linear. Therefore, these 

equations can be applied at a preprocessing stage to systematically eliminate the dependent 

variables. Using these equations, one can develop a new kinematically linear FE mesh for 

flexible-link chains in which the links can have arbitrarily large relative rotations. The use of this 

pin joint model with ANCF finite elements leads to a constant mass matrix and zero Coriolis and 

centrifugal forces. 
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 As previously mentioned, B-spline geometry can describe the type of non-structural 

discontinuity discussed in this section. Nonetheless, if an arbitrary axis of a pin joint is to be used 

in the analysis, the use of B-spline geometry can be difficult given the rigid structure of the B-

spline recurrence formula. In order to be able to choose an arbitrary axis of rotation for the pin 

joint, one must be able to define the gradient vector in the direction of a coordinate line along 

this axis of rotation. Such a definition can be easily made using ANCF geometry using the 

gradient tensor transformation. Let ,u v , and w  be another set of parameters; one of them can be 

used to define the joint axis. It follows that  u v w x y z
   r r r r r r A , where A  is the 

constant matrix of coordinate transformation defined as 

x x x

u v w

y y y

u v w

z z z

u v w

   
   
 
   
   
 
   
    

A                 (3.11) 

 The fact that this matrix is constant allows having linear pin joint connectivity conditions 

when ANCF finite elements are used (Shabana and Mikkola, 2003; Shabana, 2010).  

3.4. Numerical Examples 

 In this section, three-dimensional belt drive and chain examples are used to demonstrate 

the implementation of the concepts discussed in this chapter. The degree of continuity at the 

element interfaces can be applied at a preprocessing stage in order to eliminate the dependent 

variables leading to a finite element mesh that has a constant mass matrix and zero Coriolis and 

centrifugal forces. The fully parameterized three-dimensional ANCF beam element discussed 
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earlier is used in modeling the belt and the chain used in this section. The following three 

different models are considered:  

1. A finite element belt model with 1C  continuity. The geometry of this model can be 

defined in the initial configuration using a smooth curve that defines the centerline of the 

belt. This model, referred to in this section as the 1C  belt model, leads to continuous 

gradients and strains at the element interfaces. 

2. A finite element belt model that ensures continuity of 
yr  ( 1C  continuity along y ), but it 

has 0C  continuity along x  and z . In the initial configuration, the centerline of the belt is 

continuous. This model is referred to as the 0 1C C  belt model. 

3. A finite element flexible-link chain model that ensures continuity of yr  ( 1C  continuity 

along y ), but it has 0C  continuity along x  and z . This model differs from the previous 

two models due to the fact that the chain centerline is not continuous at the initial 

configuration because xr  and zr  are not continuous. This model will be referred to in this 

section as the chain model.  

 The belt and chain drive mechanisms considered in this section are assumed to consist of 

two pulleys and a flexible belt or a chain as shown in Figs. 21 and 22. Figure 22 shows the 

discontinuity of the gradients at the joints in the initial configuration. The pulleys are connected 

to the ground using revolute joints.  
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Figure 21 Initial configuration of the belt drive mechanism for both 0 1C C and 1C  models 

 

 

Figure 22 Initial configuration of the chain model 

 

 The span length in the reference configuration is assumed to be 0.12 m in the case of the 

belt model and 0.128 m in the case of the chain model. In the examples considered in this 

section, the angular velocity of the driving pulley is specified by the following equation:  

1

0                       0.3

( 0.3)
100     0.3 1.0

0.7

100                   1.0

t

t
t

t







  




                             (3.12) 

where 1  is expressed in rad/s,  and t is the time expressed in seconds. The mass moment of 

inertia of the driven pulley about its axis of rotation is 0.0075 kg/m
2
. In order to introduce 
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tension in the system, the driving pulley is displaced in the X  direction until the span length 

reaches 0.18 m for the three models. In order to avoid oscillations at the beginning of the 

simulation, this pulley displacement is achieved over a period of 0.2 s. A resistance moment 

defined by the following equation is applied to the driven pulley: 

0                        0.3

( 0.3)
1.1     0.3 1.0

0.7

1.1                   1.0

t

t
M t

t





   

 

           (3.13) 

 The two pulleys are assumed to have the same radius and width of 0.058 and 0.01 m, 

respectively. A compliant force model is used to describe the belt/pulley interaction. The 

stiffness and damping coefficients used in the belt/pulley contact force model are given 

respectively by 
7

109  N/m
3 and 32 10  N.s/m

3
. Tangential friction forces are also introduced 

using a coefficient of dry friction of 1.2 (Leamy and Wasfy, 2002). The friction parameter that 

defines the slope in the transition region is assumed to be 10
6
 N.s/m

3
 (Maqueda et al, 2008). The 

belt is modeled using 20 ANCF three-dimensional beam elements. Incompressible Neo-Hookean 

constitutive model with nonlinear damping model is used to model the flexible belt. The belt is 

assumed to have a rectangular cross-section of dimensions 0.01 0.004 m and density of 3500 

kg/m
3
. The incompressible Neo-Hookean model constant is assumed to be 

26
N/m102s , 

the incompressibility constant is assumed to be 
28

N/m10k , and the dilatation and deviatoric 

dissipation factors used for the damping model are assumed to be 
4

10


 and 
5

105


 , 

respectively. 

 Figure 23 shows the angular velocity of the driving and driven pulleys for both the 1C , 

0 1C C , and chain models. The results presented in this figure show that the angular velocity of 
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the driven pulley in the case of the 1C  belt model is higher than that of 0 1C C  belt and chain 

models. This can be attributed to the fact that in the case of the 0 1C C  and chain models, some 

of the loads such as bending moment about Y  axis are not transferred between elements.  

 

Figure 23 Angular velocity of the driving and driven pulleys 

( Driving pulley,  1C  belt (driven pulley), 0 1C C  belt (driven pulley),           

chain (driven pulley)) 

 

        Figures 24-26 show the configurations of the belt centerline for the three models at time 1 s. 

These figures show that the gradients xr and zr  are discontinuous in case of the 0 1C C  belt and 

chain models and they are continuous in case of the 1C  belt model.  
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Figure 24 Centerline of the 1C  belt model at time 1s 

 

 

 

Figure 25 Centerline of the 0 1C C  belt model at time 1s 
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Figure 26 Centerline of the chain model at time 1s 

 

 Figure 27 shows a measure of the cross section deformation along the belt centerline at 

time 2s.  This measure is defined by Nanson’s formula that can be used to calculate the ratio 

between the areas in the current and reference configurations. Nanson’s formula is defined as 

(Ogden, 1984; Shabana, 2008) 

 n

TT

n

J

dA

da

nJJn
                                                        (3.14)   

where a  and A  are, respectively, the area in the current and the reference configurations, J is 

the determinant of the matrix of position vector gradients J , and nn is the unit vector normal to 

the area. The results of Fig. 27 show that the area ratio is continuous in the case of the 1C  belt 

model while it is not continuous in case of the 0 1C C and chain models.   
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Figure 27 Area ratio along the belt centerline at time 1.9s 

(  1C  belt, 0 1C C  belt,        chain) 

 

 Figures 28-30 show comparison of the normal strains at the element interface points 

along the belt centerline for the three models. The results obtained in this investigation show 

that all the strain components, which are functions of the gradient vectors, are continuous in the 

case of the 
1C  belt model; while in the case of the 

0 1C C  and chain models only yy
 is 

continuous. Figure 31 shows the Lagrangian shear strain component xz
 along the belt 

centerline. The results of this figure show xz
 to be discontinuous in the case of the 

0 1C C  and 

chain models because it is function of both the gradient vectors  xr
 and zr , which are 

discontinuous when these models are used.  
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Figure 28 The axial strain xx  along the belt centerline at time 1.9s 

(  1C  belt, 0 1C C  belt,        chain) 

 

 

 

 

 
 Figure 29  Normal strain yy  along the belt centerline at time 1.9s 

(  1C  belt, 0 1C C  belt,        chain) 
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 Figure 30 Normal strain zz  along the belt centerline at time 1.9s 

(  1C  belt, 0 1C C  belt,        chain) 

 

 

 
 Figure 31  Shear strain xz  along the belt centerline at time 1.9s 

(  1C  belt, 0 1C C  belt,        chain) 
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3.5. Concluding Remarks 

 This chapter addresses the important issue of using computational geometry methods 

such as B-spline and NURBS as analysis tools. B-spline and NURBS employ recurrence 

formulas that allow changing the degree of continuity at a breakpoint by adjusting the knot 

multiplicity at this point. As demonstrated, the recurrence formula has several drawbacks when 

B-spline representation is used as an analysis tool. Because the recurrence formula does not 

provide flexibility for choosing the basis functions, B-spline representation can lead to 

significantly larger number of coordinates and a higher dimensional model. This fact was used to 

demonstrate the generality of the ANCF geometry. While B-spline geometry can always be 

converted to ANCF geometry, the converse is not true. It is also shown that the B-spline 

recurrence formula cannot be used to model structural discontinuity in a straight forward manner. 

While structural discontinuities are of the 0C  type, they cannot be captured in the B-spline 

representation by reducing the knot multiplicity by one. This reduction of the knot multiplicity is 

equivalent to elimination of the relative translation only; and such a reduction in the knot 

multiplicity leads to a rigid body mode that defines the conditions of a pin joint. In the case of 

structural discontinuities, on the other hand, the 0C  B-spline representation does not eliminate 

the rigid body mode since additional algebraic constraint equations are required in order to 

eliminate the relative rotations between two segments. This chapter also presents a new three-

dimensional pin joint model that leads to linear connectivity conditions and constant mass matrix 

when used with ANCF finite elements. The implementation of this new model is demonstrated 

using a flexible-link chain example. The limitations identified in this chapter when B-spline 

geometry is used as analysis tool suggest the use of the I-CAD-A approach in which a constant 

transformation can be developed to convert CAD geometry to FE mesh. It should be also clear 
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that NURBS geometry has the same limitations as B-spline representation when used as an 

analysis tool. 
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CHAPTER 4 

COMPLIANT CONTINUUM JOINTS 

 Some of the limitations of using B-spline surfaces as analysis tool were compared to 

ANCF geometry in the preceding chapter. This chapter will continue this discussion by 

extensively examining the new class of ideal compliant joints which accounts for the distributed 

inertia and elasticity. The ANCF degrees of freedom are used in order to capture modes of 

deformation that cannot be captured using existing formulations. The ideal compliant joints 

developed can be formulated, for the most part, using linear algebraic equations, allowing for 

the elimination of the dependent variables at a preprocessing stage, thereby significantly 

reducing the problem dimension and array storage needed. Furthermore, the constraint 

equations are automatically satisfied at the position, velocity, and acceleration levels. When 

using the proposed approach to model large scale chain systems, differences in computational 

efficiency between the augmented formulation and the recursive methods are eliminated, and 

the CPU times resulting from the use of the two formulations become similar regardless of the 

complexity of the system. The elimination of the joint constraint equations and the associated 

dependent variables also contribute to the solution of a fundamental singularity problem 

encountered in the analysis of closed loop chains and mechanisms by eliminating the need to 

repeatedly change the chain or mechanism independent coordinates. It is shown that the concept 

of the knot multiplicity used in computational geometry methods, such as B-spline and NURBS 

(Non-Uniform Rational B-Spline), to control the degree of continuity at the breakpoints is not 

suited for the formulation of many ideal compliant joints. This issue is closely related to the 

inability of B-spline and NURBS to model structural discontinuities. This chapter also 

demonstrates that large deformation ANCF finite elements can be effective, in some MBS 
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application, in solving small deformation problems. This is demonstrated using a heavily 

constrained tracked vehicle with flexible link chains. Without using the proposed approach, 

modeling such a complex system with flexible links can be very challenging. The analysis 

presented in this chapter also demonstrates that adding significant model details does not 

necessarily imply increasing the complexity of the MBS algorithm.      

4.1. Background 

 Several FE/MBS formulations have been developed for the deformation analysis of 

mechanical systems. Some of these formulations are suited for the analysis of large rotation 

small deformation problems, while the others can be used in the analysis of large rotation and 

large deformation problems. An example of the large rotation and small deformation 

formulations is the FE/FFR formulation which employs mixed set of reference and elastic 

coordinates (Shabana, 2014). This formulation leads to a highly nonlinear inertia matrix that has 

a strong coupling between the reference and deformation coordinates. In addition to the high 

nonlinearity of the inertia forces, the joint constraints equations developed using the FFR 

formulation are also highly nonlinear because of the use of orientation parameters (Korkealaakso 

et al, 2009). Furthermore, rigid triads and unit vectors are often used in the formulation of the 

joints in the rigid body and FFR algorithms, and as a result, these ideal joint formulations do not 

capture modes of deformation.  

While the FFR formulation will remain an effective approach for modeling small 

deformation problems because it allows for filtering out high frequency modes, the more general 

large rotation large deformation finite element absolute nodal coordinate formulation (ANCF) 

can be effective in solving a class of small deformation problems (Shabana et al, 2012; Hamed et 
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al, 2011; Shabana, 2010, 2012; Dimtrochenko and Pogorelov, 2003; Abbas et al, 2010; Dufva et 

al, 2005, 2007; Schwab and Meijaard, 2010; Shabana and Mikkola, 2003; Tian et al, 2009; 

Yakoub and Shabana, 2001; Omar and Shabana, 2001). As mentioned earlier, ANCF finite 

elements can be used to model both structural and nonstructural discontinuities in a 

straightforward manner (Shabana et al, 2012; Hamed et al, 2011). Using ANCF finite elements, 

the absolute position vectors and their gradients are considered nodal coordinates. The global 

position of an arbitrary point on an element k of body i can be defined in a global coordinate 

system as )(),,( tzyx ikikikikikik eSr  , where ),,( ikikikik zyxS  is the space-dependent matrix that 

defines the element shape functions, and ik
e is time-dependent vector of nodal coordinates. An 

example of ANCF finite elements is the three-dimensional gradient deficient Euler-Bernoulli 

beam element shown in Fig. 32. For this element, the vector of nodal coordinates ik
e , which 

contains position and position gradient vectors, can be defined as 

T
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(Gerstmayr and Shabana, 2006; Shabana, 2012), where ikj
r  and  ikj ikx r  refer to the 

displacement and displacement gradient vectors at node j of element k .  
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 Figure 32  Euler-Bernoulli beam element  

While ANCF finite elements were introduced for large deformation problems of very 

flexible bodies, these elements can be very effective in the analysis of small deformation in 

complex flexible multibody systems containing a large number of joints and flexible links. As 

demonstrated in this chapter using a large scale tracked vehicle that has flexible-link chains, 

ANCF finite elements can be used to capture model details that cannot be captured using small 

deformation and rigid body formulations.  

A number of approaches have been proposed in the literature for developing tracked 

vehicle models. Galaitsis (1984) introduced a comprehensive model incorporating the dynamics 

of independent rigid track shoes. In this model, the equations of motion for the track chain were 

developed for a tracked vehicle traveling on a flat ground. Bando et al (1991) developed a 

procedure for the design and analysis of small-size rubber tracked bulldozers. They presented a 

computer simulation which was used in the evaluation of the vehicle behavior. Nakanishi and 

Shabana (1994) introduced a model for the nonlinear dynamic analysis of two dimensional 
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tracked vehicle systems. They used both the augmented and the velocity transformation 

techniques. In their investigation, it was shown that the singularity problem, which can be 

encountered if one set of independent coordinates is used throughout the simulation, can be 

avoided by either repeatedly changing the set of independent coordinates or by using a penalty 

function approach. In this latter approach, a cut is made at a selected secondary joint in the track 

in order to form an open loop structure, and the chain is closed using a spring with high stiffness 

coefficient. Choi et al (1998A; 1998B) developed a three dimensional contact force model that 

represents the interaction between the track links and the vehicle components. In their work, 

track links were connected using perfect pin joints. The highly nonlinear joints constraint 

equations were adjoined to the equations of motion using the augmented formulation. Maqueda 

et al (2010) developed a three-dimensional tracked vehicle model with rubber chains modeled 

using ANCF finite elements which allows for a straightforward implementation of general linear 

and nonlinear material models. The cross section deformation results obtained using ANCF finite 

elements were verified by comparing with the results obtained using solid finite elements in the 

case of a simple tension test. In previous chapters (Hamed et al, 2011; Shabana et al, 2012), an 

ANCF C
0
/C

1
 continuity flexible-link chain mesh was developed. This new ANCF mesh can be 

used in the efficient modeling of flexible-link chains. The C
0
/C

1
 ANCF chain model leads to 

linear connectivity conditions, thereby allowing for an efficient elimination of the dependent 

joint variables at a preprocessing stage. Using this approach, the ANCF mesh mass matrix 

remains constant in the case of articulated systems.   
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4.2. Modelling Discontinuities in Multibody System Analysis   

 Structural and nonstructural discontinuities have been fundamental issues in the 

development of MBS formulations. Understanding these types of discontinuities will also shed 

light on the fundamental differences between the approaches currently being developed for the 

integration of computer aided design and analysis. Structural discontinuities refer to the type of 

joints that do not allow relative rigid body displacements, while nonstructural discontinuities 

refer to the types of joints that allow for relative rigid body displacements. The joints used in 

flexible-link chains are example of joints that lead to nonstructural discontinuities. 

Structural discontinuity was the main issue in the development of the large displacement 

small deformation FE/FFR formulation. In the classical finite element formulations, beams, 

plates, and shells, which employ infinitesimal rotations as nodal coordinates, are considered 

nonisoparametric elements. Rigid body motion of such elements does not lead to zero strains and 

rigid body inertia cannot, in general, be exactly modeled (Shabana, 2014). Therefore, before 

introducing the FE/FFR formulation in the early eighties, an incremental approach was needed 

when these elements are used in the analysis of large rotation problems. Because the incremental 

solution of linearized system of equations eventually deviates from correct solution, there was a 

need to develop a new FE formulation that correctly describes rigid body motion when 

nonisoparametric elements are used. For this reason, the FFR formulation was introduced. In this 

formulation, a floating body coordinate system which shares the large displacement and rotation 

of the body is introduced. The large displacement of the body can be described using the global 

position of the floating frame origin and a set of orientation parameters that can be used to define 

the FFR transformation matrix. The use of these independent reference coordinates is sufficient 
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to describe correctly the rigid body motion. Nonetheless, the introduced body coordinate system 

allows only modeling simple geometries that do not have any slope discontinuities as the one 

shown in Fig. 33. On the other hand, complex geometries that consist of elements with different 

orientations as shown in Fig. 34 can be modeled using the concept of the intermediate element 

coordinate system. This coordinate system has an origin that is rigidly attached to the origin of 

the body coordinate system and has axes that are initially parallel to the axes of the finite element 

coordinate system as shown in Fig. 35. Using this coordinate system, the finite elements that 

have different orientations can be connected rigidly using linear algebraic constraint equations at 

a preprocessing stage. Therefore, the FE/FFR formulation provides a general solution for 

accurately modeling structural geometric discontinuities using linear connectivity conditions. 

This leads to an FE mesh that is locally linear allowing for the use of coordinate reduction 

techniques to filter out high frequency modes of vibration. 
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 Figure 33 Structure without slope discontinuity  

 

 

 Figure 34 Structure with slope discontinuity    
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 Figure 35 Intermediate coordinate system 

Another type of slope discontinuity is the nonstructural discontinuity which permits the 

relative rigid body displacements between the segments connected. Example of which is a chain 

of links connected by pin joints as the one shown in Fig. 36. In the case of large relative rotation 

between the connected links, the dynamics of these chains, even for a planar rigid-link chain, is 

governed by highly nonlinear equations as the result of the geometric nonlinearities due to the 

finite relative rotations (Korkealaakso et al, 2009). For this type of joints, the FFR or rigid body 

formulations lead to a highly nonlinear connectivity conditions as the result of using orientation 

parameters. Furthermore, the resulting joint formulations do not include any deformation modes 

since the resulting joint degrees of freedom define only relative rigid body displacements.  
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 Figure 36 Eight-link chain 

A systematic approach for modeling joints between flexible bodies using ANCF finite 

elements was introduced by Sugiyama et al (2003). In their work, tangent frames were used to 

define transformation matrices at the joint definition points. This approach leads to complex 

nonlinear constraints that are adjoined to the system equations of motion using the technique of 

Lagrange multipliers. Nonetheless, as demonstrated in previous chapters, a linear finite element 

mesh of chains that consist of flexible links can be developed in many MBS applications 

(Vallejo et al., 2003; Hamed et al, 2011; Shabana et al, 2012). This can be achieved using ANCF 

finite elements which allow for developing an FE mesh that includes one or more chains with 

flexible links, and each of the links can have independent relative finite rotations. The 

connectivity conditions between the ANCF finite elements can be described using linear 

algebraic constraint equations that can be used at a preprocessing stage to eliminate redundant 

variables. The use of this new concept can lead to significant simplification of the MBS 

algorithm and can eliminate the distinction between the augmented and recursive methods. Both 

the augmented and recursive methods will converge to approximately the same CPU time. Figure 

37 shows two flow charts that describe the steps of the dynamic analysis of two different ANCF 

chains defined using the conventional nonlinear constraint approach and the new linear ANCF 

constraint approach.  
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 Figure 37 Flow chart of the dynamic analysis of ANCF chains  

 (a)Nonlinear constraints   (b) New linear constraints 
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It is clear that using the new ANCF linear constraint approach is more efficient since it 

eliminates many of the time-consuming steps of the conventional approach. For instance, when 

the new approach is used, there is no need to solve the constraint equations at the position, 

velocity or acceleration levels. Furthermore, the dimension of the system differential/algebraic 

equations will be significantly reduced as a result of the elimination of dependent variables and 

the associated Lagrange multipliers. 

4.3. ANCF Joint Formulations and Deformation Modes 

 As mentioned in previous chapters, using ANCF finite elements, mechanical joints 

between finite elements can be formulated using linear connectivity conditions (Vallejo et al., 

2003; Hamed et al, 2011; Shabana et al, 2012). This is an important feature that can be exploited 

to significantly reduce the number of nonlinear algebraic constraint equations and the associated 

Lagrange multipliers in many MBS applications. Several flexible bodies can be modeled as one 

FE mesh consisting of elements that have relative translations and finite rotations with respect to 

each other. This section expands the discussion of the ANCF linear joints using several 

examples, and shows how ANCF finite elements can also reduce the degree of nonlinearity when 

linear joint formulations cannot be obtained for some joints. The modes of the deformation of the 

new ANCF joints are also discussed in this section. Before discussing different ANCF joint 

formulations, it is important to point out that not all joints can be formulated using linear ANCF 

connectivity conditions. More research on this important topic will provide the answers to the 

question of which joints can have linear connectivity conditions that allow for the elimination of 

the dependent variables at a preprocessing stage. In fact, there can be also hybrid joints that have 

both linear and nonlinear constraint equations. The linear constraint equations can be eliminated 
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at a preprocessing stage, while the nonlinear equations can be coupled to the system differential 

equations and treated during the dynamic simulation. 

4.3.1. Spherical Joint 

 When two bodies or finite elements are connected by a spherical joint, one has 0C  

continuity that ensures only the continuity of the position coordinates. The two connected bodies 

can arbitrarily rotate with respect to each other. For a spherical joint between two finite elements 

i  and j , the algebraic spherical joint constraint equations can be written as 

AjBi ,,
rr  ,                                                                  (4.1)         

where A and  B refer to the joint node on the finite elements i and j, respectively. The preceding 

constraint equations eliminate the relative translation between the two finite elements. However, 

since ANCF structural finite elements can correctly describe arbitrary rigid body rotations, 

applying the linear algebraic equations of Eq. 4.1 at a preprocessing stage allows for developing 

a FE mesh in which each finite element can have an independent rotational displacement. Note 

that the above spherical joint constraints are linear in the ANCF coordinates. The same constraint 

equations are highly nonlinear in the case of the rigid body or the FFR formulation (Shabana, 

2001).  

4.3.2. Pin Joint 

 The formulation of the three-dimensional ANCF linear pin joint will be discussed using 

two different ANCF finite elements. The first element is the three-dimensional Euler-Bernoulli 

beam element. This element has only one gradient vector tangent to the element center line and 

considers only the axial and bending deformations. It employs one parameter in the longitudinal 
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direction which does not allow measuring the rotation of the beam about its axis in the straight 

undeformed reference configuration. Such an element is not suited for capturing certain shear 

modes resulting from torsion. Consequently, four constraint equations are sufficient to define the 

pin joint when this simple ANCF element is used. The first set of conditions is the continuity of 

the position coordinates at the joint definition point. This set of conditions can be imposed at a 

preprocessing stage by using the same position degrees of freedom for the two elements at the 

joint node. The second set of conditions constrain the normal to the gradient vectors at the joint 

point to be parallel to each other. This second set of conditions can also be introduced at a 

preprocessing stage by applying continuity on the component of the gradient vector in the 

direction of the joint axis. The constraint equations of a pin joint between two ANCF Euler-

Bernoulli beam elements i and j can thus be written as follows: 

                                                                                                   

          

i ,B j ,A
i ,B j ,A ,

x x
 

    
    

    

r r
r r        

(4.2) 

where  3or  2, 1, denotes the direction of the joint axis. The preceding equations represent a 

set of four scalar equations. The second equation in Eq. 4.2 is a scalar equation that equates the 

 th component of element i  gradient vector along the joint axis to the corresponding  th 

component of element j  gradient vector. For example, if the joint axis is the element y  axis, 

then in this case 2  . Note that the second set of algebraic equations can be formulated at a 

preprocessing step and can be used to eliminate dependent variables before the start of the 

dynamic simulation. Using the preceding equations, one can develop one linear FE mesh for 

flexible-link mechanisms in which the links can have arbitrarily large relative rotations and large 

deformations without the need to include nonlinear algebraic constraint equations in the 
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formulation since these conditions can be eliminated at a preprocessing stage. Note that for the 

gradient deficient Euler-Bernoulli beam element, the joint axis needs to be one of the finite 

element axes in order to obtain the linear relationships of Eq. 4.2. This restriction, which can be 

relaxed when using fully parameterized ANCF finite elements, does not represent a serious 

limitation when chain models are developed. 

Another example of ANCF finite elements is the three-dimensional shear deformable 

beam element. A node on this fully parameterized ANCF element has 12 degrees of freedom. 

These degrees of freedom include three rigid body translations, three rotations, and six 

deformation modes. In order to define linear connectivity conditions for the pin joint, it is 

assumed that the normal strains of the two bodies in the direction of the joint axis are equal at the 

joint definition point. This condition implies that the joint axis does not stretch. If this condition 

is relaxed, the pin joint can be represented by three linear algebraic equations and two nonlinear 

algebraic equations. The three linear constraint equations can be imposed at a preprocessing 

stage, allowing for the elimination of a subset of the dependent variables. One may then 

introduce a pin joint formulation that uses the following six scalar equations defined at the joint 

node between elements i and j (Shabana et al, 2012). 

AjBi ,, rr   ,  
 






 AjBi ,,
rr

.                                                  (4.3) 

 In the above equations,   is the coordinate that defines the joint axis. It can be either x, 

y, z, or any other coordinate line since the use of ANCF finite elements allows for a 

straightforward application of the gradient tensor transformation. The six scalar equations 

represented by Eq. 4.3 define a pin joint with six degrees of freedom: one rotation and five 
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deformation degrees of freedom. Consequently, the joint leads to 1C  continuity for the gradient 

vector along the coordinate line   and 0C continuity for the remaining gradient vectors.  

4.3.3. Sliding Joint 

 Sliding joints between flexible bodies are examples of variable boundary conditions 

joints. Developing the kinematic equations of these joints using the FFR formulation that 

employs linear modes can be difficult because of the change of the boundary conditions. On the 

other hand, these joints can be systematically formulated using ANCF finite elements as 

explained in the literature (Sugiyama et al, 2003). Using ANCF finite elements, a procedure was 

introduced to model the sliding joints using local frames defined at the joint definition point. A 

tangent frame can be used to define a joint local coordinate system whose transformation matrix 

at the joint definition point can be evaluated. In order to define the time derivative of the 

constraint equations, the time derivatives of the columns of the transformation matrices are 

written as function of the generalized coordinates and velocities. This procedure leads to 

complex constraint equations that are difficult to implement. The same joint constraints can be 

formulated using a simple and straightforward approach by introducing two non-generalized 

coordinates. The first non-generalized coordinate u defines the local position of the joint 

definition point on the base element as shown in Fig. 38, while the second one m defines the ratio 

between lengths of the two element position gradient vectors in the direction of the sliding axis. 

The following equations can be used to define the constraint equations of the sliding joint: 

0erereeC  )(),(),,( jj
p

iii
p

iji uu ,    
 






 ji

m
rr

   
 . 
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In the above equations,   and are the coordinate lines in the direction of the joint axis on each 

element, and,  i
e and j

e  are the nodal coordinates of the two finite elements. These constraint 

equations can be applied to constrain 4 of the joint degrees of freedom: 2 rigid rotations, and 2 

rigid translations. The sliding is ensured by requiring continuity of the gradient along the sliding 

axis and preventing the joint definition point from moving normal to the direction of the sliding 

axis. This guarantees the freedom of sliding without the need to define local frames which lead 

to complex constraint equations required to ensure the parallelism of the sliding axes. 

 

 Figure 38 Sliding joint 
 

4.3.4. ANCF Joint Deformation Modes 

 In rigid body and small deformation FFR MBS algorithms, joint formulations allow for 

only relative rigid body degrees of freedom that describe the relative displacements between two 

rigid triads attached to the two bodies connected by the joint. The ANCF joint formulations, on 

the other hand, allow for deformation modes at the joint definition point. This leads to a new 
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class of ideal compliant joints defined using algebraic equations. The gradient vectors of the two 

elements can change their magnitude and orientation allowing for stretch and shear deformations 

at the joint node. Depending on the element type and the number of algebraic equations used in 

the formulation of the joint, different deformation modes can be captured. As an example, the 

gradient deficient Euler-Bernoulli beam element allows for only the axial, bending, and twist. 

Therefore, such an element does not capture shear and cross section deformations. On the other 

hand, the fully parameterized beam element which has a complete set of gradient vectors can be 

used to capture the change in the cross section due to deformation at the joint node. For the fully 

parameterized beam element, the modes of deformations at the joint nodes can be examined 

using the Green-Lagrange strain tensor ε  which can be written as  
1

2

T ε J J I , where J  is the 

matrix of position vector gradients, and I  is the identity matrix. Because the strain tensor ε  is 

symmetric, one can define the strain vector  T 
          zxyzxyzzyyxxv ε , where xx , yy and zz

 

are the normal strains, and xy , yz  and zx  are the shear strains. The strain components are 

continuous inside the element and some of the strain components can be discontinuous at the 

joint nodes because of the discontinuity of position vector gradients at these nodes. Figure 39 

shows some of the deformation modes of the three-dimensional fully parameterized beam 

element. These modes are the stretch mode, the bending mode, and one of the cross section 

deformation modes. The stretch mode is a result of changing the magnitude of the gradient xr at 

the joint point. The bending mode is due to the change of the orientation of the gradient vector 

xr with respect to the line connecting the two nodes of the element. Finally, the cross section 

deformation mode defines the change of the cross section dimensions which is the result of the 
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change in the magnitude of the gradient vectors along the cross section fibers. Furthermore, the 

second condition of Eq. 4.3,    i ,B j ,A    r r , allows for the stretch of the joint pin.  

 

 

 Figure 39  Deformation modes  

 (a) Stretch mode   (b) Bending mode   (c) Cross section deformation 
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4.4. Comparison with the Iso-geometric Approach 

 Computational geometry methods such as B-spline and NURBS (Non-Uniform Rational 

B-Splines) use control points as coordinates. The control points do not necessarily represent 

material points. This is one of the fundamental differences between computational geometry 

methods and the finite element method. The isogeometric analysis is a concept aims at unifying 

the two fields of computer aided design (CAD) and finite element analysis (FEA) by using the 

same basis for the geometry description and analysis (Hughes et al, 2005). This concept, which 

has been used in computer science for many years to build physics based models, has recently 

received attention from the computational mechanics community. The increasing interest in 

isogeometric analysis is motivated by the desire to deal with the difficulties and cost associated 

with the conversion of solid models to FE analysis models. This conversion process leads to 

distortion of the geometry of the analysis model because existing structural elements such as 

beams, plates and shells cannot describe correctly arbitrary geometry. 

As discussed earlier, while the use of the isogeometric analysis can be considered as a 

step in the right direction, the use of computational geometry methods as analysis tool can lead 

to fundamental implementation problems which can be avoided by using ANCF geometry. This 

section expands on the discussion of some of the limitations of computational geometry methods 

when used as analysis tools. The discussion will focus on the limitations associated with the joint 

formulations which is the subject of the thesis.  

4.4.1. Basis Functions 

 ANCF geometry does not impose restrictions on the number of basis functions used in 

the interpolating polynomials. In contrast, B-spline rigid recurrence formula restricts the number 
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of basis functions depending on the degree of the interpolating functions; there is a relationship 

between the polynomial degree, the number of knots, and the number of control points. If 1r   is 

the number of knots in U  and 1s   is the number of knots in V , then in B-spline geometry, one 

must have  

1, 1r n p s m q           (4.7) 

 Using Eq. 4.7, one can show that if a cubic interpolation is used for both u  and v , as in 

the case of a thin plate, the B-spline representation requires 16 control points regardless of 

whether the shape of deformation of the plate is simple or complex (Shabana et al, 2012). This 

can be a disadvantage in the analysis since such a geometric representation can unnecessarily 

increase the dimension of the analysis model and leads to a loss of the flexibility offered by the 

FE method. As the degree of the polynomial interpolation increases, this drawback of B-spline 

becomes more serious. 

4.4.2. Knot Multiplicity 

 In computational geometry methods, a decrease in the knot multiplicity by one leads to 

elimination of one control point and to an increase in the degree of continuity by one. The knot 

multiplicity cannot be used to impose continuity condition on only one element of a position 

vector or a gradient vector. In three-dimensional analysis, a minimum of three scalar equations 

are automatically imposed when the knot multiplicity is decreased by one. Some ideal compliant 

joints, as discussed in this chapter, may require imposing only one or two algebraic equations to 

obtain a certain degree of continuity for one or two elements of a position or gradient vector. 

Such ideal compliant joint constraints cannot be formulated using the rigid B-spline and NURBS 

knot multiplicity concept.  
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4.4.3. Structural Discontinuities 

 Structural discontinuities, such as T-, L-, and V-sections, which can be thought of as a 

sudden change in geometry, represent discontinuities in gradients as the result of the 

discontinuities of the coordinate lines (directions). Modeling this type of discontinuity, which 

characterizes both mechanical and structural systems, requires the use of gradient transformation 

which is fundamental in the implementation of the ANCF geometric representation (Hamed et al, 

2011). Using 0C  continuity in B-spline analysis is equivalent to having a pin joint in the planar 

analysis and to a spherical joint in the spatial analysis. The case of structural discontinuity, which 

is also of the 0C  type, requires additional algebraic equations in order to eliminate the relative 

rotation at the joint definition point. Therefore, there are important geometric configurations 

where the degree of continuity does not change by eliminating degrees of freedom or 

equivalently control points. These important geometric configurations cannot be covered by the 

rigid structure of the B-spline and NURBS which relates the number of degrees of freedom or 

the control points to the degree of continuity (knot multiplicity). 

4.4.4. Sliding Joints 

 Another important geometric scenario associated with the ideal compliant constraints is 

the sliding joint. This type of joint requires continuity of the gradients, but not continuity of all 

position coordinates. In the B-spline representation, 
1C  requires first 

0C  continuity. As 

previously discussed, ANCF representation does not require this sequence, and for this reason, 

such an ANCF representation can be used to model the sliding joint in a straightforward manner. 

Modeling the same joint using B-spline geometry is not as straight forward: at a given 

breakpoint, the multiplicity associated with a knot can be used to change the continuity of the 
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derivatives. For example, in the case of cubic interpolation, 10,CC , and 2C  conditions 

correspond, respectively, to knot multiplicity of three, two, and one. Applying higher degree of 

continuity implies all lower degree continuity. In other words, a knot multiplicity of one which 

corresponds to 2C  implies 0C and 1C continuity. Similarly, applying 1C  implies 0C continuity. 

Therefore, B-spline structure does not allow applying continuity on position gradients without 

position continuity. Therefore, two sliding bodies must be modeled as two separate meshes and 

additional algebraic constraint equations must be added to guarantee the sliding motion.  

4.5. Use of ANCF for Small Deformation Problems  

 Chains are used in many important MBS applications, and therefore, it is important to be 

able to develop efficient and accurate chain models, particularly when the link flexibility is 

considered. For example, chains are critical in defining the mobility of tracked vehicles that 

consist of a large number of components interconnected by joints and force elements. The 

dynamics of such systems are governed by complex relationships as result of the relative motions 

and joint forces. Furthermore, considering the flexibility of the track links increases the system 

complexity, model dimension, and degree of nonlinearity. For this reason, it is necessary to 

carefully select the procedure used to model the flexible links and the joints connecting them in a 

chain structure.  

As previously discussed, an efficient formulation that can be used to model complex 

chain systems is the ANCF which allows for the elimination of the joint constraint equations at a 

preprocessing stage, allowing for the elimination of the joint dependent variables before the 

dynamic simulation starts and leading to a chain mesh that has a constant inertia matrix and zero 

Coriolis and centrifugal forces. Furthermore, the ANCF geometry description, in contrast to 
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conventional finite elements, is consistent with the descriptions used in computational geometry 

methods (Lan and Shabana, 2010; Mikkola et al, 2013).  

While ANCF allows for the use of a general continuum mechanics approach, special elastic force 

models can be derived and implemented in ANCF/MBS algorithms for the solution of specific 

applications. In the case of the tracked vehicle model considered in subsequent sections, the 

deformation of the track links is small. Nonetheless, the development of an FFR model to study 

the flexible link chain dynamics is not recommended because of the following specific reasons: 

1. The FFR formulation leads to a highly nonlinear mass matrix and complex non-zero 

Coriolis and centrifugal forces. On the other hand, ANCF leads to a constant inertia 

matrix and zero Coriolis and centrifugal forces. ANCF Cholesky coordinates can be used 

to obtain an identity generalized inertia matrix, leading to an optimum sparse matrix 

structure. 

2. The FFR formulation leads to highly nonlinear constraint equations for the joints between 

the chain links. These constraint equations must be satisfied at the position, velocity, and 

acceleration levels, and as discussed before, contribute to increasing the problem 

dimensionality and the array storage needed. In the case of flexible-link chains, the 

overhead can be significant. On the other hand, ANCF finite elements allow for the 

formulation of linear connectivity conditions, and therefore, the dependent variables can 

be eliminated systematically at a preprocessing stage. The use of the new ANCF meshes 

can lead to significant simplification of the solution algorithm and significant reductions 

in the array storage as previously discussed. 
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3. In both rigid and FFR chain models, the use of closed chains can lead to singular 

configurations if one set of independent coordinates is used. This is not the case when the 

new ANCF models are used. No singularities are encountered because the joint constraint 

equations and the joint dependent variables are eliminated at a preprocessing stage.  

4. In the case of simple geometry, one chain link can be modeled using one finite element. 

Therefore, the FFR coordinate reduction methods will not be advantageous, particularly 

if the high frequency axial modes need to be included in the model in order to capture the 

link tension forces. Furthermore, in tracked vehicle applications, the contact forces have 

very high frequency contents that can be comparable to the frequencies that results from 

the elastic forces.  

 Because of these reasons, the large deformation ANCF finite elements can be effectively 

used to efficiently solve small deformation problems. ANCF finite elements allow for 

implementing small deformation elastic forces models as described in the following section.  

4.6. Small Deformation ANCF Elastic Force Model 

 In this section, a simple force model, which can be used in the analysis of small 

deformation based on a three-dimensional ANCF Euler-Bernoulli beam, is introduced. The 

developed force model accounts for the coupling between bending and axial deformations. The 

model can be considered as a generalization of the two-dimensional force model developed by 

Berzeri et al (2001). Despite the simplicity of the proposed force model, it accounts for the 

elastic nonlinearity in the strain-displacement relationship. 

4.6.1. Generalized Elastic Forces 

 The strain energy of the Euler-Bernoulli beam element can be written as a function of 

longitudinal strain x  and curvature   as (Gerstmayr and Shabana, 2006; Shabana, 2012) 
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 In the preceding equation, x  is the longitudinal coordinate, l is the length of the element, 

E is the modulus of elasticity, A  is the cross section area, and I is the second moment of area. 

The expression for the vector of elastic forces can be determined by differentiating the strain 

energy with respect to the ANCF coordinates as 
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 In the computer implementation, it is possible to derive the expressions for the 

derivatives in Eq. 4.9 by means of a symbolic computer program, or to derive them analytically 

in order to minimize the number of mathematical operations. Closed form expressions for the 

derivatives of both the axial strain and the curvature can be written as shown in (Gerstmayr and 

Shabana, 2006). The elastic force expressions were modified based on the curvature definition 

given in (Gerstmayr and Irschik, 2008) as 
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 The computation of these complex expressions can be time consuming, especially, for 

models containing a large number of elements. Berzeri et al (2001) introduced a simple model 

for the elastic forces of the planar Euler-Bernoulli beam element. Their model can be extended to 
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the spatial Euler-Bernoulli beam element assuming small longitudinal deformation, which is the 

case for the steel track links used in the chains of the tracked vehicle model considered in the 

next section. The expression for the elastic forces due to longitudinal forces can be written as 

,

0 0

l l
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 By assuming small variation of the strain over the length of the beam, the strain x  
can be 

factored out from the expression of the elastic forces, allowing writing the preceding equation as  
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where ,

0

l
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e l x x xEA dx K S S . The average axial strain can be simply calculated as  x d l l  
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is the current length of the beam.  

 The expression of the elastic forces due to bending can be written as  
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 In the case of small longitudinal deformation, the curvature can be defined as xxr . 

Hence, the transverse elastic forces can be written as 
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where ,

0

l

T

e t xx xxEI dx K S S .  

 Finally, the elastic force vector can be written as  

eKKQ )( ,, telee  ,                                                          (4.15) 

where 
,e lK  and 

,e tK are constant stiffness matrices associated with longitudinal and bending 

elastic forces, respectively.  

4.6.2. Generalized Damping Forces 

 The internal damping characteristics of most known materials lead to energy dissipation 

when the materials are subjected to initial disturbances or shock loadings. Therefore, developing 

realistic flexible MBS models requires the inclusion of the effect of internal damping. One of the 

advantages of ANCF finite elements is the ability of capturing modes of deformations that 

cannot be captured using existing structural finite elements (Mohamed and Shabana, 2011). In 

some applications, some of these ANCF modes, which can have high frequencies, may not have 

significant effect on the solution. In such cases, explicit numerical integration schemes are forced 

to select very small time steps to capture the high frequencies. Therefore, for such applications, it 

is desirable to damp out these high frequency modes by using an appropriate visco-elastic 

constitutive model. This subsection introduces a suitable damping model that can be used with 

the simple elastic force model introduced in the previous section. The damping model introduced 

is also based on the assumption of small deformation.  

The proposed visco-elastic model applies damping to the deformation associated with the 

gradient vector xr  and the curvature vector ssr  where s is the arc length. In order to properly 

define the deformation and avoid damping out rigid body displacement modes, a tangent frame 
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can be used to define an orthogonal matrix using the vectors xr  and ssr  as 
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 . The power dissipated can be written as a function of the damping 

stress dσ   and the strain rate ε  as (Vallejo et al, 2005) 
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 Following a procedure similar to the one given in (Mohamed and Shabana, 2011; 

Mohamed, 2011), the power dissipated can be rewritten in the case of the Euler-Bernoulli beam 

element as 
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where
 x and   are the longitudinal strain rate and curvature rate. By differentiating the 

dissipated energy with respect to the absolute nodal velocities, the generalized damping force can 

be written as   
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where 1  and
 2  are two damping constants. 

Using the assumption of small variation of the strain over the length, both the longitudinal strain 

and strain rate can be assumed constant through the length. Hence, the longitudinal damping 

force can be written as 
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where,    T
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d ,l x x x xA dx    K S S . Using the same assumption, the curvature and 

curvature rate can be assumed constant through the length. Therefore, the transverse damping 

force can be written as 
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where.   T

2
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l

d ,t xx xxI dx   K S S e . Then, the generalized internal damping force vector can be 

written as 
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 These generalized damping forces can be introduced to the ANCF element equations. 

The generalized damping forces associated with the ANCF Cholesky coordinates can also be 

obtained using the Cholesky transformation. 

4.7. Numerical Results 

 A flexible-link chain three-dimensional tracked vehicle example is used in this section to 

demonstrate the implementation of the concepts discussed in this chapter. This example 

represents a complex system with large number of bodies connected by large number of revolute 

(pin) joints. Furthermore, the mathematical models of such vehicles represent a stiff numerical 

integration problem due to high frequencies of the contact forces. Such vehicle models can be 

used to test the robustness of the MBS algorithm developed. 
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4.7.1. Model Description 

 The tracked vehicle used is an armored personnel carrier that consists of a chassis and 

two track chains. Each track system consists of an idler, one sprocket, 5 road-wheels, and 64 

track links. A schematic drawing of the selected tracked vehicle is shown in Fig. 40.  

 
 Figure 40  Tracked vehicle model 

 Table I shows the inertia properties for all the tracked vehicle model components used in 

this simulation. The vehicle has a suspension system that consists of a road arm, placed between 

each road wheel and the chassis, and a shock absorber that consists of a spring and a damper 

connecting each road arm to the chassis. In order to control the tension of the two tracks, each 

idler is connected to the chassis through a tensioner. Table II shows the stiffness coefficients k  

and the damping coefficients c  of the contact models, the suspension system, and the tensioner; 

as well as the friction coefficient  of the contact models. Ideal pin joints are used to connect the 

road arms and the sprockets to the chassis, and the road-wheels to the road arms. The normal 
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contact forces are calculated based on a linear dissipative contact force model (Choi et al, 1998; 

Maqueda et al, 2010; Dufva et al, 2007). 

 

Table I. Tracked vehicle components inertia properties 

Part Mass (kg) IXX (kg m
2
) IYY (kg m

2
) IZZ (kg m

2
) IXY, IYZ, IXZ 

(kg m
2
) 

Chassis 5489.24        1786.92                10449.67 10721.22 0 

Sprocket 436.67 13.87            12.22 12.22 0 

Idler 429.57 14.70            12.55 12.55 0 

Road Wheel 561.07 26.06             19.82           19.82 0 

Road Arm 75.26      0.77 0.37 0.77 0 

Track link 18.02 0.04 0.22 0.25 0 

 

Table II. Tracked vehicle contact and suspension parameters 

Parameters 
Sprocket-Track 

Contact 

Roller-Track 

Contact 

Ground-Track 

Contact 
Suspension Tensioner 

k (N/m) 2×10
6
 2×10

6
 2×10

6
 1×10

6
 1×10

6
 

c (N·s/m) 5×10
3
 5×10

3
 5×10

3
 1.5×10

4
 1.4×10

4
 

  0.15 0.10 0.30 - - 

 

The models discussed in this section are assumed to have flexible track links. The 

flexible links are defined as three-dimensional steel Euler-Bernoulli beam elements with a 

modulus of rigidity of 76.9 GPa, a Young’s modulus of 200 GPa, and a mass density of 7800 

kg/m
3
.
 
 The flexible chain links are connected to each other using ANCF ideal compliant pin 
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joints, which define a linear ANCF mesh. As previously mentioned, one of the advantages of 

using this ANCF definition of joints is having linear joint constraints which allow for the 

elimination of the dependent joint variables at a preprocessing stage. As a result, this procedure 

avoids the computational cost required to formulate the nonlinear pin joint constraint equations 

at the position, velocity, and acceleration levels. In the case of the tracked vehicle used in this 

study, the proposed approach allows for the elimination of 126 pin joints which is equivalent to 

630 highly nonlinear constraint equations at a preprocessing stage. In conventional MBS 

algorithms, this large number of highly nonlinear constraint equations must be satisfied at 

position, velocity, and acceleration levels. If ANCF joints are used, all these constraints become 

linear and can be eliminated at a preprocessing stage.  

Three different tracked vehicle models are used to demonstrate the effectiveness of using 

the ANCF linear ideal compliant joint model. In the first vehicle, the chain links are modeled as 

rigid bodies. In order to solve the singularity problem encountered in the case of closed chain 

(Nakanishi and Shabana, 1994), the first and last links of the chain are connected through a very 

stiff spring. The links of the second and third tracked vehicle models are modeled as flexible 

links connected using ANCF continuum-based joints. The chain of the second model has a 

secondary joint by making a cut and using a very stiff spring to close the chain as in the case of 

the rigid-link chains. In the case of the third model, on the other hand, an ANCF closed loop 

chain is used. The third model is used to demonstrate the fact that using the new linear ANCF 

joint model does not lead to any singularity problems as in the case of conventional MBS 

nonlinear joint algorithms. An explicit Adams-Bashforth predictor-corrector method was used 

for the numerical solution of the system differential equations.  

http://rd.springer.com/search?facet-author=%22T.+Nakanishi%22
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4.7.2. Rigid Body Motion 

The angular velocities of the two sprockets of all the three tracked vehicle models were specified 

to follow the pattern shown in Fig. 41.  

 

 Figure 41  Sprocket rotational velocity 

 The response of the chassis to this input sprocket velocity is shown in Figs. 42-44. Figure 

42 shows the forward velocity of the chassis. As expected, the velocity of the chassis follows the 

same pattern as the sprocket velocity. The results of Fig. 43 and 44 show the forward and vertical 

positions of the chassis center of mass. It can be noticed from the results presented in Fig. 44 that 

the chassis has 0.03m downward displacement as a consequence of an initial settlement of the 

suspension springs. These springs, in addition to the contact forces, deform under the effect of 

the weight of the vehicle components until equilibrium positions are reached.  
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 Figure 42 Chassis forward velocity 

(            Rigid model,             Closed loop flexible model, ------- Open loop flexible model) 

 

 Figure 43 Forward displacement of the chassis 

(            Rigid model,             Closed loop flexible model, ------- Open loop flexible model) 
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 Figure 44 Vertical displacement of the chassis 

(            Rigid model,             Closed loop flexible model, ------- Open loop flexible model) 

 From the results presented in Figs. 42 to 44, it is clear that the rigid body motion results 

of the two flexible chain models are in a good agreement with the results of the rigid body 

model. Figure 45 shows the forward position of an arbitrarily selected point (end point of link 

31). At the beginning of the simulation, this node is in contact with the ground. After that, the 

vehicle starts moving, and this point moves and comes into contact with the idler. It continues 

moving until it comes again into contact with the ground. This motion is repeated as the vehicle 

continues to move forward. Figure 46 shows the motion trajectory of the same node defined in 

the chassis coordinate system.  
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 Figure 45 Node-32 forward position 

(            Rigid model, ------- Flexible models)               

 

 Figure 46 Motion trajectory of a flexible track link point  
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4.7.3. Forces and Deformations 

 In tracked vehicle dynamics, it is important to study the reaction forces at the pin joints. 

These forces can be used to further analyze the strain and stress state of the chain and determine 

whether or not the chain can sustain the forces without failure. Figures 47 and 48 show the joint 

constraint forces of the first joint (marked in Fig. 52) in the longitudinal and the vertical 

directions for the rigid and ANCF joint models.  

 

 Figure 47 First joint longitudinal forces 

(            Rigid model, ------- Flexible models)               
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 Figure 48 First joint vertical forces 

(            Rigid model, ------- Flexible models)    

 One advantage of including the flexibility of the track links is to be able to calculate the 

strains and stresses online. The online computation of the track link deformation leads to a more 

realistic prediction of the system dynamics, this is due to a nature of the coupling between 

different displacement modes and simulation parameters. Figures 49 and 50 show the axial and 

transverse deformations of the first link of the right chain at 5t s . In these figures, the 

deformation is magnified by a factor of 510 . The deformation of this link was calculated using a 

local tangent frame that has its longitudinal axis parallel to the first node position gradient vector.  
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 Figure 49 Axial deformation of first link of the right chain at s5t  magnified by a factor of 

10
5
 

 
(------- Initial configuration,            deformed configuration) 

            
Figure 50 Transverse deformation of first link of the right chain at s5t  magnified by a 

factor of 10
5
 

(------- Initial configuration,            deformed configuration)  
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 Figure 51 shows the axial stress of the right track chain at st 5 , while Fig. 52 shows the 

configuration of the chain at st 5 . It is clear from the results of Figs. 51 and 52 that the chain 

span can be divided into three sections. First section, which is located before the sprocket and is 

directly affected by the sprocket forces, is the tight section which has the highest tension. The 

second section is the slack section located after the sprocket and has the lowest degree of tension. 

The third section is a transition section between the tight and slack sections of the chain.             

 

 Figure 51 Right chain axial stress at s5t  
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 Figure 52 Right chain axial force distribution at s5t  

While all the results of rigid body motion of the different models presented show good 

agreement, the computational time of the flexible model is almost four times the computational 

time of the rigid tracked vehicle model. This can be justified because of the high frequencies 

associated with the track link deformation. The presence of high frequencies can be confirmed 

by considering the number of function evaluations of the flexible and the rigid tracked vehicle 

models. The ratio between the numbers of function evaluations for the rigid and flexible tracked 

vehicle is approximately 5.8:1 . Considering both the simulation time and the number of function 

evaluations, it can be concluded that using the new ANCF linear mesh in modeling the flexible 

link tracked vehicles leads to significant computational saving. This computational saving is the 

result of the elimination of the joint constraints and the corresponding dependent coordinates and 

Lagrange multipliers. Furthermore, numerical experimentation showed that when a low modulus 
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of elasticity is used, flexible-link tracked vehicle models become more efficient than the rigid-

link tracked vehicle model as the result of using the new ANCF finite element mesh. 

4.7.4. Augmented and Recursive Formulations. 

 As previously mentioned, the proposed chain model allows for the elimination of 

dependent variables at a preprocessing stage resulting in a significant reduction in the number of 

joints constraints equations that need to be considered during the dynamic simulation. In the 

chain model considered in this investigation, the number of joints is reduced from 152 joints 

(760 equations) to 26 joints (130 equations). This amounts to 83% reduction in the number of 

algebraic equations. The elimination of these joint constraint equations and the associated 

dependent variables contributed to the solution of a fundamental singularity problem 

encountered in the analysis of the closed loop chains. Both the augmented and recursive 

formulations were used in the simulation of the rigid and flexible tracked vehicles. The recursive 

simulation was more efficient in the simulation of the rigid tracked vehicle compared to the 

augmented formulation. The CPU time of the recursive formulation was 75% of the augmented 

formulation CPU time. While, in the case of the flexible tracked vehicle, the CPU time of the 

recursive formulation was 95% of the augmented formulation CPU time.  

4.7.5. Physical and Numerical Damping 

 For stiff systems of differential equations, explicit integration methods can be inefficient 

because of the small time steps selected. In some applications, the high stiffness can be attributed 

to insignificant high frequency modes (Hussein et al, 2008), which can be damped out using an 

appropriate visco-elastic constitutive model (Mohammed and Shabana, 2011). Another 

alternative is to use implicit integration methods which include numerical damping (Hussein et 
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al, 2008). In order to test the effectiveness of the proposed visco-elastic model in the numerical 

simulation of the flexible tracked vehicle, explicit Adams-Bashforth predictor-corrector and 

implicit HHT (Hilber et al, 1977) methods were used. The proposed physical damping model 

was used with Adams-Bashforth explicit integrator. The parameters of the HHT were assumed as 

reported in the literature (Hussein et al, 2008). In both cases, the undesired high frequencies were 

successfully damped out. The use of the two integration methods leads to approximately 30% 

reduction in the simulation time compared to using Adams-Bashforth without physical damping. 

Therefore, in some applications, the use of physical damping with explicit integration methods 

can lead to the same computational efficiency achieved by using the implicit integration methods 

that have numerical damping.  

4.8. Concluding Remarks  

 A new class of ideal compliant joints that account for the distributed inertia and elasticity 

is introduced and used to discuss fundamental issues related to the integration of computer aided 

design and analysis (I-CAD-A). Additional degrees of freedom are introduced in order to capture 

modes of deformation that cannot be captured using existing formulations that employ rigid 

triads or unit vectors to formulate the joint equations. The ideal compliant joints developed, 

while more general and capture more modes of displacements, can be, for the most part, 

formulated using linear algebraic equations. These linear connectivity conditions allow for the 

elimination of the dependent variables at a preprocessing stage, thereby significantly reducing 

the problem dimension and array storage needed. Consequently, the constraint equations are 

automatically satisfied at the position, velocity, and acceleration levels. Therefore, when using 

the proposed approach to model large scale chain systems, differences in computational 



 

109 

 

efficiency between the augmented formulation and the recursive methods are eliminated, and the 

CPU times resulting from the use of the two formulations become similar regardless of the 

complexity of the system. Furthermore, the elimination of the joint constraint equations and the 

associated dependent variables contribute to the solution of a fundamental singularity problem 

encountered in the analysis of closed loop chains and mechanisms, and there is no need to 

repeatedly change the chain or mechanism independent coordinates.  

 Using the concept of the ideal compliant joints, the fundamental problems that can be 

encountered when using computational geometry methods, can be explained. The concept of the 

knot multiplicity used in computational geometry methods is not suited for the formulation of 

ideal compliant joints that may require different degrees of continuity for different variables or 

elements of the gradient vector or require imposing constraints on the gradient vectors along 

directions that differ from the B-spline and NURBS coordinate lines. As explained, this issue is 

closely related to the inability of B-spline and NURBS to model structural discontinuities.  

 This chapter also demonstrates that large deformation ANCF finite elements can be 

effective in solving small deformation problems. The necessity of using the new concepts 

developed in modeling complex systems is demonstrated using a heavily constrained tracked 

vehicle with flexible link chains. Without using the proposed approach modeling such a complex 

system with flexible links can be a challenging task. The analysis presented in this chapter also 

demonstrates that adding significant model details does not necessarily imply increasing the 

complexity of the MBS algorithm. In fact, including significant details such as body flexibility 

and joint deformations can be accomplished using MBS algorithms that are much simpler than 

the algorithms currently used for rigid body system analysis. 
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CHAPTER 5 

VERIFICATION OF THE PROPOSED ELASTIC FORCE MODEL 

 In the previous chapter, a simplified Euler-Bernoulli beam elastic force model was 

proposed. This proposed force model can be used in the case of small deformations and only 

accounts for bending and axial modes. The model employs constant stiffness matrices that can be 

calculated at a preprocessing stage. This contributes to reducing the computational effort needed 

to evaluate the elastic forces. In this chapter, the new simplified Euler-Bernoulli beam elastic 

force model is compared to the elastic line and continuum mechanics approaches. This 

comparison serves as a verification of the proposed model. The comparison is made using a 

heavily constrained flexible link tracked vehicle model. The track chain links are connected 

using linear ANCF revolute joints. It is shown that the Euler-Bernoulli beam force model results 

are in a good agreement with the results obtained using the elastic line and continuum mechanics 

approaches. It is also shown that the proposed force model is computationally very efficient 

compared to both the elastic line and continuum mechanics approaches.  

5.1. Continuum Mechanics Approach 

 In the continuum mechanics theory, the most general displacement of an infinitesimal 

volume is described using twelve independent modes; six of them for the rigid body and the 

other six for the deformation. For this reason, the coordinate representation used in the fully 

parameterized ANCF finite elements is in general sufficient to describe the rigid body motion 

and deformation of a continuum. In the ANCF fully parameterized elements, three position 

vector gradients are used to define the three independent rigid body rotations and strain modes. 

Such a coordinate representation, when used for beams, accounts for the deformation of the cross 
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section and allows using the more general continuum mechanics beam model that relaxes the 

assumptions of the Euler–Bernoulli and Timoshenko beam theories (Yakoub and Shabana, 

2001). The simplicity of the continuum mechanics beam model makes it the dominating 

approach in the definition of the ANCF elastic forces (Mikola and Matikainen, 2006). In this 

approach, the elastic forces can be formulated using the Green–Lagrange strain and the second 

Piola–Kirchhoff stress tensors. The Green-Lagrange strain tensor can be calculated as function of 

the matrix of position vector gradients J  as  

)(
2

1
I-JJε

T                                                       (5.1) 

 In the preceding equation, I is the identity matrix. The matrix of the position vector can 

be written as 
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                                         (5.2) 

where, X is the vector of the global parameters (coordinate lines), x  is the vector of the local 

element spatial coordinates, and 0J  is the matrix of position vector gradients in the initial 

configuration. The constant matrix 0J must be considered in formulating the elastic forces if the 

beam has an arbitrary initial configuration. Note that 0J  is the identity matrix in the case of 

initially horizontal beams.  

           Using the principle of virtual work, the vector of the generalized elastic forces kQ is 

defined as (Vallejo et al, 2003)  
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where E is the matrix of elastic coefficients, and e  is the nodal coordinates vector.  

             The simplicity of the continuum mechanics approach comes at the expense of having 

several locking problems (Mikkola et al., 2013). As a consequence, for some elements with 

certain interpolating polynomials, the results may not converge to the correct solution in the case 

of a Poisson’s ratio larger than zero. The locking problems may lead to elements with poor 

numerical performance as a consequence of an inefficient bending strain description and shear 

and curvature thickness locking. Several methods were proposed in the literature to solve the 

locking problems associated with the continuum mechanics approach. The first strategy used to 

prevent Poisson locking was to employ local frames to define a linearized form of the elastic 

forces (Sopanen, and Mikkola, 2003).  In other investigations, Poisson ratio was simply assumed 

to be zero (Gerstmayr, and Matikainen, 2006). In a later investigation, reduced integration was 

applied to the part of elastic forces that is function of Poison ratio (Gerstmayr et al., 2008; 

Nachbagauer et al., 2013). Another approach to remove the Poisson locking is to employ an 

elastic line approach, in which the strain tensor is defined at the beam center line and curvatures 

are used to define the bending elastic forces (Sugiyama et al., 2006; Schwab and Meijaard, 

2010). The elastic line approach will be explained in details in the following subsection.  

5.2. Elastic Line Approach 

 As previously mentioned, one approach to eliminate the Poisson locking is to use an 

elastic line approach that employs the beam kinematical quantities of classical nonlinear rod 

theories (Mikkola et al, 2013). In this approach, all the Green-Lagrange strains are defined at the 
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beam centerline, while the curvature expression is used to define the bending strains. The vectors 

of position gradients at the beam centerline are written as (Dmitrochenko et al, 2009) 

   
0 ( ,0,0), ( ,0,0), ( ,0,0)x x y y z zx x x  r r r r r r

                               
 (5.4) 
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r   and,, . In the shear deformable ANCF element, the displacement 

field is assumed to be cubic in x and linear in y  and z . Hence, the subscript “0” is only used 

with xr . The Green-Lagrange strains and curvatures components along the beam centerline can 

be defined as (Schwab and Meijaard, 2010) 
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           In Eq. 5.5, 011 22 33,  ,  and     are the normal strains, 012 013 23,  ,  and   
 

are the shear 

strains,   is the twist, and zy 00  and ,  are the expressions of the bending curvature. The total 

strain energy of three-dimensional beam can be written as the summation of extension, shear, 

bending and torsion energies as  

   tbsl UUUUU   (5.6) 

The strain energy lU due to the extension can be written as a function of the normal strain 

0[     ]l xx y z  ε  and the stress vector lσ as 
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where, A  is the cross section area. Assuming homogeneous isotropic linear elastic material, the 

normal stress vector can be written as   

l lσ Eε                                                                 (5.8) 

where E is the elastic coefficients matrix that can be written as function of the shear modulus G 

and Poisson ratio as 
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The second part of the strain energy is the transverse shear strain energy. This can be written in 

terms of the shear strains as  
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The third part of the strain energy is the bending strain energy. The bending strain energy can be 

defined as function of the curvature as   
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Finally, the last part of the strain energy is the torsion energy which can be defined as function of 

the twist angle   as 
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5.3. Comparison of the Different Approaches  

 In order to compare between the strain components obtained using the general 

Continuum Mechanics approach and the other approaches, the global position vector can be 

rewritten as (Sugiyama et al, 2006) 

   zy zy rrrr  0  (5.13) 

where 0r  is the position vector of an arbitrary point on the beam centerline. The tangent to the 

center line xr  can be rewritten as follows 

  zxyxxx zy rrrr  0  (5.14) 

Assuming an initially straight beam and using the preceding displacement field and the Green-

Lagrange strain definition, the strain components are obtained as 
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Comparing Eqs. 4.8, 5.5 and 5.15, the following differences in deformation modes obtained 

using the Simplified Euler Bernoulli, elastic line and continuum mechanics approaches are 

observed: 
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1. The simplified Euler-Bernoulli elastic force model can work only for small deformation 

problems. The shear and cross section deformations are neglected. 

2. In the continuum mechanics approach, the bending strain is defined by the term

zxxyxx zy rrrr
T

0

T

0  . On the other hand, in the elastic line approach, the bending strain is 

defined using the curvature expression T T

0 0 0 0and  y z xx z y xx   r r r r . Finally, in the 

simplified Euler-Bernoulli beam approach, the bending strain is defined using different 

curvature definition xx  r . These three definitions for the bending strain are not the 

same and can lead to different stiffness characteristics that determine the accuracy and 

robustness of the solution.  

3. In the elastic line approach, the higher order strain component 

)()(
2

1 T

zxyxzxyx zyzy rrrr   is neglected. This higher order term has insignificant 

contribution to the bending strain in small deformation cases. 

4. In the continuum mechanics approach, the torsion strain is defined by the term

yzxyyx zy rrrr
TT  and zzxzyx zy rrrr

TT  , while in the elastic line approach the torsion strain is 

defined using the curvature expression . These different definitions for the twist strain 

may also lead to different results. 

5.4. Numerical Results 

  The flexible-link chain three-dimensional tracked vehicle introduced in the last chapter is 

used to verify the proposed Euler-Bernoulli beam force model discussed earlier. As mentioned in 

the previous chapter, this example represents a complex system with large number of bodies 

connected by large number of revolute (pin) joints. Furthermore, the mathematical models of 
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such vehicles represent a stiff numerical integration problem due to the high frequencies of the 

contact forces. Hence, one must carefully select the elastic force model that suits the type of 

analysis performed. Choosing a general force model that takes into consideration all the 

deformation modes will result in a very slow simulation. Three different elastic force models are 

used to define the elastic forces associated with the flexible links. The first model uses an Euler-

Bernoulli beam element and the elastic forces are calculated based on the simplified Euler-

Bernoulli force model presented earlier in section 4.6. The second and third models employ the 

three-dimensional shear deformable beam element. The second tracked vehicle model elastic 

forces are calculated based on an elastic line approach. Finally, the last model of the tracked 

vehicle elastic forces is defined using the general continuum mechanics approach. In order to 

improve the computational efficiency of the continuum mechanics approach, a reduced 

integration scheme was used in the numerical integration of the elastic forces. A comparison will 

be made between the results of the full and reduced integration schemes. The three tracked 

vehicle chain models are developed using ANCF closed loop chains and the system differential 

and algebraic equations are solved simultaneously. An implicit HHT (Hilber et al, 1977) method 

was used for the numerical solution of the system differential equations.  

5.4.1 Rigid Body Motion 

 The angular velocities of the two sprockets of all the three tracked vehicle models were 

specified to follow the pattern shown in Fig. 53.  
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 Figure 53 Sprocket rotational velocity 

 The response of the chassis to this input sprocket velocity is shown in Figs. 54-56. Figure 

54 shows the forward velocity of the chassis. As expected, the velocity of the chassis follows the 

same pattern as the sprocket velocity. The results of Figs. 55 and 56 show the forward and 

vertical positions of the chassis center of mass. From the results presented in these figures, it is 

clear that the rigid body motion results of all the flexible chains models are in good agreement. 

This demonstrates that the new simplified Euler-Bernoulli elastic force model describes the rigid 

body motion correctly.   
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 Figure 54 Chassis forward velocity 

(            Euler-Bernoulli,            Elastic line,             Continuum mechanics) 

 

 Figure 55 Forward displacement of the chassis 

(            Euler-Bernoulli,            Elastic line,               Continuum mechanics) 
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Figure 56 Vertical displacement of the chassis 

(            Euler-Bernoulli,            Elastic line,              Continuum mechanics) 

5.4.2 Deformation Analysis 

 As mentioned earlier, an advantage of including the flexibility of the track links is to be 

able to calculate the strains and stresses online. The online computation of the track link 

deformation leads to a more realistic prediction of the system dynamics, this is due to the nature 

of the coupling between different displacement modes and simulation parameters. This 

subsection introduces a comparison between the different elastic force model strains. Figure 57 

shows the axial strain of the right track chain at t=5s. The results presented in this figure show 

good agreement between the three different force models. This agreement demonstrates that the 

approximation made in the Euler Bernoulli elastic force calculation are acceptable in the case of 

small deformation.             
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 Figure 57 Right chain axial strain at s5t  
(             Euler-Bernoulli,            Elastic line,             Continuum mechanics) 

 As mentioned earlier, the proposed simplified Euler-Bernoulli beam elastic force model 

does not consider any of the cross section deformation; these deformation modes are function of 

the cross section gradients that are not considered in the ANCF Euler-Bernoulli beam element. If 

these modes are of importance, one can use an ANCF fully parameterized spatial beam element 

instead. Figures 58 and 59 show a comparison between normal strains in y and z directions. 

These two figures also show good agreement between the elastic line and continuum mechanics 

approaches. Figure 60 shows a comparison between the shear strain in the x-y plane. This figure 

shows that the shear strain is very small in both cases and can be neglected.  
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Figure 58 Right chain normal strain yy  at s5t  

(            Elastic line,             Continuum mechanics) 

 

 Figure 59 Right chain normal strain zz  at s5t  

(           Elastic line,             Continuum mechanics) 
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Figure 60 Right chain shear strain yz  at s5t  

(            Elastic line,             Continuum mechanics) 

As previously mentioned, reduced integration was used in an attempt to improve the 

computational efficiency of the continuum mechanics approach. A comparison between the full 

and reduced integration is shown in Figs 61-63. These three figures show the normal strains in 

the x, y, and z directions. It is clear from the results presented in these figures that the solutions 

obtained using the two schemes are almost identical.  
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Figure 61 Right chain axial strain xx  at s5t  

(             Full integration,            Reduced integration (522),             Reduced integration (422)) 

 

Figure 62 Right chain normal strain yy  at s5t  

(             Full integration,            Reduced integration (522),             Reduced integration (422)) 
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Figure 63 Right chain normal strain zz  at s5t  

(             Full integration,            Reduced integration (522),             Reduced integration (422)) 

While all the results of the different models show good agreement, the computational 

time of the Euler-Bernoulli elastic force model is very small compared to the other two models. 

Table III shows the computational times of the three force models using the Euler-Bernoulli 

computational time as the reference. 

Table III. Simulation times of the elastic force models 

Force model 
Number of integration points 

Simulation time 
x y z 

Euler-Bernoulli - - - 1 

Elastic Line 7 - - 37 

Continuum Mechanics 5 3 3 128 

Continuum Mechanics (522) 5 2 2 57 

Continuum Mechanics (422) 4 2 2 47 
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The times given in Table III show that the proposed Euler-Bernoulli elastic force model 

is very efficient compared to the elastic line and continuum mechanics approaches. However, it 

is important to point out that the simplified Euler-Bernoulli elastic force model considers only 

the axial and bending deformations, and assumes small longitudinal deformation. If any of the 

other deformation modes are of interest, or the model under study experiences large deformation, 

one should use a force model that does not employ such assumptions.   

5.5. Concluding Remarks 

 The proposed simplified Euler-Bernoulli beam force model introduced in the previous 

chapter is verified by comparing its results with the results obtained using the general continuum 

mechanics and the elastic line force models. A brief discussion of the main differences between 

the force models is presented. The proposed force model can be applied only in the case of small 

deformation and does not take into consideration any of the shear or cross section deformations. 

A flexible tracked vehicle model is used to verify the new force model. The results show good 

agreement between the rigid body motion and the axial strain predicted by all force models. The 

new force model is shown to be very efficient compared to the other force models.   
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CHAPTER 6 

CONCLUSIONS  

 Existing MBS algorithms and computer programs do not allow structural finite elements 

(beams, plates, and shells) of a mesh to have arbitrarily large relative rigid body displacements 

that can introduce non-structural geometric discontinuities. Most algorithms and computer codes 

define structural FE meshes in which the elements are rigidly connected. In MBS algorithms, 

components which are not rigidly connected are treated as separate bodies, and nonlinear 

algebraic equations are used to define the joints that connect these bodies. Furthermore, the mesh 

inertia matrix becomes highly nonlinear in the case of rigid body rotations. Similarly, relative 

rigid body rotations lead to highly nonlinear kinematic constraint equations and inertia forces in 

the case of rigid body dynamics, as demonstrated in chapter 2 using a simple example. FE 

algorithms, on the other hand, employ co-rotational formulations that lead to highly nonlinear 

inertia matrix in the case of rigid body motion. For the most part, FE computer programs employ 

an incremental solution procedure that is not designed for solving MBS differential/algebraic 

equations. This thesis proposes the development of new FE meshes that can be effectively used 

in MBS dynamic analysis. The proposed ANCF procedure can be effectively used for modeling 

non-structural geometric discontinuities by allowing the structural finite elements of a mesh to 

have arbitrarily large relative rigid body displacements. Connectivity conditions between the 

finite elements are defined using linear algebraic constraint equations which can be introduced at 

a preprocessing stage before the dynamic analysis in order to eliminate redundant coordinates; 

thereby significantly reducing the number of algebraic equations and the associated Lagrange 

multipliers. Using ANCF finite elements, that correctly describe rigid body displacements and do 

not require the use of the co-rotational formulation, one obtains a FE mesh that has rigid body 
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degrees of freedom and at the same time has a constant mass matrix. The relationship between 

these ANCF continuity conditions and the concept of knot multiplicity used in computational 

geometry methods such as B-splines and NURBS is discussed and demonstrated using several 

examples. The examples presented in chapter 2 show that ANCF finite elements can be used to 

systematically model non-structural discontinuities as well as structural discontinuities including 

T- and V-junctions.  

 Chapter 3 addresses the important issue of using computational geometry methods such 

as B-spline and NURBS as analysis tools. B-spline and NURBS employ recurrence formulas that 

allow changing the degree of continuity at a breakpoint by adjusting the knot multiplicity at this 

point. As demonstrated, the recurrence formula has several drawbacks when B-spline 

representation is used as an analysis tool. Because the recurrence formula does not provide 

flexibility for choosing the basis functions, B-spline representation can lead to significantly 

larger number of coordinates and a higher dimensional model. This fact was used to demonstrate 

the generality of the ANCF geometry. While B-spline geometry can always be converted to 

ANCF geometry, the converse is not true. It is also shown that the B-spline recurrence formula 

cannot be used to model structural discontinuity in a straight forward manner. While structural 

discontinuities are of the 0C  type, they cannot be captured in the B-spline representation by 

reducing the knot multiplicity by one. This reduction of the knot multiplicity is equivalent to 

elimination of the relative translation only; and such a reduction in the knot multiplicity leads to 

a rigid body mode that defines the conditions of a pin joint. In the case of structural 

discontinuities, on the other hand, the 0C  B-spline representation does not eliminate the rigid 

body mode since additional algebraic constraint equations are required in order to eliminate the 

relative rotations between two segments. This chapter also presents a new three-dimensional pin 
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joint model that leads to linear connectivity conditions and constant mass matrix when used with 

ANCF finite elements. The implementation of this new model is demonstrated using a flexible-

link chain example. The limitations identified in this chapter when B-spline geometry is used as 

analysis tool suggest the use of the I-CAD-A approach in which a constant transformation can be 

developed to convert CAD geometry to FE mesh. It should be also clear that NURBS geometry 

has the same limitations as B-spline representation when used as an analysis tool. 

 In Chapter 4, Discussion of the new class of ideal compliant joints that account for the 

distributed inertia and elasticity is continued and used to discuss fundamental issues related to 

the integration of computer aided design and analysis (I-CAD-A). The ideal compliant joints 

developed, while more general and capture more modes of displacements, can be, for the most 

part, formulated using linear algebraic equations. These linear connectivity conditions allow for 

the elimination of the dependent variables at a preprocessing stage, thereby significantly 

reducing the problem dimension and array storage needed. Consequently, the constraint 

equations are automatically satisfied at the position, velocity, and acceleration levels. Therefore, 

when using the proposed approach to model large scale chain systems, differences in 

computational efficiency between the augmented formulation and the recursive methods are 

eliminated, and the CPU times resulting from the use of the two formulations become similar 

regardless of the complexity of the system. Furthermore, the elimination of the joint constraint 

equations and the associated dependent variables contribute to the solution of a fundamental 

singularity problem encountered in the analysis of closed loop chains and mechanisms, and there 

is no need to repeatedly change the chain or mechanism independent coordinates.  

 Using the concept of the ideal compliant joints, the fundamental problems that can be 

encountered when using computational geometry methods, can be explained. The concept of the 
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knot multiplicity used in computational geometry methods is not suited for the formulation of 

ideal compliant joints that may require different degrees of continuity for different variables or 

elements of the gradient vector or require imposing constraints on the gradient vectors along 

directions that differ from the B-spline and NURBS coordinate lines. As explained, this issue is 

closely related to the inability of B-spline and NURBS to model structural discontinuities.  

 This chapter also demonstrates that large deformation ANCF finite elements can be 

effective in solving small deformation problems. The necessity of using the new concepts 

developed in modeling complex systems is demonstrated using a heavily constrained tracked 

vehicle with flexible link chains. Without using the proposed approach modeling, such a 

complex system with flexible links can be a challenging task. The analysis presented in this 

chapter also demonstrates that adding significant model details does not necessarily imply 

increasing the complexity of the MBS algorithm. In fact, including significant details such as 

body flexibility and joint deformations can be accomplished using MBS algorithms that are 

much simpler than the algorithms currently used for rigid body system analysis. 

 It was observed that the flexible tracked vehicle under study experiences small 

deformation. This motivated employing an elastic force model that makes use of the small 

deformation assumption in an attempt to improve the computational efficiency of the vehicle. A 

simplified spatial elastic Euler-Bernoulli beam force model was developed. This force model 

accounts for the coupling between bending and axial deformations. The model employs constant 

stiffness matrices that can be calculated at a preprocessing stage. This helps in reducing the 

computational effort needed to evaluate the elastic forces.  

 In Chapter 5, the proposed simplified Euler-Bernoulli beam force model introduced in 

chapter 4 is verified by comparing its results to the general Continuum Mechanics and the Elastic 
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Line force models. A brief discussion of the main differences of the force models is presented. A 

flexible tracked vehicle model is used to verify the new force model. The results show good 

agreement between the rigid body motion and the axial strain detected by all the force models. 

The new force model is shown to be very efficient compared to the other force models.   
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