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2.2 The Plücker embedding of the Grassmannian. . . . . . . . . . . 17
2.3 Singularities of Schubert varieties. . . . . . . . . . . . . . . . . . 22

3 CONDITIONS FOR SURJECTIVITY ONTO P∗(
∧2 V ) . . . . . . 35

4 PARAMETER SPACES OF SCHUBERT VARIETIES IN HY-
PERPLANE SECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 FURTHER RESEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



LIST OF FIGURES

FIGURE PAGE

1 Rows of basis elements of flag spaces. . . . . . . . . . . . . . . . . . . . . . 17

2 The case k = 2 for a Schubert variety of the form Σa,b. . . . . . . . . . . 19

3 Examples of adding a hook to the Young tableau corresponding to
Σ5,3,2,2,1 in G(5, 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



SUMMARY

Linear sections of Grassmannians provide important examples of varieties. The geometry

of these linear sections is closely tied to the spaces of Schubert varieties contained in them. In

this monograph, we describe the spaces of Schubert varieties contained in hyperplane sections

of G(2, n). The group PGL(n) acts with finitely many orbits on the dual of the Plücker space

P∗(
∧2 V ). The orbits are determined by the singular locus of H ∩G(2, n). For H in each orbit,

we describe the spaces of Schubert varieties contained in H ∩ G(2, n). We also discuss some

generalizations to G(k, n).
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CHAPTER 1

INTRODUCTION

Armand Borel produced seminal work on the actions of linear algebraic groups which helped

place classical algebraic geometry on a more solid foundation (Borel, 2000). In particular, he

characterized a type of subgroup B of a Lie group G such that the set of cosets G/B has the

structure of a projective algebraic variety. When specializing to the group GL(n,C), the rich

combinatorial structure of the geometry of a variety constructed in this way can be expressed

concretely in terms of matrices and vector spaces.

Hermann Grassmann wrote one of the first treatises on linear algebra (Grassmann, 1844).

He was the first to exhibit the notion of the exterior algebra of a vector space V , providing

a geometric interpretation. An element of the exterior algebra of V is a formal sum of vector

subspaces of V , where a decomposable element, that is, a homogeneous element of degree k that

can be expressed as a single term, corresponds to a k-plane.

Let V be a vector space of dimension n. In this thesis we examine the orbits of the action

of the projective linear group PGL(n) on P∗(
∧k V ), the projectivization of the k-th exterior

power of the dual vector space V ∗. The points of P∗(
∧k V ) correspond to hyperplanes of the

projective space generated by k-vectors vi1 ∧ · · · ∧ vik where vij are vectors in V .

Julius Plücker gave an embedding of the first Grassmannian that is not a projective space,

G(2, 4), into a projective space of dimension 5 and showed that it is a quadric hypersurface.

Plücker coordinates, also known as Grassmann coordinates, are determinants of k×k minors of

1
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a k× n matrix whose row vectors form a basis for a k-plane Λ in V , i.e., a point [Λ] ∈ G(k, n).

It only makes sense for an element α of P(
∧k V ) to represent a single vector subspace Λ if

we can write α with only one summand, that is, if α = v1 ∧ · · · ∧ vk for some v1, . . . , vk ∈

V . The minimal number of summands with which you can write an element Λ of the k-th

exterior power of V is
(
r
k

)
, where r is the dimension of the subspace W = Ann(Λ⊥), with

Λ⊥ = {v∗ ∈ V ∗ | i(v∗)(Λ) = 0} and i(v∗) :
∧k V →

∧k−1 V is the contraction operator

(Griffiths and Harris, 1978, p. 210). So α is a decomposable element if and only if dimW = k.

This condition induces the Plücker relations in the Plücker coordinates. It turns out (Griffiths

and Harris, 1978; Hodge and Pedoe, 1994; Kleiman and Laksov, 1972; Donagi, 1977) that the

ideal of G(k, n) is generated by the
(
n
k+1

)
Plücker relations, which are all quadratic. This in

particular shows that the Grassmannian is nondegenerate, meaning that it is not contained in

any hyperplane in its Plücker embedding.

As a result, one may ask about the hyperplane sections of G(k, n), in particular which ones

are singular and the nature of their singular loci. But since G(k, n) is a smooth variety (it is

homogeneous for the action of PGL(n)), the collection of singular hyperplane sections of G(k, n)

is the dual variety G(k, n)∗ (see (Harris, 1992)). We show that for most values of k and n with

k ≤ n/2, G(k, n)∗ is a hypersurface of P∗(
∧k V ).

Griffiths and Harris (Griffiths and Harris, 1978) outline the algebraic topology of the com-

plex Grassmannian via a decomposition into Schubert cells. The closure of a Schubert cell is

a Schubert variety. The equivalence classes of Schubert varieties generate additively the co-

homology groups of the Grassmannian. The multiplicative structure of the cohomology ring
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is determined by special Schubert classes σλ,0,...,0, a representative of which is (Coskun, 2010)

a Schubert variety of k-planes meeting a fixed vector space Fn−k−1 in dimension at least 1.

Kleiman and Laksov (Kleiman and Laksov, 1972), Hodge and Pedoe (Hodge and Pedoe, 1994),

and Griffiths and Harris (Griffiths and Harris, 1978) show that the Grassmannian is a smooth

rational variety and give combinatorial nomenclature for Schubert varieties. Great care must

be taken when interpreting integers as dimensions of vector spaces or of projective spaces. Here

we will be as clear as possible in this matter.

We fix a flag F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = V of vector spaces with dimFi = i. In (Griffiths

and Harris, 1978), a general Schubert variety is defined as follows:

Σλ1,...,λk = {Λ | dim (Λ ∩ Fn−k+i−λi) ≥ i}.

More specifically, we view a Schubert variety as depending on the partial flag Fn−k+1−λ1 ⊂

Fn−k+2−λ2 ⊂ · · · ⊂ Fn−λk . We will often either write Schubert varieties as Σ(Fa1 ⊂ · · · ⊂ Fak)

or translate to the previous notation via Σn−k+1−a1,...,n−ak .

We also see in (Kleiman and Laksov, 1972; Hodge and Pedoe, 1994; Griffiths and Harris,

1978) formulas for the degree of the Grassmannian and any of its Schubert varieties; they

show that Schubert varieties are irreducible; they provide rigor for the correspondence between

multiplication of classes in the cohomology ring H∗(G(k, n)) and intersection of representative

varieties.
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The combinatorics of multiplication in the cohomology ring of the Grassmannian (and

more generally, flag varieties and homogeneous spaces) is a rich area of study. Littlewood

and Richardson (Littlewood and Richardson, ) first gave the structure constants of the coho-

mology ring of the Grassmannian from the viewpoint of symmetric functions. Fulton (Fulton,

1997) and Fulton and Harris (Fulton and Harris, 1991) provide an overview of the connection

between the geometry and the representation theory viewpoints.

Given a smooth variety Y ⊂ Pr, we denote by Y ∗ the locus of hyperplanes H containing the

tangent space to a point of Y . This is called the dual variety to Y and is a subvariety of Pr∗,

the space of hyperplanes in r-dimensional projective space (Shafarevich, 1994). Because a point

y of a hyperplane section H ∩ Y is singular if and only if H contains the tangent space to Y at

y, the dual variety parameterizes singular hyperplane sections of Y . In this thesis we exhibit

the geometry of the dual variety G(k, n)∗ to the Grassmannian, focusing almost exclusively on

the case k = 2.

Donagi (Donagi, 1977) shows that G(2, n)∗ is a hypersurface of P∗(
∧2 V ) if n is even and

is of codimension 3 otherwise. He uses classical techniques such as group actions, geometric

interpretations of linear algebra calculations, and to a small extent automorphism groups. He

notes that a hyperplane H corresponds to a skew-symmetric bilinear form QH on V , which

always has even rank, and stratifies P∗(
∧2 V ) by subsets of H such that rank H ≤ 2j since the

only projective invariant of a skew-symmetric bilinear form is its rank. Donagi also examines

pencils and nets of hyperplane sections of G(2, n). Finally, he states and offers a proof of a

result of Segre that says there are four orbits of the action of PGL(6) on P∗(
∧3 V ), dimV = 6.
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Piontkowski and Van de Ven in (Piontkowski and de Ven, 1999) examine G(2, n) principally

from the perspective of automorphism groups. They also show the odd/even result mentioned

above. In addition they explore the homogeneity of the automorphism groups of sections by

higher codimension linear spaces.

Reinterpreting the results of Donagi, we can classify the singular loci of hyperplane sections

of G(k, n) by examining the orbits of the action of PGL(n) on P∗(
∧k V ). This is because two

hyperplane sections are projectively equivalent iff their singular loci are isomorphic, and the

singular locus of a hyperplane section completely depends on the rank of the corresponding

skew-symmetric bilinear form.

Linear sections of Grassmannians provide examples that play an important role in many

branches of algebraic geometry, including the classification of varieties, derived equivalences

and mirror symmetry. For example, general codimension four linear sections of G(2, 5) are Del

Pezzo surfaces of degree five (see (Coskun, 2006)) and general codimension seven linear sections

of G(2, 7) are Calabi-Yau threefolds (see (Borisov and Cǎldǎraru, 2009), (Rødland, 2000)). The

geometry of a linear section X of a Grassmannian is closely tied to the spaces of Schubert

varieties contained in X, which provide crucial information about the cohomology and Hodge

structure of X (see (Donagi, 1977) and Chapter 6 of (Griffiths and Harris, 1978)). In this

work we will describe the spaces of Schubert varieties contained in a hyperplane section of a

Grassmannian.
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Let G(k, n) denote the Grassmannian parameterizing k-dimensional subspaces of a fixed

n-dimensional vector space V . Let λ denote a partition whose parts satisfy

n− k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

When writing a partition, the parts that are equal to zero are often omitted. For many purposes,

it is more convenient to group together the parts of λ that are equal. We will write λ also as

λ = (µi11 , · · · , µ
it
t ) and set ks =

∑s
j=1 ij , where µ1 > µ2 > · · · > µt and

µ1 = λ1 = · · · = λk1 , µ2 = λk1+1 = · · · = λk2 , . . . , µt = λkt−1+1 = · · · = λk.

Given a partition λ and a flag F• : F1 ⊂ F2 ⊂ · · · ⊂ Fn = V, the Schubert variety Σλ(F•) is

defined as

Σλ(F•) = {[W ] ∈ G(k, n) | dim(W ∩ Fn−k+i−λi) ≥ i}. (1.1)

We will often abuse notation by dropping the reference to the flag. When we would like to

emphasize the flag elements Fn−k+i−λi imposing rank conditions, we will write Σλ(Fn−k+1−λ1 ⊂

· · · ⊂ Fn−λk). The cohomology class σλ of the Schubert variety depends only on the partition

λ and not on the choice of flag. The Schubert classes σλ, as λ varies over all allowed partitions,

form a Z-basis for the cohomology of G(k, n) (Griffiths and Harris, 1978, §1.5).
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The Plücker map embeds the Grassmannian G(k, n) in P(
∧k V ). Let H be a hyperplane in

P(
∧k V ). Let

X(λ,H) = {Σλ(F•) | Σλ(F•) ⊂ G(k, n) ∩H}

denote the space of Schubert varieties with class σλ contained in G(k, n) ∩ H. In the next

section, we will see that X(λ,H) is a closed algebraic subset of a suitable partial flag variety

(X(λ,H) may be reducible). The purpose of this thesis is to describe X(λ,H) in detail when

k = 2 and H is arbitrary. We will also discuss some generalizations to larger k.

There is a natural incidence correspondence

I(λ) = {(Σλ(F•), H) | Σλ(F•) ⊂ H}

parameterizing pairs of a Schubert variety Σλ(F•) and a hyperplane H in the Plücker space

containing Σλ(F•). Let π2 denote the natural projection to P∗(
∧k V ). The first problem we

address is characterizing the image of π2. Before stating our theorems, we recall the case of

G(2, 4).

Example 1.0.1 (Spaces of Schubert varieties in G(2, 4)). The Plücker map embeds G(2, 4) in

P5 as a quadric hypersurface Q. The image of a Schubert variety Σ2,1 is a line on Q. Con-

versely, every line on Q is a Schubert variety with class σ2,1. Therefore, the Fano variety F1(Q)

parameterizing lines on Q is isomorphic to the flag variety F (1, 3; 4) (Harris, 1992, §6).
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Let X = G(2, 4)∩H be a smooth hyperplane section of G(2, 4). Then X is a smooth quadric

threefold. The Fano variety F1(X) parameterizing lines on X is the orthogonal Grassmannian

OG(2, 5), which is isomorphic to P3.

On the other hand, let Y = G(2, 4)∩Σ1(V2 ⊂ V4) be a singular hyperplane section of G(2, 4).

Then Y is a cone over a smooth quadric surface. The Fano variety F1(Y ) parameterizing lines

on Y has two irreducible components Z1 and Z2. Both Z1 and Z2 are isomorphic to the blow-up

of P3 along a line. The two components Z1 and Z2 intersect exactly along the exceptional divisor

of the two blow-ups. The components Z1 and Z2 can be geometrically described as follows. Let

l = Σ2,1(F1 ⊂ F3) be a line on G(2, 4). The line l is contained in Y if all the two-dimensional

subspaces parameterized by l intersect V2 defining Σ1(V2 ⊂ V4) non-trivially. There are two

possibilities. Either V2 ⊂ F3 and F1 is an arbitrary one-dimensional subspace of F3; or F3 is

arbitrary and F1 = F3 ∩ V2. These two possibilities correspond to the two components Z1 and

Z2.

The image of a Schubert variety Σ1,1 or Σ2 under the Plücker map is a plane on the quadric

hypersurface Q. Conversely, every plane on Q is a Schubert variety of the form Σ1,1 or Σ2.

These varieties are parameterized by P3∗ and P3, respectively. By the Lefschetz Hyperplane

Theorem (Griffiths and Harris, 1978, §1.2), a smooth quadric threefold does not contain any

planes. For otherwise the degree of the plane, which is one, would be divisible by the degree of

Q ∩H, which is two. Therefore, the smooth hyperplane section X of G(2, 4) does not contain

any Schubert varieties Σ(1,1) or Σ2. On the other hand, Y is a cone over a quadric surface.

Such a threefold has two one-dimensional families of planes both parameterized by P1. The
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two components are distinguished by the cohomology class of the planes they parameterize.

Hence, the space of Schubert varieties of the type Σ1,1 or Σ2 on Y are both parameterized by

P1. Notice that in these two cases the incidence correspondences I(1, 1) and I(2) both have

dimension 5 = dim(P∗(
∧2 V )); however, the second projection is not surjective (Harris, 1992,

Example 12.5).

In general, PGL(n) acts with finitely many orbits on P∗(
∧2 V ) (Donagi, 1977, §2). A

hyperplane H in P(
∧2 V ) may be viewed as a skew-symmetric matrix QH . The dimension of the

kernel of QH is the invariant that determines the orbits of PGL(n) on P∗(
∧2 V ) (Donagi, 1977,

§2). The dense open orbit corresponds to hyperplanes H such that G(2, n)∩H is smooth. The

dual variety G(2, n)∗ parameterizing hyperplanes tangent to G(2, n) decomposes into finitely

many orbits depending on the singular locus of H ∩ G(2, n). For H ∈ G(2, n)∗, the singular

locus of G(2, n) ∩H is a Schubert variety of the form Σ2r,2r for some 1 ≤ r ≤ bn−2
2 c (Donagi,

1977, §2). Let Sr denote the locus in P∗(
∧2 V ) parameterizing hyperplanes H such that the

singular locus of G(2, n)∩H contains a Schubert variety of the form Σ2r,2r. By convention, we

set Sdn−1
2
e to be P∗(

∧2 V ). We thus have

S1 ⊂ S2 ⊂ · · · ⊂ Sbn−2
2
c ⊂ Sdn−1

2
e

and the PGL(n) orbits on P∗(
∧2 V ) are the locally closed subsets Sr \ Sr−1.

Our first theorem characterizes the image of π2(I(λ)) when k = 2.
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Theorem 1.0.2. Let λ = (a, b) be a partition for G(2, n). The image of the map

π2 : I(a, b)→ P∗(
2∧
V )

contains Sr if and only if da+b
2 e ≥ r. In particular, the map π2 is surjective if and only if

da+b
2 e >

n−2
2 .

In particular, if H ∈ Sr \ Sr−1, then X((a, b), H) is not empty if and only if da+b
2 e ≥ r.

This raises the question of describing X((a, b), H) in cases it is not empty. Our second theorem

addresses this question.

Let Q be a skew-symmetric form on an n-dimensional vector space. If Q is non-degenerate,

then n = 2r has to be even. A linear space W is isotropic with respect to Q if the restriction

of Q to W is identically zero. Given a vector space W , let W⊥ denote the set of vectors v ∈ V

such that vTQw = 0 for every w ∈ W . If Q is non-degenerate, the variety parameterizing the

k-dimensional isotropic subspaces of F2r is called the isotropic Grassmannian SG(k, 2r). An

isotropic subspace of a non-degenerate skew-symmetric form has at most half the dimension,

hence k ≤ r.

Theorem 1.0.3. Let H be a hyperplane in P(
∧2 V ) such that [H] ∈ P∗(

∧2 V ) is contained in

the PGL(n) orbit Sr \ Sr−1. Let Fn−2r be the kernel of the corresponding skew-symmetric form

QH . Let (a, b) be a partition for G(2, n) such that da+b
2 e ≥ r. Let

M = max (0, n− 1− a−min(r, b)) and N = min

(
n− a− 1, n− r − a+ b+ 1

2

)
.
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1. Assume that a 6= b. Then the irreducible components Zj of X((a, b), H) are in one-to-one

correspondence with integers M ≤ j ≤ N . The irreducible component Zj parameterizes

pairs (Vn−a−1 ⊂ Vn−b) in F (n−a−1, n−b;n) such that Vn−a−1 is a QH-isotropic subspace

with dim(Vn−a−1 ∩ Fn−2r) ≥ j and Vn−b is a linear space Vn−a−1 ⊂ Vn−b ⊂ V ⊥n−a−1 with

dim(Vn−b ∩ Fn−2r) ≥ 2n− 2r − a− b− 1− j. The dimension of Zj is given by

dim(Zj) = (a+ 1− b)(a+ b+ j − n+ 1)− j (4r + 3a+ 3j − 3n+ 4)

2

+
(n− a− 1)(3a+ j − n+ 4)

2
.

2. Assume that a = b. Then X((a, a), H) parameterizes QH-isotropic subspaces of dimension

n− a. In particular, X((a, a), H) is irreducible and

dim(X((a, a), H)) =



r2+r
2 + (n− a)(a− r) if n ≥ a+ r

(n−a)(3a−n+1)
2 if n < a+ r

Some special cases of the theorem are worth highlighting for the beauty of the geometry. For

example, when H corresponds to a skew-symmetric form of rank exactly 2r, then X((r, r), H)

is isomorphic to the Lagrangian Grassmannian SG(r, 2r). If a + b + 1 = 2r, then X((a, b), H)

is isomorphic to the isotropic Grassmannian SG(b, 2r). This is the content of Corollary (1.0.5).

Finally, if a + 1 ≥ 2r, then the space of Schubert varieties of the form Σa,0 contained in
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H ∩G(2, n) is isomorphic to the Grassmannian G(n− a− 1, n− 2r) (Cor 1.0.6). In all of these

situations the spaces of Schubert varieties contained in the specified type of hyperplane are

irreducible.

Though we focus mainly on hyperplane sections, we show in Corollary 1.0.7 that the largest

linear space that can be contained in a general codimension two linear sections of G(2, n) is of

dimension n− 3.

The simplest case to see geometrically is the case where H belongs to S1, the set of hyper-

plane sections of G(2, n) that are themselves Schubert varieties of the form Σ1(Fn−2 ⊂ Fn).

Given a > b > 0, we demonstrate in Corollary 1.0.8 that X((a, b), H) consists of two irreducible

components, each of which is a Schubert variety in the flag variety F (n− a− 1, n− b;n).

When n− 2 > k > 2, PGL(n) no longer acts with finitely many orbits on P∗(
∧k V ) except

when k = 3 and n = 6, 7, or 8 (Donagi, 1977, §2). It is, therefore, unrealistic to hope for as

complete a classification of the spaces X(λ,H). However, X(λ,H) can be easily described for

H in certain orbits of PGL(n).

For example, I(λ) surjects onto P∗(
∧k V ) if either λ = (n − k, . . . , n − k, i) with i > 0 or

λ1 = n − k and λk = n − k − 1. Note that this first type of partition corresponds to a linear

Schubert variety of codimension at least (k− 1)(n− k) + 1, and the second type corresponds to

a linear Schubert variety when λ1 = · · · = λk−1 = n − k. This in particular means that every

smooth hyperplane section contains a Schubert variety Σλ for the partitions λ described above.

On the other hand, when n − k > λ1, . . . , λk−1 and λk = 0, the second projection of the

incidence variety I(λ) is contained in G(k, n)∗. Hence no smooth hyperplane section of G(k, n)
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can contain such a Schubert variety. This and the previous paragraph are the content of Prop

1.0.9.

A Schubert variety of the form Σn−k−1,...,n−k−1,0(Fk ⊂ V ) is special because it depends on

the flag element Fk and consists of k-dimensional vector subspaces intersecting Fk in dimension

at least k − 1. It follows that the linear span of this particular Schubert variety is precisely

the tangent space to G(k, n) at the point [Fk]. It turns out that, when considering families of

such Schubert varieties in a hyperplane section, we obtain that π2(I(λ)) is precisely G(k, n)∗,

meaning that a general singular hyperplane section contains a Schubert variety whose linear

span is the tangent space to a point of G(k, n), whereas no smooth hyperplane section can

contain this type of Schubert variety (Cor. 1.0.10).

It is very rare to have an explicit, concrete resolution of singularities of a variety. We obtain

such a resolution for the dual of the Grassmannian in its Plücker embedding by considering Σλ

such that λ1 = · · · = λk−1 = n− k − 1 and λk = 0. Let N =
(
n
k

)
− k(n− k)− 2, the dimension

of the projective space P(
∧k V ) after conditions have been imposed on it by the projective

tangent space to a point of G(k, n). Then the incidence correspondence I(λ) is a PN -bundle

over G(k, n), and π2 is a birational map onto G(k, n)∗ that gives a resolution of singularities of

G(k, n)∗.



CHAPTER 2

PRELIMINARIES: THE GEOMETRY OF GRASSMANNIANS

In this chapter, we recall some basic facts about Grassmannians and their Schubert varieties

in the Plücker embedding that we did not cover in the Introduction. We outline connections be-

tween points of intersection of projective tangent spaces and their corresponding vector spaces.

We also classify all linear spaces that can be contained in the Grassmannian. For the reader’s

convenience, we sketch the proofs of some classical facts about G(2, n)∗. We refer the reader

to (Griffiths and Harris, 1978) and (Harris, 1992) for facts about Grassmannians and Schubert

varieties, to (Donagi, 1977) and (Piontkowski and de Ven, 1999) for facts about the dual variety

G(2, n)∗, and to (Billey and Lakshmibai, 2000), (Lakshmibai and Seshadri, 1984), and (Coskun,

2010) for facts about singularities of Schubert varieties.

2.1 Parameter spaces of Schubert varieties.

Although it is standard in the literature to define a Schubert variety by (Equation 1.1),

the Schubert variety does not determine the flag. In fact, the Schubert variety does not even

determine the elements of the flag Fn−k+i−λi that impose the rank conditions defining the

Schubert variety.

For example, Σ1,1(F2 ⊂ F3) and Σ1,1(F ′2 ⊂ F3) define the same Schubert variety in G(2, 4)

for any two F2 and F ′2, two-dimensional subspaces contained in F3. Once a two-dimensional

14
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subspace W is contained in F3, then W automatically intersects any two-dimensional subspace

of F3 non-trivially.

In order to characterize the flags that define the same Schubert variety, it is more conve-

nient to group the repeated parts in the partition λ. Often in the literature we express λ as

λ = (µi11 , . . . , µ
it
r ), where

λ1 = · · · = λi1 = µ1, λi1+1 = · · ·λi1+i2 = µ2, · · · , λi1+···+it−1+1 = · · · = λk = µt

and

n− k ≥ µ1 > µ2 > · · · > µt ≥ 0.

For simplicity, set ks =
∑s

j=1 ij . In particular, kt = k. The Schubert variety Σλ(F•) can

equivalently be defined as

Σλ(F•) = {[W ] ∈ G(k, n) | dim(W ∩ Fn−k+kj−µj ) ≥ kj for 1 ≤ j ≤ t}. (2.1)

Once W intersects Fn−k+ks−µs in a ks-dimensional subspace, it intersects Fn−k+ks−µs−j in a

subspace of dimension at least ks−j. Consequently, the rank conditions in (Equation 2.1) imply

all the rank conditions in (Equation 1.1). Conversely, the Schubert variety determines the linear

spaces Fn−k+ks−µs for 1 ≤ s ≤ t because only the last entry of a consecutive string of equal

entries imposes new rank conditions. Thus we can use the partial flag variety F (n − k + k1 −
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µ1, . . . , n−µt;n) as a parameter space for Schubert varieties inG(k, n) with cohomology class σλ.

The space X(λ,H) is then naturally a closed algebraic subset of F (n−k+k1−µ1, . . . , n−µt;n).

We have a natural incidence correspondence I(λ)

I(λ) = {(Σλ(F•), H) | Σλ(F•) ⊂ H}

π1 ↙ ↘ π2

F (n− k + k1 − µ1, . . . , n− µt;n) P∗(
∧k V )

consisting of pairs of a Schubert variety Σλ(F•) and a hyperplane containing it. We prove some

facts about this incidence correspondence below.

Proposition 2.1.1. The first projection π1 realizes I(λ) as a projective bundle over the partial

flag variety F (n− k+ k1− µ1, . . . , n− µt;n). The fibers are isomorphic to PH0(IΣλ(1)), where

IΣλ denotes the ideal sheaf of Σλ, and are all projective spaces of the same dimension.

Proof. The π1-preimage of a point in F (n− k+ k1−µ1, . . . , n−µt;n) is the set of hyperplanes

H containing a fixed Schubert variety of the form Σλ. Because of the inclusion-reversing

correspondence between varieties and ideals, the fiber is precisely the projectivization of the

vector space of homogeneous linear polynomials generated by the Plücker coordinates vanishing

on Σλ. The space of global sections H0(IΣλ(1)) of the first twist of the ideal sheaf of Σλ has

exactly this characterization, so the fiber over π1 is P(H0(IΣλ(1))).

Consequently, I(λ) is irreducible and smooth (Shafarevich, 1994, Theorem I.6.8). Note,

however, that the second projection π2 is rarely flat and much harder to understand.
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2.2 The Plücker embedding of the Grassmannian.

The GrassmannianG(k, n) is a smooth, projective variety of dimension k(n−k). The Plücker

map embeds G(k, n) into P(
∧k V ). The image of the Grassmannian under this embedding is

the space of totally decomposable wedges.

Let λ be an admissible partition for G(k, n) and define rj = n − k + j − λj . Suppose a

Schubert variety Σλ is given by the partial flag Fr1 ⊂ · · · ⊂ Frk and we choose a basis {ei} so

that Fi is generated by e1, . . . , ei. Then we can determine the equations in Plücker coordinates

of Σλ as follows (Kleiman and Laksov, 1972; Hodge and Pedoe, 1994). In Figure 1 if we

e1 . . . er1
e1 . . . . . . er2
...

. . .

e1 . . . . . . . . . . . . erk

Figure 1. Rows of basis elements of flag spaces.

choose one vector from each row with no repetitions and take their wedge product, we know that

this multivector is contained in the Plücker image of Σλ. On the other hand, any multivector

ei1 ∧ · · · ∧ eik where any ij is larger than rj will not be contained in Σλ, hence the Plücker

coordinate corresponding to such a multivector vanishes on Σλ. We have proved the following

important fact.



18

Proposition 2.2.1. The Plücker coordinates vanishing on the Schubert variety Σλ are precisely

those with the multi-indices (i1, . . . , ik) where for at least one j, we have that ij > rj, where

rj = n− k + j − λj. In particular, this means that every Schubert variety is cut out of G(k, n)

by (very special) hyperplanes.

Specializing to the case k = 2, we obtain the following lemma that we will repeatedly use

in the sequel.

Lemma 2.2.2. The dimension of the vector space of hyperplanes containing a Schubert variety

Σa,b in G(2, n) is given by

h0(IΣa,b(1)) =

(
n

2

)
−
(
n− b

2

)
+

(
a− b+ 1

2

)
.

Proof. There are
(
n
2

)
total elements in a basis of P(

∧2 V ). We subtract from this the number

of Plücker coordinates that do not vanish on Σλ, counting this number as follows. Looking

at (Figure 2) we see that all of the nonvanishing Plücker coordinates are among those that

correspond to the multivectors obtained by choosing two elements in the second row. Within

these, the ones that do vanish have multi-indices (`,m) where ` and m are chosen from the last

a − b + 1 indices appearing in the second row of (Figure 2). Thus there are
(
n−b

2

)
−
(
a−b+1

2

)
Plücker coordinates that do not vanish on Σλ, so we obtain the result.

Remark 2.2.3. Note that we can instead simply count the number of vanishing Plücker coor-

dinates as follows. Again looking at (Figure 2), we see that if a vanishing Plücker coordinate

involves a vector from the first row, the choice of second index must come from n− b+ 1, . . . , n.
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e1 . . . en−a−1

e1 . . . en−a−1 en−a . . . en−b

Figure 2. The case k = 2 for a Schubert variety of the form Σa,b.

In other words, there are b(n−a− 1) such Plücker coordinates. On the other hand, if a coordi-

nate does not involve a choice of index from the first row, it necessarily involves choosing both

indices from the a+ 1 indices n− a, . . . , n. Hence the number of vanishing Plücker coordinates

on Σλ is b(n− a− 1) +
(
a+1

2

)
, which the reader may verify is equal to

(
n
2

)
−
(
n−b

2

)
+
(
a−b+1

2

)
Applying the Theorem on the Dimension of Fibers (Shafarevich, 1994, Theorem I.6.7) to

the first projection π1 : I(a, b)→ F (n− a− 1, n− b;n), we obtain the following corollary.

Corollary 2.2.4. If a = b, then the first projection

π1 : I(a, a)→ F (n− a;n) = G(n− a, n)

exhibits I(a, a) as a projective space bundle over G(n− a, n) with fibers of dimension

(
n

2

)
−
(
n− a

2

)
− 1.

In particular, I(a, a) is irreducible and

dim(I(a, a)) =
a(4n− 3a− 1)

2
− 1.
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If a > b, then the first projection

π1 : I(a, b)→ F (n− a− 1, n− b;n)

exhibits I(a, b) as a projective space bundle over F (n− a− 1, n− b;n) with fibers of dimension

(
n

2

)
−
(
n− b

2

)
+

(
a− b+ 1

2

)
− 1.

In particular, I(a, b) is irreducible and

dim(I(a, b)) = n(a+ b+ 1)− a2 + 3a

2
− b2 − 2.

In the Plücker embedding, the linear subspaces of G(k, n) have a concrete description.

Lemma 2.2.5. A line on G(k, n) corresponds to a family of k-dimensional subspaces of V that

contain a fixed (k − 1)-dimensional subspace and are contained in a fixed (k + 1)-dimensional

subspace.

Proof. Fix a basis {er} of V so that the linear embedding of P1 into P(
∧k V ) is given by

[x : y] 7→ [x : y : 0 : · · · : 0]. This choice can be made by projective equivalence: if [x : y] maps to

a point with x in the ith position, y in the jth position, and zeros elsewhere, we can transform

the basis of V so that x is in the first position and y is in the second. Then p1,2,...,k−1,k =

x and p1,2,...,k−1,k+1 = y. If x = 0 or y = 0, then the image is a single wedge product
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e1 ∧ · · · ∧ ek−1 ∧ ek or e1 ∧ · · · ∧ ek−1 ∧ ek+1. If both x and y are nonzero, then the image of

[x : y] corresponds to

x(e1 ∧ · · · ∧ ek−1 ∧ ek) + y(e1 ∧ · · · ∧ ek−1 ∧ ek+1) = e1 ∧ · · · ∧ ek−1 ∧ (xek + yek+1)

so that every point in the image of P1 is actually an element of G(k, n). In particular, if

all Plücker coordinates except p1,2,...,k−1,k and p1,2,...,k−1,k+1 vanish, then the image of P1 is

equal to the Schubert variety given by the partial flag F1 ⊂ F2 ⊂ · · · ⊂ Fk−1 ⊂ Fk+1 where Fr

is generated by e1, . . . , er. Conversely, if we begin with Σλ given by this type of partial flag, we

can construct a linear embedding of P1 into G(k, n) whose image is Σλ.

More generally, a linear space of dimension s on G(k, n) corresponds to either (1) a family

of k-dimensional subspaces that contain a fixed (k − 1)-dimensional space Fk−1 and are con-

tained in a fixed (k+ s)-dimensional subspace Fk+s; or (2) a family of k-dimensional subspaces

that are contained in a fixed (k + 1)-dimensional subspace Fk+1 and contain a fixed (k − s)-

dimensional subspace Fk−s (Harris, 1992, §6). Case (1) only exists if we have k + s ≤ n, and

this space is linear because given any (k+1)-dimensional subspace Gk+1 contained in Fk+s that

contains Fk−1, the Schubert variety of k-dimensional subspaces contained in Gk+1 and contain-

ing Fk−1 lies completely in this family. In other words, every line generated by two points of

Σ(F1 ⊂ · · · ⊂ Fk−1 ⊂ Fk+s) is contained in that Schubert variety. Similarly, case (2) only exists

if s ≤ k, and given any Gk−1 containing Fk−s and contained in Fk+1, the corresponding line is
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contained in Σ(F1 ⊂ · · · ⊂ Fk−s ⊂ Fk−s+2 ⊂ · · · ⊂ Fk+1). We have proved the following, which

will be indispensable in the sequel.

Proposition 2.2.6 (Linear Spaces in the Grassmannian). A subvariety of G(k, n) is isomorphic

to Ps if and only if it is a Schubert variety of the form Σλ, where either λ = (n − k, . . . , n −

k, n− k − s) or λ = ((n− k)k−s, (n− k − 1)s).

It is worthwhile to restate this for the case k = 2:

Proposition 2.2.7. The linear spaces in G(2, n) are precisely the Schubert varieties of the

form Σn−2,i or Σn−3,n−3.

2.3 Singularities of Schubert varieties.

In order to minimize confusion we will denote the point in the Grassmannian G(k, n) cor-

responding to a k-dimensional subspace W by [W ].

The tangent space T[W ]G(k, n) is naturally isomorphic to Hom(W,V/W ) (Harris, 1992, §16).

We denote by T[W ]G(k, n) the projective closure of the tangent space and call it the projective

tangent space to G(k, n) at the point [W ]. We will often abbreviate this simply as T[W ]. We

can explicitly describe the projective tangent space to G(k, n). Choose a basis e1, . . . , en for V

so that W is given as the span of the vectors e1, . . . , ek. Then under the Plücker embedding,

the image of [W ] is e1 ∧ e2 ∧ · · · ∧ ek. Let i1, . . . , ik be a set such that the cardinality of the set

{i1, . . . , ik}−{1, 2, . . . , k} is at most one. Since we can replace any of the elements 1 ≤ i ≤ k by

one of the elements k < j ≤ n, there are k(n− k) + 1 such sets. The projective tangent space
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to G(k, n) at W is spanned by the k(n − k) + 1 points in P(
∧k V ) defined by setting all the

Plücker coordinates but pi1,...ik equal to zero (Donagi, 1977, §1.3). To prove this description

of the tangent space, observe that the line spanned by pi1,...,ik and p1,2,...,k is contained in the

Grassmannian G(k, n). Since the tangent space at [W ] contains every line passing through [W ],

we conclude that the projective tangent space contains the projective space generated by these

linearly independent lines. Since they both have dimension k(n − k), we conclude that they

are equal. Note that what we are doing here is starting with e1 ∧ · · · ek and assigning to each

of e1, . . . , ek a choice of ek+1, . . . , en, which precisely determines an element of Hom(W,V/W )

since the vector space generated by ek+1, . . . , en is isomorphic to V/W . This is one indication

of why it is important that we are working over a field.

Given a partition λ, a singular partition λs associated to λ is obtained by adding a hook

to the partition λ (see Figure 3). More explicitly, if λ = (µi11 , . . . , µ
it
t ), then λs is any of the

partitions

(µi11 , . . . , µ
iu−2

u−2 , (µu−1 + 1)iu−1+1, µiu−1
u , µ

iu+1

u+1 , . . . , µ
it
t )

provided that they are admissible for G(k, n), where it is understood that if µu−1 + 1 = µu−2

those parts have to be grouped together. For example, if (5, 3, 2, 2, 1) is a partition for G(5, 11),

then the singular partitions are (6, 6, 2, 2, 1), (5, 4, 4, 2, 1) and (5, 3, 3, 3, 3).

The singular locus of the Schubert variety Σλ(F•) is the union of Σλs(F•) as λs varies over

all allowable singular partitions associated to λ. In particular, Σa,b in G(2, n) is smooth if

and only if a = n − 2 or a = b. Otherwise, the singular locus of Σa,b(Fn−1−a ⊂ Fn−b) is

Σa+1,a+1(Fn−2−a ⊂ Fn−1−a) (Coskun, 2010).
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Figure 3. Examples of adding a hook to the Young tableau corresponding to Σ5,3,2,2,1 in
G(5, 11).

Lemma 2.3.1. Let H be a hyperplane in P(
∧k V ). Let V1 be a linear space with dim(V1) ≥ k

such that H ∩G(k, n) is singular at every [W ] ∈ G(k, n) such that W ⊂ V1. Then for any linear

space U such that dim(U ∩ V1) ≥ k − 1, [U ] ∈ G(k, n) ∩H.

Proof. First, observe that if a line l on G(k, n) intersects the singular locus of H ∩ G(k, n),

then by Bezout’s Theorem (Hartshorne, 1977, I.7.7), l is contained in H ∩G(k, n). For suppose

that the intersection l ∩ (H ∩G(k, n)) is proper. Then there will be precisely (deg l)(degH)=1

points in the intersection. Call this point p. However, since l meets the singular locus of the

hyperplane section, l ⊂ Tp ⊂ H. Since we assumed l ⊂ G(k, n), the intersection cannot be

proper and the claim is proved.

Hence, for any k-dimensional subspace U that intersects V1 in a subspace of dimension

k− 1, we have [U ] ∈ H ∩G(k, n). This is immediate by assumption if U ⊂ V1. We may assume

that U 6⊂ V1. Let Fk−1 = U ∩ V1 and let W be a k-dimensional subspace of V1 containing

Fk−1. Then the k-dimensional subspaces contained in Span(U,W ) and containing Fk−1 are

parameterized by a line l in G(k, n). The line l contains [W ] which is a singular point of
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H ∩G(k, n) by assumption. Hence l ⊂ H ∩G(k, n). Since [U ] is also a point on l, we conclude

that [U ] ∈ H ∩G(k, n). This concludes the proof of the lemma.

Lemma 2.3.2. Let H be a hyperplane in P(
∧2 V ). Let V1, V2 be two linear subspaces of V such

that dim(Vi) ≥ 2. Assume that H ∩ G(2, n) is singular along every two-dimensional subspace

contained in Vi, 1 ≤ i ≤ 2. Then H ∩ G(2, n) contains every two-dimensional subspace that

intersects Span(V1, V2) non-trivially and is singular along every two-dimensional subspace that

is contained in Span(V1, V2).

Proof. Note that in order to prove the lemma, we may replace V2 with a linear space com-

plementary to V1 ∩ V2. This is because the lemma will be all the more true if V1 and V2

intersect. We may, therefore, assume the most general situation, namely V1 ∩ V2 = 0. Next, let

W be a two-dimensional subspace that intersects Span(V1, V2) in a one-dimensional subspace

F1. Then there exists a two-dimensional subspace containing F1 and intersecting both V1 and

V2 non-trivially. To construct this two-dimensional subspace W ′ take the span of the two one-

dimensional subspaces G1 = V1 ∩ Span(F1, V2) and G′1 = V2 ∩ Span(F1, G1). Let F3 be the

three-dimensional subspace spanned by W and W ′. The two-dimensional subspaces contained

in F3 are parameterized by a plane P in G(2, n) (see Proposition 2.2.7). There are two special

lines l1 and l′1 on this plane, parameterizing two-dimensional subspaces containing G1, respec-

tively, G′1 and contained in F3. Since each of these two-dimensional spaces intersect V1 or V2

non-trivially, l and l′ are contained in H ∩ G(2, n). By Bezout’s Theorem, we conclude that

P ⊂ H ∩G(2, n), for if P ∩H were a proper intersection in P(
∧2 V ), then there would only be

one line contained in both, but we have just demonstrated that there are two, so the intersection
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cannot be proper. Therefore, [W ] ∈ H ∩G(2, n). Since H ∩G(2, n) is projective and contains

the dense open subset of the Schubert variety of [W ] such that dim(W ∩Span(V1, V2)) = 1, we

conclude that H ∩G(2, n) contains every [W ] such that W ∩Span(V1, V2) 6= 0. This proves the

first part of the lemma.

Next, we prove that a hyperplane section of G(2, n) that contains a Schubert variety of the

form Σa,0(Fn−1+a ⊂ Fn) is singular along a Schubert variety of the form Σa+1,a+1(Fn−2+a ⊂

Fn−1+a). This will conclude the proof of the second part of the lemma. Let v ∧ w represent

the Plücker point of a two-dimensional subspace contained in Fn−1+a. Choose coordinates for

V so that Fn−1+a is spanned by e1, . . . , en−1+a with e1 = v and e2 = w. Then the defining

polynomial of a hyperplane containing Σa,0 is a linear combination of the Plücker coordinates

pi,j with n − 1 + a < i < j ≤ n. The tangent space to G(2, n) in its Plücker embedding at

the point e1 ∧ e2 is given by the span of the points e1 ∧ ei and e2 ∧ ej with 2 ≤ i ≤ n and

3 ≤ j ≤ n. All the Plücker coordinates containing Σa,0 vanish at all these points spanning the

tangent space to the Grassmannian. Hence, all these hyperplanes contain the tangent space at

all the points of Σa+1,a+1. We conclude that the linear section H ∩ G(2, n) is singular along

Σa+1,a+1. This concludes the proof of the lemma.

Remark 2.3.3. We chose to give this proof because similar arguments can be used for G(k, n).

For G(2, n), one can prove the previous lemma using the correspondence between hyperplanes

and skew-symmetric forms. By assumption, V1 and V2 are in the kernel of the skew-symmetric
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form QH . Therefore, the span of V1 and V2 is also in the kernel. The lemma then follows by

observing that H ∩G(2, n) is singular along [W ], where W is in the kernel of QH .

It follows from Lemma 2.3.2 that the singular locus of a hyperplane section H ∩G(2, n) is

either empty or a Schubert variety of the form Σa,a parameterizing two-dimensional subspaces

contained in a vector space Fn−a. Simply let Fn−a be the span of all the two-dimensional

subspaces W where [W ] is a singular point of G(2, n) ∩H. Furthermore, a has to be even. To

see this use the correspondence between the hyperplane H and the skew-symmetric form QH .

The codimension of the kernel of a skew-symmetric form is even since the restriction of the

skew-symmetric form to a complementary linear space is non-degenerate. Hence, a has to be

even. Conversely, every Σ2r,2r occurs as the singular locus of some hyperplane section of G(2, n).

This can be seen by explicitly writing the skew-symmetric form e1∧e2+e3∧e4+· · ·+e2r−1∧e2r,

whose kernel has codimension 2r. Finally, Darboux’s Theorem (McDuff and Salamon, 1998,

§2) guarantees that the hyperplanes corresponding to the skew-symmetric forms with the same

dimensional kernel form one orbit under PGL(n). This concludes the proof of the following

well-known statement alluded to in the Introduction.

Proposition 2.3.4. ((Donagi, 1977, §2)) The group PGL(n) acts with finitely many orbits on

P∗(
∧2 V ). The orbits are indexed by an integer 1 ≤ r ≤ dn−1

2 e. The orbit corresponding to

r < dn−1
2 e consists of hyperplanes H such that the singular locus of H ∩ G(2, n) is a Schubert

variety of the form Σ2r,2r. The open orbit corresponding to r = dn−1
2 e is the complement of the

dual variety G(2, n)∗ parameterizing hyperplanes H such that H ∩G(2, n) is smooth.
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Let r ≤ n−2
2 . A hyperplane [H] ∈ Sr \ Sr−1 is singular along Σ2r,2r, which parameterizes

linear spaces contained in Fn−2r. By Lemma 2.3.1, H ∩ G(2, n) contains the Schubert variety

Σ2r−1,0 parameterizing linear spaces intersecting Fn−2r. Conversely, we saw in the proof of

Lemma 2.3.2 that a hyperplane containing Σ2r−1,0(Fn−2r ⊂ Fn) is singular along the Schubert

variety Σ2r,2r parameterizing linear spaces that are contained in Fn−2r. We conclude that H

contains a unique Σ2r−1,0. In particular, the map π2 : I(2r − 1, 0) → Sr is birational and a

resolution of singularities of Sr. Furthermore, the Theorem on the Dimension of Fibers and

Corollary 2.2.4 then imply the following corollary.

Corollary 2.3.5. ([§2](Donagi, 1977)) The codimension of Sr in P∗(
∧k V ) is

(
n−2r

2

)
.

In particular, we have the following well-known corollary.

Corollary 2.3.6. ([§2](Donagi, 1977) or (Piontkowski and de Ven, 1999)) When n is even,

then the dual G(2, n)∗ is a hypersurface. When n is odd G(2, n)∗ has codimension three.

Finally, if n−2 > k > 2, then the dual of G(k, n) in its Plücker embedding is a hypersurface,

and at a general point [H] ∈ G(k, n)∗, the singular locus of H ∩G(k, n) consists of one singular

point. For the convenience of the reader, we provide an elementary proof. Since G(k, n) is

isomorphic to G(n − k, n), we may further assume that 2k ≤ n. To discuss properties of

G(k, n)∗, we need to examine how pairs of projective tangent spaces intersect. This question is

answered by the following lemma.

Lemma 2.3.7. Let [W1] and [W2] be distinct points of G(k, n), and let s = dim(W1 ∩W2).

Then
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T[W1]G(k, n) ∩ T[W2]G(k, n) =



∅, if s < k − 2

P3, if s = k − 2

Pn−1, if s = k − 1.

Proof. Let E = {e1, . . . , en} be a basis for V such that W1 ∩ W2 = 〈e1, . . . , es〉, W1 =

〈e1, . . . , es, es+1, . . . , ek〉 and W2 = 〈e1, . . . , es, ek+1, . . . , e2k−s〉. Via the Plücker embedding, we

may represent [W1] as [e1∧· · ·∧es∧es+1∧· · ·∧ek] and [W2] as [e1∧· · ·∧es∧ek+1∧· · ·∧e2k−s].

Let E1 := {e1, . . . , ek} and E2 := {e1, . . . , es, ek+1, . . . , e2k−s}. The basis of the tangent space

to [W1] consists of [e1 ∧ · · · ∧ ek] and all elements of the form [e1 ∧ · · · ∧ êi ∧ · · · ∧ ek ∧ ej ], where

ej comes from E −E1. Similarly, the basis for T[W2] consists of [e1 ∧ · · · ∧ es ∧ ek+1 ∧ · · · ∧ e2k−s]

and all elements of the form [e1 ∧ · · · ∧ êi ∧ · · · ∧ es ∧ ek+1 ∧ · · · ∧ e2k−s ∧ ej ], where ej ∈ E − E2.

The set of basis elements of (the affine cone over) T[W1] and the set of basis elements of (the

affine cone over) T[W2] are in one-to-one correspondence, respectively, with the following sets:

B1 := {S ⊂ E | #S = k,#(S − E1) ≤ 1}

B2 := {T ⊂ E | #T = k,#(T − E2) ≤ 1}.

So, we want to explore the number of elements of B1 ∩ B2 for different choices of s.

We consider three cases: (i) s < k − 2, (ii) s = k − 2, and (iii) s = k − 1. Observe that, if

s = k, then there is nothing to prove, as in that case W1 = W2.
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(i) Assume s < k − 2. Let S ∈ B1 and T ∈ B2, and assume S = T . So S differs from

E1 by at most one element. Let S′ := S ∩ (E1 − E2). We know that this is nonempty

because E1−E2 consists of k− s > 2 elements, and since S differs from E1 by at most one

element, #S′ ≥ 2. Since S′ differs from E2 by at least two elements, any set of cardinality

k containing S′ cannot belong to B2, hence S′ 6⊂ T . This is a contradiction, so when

s < k − 2, B1 ∩ B2 = ∅. Thus 〈B1 ∩ B2〉 = {0}, so TW1 ∩ TW2 = P({0}) = ∅.

(ii) Assume s = k − 2. If U ∈ B1 ∩ B2, then

(a) #(U − {e1, . . . , ek−2, ek−1, ek}) ≤ 1,

(b) #(U − {e1, . . . , ek−2, ek+1, ek+2}) ≤ 1.

In other words, in order for U to satisfy both conditions (a) and (b), U must contain

exactly one of ek−1 or ek and exactly one of ek+1 or ek+2. This results in precisely

#(B1 ∩ B2) = 4 elements, which means TW1 ∩ TW2 = P (〈B1 ∩ B2〉) ∼= P3.

(iii) Suppose s = k− 1 and that U ∈ B1 ∩B2 in this case. Explicitly, this means that U differs

from {e1, . . . , ek} by at most one element and from {e1, . . . , ek−1, ek+1} by at most one

element. If U contains {e1 . . . , ek−1}, then U must also contain one of ek, ek+1, . . ., or en.

This results in n− k + 1 such U ’s.

Say U contains {e1, . . . , ek−2}. In order to satisfy U ∈ B1 ∩ B2, U must contain both ek

and ek+1. Similarly, if U contains {e1, . . . , ek−3, ek−1}, U must contain both ek and ek+1;

if U contains {e1, . . . , ek−4, ek−2, ek−1}, it must contain ek and ek+1; and so on, up to the

case where U contains {e2, . . . , ek−1}, again meaning that U contains both ek and ek+1.



31

In other words, to contain a proper subset of {e1, . . . , ek−1} (the intersection of E1 and E2

for this case) forces containment of both ek and ek+1 and exclusion of ek+2, . . . , en.

Hence the number of elements in B1 ∩ B2 is (n − k + 1) + (k − 1) = n, so if s = k − 1,

TW1 ∩ TW2
∼= Pn−1.

Let U = G(k, n)×G(k, n)−∆ be the complement of the diagonal ∆ in G(k, n)×G(k, n).

Consider the incidence correspondence

J = {([W1], [W2], H) | T[W1],T[W2] ⊂ H}

consisting of a point ([W1], [W2]) in U and a hyperplane H containing the projective tangent

spaces to G(k, n) at both points. Let π1 and π2 denote the projection to U and P∗(
∧k V ),

respectively. Note that for every [H] in π2(J), the hyperplane section H ∩G(2, n) contains at

least two singular points.

Let U1 be the locus in U parameterizing {([W1], [W2]) | dim(W1 ∩W2) < k − 2}. Then by

Lemma 2.3.7 the fibers of π1 over U1 are projective spaces of dimension
(
n
k

)
− 2k(n − k) − 3.

Observe that U1 has dimension 2k(n − k) by the Theorem on the Dimension of Fibers: if we

view U1 as an incidence correspondence itself and project to either G(k, n), we see that the

fiber will be the complement of a Schubert variety. The Theorem on the Dimension of Fibers

applied to π1 implies that dim(π−1
1 (U1)) =

(
n
k

)
−3, hence π2(π−1

1 (U1)) has codimension at least

two in P∗(
∧k V ).
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Let U2 be the locus in U parameterizing {([W1], [W2]) | dim(W1 ∩W2) = k − 2}. Lemma

2.3.7 tells us that the π1-fibers over U2 are projective spaces of dimension
(
n
k

)
− 2k(n− k) + 1.

As with U1 if we project U2 onto G(k, n), we have that the fiber over a point [W ′] is an open

subset of a Schubert variety of the form

{[W ] | dim(W ∩W ′) ≤ k − 2} = Σn−2−k,...,n−2−k,0,0

so that U2 has dimension 2(n − 2) + k(n − k). From this we obtain that dim(π−1
1 (U2)) =(

n
k

)
−1−(k(n−k)−2(n−2)−2). We want to show, then, that k(n−k)−2(n−2)−2 ≥ 2. Notice

that since k > 2, this inequality is equivalent to n ≥ k2

k−2 . Now since n ≥ 2k by assumption,

to show 2k ≥ k2

k−2 would imply the above inequality. A simple calculation shows that this

inequality holds if k ≥ 4 or k = 3 and n ≥ 9. If k = 3 and n = 6, 7, or 8, we observe that the

general fiber dimension of π2 on π−1
1 (U2) is 6,4 and 2, respectively. Let W1 = Span(e1, e2, e3)

and let W2 = Span(e1, e4, e5). A hyperplane H containing T[W1] and T[W2] can be expressed

as
∑n

i=6(aip24i + bip34i + cip25i + dip35i) = 0 in Plücker coordinates. Consider two-dimensional

subspaces Y in Span(e2, e3, e4, e5) that satisfy aie2 ∧ e4 + · · · + die3 ∧ e5 = 0 for 6 ≤ i ≤ n.

Then H contains the tangent space to the three-dimensional subspace Span(e1, Y ). The claim

about the fiber dimension of π2 follows. Hence, π2(π−1
1 (U2)) has codimension at least two in

P∗(
∧k V ) in these cases as well.

Let U3 be the locus in U parameterizing {([W1], [W2]) | dim(W1 ∩W2) = k − 1}. Then

the fibers of π1 over U3 are projective spaces of dimension
(
n
k

)
− 2k(n− k) + n− 3. The locus
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U3 consists of pairs of points ([W1], [W2]) such that the line spanned by them is contained in

G(k, n). Hence, dim(U3) = 2k + (k + 1)(n− k − 1).

Note that if a hyperplane H is tangent to G(k, n) at both [W1] and [W2], then it is tangent

at all points along the line spanned by [W1] and [W2]. We claim this implies that the fibers of

π2 over π2(π−1
1 (U3)) have dimension at least two. Let H be an element of π2(π−1

1 (U3)). Then

view π−1
2 (H) as the incidence correspondence

π−1
2 (H) = {([W1], [W2]) | T[W1],T[W2] ⊂ H,dim(W1 ∩W2) = k − 1}

p1 ↙ ↘ p2

G(k, n) G(k, n).

Suppose that dimπ−1
2 (H) = 0. Then there are finitely many pairs ([W1], [W2]) such that

T[W1],T[W2] ⊂ H. But this contradicts the fact that T[W ] ⊂ H for any [W ] on the line spanned

by [W1] and [W2]. Now suppose dimπ−1
2 (H) > 0 and consider the first projection p1. If

[W1] ∈ p1(π−1
2 (H)), then p−1

1 ([W1]) has dimension at least one since otherwise there are only

finitely many points [W2] such that H is tangent to G(k, n) at [W2]. But again this contradicts

that T[W ] ⊂ H for any [W ] on the line spanned by [W1] and [W2]. This proves the claim. By

the Theorem on the Dimension of Fibers, the codimension of π2(π−1
1 (U3)) will be less than two

if 2k + (k + 1)(n− k − 1)− 2k(n− k) + n− 2 > 0.

Rewriting this inequality, 0 > (k − 2)n − k2 + 3. Using n ≥ 2k, we immediately see that

this inequality cannot be satisfied if k ≥ 4. When k = 3, the inequality becomes 6 > n.
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Hence, we conclude that the inequality is not satisfied for k ≥ 3 and n ≥ 2k. It follows that

if n − 2 > k > 2, G(k, n)∗ is a hypersurface and a general tangent hyperplane is tangent at

a unique point. We have proved the following well-known fact for which we could not find a

convenient reference.

Proposition 2.3.8. If 2 < k < n − 2, then G(k, n)∗ in P∗(
∧k V ) is a hypersurface. Further-

more, a general hyperplane parameterized by G(k, n)∗ is tangent to G(k, n) at one point.



CHAPTER 3

CONDITIONS FOR SURJECTIVITY ONTO P∗(
∧2 V )

In this chapter, we prove Theorem 1.0.2 and discuss its generalizations to G(k, n).

Proof of Theorem 1.0.2. Let Σa,b(Fn−1−a ⊂ Fn−b) be a Schubert variety with class σa,b in

G(2, n). Suppose that H is a hyperplane in P(
∧2 V ) containing Σa,b(Fn−1−a ⊂ Fn−b). Notice

that Σa,b(Fn−1−a ⊂ Fn−b) ⊂ G(2, Fn−b). There are two possibilities. Either G(2, Fn−b) ⊂ H;

or H ∩G(2, Fn−b) is a hyperplane section of G(2, Fn−b) that contains Σa,b(Fn−1−a ⊂ Fn−b). We

will now analyze each of these possibilities.

First, assume that H∩G(2, Fn−b) is a hyperplane section of G(2, Fn−b). A linear embedding

V ′ ↪→ V induces an embedding G(2, V ′) ↪→ G(2, V ). The following lemma analyzes the relation

between the singular loci of H ∩G(2, V ) and H ∩G(2, V ′).

Lemma 3.0.9. Let G(2, n) ↪→ G(2, n+ 1) be the embedding induced by the embedding of Vn ↪→

Vn+1. Let H ∩G(2, n) be a linear section of G(2, n) in P(
∧2 Vn) with singular locus Σ2r,2r. Let

H ′ be a general hyperplane in P(
∧2 Vn+1) such that H ′ ∩ G(2, n + 1) restricts to H ∩ G(2, n).

Then the singular locus of H ′ ∩G(2, n+ 1) is Σ2(r+1),2(r+1).

Proof. Pick a basis e1, . . . , en+1 of Vn+1 such that Vn is spanned by the first n vectors and the

singular locus of H ∩ G(2, n) parameterizes two-dimensional subspaces contained in the span

Fn−2r of the first n− 2r vectors. Then H is defined by a linear equation L(pi,j) = 0, where L is

35
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a linear combination of the Plücker coordinates pi,j for i < j and n−2r < j ≤ n. A hyperplane

in P(
∧2 Vn+1) that contains H may be expressed as L(pi,j) +

∑n
i=1 aipi,n+1 = 0.

By Bertini’s Theorem (Hartshorne, 1977, II.8.18), the singular locus of H ′ ∩G(2, n+ 1) for

a general hyperplane containing H is contained in H ∩ G(2, n). Let W be the (n − 2r − 1)-

dimensional linear space cut out on Fn−2r by the linear equation
∑n

i=1 aixi = 0, where the xi

form a basis for V ∗. Then H ′∩G(2, n+1) contains the tangent space to G(2, n+1) at any two-

dimensional space contained in W . At a point, u∧v with u, v ∈W , the tangent space is spanned

by replacing at most one of u or v by elements of a basis. All the Plücker coordinates defining

H ′ clearly vanish at all these points. Hence H ′ ∩G(2, n+ 1) is singular along two-dimensional

subspaces contained in W . We conclude that the singular locus of H ′ ∩G(2, n+ 1) contains a

Σ2(r+1),2(r+1) of two-dimensional subspaces contained in W . Conversely, for a two-dimensional

space not contained in that hyperplane, there exists a vector v such that
∑
aivi 6= 0. Hence,

the point v ∧ en+1 is not contained in H ′, but it is contained in the tangent space to a point

w ∧ v. Hence, the singular locus does not contain all of Σ2r,2r. The lemma follows.

We are now ready to prove the theorem in the case H does not contain G(2, Fn−b). There

are two cases that we need to analyze separately. First, assume that a = n − 2. Since the

Grassmannian contains linear spaces of the form Σn−2,0, any hyperplane section contains linear

spaces Σn−2,1 of one smaller dimension. Hence, π2 is surjective for λ = (n − 2, i) when i > 0.

We now have to analyze the case λ = (n − 2, 0). In this case, the flag variety F (1, n;n)

is isomorphic to Pn−1. Hence, dim(I(n − 2, 0)) =
(
n
2

)
− 1. If n is even, then the general

singular hyperplane section X of G(2, n) is singular along a point [Λ] ∈ G(2, n). Furthermore,
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in this case the dual variety G(2, n)∗ is a hypersurface, hence has dimension
(
n
2

)
− 2. By

Lemma 2.3.2, if F1 ⊂ Λ, then every two-dimensional subspace containing F1 is contained in

X. Since the space of one-dimensional subspaces of Λ is isomorphic to P1, the general fiber

of π2 over G(2, n)∗ has dimension greater than or equal to one. By the Theorem on the

Dimension of Fibers, dim(π−1
2 (G(2, n)∗) ≥

(
n
2

)
− 1. However, since π−1

2 (G(2, n)∗) ⊂ I(n− 2, 0),

dim(π−1
2 (G(2, n)∗) ≤

(
n
2

)
− 1. We conclude that π−1

2 (G(2, n)∗) = I(n− 2, 0) and consequently,

π2 is not surjective.

If n is odd, then the dual variety G(2, n)∗ has codimension 3, or dimension
(
n
2

)
− 4. The

general singular hyperplane section X of G(2, n) is singular along a plane Σn−3,n−3(F2 ⊂ F3).

If F1 is a one-dimensional subspace such that F1 ⊂ F3, then Σn−2,0(F1 ⊂ Fn) ⊂ X. Conversely,

we would like to show that any Schubert variety Σn−2,0(F1 ⊂ Fn) contained in X must have

F1 ⊂ F3. Suppose to the contrary that F1 6⊂ F3. Then F4 = Span(F1, F3) is a four-dimensional

vector space. We will show that any two-dimensional subspace intersecting F4 non-trivially is

contained in X. Let G2 be a two-dimensional subspace intersecting F4 in a one-dimensional

subspace G1. Then we can find a two-dimensional subspace, namely G′2 = Span(G1, F1),

such that G′2 intersects F3. Let G′3 = Span(G′2, G2). We claim that the two-dimensional

subspaces contained in G′3, and in particular G2, are all contained in X. The two-dimensional

subspaces contained inG′3 form a plane in the Plücker embedding ofG(2, n). Hence a hyperplane

section either is a line or contains the entire plane. By assumption, the Schubert variety

Σn−2,n−3(G1 ⊂ G′3) is contained in X. Similarly, the Schubert variety Σn−2,n−3(G′2 ∩F3 ⊂ G′3)

is contained in X. Hence, the entire family of two-dimensional subspaces contained in G′3 has



38

to be contained in X. Observe that any linear space contained in a hyperplane section must

be contained in its singular locus, as the tangent space to a point of this linear space will

be contained in the hyperplane H. We conclude that the singular locus of X is larger than

Σn−3,n−3(F2 ⊂ F3), contrary to assumption. Hence, the general fiber of π2 over G(2, n)∗ has

dimension 2 and dim(π−1
2 (G(2, n)∗)) ≤

(
n
2

)
−2. We conclude that the image of π2 must contain

a hyperplane not contained in G(2, n)∗. Since any two smooth hyperplane sections of G(2, n)

are equivalent under the action of PGL(n), we conclude that π2 is surjective.

Now we can discuss the case Σa,0 with a < n − 2. If a is odd, then the singular locus of

a general hyperplane contains Σa+1,a+1. Conversely, a linear section whose singular locus is

Σa+1,a+1 contains a Schubert variety of the form Σa,0. We conclude that π2(I(a, 0)) = S(a+1)/2.

If a is even, then the singular locus of a hyperplane section containing Σa,0 contains Σa+1,a+1.

However, since the singular loci have to be of the form Σ2k,2k, it follows that the singular locus

has to contain a Schubert variety of the form Σa,a. Conversely, a hyperplane section whose

singular locus has the form Σa,a contains a Schubert variety of the form Σa,0. We conclude that

the image of π2 is Sa/2.

Returning to the original argument, if b > 0, then Σa,b is a Schubert variety with class σa−b,0

in G(2, n− b). Hence, any hyperplane section of G(2, n− b) containing σa−b,0 is singular along

a Schubert variety of the form Σa−b+1,a−b+1 if a − b is odd or Σa−b,a−b if a − b is even. Using

Lemma 3.0.9 b-times, we conclude that if a− b is even, then the general hyperplane containing

Σa,b is smooth if a + b > n − 3 or singular along a Schubert variety of the form Σa+b+1,a+b+1

when a + b ≤ n − 2. Similarly, when a − b is odd, then a hyperplane section of G(2, n − b)
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containing Σa−b,0 is singular along Σa−b,a−b. Using Lemma 3.0.9 b-times, we conclude that a

general hyperplane containing Σa,b is smooth when a + b > n − 2 or singular along Σa+b,a+b

when a+ b ≤ n− 2.

Finally, we analyze the cases when the hyperplane contains G(2, n − b) or when a = b.

The first observation is that the only hyperplanes containing a Schubert variety of the form

Σ1,1(Fn−2 ⊂ Fn−1) are Schubert varieties Σ1(Gn−2 ⊂ Gn). The flag variety F (n − 1;n) ∼=

(Pn−1)∗, hence has dimension n − 1. The fiber dimension of π1 over a point in F (n − 1;n) is

n − 2. Hence the dimension of I(1, 1) is 2n − 3. The locus of Schubert varieties in P∗(
∧2 V )

of the form Σ1, which we denote by S1 according to the notation of Donagi (Donagi, 1977),

has dimension 2(n − 2) because a choice of Σ1(Fn−2 ⊂ Fn) is equivalent to a choice of [Fn−2]

in G(n − 2, n). If Fn−1 contains Gn−2, then Σ1,1(Fn−2 ⊂ Fn−1) ⊂ Σ1(Gn−2 ⊂ Gn). Hence,

the fiber of π2 over a hyperplane corresponding to a Schubert variety has dimension at least

one. We conclude that dim(π−1
2 (S1)) = 2n − 3 = dim(I(1, 1)). Hence, π2(I(1, 1)) = S1 and

every hyperplane containing a Schubert variety Σ1,1 is a Schubert variety Σ1. Applying Lemma

3.0.9 (b − 1)-times, we conclude that a general hyperplane section containing Σb,b is smooth

if 2b > n − 2 or singular along a Schubert variety of the form Σ2b,2b if 2b ≤ n − 2. This also

concludes the discussion of the case a 6= b. Let H and H ′ be two hyperplanes containing Σa,b.

If G(2, Fn−b) ⊂ H and G(2, Fn−b) 6⊂ H ′, then the dimension of the singular locus of G(2, n)∩H

is greater than or equal to the dimension of the singular locus of H ′ ∩G(2, n). This concludes

the proof of the theorem.

Since the proof of Proposition 3.0.10 uses similar techniques, we include it in this chapter.
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Proposition 3.0.10. Let λ be a partition for G(k, n) such that λ1 < n− k and λk = 0. Then

the image of the second projection π2(I(λ)) is contained in G(k, n)∗, in particular, it is not

surjective. On the other hand, let λ be a partition such that either λk−1 = n − k and λk > 0;

or λ1 = n− k and λk = n− k − 1 . Then π2(I(λ)) is surjective.

Proof. Let λ be a partition of the form λ1 = λk−1 = n− k and λk > 0, then the Plücker image

of Σλ is a linear space. Since the Grassmannian contains linear spaces with cohomology class

σµ, where µ = ((n−k)k−1, 0), every hyperplane section contains linear spaces with cohomology

class σλ. The same argument applies for a partition λ with λ1 = n− k and λk ≥ n− k − 1 by

considering linear spaces with cohomology class σν , where ν = ((n− k − 1)k). This proves the

second part of the proposition.

To prove the first part of the proposition, we will show that if λ is a partition such that

λ1 < n−k and λk = 0, then any hyperplane H containing Σλ is singular. Fix a basis e1, . . . , en

of V . Let F• be the flag where the flag element Fi is the span of the basis vectors e1, . . . , ei.

Let H be a hyperplane containing Σλ(F•). Then the equation defining H must be a linear

combination of the Plücker coordinates defining Σλ(F•). Recall that the Plücker coordinates

vanishing on Σλ(F•) are pi1,....ik with i1 < · · · < ik such that ij > n− k+ j−λj for at least one

j. Since by assumption λk = 0 and we cannot have ik > n, there must exist j < k such that

ij > n− k + j − λj .

It follows that H ∩ G(k, n) is singular at the point p = e1 ∧ e2 ∧ · · · ∧ ek. The tangent

space to G(k, n) at p is spanned by Plücker coordinates pi1,...,ik where the set {i1, . . . , ik} differs

from {1, . . . , k} in at most one element. On the other hand, the Plücker coordinates occurring
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in the equation of H have indices that differ from {1, . . . , k} in at least two elements. Hence,

H vanishes at all the points spanning the tangent space to G(k, n) at p. We conclude that

H ∩G(k, n) is singular at p. This concludes the proof of the proposition.

Corollary 3.0.11. Let λ be the partition λ1 = · · · = λk−1 = n − k − 1 and λk = 0. Then

π2(I(λ)) surjects onto G(k, n)∗.

It is very rare to have an explicit, concrete resolution of singularities of a variety. Corollary

3.0.12 provides such a resolution for the dual of the Grassmannian in its Plücker embedding.

Corollary 3.0.12. Let n − 2 > k > 2. Let λ be the partition λ1 = · · · = λk−1 = n − k − 1

and λk = 0. Let N =
(
n
k

)
− k(n − k) − 2. Then the incidence correspondence I(λ) is a PN

bundle over G(k, n). The map π2(I(λ)) is birational onto G(k, n)∗ and gives a resolution of

singularities of G(k, n)∗.

When λ is the partition λ1 = · · · = λk−1 = n − k − 1 and λk = 0, then, by Proposition

3.0.10, for any hyperplane H containing Σλ the hyperplane section H ∩G(k, n) is singular at a

point. Conversely, if H∩G(k, n) is singular at a point p = e1∧· · ·∧ek, then by Lemma 2.3.1 the

Schubert variety Σλ parameterizing k-dimensional subspaces that intersect Span(e1, . . . , ek) in

a subspace of dimension at least k − 1 is contained in H. In this case, we conclude that the

image of π2(I(λ)) is precisely the dual variety.

Note that h0(IΣλ(1)) =
(
n
k

)
− k(n − k) − 1 = N. Hence, the incidence correspondence

I(λ) is a projective space bundle over G(k, n) with fibers of dimension N − 1. In particular,
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dim(I(λ)) =
(
n
k

)
− 2. When n− 2 > k > 2, the dual variety G(k, n)∗ is a hypersurface and the

general tangent hyperplane to G(k, n) is tangent at a unique point. Therefore, π2 is a birational

map. Hence, π2 : I(λ)→ G(k, n)∗ gives a resolution of singularities of G(k, n)∗. This concludes

the proofs of Corollary 3.0.11 and Corollary 3.0.12.



CHAPTER 4

PARAMETER SPACES OF SCHUBERT VARIETIES IN HYPERPLANE

SECTIONS

In this chapter, we prove Theorem 1.0.3 and discuss some generalizations to G(k, n). Recall

that the parameter space of Schubert varieties Σλ for fixed λ in a given hyperplane section H

is precisely the π2-fiber of [H] over P∗(
∧2 V ).

Proof of Theorem 1.0.3. Let H be a hyperplane in P(
∧2 V ) such that [H] ∈ Sr \ Sr−1. Then

H∩G(2, n) is singular along a Schubert variety Σ2r,2r parameterizing two-dimensional subspaces

of V contained in a linear subspace Fn−2r. First, suppose that a 6= b. Let (Vn−a−1 ⊂ Vn−b)

be the partial flag defining a Schubert variety Σa,b ⊂ H ∩G(2, n). Suppose that dim(Vn−a−1 ∩

Fn−2r) = j. Then clearly

0 ≤ j ≤ min(n− a− 1, n− 2r).

Consider the restriction of H to G(2, Vn−b). Either H identically vanishes on G(2, Vn−b); or H

defines a hyperplane section of G(2, Vn−b).

If H identically vanishes on G(2, Vn−b), then both Vn−a−1 and Vn−b are QH -isotropic. Hence,

trivially Vn−a−1 ⊂ Vn−b ⊂ V ⊥n−a−1. Take a linear space S2r of dimension 2r complementary to

Fn−2r. Then the restriction of QH to S2r is non-degenerate. Since Span(Vn−a−1, Fn−2r) ∩ S2r

is isotropic with respect to the restriction of QH to S2r, its dimension n − a − 1 − j must be

43
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less than or equal to r. Equivalently, n − a − 1 − r ≤ j. Similarly, since Vn−b is isotropic,

n− b ≤ n− r. In particular, b ≥ r. Hence, the inequality n− a− 1−min(r, b) ≤ j holds.

Next, suppose that H defines a hyperplane section of G(2, Vn−b). By our assumption that

Σa,b(Vn−a−1 ⊂ Vn−b) ⊂ H ∩ G(2, n), we must have that [W ] ∈ H ∩ G(2, n) for every two-

dimensional subspace W that intersects Vn−a−1 non-trivially and is contained in Vn−b. In

particular, [W ] is contained in H ∩G(2, n) for every two-dimensional subspace W contained in

Vn−a−1. We conclude that the skew-symmetric form QH vanishes identically on Vn−a−1. Hence,

Vn−a−1 is QH -isotropic. Hence, Span(Vn−a−1, Fn−2r) is also QH -isotropic. The dimension of

this vector space, which by assumption is n− a− 1 + n− 2r − j, has to be less than or equal

to n− r. We conclude that n− a− 1− r ≤ j.

Finally, since the restriction of QH to Vn−b must contain Vn−a−1 in its kernel, we must

have that Vn−b ⊂ V ⊥n−a−1. By assumption, the dimension of V ⊥n−a−1 is n − 1 − a − j. Hence,

n− a− 1− j ≤ b. Combining all these inequalities, yields the inequality

max(0, n− a− 1−min(b, r)) ≤ j ≤ min(n− a− 1, n− 2r).

Note that by assumption 2r ≤ a + b + 1, so for j satisfying the assumptions of the theorem,

these inequalities hold.

Conversely, suppose j satisfies the inequalities

max(0, n− a− 1−min(b, r)) ≤ j ≤ min(n− a− 1, n− 2r).
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Then every Schubert variety Σa,b(Vn−a−1 ⊂ Vn−b) is contained in H ∩G(2, n) provided Vn−a−1

is QH isotropic and Vn−b ⊂ V ⊥n−a−1. This is clear since the kernel of QH restricted to V ⊥n−a−1

contains Vn−a−1. Hence, every two-dimensional space intersecting Vn−a−1 non-trivially is QH

isotropic.

Furthermore, there exists flags (Vn−a−1 ⊂ Vn−b) such that dim(Vn−a−1 ∩ Fn−2r) = j. To

construct such a flag, let S2r be a linear space complementary to Fn−2r. Pick a QH isotropic

subspace W of dimension n − a − 1 − j in S2r. This is possible since n − a − 1 − j ≤ r. Pick

a j-dimensional subspace W ′ of Fn−2r. Let Vn−a−1 = Span(W,W ′). Then Vn−a−1 is isotropic

and has dimension n− a− 1. Next, consider V ⊥n−a−1, which has dimension a+ 1 + j. Since by

assumption n − a − 1 − b ≤ j, n − b ≤ a + 1 + j. Therefore, there exists (n − b)-dimensional

subspaces of V ⊥n−a−1 containing Vn−a−1.

Let Z0
j denote the locus of two-step flags (Vn−a−1 ⊂ Vn−b) in F (n − a − 1, n − b;n) such

that Vn−a−1 is QH isotropic, dim(Vn−a−1 ∩ Fn−2r) = j and Vn−b ⊂ V ⊥n−a−1. Let Zj denote the

closure of Z0
j . It is clear from the construction in the previous paragraph that Zj is irreducible.

We have also shown that

X((a, b), H) =

min(n−a−1,n−2r)⋃
j=M

Zj

and in this range each Z0
j is non-empty. Finally, there remains to check that Zj is an irreducible

component of X((a, b), H) if j ≤ n− r − a+b+1
2 and X((a, b), H) =

⋃N
j=M Zj .

The dimension dim(Vn−a−1∩Fn−2r) is an upper-semi-continuous function. Consequently, if

j1 > j2, then linear spaces intersecting Fn−2r in a (j1)-dimensional subspace cannot specialize

to linear spaces intersecting Fn−2r in a j2-dimensional subspace. Therefore, Zj2 cannot be
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contained in Zj1 . On the other hand, dim(Vn−b ∩ Fn−2r) is also an upper-semi-continuous

function. By construction, for a general point (Vn−a−1, Vn−b) in Zj , dim(Vn−b ∩ Fn−2r) =

max(j, 2n − 2r − a − b − 1 − j) since Vn−b is an arbitrary linear space containing Vn−a−1 and

contained in the (a + j + 1)-dimensional space V ⊥n−a−1. Suppose n − r − a+b+1
2 ≥ j1 > j2,

then the dimension of Vn−b ∩ Fn−2r for a general point in Zj1 , respectively, Zj2 is given by

2n− 2r− a− b− 1− j1 < 2n− 2r− a− b− 1− j2. Hence, Zj1 cannot be contained in Zj2 . We

conclude that for M ≤ j ≤ N , Zj form irreducible components of X((a, b), H).

There remains to show that when 2j > 2n − 2r − a − b − 1, then Zj is contained in Zj−1.

Let (Vn−a−1 ⊂ Vn−b) be a point of Zj such that dim(Vn−a−1∩Fn−2r) = dim(Vn−b∩Fn−2r) = j.

Let E be a codimension one linear space in V containing the vector space Span(Vn−b, Fn−2r).

By assumption,

dim(Span(Vn−b, Fn−2r)) = 2n− 2r − b− j < a+ 1 + j ≤ n.

Hence, we can always find a codimension one linear space E containing Span(Vn−b, Fn−2r).

Since a non-degenerate skew-symmetric form can only exist in an even-dimensional vector

space, the dimension of the kernel of QH restricted to E has to have dimension greater

than or equal to n − 2r + 1. Denote this kernel by KE . Let Va+1−b be a general sub-

space in Vn−b complementary to Vn−a−1. Pick a pencil of linear spaces Vn−a−1(t) such that

Vn−a−1(0) = Vn−a−1, Vn−a−1(t) ⊂ KE and Vn−a−1(t) 6⊂ Fn−2r for t 6= 0. Consider the

pencil of flags (Vn−a−1(t) ⊂ Span(Vn−a−1(t), Va+1−b)). First, notice that when t = 0, this
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is simply (Vn−a−1 ⊂ Vn−b). Hence, except for finitely many t, these flags are contained in

F (n−a−1, n− b;n). By construction, dim(Vn−a−1(t)∩Fn−2r) = j−1. Since Vn−a−1(t) ⊂ KE ,

Span(Vn−a−1(t), Va+1−b) ⊂ Vn−a−1(t)⊥. Hence, the general member of this family is contained

in Zj−1. We conclude that Zj ⊂ Zj−1.

The computation of the dimension of Zj is standard. We have to choose a QH isotropic

subspace Vn−a−1 that intersects the kernel of QH in a subspace of dimension j. The reader can

easily check that the dimension of the space of such isotropic subspaces is

(n− a− 1)(3a+ j − n+ 4)

2
− j (4r + 3a+ 3j − 3n+ 4)

2
.

Then we need to choose an (n−b)-dimensional subspace in the (a+j+1)-dimensional subspace

V ⊥n−a−1 containing Vn−a−1. The dimension of the space of such linear spaces Vn−b is

(a+ 1− b)(a+ b+ j − n+ 1).

This immediately yields the dimension formula for Zj .

Next, suppose that a = b. In this case, the Schubert variety is determined by one flag

element Vn−a. Since Σa,a ⊂ H ∩ G(2, n), Vn−a is QH isotropic. Conversely, if Vn−a is QH -

isotropic, then [W ] ∈ H ∩G(2, n) for every two-dimensional subspace W ⊂ Vn−a. We conclude

that X((a, a), H) is the space of QH -isotropic linear spaces of dimension n− a. It is standard

that this space is irreducible and has the claimed dimension.
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The corollaries are obtained by specializing the numbers a and b.

Corollary 4.0.13. Let [H] ∈ Sr \ Sr−1. Then X((r, r), H) is isomorphic to the Lagrangian

Grassmannian SG(r, 2r). In particular, X((r, r), H) is irreducible of dimension
(
r+1

2

)
.

Proof. When a = b = r, we are in Case (2) of Theorem 1.0.3. X((a, a), H) parameterizes (n−a)-

dimensional isotropic subspaces of QH . These are maximal dimensional isotropic subspaces,

hence they all contain the kernel Fn−2r of QH . Passing to the quotient V/Fn−2r, we see that

X((a, a), H) parameterizes r-dimensional isotropic subspaces of a 2r-dimensional vector space

under a non-degenerate skew-symmetric form. We conclude that X((a, a), H) is isomorphic to

SG(r, 2r). This variety is irreducible of dimension
(
r+1

2

)
.

Corollary 4.0.14. Let [H] ∈ Sr \ Sr−1 and a+ b+ 1 = 2r, then X((a, b), H) is isomorphic to

the isotropic Grassmannian SG(b, 2r). In particular, X((a, b), H) is irreducible of dimension

b(2a−b+3)
2 .

Proof. When a + b + 1 = 2r, we are in Case (1) of Theorem 1.0.3. The integers a and b must

satisfy the inequalities b < r ≤ a. Hence n−a−b−1 = n−2r ≤ j ≤ n−r− a+b+1
2 = n−2r. We

conclude that j = n− 2r and that X((a, 2r− a− 1), H) is irreducible. The linear space Vn−a−1

must contain the kernel of QH , which by assumption has dimension n− 2r = j. Furthermore,

dim(V ⊥n−a−1) = n− 2r+ a+ 1 = n− b. Hence, Vn−b = V ⊥n−a−1. Therefore, X((a, 2r− a− 1), H)

can be identified with SG(b, 2r).



49

Corollary 4.0.15. Let [H] ∈ Sr \Sr−1 and a+ 1 ≥ 2r. Then X((a, 0), H) is isomorphic to the

Grassmannian G(n− a− 1, n− 2r), hence it is irreducible of dimension (n− a− 1)(a+ 1− 2r).

Proof. When b = 0, we are in Case (1) of Theorem 1.0.3. In this case, n−a−1 ≤ j ≤ n−a−1.

Hence, there is only one component and Vn−a−1 is contained in Fn−2r. Therefore, in this case,

X((a, 0), H) parameterizes linear spaces Vn−a−1 contained in Fn−2r. This is the Grassmannian

G(n− a− 1, n− 2r), which has dimension (n− a− 1)(a+ 1− 2r).

Finally, we prove Proposition 4.0.16, which clearly specializes to Corollary 4.0.17 when

k = 2.

Proposition 4.0.16. Let H be a hyperplane in P(
∧k V ) of the form

Σ1(Fn−k ⊂ Fn−k+2 ⊂ · · · ⊂ Fn).

Let λ be a partition of the form λ = (µi11 , . . . , µ
it
t ). Let δ denote the Krönecker delta function.

Then X(λ,H) has t − δ0,µt components, where, for 1 ≤ j ≤ t − δ0,µt, the component Zj is the

Schubert variety in F (n− k + k1 − µ1, . . . , n− µt;n) parameterizing flags

(Vn−k+k1−µ1 ⊂ · · · ⊂ Vn−µt)

such that dim(Vn−k+kj−µj ∩ Fn−k) ≥ n− k − µj + 1.
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Proof. Let H = Σ1(Fn−k ⊂ Fn−k+2 ⊂ · · · ⊂ Fn). A Schubert variety Σλ is contained in H

if and only if every k-dimensional subspace parameterized by Σλ intersects Fn−k non-trivially.

Let

Vn−k+k1−µ1 ⊂ Vn−k+k2−µ2 ⊂ · · · ⊂ Vn−µt

be the linear spaces defining Σλ. Let W be any k-dimensional subspace such that [W ] ∈ Σλ. If

for some j, dim(Vn−k+kj−µj ∩ Fn−k) ≥ n− k − µj + 1, then we can estimate dim(W ∩ Fn−k ∩

Vn−k+kj−µj ) as follows. dim(W ∩ Vn−k+kj−µj ) ≥ kj since [W ] ∈ Σλ. Hence, dim(W ∩ Fn−k ∩

Vn−k+kj−µj ) ≥ kj +n−k−µj + 1− (n−k+kj −µj) = 1. We conclude that [W ] ∈ H ∩G(k, n),

hence Σλ ⊂ H ∩G(k, n).

Note that if µt = 0, then the condition dim(Vn−µt ∩ Fn−k) ≥ n − k + 1 is impossible to

satisfy. Therefore, that case has to be treated separately.

Conversely, suppose that dim(Vn−k+kj−µj ∩ Fn−k) = n − k − µj for every 1 ≤ j ≤ t. Then

there exists a k1-dimensional subspace in Vn−k+k1−µ1 that does not intersect Fn−k. This can be

extended to a k2-dimensional subspace in Vn−k+k2−µ2 that does not intersect Fn−k. Continuing

this way, we construct a k-dimensional subspace W such that [W ] ∈ Σλ, but [W ] 6∈ H∩G(k, n).

Let Sj be the Schubert variety in the flag variety F (n− k + k1 − µ1, . . . , n− µt;n) defined

by

Sj = {(Vn−k+k1−µ1 ⊂ · · · ⊂ Vn−µt | dim(Vn−k+kj−µj ∩ Fn−k) ≥ n− k − µj + 1}.
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We have shown that X(λ,H) = ∪t−δ0,ti=1 Sj . Since the Schubert varieties Sj 6⊂ Si for i 6= j, we

conclude that the t − δ0,t Schubert varieties Sj form the irreducible components of X(λ,H).

This concludes the proof of the proposition.

Corollary 4.0.17. Let [H = Σ1(Fn−2 ⊂ Fn)] ∈ S1 and a > b > 0. Then X((a, b), H) is the

union of the following two Schubert varieties in F (n− a− 1, n− b;n)

1. {(Vn−a−1 ⊂ Vn−b) | Vn−a−1 ⊂ Fn−2},

2. {(Vn−a−1 ⊂ Vn−b) | dim(Vn−b ∩ Fn−2) ≥ n− b− 1}.



CHAPTER 5

FURTHER RESEARCH

Directions for future research include considering: (1) the geometry of intersections of

G(2, n) with higher codimension linear spaces; (2) the geometry of intersections of G(2, n)

with higher degree hypersurfaces of PN (Griffiths and Harris (Griffiths and Harris, 1978) do

this when n = 4 and the degree is 2); and (3) the extent to which these or similar results hold

for G(k, n) when k is greater than two.

Currently we consider the Grassmannian over the complex numbers. However, I am in-

terested in the generalization of my research to arbitrary rings. Ravi Vakil (Vakil, 2006) has

described many cases in which intersection theory over Grassmannians can be done over arbi-

trary commutative rings. Over the course of my career I would like to explore noncommutative

algebraic geometry and use my current research as a starting point of investigation.
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Appendix A

BASIC ALGEBRAIC GEOMETRY FACTS

A.1 Dual Varieties and Singular Hyperplane Sections

Let Y ⊂ Pr be a projective variety, y ∈ Y . If my is the maximal ideal corresponding to the

point y, then the projective tangent space TyY is the projective closure of the tangent space

(my/m
2
y)
∗ to the point y. If dimY = q and y is a smooth point of Y , then dimTyY = q. A

tangent hyperplane to a variety Y is a hyperplane in Pr that contains the projective tangent

space to at least one point y ∈ Y .

Pr∗ is the set of hyperplanes in projective space of dimension r. Given a smooth variety

Y ⊂ Pr, the dual variety Y ∗ in Pr∗ is the set of tangent hyperplanes to Y . One can also view

this as the set of singular hyperplane sections of Y , as H ∩ Y is singular at y iff TyY ⊂ H.

Thus the dual Grassmannian is the subvariety of P∗(
∧k V ) parameterizing singular hyper-

plane sections of G(k, n). For more facts about dual varieties, see (Ein, 1986).

Theorem A.1.1 ((Bertini’s Theorem)). Let Y be a smooth closed subvariety of Pr. Then there

exists a hyperplane H ⊂ Pr not containing Y such that H ∩ Y is smooth, and furthermore the

locus of such hyperplanes in Pr∗ is a dense open subset.

Idea of Proof. Construct an incidence correspondence of points in Y and “bad” hyperplanes,

namely hyperplanes H such that either H ⊇ Y or H ∩Y is singular. See (Hartshorne, 1977) or

(Shafarevich, 1994) for complete proofs.
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Appendix A (Continued)

Since G(2, n) is an irreducible, smooth subvariety of PN , the Bertini Theorem tells us that

a general hyperplane section is smooth. A useful fact in classifying the singular hyperplane

sections of G(2, n) is the following.

Proposition A.1.2. ((Shafarevich, 1994)) Let Y be a nondegenerate smooth projective sub-

variety of Pn of dimension m, H ⊂ Pn a hyperplane, and p ∈ H ∩ Y . Then p ∈ H ∩ Y is a

singular point iff H ⊃ TpY .

Idea of Proof. If H ⊇ TpY , then dim(H ∩ Y ) is one less than dimY , but dimTp(H ∩ Y ) =

dimTpY .
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Appendix B

THE CASE OF G(2, 4) IN MORE DETAIL

The goal of this thesis has been to study the geometry of G(k, n)∗, the dual variety to the

Grassmannian. We focused mainly on the case k = 2. In order to study the geometry of the

dual of a variety, we must characterize singular hyperplane sections of that variety; to study

the geometry of any variety, we can examine moduli spaces of subvarieties. By simultaneously

examining the possible subvarieties of smooth hyperplane sections, we can see which types of

subvarieties force a hyperplane section to be singular. For the dual Grassmannian a natural

place to begin is to investigate moduli spaces of Schubert varieties in hyperplane sections of

the Grassmannian, as Schubert classes generate the cohomology ring of the G(k, n). We will

construct incidence correspondences, the fibers of whose second projection maps will be precisely

the moduli spaces we seek.

The purpose of this appendix is to answer in detail the above questions for G(2, 4), the

smallest Grassmannian that is not isomorphic to a projective space. We will show that there

are only two types of hyperplane sections of G(2, 4): those that are smooth and those with

singular locus consisting of one point. Also, the largest linear subspace of P(
∧2 V ) that can be

contained in a smooth hyperplane section of G(2, 4) is a line in the Plücker embedding.

Proposition B.0.3. The only type of singular hyperplane section of G(2, 4) is a Σ1,0, which

contains only one singular point.
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Appendix B (Continued)

Proof. Let X := H ∩ G(2, 4), where H is a hyperplane of P(
∧2 V ). Suppose [Λ] ∈ Xsing. By

2.3.1, Σ1,0(Λ) ⊂ X. But for dimension reasons and since both are irreducible, Σ1,0(Λ) = X,

and by (Coskun, 2010), the singular locus of Σ1,0(Λ) is Σ2,2(Λ) = {[Λ]}, the result of adding a

hook to the tableau of Σ1,0(Λ).

Now suppose [Λ1], [Λ2] ∈ Xsing. Then T[Λ1] ⊂ H and T[Λ2] ⊂ H. But dimT[Λi] = 4 =

dimH, so T[Λ1] = H = T[Λ2] ⇒ [Λ1] = [Λ2].

This means that every element of G(2, 4)∗ is a Schubert variety of the form Σ1,0(F2) for some

F2. Thus to choose an F2 defining this Σ1,0(F2) is equivalent to choosing a point of G(2, 4)∗,

so G(2, 4)∗ is isomorphic to G(2, 4).

Now we calculate the moduli spaces of Schubert varieties of the form Σ1,1,Σ2,0, and Σ2,1

in the two types of hyperplane sections of G(2, 4). Note that by 2.2.6, each of these is a linear

space: Σ1,1 and Σ2,0 are each isomorphic to a projective plane, and Σ2,1 is isomorphic to a line

in P5.

Proposition B.0.4. If X is a smooth hyperplane section of G(2, 4), then it contains no planes.

We first recall a useful result of intersection theory that will allow us to construct an argu-

ment by contradiction using excess intersections.

Fact B.0.5. (Fulton, Proposition 7.1 and Lemma 7.1) If V and X are schemes of codimension

d and dimension k, respectively, in Y and

V ∩X = W1 ∪ · · · ∪Wr,
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Appendix B (Continued)

then k − d ≤ dimWi ≤ k. If dimWi = k − d, then [V ∩X] =
∑
ai[Wi], ai ≥ 1.

In particular, this means that if the intersection is proper, then [V ∩X] = [V ] · [X].

Proof of Proposition. Since every projective plane in G(2, 4) is either a Σ1,1 or a Σ2,0 by [Harris

Ex. 6.9], we consider the following two cases.

Suppose X ⊃ Σ1,1(R) for some PR ⊂ P3. Then we will show X = Σ1(L) for some line PL.

[Insert picture.]

Let p := PF1 be a point not contained in PR. Consider Σ2(F1), the lines in P3 that pass

through p. This is also a plane in the Grassmannian. Since p was chosen generally with respect

to PR (which in this case simply means that we chose p not contained in PR), Σ2(F1) is general

for the action of GL(4) on G(2, 4). Thus by the Kleiman-Bertini Theorem, Σ2(F1)∩X is proper.

Note that [X] = σ1, [Σ2(F1)] = σ2, and σ1 · σ2 = σ2,1. This in particular means that we expect

this intersection to be irreducible and reduced if proper. In G(2, 4) a representative of σ2,1 is of

dimension 1; its degree is given by σ1 · σ2,1 = 1. Thus, σ2,1 is the class of a line. But a line in

G(2, 4) consists of lines meeting in a point and contained in a plane, so Σ2(F1) ∩X in G(2, 4)

is a Σ2,1(F1 ⊂ Q) for some plane PQ.

[Insert picture.]

Let PL = PQ ∩ PR. We want to show that Σ1(L) ⊂ X. Choose a point q := PF ′1 ∈ PL and

consider Σ2(F ′1) ∩ X. If this is a proper intersection, then by the above reasoning we expect

this also to be a Σ2,1. But
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Appendix B (Continued)

Σ2(F ′1) ∩X ⊃ Σ2,1(F ′1 ⊂ R) ∪ {[F1, F ′1]}.

[Insert picture of PR containing q with lines in PR passing through q and one line off PR

through q passing through p.]

So we have the extra component containing [F1, F ′1]. By the Fact, [F1, F ′1] is part of a component

of dimension at least 1, so

[Σ2(F ′1) ∩X] = σ2,1 + aσ2,1, a ≥ 1,

since the only basic class of dimension 1 in H∗(G(2, 4)) is σ2,1.

This contradicts what we expect if the intersection is proper, namely that the intersection

will be irreducible and reduced, so dim(Σ2(F ′1)∩X) = 2 (the only possibilities were 1 or 2 here),

which means Σ2(F ′1)∩X = Σ2(F ′1), or in other words, Σ2(F ′1) ⊂ X. Since we chose q arbitrarily

on PL, we have actually shown that every line meeting PL is contained in X, that is, Σ1(L)

is contained in X. But they are both irreducible and of the same dimension, so X = Σ1(L),

hence X is not smooth.

Now suppose X contains a plane of the form Σ2(F1) for some p := PF1 ∈ P3. Choose a plane

PR ⊂ P3, PR 63 p. Consider lines in PR, Σ1,1(R). We expect [Σ1,1(R) ∩X] = σ1,1 · σ1 = σ2,1.
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Appendix B (Continued)

Since PR has been chosen generally (i.e., not containing p), again by the Kleiman-Bertini

Theorem the intersection is proper. So,

Σ1,1(R) ∩X = Σ2,1(q ⊂ R)

for some q := PF ′1 ∈ PR. In order to construct an argument similar to the previous case, we

have to find something “non-general” and intersect its Schubert variety with X. We connect

p with q and choose a plane PQ containing P
(
F1, F ′1

)
. If Σ1,1(Q) ∩ X were proper, then we

would have that the intersection is precisely Σ2,1(F1 ⊂ Q). But [L] = [Q ∩R] is also contained

in the intersection: PL passes through q and is contained in PR, and it is a line contained in

PQ, but it does not pass through p, so that

Σ1,1(Q) ∩X ⊃ Σ2,1(F1 ⊂ Q) ∪ {[L]}.

As before, [L] belongs to a component of positive dimension, which contradicts what we expect

the intersection to be. We conclude that the intersection is in fact not proper. Hence Σ1,1(Q) ⊂

X for any plane PQ containing P
(
F1, F ′1

)
, so every line meeting P

(
F1, F ′1

)
is contained in X.

By irreducibility and for dimension reasons, X = Σ1(F1, F ′1), which means X is not smooth.
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Remark B.0.6. There is another way to prove this proposition using incidence correspondences

and the theorem on the dimension of fibers; this is a technique that will appear frequently in

this work. For example, let

I1,1 = {(F3, H) | Σ1,1(F3) ⊂ H}

π1 ↙ ↘ π2

G(3, 4) P5∗ ⊃ G(2, 4)∗.

Given [F3] ∈ G(3, 4), dimπ−1
1 (F3) = 2 since for a hyperplane H to contain a P2 ∼= Σ1,1(F3) =

G(2, F3) imposes 3 conditions on P5∗. The map π1 is surjective because given an F3 we take

the linear span of Σ1,1(F3) and choose a hyperplane H containing that linear span. Since both

G(3, 4) and the fiber over a general point [F3] are irreducible, I1,1 is irreducible of dimension

5.

Now we calculate the dimension of π−1
2 (G(2, 4)∗). Let [Σ1,0(F ′2)] ∈ G(2, 4)∗. Note that for

a Σ1,1(F3) to be contained in Σ1,0(F ′2), we need PF ′2 to be contained in PF3; if PF ′2 ∩ PF3 were

only one point, then there would be lines in PF3 that would miss the point of intersection of

PF ′2 and PF3. Hence

π−1
2 (Σ1,0(F ′2)) = {F3 | Σ1,1(F3) ⊂ Σ1(F ′2)}

= {F3 | F ′2 ⊂ F3}.
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This is the space G(3− 2, 4− 2) = G(1, 2) ∼= P1, or more rigorously, this is the Schubert variety

Σ1,1,0(F ′2) in G(3, 4), which is isomorphic to P1 and so is clearly irreducible. Thus π−1
2 (G(2, 4)∗)

is an irreducible subvariety of I1,1 of dimension 5, so I1,1 = π−1
2 (G(2, 4)∗). It follows that

there does not exist an element of P5∗ \ G(2, 4)∗ to which π2 maps. We conclude that there

does not exist a smooth hyperplane section of G(2, 4) that contains a plane of the form Σ1,1,

and the moduli space of Σ1,1 in a singular hyperplane section is a Schubert variety in G(3, 4)

isomorphic to P1.

Similarly we can show that no smooth hyperplane section of G(2, 4) contains a Σ2,0 and

that the moduli of such in a singular hyperplane section is a Schubert variety in G(1, 4) that is

also isomorphic to a projective line.

To calculate the moduli of lines (namely, Schubert varieties of the form Σ2,1; see (Griffiths

and Harris, 1978) and (Harris, 1992)) in a hyperplane section of G(2, 4), we use a correspondence

involving a partial flag variety. Since a Σ2,1 depends on an F1 and an F3 where F1 ⊂ F3, the

parameter space of Σ2,1 in G(2, 4) is isomorphic to Fl(1, 3; 4), which is of dimension 5.

I2,1 = {(F1, F3, H) | Σ2,1(F1 ⊂ F3) ⊂ H}

π1 ↙ ↘ π2

Fl(1, 3; 4) P5∗ ⊃ G(2, 4)∗.
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For a hyperplane to contain a line imposes 2 conditions on P5∗, so the fiber of π1 has dimension

3. Thus I2,1 is irreducible of dimension 8.

In a similar fashion as above, we have that

F2,1 := π−1
2 (Σ1(F ′2)) = {(F1, F3) | Σ2,1(F1 ⊂ F3) ⊂ Σ1(F ′2)}

= {(F1, F3) | F ′2 ⊂ F3}

because for all lines in PF3 passing through the point PF1 to meet PF ′2, we need that PF ′2 ⊂ PF3.

We analyze the fiber F2,1 as an incidence correspondence itself:

F2,1

p1 ↙ ↘ p2

G(1, 4) G(3, 4)

Given a general [F1] ∈ G(1, 4), which means that we choose F1 so that it is not contained in

F ′2, the vector space F1, F ′2 is 3-dimensional, so π−1
1 (F1) consists of a single point and the fiber

dimension is 0. This shows that F2,1 is irreducible of dimension 3.

Remark B.0.7. It is interesting to note that the case F1 ⊂ F ′2 is parameterized by the 1-

dimensional Schubert variety Σ2 in G(1, 4), and the fiber over such an [F1] is a Σ1,1,0 in G(3, 4),
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which is of dimension 1. This is an example of how the fiber dimension may “jump” when

points are chosen from closed subvarieties of the space to which the projection morphism maps.

Returning to I2,1, we conclude that dimπ−1
2 (G(2, 4)∗) = 7 < 8, so there must exist a point

of I2,1 that maps to P5∗ \ G(2, 4)∗. In other words, there exists a smooth hyperplane section

of G(2, 4) containing a line. But since the set of smooth hyperplane sections is homogeneous

with respect to the action of GL(4), we have proved the following:

Proposition B.0.8. Every smooth hyperplane section of G(2, 4) contains a 3-dimensional fam-

ily of lines.
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HIGHER CODIMENSION LINEAR SECTIONS

We show that taking n hyperplane sections of G(k, n) gives a variety with trivial canonical

bundle.

Proposition C.0.9. The canonical divisor of the Grassmannian is −nσ1.

Proof. Recall the tautological sequence of vector bundles on the Grassmannian G(k, n):

0→ S → V ⊗ OG(k,n) → Q→ 0

The tangent bundle TG(k,n) is given by Hom(S,Q) or S∗⊗Q. It is a fact that the canonical

divisor KX of a smooth variety X is −c1(TX). Using the splitting principle, suppose S∗ =

L1⊕· · ·⊕Lk and Q = M1⊕· · ·⊕Mn−k so that c1(S∗) = α1+· · ·+αk and c1(Q) = β1+· · ·+βn−k.

Then

c(S∗ ⊗Q) = (1 + α1 + β1)(1 + α1 + β2) · · · (1 + α1 + βn−k)

· (1 + α2 + β1)(1 + α2 + β2) · · · (1 + α2 + βn−k)

· · · ·

· (1 + αk + β1)(1 + αk + β2) · · · (1 + αk + βn−k)
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so that

c1(S∗ ⊗Q) = (n− k)(α1 + · · ·+ αk) + k(β1 + · · ·+ βn−k)

= (n− k)c1(S∗) + k c1(Q)

Note that c1(S∗) = σ1 because c1(S∗) is by definition the degeneracy locus of k global

sections s1, . . . , sk of S∗, in other words, the locus of linear dependence of k linear forms.

Locally for a point Λ ∈ G(k, n), this looks like

a1s1(Λ) + · · · aksk(Λ) = 0, aj not all zero.

This clearly is a homogenous linear equation, so it gives a hyperplane section.

Also, c1(Q) = σ1: if q1, . . . , qn−k ∈ Γ(G(k, n), Q), we want the locus of linear dependence of

q1(Λ), . . . , qn−k(Λ) ∈ Q(Λ) = V/Λ,

in other words where

b1q1(Λ) + · · ·+ bn−kqn−k(Λ) = 0, b` not all zero.
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We can view this linear dependence relation of n − k vectors in V/Λ as a linear dependence

relation of n vectors in V if we include k vectors `n−k+1, . . . , `n from Λ. This gives the equation

b1q1(Λ) + · · ·+ bn−kqn−k(Λ) + bn−k+1`n−k+1 + · · ·+ bn`n = 0, b` not all zero.

In a vector space of dimension r, the locus of r vectors being linearly dependent is a hyperplane.

Thus, c1(Q) is also a hyperplane section σ1.

Hence, c1(S∗ ⊗Q) = (n− k)σ1 + kσ1 = nσ1, which says that KG(k,n) = −nσ1.

Observe that the canonical bundle of G(k, n) has no dependence on k. We now specialize

to k = 2 and discuss some examples of the geometry of higher codimension linear sections of

G(2, n).

Corollary C.0.10. Five hyperplane sections of G(2, 5) gives an elliptic curve; every elliptic

curve arises as such.

Proof. Let H i signify the intersection of i general hyperplanes in the Plücker embedding and

define Xi := H i ∩ G(2, 5). We use the adjunction formula: if D ↪→ Y is a divisor, then

KD = (KY +D) |D. So we seek the canonical divisor of X5. Since

X5 ↪→ X4 ↪→ X3 ↪→ X2 ↪→ X1 ↪→ G(2, 5)
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where each inclusion is of a divisor, we have

KX1 = (KG(2,5) +X1)
∣∣
X1

= (−5σ1 + σ1)|X1
= −4 σ1|X1

The notation “σ1|X1
” is to signify that we view this as a divisor in X1, not in G(2, 5). Continued

use of the adjunction formula gives

KX2 = (KX1 +X2)|X2

= (−4 σ1|X1
+ σ1|X1

)
∣∣
X2

= (−3 σ1|X1
)
∣∣
X2

= −3 σ1|X1∩X2
= −3 σ1|X2

Similarly we have

KX3 = (KX2 +X3)|X3
= −2 σ1|X3

KX4 = (KX3 +X4)|X4
= −1 σ1|X4

KX5 = (KX4 +X5)|X5
= 0 σ1|X5

Notice that since dimG(2, 5) = 6, five general hyperplane sections give a smooth curve.

Since 0 = degKX5 = 2g− 2, where g is the genus of the curve X5, we have that g = 1, i.e., X5

is an elliptic curve. Moreover, all elliptic curves arise in this way (Hartshorne, 1977, IV.4).



69

Appendix C (Continued)

Corollary C.0.11. Seven hyperplane sections of G(2, 7) give a Calabi-Yau threefold.

Proof. Note that dimG(2, 7) = 10 so seven hyperplane sections give a threefold. The canonical

divisor of seven hyperplane sections of G(2, 7) is trivial, so we have a Calabi-Yau threefold.

Corollary C.0.12. Similarly, six hyperplane sections of G(2, 6) give a Del Pezzo surface.

Proposition C.0.13 ((Coskun, 2006)). If Y is a smooth surface given by four hyperplane

sections of G(2, 5), then there are 10 lines on Y . Also, Y is the Del Pezzo surface that is the

result of blowing up P2 at 4 points. The space of such H4 ∩G(2, 5) has no moduli, i.e., they are

all isomorphic to each other.
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