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SUMMARY 

Innovations are needed to improve outcomes in the treatment of heart muscle disease 

worldwide, which world health organization (WHO) says will affect 23.6 million people 

by 2030 with 80% of deaths in low- and middle-income countries. In the U.S. 1,355,000 

people suffer a new or recurrent heart attack every year according to American Heart 

Association (AHA) statistics (Roger, 2012, 2011). Regenerative medicine is rapidly 

showing promise for treating cardiac injuries and diseases with combinations of 

biomaterials and cells (e.g. stem cells) to restore the biological function that has been 

lost (Dai and Kloner, 2014). Stem cells have been popular in therapeutic applications 

due to their ability to self-renew and to differentiate into other cell lineages. One of the 

biomedical engineering approaches to mimic the physiological niche of stem cells is 

microfabrication of scaffolds with or without adding a chemical reagent. Biomaterials 

with various stiffness, geometry and dimension, and biochemical cues such as growth 

factors have been found to regulate stem cell function (Naderi, 2011). 

This dissertation is divided into two main sections to analyze cell function in response to 

physical and chemical cues. In the first part, the effects of physical cues (cyclic strain 

and microtopography) are studied, and in the second part, the combination of chemical 

and physical cues (growth factor encapsulation into a microdevice) is addressed. The 

cells tested are neonatal rat ventricular myocytes (NRVMs) and human mesenchymal 

stem cells (hMSCs). Further, biological assays are used to determine functions such as 

stem cell morphology, proliferation, differentiation, migration, and apoptosis. 
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SUMMARY (continued) 

hMSC function depends not only on chemical factors but also on the physical cues of 

the microenvironmental niche for tissue regeneration. Here, this physical environment is 

recapitulated with controlled modes of mechanical strain applied to substrata containing 

three-dimensional features in order to analyze the effects on cell morphology, focal 

adhesion distribution, cell proliferation, and gene expression. 10% strain at 1 Hz is 

delivered for 48h to hMSCs cultured on flat surfaces, or on substrata with 

microtopographic posts 15 μm high spaced 75 μm apart. Introducing strain to 

microtopography produced stable semicircular focal adhesions, with anchored actin 

preferentially spanning post to post. Anisotropic strain caused a two-fold increase in the 

proliferation of hMSCs over equibiaxial strain with or without the posts. The nuclear 

position and flattened shape of hMSCs also changed with strain, adopting an ellipsoid 

shape in the middle of the cell on flat surfaces, or close to the post in textured substrata. 

Strain dominated microtopography for expression of genes coding proteins related to 

muscle function, cell adhesion, extracellular matrix remodeling, and cell differentiation 

(p<0.05). Overall, attention to external mechanical stimuli is necessary for optimizing the 

stem cell niche for regenerative medicine. 

Additionally, local release of drugs may have many advantages for tissue repair but also 

presents major challenges. Bioengineering approaches allow microstructures to be 

fabricated that contain bioactive peptides for sustained local delivery. Heart tissue 

damage is associated with local increases in mechano growth factor (MGF), a member 

of the IGF-1 family. The E domain of MGF peptide is anti-apoptotic and a stem cell 

homing factor. The objectives of this study were to fabricate a microrod delivery device  
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SUMMARY (continued) 

of poly (ethylene glycol) dimethacrylate (PEGDMA) hydrogel loaded with MGF peptide 

and to determine the elution profile and bioactivity of MGF. The injectable microrods are 

30 kPa stiffness and 15 μm width by 100 μm length, chosen to match heart stiffness 

and myocyte size. Successful encapsulation of native MGF peptide within microrods 

was achieved with delivery of MGF for two weeks, as measured by HPLC. Migration of 

human mesenchymal stem cells (hMSCs) increased with MGF microrod treatment (1.72 

± 0.23, p<0.05). Inhibition of the apoptotic pathway in neonatal rat ventricular myocytes 

was induced by 8 hours of hypoxia (1% O2). Protection from apoptosis by MGF 

microrod treatment was shown by the TUNEL assay and increased Bcl2 expression (2 ± 

0.19, p<0.05). Microrods without MGF regulated the cytoskeleton, adhesion, and 

proliferation of hMSCs, and MGF had no effect on these properties. Therefore, the 

combination microdevice provided both the mechanical cues and two-week MGF 

bioactivity to reduce apoptosis and recruit stem cells, suggesting potential use of MGF 

microrods for cardiac regeneration therapy in vivo.  

This thesis has yielded new information about how cells respond to local physical and 

chemical cues. Altogether, results suggest that it is possible to fabricate a stable and 

well-understood polymer system into microdevice platform to serve as both a 

mechanical stimulus as well as provide highly-localized, long-term delivery of bioactive 

peptides. Furthermore, this microdevice platform may be tuned in the future to permit 

the therapeutic profile of many existing biomolecules and expand delivery for 

regenerative therapy of other tissues. This understanding of the microenvironment is 

important to improve tissue regeneration. 
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                                     I. INTRODUCTION 

A. Regenerative medicine 

Recovery of cardiac function after damage to the heart from ischemic stress could prove 

beneficial to the five million heart failure patients in the United States. Myocardial 

infarction (MI), a disease caused by a lack of blood flow supply in the heart, represents 

the most common cause of morbidity and mortality in the Western world. It has been 

estimated that hundreds of millions of cardiomyocytes are typically lost in large 

myocardial infarctions (MI) (Kehat and Gepstein, 2003). Therefore, to recover cardiac 

function, successful replacement of a sufficient number of cells is required in an 

infarcted heart. For the design of efficient therapeutic strategies, it is important to have a 

more detailed understanding of cell and tissue basic biological characteristics, as well 

as of the signals produced by damaged tissues and how the cells respond. 

 

i. Cell sources for cardiac repair 

Stem cell therapy arises as a promising alternative to conventional treatments, which 

are often ineffective in preventing loss of cardiomyocytes and fibrosis. Resident cardiac 

stem cells (Leri, 2006) may contribute to regeneration of the heart. Recent experimental 

data indicate that resident myocardial progenitor cells indeed exist in adult mammalian 

hearts, and are involved in physiological regeneration processes (Beltrami, 2003). 

Some, but not all of those cell types display the classic stem cell criteria, namely self-

renewal, multi- or pluripotency. The existence of cells that express stem cell-typical 

markers in the heart cannot be doubted and the reproduction of emigrant cells from 
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myocardial tissue cultures that form spherical structures with progenitor cell properties 

(‘cardiospheres’) can easily be done (Stamm, 2009).  

Stem cells for cardiomyogenesis for potential clinical use require two major steps: first 

improvement of the efficiency of differentiation into cardiomyocytes, and second the 

efficient proliferation for large numbers of the differentiated cells. Many attempts have 

been made to improve cardiogenic differentiation efficiencies (Wobus, 1997, Sauer, 

1999, Pandur, 2002, Paquin, 2002, Kanno, 2004, Passier, 2005, E, 2006, Hosseinkhani, 

2007a, 2007b). However, differentiation efficiency to improve cardiac regeneration has 

not yet been achieved (Hattori, 2010). 

There are a variety of other sources of stem cells used in regenerative medicine and 

cell and tissue engineering applications. Embryonic stem cells (ESCs), induced 

pluripotent stem (iPS) cells, and adult stem cells from different tissues. ESCs and iPS 

cells have a relatively higher regenerative capacity than adult SCs and can be triggered 

to differentiate into other cell types (Boheler, 2011, Czyz 2003, Harun, 2006, Takahashi, 

2007). However, ethical issues for the use of human embryos, and the potential for the 

embryonic stem cells to form teratomas, hinder therapeutic applications (Wakitani, 

2003, Andrews, 2005). One way to overcome these issues is to induce pluripotent 

status in somatic cells by direct reprogramming (Yamanaka, 2008). Induced pluripotent 

stem cells can be generated from adult dermal fibroblasts and other somatic cells, 

which are comparable to ES cells in their differentiation potential in vitro and in 

teratomas (Takahashi and Yamanaka, 2006). Additionally, promising results have been 

reported using adult progenitor cells for tissue engineering (Polak, 2006). Adult stem 

cells can be isolated from many tissues such as bone marrow, blood, brain, liver, 
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muscle, and skin (Zwaginga , 2003, Sakai, 2002, Gronthos, 2003); they are capable to 

differentiate or trans-differentiate to other lineages due to their multipotency and high 

plasticity, and they have been used for treatment of various diseases including ischemia 

(Rezai, 2004). One of the examples of adult stem cells is bone-marrow-derived 

mesenchymal stem cells (MSCs) which are self-renewing cells that maintain their 

potential to differentiate into mesenchymal tissue including bone, cartilage, adipose 

tissue, skeletal muscle cells, liver cells, neural cells, smooth muscle cells, and 

fibroblasts (Nombela-Arrieta, 2011). These properties make MSCs an attractive cell 

source for regeneration of damaged tissue. 

 

ii. Bone marrow stem cells for the cardiac niche 

 Among these cells bone marrow stem cells (BMSC) are, at present, the most 

frequent source of cells used for human therapy. Bone marrow-derived progenitor cells 

can differentiate into vascular cell types, restoring blood flow (Segers, 2008). These 

cells are capable of secretion of growth factors or cytokines promoting angiogenesis 

and reducing apoptosis such as vascular endothelial factor (VEGF), monocyte 

chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α). 

Previous studies indicated muscle regeneration in mice after the BMSCs were injected 

into the infarcted area. Regeneration of heart tissue was observed in 40% of the treated 

mice, and new cells were found in 68% of the infarcted portion of the ventricle (Review, 

Collins, 2007). Postnatal bone marrow contains cells which express early cardiac 

markers and they are able to mobilize into the peripheral blood after myocardial 

infarction (Kucia, 2004). 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Nombela-Arrieta%20C%5Bauth%5D
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The approach of mobilization, homing, and differentiation of bone marrow stem cells for 

cardiac application is first to harvest the BMSC, and then inject the purified stem cells 

into the infarcted recipient. Delivering bone marrow or blood derived progenitor cells 

have been done by different procedures such as intracoronary arterial route or other 

surgical approaches (Dimmeler, 2005). Another method to compensate the damage to 

the heart is to increase the number of stem cells from the bone marrow by enhancing 

their mobilization and delivering cytokines and growth factors to BMSC to improve their 

differentiation in the infarcted region (Vandervelde, 2005). In mobilization, homing, 

survival, proliferation and differentiation of the BMSCs, the knowledge of adequate cell 

signaling between the bone marrow, the peripheral circulation and the infarcted 

myocardium is valuable for myocardial regeneration.  

Chemokines and other important signaling factors are known for their mobilizing and 

chemotactic abilities such as SDF-1, VEGF, GCSF, SCF, and IL-8. An approach to 

enhance cardiac repair is to enhance cytokine-induced mobilization, for example to 

increase endothelial progenitor cells (EPC)-one of the subpopulations from bone 

marrow-levels for neovascularization. After myocardial infarction some signaling factors 

are involved in the patho-physiological healing process (TNF-a, IL-8, IL-10, HIF-1α, 

VEGF, GCSF) which may affect the stem cell engraftment, and signaling factors that 

are involved in cardiogenesis and neo-angiogenesis (VEGF, EPO, TGF-b, HGF, HIF-

1a, IL-8) all have an important role in orchestrating the stem cell driven repair process 

(Vandervelde, 2005).The signaling factors including VEGF and GCSF were also found 

to increase EPC levels and improve neovascularization (Dimmeler, 2005). 
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After BMSC mobilization, the cells are attracted to the ischemic area by multiple signals. 

Homing of the stem cells is a multi-steps process: first adhesion to activated 

endothelium or exposed matrix, second transmigration through the endothelium, and, 

finally, migration and invasion of the target tissue (Dimmeler, 2005). SDF-1 and β 

integrins are the important factors in homing of stem and progenitor cells to the infarcted 

heart due to their ability to increase EPC level and neovascularization. Cell necrosis and 

mesoangioblasts are also essential for cell recruitment in the muscle regeneration 

process. 

Angiogenic responses play a major role in the natural healing process after myocardial 

infarction. Cells engineered to over express angiogenic factors might enhance both their 

own survival and that of the recipient myocardium. Endothelial migration from pre-

existing blood vessels and neo-angiogenesis by differentiation from migrated circulating 

EPCs, are the two sources of endothelialization. Formation of vessels is essential for 

transport and survival of transplanted or recruited stem cells, but stem cells themselves 

also appear to play a role in neo-angiogenesis (Vandervelde, 2005). 

 

iii. Stem cell niche 

Stem cell function is dependent not only upon soluble stimuli, but also the physical 

microenvironmental niche. Stem cells either self-renew or differentiate depending upon 

various microenvironmental cues, including soluble growth factors, extracellular matrix, 

and mechanical forces (Figure 1). The microenvironment niche has been shown to 

regulate many aspects of stem cell function such as tissue generation, maintenance, 

and repair (Scadden, 2006). The niche provides physical and chemical signals that  
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Figure 1. Physical and chemical cues from the microenvironment affect stem cell niche. 
Stem cell niche consists of chemical and physical signals which influence their self-
renewal and differentiation. 
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allow stem cells to either maintain their primitive phenotype or differentiate along a 

specific lineage. In fact, combination of mechanical and chemical stimuli is critical to the 

function of other cell types (Figure 2) and tissues as well such as heart, being the most 

mechanical organ of the body. The physical niche can be considered as a combination 

of structural, cellular and physical components that vary from one tissue to another to 

control proliferation and differentiation (Spradling, 2001). The chemical niche can be 

considered as growth factors, genes, drugs, or cell signaling.  

 

B. Physical cues 

Physical cues of the microenvironmental niche of stem cells can be considered as 

natural or synthetic biomaterials with topography (2D vs. 3D), and mechanical loads 

such as strain and stiffness which may regulate self-renewal and differentiation of the 

stem cells to cardiac lineage (e.g. cardiomyocytes, endothelial cells, or smooth muscle 

cells). 

 

i. 3D vs 2D cell culture 

It is well known that cells cultured in 2D function differently than those cultured in 3D.  

These differences could be in morphology, adhesion, migration and differentiation 

(Pedersen, 2005). In addition, non-adherent cell types show otherwise absent migration 

capability inside a 3D matrix (Brown, 1982; Pedersen, 2005). The characteristics of 

cardiac cells in 3D culture have been investigated. Cardiac fibroblasts cultured in a 3D 

matrix have shown to convert to a myofibroblast phenotype with distinct differences with  
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Figure 2. Effects of physical and chemical stimuli on other cells. Physical and chemical 
stimuli of the microenvironment also affect endogenous cells in terms of growth, 
migration, proliferation, and apoptosis. 
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ECM regulation (Poobalarahi, 2006). The embryonic ventricular myocytes transition 

from a highly proliferative phenotype to a quiescent phenotype after culture in a 3D 

scaffold, function similarly to those in vivo (Evans, 2003). MSCs in engineered 3D 

constructs increased cardiac markers such as smooth muscle alpha actin, h1-calponin, 

GATA4, Nkx2.5 and MEF2C (Nieponice, 2007, Guan, 2011). A 3D microenvironment 

was created through electrospinning to study the impact of geometry and different 

extracellular proteins on the development of cardiac progenitor cells from resident 

stem cells and their differentiation into functional cardiovascular cells (Heydarkhan, 

2012).Organ development and tissue regeneration do not naturally occur in a uniform 

3D environment, but occur where there is heterogeneity of topography. Therefore, it is 

possible that stem cells respond to more complex micro-mechanical and physical cues 

such as non-uniform topography.  

 

ii. Microtopography 

3D topography has been shown by several studies to affect cellular organization 

(Motlagh, 2003a; 2003b, Norman, 2005, 2007). The micro-textured culture system 

prevented proliferation of fibroblasts in cardiac primary cultures and may ultimately be 

useful for in vivo tissue engineering applications (Boateng, 2003). Topography can align 

and/or guide a variety of cell types, including endothelial cells, epithelial cells, 

fibroblasts, oligodendrocytes, and astrocytes (Bettinger, 2006, Cheng, 2006). The 

surface micro-topography affects the behavior of neonatal and adult cardiac cells 

(Motlagh, 2003, Boateng, 2003, Thakar, 2008). The use of geometric boundaries forces 
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neonatal rat ventricular myocytes to spread into an elongated shape, similar to that of 

cardiomyocytes in vivo, which leads to more sarcomeric alignment and clear axes of 

contraction (Motlagh, 2003, Bray, 2008, Parker, 2008). Forces that act on function of the 

heart are three-dimensional. Therefore, exposing the cells to a 3D culture condition is 

crucial to mimic the environment in the living organ. 

 

iii. Mechanical strain 

Cells remodel actin cytoskeletal organization and focal adhesions in response to 

changing loads. Physical forces encountered by cells within the cardiac 

microenvironment result from active force production, gain and loss of adhesion, and 

cytoskeletal stretch and compression due to changes in ventricular cavity pressure. The 

molecular systems through which cells convert mechanical cues from the extracellular 

matrix (ECM) into intracellular signals (mechanotransduction) have been extensively 

investigated (Wang, 1994, Ingber, 2003, Lele, 2006, Senyo, 2007). In the adult human 

heart, cells remodel in response to changing loads. The effect of cyclic strain as a 

physical force on either differentiation or proliferation of different types of stem cells has 

been well studied. The formation of the heart tube depends on local forces (Varner, 

2010) and mechanical loads can influence gene expression patterns during 

development (Wozniak and Chen, 2009). Aortic stenosis in humans causes cardiac 

hypertrophy, and enhancement of the differentiation of cardiac stem cells, suggesting 

that these endogenous stem cells amplify and commit to the myocyte lineage in 

response to an increased workload (Urbanek, 2003).  
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Static and cyclic strain of cultured cells is often used to model mechanical influences on 

stem cells. The expression of cardiac differentiation markers increase including, 

sarcomeric α-actinin, MEF2c and GATA-4 in mouse embryonic stem cells after static 

stretching at 10% strain for 2 hours (Schmelter, 2006). They further demonstrated that 

the mechanical strain stimulate the mRNA expression of transcriptional factors MEF2C 

and GATA-4 involved in cardiovascular differentiation in two-dimensional cultures of 

mouse ES cells and also that reactive oxygen species play a role in the process of 

mechanotransduction. The chronic stretch induced cardiomyocyte hypertrophy in vitro, 

was accompanied by marked improvement of contractile function (Fink, 2000). 

Exposure of human airway smooth muscle cells to cyclic strain caused a significant 

increase in their proliferation rate compared with HASM cells not exposed to strain, 

suggesting that cyclic mechanical strain regulates the development of engineered 

smooth muscle tissue. Cyclic strain of embryonic stem cells (ESC) or mesenchymal 

stem cells (MSC) on flat 2D membranes regulates cardiac differentiation markers 

(Gwak, 2008, Ge, 2009, Bhang, 2010, Heo, 2011, Wan, 2011). Strain amplitude has 

been varied from 1-20%, with the high end having the maximum effect on various stem 

cells (Fink, 2000, Weyts, 2003, Shimizu, 2008). 

Markers considered to be specific for vessels (but also found in early cardiomyocytes), 

such as smooth muscle actin (SMA) increase in a strain-dependent manner for MSCs 

(Ghazanfari, 2009, Kearney, 2008). Uniaxial strain is the most effective in differentiation 

of MSC into smooth muscle cells (Park, 2004). Cell proliferation is enhanced and 

apoptosis decreased with cyclic strain of ESCs (Shimizu, 2008, Kearney, 2008). There 

is a great complexity of outcomes reported for the responses of different cell types to 
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various geometries and strains, which makes it difficult to evaluate stem cell 

differentiation. Embedded ESCs strained at 2 and 3 Hz increased cardiac markers 

(Guo, 2006, Shimko 2008), or low frequency of 0.2 Hz at 10% strain reduced 

differentiation of human embryonic stem cells, maintaining an undifferentiated state 

(Saha, 2006). Studies remain to be done on the importance of mechanical load and 

cyclic strain with 2D and 3D microprojections. Clearly more work is needed to 

understand how a cell type with potential clinical use responds to mechanical strain 

when the 3D geometry is tightly controlled (Figure 3). Condition that mimics the 

mechanical strain in 3D found in the developing heart tube is discussed further in 

chapter II. 

 

iv. Stiffness 

Substrate stiffness affects cellular phenotype. On more compliant substrates, cells are 

less spread, focal adhesions are irregular, and motility rates are higher than on stiffer 

substrata (Pelham, 1997). A softer substrate, by definition, allows for a greater length of 

contraction for the same generated force allowing for signaling mediated by contractile 

strain (Jacot, 2009). Matrices that mimic striated muscle elasticity of 8-12 kPa are ideal 

for MSCs growth and differentiation (Engler, 2006). Matrix stiffness modulates cellular 

tension, with force transmission occurring via focal adhesions. The change of the elastic 

modulus of the epicardium from an embryonic value of 12+/-4kPa to a neonatal value of 

39+/-7kPa is in the range shown to significantly affect the development of neonatal  
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Figure 3. Schematic diagram of cyclic strain and microtopography. Physical cues can 

be considered as a combination of topography of substrate or the mechanical load 

induced by the substrate such as cyclic strain that affect shape, size, attachment, and 

function. 
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cardiomyocytes (Jacot, 2009). Understanding of how tissue cells including fibroblasts, 

myocytes, neurons, and other cell types sense matrix stiffness is emerging with 

quantitative studies of cells adhering to gels (or to other cells) with which elasticity can 

be tuned to approximate that of tissues. Note that factors such as gel porosity and film 

topography complicate identification of possible contributions of substrate stiffness.  

 

C. Chemical cues 

 

i. Growth factors 

Biological or chemical signals in the microenvironment of cells can directly regulate their 

function. These chemical cues can be a combination of specific growth factors, 

hormones, and cytokines. The paracrine/autocrine signals in the stem cell niche 

modulate stem cell biology and the tissue response in terms of cell survival, self-

renewal, and cell growth (Gnecchi, 2008). One of the important roles of growth factors 

on improvement of regeneration is for the homing of stem cells to the injured tissue. 

There are various types of growth factors which induced regeneration. TGF-β and TGF-

α have shown beneficiary effects in cardiac repair by either boosting the adult cardiac 

progenitor cell formation or increasing the cardiomyogenic markers (Bujak, 2007, 

Bhang, 2010, Hermann, 2010). Fibroblast growth factor (FGF) has been demonstrated 

to improve cardiac function and reduce myocardial infarction size, and it also has the 

potential to increase proliferation of MSCs while maintaining their multi-lineage 

differentiation capability (Cuevas, 2000, Tsutsumi, 2001). Furthermore, bone 

morphogenetic proteins (BMPs) could increase the regeneration of specific cell types 
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including skeletal tissues (Reddi, 2000). Colony-stimulating factors such as granulocyte 

macrophagecolony–stimulating factor (GCSF) have been important in recruitment of 

stem cells such as bone marrow or resident progenitor cells to the infarcted heart (Orlic, 

2001, Brunner, 2008, Steinhauser and Lee, 2009). A cardioprotective effect, is the 

cytokine receptor ligand (cardiotrophin), which has been implicated in increased 

neonatal rat cardiac myocyte cell survival (Stephanou, 1998, Hausenloy and Yellon, 

2009). 

Among all other growth factors, Insulin-like growth factor 1 (IGF-1) is a crucial 

systemic factor that regulates growth and has a wide variety of functions, such as 

promoting cells proliferation, migration, and inhibition of apoptosis (Muta 1993, 

Rodriquez 1992, Beurke 1995). Over-expression of the IGF-1 gene in the heart has 

proven beneficial in eliciting cardiac hyperplasia by inhibition of apoptosis and 

prevention of dilation (Reiss 1996, Li 1997, Welch 2002). Multiple isoforms of IGF-1 are 

expressed in different tissues that arise by alternative splicing and function as a 

paracrine/autocrine growth factor mediating regenerative processes (Russell 1985, 

Vetter 1986, Dai, 2010). Due to alternative splicing, IGF-1 pre-mRNA can generate 

three isoforms from the same mature IGF-1 but with different E domain with distinct 

function. There are three E domains in human: IGF-1Ea, IGF-1Eb and IGF-1Ec, but two 

isoforms in rodent: IGF-1Ea, IGF-1Eb (Chew, 1995, Lowe, 1988). IGF-1Ec in human 

(IGF-1Eb in rodents), which is also named mechano growth factor (MGF), was originally 

identified in skeletal muscle under conditions of increased growth after injury (Yang 

2002, McKoy 1999). After muscle injury due to exercise or stress, there is an invasion of 

neutrophils into the site of injury within 1 hour, which causes muscle damage by 
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releasing free radicals or other oxidants that leads to a lysis of muscle cell membranes 

(Tidball, 2005). Expression of MGF has contributed to increasing the activity of 

superoxide dismutase, known to decrease the level of free radicals, and therefore limit 

muscle damage (Dobrowolny, 2005). Another property for the expression of MGF during 

muscle regeneration is its ability to enhance the chemoattractive effect of muscle 

satellite cells on bone marrow stem cells (Musaro, 2004). MGF increases the number of 

monocytes/macrophages into the injured muscle and favors muscle repair. Synthetic 

MGF has also been shown to promote survival in response to neurotoxins through a 

mechanism that may involve heme-oxygenase-1 (Quesada, 2009). The E-domain of 

MGF appears to have beneficiary effects in injured tissue either distinctly or 

synergistically to the mature peptide of IGF-1 (Carpenter, 2008, Dluzniewska 2005). 

 

ii. Oxygen Tension in the Developing Heart 

During embryogenesis, and particularly the development of the cardiovascular system, 

the oxygen tension to which cells are exposed are substantially lower than atmospheric 

levels (Jauniaux, 2003, Lee, 2001), making O2 content a potentially important parameter 

when designing new strategies for stem cell expansion and/or controlled differentiation. 

Hypoxia plays an important role in the proliferation, differentiation and maintenance of 

the cardiovascular system during development (Simon, 2008, Fisher, 2007, Ramirez-

Bergeron, 2004, Xinping, 1999, Huang 1997). Low oxygen tension appears to direct the 

cultured ESCs to differentiate into cardiomyocytes (Niebruegge, 2009, Ezashi, 2005). 

The embyro in vivo develops under low oxygen tensions of 1.5-5.3% O2 (Fischer, 1993). 
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The myocardium is broadly hypoxic (2% oxygen) at E9.5 in the mouse (Dunwoodi, 

2009). The proliferation of ESC under hypoxia is not fully understood. ESC cells are 

reported to grow more efficiently under low O2 conditions, as opposed to ambient air 

(Simon 2008, Ezashi, 2005, Harvey 2004). It has also been suggested that culture 

under low oxygen tension allows spontaneous ESC differentiation and hypoxia reduces 

the cell proliferation rate (Fernandes, 2010, Kurosawa, 2006). However, human ESC 

proliferate at a similar rate when cultured at 3–5% O2 as they do at 21% O2. Therefore, 

hypoxic conditions may be required to maintain the full pluripotency of mammalian ESC 

(Ezashi, 2005). 

 

iii. Hypoxia effects on reactive oxygen species (ROS) and hypoxia 

inducible factor 1 alpha (HIF-1) 

Under hypoxia, ROS is also affected. It is an oxygen sensor, and is essential in the 

development and healthy existence of aerobic organisms and cardiovascular 

homeostasis. Hypoxia and robust endogenous ROS production have been previously 

shown to occur in differentiating ESC and may represent one key stimulus for induction 

of the cardiomyogenic cell lineage.  ROS is generated by nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase (Sauer, 2000) and commonly during hypoxia 

(Blokhina, 2003, Hermes-Lima, 2002, Chandel, 2007, Guzy, 2006, Nanduri, 2007).  

ROS is thought to direct the cardiac differentiation of cultured ESCs via alteration of the 

redox status (Li, 2006, Buggisch, 2007), and, furthermore, it has been shown that 

change in redox status can lead to the activation of the HIF-1 pathway (Goyal, 2004, 



   18 
 

 
 

Martinez-Sanchez, 2007). An alteration of intracellular ROS levels may not only 

represent the stimulus to increase ES-cell-derived-cardiomyocyte (ESC-CM) numbers, 

but also enhance the expression of cardiac-specific genes and transcription factors 

such as MEF2C, DTEF, Nkx-2.5, GATA4 (Buggisch, 2007). The induction of ROS 

generation by mechanical stimuli and the involvement of redox signaling is seen in 

vascular remodeling responses to shear, stress, and stretch (Lehoux, 2006). Formation 

of ROS occurs when contraction frequency is increased in rat neonatal cardiomyocytes 

(Heinzel, 2006).  

Hypoxia activates the expression of HIF-1, by the activation of a number of growth 

factors, including VEGF, erythropoietin (EPO), and basic fibroblast growth factor 

(bFGF). These all have a synergistic effect on mesoderm differentiation processes, 

which result in cardiogenesis (Ramirez-Bergeron and Simon, 2001, Semenza, 2001). 

Cultured ESCs without HIF-1α expression fail to form beating embryoid bodies 

(Bauwens, 2005). Overall, HIF-1 is essential in normal cardiac morphogenesis, 

myocardial and endocardial development, and development of vascular endothelial cells 

of the heart (Huang, 1997). By decreasing the concentration of oxygen from normoxia 

(20% O2) to hypoxia (less than 10%), the HIF-1 level increases due to the suppressed 

degradation and it is maximized at lowest oxygen concentration (e.g. 0.5% O2) (Jiang, 

1996, Semenza, 2006). In turn, exogenous expression of HIF-1 promotes cardiac 

differentiation of embryonic stem cells (Ng, 2010). Therefore, hypoxic preconditioning of 

stem cells may optimize their potential for therapeutic approaches and have a direct 

clinical impact on the treatment of peripheral vascular disease and ischemic heart 

disease (Figure 4). 
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Figure 4. ROS and HIF-1α effects on cells in hypoxia. Hypoxia is involved in increased 

ROS and accumulation of HIF-1α in the nucleus which affect differentiation, proliferation, 

and angiogenesis. 
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D. Biomaterials for stem cells 

Identification of appropriate biomaterials that support cellular attachment, proliferation, 

and specific differentiation are critical for tissue engineering and cellular therapy. In 

order to choose a specific biomaterial to mimic the physical microenvironment of cells 

and tissues through scaffolds, several factors need to be incorporated such as stiffness, 

biocompatibility, microenvironmental architecture, and degradation rate. While the 

typical tissue engineering approach involves a scaffold with cells, such biomaterials may 

also be used as cell free delivery vehicles for therapeutic chemical delivery, including 

proteins or peptides in order to stimulate tissue regeneration. Therefore, in addition to 

the physical factors, it is necessary to consider controlling the dose and duration of 

releasing chemical cues via polymeric (synthetic or natural) delivery systems (Review, 

Naderi, 2011). 

Three dimensional biodegradable synthetic polymeric systems are of particular interest 

because their porosity, hydrophilicity and degradation time which all can be varied. 

Moreover, they can be manufactured with a high degree of reproducibility (Mooney, 

2003). Hydrogels are 3D networks of hydrophilic polymers that imbibe a large quantity 

of water as well as biological fluids. Hydrogels have also been used as scaffold 

materials for drugs and growth factor delivery, engineering tissue replacements, and a 

variety of other applications. Most commonly used synthetic biomaterials are poly 

(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), poly(lactic acid) (PLA), or poly(lactic-

co-glycolic acid) (PLGA), and poly(ethylene glycol) dimethacrylate (PEGDMA) (Review; 

Hoffman, 2002). There are a few drawbacks with some of these hydrogels. They are 

usually non-porous and non-adhesive because protein adsorption to the surface is 

weak. Therefore, some modifications of hydrogels are necessary. Conjugation of Arg-
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Gly-Asp (RGD) which is a cell adhesive peptide to the hydrogels, promoted the 

differentiation of MSCs (Yang, 2005). Another approach to improve the properties of 

hydrogels is to synthesize them as super porous hydrogel (SPH). Seeding of cells is 

easier within macroporous scaffolds, and this results in rapid uptake cell seeding which 

makes the scaffolds more effective. Interconnected macroporous networks increase 

cellular ingrowth and communication influencing cell survival (Keskar, 2009, Dadsetan, 

2008). 

 

E. Cell engraftment for cardiac tissue engineering 

A commonly used scaffolding approach for the treatment of myocardial infarction (MI) 

involves in vitro engineered cardiac tissue. Bundles of contractile rat myocytes are often 

made into patches for surgical implantation. Orientation is attained by peptide stamping 

(Reinecke, 1999), or by mechanical pacing (Zimmerman 2002, Feinberg, 2007). 

However, the engraftment of patches is problematic because myocytes are covered 

with fibroblasts that prevent electrical connection with the healthy heart of the host 

(Zimmerman, 2006). Further, scale-up for use in human surgery is severely limited by 

poor diffusion of oxygen that causes death of myocytes 200 μm within the surface of the 

patch.  

The simplest in situ tissue engineering approach has been injection or mobilization of 

viable cells to replace necrotic cardiomyocytes. This is less invasive than patch surgery, 

therefore, considered more clinically realistic.  

Clearly greater cardiac stem cell numbers would enhance repair of the heart. However, 

only small side-population of cells express stem cell markers with regenerative potential 
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(Beltrami 2003, Oh 2003, Martin 2004). Nonetheless, mobilized or exogenously 

administered adult stem cells have been shown to migrate into the heart following 

infarction (Wobus 1997, Glimm 2000, Orlic 2001, Uemura 2006), and embryonic stem 

cells have also been used (Laflamme 2007, Simpson 2007). Unfortunately, injection 

suffers from lack of cell retention and transplant survival (Hofmann 2005, Freyman 

2006). Furthermore, recent findings in the field have demonstrated that the functional 

improvements associated with the direct delivery of hematopoetic stem cells to the heart 

is not due to their capacity to differentiate into myocytes, but rather their secretion of 

factors that appear to be beneficial (Fazel, 2006) or to increased angiogenesis 

(Kawamoto 2006) which is also advantageous.  

Cell retention or death may be due to defects of the environment. Myocytes need cell-

to-cell contracts for viability and when seeded in a hydrogel they are isolated from each 

other promoting programmed cell death, apoptosis, and the few surviving cells that are 

electrically connected function poorly (Langer, 1993). 

Injectable gels such as fibrin glue (Christman 2004, Ryu 2005) have been used to 

deliver cells directly into the infarct wall to increase cell retention and survival. Other 

biomatrix vehicles used are collagen, matrigel, and alginate (Kofidis 2007, Leor 2007). 

However, long-term cardiac function was not maintained with cell/gel approaches due to 

lack of cell organization and the gel remaining at the injection site, but not widely 

disposed through the tissue. In the myocardium, basic fibroblast growth factor in gelatin 

microshpheres (Iwakura 2003) and the angiogenic growth factor pleiotrophin in fibrin 

glue (Christman 2005) improved cardiac function by increasing neovascularization in 

ischemic myocardium. A novel injectable scaffold using peptides, which self-assemble 
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to form nanofibers recruited progenitor cells expressing endothelial and vascular 

smooth muscle cell markers to the infarct zone (Davis 2006). Similarly, self-assembling 

peptides with platelet-derived growth factor-BB (Hsieh 2006) sustained delivery for 14 

days in infarcted myocardium, which decreased cardiomyocyte death and preserved 

cardiac function compared to the peptides or growth factor alone. In our case, the 

injectable polymeric structure provide both growth factor peptides and some 

architectural organization that may be more beneficial than either alone. Therefore, both 

cell source and engraftment remain unresolved challenges for cardiac tissue 

engineering despite progress with stem cell research. 
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F. Hypothesis and specific aims 

Cellular function depends not only on chemical factors but also on the physical cues 

that make up the microenvironmental niche. Therefore, it is necessary to introduce 

these parameters in vitro in order to mimic the complex cellular organization and 

function present in native tissue. Two hypotheses drive this research on regeneration of 

human mesenchymal stem cells (hMSCs): (1) Mechanical cues of the 

microenvironmental niche in 3D regulate cell function. Mechanical strain is combined in 

a 3D micropost system. (2) Combination of chemical and mechanical cues regulate 

hMSC function and neonatal rat ventricular myocyte (NRVM) apoptosis. The chemical 

cue is the mechano-growth factor (MGF); an isoform of the insulin-like growth factor 

(IGF) chosen because it is increased with hypoxic stress, is anti-apoptotic and acts as a 

chemokinetic agent for skeletal muscle myoblasts and stem cells.  

 

Hypothesis 1. Biaxial cyclic strain dominates over micropost topography in 

regulating cytoskeletal organization, focal adhesion formation, and matrix 

remodeling of hMSCs. 

Specific Aim 1a.Test the effects of the combination of biaxial strain and micropost 

topography on cytoskeletal reorganization and focal adhesions. hMSCs are anchored to 

microposts to mimic 3D and physiological mechanics are mimicked by 10% cyclic strain 

at 1 Hz for 48 hours. Assessment is made for the distribution of proteins by paxillin and 

actin immunostaining. 
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Specific Aim 1b. Test the effects of the combination of biaxial strain and micropost 

topography on hMSC proliferation. Cell number is determined by EdU assay. 

 

Specific Aim 1c.Test the effects of the combination of biaxial strain and micropost 

topography on hMSC gene expression. Gene expression is assessed by microarray and 

RT-PCR for focal adhesions, cytoskeleton and matrix remodeling genes. 

 

Hypothesis 2.Sustained delivery of MGF peptide from microrods attracts stem 

cells and reduces apoptosis of myocytes. 

Specific Aim 2a. Test the delivery of MGF from the microrods. The MGF elution was 

assessed at day 1, 2, 4, 7, 14, and 21 by HPLC. 

Specific Aim 2b. Test the effects of migration of hMSC towards MGF eluting from 

microrods for 20 hours. Migration is assessed by Boyden chamber with 8 μm insert with 

cells cultured on top and the MGF-rods on the buttom. MGF added in media and empty 

rods are positive and negative controls. 

Specific Aim 2c. Test the effects of interaction of hMSC and MGF-rods in terms of 

proliferation and morphology. Proliferation is tested by EdU and cytoskeleton and focal 

adhesion organization is assessed by actin and paxillin.  

Specific Aim 2d. Test the effects of MGF elution from the microrods on NRVM 

apoptosis under hypoxia. NRVM are cultured under 1% O2 for 8 hours. Cell viability and 

apoptosis are determined by TUNEL assay and RT-PCR to detect the level of anti-

apoptotic gene Bcl-2 after stress.  
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II. CYCLIC STRAIN DOMINATES OVER MICROTOPOGRAPHY IN REGULATING 
CELLULAR FUNCTION OF HUMAN MESENCHYMAL STEM CELLS 

 

A. Introduction 

Stem cells have become a major focus for regenerative medicine. Among the different 

types of stem cells, human bone-marrow-derived mesenchymal stem cells (hMSCs) are 

an attractive cell source for regeneration of damaged tissue. They are known to 

differentiate into a variety of cell types, such as osteoblasts, adipocytes, chondrocytes, 

ligament cells, and smooth muscle cells. Their function depends not only on chemical 

factors but also physical cues of the microenvironmental niche. The niche can be 

considered as a combination of structural and cellular components that vary from one 

tissue to another to control proliferation and differentiation (Spradling, 2001). 

Nonetheless, precisely how mechanical parameters in the physical microenvironment 

affect cellular function is not yet well understood. 

Cells remodel in response to changing mechanical loads that can influence gene 

expression patterns during development (Wozniak, 2009). Most cells are continuously 

subjected to physical stresses and mechanical forces from the external environment, 

which may regulate proliferation and gene expression (Gwak, 2008, Lee, 2007).In 

particular, the morphology, proliferation, and differentiation of mesenchymal stem cells 

are affected by mechanical stimuli (Jang, 2011, Nieponice, 2007). Cells in most tissues 

are in a three-dimensional (3D) environment. Therefore, in addition to cyclic mechanical 

stimuli to cells, it is desirable that the 3D microtopography begin to match the conditions 

in vivo. Cells are known to recognize topographical features and adapt by a 
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phenomenon called contact guidance (Rorth, 2011). Cellular processes affected by 

engineered microtopography in culture include cell adhesion, and proliferation (Boateng, 

2003). Microtopography also affects the subcellular cytoskeleton and differentiation 

(Motlagh, 2003a; Motlagh, 2003b, Biehl, 2009). 

Cells are sensitive to passive and active physical stimuli via external forces (eliciting 

outside-in signaling) and by forces generated in the cell (inside-out signaling) (Holle, 

2011). External perturbation of force can occur in vivo with shear stress, extension, or 

compression (Chen, 1999, Ingber, 1997, Szafranski, 2004). Forces generated by motor 

proteins can reorganize the cytoskeleton in response to external stiffness, surface 

topography, or ligand density (Pelham, 1998, Xiao, 1996). In this study, we recapitulate 

the mechanical strain in 3D found in vivo. The effects of the combination of both 

external cyclic strain and the impact of 3D microtopography on cells are studied on 

cytoskeletal organization, focal adhesions, proliferation, and gene expression.  

 

B. Materials and methods 

i. Fabrication of microtopographic substrata 

Microtextured surfaces with (15 µm height, and 15 µm diameter and 75 µm spaced) 

projections were created using photolithography in the Nanocore facility Lab at UIC 

(Figure 5). This specific pattern was printed on the mask. To ensure that the photoresist 

does not delaminate from the silicon wafer, approximately 1 ml of hexamethyldisilazane 

was spun on a clean wafer at 6000 RPM for 50 seconds. Then a quarter sized droplet of 

negative photoresist (SU-8 2015, Microchem) was spun on the surface at 2700 RPM for 

30 seconds to create a 15 µm thick layer. The thickness of the SU-8 photoresist  
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 Figure 5. Microfabrication of the micropost topography. (A) Skematic of 

microfabrication of the PDMS posts (B) Phase image of the PDMS membrane with 

posts, scale bare, 20 μm 
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determines the height of the resulting posts. A soft bake followed in which the wafer was 

put on a 650C hotplate for five minutes, transferred to 950C hotplate for an additional 

five minutes before returning back to the 650C for then seconds. 

The SU-8 was then patterned by passing ultra violet (exposure energy of 140 mJ/cm2 

for 15 µm thick SU-8), light through the desired transparency kept flush against the 

wafer with a quartz glass weight for 24 seconds. The wafer was baked again at 650C for 

five minutes and 950C for seven minutes more. The wafer was placed in developer 

(Microchem) with continuous shaking motion for approximately 60 seconds and rinsed 

with isopropyl alcohol and blow dried with compressed air. 

Before exposure to light, the height of the photoresist material can be controlled by the 

rate at which the material is spin-coated onto the silicon wafer. The incident light energy 

(J/cm2) which controls the extent to which the resist is cross-linked, is determined by 

multiplying the light intensity (W/cm2) by the exposure time (seconds). Areas of a 

negative photoresist that are exposed to UV light cross-link, and developer solution is 

used to rinse away undeveloped photoresist. Then, parylene is deposited on the 

patterned SU-8 wafer, and peeled off from the wafers ultimately, so the parylene mold 

could be used to make the patterns of the topography on the Liquid polydimethyl-

siloxane (PDMS).  

The ratio of curing agent to silicon elastomer base was 1:10, which gives the Young’s 

Modulus of about 1.7 MPa. PDMS was spread over the BioFlex plates, and the parylene 

mold was placed on top of the PDMS layer, which was about 1 mm thick, cured, and 

gently removed, resulting in flat or textured elastomeric membranes in the flex dishes. 

Flat two-dimensional sheets of PDMS were used as a control for the same surface 
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properties. As a result, PDMS post was created on top of the BioFlex plates in 15-μm-

high with tetragonal spacing 75-μm center to center (Figure 6). PDMS membranes were 

treated with hydrochloric acid (11M, HCL) for one hour to remove contaminants and 

make the surface hydrophilic by hydrolysis of Si-O-Si bonds. The membranes were 

soaked in water for 5 minutes and placed in an oven for 2 hours at 450C to dry. The 

membranes were then sterilized in ethanol and UV light for one hour 

The posts were circular with a 15-μm diameter. For cellular attachment to PDMS, all the 

flat and microtopography surfaces were treated with laminin (Invitrogen) at a 

concentration of 10 μg/ml. In order to assess the uniformity of laminin distribution on the 

flat and microtopographic substrata, anti-laminin antibody produced in rabbit (Sigma) 

was incubated over night at a dilution of 1:25, and followed by the secondary antibody 

Alexa Fluor 568 conjugated goat-anti-rabbit antibody (Invitrogen) at a dilution of 1:200 

for 30 min. All flat textured surfaces were uniformly coated with laminin as seen by 

confocal microscopy (Figure 7) 

 

ii. Cell culture 

Institutional approval was received to obtain and use mesenchymal stem cells (hMSCs) 

isolated from human bone marrow aspirates from Texas A&M Health Science Center 

College of Medicine Temple, TX. Microarray analyses indicate that gene expression is 

consistent for hMSCs from different donors, isolated and expanded as described  
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Figure 6. Schematic of straining the microposts. (A) Diagram of the FlexCell apparatus 
and vacuum system and (B) the BioFlex plates with the PDMS posts on the top layer. 
The equibiaxial stimulation was found to deliver a large central circular region of equal 
and constant tensile err (radial), and eθθ (circumferential) on the base plate (isotropic 
strain), but the equibiaxial stimulation resulted in large err and smaller eθθ on the 
circumferential region off the base plate (anisotropic strain).The radius of the flexible 
membrane of the Flexcell plates is 17.5 mm and the radius of the region on the base 
plate is 12.5 mm, leaving the peripheral 5 mm annulus subject to anisotropic strain. 
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Figure 7. Uniform laminin coating of the microposts. (A) 3D image of a post 15 μm high, 
and 15 μm diameter with laminin coating (B) Uniform laminin staining on flat base, 
middle and top sides of a post seen by confocal microscopy, scale bar, 20 μm 
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previously (Collins, 2010). Experiments were performed on passage three or lower from 

hMSCs obtained from 3 separate donors. hMSCs were cultured in complete culture 

media (CCM) consisting of MEM-α supplemented with 16.5% fetal bovine serum (FBS), 

2 mM L-glutamine, 100 units/mL penicillin and 100 μg/mL streptomycin, and incubated 

at 37 oC. 

 

iii. Cyclic strain 

After two days of cell culture, hMSCs were cyclically strained with 10% strain at 1 Hz for 

48 hours in cell culture media using the Flexcell Strain Unit (Model FX-4000, Flexcell 

International, McKeesport, PA) (Figure 6A). The base plate with a diameter of 25 mm 

was used to produce equibiaxial strain for ~ 70% of the area (Fig. 6B). The computer 

system controlled the frequency of deformation and the negative pressure applied to the 

culture plates. There are four conditions in this study: Flat (control group), flat-strain, 

post, and post-strain. All the four conditions were cultured on the flexcell plates and kept 

in the same incubator.  

 

iv. Distribution of cells upon plating by time lapse movie 

After plating the hMSCs on the flat and microtopography substrata, in order to 

determine the initial distribution of hMSCs on the flat or microtopographic substrata, 

time lapse movies were recorded using Olympus VivaView Incubator over 12 hours. 

However, due to the limitations, we could not record the time lapse movie of the cells 
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while they were strained. A frame is recorded every 5 min and played back 2300 times 

faster in the movies (Doroudian, 2013, movies are in the supplemental data).  

 

v. Proliferation 

To assess cell proliferation after 48 hours of strain: 1 hours incorporation of 5-ethynyl-2’-

deoxyuridine was used (EdU, 10 mM, Invitrogen Corp.). EdU stains the new synthesis 

of DNA. Once incubation was complete, EdU incorporation was tested with EdU flow 

cytometry and EdU imaging kits. For imaging, the PDMS membranes which the cells 

were attached were cut from each dish before staining, and then mounted onto glass 

slides to stain the cells with 4', 6-Diamidino-2-phenylindole (DAPI) for nuclear staining. 

However, note that the equibiaxial stimulation was found to deliver a large central 

circular region of equal and constant tensile err (radial), and eθθ (circumferential) on the 

base plate (isotropic strain), but the equibiaxial stimulation resulted in large err and 

smaller eθθ on the circumferential region off the base plate (anisotropic strain) 

(VandeGeest, 2004).The radius of the flexible membrane of the Flexcell plates is 17.5 

mm and the radius of the region on the base plate is 12.5 mm, leaving the peripheral 5 

mm annulus subject to anisotropic strain.  

 

vi. F actin to G actin measurement 

Cells are harvested by lysis buffer and grouped in normal control, flat (F), positive 

control (Positive C), negative control (Negative C) and the experimental groups as post 

(P), flat-strain (FS), and post-strain (PS). 1 μM of F-actin enhancing solution (100 μM 
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phalloidin), and 10 μM of F-actin depolymerization solution (1 mM Cytochalasin-D) was 

added to the positive control and the negative control respectively. The lysates were 

centrifuged at 2000 rpm for 5 min to pellet unbroken cells. The pellets were 

resuspended in to the same volume as the supernatant using ice cold Milli-Q water plus 

10 μM of Cytochalasin-D. In order to dissociate F-actin, every 15 min the pellets were 

sheared. Supernatant and pellet samples were diluted with 4 μl of SDS buffer and 

heated to 95 0C for 2 min. The samples were loaded onto a 12% SDS-polyacrylamide 

gels and electrophoresed to separate the samples based on molecular mass followed 

by blotting the gel onto a nitrocellulose membrane. Ratio of F-actin to G-actin was 

determined by scanning densitometry from the X-ray film as shown in Figure 12. 

 

vii. Actin, focal adhesion, and nucleus staining 

In order to analyze subcellular features, cells were fixed with 4% paraformaldehyde in 

phosphate buffered saline (PBS) for 10 min at room temperature, rinsed three times 

with PBS and permeabilized by 0.1% Triton X-100 in PBS for 10 min, and washed 3 

times with PBS. Cells were pre-incubated in blocking solution (PBS, 1% bovine serum 

albumin (BSA)) for 15 min and then incubated with rhodamine conjugated phalloidin 

(Molecular Probes) at a dilution of 1: 400 to stain actin, or paxillin anti-rabbit antibody 

(Abcam) at a dilution of 1:250 for 1.5 hours followed by another incubation with 

secondary antibody Alexa Fluor 488 conjugated goat-anti-rabbit antibody (Invitrogen) at 

a dilution of 1:1000 for 45 min to stain the focal adhesions of the cells. DAPI (Sigma) 

was used for nuclear staining. 
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viii. Actin and nuclear distribution from post 

The location of actin and nuclei as a function of distance from the post was determined 

morphometrically at intervals of 15 μm, 22.5 μm, 30 μm, and 37.5 μm on a line drawn 

from post to post. The presence of actin was tallied by detectable phalloidin staining at 

the given distances from the post. For nuclear distribution, the region less than 37.5 μm 

from center of the post was considered as the “close” region, and beyond that was 

called the “far” region. In all, over 60 posts in 3 samples were pooled for frequency 

distribution and statistical analysis 

 

ix. Imaging 

A Nikon TMS inverted phase-contrast microscope was used to observe hMSC cultured 

on post substrata with or without strain. Confocal images were obtained with Zeiss LSM 

510 META and LSM 710 microscopes. The images were analyzed using the Cell 

Counter plug-in for the ImageJ software program (NIH). The nuclear surface area and 

the length/width were determined from Image J. 

 

x. DNA, RNA isolation and reverse transcription 

Total DNA and RNA were isolated from hMSCs from the experimental conditions of flat, 

flat-strain, post, and post-strain. After two days of strain, the AllPrep DNA/RNA Mini Kit 

(QIAGEN) was used to isolate DNA and RNA per manufacturer’s protocols. DNA and 

RNA concentration was quantified using the Qubit Quantitation Platform (Invitrogen). 

RNA was reverse-transcribed for 50 min at 37 0C and 15 min at 65 0C (inactivation) 
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using M-MLV Reverse Transcriptase (Invitrogen) and a thermal cycler (BioRadiCycler, 

Hercules, CA). 

 

xi. Microarray analysis 

For microarray analysis, total RNA was pooled from five independently prepared 

cultures of hMSCs with or without post and strain, and the control. RNA was labeled, 

hybridized onto 3 microarray chips per condition (Human Gene Chip ST. 1.0, Affymetrix, 

Santa Clara, CA) and scanned by the Genomics Core Facility at the University of Illinois 

at Chicago. All hybridizations passed standard quality criteria. Raw data and probe 

intensity levels were normalized within the DNA-Chip Analyzer (dChip) as based on the 

median baseline intensity of the whole array (Li, 2001). All subsequent pair wise 

analysis was also performed using dChip. For pair-wise comparisons, statistically 

significant, differentially expressed transcripts were identified by raw local-pooled-error 

(LPE) test p values. For global functional clustering analysis a list of the genes was 

imported into the DAVID Functional Annotation Clustering tool 

(http://david.abcc.ncifcrf.gov).  Raw LPE test p-values were then corrected for False 

Discovery Rate by the Benjamini–Hochberg (BH) procedure (p-value <0.05). The "heat 

map" was obtained by the dChip Windows software.  

 

xii. Quantitative RT-PCR 

For RT-PCR experiments, total RNA was isolated and reverse transcribed, as described 

above, from independently prepared flat or strained hMSCs with or without posts but 

without pooling. Experiments were performed with the SYBR Green PCR Master Mix 
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and a 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA). 

Amplification was achieved by the following protocol: 1 cycle of 50 0C for 2 min; 1 cycle 

of 95 0C for 10 min; 0 cycles of 95 0C for 15 s and 60 0C for 1 min. To ensure specificity 

of PCR, melt-curve analyses were performed at the end of all PCRs. The relative 

amount of target cDNA was determined from the appropriate standard curve and 

divided by the amount of 2-microglobulin (2M) cDNA present in each sample for 

normalization. Each sample was analyzed in triplicate, and results were expressed 

relative to control condition. The primer sequence (Sigma Aldrich) is shown in table 1. 

 

xiii. Data analysis  

Data were expressed as mean + SD (n= 3 or more experiments). Differences were 

analyzed by the Student’s paired and unpaired t-test with significance at P<0.05. 

 

C. Results 

In this study, hMCSs were exposed to various mechanical forces to explore the effects 

of physical cues while retaining chemical conditions constant. Changes in cell and 

nuclei morphology, proliferation, focal adhesions, and gene expression of hMSCs were 

assessed for four conditions: flat (F), flat-strain (FS), post (P), and post-strain (PS). 
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Figure 8. Time lapse images of interaction of hMSCs with microposts. The images 
show initial migration and preferential adhesion of a cell to a post during the following 12 
hours, scale bar, 50 μm 
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Table I 

PRIMERS USED FOR qPCR CONFIRMATION OF MICROARRAY RESULTS 
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i. The time lapse images 

Random migration of a cell towards a post is shown at different time points (Figure 8). 

These images clearly show the preferential attachment of a cell to a post. At 1 hour and 

33 min, the cell can even reach the adjacent post, but at 1 hour and 54 min, the cell 

wraps around the original post. We are aware that the microtopography was 12.5% of 

the flat surface, and the distance between the adjacent posts was 75 μm, however, the 

images from the time lapse movie show cell to a post and even a post to post 

interaction, and therefore the microtopographic substrate recapitulated the cellular scale 

texture to the cell. Moreover, results showed that hMSCs would ignore the posts if the 

height of the posts was less than 15 µm (Figure 9).   

 

ii. The actin cytoskeleton 

After two days of cyclic strain, morphology of the hMSCs changed in the experimental 

conditions (Figure 10). Actin distribution was remodeled with respect to both strain and 

microtopography (Figure 11). Cells on flat surfaces contained thin layers of actin (Figure 

11A); however, by straining the cells (FS), intensely-stained bundles of actin stress 

fibers were observed, which elongated the cell shape (Figure 11B). The cells in 

unstrained 3D microtopography had a high intensity of the actin wrapped closely around 

the post (Figure 11C). Straining hMSCs on the microtopographic substrata resulted in 

actin stress fibers that span the 75 μm from post to post (Figure 11D). Actin distribution 

was measured morphometrically and the frequency of distribution calculated as a 

function of the distance from the post. The distribution was similar with or without strain  
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Figure 9. A phase image of hMSCs cultured on the micropsts with less than 15 µm 
height. The image shows that cells ignore the posts if the height is less than 15 µm; the 
cells behave as they are on a flat surface, scale bar, 20 µm 
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Figure 10. Morphology of hMSCs change with microtopography and strain. Phase 
images show that morphology of hMSCs vary with micropost and strain after two days 
of 10% cyclic strain at 1 Hz, scale bar, 50 µm 
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Figure 11. Actin remodels with microtopography and strain. Actin cytoskeleton and 
nuclei of hMSCs (A) Flat, (B) Flat-Strain, (C) Post, and (D) Post-Strain, seen with 
confocal microscopy after 2 days of strain at 1 Hz and 10%. (C) The cells containing 
actin fibers are wrapped around the post. (D) The actin fibers are elongated in the cells 
and span from post to post. (E) Frequency histogram of actin distribution at 15 μm, 22.5 
μm, 30 μm, and 37.5 μm from post center. (F) Nuclear distribution shifted from close 
<37.5 μm  to far >37.5 μm regions from a post with cyclic strain; The microtopographic 
substrata is 12.5% of the flat surface, and the result shows that in “post” and “post-
strain”, 33%  and 70% of the cells are on the “flat region”, respectively. The dashed 
circles indicate the location of post. Actin stained by rhodamine phalloidin (red); nuclei 
with DAPI (blue). Mean± SE, n=3 samples, p< 0.05. Scale bar, 20 μm  
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Figure 12. F actin to G actin ratio did not change with micropost and strain. F actin to G 
actin ratio was determined in order to determine the actin formation or disassembly with 
post and strain. The results show no significant difference between the conditions (n=2) 
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nearer to the post (15 μm and 22.5 μm), but significant differences between the post 

and post-strain groups were found further away (30 μm and 37.5 μm) (Figure 11E).  

In addition, results showed no significant difference in F to G actin ratio between the 

conditions which suggests no new actin assembling occurs within this time frame with 

strain and posts (Figure 12). 

 

iii. Nuclear shape, size and distribution 

The nuclear surface area decreased and nuclear length/width ratio increased with both 

strain and microtopography as seen in the images (Figure 13) and confirmed by 

measurements (Figure 13A and 13B). Control hMSCs have large, flat, rounded nuclei 

compared to the other groups where the nuclei appear smaller and more elliptical seen 

from above (Figure 11). In addition, the nuclei of the cells that were located close to the 

posts had increased height (Figure 13C). Adding strain to microtopography shifted the 

nuclei to the center of the cell midway between the adjacent posts (Figure 11F). 

 

iv. Proliferation 

On flat surfaces, hMSCs were weakly proliferative (Figure14A). Cells grown on the 

posts were also slow to divide, showing low EdU staining (Figure14D) and a relatively 

smaller count (Figure 14G). Cells also showed marked differences in EdU incorporation 

that depended on their location on the flex dish. The BioFlex system delivers isotropic, 

biaxial strain to the central region but at the peripheral 5 mm annulus it is anisotropic. 

As expected, in the region off the base plate, when strained anisotropically the cells  
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Figure 13. Nuclear shape and size with strain and distance from microtopography. Flat 
(F), Post (P), Flat-Strain (FS), and Post-Strain (PS). Close region is <37.5 μm and far 
region is >37.5 μm from center of a post. (A) Nuclear surface area decreased with post 
and strain. (B) Nuclear length/width increased with post and strain. (C) Nuclear height 
increased close to a post. Mean± SE, n=4 samples. * All vs. flat (control), # close vs. far, 
p < 0.05 
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Figure 14. Proliferation of hMSCs is increased with strain. Confocal images show newly 
dividing cells (pink) vs. non-dividing cells (blue). (A) Flat (B) cells in central, flat-isotropic 
strained region, (C) cells in peripheral, flat-anisotropic strain region, (D) Post, (E) 
isotropic Post-Strain, and (F) anisotropic Post-Strain. (G) EdU/ total nuclei per condition 
shows that anisotropic strain increased the proliferation, and isotropic strain inhibited. 
(H) Proliferation did not change if a cell is close (<37 μm) or far from the post (>37 μm). 
Dividing nuclei stained with EdU (red) positive and all nuclei DAPI (blue). Mean± SE, 
n=4. * All vs. flat, # isotropic vs. anisotropic, p < 0.05, scale bar, 20 μm 
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 Figure 15. hMSC morphology with isotopic and anisotropic strain. (A) and (B) The cells 
on flat and post showed preferential alignment in the region off the base plate when 
strained anisotropically, seen with the phase images with the cell long axis being 
perpendicular to the strain direction. (C) and (D) The cells on flat and post were 
randomly oriented when strained isotropically, scale bare, 50 µm 
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showed preferential alignment seen with the phase images with the cell long axis being 

perpendicular to the strain direction (Figure 15). The cells grown on the edge of the 

BioFlex plates thus experienced the anisotropic strain and also showed significantly 

more proliferation than the cells cultured on the central regions where strain inhibited 

proliferation below that of unstrained cells with or without posts (Figure 14B, C, E- G). 

The results from the EdU flow cytometry showed no significant difference on 

proliferation between the conditions. This assay was not an appropriate analysis for this 

type of experiment. One reason was that proliferation could not be analyzed based on 

the cellular localization (e.g. close or far from the posts; center or edge of the 

membrane), and another reason was that due to the heterogeneous population of 

hMSCs (small vs. large cells), there were varieties in the results (Figure 16). 

 

v. Focal adhesions 

Force-sensitive adhesion components include vinculin, talin, and paxillin. In this study, 

focal adhesions were identified by paxillin. Microtopography and strain both alter the 

distribution of paxillin. On flat, unstrained surfaces, paxillin is sparse (Figure 17A); while 

with strain the paxillin is aligned with the long axis of the cell (Figure 17B). The 

presence of the post causes a complete ring of paxillin to form, distributed evenly 

around the post (as seen in top view with Figure 17C); when hMSCs are strained, the 

paxillin adopts a semicircle appearance near the post (Figure17D). The cross-sectional 

views of confocal images (X-Y, X-Z, and Y-Z planes) show paxillin along the vertical 

walls of the posts in conditions with or without strain (Figure 17C and 17D). Full 3D 

volume renders show the bright, punctuate paxillin localized on the sides and the top  
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 Figure 16. Flow cytometry analysis for proliferation. Flow cytometry did not show any 
significant changes in proliferation of hMSCs between the experimental conditions. This 
method measures new synthesis of DNA from the whole dish regardless of the position 
of the cells. Mean± SE, n=6, p<0.2 
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Figure 17. Focal adhesions redistributed with microtopography and strain. Paxillin 
staining of hMSCs after 2 days with or without straining at 1 Hz and 10% strain seen in 
3D with confocal microscopy. (A) Flat, (B) Flat-Strain, (C) Post confocal orthogonal 
views, (D) Post-Strain orthogonal views. Volumetric renditions of 3D for (E) Post and (F) 
Post-Strain. (C) Paxillin surrounds the post and goes up its full height. (D) Paxillin forms 
a semicircular ring up the side of the post, and extends from post to post on the lower 
surface of the cell. (E) and (F) 3D reconstructions show punctate paxillin on the sides of 
the post. Paxillin (green) and DAPI (blue), scale bar, 20 μm 
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Figure 18. Optical prolifometry of the 3D reconstructions of focal adhesion of hMSC 
with post-relax and post-strain. Optical prolifometry of the 3D reconstructions show 
other views of focal adhesion distribution with a color coding vs height of a post in (A) 
post and (B) post-stretch conditions. (The highest point is blue), (green: paxillin, 
blue:DAPI in the left panels) 
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edge of the posts (Figure 17E and 17F). The full interaction of the cells in post and post-

strain conditions are shown more clearly in the 3D optical prolifometry images due to 

the color coding vs. height of a post, which blue represents the range greater than 13 

µm (Figure 18). 

 

vi. Gene Expression 

Microarray results of 31,000 genes reveal many transcript-level differences between 

hMSCs cultured in the four conditions; namely unstrained, strained, and flat or anchored 

vertically to the posts. Differentially expressed transcripts were grouped as a “heat map” 

by hierarchal clustering into enriched functional groups including matrix and focal 

adhesions, differentiation, muscle proteins, and cell proliferation (Figure 19). Almost 

6,000 hMSCs genes were significantly different between unstrained and strained 

groups, as where 1,000 genes between flat-strain, and post-strain and 500 genes 

between flat and post were different as filtered by raw p-values <0.05 (Table 2). Number 

of differentiated genes in gene ontology was determined in the conditions that strain had 

the most significant effect (Table 3).The red columns (higher relative expression) under 

flat-strain, and post-strain groups from the "heat map" confirm the dominant effect of 

strain over microtopography. It is known that hMSCs start as a heterogeneous 

population of cells, and during the 4 days of the experiments more changes occur. The 

array data help to assess the overall population shifts under the experimental 

conditions.  
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Figure 19. "Heat map" with genes sorted to show matrix and focal adhesions, muscle 
proteins, proliferation, and differentiation. Each row represents a gene, and each 
column is the control and experimental groups of Flat (F), Flat-Strain (FS), Post (P), and 
Post-Strain (PS). The red and blue colors indicate the relative high and low expression 
of the genes, respectively. FS and PS have the most red boxes, and thus the most 
significant effect of strain.  
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Table II 

MICROARRAY ANALYSIS OF DIFFERENTIATED GENES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Schematic diagram with arrow width proportional to number of genes that were 
significantly different (p<0.05) between pairs of the four conditions, showing the 
dominant effect of strain compared to microtopography. The three blue wide arrows 
represent about 6,000 genes, the yellow arrow 1,000 genes, and the red arrow 500 
genes. (B) Such gene lists show the differential genes between each paired group 
filtered by microarray data using dChip Software, p< 0.05.  
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Table III 

GLOBAL GENE EXPRESSION ONTOLOGY ANALYSIS 

GO TERM  P- PS F- FS F- PS 

Skeletal system development 123 122 117 

Heart development 98 96 98 

Bone development --- 53 --- 

Cell growth --- 30 --- 

Actin cytoskeletal organization 110 98 112 

Cell migration 114 115 110 

Response to hypoxia 58 59 60 

Angiogenesis 66 68 67 

Blood vessel development 115 118 116 
 

 

Gene ontology sorted by affymetrix for the paired groups that were affected by strain 
only. This tables shows the number of differential genes that were regulated between 
each group. 
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Figure 20. Cell density and RNA//DNA/PROTEIN of hMSCs with post and strain. 
Initially, at day 0, all the conditions were plated with same cell density of 10^5 cells/well, 
and at the end of the experiment: (A) The total RNA/DNA did not change between the 
conditions (B) The total protein/DNA did not change as well. (C) In addition, 
measurements of DNA amount from the whole dish showed no change between the 
conditions. (note: although some cells fall off the plate due to strain but there is more 
proliferation at the edge to compensate).  Mean± SE, n=5, p <0.3 
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Cells for all the experimental conditions were plated identically on day 0 at a density of 

105 cells/well. At the end of day 4 of culture (including 2 days of stretch if used), total 

DNA/RNA/Protein per dish (using QIAGEN and Qbit kits), did not change between any 

of the conditions. DNA/well, RNA/DNA, and Protein/DNA and note that there is no 

significance of the paired T test, p value < 0.3 with error bars all overlap, suggesting that 

cells change in number but not in size or protein mass (Figure 20). 

In total 8 genes were analyzed with RT-PCR (Figure 21). The genes confirmed from the 

functional groups were matrix metalloproteinase 13 (MMP13) from matrix; paxillin, 

integrin-alpha2, and vinculin from focal adhesions; SOX9 from differentiation; 

caldesmon-1 and calponin-3 from muscle proteins; and ki67 from proliferation (Figure 

22). Among these genes, MMP13 showed most difference between flat-strain and post-

strain with an almost two fold increase. However, the most significant differences for 

these quantified genes came from straining the cells more than from the 

microtopography. Straining the cells increased proliferation of hMSCs seen by EdU 

staining at the edges but not the middle of the bioflex dish, and the ki67 gene transcript 

also increased with strain. Integrin-2 and SOX9 decreased slightly with 

microtopography.  

 

D. Discussion 

The major findings studying Chapter Two are that both strain and microtopography 

contribute to the remodeling of the actin cytoskeleton and focal adhesions in hMSCs. 

Focal adhesions formed on the vertical side of the post with the actin fibers wrapped the  
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Figure 21. Relative gene expression of the selected genes shown all together. All the 8 

genes (paxillin, vinculin, integrin-α2, caldesmon1, calponin 3 acidic, MMP13, Ki67, and 

SOX9) confirmed by RT-PCR and compared together. 

 

 

 



   61 
 

 
 

 

 

 

 Figure 22. RT-PCR confirmed the dominant effect of strain over microtopography in 
regulating gene expression of the selected genes shown separately. RT-PCR of chosen 
genes from each functional group showing paxillin, vinculin, and integrin-α2 from focal 
adhesions; caldesmon-1 and calponin3 from muscle proteins; MMP13 from matrix; ki67 
from proliferation; and SOX9 from differentiation. MMP13 had the highest fold change 
with post-strain, but the rest of the genes, both flat-strain, and post-strain affected the 
genes similarly. However, SOX9 and integrin-α2 were slightly decreased with 
microtopography. Mean± SE, n=4. * All vs. flat, # FS vs. PS, p < 0.05. 
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cell around it. With the addition of strain, the cytoskeleton elongated and the focal 

adhesion attachment on the post became asymmetric. Nuclear size, shape and 

subcellular location also changed with both strain and microtopography, being close to 

the post for an unstrained cell but distant with strain. Anisotropic strain increased the 

proliferation of hMSCs but biaxial strain did not. Strain was dominant over 

microtopography in gene regulation. 

A diagram shows the micromechanics of how a cell interacts with a post with or without 

strain (Figure 23). Tension developed in the actin stress fibers is transmitted to the 

extracellular substrata via the focal adhesion containing paxillin, shown in top and side 

views. The amount of force generated by the cell depends on the applied external force 

to which it is responding. Cells evaluate the level of force and make adjustments. The 

cytoskeleton filaments and their linkages to transmembrane proteins assemble, break 

down, and reassemble. Based on Newton’s Third Law, internal and external reactive 

forces are equal and opposite under all conditions. The cell tension is greater when 

microtopography stabilizes anchorage to the static post (Figure 23A and 23B) and even 

greater when dynamic external strain is delivered via the substrata (Figure 23C and 

23D). As cells probe their environment, their anchorage is determined by amount and 

direction of local forces, which cluster integrins stabilizing a new focal adhesion over 

time (Sheehy, 2011). Thus, in individual cells, the subcellular distribution of focal 

adhesions depends on local traction forces. 
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 Figure 23. Schematic of micromechanics involved in the cell-substrata interactions for 
the post with or without strain. (A, B) hMSCs unstrained and (C, D) dynamically strained 
two days at 10% strain and 1 Hz; (A and C) top view and (B and D) side view. Solid 
arrows indicate force imparted by the substrata (black) or generated by the cell (red), 
which are equal and opposite based on the Newton’s Third Law. Dashed arrows show 
the external force due to dynamic strain applied by flexing the substrata. 
Microtopography exerts static forces only. With the addition of strain, the cytoskeleton 
elongates and the focal adhesion attaches asymmetrically to the post. Nuclear size, 
shape and subcellular location also changed with both strain and microtopography, 
being close to the post for an unstrained cell but distant with strain. The colors represent 
specific cellular component: cytoskeleton (red), paxillin (green), and nucleus (blue). 
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i. Microtopography 

Early studies of cell adherence to microtopography was done by Dr Russell's group and 

showed focal adhesion and actin filament remodeling for myocytes (Deutsch, 2000, 

Motlagh, 2003a; Motlagh, 2003b) and fibroblasts (Boateng, 2003) on substrata with 

posts. Microtopography affects this local traction force, with a one micron-sized 

micropillar being sufficient to stabilize the focal adhesions visualized by vinculin staining 

(Riveline, 2001, Tan, 2003). The focal adhesion complex is the anchor for the 

cytoskeletal organization of the cells plated on posts, and depends on both focal 

adhesion kinase and the contractile forces generated by myosin II (Frey, 2006, 

Ghibaudo, 2011). RhoA regulates the actin polymerization in the topography-induced 

focal adhesion formation (Seo, 2011). Here, hMSC encircles the post by forming actin 

bundles attached by focal adhesions as has been seen with other types of cells and 

microtopography. Myosin heavy chain of cardiomyocytes extended over the full height 

of the PDMS posts of 15 μm height and 25 μm diameter (Patel, 2011). Fibroblasts 

spread in between the posts with 20 μm height, 5 μm diameter, and spaced 4 to 12 μm 

apart, where they form arc-like shapes that presented an inward curvature that 

increased with time, and the importance of cell tension was confirmed because the 

wrapping process can be reversed with a myosin II inhibitor (Ghibaudo, 2011). 

 

ii. Strain 

Focal adhesion formation can also be induced through application of external force by 

strain (Galbraitn, 2002, Riveline, 2001). RhoA/ROCK and FAK regulate mechanical 
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strain-induced actin fiber formation and cytoskeleton reorganization of cells (Xu, 2012). 

15% uniaxial strain at 1 Hz reoriented the actin fibers of MSC (Ghazanfari, 2009). 

Biaxial cyclic strain increased the level of insoluble vinculin and paxillin of smooth 

muscle cells, after a minute of strain at 10% strain by 1 Hz but -actinin was not 

changed (Cunningham, 2002). After 2 days of strain (20% strain at 1 Hz), more F-actin 

labeled fibroblasts were found in cyclic biaxial strain with random orientation compared 

to the statically anchored controls (Gould, 2012). Greater actin staining seen here also 

suggests actin polymerization increased with strain. Integrin is attached to the actin 

cytoskeleton through several actin-associated proteins such as paxillin, vinculin, talin, 

tensin, and -actinin. In this study, two-day strain of hMSCs resulted in up-regulation of 

isoforms of integrin, such as integrin-α2, integrin-α5, and integrin-β6 and of increased 

focal adhesion molecules, such as paxillin, vinculin, -actinin and talin. RT-PCR 

confirmed the enhanced expression of integrin-α2, paxillin and vinculin with strain. 

 

iii. Combination of microtopography and strain 

Adding mechanical strain to the microtopographical substrata caused the redistribution 

of focal adhesions for anchorage so that the hMSCs were still elongated but also 

preferentially anchored to the posts rather than the intervening flat spaces. Thus, strain 

caused the actin stress fibers to elongate and span from post to post. The dynamic 

flexing of the substrata increases the internal tension as for strain alone, but the focal 

adhesion stabilized in a semi-circle on the sides of the post because of the local 

increase in traction force there as compared to the flat region.  
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iv. Matrix remodeling 

hMSCs not only remodel their interior architecture in response to 3D microtopography 

and strain, but they also remodel the extracellular matrix in which they reside. This was 

achieved by regulating transcription of collagen, laminin, fibronectin, and 

metalloproteinases (MMPs). Mechanical strain of fibroblasts grown in microgrooves 

increased the collagen I, and fibronectin expression at 1 Hz with 8% strain (Loesberg, 

2005), similar to findings here with hMSCs for collagen type I and fibronectin type III, 

which were up-regulated with strain. Strikingly, MMP13 was affected by the combination 

of microtopography and strain with two fold changes more than the strain alone. MMP13 

(collagenase 3) has been shown to degrade the native interstitial collagens in several 

tissues and to participate in situations where rapid and effective remodeling of 

collagenous extracellular matrix (ECM) is required. Biaxial strain increased ECM 

degradation of osteoblastic cells by MMP13 (Yang, 2004). ECM remodeling by up-

regulation of MMP13 may correlate with increased differentiation of fibroblasts on 

topography (Dalby, 2002). 

 

v. Nuclear shape and location 

The cytoskeleton forms a network, connecting the extracellular matrix with the nucleus 

(Sims, 1992). The change in the cytoskeletal organization of the cells alters the nuclear 

shape and position so that the large flattened nucleus is deformed by the thin, spread 

layer of actin in the control cells, as seen in Figure 11. Nuclear deformation is seen in 

many cell types, such as cardiomyocytes grown on grooves or posts (Heidkamp, 2001), 

and with fibroblasts on posts (Ghibaudo, 2011, Patel, 2011). Geometric cues provided 
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by the ECM caused the aspect ratio of the nucleus of neonatal cardiomyocytes to 

increase as the aspect ratio of the cardiomyocytes increased (Heidkamp, 2001). In this 

study, the nuclei of hMSCs reach full height close to the post with an increased 

length/width ratio. However, the volume of the nucleus may have not changed due to 

increased nuclear height and decreased nuclear area with posts. A popular hypothesis 

is that changing the nuclear shape directly affects transcription via sub-nuclear forces. 

Indeed, nuclear components are mechanically coupled to the cytoskeleton, providing a 

more complete understanding of the role of nuclear positioning (Burke, 2009). However, 

an exception is seen that uncouples nuclear shape from gene expression, which is 

dominated by strain. The microtopography also changes nuclear shape but does not 

affect gene expression to the same extent as with strain. 

 

vi. Proliferation 

Another important cellular activity is proliferation. Proliferation varies with cell type, cell 

culture and topography. Proliferation of fibroblasts was inhibited by surface 

microtopography (Boateng, 2003). hMSCs proliferation increased in culture when 

microstructures were added to 3D gel (Collins, 2009) whereas division was inhibited in 

mouse embryonic stem cells near to a post (Biehl, 2009). Mechanical strain also affects 

cell division and depends on the duration, frequency, amplitude and direction of strain. 

MSC proliferation increased with 10% uniaxial strain at either 1 Hz after 4 hours or 0.26 

Hz after 3 days (Ghazanfari, 2009, Jang, 2011).Bone marrow stromal cells proliferate 

significantly more at 5%, 10%, and 15% strain compared to control group without strain 

or at very low frequency (Koike, 2005). Uniaxial strain increased MSC proliferation with 
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cell alignment parallel to the strain axis by using microgrooves. However, when 

micropatterning was used to align cells perpendicularly to the axis of mechanical strain, 

MSC proliferation was not affected (Kurpinski, 2006). Fibroblast proliferation is also 

greater in anisotropic than for isotropic strain (Gould, 2012). Cell division of strained 

hMSCS cultured on flat or post substrata, was also higher in the anisotropic regions at 

the edge of the bioflex plates, but proliferation was actually decreased in the middle 

isotropically strained region, again demonstrating the importance of the direction of 

strain not only its frequency or amplitude.  

 

vii. Differentiation 

The 3D niche and micromechanics affect differentiation in the embryo and in adult cell 

plasticity to altered microenvironmental cues. Since the microenvironmental niche is 

thought to affect cell lineage, microtopography and strain were used to determine 

whether there was any regulation of differentiation genes. Strained hMSCs gene 

expression confirmed by RT-PCR showed significant difference for two muscle proteins 

(calponin-3, acidic, and caldesmon-1). A differentiation gene, SOX9, involved in 

chondrogenesis was up-regulated here as has been found in mesenchymal cells with 

mechanical strain (Xiong, 2005). However, SOX9 slightly decreased with 

microtopography in this experiment. The acidic calponin 3 (CNN3) is an actin filament-

associated regulatory protein, which has been found in smooth muscle and non-muscle 

cells (Applegate, 1994). CNN3 has been shown to up-regulate with combination of 

transforming growth factor beta and cyclic mechanical straining of cultured hMSC with 

microgrooves (Kurpinski, 2009). Caldesmon-1 is a calmodulin binding protein that plays 
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an essential role in the regulation of smooth muscle and non-muscle contraction. 10% 

cyclic strain increased caldesmon-1 (Cevallos, 2006, Jang, 2011). Thus, despite the 

predictions that the combination of mechanical cues from physical deformation by 

externally applied force and also from microtopography might both be necessary for 

differentiation, the addition of microtopography to strain did not yield any notable 

regulation in lineage specification.  

 

E. Conclusion and summary 

The mechanical cues of microtopography and strain altered local forces, which in turn 

affected focal adhesion formation and cytoskeletal reorganization. Gene expression in 

hMSCs was induced more readily in conditions of strain than microtopography alone, 

which reinforces the expected dominance of external strain stimuli over static influence 

of microtopography. However, with the combination of strain and microtopography, local 

remodeling of the focal adhesion on the vertical post stabilizes the cytoskeleton over 

time so that there is preferential elongation from post to post. 

Clearly more work is needed to understand how a cell type with potential clinical use 

responds to mechanical strain in the presence of tightly controlled 3D geometry. Exactly 

how the mechanical forces link to the cellular activities remains elusive but actin fiber 

reorganization and focal adhesion redistribution are essential for regulation of specific 

cellular functions. 
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III. SUSTAINED DELIVERY OF MGF PEPTIDE FROM MICRORODS ATTRACTS 

STEM CELLS AND REDUCES APOPTOSIS OF MYOCYTES 

 

A. Introduction 

Cells are regulated by both mechanical and chemical stimuli arising from the 

surrounding extracellular matrix (ECM). They respond by subcellular reorganization, 

proliferation, differentiation, migration and other functions (Scadden 2006, Dicher, 

2009). One goal of bioengineering is to mimic this physico-chemical microenvironment 

in order to control the behavior of cells for tissue regeneration. Our group has shown 

that microtopography affects cellular structure and function (Motlagh, 2003, Norman, 

2005, 2007, Collins, 2009, Biehl, 2009, Doroudian, 2013). Furthermore, the stiffness of 

the surface on which stem cells are grown is sufficient to alter lineage commitment 

(Engler, 2006). The greatest effect on fibroblast cell function was induced by microrods 

with a combination of stiffness and microtopography in a 3D gel culture system (Ayala, 

2010). The range of stiffness for normal cardiac ventricular tissue is 20-30 kPa (Berry, 

2006) and the logical range for microstructures to be relevant for the study of cardiac 

cell regulation. The micron size scale of cells in cardiac tissue is also used. 

Equally important to the physical parameters are the many chemical signals, 

which provide complex cues for the functional control of different cell types. For cardiac 

repair, some critical chemicals from the cellular microenvironment are those that recruit 

stem cells or prevent myocyte death. It is interesting that most studies now show that 

functional improvements associated with the direct delivery of mesenchymal stem cells 

(MSCs) to the heart are due to their secretion of soluble factors rather than the 
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engraftment of stem cells per se (Fazel, 2006, Paul 2009). The universal stem cell 

homing factor, SDF-1, is an important chemokine attracting stem cells to the heart. 

SDF-1 is produced by ischemic tissue and affects migration and mobilization of 

proangiogenic cells, however, it undergoes rapid proteolysis in blood, limiting its 

therapeutic potential (Hattori, 2001).  

Cell homing to an injury site is also a property of insulin-like growth factor 1 (IGF-

1). Local IGF-1 produced by the muscle acts to increase myocyte growth and preserve 

the injured myocardium (Donath, 1998, Stavropoulou, 2009). Rapid binding of IGF-1 to 

proteins in the circulation severely limits the bioavailability of IGF-1. An alternative 

splicing of IGF-1 yields a special E domain and has a distinct function from IGF-1 and 

does not bind to IGF-1 binding proteins. IGF-1Ec in humans (IGF-1Eb in rodents) is also 

known as the mechano growth factor (MGF). Additionally, native MGF blocks apoptosis 

of injured myocytes as well as attracting stem cells (Ates, 2007, Carpenter 2008, 

Musaro, 2004). The E-domain of the MGF peptide, which consists of 24 amino acids, 

caused increased migration of human mesenchymal stem cells (hMSCs) and human 

myogenic precursor cells (Collins, 2010, Mills, 2007). MGF may affect proliferation of 

some cell types, such as myoblast C2C12, myocardial H9C2, and osteoblasts (Yang 

2002, Kandalla, 2011, Li, 2012) but not others such as MSCs and chondrocytes 

(Collins, 2010, Schegel, 2013).  

Clinical regenerative therapy would benefit by enhancing tissue repair without the 

need for exogenous stem cells. Therefore, it is attractive to consider what steps are 

necessary to engineer the crucial features in an acellular microdevice. A rational 

physical design that might foster natural cardiac repair processes would be a 
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combination of microtopographic features, like the myocyte-shaped microrod, with 

stiffness in the cardiac range (30 kPa). Additionally, MGF is an attractive choice of a 

peptide for incorporation into microrods for cardiac regeneration and repair given its 

chemokine and anti-apoptotic properties. Therefore, this study takes the initial steps to 

manufacture an MGF-eluting microrod that can be used as an injectable microdevice for 

the localized delivery of bioactive MGF over sufficient time for potential regenerative 

therapy of the injured heart in vivo (Figure 24). 

 

B. Materials and methods 

i. MGF peptide 

The native form of MGF-E domain (peptide sequence: 

YQPPSTNKNTKSQRRKGSTFEERK, (Figure 25A) was custom-synthesized with a C-

terminal cysteine cap at a purity of >90% and delivered in lyophilized aliquots 

(Genescript Corp, NJ). Peptides were dissolved in 80% acetonitrile (stock 4 mg/mL) and 

diluted in molecular grade water to 1000 ng/mL yielding a final concentration (30-120 

ng/mL) in media. For the control without MGF (No GF), equal volumes of molecular 

grade water were added to media.  

 

ii. Microfabrication and encapsulation of microrods with MGF 

Microrods were fabricated photolithographically using commercially available materials 

by processes developed by us (Ayala 2010). Briefly, the precursor solution was made 

by mixing poly(ethylene glycol) dimethacrylate (PEG-DMA) (MN 750, Sigma Aldrich) with  
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Figure 24. Combination of physical and chemical stimuli enhances tissue regeneration. 
In addition to the physical cue of microtopography, chemical cues such as growth 
factors play an important role in regulating the cellular function.  
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 Figure 25. FITC-MGF encapsulation into PEG-DMA microrods. (A) MGF is an isoform 
of IGF-1, which includes 24 amino acids in the C terminal of the E-domain; (B) FITC is 
conjugated to the N terminal of the MGF peptide; (C) MGF-FITC encapsulated in the 
microrods still attached to the wafer (0 day),and at one day and 7 days in PBS, as seen 
by fluorescence microscopy (green, FITC). Scale bar, 20 μm  
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1x phosphate buffered saline (PBS) and adding the photo-initiator 2, 2-dimethoxy-2-

phenylacetophenone (Sigma Aldrich) solubilized in 1-vinyl-2-pyrrolidone (Sigma Aldrich) 

at a concentration of 150 mg/mL. 

Lyophilized E-domain native Mechano Growth Factor (MGF) (Genescript Corp, NJ) was 

resuspended at a concentration of 4.0 mg/mL in a solution of 80% acetonitrile (HPLC 

Grade, Sigma Aldrich) and 20% PBS and added to the hydrogel precursor solution. 

Based on the desired specifications of sufficient mechanical stiffness, high hydrogel 

porosity for drug loading, and sufficient viscosity of precursor solution for thin layer 

formation, the ratio of components chosen was 4 parts PEG-DMA : 3 parts PBS : 11/15 

parts photo-initiator solution : 1 part MGF solution. The final MGF concentration was 

0.458 mg/mL. For control microrods not containing peptide, the 1 part MGF solution was 

replaced with a solution of 80% acetonitrile and 20% PBS with no MGF to maintain 

consistency between controls and peptide-loaded samples. 

 MGF tagged FITC was incorporated to evaluate the encapsulation and 

distribution of MGF in microrods. Green fluorescence of FITC shows MGF still bound to 

the microrods after initial washing and after one to 7 days in PBS (Figure 25B and 25C). 

 

iii. Microrod size and stiffness  

The PEGDMA hydrogel microrods were designed to be the size scale and shape of 

cardiac myocytes, namely microrods with 15x15 μm2 cross-section and length 100 μm. 

The microstructure height was accurately measured using an Ambios Technology XP-2 

profilometer. Light microscopy measured length and width (Figure 26). By cross-

interpolating from previous work (Ayala, 2010), the stiffness was designed to be 
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approximately 30 kPa chosen to mimic adult heart stiffness and based on the PEGDMA 

concentration and cross-linker ratio used in the precursor solution during 

photolithographic processing.  

 

iv. Microrod degradation  

Microrods were resuspended in sterile, warm saline and shaken in an incubator at 37oC. 

Microscopic images recorded over a period of 2 months were used to determine the 

rate of degradation by width measurement using ImageJ software. The mean width of 

20 isolated microrods was measured at each time point. 

 

v. MGF elution from the microrods by ELISA 

MGF was detected by an enzyme-linked immune absorbent assay (ELISA) on 

Immobilized-Amino plates and directly conjugated HRP- Primary rabbit MGF antibody 

(After transferring cumulative MGF sample solution of about 100 μl to the microplate 

(Nunc) and applying TMB liquid substrate (Sigma) for color developing). Peptides were 

incubated for 2 hour at 37oC, and antibodies were incubated for 1 hour at 37oC. A 

concentration curve (0.1-120 ng MGF-E peptide range 125 ng to 0.125 ng) was 

generated to calibrate as standard curve to determine the unknown the amount of MGF 

peptide eluted over time. Varying concentrations of microrods were used so that the 

predicted MGF delivery would be 30, 60, 90 or 120 ng if all the loaded peptide were fully 

eluted.  Elution of MGF peptide was compared to unloaded (empty) microrods. Elution 

of MGF was analyzed at 1h and daily for one week.  

 



   77 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 26. Microrod size and interaction with different cell types. (A) Length and the 
width of the microrods were measured with light microscopy. (B) hMSCs and NRVM 
interaction with the microrods, scale bar, 50 μm 
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vi. MGF elution from the microrods by HPLC 

Elution of MGF from the hydrogel matrix of the microrods was assessed by harvesting 

the MGF microrods into 450,000 microrod aliquots immediately after fabrication and 

suspending in a small volume of PBS. The microrods were agitated gently at 37 °C. At 

day 1, 2, 4, 7, 14, and 21, the samples were removed from the incubator, agitated again 

to mix the solution thoroughly, then gently centrifuged to collect the MGF microrods at 

the bottom. A 110 µL sample was then drawn from the vial and replaced with fresh PBS. 

The collected sample was stored at -20 °C until analysis. 

Prior to beginning the experiment, a standard curve for the detection of MGF was 

established using a 1260 Infinity HPLC system (Agilent Technologies, CA) and samples 

of MGF prepared in a 20% acetonitrile solution at concentrations of 0.5, 1, 5, 10, 20, 

and 50 µg/mL in triplicate with a PBS blank sample run between each standard curve 

sample. Samples were run through a Luna 5 µm C18(2) 100A, 250 x 4.6 mm column 

(Phenomenex, Inc, CA) equilibrated to room temperature using a process adapted from 

previously published protocols (Tucker, 2012). Solvents were made from HPLC grade 

water, acetonitrile, and trifluoroacetic acid (TFA) (VWR, PA). Solvent A was 100% water 

and solvent B was 100% acetonitrile. TFA was added to both solvents at a 

concentration of 0.1% (v/v). The mobile phase was eluted from the column at 1 mL/min 

beginning with 95% solvent A and 5% solvent B and increasing to 80% solvent A and 

20% solvent B from 0 to 10 minutes, which was then maintained from 10 to 15 minutes. 

From 15 to 30 minutes, the mobile phase was transitioned to 10% solvent A and 90% 

solvent B. From 30 minutes to 30.5 minutes, the solvent mixture was returned to the 

starting mixture and the column was flushed with this solution and re-equilibrated from 
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30.5 to 35 minutes. Samples were analyzed by a UV detector at 205 nm. The MGF 

peak eluted at approximately 11.7 minutes and the area under the curve of the peak at 

this time was calculated to establish the linear range of the standard curve.  

To ensure that small chain PEG molecules that were potentially eluted over the 14 days 

did not interfere with MGF detection, additional standards with 10 µg/mL MGF were 

doped with 0.1, 1, and 10% (v/v) un-crosslinked PEG-DMA. No interference with the 

MGF peak was noted at these concentrations of PEG-DMA inclusion. 

Experimental samples were run with the HPLC protocol described above including a 

PBS blank between each sample and interpolated on the standard curve to back-

calculate the mass of MGF in solution at each time point. The elution experiment was 

repeated with n = 5 aliquots of 450,000 MGF-containing microrods and the results 

averaged. Control aliquots (n=2) of empty microrods were also incubated over the 14 

days, sampled at each time point for comparison, and subtracted from the readings on 

MGF for normalization. 

 

vii. Cell culture for human mesenchymal stem cells and neonatal rat 

ventricular myocytes (NRVM) 

Institutional approval was received to obtain and use mesenchymal stem cells (hMSCs) 

isolated from human bone marrow aspirates supplied by Texas A&M Health Science 

Center College of Medicine Temple, TX. Microarray analyses indicate that gene 

expression was consistent for hMSCs from different donors, isolated and expanded as 

described previously. Experiments were performed on passage three or lower from 

hMSCs obtained from 3 separate donors. hMSCs were cultured in complete culture 
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media (CCM) consisting of MEM-α supplemented with 16.5% fetal bovine serum (FBS), 

2 mM L-glutamine, 100 units/mL penicillin and 100 μg/mL streptomycin, and incubated 

at 37 oC as used by us (Doroudian, 2013).  

Primary heart cultures were obtained from neonatal rats according to Institutional 

Animal Care and Use Committee and National Institutes of Health guidelines for the 

care and use of laboratory animals. Hearts were removed and cells were isolated from 

1- to 2-day-old neonatal Sprague-Dawley rats with collagenase (Worthington), as 

previously described by our group (Boateng, 2003). The cells were re-suspended, 

filtered through a metal sieve to remove large material, and plated in PC-1 medium 

(Biowhittaker/Cam- brex) on fibronectin coated plates (25 μg/ml). Cells were left 

undisturbed for 24 hours in a 5% CO2 incubator. Unattached cells were removed by 

aspiration, and PC-1 media was replenished. Cells were allowed to establish beating 

over at least one day prior to experimental use. 

 

viii. MGF bioactivity assessed by hMSC migration 

Migration was used to test the bioactivity of MGF-microrods (MGF-rods). hMSCs were 

plated in the upper compartment of the porous insert in a Boyden chamber and 30ng 

MGF was added to the media (either directly or indirectly by 100K MGF-rods below) to 

assess cell migration using Calcein-AM stained cells as done by us (Collins, 2010). 

Cells were cultured overnight (22 hours) at 37oC, 5% CO2. Empty microrods (E-rods) 

were also tested as a negative control. 
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ix. Microrod and MGF effects on subcellular structure  

In order to analyze subcellular features of the actin cytoskeleton, focal adhesion, and 

nuclei, hMSCs were cultured with the microrods still adhered to the silicon wafers with 

or without MGF for 48 hours. Cells were fixed with 4% paraformaldehyde in phosphate 

buffered saline (PBS) for 10 min at room temperature, rinsed three times with PBS and 

permeabilized by 0.1% Triton X-100 in PBS for 10 min, and washed 3 times with PBS. 

Cells were pre-incubated in blocking solution (PBS, 1% bovine serum albumin (BSA)) 

for 15 min and then incubated with rhodamine conjugated phalloidin (Molecular Probes) 

at a dilution of 1:400 to stain actin, or paxillin antibody (Abcam) at a dilution of 1:250 for 

1.5 hours followed by another incubation with secondary antibody Alexa Fluor 488 

(Invitrogen) at a dilution of 1:1000 for 45 min to stain the focal adhesions of the cells. 

DAPI (Sigma) was used for nuclear staining which artificially stained the microrods as 

well. Confocal images of actin and focal adhesions were obtained with Zeiss LSM 510 

META and LSM 710 microscopes. 

 

x. Microrod and MGF effects on proliferation 

To assess cell proliferation of hMSCs after 48 hours of culture on microrods with or 

without MGF, cells underwent a 1-hour incorporation of 5-ethynyl-2’-deoxyuridine (EdU, 

10 mM, Invitrogen Corp.). Once incorporation was complete, the wafers were cut and 

mounted onto glass slides with 4', 6-Diamidino-2-phenylindole (DAPI) for nuclear 

staining. The microrods were artificially stained with both DAPI (blue) and Alexa Fluor 

594 (red) used in the EdU kit.  
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xi. Chemical hypoxia 

NRVM were subjected to the chemical hypoxia induced by hydrogen 0.5 mM peroxide 

(H2O2) plus 0.1 mM FeSO4 for 30 min.  

xii. Caspase and HIF-1 alpha staining 

In order to assess the changes mediated by the chemical hypoxia, image-iT live green 

caspase-3 and -7 detection kit (Molecular Probes) was used followed by the 

instructions, as well as HIF-1α antibody (abcam). For the caspase-3 and -7 detection, 

Fluorescent-Labeled inhibitor of Caspases (FLICA) reagent was used, therefore, only 

apoptotic cells would fluoresce green, so the apoptotic cells from necrotic cells were 

distinguishable since the necrotic cells could be stained red with propidium iodide (PI). 

Late apoptotic cells fluoresce green and red, and early apoptotic cells fluoresce green 

only. For HIF-1α staining, NRVM were fixed with 4% formaldehyde for 10 minutes at 

room temperature and blocked with PBS containing 10% goat serum, 0.3 M glycine, 1% 

BSA and 0.1% tween for 2h at room temperature. Staining of the treated cells with the 

primary antibody at different dilutions of 1:650 and 1:1300 was performed overnight at 

4°C in PBS containing 1% BSA and 0.1% tween. Alexa Fluor 488 conjugated goat anti-

mouse polyclonal antibody at 1/250 dilution was used as the secondary antibody. For 

both assays, nuclei were counterstained with DAPI. 

 

xiii. MGF bioactivity to reduce apoptosis of NRVM induced by hypoxia 

In order to induce physiological apoptosis, neonatal rat ventricular myocytes (NRVM) 

were cultured for four days after isolation and then placed in a humidified chamber 

(Sanyo, Inc) with 5% CO2, 1% O2 and the remainder balanced with N2 for 8 hours at 37 
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oC with MGF in media (free glucose and serum DMEM media), E-rods, or MGF-rods. 

Terminal deoxynucleotidyltransferase (TdT)-mediated dUTP nick end-labeling (TUNEL) 

assay was used to assess cell apoptosis. TUNEL reaction preferentially labels DNA 

strand breaks generated during apoptosis. The negative control was normoxia, and the 

positive control was induced by a DNase I recombinant (Roche Applied Science).  

Changes in gene expression of Bcl2 were assessed as an index of apoptosis protection 

from hypoxia. Total RNA was isolated from NRVMs from the experimental conditions of 

control, MGF in media, E-rods, and MGF-rods. The RNA Mini Kit (QIAGEN) was used 

to isolate RNA, which was quantified using the Qubit Quantitation Platform (Invitrogen). 

RNA was reverse-transcribed for 50 min at 37 0C and 15 min at 65 0C (inactivation) 

using M-MLV Reverse Transcriptase. 

For qPCR experiments, total RNA was isolated and reverse transcribed, from 

independently prepared control, MGF in media, E-rods and MGF-rods. Using SYBR 

Green PCR Master Mix and a 7500 Fast Real-Time PCR System (Applied Biosystems, 

Foster City, CA). Amplification was achieved by the following protocol: 1 cycle of 50 C 

for 2 min; 1 cycle of 95 C for 10 min; 0 cycles of 95 C for 15 s and 60 C for 1 min. To 

ensure specificity of PCR, melt-curve analyses were performed at the end of all PCRs. 

The relative amount of target cDNA was determined from the appropriate standard 

curve and normalized to the amount of Histone H2B cDNA present in each sample. 

Each sample was analyzed in triplicate, and results were expressed relative to the 

control condition. The primers sequence is shown in table 4. 
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xiv. Statistical analysis 

A statistically significant difference among groups was detected by analysis of variance 

(ANOVA). Sequential Holm t-tests were then performed to identify differences between 

specific pairs of conditions. 

 

C. Results 

i. Slow degradation of microrods 

Continuous shaking in saline at 37 oC did not degrade microrods over two months. At 

day 1 and at two months, the width of microrods was approximately 15 μm (Figure 27). 

There was no significant difference in the mean width value of the microrods, implying 

no degradation under these conditions. 

 

ii. MGF elution time course detected by ELISA 

Delivery of MGF was sustained over one week. MGF was detected as early as the first 

hour (Figure 28). However, due to the limitations on ELISA method, HPLC was chosen 

for the elution study. 
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Table IV 

PRIMERS USED FOR qPCR  
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 Figure 27. Degradation of microrods. Continuous shaking in saline at 37 oC does not 
degrade microrods by two months, scale care, 20 μm. 
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 Figure 28. Testing MGF elution from the microrods by ELISA. Delivery of MGF from 
the microrods was tested through 7 days. Mean± SE, n=4 
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Figure 29. Time course of elution of MGF from the microrods detected by HPLC 
method. The cumulative MGF was measured at 0, 1, 2, 4, 7, 14 and 21 days. Each 
measurement was normalized to the 14 day MGF release. Mean± SE, n=5  
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iii. MGF elution time course detected by HPLC 

Delivery of MGF was sustained over two weeks and no more MGF elution occurred in 

the third week (Figure 29). The majority of this release (~80%) occurred over the first 

four days before MGF release began to taper. Background detection of signal from 

empty microrods was small, reaching less than 20% of the total signal from the MGF- 

loaded rods over 14 days. The theoretical total MGF content in each aliquot of 450,000 

microrods was approximately 4600 ng with an average total of approximately 570 ng 

released over 14 days (theoretical payload delivery efficiency ~12.4%). However, there 

are many factors that must be considered in order to calculate the delivery efficiency 

that require adjustment of the total MGF loaded in the microrods and is discussed 

further, below.  

 

iv. Subcellular structure and proliferation 

Both the E-rods and MGF-rods remodeled morphology and adhesion of the hMSCs 

after 48 hours of culture (Figure 30). The hMSCs interacted with the microrods as 

determined by immunocytochemistry. In fact, the actin cytoskeleton of hMSCs 

elongated on the microrods, and focal adhesions (assessed by paxillin localization) 

distributed along the microrods. On the other hand, MGF in the media on flat surfaces 

had no effect on the cell morphology (data not shown). Microrods with or without MGF 

significantly blunted proliferation of hMSCs after 2 days of culture (Figure 31) (P<0.05 

between microrods and flat surface), however, MGF on flat surfaces had no effects on 

the proliferation of hMSCs (Flat vs. MGF in media, NS). Thus, proliferation is regulated 

by the microrods independently of MGF. 
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 Figure 30. Microrods remodel hMSC morphology and adhesion. (A and B) Stem cells 
grown on the flat surface had the normal actin cytoskeleton and focal adhesions either 
with MGF (A) or without MGF (B). The microrods topography guided stem cell growth by 
changes to the cytoskeleton and focal adhesions either with MGF (C) or without MGF 
(D). Actin (red), paxillin(green), nuclei (blue) and microrods (blue), scale bar, 50 μm  
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 Figure 31. Microrods blunt proliferation of hMSCs. Newly dividing cells (pink) vs. non-
dividing cells (blue) on(a) flat and (b) microrods, as seen by fluorescence microscopy. 
(c) EdU/ total nuclei per condition shows that microrods inhibited new synthesis of DNA 
with or without MGF. Dividing nuclei (arrows) stained with EdU (pink) , non-dividing with 
DAPI (blue), and microrods artificially stained with DAPI and EdU (Purple). Mean± SE, 
n=4, * p < 0.05. Scale bar, 20 μm. 
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v.  Migration 

MGF in the media and MGF eluted (30-70 ng) overnight by the microrods was bioactive 

and induced stem cell migration compared to the microrods without MGF (1.72± 0.23, p 

< 0.05). No migration of hMSCs was seen with E-rods (Figure 32) 

 

vi. Hypoxia induction of apoptosis by chemicals 

After chemically induced apoptosis by hydrogen peroxide, cell death signaling of NRVM 

was determined by caspase (Figure 33) and HIF-1α (Figure 34) staining. Fluorescence 

images show both red and green colors which represents late apoptosis of the cells. 

However, induction of apoptosis by the hypoxia chamber is more physiologic, therefore, 

we switched to severe low oxygen tension which makes NRVM apoptotic. 

 

vii. Hypoxic induction of apoptosis by hypoxia chamber 

After induction of hypoxic stress to NRVMs (Figure 35), the extent of cell death was 

measured by TUNEL positive nuclei (DNA fragmentation). Treatment of hypoxic heart 

cells with MGF showed an increase in viable cells (P<0.05 for experimental groups: 

MGF in media, MGF-rods vs. control groups: E-rods and Hypoxia) (Figure 36 and 

Figure 37A). In addition, Bcl2 gene expression (cell signaling) measured by qRT-PCR 

also confirmed the anti-apoptotic role of MGF peptide (Figure 37B), demonstrating that 

both MGF and MGF-rods increased relative expression of Bcl2. Furthermore, the eluted 

MGF peptide retained bioactivity after the fabrication process into the microrod.  
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 Figure 32. Eluted MGF is bioactive and regulates hMSCs migration. (A) Schematic 
diagram of Boyden chamber with cells (green) on top and the microrods (purple) eluting 
MGF below.  (B) Migration overnight is increased both by MGF in media and MGF 
eluted from microrods, Mean± SE, n=3 human samples, * p < 0.05.  
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 Figure 33. Induction of chemical hypoxia was detected by caspase 3 and 7 assay. 
Confocal images show NRVM cells which were stained for caspase 3 and 7 to assess 
cell apoptosis after 30 min exposure to hydrogen peroxide. (green: Caspase, red: PI, 
blue:DAPI, and the last panels on right is the merged images), scale bar 10 μm 
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Figure 34. Induction of chemical hypoxia was detected by HIF-1α. NRVM were stained 

for HIF-1α (1:650 and 1:1300 ratio of the antibody) to assess cell death after 30 min 

chemically induced apoptosis by hydrogen peroxide seen by confocal microscopy. 
(Green: HIF-1α, blue:DAPI), scale bar 10 μm 
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 Figure 35. Induction of hypoxia by hypoxic chamber. NRVM in normoxia (left panel) 

and after 8 hours hypoxia (1% O2) (right panel) 
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 Figure 36. Cell death detection by TUNEL assay induced by hypoxia.TUNEL assay 
shows apoptotic cells after 8 hours at 1% O2, seen by fluorescence microscopy in 
control (normoxia), positive control (PC) induced by DNAse I recombinant, hypoxia, 
empty rods (E-rods), MGF in media, and ,MGF-rods. (green: positive TUNEL nuclei, 
blue: DAPI) (left to the right panels are: nucleus, TUNEL, and merged images) 
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Figure 37. MGF protects NRVM from apoptosis induced by hypoxia. (A) NRVMs after 8 
hours of hypoxia (1% O2) are apoptotic as assessed by TUNEL positive nuclei. 
Apoptosis is reduced by MGF added to the media (MGF) or eluted form the microrods 
(MGF-rods) but not by empty microrods (E-rods). Postive control is with DNAse I 
recombinant (B) Increased relative gene expression of Bcl-2 of NRVMs after 8 hours of 
hypoxia treated with MGF or MGF-rods confirms that MGF improves cell survival. 
Mean± SE, n = 4, *P < 0.05 
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D.  Discussion 

The major findings of this study were the successful encapsulation of native MGF 

peptide within microrods that sustained delivery of MGF up to two weeks. The native 

MGF eluted from the microrods retained bioactivity as assessed by induction of hMSC 

migration and, moreover, the inhibition of the apoptotic pathway in NRVMs subjected to 

hypoxia. Microrods alone without MGF regulated the cytoskeleton, adhesion, and 

proliferation of hMSCs. Therefore, the combination microdevice provides the 

mechanical cues and MGF bioactivity after fabrication, which may provide for potential 

therapeutic delivery and cardiac repair and regeneration in vivo.  

 

i. PEGDMA microrods in drug elution applications 

For effective application in the heart, a hydrogel material was chosen for the 

microrods that was biocompatible, able to be modulated in terms of stiffness for cell 

anchorage, compatible with high–throughput photolithographic processing, exhibits 

harmless long-term degradation byproducts and, finally, capable of drug elution over a 

biologically relevant time period of several days in the wake of acute cardiac injury. 

Many studies model the mechanical microenvironment using polyacrylamide substrates 

with tunable mechanical properties. However, due to cytotoxicity, polyacrylamide 

substrates are unsuitable for long-term in vitro studies or eventual in vivo applications. 

PEGDMA, on the other hand, is used extensively for tissue engineering and drug 

delivery applications and displays excellent biocompatibility (Bryant 2003, Diramio 

2005). It is photopolymerizable, allowing us to precisely control the microrod geometry. 

In fact, this shape feature of the microrods is chosen to provide a high aspect ratio 
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microstructure to affect higher mechanical influence on cells interacting with the 

microrod, and the size of the feature is chosen to mimic the scale of normal cell size 

found physiologically to provide biologically relevant mechanical cues to cells that 

interact with the microstructure. In addition, we have previously shown that the stiffness 

of PEGDMA can be tuned by changing the concentration and ultimately the cross-

linking density, which are important factors in degradation rate (Ayala, 2010).  

 

ii. Microrods degradation 

Due to the nature of the polymeric cross-linking in PEGDMA hydrogel constructs, 

microrods fabricated from this material will undergo hydrolysis over time, leaving behind 

small, inert PEG chains. This process appears to be slow, and previous work has 

shown minimal degradation over three weeks (Tucker, 2012). Although our experience 

with these types of constructs has further shown relative morphological stability of 

microrods in non-physiological conditions for months, a thorough analysis of the long-

term degradation of microrods under physiologic conditions in vivo would be valuable. 

Degradation rate is sensitive to the size scale, polymeric composition, and particular 

polymerization process of the construct, and understanding how each of these 

components affects PEGDMA microstructure stability will enable precision temporal 

tuning of incorporated drug release and microstructure deterioration for various 

applications. Conceivably, the incorporation of more rapidly hydrolysable cross-linking 

agents could also accelerate the drug release or microstructure degradation process as 

may be required in certain physiologic settings.  
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iii. Physiological effect of the microrods alone 

Microrods in a 3D system inhibited fibroblast proliferation and down-regulated 

expression of key extracellular matrix proteins involved in scar tissue formation 

(Norman, 2007, Ayala, 2010). hMSCs attached to 30 kPa microrods displayed 

elongated morphology as compared to cells not exposed to discrete micromechanical 

cues. The local stresses induced by microrods were recognized by the cells, which 

consequently altered the cytoskeletal architecture adjacent to the microrod (Norman, 

2007, Collins, 2009, Ayala, 2010). This remodeling of cells by the external topography 

of microrods is due to the interactions that link the transmembrane integrin receptors to 

the actin cytoskeleton via adaptor proteins such as vinculin, paxillin, and α-actinin 

(Samarel 2005). This similar behavior by hMSCs was also observed in this study. In 

addition, a previously developed in vitro model system has shown that the inclusion of 

SU-8 microrods in three dimensions (3D) can alter long-term growth responses of 

neonatal ventricular myocytes (Curtis 2010a, 2013b), the mechanism of which depends 

on aspects of RhoA/ROCK and PKC signaling. The use of geometric boundaries that 

force neonatal rat ventricular myocytes to spread into an elongated shape, similar to 

that of cardiomyocytes in vivo, leads to more myofibril alignment and clear axes of 

contraction (Motlagh 2003, Bray,2008). As expected, however, (Collins 2010) MGF did 

not affect hMSC proliferation or the subcellular architecture.  

 

iv. Microrods retain bioactivity of MGF  

Encapsulation of native MGF in the microrods is one way to protect it from rapid 

degradation in vivo. Early work on MGF in muscle tissue described this form of the IGF-
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1 gene as being unglycosylated and probably having a shorter half-life time in the serum 

or tissue due to proteolytic cleavage (Yang and Goldspink, 2001). Therefore, native 

MGF was protected from degradation by chemically modifying the E-domain to stabilize 

the peptide by pegylatation and replacement of an L-arginine with a D-arginine to 

withstand the interstitial cleavage enzymes (Dluzniewska, 2005). Unfortunately, there 

are concerns regarding side effects with systemic delivery of the stable form due to 

stimulation of the IGF pathway systemically: an issue especially in women with certain 

types of breast cancer (Nahta, 2005). The incorporation and protection of MGF within 

microrod hydrogel constructs was achieved in this study, which allowed us to further 

study the potential for local delivery and bioactivity of MGF. 

 

v. Sustained delivery of MGF for two weeks 

Using E-peptide specific probes, the mRNA of MGF was found to be markedly 

increased during the acute stress (24 hours) but then declined in skeletal muscle or 

cardiac cells following injury (Hill 2003, Mavrommatis, 2013, Stavropoulou, 2009). Two 

days of cyclic stretch at high strain (20%) at 1 Hz caused increased MGF gene 

expression in NRVMs, again suggesting MGF is related to stress or injury and showing 

that myocytes produce MGF (Collins, 2010). Thus, the native MGF delivery window of 

one day to at least 2 weeks may be effective for cardiac repair in vivo.  

We were able to attain this objective with a delivery profile of MGF from the 

PEGDMA microrods from one day up to at least 14 days. However, it is important to 

note that the actual delivery efficiency of the MGF-containing microrod system is likely 

considerably higher than the calculated theoretical efficiency. The theoretical MGF 
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content potentially overestimates the available drug to be delivered in the microrods in 

several ways. Firstly, it requires an assumption that the microrods are solid objects with 

a material volume equal to the spatial volume of the structure itself. However, the highly 

porous nature of the microstructures can significantly decrease the volume of material 

available to hold and deliver the peptide. In addition, a considerable portion of the MGF 

may be damaged or eluted prior to the start of the measured elution during UV 

exposure, cold storage, or water and alcohol rinses after fabrication of the 

microstructures. MGF may be further destroyed throughout the course of the 

experiment by general hydrolytic processes, obscuring our ability to detect the 

cumulative eluted peptide at later time points by HPLC. Lastly, inhomogeneities in the 

microrod population may lead to different loading capacities of each microrod, so the 

presumed total MGF content is taken as an average potential drug capacity. These 

factors were mitigated to an extent by isolating only microrods of the proper size and 

shape and minimizing time spent in water or ethanol solutions to reduce the amount of 

drug released prior to the start of the experiment. Further experiments to understand the 

nature and stability with which MGF is incorporated into the matrix would be valuable as 

a tool to understand extended clinical applications of this technology. 

 

vi. Migration of hMSCs as a bioactivity assay  

 Elution of MGF from the microrods established a growth factor gradient and 

induced migration of hMSCs. There is still controversy whether the migration 

mechanism of stem cells via these growth factors is dependent or independent of IGF-1 

receptor (Yang, 2002, Mills, 2007). However, previous work has suggested that the 
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migration effect of MGF peptide on MSCs depends on IGF-1 receptor via Erk1/2 signal 

pathway (Cui, 2014, Wu, 2013). MGF promotes rat tenocyte migration by lessening cell 

stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway 

(Zhang, 2014), while the peptide intervention caused MSCs to stiffen (Wu, 2013). Our 

results suggest that the injectable MGF-microrods may foster stem cell homing in vivo, 

by generating a chemotactic gradient that is translated into a mechanotactic response 

through the IGF-1 receptor mediated pathways. 

 

vii. Prevention of NRVM apoptosis as a bioactivity assay 

In addition to increasing cell migration, eluted MGF retained bioactivity to prevent 

apoptosis in cardiac muscle cells. The E-domain of MGF appears to have beneficiary 

effects in injured tissue either distinctly or synergistically to the mature peptide of IGF-1 

(Carpenter, 2008, Dluzniewska 2005). Here, we altered the oxygenation conditions in 

vitro to establish changes in gene expression and cell survival of NRVMs under hypoxic 

conditions that mimic the ischemic heart. Results of the TUNEL assay and Bcl-2 

expression confirm MGF protection for myocytes from apoptosis that should, confer 

longevity to progenitor and effector cells in tissues (Hockenberry, 1990, Korsmeyer, 

1992, Grünenfelder, 2001). By improving cell survival, the likelihood of regeneration will 

be improved and cell death of the pre-existing myocardium attenuated, which could 

translate into an improvement in function. Thus, the effective delivery of MGF from the 

microrods may permit myocytes to thrive in vivo even under hypoxic conditions. 
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E. Conclusion and summary 

Bioengineering approaches were able to achieve a therapeutically relevant two-week 

time course of MGF delivery and to protect native MGF peptide in a bioactive state. 

Stem cell migration was preserved and myocyte apoptosis under hypoxic stress was 

reduced. The ability to incorporate and protect a peptide therapeutic in a monolithic 

hydrogel device to extend its half-life in vivo has great potential for countless 

translational applications. Thus, outcomes in a therapeutic setting of injection of this 

MGF loaded microdevice into injured regions of the heart might be beneficial in reducing 

myocyte loss in ischemia and boosting repair by the chemo-attraction of stem cells to 

the damaged area. 

By adapting a stable and well-understood polymer system to serve as both a 

mechanical stimulus as well as provide highly-localized, long-term delivery of bioactive 

peptides, we may be able to expand the therapeutic profile of many existing 

biomolecules.  
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IV. MAJOR CONCLUSIONS 

This thesis uses engineering and biological techniques to assess basic cellular function 

with the goal of applying the results to cardiac regeneration therapy. The approach is to 

understand both physical and chemical cues of the microenvironment that control 

structure and function of human mesenchymal stem cells and neonatal rat ventricular 

myocytes (hMSCs and NRVM, respectively). The major conclusions of this research are 

divided into two parts: A) the effects of physical cues, and B) the effects of chemical 

cues. It is the combination of these cues that will be necessary for the optional control of 

cells in vivo. 

Part A: Physical cues of the microenvironment affect cell function. 

A1: Microfabrication is a useful method to fabricate substrates for cell growth. 

A. PDMS microposts and PEGDMA microrods are biocompatible with both hMSCs 

and NRVMs 

B. hMSCs ignore the posts with less than 15μm height and behave like cells on a 

flat surface. 

C. The structural organization of the cytoskeleton and focal adhesions of hMSCs 

are remodeled by the microrods as assessed by actin and paxillin 

immunostaining.  

D. Focal adhesions form on the vertical side of the post with the actin fibers 

wrapped the cell around it as determined by paxillin staining.  

E. Nuclear size, shape, and height change with micropost topography, and the 

cells are mostly in close contact with the posts. 

 



   107 
 

 
 

F. hMSC proliferation is inhibited by the microrods as determined by the EdU 

assay for DNA replication. 

A2: Cyclic strain is a useful method to apply external forces to cells. 

G. The cytoskeleton elongates and the focal adhesion attachment on the post 

become asymmetric with cyclic strain of hMSCs.  

H. Nuclear size, shape and subcellular location also change with strain where the 

cells are more distant from the posts.  

I. Anisotropic strain increase the proliferation of hMSCs but biaxial strain does not 

as determined by an EdU assay. 

A3: The combination of strain and topography provides the complex physical 

cues as seen in living tissue. 

J. Biaxial or uniaxial strain was applied to hMSCs via substrates with micropost 

topography.  

K. Both strain and microtopography contribute to the remodeling of the 

cytoskeleton and focal adhesions in hMSCs as determined by actin and paxillin 

staining.  

L. Microarray analysis demonstrates significant difference of transcript levels 

between hMSCs in strain conditions (strain and post-strain) and non-strained 

conditions (flat and post) after two days of culture. 

M. Quantitative PCR confirms microarray data indicating that gene expression 

corresponding to the functional ontology group “Matrix and Focal adhesions”, 

“Muscle proteins”, “Proliferation” and “Differentiation” is enhanced more 

significantly with cyclic strain than without. 



   108 
 

 
 

N. RNA/DNA/Protein do not change between the control (flat) and experimental 

groups (post, strain, and post-strain). 

 

Part B: Chemical cues affect stem cell and cardiac cell function. 

A. Mechano growth factor delivery from the microrods is sustained for two weeks. 

B. Migration of hMSCs overnight increase when exposed to MGF in the media or 

MGF released from microrods as determined by Boyden chamber. 

C. Proliferation of hMSCS is not regulated by native MGF as determined by EdU. 

D. Hypoxia (1% O2) induces apoptosis in NRVM as measured by the TUNEL assay. 

E. MGF in media or MGF released from the microrods protect NVRM from severe 

hypoxia as shown by reduced cell death. 

F. Bcl-2 gene expression by quantitative PCR shows improved NRVM survival with 

MGF in media or MGF from the microrods. 

 

Stem cells delivery and tissue engineering of cardiac patches are being investigated in 

regenerative medicine because of the need to replace heart muscle lost after 

myocardial infarction. The enhancement of regeneration is being actively studies by 

research on scaffolds, stem cells, gene therapy, and chemical and mechanical signals. 

The infracted myocardium is not an environment conducive to stem cell survival and 

differentiation into myocytes is not yet well controlled. Even though a small percentage 

of implanted cells do survive and differentiate into cardiomyocytes in the injured 

myocardium, these are not sufficient to improve cardiac function.  Engineered 
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constructs made in vitro have problems with function when implanted in vivo because of 

the lack of oxygen and adequate nutrients prevent cell death. Nonetheless, cardiac 

tissue engineering has been proposed as an appropriate method to repair myocardial 

infarction (Eschenhagen, 2012, Tulloch and Murry, 2013). 

To further understand the role of stem cells in regeneration, it is essential to develop 

instrumentation and technologies to track the process of the development by regulating 

their migration, differentiation, proliferation, and apoptosis. We must begin to identify the 

environmental cues that are needed for stem cell trafficking and we must define the 

genetic and cellular mechanisms underlying their function in order to realize the full 

potential of stem cells in regenerative medicine.  

The objectives in this dissertation is on the importance of the stem cell response to 

physical cues, which are manipulated in a quantitative manner by the microstructures 

and mechanical load. Furthermore, the combination of biomimetic materials and 

chemical factors are explored to stimulate, enhance, or control cardiac's innate 

regenerative capacity.  

Of note in findings in this thesis are the complexities with which different mechanical 

stimuli regulate cells.  For example, “self-renewal” of hMSCs is regulated by anisotropic 

strain but not by equibiaxial strain and also by the 30 kPa PEGDMA microrods and not 

the 1.7 MPa PDMS posts. Proliferation of embryonic stem cells was inhibited by the 

PDMS microposts while hMSC proliferation was increased with the Su-8 microrods 

incorporated in a 3D soft gel (Collins, 2009, Biehl, 2009). Cell type and 2D vs. 3D 

environment are all other important factors, which could impact the stem cell function. 
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Taken together, the results suggest that the mechanotransduction processes differ with 

specific physical cues (e.g. material, stiffness, geometry and dimension). 

For the second part of the thesis, the main challenge is to optimize the microdevice for 

the regeneration therapy. Local chemical cues will also be necessary to optimize tissue 

regeneration.  MGF was chosen as a chemical cue to be incorporated into 

microstructures. In addition to the homing effect of MGF, it is anti-apoptotic agent that 

improves cell survival after cardiac injury. Therefore, MGF elution from microrods may 

enhance regeneration by recruiting the number of stem cells in the heart and also 

preventing cell death after infarct or injury. Additionally, this platform could be modified 

to deliver different stiffness and topography, and other chemical factors such as SDF-1 

or estrogen can be used for recruiting more stem cells to the injured heart. The 

properties of the PEGDMA microrods could be modified to attain that goal. 

This thesis has yielded new information about how cells respond to local physical and 

chemical cues. These novel polymeric microstructures were designed with mechanical 

stiffness and size optimal application in cardiac tissue, as well as to release highly 

localized, bioactive peptides over a two-week period. Therefore, injection of this MGF 

microrod device in vivo should be beneficial in cardiac repair and regeneration. 

Additionally, specific stiffness, microtopography, strain profiles and a variety of drugs 

and growth peptides could permit us to expand the therapeutic profile of many existing 

biomolecules into many different tissue applications.  
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V. FUTURE WORK 

Further work is needed in order to understand the mechanisms underlying the changes 

observed. For the first part of the project, we conclude that strain is dominant over 

microtopography, but how exactly was not deeply explored. Previously, in our 

discussion, we suggested that force generation difference imposed by these mechanical 

cues was a main fact, which probably regulated the myosin II. However, we did not test 

and measure the force generated by strain and the posts, and we did not use any 

inhibitory drugs in order to detect cell mechanotransduction signaling pathways.   

Even though hMCSc have the potential to differentiate into many cell types, the results 

from the microarray showed that these cells have limited potential for cardiac 

differentiation after two days of cyclic strain with microposts, and thus they are unlikely 

to regenerate the damaged heart significantly. Other cell sources such as resident 

progenitor cells of heart or human induced pluripotent cells are other candidates for 

these projects. 

Even though microposts give the cells increased surface area to which the stress fibers 

can attach, the scaffold with the microposts is not a completely three dimensional 

environment. Therefore, combination of cyclic strain and microstructures in true 3D 

scaffolds would create a better physiological environment that might yield the cardiac 

differentiation of the cells. Unfortunately, we have the limitation that 3D gels cannot be 

strained or imaged. 

In order to enhance the mechanical loads imposed by the posts on the cells, alternative 

topography could be made to test geometric spacing.  For example, we could modify 
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the structure of the microposts, or the distance and area between them. Certain 

geometries might alter the stress fibers and influence proliferation, focal adhesion, and 

even differentiation 
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