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Summary

A Vietoris solenoid ([23], [1]) is the inverse limit of n− to− 1 covering maps over the torus, which

are all homogeneous. In [17], McCord introduced generalized weak solenoids and showed that they

are homogeneous if the monodromy action is defined by a normal chain. Schori in [21] showed by

construction that non-homogeneous weak solenoids exist. Rogers and Tollefson in [20] showed that

there exists a weak solenoid that is not defined by a normal chain, but is homogeneous. They also

constructed in [19] a non-homogeneous solenoid given by covering maps which are regular from level

i to i − 1, but whose composition onto the base space is non-regular. Fokkink and Oversteegen

in [11] gave a criterion in terms of defining group chains for a weak solenoid to be homogeneous,

i.e. for the monodromy action to be regular. In this work, we investigate further the properties

of the dynamics of group chains. We show that each group chain yields a minimal equicontinuous

Cantor dynamical system. Conversely, we use a method of Kakutani-Rokhlin partitions to show that

minimal equicontinuous Cantor dynamical systems can be represented by group chains. We then

use their associated chains to classify minimal equicontinuous Cantor dynamical systems as regular,

weakly regular, or irregular. We show that this classification is an invariant of the cardinality of

the set of orbits of the Automorphism group. We consider the set Gφ of all group chains associated

to a dynamical system, and show that the classification as regular, weakly regular, or irregular is

an invariant of the number of equivalence classes of chains in Gφ. We introduce a new invariant of

a dynamical system called the discriminant group, and show that its cardinality is related to the

degree of non-homogeneity of the system. We give new proofs using group chains of the irregularity

of the Schori and Rogers and Tollefson solenoids, and we introduce new examples of group chains

which are weakly regular and have either finite or infinite discriminant group.
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CHAPTER 1

Introduction

Let G be a finitely generated group and let X be a Cantor set, that is, a space that is perfect,

metrizable, compact, and totally disconnected. Suppose G acts on X by homeomorphisms, that

is, there is a homomorphism φ : G → Homeo(X) that associates to each group element g ∈ G a

homeomorphism φg : X → X. We will also use the notation g ·x = φg(x) where convenient. Let the

action be minimal, that is, every orbit G · x = {g · x | g ∈ G} is dense in X. The action φ of G on

X gives a dynamical system, which we denote by (X,G, φ) (or just (X,G) if the action is clear). If

we distinguish a basepoint x ∈ X, then we call (X,G, φ, x) (or just (X,G, x)) a pointed dynamical

system.

We then ask, how to classify such dynamical systems? Classification problems deal with finding in-

variants to classify dynamical systems up to various levels of equivalence. There are several different

types of equivalence that may result in stronger or weaker classification theorems. The strongest

equivalence relation between dynamical systems is topological conjugacy; two dynamical systems

(X,G, φ) and (Y,H, ψ) are said to be (topologically) conjugate if there exists a homeomorphism

z : X → Y such that z(g · x) = g · z(x), i.e. such that z(φg(x)) = ψg(z(x)). Two pointed dynamical

systems, (X,G, φ, x) and (Y,H, ψ, y) are said to be pointed conjugate if there exists a homeomor-

phism z : X → Y such that z(g · x) = g · z(x) and such that z(x) = y. A weaker form of equivalence

is orbit equivalence. The systems (X,G, φ) and (Y,H, ψ) are orbit equivalent if there is a homeomor-

phism z : X → Y which maps orbits of φ into orbits of ψ, without necessarily preserving the time

parametrization of orbits. A group action is equicontinuous if for all ε > 0 there exists δ = δε > 0

such that for all g ∈ G and any x, y ∈ X, if d(x, y) < δε, then d(φg(x), φg(y)) < ε. This means that

if we start with two points x, y ∈ X that are “close together”, and apply our action to them, the

resulting points φg(x), φg(y) are also “close together” in a precise way.

In this thesis, we confine ourselves to the study of Cantor dynamical systems that are minimal

and equicontinuous, and we concentrate on the case where the group G is finitely generated, and

is not required to be abelian. There are many situations where such Cantor dynamical systems

arise naturally. One important source of examples which we consider here, arises as the monodromy

1



1. INTRODUCTION 2

actions of weak solenoids. A weak solenoid M∞ is the inverse limit of closed manifolds {Mi | i ≥ 0}

which are proper finite-to-one covering spaces of the base space M0. The projection of M∞ onto

every manifold in the sequence is a fiber bundle, and the fiber C of the inverse limit space M∞ over

a point in M0 is a Cantor set. The monodromy action of the fundamental group of M0 on the fiber

C is minimal and equicontinuous. For example, if the solenoid M∞ is defined by a tower of coverings

of a compact surface with genus ≥ 2, then the fundamental group of M0 is non-abelian and the

monodromy action on the fiber satisfies the criteria above. The minimal Cantor actions which arise

in this way are examples of dynamical systems for which this thesis applies.

The regular solenoids form a special subclass of the weak solenoids. These spaces were introduced

and studied by McCord in [17], and so are sometimes also called McCord solenoids. If for every

i > 0 the composition of covering maps

pi0 = pii−1 ◦ pi−1
i−2 ◦ · · · p

1
0 : Mi →M0

is a regular, or normal covering, then the weak solenoid M∞ a regular solenoid.

McCord showed in [17] that a regular solenoid M∞ is homogeneous, meaning that for every x, y ∈

M∞, there is a homeomorphism h : M∞ →M∞ with h(x) = y. Rogers and Tollefson in [20] showed

by example that there exists a weak solenoid with every covering map pi0 is non-regular, but for

which the inverse limit space M∞ homogeneous. In contrast to this, the Schori solenoid constructed

in [21] is an inverse limit of covering spaces over a surface of genus 2, which is a non-homogeneous

weak solenoid. Also, the Rogers and Tollefson solenoid constructed in [19] is an inverse limit of

covering spaces over the Klein bottle which is non-homogeneous.

Rogers and Tollefson asked in [20], how can we tell if a weak solenoid is homogeneous or not?

Fokkink and Oversteegen gave a solution to this question in the work [11]. Associated to a weak

solenoid is a nested chain of subgroups, defined by letting G = π1(M0,m) be the fundamental group

of the base space, and Gi = (pi0)∗(π1(Mi,mi)) ⊂ G be the projection of the fundamental group

of the i-th space onto the base space. They introduced the class of weakly normal group chains,

and showed that a solenoid M∞ is homogeneous if and only if its associated group chains is weakly

normal. We explain this concept in more detail next.

Fix a finitely-generated group G. A group chain (Gi) in G is an infinite nested chain of finite index

subgroups

G = G0 > G1 > G2 > ...
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where each Gi < Gi−1 is a proper subgroup. The intersection K =
⋂
i

Gi is called the kernel of the

group chain (Gi) and is a subgroup of G, which is not assumed to be trivial.

Since Gi has finite index in G, G/Gi is a finite coset space. We consider the inverse limits of

chains of coset spaces from group chains, with bonding maps given by coset inclusion. This inverse

limit G∞ = lim←−{G/Gi → G/Gi−1} is a Cantor set, and the group G acts on it minimally and

equicontinuously by component-wise multiplication, giving the dynamical system (G∞, G). There is

a natural choice of basepoint in G∞, the sequence (eGi) with every entry the coset of the identity.

Then (G∞, G, (eGi)) is a minimal equicontinuous pointed dynamical system.

Given an equicontinuous minimal Cantor dynamical system, we can associate to it a (non-unique)

group chain, using a method of nested partitions. It is standard to use nested clopen partitions called

Kakutani-Rokhlin partitions to represent actions on Cantor sets. For example, such partitions were

used by Herman, Putnam, and Skau in [14] to build Bratteli diagrams classifying a minimal Cantor

dynamical system defined by an action of Zn up to orbit equivalence, and similar partitions were

used by Cortez and Petite in [8] to study group actions on a Cantor set of a finitely generated group

G. In this work, we use a method of coding based on work by Clark and Hurder in [4] which applies

for all minimal equicontinuous actions of a group G.

Given a minimal equicontinuous pointed Cantor dynamical system (G,X, φ, x), we build a nested

sequence of clopen partitions Pi = {P i1, P i2, ..., P imi
} called an Almost Finite (AF) Presentation, with

the property that the action of G permutes the elements of the partition, so each P ik = g · P i1 for

some g ∈ G, and as i → ∞, the diameter of each partition element approaches zero, and with the

basepoint x ∈ P i1 for all i. We then let Gi = {g ∈ G | g · P i1 = P i1} be the isotropy group of P i1.

This gives a group chain (Gi) associated to the system (G,X, φ, x). We show that in this case there

is a homeomorphism X → G∞ that preserves basepoints and is equivariant with respect to the

G-actions on X and on G∞.

In this thesis, we study the set G of group chains of a finitely-generated group G, and develop

algebraic invariants for group chains which determine dynamical and geometric properties of the

associated Cantor minimal systems (G∞, G). We introduce the notions of equivalence and conjugacy

between group chains, which extend ideas introduced in Fokkink and Oversteegen in [11]. We show

that two AF Presentations for the same pointed system yield equivalent group chains, by the notion

of group chain equivalence defined below, which we will show corresponds to pointed conjugacy

of the associated dynamical systems. Thus, we use AF Presentations to show that any minimal
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equicontinuous Cantor system can be represented by a group chain dynamical system, justifying

writing the rest of our work primarily in the language of group chains.

There is one important difference between our setting and that of weak solenoids. A chain of

covering spaces {Mi} yields the same (up to homeomorphism) weak solenoid if we remove a finite

number of levels. In particular, if we remove the first n levels, we still have the same solenoid,

up to homeomorphism. However, the fundamental group of the new base space Gn = π1(Mn,mn)

is not isomorphic to G0 = π1(M0,m0), since the proper coverings yield proper subgroups of the

fundamental group. In the setting of group chains, we require that G = G0 is fixed.

In order to state our main results, we recall a notion of group chain equivalence from [20].

DEFINITION 1.1. The group chains (Gi), (Hi) in G are equivalent if, for every i, there is a j

such that Gi > Hj and Hi > Gj.

We will prove that group chain equivalence corresponds to pointed conjugacy of dynamical systems.

THEOREM 1.2. Let (Gi) and (Hi) be group chains in G, with associated inverse limits

G∞ = lim←−{G/Gi → G/Gi−1}

H∞ = lim←−{G/Hi → G/Hi−1}.

Then, the following are equivalent:

(1) (Gi) and (Hi) are associated to the same pointed dynamical system (X,G, φ, x).

(2) The systems (G∞, G, (eGi)) and (H∞, G, (eHi)) are pointed conjugate.

(3) (Gi) and (Hi) are equivalent group chains.

We recall from [11] a notion of conjugate equivalence between group chains.

DEFINITION 1.3. The group chains (Gi), (Hi) in G are conjugate equivalent if there exists a

sequence of elements (gi) ∈ G, with giHi = gj Hi for all j ≥ i, such that the chain (giHig
−1
i ) is

equivalent to (Gi). We then write (Gi) ∼ (giHig
−1
i )

We then have the general result for topological conjugacy without preserving basepoints.

THEOREM 1.4. Let (Gi) and (Hi) be group chains in G, with associated inverse limits

G∞ = lim←−{G/Gi → G/Gi−1}
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H∞ = lim←−{G/Hi → G/Hi−1}.

Then, the following are equivalent:

(1) (Gi) and (Hi) are associated to the same dynamical system (X,G, φ).

(2) The systems (G∞, G) and (H∞, G) are topologically conjugate.

(3) There exists a sequence (gi) in G with giHi = gjHi for all j ≥ i such that (giHig
−1
i ) is

equivalent to (Gi).

The conclusions from Theorem 1.2 is that algebraic invariants of a group chain (Gi) ∈ G which

are invariant under group chain equivalence, provide pointed conjugacy invariants of the associ-

ated dynamical system. Likewise, Theorem 1.4 implies that algebraic invariants of a group chain

(Gi) ∈ G which are invariant under conjugate group chain equivalence, provide topological conjugacy

invariants of the associated dynamical system.

With this philosophy in mind, we introduce several classes of group chains that we will study.

DEFINITION 1.5. Let G be a finitely-generated group, and (Gi) ∈ G a group chain with kernel

K(Gi). Then (Gi) is:

(1) normal if every Gi is a normal subgroup of G.

(2) almost normal if there is some subgroup N < G and an index i0 so that every Gi for i ≥ i0

is normal in N .

(3) regular if it is equivalent to a normal chain (Ni) with Ni /G for all i (but the Gi may not

themselves be normal in G).

(4) weakly regular if there is some N < G and some i0 such that the chain (Gi)i≥i0 is regular

inside N .

(5) irregular if it is not weakly regular (and therefore not regular or normal).

Condition (1.5.4) is a modification of the definition of weakly normal chains as defined by Fokkink

and Oversteegen in [11].

One of the main tools for the study of a group chain (Gi) ∈ G is the construction of its associated

core chain (CoreG(Gi)), where

Ci = CoreG(Gi) =
⋂
g∈G

gGig
−1
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is the normal core of (Gi) in G. Observe that Ci is a normal subgroup of G, and has finite index.

Then define:

DEFINITION 1.6. The core chain of (Gi) ∈ G is the normal chain (CoreG(Gi)) ∈ G.

We give equivalent conditions for regular and weakly regular group chains, following [11].

THEOREM 1.7 ([11]). For a group chain (Gi) in G, the following are equivalent:

(1) (Gi) is regular.

(2) (Gi) is equivalent to the chain (CoreG(Gi)).

(3) For every sequence {gi} in G with gjGi = giGi for every j ≥ i, we have (Gi) ∼ (giGig
−1
i ).

We have similar equivalent conditions for the weakly regular case.

THEOREM 1.8. For a group chain (Gi) in G, the following are equivalent:

(1) (Gi) is weakly regular.

(2) There exists an index i0 and a subgroup N < G such that for i ≥ i0, Gi < N , and such

that (Gi)i≥i0 is equivalent to the chain (CoreN (Gi))i≥i0 .

(3) There exists an index i0 and a subgroup N < G such that for i ≥ i0, Gi < N , and such

that for every sequence {hi} in N with hjGi = hiGi for every j ≥ i, we have (Gi)i≥i0 ∼

(hiGih
−1
i )i≥i0 .

We show that being regular, weakly regular, or irregular, is not just a property of the particular

group chain, but a shared property of all group chains associated to a given system. Thus, we can

refer to a dynamical system as regular, weakly regular, or irregular. We first show this for the case

of pointed dynamical systems.

PROPOSITION 1.9. Let (Gi) and (Hi) be group chains associated to the same pointed dynamical

system. Then,

(1) (Gi) is regular if and only if (Hi) is regular.

(2) (Gi) is weakly regular if and only if (Hi) is weakly regular.

(3) (Gi) is irregular if and only if (Hi) is irregular.

We then show the same invariance for topological conjugacy (without preserving basepoints).
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THEOREM 1.10. Let (Gi) and (Hi) be group chains associated to the same (non-pointed) dynamical

system. Then the following holds.

(1) (Gi) is regular if and only if Hi is regular.

(2) (Gi) is weakly regular if and only if Hi is weakly regular.

(3) (Gi) is irregular if and only if Hi is irregular.

Thus, weak regularity is an invariant of dynamical systems up to conjugacy.

We study the automorphism group of a dynamical system. An automorphism of the Cantor dy-

namical system (X,G, φ) is a homeomorphism h : X → X which is equivariant with respect to the

group action, that is, g ·h(x) = h(g ·x). Let Aut(X,G, φ) be the automorphism group of the system.

In [11], Fokkink and Oversteegen asked whether the group of automorphisms of a weak solenoid

can be classified up to isotopy. In [3], Clark and Fokkink studied the automorphism group in the

case where (Gi) is a regular group chain with Gi / G for all i. We prove the following classification

theorem:

THEOREM 1.11. Let (X,G, φ) be a minimal equicontinuous Cantor dynamical system.

(1) (X,G, φ) is regular if and only if Aut(X,G, φ) acts transitively on X.

(2) (X,G, φ) is weakly regular if and only if Aut(X,G, φ) has a finite number of orbits in X.

(3) (X,G, φ) is irregular if and only if Aut(X,G, φ) has an infinite number of orbits in X.

We now introduce a new invariant of a class of group chains associated to a dynamical system. Let

Ci = CoreG(Gi) = ∩g∈GgGig−1 be the (normal) core of Gi in G, and let Di = Gi/Ci, which is

a group since Ci is normal in Gi. We define the discriminant group of a group chain (Gi) to be

D∞ = lim←−{Di → Di−1}, where the bonding maps are given by inclusion. D∞ is a profinite group.

We show that in the regular and weakly regular case, the group itself is an invariant of the system.

Whether this is also true in the irregular case we leave as an open question.

THEOREM 1.12. Let (X,G, φ) be a weakly regular minimal equicontinuous Cantor dynamical sys-

tem. Let (Gi), (Hi) be two group chains in G associated to (X,G, φ). Let D∞ be the discriminant

group of (Gi), and let D′∞ be the discriminant group of (Hi). Then, D∞ and D′∞ are isomorphic

as topological groups.

We show that in the regular case, the discriminant group is trivial.
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THEOREM 1.13. Let (X,G, φ) be a minimal equicontinuous Cantor dynamical system with asso-

ciated group chain (Gi) and discriminant group D∞. Then (X,G, φ) is regular if and only if D∞ is

the trivial group.

We also study the weakly regular case. We show that if the discriminant group is finite, then the

system must be weakly regular. However, we show by example that there exist weakly regular

systems with either finite or infinite discriminant groups, so the converse of that theorem does not

hold.

THEOREM 1.14. Let D∞ = lim←−{Gi/Ci → Gi−1/Ci−1} be the discriminant group of a chain (Gi).

If D∞ is finite, then (Gi) is weakly regular.

We construct an example given by a semi-direct product of Z and Z/2Z which is weakly regular but

with infinite discriminant group, so the converse of Theorem 1.14 does not hold.

We also give new proofs that the Schori and Rogers and Tollefson weak solenoids are irregular.

A Vietoris solenoid is given by a sequence of pi to one covering spaces over the torus, where {pi}

is a sequence of primes ([23] [1]). Since the fundamental group of the torus is abelian, in both of

these cases all associated subgroups are normal, so all group chains are normal, and thus regular,

and thus all have trivial discriminant group.

Two Vietoris solenoids given by two sequences of primes, {pi} and {qi} are homeomorphic if we can

delete a finite number of primes from each sequence so that the resulting sequences have each prime

appear the same number of times in each sequence [1].

Writing Z/pZ = Zp, a Vietoris solenoid Sp with associated sequence of primes {pi} gives a group

chain given by Gi = Zp1p2...pi , and a solenoid Sq with sequence {qi} has associated group chain

Hi = Zq1q2...qi . Notice that Zp1p2...pi is a subgroup of Zq1q2...qi if and only if p1p2...pi divides

q1q2...qj . Since pk, qk are all prime, this means that the list {p1, p2, ..., pi} is a subset of the list

{q1, q2, ..., qj}. So, we have group chain equivalence, that is, for every i there is a j so that Gj < Hi

and Hj < Gi, implies that Sp and Sq are equivalent as solenoids. Thus, the group chain equivalence

definition of Fokkink and Oversteegen extends the idea of equivalence between Vietoris solenoids.

An odometer, or adding machine, is the action of Z on a sequence of finite quotients Z/piZ. Cortez

and Petite consider in [8] a generalization of this notion. They study group chains (Gi) with the

condition that ∩iGi = {e}. If (Gi) is a normal chain, they called this system a G−odometer, and

if Gi need not be a normal subgroup, they call the system a G−subodometer. We give examples
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of group chains with G being the discrete Heisenberg group, but we do not require ∩iGi = {e}.

If the kernel K = ∩iGi is normal in G, we can mod out by K to obtain a quotient chain (Gi/K)

and thus reduce to the G-odometer case. As we allow K to be a non-normal subgroup of G, our

approach is more general. The structure of subgroups of the discrete Heisenberg group was given by

Littlewood, Şahin, and Ugarcovici in [15], where they classify G−odometers given by group chains

with Gi normal in G, by whether they can be represented as a product of 1-dimensional odometers.

We consider further examples of group chains in the Heisenberg group where the subgroups need

not be normal.

THEOREM 1.15. There exist group chains that are regular, weakly regular but not regular, and

irregular.

Let G = (Z3, ∗) be the discrete Heisenberg group, with ∗ given by (x, y, z) ∗ (x′, y′, z′) = (x+ x′, y +

y′, z + z′ + xy′). Let (Gn = MnZ2 ×mnZ) be a group chain in G.

(1) The chain with Gn = MnZ2 ×mnZ, where Mn =

 pn 0

0 pn

 and m = p is regular.

(2) The chain with Mn =

 qpn pqn

pn+1 qn+1

 and mn = p is weakly regular, but not regular.

(3) The chain with Mn =

 pn 0

0 qn

 and mn = pn is irregular.

We construct examples to show that the discriminant group of a weakly regular system can be either

finite or infinite.

THEOREM 1.16. There exist weakly regular systems with finite and infinite discriminant groups.

(1) Let H be a finite simple group, Γ a finitely generated group, G = H × Γ, (Γi) a normal

chain in Γ, K a nontrivial subgroup of H, and Gi = K × Γi. Then (Gi) is not regular but

is weakly regular, and has finite discriminant group.

(2) Let Γ = Z2, and let p, q be distinct primes. Let Γi = piZ× qiZ, and let H = Z/2Z = {1, t |

t2 = 1}. Let θ : H → Aut(Γ) be the homomorphism given by letting θ1 be the identity map,

and θt be the transpose map. Let G = Γ oθ H ∼= Z2 oθ Z/2Z. Let Gi = Γi × {1}. Then

(Gi) is weakly regular but not regular in G, and has infinite discriminant group.

The rest of the thesis is structured as follows.
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Chapter 2 shows that any group chain yields a minimal equicontinuous Cantor dynamical system,

and presents the construction of our main examples of group chains, which we will refer to throughout

the thesis as we explore their various properties.

Chapter 3 defines AF Presentations, shows they exist, and uses them to show that, given a minimal

equicontinuous Cantor dynamical system, we can always represent it by an associated group chain

system.

In Chapter 4, we prove theorems relating group chain equivalence and conjugacy, and discuss the

role of changing or preserving basepoints.

In Chapter 5, we define regular, weakly regular, and irregular group chains, and prove the related

classification theorems. We also extensively revisit our examples and classify them as regular, weakly

regular, or irregular.

In Chapter 6, we define the automorphism group of a dynamical system, and prove Theorem 1.11.

In Chapter 7, we define the Discriminant group, and prove it is an invariant of a weakly regular

system.

In Chapter 8, we consider the Discriminant group of weakly regular systems. We show that if the

Discriminant group is finite, then the system must be weakly regular, but the converse does not hold

and there do exist weakly regular systems with infinite discriminant groups.

In Chapter 9, we define the action of N∞ and explore our examples in this setting.

Some of the results in this thesis are included in the paper [10] by the author, S. Hurder and

O. Lukina, which has been submitted for publication.



CHAPTER 2

Construction of Examples

Recall from the introduction that a group chain (Gi) in G is an infinite chain of proper finite index

nested subgroups of G,

G = G0 > G1 > G2 > · · ·

In this chapter, we first show that each such group chain yields a minimal equicontinuous Cantor

dynamical system. Then, we construct our main examples of group chains. We will refer back to

these examples and their associated dynamical systems throughout the subsequent chapters.

1. Group Chains to Dynamical Systems

We begin by showing that a group chain yields an associated minimal equicontinuous Cantor dy-

namical system. (We will show the converse of this statement in Theorem 3.1). We then construct

examples of group chains whose associated systems we will classify throughout the thesis.

We first recall the definition of an inverse limit, and some basic properties of an inverse limit of finite

sets.

Consider a sequence of finite sets Xi, each equipped with the discrete topology. Their product,∏
iXi, is given the product topology. Suppose we also have a sequence of maps f ii−1 : Xi → Xi−1,

which we call bonding maps. For m < n, we denote their composition as fnm = fnn−1◦fn−1
n−2 ◦...◦fm−1

m .

DEFINITION 2.1. The inverse limit X∞ of the sequence of maps and spaces f ii−1 : Xi → Xi−1 is

the compact topological subspace

X∞ = lim←−{Xi, f
i
i−1} = {(x0, x1, x2, . . .) | f ii−1(xi) = xi−1 } ⊂

∏
i≥0

Xi.

With the subspace topology from the product topology on
∏
i≥0Xi.

DEFINITION 2.2. A Cantor set is any set that is metrizable, totally disconnected, compact, and

perfect.

11



1. GROUP CHAINS TO DYNAMICAL SYSTEMS 12

PROPOSITION 2.3. Let {Xi} be a sequence of finite sets with bonding maps f ii−1 : Xi → Xi−1.

Then, the inverse limit X∞ = lim←−{Xi, f
i
i−1} is a Cantor set with a clopen basis for its topology given

by cylinder sets.

For proofs of these properties, see for example [18].

We now show that, given any group chain, there is an associated inverse limit Cantor set on which

G acts minimally and equicontinuously.

THEOREM 2.4. Given a group chain (Gi) in G, there is an associated Cantor set G∞ with a

minimal equicontinuous G−action.

Proof. Let Xi = G/Gi, which is a finite, nonempty set of points (and not a singleton, since

the subgroups are proper). Note that so far we have made no assumption of normality, so Xi is a

coset space but may not be a group. We have bonding maps f ii−1 : Xi → Xi−1 given by coset subset

inclusion; that is, gGi ⊂ hGi−1 if and only if f ii−1(gGi) = hGi−1. We will refer to this type of map

as a coset inclusion map. Notice that, if gGi ⊂ hGi−1, then hGi−1 can also be written gGi−1 (due to

ambiguity in coset representatives). So, we can equivalently define the map as f ii−1(gGi) = gGi−1.

We will deal with several coset inclusion maps in this chapter, and we will use these characterizations

interchangeably.

Let X∞ = lim←−{Xi, f
i
i−1} be the inverse limit (as in Definition 2.1). By Proposition 2.3, X∞ is a

Cantor set. Since each xi ∈ Xi = G/Gi is a coset, we can also use the notation

G∞ = lim←−{G/Gi, f
i
i−1} = {(g0G0, g1G1, g2G2, . . .) | f ii−1(giGi) = gi−1Gi−1 }.

So then G∞ = X∞.

The inverse limit G∞ can be pictured as a tree (Figure 1), with each element an infinite branch.

The nodes at the nth level of the tree are the cosets G/Gn, with a single point G/G at level 0. The

basic open sets are cylinder sets, which are given by fixing the nth level of a branch, and then taking

all infinite branches which emanate from that node. Given a finite branch (g1G1, ...gnGn), we write

the cylinder set as C[(g1G1, ...gnGn)] = {(hiGi) ∈ G∞ | hi = gi∀i ≤ n}.

There is a natural left action of G on G∞ given by component-wise multiplication:

h · (g0G0, g1G1, g2G2, . . .) = (hg0G0, hg1G1, hg2G2, . . .).

LEMMA 2.5. The action of G on X∞ is equicontinuous.
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Figure 1. Graph of G∞
The pink shaded region on the left denotes a clopen cylinder set. The blue shaded path on
the right denotes a single element.

Recall the metric defined on X∞ in the proof of Proposition 2.3. Let x = (x0, x1, x2, ...) and

y = (y1, y2, y3, ...) be elements of X∞. Suppose x and y diverge at level n, that is, we have xi = yi

for i < n, but xn 6= yn. Then we define the distance between x and y to be d(x, y) = 1
2n .

Proof. By the definition of the metric d on X∞, distances in X∞ can only be of the form

1
2n for some n. Suppose d((giGi), (hiGi)) = 1

2n < δ, and let g ∈ G. The assumption that

d((giGi), (hiGi)) = 1
2n means that (giGi), (hiGi) first differ at level n, so giGi = hiGi for i ≤ n.

Then, ggiGi = ghiGi for i ≤ n, which implies that d(g · (giGi), g · (hiGi)) = 1
2n . Thus, taking ε = δ

shows equicontinuity. �

LEMMA 2.6. The action of G on X∞ is minimal.

Proof. An action is minimal if every orbit is dense. An orbit is dense in X∞ if it intersects

every open set of X∞, or equivalently if it intersects every basic open set of X∞.

The basic open sets of X∞ are cylinder sets of the form {(hiGi) | hiGi = giGi for 0 ≤ i ≤ n}.

Observe that the action of G on each finite level G/Gk is transitive. Consider the orbit of a point

(hiGi) in X∞, and the cylinder set C[(g1G1, ...gnGn)]. By transitivity of the action of G on G/Gn,

there exits a γ ∈ G such that γhnGn = gnGn. By the structure of the inverse limit, this implies that

γhiGi = giGi for all i ≤ n as well. Thus, γ · (hiGi) ⊂ {(hiGi) | hiGi = giGi for 0 ≤ i ≤ n}, so the

orbit of (hiGi) intersects every cylinder set. Thus, the orbit is dense and the action is minimal. �
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Thus, we obtain a minimal equicontinuous Cantor dynamical system (G∞, G). �

In the setting of group chains, we have a canonical basepoint given by (eGi), the group chain with

the coset of the identity at each level. So, given a group chain (Gi), we have an associated pointed

dynamical system (G∞, G, (eGi)).

In the remainder of this Chapter, we present a collection of examples of group chains which illustrate

the definitions above, and provide models for the theory developed in the following Chapters. We

will refer to and classify these examples throughout the thesis.

2. Heisenberg Group Chains

Let G be the discrete Heisenberg Group, presented in the form G = (Z3, ∗) with the group operation

∗ given by (x, y, z) ∗ (x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′). Note that this is standard addition in

the first two coordinates, but addition with a twist in the last coordinate. Hence, we think about G

as Z2 × Z, where the Z2 part is abelian, and the Z part is not.

We consider subgroups of the form Gn = MZ2×mZ where M =

 i j

k l

 is a 2 by 2 matrix with

integer entries and m is an integer, as in [15]. Then g ∈ G is of the form g = (ix+ jy, kx+ ly,mz)

for some x, y, z ∈ Z.

LEMMA 2.7. Gn = MZ2 ×mZ is a subgroup only if m divides both entries of one of the rows of

M .

Proof. Let g, g′ ∈ Gn. We will check when the resulting element g ∗ g′ is an element of Gn,

that is, we check closure under the group operation. Then

g = (ix+ jy, kx+ ly,mz),

g′ = (ia+ jb, ka+ lb,mc),

so

g ∗ g′ = (i(x+ a) + j(y + b), k(x+ a) + l(y + b),m(z + c) + (ix+ jy)(ka+ lb)).

Note the first two coordinates are already of the required form to be in Gn, so we need only check

the third coordinate, which is m(z + c) + ikxa + ilxb + jkya + jlyb. In order for g ∗ g′ to be an

element of Gn, this last term must be divisible by m. So the condition on M is that m must divide
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simultaneously ik, il, jk, jl. This will occur if m divides either i and j or k and l. That is, m must

divide both entries of one of the rows of M , and then we have Gn a subgroup of G. �

LEMMA 2.8. Given γ = (ix+jy, kx+ly,mz) ∈ Gn, h = (a, b, c) ∈ H arbitrary, h∗γ∗h−1 ∈ N(Gn)

iff m divides mz + akx+ aly − ixb− jyb.

Proof. Let h = (a, b, c) ∈ G arbitrary. We will conjugate an arbitrary element γ ∈ Gn by h and

see what conditions are needed on (a, b, c) in order for h ∗ γ ∗ h−1 to be an element of Gn, and thus

what the normalizer N(Gn) looks like. Under the Heisenberg group law, h−1 = (−a,−b,−c+ ab).

h ∗ γ ∗ h−1 = (a, b, c) ∗ (ix+ jy, kx+ ly,mz) ∗ (−a,−b,−c+ ab)

= (a+ ix+ jy, b+ kx+ ly, c+mz + a(kx+ ly)) ∗ (−a,−b,−c+ ab)

= (ix+ jy, kx+ ly, c+mz + akx+ aly − c+ ab+ (a+ ix+ jy)(−b))

= (ix+ jy, kx+ ly, c+mz + akx+ aly − c+ ab− ab− ixb− jyb)

= (ix+ jy, kx+ ly,mz + akx+ aly − ixb− jyb)

Note that the first two entries have trivially stayed in the form of Gn since that part is abelian, so

we ignore those and focus on the last entry, mz + akx+ aly − ixb− jyb. In order for h to be in the

normalizer of Gn, this term must be a multiple of m. �

We will consider three main examples of group chains in the Heisenberg group.

EXAMPLE 2.9. Let G be the Heisenberg group, and let

Gi =

 pi 0

0 pi

Z2 × pZ.

We will show in Example 5.2 that this chain (Gi) is regular.

EXAMPLE 2.10. Let G be the Heisenberg group, and let

Gn =

 qpn pqn

pn+1 qn+1

Z2 × pZ.

We will show in Example 5.10 that this chain (Gi) is weakly regular but not regular.
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EXAMPLE 2.11. Let G be the Heisenberg group, and let

Gn =

 pn 0

0 qn

Z2 × pnZ = pnZ× qnZ× pnZ.

We will show in Example 5.14 that this chain (Gi) is irregular.

We will refer back to these examples in future chapters.

3. Weak Solenoid Examples

We first recall some standard background about weak solenoids, and then construct the examples

we will use in this thesis.

A Vietoris solenoid is an inverse limit of n− to− 1 covering maps of the circle S1. A weak solenoid

is a generalization of this construction, where the circle S1 is replaced by a closed compact manifold

M of dimension greater than 1. The properties of weak solenoids are discussed further in the works

[1] [2, 4, 5, 6, 17, 19, 20, 21].

For the study of minimal Cantor actions , it suffices to consider the case where M is a compact

connected surface of genus 1 or higher, without boundary, with basepoint m ∈M and fundamental

group G = πi(M,m). Consider a sequence of covering spaces over M ,

...→M2 →M1 →M,

with covering maps given by pii−1 : Mi → Mi−1. We write the composition as pnm = pnn−1 ◦ pn−1
n−2 ◦

... ◦ pm−1
m (for m < n).

DEFINITION 2.12. Let M be a compact connected manifold of genus 1 or higher, with basepoint

m ∈M and fundamental group G = πi(M,m). Consider a sequence of covering spaces over M ,

...→M2 →M1 →M,

with covering maps given by pii−1 : Mi →Mi−1.

Then, the inverse limit M∞ = lim←−{p
i
i−1 : Mi → Mi−1} is called a (2-dimensional) weak solenoid.

There are then projection maps pi : M∞ →Mi for i ≥ 0.

Note that this representation is not unique - there could be more than one sequence of covering

spaces that give homeomorphic weak solenoids.
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There is a natural minimal equicontinuous action of G = πi(M,m) on F , the Monodromy action,

which is defined in the following way. Let [g0] ∈ G be an equivalence class of a closed loop g0 in M0

based at m0, and let (m0,m1,m2, ..) be an element of F . Then, for each i ≥ 1, there is a unique lift

gi of g0 with gi(0) = mi (where gi(0) is the starting point of the path gi, and gi(1) is the endpoint of

the path gi). Define the action G×F → F by g0 · (m0,m1,m2, ..) = (g0(1), g1(1), g2(1), ...) (which is

an element of F by covering space theory, e.g. from [16].) So, intuitively, the action is taking each

point mi in the fiber of m0, and applying the loop g0 to it, which means applying the lift of g0 in

Mi to mi, taking us to another point of the fiber in Mi.

The following Theorem has been called The Fundamental Theorem of Covering Spaces, and a proof

can be seen for example in [16].

THEOREM 2.13 ([16]). There is a one to one correspondence between finite index subgroups Gn

of G0 = π1(M0,m0) and (finite-to-one) covering spaces Mn of M0. Furthermore, Gn is a normal

subgroup of G0 if and only if Mn is a regular cover of M0.

This correspondence is given in the following way. For a given subgroup H < G, define MH to be

the covering space such that p∗(π1(MH ,mH)) = H, for a suitable basepoint mH ∈MH .

Given a weak solenoid, we can find an associated group chain. Choose a basepoint m∞ ∈ M∞,

and set mi = p∞i (m∞) ∈ Mi with m = m0. Let (pii−1)∗ : π1(Mi,mi) → π1(Mi−1,mi−1) be the

induced homomorphism of fundamental groups. Let Gi = (pi0)∗(π1(Mi,mi)), which is a subgroup

of G = πi(M,m). This gives us a group chain G = G0 > G1 > G2 > .... Then the inverse limit

G∞ = {G/Gi → G/Gi−1}, where the bonding maps are inclusion maps, is a Cantor set, and by

Theorem 2.4, G acts minimally and equicontinuously on G∞ by component-wise multiplication.

This action is equivalent to the monodromy action of G on F .

This group chain is not unique, since the sequence of covering spaces associated to a weak solenoid

(up to homeomorphism) is not unique. However, for the following two examples we will have standard

group chains associated to these constructions, that we refer to consistently throughout this thesis.

EXAMPLE 2.14. [Rogers and Tollefson Klein Bottle Example]

The Rogers and Tollefson solenoid is constructed as follows, as in [11]. The torus T can be repre-

sented as R/Z× R/Z, and then the Klein bottle K can be represented as the quotient of the torus

under (x, y)→ (x+ 1/2,−y). A double cover of the torus by itself can be given by (x, y)→ (x, 2y).

Since these two maps commute, they induce a double cover of the Klein bottle by itself, which we
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denote by p : K → K. We can then take an infinite sequence of iterations of this map on Klein

bottles. Then the surface and map at each level are the same, but to keep track of the levels we

denote them by K0,K1, ..., with pii−1 : Ki → Ki−1.

Denote the composition by

pk0 = pkk−1 ◦ pk−1
k−2 ◦ · · · ◦ p

1
0 .

Then

K∞ = lim
←
{Ki, p

i
i−1}

is the Rogers and Tollefson solenoid.

Choose a basepoint x0 ∈ K0, and points xi ∈ Ki such that pii−1(xi) = xi−1. Choose loops a, b

representing the generators of the fundamental group π1(K0, x0). The fundamental group of the

Klein bottle K0 has standard presentation

G = G0 = π1(K0, x0) = 〈a, b | bab−1 = a−1〉.

Let pi0∗ be the induced homomorphism from π1(Ki, xi) onto π1(K0, x0).

Gi = pi0∗π1(Ki, xi)

be the image of the fundamental group of Ki onto G under i compositions of p0∗, the homomorphism

induced by the first level projection map p0. Then the subgroups G0 > G1 > G2 > ... form an infinite

nested chain.

The induced homomorphism p1
0∗ : π1(K1, x1)→ π1(K0, x0) is given by a→ a2, b→ b. Applying p1

0∗

to π1(K0, x0), we see that

G1 = 〈a2, b | bab−1 = a−1, ba2b−1 = a−2〉 .

Continuing inductively,

Gi = 〈a2i

, b | bab−1 = a−1, ba2b−1 = a−2, ba4b−1 = a−4..., ba2i

b−1 = a−2i

〉 .
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Figure 2. Coverings of the genus 2 surface for the Schori solenoid
Figure (a) is the genus 2 surface X0 with curves C0 and D0. Figure (b) is three copies of
X0 which are cut along C0 and D0 and glued according to the pattern shown. Figure (c) is
the resulting surface X1, with genus 4.

This (Gi) will be referred to as the group chain associated to the Rogers and Tollefson Solenoid. We

will show in Example 5.22 that this group chain is irregular. Rogers and Tollefson showed that this

solenoid is not regular, but we give a new proof using group chains in Example 5.22.

EXAMPLE 2.15. [The Schori Solenoid]

The Schori solenoid is a weak solenoid over a genus 2 surface, with bonding maps that are 3-to-1

covering maps constructed according to a particular cutting and gluing process which we will recall

from [21].

Let X0 be a genus 2 surface, which is a union of two 1-handles H0 and F0, glued along their

boundaries. Let C0 be a simple closed curve in H0, and D0 a simple closed curve in F0. We take

three copies of X0, denoted X̃1
0 , X̃

2
0 , X̃

3
0 and cut each of them along the curves C0 and D0. We then

glue those three surfaces together along those cuts according to the pattern shown in Figure 2(c).

The resulting surface will be labelled X1.

We now continue by induction. Consider Xk−1. It has two k-handles Hk and Fk. Let Ck, Dk be

simple closed curves in Hk and Fk respectively. To construct Xk, take three copies of Xk−1, denoted

by X̃1
k−1, X̃

2
k−1, X̃

3
k−1. Let F̃ ik, H̃

i
k be the k-handles in X̃i

k−1, with simple closed curves C̃ik, D̃
i
k in

F̃ ik, H̃
i
k respectively. Cut each X̃i

k−1 along the curves C̃ik, D̃
i
k, and glue them together according to

the same pattern as before to obtain Xk. Continuing in this manner, we see that Xk is a surface

of genus 3k + 1, with a shape shown in Figure 3. Define the map fk+1
k : Xk+1 → Xk by sending a

point (x, i) ∈ X̄i
k ⊂ Xk+1 to x ∈ Xk. This map is a 3− 1 covering map.

The Schori solenoid is now given by X∞ = lim←−{Xk, f
k+1
k }
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Figure 3. Tower of Schreier graphs for the Schori solenoid.
The diagrams illustrate the Schreier graphs for the sets G/Gi. The corresponding surfaces
Xi are obtained by “thickening up” each edge into a tube.

Let x0 ∈ H0 ∩ F0 be a fixed basepoint in X0, and let a, b, α, β be loops representing the generators

of the fundamental group π1(X0, x0).

For each k > 0, there are three points x1
k, x

2
k, x

3
k that project down to x0, that is, such that

fk0 (xik) = fkk−1 ◦ fk−1
k−2 ◦ · · · ◦ f

1
0 (xik) = x0.

One of these is a unique point xk ∈ Xk that projects down to x0 and also such that xk ∈ Hk ∩ Fk.

We will consider this xk as the basepoint of Xk.
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Denote G0 = π1(X0, x0), and let Gk = fk0 ∗π1(Xk, xk). The groups Gk were computed explicitly in

[2], where they obtained the following explicit description of Gk.

We have loops S = 〈a, b, α, β〉 representing the generators of the fundamental group π1(X0, x0) with

a relation rel0 = [a, α][b, β] = aαa−1α−1bβb−1β−1, where the operation is the usual multiplication

(concatenation) of paths.

For k = 0, distinguish the following subsets of generators of G0,

S0ab = ∅, S0ba = ∅(1a)

S0a = {a, α}, S0b = {b, β}.(1b)

For k ≥ 1 define

Skab = S(k−1)ab ∪ a2k−1

S(k−1)aba
−2k−1

∪ a2k−1

S(k−1)ba
−2k−1

,

Skba = S(k−1)ba ∪ b2
k−1

S(k−1)bab
−2k−1

∪ b2
k−1

S(k−1)ab
−2k−1

,

Ska = {a2k

, α} ∪ Skab,(1c)

Skb = {b2
k

, β} ∪ Skba.

Then for k ≥ 0, [2] calculate that

Gk = 〈a2k

, α, b2
k

, β, Skab, Skba | relk = id, rel0 = id〉,

where relk is the corresponding relation for the mk-genus surface.

Since fk+1
k is a degree 3 covering map, Gk+1 has index 3 in Gk, and thus Gk has genus 3k in G0.

Notice that the loops α or β lift to a loop in Xi for every i, and so the action of the corresponding

elements of Gi on lim←− G/Gk is trivial.

Thus, we can give the Schreier diagram for the coset space G/Gk with respect only to the edges

a, b. Figure 3 gives the Schreier diagrams for G/Gi for i = 0, 1, 2, 3. It is illuminating to notice that

the relations for Gk can be seen in the Schreier diagram for G/Gk, making the origin of the above

formulas more clear. For example, we can see in Figure 4 the relations a4 = 1 and b2a2b−2 = 1

highlighted in the diagram for G/G2, starting at the center basepoint id2.
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Figure 4. Schreier diagram for Schori coset space G/G2

The shaded paths illustrate the two relations.

Thus, we have a group chain (Gi) associated to the Schori solenoid. Schori showed that this solenoid

is irregular, but we give a new proof using group chains in Example 5.21.

4. Direct and Semi-Direct Product Examples

We can also build new group chains from other group chains using direct or semi-direct products.

EXAMPLE 2.16. Let Γ be a finitely generated group, and let (Γi) be a normal group chain in Γ,

that is, Γi / Γ for each i. Let H be a finite simple group and let K be a nontrivial subgroup of H.

Let G = H × Γ, and let Gi = K × Γi, so we have obtained a new group chain (Gi) in G. We will

show in Example 5.19 and Example 8.3 that (Gi) is weakly regular with finite discriminant group.

EXAMPLE 2.17. Let Γ = Z2 = {(a, b) | a, b ∈ Z}, and let p, q be distinct primes. Let

Γi = piZ× qiZ = {(api, bqi) | a, b ∈ Z}.

Let H = Z/2Z = {1, t | t2 = 1}. We will form a semi-direct product of Γ and H (notice that we

write the operation in H as multiplication and the operation in Γ = Z2 as addition).

Let θ : H → Aut(Γ) be the homomorphism defined as follows:

θ : H → Aut(Γ)

1→ θ1 : (a, b)→ (a, b) (i.e., θ1 is the identity map)

t→ θt : (a, b)→ (b, a) (i.e., θt is the transpose map)

Then we can form the semi-direct product G = Γ oθ H ∼= Z2 oθ Z/2Z. Recall that the semi-direct

product Γ oθ H is the set Γ×H with the operation given by (γ1, h1) ∗ (γ2, h2) = (γ1θh1
(γ2), h1h2),

i.e., ((a1, b1), h1) ∗ ((a2, b2), h2) = ((a1, b1)θh1
((a2, b2), h2)), h1h2), where h1, h2 ∈ Z/2Z are 1 or t,
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and (a, b) ∈ Z2. Recall also that the inverse of an element in the semi-direct product is given by

(γ, h)−1 = (θh(γ−1), h−1), i.e., ((a, b), h)−1 = (θh((−a,−b)), h−1).

We then form a new group chain in G by letting Gi = Γi × {1}.

We will show in Examples 5.20 and 8.4 that this (Gi) is weakly regular but not regular, with infinite

discriminant group.



CHAPTER 3

AF Presentations: Cantor Dynamical Systems to Group

Chains and vice versa

The goal of this chapter is to prove the following theorem:

THEOREM 3.1. If (X,G, x) be a minimal equicontinuous pointed dynamical system, then there is

an associated group chain (Gi) and a pointed conjugacy between the minimal equicontinuous Cantor

systems (X,G, x) and (G∞, G, (eGi)).

This shows that, given any pointed minimal equicontinuous Cantor dynamical system (X,G, φ, x),

we can find an associated group chain (Gi) and corresponding dynamical system (G∞, G, (eGi)) so

that the systems (X,G, φ, x) and (G∞, G, (eGi)) are pointed conjugate. That is, we can represent

any of our dynamical systems in terms of a group chain dynamical system. This justifies the usage

of group chains throughout the rest of the thesis.

We prove Theorem 3.1 using a nested sequence of a special type of Kakutani-Rokhlin partitions, that

we call an Almost Finite (AF) Presentation. We will show that AF Presentations exist for minimal,

equicontinuous Cantor dynamical systems, and we will show how they can be used to construct an

associated group chain and vice versa.

In Section 1, we define AF Presentations and prove that they exist for minimal equicontinuous

systems. In Section 3, we prove Theorem 3.1.

1. Definition and Existence of AF Presentations

A Kakutani-Rokhlin (KR) partition for a group action on a Cantor set is a partition of the Cantor

set into clopen sets, arranged into “towers” in a way that is compatible with the group action. For

the case where G = Z and the action is generated by one homeomorphism φ : X → X, Herman,

Putnam, and Skau define a KR partition using sets of equal return times under the generating

homeomorphism ([14]) and show that they can be constructed for minimal Cantor Z−actions.

24
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DEFINITION 3.2 (Kakutani-Rokhlin partition for a Z−action, as defined in [14]). Let (X,Z, φ)

be a minimal Cantor dynamical system. Let x ∈ X be a basepoint, and let Z be a clopen subset of

X that contains x. A Kakutani-Rokhlin partition of X based on Z is a set of clopen sets Z(k, j),

with k = 1, ...,K, j = 1, ...J(k), satisfying:

(1) ∪kZ(k, J(k)) = ∪kZ(k, 0) = Z

(2) ∪kZ(k, 1) = φ(Z)

(3) φ(Z(k, j)) = Z(k, j + 1) for a ≤ j ≤ J(k)

(4) {Z(k, j) : k = 1, ...,K, j = 1, ...J(k)} is a finite clopen partition of X.

This definition is illustrated in Figure 5.

Figure 5. Kakutani-Rokhlin partition

For the case where G is a finitely generated group but not necessarily Z, a KR partition can still

be defined. Forrest gave such a construction for the case of minimal Zn actions in the works

[12, 13]. Cortez and Petite gave a more general construction in [9], where they do this using a set

of return times rather than a single return time under one map. They also use coding to construct

their KR partitions, but it is a bit different than our coding method. These previous Kakutani-

Rokhlin partitions do not include metric properties, while our construction takes advantage of the

equicontinuous assumption to obtain that the sizes of the diameters of the sets in the partition are

shrinking in a controlled way. Additionally, our partitions have a single tower over one base.
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Let X be a metric space with metric d. Given two partitions P,Q of X, we say that P refines Q

or is a refining partition of Q if for every U ∈ P there is a V ∈ Q such that U ⊂ V . Define the

diameter of any subset Y ⊂ X as

diam(Y ) = sup{d(x, y) | x, y ∈ Y }.

Given two subsets W,Y ⊂ X, we define the distance between W and Y as

dist(W,Y ) = inf{d(w, y) | w ∈W, y ∈ Y }.

Recall that a group action of G on X is a homomorphism φ : G → Homeo(X) that takes φ ∈ g to

φ(g) : X → X, and we write φ(g)(x) = φg(x) = g ·x. Recall that φ is minimal if every orbit is dense

in X, and φ is equicontinuous if for all ε > 0 there exists δ = δε > 0 such that for all g ∈ G and any

x, y ∈ X, if d(x, y) < δε, then d (φ(g)(x), φ(g)(y)) < ε.

DEFINITION 3.3. Let (X,G, φ, x̃) be a pointed Cantor dynamical system. An Almost Finite Pre-

sentation {x̃,Pi,Ai, ηi, ψi, ki} of (X,G, φ, x̃) is an infinite nested collection of finite clopen partitions

Pi = {P i1, P i2, ..., P imi
} of X with the following properties:

(1) There is a sequence {εi}, εi > 0, such that lim
i→∞

εi = 0, and for each P ik in Pi, we have

diam(P ik) < εi.

(2) There is a finite collection of finite sets Ai and maps ηi : X → Ai such that if x, y ∈ P ik,

z ∈ P il with l 6= k, then ηi(x) = ηi(y) 6= ηi(z).

(3) For each g ∈ G and each Pi, there is a homomorphism ψi : G → Perm(Ai) such that

ηi(φg(x)) = ψi(g)(ηi(x)) ∀x ∈ X.

(4) x̃ ∈ P i1 for all i.

(5) Pi+1 refines Pi.

(6) There are maps ki : Ai → Ai−1 such that ki ◦ ηi(x) = ηi−1(x) ∀x ∈ X.

(7) For each i, ki(ψi(g))(a) = ψi−1(g)(ki(a)).

We will often refer to the AF Presentation {x̃,Pi,Ai, ηi, ψi, ki} simply as {Pi} if we do not need to

refer to Ai, ηi, ψi, ki.

Property (1) of this definition says that the diameters of the elements of the partitions shrink to

zero. Property (2) says that we have a collection of finite sets Ai (“alphabets” or “index sets”) such

that each Ai indexes Pi, and a collection of continuous surjective “indexing” maps ηi : X → Ai

such that ηi is constant on each piece P ik of the partition Pi, and such that ηi is distinct on distinct
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elements of the partition Pi. Property (3) says that each homeomorphism φg permutes the elements

of Pi, i.e. the group action permutes the elements of the partition. Property (6) says that the

maps ki : Ai → Ai−1 are compatible with the indexing maps ηi, and we refer to the maps ki as

“bonding maps”, for future use in an inverse limit. The last property of the definition says that the

bonding maps between alphabets are compatible with the permutations induced by the group action.

Thus, these properties put together describe a special type of Kakutani-Rokhlin partition that is

compatible with our group action and that has the size of the elements of the partition shrinking to

zero in a controlled way, with only one tower.

THEOREM 3.4 (Existence of AF Presentations). Let (X,G, φ) be a minimal equicontinuous Can-

tor dynamical system with basepoint x̃ ∈ X. Then there exists an Almost Finite Presentation

{x̃,Pi,Ai, ηi, ψi, ki} of (X,G, φ).

The main idea of the proof is the following: we will start with an arbitrary clopen partition of X,

and use a method of coding of orbits to obtain a clopen partition that is compatible with the group

action. Then, we use an inductive process to get a nested chain of such clopen partitions with the

desired properties. This proof requires several lemmas. The coding argument a special case of the

method from [4].

Proof of Theorem 3.4. Fix a montone decreasing sequence {εi > 0 | i ≥ 0} such that

lim
i→∞

εi = 0.

Choose a finite clopen partitionW1 = {W 1
1 ,W

1
2 , ...,W

1
n1
} of X, arbitrary except that for all q ≤ k ≤

n1, we require that diam(W 1
k ) < ε1.

For each x ∈ X, we define a coding function C1
x : G→ {1, ..., n1} by

C1
x(g) = k, if φg(x) ∈W 1

k .

That is, the coding function based on the partition W1 with respect to the point x tells us into

which set of the partition W1 the action of g ∈ G takes x.

For each x ∈ X, consider the set of points in X which have the same coding function as x, that is,

P 1
x = {y ∈ X | C1

y = C1
x}.
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We will show in a moment that the collection P1 = {P 1
x}x∈X forms a finite clopen partition of X.

In this situation, we say that the partition P1 is obtained from the partition W1 by coding (with

respect to the G action).

LEMMA 3.5. For any x ∈ X, P 1
x is an open set.

Proof. Recall that we assumed diam(W 1
k ) < ε1 ∀k. Since the partition W1 is a finite disjoint

collection of compact sets, there exists ε̃1 > 0 such that

ε̃1 < min{ε1,dist(W
(1)
i ,W

(1)
j ) | i 6= j, 1 ≤ i, j ≤ n1}.

Since the action φ of G on X is equicontinuous, there exists an equicontinuity constant δ̃1 for ε̃1.

That is, there exists δ̃1 > 0 such that for all g ∈ G and any x, y ∈ X, if d(x, y) < δ̃1, then

d (φg(x), φg(y)) < ε̃1.

We will show that for any x ∈ P 1
x , P 1

x contains an open ball around x. Suppose y ∈ X such that

d(x, y) < δ̃1, and suppose g ∈ G.

Then by equicontinuity, we have that d (φg(x), φg(y)) < ε̃1. We have φg(x) in one of the sets of the

partition W1, say φg(x) ∈W 1
k . By assumption on δ̃1 we have that d(φg(x), φg(y)) < ε̃1 which is less

than the distance between any two distinct sets in W1, so we must also have φg(y) ∈ W 1
k . Thus,

C1
x(g) = C1

y(g) = k, so y ∈ P 1
x . Thus, P 1

x is open. �

LEMMA 3.6. P1 = {P 1
x}x∈X forms a partition of X.

Proof. We will show that if Px ∩ Py 6= ∅, then Px = Py. Suppose there is some z ∈ Px ∩ Py,

and let g ∈ G. Since z ∈ Px, we have

C1
x(g) = C1

z (g),

and since z ∈ Py, then we have

C1
y(g) = C1

z (g).

Therefore, C1
x(g) = C1

y(g), which implies that Px = Py. Thus, the collection P1 = {P 1
x}x∈X forms

a partition of X. �

LEMMA 3.7. The partition P1 is finite.
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Proof. The collection P1 = {P 1
x}x∈X is a cover of X by open sets, so by compactness of X, it

must have a finite subcover. But, since the sets are disjoint, the only subcover that still covers all

of X is {P 1
x}x∈X itself, so it must be a finite collection of sets. �

LEMMA 3.8. For any x ∈ X, P 1
x is a closed set.

Proof. For each P 1
x , its complement in X is a finite union of open sets, which is thus an open

set, so P 1
x is closed. �

Thus, the collection P1 = {Px}x∈X forms a finite clopen partition of X. Since the partition is finite,

we can adjust our notation to make these sets easier to keep track of. Let m1 be the number of

sets in P1, and renumber the sets as P1 = {P 1
1 , P

1
2 , ..., P

1
m1
}, arbitrarily except that we require the

basepoint x̃ ∈ P 1
1 .

LEMMA 3.9. P1 is a refining partition of W1.

Proof. Let x, y ∈ X, and consider the coding functions of x, y applied to the identity group

element id ∈ G. We have c1x(id) = k if φid(x) ∈ W 1
k , but φid(x) = x because φid is the identity

homeomorphism on X. So, c1x(id) = k for x ∈ W 1
k . Thus, x, y can only have the same coding

function if they lie in the same element W 1
k of the partition W1. Since P1 is made up of subsets of

X that have the same coding function, this shows that P1 is a refining partition of W1. �

LEMMA 3.10. For each k, diam(P 1
k ) < ε1.

Proof. This follows directly from Lemma 3.9. We have that W 1
k < ε1 for all k, and each

P 1
k ⊂W 1

l for some l. �

LEMMA 3.11. The action φ of G permutes the sets of P1.

Proof. Suppose x, y ∈ P 1
i , and let g ∈ G. We claim that the action by every g ∈ G maps x, y

into the same P 1
j . Suppose not, so suppose that there exists a g ∈ G such that φg(x) ∈ P 1

n , φg(y) ∈

P 1
m, m 6= n.

By the definition of P 1
i , φg(x), φg(y) are in the same set W 1

k (of our original, arbitrary partition).

We have

φg(x) ∈ P 1
n = {z : Cφg(x) = Cz},

and

φg(y) ∈ P 1
m = {w : Cφg(y) = Cw}.
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If P 1
n 6= P 1

m, then Cφg(x) 6= Cφg(y) as functions, meaning there is some g′ ∈ G such that φg′(φg(x))

and φg′(φg(y)) are in different elements of the partition W1, which contradicts the assumption that

x, y are in the same P 1
i . So, the lemma holds by contradiction. �

Now that we have shown that P1 is a finite clopen partition that is permuted by the action of G,

we explicitly define indexing sets and maps, and permutation maps, and check that the properties

in Definition 3.3 hold.

Recall m1 is the cardinality of P1 = {P 1
1 , P

1
2 , ..., P

1
m1
}, and let A1 = {1, 2, ...,m1} be the “alphabet”

or “indexing set” associated to P1. Define the associated index map η1 : X → A1 as η1(x) = k if

x ∈ P 1
k . That is, η1 tells us which element of the partition P1 each point of X is in. It will be useful

to note that this means that η−1
1 (k) = P 1

k . Notice that ηi is continuous, because for each k ∈ Ai,

η−1
1 (k) = P 1

k is an open set.

Let Perm(A1) be the group of permutations of A1 = {1, 2, ...,m1}. We define a map ψ1 : G →

Perm(A1) in the following way. We have shown that each g ∈ G permutes the elements of the

partition P1, so for a ∈ A1, we have φg(P
1
a ) = P 1

b for some b ∈ A1. Define ψ1(g) to be the

permutation of A1 such that ψ1(g)(a) = b if and only if φg(P
1
a ) = P 1

b . From this definition it is clear

that ψ1 is a group homomorphism, and that ηi(φg(x)) = ψi(g)(ηi(x)) ∀x ∈ X.

We have constructed a partition P1 of X, and shown that it has the properties necessary to be the

first partition in the desired sequence from Definition 3.3. We will now inductively define a nested

sequence of partitions, starting from P1.

PROPOSITION 3.12. Suppose we have a finite clopen partition of X:

Pi−1 = {P i−1
1 , P i−1

2 , ..., P i−1
mi−1
}

such that:

(1) For each P i−1
k in Pi−1, we have diam(P i−1

k ) < εi−1.

(2) The basepoint x̃ ∈ P i−1
1 .

(3) There is an index set Ai−1 = 1, 2, ...,mi−1, where mi−1 is the cardinality of Pi−1, and

there is an index map ηi−1 : X → Ai−1 given by ηi−1(x) = k if x ∈ P i−1
k .

(4) There is a homomorphism ψi−1 : G→ Perm(Ai−1) such that ηi−1(φg(x)) = ψi−1(g)(ηi−1(x))

for all x ∈ X.



1. DEFINITION AND EXISTENCE OF AF PRESENTATIONS 31

Then, there is a finite clopen partition Pi = {P i1, P i2, ..., P imi
} of X with the following properties:

(1) The basepoint x̃ ∈ P i1.

(2) For each P ik in Pi, we have diam(P ik) < εi.

(3) There is an index set Ai = 1, 2, ...,mi, where mi is the cardinality of Pi, and there is an

index map ηi : X → Ai given by ηi(x) = k if x ∈ P ik.

(4) We have a homomorphism ψi : G→ Perm(Ai) such that ηi(φg(x)) = ψi(g)(ηi(x)) ∀x ∈ X.

(So the action of G permutes the sets of Pi.)

(5) Pi refines Pi−1, as partitions of X.

(6) There are maps between the alphabets ki : Ai → Ai−1 that are compatible with the indexing

maps in the following way: ki ◦ ηi(x) = ηi−1(x) ∀x ∈ X.

(7) The maps between alphabets are compatible with the permutations induced by the group

action, that is, ki(ψi(g))(a) = ψi−1(g)(ki(a)).

To prove this proposition, we will construct the partition Pi = {P i1, P i2, ..., P imi
}. We will see that,

based on our construction, properties 1, 2, 3, 4, and 5 will be clear. We will then define the necessary

maps to check properties 6, 7. This construction will proceed in the same manner, using coding, as

the construction of P1.

Proof. Choose a clopen partition Wi = {W i
1, ...W

i
ni
} such that diam(W i

k) < εi for all 1 ≤ k ≤

ni and such that Wi is a refining clopen partition of Pi−1. That is, for each 1 ≤ k ≤ ni there exists

1 ≤ jk ≤ ni−1 such that W i
k ⊂ P

i−1
jk

.

For each x ∈ X, we define the coding function (based on Wi)

Cix : G→ {1, ..., ni}

Cix(g) = k, if φg(x) ∈W i
k.

Let

P ix = {y ∈ X | Ciy = Cix}.

The collection Pi = {P ix}x∈X forms a finite clopen partition of X. The proof of this claim is

essentially the same as the proofs of Lemmas 3.5, 3.6, 3.7, and 3.8.

The partition Pi refines Pi−1 because Wi refines Pi−1.
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Since the collection Pi = {P ix}x∈X forms a finite partition, we will renumber it. Let mi be the

cardinality of Pi, and renumber this collection as Pi = {P i1, P i2, ..., P imi
}, arbitrarily ordered except

that we require the basepoint x̃ ∈ P i1.

The proof of property 2 is essentially the same as the same argument for P1.

We define the index sets and map, and permutation map, in the same way as we did for P1:

Let Ai = {1, 2, ...,mi} be the “alphabet” or “indexing set” associated to Pi. Define the associated

index map ηi : X → Ai as ηi(x) = k if x ∈ P ik.

We define the permutation map ψi : G → Perm(Ai) in the following way: For g ∈ G, a ∈ Ai, we

have φg(P
i
a) = P ib for some b ∈ A1. Define ψi(g) to be the permutation of Ai such that ψi(g)(a) = b

if and only if φg(P
i
a) = P ib .

Properties 3 and 4 are clear from these definitions.

We now define the map ki : Ai → Ai−1 in the following way. Let ki(a) = b if P ia ⊂ P i−1
b . This map

is surjective, but not injective. From this definition, it is clear that ki ◦ ηi(x) = ηi−1(x) ∀x ∈ X, and

ki(ψi(g))(a) = ψi−1(g)(ki(a)).

This completes the proof of Proposition 3.12. �

It follows from the construction of the partition P1 and the inductive step Proposition 3.12, that an

Almost Finite Presentation with the properties of Definition 3.3 exists. This completes the proof of

Theorem 3.4. �

EXAMPLE 3.13. Recall that in Theorem 2.4, we showed that a group chain (Gi) yields a Cantor

set G∞ and a minimal equicontinuous action of G on G∞. For the resulting dynamical system

(G∞, G), there is a canonical construction of an AF Presentation using cylinder sets. Recall G∞ =

lim←−{θ
i
i−1G/Gi+1 → G/Gi}, where the bonding maps θii−1 are coset inclusion maps. Recall also that

the canonical basepoint is (eGi), so we have a pointed dynamical system (G∞, G, (eGi)).

In this case, the partitions can be given by, for each i ≥ 1,

P i1 = {(hkGk) ∈ G∞ | hkGk = eGk for k ≤ i}.

Pi = {g · P i1 | g ∈ G}.
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2. Further Properties

We now give some further important properties of the AF Presentations constructed in Section 1.

Let Gi = {g ∈ G | g(P i1) = P i1} be the isotropy subgroup of the action of G on the set P i1 ⊂ X.

PROPOSITION 3.14. The isotropy subgroup Gi acts minimally on P i1.

Proof. Let x ∈ P i1, and consider the orbit Gi(x) = {g · x | g ∈ G1}. To show that Gi(x) is

dense in P i1, we show that every open subset U ⊂ P i1 intersects Gi(x). Since G acts minimally on x,

there is some g ∈ G so that g · x ∈ U . Since x ∈ P i1 and g · x ∈ U , we have P i1 ∩ g(P i1) 6= ∅, which by

Lemma 3.6 implies that P i1 = g(P i1). Then, by definition of Gi, we have g ∈ Gi, so g · x ∈ Gi(x), so

U ∩Gi(x) 6= ∅. Thus, the orbit of x under Gi intersects every open subset of P i1, so Gi(x) is dense

in P i1, so Gi acts minimally on P i1. �

Recall ψi is the permutation map previously defined.

PROPOSITION 3.15. The isotropy subgroup Gi of P i1 is a normal subgroup of G if and only if

Gi = ker(ψi).

Proof. Denote the isotropy group of P ik by iso(P ik) = {g ∈ G | g(P ik) = P ik} (so Gi = iso(P i1)).

For the forward direction, assume Gi E G. We claim this implies that the isotropy subgroup of any

other element of the partition is also Gi, i.e., iso(P ik) = iso(P i1) = Gi. This holds by the following

argument:

First, to show Gi ⊂ iso(P ik), let G ∈ Gi, and let gk ∈ G be such that gk(P ik) = P i1, so then

g−1
k (P i1) = P ik. Since Gi E G, we have gkGg

−1
k ∈ Gi. So, gkGg

−1
k = P ii . But, gkGg

−1
k = gkG(P ik),

so gkG(P ik) = P i1, so G(P ik) = g−1
k (P i1) = P ik, so G ∈ iso(P ik). Thus, Gi ⊂ iso(P ik).

To show the reverse inclusion, iso(P ik) ⊂ Gi, choose hk ∈ G such that hk(P i1) = P ik, and follow the

same argument as above.

Thus, if Gi E G, the isotropy subgroup of any partition element P ik is also Gi. Thus, for any G ∈ Gi,

we have that ψi(G) is the identity permutation on Ai, i.e., Gi ⊂ ker(ψi).

For the backwards direction, assume that g ∈ ker(ψi). This implies that g is in the isotropy subgroup

of any partition element P ik, so by a similar argument to the above, Gi must be normal in G. �
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3. Correspondence between Group Chains and AF Presentations

We now show that, given any minimal equicontinuous Cantor dynamical system, we obtain an

associated group chain, and given any group chain, we obtain an associated minimal equicontinuous

Cantor dynamical system.

Let G be a finitely generated group. Recall that a group chain is an infinite nested sequence of finite

index proper subgroups

G = G0 > G1 > G2 > ... = (Gi)

We showed in Theorem 2.4 that a group chain (Gi) yields a Cantor set G∞ on which G acts minimally

and equicontinuously, with basepoint (eGi).

Recall that the dynamical systems (X,G) and (G∞, G) are (topologically) conjugate if there is a

homeomorphism z : X → G∞ that is equivariant with respect to the group actions, i.e., γ · z(x) =

z(γ ·x) for all γ ∈ G. Recall also that the systems (X,G, x) and (G∞, G, (eGi)) are pointed conjugate

if there is an equivariant homeomorphism z that also preserves basepoints, i.e. z(x) = (eGi).

We now re-state and prove Theorem 3.1.

THEOREM 3.1. If (X,G, x) be a minimal equicontinuous pointed dynamical system, then there is

an associated group chain (Gi) and a pointed conjugacy between (X,G, x) and (G∞, G, (eGi)).

Proof. Given a minimal, equicontinuous pointed Cantor system (X,G, φ, x̃), Theorem 3.4 gives

us an associated AF Presentation {x̃,Pi,Ai, ηi, ψi, ki} for the system.

We then define a group chain by letting Gi = {g ∈ G | g(P i1) = P i1} be the isotropy subgroup of the

action of G on the set P i1 ⊂ X. Then we have G = G0 > G1 > G2 > ... as the associated group

chain.

Let f ii−1 : G/Gi → G/Gi−i be coset inclusion maps.

LEMMA 3.16. There is a bijective map ζ̃i : Pi → G/Gi.

Proof. Define ζ̃i : Pi → G/Gi by ζ̃i(P
i
k) = gGi if and only if g · P i1 = P ik. If h is another coset

representative of gGi, so h ∈ gGi, then g−1h ∈ Gi, so g−1h · P i1 = P i1. Then g · P i1 = h · P i1. Thus,

the map is well defined. �

Notice that this bijection implies that card(G/Gi) = card(Pi), so the alphabet Ai that indexes Pi

also indexes G/Gi.
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Define a map ιi : X → Pi by ιi(x) = P ik if and only if x ∈ P ik. Let ζi = ζ̃i ◦ ιi : X → G/Gi. Then

the maps {ζi} form a collection of mappings that are compatible with the bonding maps f ii−1, so by

[18] there is a map ζ : X → G∞.

The equicontinuity of the action implies that this map is injective. To see this, let x, y ∈ X with

x 6= y and choose i ≥ 1 such that d(x, y) > εi. Since diam(P ik) < εi for all k, x, y are in different

sets of Pi, so ζi(x) 6= ζi(y), so ζ(x) 6= ζ(y).

The action of G permutes the sets of Pi, so ζ is equivariant with respect to the action of G. By

construction, ζ(x) = (eGi), since x ∈ P i1 for all i. �

In Example 3.13, we gave a standard way to build an AF Presentation for a group chain dynamical

system. So, given a minimal equicontinuous Cantor dynamical system, we get a group chain, and

given a group chain, we get a minimal equicontinuous Cantor dynamical system. We should note,

however, that this is not a 1-1 correspondence because these choices are not unique.

We now consider when two AF Presentations give distinct but equivalent group chains. We introduce

a notion of group chain equivalence, which we will discuss further in the next chapter.

DEFINITION 3.17. Let (Gi) and (Hi) be group chains in a finitely generated group G. We say

(Gi) and (Hi) are equivalent if for every i there is a j (i ≤ j) such that Gi > Hj and Hi > Gj.

PROPOSITION 3.18. If we have two distinct AF Presentations for the same group action with

the same basepoint, then their associated group chains are equivalent.

Proof. Recall Definition 3.3, and consider two distinct AF presentations for the same action

φ of G on X, with the same basepoint x̃ ∈ X. Let one AF presentation be given by an infinite

nested collection of finite clopen partitions Pi = {P i1, P i2, ..., P ini
} of X, with a sequence εi > 0

such that {εi} is decreasing to 0, and such that diam(P ik) < εi for all i and for 1 ≤ k ≤ ni.

Let the other AF presentation be given by an infinite nested collection of finite clopen partitions

Qi = {Qi1, Qi2, ..., Qimi
} of X, such that {εi} is decreasing to 0 and such that diam(Qik) < εi for all

i and for 1 ≤ k ≤ mi. We suppose both partitions have the same basepoint, so x̃ ∈ P ik and x̃ ∈ Qik

for all i.

We associate group chains to each of these presentations as in the proof of Theorem 3.1, that is, let

Gi = {g ∈ G | g(P i1) = P i1}, and let Hi = {g ∈ G | g(Qi1) = Qi1}.
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Since the sequence {εi} is decreasing to 0, for every εi > 0, there exists a j such that εj <
εi
2 .

Then, we have that diam(P j1 ) < 1
2diam(Qi1) and diam(Qj1) < 1

2diam(P i1). Since both sequences

{P i1}, {Qi1} are shrinking to the same point x̃, this implies that P j1 ⊂ Qi1 and Qj1 ⊂ P i1.

Then, since P j1 ⊂ Qi1 and Qj1 ⊂ P i1, we have Gj < Hi and Hj < Gi, thus, the group chains (Gi) and

(Hi) are equivalent. �

We can also consider two AF Presentations for the same system with different basepoints. We will

show in Theorem 4.4 that this corresponds to conjugating the associated group chains.



CHAPTER 4

Equivalence and Conjugacy of Group Chains

1. Introduction and Main Results

Recall that we defined a group chain in G as an infinite nested sequence of finite index proper

subgroups

G = G0 > G1 > G2 > ... = (Gi).

In Section 3, we discussed the relationship between AF partitions and group chains. In Theorem 3.1,

we showed that, given a minimal equicontinuous pointed dynamical system (X,φ,G, x), there is a

(non-unique) associated group chain (Gi) and a homeomorphism ζ : X → G∞ which is equivariant

with respect to the actions of G on X and on G∞, so that G∞ represents (X,φ,G, x). In this

chapter, we will explore further properties of group chains.

Since the choice of a group chain to represent a given group action is not unique, we study different

chains associated to the same action (up to conjugacy). For this, we need a notion of equivalence

of group chains, and properties that are invariant under this equivalence. The following definition

comes from the work of Rogers and Tollefson in [20].

DEFINITION 4.1 (Group Chain Equivalence). Let (Gi) and (Hi) be group chains in a finitely

generated group G. We say (Gi) and (Hi) are equivalent if for every i there is a j (i ≤ j) such that

Gi > Hj and Hi > Gj. We will write (Gi) ∼ (Hi) to denote group chain equivalence between (Gi)

and (Hi).

That is, (Gi) ∼ (Hi) if and only if for each level i there is a level j so that we have the following

diagram, where the arrows represent coset inclusion maps.

Gi Hi

Gj

OO >>

Hj

`` OO

37
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In this chapter, we consider the two dynamical systems arising from two group chains (Gi), (Hi),

both in the group G. As before,

G∞ = lim←−{G/Gi → G/Gi−1}(2)

H∞ = lim←−{G/Hi → G/Hi−1}.(3)

In both inverse limits, the bonding maps are coset inclusion maps. We consider the two dynamical

systems (G∞, G) and (H∞, G), where the action of G on each of G∞ and H∞ is given by component-

wise multiplication. Recall that we showed in Theorem 2.4 that G∞ and H∞ are Cantor sets

and the action of G on them by component-wise multiplication is minimal and equicontinuous.

The natural basepoint in G∞ (respectively H∞) is the sequence with every entry the coset of the

identity, so, writing e for the identity element in G, we also consider the pointed dynamical systems

(G∞, G, (eGi)) and (H∞, G, (eHi)).

Recall that the dynamical systems (G∞, G) and (H∞, G) are (topologically) conjugate if there is a

homeomorphism z : G∞ → H∞ that is equivariant with respect to the G-actions on G∞ and on H∞,

i.e., γ · z((giGi)) = z(γ · (giGi)) for all γ ∈ G. Such a map z is called a conjugating homeomorphism

or a G-map homeomorphism. Recall also that the systems (G∞, G, (eGi)) and (H∞, G, (eHi)) are

pointed conjugate if there is an equivariant homeomorphism z that also preserves basepoints, i.e.

z((eGi)) = (eHi).

Note that all Cantor sets are, by definition, homeomorphic to each other, but those arbitrary home-

omorphisms may not conjugate the actions or preserve basepoints.

We also have a notion of conjugacy of group chains, resulting from conjugating each subgroup by an

element of the group. We caution the reader to take care with this terminology, as the same word

“conjugate” here is used to mean two different things - conjugacy of subgroups (and hence of group

chains), and topological conjugacy of dynamical systems. The subsequent theorems will make the

relationship between the two types of conjugacy clear.

DEFINITION 4.2. Two group chains (Gi), (Hi) in G are said to be conjugate if there exists a

sequence of elements {gi} ∈ G, with giGi = gjGi for all j ≥ i, such that Hi = giGig
−1
i for all i.

Notice that the condition giGi = gjGi for all j ≥ i simply ensures that (giGig
−1
i ) is in fact a group

chain - without that condition, we might not have a subgroup relationship between giGig
−1
i and

gjGjg
−1
j . In particular, if we take a constant sequence gi = g for all i, then (gGig

−1) is a conjugate

chain to (Gi). Conversely, if (giGig
−1
i ) is a group chain, then giGi = gjGi for all j ≥ i.
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Fokkink and Oversteegen in [11] showed that weak solenoids with equivalent group chains are home-

omorphic by a basepoint preserving homeomorphism. In the context of group chains, which is more

general than that of weak solenoids, we consider pointed conjugacy of the associated dynamical

systems, and obtain an analogous result.

THEOREM 4.3. Let (Gi) and (Hi) be group chains in G, with associated inverse limits G∞ defined

by (2) and H∞ defined by (3). Then, the following are equivalent:

(1) (Gi) and (Hi) are associated to the same pointed dynamical system (X,G, φ, x).

(2) The systems (G∞, G, (eGi)) and (H∞, G, (eHi)) are pointed conjugate.

(3) (Gi) and (Hi) are equivalent group chains.

So, equivalence of group chains corresponds to pointed conjugacy of dynamical systems. We will give

an example to show that two non-equivalent group chains can be associated to the same dynamical

system, but with different basepoints. If we allow our basepoints to change, we obtain the following

theorem:

THEOREM 4.4. Let (Gi) and (Hi) be group chains in G, with associated inverse limits G∞ defined

by (2) and H∞ defined by (3). Then, the following are equivalent:

(1) (Gi) and (Hi) are associated to the same dynamical system (X,G, φ).

(2) The systems (G∞, G) and (H∞, G) are topologically conjugate.

(3) There exists a sequence (gi) in G with giHi = gjHi for all j ≥ i such that (giHig
−1
i ) is

equivalent to (Gi).

Note that the third condition in Theorem 4.4 says that the group chains (Gi) and (Hi) are conjugate

equivalent, not necessarily equivalent. Examples 4.10 and 4.14 give examples of conjugate equivalent

group chains that are not equivalent.

2. Proofs of Results

We now prove some intermediate properties and results we need in order to prove the main theorems

of this chapter.

LEMMA 4.5. Group chain equivalence is an equivalence relation.

Proof. It is clear that group chain equivalence is symmetric and reflexive, so we check tran-

sitivity. Let (Gi), (Hi), (Ki) be group chains in G such that (Gi) ∼ (Hi) and (Hi) ∼ (Ki). Since



2. PROOFS OF RESULTS 40

(Gi) ∼ (Hi), for every i, there is a j such that Hj < Gi and Gj < Hi. Since (Hi) ∼ (Ki), there

is an n so that Kn < Hj and Hn < Kj . Then again because (Gi) ∼ (Hi), there is an m so that

Gm < Hn. So then we have Kn < Hj < Gi and Gm < Hn < Kj < Ki. Since we also have

Km < Kn < Hj < Gi, we now have Km < Gi and Gm < Ki. So, (Gi) ∼ (Ki). �

We will make repeated use of Lemma 1.1.16 from [18]. For clarity, we first translate this lemma into

our notation:

LEMMA 4.6 ([18]). Let G∞ = lim←−{G/Gi → G/Gi−1}, with projection maps pi : G∞ → G/Gi. Let

wi be a continuous mapping from G∞ onto a discrete finite space Yi. Then wi factors through the

projection map pk for some k, that is, there exists some k and some continuous map vik : G/Gk → Yi

such that wi = vik ◦ pk.

LEMMA 4.7. Let (Gik) be a subsequence of (Gi), and let G′∞ = lim←−{G/Gik → G/Gik−1
}. Then

(G′∞, G, (eGik)) is pointed conjugate to (G∞, G, (eGi)).

Proof. The homeomorphism follows from standard properties of inverse limits ([18]), and the

conjugacy is clear since (Gki) is a subsequence of (Gi). �

Recall that we say a group chain (Gi) is associated to a dynamical system (X,G, φ) if there is an

AF Presentation {Pi} for (X,G, φ) with Gi = iso(P i1).

PROPOSITION 4.8. Let (Gi) and (Hi) be group chains in G, with associated inverse limits G∞

defined by (2) and H∞ defined by (3).

(1) If (G∞, G) and (H∞, G) are conjugate, then (Gi), (Hi) are both associated to the same

dynamical system.

(2) If (G∞, G, (eGi)) and (H∞, G, (eHi)) are pointed conjugate, then (Gi), (Hi) are both asso-

ciated to the same pointed dynamical system.

Proof. Let z : G∞ → H∞ be a conjugating homeomorphism, i.e., γ · z((giGi)) = z(γ · (giGi)).

Partition G∞ by standard cylinder sets, that is

Pn1 = {(giGi) | giGi = eGi ∀i ≤ n}

Pi = {g · P i1 | g ∈ G}.
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Similarly, partition H∞ by standard cylinder sets, that is

Qn1 = {(giHi) | giHi = eHi ∀i ≤ n}

Qi = {g ·Qi1 | g ∈ G}.

Then Gi = iso(P i1) and Hi = iso(Qi1). Since {Qi} is an AF Presentation of H∞ with isotropy groups

Hi, the group chain (Hi) is clearly associated to X = H∞. We will show that (Gi) is also associated

to H∞.

Consider the isotropy group of z(P i1). We have g ∈ iso(z(P i1)) if and only if g · z(P i1) = z(P i1), and

by the equivariance of z, g · z(P i1) = z(g · (P i1)). So, g ∈ iso(z(P i1)) if and only if z(g · P i1) = z(P i1),

which since z is a homeomorphism, is true if and only if g · P i1 = P i1. So, g ∈ iso(z(P i1)) if and only

if g ∈ iso(P i1) = Gi. So, (Gi) is a group chain associated to the partitions z(P i1) of H∞.

For the second statement, assume further that z preserves basepoints, so z((eGi)) = (eHi). By

definition of an AF Presentation, we have (eGi) ∈ P i1 for all i, and (eHi) ∈ Qi1. Then since z

preserves basepoints, we have the same conclusion that (Gi) is a group chain associated to the

partitions z(P i1) of H∞, and further that (eHi) ∈ z(P i1) for all i. So (Gi) is also associated to

(H∞, G, (eHi)). �

We now show that pointed conjugacy of dynamical systems corresponds to group chain equivalence.

THEOREM 4.9. Two group chains (Gi) and (Hi) in G are equivalent if and only if the associated

pointed dynamical systems (G∞, G, (eGi)) and (H∞, G, (eHi)) are pointed conjugate.

Proof. First, assume (Gi) ∼ (Hi). Denote the coset inclusion bonding maps by

θii−1 : G/Gi → G/Gi−1 and σii−1 : G/Hi → G/Hi−1.

That is, θii−1(gGi) = hGi−1 if and only if gGi ⊂ hGi−1, and σii−1(gHi) = hHi−1 if and only if

gHi ⊂ hHi−1. Notice that this also means we can choose the same coset representative and write

θii−1(gGi) = gGi−1 and σii−1(gHi) = gHi−1.

We will inductively construct maps between subsequences of G∞ and H∞. For the base case, let i0 =

j0 = 0, and since G0 = H0 = G, G/G0 and H/H0 are each a single point. Let τ0 : G/G0 → G/H0

be the map of the point to the point. Let j1 = 1. Since G1 < G0 = H0, we have G1 < H0 so there

is a map τ1 : G/Gj1 → G/Hj0 . Similarly, H1 < H0 = G0, so there is a map ν1 : G/Hj1 → G/Gj0 .

Trivially, τ1(eGj1) = eHj0 and ν1(eHj1) = eGj0 .
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Now for the inductive step, consider level jk, and assume there are mappings τjk : G/Gjk → G/Hjk−1

and νjk : G/Hjk → G/Gjk−1
.

By hypothesis, (Gi) ∼ (Hi), which means that for every jk there exists a jk+1 such that Gjk+1
< Hjk

and Hjk+1
< Gjk . Let τjk+1

: G/Gjk+1
→ G/Hjk be the coset inclusion map from the subgroup

relation Gjk+1
< Hjk , and let νjk+1

: G/Hjk+1
→ G/Gjk be the coset inclusion map from the

subgroup relation Hjk+1
< Gjk . Since these are coset inclusion maps and the bonding maps are also

coset inclusion maps, they are compatible. That is, we have the following diagram, where the maps

τjk are labeled, and the maps νjk are represented by dashed lines.

pt G/Gj1
θ
j1
0oo

τj1
ww

G/Gj2

θ
j2
j1oo

τj2vv

G/Gj3

θ
j3
j2oo

τj3vv

· · ·

pt G/Hj1
δ
j1
0

oo

gg

G/Hj2
δ
j2
j1

oo

hh

G/Hj3
δ
j3
j2

oo

hh

· · ·

Since we have defined the maps τjk only for the subsequences (Gjk) and (Hjk) of (Gi) and (Hi), let

G′∞ = lim←−{G/Gjk → G/Gjk−1
} and let H ′∞ = lim←−{G/Hjk → G/Hjk−1

}.

Let pi : G∞ → G/Gi, πi : H∞ → G/Hi be the standard projection maps. We have the following

diagram, where the vertical arrows are the bonding maps:

G′∞

pjk

��

H ′∞

πjk

��

G/Gjk−1
G/Hjk−1

G/Gjk

OO

νjk

@@

G/Hjk

OO

τjk

^^

The maps τjk are surjective and can be composed with the projection maps pi : G∞ → G/Gi to

produce maps τjk ◦ pjk : G∞ → G/Hjk−1
. So, by [18] Lemma 1.1.16, there is a continuous surjective

map τ : G′∞ → H ′∞.

We verify that τ is injective. Let (gjkGjk), (fjkGjk) ∈ G′∞ be distinct, which means gjnGjn 6=

fjnGjn for some n. By compatibility with the bonding maps, we have νjk+1
◦ τjk+2

= θ
jk+2

jk
. Since
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gjnGjn 6= fjnGjn , we must have θ
jn+2

jn
(gjn+2Gjn+2) 6= θ

jn+2

jn
(fjn+2Gjn+2), so τjn+2(gjn+2Gjn+2) 6=

τjn+2
(fjn+2

Gjn+2
), and so τ(gikGik) 6= τ(fikGik). So, τ is 1-1.

Thus τ is a continuous surjective injective map of compact spaces, so τ is a homeomorphism. By

construction τ preserves basepoints. Since all the mappings in the construction are coset inclusion

maps, τ conjugates the actions of G on G′∞ and H ′∞. We have constructed a pointed conjugacy

between sublimits of G∞ and H∞. By Lemma 4.7, (G∞, G, (eGi)) and (H∞, G, (eHi)) are pointed

conjugate.

For the converse, suppose τ : G∞ → H∞ is a conjugating homeomorphism with τ((eGi)) = (eHi).

Let pi : G∞ → G/Gi, πi : H∞ → G/Hi be the standard projection maps. Let τ̃i = πi ◦ τ : G∞ →

G/Hi, and let ν̃i = pi ◦ τ−1 : H∞ → G/Gi. Then by [18] Lemma 1.1.16, for each i there exists an

index k and a map τ ik : G/Gk → G/Hi such that τ ik ◦ pk = τ̃i. Similarly by by [18] Lemma 1.1.16,

for each i there exists an index l and a map νil : G/Hl → G/Gi such that νil ◦ πi = ν̃i.

G∞

pi

��pk

��

τ // H∞

πi

�� πl

��

G/Gi G/Hi

G/Gk

τ i
k

;;

G/Hl

νi
l

cc

Since pk((eGi)) = eGk and τ((eGi)) = (eHi) so τ̃i((eGi)) = eGi, we have τ ik(eGk) = eHi, so τ ik

is a coset inclusion map and thus Gk < Hi. Similarly, applying the same argument to the map

ñui = pi ◦ τ−1, we get that there is some l so that Hl < Gi. Taking j = max(k, l), we get Gj < Hi

and Hj < Gi. Thus, the chains (Gi) and (Hi) are equivalent. �

Recall we showed in Proposition 3.18 that if (Gi), (Hi) are group chains in G associated to the same

pointed dynamical system (X,G, φ, x), then (Gi) and (Hi) are equivalent group chains. Putting

together Propositions 3.18, 4.8 and Theorem 4.9, we have proven Theorem 4.3.

We now consider the role of changing basepoints and the role of conjugate group chains. First, we

note that conjugate group chains need not be equivalent. We give an example of a group chain (Gi)

that is not equivalent to a conjugate group chain (hGih
−1).
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EXAMPLE 4.10. Let G = (Z3, ∗) be the Heisenberg group, discussed in Section 2, and recall

Example 2.10, with

Gn =

 qpn pqn

pn+1 qn+1

Z2 × pZ,

where p, q are distinct primes.

Let γ = (qpnx+ pqny, pn+1x+ qn+1y, pz) ∈ Gn, and let h = (a, b, c) ∈ G. Then the last coordinate

of h ∗ γ ∗ h−1 is

apn+1x+ aqn+1y − bpqny − bpnqx+ pz.

If we choose h = (a, b, c) such that a does not divide p, for example h = (q, 1, 1), then the term

aqn+1y is not divisible by p, so the last coordinate of h ∗ γ ∗ h−1 is not divisible by p. Thus,

h ∗ γ ∗ h−1 is not an element of Gn for any n, so hGih
−1 is not a subset of Gn for any n, so (Gi)

can’t be equivalent to the conjugate chain (hGih
−1).

These non-equivalent group chains represent the same action, but with different basepoints. Since

they represent the same action, there should be a conjugating homeomorphism between them, but

it need not preserve basepoints. The next proposition gives such a non-basepoint-preserving conju-

gating homeomorphism.

PROPOSITION 4.11. Let (Gi) be a group chain in G, and let (Hi) = (giGig
−1
i ) for a sequence

gi ∈ G such that giGi = gjGi for all j ≥ i. Then (G∞, G) and (H∞, G) are conjugate via a

conjugating homeomorphism τ : G∞ → H∞ with τ(eGi) = (g−1
i Hi).

Notice that this proposition does not contradict Theorem 4.3, because the conjugating homeomor-

phisms obtained in the proofs of the theorems are distinct. Two dynamical systems can be conjugate

via more than one homeomorphism, and the homeomorphism obtained in this theorem is not nec-

essarily unique.

Proof. We choose the following natural partitions to give an AF Presentation for the space

G∞. Let Pi = {P i1, ..., P in1
}, where P i1 is the cylinder set of the basepoint up to level i. That is,

P i1 = {(hkGk) ∈ G∞ | hkGk = eGk for k ≤ i}.

Then the other partition elements P il ∈ Pi can be written as

P il = γl · P i1 = {(hkGk) ∈ G∞ | hkGk = γlGk for k ≤ i},
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for some γl ∈ G.

By hypothesis, Hi = giGig
−1
i for a sequence of elements {gi} in G such that giGi = gjGi for all

j ≥ i. Then, for each level i, gi · P i1 is one of the elements of Pi.

Now, the isotropy group of P i1 is iso(P i1) = {g ∈ G | g · P i1 = P i1} = Gi. Consider the isotropy

group of gi · P i1. This is iso(gi · P i1) = giGig
−1
i = Hi, because g ∈ iso(gi · P i1) iff ggiP

i
1 = giP

i
1, i.e.

g−1
i ggiP

i
1 = P i1.

We have Hi = giGig
−1
i , so Hi is a conjugate subgroup of Gi.

So, we now have Gi = iso(P i1) and Hi = iso(gi · P i1). That is, P i1 corresponds to Gi and gi · P i1

corresponds to Hi. Since the action of G permutes the elements of Pi, there is an equivariant

bijective map τi : G/Gi → G/Hi such that for each h ∈ G, hGi and τi(hGi) correspond to the same

element of Pi. Then in particular τi(eGi) = g−1
i Hi (since we act by gi to get from Gi to Hi, we

must act by g−1
i to get back).

We now have a collection of maps τi : G/Gi → G/Hi, which are compatible with the projection

maps pi : G∞ → G/Gi. So, by [18], there is a map τ : G∞ → H∞. That τ conjugates the actions

and that τ(eGi) = (g−1
i Hi) follows from the properties of τi. �

We now prove the last two parts of Theorem 4.4.

PROPOSITION 4.12. If (Gi), (Hi) are associated to the system (X,G, φ), then there exists a

sequence of elements (gi) ∈ G, with giHi = gjHi for all j ≥ i, such that the chain (giHig
−1
i ) is

equivalent to (Gi).

Proof. First, suppose (Gi), (Hi) are both group chains associated to the system (X,G, φ).

Let {Pi} be an AF Presentation associated to the group chain (Gi), that is, Gi = iso(P ii ) and

Pi = {P i1, ..., P ini
} = {g · P ii | g ∈ G} and {x} = ∩iP i1. Similarly, let {Qi} be an AF Presentation

associated to the group chain (Hi), that is, Hi = iso(Qii) and Qi = {Qi1, ..., Qimi
} = {g ·Qii | g ∈ G}

and {y} = ∩iQi1.

Since Qi partitions X, x is in one of the elements of Qi, say x ∈ Qjk = gi · Qi1. For j > i, let

Qjk = gj · Qj1 be the element of the partition such that x ∈ gj · Qj1. Then gj · Qj1 ⊂ giQ
i
1 since Qj

refines Qi. This implies gjHi = giHi for all j > i, so giHig
−1
i < gjHjg

−1
j for i < j, so (giHig

−1
i ) is

a group chain. For all i, we have iso(Qi) = giHig
−1
i . So, we take the chain (giHig

−1
i ), and we will

now show it is equivalent to (Gi).
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By Definition 3.3 of AF Presentations, we have diam(P i1), diam(Qi1) < 1
2i . Since P i1, Q

i
1 are clopen

sets and X is totally disconnected, there is a δi > 0 such that

dist(P i1, X − P i1) > δi and dist(Qi1, X −Qi1) > δi.

Let j > i be large enough so that 1
2j < δj . Then diam(P j1 < 1

2j ), so P j1 ⊂ Qi1, so Gj < giHig
−1
i .

Similarly, diam(Qj1 <
1
2j ), so Qj1 ⊂ P i1, so gjHjg

−1
j < Gi. Thus, (Gi) ∼ (giHig

−1
i ). �

PROPOSITION 4.13. Let (Gi), (Hi) be group chains in G. If there exists a sequence of elements

(gi) ∈ G, with giHi = gjHi for all j ≥ i, such that the chain (giHig
−1
i ) is equivalent to (Gi), then

the systems (G∞, G) and (G∞, G) are topologically conjugate.

Proof. Assume (Gi) ∼ (giHig
−1
i ). Let H ′∞ = lim←−{G/giHig

−1
i → G/gi−1Hi−1g

−1
i−1}. By

Proposition 4.11, there exists a conjugating homeomorphism τ1 : H∞ → H ′∞ with τ1(eHi) =

(g−1
i Hi). By Theorem 4.3, (H ′∞, G, (giHig

−1
i )) is pointed conjugate to (G∞, G, (eGi)), so there is

a conjugating homeomorphism τ2 : H ′∞ → G∞ such that τ2((giHig
−1
i )) = (eGi). So, τ = τ2 ◦ τ1 :

H∞ → G∞ is a conjugating homeomorphism (that does not preserve basepoints). So, (H∞, G) and

(G∞, G) are conjugate dynamical systems. �

Putting together Propositions 4.12, 2, and 4.8, we have proven Theorem 4.4.

We now give an example of two non-equivalent conjugate group chains associated to the same action.

The dynamical systems generated by the two chains are topologically conjugate but are not pointed

conjugate.

EXAMPLE 4.14. Recall the Schori solenoid, constructed in Example 2.15. Let (Gi) be the group

chain associated to the Schori solenoid, where a and b represent the generators of the fundamental

group of the base space. Let Hi = aGia
−1, so (Hi) is a group chain that is conjugate to (Gi).

Let G∞ = lim←−{G/Gi → G/Gi−1} and H∞ = lim←−{G/Hi → G/Hi−1}, so (G∞, G) is the system

associated to G∞, and (H∞, G) is the system associated to H∞. In both systems, the action of G

on the inverse limit is given by component-wise multiplication. Theorem 4.4 tells us that (G∞, G)

and (H∞, G) are topologically conjugate. =

We now consider the pointed dynamical systems (G∞, G, (eGi)) and (H∞, G, (eHi)), and we claim

they are not pointed conjugate.

The key to this example is to take care with the group operation in G/Gi versus in G/Hi, since the

operation on coset representatives is different. We can perform these operations using the algebraic
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generators and relations calculated for the coset spaces, but we can also see these operations more

clearly on the Schreier diagrams, as illustrated in Figure 6. Since Hi = aGia
−1, the chain (Hi) has

a different basepoint on the diagrams, as shown in Figure 6.

Figure 6. Schreier diagrams for the Schori solenoid with two different basepoints.

So, in G/Gi, we have baGi and abaGi as distinct cosets, while in G/Hi we have baHi = abaHi.

Now, suppose there was a pointed conjugacy between (G∞, G, (eGi)) and (H∞, G, (eHi)). Then we

have a homeomorphism z : G∞ → H∞ with z((eGi)) = (eHi) and z(g · (giGi)) = g · z(giGi) for all

g ∈ G. Let g = ba, so then we have

z(baGi) = ba · z((eGi)) = baHi = abaHi = aba · z((eGi)) = z(abaGi)

So, z(baGi) = z(abaGi), but since baGi 6= abaGi, this contradicts the injectivity of a homeomorphism

z. So, no such homeomorphism can exist, and the systems cannot be pointed conjugate.



CHAPTER 5

Regular and Weakly Regular Group Chains

In this chapter, we classify group chains and their associated dynamical systems into three categories:

regular, weakly regular, and irregular. We give the definitions and equivalent conditions of these

categories, and we show that they are invariant under group chain equivalence and under group

chain conjugacy, which implies they are invariant under dynamical system conjugacy.

DEFINITION 5.1. Let (Gi) be a group chain in G. We say that (Gi) is normal if every Gi is a

normal subgroup of G.

We begin with an example of a normal group chain - a chain (Gn) where every Gn / G.

EXAMPLE 5.2. Let G be the Heisenberg group, discussed in Section 2, and recall Example 2.9,

with

Gi =

 pi 0

0 pi

Z2 × pZ,

where p is prime. Then, Gn / G for each n, as shown in [15]. Indeed, if γ = (pnx, pny, pz) ∈ Gn

and h = (a, b, c) ∈ G, then h ∗ γ ∗ h−1 has third term pz + apny − pnxb, which is divisible by m = p

no matter what a, b, c are. Therefore, all elements h ∈ G normalize Gn, so Gn / G. So, (Gn) is a

normal chain.

EXAMPLE 5.3. A Vietoris solenoid has G the fundamental group of the torus, which is abelian.

Therefore, all subgroups in G are normal, and so all group chains associated to any Vietoris solenoid

are normal chains.

The definition of regular and weakly regular chains is a modification of the corresponding definitions

in [11].

DEFINITION 5.4. Let (Gi) be a group chain in G. We say that (Gi) is regular if (Gi) is equivalent

to a group chain (Ni) such that every Ni is a normal subgroup of G.

That is, a chain (Gi) is regular if it is equivalent to a normal chain, even though each Gi might not

itself be a normal subgroup of G.

48
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By definition, a normal chain is regular. In [20], Rogers and Tollefson constructed a weak solenoid

with a group chain that is regular but not normal, so in general regularity does not imply normality.

DEFINITION 5.5. Let (Gi) be a group chain in G. We say that (Gi) is weakly regular if there

exist an index i0 and a finite index subgroup N < G such that the chain (Gi)i≥i0 is regular in N ,

that is, for i ≥ i0, we have Gi < N , and there is a chain (Ni) with Ni/N such that (Gi) is equivalent

to (Ni).

Notice that regular implies weakly regular. If a group chain is not weakly regular (and therefore not

regular either), we call it irregular.

DEFINITION 5.6. The (normal) core of a subgroup H of G is

CoreG(H) = ∩g∈GgHg−1.

The normal core CoreG(H) of H in G is the maximal subgroup of H that is normal in G.

LEMMA 5.7. The normal cores of a group chain form a nested chain, i.e., if (Gi) is a group chain,

then CoreG(Gi) < CoreG(Gi−1), so (CoreG(Gi)) is a group chain.

Our first two theorems in this chapter give equivalent conditions for regularity and weak regularity.

This theorem comes from Fokkink and Oversteegen in [11].

THEOREM 5.8 ([11]). For a group chain (Gi) in G, the following are equivalent:

(1) (Gi) is regular.

(2) (Gi) is equivalent to the chain (CoreG(Gi)).

(3) For every sequence {gi} in G with gjGi = giGi for every j ≥ i, we have (Gi) ∼ (giGig
−1
i ).

Recall as mentioned in the last chapter, the condition gjGi = giGi for every j ≥ i just ensures that

the chain (giGig
−1
i ) is in fact a nested group chain. So the third condition here says that (Gi) is

equivalent to all of its conjugate chains.

Proof. We will use the notation Ggi = gGig
−1.

(2) ⇒ (1) is clear, because the normal cores CoreG(Gi) are each normal in G, so the chain

(CoreG(Gi)) plays the role of (Ni) in Definition 5.4.
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The argument for (3) ⇒ (2) is similar to the proof of Theorem 18 in [11]. Suppose that (Gi) is

equivalent to (giGig
−1
i ), for every sequence {gi} in G such that gjGi = giGi for every j ≥ i.

It is always true that CoreG(Gi) ≤ Gi, so in order to show group chain equivalence, we need to show

that for every i there is some j so that Gj ≤ CoreG(Gi). Gi has finite index in G, say [G : Gi] = n,

so there are finitely many conjugacy classes Gg1i , G
g2
i , ..., G

gn
i . Hence, CoreG(Gi) = ∩g∈GgGig−1 =

Gg1i ∩ G
g2
i , ...,∩G

gn
i . We assumed that (Gi) is equivalent to (Ggki ), hence for each k, there is some

jk such that Gjk ≤ (Ggki ). Since all of these Gjk are nested, we can take the largest of the jk to be

j. Then we have Gj ≤ CoreG(Gi), and thus the chains (Gi) and (CoreG(Gi) are equivalent.

We now consider (1) ⇒ (3). Suppose (Gi) is equivalent to a group chain (Ni) such that every Ni

is normal in G. This means that for every i there is a k such that Gi ≥ Nk and Ni ≥ Gk, and for

every k there is a j such that Gk ≥ Nj and Nk ≥ Gj . Thus, we have the following diagram, where

arrows indicate coset inclusion maps.

Gi Ni

Gk

OO ==

Nk

aa OO

Gj

OO >>

Nj

`` OO

Since Gj ≤ Nk and Nk is normal, for any gj ∈ G we have gjGjg
−1
j ≤ Nk. We also have Nk ≤ Gi,

so gjGjg
−1
j ≤ Gi. This is half of the equivalence - we now must show that Gj ≤ giGig−1

i .

We have Nk ≤ Gi, so giNkg
−1
i ≤ giGig−1

i . But, Nk is normal in G, so for any gi ∈ G, giNkg
−1
i = Nk.

So, we have Nk ≤ giGig−1
i . We also have Gj ≤ Nk, thus Gj ≤ giGig−1

i . Thus, for every i there is a

j such that gjGjg
−1
j ≤ Gi and Gj ≤ giGig−1

i , i.e., (Gi) is equivalent to (giGig
−1
i ). �

It is worth noting a useful property that arose in the previous proof. We always require the subgroups

in our group chains to have finite index in G, so we then always have CoreG(Gi) = ∩g∈GgGig−1 =

Gg1i ∩G
g2
i , ...,∩G

gn
i , the intersection of a finite number of conjugacy classes.

THEOREM 5.9. For a group chain (Gi) in G, the following are equivalent:

(1) (Gi) is weakly regular.
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(2) There exists an index i0 and a subgroup N < G such that for i ≥ i0, Gi < N , and such

that (Gi)i≥i0 is equivalent to the chain (CoreN (Gi))i≥i0 .

(3) There exists an index i0 and a subgroup N < G such that for i ≥ i0, Gi < N , and such

that for every sequence {hi} in N with hjGi = hiGi for every j ≥ i, we have (Gi)i≥i0 ∼

(hiGih
−1
i )i≥i0 .

Proof. This proof is the same as the proof of Theorem 5.8, but simply restricting to the

subgroup N instead of G, and to indices i ≥ i0 instead of i ≥ 0. We proceed through the details for

completeness.

(2) =⇒ (1) is clear, since the chain (CoreN (Gi))i≥i0 has every CoreN (Gi) / N and (Gi)i≥i0 ∼

(CoreN (Gi))i≥i0 .

For (3) =⇒ (2), let i ≥ i0. We always have CoreN (Gi) < Gi, so we need to show there is a j ≥ i

so that Gj < CoreN (Gi). Indeed, Gi has finite index in G and thus in N , so there a finite number

of conjugacy classes h1Gih
−1
1 , ..., hnGih

−1
n with hi ∈ N . Hence,

CoreN (Gi) = ∩h∈NhGh−1 = h1Gih
−1
1 ∩ ... ∩ hnGih−1

n .

We assumed that (Gi)i≥i0 is equivalent to all of its conjugate chains within N , so for each hk in

the list of conjugates above, there is some jk such that Gjk < h1Gih
−1
1 . Since there are a finite

number of these, we can take j = max{jk} and then we have Gj < CoreN (Gi). So, then we have

(Gi)i≥i0 ∼ (CoreN (Gi))i≥i0 .

For (1)⇒ (3), suppose (Gi)i≥i0 is equivalent to a group chain (Ni)i≥i0 such that every Ni is normal

in N . This means that for every i ≥ i0 there is a k such that Gi ≥ Nk and Ni ≥ Gk, and for every

k there is a j such that Gk ≥ Nj and Nk ≥ Gj (see diagram).

Gi Ni

Gk

OO ==

Nk

aa OO

Gj

OO >>

Nj

`` OO
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Since Gj ≤ Nk and Nk is normal in N, for any hj ∈ N we have hjGjh
−1
j ≤ Nk. We also have

Nk ≤ Gi, so hjGjh
−1
j ≤ Gi. This is half of the equivalence - we now must show that Gj ≤ hiGih−1

i .

We have Nk ≤ Gi, so hiNkh
−1
i ≤ hiGih

−1
i . But, Nk is normal in N , so for any hi ∈ N , hiNkh

−1
i =

Nk. So, we have Nk ≤ hiGih−1
i . We also have Gj ≤ Nk, thus Gj ≤ hiGih−1

i . Thus, for every i there

is a j such that hjGjh
−1
j ≤ Gi and Gj ≤ hiGih−1

i , i.e., (Gi) is equivalent to (hiGih
−1
i ). �

We now give an example of a chain that is weakly regular but is not regular.

EXAMPLE 5.10. Let G be the Heisenberg group, discussed in Section 2, and recall Example 2.10,

with

Gn =

 qpn pqn

pn+1 qn+1

Z2 × pZ,

where p, q are distinct primes. Recall that in Example 4.10, we showed that (Gi) is not equivalent

to the conjugate chain (hGih
−1), where h = (q, 1, 1). So, by Theorem 5.8, (Gi) is not regular, since

it is not equivalent to all of its conjugate chains in G.

But, we can show that it is weakly regular. We calculate the normalizer of Gn:

Let γ = (qpnx+ pqny, pn+1x+ qn+1y, pz) ∈ Gn, and let h = (a, b, c) ∈ G. Then by Lemma 2.8, the

last coordinate of h ∗ γ ∗ h−1 is

apn+1x+ aqn+1y − bpqny − bpnqx+ pz.

In order for h to be in NG(Gn), we want this last term to be divisible by p. We see that the

only term that does not already have a factor of p is aqn+1y. The prime q is fixed as a prime and

therefore is not divisible by p, and y is an arbitrary integer that can change, so in order for this

term to be divisible by p, we must have p divides a. Therefore, in order for h = (a, b, c) to be in the

normalizer of Gn, its first entry must be divisible by p and the other two entries can be anything.

So, N(Gn) = pZ× Z× Z for all n ≥ 1.

Now, taking N = NG(Gn) = pZ×Z×Z shows that (Gi)i≥1 is regular in N , and thus (Gi) is weakly

regular.

PROPOSITION 5.11. Let (Gi) and (Hi) be equivalent group chains. Then,

(1) (Gi) is regular if and only if (Hi) is regular.

(2) (Gi) is weakly regular if and only if (Hi) is weakly regular.

(3) (Gi) is irregular if and only if (Hi) is irregular.
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Proof. This is clear by definition, since group chain equivalence is an equivalence relation

by Lemma 4.5. So, if (Gi) is equivalent to (Ni) and (Gi) is equivalent to (Hi), then (Hi) is also

equivalent to (Ni). For the weakly regular case, suppose (Gi) is weakly regular. Then for some i0,

(Gi)i≥i0 is regular inside of some subgroup N < G. That is, there is a chain (Ni)i≥i0 with Ni / N

such that (Ni)i≥i0 ∼ (Gi)i≥i0 . Since (Gi) ∼ (Hi), we also have (Gi)i≥i0 ∼ (Hi)i≥i0 . So, since group

chain equivalence is an equivalence relation by Lemma 4.5, we have (Ni)i≥i0 ∼ (Gi)i≥i0 ∼ (Hi)i≥i0 .

We may not have Hi0 < N , but since (Hi) ∼ (Gi), there is some j so that Hk < Gi0 < N for all

k > j. So, (Hi) is also regular in N for i ≥ j and thus weakly regular. Since the first two statements

are if and only ifs, the third statement follows. �

THEOREM 5.12. Let (Gi) and (Hi) be group chains such that (Hi) is equivalent to (giGig
−1
i ), for

a sequence {gi} with gjGi = giGi for every j ≥ i. Then:

(1) (Gi) is regular if and only if (Hi) is regular.

(2) (Gi) is weakly regular if and only if (Hi) is weakly regular.

(3) (Gi) is irregular if and only if (Hi) is irregular.

Before proving this theorem, we note an important consequence. Recall Theorem 4.4, which said

that the dynamical systems (G∞, G) and (H∞, G) are conjugate if and only if there exists a sequence

of elements (gi) ∈ G, with giHi = gjHi for all j ≥ i, such that the chain (giHig
−1
i ) is equivalent to

(Gi). Theorem 4.4 along with Theorem 5.12 shows that if a group chain associated to a dynamical

system is regular (respectively weakly regular, irregular), then all group chains associated to that

system are regular (respectively weakly regular, irregular). So, we can classify dynamical systems

as regular, weakly regular, or irregular, and the following definition is well defined.

DEFINITION 5.13. Let (X,G, φ) be an equicontinuous minimal Cantor dynamical system. Then

we say

(1) (X,G, φ) is regular if its associated group chains are regular.

(2) (X,G, φ) is weakly regular if its associated group chains are weakly regular.

(3) (X,G, φ) is irregular if its associated group chains are irregular.

Proof of Theorem 5.12. For (1), suppose (Gi) is regular. Then, by Theorem 5.8, (Gi) ∼

(giGig
−1
i ). So, we have (Gi) ∼ (giGig

−1
i ) ∼ (Hi) so (Gi) ∼ (Hi) since group chain equivalence is

an equivalence relation by Lemma 4.5. Then since equivalence preserves regularity by Proposition

5.11, (Gi) being regular implies (Hi) is regular. Conversely, if (Hi) is regular, then by Proposition
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5.11 we have (giGig
−1
i ) regular. Then (giGig

−1
i ) is equivalent to all of its conjugates by Theorem

5.8, one of which is (g−1
i giGig

−1
i gi) = (Gi), so again (Hi) ∼ (giGig

−1
i ) ∼ (Gi) and thus (Gi) is also

regular.

For (2), suppose (Gi) is weakly regular. Then, there is an N < G and an index i0 so that for i ≥ i0,

(Gi) is regular inside N . Notice that we may not have (Gi) equivalent to (giGig
−1
i ), since gi may

not be in N .

Without loss of generality, we can assume N = Gi0 . By Definition 5.5, there exists a chain (Ni) so

that Ni / Gi0 and (Gi)i≥i0 ∼ (Ni)i≥i0 .

Let H = gi0Gi0g
−1
i0

. Then H contains the chains (gi0Nig
−1
i0

)i≥i0 , (gi0Gig
−1
i0

)i≥i0 and (giGig
−1
i )i≥i0 .

We have that (Gi)i≥i0 ∼ (Ni)i≥i0 . This means that for every i ≥ i0, there is a j so that Nj <

Gi, and Gj < Ni. Conjugating by gi0 , we get gi0Njg
−1
i0

< gi0Gig
−1
i0

, and gi0Gjg
−1
i0

< gi0Nig
−1
i0

,

so (gi0Gig
−1
i0

)i≥i0 ∼ (gi0Nig
−1
i0

)i≥i0 . Since Ni / Gi0 , we have gi0Nig
−1
i0

/ gi0Gi0g
−1
i0

= H. So,

(gi0Gig
−1
i0

)i≥i0 is regular inside H and thus (gi0Gig
−1
i0

) is weakly regular.

We now show that (giGig
−1
i ) ∼ (gi0Gig

−1
i0

). Since gjGi = giGi for every j ≥ i, we have gi0Gi0 =

giGi0 for every i ≥ i0, i.e. gi and gi0 are in the same coset of g/Gi0 , namely gi0Gi0 . Since gi ∈ Gi0 ,

gi can be written as gi = gi0hi for some hi ∈ Gi0 . Then we have giGig
−1
i = gi0hiGih

−1
i g−1

i0
. By

hypothesis, (Gi) is regular inside of Gi0 , so since hi ∈ Gi0 , we have (Gi) ∼ (hiGih
−1
i ). Conjugating

by g10 , we get (gi0Gig
−1
i0

) ∼ (gi0hiGih
−1
i g−1

i0
) = (giGig

−1
i ). So, (giGig

−1
i ) ∼ (gi0Gig

−1
i0

). Since we

showed (gi0Gig
−1
i0

) is weakly regular, by Proposition 5.11, we have that (giGig
−1
i ) is weakly regular.

Then, since (giGig
−1
i ) ∼ (Hi), again by Proposition 5.11, (Hi) is weakly regular. The converse

of part (2) can be shown by the same proof, since if (Hi) is weakly regular and is equivalent to

(giGig
−1
i ), we have (g−1

i giGig
−1
i gi) = (Gi) as a conjugate chain to (giGig

−1
i ). So, this completes

part (2) of the proof.

Part (3) follows since parts (1) and (2) are if and only ifs, the only possibility left is that (Gi) is

irregular if and only if (Hi) is irregular. �

We now give an example of a group chain that is irregular.

EXAMPLE 5.14. Let G be the Heisenberg group, discussed in Section 2, and recall Example 2.11,

with

Gn =

 pn 0

0 qn

Z2 × pnZ = pnZ× qnZ× pnZ,
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where p, q are distinct primes.

If (Gi) were a weakly regular group chain, then we would have a subgroup N < G and an index

i0 such that for i > i0, Gi < N , and for all h ∈ N , (Gi) equivalent to (hGih
−1). To contradict

this characterization, we will show that for every i0, there is an h ∈ Gi0 such that (Gi)i≥i0 is not

equivalent to (hGih
−1)i≥i0 . Since Gi < N for all i > i0, this implies that there cannot be any N

such that for all h ∈ N , (Gi) equivalent to (hGih
−1).

Fix i0, and let i > i0. Let h = (pi0 , qi0 , pi0) ∈ Gi0 .

We will show that hGih
−1 does not contain Gj for any j > i. Let g = (pix, qiy, piz) for some

x, y, z ∈ Z, so g is a generic element of Gi. We calculate h ∗ g ∗ h−1:

h ∗ g ∗ h−1 = (pi0 , qi0 , pi0) ∗ (pix, qiy, piz) ∗ (−pi0 ,−qi0 ,−pi0 + pi0qi0)

= (pi0 + pix, qi0 + qiy, pi0 + piz + pi0qiy) ∗ (−pi0 ,−qi0 ,−pi0 + pi0qi0)

= (pix, qiy, pi0 + piz + pi0qiy − pi0 + pi0qi0 + (pi0 + pix)(−qi0))

= (pix, qiy, pi0(pi−i0 + qiy − pi−i0xqi0))

We see that the last term is divisible by pi0 , but is not divisible by pj for any j > i0. Hence, h∗g∗h−1

is not an element of Gj for any j > i0, and therefore the chains (Gi)i≥i0 and (hGih
−1)i≥i0 cannot

be equivalent.

Since we can find such an h ∈ Gi0 for every i0, this shows that the chain (Gi) cannot be weakly

regular, and thus is irregular.

1. Almost Normal Group Chains

Definition 5.5 and the equivalent conditions given in Theorem 5.9 give criteria for weak regularity

that all involve equivalence between two group chains. This means that in practice, in order to check

if a specific example of a group chain is weakly regular, we must consider all possible group chains

equivalent to it in all possible subgroups of G. This can be impractical in some cases, and so we

now introduce a related definition that is much easier to check by direct computation.

DEFINITION 5.15. We call a group chain (Gi) in G almost normal if there exists an index i0 and

a finite index subgroup N < G such that for all i ≥ i0, N < NG(Gi).
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This says that there is a subgroup N < G so that, for all i ≥ i0, Gi is a normal subgroup of N . The

advantage of this definition is that it deals only with the group chain (Gi) directly, not with other

equivalent group chains, so this definition is much easier to work with in specific examples.

EXAMPLE 5.16. Let G be the Heisenberg group, discussed in Section 2, and recall Example 2.10,

with

Gn =

 qpn pqn

pn+1 qn+1

Z2 × pZ,

where p, q.

Recall that in Example 5.10, we calculated that N(Gn) = pZ × Z × Z for all n ≥ 1. Note that

this is nontrivial and does not depend on n, therefore there is a stable chain of normalizers and this

example is almost normal.

EXAMPLE 5.17. Let G be the Heisenberg group, discussed in Section 2, and recall Example 2.11,

with

Gn =

 pn 0

0 qn

Z2 × pnZ = pnZ× qnZ× pnZ,

where p, q are distinct primes. In Example 5.14, we showed this group chain is irregular, and thus

cannot be almost normal. But, we can show this directly as well, by calculating the normalizer of

Gn :

Let G = (pnx, qny, pnz) ∈ Gn, h = (a, b, c). Then, we have

h ∗G ∗ h−1 = (a+ pnx, b+ qny, c+ pnz + aqny) ∗ (−a,−b,−c+ ab)

= (pnx, qny, c+ pnz + aqny − c+ ab+ (a+ pnx)(−b))

= (pnx, qny, pn(z − bx) + aqny).

In order for the last coordinate to be divisible by pn, we need pn to divide a. So, NG(Gn) =

pnZ× Z× Z, so NG(Gn) > NG(Gn+1). That is, there is a strictly descending chain of normalizers.

This implies that this example is not almost normal.

LEMMA 5.18. Let (Gi) be a group chain and let N be a finite index subgroup such that N < Gi

for all i. Then, the chain (Gi) must stabilize; that is, there is an index i0 such that, for all i ≥ i0,

Gi = Gi+1.
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Proof. Consider the chain resulting from modding out by N :

G/N > G1/N > G2/N > ... > N/N = {1}.

Since G/N is finite, this chain must stabilize at some point, which implies that the original chain

must stabilize as well. �

In general, given two subgroups K < H < G, there may be no subgroup relationship between NG(K)

and NG(H), so in general the normalizers of a group chain may not themselves form a group chain.

Instead, we consider the chain of successive intersections of normalizers:

NG(G0) > NG(G0) ∩NG(G1) > NG(G0) ∩NG(G1) ∩NG(G2)... > ∩0≤k≤iNG(Gk) > ...

If (Gi) is a regular group chain, then the chain of successive intersections of normalizers must stablize

at some point, since N is contained in every ∩0≤k≤iNG(Gk).

We now consider the relationship between the properties weakly regular and almost normal. By

definition, almost normal implies weakly regular. An almost normal chain is analogous to a normal

chain, while a weakly regular chain is analogous to a regular chain. In [20], Rogers and Tollefson

constructed a group chain that is regular but not normal. Since one characterization of a weakly

regular chain is that it is regular inside a subgroup, and almost normality also means normality

inside a subgroup, this example also shows that weakly regular does not imply almost normal in

general.

Let (Gi) be a weakly regular chain. Then, by definition, there is a subgroup N < G and an index

i0 such that, for i ≥ i0, (Gi) is equivalent to the chain (CoreN (Gi)). The normal core of Gi with

respect to N , CoreN (Gi), is normal in N , so N < NG(CoreN (Gi)) for all i ≥ i0. Thus, the chain

(CoreN (Gi)) is almost normal. So, a weakly regular chain (Gi) may not be almost normal itself,

but it is equivalent to an almost normal chain, namely, the chain of its normal cores inside N (with

N coming from the definition of weakly regular).

We can construct further almost normal and weakly regular examples out of normal examples, as

follows.

EXAMPLE 5.19. Recall the construction given in Example 2.16: Let Γ be a finitely generated

group, and let (Γi) be a normal group chain in Γ, that is, Γi / Γ for each i. Let H be a finite simple

group, that is, H has no nontrivial normal subgroups. Let K be a nontrivial subgroup of H.
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Now, let G = H × Γ, and let Gi = K × Γi, so (Gi) is a group chain in G. Since K is not normal

in H, Gi is not normal in G. Further, since there are no normal subgroups of H, there cannot be

any equivalent chain that is normal in G. So, (Gi) is not a regular chain. But, (Gi) is normal inside

K × Γ < G, since K is normal in itself and Γi is normal in Γ. So, (Gi) is almost normal and thus

weakly regular.

We now see that the group chain in Example 2.17, using a semi-direct product, is weakly regular.

EXAMPLE 5.20. Recall the construction in Example 2.17: Let Γ = Z2 = {(a, b) | a, b ∈ Z}, and

let p, q be distinct primes. Let

Γi = piZ× qiZ = {(api, bqi) | a, b ∈ Z}.

Let H = Z/2Z = {1, t | t2 = 1}.

Let θ : H → Aut(Γ) be the homomorphism defined as follows:

θ : H → Aut(Γ)

1→ θ1 : (a, b)→ (a, b) (i.e., θ1 is the identity map)

t→ θt : (a, b)→ (b, a) (i.e., θt is the transpose map)

Let G = Γ oθ H ∼= Z2 oθ Z/2Z.

Let Gi = Γi × {1}, so (Gi) is a group chain in G.

It is easy to see by direct calculation (done in Example 8.4) that Gi is not normal in G. We will see

further in Example 8.4 that (Gi) is not regular in G.

Since Γ = Z2 is abelian, each Γi is a normal subgroup of Γ, so Gi is normal in Γ× {1} < G, which

shows that the chain (Gi) is weakly regular in G.

Thus, there are group chains that are weakly regular but not regular. On the other hand, Fokkink and

Oversteegen showed in [11] that weak regularity does imply regularity at the level of homeomorphism

of weak solenoids. The distinction is that in the setting of weak solenoids, removing the first n levels

does not change the homeomorphism class. In the setting of group chains, we require that our initial

group G remain the same. So, at the level of group chain equivalence, and equivalently, topological

conjugacy, weak regularity does not imply regularity.
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2. Schori and Rogers and Tollefson Solenoids are Irregular

The Schori and Rogers and Tollefson examples have previously been shown to be nonhomogeneous

and thus their associated group chains must be irregular. Here, we give direct proofs that the group

chains are irregular.

EXAMPLE 5.21. Recall Example 2.15, and let (Gi) be the group chain constructed in that example,

associated to the Schori solenoid.

We claim (Gi) is not a weakly regular group chain. Suppose for contradiction that it is, so then

there is an index i0, a subgroup N < G, and a group chain (Hi) such that for all i ≥ i0, (Gi) is

equivalent to (Hi) and Hi / N .

We have

Gk = 〈a2k

, α, b2
k

, β, Skab, Skba | relk = id, rel0 = id〉.

By the definition of group chain equivalence, for every i there is a i′ and ĩ such that Gĩ > Hi > Gi′ .

Without loss of generality, choose i′, ĩ to be the closest such indices to i that satisfy Gĩ > Hi > Gi′ .

That is, let i′ be the smallest index such that Gi′ < Hi, and let ĩ be the largest index such that

Hi < Gĩ. Then, there must be an Hj with j > i such that Gi′+1 < Hj .

Gĩ

Hi

bb

Gi′

OO

<<

Hj

OO

Gi′+1

OO

<<

By the construction of the Schori subgroups (see Example 2.15), we have s = a2i′ ∈ Gi′ ⊂ Hi, and

m = a2i′

b2
i′

a−2i′ ∈ Gi′+1 ⊂ Hj . Since we chose i′ to be the smallest index such that Gi′ < Hi, we

have that Hj 6= Hi and b2
i′−1

/∈ Hj .
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Now s−1ms = b2
i′−1

/∈ Hj . So, we have conjugated m ∈ Hj by s and gotten an element that is not

in Hj , so s /∈ NG(Hj). We now reach our contradiction. If Hi / N for all i, then N ⊂ ∩iNG(Hi).

But, we have s /∈ NG(Hj), but also s ∈ Hi, so Hi can’t be contained in ∩iNG(Hi), which is a

contradiction. So, there cannot exist such an (Hi) and N , so (Gi) can’t be weakly regular, and thus

is irregular.

EXAMPLE 5.22. Recall Example 2.14, and let (Gi) be the group chain constructed in that example,

associated to the Rogers and Tollefson solenoid.

Suppose (Gi) is weakly regular. Then there is an index i0, a group chain (Hi), and a group N ∈ G

such that (Hi) is equivalent to (Gi) and Hi / N for all i > i0.

The group chain equivalence between (Hi) and (Gi) implies that for every i there is a i′ and ĩ such

that Gĩ > Hi > Gi′ . Without loss of generality, choose i′, ĩ to be the closest such indices to i that

satisfy Gĩ > Hi > Gi′ . That is, let i′ be the smallest index such that Gi′ < Hi, and let ĩ be the

largest index such that Hi < Gĩ.

Since Gi′ < Hi, we must have b, a2i′ ∈ Hi. Now choose an index j > i large enough so that a2i′+1

is

not an element of Gj̃ (this j must exist by the definition of the chain (Gi)). This also implies that

a2i′

/∈ Gj̃ . So, a2i′+1

, a2i′

/∈ Hj ⊂ Gj̃ .

Gĩ

Hi

aa

Gi′

==

OO

...

OO

...

OO

Gj̃

OO

Hj

``

OO

Gj′

>>

OO
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Now we claim that a2i′

is not an element of NG(Hj). We will conjugate b ∈ Hj by a2i′

. We have

Hj < Gi′ , so in Hj we have the relation ba2i′

b−1 = a−2i′

, which implies a−2i′

b = ba2i′

. Thus, we

have a−2i′

ba2i′

= ba2i′

a2i′

= ba2∗2i′

= ba2i′+1

. Since we chose j large enough that a2i′+1

is not

an element of Hj , we also have that ba2i′+1

is not an element of Hj . So, a2i′

is not an element of

NG(Hj), which implies that a2i′

is not an element of ∩iNG(Hi).

Now, we arrive at our contradiction. If Hi /N for all i, then N < ∩iNG(Hi). We have that a2i′

is an

element of Hi, but we also have that a2i′

is not an element of ∩iNG(Hi). This shows that Hi cannot

be a subgroup of ∩iNG(Hi), which is a contradiction to the assumption that Hi / N < ∩iNG(Hi).

Thus, by this contradiction, there cannot be any choice of (Hi) and N that make (Gi) weakly regular,

so (Gi) can’t be weakly regular, and thus is irregular.

Notice that since each covering map pii−1 is of degree 2, and all subgroups of order 2 are normal,

each map pii−1 is regular. However, the composition of maps pi0 is not regular ([19]), so this is not

a contradiction.

This concludes Example 5.22.

We note also that since almost normal implies weakly regular, irregular implies not almost normal.

Therefore, both of these solenoids are not almost normal.

We notice that all of our examples of irregular chains (Gi) have the property that the normaliz-

ers NG(Gi) form a strictly descending chain. We conjecture that any chain with this property is

irregular.

CONJECTURE 5.23. A group chain (Gi) with a strictly descending chain of normalizers is irreg-

ular.

We have not been able to prove this conjecture, since investigation of all possible equivalent chains

is nontrivial in general. We can, however, show that such an example is not almost normal, which

is an easier definition to work with since it does not involve equivalent chains.

PROPOSITION 5.24. Let (Gi) be a group chain in G with a strictly descending chain of normal-

izers, i.e., for each i, NG(Gi−1) is strictly contained in NG(Gi). Then, (Gi) is not almost normal.

Proof. Suppose (Gi) were almost normal. Then, we would have a finite index subgroup H < G

so that, for all i greater than or equal to some i0, Gi / H. This implies that H ⊆ NG(Gi) for all
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i ≥ i0, so H ⊂ ∩iNG(Gi). Then we have a chain (using ⊃ to mean strict containment):

NG(Gi0) ⊃ NG(Gi0−1) ⊃ ... ⊃ ∩iNG(Gi) ⊇ H ⊇ Gi0 ⊃ Gi0−1 ⊃ ...

Since H is finite index, we can mod out by H to get a finite subgroup NG(Gi0)/H, and a chain in

it:

NG(Gi0)/H ⊃ NG(Gi0−1)/H ⊃ ...

This is now a chain in a finite group, and so it must stabilize. So, it is not possible for this chain

to be strictly descending forever, and we have obtained our contradiction. Therefore, such an H

cannot exist, and (Gi) cannot be almost normal. �



CHAPTER 6

The Automorphism Group

In this chapter, we relate the definitions for group chains of the previous chapter with the geometry

of the associated group action. We will show that the number of orbits of the automorphism group

determines the classification of the associated group chains as regular, weakly regular, or irregular.

DEFINITION 6.1. Let (X,G, φ) be a Cantor dynamical system. An automorphism of X is a

homeomorphism h : X → X that is equivariant with respect to the G−action on X, that is, g ·h(x) =

h(g · x) for all g ∈ G.

Let Aut(X,G, φ) be the group of automorphisms of the system (X,G, φ).

Let (X,G, φ) be a minimal equicontinuous Cantor dynamical system, and let (Gi) be an associ-

ated group chain, which exists by Theorem 3.1. Also by Theorem 3.1, there is an equivariant

homeomorphism z : X → G∞. Given h ∈ Aut(X,G, φ), there is a corresponding automorphism

h̃ ∈ Aut(G∞, G), given by h̃ = z ◦ h ◦ z−1.

X
h //

φ

��

X

φ

��
G∞

h̃ // G∞

The following result gives a standard form for realizing automorphisms of (G∞, G) under a technical

condition.

THEOREM 6.2. Let (X,G, φ) be minimal equicontinuous a Cantor dynamical system, let (Gi) be

an associated group chain, and let (G∞, G) be the corresponding Cantor dynamical system.

Let h ∈ Aut(X,G, φ) be an automorphism of X, and let h̃ ∈ Aut(G∞, G) be the corresponding

automorphism of G∞. Then:

(1) there exists a collection of equivariant maps τi : G/Gki → G/Gi such that h̃ = lim←− τi;

(2) we can choose ki = i for all i ≥ 0 if and only if ai ∈ ∩j≤iNG(Gj) for all i, where

aiGi = τi(eiGi).

63
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Proof. For part (1), let pi : G∞ → G/Gi be the projection maps. Then, pi ◦ h̃ : G∞ → G/Gi

is a surjective map onto a finite discrete space, so by [18] Lemma 1.1.16, there is an index ki and a

map τi : G/Gki → G/Gi such that pi ◦ h̃ = τi ◦ pki , as in the diagram.

G∞

pki

��

h̃ // G∞

pi

��
G/Gi

G/Gki

τi
;;

The map h̃ is equivariant because it is an automorphism, and pi is equivariant because it is a

projection, and τi is a map of cosets (but not necessarily an inclusion map), so τi is also equivariant.

Then h̃ = lim←− τi ([18]).

Suppose τi(eGki) = aGi. Then, since τi is equivariant, for any g ∈ G we have

τi(gGki) = g · τi(eGki) = g · aGi = gaGi.

So, each map τi is determined by a single element - in order to know what the maps τi are, we only

need to know where τi sends the coset of the identity, eGki .

Since τi is equivariant, we have that Gki ⊆ aGia−1.

LEMMA 6.3. Let j > i, and gi, gj ∈ G be such that gjGi = giGi. Suppose gi ∈ NG(Gi) and

gj ∈ NG(Gj). Then gj ∈ NG(Gi) ∩NG(Gj).

Proof. If gjGi = giGi, then gj ∈ giGi, so there is γ ∈ Gi such that gj = giγ. Then, since

γ, gi ∈ Gi, we have

gjGig
−1
j = giγGiγ

−1g−1
i = giGig

−1
i = Gi.

So, gj ∈ NG(Gi). �

Now, suppose we have ki = i for all i, that is, τi : G/Gi → G/Gi with τi(eGi) = aiGi.

Suppose we have an AF Presentation Pi = {P i1, ..., P ini
} with Gi the isotropy group of P i1. Then

the isotropy group of aiP
i
1 is aiGia

−1
i , and since τi is equivariant, we must have aiGia

−1
i = Gi. So,

ai ∈ NG(Gi) for all i, so by Lemma 6.3, ai ∈ ∩j≤iNG(Gj).
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Conversely, assume ai ∈ ∩j≤iNG(Gj) and define τi : G/Gi → G/Gi by τi(eGi) = aiGi. We will

show that ai ∈ ∩j≤iNG(Gj) implies that these maps are well defined.

Let γ1, γ2 be two coset representatives of γ1Gi, so γ1, γ2 ∈ γ1Gi. Then, there is an element g1 ∈ Gi

so that γ2 = γ1g1. Since ai ∈ NG(Gi) and left and right cosets are the same with respect to elements

of the normalizer, we have aiGi = Giai, so there is some g2 ∈ G2 so that g1ai = aig2.

Then we have τi(γ1Gi) = γ1aiGi and

τi(γ2Gi) = γ2aiGi

= γ1g1aiGi

= γ1aiγ2Gi

= γ1aiGi since γ2 ∈ Gi.

So, τi(γ2Gi) = γ1aiGi = τi(γ1Gi) so the map is well defined. �

COROLLARY 6.4. Let (Gi) be a group chain, and (G∞, G) be the associated dynamical system.

A homeomorphism h̃ : G∞ → G∞ with h̃(eGi) = (aiGi) is an automorphism if and only if (Gi) ∼

(aiGia
−1
i ).

Proof. From the proof of Theorem 6.2, we have that Gki ⊆ aGia−1. That is, for every i there

exists a ki so that Gki < aiGia
−1
i . We can apply the same argument to the inverse homeomorphism

h̃−1 to get that for every i there is a li so that aliGlia
−1
li

. Taking j = max{ki, li} gives the group

chain equivalence (Gi) ∼ (aiGia
−1
i ). �

Recall that an action is transitive if every orbit is dense.

THEOREM 6.5. Let (X,G, φ) be a minimal equicontinuous Cantor dynamical system. Then

(1) The system (X,G, φ) is regular if and only if Aut(X,G, φ) acts transitively on X.

(2) The system (X,G, φ) is weakly regular if and only if Aut(X,G, φ) has a finite number of

orbits in X.

(3) The system (X,G, φ) is irregular if and only if Aut(X,G, φ) has infinite number of orbits

on X.

Proof. Proof of part (1): First, suppose the system (X,G, φ) is regular. Since the system is

regular, we can find an associated chain G∞ with Gi / G for all i (if we have an associated chain
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without that property, then by the definition of regularity, it is equivalent to some chain that does

have each subgroup normal in G, so we can look at that chain instead). Then, by [17], the space

G∞ is homogeneous. This means hat Aut(G∞G) acts transitively on G∞, and thus on X.

Conversely, suppose Aut(X,G, φ) acts transitively on X. Let Pi = {P i1, ..., P ini
} be an AF Presenta-

tion for the system, and let (Gi) be an associated group chain with x ∈ X corresponding to (eGi) and

Gi the isotropy group of P i1. Then for every y ∈ X, there is an automorphism h ∈ Aut(X,G, φ) such

that h(x) = y. Then, if y corresponds to (aiGi), the corresponding automorphism of h̃ ∈ Aut(G∞, G)

has h̃(eGi) = (aiGi). Then, by Corollory 6.4, since h̃ is an automorphism with h̃(eGi) = (aiGi), we

have (Gi) ∼ (aiGia
−1
i ). Since we can do this for every point y ∈ X, we will get such an automor-

phism for every conjugate chain (giGig
−1
i ) in G∞, so this means that (Gi) is equivalent to all of its

conjugate chains, and thus by Theorem 5.8, (Gi) is regular, so the associated system (X,G, φ) is

regular.

Proof of part (2): Suppose the system (X,G, φ) is weakly regular. Then by definition there exists a

subgroup N < G and index i0 so that (Gi)i≥i0 is regular inside N . Without loss of generality, we can

take N = Gi0 . By Theorem 5.9, for all chains (giGig
−1
i )i≥i0 with gi ∈ Gi0 and giGi = gjGi for all j ≥

i, we have (giGig
−1
i )i≥i0 ∼ (Gi)i≥i0 . By Corollory 6.4, whenever we have (giGig

−1
i )i≥i0 ∼ (Gi)i≥i0 ,

there is an automorphism h̃gi : G∞ → G∞ with h̃gi(eGi) = (giGi), i.e. the point (giGi) ∈ G∞ is in

the orbit of (Gi) under the action of Aut(G∞, G).

Since every (Gi) has finite index in Gi0 , there are a finite number of conjugate subgroups giGig
−1
i

with gi ∈ Gi0 , and hence a finite number of orbits in G∞ under the action of Aut(G∞, G). Since

this action corresponds to the action of Aut(X,G, φ) on X, this also means there are a finite number

of orbits of Aut(X,G, φ) in X.

Conversely, suppose Aut(X,G, φ) has a finite number of orbits in X. Let Pi = {P i1, ..., P ini
} be an

AF Presentation for the system, and let (Gi) be an associated group chain with x ∈ X corresponding

to (eGi) and Gi the isotropy group of P i1. Since Aut(X,G, φ) has a finite number of orbits in X,

choose a representative of each orbit, letting the first one of them be our basepoint x, and list them

as x, x1, ..., xn. Then we can list the corresponding chains respectively as

(Gi), (g
(1)
i Gi(g

(1)
i ))−1), ..., (g

(n)
i Gi(g

(n)
i ))−1)(4)

for some elements g
(1)
i , ..., g

(n)
i ∈ G.
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Since each of these chains are in distinct orbits, by Corollory 6.4, we know none of these chains are

equivalent to each other. In general if two chains (Gi), (Hi) are not equivalent, then by definition

that means that there exists an i so that for every j > i, there is either an element in Hj that is

not in Gi, or an element in Gj that is not in Hi. Similarly, for every k > i and every j > k, there is

either an element in Hj that is not in Gk, or an element in Gj that is not in Hk. Since we have a

finite number of group chains in the list (4), there must be some level m such that all of these group

chains have distinct entries at level m. Fix this m.

To show (Gi) weakly regular, we will show that (Gi)i≥m is regular inside of Gm. Let {si} be a

sequence inside Gm (so si ∈ Gm for all i) such that siGi = sjGi for all j ≥ i. We claim that

(Gi)i≥m ∼ (siGis
−1
i )i≥m. For contradiction, suppose not. Then, (siGis

−1
i )i≥m must be equivalent

to one of the other chains in the list (4), because (siGis
−1
i )i≥m must be in one of the finite number of

orbits of the action. Say (siGis
−1
i )i≥m ∼ (g

(k)
i Gi(g

(k)
i ))−1)i≥m. Then, by definition of group chain

equivalence, for the fixed level m, there is a level j so that

sjGjs
−1
j ⊂ g

(k)
m Gm(g(k)

m ))−1

and

g
(k)
j Gj(g

(k)
j ))−1 ⊂ smGms−1

m .

But, since sm ∈ Gm, we have smGms
−1
m = Gm, so then we have

g
(k)
j Gj(g

(k)
j ))−1 ⊂ smGms−1

m = Gm,

so g
(k)
j Gj(g

(k)
j ))−1 ⊂ Gm. But, since the chains are nested, this would mean that g

(k)
m Gm(g

(k)
m ))−1 =

Gm, which contradicts the fact that the entries of these chains at level m are distinct conjugates.

So, we have a contradiction, and we must have (Gi)i≥m ∼ (siGis
−1
i )i≥m. So, (Gi) is equivalent to

every conjugate chain inside of Gm, and thus is weakly regular.

Since the first two parts are if and only if statements, part (3) follows as the only option left for an

irregular system. �

Recall G is the space of all group chains in a group G. Let (Gi) be a group chain in G, and

G∞ = lim←−{G/Gi → G/Gi−1} as usual. We then write Gφ for the space of all group chains in G that

are associated to the system (G,G∞, φ). By Theorem 4.4,

Gφ = {(Hi) | (Hi) is conjugate equivalent to (Gi)}.
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Then there is a nice corollory to Theorem 6.5.

COROLLARY 6.6. Let (G,X, φ) be a minimal equicontinuous Cantor dynamical system. Then:

(1) (G,X, φ) is regular if and only if Gφ has only one equivalence class of group chains.

(2) (G,X, φ) is weakly regular if and only if Gφ has a finite number of equivalence classes of

group chains.

(3) (G,X, φ) is irregular if and only if Gφ has an infinite number of equivalence classes of

group chains.

Proof. This follows from Theorem 6.5 and the results of Chapter 4. �



CHAPTER 7

The Discriminant Group

In this chapter, we introduce a new invariant of a minimal equicontinuous pointed dynamical system,

the discriminant group. We will show that if the system is weakly regular, the discriminant groups

for all basepoints are isomorphic, and thus in this case the discriminant group is also an invariant

of the non-pointed dynamical system, up to isomorphism.

We will prove that a minimal equicontinuous Cantor dynamical system is regular if and only if the

associated discriminant group is trivial. In the weakly regular case the behavior is more complicated;

we will prove that if the discriminant group is finite, then the system is weakly regular. However, we

will show by example that there do exist weakly regular systems with infinite discriminant group,

so an if and only if for this statement is not possible.

Let (X,G, φ, x) be a pointed dynamical system with associated group chain (Gi). Let

Ci = CoreG(Gi) =
⋂
g∈G

gGig
−1

be the normal core of Gi in G. Since Gi has finite index in G, Ci is an intersection of finitely many

conjugate subgroups, so Ci also has finite index. Recall that by Lemma 5.7, we have Ci < Ci−1,

so (Ci) is a group chain. We then have maps σi+1
i : G/Ci+1 → G/Ci given by coset inclusion, i.e.,

σi+1
i (gCi+1) = gCi. Since Ci / G, G/Ci is a group. The maps σi+1

i are group homomorphisms,

because

σi+1
i (aCi+1)σi+1

i (bCi+1) = aCibCi = abCi = σi+1
i (abCi+1) = σi+1

i (aCi+1bCi+1).

So, we can form the inverse limit of the groups G/Ci under the bonding maps σi+1
i , which we call

the limit core and we denote by Core∞ or C∞. That is,

C∞ = Core∞ = lim←−{σ
i+1
i : G/Ci+1 → G/Ci}

exists and is a profinite group.

69
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We first note that C∞ is an invariant of the dynamical system (X,G) up to topological isomorphism,

and does not depend on a choice of basepoint.

PROPOSITION 7.1. Let (Gi), (Hi) be group chains in G associated to the same minimal equicon-

tinuous Cantor dynamical system (X,G). Let Ci = CoreG(Gi) and Mi = CoreG(Hi). Let

C∞ = lim←−{θ
i+1
i : G/Ci+1 → G/Ci},

M∞ = lim←−{δ
i+1
i : G/Mi+1 → G/Mi}.

Then, C∞ and M∞ are isomorphic as topological groups.

Proof. Case 1: If (Gi), (Hi) are associated to the same pointed dynamical system, then by

Theorem 4.3, (Gi) and (Hi) are equivalent group chains. That is, for every i there is a j ≥ i such

that Gj < Hi and Hj < Gi. Then since Mj < Hj < Gi, we have Mj < Gi. But, since Mj is normal

in G and Ci is the maximal normal subgroup of Gi, we must have Mj < Ci. Similarly, Cj < Gj < Hi

and Mi is the maximal normal subgroup of Hi, so Cj < Mi. Thus, the group chains (Ci) and (Mj)

are equivalent.

Case 2: If (Gi), (Hi) are associated to the same (non-pointed) dynamical system, then by Theorem

4.4, there exists a sequence of elements gi in G so that (Hi) ∼ (giGig
−1
i ). Since Ci = CoreG(Gi) =⋂

g∈G
gGig

−1, we have CoreG(giGig
−1
i ) = CoreG(Gi) = Ci. So, by Case 1, again (Ci) ∼ (Mi).

So, in both cases we have (Ci) ∼ (Mi). Without loss of generality, we can renumber so that we have

Mi+1 < Ci and Ci+1 < Mi for all i. These inclusions induce coset inclusion maps τi : G/Mi → G/Ci

and νi : G/Ci+1 → G/Mi. Since Ci and Mi are normal subgroups of G, the maps τi, νi are well-

defined group homomorphisms. Let pi : C∞ → G/Ci and πi : M∞ → G/Mi be the projection maps.

Then there are surjective group homomorphisms φi = νi+1 ◦ pi+1 : C∞ → G/Mi. So we have the

following diagram.

· · · G/Cioo oo G/Ci+1

νi+1

vv

θi+1
ioo G/Ci+2

νi+2

vv

θi+2
i+1

oo · · ·oo C∞

φ

��
· · · G/Mi

τi

OO

oo G/Mi+1
δi+1
i

oo

τi+1

OO

G/Mi+2
δi+2
i+1

oo

τi+2

OO

· · ·oo M∞

From this we can see that the maps φi are compatible with the projection and bonding maps in

the sense that φi = δi+1
i ◦ φi+1 and τi ◦ νi+1 = θi+1

i . So, by [18], there is a continuous surjective

homomorphism φ = lim←− φi : C∞ →M∞.
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To see that C∞ ∼= M∞, we show that φ is injective. Let (giCi), (hiCi) ∈ C∞ be distinct. Then,

there is some level m so that gmCm 6= hmCm. Then, gm+1Cm+1 6= hm+1Cm+1 are also distinct.

So θm+1
m (gm+1Cm+1) 6= θm+1

m (hm+1Cm+1). Since we have τi ◦ νi+1 = θi+1
i , this means that also

νm+1
m (gm+1Cm+1) 6= νm+1

m (hm+1Cm+1), which means that the images φ((giCi)), φ((hiCi)) in M∞

are distinct.

So, φ is a continuous injective surjective homomorphism and thus is an isomorphism of topological

groups. So, we have C∞ ∼= M∞. �

This means that, in particular, we can refer to the limit core C∞ of a system (X,G) even if we

have not yet specified a particular group chain (Gi), since C∞ will be invariant up to topological

isomorphism for any associated group chain.

We now proceed with our construction of the discriminant group of a system. Since each Ci is a

normal subgroup of G, we also have Ci normal in Gi, so each Gi/Ci is a group, which we denote by

Di. The inverse limit of these finite groups is a profinite group.

LEMMA 7.2. The inclusion maps induce group homomorphisms ιi+1
i : Di+1 → Di. Thus, we can

define the profinite group D∞ by setting:

(5) D∞ = lim←−{ι
i+1
i : Di+1 → Di}.

Proof. The group Di = Gi/Ci is naturally identified with a subgroup of G/Ci, and by

Noether’s Third Isomorphism Theorem, we have

(G/Ci)/(Gi/Ci) ∼= G/Gi.

We denote the quotient map

qi : G/Ci → (G/Ci)/(Gi/Ci) ∼= G/Gi.
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Then we have

G/Ci−1

qi−1
// G/Gi−1

G/Ci

OO

qi // G/Gi

OO

G/Ci+1

OO

qi+1
// G/Gi+1

OO

where the arrows pointing up are inclusion maps.

We have σi+1
i : G/Ci+1 → G/Ci inclusion maps. Since Gi+1 < G, we can restrict σi+1

i to Gi+1/Ci+1,

and we denote the restriction by ιi+1
i : Gi+1/Ci+1 → G/Ci. We claim that ιi+1

i (Gi+1/Ci+1) ⊂ Gi/Ci,

so then ιi+1
i is actually a map from Gi+1/Ci+1 to Gi/Ci. Indeed, this is true because ιi+1

i is an

inclusion map since it is a restriction of the inclusion map σi+1
i . So, since Gi+1 ⊂ Gi and Ci+1 ⊂ Ci,

we do not get any cosets outside of Gi/Ci in the image.

So, we have ιi+1
i : Gi+1/Ci+1 → Gi/Ci, i.e., ιi+1

i : Di+1 → Di, a coset inclusion map. Since ιi+1
i is

a restriction of σi+1
i , which is a group homomorphism, we have ιi+1

i also a group homomorphism.

Since ιi+1
i is a coset inclusion map, we have ιi+1

i−1 = ιii−1 ◦ ι
i+1
i . So, with ιi+1

i : Di+1 → Di as bonding

maps, we can form the inverse limit D∞ = lim←−{ι
i+1
i : Di+1 → Di}, which is a profinite group since

Di are groups and ιi+1
i are group homomorphisms ([18]). �

DEFINITION 7.3. Let (X,G, x) be a pointed minimal equicontinuous Cantor dynamical system.

Let (Gi) be a group chain associated to (X,G, x), and let Ci = CoreG(Gi). Then

(6) D∞ = lim←−{ι
i+1
i : Di+1 → Di} ⊂ C∞,

where the bonding maps are coset inclusion maps, is called the discriminant group of (X,G, x).

The definition of D∞ depends on the particular group chain (Gi), and thus on the basepoint x ∈ X

associated to that group chain. We will use the notation D = D∞ = D(Gi) = Dx, where x ∈ X is

the basepoint corresponding to (eGi) ∈ G∞.

Recall that C∞, up to isomorphism, is an invariant of (X,G) that does not depend on the basepoint.

However, D∞ = D(Gi) = Dx does depend on the basepoint x ∈ X corresponding to the group chain

(Gi). Let C be the set of all subgroups of C∞. Then, we can view Dx as a function from X into C.
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DEFINITION 7.4. We define the discriminant function

Dx : X → C

x→ Dx

where Dx = D(Gi) = D∞ for a group chain (Gi) with basepoint x ∈ X.

We will see that in the regular and weakly regular case, the discriminant groups associated to

different basepoints in the same system will be isomorphic. However, notice that this does not mean

Dx is a constant function; the discriminant groups at different basepoints may be isomorphic but

are distinct as elements of C∞.

We first show that equivalent group chains yield isomorphic discriminant groups.

THEOREM 7.5. Let (Gi) be a group chain in G with associated discriminant group D∞, and let

(Hi) be a group chain in G with associated discriminant group D′∞. If (Gi) ∼ (Hi), then D∞ and

D′∞ are isomorphic as topological groups.

Proof. First, we establish our notation. Let Ci = CoreG(Gi) and Mi = CoreG(Hi). Let Di =

Gi/Ci, and D′i = Hi/Mi. Then D∞ = lim←−{ι
i
i−1 : Di → Di−1}, and D′∞ = lim←−{η

i
i−1 : D′i → D′i−1},

where the bonding maps ιii−1 and ηii−1 are coset inclusion maps.

Suppose (Gi) ∼ (Hi). Then, for every i there is a j so that Gj < Hi and Hj < Gi. We also have

Cj / Gj and Mj / Hj . So, Mj < Gi and Cj < Hi. Since Cj ,Mj are normal in G, they are normal

in any subgroup of G, so we have Mj / Gi and Cj / Hi. But, Ci is the normal core of Gi and so is

the maximal normal subgroup in Gi, so another normal subgroup Mj of Gi must be contained in

Ci. So, we have Mj < Ci, and similarly, Cj < Mi. Then, coset inclusion gives us a well-defined map

τj : Hj/Mj → Gi/Ci, i.e. τj : D′j → Di. Similarly, there is a coset inclusion map νj : Dj → D′i.

The maps τj , νj are well-defined but may not be one to one or onto. Since τj , νj are inclusion maps,

they are group homomorphisms.

So, we have the following diagram, where the maps τj are represented by solid arrows, and the maps

νj are represented by dashed arrows:

· · · Hi/Mi
oo · · ·oo Hj/Mj

uu

oo · · ·oo Hk/Mk

uu

oo · · ·oo

· · · Gi/Cioo · · ·oo Gj/Cjoo

ii

· · ·oo Gk/Ck

ii

oo · · ·oo
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Let pi : D∞ → Di and p′i : D′∞ → D′i be the projection maps. Thus we have the following diagram,

where the maps pointing up are the bonding maps:

D∞

pj

��

D′∞

p′j

��

Gi/Ci Hi/Mi

Gj/Cj

OO

νj

::

Hj/Mj

OO

τj

dd

Define zj : D∞ → D′i by zi = νj ◦ pj . Since νj is induced by inclusion of cosets, zj is compatible

with the bonding maps ηii−1 : D′i → D′i−1, so by [18] there is an induced group homomorphism

z : D∞ → D′∞.

We have constructed maps between levels i, j with an index j given for each i by the definition of

group chain equivalence. Let {jk} be a subsequence of the natural numbers so that we have maps

νjk : Djk → D′jk−1
and τjk : D′jk → Djk−1

.

We follow the same argument as in the proof of Theorem 4.3 to show that z is injective. Let

(gjkCjk), (hjkCjk) ∈ D∞ be distinct, which means that there is an n so that gjnCjn 6= hjnCjn . By

compatibility of bonding maps, we have τjk+1
◦ νjk+2

= η
jk+2

jk
. Since gjnCjn 6= hjnCjn , we have

η
jn+2

jn
(gjn+2

Cjn+2
) 6= η

jn+2

jn
(hjn+2

Cjn+2
),

so νjn+2(gjn+2Cjn+2) 6= νjn+2(hjn+2Cjn+2), so z is one to one.

To see that z is surjective, let (hjkMjk) ∈ D′∞. We have τjk(hjkMjk) ∈ Gjk−1
/Cjk−1

, and then

νjk−1
◦ τjk(hjkMjk) ∈ Hjk−1

/Mjk−1
.

Since νjk−1
◦ τjk = ηjkjk−2

, we see that (hjkMjk) has a preimage in D∞, so the map z is onto.

So, z : D∞ → D′∞ is a group homomorphism that is 1-1 and onto, hence a group isomorphism.

Thus, we have shown that D∞ ∼= D′∞. �

It is now easy to show that for a regular system, the discriminant group is an invariant of the system,

which is independent of basepoint, up to topological isomorphism.
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COROLLARY 7.6. Let (X,G, φ) be a regular minimal equicontinuous Cantor dynamical system.

Let (Gi), (Hi) be two group chains in G associated to (X,G, φ). Let D∞ be the discriminant group

of (Gi), and let D′∞ be the discriminant group of (Hi). Then, D∞ and D′∞ are isomorphic as

topological groups.

Proof. Since (Gi), (Hi) are associated to the same dynamical system, Theorem 4.4 tells us that

there exists a sequence of elements gi ∈ G, with giGi = gjGi for all j ≥ i, such that (giGig
−1
i ) ∼ (Hi).

Since (Gi) is regular, we have (Gi) ∼ (giGig
−1
i ) ∼ (Hi), so (Gi) ∼ (Hi). Then, by Theorem 7.5,

D∞ and D′∞ are isomorphic. �

The following theorem says that it is also true for weakly regular systems that the discriminant

groups associated to different basepoints are isomorphic.

THEOREM 7.7. Let (X,G, φ) be a weakly regular minimal equicontinuous Cantor dynamical sys-

tem. Let (Gi), (Hi) be two group chains in G associated to (X,G, φ). Let D∞ be the discriminant

group of (Gi), and let D′∞ be the discriminant group of (Hi). Then, D∞ and D′∞ are isomorphic

as topological groups.

Proof. Since (Gi), (Hi) are associated to the same dynamical system, Theorem 4.4 tells us that

there exists a sequence of elements gi ∈ G, with giGi = gjGi for all j ≥ i, such that (giGig
−1
i ) ∼ (Hi).

Let E∞ be the discriminant group of the chain (giGig
−1
i ). By Theorem 7.5, since (giGig

−1
i ) ∼ (Hi),

their discriminant groups E∞ and D′∞ are isomorphic. We will show E∞ and D∞ are isomorphic,

which them implies that D∞ and D′∞ are isomorphic, as desired.

By Definition 5.5, weak regularity means there is a subgroup N < G such that (Gi), (Hi) are both

regular inside of N , for i ≥ i0 for some i0 > 0. Without loss of generality, we can take N = Gi0 .

We cannot proceed as directly as in the proof of Corollory 7.6, because the sequence gi may not be

inside of Gi0 , as we do not assume that (giGig
−1
i ) ∼ (Gi). However, we do have that the truncated

chains satisfy (Gi)i≥i0 ∼ (hiGih
−1
i )i≥i0 for any sequence hi ∈ Gi0 , for i ≥ 1, such that hiGi = hjGi

for j ≥ i. We have giGi = gjGi for all j ≥ i, so in particular giGi0 = gi0Gi0 for all i ≥ i0, so we can

find a sequence hi ∈ Gi0 for i ≥ 1 such that gi = gi0hi for i ≥ i0.

Let Si = hiGih
−1
i for i ≥ 1, and let E′∞ be the discriminant group of (Si). Since (Gi)i≥i0 ∼ (Si)i≥i0 ,

the proof of Theorem 7.5 shows that their discriminant groups D∞ and E′∞ in G are isomorphic.
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Let Mi = giGig
−1
i = gi0hiGih

−1
i g−1

i0
= gi0Sig

−1
i0

. Note that

CoreG(Mi) = CoreG(Si) = CoreG(Gi) = Ci,

since gi, hi are elements of G. So, we can form the quotient groups Mi/Ci and Si/Ci. Since

Mi = gi0Sig
−1
i0

, the conjugation by gi0 induces a group isomorphism τi : Mi/Ci → Si/Ci. We also

have inclusion maps Mi+1/Ci+1 →Mi/Ci. So, we have the following diagram:

· · · Mi/Cioo

τi

��

Mi+1/Ci+1
oo

τi+1

��

Mi+2/Ci+2
oo

τi+2

��

· · ·oo

· · · Si/Cioo Si+1/Ci+1
oo Si+2/Ci+2

oo · · ·oo

The maps τi commute with the coset inclusion maps, since aCi+1 ⊂ aCi →τi gi0ag
−1
i0
Ci, and

aCi+1 →τi gi0ag
−1
i0
Ci+1 ⊂ gi0ag

−1
i0
Ci. So, by [18], there is an induced group homomorphism τ :

E∞ → E′∞. Since τi are injective and surjective, so is τ (again by [18]). So, τ is a group isomorphism,

and we have D∞ ∼= E′∞
∼= E∞ ∼= D′∞ so D∞ ∼= D′∞ as desired. �

Notice that the method of this proof does not work if the system is irregular. We have not shown

that the isomorphism class of the discriminant group is an invariant for irregular systems, but we

leave that as an open question.

QUESTION 7.8. For an irregular system, does the isomorphism class of the discriminant group

depend on the choice of basepoint?

So, we have shown that D is a function from X to C = {subgroups of C∞}. In the weakly regular

case, we have shown that the isomorphism class of Dx does not depend on the choice of the basepoint,

that is, for x, y ∈ X, Dx
∼= Dy. But, notice that this does not meanDx andDy are equal as subgroups

of C∞.

We conclude this chapter by discussing the case when D∞ is trivial.

THEOREM 7.9. Let (X,G, φ, x) be a minimal equicontinuous Cantor dynamical system with as-

sociated group chain (Gi) and discriminant group D∞. Then, (X,G, φ, x) is regular if and only if

D∞ is the trivial group.

Proof. We first prove a lemma.
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LEMMA 7.10. Gi+1/Ci+1 < ker(ιi+1
i ) if and only if there exists a normal subgroup Ni / G such

that Gi+1 < Ni < Gi.

Proof of Lemma. If such an Ni exists, then since Ci is the maximal subgroup of Gi that

is normal in G, we must have Ni < Ci, so we have Gi+1 < Ni < Ci so Gi+1 < Ci. Then

Gi+1/Ci+1 < ker(ιi+1
i ).

Conversely, let Gi+1/Ci+1 < ker(ιi+1
i ). Recall that ιi+1

i was induced by the inclusion map σi+1
i :

G/Ci+1 → G/Ci, so ker(ιi+1
i ) ⊂ ker(σi+1

i ). So, we have Gi+1/Ci+1 < ker(σi+1
i ). Since σi+1

i is a

group homomorphism, its kernel ker(σi+1
i ) is a normal subgroup of G/Ci+1. Let N =

⋃
{aCi+1 |

aCi+1 ∈ ker(σi+1
i )}. Then N is a normal subgroup of G such that Gi+1 < N < Gi. �

First, assume that (X,G, φ, x) is regular. Notice that if Gi / G for all i, then Ci = Gi, so each

Di = Gi/Ci is trivial, and thus D∞ is clearly trivial. So, we must consider the situation when (Gi)

is a regular chain in the sense of Definition 5.4, but each Gi may not itself be normal in G.

Now suppose (Gi) is a regular chain, so by Theorem 5.8, (Gi) equivalent to (Ci). This means that

for every i, there is a j ≥ i so that Gj < Ci (and we always have Cj < Gj < Gi). So, for this i, j

we have Cj < Gj < Ci < Gi. Let gjCj ∈ Gj/Cj = Dj . Then gj ∈ Gj < Ci, so gj ∈ Ci. Then

gjCj ⊂ Ci, so ιij(gjCj) = Ci ∈ Gi/Ci = Di. This holds for every gjCj ∈ Dj . Thus, all cosets in Dj

are mapped into the single coset of the identity Ci ∈ Di. This means that there are no sequences in

D∞ that do not have the identity coset Ci at the ith level. Since we have that for every i there is

such a j that makes this true, we see that at every level, an element of D∞ must have the coset of

the identity as its sequence entry. Thus, the only element of D∞ is (eC1, eC2, ...), and so D∞ is the

trivial group with one element (eCi).

Now, for the converse, suppose D∞ is the trivial group with one element. Let aCi 6= eCi ∈ Gi/Ci.

If aCi were in the image of the bonding maps ιji for every j ≥ i, then we would have a non-trivial

element of D∞, which contradicts the assumption that D∞ is trivial. So, there must be some level

ja > i so that aCja /∈ image(ιjai ). Since Gi/Ci is finite, there are a finite number of elements

aCi 6= eCi ∈ Gi/Ci, so we can take the maximum of all such ja. Let

j > max{ja | aCi /∈ image(ιjai ), aCi ∈ Gi/Ci, aCi 6= eCi}.
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Then every element of Gj/Cj maps to eCi under ιji , so Gj/Cj ⊂ ker(ιji ). Then by Lemma 7.10,

there is a normal subgroup Ni / G with Gi+1 < Ni < Gi. Since we can do this for every level i, we

get a normal chain (Ni) that is interlaced with, and thus equivalent to, (Gi). So, (Gi) is regular. �

The following technical result allows us, given a group chain (Gi), to choose an equivalent chain

(Hi) ∼ (Gi) in a “canonical form”.

PROPOSITION 7.11. Let (Gi) be a group chain with core chain (Ci) and discriminant group D∞.

Then there is a group chain (Hi) with core chain (Mi) such that (Hi) ∼ (Gi) and the bonding maps

Hi/Mi → Hi−1/Mi−1 are surjective.

Proof. As before, D∞ = lim←−{θ :ii−1 Gi/Ci → Gi−1/Ci−1}, where the bonding maps θ :ii−1 are

inclusion maps. Let pi : D∞ → Gi/Ci be the projection map, and let Di = pi(D∞), which is a

subgroup of Gi/Ci. Then Di is isomorphic to a subgroup of Gi which we call Ei. Let

Hi = EiCi = {αγ | α ∈ Ei, γ ∈ Ci}.

Since Ci is normal in Gi, the product Hi is a subgroup of Gi. We claim that for every i, there

is a j ≥ i such that Gj is a subgroup of Hi. The condition Gj < Hi is equivalent to saying

Gj/Cj ⊂ Ei/Ci, that is, θji (Gj/Cj) = Ei/Ci.

Suppose there is no j such that θji (Gj/Cj) = Ei/Ci. Then, for all j ≥ i, we have θji (Gj/Cj) 6= Ei/Ci.

This means that D∞ contains an element (GiCi) so that pi(giCi) /∈ Di, which contradicts our

definition of Di. So, such a j must exist, and then we have (Gi) ∼ (Hi).

Let Mi = CoreG(Hi), and let δii−1 : Hi/Mi → Hi−1/Mi−1 be the bonding maps for D(Hi), which is

isomorphic to D(Gi) = D∞. We claim the bonding maps δii−1 are surjective. Note that the bonding

maps are surjective if and only if the projections πi : D(Hi) → Hi/Mi are surjective.

We have shown that Hi < Gi and that for every i there is a j so that θji (Gj/Cj) = Ei/Ci. Thus,

for any hiMi ∈ Hi/Mi, there is a hjMj ∈ Hj/Mj so that δij(hjMj) = hiMi. Since this holds for

every index i, this means that there is an element of D(Hi) that projects onto each hiMi ∈ Hi/Mi.

So, the projection maps are surjective and thus the bonding maps are surjective. �

By Theorem 7.5, equivalent group chains yield isomorphic discriminant groups. So, this lemma allows

us to assume without loss of generality that a discriminant group D∞ = lim←−{Gi/Ci → Gi−1/Ci−1}

has surjective bonding and projection maps, which will make some calculations in the subsequent

proofs simpler.



CHAPTER 8

The Discriminant Group for Weakly Regular Systems

In this chapter, we study some special properties of the weakly regular systems. We will prove that

if the discriminant group of a system is finite, then the system is weakly regular. We will then give

an example to show that the converse does not hold.

We begin with a general result about systems with finite discriminant groups.

PROPOSITION 8.1. Let (G,X) be a minimal equicontinuous Cantor dynamical system. The

discriminant group D∞ is finite if and only if there exists an associated group chain (Gi) and an

index m such that for all i ≥ m, we have Gi ∩ Cm = Ci (where Ci = CoreG(Gi)).

Proof. First, suppose the discriminant group D∞ = lim←−{θ :ii−1 Gi/Ci → Gi−1/Ci−1} is finite.

By Proposition 7.11, we can assume without loss of generality that the projection maps pi : D∞ →

Gi/Ci are surjective, so Di = pi(D∞) = Gi/Ci. Since D∞ is finite, there exists a level m such that

the cardinality of Di is constant for all i ≥ m. Then, the preimage p−1
i (eCm) is a single element in

D∞, and all bonding maps after level m are injective. Consider the preimage (θim)−1(eCm). Since

the cardinality of Di is constant for all i ≥ m, we have (θim)−1(eCm) = (Gi ∩Cm)/Ci, and since θim

is one to one, Gi ∩ Cm = Ci for all i ≥ m.

For the converse, suppose we have a group chain (Gi) such that Gi ∩ Cm = Ci for some m, and for

all i ≥ m. Since Gi ∩ Cm = Ci and (θim)−1(eCm) = (Gi ∩ Cm)/Ci, this means (θim)−1 is a single

point. Since (θim)−1 is a single point for every i, p−1
i (eCm) is a single element of D∞. Since D∞ is

a group and Gm/Cm is a finite group, D∞ is finite. �

THEOREM 8.2. Let D∞ = lim←−{Gi/Ci → Gi−1/Ci−1} be the discriminant group of a chain (Gi).

If D∞ is finite, then (Gi) is weakly regular.

Proof. Suppose D∞ = lim←−{Gi/Ci → Gi−1/Ci−1} is finite. By Proposition 8.1, we can assume

(Gi) is a group chain chosen so that Gi ∩ Cm = Ci for some fixed m and for alli ≥ m. Then, we

79
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have the following diagram

Cm/Ci
= // Cm/(Gi ∩ Cm)

τi // G/Gi

Cm/Ci+1

δi+1
i

OO

= // Cm/(Gi+1 ∩ Cm)

OO

τi+1
// G/Gi+1

θi+1
i

OO

where the τi are induced by the inclusion Cm ⊂ G, δi+1
i are induced by the inclusion Ci+1 ⊂ Ci,

and θi+1
i are the bonding maps of the inverse limit G∞ = lim←−{G/Gi+1 → G/Gi}.

Let C∗ = lim←−{Cm/Ci+1 → Cm/Ci}. Then there is an induced map τ = lim←− τi : C∗ → G∞ by [18,

Lemma 1.1.6]. The image τ(C∗) is a clopen subset of G∞ that is homeomorphic to C∗.

Consider the group action of Cm on C∗. Since each Ci is a normal subgroup of G, we have Ci / Cm

for all i, so the chain (Ci) is normal in Cm, which means the dynamical system (Cm, C∗) is regular.

Consider the isotropy group of the image τ(C∗),

iso(τ(C∗)) = {g ∈ G | g · τ(C∗) = τ(C∗)}.

We claim iso(τ(C∗)) = Cm.

Suppose g ∈ G is such that for all (ciGi) ∈ τ(C∗), ci ∈ Cm, we have g · (ciGi) = (gciGi) ∈ τ(C1
∞).

We have gciGi ∈ τ(C∗), so gciGi has a representative in Cm, call it km, i.e. km = gcigi for some

gi ∈ Gi. So, gcigi ∈ Cm, so gci = gcigig
−1
i ∈ CmGi. This holds for every sequence in τ(C∗), so in

particular, g · (eGi) ∈ τ(C∗), and so g ∈ CmGi for all i ≥ 0.

Recall K = ∩iGi is the kernel of the group chain (Gi). We have CmGi = ∪{Cmg | g ∈ Gi}, so

∩CmGi = CmK. Then g ∈ CmK. If K = {e}, then g ∈ Cm.

If K 6= {e}, then we have g ∈ CmK, meaning there exists an h ∈ Cm, γ ∈ K so that g = hΓ. Then

gciGi = hγciGi = hc′iγGi for some c′i ∈ Cm since Cm is a normal subgroup. Then since γ ∈ K

means γ ∈ Gi for all i, we have gciGi = hγciGi = hc′iγGi = hc′iGi. So, there is h ∈ Cm so that

hc′iGi = gciGi for all i, and (c′iGi), (gciGi) are both in τ(C∗) by hypothesis. So, h ∈ Cm is in

iso(τ(C∗)), so Cm is the isotropy group of τ(C∗).

Therefore, since iso(τ(C∗)) = Cm, if we restrict the action of G to τ(C∗), we get simply the action

by Cm. Since the system (Cm, τ(C∗)) is regular, Theorem 6.5 tells us that the action of Cm on

τ(C∗) transitive, so all points in the clopen set τ(C∗) are in the same orbit of Aut(G∞, G). Since Ci

are normal and thus invariant under conjugation by elements of G, we can repeat this argument for
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all group chains (Gi) in G∞. Therefore, G∞ is the union of disjoint clopen subsets, which are each

one orbit of Aut(G∞, G). Since G∞ is compact, every open cover has a finite subcover, so there

are in fact a finite number of orbits of Aut(G∞, G). Then by Theorem 6.5, the system is weakly

regular. �

So, we have shown that if a discriminant group is finite, the associated system must be weakly

regular. However, the converse of this statement is not true, as we show by example. In the next

two examples, we construct weakly regular systems with both finite and infinite discriminant groups.

We first calculate the discriminant group for the weakly regular example given in Examples 2.16

and 5.19, and show that it is finite.

EXAMPLE 8.3. Let (Gi) be the group chain given in Example 2.16, with H a finite simple group,

Γ a finitely generated group, G = H × Γ, (Γi) a normal chain in Γ, K a nontrivial subgroup of H,

and Gi = K × Γi. We showed in Example 5.19 that (Gi) is not regular but is weakly regular.

We will calculate the discriminant group. First, we calculate G∞. We have

G/Gi = (H × Γ)/(K × Γi) = H/K × Γ/Γi.

So,

G∞ = lim←−{G/Gi → G/Gi−1}

= lim←−{H/K × Γ/Γi → H/K × Γ/Γi−1}

= H/K × lim←−{Γ/Γi → Γ/Γi−1} = H/K × Γ∞.

Since H has no nontrivial normal subgroups, the normal core of K in H, CoreH(K) = ∩h∈HhKh−1,

must be trivial. We calculate Ci = CoreG(Gi) = ∩g∈GgGig−1. An element g ∈ G = H × Γ can be

written as g = (h, γ) for some h ∈ H, γ ∈ Γ. So, we have

Ci = CoreG(Gi) = ∩g∈GgGig−1

= ∩(h,γ)∈H×Γ[(h, γ)(K × Γi)(h
−1, γ−1)]

= ∩h∈H,γ∈Γ[hKh−1 × γΓiγ
−1]

= (∩h∈HhKh−1)× Γi since Γi / Γ

= {e} × Γi since ∩h∈HhKh−1 is the trivial normal core of K in H.



8. THE DISCRIMINANT GROUP FOR WEAKLY REGULAR SYSTEMS 82

Now we can calculate the discriminant group of (Gi).

D(Gi)
∞ = lim←−{Gi/Ci → Gi−1/Ci−1}

= lim←−{(K × Γi)/({e} × Γi)→ (K × Γi−1)/({e} × Γi−1)}

= lim←−{K/{e} × Γi/Γi → K/{e} × Γi−1/Γi−1}

= lim←−{K →
id K} ∼= K

So, the discriminant group of (Gi) is isomorphic to K, and in particular is finite.

We now give an example of a group chain that is weakly regular with infinite discriminant group.

EXAMPLE 8.4. Recall the construction in Example 2.17: Let Γ = Z2 = {(a, b) | a, b ∈ Z}, and let

p, q be distinct primes. Let

Γi = piZ× qiZ = {(api, bqi) | a, b ∈ Z}.

Let H = Z/2Z = {1, t | t2 = 1}.

Let θ : H → Aut(Γ) be the homomorphism defined as follows:

θ : H → Aut(Γ)

1→ θ1 : (a, b)→ (a, b) (i.e., θ1 is the identity map)

t→ θt : (a, b)→ (b, a) (i.e., θt is the transpose map)

Let G = Γ oθ H ∼= Z2 oθ Z/2Z., and let Gi = Γi × {1}.

We showed in Example 5.20 that (Gi) is weakly regular.

We now calculate the core Ci = CoreG(Gi) = ∩g∈GgGig−1. An element g ∈ G is of the form

((a, b), 1) or ((a, b), t), with (a, b) ∈ Z2. Since θ1 is the identity map and the Z2 part is abelian,

conjugating Gi by ((a, b), 1) gives Gi again.

Recall that the semi-direct product Γ oθ H is the set Γ×H with the operation given by (γ1, h1) ∗

(γ2, h2) = (γ1θh1(γ2), h1h2), i.e., ((a1, b1), h1)∗((a2, b2), h2) = ((a1, b1)θh1((a2, b2), h2)), h1h2), where

h1, h2 ∈ Z/2Z are 1 or t, and (a, b) ∈ Z2. Recall also that the inverse of an element in the semi-direct

product is given by (γ, h)−1 = (θh(γ−1), h−1), i.e., ((a, b), h)−1 = (θh((−a,−b)), h−1).
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An element of Gi = Γi×{1} is of the form (αpi, βqi, 1). We calculate the conjugation by g = ((a, b), t):

((a, b), t) ∗ ((αpi, βqi), 1) ∗ ((−b,−a), t) = ((a, b) + θt(αp
i, βqi), t) ∗ ((−b,−a), t)

= ((a, b) + (βqi, αpi), t) ∗ ((−b,−a), t)

= ((a+ βqi, b+ αpi), t) ∗ ((−b,−a), t)

= ((a+ βqi, b+ αpi) + θt(−b,−a), t2)

= ((a+ βqi, b+ αpi) + (−a,−b), 1)

= ((βqi, αpi), 1)

So, we have Gi = {(api, bqi) | a, b ∈ Z}× {1}, and gGig
−1 = {(aqi, bpi) | a, b ∈ Z}× {1} = ΓTi ×{1}

for g = ((a, b), t). In particular, since gGig
−1 6= Gi, (Gi) is not normal in G.

Thus, we have

Ci = CoreG(Gi) = ∩g∈GgGig−1

= Gi ∩ gGig−1

= {(apiqi, bpiqi) | a, b ∈ Z} × {1}

So, (api, bqi, 1), (cpi, dqi, 1) ∈ Gi are equal modulo Ci if and only if a = c mod qi, b = d mod pi. So,

the cardinality of Gi/Ci is piqi, which tends towards infinity.

Recall the discriminant group of (Gi) is D∞ = lim←−{Gi/Ci → Gi−1/Ci−1}, where the bonding maps

are inclusion maps.

As sets, Gi/Ci = (piZ × qiZ × 1)/(piqiZ × piqiZ × 1) = Z/qiZ × Z/piZ × 1, so it is easy to see

that the bonding maps in the inverse limit D∞ are surjective. Since the maps are surjective and the

cardinality of Gi/Ci tends towards infinity, the cardinality of D∞ is infinite. By Theorem 7.9, (Gi)

is not regular.

Thus, this example is weakly regular and has an infinite discriminant group.

The previous two examples show that there exist weakly regular examples with either finite or infinite

discriminant groups. This motivates the following definition.

DEFINITION 8.5. The group chain (Gi) is tame if the discriminant group D∞ is finite.
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Thus, we have shown that there are weakly regular group chains which are tame, and also which are

not tame. Thus, there are weakly regular, equicontinuous, minimal Cantor systems which are tame,

and which are not tame.

We denote the kernel of the group chain (Gi) by K = ∩iGi. The following theorem is stated without

proof in [11]. We give a proof here.

THEOREM 8.6 ([11]). If (Gi) is weakly regular, then the kernel K = ∩iGi has a finite number of

conjugate subgroups in G.

Proof. First, we note that if (Gi) is regular, then (Gi) ∼ (Ni) for some chain (Ni) with Ni /G

for all i. Group chain equivalence means the chains are intertwined, so their intersections are the

same, so we have K = ∩iGi = ∩iNi. Since the intersection of normal subgroups is normal, we have

K / G. So, gKg−1 = K for all g ∈ G, i.e., K has only one conjugate subgroup, itself.

Now, if (Gi) is weakly regular, then there is a finite index subgroup N < G and a chain (Ni) so that

(Gi)i≥i0 ∼ (Ni)i≥i0 and Ni / N for all i. Again, K = ∩iGi = ∩iNi, so K / N . So, K has only one

conjugate inside of N . To get the rest of the conjugates of K inside G, we note that G/N is finite,

and claim that only one conjugate comes from each coset G/N .

Let g, h ∈ G with gN = hN . Then there is some γ ∈ N so that g = hγ. Then we have gKg−1 =

hγKγ−1h−1. Since γ ∈ N and K / N , γKγ−1 = K. So we have gKg−1 = hγKγ−1h−1 = hKh−1.

Thus, we get at most one distinct conjugate of K from each coset in G/N . Since G/N is finite, K

has a finite number of conjugate subgroups in G. �

Example 5.14 gives an example of a group chain (Gi) that is irregular, but where K = ∩iGi = {e},

which has only one conjugate subgroup (itself). So, this shows that the converse of Theorem 8.6

does not hold, and so we cannot get and if and only if statement for this theorem.



CHAPTER 9

Almost Normal Systems

In contrast to the weakly regular condition in Definition 5.5, the almost normal condition given

in Definition 5.15 is more effectively computable in examples. In this chapter, we discuss some

properties of almost normal systems. We then show by calculation that this condition is not satisfied

for the Schori and Rogers and Tollefson group chains.

Let (Gi) be a group chain in G, and let NG(Gi) = {g ∈ G | gGig−1 = Gi} be the normalizer of

Gi in G. Note that we have Gi < Gi−1, but in general we may not have any subgroup relationship

between NG(Gi) and NG(Gi−1). However, we can form a nested chain of subgroups by taking

successive intersections of the normalizers. Let Hi = ∩0≤k≤iNG(Gk), and then we have Hi < Hi−1,

so (Hi) is a group chain. Since we have Gi < Gi−1 < NG(Gi−1), we always have Gi < Hi, and since

Hi < NG(Gi), we have Gi / Hi.

In many of the examples constructed in Chapter 2, we do in fact have a nested chain of normalizers,

with the property that NG(Gi) < NG(Gi−1). Notice that in this case, we get Hi = ∩0≤k≤iNG(Gk) =

NG(Gi).

Since we have Gi /Hi, Hi/Gi is a group. In the same manner as in Lemma 7.2, one shows that there

are well defined coset inclusion maps which are group homomorphisms θii−1 : Hi/Gi → Hi−1/Gi−1,

given by θii−1(hiGi) = hiGi−1. So, we can form the inverse limit N∞ = lim←−{θ
i
i−1 : Hi/Gi →

Hi−1/Gi−1}, which is a profinite group.

LEMMA 9.1. There is an equicontinuous right action of N∞ on G∞ that commutes with the left

G action.

Proof. We define the right action of N∞ on G∞ by

G∞ ×N∞ → G∞

(giGi) · (hiGi) = (gihiGi)

85
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We first check that this action is well-defined, that is, that (gihiGi) actually is an element of G∞,

i.e., that the bonding maps hold. We assume that (giGi) ∈ G∞, i.e. f ii−1(gi−1Gi−1) = giGi for

all i, i.e. giGi ⊂ gi−1Gi−1, and similarly that (hiGi) ∈ N∞ for all i, i.e., tii−1(hi−1Gi−1) = hiGi

for all i, i.e. hiGi ⊂ hi−1Gi−1 for all i. Then, we want to show that gihiGi ⊂ gi−1hi−1Gi−1.

But, this is clear because gi, gi−1 must be in the same coset of Gi, and hiGi ⊂ hi−1Gi−1, so then

gihiGi ⊂ gi−1hi−1Gi−1.

We see this action is equicontinuous by the same argument we have used previously. By the definition

of the metric d in G∞ (defined in the proof of Proposition 2.3), distances in G∞ can only be of the

form 1
2n for some n. Suppose (giGi), (γiGi) ∈ G∞, and (hiHi) ∈ H∞. Suppose d((giGi), (γiGi)) =

1
2n < δ. This means that (giGi), (γiGi) first differ at level n, so giGi = Giγi for i ≤ n. Then,

gihiGi = γihiGi for i ≤ n, which implies that d(gihiGi), (γihiGi)) = 1
2n . Thus, taking ε = δ shows

equicontinuity. �

COROLLARY 9.2. If N∞ = G∞, then (Gi) is regular.

In many examples, the action of N∞ on G∞ is not transitive, even if (Gi) is a regular group chain.

In fact, it may turn out that that N∞ is the trivial group.

We next compute N∞ for the examples presented in Chapter 2.

EXAMPLE 9.3. Recall the Schori solenoid, constructed in Example 2.15. Let (Gi) be the group

chain associated to the Schori solenoid.

We claim that NG(Gi) = Gi.

First, we will show that NGi−1
(Gi) = Gi. Indeed, this follows from the fact that Gi has index

3 in Gi−1. By Lagrange’s theorem, the index |NGi−1(Gi) : Gi| of Gi in NGi−1(Gi) must divide

|Gi−1 : Gi| = 3, so |NGi−1
(Gi) : Gi| is 1, or 3. If |NGi−1

(Gi) : Gi| = 1, then NGi−1
(Gi) = Gi.

But, we claim that Gi is not normal in Gi−1. Indeed, there is an element s = a2i−1 ∈ Gi−1 and

m = a2i−1

b2
i−2

a−2i−1 ∈ Gi. Conjugating m ∈ Gi by s ∈ Gi−1, we get

s−1ms = a−2i−1

a2i−1

b2
i−2

a−2i−1

a2i−1

= b2
i−2

/∈ Gi.

These elements can be seen in the algebraic construction of Gi, but it is instructive to see the loops

pictured in the Schreier diagram in Figure 7.

So, Gi is not normal in Gi−1 so |NGi−1
(Gi) : Gi| 6= 1. Thus, the only possibility left is that

|NGi−1(Gi) : Gi| = 3, which means NGi−1(Gi) = Gi.
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Figure 7. Loops in the Schreier diagrams for the Schori solenoid

Since Gi−1 is the smallest subgroup of G that properly contains Gi, this implies that NG(Gi) = Gi.

Then, Hi = ∩0≤k≤iNG(Gk) = Gi, so Hi/Gi = Gi/Gi = {e}, so H∞ is trivial.

EXAMPLE 9.4. Recall the Rogers and Tollefson solenoid, constructed in 2.14, and let (Gi) be the

group chain associated to the Rogers and Tollefson solenoid, with

Gi = 〈a2i

, b | bab−1 = a−1, ba2b−1 = a−2, ba4b−1 = a−4, ..., ba2i

b−1 = a−2i

〉 .(7)

We claim first that NG(Gi) = Gi−1. Since |Gi : Gi−1| = 2 and all index 2 subgroups are normal,

we have that Gi / Gi−1. To show that that Gi is not normal in Gi−2, we conjugate b ∈ Gi by

a−2(i−2) ∈ Gi−2. From the relations for Gi−2, we have

ba2(i−2)

b−1 = a−2(i−2)

=⇒ ba2(i−2)

= a−2(i−2)

b

so

a−2(i−2)

ba2(i−2)

= ba2(2i−2) = ba2i−1

.

We see that ba2i−1

is not in Gi, and thus Gi is not normal in Gi−2. By Lagrange’s theorem, there

cannot be any subgroups in between Gi−2 and Gi−1, so NG(Gi) = Gi−1.
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So, Hi = ∩0≤k≤iNG(Gk) = Gi−1, so Hi/Gi = Gi−1/Gi.

We consider the two cosets of Gi−1/Gi. We have

Gi = 〈a2i

, b | bab−1 = a−1, ba2b−1 = a−2, ba4b−1 = a−4, ..., ba2i

b−1 = a−2i

〉

Gi−1 = 〈a2i−1

, b | bab−1 = a−1, ba2b−1 = a−2, ba4b−1 = a−4, ..., ba2i−1

b−1 = a−2i−1

〉

We have |Gi−1/Gi| = 2. One of the cosets must be the coset of the identity, eGi. Since b ∈ Gi and

a2i−1

/∈ Gi, we see that the other coset can be represented by a2i−1

. So, we can write Gi−1/Gi =

{eGi, a2i−1

Gi}. We now consider the inclusion map θii−1 : Hi/Gi → Hi−1/Gi−1, which in this

example is θii−1 : Gi−1/Gi → Gi−2/Gi−1. Since it is an inclusion map, we have θii−1(eGi) = eGi−1.

We also have θii−1(a2i−1

Gi) = a2i−1

Gi−1. But, a2i−1 ∈ Gi−1, so a2i−1

Gi−1 = eGi−1. So, both cosets

in Gi−1/Gi are included into the identity coset in Gi−2/Gi−1. This shows that the map θii−1 is

trivial, so the inverse limit N∞ = lim←−{θ
i
i−1 : Hi/Gi → Hi−1/Gi−1} is the trivial group.

EXAMPLE 9.5. Let G be the Heisenberg group, and recall the group chain given in Example 2.9:

Gi =

 pi 0

0 pi

Z2 × pZ.

We showed in Example 5.2 that Gi / G, so NG(Gi) = G for all i. So,

N∞ = lim←−{θ
i
i−1 : Hi/Gi → Hi−1/Gi−1} = lim←−{θ

i
i−1 : G/Gi → G/Gi−1} = G∞.

So, in this example, N∞ is nontrivial and is in fact equal to G∞

EXAMPLE 9.6. Let G be the Heisenberg group, and recall the group chain given in Example 2.10:

Gn =

 qpn pqn

pn+1 qn+1

Z2 × pZ.

In Example 5.10, we showed that NG(Gi) = pZ × Z × Z for all i.

Then Hi = pZ × Z × Z is constant for all i, N∞ = lim←−{θ
i
i−1 : Hi/Gi → Hi−1/Gi−1} is nontrivial.

EXAMPLE 9.7. Let G be the Heisenberg group, and recall the group chain given in Example 2.11:

Gn =

 pn 0

0 qn

Z2 × pnZ = pnZ× qnZ× pnZ.
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We showed in Example 5.17 that NG(Gn) = pnZ× Z× Z.

So, Hn/Gn = (pnZ× Z× Z)/(pnZ× qnZ× pnZ) = {0} × Z/qnZ× Z/pnZ.

{0} × Z/qnZ× Z/pnZ is a finite group with nontrivial inclusion into {0} × Z/qn−1Z× Z/pn−1Z, so

N∞ is nontrivial.

EXAMPLE 9.8. Recall the construction given in Example 2.16: Let Γ be a finitely generated group,

and let (Γi) be a normal group chain in Γ. Let H be a finite simple group and let K be a nontrivial

subgroup of H. Let G = H × Γ, and let Gi = K × Γi.

Then, it is easy to check that NG(Gi) = NG(K×Γi) = NH(K)×NG(Γi) = NH(K)×Γ, which does

not depend on i. So, Hi = NH(K)× Γ, and

N∞ = lim←−{Hi/Gi → Hi−1/Gi−1}

= lim←−{(NH(K)× Γ)/(K × Γi)→ (NH(K)× Γ)/(K × Γi−1)}

= lim←−{NH(K)/K × Γ/Γi → NH(K)/K × Γ/Γi−1}

= lim←−{NH(K)/K → NH(K)/K} × Γ∞

which is nontrivial.

EXAMPLE 9.9. Recall Example 2.17, also discussed in Examples 5.20 and 8.4.

Let Γ = Z2 = {(a, b) | a, b ∈ Z}, and let p, q be distinct primes. Let

Γi = piZ× qiZ = {(api, bqi) | a, b ∈ Z}.

Let H = Z/2Z = {1, t | t2 = 1}.

Let θ : H → Aut(Γ) be the homomorphism defined as follows:

θ : H → Aut(Γ)

1→ θ1 : (a, b)→ (a, b) (i.e., θ1 is the identity map)

t→ θt : (a, b)→ (b, a) (i.e., θt is the transpose map)

Let G = Γ oθ H ∼= Z2 oθ Z/2Z.

An element of Gi = Γi × {1} is of the form (αpi, βqi, 1), and an element g ∈ G is of the form

g = ((a, b), 1) or g = ((a, b), t).
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We saw in Example 8.4 that

((a, b), t) ∗ ((αpi, βqi), 1) ∗ ((−b,−a), t) = ((βqi, αpi), 1) /∈ Gi

However, ((a, b), 1)−1 = (θ1(−a,−b), 1)((−a,−b), 1) = and so

((a, b), 1) ∗ ((αpi, βqi), 1) ∗ ((−a,−b), 1) = ((αpi, βqi), 1) ∈ Gi

So, NG(Gi) = Γ× {1}, which does not depend on i.

So, Hi = NG(Gi) = Γ× {1}, and

N∞ = lim←−{Hi/Gi → Hi−1/Gi−1}

= lim←−{(Γ× {1})/(Γi × {1})→ (Γ× {1})/(Γi−1 × {1})}

= Γ∞ × {1}

which is nontrivial.

Notice that these calculations also show that the last two examples are almost normal as well as

weakly regular, since they have fixed chains of normalizers.



CHAPTER 10

Conclusion

We have shown that we can model any minimal equicontinuous Cantor dynamical system (X,G, φ)

by an inverse limit of group chains G∞. Conversely, any group chain can be used to construct a

minimal equicontinuous Cantor dynamical system. We have shown that we can classify such systems

by three types of properties:

• Regular, weakly regular, or irregular, as in Definition 1.5;

• According to the number of equivalence classes of group chains in Gφ;

• According to the number of orbits of the automorphism group Aut(X,G, φ).

We have then shown in Theorem 6.5 and Corollory 6.6 that these three classifications are equivalent

in the following way:

• A system is regular if and only if Gφ has only one equivalence class if and only ifAut(X,G, φ)

has only one orbit.

• A system is weakly regular if and only if Gφ has a finite number of equivalence classes if

and only if Aut(X,G, φ) has a finite number of orbits.

• A system is irregular if and only if Gφ has an infinite number of equivalence classes if and

only if Aut(X,G, φ) has an infinite number of orbits.

We have defined a new invariant of such systems, the discriminant group, and shown that the

cardinality of the discriminant group is related to the degree of regularity of the system:

• A system is regular if and only if its associated discriminant group is the trivial group.

• If a system has finite discriminant group, then the system is weakly regular.

• A weakly regular system may have finite or infinite discriminant group.

We have also given examples of systems of each type.

• We gave a new proof using group chains that Example 2.14, the Rogers and Tollefson Klein

bottle solenoid, and Example 2.15, the Schori solenoid, are irregular.

• In the Heisenberg group,

91
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– Example 2.9 is regular.

– Example 2.10 is weakly regular but not regular.

– Example 2.11 is irregular.

• Example 2.16, given by a direct product construction, is weakly regular with finite non-

trivial discriminant group.

• Example 2.17, given by a semi-direct product construction, is weakly regular with infinite

discriminant group.
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