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SUMMARY

The introduction contains some history and motivation for the problem, as well as useful information

about the Heisenberg group, and the necessary notation.

The second section introduces all the needed facts about quasiconformal mappings on the Heisenberg

group, most can be found in the literature, however, we prove some elementary results that we could

not find.

In the third section, we begin by extending the flow method of generating quasiconformal mappings

on the Heisenberg group, first developed by Korányi and Reimann. We then give a result linking

the Jacobian of a flow mapping so generated with the horizontal divergence of the vector field.

Section four is technical, containing the multi-layered construction of a potential that will give rise to

a vector field with horizontal divergence that approximates an admissible quasi-logarithmic potential

in a suitable way. Here, and in the remainder of this summary, we use ‘admissible’ as shorthand for

‘satisfying the requirements of the relevant result’.

The constructions of section four, along with the results of section three are used in section five

to produce the quasiconformal mapping with Jacobian (almost everywhere) comparable to (the

exponential of twice) a given admissible quasi-logarithmic potential.

We conclude in section six by showing how the comparability results of section five give rise to bi-

Lipschitz equivalence results for certain metric spaces conformally equivalent to the sub-Riemannian

Heisenberg group.
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1 Introduction

1.1 Statement of Main Result

The quasiconformal Jacobian problem on Rn asks, given ω ∈ L1
loc(R

n), ω ≥ 0, when does

there exist C ≥ 1 and quasiconformal mapping f : Rn → Rn, such that

1

C
ω ≤ det(Df) ≤ Cω (1.1)

almost everywhere? This problem, still open, has generated a lot of wonderful mathematics.

In [4] important progress was made. The authors construct an intricate machine for the

production of quasiconformal mappings of Rn, using it to prove

Theorem 1.1 (Bonk, Heinonen, Saksman). Given n ≥ 2, and K ≥ 1, there exist ε > 0

and C,K ′ ≥ 1 such that, if u is a quasi-logarithmic potential on Rn, u = Λµ ◦ g almost

everywhere, with ‖µ‖ < ε, and g a K-quasiconformal mapping of Rn, then there is K ′-

quasiconformal f : Rn → Rn with det(Df) and ω = enu comparable almost everywhere, as

in (1.1), with constant C.

If M = (X, d, ν) is a metric measure space, a quasiconformal mapping of M is a homeo-

morphism, f : M →M , such that

Hf (p) = lim sup
r→0

supd(p,q)≤r d(f(p), f(q))

infd(p,q)≥r d(f(p), f(q))
(1.2)

is bounded independently of p. If Hf is not only bounded, but essentially bounded by

K ≥ 1, then we say f is a K-quasiconformal mapping.

For f a quasiconformal mapping, we define the Jacobian of f as

Jf (p) = lim sup
r→0

ν(fB(p, r))

ν(B(p, r))
. (1.3)
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Let p0 be a distinguished point of M (0 in the case of M = Rn). If µ is a finite, signed

Radon measure on M with

∫
log+ d(p0, q) d|µ|(q) <∞, (1.4)

we call it an admissible measure. If u : M → [−∞,∞] is equal almost everywhere to

Λµ(p) := −
∫

log d(p, q) dµ(q), (1.5)

for some admissible measure µ, then we call u a logarithmic potential on M .

If u is equal almost everywhere to Λµ ◦ g, for some admissible measure µ, and a quasicon-

formal mapping g : M →M , then we say u is a quasi-logarithmic potential on M .

Consequently, the quasiconformal Jacobian problem can be posed for any metric measure

space, and in particular, it is sensible to ask whether something like Theorem 1.1 holds.

In this paper, we begin an investigation of the quasiconformal Jacobian problem on the first

Heisenberg group. This is the metric measure space H = (R3, d,m). The metric d is given

by

d(p, q) = ‖q−1 ? p‖, (1.6)

where

(x1, y1, t1) ? (x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + 2(x2y1 − x1y2)), (1.7)

‖(x, y, t)‖ =
(
(x2 + y2)2 + t2

) 1
4 , (1.8)

and

(x, y, t)−1 = (−x,−y,−t). (1.9)

(From now on, for p, q ∈ H, we will write pq = p ? q.) The measure m, is the Lebesgue

measure on R3, and for E ⊂ H, we will write |E| = m(E).
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With regard to logarithmic potentials on H, the distinguished point is 0, and so d(0, q) = ‖q‖.

We include a lengthier discussion of the Heisenberg group later in this introduction.

We are able to prove the exact analog of Theorem 1.1, our main result is

Theorem 1.2. Given K ≥ 1, there exist ε > 0, and C,K ′ ≥ 1, such that, if u is a

quasi-logarithmic potential on H, u = Λµ ◦ g almost everywhere, with ‖µ‖ < ε, and g a

K-quasiconformal mapping of H, then there is a K ′-quasiconformal mapping f : H → H

such that

1

C
e2u ≤ Jf ≤ Ce2u

almost everywhere.

The beautiful paper [4] containing Theorem 1.1 was the direct inspiration for this work,

and we follow its overall scheme, using the flow method of constructing quasiconformal

mappings. We extend the work of Korányi and Reimann ([19], [20]), who first developed

the method in the Heisenberg setting and so established the principal means of constructing

quasiconformal mappings of H. With considerable current interest in H as a testing ground

for the development of analysis in metric spaces, of which quasiconformal analysis has been

one of the success stories, our relevant results have independent interest. Rather than

state them here, we direct the interested reader to Propositions 3.3 and 3.10. The central

development of the former is to remove the compact support assumption of Theorem H of

[20], including instead some natural growth conditions on the vector field.

Before moving on, we note that Theorem 1.1 led to some very interesting results in conformal

geometry. We hope that our Theorem 1.2 might have similar applications to CR geometry.

We encourage the reader to consult section 1.5 of this introduction for a brief discussion of

this fascinating topic that includes a geometric interpretation of our main result.
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1.2 The Quasiconformal Jacobian Problem

The inception of the quasiconformal Jacobian problem, on Rn and in general, is the paper

[13] of David, and Semmes, in which they write

‘For instance, the Jacobian of a quasiconformal homeomorphism on Rn is always strongly

A∞ by an argument of Gehring. We do not know if any reasonable converse to this statement

holds.’

Call ω ∈ L1
loc(R

n), ω ≥ 0 a weight. For x, y ∈ Rn, let Bx,y denote the smallest ball

containing both x and y. A weight ω is said to be strongly A∞, or a strong-A∞ weight, if,

for all measurable E ⊂ Rn, E 7→
∫
E ω(x) dx defines a doubling measure, and

d̃ω(x, y) =

(∫
Bx,y

ω(x) dx

) 1
n

(1.10)

is comparable to a metric.

If ω is a strong-A∞ weight, we will write dω for some choice of metric comparable to d̃ω,

and call (Rn, dω) a David-Semmes deformation (of Rn).

If a weight ω is comparable to a quasiconformal Jacobian, then Rn and (Rn, dω) are bi-

Lipschitz equivalent. The argument is identical to the one we give for H in Section 6.

The first results showed that any converse, if reasonable, was not going to be straightfor-

ward. In [32] Semmes showed that there is a strong-A∞ weight on R3 which cannot be

comparable to a quasiconformal Jacobian. Indeed, the weight was not only strong-A∞ but

also continuous. It was then shown by Laakso in [24] that there is a strong-A∞ weight on R2

which cannot be comparable to a quasiconformal Jacobian. The two dimensional situation

was further clarified by Bishop in [2] who showed that there is an A1 weight on R2 that is

not comparable to any quasiconformal Jacobian. The A1 condition is that of Muckenhoupt.

Every A1 weight is strongly A∞, but this is not so for every Ap weight with p > 1.
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Nevertheless, results followed that were a testament to the flexibility of quasiconformal

mappings. In [23] Kovalev and Maldonado focus not on a weight, but a set, and the

question is whether there exists a quasiconformal mapping with Jacobian singular on that

set (either zero or infinite everywhere on that set in a precise limiting sense). They show

that this is true of any set E ⊂ Rn so long as the Hausdorff dimension of E is less than

1. Then in [22], Kovalev, Maldonado, and Wu, prove that each weight in a certain class of

Riesz potentials is comparable to a quasiconformal Jacobian.

While the relationship between bi-Lipschitz equivalence and the quasiconformal Jacobian

problem had long been known, in [3] Bonk, Heinonen, and Saksman explain that, in R2, the

two things are more or less equivalent. This follows from deep work of Bonk and Kleiner

[5] on quasisymmetric parameterizations of R2. They go on to show that if u is a locally

integrable function on R2 with distributional gradient in L2(R2), then e2u is comparable to

a quasiconformal Jacobian. They deduce this from a theorem of Fu ([15]) (strengthened by

Bonk and Lang in [6]), which says that if the integral curvature of a complete Riemannian

2-manifold homeomorphic to R2 is small, then it is bi-Lipschitz equivalent to R2.

This brings us to [4], already discussed above. Here the authors go in the other direction

to that of [3], directly showing that a class of weights are comparable to quasiconformal

Jacobians (weights of the form ω = enu, with u a quasi-logarithmic potential on Rn), and

use this to prove a result on bi-Lipschitz equivalence. This last was the fore-runner of

Theorem 1.3 below, which can be viewed as a four dimensional analog of Fu’s theorem,

in that bi-Lipschitz equivalence results from small integral Q-curvature (in [4] the authors

actually give a result for all even dimensions).

To our knowledge, this thesis is the first look at the quasiconformal Jacobian problem outside

the Euclidean setting. Some of what we do depends, though that dependence is hidden, on

a capacity estimate for the Heisenberg group. Such a capacity estimate is the key property

of a metric measure space in order for it to support a fruitful quasiconformal analysis. In
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the landmark work [17] of Heinonen and Koskela, the authors axiomatize this capacity lower

bound, it being the defining property of the Loewner spaces they introduce. They go on to

show that on such spaces, many aspects of quasiconformal mappings that make them both

useful and tractable in the Euclidean setting continue to hold. They show, for example,

that the defining infinitesimal property in (1.2) is equivalent to the global quasisymmetric

property, and that (for complete, geodesic, Ahlfors-regular, Loewner spaces) the Jacobian

satisfies a reverse Hölder inequality (though as stated this relies on the later work of Keith

and Zhong in [18]). We note in passing that the Loewner condition was shown, in the same

paper, to be equivalent (under appropriate assumptions) to the existence of a Poincaré

inequality. It was, to some extent, this latter criterion that came to be the focus, the so

called PI-spaces.

Given a PI-space, the Heinonen-Koskela theory just discussed guarantees that it supports a

class of quasiconformal mappings for which much of the Euclidean theory transfers across.

The question would remain, however, as to how rich a family of mappings is being described.

One set of PI-spaces amenable to analysis are the Carnot groups. Pansu proved in [27] that

in Carnot groups corresponding to the boundaries of quaternionic and Cayley hyperbolic

spaces, all quasiconformal mappings are in fact 1-quasiconformal, and so no results similar

to those we prove here could be expected to be true.

One class of Carnot groups that do support a comparative wealth of quasiconformal map-

pings are the Heisenberg groups, Hn (these correspond to the boundaries of the complex

hyperbolic spaces, as the Euclidean spaces correspond to the boundaries of the real hyper-

bolic spaces). This was conclusively demonstrated by Korányi and Reimann in [19] and

[20] where they identify conditions on a vector field so that the corresponding flow is a one

parameter family of quasiconformal mappings of Hn. Similar flows are the subject of this

thesis, though we currently restrict our attention to the first Heisenberg group only.
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1.3 The Heisenberg Group

H is a Lie group, the group product given by (1.7). It plays an important role in harmonic

analysis and sub-Riemannian geometry.

Our first choice label for a point in H is p with coordinates (x, y, t). If several points are in

play, any mention of x, y, or t always refers to the point labeled p.

A basis of left-invariant vector fields, and so a basis of the Lie algebra, h, is given by

X
∣∣
p

= Xp = ∂x + 2y∂t Y
∣∣
p

= Yp = ∂y − 2x∂t T
∣∣
p

= Tp = ∂t. (1.11)

Note that [X,Y ]
∣∣
p

= −4Tp and so the vector fields X,Y satisfy Hörmander’s condition. It

follows that H is a Carnot group. Let HH ⊂ TH be defined by HpH = span(Xp, Yp). We

call HH the horizontal layer of the tangent bundle. If b > 0, call a continuous mapping

γ : [0, b] → H a horizontal curve if γ ∈ C1((0, b)) with γ′(s) ∈ Hγ(s)H for all s ∈ (0, b).

Define an inner product g0 on each HpH by

g0(Xp, Xp) = 1 g0(Xp, Yp) = 0 g0(Yp, Yp) = 1. (1.12)

We will refer to g0 as the canonical sub-Riemannian metric on H. It gives rise to a Carnot-

Carathéodory distance function

ρ(p, q) = inf
γ

∫ b

0

√
g0(γ′(s), γ′(s)) ds (1.13)

where the infimum is taken over all piecewise horizontal curves. Note that g0(γ′(s), γ′(s)) =

γ′1(s)2 + γ′2(s)2. If V ∈ HpH for some p, we will sometimes write |V |H =
√
g0(V, V ).

We may also identify the Lie algebra with the tangent space at the origin: if V is a left-

invariant vector field, we identify V with V0. The previously given basis corresponds to the
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basis X0 = ∂x, Y0 = ∂y, and T0 = ∂t. The bracket is then defined as [V0,W0] = [V,W ]
∣∣
0
. It

is usually this identification and basis that we have in mind when we involve the exponential

mapping. It is easy to see that the unique one-parameter subgroup γ satisfying γ(0) = 0,

γ′(0) = W0 is given by s 7→ (sw1, sw2, sw3) where the wi are defined by W0 = w1X0+w2Y0+

w3T0. It follows that exp : h→ H is given by exp(w1X0 +w2Y0 +w3T0) = (w1, w2, w3). We

call span(X0, Y0) the horizontal layer of the Lie algebra.

Often a left-invariant vector field V will be treated as a differential operator, and if F : H→

R, then V F is shorthand for p 7→ VpF (p). This might indicate a classical or distributional

derivative, it will be made clear in each instance.

In practice, we typically work with the metric d defined in (1.6), though ρ, and weighted

versions of it, are the subject of Section 6. It is true, in any case, that ρ ' d. We define the

length of a continuous curve, γ : [0, b]→ H, with respect to the metric d as

ld(γ) = lim sup
m→∞

m∑
i=1

d(γ(si), γ(si−1)), (1.14)

with si = ib/m. It is shown in [8] that if γ ∈ C1((0, b)) then ld(γ) coincides with
∫ b

0 |γ
′|H if

γ is horizontal, and is infinite otherwise.

We will refer to ‖ · ‖ as in (1.8) as the Korányi gauge. It is an example of a homogeneous

norm, so called because there is a family of dilations

δr(p) = (rx, ry, r2t),

for which ‖δr(p)‖ = r‖p‖. We will be consistent in our use of δ for these dilations and

nothing else. Writing B(p, r) for the ball of center p and radius r with respect to the metric

d, and Lp for left translation by the point p, it follows from B(p, r) = Lp(δr(B(0, 1))), and
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the standard change of variable formula, that H is Ahlfors 4-regular,

|B(p, r)| = Cr4

for some constant C > 0. In that it is both self-similar, and has Hausdorff dimension greater

than its topological dimension, H qualifies as a fractal.

We require two more well known facts about the Heisenberg group. The first is that, given

a compact set Ω ⊂ H, there is a C = C(Ω) > 0 such that

1

C
|p− q| ≤ d(p, q) ≤ C|p− q|

1
2 (1.15)

where |p− q| is the Euclidean distance between the points p, q ∈ H treated as points of R3.

The second is a polar coordinate integration formula, see [14],

∫
H
f(p) dp =

∫
S(1)

∫ ∞
0

f(δr(q))r
3 drdν(q), (1.16)

with ν an appropriate measure on the unit sphere S(1) with respect to d, valid for all

f ∈ L1(H).

1.4 Outline

In Section 2 we take a brisk look at the required features of quasiconformal mappings. Most

is well known. We develop some elementary results that, if known, are harder to find, but

nothing that will surprise an expert.

Section 3 contains our first true innovations. There are two subsections. The first extends

the flow method of Korányi and Reimann for generating quasiconformal mappings on the

Heisenberg group. In [19] existence of the flow is assumed, and the vector field is stipulated

to be in C2(H). In [20], existence of the flow is proved, and only minimal regularity is
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assumed, however, the vector fields are compactly supported. In Proposition 3.3, we prove

existence of the flow, retain minimal regularity, but introduce some growth conditions on

the vector field so that it may have unbounded support. These growth conditions should not

be considered restrictive, they correspond to similar conditions imposed in the Euclidean

case in [28], which in two dimensions are known to be necessary for quasiconformal flow.

Proposition 3.3 puts quasiconformal flows on H on roughly the same footing as those on Rn,

n ≥ 3. The second subsection identifies (Proposition 3.10) a means of linking the Jacobian

of the flow mappings with the horizontal divergence of the vector field.

The constructions of Section 4 are made with a twofold purpose in mind, the vector fields

should satisfy the requirements of Section 3 so that those results may be applied, and the

horizontal divergence should approximate the quasi-logarithmic potential in a suitable way.

When reading the details of the construction, it is useful to keep the following in mind.

Suppose we have a quasi-logarithmic potential, equal (almost) everywhere to

−
∫

log d(g(p), q) dµ(q),

with g to the identity, and µ twice the Dirac measure centered at the origin. The quasi-

logarithmic potential has reduced to

−2 log ‖p‖. (1.17)

Multiply this by t and call it

φ(t) := −2t log ‖p‖. (1.18)

It is this φ, used as a potential to generate a vector field as in Section 3, that Miner

identified in [26] as having time-s flow mappings that are ‘essentially’ fs(p) = p‖p‖es−1.

These flow mappings later appeared as the radial stretch mappings of Balogh, Fässler,

and Platis in [1], where they are identified as being the correct analog (in terms of their
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extremal properties) of the Euclidean radial stretch mappings. Radial stretch mappings

appear frequently in the Euclidean quasiconformal Jacobian problem as they are simple

examples of quasiconformal mappings with explosive volume change at the origin (that is,

the Jacobian is infinite there). A vector field generated (see Section 3) by φ as in (1.18)

has horizontal divergence −2 log ‖p‖+ ζ(p), where ζ is a bounded function. Consequently,

the horizontal divergence nicely approximates the logarithmic potential (1.17). Much of the

work of Section 4 is dedicated to the more general case that g is not the identity. Other

measures are taken care of rather easily.

With regard to our last statement, we should be careful so as not to give the wrong im-

pression. We arrived at our prototypical φ above by considering the measure that is twice

the Dirac measure centered at the origin, dµ(q) = δ0(q) dq. It is a curious fact that, de-

spite being useful in this way, this has ‖µ‖ = 2 ≥ ε where ε > 0 is as in Theorem 1.2.

We know this, not because we give an explicit value for ε (which we do not), but because

e2(−2 log ‖p‖) = ‖p‖−4 which is not locally integrable at the origin, and so cannot be compa-

rable to a quasiconformal Jacobian.

In Section 5 we use the constructions of Section 4, along with the results of Section 3,

to construct quasiconformal mappings with prescribed Jacobian. To do so, we adapt the

machine of [4], Section 6, finding our desired mapping in the limit of a sequence (fm),

with each fm the composition of m (normalized) time-1/m flow mappings. Listing the

adaptations made would not serve this outline well, however, the reason for making them

is illuminating. The main difficulty was that H has a somewhat less flexible family of

conformal mappings as compared to Rn. In Rn there are the translations, dilations and

rotations (we ignore the inversions as they are deemed not useful in this situation). In H

all three of these are present, however, the rotations are reduced to those about the group

center. This meant that a normalization strategy present in [4] was not available, and we

had to find other means of achieving the necessary compactness results for the sequences of
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quasiconformal mappings we construct.

The arguments we use in Section 6 have become standard in the Euclidean case, however,

we may be writing them down for the first time in the case of the Heisenberg group. This

is suggested by our use of the very recent [21]. Curve families controlled in measure as in

[30] were suspected (or known by indirect arguments) to exist in H, however, [21] is the first

explicit construction to our knowledge. We use them at a crucial step in our bi-Lipschitz

equivalence result (Theorem 1.4 below), using a David-Semmes deformation of H as an

auxiliary space.

1.5 Geometric Applications

An interesting class of sub-Riemannian manifolds is given by the conformal equivalence

class of the sub-Riemannian Heisenberg group, the set of all (H, eug0), with g0 the canonical

sub-Riemannian metric on H, and u : H→ R a continuous function. Let ρ be the (Carnot-

Carethéodory) distance function associated to g0, and ρu that associated to eug0 (see Section

6). It is useful to know when one of the metrics eug0 is bi-Lipschitz equivalent to g0, that

is, when there exists L ≥ 1 and homeomorphism f : H→ H such that for all p, q ∈ H,

1

L
ρ(p, q) ≤ ρu(f(p), f(q)) ≤ Lρ(p, q), (1.19)

as then (H, eug0) has many of the geometric and analytic properties of (H, g0) itself. One

goal of the program initiated here, is the sub-Riemannian analog of

Theorem 1.3 (Bonk, Heinonen, Saksman, Wang). Suppose (R4, e2ugE) is a complete Rie-

mannian manifold with normal metric. If the Q-curvature satisfies

∫
|Q| dvol <∞,
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and

1

4π2

∫
Qdvol < 1,

then (R4, e2ugE) and (R4, gE) are bi-Lipschitz equivalent.

Here gE is the canonical Euclidean metric. In these circumstances the Q-curvature satisfies

∆2u = 2Qe2u (the Paneitz operator associated to gE reduces to the biharmonic operator

∆2). A metric e2ugE on R4 is normal if at all x ∈ R4

u(x) = − 1

4π2

∫
log
|x− y|
|y|

Q(y)e4u(y) dy + C

with C a constant. In other words, u is essentially a logarithmic potential with respect to

the measure dµ(y) = Q(y)e4u(y) dy. In this thesis we take what is hopefully a substantial

step toward a sub-Riemannian counterpart, proving

Theorem 1.4. There exists ε > 0 such that, if u is a continuous logarithmic potential on

H,

u(p) = −
∫

log ‖q−1p‖dµ(q)

for a finite, signed, Radon measure µ with

∫
d|µ| < ε

and ∫
log+ ‖q‖ d|µ|(q) <∞,

then (H, g0) and (H, eug0) are bi-Lipschitz equivalent.

The reason for our note of caution, is that in the Heisenberg setting, there is currently no

notion of normal metric to take aim at. In a way, we are working backwards; in the Euclidean

setting, normal metrics were known, and known to be interesting, prior to Theorem 1.3.
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For example, the Q-curvature can be thought of as a higher-dimensional version of the

Gaussian curvature of a surface, and Chang, Qing, and Yang, prove in [11] something like

a Gauss-Bonnet theorem for manifolds satisfying the hypotheses of Theorem 1.3. In the

same paper, they show that normal metrics are not unusual: if (R4, e2ugE) is complete, has

integrable Q-curvature, and the scalar curvature is non-negative at infinity, then the metric

is normal.

There is, however, cause for optimism, and we take the viewpoint that our results suggest

the investigation of a potentially rich thread in sub-Riemannian / CR geometry. There was

already evidence to suggest that similar phenomenon should exist. The correct definition of

sub-Riemannian normal metric will likely exploit, then strengthen, what Case and Yang in

[10] call the ‘deep analogy between the study of three dimensional CR manifolds, and four

dimensional conformal manifolds’ (the Heisenberg group is an example of a three dimen-

sional CR manifold). Suitable objects for such an investigation were only recently made

available, the Paneitz-type operator, and Q-like curvature introduced for the CR-sphere

and Heisenberg group by Branson, Fontana, and Morpurgo in [7]. Case and Yang were

abstracting these to the more general CR setting in [10]. This is a fascinating area, with

many strands to pursue, however, we say no more about it here.

The passage from Theorem 1.2 to Theorem 1.4 is straightforward, though non-trivial; indeed

we currently rely on a construction found in [21]. A stronger version of Theorem 1.4

involving quasi-logarithmic potentials also holds, it is stated as Theorem 6.8.

Theorem 1.3 as stated is Wang’s, it can be found in [34]. Wang was building on the work

of Bonk, Heinonen, and Saksman in [4]. As already mentioned, they include a bi-Lipschitz

equivalence result, however, like ours, it is something of a corollary to the main result. The

primary contribution of Wang to Theorem 1.3 was to give the sharp constants on the size

of the measure (which translate into the integral bounds on the Q-curvature). Given how

the story went in the Euclidean case, with the Dirac measure identifying the end point,
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following on from our comments in Section 1.4, it is tempting to conjecture that our main

theorem is true for all quasi-logarithmic potentials with admissible µ such that ‖µ‖ < ∞,

and µ(H) < 2.

1.6 Notation

If p ∈ H then ‖p‖ is the Korányi gauge applied to p, as above, and |p| is the Euclidean norm

of the point of R3 with which p is identified.

If µ is an admissible measure, with Jordan decomposition µ = µ− − µ+, then ‖µ‖ is the

total variation, ‖µ‖ = µ−(H) + µ+(H).

We write Mn(R) for the n × n matrices with real entries. If A ∈ Mn(R) for some n, then

|A| is the operator norm, |A| = supv∈Rn,|v|=1 |Av|, and detA, trA, AT are respectively the

determinant, trace and transpose of A. In is the n× n identity matrix.

B(p, r) is the ball of center p and radius r, B(p, r) = {q ∈ H : d(p, q) ≤ r}. We write

B(r) = B(0, r). S(p, r) is the sphere of center p and radius r, S(p, r) = ∂B(p, r), and we

write S(r) = S(0, r).

The spaces Lr(H) (with norm ‖ · ‖r) and Lrloc(H), 1 ≤ r ≤ ∞ , have their usual definition,

and as they are defined with respect to the Lebesgue measure on R3, they are identical to

their Euclidean counterparts Lr(R3) and Lrloc(R
3).

As they indicate differentiation using the smooth manifold structure (given by the set iden-

tity of R3 as global chart), the spaces Ck(H) and Ck0 (H), 1 ≤ k ≤ ∞ are identical with

Ck(R3) and Ck0 (R3).

HC1(H) is the space of continuous functions F : H → R such that the classical horizontal

derivatives XF, Y F exist and are continuous everywhere (functions continuously differen-

tiable in the horizontal directions).
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HW 1,r
loc (H) is the space of locally integrable functions F : H→ R with distributional deriva-

tives XF, Y F ∈ Lrloc(H) (the first horizontal Sobolev spaces).

If F is a function of several components on H and each component is real valued, we will write

F ∈ HC1(H) (respectively F ∈ HW 1,r
loc (H)) if each component is in HC1(H) (respectively

in HW 1,r
loc (H)).

1E is the indicator function of the set E.

We make heavy use of the notation ., &, and ', writing A . B for there exists C > 0 such

that A ≤ CB, A & B for B . A, and A ' B for there exists C > 0 with

1

C
B ≤ A ≤ CB.

If A or B are functions then the implied C is a constant in that it does not depend on

any variables. It may depend on parameters. Our convention is to identify dependence on

pertinent parameters in the statement of a result, using A .P1,...,Pk B for A ≤ CB, with

C = C(P1, . . . , Pk) > 0 a constant dependent on the parameters P1, . . . , Pk. Similarly for &

and '. Typically we do not indicate dependence on parameters in the proofs of statements.

Whenever we say that A and B are comparable, we mean that A ' B.
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2 Quasiconformal Mappings

We aim for an efficient summary of the key aspects of the theory, therefore, in this section

we will generally not include citations in the body text, but provide some bibliographical

notes at the end. Definitions given here are intended to supersede any given in the first

paragraphs of the introduction.

Let U,U ′ ⊂ H be open connected sets. A homeomorphism f : U → U ′ is said to be a

quasiconformal mapping if the quantity

Hf (p) := lim sup
r→0

maxd(p,q)=r d(f(p), f(q))

mind(p,q)=r d(f(p), f(q))
,

is bounded independently of p ∈ U . For us, a quasiconformal mapping is always a home-

omorphism, f : H → H. Hf (p) is called the dilatation of f at p, and we will call f a K-

quasiconformal mapping if the dilatation is not only bounded, but also essentially bounded

by K (necessarily 1 ≤ K < ∞). We will then call such a K the essential dilatation (or

simply the dilatation) of f . It is convenient to define K(f) = ess supHf for quasiconformal

f .

A quasiconformal mapping, f , is Pansu-differentiable (P-differentiable) at almost every

p ∈ H, which means that at such a p, the mappings

q 7→ δ−1
s

[
f(p)−1f(p δs(q))

]
, q ∈ H,

converge locally uniformly as s → 0 to a homomorphism q 7→ hpf(q) of H. Using the exp

mapping, such a homomorphism gives rise to a Lie algebra homomorphism that we will

denote (hpf)∗. At a point p of P-differentiability, and suppressing dependence on p, it can

be shown that the horizontal partial derivatives Xf1, Y f1, Xf2, Y f2 exist, and that (hf)∗
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acts on h with respect to the basis {X0, Y0, T0} via the matrix


Xf1 Y f1 0

Xf2 Y f2 0

0 0 Xf1Y f2 −Xf2Y f1

 .

We denote the matrix of (hpf)∗ by Pf(p), and define a matrix DHf(p), which we call the

horizontal differential of f at p, by the relationship

Pf =

DHf 0

0 detDHf

 . (2.1)

The Jacobian of a quasiconformal mapping f , is

Jf := detPf,

and so exists at almost every p ∈ H. This agrees, at points of existence, with the definition

given in (1.3) of the introduction (the Jacobian as volume derivative). Note that Jf =

(detDHf)2. If f is a K-quasiconformal mapping, then

|DHf |4 ≤ K2Jf (2.2)

almost everywhere. Indeed, if f is quasiconformal, then f is K-quasiconformal if and only

if

|DHf |2 ≤ K detDHf (2.3)

almost everywhere.

If f : H→ H is P-differentiable at p ∈ H then f is contact at p, that is, Xf3, Y f3 also exist
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at p, with

Xf3 = 2f2Xf1 − 2f1Xf2, (2.4)

Y f3 = 2f2Y f1 − 2f1Y f2. (2.5)

Consequently a quasiconformal mapping is weakly contact, in that it is contact almost

everywhere. This is a prerequisite for a mapping to act in a constrained manner with

respect to the Heisenberg geometry. Suppose a mapping f : H → H is differentiable at a

point p, in the Euclidean sense, and contact at that point. Then the Euclidean differential

Df maps HpH (the horizontal layer at p) to Hf(p)H. Actually, if f is P-differentiable at p,

then the restriction of f to p exp [span(X0, Y0)] is differentiable in the Euclidean sense at

p, and this derivative is given by hf∗ restricted to the horizontal layer of h. The matrix of

this restriction is given by DHf . We will discuss the Sobolev regularity of quasiconformal

mappings briefly in Section 3.

We now record two properties of quasiconformal mappings that will be important to us.

The first is well known (which is not to say that the argument is brief).

Lemma 2.1. If f is a K-quasiconformal mapping, then f−1 is also K-quasiconformal.

The next seems less well known, and so we provide a proof. Note, however, as elsewhere in

this section, we are relying on deeper results that we gloss over.

Lemma 2.2. If f1, f2 are, respectively, K1, K2-quasiconformal mappings, then f1 ◦ f2 is a

K1K2-quasiconformal mapping.

Proof. From either the geometric or quasisymmetric characterizations of quasiconformal

mappings (we do not discuss the geometric characterization, see below for the quasisym-

metric), it is easy to see that f1 ◦ f2 is quasiconformal. The only question is with regard to

the essential bound on the dilatation. For this we use the analytic characterization of the
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essential dilatation (2.3). First of all, for E ⊂ H,

|E| = 0 ⇐⇒ |f2E| = 0.

There is, therefore, a set E with |H \E| = 0, at each p of which, f1 ◦ f2 is P-differentiable,

f2 is P-differentiable, and such that f1 is P-differentiable at f2(p). A calculation similar to

that of the Euclidean case, shows that we have the following chain rule:

hp(f1 ◦ f2) = hf2(p)f1 ◦ hpf2.

As

(hf2(p)f1 ◦ hpf2)∗ = (hf2(p)f1)∗ ◦ (hpf2)∗,

then

P(f1 ◦ f2) = Pf1(f2)Pf2,

and consequently

DH(f1 ◦ f2) = DHf1(f2)DHf2.

We have then,

|DH(f1 ◦ f2)|2 ≤ |DHf1(f2)|2|DHf2|2

≤ K1K2 detDHf1(f2) detDHf2

= K1K2 detDH(f1 ◦ f2).

It follows from (2.3) that f1 ◦ f2 is K1K2-quasiconformal. u

Let f be a K-quasiconformal mapping, and p ∈ H. Consider the quantity

Hf,p(r, s) :=
maxd(p,q)=r d(f(p), f(q))

mind(p,q)=s d(f(p), f(q))
,
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whenever 0 < s ≤ r <∞. It requires some work, however, it can be shown that

Hf,p(r, s) .K (r/s)K
2
3 . (2.6)

In particular, let p, q, u ∈ H be distinct points such that d(p, q) ≤ d(p, u). Then

d(f(p), f(q)) ≤ max
d(p,w)=d(p,u)

d(f(p), f(w)) . min
d(p,w)=d(p,u)

d(f(p), f(w)) ≤ d(f(p), f(u)).

That is, f is weakly-quasisymmetric, with constant dependent on K only. It happens to be

true that f is also quasisymmetric: there exists a homeomorphism η : [0,∞)→ [0,∞) such

that, for distinct p, q, u ∈ H,

d(f(p), f(q))

d(f(p), f(u))
≤ η

(
d(p, q)

d(p, u)

)
.

Let us deduce some easy consequences of (2.6). First of all, there exists C = C(K) > 0

such that, for all p ∈ H and r > 0, there is s > 0 with

B(f(p), s) ⊂ fB(p, r) ⊂ B(f(p), Cs).

Indeed, it is frequently useful that

|fB(p, r)|1/4 'K d(f(p), f(q)), (2.7)

when q is any point on S(p, r) = ∂B(p, r).

Now consider g, also K-quasiconformal, but with g(0) = 0. Then (2.6) leads easily to

‖g(p)‖ .K ‖g(q)‖

1 +

(
‖p‖
‖q‖

)K 2
3


for all p, q ∈ H. Now suppose gi, i ∈ I, I some index set, is a family of K-quasiconformal
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mappings (the same K for each i) each of which fixes 0. Furthermore, suppose there exist

D,D′ > 0 such that for each i there is qi ∈ H with ‖qi‖ ≥ D, ‖g(qi)‖ ≤ D′. Then we have

a uniform distortion estimate for the gi,

‖gi(p)‖ .K,D′ 1 +

(
‖p‖
D

)K2/3

. (2.8)

We will typically use this estimate with D = D′ = 1. For this reason we introduce the

notation Q0(K) for the family of K-quasiconformal mappings that fix the origin, and leave

invariant the norm of at least one point on the unit sphere (the point may depend on the

mapping). We have proved,

Lemma 2.3. Given R > 0, there exists R′ = R′(K,R) > 0 such that, for all g ∈ Q0(K),

gB(R) ⊂ B(R′).

Quasiconformal mappings are locally Hölder continuous. Given K-quasiconformal mapping

f and R > 0, let R′ > 0 be such that fB(3R+1) ⊂ B(R′). Then there exists α = α(K) > 0

such that

d(f(p), f(q)) .K,R,R′ d(p, q)α. (2.9)

If we combine this with Lemma 2.3 we have the following.

Lemma 2.4. Given R > 0, there exists α = α(K) > 0 such that, for all g ∈ Q0(K),

d(g(p), g(q)) .K,R d(p, q)α

for all p, q ∈ B(R).

Crucially in the previous lemma, the implied constant is dependent on g only through its

dependence on K.
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We now record the various results that are pertinent to our focus on the quasiconformal

Jacobian. On numerous occasions we use that, if f is a quasiconformal mapping, it satisfies

the following change of variable formula

∫
fΩ
u =

∫
Ω

(u ◦ f)Jf , (2.10)

valid for all non-negative, measurable functions u : H → R, and measurable Ω ⊂ H (and

with the necessary measurability of (u ◦ f)Jf part of the result).

The result just recorded relies on the fact that

Jf > 0

almost everywhere, and Jf ∈ L1
loc(H). Actually more is true, the Jacobian of a quasicon-

formal mapping f satisfies a reverse Hölder inequality, the power of which will be ably

demonstrated by multiple appearances at crucial moments later. To be precise, if f is a

K-quasiconformal mapping, then there exists r > 1 such that, if B ⊂ H is a ball,

(
1

|B|

∫
B
Jrf

) 1
r

.
1

|B|

∫
B
Jf (2.11)

independently of B. Indeed the exponent and implied coefficient can be taken to depend

on K only. That Jf satisfies a reverse Hölder inequality implies that it is an A∞ weight,

as in [33]. It is also true that the inequality can be shown to imply the Ap condition for

some 1 ≤ p <∞ (the calculation can be found in [33]). We do not record the Ap condition

here, but observe that it has the following easy implication: there exists α > 0 such that, if

B ⊂ H is a ball,

1

|B|

∫
B
J−αf .

(
|B|
|f(B)|

)α
(2.12)

independently of B.
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Ultimately, the mapping we construct that has Jacobian comparable to a given weight,

will be found in the limit of a sequence of mappings. We therefore need to be able to say

something useful about the limit of the Jacobians. Presently we are only able to prove the

following weak convergence result which suffices for our purpose.

Lemma 2.5. Suppose (fm) is a sequence of quasiconformal mappings converging locally

uniformly to a quasiconformal mapping f . Suppose also that the f−1
m converge pointwise to

f−1. Then, given ξ ∈ C∞0 (H), ξ ≥ 0,

lim
m→∞

∫
ξJfm =

∫
ξJf .

Proof. Let R > 0 be such that support(ξ) ⊂ B(R). As the fm converge locally uniformly,

there exists R′ > 0 such that fmB(R) ⊂ B(R′) for all m. Note, therefore, that

support(ξ ◦ f−1
m ) ⊂ B(R′)

for all m. Using the change of variable formula (2.10),

∫
ξJfm =

∫
(ξ ◦ f−1

m )(fm)Jfm

=

∫
ξ ◦ f−1

m .

As |ξ ◦ f−1
m | ≤ max(|ξ|)1B(R′) for all m, then the Dominated Convergence Theorem applies,

and we conclude that

lim
m→∞

∫
ξJfm =

∫
ξ ◦ f−1 =

∫
ξJf . u

We end this section with some instances in which a sequence (fm) of quasiconformal map-

pings converges to a quasiconformal mapping f . These are based on well known results,

however, we tailor the statements to our purpose.

Lemma 2.6. Suppose (fm) is a sequence of K-quasiconformal mappings, and there exists
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p0 ∈ H, ‖p0‖ = 1, such that for all m, fm(0) = 0, and ‖f(p0)‖ = 1. Then the fm subcon-

verge, locally uniformly, to a K-quasiconformal mapping f . Furthermore, any convergent

subsequence, (fk), has the f−1
k converging pointwise to f−1.

Proof. Local uniform subconvergence of the fm to a quasiconformal mapping is standard in

these circumstances. That the essential dilatation of the limit mapping is the same as those

of the sequence is somewhat less expected, a proof can be found in [20]. We are left then

to prove the statement regarding the inverses, which one would think should be automatic,

but we currently have no better argument.

Let (fk) be a convergent subsequence as in the statement. By Lemma 2.1, each f−1
k is

K-quasiconformal. It is also true that f−1
k (0) = 0 for all k. Furthermore, our assumption

regarding the existence of p0 implies that for each k, there exists pk, with ‖pk‖ = 1, and

‖f−1
k (pk)‖ = ‖p0‖ = 1. It follows that (f−1

k ) ⊂ Q0(K).

Choose some q ∈ H, and let p be such that f(p) = q (where f = lim fk). There is an

0 < R <∞ such that f(p) ∈ B(R), and fk(p) ∈ B(R) for all k. As in Lemma 2.4, let α > 0

be such that

d(f−1
k (u1), f−1

k (u2)) . d(u1, u2)α

for all u2, u2 ∈ B(R) independently of k. Then

d(f−1
k (q), p) = d(f−1

k (f(p)), f−1
k (fk(p)))

. d(f(p), fk(p))
α.

Consequently, lim f−1
k (q) = p = f−1(q), as required. u

Once it is known the f−1
k converge pointwise, in these circumstances local uniform conver-

gence follows, but we did not require this for the proof of Lemma 2.5.

Lemma 2.7. Suppose (fm) is a sequence of K-quasiconformal mappings, fm(0) = 0 for all
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m, and ∫
B(1)

Jfm ' 1

independently of m. Then the fm subconverge, locally uniformly, to a K ′-quasiconformal

mapping. Furthermore, if (fk) is a convergent subsequence, then the f−1
k converge pointwise

to f−1.

Proof. Fix a point p0 ∈ S(1). It follows from (2.7) and (2.10) that

∫
B(1)

Jfm 'K d(fm(0), fm(p0))4,

independently of m. Given our assumption on the size of the integral, we therefore have

d(fm(0), fm(p0)) ' 1,

which, coupled with fm(0) = 0 for all m is enough to conclude the locally uniform subcon-

vergence using well known compactness properties of quasisymmetric mappings (in other

words we have essentially reduced to the hypotheses of Lemma 2.6).

As for the pointwise convergence of f−1
k to f−1 for a convergent subsequence (fk), again,

the argument is essentially the same as in Lemma 2.6, we just need to work a little harder.

We have the existence of 0 < R ≤ R′ < ∞, such that for each k, there exists a point pk

with R ≤ ‖pk‖ ≤ R′, and such that ‖f−1
k (pk)‖ = ‖p0‖ = 1. We have, therefore, a uniform

distortion estimate for the fk as in (2.8), and we can use this to derive Hölder continuity

with uniform constants (as in (2.9)) on a useful ball, and proceed as in the proof of Lemma

2.6. u

Notes to Section 2: The primary reference for the results of this section is [20]. For the

almost everywhere differentiability of quasiconformal mappings see [27]. For the matrix of

the P-differential see [12]. The analytic criterion (2.3) can be found in [20], along with
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Lemma 2.1. The case r = s of (2.6) is in [20], the general form is in [9]. It should be

observed that the proof of (2.6) rests on a suitable capacity estimate, as proved in [29].

The local Hölder continuity of quasiconformal mappings is in [20]. The change of variable

formula (2.10) is in [12]. The reverse Hölder inequality is proved in [20]. Lemma 2.6 is in

[20], but these things hold for quasisymmetric mappings in a more general setting, with the

results nicely stated in [16].
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3 Quasiconformal Flows

The measurable Riemann mapping theorem guarantees a plentiful supply of quasiconformal

mappings f : C→ C. It is a consequence of that theorem that any quasiconformal mapping

of the complex plane embeds as the time-s flow mapping of a suitably well behaved vector

field.

While quasiconformal mappings of the Heisenberg group satisfy a ‘Beltrami system’ of

equations, no similar results on the existence of solutions are known. We may, however,

identify suitable conditions on a vector field v : H→ TH such that the flow is quasiconformal.

Such conditions were first identified by Korányi and Reimann in [19] and [20]. The results

of [19] are for reasonably smooth flows. In [20] the main relevant result requires signifi-

cantly less regularity, but demands that the vector field be compactly supported. See the

introduction for more discussion.

Our results require both low regularity, and unbounded support, and it is the purpose of

the first part of this section to remove the assumption of compact support from the theorem

of [20]. In its place we make stipulations on the growth of the vector field, then use a cut

off argument to reduce to the compactly supported case.

Remember that a quasiconformal mapping of H is almost everywhere contact. It is a theorem

of Liebermann ([25]) that in order for a vector field to generate contact flow it must be of

the form

v = vφ = −1

4
Y φX +

1

4
XφY + φT, (3.1)

for a function φ : H→ R. We will call such a φ, to be used in this way, a contact generating

potential, or simply a potential. Whenever a potential is in play and we write vφ we mean

the above expression. As in the work of Korányi and Reimann mentioned above, we will

typically work at the level of the potential, deducing from its properties the properties of
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the flow. Indeed, Section 4 is all about constructing a potential suitable for our purposes.

If v is a vector field, as above, we will on occasion have need to discuss component functions

of v. Perhaps the obvious choice would be to define these with respect to the basis Xp, Yp, Tp

of TpH, however in order to be consistent with something that comes later, we let v1, v2, v3

be defined by

v = v1∂x + v2∂y + v3∂t,

with the obvious identifications needed taken as implicit.

The second part of this section is dedicated to proving a variational equation that links (the

logarithm of) the Jacobian of the flow mapping to the horizontal divergence of the vector

field. If φ is a potential, it will be apparent that the the horizontal divergence of vφ is given

by Tφ. Consequently, part of the work of Section 4 is in designing a φ such that the T

derivative resembles a given logarithmic potential. The variational equation is then the key

stepping stone linking Jacobian to weight. The results of this part follow a similar sequence

of results in [4].

Before moving on, some notation. In Section 2 we defined the horizontal differential DHf of

a quasiconformal mapping using the Pansu-derivative. From here on, so long as a function

F : H → X, where X = R3 as a set, has F1, F2 ∈ HW 1
loc(H), then we will write DHF for

the equivalence class of matrices XF1 Y F1

XF2 Y F2

 ,

though in practice we will typically work with a particular representative.

Note that we do not require a function F to be contact (not even weakly so) in order to

discuss DHF . At this level of regularity, we will refer to DHF as a formal horizontal differ-

ential (of F ) if we are talking about a representative, and the formal horizontal differential

if we are talking about the equivalence class.
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3.1 Vector Fields with Unbounded Support

The following proposition is Theorem H of [20].

Proposition 3.1. Suppose φ : H → R is in HC1(H), is compactly supported, and the

distributional derivative ZZφ ∈ L∞(H) with

√
2‖ZZφ‖∞ ≤ c

for some 0 ≤ c <∞. Then for each p ∈ H, the flow equation for vφ at p,

γ′(s) = v(γ(s)), γ(0) = p,

has exactly one solution, γp : R→ H. Furthermore, for s ≥ 0, the time-s flow mapping,

fs : H→ H,

fs(p) = γp(s),

is a K-quasiconformal homeomorphism, where K satisfies K +K−1 ≤ 2ecs.

As mentioned in the introduction to this section, we intend to adapt this theorem, iden-

tifying suitable means of removing the assumption of compact support. First we have a

smaller, but still important, adaptation to make. The proof of Proposition 3.1 makes use

of the square, or Frobenius, norm on DHfs, which leads to the form of the bound on K.

Unfortunately, this bound is not suitable for our purposes as it does not behave well in a

later limiting argument. We first, therefore, rework part of the proof in the smooth case,

using the operator norm in place of the square norm. We need only the smooth case, as

it is this that feeds into the proof of Proposition 3.1 in an approximation argument. We

thank Jeremy Tyson for improving the proof of the following lemma.
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Lemma 3.2. Suppose φ ∈ C∞0 (H), and
√

2‖ZZφ‖∞ ≤ c for some 0 ≤ c < ∞. Then vφ

generates a smooth flow of homeomorphisms, and each time-s flow mapping, 0 ≤ s <∞, is

K-quasiconformal, with K ≤ ecs.

Proof. That φ ∈ C∞0 (H) is already enough for existence and uniqueness of solutions to the

flow equation for vφ, and the time-s flow mappings are well defined C∞-smooth homeomor-

phisms of H.

ZZφ should be considered the Heisenberg equivalent of what, in the Euclidean case, is

sometimes called the Ahlfors conformal strain of the vector field. Actually, in this proof we

work with an even more direct analog of the Ahlfors conformal strain. Writing v = vφ, let

SHv :=
1

2

Xv1 − Y v2 Xv2 + Y v1

Xv2 + Y v1 Y v2 −Xv1

 .

More generally, the Ahlfors conformal strain of a 2× 2 matrix M is

S(M) := 1
2(M +MT )− 1

2(trM)I2.

This is the symmetric, trace-free part of M . In our situation, SHv = S(DHv). Note that

(or see [19]), if ‖M‖ =
√

tr[MMT ] is the square norm of M , then

√
2|ZZφ| = 2‖SHv‖.

As |SHv| ≤ ‖SHv‖, our assumed bound on |ZZφ| translates to

2‖SHv‖∞ ≤ c,

where, at the risk of confusion, we write ‖SHv‖∞ for supp∈H |SHv(p)|. Let fs be the time-s

flow mapping generated by v. From the integral formula for solutions to the flow equation,
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the smoothness, and the contact equations 2.4, it is immediate that

(DHfs)
′ = DHv(fs)DHfs. (3.2)

For notational convenience, let A := DHfs, B := DHv. Then (3.2) becomes

A′ = B(fs)A,

which we rewrite in the form

B(fs) = A′A−1.

It follows that

S(B(fs)) = 1
2A
′A−1 + 1

2(A−1)T (A′)T − 1
2 tr(A′A−1)I2.

For our smooth quasiconformal mappings, fs, the dilatation Hfs has an analytic expression

(cf. (2.3))

Hfs =
|DHfs|2

detDHfs
=
|A|2

detA
. (3.3)

Consequently, we need only show that everywhere in H,

|A|2

detA
≤ exp (cs)

holds true and we will be done. To this end, recall that |A|2 is equal to the larger eigenvalue

λ of the matrix ATA. For each s ≥ 0 there is a unit eigenvector v(s) for the eigenvalue

λ(s), with

λ = 〈ATAv, v〉 = |Av|2.
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Differentiating with respect to s gives

λ′ = 2〈A′v,Av〉+ 2〈Av′, Av〉. (3.4)

As |v(s)|2 = 1 for all s, then v′ and v are orthogonal:

0 = (|v|2)′ = 〈v, v〉′ = 2〈v′, v〉.

It follows that the second term of (3.4) is zero, indeed

〈Av′, Av〉 = 〈v′, ATAv〉 = 〈v′, λv〉 = λ · 0.

Consequently, using the standard formula

(detM)′ = (detM) tr(M ′M−1),

we have (
log
|A|2

detA

)′
=
λ′

λ
− (detA)′

detA
=

2〈A′v,Av〉
|Av|2

− tr(A′A−1).

Set w = Av. Then, evaluating at some point p ∈ H,

(
log
|A|2

detA

)′
= 2
〈A′A−1w,w〉
|w|2

− tr(A′A−1)

=

〈
w

|w|
,
A′A−1w

|w|
+

(A−1)T (A′)Tw

|w|
− tr(A′A−1)

w

|w|

〉
≤ |A

′A−1w + (A−1)T (A′)Tw − (trA′A−1)w|
|w|

≤ |A′A−1 + (A−1)T (A′)T − (trA′A−1)I2|

= 2|S(B(fs))|.

As p was arbitrary, s 7→ A(s) has A(0) = I2, S(B(fs)) = SHv(fs), and 2|SHv(fs)| ≤
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2‖SHv‖∞ ≤ c, it follows from (3.3) that

K(fs) ≤ ecs

as desired. u

A careful check of the proof of Proposition 3.1 shows that the quasiconformal mappings it

promises have dilatation bounded in the same manner as the smooth mappings of Lemma

3.2. We are now ready to formulate a new version of Proposition 3.1 with the assumption

of compact support replaced by some natural growth conditions. The proof uses some ideas

from Reimann’s work in the Euclidean setting [28].

Proposition 3.3. Suppose φ : H → R is in HC1(H) and the distributional derivative

ZZφ ∈ L∞(H) with
√

2‖ZZφ‖∞ ≤ c

for some 0 ≤ c <∞. Further suppose that, at each p ∈ H,

|φ(p)| . ‖p‖2 log ‖p‖,

|Zφ(p)| . ‖p‖ log ‖p‖,

|vφ(p)| . 1 + |p|(1 + log |p|),

independently of p.

Then for each p ∈ H, the flow equation for vφ at p,

γ′(s) = vφ(γ(s)), γ(0) = p,
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has exactly one solution, γp : R→ H. Furthermore, for s ≥ 0, the time-s flow mapping,

fs : H→ H,

fs(p) = γp(s),

is a K-quasiconformal homeomorphism, K ≤ ecs.

Remark 3.4. Note the appearance of the Euclidean norm in the growth condition on vφ,

not only on the vector field, but on points of the Heisenberg group. We admit this is

unappealing. It is useful, as we will see below, due to the Euclidean nature of integral

solutions to the flow equation (as we are currently writing them). In the statement of the

proposition it is likely the Euclidean norm on the points could be replaced with the Korányi

gauge relatively easily. It is also possible that we could be consistent with this desire in

the proof, making the solutions look more group-like using, e.g. the exponential map etc.

This is possibly specious, in that the flow equation involves the Euclidean derivative on the

curve. If the answer to this is that we should consider R also as Carnot group, and use

the Pansu-derivative on the curve, we have a problem: for a curve to be almost everywhere

Pansu-differentiable it should be almost everywhere horizontal, and the integral curves of

contact flow are not horizontal. We may revisit this in the future, however, for the time

being our attitude in the first part of the proof is that H is a manifold with a global chart

to R3, to be used as is convenient.

Proof of Proposition 3.3. Write v = vφ. Let u ∈ H be given. As v is continuous, solutions

to the flow equation for v exist at u, at least on some interval (−s0, s0), s0 > 0. Consider

one of them, call it γ0.

For all s ∈ (−s0, s0), γ0 satisfies

γ0(s) = u+

∫ s

0
v(γ0(σ)) dσ,
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and so, by assumption, there exist C1, C2 > 0 such that

|γ0(s)| ≤ |u|+ C1s0 + C2

∫ s

0
|γ0(σ)|(1 + log |γ0(σ)|) dσ.

For s ∈ (−s0, s0), define

λ(s) = |u|+ C3 + C2

∫ s

0
|γ0(σ)|(1 + log |γ0(σ)|) dσ.

where C3 = e−1 +C1s0 +C2e
−2s0 (the function s 7→ s+ s log s, s ≥ 0, has a minimum value

of −e−2, therefore, this choice of C3 ensures that 1 + log λ(s) > 0, and |γ0(s)| ≤ λ(s), for

all s ∈ (−s0, s0)).

Then λ is differentiable on (−s0, s0), with

λ′(s) = C2|γ0(s)|(1 + log |γ0(s)|)

≤ C2λ(s)(1 + log λ(s)).

Equivalently, given our choice of C3,

[log(1 + log λ(s))]′ ≤ C2,

and so,

1 + log |γ0(s)| ≤ 1 + log λ(s) ≤ eC2s(1 + log(|u|+ C3)), (3.5)

for all s ∈ (−s0, s0). There exists, therefore, sufficiently large but finite R > 0, such that

γ0(s) ∈ B(R), for all s ∈ (−s0, s0), and this is true for any other solution at u when

restricted to this same interval.

We now introduce the auxiliary functions that are going to allow us to smoothly truncate

our vector field and deduce global properties from a localization that behaves well in the
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limit. For 3 < l < l′ <∞, let G̃l : [l, l′]→ [0, 1] be given by

G̃l(r) = 1− l−1(log log r − log log l).

This function decreases from 1 to 0 in a useful way, however, to use it as a cut-off function we

need to smoothly extend it to all r ≥ 0 such that it is constant off the interval [l, l′]. Consider,

therefore, the polynomial P (z) = 6z5 − 15z4 + 10z3 (this is known in computer graphics

circles as ‘smootherstep’). It has P (0) = 0, P (1) = 1, P ′(0) = 0, P ′(1) = 0, P ′′(0) =

0, P ′′(1) = 0. Further, when 0 ≤ z ≤ 1, also 0 ≤ P (z) ≤ 1. For l ≥ 3, now define,

Gl(r) =


1 if 0 ≤ r ≤ l

P (G̃l(r)) if l ≤ r ≤ l′

0 if l′ ≤ r

where l′ is chosen to make G̃l(l
′) = 0 (to be exact log l′ = el log l).

The niceness of the polynomial P renders Gl ∈ C2([0,∞)). Furthermore, 0 ≤ Gl ≤ 1 and,

given our assumption on the size of l, we have

|G′l(r)| .
1

lr log r
,

|G′′l (r)| .
1

lr2 log r
.

For each suitable l we form the truncated potential,

φl(p) = Gl(‖p‖4)φ(p).

Each φl has continuous horizontal derivatives, Xφl, Y φl, and is compactly supported. The

weak derivative ZZφl exists and, defining N by N(p) = ‖p‖4,

ZZφl = ZZ(Gl ◦N)φ+ 2Z(Gl ◦N)Zφ+ (Gl ◦N)ZZφ.
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Then, applying our assumptions to this last expression, we find that there exist C4, C5, C6 >

0 such that

√
2‖ZZφl‖∞ ≤ C4 sup

l≤‖p‖4≤l′

[
‖p‖6|G′′l (‖p‖4)||φ(p)|+ ‖p‖3|G′l(‖p‖4)||Zφ(p)|

]
+ c

≤ C5
1

l
sup

l≤‖p‖4≤l′

[
|φ(p)|

‖p‖2 log ‖p‖
+
|Zφ(p)|
‖p‖ log ‖p‖

]
+ c

≤ C6l
−1 + c.

Making a choice of l so that (Gl ◦N) ≡ 1 on B(R) (recall B(R) is home to our solution on

(−s0, s0)), we have that v, and

vl := −1

4
Y φlX +

1

4
XφlY + φlT,

coincide on B(R). It is part of Proposition 3.1 that the flow equation for vl at u has a

unique solution. It follows that γ0 is the unique solution, on the interval (−s0, s0), to the

flow equation for v at u.

As u was arbitrary, we have shown that at all p ∈ H, the solution at p is unique, and

remains bounded on any finite time interval. It follows that solutions may be continued

unambiguously and therefore exist for all time. Consequently, we find that v has a well

defined flow of homeomorphisms, fs, for all s ∈ R.

We know turn our attention to the quasiconformality of the time-s flow mapping, fs, s ≥ 0

(consider s as fixed in the following). Let D > 0 be given. Let f ls denote the time-s flow

mapping associated to vl. By the calculation above, using Proposition 3.1 and Lemma 3.2,

f ls is quasiconformal, with K(f ls) ≤ e(C6l−1+c)s.

Let D′ > 0 be such that fsB(D) ⊂ B(D′). Choosing l so that vl ≡ v on B(D′), then it
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follows that the restriction of fs to B(D), fs
∣∣
B(D)

, is quasiconformal, with

K
(
fs
∣∣
B(D)

)
≤ e(C6l−1+c)s.

We now let l →∞ to find that, in fact, K
(
fs
∣∣
B(D)

)
≤ ecs. Lastly, as D was arbitrary, we

must have that fs is quasiconformal, with K(fs) ≤ ecs, as required. u

3.2 A Variational Equation

For the remainder of the section we fix a φ : H → R, and so v = vφ, that satisfies the

hypotheses of Proposition 3.3. We also assume that Xφ, Y φ ∈ HW 1,r
loc (H) for all 1 ≤ r <∞.

Let DHv denote a particular choice of representative of the formal horizontal differential

of v. Our integrability assumptions on the second distributional horizontal derivatives of φ

are equivalent to DHv having the same integrability (with respect to the operator norm).

In the introduction we mentioned that a quasiconformal mapping is P-differentiable almost

everywhere. It is also true that, if f is a quasiconformal mapping, then f ∈ HW 4
loc(H), and

the almost everywhere defined classical derivatives determined by the P-derivative may

serve as distributional derivatives. More is true, as (2.2), and the reverse Hölder inequality

(2.11), imply that there exists ε > 0, such that f ∈ HW 4+ε
loc (H). Reserving the notation

fs for the time-s flow mappings of v, let us agree that when we write DHfs we mean

the representative of the formal horizontal differential of fs that is defined by the almost

everywhere P-differentiability, as in (2.1).

The nature of the argument we give is designed precisely so that our end goal, Proposition

3.10, holds for all values of s in our range of interest (consistently the interval [0, 1]). It is

likely a similar statement could be proved without as much preparation if we aimed only

for almost every s ∈ [0, 1].

Lemma 3.5. For p ∈ H and s ∈ [0, 1] the mapping (p, s) 7→ fs(p) is continuous. Moreover,
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for each ball B ⊂ H,

|fs(B)| & 1

independently of s ∈ [0, 1].

Proof. We will prove the second statement first. As s ∈ [0, 1], each fs is ec-quasiconformal

with c such that
√

2‖ZZφ‖∞ ≤ c (so K-quasiconformal with K independent of s). Let

p ∈ H and R > 0 be given. Fix a point q ∈ S(p,R). It follows from (2.7) that

|fsB(p,R)| &K d(fs(p), fs(q))
4.

As solutions to the flow equation are continuous, the function on the right hand side, s 7→

d(fs(p), fs(q))
4 is continuous, and given that each fs is injective, has a positive minimum

on [0, 1].

As for the first statement, let s ∈ [0, 1] be given, and let (pk, sk) be a sequence in H× [0, 1]

such that (pk, sk)→ (p, s). In particular, pk → p, and we may assume that pk ∈ B(p, 1) for

all k. It follows from our bound on solutions to the flow equation (3.5), that there exists

R′ > 0 such that for all sk

fskB(3(‖p‖+ 1) + 1) ⊂ B(R′).

It follows from (2.9) that each fsk is Hölder continuous on B(p, 1) with the coefficient and

exponent independent of k. It is now easy to see that (p, s) 7→ fs(p) is jointly continuous

on H× [0, 1] as required. u

Lemma 3.6. The mappings,

(p, s) 7→ DHv(fs(p)) and (p, s) 7→ DHv(fs(p))DHfs(p),

are measurable, and integrable on B × [0, 1] whenever B is a ball in H .

40



Proof. Integrability of a matrix valued function refers to integrability of the operator norm.

As already observed, our assumptions imply that DHv is measurable and locally integrable

to the power r for any 1 ≤ r <∞.

Let p ∈ H be a point at which DHfs(p) exists in the classical sense. It is the limit of

matrices the entries of which are difference quotients. As fs(p) is jointly continuous in s and

p, those difference quotients are measurable functions. It follows that DHfs is measurable.

Furthermore, as each fs preserves sets of measure zero, DHv(fs) is measurable also.

Observe that the claim will follow if we can show that for each s ∈ [0, 1] the integral of (the

norm of) either function over an arbitrary ball is bounded above by a constant independent

of s.

Fix a ball B ⊂ H. Note that, as in Lemma 3.5, for all s ∈ [0, 1], fs is K-quasiconformal

with K independent of s. Consequently, by (2.12) and Lemma 3.5, there exists α > 0 such

that, for all s ∈ [0, 1], ∫
B
J−αfs . 1 (3.6)

independently of s.

Now let r = 1 + 1/α. Again by (or as in the proof of) Lemma 3.5, there exists a ball B′

such that fsB ⊂ B′ for all s ∈ [0, 1]. Then, by Hölder’s inequality for the first estimate,

and (3.6), (2.10) for the second,

∫
B
|DHv(fs)| ≤

(∫
B
|DHv(fs)|rJfs

)1/r (∫
B
J−αfs

)1/(1+α)

.

(∫
B′
|DHv|r

)1/r

. 1,

where the implied constants depend on B, but are independent of s.
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Similarly,

(∫
B
|DHv(fs)DHfs|

)4

.
∫
B
|DHv(fs)DHfs|4

.
∫
B
|DHv(fs)|4Jfs

.
∫
B′
|DHv|4 . 1,

where we used (2.2) for the second estimate. Again, the implied constants do not depend

on s. u

The following can be found on page 46 of [20].

Lemma 3.7. For each s ∈ [0, 1], v ◦ fs has a formal horizontal differential, and one repre-

sentative is given by

DH(v ◦ fs) = DHv(fs)DHfs.

The next lemma presents an alternative representative of the formal horizontal differential

of fs, one that is formally identical to differentiating solutions to the flow equation in the

smooth case.

Lemma 3.8. For each s ∈ [0, 1], the matrix function F (·, s) given by

F (p, s) = I2 +

∫ s

0
DHv(fσ(p))DHfσ(p) dσ.

is a formal horizontal differential of fs.

Proof. Note that, using Lemma 3.7, we have at almost every p ∈ H that

F (p, s) = I2 +

∫ s

0
DH(v ◦ fσ)(p) dσ.

We need to show that the components of F (·, s) are weak horizontal derivatives as we claim.
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To this end, let ξ ∈ C∞0 (H). Using Lemma 3.6 we have (DH(v◦fs))i,jξ is in L1(H× [0, 1]) for

each choice of i, j ∈ {1, 2}. This allows application of Fubini’s Theorem. Take, for example,

the (1, 1)-component of F ,

∫
F1,1(p, s)ξ(p) dp =

∫
ξ +

∫ ∫ s

0
X(v ◦ fσ)1(p)ξ(p) dσ dp

=

∫
ξ −

∫ s

0

∫
(v ◦ fσ)1(p)Xξ(p) dp dσ

=

∫
ξ −

∫ ∫ s

0

d

dσ
(fσ)1(p)Xξ(p) dσ dp

=

∫
ξ −

∫
(fs)1(p)Xξ(p) dp+

∫
xXξ(p) dp

= −
∫

(fs)1(p)Xξ(p) dp.

The other components are similar. u

Let F be as in Lemma 3.8. Standard product measure arguments imply that F (p, s) =

DHfs(p) almost everywhere in H× [0, 1]. It follows that, for almost every p ∈ H, DHfs(p) =

F (p, s) for almost every s ∈ [0, 1], something we will use later in conjunction with the next

lemma (taken unchanged from [4]).

Lemma 3.9. Let F,G : [0, 1] → Mn(R) be matrix-valued functions. Suppose that F is

continuous, that G is integrable, and that

F (s) = I2 +

∫ s

0
G(σ)F (σ) dσ

for all s ∈ [0, 1]. Then

det(F (s)) = exp

(∫ s

0
tr(G(σ)) dσ

)
for all s ∈ [0, 1].

We are now ready to assemble the previous string of results into our variational equation

(restating our assumptions for the convenience of the reader).
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Proposition 3.10. Assume φ : H→ R satisfies the hypotheses of Proposition 3.3. Further

assume that Xφ, Y φ ∈ HW 1,r
loc (H) for all 1 ≤ r <∞. Then for all s ∈ [0, 1], we have

log Jfs(p) = 2

∫ s

0
Tφ(fσ(p)) dσ

at almost every p ∈ H.

Proof. With the above in place, the proof goes through as in the Euclidean case. Let F

be as in Lemma 3.8. Let p ∈ H be such that (i) DHv(fs(p)) is integrable on [0, 1], (ii)

DHv(fs(p))DHfs(p) is integrable on [0, 1], (iii) F (p, s) = DHfs(p) at almost every s ∈ [0, 1]

(these properties hold simultaneously almost everywhere).

Now let G(s) := DHv(fs(p)). Then by (i) G is integrable on [0, 1]. Let s 7→ F (s) be defined

by F (s) = F (p, s). Then by (ii) F is continuous on [0, 1]. Furthermore, (iii) allows us to

replace σ → DHfσ(p) with σ 7→ F (σ) in the expression for F (p, s),

F (s) = F (p, s) =

∫ s

0
G(σ)F (σ) dσ.

Consequently, G and F so defined satisfy the hypotheses of Lemma 3.9. Let E ⊂ H be the

set at which properties (i)-(iii) hold. Then by Lemma 3.9, and our preceding observations,

at each s ∈ [0, 1],

log Jfs(p) = 2 log[detDHfs(p)] = 2 log[detF (s)]

= 2

∫ s

0
trDHv(fσ) dσ

= −2

∫ s

0

1

4
[X,Y ]φ(fσ(p)) dσ

= 2

∫ s

0
Tφ(fσ(p)) dσ,

almost everywhere in E, hence almost everywhere in H. u
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We will sometimes refer to trDHv = Tφ as the (formal) horizontal divergence of v, writing

divHv for the same. Constructing a φ so that the horizontal divergence of vφ has special

properties, in addition to φ satisfying the requirements of the current section, will occupy

our efforts in Section 4.
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4 Approximation

We will consider ourselves given a logarithmic potential, and construct a contact generating

potential φ for which the following hold. First, it meets the requirements of Proposition

3.3 so that it generates a quasiconformal flow. Second, Xφ, Y φ ∈ HW 1,r
loc (H), for all 1 ≤

r < ∞, so that the results of Subsection 3.2 hold, in particular Proposition 3.10. Third,

the horizontal divergence of vφ approximates the logarithmic potential in a suitable way, so

that we may use Proposition 3.10 to link the logarithmic potential to the Jacobian of the

quasiconformal flow mapping.

This section is the most granular, and some of the computations deserve to be described as

tedious. We begin, therefore, with some elementary results in order to avoid interrupting

the argument with these details later. The first is a mild extension of classical differentiation

under the integral, using a horizontal derivative, and tailored to our purpose.

Before stating the lemma, let us make the following agreement that is to hold throughout

the section: if V ∈ HH, and F is a real valued function whose domain is contained in the

n-fold product of H for some 1 ≤ n < ∞, then V F always refers to differentiation in the

first coordinate,

V F = VpF (p, q1, . . . , qn−1). (4.1)

We will be consistent in our use of p for this first coordinate, and continue our convention

that p = (x, y, t).

Lemma 4.1. Let V, W ∈ {X,Y }, and U ⊂ H×H be open. Let f : U×H→ R be continuous,

and such that, for each (p, q) ∈ U , there exists compact Ωp,q with f(p, q, u) = 0 whenever u

is outside Ωp,q. Let µ be a measure on H, absolutely continuous with respect to the Lebesgue
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measure. Define F : U → R by

F (p, q) =

∫
f(p, q, u) dµ(u).

Then F is continuous. Furthermore, if V f, WV f exist and are continuous on U ×H, then

V F, WV F exist, are continuous on U , and are given by

VpF (p, q) =

∫
Vpf(p, q, u) dµ(u),

VpWpF (p, q) =

∫
VpWpf(p, q, u) dµ(u).

Proof. F is a well defined, real valued function as, for each (p, q) ∈ U , we are integrating

a continuous function over a compact set. Fix some (p, q) ∈ U . Let Ω0 ⊂ U be a compact

neighborhood of (p, q). Given that f, V f , and VWf are continuous on the compact set

Ω0×Ω(p,q), then the absolute value of each achieves a maximum on this set. Let M > 0 be

the largest of these numbers. Then

|f(a, b, u)|, |Vaf(a, b, u)|, |WaVaf(a, b, u)| ≤M1Ωp,q(u)

for all (a, b, u) ∈ Ω0 × H. The function on the right is integrable over H with respect to

µ. Let (ak, bk) be a sequence in Ω0 with (ak, bk) → (p, q), and define fk(u) = f(ak, bk, u).

As f is jointly continuous in its first two coordinates, an application of the Dominated

Convergence Theorem gives that F is continuous on U .

As for the first horizontal derivative, V F , let h0 > 0 be such that for all h ∈ [−h0, h0] we

have

(p+ hVp, q) ∈ Ω0.
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For each u ∈ H define a function, Gu : [−h0, h0]→ R,

Gu(s) := f(p+ sVp, q, u).

At s ∈ (−h0, h0), should the limit exist, we would have

G′u(s) = lim
h→0

f(p+ (s+ h)Vp, q, u)− f(p+ sVp, q, u)

h
= Vpf(p+ sVp, q, u),

where this is all by definition. A first glance suggests we may be in trouble, as we have

only assumed derivatives in the horizontal directions of the first coordinate and, a priori,

we do not know that Vp is horizontal at p+ sVp. We note, however, that Xp depends only

on y, and Yp depends only on x. Consequently, as p + sVp does not change the relevant

coordinate, we have Vp = Vp+sVp . By assumption then, the derivative of Gu does exist at

s. Furthermore, if hk is a sequence in [−h0, h0] \ {0}, with hk → 0 as k →∞, then by the

mean value theorem

∣∣∣∣f(p+ hkVp, q, u)− f(p, q, u)

hk

∣∣∣∣ ≤ sup
(−h0,h0)

|G′u(s)| ≤M1Ωp,q(u),

for all k. Another application of the Dominated Convergence Theorem allows us to differ-

entiate under the integral sign as claimed. Continuity on U follows in a similar way to the

continuity of F itself.

Having arrived at this point, given that Vpf(p, q, u) must also be zero for u outside Ωp,q,

the claim regarding WV F follows from a repetition of the same procedures. u

The next lemma is very similar to the first, and so we state it without proof.

Lemma 4.2. Suppose f : H× H→ R is continuous, and Xf, Y f exist and are continuous

on H× H. Let

F (p) :=

∫
f(p, q)ψ(q) dq.
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for some ψ ∈ C∞0 (H).

Then F ∈ HC1(H), and

XpF (p) =

∫
Xpf(p, q)ψ(q) dq, YpF (p) =

∫
Ypf(p, q)ψ(q) dq.

The preceding two lemmas relied on joint continuity (of both function and derivative) to

allow differentiation under the integral in the classical sense. In the next lemma, we want

to differentiate under the integral, but only weakly so. We retain joint continuity of the

function, but swap joint continuity of the derivative for joint integrability of the weak

derivative.

Lemma 4.3. Suppose f : H × H → R is continuous, and the distributional derivatives

Xf, Y f are in Lrloc(H× H) for all 1 ≤ r <∞. Let

F (p) :=

∫
f(p, q)ψ(q) dq,

for some ψ ∈ C∞0 (H). Then F ∈ HW 1,r
loc (H) for all 1 ≤ r <∞, and

XpF (p) =

∫
Xpf(p, q)ψ(q) dq, YpF (p) =

∫
Ypf(p, q)ψ(q) dq.

Proof. Suppose V is one of X,Y . To clarify our assumption, for almost every q ∈ H, there

exists an (equivalence class of) almost everywhere defined function(s) on H, p 7→ Vpf(p, q),

such that ∫
f(p, q)Vpξ(p) dp = −

∫
Vpf(p, q)ξ(p) dp

for all ξ ∈ C∞0 (H). This gives a function, V f , defined almost everywhere on H × H. Let

such a ξ be given. Note that f ∈ L1
loc(H× H) as f is continuous on H× H. By assumption
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V f ∈ L1
loc(H× H). Clearly then, for ψ as in the statement of the lemma,

f(p, q)ψ(q)Vpξ(p), Vpf(p, q)ψ(q)ξ(p) ∈ L1(H× H).

This allows to use the Fubini theorem as we need to. A first application gives

∫ ∫
f(p, q)ψ(q) dq Vpξ(p) dp =

∫ ∫
f(p, q)ψ(q)Vpξ(p) dq dp

=

∫ ∫
f(p, q)Vpξ(p) dpψ(q) dq.

Next we use, for almost every q, the existence of the weak derivative V f , and a second

application of Fubini, to find that

∫ ∫
f(p, q)Vpξ(p) dpψ(q) dq = −

∫ ∫
Vpf(p, q)ξ(p) dpψ(q) dq

= −
∫ ∫

Vpf(p, q)ψ(q)ξ(p) dq dp

= −
∫ ∫

Vpf(p, q)ψ(q) dq ξ(p) dp.

Putting these two chains together, we find that F , as defined above, has a weak horizontal

derivative of the form claimed.

Moving onto the integrability, let 1 ≤ r < ∞, and Ω ⊂ H be some compact set. Applying

Hölder’s inequality to the finite measure |ψ(q)| dq, we find that

∫
Ω

∣∣∣∣∫ Vpf(p, q)ψ(q) dq

∣∣∣∣r dp .
∫

Ω

∫
|Vpf(p, q)|r|ψ(q)|dq dp,

the finiteness of which follows from our higher integrability assumption on V f . u

We now begin the construction in earnest. Throughout the remainder of the section, the

letters V, W will always be used to denote an element of {X,Y }, with the statements

independent of the particular choice.
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To be precise, we seek to approximate a given quasi -logarithmic potential u, which we may

assume is of the form u = Λψ ◦ g almost everywhere, for some quasiconformal mapping

g ∈ Q0(K), and ψ ∈ C∞0 (H). As our statements need hold only almost everywhere, we of

course work directly with Λψ ◦ g. Fix then ψ ∈ C∞0 (H) and g ∈ Q0(K). Recall this means

that g is a K-quasiconformal mapping such that g(0) = 0 and ‖g(q)‖ = 1 for at least one

point q ∈ H with ‖q‖ = 1.

We begin by working with g (ψ comes into play later). First we define a function that gives

a suitably smoothed version of (p, q) 7→ d(g(p), g(q)), from which it is possible to extract

some useful estimates.

To this end, fix a function ξ0 ∈ C∞0 (H), 0 ≤ ξ0 ≤ 1, ξ0(p) = 1 for p ∈ B(1/4), support(ξ0) ⊂

B(1/2). For q ∈ H, let Lq be left translation, Lq(p) = qp, and for u ∈ H define Γu : H×H→

H,

Γu(p, q) = δd(p,q)−1(Lu−1p).

Now define λg : H× H→ [0,∞),

λg(p, q) =


(∫
Jg(u)ξ0(Γu(p, q)) du

) 1
4 if p 6= q

0 if p = q.
(4.2)

The next lemma summarizes the important properties of λ, it is the first building block in

the construction of a suitable φ. As g is fixed for the remainder of the section, we will write

λ = λg.

Before proceeding, we remind the reader that convention (4.1) with regard to derivatives is

in place.

Lemma 4.4. λ is continuous, and such that

(i)

λ(p, q) 'K d(g(p), g(q)),
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for all p, q ∈ H;

(ii) if p 6= q, V λ, WV λ exist and are continuous at (p, q), with

|V λ(p, q)|
λ(p, q)

.K
1

d(p, q)

|WV λ(p, q)|
λ(p, q)

.K
1

d(p, q)2
.

Proof. For p 6= q we have, using the definition of λ, (2.10), and (2.7), that

λg(p, q) ≤

(∫
B(p,d(p,q)/2)

Jg

) 1
4

= |gB(p, d(p, q)/2)|
1
4 . d(g(p), g(q)),

and

λg(p, q) ≥

(∫
B(p,d(p,q)/4)

Jg

) 1
4

= |gB(p, d(p, q)/4)|
1
4 & d(g(p), g(q)).

Together these give the comparability as in statement (i), and the first inequality alone

gives that λg is continuous on the diagonal of H× H.

Continuity of λ off the diagonal, and the existence and continuity of V λ, and WV λ off the

diagonal, follow from Lemma 4.1 with measure dµ(u) = Jg(u)du. In order to complete the

proof of statement (ii) we make a series of estimates, beginning with the seed at the core

of λ, then working our way through each subsequent layer.

Now fix p, q ∈ H, p 6= q.

We develop some estimates under the assumption that u ∈ H satisfies 2d(p, u) ≤ d(p, q).

The following statements are to be considered evaluated at the point (p, q). In the following

Γiu and Liu−1 refer to the ith component function of Γu and Lu−1 respectively, whereas dk

refers to the kth power of the distance function. The frequent appearances of d4 arise simply

from the chain rule applied to d.

A computation shows that |V d4| . d3, and |WV d4| . d2.
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For i = 1, 2, we have

|V Γiu| .
|V Liu−1 |

d
+
|V d4|
d4

.

The statement for the third coordinate is

|V Γ3
u| .

|V L3
u−1 |
d2

+
|L3
u−1V d

4|
d6

.

It follows that

|V Γiu| . d−1 (4.3)

for all i ∈ {1, 2, 3}.

Further,

|WV Γiu| .
|WV Liu−1 |

d
+
|V Liu−1Wd4 +WLiu−1V d

4 + Liu−1WV d4|
d5

+
|Liu−1V d

4Wd4|
d9

,

when i = 1, 2, and

|WV Γ3
u| .

|WV L3
u−1 |

d2
+
|V L3

u−1Wd4 +WL3
u−1V d

4 + L3
u−1WV d4|

d6
+
|L3
u−1V d

4Wd4|
d10

.

Here the conclusion is

|WV Γiu| . d−2 (4.4)

for all i ∈ {1, 2, 3}.

As ξ0 is smooth and compactly supported, there are bounds on the size of its derivatives. As

we have fixed ξ0, and ξ0 does not depend on any varying quantity or function we introduce,

we may take these bounds to be absolute constants. With this in mind, observe that

V (ξ0 ◦ Γu) = (∇ξ0)(Γu) · V Γu, where we write V Γu for (V Γ1
u, V Γ2

u, V Γ3
u), so that, by (4.3),

|V (ξ0 ◦ Γu)| . d−1. (4.5)
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Similarly, WV (ξ0 ◦ Γu) =
∑3

i=1

[
((∇∂iξ0)(Γu) · V Γu)V Γiu + ∂iξ0(Γu)WV Γiu

]
, so that, this

time by (4.4),

|WV (ξ0 ◦ Γu)| . d−2. (4.6)

By the definition of ξ0, we have ξ0(Γu(p, q)) = 0 for all u such that 2d(p, u) > d(p, q).

Consequently, at our fixed (p, q), p 6= q,

λ(p, q) =

(∫
B(p,d(p,q)/2)

Jg(u)ξ0(Γu(p, q)) du

) 1
4

.

Noting by part (i) that λ > 0 off the diagonal, using Lemma 4.1 to differentiate under the

integral when necessary, and applying estimate (4.5),

|V λ|
λ

.
|V λ4|
λ4

.
1

d

∫
B(p,d/2) Jg∫
B(p,d/4) Jg

=
1

d

|gB(p, d/2)|
|gB(p, d/4)|

.

Using (2.7) again, |gB(p, d(p, q)/2)| . d(g(p), g(q))4, and |gB(p, d(p, q)/4)| & d(g(p), g(q))4.

Consequently,

|V λ|
λ

.
1

d

as required.

Similarly, but this time using (4.6) also,

|WV λ|
λ

.
|WV λ4|
λ4

+
|Wλ4V λ4|

λ8
.

1

d2

∫
B(p,d/2) Jg∫
B(p,d/4) Jg

+
1

d2

(∫
B(p,d/2) Jg∫
B(p,d/4) Jg

)2

,

from which

|WV λ|
λ

.
1

d2

follows in the same manner. u

With λ in hand, we continue to build on top of it. Let Ug := {(p, q) : p 6= g−1(q)}. Note,
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as g−1 is continuous, Ug is open. Define ηg : Ug → R,

ηg(p, q) = − log λ(p, g−1(q)). (4.7)

Observe that the curious form of the estimates on the derivatives of λ were because we had

logarithmic derivatives in mind. Write η = ηg. It follows from Lemma 4.4 part (i),

|η(p, q) + log[d(g(p), q)]| .K 1, (4.8)

so that

|η(p, q)| .K 1 + | log[d(g(p), q)]|. (4.9)

Using Lemma 4.1 again, we have that V η, WV η exist and are continuous on Ug, with

|V η(p, q)| = |V λ(p, g−1(q))|
λ(p, g−1(q))

.K
1

d(p, g−1(q))
, (4.10)

and

|WV η(p, q)| ≤ |WV λ(p, g−1(q))|
λ(p, g−1(q))

+
|Wλ(p, g−1(q))V λ(p, g−1(q))|

λ(p, q−1(q))2
.K

1

d(p, g−1(q))2
.

(4.11)

We are close to defining the potential φ, and choose notation to reflect this. Let φ̃g : H×H→

R be defined by,

φ̃g(p, q) =

 η(p, q)(g−1(q)−1p)3 if p 6= g−1(q)

0 if p = g−1(q).
(4.12)

Here (g−1(q)−1p)3 is the third component of g−1(q)−1p.

At various points in the remainder of the section, we will have use for the following elemen-

tary lemmas that we state without proof.
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Lemma 4.5. If u, u′ ∈ H then

|ui| ≤ ‖u‖, i = 1, 2, and |u3| ≤ ‖u‖2,

‖u‖ . 1 + |u|, and

|u−1u′| ≤ |u|+ |u′|+ |u||u′|.

Lemma 4.6. If s, s1, s2, r ∈ (0,∞), then

log+(s1s2) ≤ log+ s1 + log+ s2,

log+(s1 + s2) ≤ 1 + log+ s1 + log+ s2,

log+(sr) = r log+ s,

s . 1 + s log+ s, and log+ s . 1 + s log+ s.

We will need several regularity statements on φ̃ = φ̃g and prefer to break them into small

pieces.

Lemma 4.7. φ̃ is continuous on H× H.

Proof. If (p, q) ∈ H×H is such that p 6= g−1(q) then, by Lemma 4.4 part (i), λ(p, g−1(q)) 6= 0,

and so φ̃ is continuous at (p, q) by the continuity of log away from 0. Suppose, therefore,

that q = g(p), so that φ̃(p, q) = 0. Let (pk, qk) be a sequence of points limiting on (p, q),

and such that for all k, (pk, qk) ∈ Ug (the presence of points outside Ug would not disturb

the argument, as φ̃ is zero at these points, and we wish to show that φ̃(pk, qk) converges to

zero). Then, for all k,

φ̃(pk, qk) = η(pk, qk)(g
−1(qk)

−1pk)3.

It follows from (4.9) that

|φ̃(pk, qk)| . |(g−1(qk)
−1pk)3|+ | log[d(g(pk), qk)]||(g−1(qk)

−1pk)3|.
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It is obvious, given our assumptions, that the first term on the right hand side tends to zero

as k → ∞, therefore, we only need work on the second term. Lemma 4.5 reminds us that

for all u ∈ H we have |u3| ≤ ‖u‖2, and so

| log[d(g(pk), qk)]||(g−1(qk)
−1pk)3| ≤ | log[d(g(pk), qk)]|d2(pk, g

−1(qk)).

We complete the proof using the local Hölder continuity of quasiconformal mappings. As

we may assume the (pk, qk) are close to the point (p, q), then there exists 0 < R <∞ such

that for all k, g(pk), qk ∈ B(R). There exists, therefore, α > 0 such that for all k,

d(pk, g
−1(qk)) = d(g−1(g(pk)), g

−1(qk)) . dα(g(pk), qk).

Putting these last two observations together, we get

| log[d(g(pk), qk)]||(g−1(qk)
−1pk)3| . log[d(g(pk), qk)]|d2α(g(pk), qk)

and it is now easy to see that this goes to 0, as k →∞. u

Lemma 4.8. The derivatives Xφ̃, Y φ̃ exist and are continuous on H× H.

Proof. Existence and continuity is immediate from previous observations if we are at a point

(p, q) such that q 6= g(p). Let us consider these things at a point of the form (p, g(p)). We

will do the calculations for Xp, those for Yp are similar.

Working with the definition of the derivative we find

Xpφ̃(p, q) = lim
h→0

φ̃(pδh expX0, g(p))

h

= lim
h→0

η(pδh expX0, g(p))(p−1pδh expX0)3

h

= 0,
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and so the derivative exists. Let us consider continuity, the argument is similar to that of

the continuity of φ̃ itself. As before, let (pk, qk)→ (p, g(p)) through points in Ug. Then,

Xpk φ̃(pk, qk) = (Xpkη(pk, qk))(g
−1(qk)

−1pk)3 + 2η(pk, qk)(g
−1(qk)

−1pk)2.

Using (4.9), (4.10), and Lemma 4.5, this leads to,

|Xpk φ̃(pk, qk)| . d(pk, g
−1(qk)) + | log[d(g(pk), qk)]|d(pk, g

−1(qk)).

Now use Hölder continuity, as we did in Lemma 4.7, to conclude that the right hand side

goes to 0 as k →∞. It follows that Xpφ̃(p, q) is continuous on H×H, and the same is true

for Ypφ̃(p, q). u

Lemma 4.9. Let V,W ∈ {X,Y }. For each q ∈ H, the distributional derivative WV φ̃

defines, via (p, q) 7→WpVpφ̃(p, q), an element of Lrloc(H× H) for all 1 ≤ r <∞.

Proof. To elaborate on the statement of the lemma, our aim is to show that for each

q ∈ H there is an almost everywhere defined function p 7→ WpVpφ̃(p, q), such that for all

ξ ∈ C∞0 (H), ∫
WpVpφ̃(p, q)ξ(p) dp = −

∫
Vpφ̃(p, q)Wpξ(p) dp.

This defines almost everywhere a function (p, q) 7→WpVpφ̃(p, q) on H×H, and we show that

WV φ̃ ∈ Lrloc(H× H).

Let q ∈ H be given. We have seen that V φ̃q : p 7→ Vpφ̃(p, q) is continuous. Indeed, at

p 6= g−1(q), V φ̃q is continuously differentiable in all directions. It follows that V φ̃q is

absolutely continuous on almost every integral curve of the horizontal, left-invariant, vector

field determined by W . Of course, we have not defined the measure on this fibration of H,

the details can be found in [20], however, suffice to say g−1(q) lies on only one curve, and

a single curve has measure zero.
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It follows, see pages 41-42 of [20], that the almost everywhere defined classical derivative

WV φ̃q is the distributional derivative. Let us record those derivatives. Let u := g−1(q)−1p

so that, for p 6= g−1(q), φ̃ = u3η. Then, for p 6= g−1(q),

XXφ̃ = u3XXη + 4u2Xη XY φ̃ = u3XY η + 2u2Y η − 2u1Xη − 2η

Y Xφ̃ = u3Y Xη + 2u2Y η − 2u1Xη + 2η Y Y φ̃ = u3Y Y η − 4u1Xη

These expressions give measurable, almost everywhere defined functions on H× H, and we

now consider the local integrability. Given the estimates worked out above, (4.10), (4.11),

and using Lemma 4.5, we have in the case W = V that

|WV φ̃| .K 1

almost everywhere on H× H. In the case W 6= V , additionally using (4.9),

|WV φ̃| .K 1 + | log[d(g(p), q)]|,

almost everywhere on H× H. Clearly, we need only be concerned about the case W 6= V .

Let 1 ≤ r <∞. Let Ω1 ⊂ H be compact. We will show that

∫
Ω1

| log[d(g(p), q)]|r dp . h(q)

for h ∈ L1
loc(H). The claimed local integrability to the power r on H× H follows.

To this end, let r1 > 1 be the exponent appearing in the reverse Hölder inequality for g−1,
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(2.11) , and r2 the conjugate exponent. Let 0 < R <∞ be such that gΩ1 ⊂ B(R). Then

∫
Ω1

| log[d(g(p), q)]|r dp =

∫
gΩ1

| log[d(p, q)]|rJg−1(p) dp

≤
(∫

gΩ1

| log[d(p, q)]|rr2 dp

) 1
r2

(∫
gΩ1

Jg−1(p)r1 dp

) 1
r1

.

(∫
gΩ1

| log[d(p, q)]|rr2 dp

) 1
r2

(
1

|B(R)|

∫
B(R)

Jg−1(p)r1 dp

) 1
r1

.

(∫
gΩ1

| log[d(p, q)]|rr2 dp

) 1
r2

,

where the implied constants depend on a variety of things, but not q. Now let Ω2 ⊂ H be

compact, and observe using Hölder’s inequality that

∫
Ω2

(∫
gΩ1

| log[d(p, q)]|rr2 dp

) 1
r2

dq .

(∫
Ω2

∫
gΩ1

| log[d(p, q)]|rr2 dp dq

) 1
r2

.

Furthermore,

∫
gΩ1

| log[d(p, q)]|rr2 dp =

∫
gΩ1

| log ‖q−1p‖|rr2 dp =

∫
q−1gΩ1

| log ‖p‖|rr2 dp.

As Ω2 is compact, there exists 0 < R′ < ∞ such that q−1gΩ1 ⊂ B(R′) for all q ∈ Ω2.

Consequently, by formula (1.16),

∫
Ω2

∫
gΩ1

| log[d(p, q)]|rr2 dp dq .
∫
B(R′)

| log ‖p‖|rr2 dp .
∫ R′

0
| log(s)|rr2s3 ds <∞. u

We saw in Proposition 3.3 that one of the requirements for a vector field to have quasi-

conformal flow was a size constraint (actually basic to the long-time existence of the flow

rather than any geometric properties). We take an important step toward establishing such

a constraint in the next lemma. Given the nature of that estimate, it is at this point that

we start putting the Euclidean norm on points of the Heisenberg group (see the remark
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preceding the proof of Proposition 3.3).

Lemma 4.10. Given R > 0, for each q ∈ B(R), we have for all p ∈ H,

|φ̃(p, q)− 1

2
xXφ̃(p, q)− 1

2
yY φ̃(p, q)| .K,R 1 + |p| log+ |p|.

Proof. Let R > 0 be given. Let p, q ∈ H, with ‖q‖ < R. Recall that we are assuming

g ∈ Q0(K), and the same is therefore true of g−1. By Lemma 2.3, this means that both

gB(R), and g−1B(R) are contained in a ball, the radius of which depends only on K and R.

We will often, therefore, be able to replace a dependence on one of ‖q‖, ‖g(q)‖, or ‖g−1(q)‖

with a dependence on K and R. That said, given our aim, dependence of constants on

either of K or R will typically not be commented on.

Let

F := φ̃(p, q)− 1

2
xXφ̃(p, q)− 1

2
yY φ̃(p, q),

and R′ > 0 such that g−1B(R + 1) ⊂ B(R′). Such an R′ depends only on K and R as

guaranteed by Lemma 2.3.

Let u := g−1(q)−1p. We calculate,

F = (g−1(q)2x− g−1(q)1y)η − 1

2
u3(yY η + xXη) + u3η

= (g−1(q)2u1 − g−1(q)1u2 + u3)η − 1

2
u3(u2Y η + u1Xη + g−1(q)2Y η + g−1(q)1Xη).

It follows using (4.9), (4.10), and Lemma 4.5, that

|F | . |u|(1 + | log ‖q−1g(p)‖|) +
|u3|
‖u‖

(‖u‖+ 1)

. 1 + |u|+ |u|| log ‖q−1g(p)‖|.

We break the next part of the proof into two cases.

61



Case 1: ‖p‖ > R′. If ‖q−1g(p)‖ = d(g(p), q) < 1, then g(p) ∈ B(R + 1), and so p =

g−1(g(p)) ∈ B(R′), a contradiction. Therefore, in the case that ‖p‖ > R′ we have

|F | . 1 + |u|+ |u| log+ ‖q−1g(p)‖.

Case 2: ‖p‖ ≤ R′. Let R′′ > 0 be such that gB(R′) ⊂ B(R′′) (again, ultimately such an R′′

depends only on K and R). Then, using Lemma 2.4, there exists α > 0 dependent on K

only, such that

‖g−1(b)−1g−1(a)‖ . ‖b−1a‖α

whenever a, b ∈ B(R′′).

Assuming, as we may, that R′′ ≥ R′ ≥ R, we now have p, q, g−1(q), g(p) ∈ B(R′′). It

follows from 1.15 that |u| .R′′ ‖u‖, and so

|u| . ‖u‖ = ‖g−1(q)−1g−1(g(p))‖ . ‖q−1g(p)‖α.

We now subdivide case 2. Case 2 (a): ‖q−1g(p)‖ < 1. In this circumstance, we have

|u|| log ‖q−1g(p)‖| . sup
‖q−1g(p)‖<1

‖q−1g(p)‖α| log ‖q−1g(p)‖ . 1.

Case 2 (b): ‖q−1g(p)‖ ≥ 1. This time it is immediate that

|u|| log ‖q−1g(p)‖| = |u| log+ ‖q−1g(p)‖.

Consequently, in each case, we have

|F | . 1 + |u|+ |u| log+ ‖q−1g(p)‖. (4.13)

62



Using Lemma 4.5, we have

|u| = |g−1(q)−1p| ≤ |g−1(q)|+ |p|+ |g−1(q)||p| . 1 + |p|. (4.14)

Furthermore, (2.8) tells us that

‖q−1g(p)‖ . 1 + ‖g(p)‖ . 1 + ‖p‖K2/3
,

which, combined with Lemma 4.6, gives

log+ ‖q−1g(p)‖ . 1 + log+ ‖p‖

. 1 + log+ |p|.

Putting this last observation together with (4.13) and (4.14), we find

|F | . 1 + |p|+ |p| log+ |p|

. 1 + |p| log+ |p|. u

At this point we bring ψ ∈ C∞0 (H) into the picture. Recall that ψ is the density of the

measure associated with our given quasi-logarithmic potential. Let R > 0 be such that

support(ψ) ⊂ B(R).

Define φ1
g,ψ : H→ R,

φ1
g,ψ(p) =

∫
φ̃(p, q)ψ(q) dq. (4.15)

We established regularity of φ̃ in such a way that it now transfers easily to φ1 = φ1
g,ψ.

Lemma 4.11. φ1 ∈ HC1(H).

Proof. This follows from Lemmas 4.2, 4.7 and 4.8. u
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Lemma 4.12. Xφ, Y φ ∈ HW 1,r
loc (H) for all 1 ≤ r ≤ ∞ and, if V,W ∈ {X,Y },

VpWpφ
1(p) =

∫
VpWpφ̃(p, q)ψ(q) dq.

Proof. This follows from Lemmas 4.3 and 4.9. u

We remind the reader that we write vφ for the vector field generated by potential φ as in

(3.1). Letting

vφ1 = v1∂x + v2∂y + v3∂t (4.16)

define v1, v2, v3, set

φ2(x, y, t) = c1 − 4c2y + 4c3x, (4.17)

with

(c1, c2, c3) := (v1(0), v2(0), v3(0)).

Lastly, define φg,ψ : H→ R,

φg,ψ(p) = φ1(p)− φ2(p). (4.18)

We have finished adding layers, and are now in a position to demonstrate that this last

function has all desired properties of an approximating contact generating potential. We

separate this conclusion into two propositions, one summarizing the important properties

of the vector fields, and the other the important properties of the flow. As the concluding

results of this section, we restate our assumptions in each.

Proposition 4.13. Given g ∈ Q0(K) for some K ≥ 1, and ψ ∈ C∞0 (H) with support(ψ) ⊂

B(R) for some R > 0, define φ = φg,ψ as in (4.2), (4.7), (4.12), (4.15), (4.17), and (4.18).

Then

|vφ(p)| .K,R ‖ψ‖1(1 + |p| log+ |p|),
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for all p, and

divHvφ = Λψ ◦ g + ζ

with ζ ∈ L∞(H) such that ‖ζ‖∞ .K ‖ψ‖1.

Proof. With R > 0 as in the statement, we have

φ1(p) =

∫
B(R)

φ̃(p, q)ψ(q) dq.

Using Lemma 4.2, with v1, v2, v3 defined as in (4.16), we find that

v3(p) =

∫
B(R)

(
φ̃(p, q)− 1

2
xXφ̃(p, q)− 1

2
yY φ̃(p, q)

)
ψ(q) dq.

Applying Lemma 4.10 we have

|v3(p)| .K,R ‖ψ‖1(1 + |p| log+ |p|).

The computations for v1, v2 are similar, but easier, and so we omit them.

As

vφ2 = c2∂x + c3∂y + (c1 − 2c2y + 2c3x) ∂t,

we find

|vφ| ≤ |vφ1 |+ |vφ2 |

. ‖ψ‖1(1 + |p| log+ |p|) + ‖ψ‖1(1 + |p|)

. ‖ψ‖1(1 + |p| log+ |p|).

Moving onto the second part of the conclusion, let p, q ∈ H be such that p 6= g−1(q). Define
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u = g−1(q)−1p. Then,

T φ̃ = η + u3Tη

= η − 1

4
u3[X,Y ]η.

Consequently, using Lemma 4.12,

Tφ1 = Λψ ◦ g + ζ,

where

ζ(p) =

∫ [
η(p, q) + log[d(g(p), q)]− 1

4
u3(XY − Y X)η(p, q)

]
ψ(q) dq.

ζ is easily seen to be measurable, and it follows from (4.8), (4.11), and Lemma 4.5 that ζ

is essentially bounded,

‖ζ‖∞ .K ‖ψ‖1.

As Tφ2 = 0, the proof is concluded by remembering that divHvφ = Tφ. u

Proposition 4.14. Assume the same hypotheses as Proposition 4.13. Then vφ generates

a well defined flow of homeomorphisms. Further, if hs, 0 ≤ s < ∞, are the time-s flow

mappings of vφ, then for all s, hs(0) = 0, and hs is quasiconformal, with K(hs) ≤ eC‖ψ‖1s,

C ≥ 0 dependent on K only. Lastly, for all s ∈ [0, 1],

log Jhs(p) = 2

∫ s

0
Tφ(hσ(p)) dσ, (4.19)

at almost every p ∈ H.

Proof. The coefficients c1, c2, c3 were chosen precisely so that vφ(0) = 0, and consequently,

hs(0) = 0 for all s also.

Deducing that the flow is quasiconformal, with the required estimates on the dilatation,
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comes down to verifying that everything is in place in order to invoke Proposition 3.3.

Given the niceness of φ2, continuity of φ and its first horizontal derivatives follows from

Lemma 4.11.

The size constraint on the vector field itself was contained in Proposition 4.13. Computa-

tions that are similar to (but easier than, and so we omit them) Lemma 4.10 give that

|φ(p)| . ‖p‖2 log ‖p‖,

and

|Zφ(p)| . ‖p‖ log ‖p‖.

Let u := g−1(q)−1p. Then

<ZZφ̃ = u1Y η + u2Xη + u3(1/4)(XX − Y Y )η,

and

=ZZφ̃ = u1Xη − u2Y η − u3(1/4)(XY − Y X)η.

Consequently, using Lemmas 4.2 and 4.3, (4.10), (4.11), and Lemma 4.5,

√
2‖ZZφ1‖∞ .K ‖ψ‖1.

Further,
√

2‖ZZφ2‖∞ = 0,

which should come as no surprise, as φ2 generates a flow of left translation mappings which

are conformal. The estimate on the dilatation of the flow mapping follows.

That (4.19) holds follows from Proposition 3.10 so long as we have the required integrability

of the weak second horizontal derivatives of φ. This follows from Lemma 4.12. u
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5 Iteration and Convergence

With the large part of the technical work behind us, we are ready to construct the mappings

which achieve comparability.

In a first case, the desired mapping f is found in the limit of a sequence of mappings fm,

with each fm the composition of m mappings, the large part of each generated as the vector

flow over a time step of length 1/m. The arguments consider the competition between an

accumulation of a quantity in one direction, verses the contracting effects of a diminishing

time step in the other. We will see that, by keeping the size of our measures small enough,

we have enough uniformity in our estimates, that the contracting effect of the time step

wins every time.

We begin, however, by stating those results on logarithmic potentials we need in the sequel.

5.1 Logarithmic Potentials

Statements analogous to those below were proved in the Euclidean case in [4]. Those proofs

go through unchanged (with a like for like replacement of corresponding objects) and so we

do not repeat them here.

Recall that, if dµ(q) = ψ(q) dq for a measurable function ψ, then we will often write Λψ in

place of Λµ, where Λµ is defined in (1.5).

Lemma 5.1. Let ψ ∈ L∞(H) with compact support. Then Λψ is Lipschitz continuous.

Occasionally we will need to smooth a measure. Let Ψ ∈ C∞0 (H) be such that support(Ψ) ⊂

B(1), and
∫

Ψ = 1. Now, for each k ∈ N, let

Ψk(p) := k4Ψ(δk(p)). (5.1)
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Given a finite, signed Radon measure µ, the kth smooth regularization of µ is

ψk(p) =

∫
Ψk(q

−1p) dµ(q). (5.2)

Lemma 5.2. Suppose u = Λµ ◦ g almost everywhere is a quasi-logarithmic potential, g

a K-quasiconformal mapping. For each k ∈ N define uk = Λψk ◦ g where ψk is the kth

smooth regularization of µ as in (5.2). Then there exists θ = θ(K) > 0, such that, for every

0 < β < θ/‖µ‖, the function eβu is locally integrable, and for every ball B ⊂ H, we have

∫
B
|eβuk − eβu| → 0 as k →∞.

Lemma 5.3. Suppose u = Λµ ◦ g almost everywhere is a quasi-logarithmic potential, g a

K-quasiconformal mapping. For each k ∈ N define uk = Λµk ◦ g where µk := µ
∣∣
B(k)

. Then

there exists θ = θ(K) > 0, such that, for every 0 < β < θ/‖µ‖, the function eβu is locally

integrable, and for every ball B ⊂ H, we have

∫
B
|eβuk − eβu| → 0 as k →∞.

5.2 Reduction of the Main Theorem

We may reduce Theorem 1.2 to the following proposition.

Proposition 5.4. Given K ≥ 1, there exist ε = ε(K) > 0, and K ′ = K ′(K) ≥ 1, such

that, if u is a quasi-logarithmic potential, u = Λµ ◦ g almost everywhere, with ‖µ‖ ≤ ε, and

g ∈ Q0(K), then there is a K ′-quasiconformal mapping f with

Jf 'K e2u

almost everywhere.

69



Note that the only difference between this proposition and Theorem 1.2 is that we assume

g ∈ Q0(K) as opposed to being simply a K-quasiconformal mapping. Recall that g ∈ Q0(K)

if and only if g is a K-quasiconformal mapping such that g(0) = 0 and there exists pg ∈ S(1)

with g(pg) ∈ S(1).

Let us assume Proposition 5.4 and explain why it implies Theorem 1.2. Let K ≥ 1 be given,

ε > 0 as in Proposition 5.4, and u a quasi-logarithmic potential, u = Λµ ◦ g almost every-

where, with µ a finite, signed Radon measure such that ‖µ‖ ≤ ε, and g a K-quasiconformal

mapping.

Pick q0 ∈ H such that ‖g(g−1(0)q0)‖ = 1. It is automatic that q0 6= 0. Let p0 := δ‖q0‖−1(q0).

Note that ‖p0‖ = 1, and q0 = δ‖q0‖(p0). Now define

h(p) = g(g−1(0)δ‖q0‖(p)).

As g is K-quasiconformal, so is h. Also, as is easily checked, h ∈ Q0(K), with ph = p0.

Let uh = Λµ ◦ h almost everywhere. It follows from Proposition 5.4 that there exists a

quasiconformal mapping fh such that

Jfh 'K e2uh (5.3)

almost everywhere, with K(f) dependent on K only.

Given the definition of h, we see that

g = h ◦ δ‖q0‖−1 ◦ Lg−1(0)−1 . (5.4)

If we define

f = δ‖q0‖ ◦ fh ◦ δ‖q0‖−1 ◦ Lg−1(0)−1 ,

then f is quasiconformal, with essential dilatation equal to that of fh. It is also true that,
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at points of existence,

Jf (p) = Jfh(δ‖q0‖−1(g−1(0)−1p)). (5.5)

Given δ‖q0‖−1 ◦ Lg−1(0)−1 preserves sets of measure zero, it follows from (5.3) that

Jfh(δ‖q0‖−1(g−1(0)−1p)) ' e2uh(δ‖q0‖−1 (g−1(0)−1p))

at almost every p in H. Using (5.4) and (5.5) this is seen to be equivalent to

Jf ' e2u

almost everywhere, which is the conclusion of Theorem 1.2.

We break the proof of Proposition 5.4 into three cases, of increasing generality, first with u

of the form u = Λψ ◦ g almost everywhere, with ψ ∈ C∞0 (H), then µ compactly supported,

and finally general µ.

5.3 dµ(q) = ψ(q) dq, with ψ ∈ C∞
0 (H)

To be precise, in this subsection, we will prove the following.

Proposition 5.5. Given K ≥ 1, there exists ε = ε(K) > 0 such that, if u is a quasi-

logarithmic potential, u = Λψ ◦ g almost everywhere, with ψ ∈ C∞0 (H), ‖ψ‖1 ≤ ε, and

g ∈ Q0(K), then there exists a quasiconformal mapping f with

Jf 'K e2u

almost everywhere. The dilatation K(f) depends on K = K(g) only.

In this case, identification of the required ε > 0 comes from the following lemma, which is

essentially Lemma 6.1 of [4].
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Lemma 5.6. Suppose Fs, s ∈ [0, 1], is a family of quasiconformal mappings, G is a con-

tinuous, positive, increasing, and locally Lipschitz function, and ε > 0 is such that

ε <

∫ ∞
0

1

G(σ)
dσ.

Define

Φ(s) = sup
0≤σ≤s

logK(Fσ), 0 ≤ s ≤ 1,

and assume that for each m ∈ N, 1 ≤ j ≤ m,

sup
j−1
m
≤σ≤ j

m

K(Fσ) ≤ exp

[
ε

m
G

(
Φ

(
j − 1

m

))]
sup

0≤σ≤ j−1
m

K(Fσ).

Then F1 is K-quasiconformal with K dependent only on G.

Proof. As exp
[
ε
mG

(
Φ
(
j−1
m

))]
≥ 1 we have

sup
0≤σ≤ j−1

m

K(Fσ) ≤ exp

[
ε

m
G

(
Φ

(
j − 1

m

))]
sup

0≤σ≤ j−1
m

K(Fσ),

which coupled with our assumption gives

sup
0≤σ≤ j

m

K(Fσ) ≤ exp

[
ε

m
G

(
Φ

(
j − 1

m

))]
sup

0≤σ≤ j−1
m

K(Fσ).

It follows that

Φ

(
j

m

)
≤ Φ

(
j − 1

m

)
+

ε

m
G

(
Φ

(
j − 1

m

))
.

Given our assumptions on G and the choice of ε, the equation

Φ′0(s) = εG(Φ0(s)), Φ0(0) = 0, 0 ≤ s ≤ 1,

has a unique, finite solution. Note that Φ is increasing. We now show by induction that
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Φ(j/m) ≤ Φ0(j/m) for all j = 0, . . . ,m.

As Φ(0) = 0 it is trivially valid for j = 0. Further, if true for some 0 ≤ j − 1 ≤ m − 1 we

find

Φ

(
j

m

)
≤ Φ

(
j − 1

m

)
+

ε

m
G

(
Φ

(
j − 1

m

))
≤ Φ0

(
j − 1

m

)
+

ε

m
G

(
Φ0

(
j − 1

m

))
= Φ0

(
j − 1

m

)
+ ε

∫ j/m

(j−1)/m
G

(
Φ0

(
j − 1

m

))
ds

≤ Φ0

(
j − 1

m

)
+ ε

∫ j/m

(j−1)/m
G(Φ0(s)) ds

= Φ0

(
j

m

)
.

In conclusion, Φ(1) ≤ Φ0(1), and Φ0 depends only on G. u

Let us now fix, for the remainder of this subsection, K ≥ 1, ψ ∈ C∞0 (H), and g ∈ Q0(K).

We will write u for a function equal to Λψ ◦ g almost everywhere, and let p0 ∈ S(1) be a

point such that g(p0) ∈ S(1).

In what follows, m is always a natural number, and once such an m has been introduced,

j is a natural number between 1 and m. We reserve s for our time variable s ∈ [0, 1].

If F ∈ Q0(K ′′) for some K ′′ ≥ 1, let φ(F ) = φF,ψ and v(F ) = vφ(F ) be as in Propositions

4.13 and 4.14.

For each m we run the following iterative procedure (omitting instructions setting and

increasing a counter on the assumption that the intention is clear). Step 0 is to define fm,0
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as the identity. Then

step j =


vm,j := v(g ◦ f−1

m,j−1),

hm,j is defined to be the time-(1/m) flow mapping of vm,j ,

fm,j := δ‖hm,j(fm,j−1(p0))‖−1(hm,j ◦ fm,j−1).

We define fm to be the mapping fm,m created by this process. In truth, given our agreed

notation, for this algorithm to be well defined, we need to know that each g ◦ f−1
m,j−1 is in

Q0(K ′′) for some K ′′. This observation is included in the proof of the following.

Proposition 5.7. There exists ε = ε(K) > 0 such that, if ‖ψ‖1 ≤ ε, then the fm subconverge

to a K ′-quasiconformal mapping with K ′ dependent on K only.

Proof. Obviously the identity is a quasiconformal mapping, fixing both 0 and the unit

sphere. We have, by Proposition 4.14, that hm,1 is a quasiconformal mapping fixing 0.

Consequently, as dilations are quasiconformal, also fix 0, and the dilation in play is designed

to make ‖fm,1(p0)‖ = 1, we have that fm,1 ∈ Q0(Km,1) for some Km,1 ≥ 1.

Furthermore, as

‖g ◦ f−1
m,1(fm,1(p0))‖ = ‖g(p0)‖ = 1,

then g ◦ f−1
m,1 ∈ Q(KKm,1).

Working iteratively, given m, j, we see that fm,j ∈ Q0(Km,j) for some 1 ≤ Km,j <∞, and

in particular, this is true of fm. Define Km = Km,m. Actually, more is true, as for all m

we can take the same point, p0 ∈ S(1), as the point for which ‖fm(p0)‖ = 1.

Given the preceding observations, it follows from Lemma 2.6 that we will have subconver-

gence if we can demonstrate that there exists K ′ such that each Km ≤ K ′, so that each fm

is K ′-quasiconformal. This is where Lemma 5.6 comes in.
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For each m, define the family of quasiconformal mappings, fm(·, s), s ∈ [0, 1] as follows,

if s ∈
[
j − 1

m
,
j

m

)
then fm(·, s) = hm,j,s ◦ fm,j−1,

where hm,j,s is the time-s flow mapping associated to vm,j (so that, in our algorithm above,

hm,j = hm,j,1/m).

Given that dilations are 1-quasiconformal, it follows that

sup
j−1
m
≤σ≤ j

m

K(fm(·, σ)) ≤ sup
0≤σ≤ 1

m

K(hm,j,σ)K(fm,j−1)

≤ sup
0≤σ≤ 1

m

K(hm,j,σ) sup
0≤σ≤ j−1

m

K(fm(·, σ)).

We only, therefore, need express sup0≤σ≤ 1
m
K(hm,j,σ) in an appropriate form, and we will

be ready to invoke the lemma.

First of all, it follows from Proposition 4.14, that for s ∈ [0, 1/m],

K(hm,j,s) ≤ eC‖ψ‖1s ≤ e
C‖ψ‖1
m ,

for some constant 0 ≤ C = C(KKm,j−1) <∞, with dependence as indicated.

Omitting the details, it can be shown that

C(KKm,j−1) ≤ A1e
A2(KKm,j−1)

2
3

for absolute constants A1, A2 > 0. Let us define

G(r) = A1 exp

[
A2K

2
3 exp

(
2

3
r

)]
, r ∈ [0,∞). (5.6)
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Then C(KKm,j−1) ≤ G(logKm,j−1), and, as G is an increasing function, it follows that

C(KKm,j−1) ≤ G

 sup
0≤σ≤ j−1

m

logK(fm(·, σ))

 .

Note also that G > 0, and G ∈ C1([0,∞)), so it is locally Lipschitz. To summarize, G,

and fm(·, s) meet the requirements of Lemma 5.6, with G dependent on K only. We find

therefore, that so long as ‖ψ‖1 ≤ ε, where ε > 0 is as in that Lemma, then for all m, fm is

K ′-quasiconformal, with K ′ dependent on K only. u

Let us add to our standing assumptions that ‖ψ‖1 ≤ ε, where ε = ε(K) > 0 is as given by

Proposition 5.7.

Using Lemma 2.6, Proposition 5.7 gives us a subsequence of the fm (that we continue to

denote fm) which converge to a K ′-quasiconformal mapping f . This mapping f is, modulo

a small adjustment later, our candidate for comparability.

We will hereon use the words uniform, and uniformly, to indicate that something is inde-

pendent of m and j.

The proof of Proposition 5.7 gives that the g ◦ f−1
m,j−1 are uniformly

K ′′ := KK ′-quasiconformal. This is crucial because it provides uniform estimates on the

vm,j . To be more precise, recall that by Proposition 4.13, for each vm,j we have

u ◦ f−1
m,j−1 = divHvm,j + ζm,j

for an essentially bounded ζm,j , with ‖ζm,j‖∞ .KKm,j−1 ‖ψ‖1. With our assumption on

‖ψ‖1, and our uniform bound on KKm,j−1, we now have,

‖ζm,j‖∞ .K 1. (5.7)
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Proposition 4.13 also tells us that

|vm,j(p)| .KKm,j−1,R ‖ψ‖1(1 + |p| log+ |p|),

and it now follows that we have the uniform estimate,

|vm,j(p)| .K,R 1 + |p| log+ |p|. (5.8)

Proof of Proposition 5.5. We may assume for simplicity that u = Λψ ◦ g everywhere, for

clearly if we prove almost everywhere comparability for such a u, it also holds for any

function equal to Λψ ◦ g almost everywhere. For each m we have, at almost every p,

0 < Jfm(p) <∞, with

Jfm(p) =

m∏
j=1

‖hm,j(fm,j−1(p0))‖−4Jhm,j (fm,j−1(p)).

Consequently, at those same p,

log(Jfm(p)) =
m∑
j=1

log(Jhm,j (fm,j−1(p)))− 4
m∑
j=1

log(‖hm,j(fm,j−1(p0))‖).

From now on cm := −4
∑m

j=1 log(‖hm,j(fm,j−1(p0))‖). As above, we write hm,j,s for the

time-s flow mapping generated by vm,j , and we suppress dependence on the point p. Using

Propositions 4.13 and 4.14, we may develop this as

log(Jfm) = 2
m∑
j=1

∫ 1/m

0
divHvm,j(hm,j,σ(fm,j−1)) dσ + cm

= 2

m∑
j=1

∫ 1/m

0
(u ◦ f−1

m,j−1)(hm,j,σ(fm,j−1))− ζm,j(hm,j,σ(fm,j−1)) dσ + cm.
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At those same points

| log Jfm − 2u− cm|

≤ 2

m

m∑
j=1

[
sup

s∈[0,1/m]
|(u ◦ f−1

m,j−1)(hm,j,s(fm,j−1))− u|

+ sup
s∈[0,1/m]

|ζm,j(hm,j,s(fm,j−1))|
]

≤ 2

m

 m∑
j=1

sup
s∈[0,1/m]

|(u ◦ f−1
m,j−1)(hm,j,s(fm,j−1))− u|

+ C1,

(5.9)

where C1 > 0 is a constant, dependent only on K, the appearance of which is justified by

the uniform essential boundedness of ζm,j , as in (5.7).

Given that ψ ∈ C∞0 (H), it follows from Lemma 5.1 that Λψ is Lipschitz continuous. We

have, therefore,

|(u ◦ f−1
m,j−1)(hm,j,s(fm,j−1))− u| = |Λψ(g(f−1

m,j−1(hm,j,s(fm,j−1))))− Λψ(g)|

. d(g(f−1
m,j−1(hm,j,s(fm,j−1))), g).

(5.10)

Let ξ ∈ C∞0 (H), ξ ≥ 0,
∫
ξ = 1, and D > 0 such that support(ξ) ⊂ B(D). Now, the fm,j−1

are uniformly K ′-quasiconformal, and as already noted, satisfy the hypotheses of Lemma

2.3. Consequently, there is a D′ > 0 such that for all m, j,

fm,j−1(B(D)) ⊂ B(D′).

Now hm,j,s is generated by vm,j , and the uniform estimates on the size of vm,j , as in (5.8),

mean, using (3.5), that there exists D′′ > 0 such that for all m, j, s (with s ∈ [0, 1/m])

hm,j,s(B(D′)) ⊂ B(D′′).

Using Lemma 2.4, we have Hölder continuity uniformly for the g ◦ f−1
m,j−1 on B(D′′), and so
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there exists α > 0 such that for all m, j, at every point of B(D)

d(g(f−1
m,j−1(hm,j,s(fm,j−1))), g) = d(g(f−1

m,j−1(hm,j,s(fm,j−1))), g(f−1
m,j−1(fm,j−1)))

. d(hm,j,s(fm,j−1), fm,j−1)α.

(5.11)

Remembering that

hm,j,s(p) = p+

∫ s

0
vm,j(hm,j,σ(p)) dσ,

and using that the vm,j are uniformly bounded on B(D′′), then we have the Euclidean

estimate

|hm,j,s(fm,j−1)− fm,j−1| .
1

m

on B(D). Using (1.15), we have

d(hm,j,s(fm,j−1), fm,j−1) .D′′ |hm,j,s(fm,j−1)− fm,j−1|
1
2 . (5.12)

Putting together (5.10), (5.11), and (5.12), we have for points of B(D) that

|(u ◦ f−1
m,j−1)(hm,j,s(fm,j−1))− u| .

(
1

m

)α/2
.

Using this in (5.9), we have, therefore, constant C2 > 0 such that, at almost every p ∈ B(D),

| log Jfm − 2u− cm| ≤ C2m
−α/2 + C1,

or,

e−C2m−α/2−C1e2u ≤ e−cmJfm ≤ eC2m−α/2+C1e2u. (5.13)

It is worth noting that C2 depends on the radius of support of ψ, in addition to K, however,

C2 is about to vanish as we take the limit. C1, which survives the limit, depends on K only,

as noted above.
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Multiplying (5.13) by ξ and integrating, we find

e−(C2m−α/2+C1)

∫
ξe2u ≤ e−cm

∫
ξJfm ≤ eC2m−α/2+C1

∫
ξe2u. (5.14)

Using Lemmas 2.5 and 2.6, lim supm→∞
∫
ξJfm =

∫
ξJf , which given that Jf is locally

integrable and almost everywhere greater than zero, is finite and positive. Taking the

lim sup as m→∞ of (5.14), we therefore find that,

e−C1

∫
ξe2u ≤ lim sup

m→∞
(e−cm)

∫
ξJf ≤ eC1

∫
ξe2u.

As
∫
ξJf < ∞ and e−C1

∫
ξe2u > 0 we must have lim supm→∞(e−cm) > 0. Similarly,

given that eC1
∫
ξe2u < ∞ and

∫
ξJf > 0, we must have lim supm→∞(e−cm) < ∞. Let

c0 := lim supm→∞ e
−cm .

This being true for all ξ ∈ C∞0 (H), ξ ≥ 0,
∫
ξ = 1, then it is true for the mollifier ξq,r, of

center q ∈ H, and radius r > 0 (we may use the standard ‘Euclidean’ mollifiers here, there

is no need for ‘twisted convolution’). As both Jf and e2u are locally integrable, they have

Lebesgue points almost everywhere. At a common Lebesgue point q, we have,

∫
ξq,re

2u,

∫
ξq,rJf → e2u(q), Jf (q),

respectively, as r → 0. See [35] for these last couple of points. Hence, putting it all together,

we find that at almost every point

c0Jf ' e2u.

It might seem natural to include c0 in the implied constant of comparability. It is likely,

however, that c0 depends, not only on K, but on the radius of support of ψ. It is important

for the next steps that the constant of comparability does not depend on this radius. This

is, however, easy to take care of. Post composing f with the dilation δr0 , r4
0 := c0, and
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calling the result f again, we have a K ′-quasiconformal mapping f such that

Jf ' e2u

almost everywhere, as required, and with the implied constant dependent on K only. u

5.4 Conclusion of the Proof of Theorem 1.2

Moving from the special case of the preceding subsection to the general case now follows as

it does in the Euclidean case. With Proposition 5.5 in place, progress rests principally on

Lemmas 5.2 and 5.3. We first prove

Proposition 5.8. Given K ≥ 1, there exist ε = ε(K) > 0, and K ′ = K ′(K) ≥ 1, such

that, if u is a quasi-logarithmic potential, u = Λµ ◦ g almost everywhere, with µ compactly

supported, ‖µ‖ ≤ ε0, and g ∈ Q0(K), then there is a K ′-quasiconformal mapping f with

Jf 'K e2u

almost everywhere.

Proof. Let u = Λµ◦g almost everywhere be a quasi-logarithmic potential, with µ compactly

supported, and g ∈ Q0(K). Let ψk be a sequence of smooth regularizations of µ, as in (5.2).

Note that, given our assumption that µ is compactly supported, the ψk are not only smooth,

but also compactly supported. Let uk := Λψk ◦ g.

Proposition 5.5 tells us there exists ε′ > 0 such that if ‖µ‖ ≤ ε′, so that each ‖ψk‖1 ≤ ε′,

then for each k, there is a quasiconformal mapping fk, with fk(0) = 0, such that

Jfk ' e
2uk , (5.15)

81



almost everywhere. The dilatation of fk and the constant of comparability in (5.15) are

both dependent only on K, the dilatation of the given g, hence are each independent of k.

If θ = θ(K) > 0 is as given by Lemma 5.2, and we let ε′′ > 0 be defined by ε′′ = θ/2, then,

if ‖µ‖ ≤ ε′′, so that each ‖ψk‖1 ≤ ε′′, then e2u ∈ L1
loc(H), and for any ball B ⊂ H,

∫
B
|e2uk − e2u| → 0 as k →∞.

It follows that
∫
B(1) e

2uk →
∫
B(1) e

2u, and so, together with (5.15),

Jfk ' 1

independently of k. Using Lemma 2.7 we may, therefore, pass to a subsequence that con-

verges locally uniformly to a K ′-quasiconformal mapping, with K ′ = K ′(K).

Weak convergence of the Jacobians, as in the proof of Proposition 5.5, gives

Jf ' e2u,

almost everywhere. The proof is therefore concluded by identifying the required ε > 0 as

ε = min{ε′, ε′′}. u

We are now ready to conclude the proof of Proposition 5.4, and so the proof of Theorem

1.2.

Proof of Proposition 5.4. Let u = Λµ◦g almost everywhere be a quasilogarithmic potential,

with g ∈ Q0(K). Given the case just dealt with, it will come as no surprise that we are

going to restrict µ, so that its restriction is compactly supported, then show that our desired

conclusions hold in the limit, as we let the support grow.

Define, therefore, µk = µ
∣∣
B(k)

. Let uk := Λµk ◦ g. If ‖µ‖ ≤ ε where ε > 0 is as in
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Proposition 5.8, then (obviously) also ‖µk‖ ≤ ε for all k. By Proposition 5.8, there exist

K ′-quasiconformal mappings, K ′ = K ′(K), fk, with fk(0) = 0, and

Jfk ' e
2uk

almost everywhere, independently of k. Now use Lemma 5.3 and proceed exactly as in the

previous case. u
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6 Weighted Sub-Riemannian Metrics

In this section we assume that ω ≥ 0 is continuous, and comparable to a quasiconformal

Jacobian. We then show that (H, g0) and (H, g) are bi-Lipschitz equivalent when g =
√
ωg0.

Our arguments are inspired by those of [31].

Recall that we write (H, g0) for the Heisenberg group equipped with its canonical sub-

Riemannian metric, g0, and associated Carnot-Caratheodory distance function, ρ, as de-

scribed in Section 1.3. Our use of (H, g), with g =
√
ωg0, is a slight abuse of notation, as

(see below) we replace not only the metric, but also the curve families defining the distance

function. We are, however, justified in describing the abuse as slight, in that, were we also

to replace the curve families in our earlier definition of (H, g0) with those used below, then

the resulting distance function would be identical to ρ.

The following definition is motivated by our later reliance on the curve families in H con-

structed in [21]. Given this reliance, we need curves of this type to be considered among

the competitors over which the distance function is to be defined.

Definition 6.1. Let p, q ∈ H, b ∈ [0,∞), γ : [0, b] → H a continuous mapping, E ⊂ [0, b]

a Lebesgue null set, N ∈ N ∪ {∞}, {(ak, bk)}Nk=1 a collection of open intervals, and {γk :

[ak, bk]→ H}Nk=1 horizontal curves, such that

1. γ(0) = p, γ(b) = q,

2. for all s ∈ [0, b] \ E, γ(s) =
∑N

k=1 γk(s)1(ak,bk)(s),

3.
∑N

k=1

∫ bk
ak
|γ′k(s)|H ds <∞.

Then we say
(
b, γ, E,N, {(ak, bk)}Nk=1, {γk : [ak, bk]→ H}Nk=1

)
is an admissible curve for

(p, q).

See Section 1.3 for the definition of horizontal curve. We will call such a collection an
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admissible curve if it is an admissible curve for some (p, q). Further, we will often denote

the admissible curve (b, γ, E, . . .), by γ only.

For γ an admissible curve, and g : H→ R continuous, we define

∫
γ
g =

∫
[0,b]\E

g(γ(s))|γ′(s)|H ds.

Given continuous ω : H→ [0,∞), let

ρω(p, q) := inf
γ

∫
γ
ω

1
4 ,

where the infimum is taken over all admissible curves for (p, q). Note that, as things stand,

ρω is not necessarily a metric, only a pseudometric, as we have not assumed anything about

the set on which ω vanishes.

The goal of the large part of this section is stated precisely as the following proposition.

Proposition 6.2. Suppose ω : H → [0,∞) is continuous, and there exist C > 0, and

K-quasiconformal mapping f : H→ H, with

1

C
ω ≤ Jf ≤ Cω

almost everywhere. Then there exists L ≥ 1 such that, for all p, q ∈ H,

1

L
ρω(p, q) ≤ ρ(f(p), f(q)) ≤ Lρω(p, q).

It follows that, in these circumstances, ρω is a genuine metric, and a rewording of the

conclusion is that the quasiconformal f is actually a bi-Lipschitz mapping between the

metric spaces (H, ρω) and (H, ρ). Let us write ρf (p, q) = ρ(f(p), f(q)). We want to show,

that with the assumptions of the proposition, ρω ' ρf .

85



Proposition 6.2 will be an obvious corollary to the lemmas that occupy us for the rest of

the section. Let us fix ω as in the statement of the theorem.

First we define a measure on H,

µ(U) =

∫
U
ω.

Now introduce the auxiliary function,

dµ(p, q) := µ
1
4 [Bp,q],

where Bp,q := B(p, d(p, q)) ∪ B(q, d(q, p)). Despite the suggestive notation, this is not in

general a metric, but only a quasimetric. The quasimetric space (H, dµ) is called the David-

Semmes deformation of H, a fascinating topic that we touch on in the introduction. Before

we explain why we find dµ useful, we need to observe the following nice property of the

measure µ.

Lemma 6.3. µ is doubling, that is, there exists C > 0 such that, for all p ∈ H and r > 0,

µ[B(p, 2r)] ≤ Cµ[B(p, r)].

Proof. First off, using our assumed comparability of weight and Jacobian, and the change

of variable formula for quasiconformal mappings (2.10),

µ[B(p, 2r)] =

∫
B(p,2r)

ω ≤ C
∫
B(p,2r)

Jf = C|fB(p, 2r)|. (6.1)

Some of the arguments that follow are either similar to, or add detail to, remarks made

in Section 2. The mapping f is quasisymmetric; let η be the associated control function.

With s defined as the minimum of d(f(p), f(q)) over ∂B(p, r), and η2 := η(2), we have

B(f(p), s) ⊂ fB(p, r) ⊂ fB(p, 2r) ⊂ B(f(p), η2s).
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Using this, and the doubling property of Lebesgue measure on H, it follows that

|fB(p, 2r)| ≤ |B(f(p), η2s)| ≤ C|B(f(p), s)| ≤ C|fB(p, r)| ≤ Cµ[B(p, r)]. (6.2)

Putting together (6.1) and (6.2), we have that µ is doubling as required. u

Our reason for introducing dµ is contained in the following lemma. Note, we do not always

state results in the fullest generality, preferring to work with our fixed ω.

Lemma 6.4. dµ ' ρf .

Proof. Using the inclusion Bp,q ⊂ B(p, 2d(p, q)) and the doubling property of µ,

µ[Bp,q] ≤ µ[B(p, 2d(p, q))] ≤ Cµ[B(p, d(p, q))].

It follows that

dµ(p, q) '

(∫
B(p,d(p,q))

Jf

) 1
4

' d(f(p), f(q)),

where for the last inequality, we use the change of variable and quasisymmetric control in

a similar manner to the proof of Lemma 6.3, along with the fact that Lebesgue measure on

H is Ahlfors 4-regular.

As remarked in Section 1.3, it is well known that d ' ρ, and so dµ ' ρf is now immediate. u

Now that we have Lemma 6.4 in place, we may work with dµ and it remains to show dµ ' ρω.

We will do the two directions separately, in Lemmas 6.5 and 6.7.

Lemma 6.5. dµ . ρω.

Proof. For a horizontal curve γk : [ak, bk]→ H, define the µ-length of γk as follows,

lµ(γk) = lim sup
M→∞

M∑
i=1

dµ(γk(si−1), γk(si)),
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where for each M ∈ N, the si partition [a, b] into M equal length intervals, with s0 = a and

sM = b. For an admissible curve, γ, with collection of horizontal curves

{γk : [ak, bk]→ H}Nk=1,

define

lµ(γ) =
N∑
k=1

lµ(γk).

Now let p, q ∈ H, and γ an admissible curve for (p, q) be given. Let us focus for a time on

one of the horizontal subcurves, γk. Let ε > 0. First note that γk is uniformly continuous

on [ak, bk], and there exists a compact set containing the image of γk on which ω, and so

ω
1
4 , is uniformly continuous. It follows that there exists an Mk <∞, so that whenever (si)

is a partition with |si − si−1| ≤ (bk − ak)/Mk,

ω
1
4 (u) ≤ ω

1
4 (γk(si−1)) + ε (6.3)

for all u ∈ Bγk(si−1),γk(si).

Assume that a partition (si) of [ak, bk] is sufficiently fine, as in the preceding paragraph,

and define uk,i = γk(si), Bk,i−1 = Bγk(si−1),γk(si). Then from the definition of dµ,

dµ(uk,i−1, uk,i) ≤

(
sup
Bk,i−1

ω

) 1
4

|Bk,i−1|
1
4

or, equivalently,

dµ(uk,i−1, uk,i) ≤ sup
Bk,i−1

(
ω

1
4

)
|Bk,i−1|

1
4 .

Using Ahlfors 4-regularity again, and observation (6.3),

dµ(uk,i−1, uk,i) . ω
1
4 (uk,i−1)d(uk,i−1, uk,i) + εd(uk,i−1, uk,i).
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It now follows from (the proof of) Lemma 2.4 in [8] that

lµ(γk) .
∫ bk

ak

ω
1
4 (γk(s))|γ′k(s)|H ds+ εld(γk),

where ld is length with respect to d, as defined in Section 1.3. As ε was arbitrary, and ld(γk)

is finite, this improves to

lµ(γk) .
∫ bk

ak

ω
1
4 (γk(s))|γ′k(s)|H ds.

It follows, using again the continuity of ω
1
4 on a compact set containing the image of γ, and

property (3) of admissible curves, that

lµ(γ) .
∫
γ
ω

1
4 . (6.4)

Using Lemma 6.4, and the observation that concluded its proof, we have df ' dµ, where

we write df (p, q) = d(f(p), f(q)). It follows, using the triangle inequality for d, that for any

finite collection of points u1, u2, . . . , uM ∈ H

dµ(u1, uM ) . df (u1, uM ) ≤
M∑
i=1

df (ui−1, ui) .
M∑
i=1

dµ(ui−1, ui).

It is now straightforward that for each horizontal curve, γk,

dµ(γk(ak), γk(bk)) . lµ(γk),

and so, applying the same argument again,

dµ(p, q) .
N∑
k=1

dµ(γk(ak), γk(bk)) .
N∑
k=1

lµ(γk) = lµ(γ).
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Consequently, using (6.4),

dµ(p, q) . inf
γ
lµ(γ) . ρω(p, q),

where the infimum is taken over all admissible curves for (p, q). u

Before proving the other side of the comparison, we state the proposition of [21] that

motivated our definition of admissible curves.

Proposition 6.6. There exist λ > 1, C > 0, such that, for all p, q ∈ H, there exists a

family Γ of admissible curves for (p, q), and a probability measure α on Γ, with

∫
Γ

(∫
γ
ω

1
4

)
dα(γ) . C

∫
B(p,λd(p,q))

ω
1
4 (u)

(
1

d(p, u)3
+

1

d(q, u)3

)
du.

We are now able to conclude the proof of Proposition 6.2 by using, once again, the reverse

Hölder inequality for the Jacobian of a quasiconformal mapping, (2.11).

Lemma 6.7. dµ & ρω.

Proof. Fix p, q ∈ H. Given the definition of ρω, we have ρω(p, q) ≤
∫
γ ω

1/4 for any admissible

γ joining p and q. Let Γ and α be as in Proposition 6.6. Then, as α is a probability measure,

that proposition gives us λ > 1 such that

ρω(p, q) .
∫
B(p,λd(p,q))

ω
1
4 (u)G(u) du,

where G(u) := max{d(p, u)−3, d(q, u)−3}.

As ω is comparable to a quasiconformal Jacobian, it also satisfies a reverse Hölder inequality:

there exists s > 1 such that, if B ⊂ H is a ball,

(
1

|B|

∫
B
ωs
) 1
s

.
1

|B|

∫
B
ω,
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independently of B.

Let B := B(p, λd(p, q)), and R := d(p, q). Let r be the exponent conjugate to 4s, so that

r < 4/3. We find

∫
B
ω

1
4G .

(∫
B
ωs
) 1

4s
(∫

B
Gr
) 1
r

. R4

(
1

|B|

∫
B
ωs
) 1

4s
(

1

|B|

∫
B
Gr
) 1
r

. R4

(
1

|B|

∫
B
ω

) 1
4

R−3

.

(∫
B
ω

) 1
4

. dµ(p, q),

as required. u

The proof of Lemma 6.7 concludes the proof of Proposition 6.2. That proposition, combined

with Theorem 1.2 gives the following, of which Theorem 1.4 is a special case.

Theorem 6.8. Given K ≥ 1, there exist ε = ε(K) > 0 and L = L(K) ≥ 1, such that, if u

is a continuous quasi-logarithmic potential, u = Λµ◦g almost everywhere, with ‖µ‖ ≤ ε, and

g a K-quasiconformal mapping, then (H, g0) and (H, eug0) are L-bi-Lipschitz equivalent.
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