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SUMMARY 

A study on the human brain is carried out through the use of diffusion weighted magnetic resonance 

imaging. The brain is studied at three different levels: micro, mid, and macro. At the micro-level, we utilize 

the theory of continuous time random walk to describe the anomalous diffusive behavior of water molecules 

in different brain tissues. This behavior is measured through multiple b-value diffusion weighted MRI 

experiments. Two anisotropic models were derived through the introduction of fractional calculus into the 

Bloch-Torrey equation. The obtained models are used to describe the complex structure of the brain white 

and gray matter tissues through the introduction of new biometrics. The models allow the quantification of 

the tortuosity and porosity of the brain tissues in different directions.  

At the mid-level, a recent model, the tensor distribution function, is used to extract the brain white 

matter fiber tracts. A new algorithm is designed to extract different complex fibers in the brain. The 

algorithm is able to solve the fiber crossing problem at many locations. Moreover, a new metric is suggested 

to measure fiber incoherence. The measure is then compared to the traditional metric, fractional anisotropy, 

derived from the classical diffusion tensor model.  

At the macro-level, the brain network community structure is studied. A new metric to extract the 

modular structure of networks is derived. The metric is then applied on brain networks to extract the human 

connectome community structure. Using the extracted connectome community structure, a framework is 

designed to detect alterations on the nodal and modular levels occurring in group studies. The framework is 

then applied on two datasets, bipolar and depression. Significant results were found in agreement with 

previous clinical studies revealing the importance of the modular analysis of the human connectome. 
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I. INTRODUCTION 

1.1 Background 

The human brain is considered as being one of the most complex systems ever studied. Acquiring 

information about the brain’s anatomy is a challenging task, extracting the neuronal architecture and 

information about the brain while matter (WM) structure is even harder. Old methods have used dissection in 

order to gain access to the WM (Dejerine and Dejerine-Klumpke 1895; Gray 1936). Nowadays, diffusion 

weighted (DW) - magnetic resonance imaging (MRI) is considered as being the state of the art technique 

capable of non-invasively extracting information about the brain’s WM structure. DW-MRI is based on the 

diffusion of water molecules. The water diffusion is isotropic in mediums with no obstacles or walls. In 

mediums with restricting walls and obstacles, such as the human brain WM, water molecules diffuses 

anisotropically and tends to be restricted by the surrounding obstacles. Using DW-MRI measurements, we 

are capable of describing the underlying structure of the brain WM. In this thesis, we are going to describe 

the human brain on three levels: micro, mid and macro. 

An important task in the analysis of the acquired DW-MRI measurements is the choice of a 

mathematical model to describe the water diffusion. The very first model to be used in the mid 80’s (Le 

Bihan et al. 1986) was a one dimensional Gaussian model. Then, a three dimensional (3D) Gaussian model 

have been proposed by Basser et al. (Basser et al. 1993; Basser et al. 1994; Basser et al. 1994) and named 

diffusion tensor imaging (DTI). This model has the capability of describing the main diffusion direction of 

water. The model assumes a 3D Gaussian distribution for the average diffusion of water molecules. Despite 

of its usefulness in describing many of the brain WM fibers pathways, it possesses a limitation manifested in 

the limited capabilities of resolving crossing fibers. This limitation is mainly due to the low resolution of the 

acquired DW-MRI signal. DW-MRI signal have a resolution between 1 to 8 mm3, while white matter fibers 

have diameters below 30 µm (Poupon 1999). The existence of crossing fibers within the same voxel is then 

inevitable. In fact, it is now estimated to be more than one third of the imaged voxels of the human brain WM 

(Behrens et al. 2007). DTI limitations were the motivation to develop a family of techniques identified as 
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high angular resolution diffusion imaging (HARDI). In HARDI techniques, many DW signals are acquired 

for the same voxel and a reconstruction model is chosen to extract the fibers directions at that voxel. 

Diffusion is usually described by Fick’s second law which states that the rate of change of the 

diffusing fluid concentration is directly proportional to its laplacian and the constant of proportionality is 

called the diffusion coefficient D (mm2/s). In that framework, diffusion depends linearly on time. This type of 

diffusion is called normal, Gaussian or Brownian diffusion which is previously used to model DTI. When 

diffusion depends non-linearly on time, we call it anomalous diffusion (AD). AD is usually related to 

diffusion in porous and complex mediums. DTI and HARDI assume that the water molecules diffusion in the 

human brain belongs to the non-anomalous type. Recently, researchers started to exploit the anomaly of 

diffusion in the human brain in order to obtain a better description of the fractal-like structure as well as the 

porosity of the brain tissues. Simple isotropic models were introduced by Bennett et al. (Bennett et al. 2003) 

and Magin et al. (Magin et al. 2008). Anisotropic models were also proposed by Hall & Barrick (Hall and 

Barrick 2012), and De Santis et al. (De Santis et al. 2011). However, to date, the current anisotropic models 

used to describe AD in the human brain do lack mathematical derivation and are presented as pragmatic 

models. At the micro-level, we present in this thesis two 3D models based on the modification of the Bloch-

Torrey equation using fractional calculus. The models try to describe and quantify the complexity of the 

human brain tissues. They introduce new biometrics and prove that the AD is anisotropic. 

Extracting the brain WM fibers is called tractography. This process tries to reconstruct the brain 

neural tracts as well as known fiber bundles and visualizes them using streamline tubes. At the mid-level, we 

are going to exploit in this thesis a recently presented HARDI reconstruction method known as tensor 

distribution function (TDF) (Leow et al. 2009) and use it for tractography. We are also going to study the 

benefits of TDF over DTI by comparing the DTI-based anisotropy metric – fractional anisotropy (FA) – with 

a newly TDF-based constructed one. 

Tractography results can be used to extract the brain connectivity network which describes the 

topological structure and connections between the different gray matter (GM) regions. The brain connectivity 

network, also called connectome, was first introduced by Sporns et al. (Sporns et al. 2005). A brain structural 

connectome consists of nodes which represent GM regions and edges connecting nodes which represent WM 
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fibers. Describing the brain as a network has allowed us to use many mathematical tools from the field of 

graph theory to analyze it. One feature of brain networks is their “community structure” properties in which 

nodes may be grouped into different communities. This property allows us to extract the topological 

organization of the network and to partition it into a set of non-overlapping communities (also called modules 

or clusters). At the macro-level, we present in this thesis a new framework to extract the different brain 

communities and assess differences which might occur in neuropsychiatric diseases. The framework is 

named “Path Length Associated Community Estimation” (PLACE) and it is based on a new quality function 

introduced to assess the goodness of the extracted communities. 

1.2 Thesis Organization 

This thesis is organized in three parts. The first part includes this introduction and a brief description 

of the human brain in chapter 2. The second part (chapters 3-5) covers briefly the physics of diffusion as well 

as DW-MRI history and the different models used to describe normal diffusion in brain tissues (chapter 3). In 

chapter 4, we introduce the physics of AD and its relation to DW-MRI. We state different models used to 

describe AD in brain tissues. In chapter 5, we introduce the field of graph theory used to analyze brain 

networks with an emphasis on community structure extraction techniques. In the last part (chapters 6-10), we 

introduce the contributions of this thesis. First, in chapter 6, we present two new multi-dimensional fractional 

order models for the Bloch-Torrey equation. We show that AD is anisotropic in brain tissues. Second, in 

Chapter 7, we present the new tractography technique, and we introduce a new biomarker, the circular 

standard deviation (CSD) which we use to proof the dependence of DTI-based FA metric on fiber 

incoherence. Finally, in chapter 8, we present new graph metrics designed to measure the integration of left 

and right hemispheres of the brain and its application on bipolar disorder. We also present the new 

framework: PLACE which is validated through its application to brain networks extracted from bipolar 

disorder and depression. Changes in communities were assessed and results were consistent with previous 

clinical findings. Conclusions and future research are stated in chapter 10. Mathematical notations used in 

this thesis are presented in Table I. 
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Table I: Mathematical notation used in this thesis. 

x     a scalar (italic) 
r      a vector (bold italic) 
D     a matrix (bold) 
r = (x y z)T   a vector made out of 3 components: x y and z 
(.)T

    transpose 
|x|     absolute value of scalar x 
||r||    Euclidian norm of a vector 
|D|    determinant of a matrix D 
v.w    scalar product of two vectors 
f(x)    scalar valued function of a scalar 
f(x)    scalar valued function of a vector 
f(x)    vector valued function of a scalar 
f(x)    vector valued function of a vector 

d     the space of d-tuples of reals 1{ ... }dx x  
... dd∫ x     the integration over multiple tuples: 

1 2... ...d dx dx∫ 
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II. THE HUMAN BRAIN 

2.1 The Human Brain 

The brain has been under extensive study for decades. It is part of the human nervous system and 

plays the central role in that system. The human nervous system consists of two parts: the central nervous 

system (CNS) which includes the brain and the spinal cord, and the peripheral nervous system (PNS) which 

consists of a complex network of neural cells that connects the limbs and organs to the CNS. The brain is 

responsible for the motor control, regulation and coordination of all our limbs and organs. It is also 

responsible for the perception of the external world through the processing of sensory information. Moreover, 

it also manages our abilities of reasoning, planning, decision-making and abstract-thought. 

The main building block of the brain is the neuron (nerve cell) portrayed in Figure 1a. The neuron 

receives signals from other neurons through input terminals called dendrites. Dendrites are thin extensions 

that arise from the cell body, also called the soma, often extending for hundreds of micrometers and 

branching multiple times. The neuron also emits signals to other neurons as electrochemical waves or pulses 

travelling along thin fibers called axons. Axons are cable like structures covered by a dielectric material 

called myelin which forms a layer around it, the myelin sheath. This layer increases the transmission speed of 

electrical signals across the axon. A signal, when emitted, causes the release of chemicals called 

neurotransmitters at the axon’s terminating point: synapse (Figure 1b). The synapse is a narrow space 

between the neuron and other neurons or a muscle that can be seen as a communication end (Dayan and 

Abbott 2001). It permits the neuron to send signals to another cell. A neuron can have over 1000 dendritic 

branches and around 10000 synaptic connections with other neurons. There are about 80 to 100 billion 

neurons in the human brain and 100 trillion synapses; they form a complex network of connections 

(Herculano-Houzel 2009).  
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Figure 1: a) Nerve cell, b) Electrical signal propagating to the next cell through the axon and dendrites, 
notice the chemical reaction at the synapse. Both figures were adapted from Wikipedia. 

 

 

 

 

 On a larger scale, the human brain is made out of several elements. The cerebrospinal fluid (CSF) 

surrounds the brain and exists also in the ventricle system which is shown in Figure 2. It acts as a “cushion” 

providing the necessary mechanical and immunological protection. The brain is made out of two main types 

of tissues: the gray and white matters (Figure 2). The WM consists of the neuron axons. Bundles of axons are 

called fiber tracts. The GM is made out of the neuronal cell bodies and is full of capillary blood vessels 

which give it the gray-brown color. Globally, we can consider that the WM acts as a network of cables which 

interconnects the different regions of the GM. 

 On a macroscopic scale, the brain consists of three major parts: the cerebrum, the cerebellum and the 

brain stem shown in Figure 3. The cerebrum is made out of the two cerebral hemispheres separated by the 

central fissure and interconnected through a dense bundle of WM fibers called the corpus callosum (CC). The 

two hemispheres form the largest part of the human brain. The outer shell of the cerebrum, also called the 

cerebral cortex, is made out of highly folded GM tissues, the folding helps to increase the surface area in the 
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limited volume of the human skull. The cortex contains regions responsible for sensory, control of voluntary 

movement, speech and cognition functions.  

 

 

 

  

Figure 2: Spinal gray and white matter cells. Red arrows point to GM containing neuron cell bodies. WM 
contains cell axons, adapted from neuro-histology Atlas: http://vanat.cvm.umn.edu/neurHistAtls/ (left). A 
coronal slice of the human brain, we can see the designation of the enumerated divisions is as follows: 1) 
Cerebrum, 2) Thalamus, 3) Midbrain, 4) Pons, 5) Medulla oblongata, 6) Spinal cord. The black regions above 
number two contain CSF in a living brain, they are called ventricles, adapted from Wikipedia (right). 
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Figure 3: (a) the four lobes of the cerebral cortex and the cerebellum, adapted from (Gray 1936), (b) 
midsagittal cut of the human brain showing the cerebral cortex, the cerebellum and the brain stem, adapted 
from Wikipedia. 

 

 

 

 

 

We can divide each of the two cerebral hemispheres cortexes into four lobes (Figure 3a). 1) The 

frontal lobe (blue region in Figure 3a) responsible for motor control, speech and memory functions. It also 

controls planning, reasoning and decision making actions. 2) The temporal lobe (green region in Figure 3a) 

manages the processing of audio-visual information as well as language comprehension. 3) The parietal lobe 

(yellow region in Figure 3a) integrates visual and other sensory information in order to control spatial 

orientation as well as arm and eyes movement. 4) Finally, the occipital lobe (red region in Figure 3a) which 

handles the primary visual processing functions.  

 The cerebellum (Figure 3), also called little brain, handles quick responses to sensory signals and 

equilibrium functions. It contributes to coordination, precision and accurate timing of movements. In other 

words, it acts as a fine tuning center for motor functions. It receives inputs through the spinal cord and other 

parts of the brain. The brain stem (Figure 3b) consists of three parts, first the medulla oblongata which 

controls involuntary functions such as heart rate and breathing. Second, the midbrain which is associated 

with visual reflexes control, sleep and wake, alertness and temperature regulation functions. Finally, the 
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pons, also called the bridge, consists of WM tracts which interconnect the cerebrum to the cerebellum and 

medulla. 

This thesis tries to investigate three main aspects of the brain. First, on the micro level, we try to 

describe the porosity of the brain tissues using the theory of AD by proposing two different anisotropic 

models in chapter 6. Second, on the macro level, we try to reconstruct fiber tracts using the proposed 

tractography method in chapter 7. Finally, on a global level, we try to extract the underlying organizational 

structure, also called community structure, of the different cortical regions. We also detect alterations in that 

structure which might occur due to neuropsychological diseases. This is presented in chapter 8.  

2.2 The White Matter 

As mentioned above, the WM consists of the different fiber bundles. In this section we will describe 

the most important bundles which might be mentioned in this thesis. There are three types of fibers: 1) 

commissural fibers which interconnect the two cerebral hemispheres, 2) association tracts which interconnect 

the different lobes within the same hemisphere, and 3) projection fibers which interconnect the spinal cord, 

cerebellum and subcortical structures. We will present two main fiber bundles: the corpus callosum and the 

corticospinal tract.   

Corpus Callosum 

The CC, also known as the colossal commissure, is the largest and densest fibers bundle in the brain 

made out of about 250 million axons. It interconnects the two cerebral hemispheres. It can be considered as a 

flat bundle of fibers which lies beneath the cortex. The CC can be divided into four parts from anterior to 

posterior: rostrum, genu, body and splenium (Figure 4). We can see that the CC fibers are spread in the 

various parts of the cerebral cortex. Curving fibers at the genu are called forceps minor while fibers which 

curve at the splenium are called forceps major (Figure 4-right). 
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Figure 4: The corpus callosum. In the left, a sagittal cut showing the different divisions of the CC. In the 
right, a transverse cut showing the CC fibers interconnecting the two cerebral hemispheres. Figures adapted 
from Wikipedia.  

 

 

 

 

 

Corticospinal Tract 

The Corticospinal Tract (CST) fiber bundle runs vertically from the spinal cord to the brain. The 

CST contains mostly motor related tracts. Figure 5 shows the CST and how it fans out into different regions 

in the cerebral cortex. 
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Figure 5: The corticospinal tract, adapted from (Gray 1936). 

 

 

 

 

2.3 Conclusion 

In this chapter, we have presented a basic description of the human brain anatomy which will be 

needed to understand the rest of this thesis. In the next chapter, we will introduce diffusion MRI as well as 

the necessary basics from physics. 
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III. BASIC PRINCIPLES OF DIFFUSION MRI 

3.1 Introduction 

DW-MRI is considered a recent technology invented in the past three decades. It is a noninvasive 

modality of MRI which allows us to do in-vivo analysis on fibrous tissues such as the brain WM and skeletal 

muscles such as the heart. It is based on the diffusion transport phenomena of gas and fluids. Several 

applications have emerged from the inspection of the DW imaging data. The most famous one is the early 

diagnosis of stroke. Post-processing of diffusion data have allowed us to reconstruct the brain WM fibers, the 

process known as tractography. Tractography has helped in charting the brain network and have deepened 

our understanding on the organizational structure of the human brain. In this chapter, we review the basic 

physics of diffusion. Then, we present different models used to describe the DW-MRI measurements of the 

water molecules in WM tissues. This chapter was inspired from review articles and chapters from (Le Bihan 

et al. 2001; Tuch 2002; Le Bihan 2003; Descoteaux 2008) which I found as great sources for the basic 

concepts of the diffusion MRI field. 

3.2 Theory of Classical Diffusion 

Gas and fluid diffusion is a transport phenomenon discovered by the botanist Robert Brown in 1827. 

Brown has observed the motion of pollen particles in water. He initially thought that the motion exists 

because the pollens are alive. Repeating his experiment with dust particles has revealed a jittery kind of 

motion. However, the pollens were not moving because they were alive. In fact, it was due to random 

collisions happening between water molecules. This was later identified as the diffusion phenomena or the 

Brownian motion. Figure 6 shows the diffusion of the molecules of dye in water. Notice that the dye 

molecules move from the higher concentration region to the lower concentration region. It is important to 

mention that diffusion will even occur in thermodynamic equilibrium state (constant temperature and 

pressure). 
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Figure 6: Diffusion of the molecules of dye in water, the dye molecules move from the higher concentration 
region to the lower concentration region. Notice that even at thermodynamic equilibrium state (last stage); 
the water molecules are still in a continuous motion across the membrane. Figure adapted from Wikipedia. 

 

 

 

 

 

In 1855, Fick modeled diffusion as a differential equation (Fick 1855). Fick’s first law states that: the 

net particle flux, J(r), is related to the particle concentration, 𝐶(𝒓, 𝜁), at position r and timeτ through the 

following equation:  

 𝐽(𝒓) =  −𝐷∇𝐶(𝒓, 𝜁) (3.1)  

where D is the self-diffusion coefficient of units mm2/sec. The ∇ sign is the gradient taken w.r.t. position. The 

negative sign indicates that particles flow from higher concentration region to lower concentration region. 

The diffusion coefficient depends on the size of the diffusing molecules, temperature and environment. 

Assuming an isotropic diffusion (same diffusion in all directions) enforces D to be a scalar. Using the law of 

conservation of mass at the crossing membrane, 𝜕𝐶(𝒓,𝜁)
𝜕𝑡

= −∇𝐽(𝒓), and substituting in equation 3.1, we get: 

 𝜕𝐶(𝒓, 𝜁)
𝜕𝑡

= 𝐷∇2𝐶(𝒓, 𝜁) (3.2)  

This is called Fick’s second law which predicts how diffusion causes the concentration to change with time. 

In anisotropic mediums, where the diffusion is constrained in some directions and free in the others, for 
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example in biological tissues where cell membranes form walls, one can replace D by the diffusion tensor 

(DT) D. The DT is a symmetric positive definite matrix and can be written as: 

 
𝐃 =  �

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧
𝐷𝑥𝑦 𝐷𝑦𝑦 𝐷𝑦𝑧
𝐷𝑥𝑧 𝐷𝑦𝑧 𝐷𝑧𝑧

� (3.3)  

Hence, equation 3.2 can be then generalized in the form: 

 𝜕𝐶(𝒓, 𝜁)
𝜕𝑡

= ∇𝑇𝐃∇𝐶(𝒓, 𝜁) (3.4)  

where [.]T represents transpose. In 1905, Einstein re-described diffusion in a statistical framework in the 

context of a random walk scenario (Einstein and Fürth 1956). He hypothesized that if one could observe the 

movement of a single molecule in a fluid, one could observe a random trajectory of motion. Furthermore, this 

trajectory is independent of neighboring molecules motion trajectories. However, one cannot describe 

trajectories for all molecules. So, Einstein suggested the following: on a macro scale, if the number of 

molecules is large and they have the freedom to diffuse anywhere, one could characterize their mean squared 

displacement (MSD) from a starting point over a timeτ. He then described diffusion by a probability density 

function (PDF), P(r,τ), which represents the probability of finding a particle at location r and at timeτ. This 

PDF is currently known by the name of diffusion propagator. Einstein proved that the MSD averaged over 

all diffusing molecules in an isotropic medium is proportional to the diffusing time τ and the constant of 

proportionality is the self-diffusion coefficient D. He expressed this in the form: 

 〈𝒓𝑻𝒓〉 = 6𝐷τ (3.5)  

where <.> denotes the ensemble average and r is the net displacement position vector: r = rτ – r0 with r0 is the 

original position of a particle and rτ is the position after timeτ. Einstein has reached equation 3.2 with the 

particle concentration 𝐶(𝒓, 𝜁) replaced by the diffusion PDF. In current literature discussing diffusion, the 

propagator usually replaces C(r,ζ) in equations 3.1 to 3.4. His equation can be generalized to the DT model 

similar to equation 3.3. Experimentally, one could measure the value of D for water at a temperature of 30°C 
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to be 2.6 X 10-3 mm2/s. In other words, in 1 ms, water molecules will move, on average, 4 µm in all 

directions. The general solution of the DT model is a Gaussian distribution given by: 

 𝑃(𝒓, τ) =
1

�(4𝜋|𝐃|𝜏)3
exp �−

1
4𝜏
𝒓𝑇𝐃−1𝒓� (3.6)  

where |𝐃| is the determinant of the DT. In that context, D can be considered as the covariance matrix of the 

3-variate Gaussian diffusion propagator describing the motion of the diffusing molecules. In isotropic 

mediums when D is a scalar, we can write: 

 
𝑃(𝒓, τ) =

1

�(4𝜋𝐷𝜏)3
exp�−

‖𝒓‖2

4𝐷𝜏 �
 (3.7)  

where ‖. ‖ is the norm. Further analysis of the DT model will be discussed later in this chapter when 

discussing the DTI model. From above, one could notice that D is a scalar constant which makes us to 

wonder about how this can be used to describe different tissues in DW-MRI. In fact, due to the presence of 

obstacles such as cell membranes and macromolecules, biological tissues do possess a hindering nature 

which will lower the values of the measured D. In this case, the measured D in DW-MRI is called the 

apparent diffusion coefficient (ADC) (Le Bihan et al. 1986). We now start describing how we do actually 

measure the ADC. 

3.3 Nuclear Magnetic Resonance and Diffusion Magnetic Resonance Imaging 

 We will start by presenting a brief history about MRI. Before MRI and DW-MRI, people have 

measured diffusion using nuclear magnetic resonance (NMR) spectroscopy. NMR spectroscopy is a method 

by which one can use the magnetic properties of atoms in order to determine their physical and chemical 

properties. It is based on the phenomenon of NMR first discovered in 1938 by Isidor Rabi et al. (Rabi et al. 

1992) who won the Nobel Prize in Physics in 1944 for this work. In 1946, Felix Bloch (Bloch 1946) and 

Edward Mills Purcell (Purcell et al. 1946) simultaneously presented a new expansion for Rabi’s technique to 

be used on gas and liquid. They both won the Nobel Prize in Physics in 1956 for their discovery. Rabi, Bloch 

and Purcell hypothesized that in the presence of a strong homogenous magnetic field, hydrogen atoms, 1H, 
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will precess around the same axis of the applied magnetic field at a specific frequency, also called the 

Larmor frequency, which characterizes the hydrogen atom and depends on the applied field strength (Figure 

7a). This state was then called equilibrium. They noticed that a perturbation to this state using a radio 

frequency (RF) pulse could be absorbed by the atom only if its frequency matched the Larmor frequency. 

This was called the resonance state of the atom shown in Figure 7b. The RF pulse is usually called a 90 

degree pulse because it tips the hydrogen atom in the transverse plane perpendicular to the applied magnetic 

field (Figure 7b). After the end of the RF pulse, an oscillatory damped signal is emitted from the ensemble of 

hydrogen atoms in resonance, this signal is characterized by the Larmor frequency and is called the free 

induction decay (FID) shown in Figure 7c. 

In 1973, Paul Lauterbur designed a technique to generate 2D MR images which made him won the 

Nobel Prize in Physiology and Medicine jointly with Peter Mansfield in 2003. In 1950, Hahn introduced 

spin-echo to NMR. He suggested a technique to rebuild the damped FID signal by applying another RF pulse 

for twice the duration of the 90 degree pulse following to the application of the initial 90 degree pulse (Hahn 

1950). He observed that the emitted signal by the hydrogen builds-up after a certain period (Figure 7d). This 

was a very essential step in the development of DW-MRI. In 1956, Torrey have introduced a new term in the 

Bloch equation to account for diffusion (Torrey 1956). Using the spin-echo pulse sequence, Edward Stejskal 

and John Tanner have developped in 1965 the pulse gradient spin-echo (PGSE) sequence which allows the 

measurement of the ADC (Stejskal and Tanner 1965). In the next section, we are going to discuss the PGSE 

in more details. Table II shows a timeline which describes briefly the diffusion MRI history.  
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Figure 7: a) Precession of the hydrogen atom (proton) in the presence of a magnetic field B, red and green 
colors represent positive and negative polarities respectively, b) The application of a 90 degree tipping RF 
pulse will cause the hydrogen atom to precess in the transverse plane perpendicular to the main applied 
magnetic field, c) Free induction decay, notice that the signal exhibits a damping oscillatory behavior, d) 
Spin-echo pulse sequence, notice how the echo signal builds-up after the 180 degree pulse. Figure adapted 
from Wikipedia. 
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Table II: Timeline describing the history of diffusion MRI. 

1938 1946 1950 1956 1965 1973 1985 1990-
1991 1992 

 

Isidor 
Rabi 

 

Felix 
Bloch 

 

Edward 
Purcell 

 

Erwin 
Hahn 

 

H.C. 

Torrey 

 

Edward 
Stejskal 

& 

John 
Tanner 

 

Paul 
Lauterbur 

 

Taylor & 
Bushell 

 

 

Denis Le 
Bihan 

& Breton 

 

Maichel 
Moseley 

et al., 

 

Douek et 
al. 

 

Peter 
Basser 

et al.  

Principles of NMR Spin-
echo 

Diffusion 
in NMR 

PGSE 2D MRI 
Scalar DW-MRI, 
ADC and Trace 

Imaging 
DTI 

 

 

 

 

 

3.3.1 Pulse Gradient Spin Echo 

In 1965, Stejskal and Tanner have designed the pulsed gradient spin echo (PGSE) sequence in order 

to acquire information about the diffusion of particles (Stejskal and Tanner, 1965). Before discussing the 

PGSE sequence, we would like to present the notion of a gradient. From the previous discussion, we recall 

the dependence of the hydrogen atoms precessional frequency on the strength of the applied magnetic field. 

This fact describes what is known to be the Larmor equation which states that the precessional frequency of 

the hydrogen atom is directly proportial to the applied magnetic field and the constant of proportionality is 

called the gyromagnetic ratio, γ, a unique characteristic for every element, and have units of rad/sec/Tesla. 

The application of a linearly space-varying magnetic field, i.e. a gradient, imposed on the originally applied 
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strong static magnetic field, will cause a position dependence for the hydrogen atoms precessional frequency. 

In other words, each atom will precess at a different frequency according to the strength of the magnetic field 

present at its location which will cause each atom to gain a different phase along time. Applying the gradient 

field for a period of time will create a gradient of phase over the volume under study. This phase gradient can 

be reversed by the application of a 180 degree RF pulse followed by a gradient with exactly the same 

amplitude, duration and polarity. 

Since water consists of two hydrogen atoms, one can apply NMR principles to a water specimen. The 

PGSE pulse sesquence illustrated in Figure 8 can be used to measure the diffusion of water molecules at a 

specific direction g (a unit vector). By default a strong magnetic field B is applied on the speciemen to allow 

the exploitation of its NMR properties. The PGSE consists of four steps. First, a 90 degree pulse is applied 

which will tip all the atoms in the transverse plane, recall Figure 7b. Seond, a dephasing gradient is then 

applied in direction g with strength G and duration δ will cause a phase gradient to buil-up across the 

specimen. Third, a 180 degree RF pulse is applied. Finally, we apply a second rephasing gradient in direction 

g with the same amplitude and duration – as the first gradient – after a time Δ from the first gradient. In the 

absence of the water molecules displacement, the second rephasing gradient should cancels the phase shift of 

the static molecules. However, under the random walk of water molecules, i.e. diffusion, a distribution of 

phase occurs due to the displacement of different molecules. This distribution will cause a loss in the signal 

coherence which can be observed as a loss of the spin-echo signal amplitude when compard to the no-

diffusion experiment. Please note that the applied gradient pulses were assumed to be short enough so that 

the water diffusion is negligible during that time (δ).  

In their 1965 paper, Stejskal and Tanner have showed that the acquired NMR signal, S(q,τ), in the 

PGSE experiment is the 3D Fourier transform, ℱ, of the diffusion propagator PDF, P(r,τ), mentioned in 

section 3.2. Assuming an initial delta distribution of material at r = 0 and τ = 0+, (i.e. P(r = 0,τ) = δ(r)), we 

can write: 
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 𝑆(𝒒, 𝜏)
𝑆0

= � 𝑃(𝒓, τ) exp(−𝑖2𝜋𝒒𝑇𝒓)
ℝ3

𝑑𝒓 = ℱ{𝑃(𝒓, τ)} (3.8)  

where the value of q is given by q = γδGg/2π, with γ being the nuclear gyromagnetic ratio for water protons, 

G is the applied gradient amplitude and g is a unit vector in its direction, S0 is the baseline image acquired 

without any diffusion gradients (also called b = 0 image). In diffusion MRI, we seek out the reconstruction of 

the diffusion propagator PDF. An exhaustive model-free solution is to sample all possible q vectors or the so-

called q-space which have been realised in q-space imaging (Callaghan, 1991). A simple solution is to 

assume that the propagator takes the form of a Gaussian distribution. In that case, equation 3.8 could be 

worked out analytically and one could reach the follwing equation: 

 𝑆(𝒈, 𝜏 ) = 𝑆0 exp(−𝜏‖𝒒‖2𝐷𝒈𝑇𝒈) = 𝑆0 exp(−𝑏. ADC) (3.9)  

where b is called the b-value given by 𝑏 = τ ‖𝒒‖2 with units of s/mm2 and was first introduced by Le Bihan 

et al. (Le Bihan et al. 1986) and the ADC is the apparent diffusion coefficient. From the above equation, we 

can see that increasing the b-value will decrease the amplitude of the acquired signal, thus decreasing the 

signal to noise ratio (SNR). Notice that D here is scalar since the measurement was assumed to be in only one 

direction which assumes an isotropic medium under test. In anisotropic mediums, the DT D could be used 

instead. In the next section we will try to obtain equation 3.9 using a different approach starting from the 

Bloch-Torrey equation (Torrey 1956). 
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Figure 8: Schematic of the PGSE pulse sequence. At the 90 degree pulse, the ensemble of hydrogen atoms 
are tipped in the transverse plane to the applied magnetic field B and they precess with the Larmor 
frequency. After the application of the first gradient, atoms start dephasing (each atom will precess at 
different frequency) due to dependence of the precession frequency on the field strength. Each atom will 
experience a different field strength which will depend on its location. After the application of the second 
gradient following the 180 degree RF pulse, the atoms undergo a rephasing process (they restore their 
original phase). This rephasing is complete only when the atoms are still in their locations. However, due to 
the diffusion phenomena which occurs in the time between the two gradients, the rephasing is not complete 
and the signal will lose some of its amplitude. 

 

 

 

 

 

3.3.2 The Bloch-Torrey Equation 

 In 1946, Felix Bloch has described the magnetization change of the hydrogen atom in the NMR 

experiment (Bloch 1946). We recall that the NMR experiment starts by the application of a strong static 

magnetic field to hydrogen atoms which react by precessing along their axis in the direction of the applied 

field at the Larmor frequency. The application of the 90 degree RF pulse tips the hydrogen atom in the 
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transverse plane (Figure 7b). The atom, however, recovers its orientation in the direction of the applied 

magnetic field (the equilibrium state), we call this: relaxation (Figure 9). There are two types of relaxation in 

the NMR experiment: 1) T1-relaxation, also called spin-lattice relaxation, where the hydrogen atoms give 

back the absorbed energy from the RF pulse to the surrounding environment or lattice. 2) T2-relaxation, also 

called spin-spin relaxation, where the hydrogen atoms start dephasing due to the energy exchange between 

them. Both relaxation types will cause the measured net magnetization (the detected signal) in the transverse 

plane to decay. The net magnetization of an ensemble of atoms in a specimen can be detected by means of 

coils surrounding it as shown in Figure 9. 

The Bloch equation describes the decay of the transverse net magnetization moment M as a function 

of the T1 and T2 relaxation times. The Bloch equation states: 

 𝑑𝑴
𝑑𝑡

= 𝑴 × 𝛾𝑩�����
Precession

 −
𝑀𝑥𝒊 + 𝑀𝑦𝒋

𝑇2�������
spin−spin 
relaxation

−
(𝑀𝑧 −𝑀0)𝒌

𝑇1���������
spin−lattice
relaxation

 
(3.10)  

where M = [Mx My Mz]T is the net magnetization moment of the ensemble of hydrogen atoms in the specimen, 

B = [0 0 B0]T is the static magnetic field and it is assumed to act in the z direction, i, j and k are unit vectors 

in the x, y and z directions. The first part of the equation describes the precessional effect due to the applied 

static magnetic field. The second and third parts describe the effect of the T1 and T2 relaxations. 
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Figure 9: Relaxation trajectory of the hydrogen atoms in a specimen present in a static magnetic field B0 
after the end of the RF excitatory pulse. The net magnetization M is detected by means of horizontal coils. 
The atoms return to the equilibrium state where they are oriented parallel to the applied static field.   

 

 

 

 

 

 In 1956, Henry Torrey introduced a diffusion term in equation 3.10 (Torrey 1956). Ignoring the T1 

and T2 relaxation and considering only the transverse magnetization Mxy to be the combination of Mx and My 

in the form: Mxy = Mx + iMy where i =√−1, he wrote: 

 𝜕𝑀𝑥𝑦

𝜕𝑡
= −𝑖𝛾(𝒓.𝑮)𝑀𝑥𝑦 + ∇T𝐃∇𝑀𝑥𝑦 (3.11)  

where r = [x y z]T is a position vector, G = [Gx Gy Gz]T is the applied gradient in the PGSE sequence, ∇=

� 𝜕
𝜕𝑥

 𝜕
𝜕𝑦

 𝜕
𝜕𝑧
�
𝑇
and D same as equation 3.3. Equation 3.11 is known as the Bloch-Torrey equation. Using the 

method of separation of variables, a solution of the following form can be assumed: 

 𝑀𝑥𝑦(𝒓, 𝑡) = 𝐴(𝑡)exp (−𝑖𝛾 𝒓.𝑭(𝑡)) (3.12)  
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where 𝑭(𝑡) =  ∫ 𝑮(𝑡′)𝑑𝑡′𝑡
0 . Substituting 3.12 in 3.11 and noting that 

∇ exp�−iγ𝐫.𝐅(t)� =  −𝑖𝛾𝑭(𝑡) exp�−iγ𝐫.𝐅(t)� we obtain: 

 𝜕[𝐴(𝑡)]
𝜕𝑡

=  −𝛾2�𝑭(𝑡)𝑇𝐃𝑭(𝑡)�𝐴(𝑡) (3.13)  

Integrating, we get: 

 
𝐴(𝑡) = 𝐴0 exp �−𝛾2 � 𝑭(𝑡′)𝑇𝐃𝑭(𝑡′)𝑑𝑡′

𝑡

0
� (3.14)  

Hence, one can write: 

 
𝑀𝑥𝑦 = 𝑀0 exp�−𝛾2 � 𝑭(𝑡′)𝑇𝐃𝑭(𝑡′)𝑑𝑡′

𝑡

0
� (3.15)  

Performing the integration on the PGSE pulse using square gradients, we get: 

 𝑀𝑥𝑦 = 𝑀0 exp �−(𝛾𝛿‖𝑮‖)2�Δ − 𝛿
3� �𝒈𝑇𝐃𝒈�

= 𝑀0 exp(−𝑏𝒈𝑇𝐃𝒈) 
(3.16)  

where 𝒈 = 𝑮
‖𝑮‖

, 𝑏 = (𝛾𝛿‖𝑮‖)2�Δ − 𝛿
3� � is the b-value mentioned in section 3.3.1 computed for the PGSE 

sequence. In light of equation 3.16, we can describe the acquired diffusion signal in the form: 

 𝑆(𝒈, 𝑡) = 𝑆0 exp(−𝑏𝒈𝑇𝐃𝒈) (3.17)  

where S0 is the signal acquired at b = 0. The last equation describes the DT model applied in anisotropic 

mediums. In isotropic mediums, a scalar diffusion coefficient will be used and we will reach equation 3.9. 

Equation 3.19 is considered to be the basis of the DTI model.  

3.3.3 Diffusion-Weighted Imaging and the Apparent Diffusion Coefficient 

 The beginnings of diffusion MRI dates back to 1985 when Taylor and Bushell acquired the first DW 

images (DWI) of a small hen’s egg (Taylor and Bushell 1985). The images were the acquired data of the 
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applied PGSE pulse sequence in one gradient direction. In the next year, Le Bihan et al. presented the first in-

vivo DWI acquisition of a human brain (Le Bihan et al. 1986). In that study, he introduced the notion of the 

b-value and provided the formulation to compute the ADC from the acquired DWI using equation 3.9 with b 

computed for the PGSE sequence as in 3.16. Two acquisitions were needed: one with no diffusion, also 

called b0 image, and another one with the PGSE applied. He noted changes in ADC in different tissues in the 

brain. He has also observed that GM tissues possess a higher ADC compared to WM tissues. However, both 

tissue types had an ADC lower than the self-diffusion coefficient of water. The ADC of CSF was found to 

vary according to location. In general, it has a value close to the self-diffusion coefficient of water and it was 

significantly higher in the ventricles. 

The usage of different gradient directions appeared in 1990 when Moseley et al. measured the ADC 

along the x and z axis in a cat brain (Moseley et al. 1990). At that time, it became clear that diffusion in 

biological tissues is anisotropic. Moseley et al. suggested the ratio ADCz/ADCx to characterize the level of 

anisotropy in tissues and it was called the anisotropy index. Unfortunately, this metric was rotationally 

variant and it depended on the gradient direction used in the PGSE sequence. In the next section we will 

introduce the DTI model which is rotationally invariant. 

3.3.4 Diffusion Tensor Imaging 

Many of the fibrous biological tissues such as the heart muscle and the brain WM exhibit anisotropic 

water diffusion. Basser et al. have proposed the DT model (equation 3.6) to describe the diffusion propagator 

PDF (Basser et al. 1993; Basser et al. 1994; Basser et al. 1994). In that case, equation 3.17 is used to describe 

the acquired diffusion signal. From equation 3.3, we can see that the DT, D, is made out of 6 unknowns 

(since it is symmetric). Hence, we need to acquire at least 6 DWI in 6 non-collinear gradient directions in 

addition to the b0 image (S0) to be able to compute the DT. A system of linear equations can then be formed 

by rewriting equation 3.17 in the form: 

 −
1
𝑏 log �

𝑆(𝒈, 𝑡)
𝑆0

� = 𝑔𝑥2𝐷𝑥𝑥 + 𝑔𝑦2𝐷𝑦𝑦 + 𝑔𝑧2𝐷𝑧𝑧 + 2𝑔𝑥𝑔𝑦𝐷𝑥𝑦 + 2𝑔𝑥𝑔𝑧𝐷𝑥𝑧 + 2𝑔𝑦𝑔𝑧𝐷𝑦𝑧 (3.18)  
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An over determined problem can also be solved when acquiring more than 6 DWI acquisitions. In that case 

the method of least squares can be used to find the best solution of the DT. In the DT, the 3 diagonal 

elements represent the ADC along the three orthogonal axes of the MRI scanner. However, the 3 off diagonal 

elements does not represent ADC along directions between the orthogonal axes. If we regarded the DT as a 

covariance matrix for the Gaussian PDF chosen to model the diffusion propagator, the off diagonal elements 

of the DT will represent the correlation between displacements along the three orthogonal axes.  

Diagonalizing the DT by extracting its eigenvalues (e1, e2 and e3) and eigenvectors (λ1, λ2 and λ3 in 

units of mm2/s) provides valuable information about the basic axes of diffusion. This is possible since the 3-

variate Gaussian model chosen to describe the diffusion propagator does have isosurfaces of constant values 

in the form of ellipsoids. The eigenvectors will determine the orientation of the ellipsoid’s basic axes and the 

square root of the eigenvalues will scale their lengths (Figure 10). Moreover, the eigenvalues can be 

considered as the ADC along the principal directions of diffusion represented by the eigenvectors. In a single 

fiber bundle with no crossing fibers such as the CST, one eigenvalue will be larger than the other two. In that 

case, the eigenvector corresponding to the largest eigenvalue will point to the principal direction of diffusion 

along the bundle’s orientation. This case is called linear anisotropy (Figure 11a). Two other cases exist: 

planar anisotropy which can be seen in crossing fibers where two eigenvalues are larger than the third one 

(Figure 11b), and spherical anisotropy which occurs in isotropic mediums where the three eigenvalues are 

equal in value (Figure 11c). 

Using the eigenvalues, we can compute several metrics which might provide valuable information 

about tissue microstructure while being rotationally invariant to the applied coordinate system of the scanner 

(Westin et al. 2002). Examples on such metrics are the trace (TR = λ1 + λ2 + λ3 = Dxx + Dyy + Dzz) and the 

mean diffusivity (MD) (MD = TR/3). The most famous metrics which have been extensively studied are the 

fractional anisotropy (FA) and the relative anisotropy (RA), (Basser and Pierpaoli 1996), defined as: 
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𝐹𝐴 = �

(𝜆1 − 𝜆2)2 + (𝜆1 − 𝜆3)2 + (𝜆2 − 𝜆3)2

2(𝜆12 + 𝜆22 + 𝜆32)
   (3.19)  

 
𝑅𝐴 =

�(𝜆1 − 𝜆2)2 + (𝜆1 − 𝜆3)2 + (𝜆2 − 𝜆3)2

√2(𝜆1 + 𝜆2 + 𝜆3)
   (3.20)  

They both vary from 0 to 1. A value of zero FA indicates an isotropic medium and 1 indicates an anisotropic 

diffusion along one axis (Figure 12a, b). The DT can be visualized by plotting the components of the 

eigenvector corresponding to the largest eigenvalue as a Red-Green-Blue (RGB) colormap which represents 

the orientation in x, y and z directions (Figure 12c). 

The DT model has helped in quantifying the anisotropy of diffusion in different brain tissues as well 

as in estimating the principle direction of diffusion at every voxel which enabled the extraction of different 

WM fibers throughout the brain using the process of tractography. However, DTI possesses a main limitation 

in its inability of recovering crossing fibers within voxels since fibers diameter are much lower (1-30 µm) 

than the DWI voxel resolution (vary from 1 to 9 mm3). Crossing fibers do appear in the form of planar 

anisotropy (Figure 11b) when two fibers are crossing or in the form of spherical anisotropy when three or 

more fibers cross which affects profoundly the results of tractography. The limitations of the DT model have 

led to the development of richer models that may provide more directional information and solve the crossing 

fibers issue. In the next section we are going to briefly discuss a sample of such models. We are also going to 

present the TDF model which is being used as the basis of the tractography algorithm presented in this thesis.  
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Figure 10: (left) Diffusion ellipsoid, the axes are the eigenvectors of the DT. The ellipsoid axes are 
proportional to the square roots of the eigenvalues of the DT. (right) Water Brownian motion along the 
fibers. 

 

 

 

 

 

 

Figure 11: Different anisotropy cases: a) Linear when λ1 >> λ2, λ3 which happens in single fiber bundles 
such as CST, b) Planar when λ1 ~ λ2 >> λ3 which happens in crossed fiber bundles, c) Spherical when λ1 ~ λ2 
~ λ3 which happens in isotropic mediums. 
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Figure 12: Scalar metrics derived from the DT. In (a), the FA is shown for an axial slice, while (b) represents 
the RA for the same slice. In (c), the eigenvector corresponding to the largest eigenvalue is visualized as an 
RGB colormap. 

 

 

 

 

 

3.3.5 High Angular Resolution Diffusion Imaging 

 To overcome the fibers crossing problem, a lot of models have been developed based on the idea of 

sampling the q-space in as many directions as possible. This allows a better reconstruction of the true 

diffusion propagator PDF. These techniques are called High Angular Resolution Diffusion Imaging 

(HARDI).  Two strategies have emerged: 1) sampling the q-space in a Cartesian grid, and 2) sampling the q-

space at a single spherical shell (fixed b value).  

3.3.5.1 Diffusion Spectrum Imaging 

 In 2000, Wedeen et al. (Wedeen et al. 2000) developed the diffusion spectrum imaging (DSI) 

technique based on the previously developed q-space imaging (QSI) technique by Callaghan et al. (Callaghan 

et al. 1988; Callaghan 1991). He sampled the q-space at a large number of points (N > 500) in the 3D 

Cartesian space using different gradients directions and magnitudes (i.e., different b-values: 500 ≤ b ≤ 20000 

s/mm2). He computed the diffusion PDF by numerically computing the 3D inverse Fourier transform of the 
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measured DWI signals. It is important to note that this technique does not impose a specific model on the 

diffusion PDF. The fibers directions are obtained through the computation of the diffusion orientation 

distribution function (ODF) in the polar coordinates as shown in Figure 13a by projecting the computed PDF 

on a sphere. Fibers are found at the maxima directions of the ODF defined in (Tuch 2002) as: 

 
𝜓(𝜃,𝜙) =  � 𝑃(𝑟,𝜃,𝜙)𝑑𝑟

∞

0
 (3.21)  

where 𝜃 ∈ [0,𝜋],𝜙 ∈ [0,2𝜋]. Despite of its efficiency in the determination of crossing fibers (Weeden et al., 

2005), DSI requires a long acquisition time. One will be forced to acquire lower resolution DWI in order to 

shorten the required acquisition time. This has given rise to the other clinically practical approach: single 

shell HARDI imaging (Tuch et al. 1999; Tuch 2002; Tuch et al. 2002). 

 

 

 

 

 

 

Figure 13: a) Diffusion orientation distribution function, b) 320 points on a sphere representing gradients 
directions, c) Apparent diffusion coefficient profile, adapted from Wikipedia. 
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3.3.5.2 Single Shell HARD Imaging 

Many models were built on the idea of sampling the DWI signal on a single spherical shell in q-space 

(fixed b-value) at N points corresponding to N different gradient directions as shown in Figure 13b. These 

models are characterized by a much shorter imaging time than DSI. Single shell HARDI methods are 

nowadays used to solve fibers crossing and are widely used in tractography. Two approaches have emerged 

to model the water diffusion propagator: model-based and model-free methods. In the next section, we will 

perform a literature review for the different models which currently exist.  

3.3.5.2.1 Model-Based Approaches 

A  Mixture Models 

 A simple method for modeling the water propagator is to assume that the HARDI signal comes from 

a mixture of functions. Tuch (Tuch 2002) have modeled the water propagator PDF as a mixture of n 

Gaussians which is known as the multi-Gaussian or the multi-Tensor model. It can be written in the form: 

 
𝑃(𝒓, τ) = �𝑎𝑖

1

�(4𝜋|𝐃𝑖|𝜏)3
exp �−

1
4𝜏
𝒓𝑇𝐃𝑖−1𝒓�

𝑛

𝑖=1

 (3.22)  

where 𝑎𝑖 ∈ [0,1], ∑ 𝑎𝑖𝑛
𝑖=1 = 1. Hence the acquired signal can be written as:  

 
𝑆(𝒈, 𝑏) = 𝑆0�𝑎𝑖 exp(−𝑏𝒈𝑇𝐷𝑖𝒈)

𝑛

𝑖=1

 (3.23)  

The crucial concern in that model is the choice of n at every voxel. Several constraints have been applied to 

assure the stability of tensors estimation such as imposing symmetry of eigenvalues, forcing certain 

magnitude and ratios of eigenvalues or imposing positive definiteness of the Di (Alexander et al. 2001; Tuch 

2002; Tuch et al. 2002; Blyth et al. 2003; Maier et al. 2004; Yunmei et al. 2004; Peled et al. 2006). 

A special case when n = 2 is the Ball & stick model (Behrens et al. 2003; Hosey et al. 2005) which 

assumes that brain tissues contain two compartments for the diffusion of water: an anisotropic compartment 
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due to the fibers restrictive nature to diffusion (slow or intracellular diffusion in and around the fiber) which 

is modeled as an anisotropic Gaussian PDF Pr and an isotropic one which is not affected by the fibers (fast or 

extracellular diffusion) which is modeled as an isotropic Gaussian PDF Pf. The propagator is then assumed to 

be in the form: P = αPf + (1 − α)Pr, where 0< α <1. Pr was modeled as Gaussian in which the DT has only 

one non-zero eigenvalue since it only has one preferred direction along the fiber. Note that this model should 

not be confused with the bio-exponential model (Clark and Le Bihan 2000; Mulkern et al. 2000) which also 

describes the diffusion signal as a mixture of two Gaussians representing slow and fast compartments since it 

is considered a deviation of the ADC technique described in equation 3.9 and it uses only one gradient. It 

estimates two ADC(s): ADCslow and ADCfast by varying the b-value instead of acquiring numerous DWI in 

different directions. 

 A similar approach to the Ball & Stick model but with a higher complexity is the composite hindered 

and restricted model of diffusion (CHARMED) (Assaf et al. 2004; Assaf and Basser 2005). It assumes the 

existence of two diffusion processes: a restricted non-Gaussian (intra-axonal compartments) one and a 

hindered one that can be approximated to Gaussian (cells and extracellular compartments). The hindered part 

is modeled by a full DT, while the restricted part is modeled using Neuman’s model for restricted diffusion in 

a cylinder (Neuman 1974). 

 To overcome the main drawback in the multi-Gaussian, Ball & Stick and CHARMED models, which 

is the choice of the number of compartments, a recent model which does not impose any constraint on the 

number of tensors was proposed by Leow et al. (Leow et al. 2009). The tensor distribution function (TDF) 

proposed by Leow et al. assumes a distribution of tensors and tries to numerically estimate a PDF which 

weights every possible tensor in the four dimensional (4D) space of symmetric positive definite three-by-

three matrices D. The reason D is a 4D space is the assumption that fibers are cylindrical which allows us to 

enforce two eigenvalues to be equal. To complete the definition of a tensor, we need a unit vector which can 

be defined by two angles on the unit sphere. Thus, a tensor D can be expressed as a function of two 

eigenvalues and two angles: D(λ1, λ2, Θ1, Θ2) which makes D a 4D space. Hence, we need to compute a PDF 
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P(D) at every voxel which weights all possible tensors in the 4D space, D. The acquired signal at each voxel 

is then assumed to be in the form: 

 
𝑆𝑐𝑎𝑙𝑐(𝒈) =  � 𝑃(𝐃) exp(−𝑏𝒈𝑇𝐃𝒈)𝑑𝐃

𝐷∈𝒟

 (3.24)  

Notice that the sum in equation 3.23 is now replaced by the integration sign since the TDF P(D) is a 

continuous function. To estimate an optimal solution for P(D), we need to acquire many DWI at different 

gradient direction gi and solves the least squares equation: 

 𝑃∗(𝐷) = argmin
𝑃

�[𝑆𝑜𝑏𝑠(𝒈𝒊) − 𝑆𝑐𝑎𝑙𝑐(𝒈𝒊)]2
𝑖

  (3.25)  

where Sobs(gi) is the observed signal at the gradient direction gi. To assure that P(D) represents a good PDF, 

two constraints must be enforced. First, the non-negativity constraint which can be enforced by assuming that 

P(D) = exp(R(D)) and solving for R(D). Second, ensuring that ∫𝑃(𝐃)𝑑𝐃 = 1. The method of gradient 

descent was used to solve for R(D) in combination of Lagrange multiplier with the second constraint. After 

the numerical estimation of the TDF, one can determine dominant fiber directions on the unit sphere by 

computing the tensor orientation distribution (TOD) obtained by integrating out the eigenvalues from the 

TDF: 

 
𝑇𝑂𝐷(𝜃1,𝜃2) =  �𝑃(𝜃1,𝜃2,𝜆1,𝜆2)𝑑𝜆1𝑑𝜆2

𝜆1,𝜆2

 (3.26)  

 In chapter 7, we will use this model for tractography. The technique shows great results in extracting 

various fiber bundles.  

B  Spherical Deconvolution 

 Spherical Deconvolution assumes that the acquired HARDI signal is a result of the convolution of a 

presumed single fiber response function with a fiber distribution function specific for the imaged voxel. The 
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fiber response function was assumed to be Gaussian in (Alexander 2005) and a symmetric diffusion tensor 

estimated from real datasets in (Tournier et al. 2004; Anderson 2005). In (Jian and Vemuri 2007; Jian et al. 

2007), a mixture of Wishart model was proposed in order to resolve the fiber crossing problem. Equation 3.8 

was rewritten such that the diffusion signal was thought to be the Laplace transform on the space of positive 

definite tensors. They used a non-linear Levenberg-Marquardt (LM) optimization technique in order to obtain 

a solution.  

3.3.5.2.2 Model-Free Approaches 

A  The Apparent Diffusion Coefficient 

 The apparent diffusion coefficient (ADC) profile tries to model the intravoxel fiber crossing without 

assuming a Gaussian diffusion. The ADC tries to find a model which fits equation 3.27 using the acquired 

DWI measurements of the HARDI data without imposing a model on the diffusion propagator. Hence, it is 

assumed to be a model-free technique. Unlike the ODF, it was found that the ADC profile have maxima at an 

angle midway between the crossed fibers not along them as shown in Figure 13c. The ADC profile was 

modeled with spherical harmonics (SH), high order tensors (HOT) and generalized DTI (gDTI) at (Alexander 

et al. 2002; Frank 2002; Hirsch et al. 2003; Ozarslan and Mareci 2003; Zhan et al. 2003; Chen et al. 2004; 

Liu et al. 2004). 

 
𝐴𝐷𝐶 ≔ 𝐷(𝒈) =  −

1
𝑏

log �
𝑆(𝒈, 𝑡)
𝑠0

� (3.27)  

B  Q-Ball Imaging (QBI) 

 In 2002, Tuch presented the Q-ball imaging (QBI) technique (Tuch 2002; Tuch 2004) in which he 

tries to estimate the ODF by approximating it using the funk-radon transform (FRT). FRT maps spherical 

functions on a sphere from one function to another. QBI has a numerical solution (Tuch 2004) and a faster 

analytical solution using spherical harmonic reconstruction which was also found to be more robust to noise 

(Anderson 2005; Hess et al. 2006; Descoteaux and Deriche 2007). 
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C  Persistent Angular Structure MRI (PAS-MRI) 

 Jansons and Alexander have proposed a model-free method to estimate the ODF by reconstructing a 

statistic called: the radially persistent angular structure (PAS), 𝑝�, of the diffusion PDF  (Jansons and 

Alexander 2003). PAS can be described as the function p of the sphere which has a Fourier transform that 

best describes the normalized diffusion measurements and represents the relative mobility of water in each 

direction. The problem is formulated by assuming non-zero probabilities only on a spherical shell of radius r0 

and assuming independence of the angular and radial structure of the diffusion PDF: 

 
𝑃(𝒓) =

𝑝�(𝒓�)
𝑟02

𝛿(|𝒓| − 𝑟0) (3.28)  

where 𝒓�  is a unit vector in the direction of r. Using a maximum entropy parameterization, 𝑝�(𝒓�) can be 

reconstructed by fitting the HARDI data with a non-linear optimization algorithm. The method was reported 

to produce sharper ODF than QBI (Alexander 2005), however it is computationally demanding. A faster 

solution was found by replacing the maximum entropy by a linear basis of spherical harmonics (Alexander 

2005; Seunarine and Alexander 2006). 

D  Diffusion Orientation Transform 

 The last model-free approach to present is the diffusion orientation transform (DOT) proposed by 

Özarslan et al. (Özarslan et al. 2006). The DOT can be considered as a variant of QBI. It maps the ADC 

profile to the diffusion PDF, and then the ODF can be easily obtained using equation 3.21. While the QBI is 

a smoothed version of the ODF, the DOT is considered to be an exact representation of the diffusion PDF.  

3.4 Conclusion 

 In this chapter, we presented a brief history about the evolution of diffusion MRI. We have also 

presented different methods used to model the acquired diffusion signal from DWI, DTI and HARDI. We 

have performed a literature review on different methods used in HARDI to solve the fibers crossing problem. 
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We have clustered the methods into model-based and model-free. In this thesis, we are going to use the TDF 

presented in section 3.3.5.2.1 for the tractography application which will be presented in chapter 7.  
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IV. ANOMALOUS DIFFUSION 

4.1  Introduction 

Although all the HARDI models are able to resolve fibers crossing to some extent, all but DSI are 

usually acquired at low b-values (b ≤ 1500 s/mm2). Studying the DW signal behavior at high b-value (b > 

1500) has revealed that the signal decay does not follow an exponential decay as was presumed in the 

Gaussian mono-exponential decay model. Instead, it was found that the decay follows a stretched exponential 

behavior as shown in Figure 14. In fact, the measured ADC will depend on the experiment time when the 

water molecules are moving in a restricted or porous medium, which is called hindered diffusion. In short 

times, when molecules do not encounter any boundaries, diffusion may be modeled by the Gaussian model. 

However, in the long time limit, the motion of a molecule may depend on the starting position and the 

surrounding environment. In this case, another statistic should be used in order to scale the diffusion constant 

which gives rise to anomalous diffusion (AD).  

In order for the brain to carry out its functions, neurons need to transmit electrochemical signals to 

various neighbor cells and to respond to incoming signals from other cells. Various complex biochemical and 

metabolic processes controls the electrical properties of neurons. On the micro level, the brain WM tissues 

are made out of a large amount of myelinated axons which vary in diameter from 2 to 15 µm. The axons are 

made out of many neurofilaments with diameters that vary from 10 to 20 nm (Figure 15). This complex 

structure creates a porous medium in which the water molecules may exhibit AD. 

Anomalous (non-Gaussian) diffusion is the kind of diffusion which results from the porosity and 

tortuosity of the diffusive media. It assumes a power law relationship between the MSD and the diffusion 

time in the form: 

 < |𝑟|2 > ~𝐷𝑡𝐻 (4.1)  

where the Hurst index H can be viewed as a measure of the complexity of the medium. When H > 1 we call it 

super-diffusion and when H < 1 we call it sub-diffusion and at H = 1 we recover the Gaussian model. In the 
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mathematics of fractals literature, the H is replaced by 2/dw where dw is called the fractal dimension (Metzler 

2000). Many frameworks have been developed in order to describe AD. The most famous model is a 

stochastic framework called the continuous time random walk model (CTRW) (Metzler and Klafter 2000). 

The CTRW model gives rise to a fractional diffusion equation (FDE) that can be considered as a 

fractionalization of Fick’s second law, (for information about Fractional Calculus, refer to Appendix D).  

In this chapter, we are going to present the theory of AD including the CTRW model as well as the 

fractionalized Fick’s law. We are also going to present proposed models in the area of DW-MRI to describe 

AD in brain tissues. Both, isotropic and anisotropic models are going to be discussed. In chapter 6, we are 

going to present two new models constructed through a multidimensional fractional order version of the 

Bloch-Torrey equation. The models are going to be used to study the tortuosity and complexity of the brain 

tissues. 

 

 

 

 

Figure 14: Monoexponential (Gaussian) estimate of the diffusion signal decay plotted on actual DW-MRI 
measurements for b-values up to 5000 s/mm2. Notice the failure of the estimate at high b-values. 
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Figure 15: A multi-scale look at neural tissue. The figure is collaged from Wikipedia and the HistoWeb 
website (http://www.kumc.edu/instruction/medicine/anatomy/histoweb/index.htm).  

 

 

 

 

 

 

4.2  Continuous Time Random Walk model 

The stochastic formulation of diffusion goes back to the random walk model first introduced by Karl 

Pearson in 1905 (Pearson 1905) and the reformulation done by Albert Einstein in the same year (Einstein and 

Fürth 1956). AD was studied in the transport theory since the late 1960s. The CTRW model describes the 

random behavior of a particle in a diffusive medium (Metzler and Klafter 2000). The model was first 
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introduced by Montroll and Weiss in (Montroll and Weiss 1965). For a detailed review on the model, please 

review (Metzler and Klafter 2000).  

The model starts by considering the random motion of a particle in a medium. The particle is 

assumed to perform discrete jumps of distances Δx that vary according to a PDF P(x) and waits at each 

location a period of time Δt according to a PDF ψ(t). The waiting times and displacement PDFs are assumed 

to be independent in the separable CTRW model. Assuming the particle will start moving at time t = 0, the 

total displacement of a particle, X(t), after N identically independent distributed (IID) random jumps in the 

time interval [0, t] is given by: 

 
𝑋(𝑡) =  �Δ𝑥𝑖

𝑁(𝑡)

𝑖=1

 (4.2)  

which is a random sum of random variables. The PDF for waiting time of the Nth step: 

 𝜓𝑁(𝑡) = 𝜓(𝑡)∗𝑁 (4.3)  

where [.]*N denotes N times convolution. We define the survival probability, Ψ(𝑡), as the probability that no 

step was taken in the interval 0 ≤ t’ ≤ t, hence: 

 
Ψ(𝑡) = 1 −  � 𝜓(𝑡′)𝑑𝑡′ = 

𝑡

0
 � 𝜓(𝑡′)𝑑𝑡′

∞

𝑡
 (4.4)  

Hence, we can define the probability that the particle have performed N jumps in time t, P(t, N), to be the 

convolution that the Nth step was taken in the interval [0, t] and no steps were taken afterward: 

 
𝑃(𝑡,𝑁) =  � 𝜓𝑁(𝑡′)Ψ(𝑡 − 𝑡′)𝑑𝑡′ 

𝑡

0
 

= (𝜓𝑁 ∗ Ψ)(𝑡) 

= (𝜓1 ∗ 𝜓2 ∗ … ∗ 𝜓𝑁 ∗ Ψ)(𝑡) 

(4.5)  

The probability of finding a particle at location x and time t, also called the motion propagator, is given by: 
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𝑃(𝑥, 𝑡) =  �𝑃(𝑡,𝑁)𝑃(𝑥)∗𝑁

∞

𝑁=0

 (4.6)  

where, P(x) is the PDF of finding the particle at location x. Taking the Laplace-Fourier transform to the 

above equation (the Laplace transform w.r.t. time designated with the ~ symbol and the Fourier transform 

w.r.t. space designate with the ^ symbol), we get: 

 
𝑃��(𝑘, 𝑠) = �𝑃�(𝑠,𝑁)(𝑃�(𝑘))𝑁

∞

𝑁=0

 (4.7)  

Taking Laplace transform of equation (4.5), we can write: 

 
𝑃��(𝑘, 𝑠) = ��𝜓�(𝑠)�

𝑁
�

1 − 𝜓�(𝑠)
𝑠 � (𝑃�(𝑘))𝑁

∞

𝑁=0

 

=
1 − 𝜓�(𝑠)

𝑠 �1 −𝜓�(𝑠)𝑃�(𝑘)�
  

(4.8)  

The above is known as the Montroll-Weiss equation. We can categorize different CTRW processes by 

defining the characteristic waiting time: 

 
𝑇 =  � 𝑡𝜓(𝑡)𝑑𝑡

∞

0
 (4.9)  

and the jump length variance 

 
Σ2 =  � 𝑥2𝑃(𝑥)𝑑𝑥 

∞

−∞
 (4.10)  

As example, consider for instance a finite T and Σ2 with a Poissonian waiting time PDF in the form 𝜓(𝑡) =

1
𝑇

exp �− 𝑡
𝑇
� and a Gaussian jump length PDF in the form 𝑃(𝑥) = 1

√4𝜋𝜎2
exp �−𝑥

2

4𝜎2
� with Σ2 = 2σ2. Hence, one 

could rewrite equation 4.8 in the form: 
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 𝑃��(𝑘, 𝑠) =
1

𝑠 + 𝜎2
𝑇 𝑘2

 (4.11)  

by approximating 𝜓�(𝑠)~ 1− 𝑠𝑇 + 𝑂(𝑇2) and 𝑃�(𝑘) = 1 − 𝜎2𝑘2 + 𝑂(𝑘4), and using the differentiation 

theorems of Fourier and Laplace transforms, one could simply recover Fick’s second law by computing the 

inverse Laplace-Fourier transform. In fact, the choice of any finite T and Σ2 leads to the same result (Metzler 

and Klafter 2000). In the next two sections, we are going to discuss two types of AD: super and sub 

diffusion. 

4.2.1 Long Jumps: Super Diffusion (Levy Flights): 

 First coined by Benoît Mandelbrot (Mandelbrot 1982) to describe continuous random walks defined 

by the survivor function (commonly known as the survival function). The term Lévy flight is used nowadays 

by researchers to describe random walks on lattice with the step-lengths possess a PDF that is heavy tailed or 

have a stable distribution. The Lévy flight is known to be a Markovian process in nature.  

A stable distribution is a continuous probability distribution with a PDF defined as: 

 𝑓(𝑥) =  ℱ−1{𝜑(𝑡)} (4.12)  

where φ(t) is the characteristic function (Fourier transform) of the stable distribution given by: 

 

 
𝜑(𝑡) = exp�i𝑡𝑢 − |𝑐𝑡|𝛼(1 − i𝛽sgn(𝑡)Φ)� (4.13)  

where i = √−1, Φ = tan �𝜋𝛼
2
� for all α, except at α = 1 where Φ =  − 2

𝑝𝑖
log(𝑡), 𝜇 ∈ ℝ is a shift parameter, 

𝛽 ∈ [−1,1] is called the skweness parameter, a measure of asymmetry, and 𝑐 ∈ [0,∞] is a scale parameter. 

This family of functions cannot be expressed analytically except for the special cases of the Gaussian (α = 2), 

and the Cauchy (α = 1) distributions. With the exception of the normal distribution, the variance of a stable 

distribution is infinite.  
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In the CTRW model, consider the case when T is finite, Σ2 = ∞, and P(x) = P(-x) (i.e. µ = β = 0 in 

4.13), we can write: 

 𝑃�(𝑘) = exp(−𝑎|𝑘|𝛼) ~1 − 𝐵|𝑘|𝛼 ,𝑘 → 0, 0 < 𝛼 < 2 (4.14)  

Consider 𝜓�(𝑠)~ 1 − 𝑠𝑇, 𝑠 → 0, substituting in 4.8, we obtain: 

 𝑃��(𝑘, 𝑠) =
1

𝑠 + 𝐵
𝑇 |𝑘|𝛼

 (4.15)  

Taking the Laplace-Fourier inverse transform, one obtains the FDE: 

 𝜕𝑃(𝑥, 𝑡)
𝜕𝑡

=
𝐵
𝑇

𝐷𝛼𝑃(𝑥, 𝑡)𝑅𝑍  (4.16)  

where 𝐷𝛼𝑅𝑍  is Riesz fractional derivative having the property ℱ� 𝐷𝛼𝑓(𝑥)𝑅𝑍 � =  −|𝑘|𝛼ℱ{𝑓(𝑥)} (see 

Appendix D). One can compute the Fourier transform of the motion propagator, obtaining: 

 𝑃�(𝑘, 𝑡) = exp �−
𝐵
𝑇

|𝑘|𝛼� (4.17)  

which is the characteristic function of a centered and symmetric Lévy distribution.  

4.2.2 Long rests: Sub Diffusion: 

 Sub-diffusion is characterized by an infinite average waiting time T and a finite jump length variance 

Σ2. We introduce a long-tailed waiting time PDF with the asymptotic behavior described by: 

 
𝜓(𝑡)~ �

𝑡𝑜
𝑡
�
1+𝛾

, 0 < 𝛾 < 1 (4.18)  

using Tauberian theorems, which relate the power-law scaling of a Laplace transform at small s to the scaling 

in original space for large t, the corresponding asymptotic Laplace can be written in the form: 

 𝜓�(𝑠) = 1 − (𝑡0𝑠)𝛾, 𝑠 → 0 (4.19)  
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Assuming a Gaussian jump length PDF with the Fourier transform is in the form:  

 
𝑃�(𝑘)~1−

𝜎2𝑘2

2
,𝑘 → 0 (4.20)  

Substituting in 4.8, one obtains: 

 𝑃��(𝑘, 𝑠) =
1

𝑠 �1 + 𝑡0 �
𝜎2𝑘2

2 𝑠�
𝛾
�

 
(4.21)  

Computing the inverse Laplace transform, one would get: 

 
𝑃�(𝑘, 𝑡) = E𝛾 �−�

𝑡
𝐸(𝑘)�

𝛾
� (4.22)  

where Eγ(z) is the Mittag-Leffler function described in Appendix D. It can be proven that P(x, t) satisfies the 

FDE in the form: 

 𝜕𝑃(𝑥, 𝑡)
𝜕𝑡

= �
𝜎2

2𝑡0
𝛾� 𝐷𝑡

1−𝛾 �
𝜕2𝑃(𝑥, 𝑡)
𝜕𝑥2 �0

𝑅𝐿  (4.23)  

where 𝐷𝑡
1−𝛾

0
𝑅𝐿  is the Riemann-Liouville fractional derivative described in Appendix D.  

 To summarize, we have presented the separable CTRW model which can be used to describe AD in 

porous mediums. The model is based on the construction of two probability distributions. The first, P(x), 

represents the probability that a particle moving on a lattice will omit a jump Δx. The second, Ψ(t), represents 

the probability that the particle will remain in the current location for a time Δt. A general form for the 

motion propagator was developed using the Laplace-Fourier transform. Two cases were discussed according 

to the average waiting time and the variance of the jump lengths. A finite average waiting time and infinite 

variance of the jump lengths would lead to a super-diffusive process (Lévy flight) characterized by long 

jumps while an infinite average waiting time and a finite variance of the jumps length would result into a 

sub-diffusive process characterized by long rests between jumps. A simulation to both cases is illustrated in 

Figure 16.  



45 
  

 

 In the next section, we are going to review different models for DW-MRI that took into consideration 

the anomalous diffusive behavior of water molecules in brain tissues. Models will be categorized by being 

either isotropic which cares only about modeling AD in one gradient direction. Other anisotropic models try 

to describe AD in different directions of space in order to test its dependence on the gradient direction. 

 

 

 

 

Figure 16: Comparison of the trajectories of a Brownian or sub-diffusive random walk (left) and a Lévy 
walk with index H = 1.5 (right). Whereas both trajectories are statistically self-similar, the Lévy walk 
trajectory possesses a fractal dimension, characterizing the island structure of clusters of smaller steps, 
connected by a long step. Both walks are drawn for the same number of steps (10000). Figure is adapted 
from Wikipedia.  
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4.3  Anomalous Diffusion Magnetic Resonance Imaging 

4.3.1 Isotropic Models 

An early model was the mixture of Gaussians or so called bio-exponential model which was 

previously described in section (3.3.5.2.1-A). Bennett et al. proposed a stretched exponential model (Bennett 

et al. 2003) and he introduced the “stretching parameter” α which takes a value from 0 to 1 in the equation: 

 𝑆 = 𝑆0 exp(−(𝑏𝐷)𝛼) (4.24)  

Bennett et al. found that his model performs better than the bio-exponential one in 20% of the voxels even 

though it has less parameters for tuning. The stretching parameter was found to be linked with the 

heterogeneity of the diffusive media. Later, it has been observed that it is different in different directions.  

Magin et al. (Magin et al. 2008) fractionalized the Bloch-Torrey equation and introduced two new 

parameters: μ to preserve units and β simultaneously acting as the fractional order of derivative in the 

proposed FDE and as the stretched exponent in the solution. He wrote the transverse magnetization in the 

rotating frame in the form: 

 𝑑𝑀𝑥𝑦

𝑑𝑡
= −𝑖𝛾(𝒓.𝑮)𝑀𝑥𝑦 + 𝐷𝜇2(β−1)∇2β𝑀𝑥𝑦 (4.25)  

where ∇2𝛽= �𝐷𝑥
2𝛽 𝐷𝑦

2𝛽 𝐷𝑧
2𝛽� is a sequential Riesz fractional order Laplacian operator in space (see 

Appendix D). Solving the above equation for a Stejskal-Tanner pulse sequence allows us to write the DW 

signal in the form: 

 
𝑆 = 𝑆0 exp�−|𝑞|2𝛽𝜇2𝛽−2𝐷 �Δ −

2𝛽 − 1
2𝛽 + 1

𝛿��  (4.26)  

The new parameter μ (mm) was found to be directly proportional with tortuosity while β which varies from 

0.5 to 1 was found to be inversely proportional with the complexity of the surroundings. In Zhou et al. (Zhou 

et al. 2010) β and μ brain maps were created. The scalar ADC, D, was first computed at low b-value (b = 
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1000 s/mm2). Then, non-linear least squares method based on the LM algorithm was used to fit for μ and β 

using multiple b-values. A great correlation between brain tissues complexity and low beta values was found. 

In precise, β values for CSF was found to follow a value near to unity driving equation 4.4 back to the 

Gaussian model, while β for WM and GM was 0.64 ± 0.01 and 0.82 ± 0.01 respectively indicating a slower 

decay for WM compared to GM. 

Equation 4.26 was also applied to sephadex gel, a material made of a chemically cross-linked 

network making it an excellent medium with uniform pore size (Magin et al. 2011). Different pore sizes were 

tested with different diffusing time Δ (recall equation 3.16) in order to test the effect on β and μ. Beta was 

found to decrease with increasing gel complexity (smaller pore diameter) while μ was found to increase with 

diffusion time as well as with tortuosity. 

 Recently, Hanyga and Seredyńska have used a pseudo-differential operator, Q, in the Bloch-Torrey 

equation to describe AD in DW-MRI (Hanyga and Seredynska 2012). A pseudo-differential operator (PDO) 

is simultaneously an extension of the concept of differential operator and of that of a singular integral 

operator. They are used extensively in the theory of partial differential equations. A PDO, Q, acting on a 

function f(x) is only defined in the Fourier domain. Hence, we can write Q 𝑓(𝒙) =  ℱ−1{Q(𝒌)𝑓(𝒌)}. For 

more information about PDOs, we refer the reader to (Hörmander 1987; Sato 1999). In their work, Hanyga 

and Seredyńska wrote the Bloch-Torrey equation in the form: 

 
�D + 𝑖𝛾(𝑮(𝑡).𝒙) +

1
𝑇2
�
𝛽
𝑀𝑥𝑦 = Q 𝑀𝑥𝑦 (4.27)  

where Dβ denotes the Caputo derivative (see Appendix D), β is a parameter satisfying 0< β ≤1, Q is the PDO 

defined in the Fourier domain as Q( ) ( )S m dα= − ∫k k y y where S denotes the surface of the unit sphere 

centered at 0, m is a measure on the unit sphere and α is a parameter satisfying the inequalities 0< α ≤2. 

Solving the above equation, we get: 
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𝑀𝑥𝑦 = 𝑀0E𝛽,1+𝛼𝛽,𝛼𝛽

�−𝛾𝛼𝑡𝛼+𝛽 �|𝒈.𝒚|𝛼𝑚(𝑑𝒚)
𝑆

� (4.28)  

where E is the Mittag-Leffler function described in Appendix D, g is a unit vector in the direction of the 

applied gradient. In the special case when β = 1, the Mittag-Leffler falls into an exponential. When β = 1 and 

α = 2, we recover the DTI model. A solution based on the replacement of the measure m by a series of 

spherical harmonics was suggested. However, the solution was not tested on real DW data. Though this 

model has suggested a solution to the fiber crossing problem by the introduction of spherical harmonics, 

however, it treated AD as an isotropic problem through the utilization of the parameter α.  

4.3.2 Anisotropic Models 

Recently, Hall and Barrick (Hall and Barrick 2012) suggested a two-step anomalous diffusion tensor 

imaging scheme based on an old scalar model they have previously developed (Hall and Barrick 2008). Their 

old model starts from equation (3.9) and represents the signal decay as: 

 𝑆(𝑏) = 𝑆0 exp(−𝐴𝑏𝛾) (4.29)  

were A is a constant and γ is the stretched exponential previously suggested by Bennett. They tried to 

investigate the anisotropy in the stretched exponential term by fitting multi-directional DW data on a 

generalized tensorial version of the stretched exponential model which reads: 

 𝑆(𝑏) = 𝑆0 exp�−[𝑏𝐀(𝒓)]𝚪(𝒓)� (4.30)  

were r is a unit vector defined on the unit sphere, A and Г are rotationally invariant tensors called distributed 

diffusivity tensor and anomalous exponent tensor respectively (Figure 18). Both tensors are symmetric and 

assumed to be well described by Gaussian ellipsoids. Using the gradient direction vector g they can be 

described as follow: 

 
𝐀 = [𝑔𝑥 𝑔𝑦 𝑔𝑧] �

𝐴𝑥𝑥 𝐴𝑥𝑦 𝐴𝑥𝑧
𝐴𝑥𝑦 𝐴𝑦𝑦 𝐴𝑦𝑧
𝐴𝑥𝑧 𝐴𝑦𝑧 𝐴𝑧𝑧

� �
𝑔𝑥
𝑔𝑦
𝑔𝑧
� (4.31)  
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𝚪 = [𝑔𝑥 𝑔𝑦 𝑔𝑧] �

Γ𝑥𝑥 Γ𝑥𝑦 Γ𝑥𝑧
Γ𝑥𝑦 Γ𝑦𝑦 Γ𝑦𝑧
Γ𝑥𝑧 Γ𝑦𝑧 Γ𝑧𝑧

� �
𝑔𝑥
𝑔𝑦
𝑔𝑧
� (4.32)  

Decomposition of both tensors to eigenvalues and eigenvectors has shown similar behavior of A to the 

diffusion tensor and the eigenvector corresponding to the largest eigenvalue of the Г tensor points to the 

direction of the greatest environment complexity.  

 

Figure 17: Results of the fitted A and Γ tensors in the Hall and Barrick model. Figure adapted from Tom 
Barrick presentation at the Interpore 2012 conference. 

 

 

 

 

 

De Santis et al. (De Santis et al. 2011) have assumed that the DW signal is combined from three 

stretched exponentials existing along the three main axes of diffusion. She wrote: 

 
𝑆(𝑏) = 𝑆𝑜� exp�−𝐴𝑖𝑏𝛾𝑖�

3

𝑖=1

 (4.33)  
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where Ai (mm2γi/sγi) is a generalization of the diffusion constant. De Santis et al. have proposed the following 

protocol to computes the six unknowns in equation (4.31): first the eigenvectors were computed from the 

classical DTI tensor. Then, the rotation matrix that links the laboratory frame with the DTI orthogonal 

eigenvectors was computed. Finally, equation (4.31) was fit to compute the six unknowns. Their protocol 

implies the coincidence of both the DTI and AD coordinates. A strong correlation between anomalous 

anisotropy (γA) (the mean squared difference between the stretching exponents and their mean values) and 

DTI FA was found. Anomalous anisotropy was computed using (3.19) by replacing λi by γi. Moreover, a 

positive correlation was found between DTI MD and the mean value of the stretched exponents (Mγ). 

4.4  Conclusion 

In this chapter, we have presented the theory of AD, the CTRW model and discussed two main 

special cases: super and sub diffusion. We have also presented isotropic and anisotropic AD-MRI models. 

We can notice that all of the anisotropic models lack a mathematical derivation emerging from the Bloch-

Torrey equation. In summary, the work to date suggests that there is additional information in the directional 

dependence of the stretched or anomalous diffusion exponent. In chapter 6, we will present two anisotropic 

models based on the fractionalization of the Bloch-Torrey equation in a multidimensional formulation that 

separates the tissue anisotropy from the directional dependence of the stretched exponential parameters. 
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V. NEURONAL NETWORKS 

5.1   Introduction 

Neuroscience has known the concept of networks since the second half of the 19th century. The 

hypothesis of the “disconnection syndromes” suggested by Wernicke, Lichtheim, Liepmann, Dejerine and 

others based on clinico-pathological correlations (Catani and Mesulam 2008). Since then, the concept was 

left for a decade until its reintroduction by Norman Geschwind in 1965 (GESCHWIND 1965). Modern 

imaging techniques have allowed us to study the human brain as a complex system by modeling the brain as 

a network. Inspired by the sequencing project of the human genetic code, the genome, the term connectome, 

first introduced in (Hagmann 2005; Sporns et al. 2005), describes the map of neural connections in the brain. 

A connectome, also called brain connectivity network, consists of nodes which represent gray matter regions 

and edges connecting nodes which represent WM fibers in structural networks, or correlations between two 

BOLD (blood oxygen level dependent) time sequences in the case of functional networks. Mathematical 

tools have been borrowed from the field of graph theory and applied to connectomes in order to analyze them 

(Sporns et al. 2005; Rubinov and Sporns 2010).  

In this chapter we are going to present the basics of graph theory used to analyze brain networks. 

Moreover, we are going to focus on a specific property of sparse networks (networks having the number of 

nodes in the order of the number of edges) called community structure. In chapter 8, we argue that to better 

measure a community structure, one has to consider not only connections within communities, but also 

connections between communities (in that one seeks to balance interactions within versus between 

communities). A novel metric is introduced to better measure community structure by jointly maximizing 

within-community integration and minimizing between-community separation. We use this metric to study 

the topological structure of the human brain by extracting the community structure of brain networks. 

Moreover, we perform group studies to detect changes in that structure due to various neuropsychological 

diseases. 
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5.2  Graph Theoretical Concepts for Network Analysis 

 The first notion of graph theory dates back to 1736 when Euler tried to solve the seven bridges of 

Königsberg’s problem. Nowadays called Kaliningrad, the city of Königsberg included two large islands 

interconnected with each other and the mainland by seven bridges. The problem was to find a path through 

the city that would cross each bridge only once. By representing the problem into a graph, Euler has proven 

that this was impossible. His paper (Euler 1741) is considered to be the foundation of graph theory in 

mathematics. Later on, the graph theoretic concepts have found use in different fields such as electrical 

circuit analysis, computer science, and sociology.  

A graph is made out of a set of nodes or vertices connected by edges (lines) and can be abstracted 

into a network. Networks can be directed or undirected, and weighted or unweighted (binary). A path is a 

walk through the graph where each node is visited only once. An unweighted network made of n nodes can 

be described by an n x n adjacency matrix A, where every non-diagonal entry aij is of value 1 if an edge 

exists between vertex i and vertex j and zero otherwise. On the other hand, a weighted network made of n 

nodes can be described by an n x n distance matrix W, where every non-diagonal entry wij describes the 

weight between vertex i and vertex j. Undirected networks possess a symmetric adjacency or distance 

matrices. Figure 18 shows different definitions used in graph theory. A weighted network can be converted 

into an unweighted network using a threshold. In that case, connections are only established if the weight dij 

is above that threshold. Unweighted networks simplify the calculation of many network measures. However, 

the choice of a threshold can be very problematic. A fixed threshold would lead to a different number of 

edges in different networks. On the other hand, comparing unweighted networks with the same number of 

edges means that a different threshold may be used for each network. In this thesis, we are going to focus on 

weighted undirected networks. For a structural brain network, nodes could be neurons or cortical regions and 

edges could be axons or WM tracts. Alternatively, edges could signify correlations between the activity 

patterns of nodes forming functional brain networks. Network analysis techniques can be applied to the 

analysis of brain networks. In this thesis, we focus only on structural weighted networks. 
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One can measure the network topological properties from its matrix representation using various 

metrics. A first metric is the node degree which is simply its number of edges. The degree distribution is 

defined as being the probability distribution of nodal degrees over all the nodes in the network. It can be used 

as a measure for the network development and resilience. This metric can be used to test the ability of 

anatomical brain connectivity to resist decay due to different neuropsychiatric diseases such as Alzheimer’s 

disease. Another measure of resilience is the node’s average neighbor degree defined as the ratio between 

the sum of its neighbors' degrees and the number of neighbors. 

An important characteristic in graphs is functional integration which is defined as the ability to 

combine information from the various parts of the network. The concept of a path is well prominent in 

metrics used to measure network integration. A key metric is the shortest path length defined as the shortest 

path between two nodes. The characteristic path length (CPL) is the average path length over all possible 

pairs of nodes. Networks with longer CPL exhibit information flows that are “impeded” or “slower” 

compared to those with shorter CPL, and are thus less efficient. A related global metric, the global efficiency 

(Eglob), calculates the average inverse shortest length between all pairs of nodes. Thus the higher Eglob, the 

more efficient is the network. It has been suggested that Eglob may be advantageous over CPL in measuring 

network integration as CPL values can be heavily influenced by very long path lengths (Achard and 

Bullmore 2007). 

Another important family of metrics for graphs is measures of network clustering or segregation 

such as the clustering coefficient and transitivity. These metrics try to quantify the existence of groups and 

clusters in the network. Such groups could be considered as dedicated processing units or centralized 

functional centers in the case of brain networks. The clustering coefficient (CC) of a node is defined as the 

percentage of its neighbors that are also connected among them. Thus, nodes with high CC form locally 

interconnected clusters. The CC of the whole network averages CC across all nodes. A related metric to 

network clustering, transitivity, is only defined on the whole network by modifying the mathematical 

formulation of CC such that its values are less susceptible to outliers.  
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It has been shown that brain networks are sparse (Bassett and Bullmore 2006). In sparse networks, 

the ability to collect nodes in communities is called the network community structure. Using this feature, we 

try to extract groups and find their exact size and composition revealing valuable information about the 

network topological and functional structure. A widely used metric for measuring and extracting the 

community structure of a network is called modularity (Newman 2004). In this thesis we are going to present 

a new method to extract community structures of networks and we are going to apply it to brain networks. In 

the next section, we are going to perform a literature review about the different methods used to extract 

community structures, a focus will be given to the modularity metric. 

Important nodes (hubs) that play an interactive role with different clusters can be detected by 

measures of centrality such as nodal degree and betweenness centrality. The betweenness centrality measures 

the density of nodes surrounding the node under test. A node betweenness is larger when it lies between 

many pairs of nodes. This is done by computing the ratio between shortest paths that pass through the node 

under test and all shortest paths in the network. 

Lastly, networks with small-world properties have been theorized to exhibit an optimal balance 

between functional integration and local clustering (Watts and Strogatz 1998). Mathematically, the small-

worldness which computes the normalized CC divided by the normalized CPL, both normalized against 

random networks with globally the same number of connections. Random networks are generated by 

establishing each potential connection between nodes with a probability p and have low clustering and short 

path length, (Erdős and Rényi 1960). A higher value of small-worldness indicates a higher level of clustering 

with a short path length compared to a randomly generated network. It has been shown that the brain exhibits 

small-worldness which indicates that segregated processing exists in locally specialized and highly clustered 

nodes as well as globally distributed processing throughout the network with a short CPL (Sporns and Zwi 

2004). The mathematical definition of the graph theory metrics described above is presented in Table III. 
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Figure 18: Top row shows the definition of a node, an edge, a triangle, and a connected triplet. Second row 
shows an unweighted undirected graph and its adjacency matrix. Third row shows a weighted undirected 
distance matrix and a grayscale visualization of its entries. The figure is adapted from Wikipedia. 

 

 

 

 

Table III: Mathematical definitions of network metrics. Shading groups metrics of same family. 

Metric Definition 

Basic 
concepts and 

notation 

N is the set of all nodes in the network, and n is the number of nodes. 

L is the set of all links in the network, and l is number of links. 

(i, j) is a link between nodes i and j, (i, j ∈ N). 

Links (i, j) are associated with connection weights wij. 

W is the sum of all weights in the network, computed as 𝑊 = ∑ 𝑤𝑖𝑗𝑖,𝑗∈𝑁  
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Number of 
triangles 

Number of triangles around a node i, 

𝑡𝑖 =
1
2
� �𝑤𝑖𝑗𝑤𝑖ℎ𝑤𝑗ℎ�

1
3

𝑗,ℎ∈𝑁

 

Degree for node i:  𝑘𝑖 = ∑ 𝑤𝑖𝑗𝑗∈𝑁  

Betweenness 
centrality 

Betweenness centrality of node i (Freeman 1979), 

𝑏𝑖 =
1

(𝑛 − 1)(𝑛 − 2) �
𝜌ℎ𝑗(𝑖)
𝜌ℎ𝑗 ℎ,𝑗∈𝑁

ℎ≠𝑖,ℎ≠𝑗,𝑖≠𝑗

 

where ρhj is the number of shortest paths between h and j, and ρhj (i) is the number of 
shortest paths between h and j that pass through i. 

Degree 
distribution 

Cumulative degree distribution of the network (Barabási and Albert 1999), 

𝑃(𝑘) = � 𝑝(𝑘′)
𝑘′≥𝑘

 

where p(k′) is the probability of a node having degree k′. 

Average 
neighbor 
degree 

Average neighbor degree (modified from (Barrat et al. 2004)), 

𝑘𝑛𝑛,𝑖 =
∑ 𝑤𝑖𝑗𝑘𝑗𝑗∈𝑁

𝑘𝑖
 

Shortest path 
length 

Shortest path length (distance), between nodes i and j, 

𝑑𝑖𝑗 = � 𝑓(𝑤𝑖𝑗)
𝑎𝑢𝑣∈𝑔𝑖↔𝑗

 

where f is a map from weight to length and gi↔j is the shortest path between i and j. 

Characteristic 
path length 

Characteristic path length of the network (Watts and Strogatz 1998), 

𝐿 =
1
𝑛
�𝐿𝑖
𝑖∈𝑁

=
1
𝑛
�

∑ 𝑑𝑖𝑗𝑖∈𝑁.𝑖≠𝑗

𝑛 − 1
𝑖∈𝑁

 

where Li is the average distance between node i and all other nodes. 

Local 
efficiency 

Local efficiency of the network, generalized from (Latora and Marchiori 2001), 

𝐸𝑙𝑜𝑐 =
1
2
�

∑ �𝑤𝑖𝑗𝑤𝑖ℎ�𝑑𝑖𝑗(𝑁𝑖)�
−1�

1
3

𝑖,ℎ∈𝑁.𝑖≠𝑗

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁

 

 



57 
  

 

Global 
efficiency 

Global efficiency of the network, generalized from (Latora and Marchiori 2001), 

𝐸 =
1
𝑛
�𝐸𝑖
𝑖∈𝑁

=
1
𝑛
�

∑ 𝑑𝑖𝑗−1𝑖∈𝑁.𝑖≠𝑗

𝑛 − 1
𝑖∈𝑁

 

where Ei is the efficiency of node i. 

Clustering 
coefficient 

Clustering coefficient of the network (Onnela et al. 2005), 

𝐶 =
1
𝑛
�𝐶𝑖
𝑖∈𝑁

=
1
𝑛
�

2𝑡𝑖
𝑘𝑖(𝑘𝑖 − 1)

𝑖∈𝑁

 

where Ci is the clustering coefficient of node i (Ci = 0 for ki < 

 2). 

Transitivity 

Transitivity of the network, generalized from (Newman 2003), 

𝑇 =
∑ 2𝑡𝑖𝑖∈𝑁 

∑ 𝑘𝑖(𝑘𝑖 − 1)𝑖∈𝑁
 

Modularity 

Modularity of the network, generalized from (Newman 2004), 

𝑄 =
1
𝑊

� �𝑤𝑖𝑗 −
𝑘𝑖𝑘𝑗
𝑊 �𝛿(𝑖, 𝑗)

𝑖,𝑗∈𝑁

 

where the network is fully subdivided into a set of non-overlapping modules M, 𝛿(𝑖, 𝑗) is 
1 if nodes i and j are in the same module and zero otherwise. 

Measure of 
network 
small-

worldness. 

Network small-worldness, generalized from (Humphries and Gurney 2008), 

𝑆 =
𝐶/𝐶𝑟𝑎𝑛𝑑
𝐿/𝐿𝑟𝑎𝑛𝑑

 

where C and Crand are the clustering coefficients, and L and Lrand are the characteristic path 
lengths of the respective tested network and a random network. Small-world networks 
often have S ≫ 1. 
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5.3 Community Structure: A Literature Review 

We define community structure as being the topological organization of sparse networks in which 

they are partitioned into a set of non-overlapping communities, also referred to as modules or clusters. 

Another definition for communities is that they are partitions of the graph (subgraphs) in which the number 

of links (edges) inside is much larger than the number of edges linking its nodes with the rest of the graph. 

Extracting the community structure of a network has been an important and challenging task for different 

fields of science such as sociology, biology and computer science (Fortunato 2010). Community structure is 

considered to be a measure of network segregation. It helps in understanding the organizational and 

functional aspects of complex networks. It is believed that nodes within a community will probably share 

common properties and/or play similar roles within the graph. The problem is usually considered a class of 

non-deterministic polynomial time (NP)-hard problem whose solution could only be reached in a polynomial 

time using approximation (rather than exact) algorithms in order to lower the computational complexity 

(Fortunato 2010). While in this thesis we will address only the case of partitioning undirected graphs into 

non-overlapping communities (i.e. assigning each node to only one community), it should be noted that 

algorithms that take into account overlapping communities have been proposed, but they are computationally 

demanding (Fortunato 2010). A big challenge in finding different clusters in a network is that the number of 

communities is usually unknown. However, several methods and algorithms have been developed for that 

purpose with different computational complexity and varying levels of success. 

5.3.1 Traditional Methods 

The minimum-cut, also called graph partitioning, is considered the oldest technique used to extract 

the community structure. It was used in parallel computing for load balancing in order to minimize 

communication between processors. In this technique, a network is usually divided into a predetermined 

number of clusters of approximately the same size such that the number of edges between them is minimized. 

The need of a predetermined number of clusters in this method is considered a limitation when it comes to 
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community structure extraction, as it will result into communities regardless of whether they are implicit in 

the network or not (Newman 2004). 

5.3.2 Hierarchical Clustering 

To reveal the multi-level structure of a system, one could use hierarchical clustering algorithms 

(Hastie et al. 2001). There exist two main types of hierarchical clustering techniques: the agglomerative and 

the divisive. The agglomerative method starts bottom-up. At the first level, every node is a community by 

itself. In each subsequent level, two communities that are considered closest (with respect to a similarity 

measure) are merged into one, until all nodes are in one community. The divisive method follows the 

opposite or a top-down approach. It starts with all nodes belonging to one single community, and at each 

level, each community is further split into several sub-communities (unlike the agglomerative method, the 

divisive clustering usually uses a dis-similarity measure). It should be noted that one may choose to stop the 

clustering process at a pre-specified level (stopping criteria can be a given number of communities or the 

optimization of a quality function (Fortunato 2010). Dendrograms are often used in order to illustrate the 

resultant tree-structure. Hierarchical clustering have been widely used due to its advantage that it does not 

require a previous knowledge on the number and size of communities. However, due to the dependence of 

the procedure on the chosen similarity (or dissimilarity) measure, one would not be able to choose which 

partitions better represent the community structure of the graph (Fortunato 2010). Moreover, the constructed 

hierarchical structure may be artificial on the graph under analysis which might not possesses a hierarchical 

structure at all. 

5.3.3 Divisive Algorithms 

Another algorithm was presented by Girvan and Newman in (Girvan and Newman 2002) depends on 

edge betweenness. Using the edge betweenness centrality metric, the algorithm identifies nodes that lie 

between communities and then removes the interconnecting edges, thus isolating the communities. The 

algorithm gives good results but it suffers from a slow runtime of order O(m2n) for a network of n nodes and 

m edges due to the heavy calculations needed to compute the betweenness metric. In order to improve its 
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speed, s variation of the algorithm based on Monte-Carlo estimation was suggested in (Tyler et al. 2003; 

Wilkinson and Huberman 2004). Another speeded version was presented by Rattigan et al. (Rattigan et al. 

2007) in which an approximation of the edge betweenness was instead computed. 

5.3.4 Modularity Optimization 

 One of the most widely used techniques for community structure extraction is the modularity 

maximization, presented in Table III. The Q modularity was first introduced by Newman and Girvan in 

(Newman and Girvan 2004) as a quality metric for a particular partitioning of a network. Then, it was 

suggested that its maximization would yield the community structure of the network (Newman 2004). The 

modularity maximization method detects communities by searching over possible divisions of a network for 

one or more that have particularly high modularity. Modularity was designed based on the idea that a graph 

has a community structure cannot be a random graph. As proposed by Erdős and Renyi (Erdős and Rényi 

1960), a random graph is defined as being networks with the probability of edges between nodes is of value 

p, where 0 ≤ p ≤ 1. Hence, a random graph is not expected to have a community structure since no 

connectional preference exists between nodes in order to form groups. Starting from the random graph 

definition, one can introduce the notion of the null model as being a random graph with some structural 

features of a given network. The modularity is defined by comparing the actual density of edges and the 

expected density in case of a null model. Hence, one can write modularity in the form: 

 𝑄 =
1

2𝑊
��𝑤𝑖𝑗 − 𝑃𝑖𝑗�𝛿(𝑖, 𝑗)
𝑖𝑗

 (5.1)  

where the sum runs over all pairs of vertices, wij is the weight of the edge connecting nodes i and j, W is the 

sum of all weights in the network, Pij represents the expected number of edges between nodes i and j in the 

null model, and 𝛿(𝑖, 𝑗) yields one if vertices i and j are in the same community and zero otherwise. Newman 

and Girvan have proposed a null model where the edges of the original network are randomly rewired such 

that the expected degree of each node remains the same (Newman and Girvan 2004). Imposing this null 

model on the definition of Q, and under independency assumption, the probability that nodes i and j with 
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degrees ki and kj are connected is given by: 𝑝𝑖𝑝𝑗 = � 𝑘𝑖
2𝑊
�� 𝑘𝑗

2𝑊
�. Hence, the expected number 𝑃𝑖𝑗 = 2𝑊𝑝𝑖𝑝𝑗 =

𝑘𝑖𝑘𝑗
2𝑊

, and we can re-write Q in the form: 

 
𝑄 =

1
2𝑊

��𝑤𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑊�𝛿(𝑖, 𝑗)

𝑖𝑗

 (5.2)  

It is important to state that modularity was first defined on adjacency (binary) matrices then it was adapted 

for weighted networks. The value of Q usually lies in the range [-0.5, 1]. An exhaustive search for the 

maximum modularity is impossible since the problem is of type NP-complete (Brandes et al. 2006). In the 

next sections, we are going to state various techniques used for the maximization of modularity. 

5.3.3.1 Greedy Algorithms 

The very first algorithm used for modularity maximization was a greedy method based on 

agglomerative hierarchical clustering suggested by Newman (Newman 2004). In this method, nodes are 

joined to form larger clusters under the condition of an increase in modularity. Variations of that algorithm 

exist in order to improve speed and efficiency in (Clauset et al. 2004; Danon et al. 2006; Newman 2006; 

Pujol et al. 2006; Du et al. 2007; Wakita and Tsurumi 2007; Schuetz and Caflisch 2008; Schuetz and Caflisch 

2008; Ye et al. 2008; Mei et al. 2009; Noack and Rotta 2009; Xiang et al. 2009). These algorithms can work 

on networks with a maximum of 106 nodes.  

 A very fast, yet greedy agglomerative algorithm was proposed by Blondel et al. (Blondel et al. 2008) 

and consists of two steps. In the first step, each node is assigned to a community, and then we perform a 

random sweep on all nodes to compute the gain in modularity, ΔQ, when node i is joined with node j, the 

largest positive gain is chosen. In the second step, communities are replaced by supernodes, and the edges 

interconnecting each two communities are summed to yield one edge between each two supernodes. Then the 

two steps of the algorithm are repeated until no gain in modularity can be achieved. This algorithm can work 

on large networks in the order of 109 edges.  
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5.3.3.2 Simulated Annealing 

Simulated Annealing (SA) (Kirkpatrick et al. 1983) is a generic probabilistic metaheuristic 

optimization technique that enables one to find global optimum of a given function without getting trapped in 

local minima. By exploring the space of possible states, SA searches for the local maxima of a function F. In 

this sense, SA mimics the annealing process in metallurgy, a technique involving heating and controlled 

cooling of a material to increase the size of its crystals and reduce their defects. At every iteration of the SA 

algorithm, a random new state is chosen. The new state is then accepted with respect to the following 

acceptance probability:  

 
𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) =  �

1, 𝑖𝑓 𝐹𝑛𝑒𝑤 > 𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡

exp�
1
𝑇

(𝐹𝑛𝑒𝑤 − 𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡)� , 𝑖𝑓 𝐹𝑛𝑒𝑤 < 𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 (5.3)  

where newF  is the current value of our cost function under optimization computed in the new state, currentF  is 

the last accepted value, and T is the artificial cooling temperature. SA was first used by Guimera et al. 

(Guimerà et al. 2004) to maximize modularity. A modified version with local (randomly moving nodes from 

one cluster to another) and global (randomly merging and splitting communities) changes was implemented 

by Guimera and Amaral in (Guimera and Amaral 2005). This technique was found to give higher modularity 

than simple local moves in (Massen and Doye 2005; Medus et al. 2005). Despite of the high modularity 

outcome from the SA algorithm, its slow performance restricts it to small networks of up to 104 nodes.  

5.3.3.3 Spectral Optimization 

 Another technique for modularity maximization can be attained through the definition of the 

modularity matrix B whose elements are defined in the form: 

 
𝑏𝑖𝑗 = 𝑤𝑖𝑗 −

𝑘𝑖𝑘𝑗
2𝑊

 (5.4)  
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In the case of two communities, we define Si to be 1 in case node i belongs to the first group and -1 

otherwise. Hence, we can rewrite equation 8.2 in the form. 

 𝑄 =
1

4𝑊
�𝑏𝑖𝑗𝑆𝑖𝑆𝑗
𝑖𝑗

=
1

4𝑊
𝑺𝑇𝐁𝑺 (5.5)  

where S is the column vector with Si as elements. By decomposing B into its eigenvectors and eigenvalues, 

the previous equation can be written in the form: 

 
𝑄 =

1
4𝑊

�𝑎𝑖𝒖𝑖𝑇𝐁
𝑖

�𝑎𝑗𝒖𝐽
𝑗

=
1

4𝑊
��𝒖𝑖𝑇 . 𝑆�2𝛽𝑖

𝑛

𝑖=1

 (5.6)  

where the vector S is decomposed on the basis eigenvectors 𝒖𝑖 (i = 1,…,n) of the B matrix, 𝑺 = ∑ 𝑎𝑖𝑢�𝑖𝑖 , and 

𝛽𝑖 is the eigenvalue of B corresponding to the eigenvector 𝒖𝑖. From equation 8.6, we can deduct that a single 

cluster would exist only if B have no positive eigenvalues (Q = 0). Otherwise, a bisection of the graph can be 

obtained by searching for the eigenvector of B corresponding to the largest positive eigenvalue 𝒖1, and then 

the nodes can be grouped according to the signs of the components of 𝒖1. This procedure can then be 

repeated for the resultant clusters as long as the modularity increases (Newman 2006). Note that the 

modularity should always be computed from the distance matrix corresponding to the full graph, since Q is 

maximized globally. Variations of the spectral optimization exist in (White and Smyth 2003; Ruan and 

Zhang 2007; Wang et al. 2008; Richardson et al. 2009; Sun et al. 2009). 

5.3.3.4 Limitations of Modularity 

 In general, we are certain that a non-negative maximum value for the modularity exists (since the 

single cluster with all nodes in the graph would yield zero modularity). However, some random networks 

which are not supposed to possess a community structure would yield a large value of modularity. The basic 

definition of modularity was based on the hypothesis that community structures are detected by comparing 

the current graph with a random one with equal size and expected degree. Due to non-homogeneous 
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fluctuations in the distribution of edges in the random graph, concentrations of links might be created in some 

parts of the graph and can be detected as communities (Fortunato 2010).  

 Another matter of concern is the resolution limit of the modularity which might affects the detection 

of small communities in large graphs even if they are well defined such as cliques (communities with all 

nodes are interconnected) (Fortunato and Barthelemy 2007). The problem was traced back to the null model 

on which the modularity was constructed. The model assumes that every node interacts with all the other 

nodes in the graph which is not correct for large graphs (e.g. Web graphs). A better assumption would be that 

every node has a limited region (territory) of interaction instead of including the whole graph. However, it is 

still unknown how to define such region.  

5.4  Conclusion 

In this chapter, we have introduced graph theory, the notions of graph, node and edge as well as 

various metrics used to measure networks topological, integration and clustering properties. We made an 

emphasis on the community structure feature of sparse networks. In chapter 8, a novel metric is introduced to 

better measure community structure by jointly maximizing within-community integration and minimizing 

between-community separation. We use this metric to study the topological structure of the human brain by 

extracting the community structure of brain networks. Moreover, we perform group studies to detect modular 

changes due to various neuropsychological diseases. 
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VI. ANISOTROPIC ANOMALOUS DIFFUSION MODELS 

Parts of the work in this chapter have been presented in: 

Johnson GadElkarim, Richard Magin, Mark M. Meerschaert, Silvia Capuani, Marco Palombo, and Alex 

Leow. ‘Fractional order generalization of anomalous diffusion as a multidimensional extension of the 

transmission line equation.’ IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 19 June 

(2013), doi: 10.1109/JETCAS.2013.2265795. 

6.1  Introduction  

As previously discussed in chapter 4, it was found that the DW signal decay does not follow the 

presumed mono-exponential model, especially at high b-value (b > 1500). Instead, the decay was found to 

follow a stretched exponential behavior (Figure 14) which was linked to the existence of an anomalous 

diffusive behavior exhibited by the water molecules in the complex tissue structure of the brain. The 

complexity of this structure can be revealed at the micro-level where thin neurofilaments construct the axons 

of the neurons (Figure 15). This structure creates a porous medium in which the water molecules may exhibit 

AD. 

In this chapter, we will focus on studying brain tissues at the micro-level. This will be done via two 

models which will be constructed using novel mathematical tools derived from the theory of fractional 

calculus. The models aim to study the anisotropy of water molecules AD in brain tissues and to present new 

directional dependent biomarkers which can describe the environment tortuosity and complexity and their 

dependence on direction. Results from both models are shown to be consistent. 

6.2   Anisotropic Fractional Order Anomalous Diffusion Models 

6.2.1 Model I 

Several groups have investigated fractional order generalizations of the Bloch-Torrey equation 

(Magin et al. 2008; Yu et al. 2011; Hanyga and Seredynska 2012). However, in these studies, the proposed 

forms of the fractional gradient operator were assumed to have the same order of fractional differentiation in 
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all directions. This restriction is a limitation, since the anomalous diffusive behavior could possibly vary with 

location as well as direction. Here, we extend the vector fractional calculus approach of Meerschaert et al. 

(Meerschaert et al. 2006) and employ a fractional gradient operator expressing a different order of fractional 

derivative in each coordinate direction. This model is considered as a generalization of the work of Magin et 

al. (Magin et al. 2008) in order to generate an anisotropic 3D AD model. 

6.2.1.1 Model I: Theory 

We start from a modified FDE version of the Block-Torrey equation written in the form: 

 𝜕𝑀𝑥𝑦(𝒓, 𝑡)
𝜕𝑡

= −𝑖𝛾�𝒓.𝑮(𝑡)�𝑀𝑥𝑦(𝒓, 𝑡) + �𝛁𝛽�
𝑇[𝐃𝐅]𝛁β𝑀𝑥𝑦(𝒓, 𝑡) (6.1)  

where 

 
𝐃𝐅 = �

𝐷𝐹𝑥𝑥 𝐷𝐹𝑥𝑦 𝐷𝐹𝑥𝑧
𝐷𝐹𝑥𝑦 𝐷𝐹𝑦𝑦 𝐷𝐹𝑦𝑧
𝐷𝐹𝑥𝑧 𝐷𝐹𝑦𝑧 𝐷𝐹𝑧𝑧

� (6.2)  

is a symmetric 3 3× tensor with elements in the form whose elements are in the form: 

𝐷𝐹𝑖𝑗 = 𝜇𝑖𝑗
𝛽𝑖+𝛽𝑗−2𝐷𝑖𝑗;   𝑖, 𝑗 = {𝑥,𝑦, 𝑧}, µ (µxx, µyy, µzz, µxy, µxz, µyz) are unit preserving constants (mm) and 

𝛁𝜷 = � 𝜕
𝛽𝑥

𝜕𝑥𝛽𝑥
𝜕𝛽𝑦

𝜕𝑦𝛽𝑦
𝜕𝛽𝑧

𝜕𝑧𝛽𝑧
�
𝑇

is a fractional nabla operator using the Feller fractional derivative with the 

fractional order, β, varying from 0.5 to 1 (see Appendix D). We assume a solution in the form: 

 𝑀𝑥𝑦(𝒓, 𝑡) =  𝐴(𝑡)𝑒−𝑖𝛾𝒓.𝑭(𝑡) (6.3)  

where 𝑭(𝑡) =  ∫ 𝑮(𝑡′)𝑑𝑡′𝑡
0 . Substituting 6.3 in equation 6.1, we get: 

 𝜕 ln�𝐴(𝑡)�
𝜕𝑡

𝑒−𝑖𝛾𝒓.𝑭(𝑡) = �𝜵𝛽�
𝑇[𝐃𝐅]𝜵𝛽𝐴(𝑡)𝑒−𝑖𝛾𝒓.𝑭(𝑡) (6.4)  
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Using the definition of the Feller fractional derivative, the fractional derivative of the exponential is defined 

as 𝐷𝑥
𝛽𝑥(𝑒𝑖𝑎𝑥) = −|𝑎|𝛽𝑥𝑖𝜃sgn(𝑎)𝑒𝑖𝑎𝑥, where sgn(a) returns the sign of a, -1 ≤ θ ≤ -1 (see Appendix D). 

Applying the differential operator and integrating w.r.t. time, we obtain: 

 
𝐴(𝑡) = exp�� (𝑳′(𝑡"))𝑇[𝐃𝐅] (𝑳′(𝑡"))𝑑𝑡"

𝑡

0
� (6.5)  

where 𝑳′ = �𝑖𝜃sgn(𝐿𝑥)|𝐿𝑥|𝛽𝑥  𝑖𝜃sgn�𝐿𝑦��𝐿𝑦�
𝛽𝑦 𝑖𝜃sgn(𝐿𝑧)|𝐿𝑍|𝛽𝑧�

𝑻
. Finally, if we again consider a Stejskal–

Tanner gradient pulse pairs, as described in chapter 3, we get: 

 𝑀𝑥𝑦 = 𝑀0 exp ��𝝓(𝒒)�T𝚿�𝝓(𝒒)�� (6.6)  

where 𝝓(𝒒) = �𝑖𝜃sgn(𝑞𝑥)|𝑞𝑥|𝛽𝑥  𝑖𝜃sgn�𝑞𝑦��𝑞𝑦�
𝛽𝑦 𝑖𝜃sgn(𝑞𝑧)|𝑞𝑧|𝛽𝑧�

𝑻
, whose jth element 

j jq Gγ δ= qi = γGiδ 

with 𝑗 = {𝑥,𝑦, 𝑧}, and 

 
𝚿 = �

Ψ𝑥𝑥 Ψ𝑥𝑦 Ψ𝑥𝑧
Ψ𝑥𝑦 Ψ𝑦𝑦 Ψ𝑦𝑧
Ψ𝑥𝑧 Ψ𝑦𝑧 Ψ𝑧𝑧

� (6.7)  

Ψ� = �
Ψxx Ψxy Ψxz
Ψxy Ψyy Ψyz
Ψxz Ψyz Ψzz

�is a 3 3×  symmetric positive semi-definite matrix with elements in the form Ψ𝑖𝑗 =

𝐷𝐹𝑖𝑗 �Δ − 𝛿 𝛽𝑖+𝛽𝑗−1 
𝛽𝑖+𝛽𝑗+1

� ;   𝑖, 𝑗 = {𝑥,𝑦, 𝑧} . Further on, we will refer to Ψ by the anomalous diffusion tensor 

(aDT). In order to express the decay in the acquired signal, we substitute θ by 1 in equation 6.6. Hence, we 

can describe it as follows: 

 𝑆(𝒒) = 𝑆0 exp �−�𝝓′(𝒒)�T𝚿�𝝓′(𝒒)�� (6.8)  

where 𝝓′(𝒒) = �sgn(𝑞𝑥)|𝑞𝑥|𝛽𝑥  sgn�𝑞𝑦��𝑞𝑦�
𝛽𝑦 sgn(𝑞𝑧)|𝑞𝑧|𝛽𝑧�

𝑻
. Note that when all the beta values are 

set to 1, we will recover the classical DTI model. 
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6.2.1.2 Model I: Methods 

Equation 6.8 was fitted with the multiple b values dataset 1 described in Appendix C. The analysis 

process consists of multiple steps. First, all DW images were corrected for eddy currents distortions using 

automatic image registration (AIR) built-in the DTISTUDIO program (http://www.mristudio.org). Second, 

the DT calculations were obtained using the DTISTUDIO program with a b = 1000 s/mm2 subset of the 

acquired data in order to compute D. In diagonalizing D, the eigenvalues were organized such that: 𝜆1 ≤

𝜆2 ≤ 𝜆3. Third, the whole spectrum of b-values was used to fit for different µ and β values in the aDT using 

the LM algorithm implemented in MATLAB. The initial β values were chosen as 0.75, and the initial µ 

values were computed from equation 6.8, with µ being the only unkown. Finally, equation 6.8 was used to 

analyze the set of DW images to yield the final values of β and µ on a voxel-by-voxel basis (the fitted results 

were insensitive to the chosen initial β values). In applying the LM algorithm, the bounds on the computed 

parameters were taken as: 0.5 < β ≤ 1 and 0 < µ < 0.025 mm. To perform the analysis on the resolved 

parameters of the different types of tissues, WM, GM and CSF masks were generated using the segmentation 

tool embedded in the Statistical Parametric Mapping (SPM8) software (http://www.fil.ion.ucl.ac.uk/spm/). 

6.2.1.3 Model I: Results 

Generalizing the fractional order Bloch-Torrey equation into the multi-dimensional version provides 

a new model to study the anisotropy of AD. The slice presented in the following figures is an axial slice 

taken at the optical fiber level. Figure 19 displays maps of the classical DT elements. Figure 20 shows the b0 

image with selected ROIs in the WM, GM and CSF areas. It also indicates the chosen coordinate system 

where X is left-right, Y is anterior-posterior, and Z is superior-inferior. Notice that the WM ROI was chosen 

parallel to the Y direction to facilitate data analysis. Figure 21 shows the fitted parameters in the aDT: the 

dimensionless operational order parameters, β (βx, βy, βz), and the unit preserving space constants µ (µxx, µyy, 

µzz, µxy, µxz, µyz). Qualitatively, high contrast can be noticed between GM and WM tissues in the β maps.  

Figure 22 shows maps of the aDT elements described in equation 6.8. In order to test for anisotropy, 

we compute a new anomalous FA (aFA) by diagonalizing the aDT into eigenvectors (V1, V2, V3) and 
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eigenvalues (𝜆1𝑎 ≤  𝜆2𝑎 ≤  𝜆3𝑎). The aFA is computed using equation 3.19. Figure 23 shows colormaps of the 

principal eigenvectors – corresponding to the largest eigenvalue – of the diagonalized Ψ and D tensors as 

well as maps of their corresponding eigenvalues in (a) and (b) respectively. A comparison between the aFA 

versus conventional FA is shown in (c). Interestingly, the colormap of the principal eigenvector of the aDT 

possesses sharp edges compared to its counterpart from the DT. 

Figure 24a plots the inverse fitted β values (1- β) in different directions as a colormap. Since the 

inverse is plotted, the dominant color emphasizes the direction of the smallest beta: red is equivalent to right-

left (βx), green is equivalent to anterior-posterior (βy), and blue is equivalent to superior-inferior (βz). The 

optical fibers can be traced through the green line travelling vertically which indicates a lower beta (βy) in the 

Y direction than the other two directions (βy < βx, βz). The previous result can also be seen in Table IV which 

shows that (βy = 0.57 ± 0.14) is much smaller than (βx = 0.76 ± 0.16 and βz = 0.71 ± 0.12) for the chosen WM 

ROI parallel to the Y direction. Voxels colored in gray indicate similar betas in all directions (isotropic) 

which appear in GM, and black voxels have isotropic betas close to one which appear in CSF. Figure 24b 

shows a colormap of the diagonal unit preserving constants (µxx, µyy, µzz). Here, the dominant color 

emphasizes the direction of the largest mu. We can trace the optical fibers through the green line travelling 

vertically which indicates a larger mu (µyy) in the Y direction than in the other two directions (µxx, µzz). This 

result can also be traced in Table IV which shows that (µyy = 17.4 ± 4.2) is larger than (µxx = 15.2 ± 5.3 and 

µzz = 14.9 ± 5.1) in the WM ROI. 

In order to test for the result presented in Figure 24a – the smallest stretched exponent is along the 

WM fiber – we have chosen three subsets of the DW data each having the gradient aligned along one of the 

principal directions – X, Y, and Z. Then, we averaged the data of each subset at the chosen ROIs indicated in 

Figure 20. Finally, we fitted the averaged data to equation 4.24 in order to obtain a unique stretched exponent 

at each direction and ROI pair. The fitted curves are shown in Figure 25. Indeed, the stretched exponent (β) 

along the WM fiber – in the Y direction – is the lowest when compared to its value across the WM – in the X 

and Z directions. Moreover, the value of β is isotropic in GM and CSF regions.  
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Figure 19: The computed diffusion tensor elements of an axial slice through the optical tracts. 
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Figure 20: Selected regions of interest in the WM, GM and CSF areas highlighted on the b0 image. The WM 
ROI was selected parallel to the Y axis at the optical fiber. 
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Figure 21: Spatially resolved maps of the unit preserving space constants (µxx, µyy, µzz, µxy, µxz, µyz) (top two 
rows), and the dimensionless operational order parameters, (βx, βy, βz) (bottom row) in the model described 
by equation 6.7. 
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Figure 22: The logarithm of the diagonal elements in Ψ (top row) and the off-diagonal elements in Ψ 
(bottom row). The logarithm was taken in order to increase contrast of the images. 
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Figure 23: Maps of the principal eigenvector (the one corresponding to the largest eigenvalue) (a) and the 
largest eigenvalue (b) computed by diagonalizing the Ψ and D tensors. Notice the sharp edges of the white 
matter directions in the principal eigenvector of the Ψ tensor. Also, notice the high contrast in the largest 
eigenvalue of the Ψ tensor. (c) FA maps computed using eigenvalues extracted from Ψ and D tensors. 
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Figure 24: (a) A colormap using the inverted values of the fractional order parameters (1- β) in different 
directions to weight the RGB color code. The dominant color emphasizes the direction of the smallest beta 
(since the inverse of β is used): red is equivalent to right-left (βX), green is equivalent to anterior-posterior 
(βY), and blue is equivalent to superior-inferior (perpendicular to the slice) (βZ). Gray and black colors 
indicate isotropic β values (same in all directions) which appears in areas such as GM and CSF. (b) A 
colormap using the normalized diagonal unit preserving constants (µxx, µyy, µzz) to weight the RGB color 
code. The dominant color emphasizes the direction of the largest mu: red is equivalent to right-left (µX), 
green is equivalent to anterior-posterior (µY), and blue is equivalent to superior-inferior (perpendicular to the 
slice) (µZ). Gray and black colors indicate isotropic µ values (same in all directions) which appears in areas 
such as GM and CSF. 

 

 

 

 

 

Figure 25: Fitting curves to the stretched exponential model in equation 4.24 of averaged diffusion weighted 
data acquired along the principal directions shown in Figure 20 in different tissues (WM, GM and CSF) 
corresponding to highlighted regions of interest in Figure 20. The legends indicate the value of the stretched 
exponent. 
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Table IV: Mean and standard deviation of the obtained parameters using the model in equation 6.8 as well as 
eigenvalues, FA and MD analysis of the D and Ψ tensors in the selected ROIs highlighted in Figure 20. 

 GM WM CSF 

µxx (µm) 11.7 ± 2.8 15.2 ± 5.3 11.2 ± 6.3 

µyy (µm) 12.3 ± 4.4 17.4 ± 4.2 12.8 ± 7.3 

µzz (µm) 11.1 ± 3.1 14.9 ± 5.1 11.0 ± 6.0 

βx 0.80 ± 0.08 0.76 ± 0.16 0.92 ± 0.08 

βy 0.81 ± 0.05 0.57 ± 0.14 0.91 ± 0.07 

βz 0.80 ± 0.07 0.71 ± 0.12 0.92 ± 0.10 

λ1 (mm2/s) 0.88 ± 0.14 0.39 ± 0.14 2.80 ± 0.63 

λ2 (mm2/s) 1.09 ± 0.19 0.69 ± 0.17 3.47 ± 0.74 

λ3 (mm2/s) 1.35 ± 0.15 1.44 ± 0.23 4.18 ± 0.71 

𝜆1𝑎 (mm2β) 0.17 ± 0.08 0.47 ± 0.24 2.41 ± 0.68 

𝜆2𝑎 (mm2β) 0.28 ± 0.10 1.09 ± 0.26 3.66 ± 0.91 

𝜆3𝑎 (mm2β) 0.51 ± 0.25 3.33 ± 0.41 4.12 ± 1.21 

FA 0.22 ± 0.07 0.57 ± 0.12 0.21 ± 0.07 

MD (D) (mm2/s) 1.11 ± 0.15 0.85 ± 0.13 3.49 ± 0.66 

aFA 0.45 ± 0.17 0.87 ± 0.16 0.49 ± 0.17 

MD (Ψ) (mm2β) 0.32 ± 0.10 1.73 ± 0.99 3.38 ± 0.75 
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6.2.1.4 Model I: Discussion 

The new aDT incorporates two new sets of parameters in addition to the conventional DT: the 

dimensionless operational order parameters β: βx, βy and βz, and the unit preserving space constants µ: µxx, 

µyy, µzz, µxy, µxz and µyz (in units of mm). The operational order parameters can be thought as a generalization 

of the stretched exponent in the stretched exponential model. In (Magin et al. 2008), the operational order 

parameter, β, was related to the complexity of the surrounding medium when studied in phantoms as well as 

in biological tissues. It was noted that a decrease in β is correlated to an increase in Sephadex gel complexity. 

Moreover, β was found to be lower in brain WM tissues compared to GM. The presented model follow the 

same trend, the β values were found here to be lower in WM (~0.7 ± 0.1) than in GM (~0.8 ± 0.1) suggesting 

a higher complexity in WM, while in CSF the values were around unity (~0.9 ± 0.1) (Table IV).  

The anisotropy of the stretched exponent was studied in (Hall and Barrick 2008; De Santis et al. 

2011; Hall and Barrick 2012) where it was found to be anisotropic in WM. Indeed, here we report anisotropy 

of the stretched exponents, identified here as the fractional order parameters, which appear in Figure 21 and 

Figure 25a. More precisely, the stretched exponents are found to be lowest in the same direction of the WM 

fibers illustrated in Figure 24a by the dominated green color tracing the optical fiber running vertically 

(anterior-posterior). Unlike WM, the β values were the same in all directions in GM tissues as well as the 

CSF which is indicated by the gray and black colors in Figure 20a. Black regions indicate CSF where the 

stretched exponents are closer to unity. This can also be verified through Table IV. 

The unit preserving constants, µ, were found to follow the same trend previously reported in (Zhou et 

al. 2010; Gao et al. 2011), although they did not show a high tissue contrast (Figure 21) unlike what have 

been reported for the µ map in (Zhou et al. 2010).  The µ parameters exhibit higher values in WM compared 

to GM tissues in all directions as demonstrated in Table IV. High instability was seen in fitting CSF voxels 

where the diffusion process approaches the Gaussian case with β values closer to unity which can be seen by 

the large standard deviations in Table IV. Moreover, anisotropy was found in the diagonal µ parameters (µxx, 
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µyy, µzz) where the largest mu was found to be in the direction of the WM fibers as shown by the green line 

vertically tracing the optical fiber in Figure 24b. 

Diagonalizing the aDT presented in Figure 22 has revealed interesting features. First, the principal 

eigenvector of both tensors (Ψ and D) exhibit similar qualitative behavior, with sharper edges found in the 

principal eigenvector of the aDT as shown in Figure 22a. This was expected since AD is guided by the 

geometry of the surrounding media which is affected by the WM fibers direction. This result is compatible 

with the one found in (Hall and Barrick 2012) where the principal eigenvector of the distributed diffusivity 

tensor, A, was found to be similar to its counterpart in the DT. Second, the computed aFA exhibits a similar 

behavior compared to the classical DTI-based FA – higher FA in WM compared to GM and CSF – as shown 

in Figure 22c and demonstrated in Table IV. 

Although this model provides valuable information about the anisotropic AD behavior of water in 

brain tissues, it lacks the positivity preserve feature. In other words, we are not sure that the solution in 

equation 6.8 is the characteristic function of a certain multivariate PDF. This comes from the fact that the 

applied operator in equation 6.1 does not guarantee to preserve positivity. Thus, an explanation of the results 

cannot be given in light of the CTRW model since the model does not clearly describe the underlying 

propagator. Proving that the inverse Fourier of the solution in equation 6.8 is a PDF is not a trivial task. In 

order to prove that a function F(k) is the characteristic function of a PDF, one needs to prove three points. 

First, we need to prove that the inverse Fourier of F(k) integrates to 1, which is trivial in our case since S(q = 

0)/S0 = 1. Second, we need to prove that the inverse Fourier of F(k) is real, which is also trivial in our case 

since S(q) = S(-q) and S is real. Finally, one needs to prove that the inverse Fourier of F(k) is non-negative, 

which is the hard part. Due to this limitation in this model, another model that passes the positivity test was 

developed. We will develop this model in the next section. 

6.2.2 Model II 

This model tries to surpass the limitation in Model I presented in the previous section. A new 

multidimensional fractional operator that guarantees to preserve positivity is first presented. Then, the 
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operator is used to fractionalize the Bloch-Torrey equation. A new anisotropic AD model is then produced 

and applied to DW brain data. Though the results are similar to those found in Model I, the existence of a 

well-defined diffusion propagator underlying the model allows a better explanation for the findings. 

6.2.2.1 Model II: Theory 

6.2.2.1.1 Model II: Fractional Vector Calculus 

In this section, we extend the theory of fractional vector calculus, presented in (Meerschaert et al. 

2006), to allow the order of the fractional derivative to change with the coordinate direction, in an arbitrary 

orthogonal coordinate system.  We advise the reader to review Appendix D in order to obtain the required 

background on fractional calculus needed for this section. We start by recalling the usual model for 

anisotropic diffusion described by the ordinary diffusion equation given by: 

 𝜕𝑃(𝒓, 𝑡)
𝜕𝑡

= ∇𝑇𝐃∇𝑃(𝒓, 𝑡) (6.9)  

dM
dt

= ∇TD�∇Mwhere D is a symmetric positive definite matrix.  The simplest case is when D is DI, where I is 

a 3 3× identity matrix, and D is a scalar, then we can write: 

 𝜕𝑃(𝒓, 𝑡)
𝜕𝑡

= 𝐷∇𝑇∇𝑃(𝒓, 𝑡) = 𝐷Δ𝑃(𝒓, 𝑡) (6.10)  

Since the gradient has Fourier symbol (ik), we can write (𝑖𝒌) ⋅ 𝑭(𝒌) as the Fourier transform of 

∇𝒇(𝒓)∇f(r)where F(k) is the vector Fourier transform of the function f(r) in terms of the wave vector 

𝒌 = (𝑘𝑥 𝑘𝑦 𝑘𝑧)𝑇k = [kx ky kz]T. Then, the Laplacian has the Fourier symbol (𝑖𝒌)𝑻(𝑖𝒌) =

−�𝑘𝑥2 + 𝑘𝑦2 + 𝑘𝑧2�(ik)T(ik) = -�kx2 + ky2 + kz2�.. If D is a diagonal tensor: 

 
𝐃 = �

𝐷𝑥 0 0
0 𝐷𝑦 0
0 0 𝐷𝑧

� (6.11)  
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D�then T∇ ∇D ∇TD�∇has the Fourier symbol: (𝑖𝒌)𝑻𝐃(𝑖𝒌) = −�𝐷𝑥𝑘𝑥2 + 𝐷𝑦𝑘𝑦2 + 𝐷𝑧𝑘𝑧2�. (ik)T[µ�](ik) =

-�µxxkx2 + µyyky2 + µzzkz2�.Let the fractional dispersion tensor DF be a fractional integration tensor of order 

2β-2. More generally, to allow the order of the fractional derivative to vary with the coordinate, we can take 

DF to be the operator with Fourier symbol: 

 

ℱ{𝐃𝐅} =

⎣
⎢
⎢
⎡𝜇𝑥

2𝛽𝑥−2𝐷𝑥|𝑘𝑥|2𝛽𝑥−2 0 0

0 𝜇𝑦
2𝛽𝑦−2𝐷𝑦�𝑘𝑦�

2𝛽𝑦−2 0

0 0 𝜇𝑧
2𝛽𝑧−2𝐷𝑧|𝑘𝑧|2𝛽𝑧−2⎦

⎥
⎥
⎤
 (6.12)  

Then, it follows that the dispersion operator T∇ ∇FD has a Fourier symbol:  

 ℱ{∇T𝐃𝐅∇} = − � 𝜇𝑗
2𝛽𝑗−2

𝐷𝑗�𝑘𝑗�
2𝛽𝑗

𝑗={𝑥,𝑦,𝑧}

 (6.13)  

This operator applies a one-dimensional fractional Riesz derivative of a different order in each coordinate. As 

an example, we apply this operator on a complex exponential function, 𝑓(𝒓) = 𝑒−𝑖𝒓⋅𝒂, to obtain: 

 
∇𝑇[𝐃𝐅]∇𝑒−𝑖𝒓⋅𝒂 = �− � 𝜇𝑗

2𝛽𝑗−2𝐷𝑗�𝑎𝑗�
2𝛽𝑗

𝑗={𝑥,𝑦,𝑧}

�𝑒−𝑖𝒓⋅𝒂 (6.14)  

The operator described in 6.12 guarantees positivity. In other words, if it operates on a non-negative 

function with non-negative initial conditions, positivity will be preserved. This is due to the fact that it 

applies three independent one-dimensional fractional Riesz derivatives each in a different coordinate. This 

operator can also be linked to the theory of pseudo-differential operators mentioned in chapter 4. We recall 

the PDO Q used in (Hanyga and Seredynska 2012) defined as Q(𝒌) = −∫ |𝒌 ⋅ 𝒚|𝛼𝑚(𝑑𝒚)𝑠 . A generalization of 

this operator can be written in the form (Magin et al. 2013): 

 Q(𝒌) = −�|𝒌 ⋅ 𝒚|𝛽(𝒚)𝑚(𝑑𝒚)
𝑠

 (6.15)  

where β(y) is a distribution of the exponent on the unit sphere S such that 0 ≤ β(y) ≤ 2. It can be shown that 

the operator in 6.13 is a special case of the operator in 6.15 by assuming that we are only concerned by 3 
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orthonormal directions y1, y2, and y3. We will also define the values of the exponent distribution and the 

measure to be:  β(yi) = βi and m(dyi) = δ(y)for i =1,2,3 and zero otherwise. By doing this, the operator in 6.15 

converges to the one defined in 6.13 with a minor exception of the scaling factor 𝜇𝑗
2𝛽𝑗−2𝐷𝑗. 

6.2.2.1.2 Model II: Multidimensional Fractional Diffusion Equation 

In this section we will define a new FDE based on the mathematical notations introduced in the 

previous section. In the next section, this FDE will be used to define a new multidimensional fractional order 

Bloch-Torrey equation. Let P(r,t) be the diffusion propagator of the diffusing particles which represents the 

probability of finding a particle at location r and time t such that P(r,t = 0) = δ(r). Assuming that the principal 

directions of diffusion coincide with the laboratory coordinates, the new FDE can be written in the form: 

 𝜕𝑃(𝒓, 𝑡)
𝜕𝑡

= ∇𝑇𝐃𝐅∇𝑃(𝒓, 𝑡) (6.16)  

where DF [µ�[β]D�] =

⎣
⎢
⎢
⎢
⎡ µxx

2(βx-1)Dxx µxy
�βx-1�+(βy-1)Dxy µxz

�βx-1�+(βz-1)Dxz

µxy
�βx-1�+(βy-1)Dxy µyy

2(βy-1)Dyy µyz
�βz-1�+(βy-1)Dyz

µxz
�βx-1�+(βz-1)Dxz µyz

�βz-1�+(βy-1)Dyz µzz
2(βz-1)Dzz ⎦

⎥
⎥
⎥
⎤

is a fractional dispersion 

tensor as defined in 6.12. Taking the Fourier transform of equation 6.16, we obtain: 

 𝜕𝑃(𝒌, 𝑡)
𝜕𝑡

= �− � 𝜇𝑗
2𝛽𝑗−2𝐷𝑗�𝑘𝑗�

2𝛽𝑗

𝑗={𝑥,𝑦,𝑧}

�𝑃(𝒌, 𝑡) (6.17)  

where the βj are dimensionless operational order parameters, and the µj are unit preserving space constants. 

Assuming P(k,0) = 1, the solution to equation 6.17 is: 

 
𝑃(𝒌, 𝑡) = exp�−𝑡 � 𝜇𝑗

2𝛽𝑗−2𝐷𝑗�𝑘𝑗�
2𝛽𝑗

𝑗={𝑥,𝑦,𝑧}

� (6.18)  

Equation 6.18 describes the characteristic function of a multidimensional operator stable Lévy distribution 

with independent alpha stable distributions in each coordinate, each with a different stretched exponent. This 
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is a more general form than the conventional multivariate alpha stable PDF which applies the same stretched 

exponent in all directions. 

6.2.2.1.3 Model II: Fractional Order Bloch-Torrey Equation 

We start by assuming that the coordinate system described by the principal directions of diffusion 

( )' Tθ ϕ ψ=r  can be related to the laboratory coordinates ( )Tzyx=r using a unitary transformation Q. 

Further, let Q be the unitary matrix that diagonalizes the classical DT: D = QΛQT, where Q is the matrix 

whose columns are the eigenvectors of D: Vθ , Vφ , Vψ , and Λ (mm2/s) is a diagonal matrix whose entries are 

the corresponding eigenvalues of D: Dθ , Dφ , Dψ (Figure 26). Hence, as described in the previous section, the 

fractional order Bloch-Torrey equation can be written in the r' coordinate system in the form: 

 𝜕𝑀𝑥𝑦(𝒓, 𝑡)
𝜕𝑡

= −𝑖𝛾�𝒓′.𝑮′(𝑡)�𝑀𝑥𝑦(𝒓, 𝑡) + ∇�T[𝐃𝐅]∇�𝑀𝑥𝑦(𝒓, 𝑡) (6.19)  

where G' = QTG, and ∇ is the gradient operator applied in the r' coordinate system, with Fourier symbol 

ℱ�∇�� = 𝑖𝒌′ = 𝑖(𝑘𝜃 𝑘𝜙 𝑘𝜓)𝑇, and DF is the fractional integral operator as defined in the previous acting in 

the r' coordinate system and having the Fourier symbol: 

 

ℱ{𝐃𝐅} =

⎣
⎢
⎢
⎢
⎡𝜇𝜃

2𝛽𝜃−2𝐷𝜃|𝑘𝜃|2𝛽𝜃−2 0 0

0 𝜇𝜙
2𝛽𝜙−2𝐷𝜙�𝑘𝜙�

2𝛽𝜙−2 0

0 0 𝜇𝜓
2𝛽𝜓−2𝐷𝜓�𝑘𝜓�

2𝛽𝜓−2
⎦
⎥
⎥
⎥
⎤
 (6.20)  

The mu parameters (mm) in the DF operator are space constants needed to preserve units (Magin et al. 2008). 

We assume a solution to equation 6.20 in the form: 

 𝑀𝑥𝑦 = 𝑀0𝐴(𝑡) exp�−𝑖𝒓′ ⋅ 𝑳′(𝑡)�  (6.21)  

where
0

'( ) '( ") "
t

t t dtγ= ∫L G . Substituting (6.21) into (6.19), and applying the above operator, we obtain:  
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𝐴(𝑡) = exp�−� � 𝜇ℎ

2𝛽ℎ−2𝐷ℎ
ℎ={𝜃,𝜙,𝜓}

|(𝐿ℎ′(𝑡"))|2𝛽ℎ 𝑑𝑡"
𝑡

0
� (6.22)  

where Lh'(t) = GT(t)Vh, and 0 < βh ≤ 1 are the stretched exponents. Finally, if we again consider the Stejskal-

Tanner gradient pulse pairs, we find: 

 

𝑀𝑥𝑦 = 𝑀0 exp�− � 𝜇ℎ
2𝛽ℎ−2𝐷ℎ

ℎ={𝜃,𝜙,𝜓}

|𝛾𝑮𝑇𝑽ℎ|2𝛽ℎ �Δ − 𝛿
2𝛽ℎ − 1
2𝛽ℎ + 1

�� (6.23)  

Using equation 6.23, one can describe the acquired DW signal as follows: 

 

𝑆(𝒈, 𝑡) = 𝑆0 exp�− � 𝜇ℎ
2𝛽ℎ−2𝐷ℎ

ℎ={𝜃,𝜙,𝜓}

|𝛾𝛿𝑮𝑇𝑽ℎ|2𝛽ℎ �Δ − 𝛿
2𝛽ℎ − 1
2𝛽ℎ + 1

�� (6.24)  

Note that when h equals only θ, we recover Magin’s et al. model described in equation 4.26. Moreover, when 

all of the beta values are set to one, we recover the classical DTI model since equation 6.23 becomes 

 𝑆(𝒈, 𝑡) = 𝑆0 exp�−𝑏(𝐐𝑇𝒈)𝑇𝚲(𝐐𝑇𝒈)� = 𝑆0 exp(−𝑏𝒈𝑇𝐃𝒈) (6.25)  



84 
  

 

 

Figure 26: Relationship between laboratory frame, DTI, and analysis in Model II coordinate systems. We 
can notice that in Model II, we assumed that AD follows the same coordinate system extracted from the 
diagonalization of the DT. 

 

 

 

 

 

6.2.2.2 Model II: Methods 

Equation 6.24 was fitted with the multiple b values dataset 2 described in Appendix C. The analysis 

process consists of multiple steps. All DW images were corrected for eddy current distortions using FSL 

version 4 software package (http://www.fmrib.ox.ac.uk/fsl). Tensor calculations were performed using the 
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DTISTUDIO program (http://www.mristudio.org) using the b = 1000 s/mm2 subset of the acquired data in 

order to compute D. Afterward, the whole spectrum of b values was used to fit different mu and beta values 

in equation 6.24 using the LM algorithm implemented in MATLAB R2011a (MathWorks Inc, Natick, MA). 

The initial beta values were chosen as 0.75, and the initial mu values were computed from equation 6.24 with 

mu being the only unknowns. Afterward, equation 6.24 was used to analyze the set of DW images to yield 

the final values of beta and mu on a voxel-by-voxel basis (the fitted results were insensitive to the chosen 

initial beta values). In applying the LM algorithm, the bounds on the computed parameters were taken as: 0.5 

< β ≤ 1 and 0 < µ <0.05 mm. It is assumed that the eigenvalues of the DT are ordered such that: Dθ ≤ Dφ ≤ 

Dψ. The same order is followed in the eigenvector matrix Q. To perform the analysis on the resolved 

parameters of the different types of tissues, WM, GM and CSF masks were generated using the segmentation 

tool embedded in the well-known Statistical Parametric Mapping (SPM8) software 

(http://www.fil.ion.ucl.ac.uk/spm/). 

6.2.2.3 Model II: Results 

Figure 27 displays maps for the six fitted parameters using the model described in equation 6.24Ψ� : 

the three dimensionless operational order parameters β (βθ, βφ, βψ), and the unit-preserving space constants µ 

(µθ, µφ, µψ) (with units of mm). A high contrast exists between the GM and WM tissues in the β maps. It is 

qualitatively clear from Figure 27 that both βθ and βφ are larger than βψ in the WM regions, which is 

presented in Table V. This result indicates a lower value for the stretched exponent in the principal direction 

of diffusion along the WM fibers similar to what have been found in Model I. 

In order to test the previous result, we have computed anomalous anisotropy (AAβ) of the stretched 

exponent beta using equation 3.19. Figure 28 shows maps of the DTI FA, DTI MD, mean anomalous 

exponent (MAE) (computed by averaging the stretched exponents: beta), as well as anomalous anisotropy 

(AAβ) in order to compare our results with De Santis’ et al. mean γ (Mγ) and anomalous anisotropy (γA) 

presented chapter 4 (De Santis et al. 2011). Indeed, qualitatively, one can see that AAβ has higher values in 

WM fibers and lower values in GM. These results are similar to what has been found in γA, which can also 
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be assessed quantitatively through Table V. Moreover, we report a high correlation between the AAβ and the 

FA in the WM region with the correlation coefficient being 0.8 and a p-value < 0.0001. 

 

 

 

 

 

 

Figure 27: Spatially resolved maps of the unit preserving space constants (µθ, µφ, and µψ) (top row), and the 
dimensionless operational order parameters, (βθ, βφ and βψ) (bottom row) in the model described by 6.23. 
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Figure 28: (a) Mean diffusivity (MD), (b) fractional anisotropy (FA), (c) mean anomalous exponent (MAE), 
and (d) anomalous anisotropy (AAβ) maps. 
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Table V: Mean and standard deviation summary of the fitted parameters and the computed metrics across the 
slice presented in Figure 27 and Figure 28. 

 GM WM CSF 

βθ 0.77 ± 0.1 0.68 ± 0.1 0.87 ± 0.1 

βφ 0.77 ± 0.1 0.68 ± 0.1 0.91 ± 0.02 

βψ 0.78 ± 0.1 0.59 ± 0.1 0.88 ± 0.1 

µθ (µm) 18.7 ± 5.5 21.6 ± 5.4 12.7 ± 8.3 

µφ (µm) 19.8 ± 5.6 23.1 ± 6.3 23.7 ± 12.5 

µψ (µm) 19.5 ± 5.3 26.1 ± 6.1 26.6 ± 14.3 

MD (µm2/ms) 0.98 ± 0.18 0.65 ± 0.07 2.66 ± 0.8 

FA 0.17 ± 0.08 0.42 ± 0.18 0.13 ± 0.05 

MAE 0.77 ± 0.09 0.65 ± 0.07 0.9 ± 0.08 

AAβ 0.07 ± 0.02 0.15 ± 0.05 0.1 ± 0.02 

Dθ (µm2/ms) 0.82 ± 0.18 0.45 ± 0.18 2.33 ± 0.75 

Dφ (µm2/ms) 0.97 ± 0.18 0.7 ± 0.18 2.64 ± 0.83 

Dψ
 (µm2/ms) 1.16 ± 0.21 1.11 ± 0.25 3.0 ± 0.96 
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6.2.2.4 Model II: Discussion 

Similar to what have been found in Model I, our β values (Table V) were found to be lower in WM 

(~0.65 ± 0.1) than in GM (~0.77 ± 0.1), suggesting a higher complexity in WM. In CSF, the β values were 

found to be close to unity (~0.9 ± 0.1) as expected. We have also found that the stretched exponents were 

lowest in the direction of the WM fibers, as illustrated in Figure 27 and Figure 28. In particular, βΨ, which 

represents the stretched exponent in the direction of the principal eigenvector, was found to be lower than βθ 

and βφ in WM (βΨ ~ 0.59 ± 0.1). Moreover, βθ and βφ were found close in values (~0.68 ± 0.1) in WM 

regions, which explain the higher anisotropy along WM tracts in the AAβ map (Figure 28). 

The existence of low beta values along the WM fibers may first seem counter intuitive, especially 

when we try to connect it with the concept of complexity discussed in (Magin et al. 2008). However, a deeper 

understanding of the underlying distribution, described in equation 6.18, can explain our result in light of the 

CTRW model. The stretched exponential model of AD can be explained through the Long jumps model, also 

called Lévy flight, presented in section 4.2.1, which will result in an alpha stable distribution for the diffusion 

propagator P(x,t). In this model particles are allowed to occasionally perform large jumps in their random 

walks. Alpha stable distributions are heavy tailed functions having power law probability tails 2( ) ~P X x x β−>  

and their Fourier transform is known to be a stretched exponential (Metzler and Klafter 2000). It has been 

proven that a Fourier relationship exists between the diffusion propagator and the normalized DW signal 

(S/S0) under the short pulse assumption (when the pulse separation period Δ >> pulse duration δ which holds 

in the current experiment setup) (Stejskal 1965). Hence, it is expected that a streched exponential relationship 

in the q-space (q = γδG is assumed to be the spatial Fourier frequency of units mm-1) will describe the 

acquired DW signal.  

In order to gain a better understanding of the solution in equation 6.18, which represents the Fourier 

transform of the solution of equation 6.16, we need to take a closer look at the propagator PDF P(r,t) that 

underlies the model. For simplicity, we write the characteristic function of a 2D version of the propagator 

P(r,t) with t = 1 oriented at a rotated coordinate system {𝜙,𝜓} by an angle Ω in the form: 
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 𝑃(𝒌, 𝑡 = 1) = exp �− �𝐴𝜙�𝑘𝜙�
2𝛽𝜙 + 𝐴𝜓�𝑘𝜓�

2𝛽𝜓�� (6.26)  

where Aφ and Aψ are scale constants ≥ 0, βφ and βψ are the stretched exponents, and 

 
�
𝑘𝜙
𝑘𝜓
� = � cos(Ω) sin(Ω)

− sin(Ω) cos(Ω)� �
𝑘𝑥
𝑘𝑦
� (6.27)  

The characteristic function, P(k,t=1), was numerically evaluated in MATLAB by varying the five 

parameters: Aφ, Aψ, Ω, βφ, and βψ in equation 6.18 and then the inverse Fourier transform was computed in 

order to display the PDF value in the space domain. Note that the rotation matrix (equation 6.27) used as the 

relationship between the �𝑘𝑥,𝑘𝑦� and �𝑘𝜙,𝑘𝜓� coordinate systems in the Fourier domain can be used to 

relate the {x, y} and {𝜙,𝜓} coordinate systems in the space domain. It is clear from Figure 29 that increasing 

the scale parameters will increase the spread in the corresponding direction (b compared to a), while lowering 

one of the stretched exponents will elongate the tail in the corresponding direction (c compared to a). Finally 

the change of the rotation angle will change the principal axes of the function (d compared to a, b and c). 
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Figure 29: Contour plot (isomap) of different versions of a 2D version of P(r, t) by varying five parameters 
(2 scale parameters: Aφ and Aψ, rotation angle: Ω, and 2 stretched exponents: βφ and βψ). The coordinate 
system is shown in red. 
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According to the CTRW model, the heavy tailed solution for the space fractional diffusion model 

reflects the probability that distant randomly walking particles could jump to the current position (Schumer et 

al. 2009). From the above analysis, we can deduce that it is more likely for particles along the WM fibers to 

perform long jumps than particles randomly walking in the transverse directions, which explains the lower 

beta value found in the principal direction of diffusion along the optical fibers in Figure 27. In order to tie 

this result to the anatomy of the brain, we postulate the entrapment of water molecules along the WM fibers. 

When the molecules are freed, they might commit long jumps. Unlike WM, β values were isotropic in GM 

tissues as well as the CSF appearing as low AAβ values in Figure 28 and similar average values for the 

stretched exponents in Table V. 

The unit preserving constants, µ, were found to follow the same trend similar to Model I, although 

they did not show a good tissue contrast (Figure 27) unlike what have been reported for the µ map in (Zhou 

et al. 2010).  Similar to Model I, the µ parameters exhibit higher values in WM compared to GM tissues in all 

directions. Instability was seen in the fitting for CSF voxels where the diffusion process approaches the 

normal case with β values closer to unity, as evidenced by the large standard deviations in Table V. The 

blurriness in the µ maps may be due to the low SNR (around 1.25 in GM and around 1.4 for WM at a b value 

of 5000 s/mm2) of the acquired data compared to that used in (Zhou et al. 2010) (reported to be around 3.5 in 

GM and around 6 for WM at a b value of 4700 s/mm2). Indeed fitting this data to Magin et al.’s model 

resulted in a blurred µ map. In general, we posit that both fitting the µ parameter in the isotropic model or the 

µ parameters in our anisotropic models are sensitive to the SNR of the data. Moreover, increasing SNR 

without sacrificing resolution requires averaging multiple acquisitions, which increases the acquisition time.  

6.3  Discussion 

Our results from both models reflect the existence of three different diffusion phenomena occurring 

in brain tissue. The first – diffusion in anisotropic media – depends on the structure and composition of the 

environment in which the water molecules move. Barriers such as macromolecules, membranes, and bundles 

of axons will create a restricted diffusive medium in which the directions of allowed motion are constrained 
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causing a reduction in the measured ADC, when compared with a barrier-free environment. Although Model 

I suffers from the lack of positivity guarantee, however, using the principal eigenvector of the aDT, Ψ, we 

were able to detect the medium anisotropy without any assumptions. The second – diffusion in multi-scale or 

fractal structures – has been demonstrated to occur in brain tissue that exhibits fractal-like appearance (Smith 

et al. 1991; Caserta et al. 1995; Havlin et al. 1995; Ozarslan et al. 2006), and thus it has been linked to the use 

of fractional order stretched exponents (which quantify sub-diffusion processes in terms of random walk 

particle trajectories). Such a process could shed light on the relationship between AD and the anisotropy 

found in the fractional order parameters (Ozarslan et al. 2006; Hall and Barrick 2008; Magin et al. 2008; 

Ozarslan et al. 2012). The third – diffusion in porous heterogeneous media – is related to the AD description 

for which the Hurst index H > ½ or < ½ (Metzler and Klafter 2000). This could be due to the complexity of 

the random walk executed by the spins (water protons) caused by magnetic susceptibility differences between 

different tissues, water compartments and chaotic travel paths (Palombo et al. 2011; Capuani et al. 2012; 

Palombo et al. 2012). 

6.4  Conclusion 

In this chapter, we have presented two new models to study the anisotropy of AD in DW-MRI. The 

models were applied to DW-MRI brain data to study AD in the different types of brain tissues. It is important 

to note that both models suffer from partial volume contamination as do DTI. Inside a voxel, multi-fiber 

crossings are known to influence the principal direction of diffusion. A suggested solution is the utilization of 

spherical harmonics in order to solve for fiber crossing. This could be applied through the generalized PDO 

Q suggested in equation 6.15. However, this would complicate the formulation of the problem. 
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VII. USING THE TENSOR DISTRIBUTION FUNCTION 

Parts of the work in this chapter have been presented in: 

J.J. GadElkarim, L. Zhan, S.L. Yang, A.F. Zhang, L. Altshuler, M. Lamar, O. Ajilore, P.M. Thompson, A. 

Kumar, A. Leow, “TDF-TRACT: PROBABILISTIC TRACTOGRAPHY USING THE TENSOR 

DISTRIBUTION FUNCTION”, International Symposium of Biomedical Imaging, ISBI, 2010. 

7.1  Introduction 

In this chapter, we are going to study the brain on the mid-level using the TDF presented in section 

3.3.5.2.1 for the tractography application. We are going to start by presenting a brief literature review about 

different tractography algorithms. Algorithms are categorized in two main families: deterministic-based and 

probabilistic-based. This is followed by presenting our tractography algorithm TDF-TRACT based on the 

TDF. We then exploit a new property of the TDF by presenting a new metric, circular standard deviation 

(CSD) and we show that it is capable of measuring fibers incoherence. We also show that FA values depend 

on the spatial resolution during the acquisition process which puts a barrier in comparisons across studies. 

This dependence can be solved using HARDI-based methods.  

7.2  Background on Tractography 

Early tractography trials dates back to 1997 (Jones et al. 1997; Basser 1998; Mori et al. 1998; Mori 

and Barker 1999; Mori et al. 1999), at that time it presented the first non-invasive tool to probe information 

on the WM architecture of the human brain and it remained the only one up-to-date. Clinical applications for 

tractography vary from the characterization of neuro-degenerative diseases to surgical planning (Mori and 

van Zijl 2002). Recent utilization of full brain tractography combined with GM automatic segmentation 

algorithms have allowed us to form structural connectivity maps also known as connectome (Sporns et al. 

2005). As we mentioned above, algorithms fall in one of two categories: deterministic or probabilistic. Early 

trials were deterministic algorithms based on the DTI model, they were unsuccessful to extract crossing 

information due to resolution limitations discussed in chapter 3. Many algorithms were adapted to take 

advantage of the additional information provided by the HARDI-based models. Probabilistic tractography 
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algorithms possess a greater advantage in that they are based on the full probability distribution under study 

which describes fibers orientation (ODF, PAS, etc…) and not only on the extracted maxima. In tractography, 

a single fiber pathway is made by the interconnection of consecutive voxels while following a preferred 

direction at each voxel determined by the underlying model used to describe the DW measurements until 

certain stopping criteria are met. One can use a ROI as a starting seed for the tractography process or choose 

all WM brain voxels (using a mask) as seed points which is called full brain tractography.  

The first deterministic techniques were based on the streamline tracking (STR) algorithm proposed 

by (Basser 1998; Mori et al. 1998; Conturo et al. 1999; Basser et al. 2000; Basser and Jones 2002) in which a 

fiber tract is represented by a 3D space-curve. Since diffusion data are defined on a grid as discrete samples 

(voxels), one needs to find a way to infer fiber orientation at locations away from voxel centers. Mori et al. 

(Mori et al. 1999) have used a nearest neighbor approach in their algorithm fiber assignment by continuous 

tracking (FACT) algorithm, while Lazar and Alexander have used a better approach by using smooth 

interpolation in their bootstrap white matter tractography (BOOT-TRACT) algorithm (Lazar and Alexander 

2005). Another approach in the direction update procedure is the tensor deflection (TEND) algorithm 

proposed by (Westin et al. 2002; Lazar et al. 2003) in which one can use the entire DT to estimate the 

propagation direction of the next step. This technique gives smoother tracts due to the limits put on the 

deflection curvature when using the full DT. An important issue in tractography is the choice of termination 

criteria. Two important criteria where widely used. Since it is less likely that WM axons bend sharply within 

the scale of an imaging voxel, one could use the angle of curvature as the first stopping criteria. Hence, one 

can predetermine a curvature threshold which acts as a termination condition for the tractography process. 

Typical angles in literature vary from 25 to 45 degrees. The second stopping criterion is the anisotropy within 

the voxel. One can stop the tracking procedure when diffusion anisotropy is insufficient. This is estimated 

using the FA value at the current voxel, generally the tracking process is stopped when FA ≤ 0.15.  

HARDI-based tracking algorithms started to appear with the work of (Tuch 2002; Hagmann et al. 

2004) who proposed an adaptation for the streamline algorithm using the principal direction of diffusion 

ODF computed from DSI. The STR was also adapted to the QBI-based diffusion ODF in the work of 
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Campbell et al. (Campbell et al. 2005; Campbell et al. 2006) which approached the issue of fibers crossing 

using a curvature constraint. Descoteaux proposed a modification to the STR algorithm in which he 

exhaustively scanned for all possible splitting following different maxima of the diffusion ODF in order to 

extract fanning and branching fibers (Descoteaux 2008). The STR was also adapted to the multi-Gaussian 

model in the work of (Parker and Alexander 2003). The FACT algorithm was adapted in (Kreher et al. 2005; 

Bergmann et al. 2007) by using a multi-tensor model and in (Chao et al. 2007; Chao et al. 2008) by using 

multiple maxima of the q-ball ODF (M-FACT).  

 In probabilistic tractography, a connectivity index is usually produced to indicate how probable two 

voxels are connected instead of using stopping criteria to terminate the propagation process. This can be used 

to assess the reliability of the generated pathways from the tractography process. DTI-based probabilistic 

tractography algorithms were proposed in (Koch et al. 2002; Behrens et al. 2003; Parker and Alexander 2003; 

Jbabdi et al. 2004; Lazar and Alexander 2005; Friman et al. 2006; Lenglet 2006; Ramirez-Manzanares et al. 

2007; Jbabdi et al. 2008). Bayesian DTI-based algorithm (Behrens et al. 2003) was adapted in the work of 

(Kaden et al. 2007) using parametric spherical deconvolution and in (Behrens et al. 2007) using the multi-

Gaussian model. Full brain tractography was generated in (Jbabdi et al. 2007) using a Bayesian framework. 

Stochastic frameworks based on particle filters were used in the work of (Björnemo et al. 2002; Brun et al. 

2002; Zhang et al. 2009) in order to extract full brain tractography. Tractography algorithms based on Monte-

Carlo estimation appear in the work of (Perrin et al. 2005) in which they used the Q-ball diffusion ODF and 

in (Parker and Alexander 2005; Haroon and Parker 2007) based on PAS. A connection probability map was 

produced using M-FACT algorithm in (Yi-Ping et al. 2007). Branching and fanning was taken into account in 

the work of (Seunarine and Alexander 2006; Savadjiev et al. 2007; Descoteaux 2008).  

In the next section we are going to present our new tractography algorithm based on the TDF. 

Although it is a deterministic algorithm, it does possess a probabilistic aspect by sampling the TOD function 

and using a random seed point for every tracking trial. The algorithm captures crossing, fanning and 

branching fibers. 
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7.3  TDF-TRACT Tractography Algorithm 

We start by extending the STR algorithm. The tangent to the streamline at any point is assumed to be 

parallel to the fiber orientation vector field v. If one parameterized the location of the tract pathway r by the 

arc length s of the trajectory, we can write: 

 𝑑𝒓(𝑠)
𝑑𝑠

= 𝒗�𝒓(𝑠)� (7.1)  

hence 

 
𝒓(𝑠) =  � 𝒗�𝒓(𝑠)�𝑑𝑠

𝑠0
 (7.2)  

where r(s = s0) = r0 represents the seed point, 𝒓(𝑠) = [𝑥(𝑠) 𝑦(𝑠) 𝑧(𝑠)]𝑇. In order to realize the integration 

in equation 7.2, one can start from a seed point r0, calculate v(r0), propagate in space for a predefined step of 

size Δs in order to obtain the next point 𝒓1 = 𝒓0 + 𝒗(𝒓0)Δs on the fiber pathway (Figure 30). This is called 

the Euler’s method in which we construct the fiber by propagating iteratively according to the following 

update equation: 

 𝒓𝑖+1 = 𝒓𝑖 + 𝒗(𝒓𝑖)Δs (7.3)  

To decrease the accumulating propagation error of the numerical integration, one can use the Runge-Kutta 

scheme to perform the integration in equation 7.2, in that case we can write: 

 
𝒓𝑖+1 = 𝒓𝑖 + 𝒗�𝒓𝑖 +

Δ𝑠
2
𝒗(𝒓𝑖)�Δs (7.4)  
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Figure 30: Streamline tractography. (a) Mathematical representation of streamline tractography, the 
streamline location is parameterized as a vector r which is a function of length along the streamline s. The 
tangent to the streamline t(s) is the estimate of local fiber orientation. (b) The dotted streamline follows the 
orientations of the principal axes of diffusion tensors. 

 

 

 

 

 

Due to the heuristic nature of our algorithm, we perform a linear interpolation in order to infer fiber 

orientation at locations away from voxel centers. Other schemes such as cubic or spline interpolation will be 

computationally expensive. The input to our tractography algorithm is as follow: 

• A table of the sampled directions on the unit sphere (q-table), usually we do a low and high 

resolution sampling of 27 and 81 directions respectively. This table should not be confused with the 

gradient table which comes from the HARDI data. Each direction represents a different tensor (recall 

from chapter 3 that one needs 2 eigenvalues and a unit vector to represent a DT in the TDF scheme). 

• A TOD map which represents the PDF of every DT represented by the directions found in the q-table 

at every voxel. One usually can put thresholds on the TDF to eliminate directions with very low 

weights. Typical used thresholds are: 0.05, 0.1, and 0.15. 
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• Number of tensors at every voxel, since many directions will be weightless after applying a threshold 

on the TOD, we record the number of survived tensors. 

• A binary mask for the WM voxels 

• Number of tracts per seed point Ntps 

• A step size Δs 

• Maximum number of points per tract Np 

• A maximum curvature threshold Θt 

• A starting point r0 

The algorithm can be described as follow: 

Loop from 1 to Ntps 

Start from: r0’ = r0 + r – 0.5, r is a random vector with elements in the interval [0, 1].  

Tract1 = GenerateTracts: Inputs are r0’ and v = [0 0 0]T 

Tract2 = GenerateTracts: Inputs are r0’ and v = r0’ – r1 

Concatenate Tract1 and Tract2 

End Loop 

where  

Function GenerateTracts: Inputs are ri and 𝒗(𝒓𝑖−1) = 𝒗 

 If mask = 0 or 𝒓𝑖 outside brain size    stop tractography 

* Randomly sample the TOD at nearest neighbor of ri to get v(ri) from the q-table 

If acos�𝒗(𝒓𝑖).𝒗(𝒓𝑖−1)� > 𝜃𝑡   stop tractography 

If 𝒗(𝒓𝑖).𝒗(𝒓𝑖−1) < 0     𝒗(𝒓𝑖) = −𝒗(𝒓𝑖) 

Propagate using equation 7.3 

If number of points > Np      stop tractography 

Go to (*) with 𝒓𝑖 = 𝒓𝑖+1 and 𝒗(𝒓𝑖−1) =  𝒗(𝒓𝑖) 

Return tract 
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In the implementation we allowed Δs = 0.5 mm, Θt = 60 degree, Np = 500. Although the algorithm is 

categorized as of a deterministic type, a probabilistic aspect can be observed by the random choice of starting 

seed points as well as the sampling process of the TOD PDF.  

7.4  Tractography Results 

7.4.1 Graphical User Interface for TDF-Tractography 

The graphical user interface (GUI) for the TDF-TRACT algorithm is shown in Figure 31. The 

program is called: CoNECt. It was first implemented in the Matlab environment. Afterward, it was translated 

into C++ in the cross-platform GUI framework known as Qt. The user interface has the capabilities of 

displaying the TOD along with the colored fiber orientation (red denotes left-right, green denotes anterior-

posterior, and blue denotes top-down orientation), as well as various slice views of the corresponding 

structural image. This allows the user to easily navigate between structural anatomy and local fiber 

directional information, making it easier to identify and trace ROIs. The “AND/NOT” function is 

implemented such that the user may perform virtual dissections of WM structures in an interactive manner. 

In addition, the user may specify the number of random samplings of trajectories per seed point as well as the 

cut-off bending angle. Figure 31 shows the different views available in the software. In the TOD view 

(Figure 31b), the user can inspect the different fiber directions by using the zoom capabilities. The user can 

also filter fibers by length, ROI, and color. 

7.4.2 Tractography of the Brain Stem and Cerebellar Peduncles 

To demonstrate the power of TDF-TRACT, we attempted to reconstruct all major neuronal pathways 

to and from the brainstem, a structure where multiple fiber bundles are mostly condensed and aligned 

adjacent to each other. While previous studies (Habas and Cabanis 2007; Kamali et al. 2010) have concluded 

that high spatial resolution (~1mm) is necessary in assessing the WM architecture of the brain stem, here we 

demonstrate that TDF tractography is successful in reconstructing these fibers at a clinically typical yet lower 

spatial resolution (~2mm). The visualization of the TDF framework is introduced in Figure 32 which shows 

the reconstructed TOD overlaid with the color map representing overall fiber orientation at each voxel as 
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calculated using the mean fiber direction vector R. The TOD is a voxel-wise vector plot, in which multiple 

vectors were plotted indicating different fiber directions.  On the other hand, the color codes of the mean 

fiber direction R (presented in the next section) are similar to the RGB coding used in DTI tensor 

visualization with green, red, and blue representing anterior-posterior, left-right, and superior-inferior 

orientation respectively. Visually, the R color map provides a gross or macro representation of the WM 

structure, while TOD vector plot represents finer details of the WM structure with the ability to resolve fiber 

crossing. Fiber crossing, for example, can be readily appreciated at the level of the pons (Figure 32c). 
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Figure 31: The GUI for the CoNECt program. There are three main views available: the global view (a), 
TOD view (b), and 3D view the tract view (c, d). 
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Figure 32: The reconstructed tensor orientation distribution (TOD; right panel) and the color map 
representing overall fiber orientation at each voxel, as calculated using the RGB coloring of the mean fiber 
direction vector R (Eq. 7.8). The TOD is a voxel wise vector plot, in which multiple vectors may be present 
that indicate reconstructed fiber directions.  On the other hand, the color codes of R are similar to those used 
in DTI tensor visualization with green, red, and blue representing anterior-posterior, left-right, and superior-
inferior orientation respectively. Top panel shows the TOD and R color map at the level of the thalamus. 
Here the R color map provides a gross or macro representation of the white matter structure, while voxel 
wise TOD vector plot represents finer details of the white matter structure with the ability to resolve fiber 
crossing. Examples are shown in the middle and bottom rows, where complex white matter structure 
including fiber crossing can be seen. In (c), at the level of the pons, the ponto-cerebellar tracts (PCT; coded 
red) cross to the contra-lateral side to reach the cerebellum via the middle cerebellar peduncle (MCP). 
Visually, the complex white matter architecture is evident in this region. 
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7.4.3 Constructing the Dorsal Column-Medial Lemniscus (DCML) System 

The DCML pathway relays information to the sensory cortex for senses including light touch, 

vibration, and proprioception. Neurons carrying touch information synapse at the gracile and cuneate nuclei 

in the spinal cord, and axons from secondary neurons decussate at the level of the open medulla and travel up 

the brainstem as the medial lemniscus on the contralateral side, reaching the ventral posterolateral (VPL) 

nucleus of the thalamus. The VPL nucleus then further relays the sensory information to the somatosensory 

cortex in the postcentral gyrus. Figure 33a shows the reconstructed DCML pathway, which extends from the 

medulla/rostral spinal cord to the somatosensory cortex. Here the seeding ROI was placed by identifying the 

rostral end of the dorsal column, followed by a second “and” ROI at the pontine tegmentum.    

7.4.4 Constructing the Cortico-Spinal Tracts 

CST can be easily constructed by recognizing these tracts in the pons (Figure 32), where we place the 

seeding ROI. This is followed by placing a second “and” ROI at the primary motor cortex in the precentral 

gyrus. Figure 33 (b) and (c) show the reconstructed CST using TDF-tractography. 

7.4.5 Constructing the Main Cerebellar Efferent Fibers 

The superior cerebellar peduncle (SCP) contains major cerebellar efferent fibers. These fibers 

originate in the deep cerebellar nuclei and cross the midline in the decussation of SCP with termination either 

at the contra-lateral red nucleus or the venterolateral (VL) and ventroanterior (VA) thalamic nuclei. The VL 

and VA nuclei then further relays cerebellar output information to the motor, pre-motor, and supplementary 

motor cortices, thus completing the dentate-rubro-thalamo-cortical (DRTC) pathway that plays an important 

role in the modulation, timing, and coordination of motor control. Here we reconstruct the DRTC pathway by 

placing a first seeding ROI using a coronal slice covering the entire cerebellum followed by a second “and” 

ROI placed in SCP bilaterally. Here, TDF-Tract is able to reconstruct the whole dentate-rubro-thalamo-

cortical pathway with final termination in the cerebral cortex (Figure 33c). Also, we note in passing that often 

the term cerebello-cortical pathway is alternatively used to describe the projection from the cerebellum to the 

cortical cortex, and thus will be used somewhat interchangeably.   

http://en.wikipedia.org/wiki/Synapse
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7.4.6 Constructing the Spinocerebellar and Rubrocerebellar Pathway 

The cerebellum receives input from the spinal cord via the spinothalamic/cuneocerebellar tract as 

well as the inferior olive. These fibers enter the cerebellum via the inferior cerebellar peduncle (ICP). In 

addition to these afferent fibers, the fastigial nucleus of the cerebellum sends most of its efferent fibers 

inferiorly through the ICP to the vestibular nucleus. In Figure 32d, we reconstructed these fibers by placing 

the seeding ROI in the medulla, and a second “and” ROI using a coronal ROI of the cerebellum. Some 

aberrant fiber contaminations (mostly from middle cerebellar peduncle or MCP) were then removed by using 

the “not” function with additional ROIs. 

7.4.7 Construction of the Cortico-Ponto-Cerebellar Pathway 

The cerebellum receives its main input fibers from the contralateral pontine nuclei via the ponto-

cerebellar tracts, the pontine nuclei in turn receives cortical input via the corticopontine tracts. Together, 

these two tracts complete the Cortico-Ponto-Cerebellar (CPC) pathway, a major pathway connecting the 

cerebral cortex to the cerebellum. Figure 33e reconstructs the CPC pathway by placing a seeding ROI using a 

coronal slice of the entire cerebellum, followed by a second “and” ROI placed at bilateral MCP, and a last 

“and” ROI placed in the centrum semi-ovale.  

In Figure 34, we plot and visualize these reconstructed fibers (green-corticospinal or pyramidal tract; 

red-DCML and other ascending sensory pathways; yellow-fibers passing through SCP representing main 

cerebellar efferent output to the cerebral cortex, the DRTC or cerebello-cortical pathway; light blue- tracts 

passing through ICP; magenta-CPC pathway passing through MCP). To better appreciate the anatomy of 

interest, all fibers were reconstructed bilaterally except for the CPC pathway, shown here to originate in one 

side of the cortex and reach the contralateral cerebellum. From the posterior view in Figure 34c, the DRTC 

pathway lies laterally to the fiber tracts of the ICP. This is consistent with known neuroanatomy as the 

dentate nucleus, most lateral among all deep nuclei of the cerebellum (from lateral to medial: the dentate, 

interposed, and fastigial nuclei), accounts for most of the cerebellar efferent output. Moreover, our 
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tractography results suggest that fibers in SCP are organized into more than one bundle, aligned in an overall 

anterior-posterior fashion (Figure 34a and Figure 34b).   

 

 

 

 

 

 

Figure 33: TDF-tractography results in reconstructing (a): the dorsal column-medial lemniscus pathway, (b): 
the corticospinal tracts, and all major cerebellar afferent/efferent fibers passing the superior, middle, and 
inferior peduncles ( the dentate-rubro-thalamo-cortical or DRTC pathway via the superior cerebellar 
peduncle in (c); the spinocerebellar tracts via the inferior cerebellar peduncle in (d); the cortico-ponto-
cerebellar or CPC pathway via the middle cerebellar peduncle in (e) ). Here, both the CPC and DRTC 
pathways exhibit terminations in the motor cortex. 
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Figure 34: The GUI introduced in Figure 31 allows us to plot and visualize all reconstructed fibers in 
different colors (green-corticospinal or pyramidal fibers; red-DCML and other ascending sensory pathways; 
yellow-tracts passing through SCP representing the major cerebellar efferent pathway; light blue-tracts 
passing through ICP; magenta-CPC pathway/MCP). To better appreciate the anatomy, all fibers were 
reconstructed bilaterally except for the CPC pathway, shown here to originate on the right hemisphere and 
reach the contralateral cerebellum. 

 

 

 

 

 

7.5  Circular Standard Deviation  

 In this section, we will discuss the issue of fiber incoherence and will show that it cannot be 

negligible. A lot of studies have relied in their analysis on using the DTI-based FA measure (equation 3.19). 

However, FA is contaminated by many factors such as spatial resolution and fiber incoherence especially in 

low resolution acquisitions which will profoundly affects clinical interpretation and comparisons across 

studies and put limits in the quantification of the underlying physiology. Zhan et al. have lately defined a 



108 
  

 

TDF-based FA (Zhan et al. 2009) which we have found to possess a lower dependence on spatial resolution 

as well as on fiber incoherence. To strengthen our proof, we have designed the circular standard deviation as 

a measure of fiber incoherence. For sake of convenience, we are going to refer to the DTI-based FA as FADTI 

and the TDF-based FA as FATDF. 

 We begin by first defining the FATDF, given a TDF function 𝑃�𝐷(𝜽,𝝀)� with 𝜽 = (𝜃1,𝜃2) and 𝝀 =

(𝜆1,𝜆2), the average eigenvalues are defined as: 

 
�̅�𝑖 =

∫𝑃�𝐷(𝜽,𝝀)�𝜆𝑖𝑑𝝀
∫𝑃�𝐷(𝜽,𝝀)�𝑑𝝀

, 𝑖 = 1,2 (7.5)  

And the FATDF is defined as: 

 𝐹𝐴𝑇𝐷𝐹 = ∫ 𝑃�𝐷(𝜽,𝝀)�𝐹𝐴�𝐷(𝜽,𝝀)�𝑑𝜽𝑑𝝀    (7.6)  

where 

 
𝐹𝐴�𝐷(𝜽,𝝀)� = �� �̅�1 −  �̅�2�

2 + � �̅�1 −  �̅�3�
2 + � �̅�2 −  �̅�3�

2

2� �̅�12 +  �̅�22 +  �̅�32�
 (7.7)  

From the literature of directional statistics (Fisher 1993), we propose to compute the mean fiber direction 

vector R of all detected fiber directions Θi at a given voxel as follows: 

 
𝑹 = max

𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒
�𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 ��𝑇𝑂𝐷�𝜽𝑖�𝜽𝑖�𝜽𝑖�𝑇

𝑖

��  (7.8)  

Here, R corresponds to the eigenvector corresponding to the largest eigenvalue of the matrix produced by the 

weighted sum of the self-inner product of the different fiber directions. Then, the CSD can be computed as: 

 𝐶𝑆𝐷 = �−2 log(‖𝑹‖) (7.9)  

where ‖. ‖ sign denotes the Euclidian norm. 
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 The variation in the FADTI values have been thoroughly studied along different fiber bundles. It has 

been found that fiber orientational incoherence contaminates results. In (Fillard et al. 2003; Gilmore et al. 

2007), the FADTI values have been computed along the CC fibers in the genu region in order to investigate 

early neonatal development of the CC. The authors have reported that FADTI depends on tract organization. In 

our analysis, we have constructed the genu fibers in a low and high spatial resolution data of a healthy subject 

(see Appendix A) using FACT tractography algorithm built-in the DTISTUDIO software 

(http://cmrm.med.jhmi.edu/) as well as using our TDF-TRACT algorithm. FADTI, FATDF, and CSD were 

computed along the constructed fibers. Figure 35 plots the average FADTI values against the geodesic distance 

across the reconstructed genu fibers obtained from DTISTUDIO in low and high spatial resolution data. Even 

though the low resolution data and its higher reconstruction were acquired in the same session using the same 

parameters, the FADTI values are higher in the higher spatial resolution data. Such increase can be explained 

by the existence of a higher degree of fiber incoherence due to the curving nature of the genu fibers which 

trace the trajectory of a U shape, thus a larger voxel would capture more of the curving trajectory. Such 

dependence on the image resolution puts limitations on the quantification of the underlying physiology. In 

contrast to FADTI, FATDF does not exhibit such great change in values from low to high resolution data 

(Figure 36) which supports the hypothesis that low FADTI values in low spatial resolution data is 

contaminated by a higher degree of fiber incoherence due to the larger voxel size. In order to strengthen this 

hypothesis, we computed CSD in low resolution data along the genu fiber bundle and expect the opposite 

effects to FADTI with respect to the geodesic distance (i.e., high degree of fiber incoherence leads to higher 

CSD values but lower FA values). Indeed, this is shown in Figure 37 where the blue line of the FADTI closely 

follows the trend of the inverse CSD plotted in red.  
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Figure 35: The averaged FADTI values (second panel) with respect to the geodesic distance from the mid-
sagittal point (marked with white arrows, top panel) across all reconstructed commissural fibers in the genu 
of CC (top panel). We notice that the FADTI values are much higher for the higher spatial resolution data, 
especially in the central portion of the plot (i.e., around the mid-sagittal point). All results in this figure were 
produced using the DTI Studio software. Third panel shows the mid-sagittal point, the geodesic distance, and 
the low and high spatial resolution voxel sizes (the blue squares) with respect to a typical commissural fiber 
in the genu of CC. 
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Figure 36: FATDF versus FADTI for both low and high resolution data (lower panel). Tracts were generated 
using our TDF-tractography program, and used to extract FATDF values along the curves (upper panel). Here, 
we notice that for the low resolution dataset, FATDF also has values higher than the FADTI. Moreover, FATDF 
has minimal dependence on the spatial resolution. This supports our hypothesis that the low FADTI values in 
low spatial resolution data are a direct result of the higher degree of fiber incoherence due to the larger voxel 
size. 
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Figure 37: CSD and average FADTI plotted against the geodesic distance from the mid-sagittal point, across 
all reconstructed fibers, for the low spatial resolution data. The CSD is interpreted as a measure of the degree 
of fiber incoherence. Here, the FADTI tracing (dotted blue line) closely follows the trend of the inverse CSD 
tracing (red line) within 15 mm from the mid-sagittal point.  Thus, FADTI values along tracts are highly 
correlated with, and dependent upon, the degree of fiber incoherence. This is more pronounced in lower 
spatial resolution images. 

 

 

 

 

7.6  Conclusion  

 In this chapter, we have presented a new tractography algorithm (TDF-TRACT) which possesses a 

unique probabilistic aspect unlike other deterministic algorithms. The algorithm is capable of reconstructing 

many important fiber bundles. Moreover, we have developed a new metric (CSD) to measure fiber 

incoherence and used it to proof the dependence of FADTI on fiber incoherence especially in low spatial 

resolution data with large voxel size. We recommend the adoption of HARDI-based analysis techniques in 

future clinical studies of white matter integrity in order to avoid the problems found in FADTI. 
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8.1  Introduction 

In this chapter, we are going to study the brain on the macro-level. Through the concept of 

connectome, presented in chapter 5, the brain can be abstracted as a network. Using the connectome, one can 

use various metrics from graph theory to study topological, integration and clustering properties of brain 

networks (Rubinov and Sporns 2010). Assessment of such properties will allow us to describe a realm where 

healthy brain network lies in. Thus, we will be able to make group studies on various neuropsychological 

diseases in order to understand structural changes on the network level occurring in disease connectomes For 

example, studying the community structure of the brain has lately shed light on alterations related to aging 

(Fair et al. 2009; Meunier et al. 2009) and schizophrenia (Bassett et al. 2008; Liu et al. 2008; Lynall et al. 

2010; van den Heuvel et al. 2010; Alexander-Bloch et al. 2012). This could help assessing the effectiveness 

of therapeutical processes on the connectional level of the brain. 

In this chapter, we are going to present two main contributions to both graph theory as well as to 

connectome studying fields. We will present new metrics to measure the modular integration of modular 

networks. These new metrics will rely on the notion of path length previously defined in chapter 5. The 

metrics will be used to measure the integration of brain networks in a group study of the bipolar disease 

based on the hypothesis that bipolar patient suffers a significant hemispheric dis-integration. Moreover, we 

are going to present a new metric, ΨPL, to extract the community structure of a network (review chapter 5). 

Using this metric, a complete framework is formulated based on the extracted brain community structures in 

the form of top-down binary trees (also known as dendrograms). The framework allows us to statistically 

detect significant community alterations on both: the nodal and community levels for group comparison 

studies using a nodal “consistency metric” designed to quantify differences in nodal affiliation between trees 

at each node. We named the new framework PLACE, which stands for “Path Length Associated Community 

Estimation”. The framework was used to perform two group studies on a sample of depression patients as 

well as a sample of bipolar patients. 
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The chapter is arranged as follow: first, in the methods section, we will describe the pipeline to 

generate a connectome, followed by the presentation of the new metrics that measure networks modular 

integration, followed by the description of PLACE. Second, we are going to present results of the application 

of the new metrics and PLACE on group studies. Third, a discussion to the findings will be presented. 

Finally, a mathematical variation of ΨPL will presented at the end of the chapter.  

8.2  Methods 

8.2.1 Constructing Brain Connectivity Network 

Since the current state of the art imaging technologies do not allow access to the micro-level of 

neurons and axons, brain networks are generated on the macro-level by defining different brain regions on 

the GM and using results of the tractography process. To generate brain structural networks, a pipeline is 

followed which integrates multiple image analysis techniques. Figure 38 shows a simplified version of this 

pipeline. First, DW images are eddy current corrected using an image registration tool. Typically, one uses 

the b0 image as a reference for the other DW images acquired at the different gradients directions. In this 

thesis, we have used the automatic image registration (AIR) tool built-in the DTISTUDIO program 

(http://www.mristudio.org). This is followed by the generation of full brain tractography. One can choose 

from the different types of tractography presented in chapter 7. In this thesis, we have computed the DT then 

deterministic tractography using the FACT algorithm (Jiang et al. 2006) built into the DTISTUDIO program. 

T1-weighted images are usually used to generate label maps in which the GM is divided into 

different ROIs. Though multiple atlases exist, one of two atlases is commonly used in literature, the 

automated anatomical labeling (AAL) (Tzourio-Mazoyer et al. 2002) or the one built-in the Freesurfer 

software package (http://surfer.nmr.mgh.harvard.edu/). Both generate label maps composed of ROIs in the 

order of 90. In this thesis, we have used the Freesurfer package. The resultant label maps contain 87 ROIs 

which include cortical, subcortical regions as well as the brainstem and cerebellum; the ROIs are listed in 

Appendix E. From a network point of view, each ROI is considered as being a node, brain networks are 

generated by counting the number of fibers connecting each node pair. Before performing the counting 
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process, the label map must be first registered in the space of the DW data. This is usually performed by 

registering the T1 image onto the b0 image. The resultant transformation matrix from this registration process 

is then used to transform the label map to the DW space.  

 

 

 

 

 

Figure 38: Pipeline used to generate structural brain networks 
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8.2.2 New Graph Metrics 

In order to study modular integration in networks, we introduce a set of four metrics by modifying 

the definitions of CPL and Eglob. The proposed metrics are termed intra/inter modular path length and 

intra/inter modular efficiency (IntraPL, InterPL, Eintra, and Einter). The IntraPL is computed by averaging all 

shortest paths connecting node pairs in the same module. On the other hand, InterPL is defined as the mean 

inter-modular distance (e.g., for communities (modules) Ci and Cj, InterPL is measured by averaging the path 

lengths of all shortest paths connecting any node in module Ci to any node in module Cj). Mathematically, 

the IntraPL for module Ci is defined as: 

 
𝐼𝑛𝑡𝑟𝑎𝑃𝐿

𝐶𝑖 =
∑ 𝑑𝑛𝑚𝑛,𝑚∈𝐶𝑖;𝑛>𝑚

(𝑁𝑖 − 1)𝑁𝑖/2 
 (8.1)  

Here Ni denotes the number of nodes in module Ci, and dnm denotes the length of the shortest path connecting 

nodes n and m. Similarly, the InterPL between modules Ci and Cj is mathematically defined as: 

 
𝐼𝑛𝑡𝑒𝑟𝑃𝐿

𝐶𝑖↔𝐶𝑗 =
∑ 𝑑𝑛𝑚𝑛∈𝐶𝑖,𝑚∈𝐶𝑖

𝑁𝑖𝑁𝑗
 (8.2)  

In addition to inter and intra modular path length, we further propose the inter-modular and intra-modular 

efficiency as measures of network integration, mathematically defined as follows. 

 
𝐸𝑖𝑛𝑡𝑟𝑎
𝐶𝑖 =

∑ 𝑑𝑛𝑚−1𝑛,𝑚∈𝐶𝑖
(𝑁𝑖 − 1)𝑁𝑖/2 

 (8.3)  

 
𝐸𝑖𝑛𝑡𝑒𝑟
𝐶𝑖↔𝐶𝑗 =

∑ 𝑑𝑛𝑚−1𝑛∈𝐶𝑖,𝑚∈𝐶𝑖
𝑁𝑖𝑁𝑗

 (8.4)  

In order to construct the distance matrix (whose dij element denotes the length of the shortest path connecting 
nodes i and j), an element-wise inverse transformation is applied on the weighted network matrix. Note that a 
higher edge weight indicates stronger connectivity and a shorter edge length. After applying the inverse 
mapping to a weighted matrix, the shortest path length is obtained using the well-known Dijkstra’s algorithm 



118 
  

 

(Dijkstra 1959). We are going to apply the suggested metrics on structural brain networks in a group study of 
bipolar disorder (for description of the acquired data see (Appendix B).  

8.2.3 Path-Length Associated Community Estimation 

Starting from the next section up to section 8.2.3.5, we are going to present the different methods utilized in 

the PLACE framework which detects nodal and modular alterations of networks in group studies. 

8.2.3.1 Introducing ΨPL 

In order to extract community structure, we seek to find groups of nodes which are highly 

interconnected while separated from nodes in other groups. Here, unlike in the modularity metric, the degree 

to which nodes are integrated (or separated) is measured using shortest path lengths, which encode geodesic 

distances between nodes in the graph and are calculated by applying the Dijkstra’s algorithm to the element-

wise inverse of the connectivity matrix. The proposed metric ΨPL is then defined as the difference between 

the mean inter and the mean intra modular path lengths (InterPL / IntraPL) defined in the previous section. In 

the case of two communities (modules), for example, ΨPL is defined as: 

 Ψ𝑃𝐿 = 𝐼𝑛𝑡𝑒𝑟𝑃𝐿
𝐶1↔𝐶2 −

1
2 �
𝐼𝑛𝑡𝑟𝑎𝑃𝐿

𝐶1 + 𝐼𝑛𝑡𝑟𝑎𝑃𝐿
𝐶2 � (8.5)  

Here, notice that maximizing ΨPL is equivalent to searching for a partition such that its communities exhibit 

stronger intra-community integration as well as stronger between-community separation. As such, we argue 

that ΨPL may be advantageous over the modularity Q in capturing the global configuration of a network (note 

that Q is computed by summing over a term that is only defined for node pairs belonging to a same 

community). 

8.2.3.2 Community Structure Estimation 

In order to extract community structures, a top-down hierarchical clustering was used to yield binary 

trees. At each level, nodes are randomly assigned to one of two communities, and the optimal assignment 

was determined by maximizing ΨPL using the SA algorithm (Kirkpatrick et al. 1983). At every iteration of 
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the SA algorithm, one node is randomly chosen to switch affiliation (to the other community). This affiliation 

switch is then accepted with respect to the following acceptance probability P(accept) for such a change:  

 
𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) =  �

1, 𝑖𝑓 Ψ𝑛𝑒𝑤 
𝑃𝐿 > Ψ𝑜𝑙𝑑 

𝑃𝐿

exp �
1
𝑇 �
Ψ𝑛𝑒𝑤 
𝑃𝐿 − Ψ𝑜𝑙𝑑 

𝑃𝐿 �� , 𝑖𝑓 Ψ𝑛𝑒𝑤 
𝑃𝐿 < Ψ𝑜𝑙𝑑 

𝑃𝐿  (8.6)  

where Ψ𝑛𝑒𝑤 
𝑃𝐿 is the new value of our cost function under optimization computed with the switched affiliation, 

Ψ𝑜𝑙𝑑 
𝑃𝐿 is the last accepted value, and T is the artificial cooling temperature and is initially set to 1. The SA 

process is repeated at each level until the optimal dendrogram is reached (optimal in the sense that no further 

bifurcation may reveal additional community structure). The artificial temperature was lowered by a factor of 

0.95 after a number of iterations equal to the square of the number of nodes. At any level, ΨPL was computed 

by considering the entire set of nodes found in the network in order to ensure the solution was globally 

optimized. Additionally, bifurcation was rejected if the maximum ΨPL was non-positive, since it indicated 

that the InterPL was smaller than the average IntraPL.  

8.2.3.3 Assessing group-level Community Structure Differences 

To quantify node level community differences, we have utilized the scaled inclusivity metric from 

Steen et al. (Steen et al. 2011). Here, the authors presented ζ, as a nodal consistency vector of length equal to 

the number of nodes in the network (68 in our case), which compares nodes in a test tree (i.e., an individual 

subject’s tree) to nodes in a reference tree. Mathematically, for each node k belonging to communities Cp and 

Cq in the test and reference trees respectively, the scaled inclusivity, ζ, is defined as: 

 
𝜁(𝑘) =

(𝑁𝑐)2

𝑁𝑝𝑁𝑞
,        𝑘 = 1, … ,68 (8.7)  

where Nc denotes the number of common nodes between the two communities Cp and Cq, that contain this 

node k in the test and reference trees respectively.  
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8.2.3.4 Statistical Analysis 

In order to examine group differences in community structures at the nodal level, we first constructed 

and qualitatively assessed the two groups mean trees (for control and disease groups under study) by 

extracting the community structure corresponding to the group mean connectivity matrices (NWmean): 

 
𝑁𝑊𝑚𝑒𝑎𝑛 =

1
𝑁𝑠𝑢𝑏

� 𝑁𝑊𝑖

𝑁𝑠𝑢𝑏

𝑖=1

 (8.8)  

where Nsub is the total number of subjects in the group and NWi is the network matrix of subject i. The mean 

tree here may also represent the average brain network that summarizes the common network characteristics 

shared by all normal subjects in this sample (He et al. 2009; Meunier et al. 2009; Power et al. 2011; Zuo et al. 

2012). Next, all individual subjects’ trees (both disease and control) are compared to the mean tree of the 

control group (which serves as the reference tree in the previous section). We propose to detect group 

differences in local community structure using node-wise 2-sample T-tests for ζ, followed by correcting for 

multiple comparisons.  Alternatively, a more powerful test on the community-level can be constructed via a 

multivariate distribution, for each community in the final level of the binary tree of the mean normal group, 

by concatenating the ζ vectors of all nodes in this community, on which 2-sample Hotelling’s T-squared tests 

can be conducted. To examine the relationship of community structure with clinical measures, a post-hoc 

two-tailed partial correlation analysis is performed on ζ in selected nodes-of-interest and duration of illness 

(years since first mania and years since first major depression) and the number of mood episodes (manic and 

depressive) controlling for age. 

8.2.3.5 Testing for Frequency of Occurrence 

Additionally, under a stronger assumption that community structures do not depend on other 

covariates such as age and gender, one may perform a permutation test (Nichols et al.) in order to detect a 

change in node affiliation between groups To this end, we first define an NxN frequency table for each 

diagnostic group (healthy and bipolar). For each diagnostic group, the entry fij of the frequency table 
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represents the number of times node i and node j are assigned to the same community, normalized by the 

number of subjects in this group (hence fij values range from 0 to 1; note that this frequency table is also a 

symmetric matrix). Secondly, for every node we compute the Euclidean distance of the corresponding 

frequency vectors for this node between the healthy and disease groups. Mathematically, for node i, the 

Euclidean distance Di is defined as: 

 

𝐷𝑖 = � � �𝑓𝑖𝑗𝐻 − 𝑓𝑖𝑗𝐷�
2

𝑁

𝑗=1,𝑗≠𝑖

,      𝑖 = 1, …𝑁 (8.9)  

where the superscripts H and D stand for healthy and disease respectively. To construct permutation testing, 

we randomly shuffle subjects between the healthy and disease groups and re-compute the frequency tables as 

well as their Euclidean distances. This shuffling procedure is repeated 10,000 times and the re-sampled 

Euclidean distances are recorded. Last, for every node i, the p-value indicating whether there is a group 

difference in this node’s frequency table, can be computed by ranking the observed Di relative to the re-

sampled 10,000 Di s (e.g., if the observed Di value ranks at 50 percentile among all re-sampled Di then the 

corresponding p-value is 0.5 and, thus, we cannot reject the null hypothesis at a threshold level of 0.05). 

8.3  Results 

In this section, we are going to present three types of results. First, we are going to present the 

application of the modular integration metrics on a group study of a sample of bipolar patients. Second, a 

comparison between community structure extracted using ΨPL and the Q modularity will be presented by 

analyzing two real two published networks, the Zachary club (Zachary 1977) and bottlenose dolphins living 

in Doubtful Sound in New Zealand (Lusseau et al. 2003). Finally, we are going to present results of the 

application of PLACE to the a bipolar dataset and another population of major depression in order to detect 

nodal and modular alterations which might occur due to those diseases. Before presenting the results from 

using PLACE, we are going to discuss the issue of the optimal level that can be used in the hierarchical 

reconstruction of the human brain community structure in the form of trees. 
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8.3.1 Applying the New Graph Metrics to Bipolar Disorder 

 Brain networks were reconstructed as described in the method section using the dataset made of 25 

healthy controls and 25 subjects with bipolar disorder described in Appendix B. Focusing only on cortical 

regions, sub-networks formed of 68 cortical ROIs were reconstructed. The proposed intra/inter modular path 

length and intra/inter modular efficiency (IntraPL, InterPL, Eintra, and Einter) were computed between the two 

hemispheres. After controlling for multiple comparisons (Bonferroni corrections; cut-off p value at 0.05/12 

for a total of 12 tests) results showed that bipolar subjects exhibited significantly attenuated inter-hemispheric 

integration (lower inter-hemispheric efficiency and longer inter-hemispheric path length) relative to control 

subjects (23.90±4.50 in bipolar versus 28.52±4.37 in control, and p<0.001). Further focus was given to 

localize corpus colossal abnormalities in inter-hemispheric integration, by separately investigating InterPL 

and Einter within the frontal, parietal, temporal, and occipital lobes. Results revealed widespread inter 

hemispheric integration abnormalities with the most statistically significant deficit in the frontal lobe, thus 

suggesting prominent corpus colossal abnormality in the genu and anterior body (Table VI). 
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Table VI: Inter-hemispheric integration analyses in the frontal, temporal, parietal and occipital lobes. This 
table shows the mean and standard deviation of lobar inter-hemispheric path length and efficiency. Only 
group differences reaching statistical significance are shown (Bonferroni correction with a total of 16 tests; 
cut-off p value 0.05/16=0.003) 

 
p-value 

Inter-hemispheric path length 
Occipital lobe 

Bipolar 0.054±(0.014) 

0.0021 
Healthy controls 0.044±(0.010) 

Inter-hemispheric efficiency 
Frontal lobe 

Bipolar 22.9±(4.86) 

1.5x10-4 
Healthy controls 27.9±(6.26) 

Inter-hemispheric efficiency 
Temporal lobe 

Bipolar 54.6±(17.9) 

0.0016 
Healthy controls 71.4±(20.3) 

Inter-hemispheric efficiency 
Occipital lobe 

Bipolar 22.9±(4.86) 

0.0024 
Healthy controls 27.9±(6.26) 

Inter-hemispheric efficiency 
Parietal lobe 

Bipolar 54.6±(17.9) 
0.0030 

Healthy controls 71.4±(20.3) 
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8.3.2 Comparison with Q Modularity 

Perhaps one of the most important questions to ask in the analysis of community structure is the 

relevance and meaning of extracted communities. Several quality functions, such as Q, do exist to assess the 

goodness of a community. However, it has been shown that higher Q values do not always indicate a 

meaningful community structure (high Q was found in partitioning random graphs into communities 

although one would not expect any communities to exist) (Fortunato 2010). In addition, one would expect 

that the optimization of any quality function yields communities consistent with the underlying criterion 

inherent in the function being optimized. For this reason, testing an algorithm using real networks whose 

communities are known a priori is paramount. 

Here, we tested the proposed framework using two published networks and compared the extracted 

communities by maximizing ΨPL at different levels with the corresponding communities having the 

maximum known Qw in the literature. The first network was compiled by Zachary (Zachary 1977) as a social 

network which represents the communication between 34 members of a university karate club, the study of 

which was done in two years. The nodes represent the club members while the edges represent the strength of 

the social relation between them. According to Zachary, the club consists of two communities, one around 

the club’s administrator (node 1) and the other around the karate trainer (node 34), as a result of a dispute 

between them at the beginning of the study. Both Qw and ΨPL have successfully recovered the two known 

communities shown in Figure 39a, b. However, the maximal Qw reported in the literature is 0.4198 was 

obtained by a four-module community structure (Aloise et al. 2010) (Figure 39b). On the other hand, the two-

level dendrogram computed using ΨPL yielded the correct community structure at the first level, while 

revealing a different four-module structure at the second level. 
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Figure 39: Community structure obtained by maximizing ΨPL using a two-level binary tree for the Zachary 
club network (a), and the corresponding community structure obtained by maximizing Qw at a value of 
0.4189 (b). Both strategies correctly identified the 2 main communities as reported by Zachary (indicated by 
the bold line in the middle). 

 

 

 

 

8.3.3 Optimal Level of Hierarchical Reconstruction 

Since bifurcating hierarchical trees are used to represent brain community structure, a relevant 

question is at what bifurcation level is brain community structure best represented (note that this may depend 

on the choice of brain atlas and the resolution – number of nodes – using which brain regions are partitioned). 

To determine the optimal level and avoid choosing a random level, we first constructed hierarchical trees, for 

all healthy subjects in Appendix B, up to the fifth level (i.e., a total of 32 communities). To assess the 

separability at each bifurcation step (i.e., the higher the separability, the more evidence this community can 

be further divided up into smaller communities), we computed the ratio 𝐼𝑛𝑡𝑒𝑟𝑃𝐿 𝐼𝑛𝑡𝑟𝑎𝑃𝐿⁄  which should be 

considerably greater than 1 if a community can be further divided into two. At each level, this separability 

metric is computed and averaged across all subjects. We plotted the average separability against the level of 

bifurcation, and noted that this ratio reached its maximum at the fourth level followed by a significant 

decrease at the fifth level (Figure 40), indicating that optimal community structure may be attained at the 

fourth level.  
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Figure 40: This figure plots the average separability metric 𝐼𝑛𝑡𝑒𝑟𝑃𝐿 𝐼𝑛𝑡𝑟𝑎𝑃𝐿⁄  ratio across all subjects at each 
level (y axis; brackets indicate standard error) against the bifurcation level up to the fifth level (x axis). 

 

 

 

 

 

8.3.4 Community Structure Alterations in Bipolar Disorder 

Brain networks where constructed using the dataset in Appendix B made out of 25 healthy subjects 

and 25 participants with bipolar I disorder. Hierarchical trees were generated using only cortical regions (68 

nodes, 34 per hemisphere). Consistency metrics were computed to yield 25 ζ vectors for each group as 

presented in the method section. To detect community structure abnormalities, the Hotelling’s T-squared 

statistics was constructed for all 16 communities in the reference (mean control) tree. Results showed a 

significant group difference (i.e., lower consistency; p = 0.0059, uncorrected) in bipolar versus control for the 
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community containing the right paracentral gyrus, right posterior cingulate, left paracentral gyrus and left 

posterior cingulate (Figure 41 upper left, and bottom row). On a node level, conducting 2-sample T-tests on 

the consistency metric ζ revealed similar findings. In particular, the right paracentral gyrus exhibited the 

lowest node-level consistency (p = 0.0005 & for the T-test, passing Bonferroni correction at 0.05/68). 

Qualitative comparison between the two mean community structures reveals that the right and left paracentral 

gyri, while belonging to the same community in the healthy controls (Figure 41 upper left), are assigned to 

different communities in the bipolar group (Figure 41 upper right). Additionally the right isthmus cingulate, 

paracentral gyrus, posterior-cingulate and precuneus are assigned to one community while the same regions 

in the left hemisphere are assigned to another community (Figure 41 upper right).  

Applying the permutation test presented in the methods section 8.2.3.5 also supports the above 

finding. Here, the right paracentral gyrus exhibits the lowest p-value of 0.0068 (uncorrected) (Figure 42) 

which indicates that a change in the frequency vector for this node does exist in the bipolar group. For the 

bipolar group, post hoc analyses were conducted to correlate ζ values with duration of illness. Here, ROIs 

were informed by the community structure group differences, and thus included the bilateral paracentral 

gyrus, the bilateral precuneus, and the bilateral posterior and isthmus cingulate. Results revealed that ζ was 

negatively associated with the number of depressive episodes for the left isthmus cingulate           (r = -0.49, 

p = .017) and left precuneus (r = -0.45, p = .032).  
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Figure 41: Top: 4-level binary trees showing mean community structures via the proposed metric ΨPL. 
Notice that the right paracentral and left paracentral gyrus belong to the same community in the healthy but 
not in the bipolar group. Additionally, in the bipolar group the isthmus cingulate, the paracentral gyrus, the 
posterior cingulate and the precuneus are assigned to one single community in each hemisphere. Bottom: 
Hotelling's T-Squared statistics are overlaid on the 16 communities of the mean healthy control tree, showing 
the degree of regional group differences between groups. The most significant differences are for the 
community containing the bilateral paracentral gyri and posterior cingulate (this community is indicated by R 
paracentral, the only node passing Bonferroni correction in the corresponding 2-sample T-test). This figure is 
showing a left/right lateral view (top), an axial view (middle) and a left/right mid-line view (at the bottom). 
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Figure 42: (Left panel) The frequencies at which several brain regions (i.e., nodes; y-axis) belong to the 
same community as the right and left paracentral gyrus and the right medial orbitofrontal gyrus (all three 
regions passed the permutation test at 0.05 uncorrected). The frequency (x-axis) was calculated separately for 
each group (gray and black denote healthy and bipolar respectively, while the absolute difference is denoted 
in white). The brain regions are arranged according to the magnitude of the absolute difference such that the 
nodes on top exhibit a larger degree of group difference. (Right panel) Histogram of the resampled test 
statistics (Euclidean distances). This figure shows only nodes with p < 0.05 (uncorrected) in the proposed 
permutation test, and the observed statistics (without re-shuffling) are indicated using thick solid lines 
(p=0.0068 for the right paracentral gyrus, p = 0.0333 for the left paracentral gyrus, and p = 0.03 for the right 
medial orbitofrontal gyrus). 
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8.3.5 Community Structure Alterations in Depression Disorder 

Brain networks where constructed using the dataset in Appendix A made out of 47 healthy subjects 

and 42 subjects with major depression. Hierarchical trees were generated using only cortical regions (68 

nodes, 34 per hemisphere). We constructed the Hotelling T-squared for all 16 communities in the reference 

tree. Results showed a significantly lower consistency (p = 0.0079) in depression versus control for the 

community containing the right precuneus, superior parietal gyrus, inferior parietal gyrus, inferior temporal 

gyrus, and isthmus cingulate (Figure 43). On a node level, conducting 2-sample T-test on ζ confirmed such 

findings (Table VII). 

The right precuneus and superior parietal gyrus exhibited the lowest node-level consistency (p < 

0.01; uncorrected). Comparing the mean community structures between two groups, we note that the right 

precuenus and right superior parietal gyrus, while belonging to the same community in the healthy controls, 

are assigned to different communities in the depressed group. Additionally, in depression the bilateral 

precuneus are assigned to one community, suggesting a stronger structural integration between them. 

 

 

 

 

Table VII: List of nodes which showed significant lower consistency in depression relative to healthy 
controls at p < 0.01 (uncorrected). The table shows mean and standard deviation values using 2-sample T-test 
(for ζ), and their corresponding p values. 

 Healthy Depressed p-value 

right-precuneus 0.2645 ± 0.1501 0.1784 ± 0.0908 0.0019 

right-superiorparietal 0.2374 ± 0.1475 0.1524 ± 0.1106 0.0033 
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Figure 43: Top row: 4-level binary trees showing mean community structures via the proposed metric ΨPL. 
Notice that the right precuneus and right superior parietal gyrus belong to the same community in the healthy 
controls but not in the depressed group. Additionally, in the depressed group the right and left precuneus are 
assigned to one single community (which also comprises bilateral isthmus cingulate). Bottom row: 
Hotelling's T-Squared statistics are overlaid on the 16 communities of the reference tree, showing regional 
group differences in the community structure between groups. The most significant differences are in the 
right precuneus and superior parietal gyrus. This figure is showing a left/right lateral view (top), an axial 
view (middle) and a left/right mid-line view (at the bottom). The community containing the right precuneus 
and the right superior parietal gyrus is highlighted in red. 
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8.4  Discussion  

 The application of the new metrics on brain networks of subjects with bipolar disorder has revealed 

significant alteration in WM integrity in the corpus callosum. Further analysis has localized the alteration to 

be more significant in the anterior section of the corpus callosum (i.e., genu and anterior body). In all, these 

metrics can be applied given any sub-grouping of a network into a non-overlapping set of modules. The 

results are scientifically relevant and may potentially have significant clinical implications. 

 Moreover, PLACE was able to identify changes in the community structures between two groups of 

connectomes on both the nodal and the modular levels. The application of PLACE on the bipolar dataset 

have revealed that a relative left-right decoupling exists in the community structure of bipolar subjects (i.e., 

the right paracentral gyrus, right posterior cingulate, left paracentral gyrus and left posterior cingulate form 

one community in the healthy group, but they are left-right decoupled and separated in the bipolar 

group). Previous studies in bipolar disorder have consistently implicated deficits in inter-hemispheric 

communication via corpus callosum (Frazier et al. 2007; Bruno et al. 2008; Wang et al. 2008; Sussmann et al. 

2009; Mahon et al. 2010). Moreover, our decoupling finding is also in line with the results from the new 

graph metrics. In this previous study, although global deficits were found across all regions of the corpus 

callosum, we detected and reported more prominent deficits in the anterior section of corpus callosum, 

(similar findings have been reported, e.g. in (Walterfang et al. 2009)).  

Furthermore, the application of PLACE on the depression dataset has revealed local community 

differences in parts of the default mode network (the network of brain regions that are active when the 

individual is not focused on the outside world and the brain is at wakeful rest), in specific, the right 

precuneus which has been previously linked to self-awareness and shown to exhibit abnormalities in 

depression (Lou et al. 2004; Zhu et al. 2012). 
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8.5  Conclusion  

 In this chapter we have presented a new contribution to graph theory. A set of four new graph 

metrics was presented to measure the modular integration of networks. Furthermore, we presented ΨPL, a new 

quality function for the goodness of a graph partitioning into communities. The new function was used to 

extract community structure from graphs in the form of hierarchical binary trees. This was integrated within a 

new framework that can be used to detect nodal and modular alterations between two groups of graphs. The 

framework, named PLACE, was applied to brain networks extracted from two datasets, bipolar and 

depression. Results were consistent with previous clinical findings which strengthen the framework and open 

a new horizon in the analysis of connectomes. Moreover, a generalization of ΨPL was presented as well as 

preliminary results which show its usefulness in the extraction of community structure in graphs. 
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IX. CONCLUSIONS AND FUTURE RESEARCH 

In this thesis, we have studied the brain on three levels: micro, mid and macro. On the micro-level, 

we tried to describe the complexity of the human brain using two new models based on the theory of AD. 

The models tried to probe the porosity and tortuosity of the brain tissues by introducing new biometrics. 

Results have shown the directional dependence of the complexity metric, complexity was found higher in 

perpendicular directions to the white matter fibers. Further investigation is needed to test the applicability of 

the model on datasets from other scanners as well as to perform group studies on neuropsychological diseases 

and test for changes in the new biometrics. 

On the mid-level, we have first presented a new tractography algorithm, suggested a new model for 

the diffusion data in light of the anomalous diffusion theory, and finally described a complete framework to 

detect alterations in the community structure of brain networks on both the nodal and modular levels. The 

proposed tractography algorithm in chapter 7, based on the TDF model, has shown a great success in 

extracting various fiber bundles in the human brain due to its probabilistic nature. Furthermore, the newly 

defined, CSD, has been used to measure fiber incoherence and was helpful in proofing the dependence of 

FADTI on fiber incoherence especially in low spatial resolution data with large voxel size. For that, we 

recommend the adoption of HARDI-based analysis techniques in future clinical studies of white matter 

integrity in order to avoid the problems found in FADTI. Although the TDF is an effective model to solve the 

crossing fibers problem within voxels, it suffers a computational problem in which the analysis of a single 

subject might take a day or even two. Decreasing the computational cost of the TDF model would be on the 

top priorities of future research to allow the model the ease of use needed for group analysis. 

  On the macro-level, the PLACE framework provides a way to investigate changes that occur in the 

brain structure on the nodal and modular levels. The framework was applied to the brain networks extracted 

from two datasets, bipolar and depression. Results were consistent with previous clinical findings which 

strengthen the framework and open a new horizon in the analysis of connectomes. As a future step, 

measuring the distance between the space of healthy trees and the space of disease tree would be a prominent 
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way of finding differences in group analysis which will not be depend on the computation of the mean 

healthy tree from the mean healthy network. Moreover, a generalization of the ΨPL metric to non-binary 

bifurcation is required. Although the choice of binary hierarchical trees may allow us to study small modules 

which are not discovered by the classical modularity Q, however, real life networks may be non-hierarchical 

and may contain an odd number of modules. 
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Appendix A 

Depression Dataset: 

We scanned 47 healthy subjects (20 male/27 female; age: 59.7414.8)) and 42 subjects with major depression 

as defined by DSM-IV (18 male/24 female; age: 57.6413.4). A Philips 3.0 T Achieva scanner supplied with 

8-channel SENSE head-coil was used to acquire the brain MRI data. High resolution T1-weighted images 

were acquired with MPRAGE sequence (FOV=240 mm; TR/TE=8.4/3.9 ms; flip angle 8; voxel size 

1.1x1.1x1.1mm). Diffusion weighted (DW) images were acquired using SS-SE-EPI sequences (FOV = 240 

mm; resolution 0.83X0.83 mm; TR/TE=6994/71 ms; flip angle = 90, 32 gradient directions, b= 700 s/mm2 

and one minimally DW scan: b0 image). Parallel imaging was also used with a SENSE factor of 2.5 to 

reduce scan time to 4 min. 
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Appendix B 

Bipolar Dataset: 

We scanned 25 healthy subjects (13 male and 12 female; age: 42.2 ± 10.8) and 25 gender and age matched 

bipolar subjects (14 male and 11 female; age: 41.7 ± 12.6). All bipolar subjects received comprehensive 

psychiatric evaluations using the structured clinical interview for DSM disorders (SCID; 

http://www.scid4.org/) and met the DSM IV criteria for bipolar I disorder (at the time of image acquisition all 

subjects have been in an euthymic state for at least 30 days). A Siemens 3T Trio scanner was used to acquire 

the brain MRI data. High resolution T1-weighted images were acquired with MPRAGE sequence (FOV = 

250x250 mm; TR/TE = 1900/2.26 ms; flip angle = 9; voxel size = 1x1x1 mm). Diffusion weighted (DW) 

images were acquired using SS-SE-EPI sequences (FOV = 190x190 mm; resolution 2x2x2 mm3; TR/TE = 

8400/93 ms; 64 gradient directions, b = 1000 s/mm2 and one minimally DW scan: b0 image). At the time of 

the MRI scan, 7 participants were on valproic acid, 1 on carbamazepine, 3 on lamotrigine, 14 on 

antipsychotic medications, 8 on SSRI antidepressant medications, 5 on other antidepressant medications, and 

3 on benzodiazepines. None of the study participants was on lithium; two participants were not on any 

psychotropic medications either at SCID or the time of the MRI scan. 
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Appendix C 

Multi b-value Dataset1: 

Multiple b-value dMRI scans were acquired from a healthy subject. The Philips 3.0 T Achieva scanner 

located at the University of Illinois Medical Center Advanced Imaging Center was used to acquire the brain 

MRI data using an 8-channel SENSE head-coil. DW images were acquired using double spin-echo (SE) 

echo-planar imaging (EPI) sequences with TR/TE = 10900/80 ms, FOV = 24 x 24 cm2, resolution 0.83x0.83 

mm2, slice thickness = 2.2 mm. DW images were acquired at sixteen b-values – 0, 100, 200, 300, 400, 500, 

700, 800, 1000, 1200, 1500, 2000, 2400, 3000, 4000, 4700 s/mm2 – generated by varying the applied gradient 

amplitude while fixing the pulse width (δ) and pulse separation (Δ) at 21.7 msec and 43.5 msec respectively. 

In order to increase the SNR, we averaged three acquisitions for the last four b-values. At each b-value, the 

DW gradient was applied at six non-collinear directions. The whole acquisition took approximately 25 min.  

Multi b-value Dataset2: 

A healthy subject was scanned on a 3T Siemens “Allegra”. DW were acquired using double SE EPI 

sequences, TR/TE = 6400/107 ms, slice thickness = 3 mm, matrix 128 x 128, FOV = 23 x 23 cm2 and 7 b-

values in the range 100 to 5000 s/mm2. 
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Appendix D 

Fractional Calculus: 

 Fractional calculus is the field of mathematics which deals with integrals and derivatives of real 

numbers. In 1695, the French mathematician L’Hôptial wrote to Leibniz asking him about the nth derivative 

of a function f(x) = x when n = ½. Leibniz’s response was “an apparent paradox from which one day useful 

consequences will be drawn”. This is when fractional calculus was born. Although it dates 300 years back, it 

is not until the last five decades that fractional calculus have grabbed the attention of researchers. In fact, 

fractional calculus has been found useful in many applications such as electrical networks, diffusive 

transport, electromagnetic theory and probability. 

Unlike integer-order integrals and derivatives which are well established and have clear physical 

interpretations. However, since the introduction of this new field in mathematics, there was not any 

acceptable physical interpretation in the preceding two centuries. Perhaps the most intriguing property of 

fractional calculus is that fractional integrals and derivatives are not local operators (that act at a point) unlike 

their integer order counterpart. As we will see, those operators takes into consideration the past and future of 

the function under action, not just a small neighborhood as used to be in ordinary integer order operators. For 

that, many definitions have existed for those operators, each have its own use. In this short introduction, we 

are going to present the different definitions of fractional order integral and derivative operators. Before that, 

relevant functions are going to be presented which will be used later. Furthermore, a derivative example of 

some functions will be given for every definition. For more information on fractional calculus, we refer the 

reader to the monographs by Podlubny (Podlubny 1999), Herrman (Herrmann 2011) and Meerschaert and 

Sikorskii (Meerschaert Mark and Sikorskii 2011). In addition, an excellent summary of both theoretical 

models and experimental applications is available in the recent book by Klages et al. (Klages et al. 2008).  
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Appendix D (continued) 

Gamma Function: 

Gamma function is considered a generalization of the factorial operator for non-integer values to 

include all positive real numbers. It is defined as the integral: 

 
Γ(𝑧) =  � 𝑒−𝑡𝑡𝑧−1𝑑𝑡

∞

0
, 𝑧 ∈ +ℝ (1)  

Some properties: 

 𝑛! =  Γ(𝑛 + 1),𝑛 ∈ +ℤ (2)  
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 (5)  

Mittag-Leffler Function: 

 The Mittag-Leffler function is a complex function that takes two independent complex numbers, it is 

named after Gösta Mittag-Leffler. It is defined as: 

 𝐸𝛼,𝛽(𝑧) =  ∑ 𝑧𝑘

Γ(𝛼𝑘+𝛽)
∞
𝑘=0 ,𝛼,𝛽 > 0  (6)  

Some useful modes: 
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Appendix D (continued) 
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𝐸𝛼(𝑧) (9)  

Different Definitions: 

In this section we consider different definitions of fractional calculus. First, a relationship between 

the fractional integral and derivative can be identified in the form: 

 𝑑𝛼

𝑑𝑥𝛼
= 𝐷𝛼 = 𝐼−𝛼 ,𝛼 ∈ +ℝ (10)  

where the operator 𝐼denotes the fractional integration and 𝐷𝛼 denotes the fractional derivative. In words, we 

require that the fractional integration to be the inverse of a fractional derivative. One can also define the 

fractional derivative in the form: 

 
𝐷𝛼 = 𝐷𝑚𝐷𝛼−𝑚 =

𝑑𝑚

𝑑𝑥𝑚
(𝐼𝑚−𝛼),𝑚 ∈ ℕ (11)  

This indicates that one may interpret fractional derivative as a fractional integral followed by a classical 

derivative. An alternative definition could be found be inverting the sequence of operators: 

 
𝐷𝛼 = 𝐷𝛼−𝑚𝐷𝑚 = 𝐼𝑚−𝛼 �

𝑑𝑚

𝑑𝑥𝑚�
,𝑚 ∈ ℕ (12)  

Here, the fractional derivative is interpreted as a classical derivative followed by a fractional integral. 

The Fourier Transform:  

For a multivariate function f(x), where n∈x  , the Fourier transform ℱ{𝑓(𝒙)} is given by: 
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𝐹(𝒌) =  ℱ{𝑓(𝒙)} =

1
(2𝜋)𝑛/2 � 𝑓(𝒙)𝑒𝑖𝒌⋅𝒙𝑑𝒙

∞

−∞
 (13)  

And its inverse is given by: 

 
𝑓(𝒙) =  ℱ−1{𝐹(𝒌)} =

1
(2𝜋)𝑛/2 � 𝐹(𝒌)𝑒−𝑖𝒌⋅𝒙𝑑𝒌

∞

−∞
 (14)  

The Fractional Fourier Derivative:  

In early 19th century, Fourier has proposed a fractional derivative using his transform (Fourier 1822). 

For a univariate function, the derivative of a function is given by: 

 𝑑𝑛

𝑑𝑥𝑛
𝑓(𝑥) =

1
√2𝜋

� 𝐹(𝑘)(−𝑖𝑘)𝑛𝑒−𝑖𝑘𝑥𝑑𝑘
∞

−∞
 (15)  

Generalizing n to a real value, we get: 

 𝑑𝛼

𝑑𝑥𝛼
𝑓(𝑥) =

1
√2𝜋

� 𝐹(𝑘)(−𝑖𝑘)𝛼𝑒−𝑖𝑘𝑥𝑑𝑘
∞

−∞
 (16)  

A simple definition conditioned by the existence of F(k) and its fractional inverse of a given function. If the 

parameter alpha was chosen to be negative, one would get the definition of a fractional integral as defined in 

equation 10. 

Table VIII: Some functions and the corresponding Fourier derivative 

)(xf  
α

α

dx
xfd )(  

iaxe  
)sin(ax  
)cos(ax  

iaxeia α)(  
)sin( 2α

πα +axa  
)cos( 2α

πα +axa  
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Riemann-Liouville Fractional Integral: 

Starting from Cauchy’s formula of repeated integration which writes as follow: 

 
𝐼𝑎 𝑛 = � …� 𝑓(𝑥0)𝑑𝑥0 …𝑑𝑥𝑛−1

𝑥1

𝑎

𝑥𝑛

𝑎
=

1
(𝑛 − 1)!

� (𝑥 − 𝑡)𝑛−1𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 (17)  

where 𝐼𝑎 𝑛 is the chosen operator for multiple integration characterized by 𝑑
𝑑𝑥
� 𝐼𝑎 �𝑓(𝑥) = 𝑓(𝑥). Extending 

equation 15 to the fractional case, one would get: 

 
𝐼𝑎 +
𝛼 =

1
Γ(𝛼)�

(𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡
𝑥

𝑎

 (18)  

 
𝐼𝑎 −
𝛼 =

1
Γ(𝛼)�

(𝑡 − 𝑥)𝛼−1𝑓(𝑡)𝑑𝑡
𝑏

𝑥

 (19)  

Equation 17 is valid for x > a and it is commonly called left-handed while equation 18 is valid for x < b and it 

is commonly called right-handed. The lower and upper boundaries are determined by the constants a and b. 

As we have mentioned earlier that fractional operators are not local operators, we can see here that in 

equation 17, the left-handed integral depends on weighted values for t<x (left from x), while the right-handed 

integral in equation 18 depends on weighted values for t>x (right from x). Various definitions have emerged 

from the above equations depending on the values of a and b. 

Liouville Fractional Integral and Derivative: 

The Liouville fractional integral is defined by setting a = -∞, b = ∞: 

 
𝐼𝐿 +
𝛼𝑓(𝑥) =

1
Γ(𝛼) �(𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡

𝑥

−∞

 (20)  
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𝐼𝐿 −
𝛼𝑓(𝑥) =

1
Γ(𝛼)�

(𝑡 − 𝑥)𝛼−1𝑓(𝑡)𝑑𝑡
∞

𝑥

 (21)  

For the case when 0<α<1, one can define the Liouville derivative using equation 11 in the form: 

 
𝐷𝐿 +
𝛼𝑓(𝑥) =

𝑑
𝑑𝑥

𝐼𝐿 +
1−𝛼𝑓(𝑥) =

𝑑
𝑑𝑥

1
Γ(1 − 𝛼) �(𝑥 − 𝑡)−𝛼𝑓(𝑡)𝑑𝑡

𝑥

−∞

 (22)  

 
𝐷𝐿 −
𝛼𝑓(𝑥) =

𝑑
𝑑𝑥

𝐼𝐿 −
1−𝛼𝑓(𝑥) =

𝑑
𝑑𝑥

1
Γ(1 − 𝛼)�

(𝑡 − 𝑥)−𝛼𝑓(𝑡)𝑑𝑡
∞

𝑥

 (23)  

Table IX: Some functions and the corresponding Liouville derivative 

)(xf  )}({ xfDL
α
+  

iaxe  
)sin(ax  
)cos(ax  

iaxeia α)( , a≥0 
)sin( 2α

πα +axa  

)cos( 2α
πα +axa  

Riemann Fractional Integral and Derivative: 

The Riemann fractional integral is defined by setting a = b = 0: 

 
𝐼𝑅 +
𝛼𝑓(𝑥) =

1
Γ(𝛼)�

(𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡
𝑥

0

 (24)  

 
𝐼𝑅 −
𝛼𝑓(𝑥) =

1
Γ(𝛼)�

(𝑡 − 𝑥)𝛼−1𝑓(𝑡)𝑑𝑡
0

𝑥

 (25)  

For the case when 0<α<1, one can define the Riemann derivative using equation 11 in the form: 

 
𝐷𝑅 +
𝛼𝑓(𝑥) =

𝑑
𝑑𝑥

𝐼𝑅 +
1−𝛼𝑓(𝑥) =

𝑑
𝑑𝑥

1
Γ(1 − 𝛼)�

(𝑥 − 𝑡)−𝛼𝑓(𝑡)𝑑𝑡
𝑥

0

 (26)  
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𝐷𝑅 −
𝛼𝑓(𝑥) =

𝑑
𝑑𝑥

𝐼𝑅 −
1−𝛼𝑓(𝑥) =

𝑑
𝑑𝑥

1
Γ(1 − 𝛼)�

(𝑡 − 𝑥)−𝛼𝑓(𝑡)𝑑𝑡
0

𝑥

 (27)  

Table X: Some functions and the corresponding Riemann derivative 

)(xf  )}({ xfDR
α
+  

axe  
 
const 
 









−Γ

−Γ
−

)(
),(1)))(sgn(sgn(

α
αα axeaxx ax  

α

α
−

−Γ
xconst

)1(
 

Liouville-Caputo Fractional Derivative: 

Using equations 20 and 21 combined with the derivative definition in equation 12, we get: 

 
𝐷𝐿𝐶 +
𝛼𝑓(𝑥) = 𝐼𝐿 +

1−𝛼 𝑑
𝑑𝑥

𝑓(𝑥) =
1

Γ(1 − 𝛼) �(𝑥 − 𝑡)−𝛼
𝑑𝑓(𝑡)
𝑑𝑡

𝑑𝑡
𝑥

−∞

 (28)  

 
𝐷𝐿 −
𝛼𝑓(𝑥) = 𝐼𝐿 −

1−𝛼 𝑑
𝑑𝑥

𝑓(𝑥) =
1

Γ(1 − 𝛼)�
(𝑡 − 𝑥)−𝛼

𝑑𝑓(𝑡)
𝑑𝑡

𝑑𝑡
∞

𝑥

 (29)  

Table XI: Some functions and the corresponding Liouville-Caputo derivative 

)(xf  )}({ xfDLC
α
+  

iaxe  
)sin(ax  
)cos(ax  

constant 

iaxeia α)( , a≥0 
)sin( 2α

πα +axa  
)cos( 2α

πα +axa  
0 

Caputo Fractional Derivative: 

Using Riemann fractional integral in equations 24 and 25 combined with the derivative definition in equation 

12, we get: 
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𝐷𝐶 +
𝛼𝑓(𝑥) = 𝐼𝑅 +

1−𝛼 𝑑
𝑑𝑥

𝑓(𝑥) =
1

Γ(1 − 𝛼)�
(𝑥 − 𝑡)−𝛼

𝑑𝑓(𝑡)
𝑑𝑡

𝑑𝑡
𝑥

0

 (30)  

 
𝐷𝐶 −
𝛼𝑓(𝑥) = 𝐼𝑅 −

1−𝛼 𝑑
𝑑𝑥

𝑓(𝑥) =
1

Γ(1 − 𝛼)�
(𝑡 − 𝑥)−𝛼

𝑑𝑓(𝑡)
𝑑𝑡

𝑑𝑡
0

𝑥

 (31)  

Note that applying the Riemann fractional derivative on a constant would result in: 

 𝐷𝑅 +
𝛼  𝐶 =

𝐶
Γ(1 − α) 𝑥

−𝛼 (32)  

while for the Caputo fractional derivative one would obtain 0 similar to classical laws. 

Table XII: Some functions and the corresponding Caputo derivative 

)(xf  )}({ xfDC
α
+  

axe  
const 









−Γ

−Γ
−

)1(
),1(1)))(sgn(sgn(

α
αα axeaxx ax  

0 

Fractional Derivative of High Order: 

In the past sections, we have defined the fractional derivative for orders in 0<α<1, for an arbitrary 

value of alpha one could define it in the form: 

 
𝐷±
𝛼 = �

±𝐷𝑚 𝐼𝑎 ±
𝑚−𝛼𝑓(𝑥),   𝑚 − 1 < 𝛼 ≤ 𝑚,   𝑚 𝑜𝑑𝑑

𝐷𝑚 𝐼𝑎 ±
𝑚−𝛼𝑓(𝑥),   𝑚− 1 < 𝛼 ≤ 𝑚,   𝑚 𝑒𝑣𝑒𝑛

 (33)  

Riesz Fractional Integral and Derivative: 

Riesz fractional integral is a linear combination of left and right-handed Liouville fractional 

integrals: 
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IRZ
αf(x) =

IL +
α + IL −

α

2 cos �πα2 �
=

1

Γ(α) cos �πα2 �
� |x − t|α−1f(t)dt
∞

−∞

,   

α > 0,α ≠ 1,3,5, …  

(34)  

In order to write the Riesz fractional derivative, Liouville derivative need to be re-written in an alternative 

form. Using partial integration, one would get: 

 
𝐷𝐿 +
𝛼𝑓(𝑥) =

1
Γ(1 − 𝛼)�

𝑓(𝑥) − 𝑓(𝑥 − 𝑡)
𝑡𝛼+1

𝑑𝑡
∞

0

 (35)  

 
𝐷𝐿 −
𝛼𝑓(𝑥) =

1
Γ(1 − 𝛼)�

𝑓(𝑥) − 𝑓(𝑥 + 𝑡)
𝑡𝛼+1

𝑑𝑡
∞

0

 (36)  

Using equations 35 and 36, the Riesz fractional derivative writes: 

 
𝐷𝑅𝑍
𝛼𝑓(𝑥) =

𝐷𝐿 +
𝛼 + 𝐷𝐿 −

𝛼

2 cos�𝜋𝛼2 �
𝑓(𝑥)

= Γ(1 + 𝛼)
sin �𝜋𝛼2 �

𝜋
�
𝑓(𝑥 + 𝑡) − 2𝑓(𝑥) + 𝑓(𝑥 − 𝑡)

𝑡𝛼+1
𝑑𝑡, 0 < 𝛼 < 2

∞

0

 

(37)  

Table XIII: Some functions and the corresponding Caputo derivative 

)(xf  )}({ xfDRZ
α  

iaxe  
)sin(ax  
)cos(ax  

iaxea α||−  

)sin(|| axa α−  

)cos(|| axa α−  

Feller Fractional Integral and Derivative: 

Feller fractional integral is a combination of left and right-handed Liouville fractional integrals in the form: 
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𝐼𝐹 𝜃
𝛼 =

sin�(𝛼 − 𝜃)𝜋
2 �

sin(𝜋𝛼)  𝐼𝐿 +
𝛼 +

sin�(𝛼 + 𝜃)𝜋
2 �

sin(𝜋𝛼)  𝐼𝐿 −
𝛼 (38)  

The fractional Feller derivative is then given as: 

 

𝐷𝐹 𝜃
𝛼 = −

sin �(𝛼 − 𝜃)𝜋
2 �

sin(𝜋𝛼)  𝐷𝐿 +
𝛼 +

sin�(𝛼 + 𝜃)𝜋
2 �

sin(𝜋𝛼)  𝐷𝐿 −
𝛼 (39)  

The special case when Θ = 0 leads to the definition of Riesz derivative while for Θ = 1 leads to: 

 
𝐷𝐹 1
𝛼𝑓(𝑥) =

𝐷𝐿 +
𝛼 − 𝐷𝐿 −

𝛼

2 sin �𝜋𝛼2 �
𝑓(𝑥)

= Γ(1 + 𝛼)
cos �𝜋𝛼2 �

𝜋
�
𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)

𝑡𝛼+1
𝑑𝑡, 0 ≤ 𝛼 < 1

∞

0

 

(40)  

In general, the Feller derivative can be written in the form: 

 

𝐷𝐹 𝜃
𝛼 =

⎩
⎪⎪
⎨

⎪⎪
⎧ sin�

𝜋𝜃
2
� 𝐷𝐹 1

𝛼 + cos�
𝜋𝜃
2
� 𝐷𝑅𝑍

𝛼 0 < 𝛼 < 1

sin�
𝜋𝜃
2
�
𝑑
𝑑𝑥

𝐷𝐹 1
𝛼−1 + cos�

𝜋𝜃
2
� 𝐷𝑅𝑍

𝛼−1 1 ≤ 𝛼 < 2

sin �
𝜋𝜃
2
�
𝑑2

𝑑𝑥2
𝐷𝐹 1
𝛼−2 + cos �

𝜋𝜃
2
� 𝐷𝑅𝑍

𝛼−2 2 ≤ 𝛼 < 3

…

 (41)  

Table XIV: Some functions and the corresponding Caputo derivative 

)(xf  )}({1 xfDF
α
θ =  

iaxe  
)sin(ax  
)cos(ax  

iaxeaai α||)sgn(  

)cos(||)sgn( axaa α  

)sin(||)sgn( axaa α−  
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Appendix E 

List of Brain Regions Defined by FreeSurfer 

This list shows different brain regions as defined by the FreeSurfer software, the list is split into two columns 

which represent the left and right hemispheres, unique regions are not associated with an entry in the other 

column. The abbreviations ‘ctx’, ‘lh’, and ‘rh’ stand for cortex, left hemisphere and right hemisphere 

respectively. Highlighted regions are not gray matter and are not considered in the brain network generation. 

The index column represents the assigned indexes by the FreeSurfer software in the output label map file of 

the segmentation process. The list was adapted from: 

http://www.slicer.org/slicerWiki/index.php/Documentation/4.1/SlicerApplication/LookupTables/Freesurfer_l

abels 

Table XV: List of brain regions as defined by the FreeSurfer software.  

Index Region Index Region 
Subcortical regions, Ventricles and Brain Stem 

2 Left_Cerebral_White_Matter 41 Right_Cerebral_White_Matter 
4 Left_Lateral_Ventricle 43 Right_Lateral_Ventricle 
5 Left_Inf_Lat_Vent 44 Right_Inf_Lat_Vent 
7 Left_Cerebellum_White_Matter 46 Right_Cerebellum_White_Matter 
8 Left_Cerebellum_Cortex 47 Right_Cerebellum_Cortex 
10 Left_Thalamus_Proper 49 Right_Thalamus_Proper 
11 Left_Caudate 50 Right_Caudate 
12 Left_Putamen 51 Right_Putamen 
13 Left_Pallidum 52 Right_Pallidum 
14 Third_Ventricle 

  15 Fourth_Ventricle 
  16 Brain_Stem 
  17 Left_Hippocampus 53 Right_Hippocampus 

18 Left_Amygdala 54 Right_Amygdala 
24 CSF 

  26 Left_Accumbens_area 58 Right_Accumbens_area 
28 Left_VentralDC 60 Right_VentralDC 
30 Left-vessel 62 Right-vessel 
31 Left-choroid-plexus 63 Right-choroid-plexus 
72 Fifth_Ventricle 

  

http://www.slicer.org/slicerWiki/index.php/Documentation/4.1/SlicerApplication/LookupTables/Freesurfer_labels
http://www.slicer.org/slicerWiki/index.php/Documentation/4.1/SlicerApplication/LookupTables/Freesurfer_labels
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Cortical Regions 
1001 ctx-lh-bankssts 2001 ctx-rh-bankssts 
1002 ctx-lh-caudalanteriorcingulate 2002 ctx-rh-caudalanteriorcingulate 
1003 ctx-lh-caudalmiddlefrontal 2003 ctx-rh-caudalmiddlefrontal 
1004 ctx-lh-corpuscallosum 2004 ctx-rh-corpuscallosum 
1005 ctx-lh-cuneus 2005 ctx-rh-cuneus 
1006 ctx-lh-entorhinal 2006 ctx-rh-entorhinal 
1007 ctx-lh-fusiform 2007 ctx-rh-fusiform 
1008 ctx-lh-inferiorparietal 2008 ctx-rh-inferiorparietal 
1009 ctx-lh-inferiortemporal 2009 ctx-rh-inferiortemporal 
1010 ctx-lh-isthmuscingulate 2010 ctx-rh-isthmuscingulate 
1011 ctx-lh-lateraloccipital 2011 ctx-rh-lateraloccipital 
1012 ctx-lh-lateralorbitofrontal 2012 ctx-rh-lateralorbitofrontal 
1013 ctx-lh-lingual 2013 ctx-rh-lingual 
1014 ctx-lh-medialorbitofrontal 2014 ctx-rh-medialorbitofrontal 
1015 ctx-lh-middletemporal 2015 ctx-rh-middletemporal 
1016 ctx-lh-parahippocampal 2016 ctx-rh-parahippocampal 
1017 ctx-lh-paracentral 2017 ctx-rh-paracentral 
1018 ctx-lh-parsopercularis 2018 ctx-rh-parsopercularis 
1019 ctx-lh-parsorbitalis 2019 ctx-rh-parsorbitalis 
1020 ctx-lh-parstriangularis 2020 ctx-rh-parstriangularis 
1021 ctx-lh-pericalcarine 2021 ctx-rh-pericalcarine 
1022 ctx-lh-postcentral 2022 ctx-rh-postcentral 
1023 ctx-lh-posteriorcingulate 2023 ctx-rh-posteriorcingulate 
1024 ctx-lh-precentral 2024 ctx-rh-precentral 
1025 ctx-lh-precuneus 2025 ctx-rh-precuneus 
1026 ctx-lh-rostralanteriorcingulate 2026 ctx-rh-rostralanteriorcingulate 
1027 ctx-lh-rostralmiddlefrontal 2027 ctx-rh-rostralmiddlefrontal 
1028 ctx-lh-superiorfrontal 2028 ctx-rh-superiorfrontal 
1029 ctx-lh-superiorparietal 2029 ctx-rh-superiorparietal 
1030 ctx-lh-superiortemporal 2030 ctx-rh-superiortemporal 
1031 ctx-lh-supramarginal 2031 ctx-rh-supramarginal 
1032 ctx-lh-frontalpole 2032 ctx-rh-frontalpole 
1033 ctx-lh-temporalpole 2033 ctx-rh-temporalpole 
1034 ctx-lh-transversetemporal 2034 ctx-rh-transversetemporal 
1035 ctx-lh-insula 2035 ctx-rh-insula 
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