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SUMMARY

Recent neuroscience research indicates that cognitive operations are performed not

by individual brain regions working in isolation, but by networks that consist of several

discrete brain regions. These discrete brain regions act in synchrony and share functional

connectivity. The study of brain networks contains both non-spatial data dynamic func-

tional connections within the brain and spatial data 2D/3D medical scans of the brain.

To further understand the relationships between dynamic functional connectivities and

physical structures of the brain, researchers analyze dynamic brain networks over multi-

ple experiments or with different models. Similarly, bioinformatics research also contains

problems about dynamic biological networks that require the integration of spatial and

nonspatial data and multi-run comparison. Due to the complexity of biological data that

can be collected, modeled and analyzed thanks to technological and algorithmic advance-

ments, the difficulty in studying biological networks has increased over the last decades.

Visualization provides an efficient way to help biologists understand, communicate, and

gain insight into their biological data through visual exploration and analysis.

In this dissertation, I propose a set of visual approaches for the analysis of ensemble

dynamic biological networks. This set of approaches took shape through the development

of multiple prototype visual analytics tools which were aimed to solve complex problems

in multiple biological subdomains. The steering of the approach was supported through

an in-depth understanding of both the encompassing biological domains and problem
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space, as well through a survey of existing visual approaches helping to generalize the

paradigms used when confronting these problems and the complexity of their data.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the United States, an estimated 5.5 million adults of all ages have Alzheimer’s disease

(AD) (1). Unfortunately, there is no single test to diagnose Alzheimer’s disease easily,

and little is known about why AD happens. To better understand the causes and

effects of AD, researchers work from what is currently understood about the functionality

of the brain. Recent neuroscience research (2) indicates that cognitive operations are

performed not by individual brain regions working in isolation, but by networks that

consist of several discrete brain regions. These discrete brain regions act in synchrony and

share functional connectivity. Furthermore, research shows evidence that Alzheimer’s

disease does not spread from one region to an adjacent one, but rather to a functionally

connected brain region (3). Better understanding functional connectivities within the

brain can, in turn, allow researchers to better diagnose and understand the progression

of Alzheimer’s disease and other similar neurological diseases.

The analysis of brain networks is difficult due to the nature of the data and tasks

involved. For example, this analysis requires the integration of functional connections

and brain structures and the comparison of multiple subjects. The functional connec-

tivities between brain regions can change rapidly over time (4; 5), which gives brain

networks a highly dynamic characteristic. The study of brain networks contains both

1
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spatial data — 2D/3D medical scans of the brain — and non-spatial data — dynamic

functional connections within the brain. In broader terms, “spatial data” denotes the

datasets which specify the position or shape of items — the field and geometry dataset

types (6), while “non-spatial data” denotes abstract data in which no spatial position

is provided — the table, tree and network dataset types (6). To further understand the

relationships between dynamic functional connectivities and physical structures of the

brain, researchers examine multiple patients to find similarities and differences in behav-

ior. A recent study (7) shows differential functional connectivity and structural changes

in the brains of AD patients with and without cerebrovascular disease. The comparison

of AD patients with different conditions reveals the importance of comparing multiple

subjects and motivates the modeling of dynamic biological networks over multiple exper-

iments/simulations or with different models. As a result, effective methods that provide

both quantitative and qualitative analysis to compare those datasets are necessary, to

benefit the exploration of these similarities and differences.

Similarly, bioinformatics research also contains problems about dynamic biological

networks that require the integration of spatial and nonspatial data and multi-run com-

parison. Using the knowledge of molecular structures, we can better understand the

temporal and spatial aspects of protein interaction networks. Multiple simulations of

stochastic gene networks produce ensemble time-evolving probability landscapes of such

networks, which can further biologists’ understanding of phenotypic behavior associated

with specific genes.
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Due to the complexity of biological data that can be collected, modeled and ana-

lyzed thanks to technological and algorithmic advancements, the difficulty in studying

biological networks has increased over the last decades. These biological data may also

contain answers to questions that we do not yet know how to ask. This wealth of data,

features, models, and potential hypotheses and experiments exceeds the analytical capa-

bilities of machines. Visualization provides an efficient way to help biologists understand,

communicate, and gain insight into their biological data through visual exploration and

analysis.

1.2 Visual Computing Challenges

Although a number of visualization tools for biological networks have been developed

during the last decades, the theory and design principles behind their development are

not clear — in particular with respect to the challenges of visualizing multi-run dy-

namic biological networks. For example, the challenge of spatial and non-spatial visual

integration is common across domains, from geospatial applications to bioinformatics to

neuroscience applications (8). In the visualization field, spatial data intrinsically specify

the location of each item in 2D or 3D space — for example a medical scan of a human

body, while nonspatial data specify abstract information without spatial positions pro-

vided — for example tables and networks. However, in contrast to geospatial analysis,

where the spatial features (maps) are familiar to users and overlays make sense, bioin-

formatics and neuroscience users may lack the domain knowledge to understand spatial

data — a computational geneticist may not be familiar with molecular structures. Un-

fortunately, no taxonomy of visual integration of spatial and nonspatial data in biology
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exists, to guide researchers with respect to the visualization top-design for particular

problems.

Another challenge of visualizing complex biological networks is creating effective

combinations of visual representations for multi-scale exploration. As biological data

become larger and more complex, the data may be decomposed into a hierarchical data

structure which requires multi-scale visualization approaches to support domain experts

in the exploration of such large biological data at several levels of abstraction. For ex-

ample, neuroscientists may explore brain networks at three levels: a high level to get the

overall network structure, a middle level to invest particular subregions or communities

of the network, and a low level to inspect individual nodes or elements. The features

that are interesting to domain experts may vary at different levels. Thus, the visual

representations need to display the level of detail appropriate to a particular scale (9).

In order to explore detailed levels while still keeping their contexts in overviews, many

multi-scale approaches need the efficient use of the screen space, especially when the

biological problem features both spatial and non-spatial characteristics.

Supporting comparison across multiple models, datasets, and experiments/simulations

is another open problem. Gleicher et al. (10) propose a survey from information vi-

sualization domains that presents three visualization solutions for visual comparisons:

juxtaposition (side-by-side views or small multiples), superposition (overlays), and ex-

plicit encodings for visualizing the relationships between objects directly. Based on this

survey, Gleicher (11) also proposes an abstract framework to aid designers by provid-

ing the understandings of the comparison problems and strategies to support visual
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comparison. According to this framework, comparing multiple objects (multi-run com-

parison) is more difficult than comparing two objects (pairwise comparison), because

neither juxtaposition nor superposition solutions naturally scale to a large number of

items (11). A juxtaposition layout separates those items and occupies more space, and

thus may be a poor option for biological problems that also contain spatial features in

which the spatialization is a crucial component. Overlaying and explicit encodings also

increase visual complexity with many objects. Thus, the strategies need to be chosen

carefully according to the specific domain problems. The Gleicher framework (11) pro-

poses a Summarize Somehow strategy that builds abstractions of the massive dataset

by measuring and quantifying differences through computational and statistical analysis.

Taking multi-scale visual exploration into account, the comparison can also be applied at

multiple levels of abstraction. Providing detail for multi-scale comparison while preserv-

ing the context of these complex datasets is even more challenging. Thus, the selection

of visual strategies for comparison may vary with different scales.

Overall, an even more challenging visual computing problem is raised when combin-

ing all of three visual challenges discussed above (Figure 1), because spatial-nonspatial

visual integration, multi-scale and comparative visual representations all involve arrang-

ing visual elements in space and thus require more effective visual designs. Novel visual

representations and a good visual strategy to combine solutions for each challenge need

to be developed for dynamic biological networks that require spatial-nonspatial visual

integration, multi-scale visual exploration, and multi-run visual comparison.
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Figure 1. The combination of three challenges belonging to biological networks analysis
forms a challenging visual computing problem.

1.3 Contributions Overview

This dissertation makes the following contributions: 1) a survey of spatial-nonspatial in-

tegration in biology, 2) a description of the domain data and tasks in dynamic biological

networks analyses, 3) several novel visual representations, 4) a visual approach to com-

pare multiple dynamic biological networks at multiple scales, and 5) five visualization

applications developed for two biological networks. The principles extracted from this
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visual approach can also be applied to other domains, i.e., dynamic multi-run networks

with spatial features, especially when those networks can be grouped into a hierarchical

structure.

The first contribution of this work, a survey of visual integration of spatial-nonspatial

data in biological domain presented in the next chapter, reflects the state of the art and

provides a basis to better design visual analysis tools for dynamic biological networks.

The second contribution of this work, a description of domain problems, provides a

detailed explanation of the challenges in visualizing dynamic biological networks includ-

ing spatial-nonspatial visual integration, multi-scale and comparative visual representa-

tions. This analysis may benefit researchers who are interested in or currently working

on similar problems.

The third contribution of this work, a set of innovative visual designs, enables the

visual integration of spatial-nonspatial of dynamic biological networks. Since spatial-

nonspatial visual integration is an open research topic and the state of the art does

not provide sufficient solutions to the visual analysis of biological networks, new visual

designs are necessary. Additionally, those visual designs of spatial-nonspatial integration

combined with multi-scale and comparative visual approaches support visual exploration

and comparison at multiple scales.

The fourth contribution of this work, a visual approach, supports the visual explo-

ration and comparison at multiple scales. The multi-scale comparative visual approach

offers the ability to compare multiple objects at an abstract level through their summa-

rized statistical characteristics and provide detailed pairwise comparisons based on the
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user’s demand. This visual approach applies to domain problems that contain multiple

datasets, including but not limited to dynamic biological networks.

The last contribution of this work, five visualization applications performed in col-

laboration with domain experts, support two dynamic biological network problems that

contain the combination of the challenges of spatial-nonspatial visual integration, multi-

scale visual exploration, and multi-run visual comparison. These applications were de-

veloped to solve complex domain-specific problems in biology.

1.4 Thesis Organization

This dissertation starts with the motivation of visualizing dynamic biological networks

along with the three visual computing challenges, followed by a summary of contribu-

tions. In order to better design visual analysis tools for dynamic biological networks,

we conduct a survey in Chapter 2 to better understand the state of the art in visual

integration of spatial-nonspatial biological data. Through the survey, we have not found

dynamic biological networks that contain all three visual computing challenges. How-

ever, we find that such problems do exist during our collaboration with neuroscientists

and biologists.

The following three chapters present five visualization applications consisting of three

main tools and two extensions to support two biological network analyses that require

the spatial-nonspatial visual integration, multi-scale visual exploration and multi-run

visual comparison. Chapter 3 introduces PRODIGEN (12) and its extension — Ensem-

bleProb (13) to visualize the ensemble time-evolving probability landscapes of stochas-

tic gene regulatory networks. This work was developed with Timothy Luciani, Andrew
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Burks and G. Elisabeta Marai from Electronic Visualization Laboratory (EVL) at Uni-

versity of Illinois at Chicago (UIC), in collaboration with Anna Terebus and Jie Liang

from Bioengineering at UIC.

In addition to stochastic networks in bioinformatics, problems in neuroscience also

have the three visualization challenges discussed above. Chapter 4 presents Sword-

Plots (14) to explore neuron behavior within dynamic communities of brain networks.

This work was designed with Angus Forbes from University of California, Santa Cruz

and Robert Kenyon from EVL at UIC, in collaboration with Daniel Llano from Neuro-

science at University of Illinois at Urbana-Champaign (UIUC) and Tanya Berger-Wolf

from Computer Science at UIC. This work integrates the dynamic behaviors of neurons

within their spatial locations in the brain slice using the linked views paradigm. How-

ever, the SwordPlots is developed for the visual exploration of a single dynamic brain

activity networks, which is not sufficient for comparing multiple networks as our domain

experts run multiple experiments with different subjects.

As a follow-up of SwordPlots, chapter 5 discusses RemBrain (15) that enables the

visual exploration and pairwise comparison of dynamic brain networks at multiple scales.

This work was implemented with Filippo Pellolio from Here Inc, Robert Kenyon, and

G. Elisabeta Marai from EVL at UIC. RemBrain 2.0, as the extension of RemBrain, is

introduced in Chapter 6 with a focus on visual comparison of multiple dynamic brain

networks. This work was implemented with Andrew Burks, Robert Kenyon, and G.

Elisabeta Marai from EVL at UIC. Both RemBrain and its extension were developed in

collaboration with Daniel Llano from UIUC and Tanya Berger-Wolf from UIC.
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Chapter 7 concludes the dissertation and discusses the limitations and assumptions

behind this work and future work.



CHAPTER 2

A SURVEY OF VISUAL INTEGRATION OF SPATIAL AND

NONSPATIAL DATA IN BIOLOGY

This chapter introduces a brief survey of a set of spatial-nonspatial integration papers

in biology visualization literature. We selected 70 relevant papers, mainly published

in the proceedings of the visualization conferences and their associated journals. The

main conferences and journals are The EG/VGTC Conference on Visualization (Euro-

Vis) and Computer Graphics Forum; The IEEE VIS Conference, IEEE Transactions of

Visualization and Computer Graphics; and The International Symposium on Biological

Data Visualization (BioVis), BMC Bioinformatics, BMC Proceedings, and the Journal

of Bioinformatics. These papers span the subdomains of bioinformatics/biochemistry,

biomechanics, biomedical, medical image analysis, neuroscience, and epidemiology. In

order to maintain focus and avoid an overly ambitious survey, we restrict this chapter to

a survey of neuroscience and bioinformatics works which integrate spatial and nonspatial

features. This subset contains 16 papers and was selected based on the domain problems

in our collaborations with domain experts.

2.1 Neuroscience

In neuroscience, the study of relationships between the function of the nervous system

and its structures has become a promising research area. The datasets in this research

11
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area often take the form of volumes combined with tables and/or networks. Linked views

or a hybrid paradigm are commonly used to integrate these multiple types of datasets.

Early neuroscience studies dealt with data of macroscopic scale which had a time

dimension, such as EEG and fMRI. Ten Caat et al. (16) develop an overlay solution to

visualizing high-density EEG coherence. A functional unit map displays a color-mapped

spatially connected set of electrodes, which is overlaid with the functional connections

between functional units drawn as lines. The main task is to present known electrophys-

iological findings. Domain experts were not involved in the visual design or evaluations.

Janoos et al. (17) also propose a hybrid visualization of fMRI data, aimed at exploring

temporal relationships in brain function. The visualization includes the main view show-

ing 3D and 2D orthographic views of the structural volume, overlaid with the clusters,

and a linked cluster time-series display. In the reported case studies the users seek to

identify the effect of certain factors on brain function and to discover the correct param-

eters for the analysis through comparison. Nowke et al. (18) present a system for the

exploration of neural activity data, which supports inspecting connectivity of brain re-

gions and populations. The application uses a hybrid (overlay and linked-view) approach

to integrate a control-view which overlays area-activity data on the three-dimensional

brain geometry, a population view, a connectivity view, and a flux view in order to

visualize dynamic activity exchange between brain areas. The visual encodings include

node-link diagrams, bar charts, small multiples, matrices, and animation, and the tasks

include discover, annotate, explore, and query. The system was positively evaluated by

domain experts, via feedback as well as through case studies.
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Spatial-nonspatial integration using more sophisticated visual encodings was further

prompted by the advent of connectomics – the study of the connections within an or-

ganism’s nervous system, typically its brain. Chen et al. (19) introduce a linked views

approach for Diffusion Tensor Imaging (DTI) tract clustering. The views link 3D geom-

etry representations of the fibers with scatter plot embeddings to a lower dimensional

space and histograms. The users are two neuropsychologists and one cardiologist, who

participate in the system evaluation; mainly task success is reported. The tasks are of

the Explore, Compare and Summarize type. Jianu et al. (20) pursue a similar linked

views approach for DTI tract clustering. The views link 3D geometry representations of

the fibers with scatter plots in a lower dimensional space and dendrograms (tree repre-

sentations of hierarchical clusterings). The authors are the users, and no expert feedback

is reported. The tasks are of the Locate, Explore, Compare and Summarize type.

Advances in measuring and computing devices enable neuroscientists and epidemi-

ologists nowadays to collect imaging data at the microscopic scale with higher spatial

resolution. Beyer et al. (21) present a linked-views application called ConnectomeEx-

plorer for the query-guided visual analysis and interactive exploration of large volumetric

electron microscopy (EM) data. The visualization comprises a 3D volume view for EM,

a topological 2D graph view for neuronal connectivity, a slice view for manual segmen-

tation, and other statistics views for attributes and information in detail using scatter

plots, histograms, and tables. The case studies discuss several tasks consisting of lo-

cating, identifying and comparing synapses, and in general discovering new patterns.

Domain experts provide positive feedback. Al-Awami et al. expanded the Connec-
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tomeExplorer work into a visual analysis of neurons and their connections with two

visualization systems: NeuroLines (22) and NeuroBlocks (23). NeuroLines (22) links a

subway map-inspired 2D representation for connections with 2D and 3D volume views of

the original and segmented EM data. The main tasks are to explore and identify connec-

tivity, patterns, and trends. Other minor tasks in the two case studies are to discover,

browse, compare, and summarize. NeuroBlocks (23) focuses on tracking and managing

large volumetric segmentation data, in the context of multiple users with similar exper-

tise. The system comprises multiple linked views consisting of a scalable “pixel-based”

visualization of the current segmentation state, an area chart for the timeline, 2D and

3D views of volume rendering, and other views for details-on-demand, such as a node-

link diagram. The main task is the exploration of neuronal connectivity, the evolution

of segmentation, and overall status. The entire query tasks are also included. Two case

studies were used for demonstrating the utility of NeuroBlocks. We notice an increase

in the complexity of tasks/visual encodings with the scale of neural data.

2.2 Bioinformatics

Similar to neuroscience research, bioinformatics is a fertile ground for spatial-nonspatial

visual integration. In the study of gene expressions, researchers explore gene expres-

sion over time in conjunction with the spatial location of the cells where the genes are

expressed; they also compare gene expression data across multiple related species. To

compare spatial gene expression patterns, Rubel et al. (24) introduce PointCloudXplore,

which analyzes 3D gene expression patterns in early Drosophila embryos. The visualiza-

tion links parallel coordinates (which encode features of gene expression) and a spatial,
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physical view showing the relationships among expression patterns. Colormaps overlaid

on the physical views represent the gene expression values. No domain experts were

involved in the visual design or provided feedback. Meyer et al. (25) introduce Mul-

teeSum, a hybrid, nesting and linked views paradigm example. Their solution includes

an Embryo Map to show the cells’ spatial information (summary values are encoded by

color) and a Curvemap of a small-multiple of filled line charts. Three case studies were

successfully conducted with domain experts to demonstrate the efficacy of MulteeSum.

In structural biology, researchers correlate genetic mutations with the impaired func-

tion of a protein with known 3D structure. In 2013, BioVis organized a data contest

focusing on identifying protein mutations in order to discover their effect on protein

function. Among many contest submissions, Mercer et al. (26), Doncheva et al. (27),

and Luciani et al. (28) received awards for proposing viable solutions which were en-

dorsed by the domain experts who had posed the problem. Mercer et al. (26) introduce

Mu-8 which uses multiple linked views, including score histograms, proximity chords,

context sequence, conservation heat map, and 3D structure view. Doncheva et al. (27)

also present a visual analysis tool which integrates a 3D protein structure view with

network representations and a sequence visualization. Finally, Luciani et al. (28) in-

troduce FixingTIM, which consists of a 3D view of protein structures, a sequence view

expression, and a trend image panel for aggregating protein families. All these three

solutions support the tasks of identification and comparison, and all use a case study

with data from the 2013 BioVis contest to demonstrate their value. In addition to the
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case study, Luciani et al. also collected feedback from domain experts; their solution

has been adopted as a teaching tool.

Motivated by a similar problem, Lenz et al. (29) present a linked views visual system

which includes a global overview using heatmaps and a view of the locations of found

patterns in both mutation graphs (node-link diagrams) and 3D protein structures. User

tasks include: explore and identify frequent patterns in mutation graphs, and locate and

compare the found patterns. Biologists used the tool to analyze real-world data. To

analyze and explore protein structures, sequences, and features, Stolte et al. present

Aquaria (30) which also uses multiple linked views. Their approach is a combination

of a 3D structure panel and a sequence-based visualization of matching structures and

features. The domain experts (biologists) were involved in the design and conducted

two case studies.

In summary, we notice from the survey that linked views is still the most commonly

used paradigm for integrating spatial and non-spatial data in in the field of biology.

The hybrid approach, which combines two or more paradigms, has been widely used

as well. The use of overlays alone for spatial-nonspatial integration increases the visual

complexity, and thus may not be an optimal solution. Additionally, some works in

the survey use a newer approach—nesting paradigms, in which spatial representations

are embedded within non-spatial representations (non-spatial nesting), and vice-versa

(spatial nesting).
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In addition to the challenge of integrating spatial and non-spatial features in biolog-

ical problems, some problems in this survey also face the challenge of multi-scale visual

exploration, e.g., NeuroBlocks (23). Some problems require comparative visualization

as well, e.g., MulteeSum (25). Although MizBee (31) is not included in the survey since

the problem does not contain spatial features, MizBee is a multi-scale comparative visu-

alization. Through this survey, we have found visual approaches that combine any two

challenges that discussed in the Introduction Chapter, but not all three of them. The

biological problems introduced in the following chapters demonstrate that the problems

facing all three challenges do exist, but there are few visual approaches to solve those

problems that combine all of them in the field of visualizing biological networks. In

the next three chapters, we will introduce two types of biological networks — one in

bioinformatics and one in neuroscience, present five visualization applications for these

two networks along with several novel visual designs, and propose an visual approach to

explore and compare those networks at multiple scales.



CHAPTER 3

PRODIGEN: VISUALIZING THE PROBABILITY LANDSCAPE

OF STOCHASTIC GENE REGULATORY NETWORKS IN STATE

AND TIME SPACE

(PREVIOUSLY PUBLISHED AS CHIHUA MA, TIMOTHY

LUCIANI, ANNA TEREBUS, JIE LIANG, AND G. ELISABETA

MARAI. PRODIGEN: VISUALIZING THE PROBABILITY

LANDSCAPE OF STOCHASTIC GENE REGULATORY

NETWORKS IN STATE AND TIME SPACE. (2017) BMC

BIOINFORMATICS, 18(2): 24 AND CHIHUA MA, ANDREW

BURKS, TIMOTHY LUCIANI, ANNA TEREBUS, JIE LIANG,

AND G. ELISABETA MARAI. VISUALIZING ENSEMBLE

TIME-EVOLVING PROBABILITY LANDSCAPES OF

STOCHASTIC NETWORKS. ISMB/ECCB 2017 (POSTER))

The first type of biological networks we will discuss are stochastic gene regulatory net-

works in bioinformatics. During our collaboration with biologists, the importance and

difficulty in understanding stochastic gene regulatory networks became apparent. En-

abling the analysis of these ensemble probability distributions in both time and space

can help scientists better understand the dynamics and stochasticity of gene regulatory

processes in nature.

18
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Unlike protein-protein interaction networks, which feature spatial and non-spatial

information based in the domain datasets, the research of stochastic gene regulatory

networks features spatial and non-spatial information based on domain specific tasks.

Biologists study the stochasticity of gene regulatory networks described by probability

distributions in space which is defined as a landscape with “hills and valleys” by biol-

ogists. They describe the probability distributions in terms of this spatial information

much in the same way that a geospatial analyst describes their data in terms of latitude,

longitude, height or depth. To further understand the dynamics and stochastics of gene

networks, biologists run multiple simulations with stochastic parameters; this approach

needs effective visual designs to support ensemble comparison and analysis.

In this chapter, we introduce the domain problem of gene regulatory networks and

stochastic network modeling, followed by task analysis. There is a lot of research in

stochastic networks in biology, however, we did not find any related problems in our sur-

vey of the integration of spatial and non-spatial biological data. Studying the dynamics

and stochasticity of such networks is an open research topic, and little work in the state

of the art provides suggestions for visually analyzing such a stochastic network. Thus,

we propose a novel visual analysis approach and evaluate it through two case studies

and domain expert feedback.

3.1 Introduction

Gene regulatory networks encode those interactions among genes and proteins that reg-

ulate cellular processes, such as the expression of messenger RNA (mRNA). These in-

teractions dictate the expression levels of genes as well as the production of particular
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proteins, and thus play a critical role in regulating biological functions, from metabolism

to cell differentiation. Such networks typically involve small copy numbers of the molec-

ular species and large differences in the species reaction rates. Because of these factors,

the network interactions have a stochastic nature (32; 33; 34), i.e. they are unpredictable

through the influence of a random variable. Modeling the stochasticity of genetic cir-

cuits is an important field of research in systems biology, and can help elucidate the

mechanisms of cell behavior, which in turn can be the basis of diseases. These models

can further enable predictions of important phenotypic cellular states.

The computational study of stochastic properties in gene networks is, however, a

challenging task. Ordinary and stochastic differential equations methods may be inad-

equate in computing accurately the dynamic and steady state probabilistic behavior of

gene networks (35), while the Gillespie stochastic simulation algorithm (36) is exact, but

can fail in capturing rare events (37; 38; 39). However, the formulation of the discrete

Chemical Master Equation (CME) can be used to analyze the dynamics and stochastic

nature of gene regulatory networks with low copy number of species. The CME frame-

work can allow, for example, for the dynamics and stochasticity of a network with small

copy numbers of molecular species to be fully described by probability distributions in

both the state space and time space.

However, the analysis of these probability distributions is difficult due to their spa-

tiotemporal and multidimensional nature, and due to the typically large number of

simulations run under varying settings. Moreover, stochastic network researchers often

emphasize that what is of biological significance is often not of statistical significance —
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numerical analyses often miss small or rare events of particular biological relevance. A

visual approach can help, in contrast, in mining the network dynamics through the land-

scape defined by these probability distributions. For example, visualizing the number,

location, and behavior of probability peaks could indicate the number of stable states for

a given network and set of model parameters. We note that the state of the art reports

in stochastic network modeling only employ visualization post facto. Our collaborators

indicate that once the researchers know what they are looking for, they typically use a

plotting software like R or Matlab to generate explanatory projection images and ani-

mations of the peaks. However, no visual tools exist to support the exploratory analysis

of simulated data.

In this chapter, we introduce a web-based visual analysis tool for the exploration of

time-varying probability landscapes over the state space in stochastic networks. PRODI-

GEN (PRObability DIstribution of GEne Networks) supports the exploration of prob-

ability distributions in both state and time space. PRODIGEN captures probability

distributions with projections at multiple levels, such as spaghetti plots for one dimen-

sional projection and enhanced heatmaps for two dimensional projection. The main

contributions of this work are as follows:

• We provide a description of the domain data and tasks in stochastic biological

network modeling and analysis.

• We propose several visual encodings to represent the probability landscape in mul-

tiple dimensions, including one dimension, two dimensions, and three dimensions.
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• We implement an interactive web-based visual explorer, PRODIGEN, that com-

bines these visual encodings to enable the exploration of probability distributions

across both state and time.

• We evaluate the visualization system through case studies and report a summary

of the feedback provided by domain experts.

3.2 Related Work

3.2.1 Stochastic network modeling

The discrete chemical master equation (dCME) provides a fundamental framework for

studying stochasticity in molecular-level networks. Because of the multi-scale nature

of many networks, directly solving dCMEs is intractable due to the exploding size of

the state space. To address this limitation, the ACME (Accurate Chemical Master

Equation) algorithm (40; 41) was introduced as an optimal algorithm for the exhaustive

enumeration of discrete microstates. The algorithm is based on the decomposition of

stochastic reaction network into multiple independent components called buffer queues,

each governed by its own birth-death process. The approach has the advantage of more

effective usage of the overall finite state space, rapid estimation of errors, and estimation

of required buffer size in order to maintain pre-defined error tolerance.

Several systems have been tested with the ACME method, which we also employ in

this work. The steady state and time-evolving behavior has been previously computed

for several biologically important networks, including the genetic toggle switch model,

the phage-lambda epigenetic circuit, and the 16-node MAPK cascade (42; 40; 41). The
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same method has been used for modeling important stochastic network motifs such as

Single Input and Coupled Toggle Switch Modules (43).

3.2.2 Probability distribution visualization

Currently, there are only a few systematic ways of visualizing probability distributions

at every location and time. The distribution data in 2D space is typically encoded

by a 2D color map. Kao et al. (44; 45) present a number of methods for visualizing

2D probability distributions. They color a scalar field to provide an overall impression

of distribution data sets over a 2D spatial domain. Luo et al. (46) extend existing

visualization methods, such as pseudocolor, to support such distribution data. Potter et

al. (47) present a visualization system called ProbVis for exploring differences between

distributions across a spatial domain. They also use a color map to encode the distance

measure. 3D projections suffer however from overlap problems. To circumvent this

problem, in this work we color-encode probability values on a 2D map, as height.

3.2.3 Heatmaps in biostatistics

Heatmaps have been traditionally used to display statistical data, from gene expression

and metabolomics to urban and network evolution data (48; 49; 50; 51). In general,

heatmaps are used to describe the variables which can be considered as a function of two

inputs represented by the rows and columns. We use similar heatmaps representations,

in which both rows and columns represent the location in each dimension, and the cell

shows the probability value at a particular location in two dimensions.
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3.2.4 Spaghetti plots in ensemble visualization

The computation process used in this biology problem generates spatial distribution

datasets across multiple time steps. By extension, these datasets can be regarded as en-

semble data — a collection of multiple related but different datasets, such as simulations

in general. Several techniques have been proposed for ensemble visualization. Spaghetti

plots, overlaying plots of individual ensemble members, are a well-known technique for

visualizing system flows, including flows in biology, medicine, and meteorology. Ober-

maier and Joy (52) state that spaghetti plots, as a feature-based visualization, provide

an overall impression of the whole ensembles and allow comparisons between ensemble

members. Luo et al. (46) present the use of spaghetti plots in meteorology. Potter et

al. present Ensemble-Vis (53), a framework to support the visual analysis of ensemble

space data. Sanyal et al. propose Noodles (54), a coordinated-view visualization tool, for

visualizing weather ensemble uncertainty. In addition to novel uncertainty visualization

techniques, they implement spaghetti plots for observing the model uncertainty. Wu

and Zhang (55) introduce spaghetti plots for visualizing ensemble uncertainty. Ferstl

et al. (56) present a new approach that extends spaghetti plots to extracted ensemble

flows. Similar to these works, we adopt spaghetti plots, but in a new context.

3.3 Data and Task Analysis

3.3.1 Stochastic Network Modeling

The study of stochastic gene regulatory networks is a challenging topic, as the system

modeled may be large in both the state space and time. Recent developments of the

ACME method (40; 41) enable reduction of the state space from O(bn) to (
∏

j

(
b+nj
nj

)
),
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∑m
j=1 nj = n, where n is the number of species, m is the number of Molecular Equivalence

Groups (MEGs)— the number of molecular species subgroups in the network, such that

member species of a subgroup can be transformed into each other through one or more

mass-balanced reactions, nj is the number of species belonging to group MEGj , and b

is the maximum number of molecules in MEGj . A buffer of size b is assigned to each of

the MEGs involved in the model. These developments allow optimal enumeration of the

state space for the system.

We briefly discuss the state space over which we visualize the probability landscape.

Assume a system contains n molecular species xi, and m buffers of size C(xj). The

ACME method assigns a buffer of size C(xj) to MEGj . The state space size is then

equal to the product of m combinations of
(
C(x1)+n1

n1

)
×
(
C(x2)+n2

n2

)
× · · · ×

(
C(xm)+nm

nm

)
,

where × denotes a simple multiplication.

A microstate sk of the system, where k ∈ (1, N), is defined by the combination of

numbers of molecules (copy numbers) of every species (nk(x1), nk(x2), nk(xn)). The

state space is formed by all the possible microstates that the system can visit from a

given initial condition. The state space table (Figure 2) displays a microstate as a single

row, for a total of N microstates.

Each row of the probability matrix shown in Figure 3 contains the probability values

of the corresponding state (row) in the state space table (Figure 2) over time. Pij

represents the probability value of state si at time tj , and Pij is a float value between 0

and 1. The sum of the probabilities of all the microstates at any particular time is equal

to 1.
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Figure 2. The state space of a system with n molecular species xj and N microstates
si. ni(xj) denotes the copy number of molecular species xj at state si.

The combination of data stored in tables shown in Figure 2 and Figure 3 represents

one simulation of a system that consists of m molecular species with the state space size

of N across T time steps.

In this multidimensional probability space, the biology researchers are interested in

identifying both global and local probability peaks. Global peaks are in general easily

detected. However, local peaks are difficult to notice, when they exist, because they

have low probability values. The number of peaks and their probability values can be

computed analytically; however, analyzing the locations of peaks requires visualization.

The domain experts have been working with systems that may contain at most 16

molecular species, but over 1 million microstates across thousands of time steps. A

system may feature tens of parameter settings, which in turn produce tens of simula-

tions. In this work we use two stochastic network models: a toggle switch system and

a transcription regulation network. The toggle switch system features two genes, each
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Figure 3. The probability matrix displays the probability distributions over N
microstates across T time steps.

expressing one protein, with 120 respectively 240 maximum copy number. The tran-

scription network contains three genes which express each one protein. Both proteins

and genes (DNA molecules) are reactants in the reaction systems of biomolecules.

3.3.2 Task Analysis

Through multiple interviews and observation sessions with the domain experts, we iden-

tified a set of four task groups related to the exploration of the time-varying probability

landscape in a stochastic system. Given a simulation run of a stochastic gene regulatory

network, the identified tasks are as follows:

• T1: Display the overall plots of probability distributions at multiple dimensional

levels: for example, for each molecular species in one dimensional projection and

for the combination of any two molecular species in two dimensional projection.
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• T2: Discover peaks in multiple dimensional projections. Identify the number of

peaks and their probability values. Observe and inspect small, local peaks.

• T3: Identify the locations of peaks at multiple dimensional levels. The “location”

denotes a collection of corresponding states in the state space.

• T4: Track temporal changes of the system. Observe the probability landscape

changes over time, including the number of peaks and their locations.

Based on the visual data analysis taxonomy (6), we match these task groups with

four taxonomy categories: Present: T1, T4, Discover: T2, T3, Explore: T2, T4, and

Identify: T2, T3. In addition to the functional requirements outline above, we also

identified nonfunctional requirements, such as scalability of the system, learnability, and

availability of the system on the web.

3.3.3 Data Acquisition and Preprocessing

The simulation results from domain experts are stored in groups of text files: one state

space text file in the format shown in Figure 2, and T (time) probability files. Each

probability text file, shown by each column in Figure 3, encodes the probability distri-

bution over the state space at a particular time step. The size of a single probability file

in a system with a state space size of 680,430 is roughly 18MB.

Because the probability distributions can be high-dimensional while still having a

spatial distribution, we preprocess the data through dimensionality reduction to a lower

space which can be used for visualization. Furthermore, due to the importance of peaks

to the user tasks, we explicitly compute and detect these structures. Due to the large-
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scale of the data, we pre-process the data offline when reducing the dimension of the

state space for visualization. In contrast, peak detection is computed online.

Dimensionality Reduction. Because the probability distributions of stochastic

networks can be potentially defined over a space higher than two dimensions, we explore

dimensionality reduction via aggregation and projection. To map the data visually, we

compute projections to one dimension and to two dimensions, which is commonly done

and accepted in the target domain; an additional projection to three dimensions and vi-

sualization using volume rendering was attempted and discarded during the prototyping

stage.

To project the landscape defined by the probability distributions to one dimension,

we aggregate the microstates with the same copy number of a particular protein to form

a new state space in one dimension. We repeat the aggregation process for each species

of proteins. For example, in the 2-gene toggle switch system, we obtain two probability

distributions over two 1D state spaces: one for protein A and the other for protein B.

To project the probability landscape to two dimensions, we aggregate the microstates

for which the combinations of the copy numbers of any two proteins are the same. For

example, consider a 3-protein example with only two states possible in the case of 0

copies of protein 1 and 0 proteins for protein 2: state (0,0,0) of probability 0.05 and

state (0,0,1) of probability 0.05. The new aggregated state (0,0) will have probability

0.1. We repeat the process for all possible combinations of any two proteins in order to

obtain multiple 2D state spaces. For example, the 2-gene toggle switch network only has

one 2D state space, while a regulatory gene network with three genes consists of three



30

state spaces projected to 2D, and a network with four genes would include six 2D state

spaces.

Peak Detection. To detect the peaks, we use a gradient estimate approach. We

compare all the states to their neighbors, as projected to one dimension. If a state has

higher probability value than both its neighbors and its value is above a threshold of

1e-12 (empirically determined based on the simulation threshold for error), the state is

defined as a peak. Since the probability distribution along each species dimension is

independent, the number of peaks in the entire system is multiplied by the numbers of

peaks in each dimension. The peak locations in the system are all the combinations of

species locations. The process of peak detection is completed online.

3.4 Visual Design

We have designed the visual analysis tools through a parallel prototyping approach,

during which multiple low to mid-fidelity prototypes were sketched in parallel, and pre-

sented for feedback to the domain experts. The domain experts are particularly attuned

to surface plots of probability distributions, as indicated by their use of “landscape”

terminology. However, such plots do not capture directly temporal features: time series

of 3D surface plots are usually generated as a movie to display the temporal changes.

Thus, visual representations with temporal features embedded were of particular inter-

est. As part of this process, we explored multiple potential visual designs, including star

plots, small multiples, animation, space-time-cubes, volume renderings and variations of

topographic maps, and converged towards those encodings which best preserved features

of interest (such as peaks and temporal behavior) while avoiding occlusion.



31

Figure 4. The PRODIGEN interface consists of several visual components: (left top)
the ensemble Spaghetti Plots view shows the probability distribution over time, for all
the proteins in a system; (left middle) the 1D heatmap view shows a per-protein view

of the probability peaks; (left bottom) the Peak Glyph view (displayed as a small
multiple) represents all the probability peak states in the system; (center) the 2D

heatmap view is enhanced with time-curves, and shows the probability peak
correlation between protein pairs over space and time; (right) the animated 3D Surface

view describes the shapes of peaks over space and time.

The final prototype of PRODIGEN (Figure 4) consists of a multi-view design with

several visual components: 1) a spaghetti plot view that shows the temporal changes

of probability values for every gene; 2) a small multiple 1D heatmap view; 3) a small

multiple enhanced 2D heatmap view which displays the probability distributions over

the state space projected to two dimensions; 4) a peak glyph view which represents the

corresponding states of all the probability peaks detected in the system; and 5) a small
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multiple 3D surface view. The information shown in the heatmaps and peak glyphs

changes according to the user-selected time step, as the user drags a time slider. We

describe in detail each visual component below.

3.4.1 Ensemble Spaghetti Plot View

Spaghetti plots have been traditionally used to visualize ensemble data; each single plot

represents an individual ensemble member. Color-coding may also be used to differenti-

ate members. In this work, we extend the spaghetti concept to specific simulations over

time: by extension, each “ensemble” member represents the probability behavior at a

particular time point. The horizontal axis represents the copy numbers of molecules,

while the vertical axis represents the probability value. Thus, an individual plot de-

scribes the probability distribution over the states with the copy number from zero to

the maximum copy number for that protein.

We use color to encode different species of proteins, and the intensity of the color to

encode the probability distribution of the corresponding protein at different time steps.

The plot intensity from lighter to darker represents the time from the beginning of the

simulation to the end.

In our early prototyping stage a third dimension was used to encode time, in the style

of space-time cube representations (57). In practice, however, the encoding suffered from

occlusions which made difficult the tracking of temporal peak changes, and was later

discarded. The domain experts specifically stated that the 2D ensemble spaghetti plots

yielded better performance than the cube representations.



33

Figure 5. Spaghetti Plots (top) show the probability distribution of each gene and the
changes in distributions over time. The Spaghetti Plots view on the bottom displays

the probability distribution of each gene at a user selected time step. Protein C has at
most 110 molecule copies in this 3-gene regulatory network.

In Figure 5 (top), the Protein A of spaghetti plots represents the temporal probability

distribution of protein A. In this representation, the peak changes can be easily tracked

in terms of both peak location and value. We notice that protein A has only one peak,

whose location shifts to the left in time towards the state with a lower copy number,

and whose probability value increases over time. Protein B also has one peak, which

stays at the same location without too much change in the probability value. Protein C
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has three peaks. The locations of these three peaks do not change over time. However,

the probability value of one peak in the middle increases as the other one on the right

decreases over time.

In most cases, the peaks either increase or decrease over time, and thus do not cause

overlaying or crossing issues. Rare plot overlays and crossings bear in fact meaning, by

encoding frequent peak location changes (see Protein A in Figure 5) or peak changes in

both directions (increasing and decreasing).

However, it is not easy to detect the probability distribution at a particular time

step from the spaghetti plots. To this end, a checkbox filter allows the users to draw

the plots at an interactively-selected time step. Figure Figure 5 (bottom) displays the

probability distributions of these three proteins at the 10th time step.

3.4.2 Enhanced heatmaps

To show the lower-dimensionality projection of probability landscapes we chose as a basis

a heatmap encoding, due to their efficiency in visualizing distribution data. Our domain

experts, like most bioinformaticians, were familiar with heatmap representations, com-

pared to other visual representations. We employ both one-dimensional heatmaps and an

enhanced version of two-dimensional heatmaps, displayed each time in a small multiples

view. The spaghetti view uses a categorical color scheme for the different species, while

the aggregated views described below employ a non-overlapping qualitative color scheme

to encode probability. The 1-dimensional heatmaps described below (Fig. Figure 6) help

bridge the two color schemes. The domain experts did not report or experience during

testing any issues related to this dual use of color intensity.
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Figure 6. Three 1D heatmaps represent probability distributions projected to one
dimension of three proteins A, B and C. A and B have one peak each, while C has

three peaks.

1D heatmaps. 1D heatmaps display the probability distribution over the state space

projected to one dimensional space. The 1D state space is represented by the horizontal

direction in the heatmap. The color intensity of each state represents its aggregated

probability value. The heatmaps are stacked up vertically, and each heatmap has a

border color-linked to the spaghetti plot for that protein.

Figure 6 shows the probability distribution over one dimensional state space for

three proteins at time 0. When projecting to Pa which represents protein A, the only

probability peak is located mid-axis, which corresponds to the state in which the copy

number of molecule Pa is 10, half of the maximum copy number. Similarly, the peak

in the Pb (protein B) projection is also at the state with the copy number of 10, and

these two peaks have similar probability values, as indicated by their similar intensities.

However, in the Pc (protein C) projection, there are three peaks: a large peak leftmost

along the axis (where the state has a copy number of 0), one small peak nine states

to the right, and one much smaller peak twenty nine states further right. The smallest
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peak in the Pc projection may not be easily observed from the heatmaps, but can be

quickly detected through the peak glyphs that will be explained below.

Figure 7. The 2D heatmap displays the probability distribution over the 2D state
space projected for the pair of Pa and Pb. Time Curves overlaid on the 2D heatmap

indicate how the probability values in the 2D state space change over time.

2D heatmaps. Similar to 1D heatmaps, 2D heatmaps display the probability dis-

tribution over the state space, but projected to two dimensional space. The horizontal

and vertical axes represent the copy numbers of molecules for any two protein species

in the system. The cell at the intersection of two molecule copy numbers represents the

state that aggregates the microstates with those copy numbers. The intensity of the

cell encodes the probability value. Figure 7 indicates there is only one peak located at
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(3, 10) in the 2D state space projected to Pa and Pb. The 2D heatmaps are arranged

in a small multiple display, using identical axes mappings to support comparison of the

peaks. Per our collaborators request, the heatmap can also be colored using a qualitative

colormap (Figure 8), similar to the rainbow maps they had used before in numerical soft-

ware packages; the qualitative map is derived from ColorBrewer (colorbrewer2.org) and

allows the users to highlight different peak classes and thus presumably better identify

small peaks.

Figure 8. 2D heatmaps using a qualitative colormap.

Overlaid Time Curves. Heatmaps are able to provide an overview of the prob-

ability distributions over the state space in one and two dimensions. However, it is
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hard to track temporal changes from this aggregated visual representation. Since the

changes in probability values over time can be displayed as a line plot, we create an

extended heatmap representation by overlaying such line plots on each cell (state) in

the 2D heatmaps. The time curves show the dynamics of the system, which include

the changes in probability values and peak locations over time. A flat curve means no

obvious change, while a steep curve means a big change in the probability value. The

user can check the time-curves checkbox to display these curves.

In Figure 7, two groups of steep curves indicate that the peak in the state space

projected to Pa and Pb moves in the direction in which Pa has lower copies at the early

time, and stays there during the rest of the simulation time. The probability value of

the peak increases as the location of the peak changes.

Figure 9. Probability temporal distribution on a user selected state in which Pa has
five copies of molecules and Pb has eight.
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Details-on-demand. Since the 2D heatmap can display state spaces that contain

thousands of states, it may be difficult to observe how the probability of a specific state

changes over time. To support detailed inspection of a particular state, we enlarge on

demand the size of the cell corresponding to a user-selected state. When the user clicks

on an interesting cell, a detail window is overlaid, showing the time curve for that state.

Figure 9 is an example of the detail view of the state (5, 8), in which Pa has 5 molecule

copies and Pb has 8 copies. We notice that there is a steep and large increase in the

probability value during the first two time steps. Later, the probability decreases in the

following four time steps, and keeps roughly constant for the rest of time.

3.4.3 Peak Glyphs

Although the heatmaps view can provide an overview which indicates the location of

peaks, users often wish to identify the location accurately. Furthermore, the heatmap

representations can make small peak detection difficult. To indicate the peak location, we

have experimented with a number of existing multidimensional encodings, including star

plots. However, since a stochastic gene system consists of a large number of microstates

and each microstate is represented by the combination of copy numbers of multiple

molecular species at different scales, existing encodings failed to provide the location

information of states in the system.

Instead, the end-result of the prototyping phase was a glyph to display the detailed

information of a peak state, such as the combination of copy numbers. The peak glyph is

composed of a stack of horizontal bars filled with darker or lighter intensities according

to the probability value (Figure 10). The number of bars represents the number of
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Figure 10. A small multiple of Peak Glyphs with eight peak states, out of which only
three are authentic peaks. The remaining five states, shown in gray, were identified as

computational errors.

proteins, while the length of each bar represents the number of molecule copies of the

corresponding protein. When displayed as a small multiple, the peak glyphs show all the

peaks in the system. Because very small probability peaks are typically due to numerical

error in the simulation, suspect peaks are displayed in gray. The view is controlled by the

user selected timestep. Hovering over a glyph displays the detailed information about

the peak.

Figure 10 displays eight potential peak states in a 3-protein system. However, five of

these states appear as peaks likely due to numerical error and are shown in gray. Only

three of the states are authentic peak states, at the location of (3, 10, 0), (3, 10, 9) and

(3, 10, 29). The details on demand indicate, for example, that Pc has a peak at the
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state with 29 copies and that its peak value at that location is about 0.017. In general,

the peak glyphs can be used as a detailed guide through the peak set generated by a

system.

3.4.4 3D Surface View

Similar to the 2D heatmaps, the 3D surface plots also display the probability distri-

butions over the 2D state space, but represent the probability value as height (z-axis)

instead of encoding it by the color intensity (Figure 11). As indicated above, the domain

experts are particularly receptive to 3D surface plots, which reflect their understanding

of probabilistic landscapes. In contrast, the complementary visual encodings were novel

to our domain experts, and thus benefited from scaffolding through the familiar surface

encodings. Compared to the 2D heatmaps, the advantage is that the surface plots can

show the shapes of peaks in a manner similar to existing representations of probability

landscapes. Both representations, extended heatmaps and surfaces, capture well the

extent of peaks and the relative location of peaks with respect to one another.

We use the library Plotly.js for plotting the 3D surface of probability distribution; the

library allows users to rotate and zoom in/out the surfaces. Hovering over the surface

displays the location of the state and its probability value. We implement an animation

option for playing the probability distributions across the entire time period as a movie,

in which the dynamics of peaks including numbers, locations, relationships, values, and

shapes can be easily detected. Similar to the heatmaps, the 3D surface plots are also

displayed as a small multiple across the potentially multiple projections.



42

Figure 11. A 3D Surface Plot displays the probability distribution over the state space
projected to A and C. Three peaks are distinguishable.

PRODIGEN is implemented as a web-based tool in JavaScript and uses the data

visualization libraries D3 and Plotly.js.

3.5 Evaluation

We evaluate the effectiveness of PRODIGEN through two case studies completed with

two experts, who are co-authors on this manuscript. One expert is a senior bioinformatics

researcher with over thirty years of experience in the field, and the other is a junior

researcher in bioinformatics who specializes in stochastic gene network modeling.
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These two case studies demonstrate how our visual approach can assist domain ex-

perts in the exploration of probability landscapes in stochastic gene networks, and allows

them to track the temporal changes as well. The first case study is an exploration of a

transcription regulation network with three genes, and the second one studies a toggle

switch system with two genes.

3.5.1 Case Study I: Transcription Regulation Network

We illustrate the performance of PRODIGEN using the example of a transcription reg-

ulation network. A detailed description of the model architecture will be published by

our collaborators. The system consists of three genes GeneA, GeneB, and GeneC, which

express ProteinA, ProteinB, and ProteinC, correspondingly. C is the output of the sys-

tem, and it is regulated by both B and A. Transcription regulations motifs such as this

are common in studies of biological systems as, for example, E. coli (58), yeast (59),

and mammals (60). Their detailed modeling in principle can answer important biolog-

ical questions such as the existence of multiple phenotypes corresponding to different

numbers of stable states, adaptability of the systems to the change in one of the com-

ponents (61). These phenomena may be relevant for the study of important biological

events, such as differentiation of the cell to a new cell type, tumor suppression, HIV la-

tency versus replication, and cell adaptation to a stress. In this simulation, the domain

expert decreased the expression level of A by a factor of approximately 3. The goal of

the visual analysis was to observe how C responds to this change in the expression level

of A.
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The spaghetti plot in Figure 4 (left middle) indicates that even a significantly de-

creased level of A does not affect significantly the behavior of the system. The spaghetti

view clearly shows that A has one peak state, B has also one peak state, while C, which

is regulated by both A and B, has three peak states. As simulation time advances, the

peak-state corresponding to A shifts towards the left along the horizontal axis as the

expression level of A decreases. In the same spaghetti plot, the peak corresponding to B

is very stable; its clear signature in the plot shows very little change in either location

or probability value. The three peaks of C also stay constantly in the same locations,

and show little change in probability values over time. The spaghetti plot can be used

to detect the number of peaks (T2), and track their temporal changes in one dimension

(T4).

The 1-dimensional set of projections (Figure 4 left) captures, as expected, the same

number of peaks. The smaller and fainter peaks in the C projection caught the interest

of the investigators, who remarked again on the biological significance of small peaks.

Small peaks are important since they can correspond to a diseased state of the cell,

which could be non-prevalent or rare in the organism and as such have a small number

of molecules. It was easier to detect small peaks in the one dimensional view than in

2D, because in 2D the information gets distributed over a larger number of states. The

value and location of the peaks are represented in both the spaghetti and 1-dimensional

view in a qualitative way.

A step further, the peak glyph view (Figure 4 left bottom) captures the accurate

locations and probability values of the peak states (T2 and T3). The peaks with different
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values at different locations can correspond to different physiological conditions of the

cell, e.g., healthy vs. diseased state or pluripotent vs. differentiated in stem cells. The

gray glyphs show the pseudo peaks that are due to numerical errors. As simulation time

advanced, the experts noticed an increase in numerical errors. With this observation in

mind, the users moved back to exploring relatively more complex visual representations,

such as the 2D heatmaps overlaid with the time curves and the 3D surface plots.

Next, we investigate the probability distributions over the entire state space of the

transcription regulatory network (Figure 4 center), and again focus on the same small

peak. The distributions are displayed through three 2D heatmaps which are the pro-

jections of the three possible combinations of the original three components. The time

curves overlaid on the heatmaps further capture the trace of peak movements (T4). For

example, based on the shapes of time curves, we can conclude that the peak moves down

in the heatmap projected to A and B. Last but not least, the surface plot animation

(Figure 4 right) confirms the smooth trajectory of the peaks. The 2D enhanced heatmap

outperform other visual designs when the user focuses on tracking the temporal changes

of probability distributions in 2D state spaces over time.

In conclusion, while the steady state probability landscapes of ProteinA and ProteinB

are monostable, ProteinC has three peaks at steady-state. The decrease of the expression

level of ProteinA drives the evolution of the system to a new steady state, which has

decreased level of ProteinA, with the expression patterns of ProteinB and ProteinC both

altered.
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Figure 12. The genetic toggle switch network (62)

3.5.2 Case Study II: Toggle Switch System

The stochastic network module we study here is a genetic toggle switch system consisting

of two genes, A and B. Figure 12 shows the network topology. In this second model,

single copies of gene A and gene B express protein products A and B. Gene A and gene

B can repress the transcription of each other through binding the dimers of their protein

products A and B on the promoter sites of the other gene B and A to form protein-DNA

complexes (62; 40; 41). Thus, this genetic network includes six molecular species, which

are described in detail in Table I. The genetic toggle switch network with two genes has

four distinct stable states: on-on representing a state at which both gene A and gene B

are unbound, on-off representing a state with unbound gene A and bound gene B, off-on

for a state with bound gene A and unbound gene B, and off-off for a state with both

bound gene A and gene B. In this work, the domain experts computed the state spaces
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Molecule Name Molecule Structure Max Copy Number
Pa Protein A 120
Pb Protein B 240
Da GeneA in the unbound state 1
Db GeneB in the unbound state 1

BDa GeneA bound by protein B 1
BDb GeneB bound by protein A 1

TABLE I

A DESCRIPTOR OF THE 2-GENE TOGGLE SWITCH NETWORK.

under the initial condition of 0 copies of protein A and protein B, 1 copy of unbound

gene A, 1 copy of unbound gene B, and 0 copies of bound gene A and bound gene B.

By using the finite buffer method to solve the dCME of this system, we obtain a state

space of size 115,200. After that, we directly compute the probability value of each

state at each time point, which forms the probability landscape, and currently output

for visualization the first 200 time steps.

The toggle switch system is known to have four peaks in the stable state, as captured

by the peak glyphs (Figure 13). However, at the early time, the system has only one

peak, at the state (31, 63). The enhanced heatmaps (Figure 14) and the animation offer

an opportunity to observe how the peaks move in the state space in both the 2D heatmap

and the 3D surface plot (T4). In addition to tracking the location changes, the surface

plot shows efficiently the changes in probability values (Figure 15). As simulation time

advanced, we noticed three more peaks appear, as the early peak was getting smaller

and transitioned to states with higher copy numbers of both protein species. Figure 15

displays the four peaks in the 3D surface plot at different time steps. Later on, the
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system becomes more stable. These peaks stay in a roughly fixed location with only

small changes in the probability value. Thus, we can confirm that the system reaches a

steady state.

Figure 13. Peak glyphs for the toggle switch network showing four detected peaks and
their exact coordinates.

The peak glyphs successfully identified the largest peak (T2). We see one of the

three late peaks become the largest peak, at last. Although the toggle switch has more

states in the 2D state space, compared to the transcription regulatory network discussed

in the case study I, the time curves overlaid on the heatmap, which includes nearly

thirty thousand map cells, can still provide an overview of the temporal probability

distributions (Figure 14). However, we can only see three peaks according to the curves

shapes. The fourth peak is actually a spike at the location (0, 0), which can be seen in

the surface plot, and as such was dismissed from the analysis.
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Figure 14. Toggle Switch 2D enhanced heatmap. The heatmap displays the probability
distribution over the 2D state space projected for the pair of Pa and Pb. Time Curves
overlaid on the 2D heatmap indicate how the probability values in the 2D state space

change over time.

3.5.3 Informal Feedback

Over multiple discussion sessions, the domain experts provided positive feedback. The

junior researcher pointed out that the visual approach would be beneficial to experts

working in the field when exploring the data. In particular, the lower-dimensional plots

and encodings go beyond current approaches to showing the data, especially for exploring

the dynamics of the system. The feature that generated most excitement for both domain

experts was the ability to track the temporal changes of the probability distributions.

The senior expert specifically commented on the potential of the tool to assist in deriving

new hypotheses, beyond the post-hoc abilities of explanatory visualization. In addition

to tracking the peak trajectories in the transcription regulatory network and the toggle
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Figure 15. Probability landscape of the toggle switch system at three different time
steps, showing four peaks; the least noticeable peak is located at (0,0).

switch system, the senior expert also indicated the potential use of the visual approach

to systems with potentially oscillatory peak states, or to track the peak trajectory for

other types of stochastic networks.

3.6 Discussion

The two case studies and expert feedback demonstrate that PRODIGEN is an effective

visualization tool for the exploration of the probability landscape of stochastic gene

regulatory networks. The system successfully allowed stochastic network researchers to

perform the T1 through T4 tasks we had identified in the domain characterization stage,

while handling gracefully the large scale of the data. In particular, the domain experts

were able to: 1) visualize probabilities of stable states, 2) explore the temporal aspect

of probability distributions, and 3) discover and analyze small peaks in the probability

landscape that had potential relation to specific diseases. In both case studies they were

able to identify new findings (including numerical errors) as well as replicate previous
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findings. The web-based implementation of the system makes it potentially available to

a wide audience. Furthermore, the case studies performed with domain experts indicate

the interface is user-friendly and easy to learn.

With respect to the visual design of the system, the overall design successfully sup-

ports the exploration of probability distributions in both state and time space. While

some of the individual visual encodings employed are not new, the enhanced 2D heatmaps

and the peak glyphs are novel contributions. The combination of visual encodings to ex-

plore data in multiple dimensions is also novel. As shown by the case studies, the visual

encodings proposed were able to capture probability distributions in multiple dimensions

and at multiple levels. The spaghetti plots and heatmaps overlaid by time curves are

able to display the temporal probability distributions over the state space. In addition

to these overviews, detail views embedded in the heatmaps provide the ability to track

the probability dynamics of a user selected state. When combined together with the

peak glyphs and the animated surfaces, these visual encodings satisfy the requirements

from experts for detecting the number of peaks, the locations of peaks, the values of

peaks, and their dynamic changes. Because the peak values vary significantly, the ex-

perts required we do not normalize axis or color; instead, we clearly indicate each scale

in the interface. For example, the fourth small peak in the center plot in Figure 15 is

not perceivable when using normalization.

In terms of scalability, the tool can handle with no issues models whose size in terms

of species is on par with the ones developed by our collaborators, and was built with

visual scalability in mind. Furthermore, we have tested the system on a variety of state
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space size and timestep configurations. As discussed in the Task Analysis section, the

systems modeled typically contain few molecular species. However, the system modeled

may be large in both the state space and time. Our visual approach scales well, in this

respect, in either state space or time dimension. The entire system behaves well for

stochastic networks with a relatively large state space size of 680,430 states, which is

roughly 18MB, as long as the simulation of these systems stays below several hundred

timesteps. This last limitation is related to the D3 library limitations regarding loading

large datasets. For practical purposes, to circumvent this limitation, simulations can

be split into chunks of time and loaded and analyzed sequentially. The time-curve heat

maps can further suffer from scalability issues for very large state space sizes, which can

lead to small tiles and aliasing. On lower resolution displays, this issue becomes visible

for large state spaces with long runs of close to a thousand timesteps, as indicated

in Figure 14. Context+focus techniques (63) may help address aliasing issues.

In terms of limitations, the system currently requires a copy of the data to be created

locally and loaded for processing and visualization. PRODIGEN can only be used as a

post simulation analysis tool, due to this data pre-processing load. A direction of great

interest to our collaborators, although beyond the scope of this work, is the ability to

run the system directly in situ, on the cluster where the simulations are computed.

PRODIGEN is limited in its capability to enable the visual analysis of these ensemble

stochastic simulations, as it is only designed to analyze a single simulation at a time.

This is an especially important limitation, as the gene regulatory networks are a complex

biological process which requires a comparative analysis of multiple simulations in order
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to gain a complete understanding of their mechanisms. Advancing research in stochastic

gene networks requires an effective visual approach that allows the exploration and

comparison of multiple simulations to find how changes in the probability landscape are

associated with the time and system settings. In the next Section, I will introduce a web-

based visual analysis tool which uses this approach to enable the analysis of stochastic

gene regulatory networks. This tool allows for the exploration of peak distributions over

state space and simulation time in such stochastic networks, and the comparison of peak

distributions between multiple simulations.

3.7 Extension of PRODIGEN

While allowing for the comparison and analysis of multiple gene regulatory network sim-

ulations is necessary, certain visualization challenges arise for high-dimensional ensemble

simulations. One such challenge is providing a comparative analysis of a large number

of stochastic simulations, which feature many states across many timesteps. This is a

common challenge of ensemble visualization of high dimensional data, which is exacer-

bated by the need to preserve spatial information in order to enable the domain specific

tasks.

To support these tasks, we propose a web-based visual analysis tool (Figure 16) that

combines multiple linked views to capture ensemble time-evolving probability landscapes

at three levels. A peak trajectory cube provides users an overview of peak spatiotem-

poral distributions across six simulations. A peak projection map shows the exact peak

locations of multiple simulations at the user selected time. At a more detailed level, the

user can inspect a particular state in the peak projection map to view for each simula-
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Figure 16. EnsembleProb, a web-based visual analysis tool for the exploration of peak
distributions over state space and simulation time in such stochastic networks, and the

comparison of peak distributions between multiple simulations

tion both the probability values over time and the local probability landscape shapes.

This information is displayed in a small multiple using two glyphs: profile glyphs and

arrow glyphs. The profile glyphs show the profiles of the peak from four angles — 0, 45,

90, and 135 degrees, rotating about the center of the peak. The arrow glyph indicates

that a state is a peak when all the glyph eight arrows point towards the glyph center.

All the views are linked together through interactions. The visual design was finalized

according to the feedback from our domain experts.
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We have completed a usage scenario within the visualization development team to

evaluate this visualization tool. The peak trajectory cube (Figure 16 (a)) maps the

2-protein state space to the X/Z plane, and time to the Y axis of a cube. Yellow-red

polylines map the locations of peaks (highest probability points) in this spatiotemporal

space, across six simulations. The redder the polyline, the more peaks are sharing

that trajectory across the simulations. The trajectory cube also provides interactions

like rotation and zooming in/out to overcome the occlusion issue in 3D view. For the

selected time (dark gray horizontal rectangle), green dots mark peak locations. Peak

locations converge over time. The blue state subarea is mapped to Figure 16 (b). The

x/y plane of the peak trajectory view is a detailed view of the blue subarea in Figure 16

(a). A glyph encodes with color which simulation runs contain a peak at that glyph

location; colors are mapped to simulations. The green simulation has the most peaks

among all six simulations. The Time Curves (Figure 16 (c)) show the orange and pink

simulations have very similar probability temporal distributions at the state highlighted

in the red box in Figure 16 (b). The Profile Glyphs (Figure 16 (d)) show that the

peaks in the blue and yellow simulations are steeper than the other four. The Arrow

Glyphs (Figure 16 (e)) indicates that a state is a peak state when all the eight arrows

in the glyph point towards the glyph center. The states shown in darker green and

pink are peak states. However, the other four states shown are very near a peak state,

but are not peaks themselves. In the Figure 16 (b) and (e), we notice a disagreement

between the arrow glyphs and the peak projection map. This mismatch demonstrates
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that probability distributions over the genes in this system are not independent of each

other.

In terms of limitations, using the continuous colormap in the peak trajectory cube

may not be a great choice to encode the number of simulations that share the same

trajectory, as it becomes difficult to distinguish the multiple discrete values. We could

drop a mark in the trajectory when and where peaks converge.

In summary, our visual analysis tool allows bioinformatics researchers to explore and

compare the time evolving characteristics of probability landscapes from multiple simu-

lations efficiently, without running many small scripts and computing each characteristic

separately.

Besides ensemble stochastic gene regulatory networks, dynamic biological networks

also exist in other biological domains, e.g., neuroscience. These networks also feature

both spatial and non-spatial information and require comparative visual approach at

multiple scales. In neuroscience, the study of the relationship between functional con-

nections of the brain and its spatial structures is an open research topic. In the next

two chapters, I will introduce the domain problem of dynamic brain networks, followed

by data and task analysis as well. To support those tasks, I present several innovative

visual designs and a visual approach for the ensemble exploration and comparison at

multiple scales.
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4.1 Introduction

Recent neuroscience research indicates that cognitive operations are performed not by in-

dividual brain regions working in isolation, but by networks consisting of several discrete

brain regions which act in synchrony (2). These networks share “functional connectiv-

ity”, meaning that activity in these regions is tightly coupled—in the sense of a statistical

association or dependency among two or more anatomically distinct time-series events.

Functional connectivity between brain regions can change rapidly over time (4; 5), giving

these networks a highly dynamic characteristic. Abnormalities in functional connectiv-

ity have been linked with various degenerative and developmental affections. Evidence

suggests, for example, that Alzheimer’s disease spreads from one brain region to a non-

adjacent region within a specific network, which is “activated when a person is recalling

57
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recent autobiographical events” (2). However, even for simple networks, the subtle dy-

namics of these networks are not fully understood. Therefore, techniques that are able

to extract the dynamics of functional connectivity from brain imaging data have high

potential value to the neuroscience community.

We worked closely with neuroscientists who use the social network analysis (SNA)

model to explore changes in functional behaviors of the brain networks and their resulting

effects on community identities of neurons over time. The application of SNA to the

study of brain networks has nodes mapped to a single neuron or a group of neurons,

while edges between nodes represent a functional connection between neuronal sites.

Neurons communicate through electrochemical signals. They process incoming chemical

and electrical signals and transmit these signals to other neurons and other types of cells.

A neural network is a group of connected neurons that performs a certain function. A

community is defined as a group of nodes that tend to interact with other nodes in the

same group more often than the nodes outside the group. The research goal is to utilize

social network modeling algorithms to analyze mouse brain time-series imaging data to

uncover interactions among neurons across time and space. The brain networks can

be identified through the application of a linear correlation method and then passing

these correlation metrics to a community analysis algorithm. Given the large numbers

of potential nodes (>20,000) in a typical brain imaging experiment, effective visual

representations are necessarily needed to help domain scientists to study the mouse brain

using the model of SNA. Although a number of visualization tools have been developed

during the last few years, the development of applications for the visual analysis of
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dynamic brain networks still requires further effort. A major challenge in visualizing

dynamic brain networks is to reveal temporal features while at the same time accounting

for additional constraints imposed by brain architecture, i.e., neuron location.

In this chapter, we present SwordPlots, an interactive multi-view visualization appli-

cation which assists the domain scientist in exploring neuron behaviors within dynamic

communities in the mouse brain. Our visualization design also provides the ability to

filter data in a variety of ways in order to make it easier for the user to explore the

data. The user can use these filters to focus on a single node of interest. A single node

encapsulates many neurons, but neuroscientists assume that the neurons within a single

node have similar functionality since they are all in close proximity to the same brain

region. Once a node of interest has been identified, the user has the ability to highlight

the node to gain more detailed information. We also create an additional visualization

view which displays some characteristics of the community model structure in space.

We use two case studies to illustrate the effectiveness of our visualization tool. The

visualization has the overall effect of reducing the data load on the scientists by allowing

them to pare down a large number of neural connections within an experiment to those

areas of interest and examine their behavior in time.

The visualization has the contributions of allowing neuroscientists to choose any one

of the nodes to track its behavior within dynamic brain communities during a selected

time range, providing sufficient interactions at both the individual community level and

the node level which can offer the user an overview of the network and the ability to focus
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on nodes of interest, and being designed for a very new research topic which combines

the SNA with neuroscience.

4.2 Background and Related Work

4.2.1 Domain Background

Network analysis of brain imaging data has proven to be a particularly challenging

computational problem. For example, functional magnetic resonance imaging (fMRI)

data using blood oxygen level dependent signals involves the analysis of tens of thousands

of voxels, each with their own time series. Analysis of pairwise correlations across all

of these voxels produces millions of potential interactions between voxels, leading to

difficulties in producing a coherent understanding of the patterns of activity. Early

efforts to analyze these data sets were focussed on seed-based correlation approaches,

whereby a time series in a region of interest was correlated to all other voxels in the

brain (64; 65; 66). Such methods have uncovered multiple different large-scale brain

networks, but are susceptible to biases based on the initial seeds chosen. Multivariate

approaches, such as independent component analysis (ICA), have also been used and are

free from the biases inherent in visualizing networks based on an initial seed (67; 68).

Most recently, graph-theory-based methods have been applied to brain imaging data and

have revealed not only the presence of underlying networks but also the logic underlying

the organization of networks by characterizing certain nodes as hubs, and by revealing

small-world behavior in certain brain networks (69).

A potential problem with these approaches to brain network analysis is their limited

ability to extract the natural dynamics of a network’s organization. That is, generally
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these techniques are used to generate a single static network map using a window of

many minutes of the obtained data. However, brain activity is intrinsically highly dy-

namic, with functional associations between neurons and brain regions that ebb and flow

as the organism’s level of arousal, focus of attention or topic of thought changes. Re-

cently, neuroscientists have applied SNA tools initially developed for the study of social

dynamics (70; 71) to the analysis of mouse brain imaging data. Among the analysis

tools commonly used to understand the relationship between structure and function in

social networks is community inference. The definition of “community” in the analysis

of brain networks is analogous to that of a neural assembly (72), which we define as a

group of neurons that act collectively and are functionally connected.

In network analysis, communities are generally defined as groups of nodes that tend

to have either more or stronger connections with each other. Nodes belonging to different

communities have few and weaker connections. Community analysis can be applied to a

variety of fields from social networks to biological networks (73). Communities appear in

networks where nodes join together in tight groups that have few connections between

them. Several methods have been proposed to find the structure, of which the best

known is called modularity optimization. Modularity is a standard metric for finding

and evaluating communities (74). Community detection by modularity optimization

on large networks is a computationally challenging problem. Therefore, it needs to

use algorithms that find high modularity partitions within large networks in a short

time. The Louvain algorithm (75) is ideally suited to finding communities in such cases.

Besides the advantage of being extremely fast, its steps are easy to implement.
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Because dynamic networks change their topological structure over time, we are in-

terested in analyzing the evolution of communities across time that can be defined as

dynamic communities. We use the method of Dynamic Community Inference (Com-

mDy) (70; 76; 77; 78) to study how the interactions and the structure of clusters in

dynamic networks change over time. In this method, dynamic communities are essen-

tially viewed as dynamic clusters, where the membership of the individual inside the

cluster is determined by a total value of “social cost”. The definition of social cost is

based on two explicit assumptions about individual behavior, motivated by research in

the social sciences (70). First, it assumes that individuals tend not to change their home

community affiliation too often (79). Second, it assumes that individuals tend to inter-

act with their respective home communities most of the time (80). These assumptions

are translated into three cost parameters potentially incurred by an individual. First,

it posits a cost for a switch from one community to another. Second, there is a cost of

visiting a community of which one is not a member. Third, in data sets for which not all

individuals are observed all of the time, there is a cost of absence for an individual who

is not observed at a gathering of the community of which it is a member. A dynamic

community is then defined as a time series of sets of individuals among whom the overall

social cost of interacting is minimized (70; 76; 78).

In summary, CommDy produces two identification codes: a Home community iden-

tifying the community the node belongs to by default, and a Temporary community

identifying the community the node currently visits. Figure 17 shows an example net-

work of five individuals during six time steps. In this illustration, the color of the
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Figure 17. Visualization of CommDy (42) on an example data set including five
members across five time steps. Rectangles represent temporary communities, while
circles represent home communities. The same colors indicate the same community
identifications. At T1, there are three communities: green, pink and blue. At T2,
member 3 switches to the pink community and member 2 switches to the green

community. At T3, member 2 is absent and member 4 visits the pink community
without changing its home community identification. At T4, member 0 is absent,
member 2 switches to the pink community, and member 4 comes back to its home

community. At T5, member 3 switches to the pink community and member 2 switches
to the green community.

circle represents the home community identification code of the node, and its temporary

community identification code is encoded by the color of the rectangle surrounding the

circles.

4.2.2 Brain Connectivity Visualization

A wide range of visualization tools for biological network analysis has been discussed

in a comprehensive survey by Pavlopoulos et al. (81). Cytoscape (82; 83) is a popular

bioinformatics package for biological network visualization and data integration. In gen-
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eral, the analysis and visualization of brain networks focus on either the cell level or the

region of interest (ROI) level. Caat et al. (16) present high-density EEG coherence using

a functional unit map. Janoos et al. (17) propose a visual analysis of fMRI data for the

exploration of temporal relationships in brain function. Li et al. (84) present a visual

analytics toolkit for ROI identification and brain network exploration from fMRI and

DTI data. Jianu et al. (85) develop a visualization of two-dimensional neural maps for

connectivity exploration and analysis in the human brain. Irimia et al. (86) implement

a circle-based visual representation of human connectomics for classifying neuron con-

nectivity relationships in the brain. Margulies et al. (87) provide an overview of various

frameworks for visualizing anatomical and functional connectivity in the human brain.

Christodoulou et al. present BrainNetVis (88), which effectively quantifies and visualizes

brain networks. Xia et al. develop a toolbox called BrainNet Viewer (89) that visualizes

the topological properties of brain networks using a ball-and-stick model. LaPlante et

al. propose a package (90) for visualizing multimodal human brain networks with the

3D Brain view, the Matrix view, and the Circle view. In addition, the comparison of

different connectivity data is another important problem in the neurosciences. Alper

et al. (91) discussed matrix-based visual representations to compare brain connectivity

patterns. So far, the visualizations discussed above focus on data at the ROI level, such

as EEG and fMRI.

Other visualizations focus on data at a microscopic scale with higher spatial resolu-

tion, such as the structure or activity of an individual neuron, or integrate brain data

at those two scales. Lin et al. developed the Neuron Navigator (NNG) (92) for ana-
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lyzing, observing and discovering the connectivity within the neural maze. Sorger et al.

implement an interactive two-dimensional graph, neuroMap (93), to render the brain

of the fruit fly and its interconnections using a circuit-style wiring diagram. Several

other visualizations in neuroscience, such as VisNEST (18), ConnectomeExplorer (21),

NeuroLines (22), have been discussed in detail in Chapter 2.1.

4.2.3 Dynamic Network Visualization

Beck et al. (94) state that dynamic data are usually visualized using animation or

a timeline-based representation. Animation of a series of dynamic graphs has the

advantage that the entire screen can be devoted to the drawing of the graph (95).

GraphAEL (96) supports the notion of time slice to visualize evolving graphs with a

temporal component. Frishman and Tal developed an algorithm for drawing a sequence

of clustered graphs (97) and also created a method for drawing a sequence of graphs

online based on a force-directed node-link layout (98). Animation of transitions between

time slices may also help users to understand how the graph structure evolves (97).

Bach et al. (99) designed a visual interface called GraphDiaries to improve support for

identifying, tracking and understanding changes in dynamic networks. Several other

studies (100; 101; 102) also support the idea that animation can be an effective way of

presenting transitions that are beneficial for the purpose of visualization.

However, Archambault et al. (95) also point out that the high cognitive load caused

by animation limits its use. Compared with animation, the timeline approach makes it

easier for users to identify changes in the context of the evolution, as they are still visu-

alized on the screen. Classic examples of time-series data visualization techniques such
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as line graphs and bar charts focus on presenting univariate data sets. Visualization of

multivariate time-series data is complex and requires special effort. A well-known tech-

nique dealing with this problem is the ThemeRiver (103; 104) developed for document

visualization. It is an intuitive representation of the change between both variables and

time steps. Placing node-link diagrams on a timeline is a simple way to visualize dy-

namic networks. Greilich et al. designed TimeArcTrees (105) for visualizing weighted,

dynamic compound digraphs by drawing a sequence of node-link diagrams from left to

right in a single view. When visualizing dynamic communities, line graphs are generally

used to represent individual vertices, with color-coding presenting community identity.

Works (106; 107; 108) use a timeline-based representation only. Reda et al. (108) focus on

revealing the community structure implied by the evolving interaction patterns between

individuals in dynamic social networks. Vehlow et al. (109) combine the visualization of

community evolution and dynamic graphs into a single view.

Besides mapping the time to the 2D space, visualizing temporal data based on the

space-time cube has become another popular method for dynamic graph visualization.

Gatalsky et al. (110) presented some exploratory analysis of spatio-temporal data by us-

ing the space-time cube. Groh et al. (111) used an interactive three-dimensional model

to visualize activity and social proximity in streaming event data during a given time

period. SocioScape (112) is an interactive tool for the visual exploration of spatially

referenced, dynamic social networks. The Wakame visualization system (113) can sup-

port discovering anomalies and comparing performance across multiple time series for

multi-dimensional, spatio-temporal data. Bach et al. introduced Matrix Cubes (114)
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to represent dynamic networks based on the space-time cube metaphor. However, the

technique is only scalable to a small size of networks across short periods.

Although a large number of both neuronal connectivity visualizations and dynamic

graph visualizations exist, attempting to integrate them is a challenge since the former

focus on spatial data and the latter focus on non-spatial data. Maries et al. developed

GRACE (8), a framework for the visual integration, comparison and exploration of cor-

relations between spatial and non-spatial data sets. However, our goal is to visualize the

dynamic change of multiple abstract attributes (non-spatial) of mouse brain networks

(spatial) during a period of time. We found that none of the existing visualizations

enabled all of the tasks defined in the section above. Thus, we introduce a novel visu-

alization application to assist domain experts in exploring the dynamics of mouse brain

networks at the neuron level without losing their spatial reference. Figure 18 shows an

overview of the pipeline to process the mouse brain data.

4.3 Data and Task Analysis

4.3.1 Data Analysis

The data in the target domain include flavoprotein autofluorescence imaging data from

mice brain specimens. This imaging modality has been shown to capture the activity

of a living slice across a broader field of view than calcium imaging, and with high

sensitivity and substantially higher spatial resolution than fMRI (100-200 microns) (115).

A pixel contains roughly 100 neurons, and the image acquired at a specific timestep has

dimensions of 172× 130.
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Figure 18. Flow diagram: (a) mouse brain, (b) camera, (c) time-series imaging data of
mouse brain slices, (d) generate dynamic communities using SNA and (e) present the

analysis results using the SwordPlots visualization.

We begin by computing all pairwise correlations for those 22,360 nodes (pixels) during

a certain window using the Pearson product-moment correlation coefficient (PCC). This

process leads to a weighted correlation network. A correlation coefficient threshold,

empirically determined, is used to filter out noise in order to get a cleaner network. By

repeating the computation of correlation while shifting the window one time step for

each iteration over the entire timeline T, we obtain a time series of weighted correlation

networks.
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In the next stage, we find snapshots of functional clusters using the Louvain clustering

method, followed by the application of CommDy for identifying dynamic communities.

To better understand the neuron behaviors, we need to identify some characteristics

of nodes in dynamic brain networks based on the use of CommDy. The SwordPlots

application encodes the characteristics listed below.

Raw Data Attributes. In our brain network data, the coordinates of pixels show

the real locations (regions in the brain) of the signals, and the pixel intensities represent

how strong/weak the signals at the corresponding regions are. Therefore, the pixel

values as well as their coordinates within the image are critical features for analyzing

the network.

Node Degree. The node degree for many real networks can yield insight into mecha-

nisms underlying system growth (116). Thus, there are significant benefits to visualizing

the overall spatial shape of the degree distribution and its variation with time.

Home Community. Each individual has its own home community identification

code to identify its membership. The individuals belonging to the same community

have the same home community identification code. Neurons belonging to the same

community have similar functionality.

Temporary Community. Each individual also has its temporary community iden-

tification code to identify the group where it stays at a certain time step. The individuals

staying in the same community have the same temporary community identification code.

Neurons have similar functionality to their current community, but tend to return to their

original home community after a short time.
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Consistency. Sometimes, the individual may have a stronger connection with mem-

bers in other groups. Thus, it visits other communities for a short period of time, without

changing its home community identification code. The consistency is a measurement of

times when the temporary community of a node is the same as its home community

during the entire activity period. For example, node 4 in Figure 17 belonging to the

blue community visits the pink community at T3. Its consistency is 0.8. Neurons behave

anomalously if they have low consistency.

Switchingness. Switchingness measures the percentage of times when a node

changes its membership during the entire activity period. For example, node 3 in Fig-

ure 17 changes its home community identification twice, from T1 to T2 and from T4 to

T5. Its switchingness is 0.5. Neurons with low consistency and high switchingness have

unstable functionality.

4.3.2 Task Analysis

Based on in-depth discussions with domain experts from neuroscience and computa-

tional biology, we identified five main tasks that could be enabled using a visualization

application.

• Task 1: observe multiple attributes of neurons over time to understand how neurons

interact with each other (neuron behaviors).

• Task 2: interact with an individual node (i.e, a group of neurons), such as selecting

interesting nodes at any region in the brain.
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• Task 3: find relationships between the functional and spatial structures in the

brain, to see whether two regions are close to each other or cross two sides of the

brain when they are highly correlated.

• Task 4: identify patterns in how dynamic communities change over time in order

to show functional connectivity in the brain.

• Task 5: generate hypotheses and make predictions about brain data sets.

4.4 Visual Design

The main goals of our SwordPlots application are to explore neuron behavior over time

and discover the relationships among the resulting dynamic communities in both space

and time. Our visualization technique uses a combination of different visual representa-

tions, and customized interactions to support exploration of the domain data. According

to the requirements of the domain experts, we implemented our integrated multi-view

visualization system with the following techniques. We choose to use timeline-based rep-

resentations to observe neuron behaviors over time (Tasks 1 and 4). Animation may be

helpful for Task 1 as well. Sufficient interactions are provided for our domain scientists

to interact with individual nodes (Task 2). The space-time-cube-based representation is

used to find relationships between spatial structures and network properties (Task 3).

The SwordPlots application includes four coordinated views: the image control panel; a

panel that shows recommendations and enables the filtering of data; the Space-Attribute

cube; and a viewport that presents a number of SwordPlot visualizations to represent

individual nodes. Each of these views is discussed below.
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Figure 19. A SwordPlot includes multiple integrated components for representing
time-series data and the community membership of a node in a dynamic network. This
figure shows the main elements of a SwordPlot: (a) the sword pommel for representing

the community identifications (the circle for home community and the rectangle for
temporary community) of the node at the current time step; (b) the upper sword

cross-guard for representing the node’s temporary community identifications over time;
(c) the lower sword cross-guard for representing the node’s home community

identifications over time; (d) the sword blade for representing the raw data (pixel
value); and (e) the sword point used for changing the size of a SwordPlot.

4.4.1 SwordPlot

In our design, we evaluated different visual encodings to better represent important

attributes of dynamic brain networks. Although the representation of circles and rect-

angles shown in Figure 17 is effective to visualize the community identifications, it has

limitations: it does not scale well to more than a few nodes or a few time steps; it does

not clearly track how the home and temporary community identifications of individual

nodes change over a long time period; it lacks any spatial references for the nodes. Thus,

we created a SwordPlot model (Figure 19), a timeline-based plot for each node in the

entire network. A detailed explanation of the sword parts is shown in Figure 20. A

SwordPlot provides an overview of a node’s behaviors across an entire timeline (Task
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1) and makes it easy to identify interesting behaviors at certain time steps, such as

when it changes its memberships or temporarily visits other communities. In addition,

displaying multiple SwordPlots makes it possible to compare different nodes at once to

find patterns within the data (Task 4).We also use a brain image slice view to display

the real locations (Task 3) of selected nodes represented by SwordPlots.

Figure 20. A detailed explanation of the various visual encodings within the different
components of a SwordPlot, showing the change in community over time for a single

node.

Sword Pommel. We still keep the visual representation of the community identi-

fication shown in Figure 17 using the color of the circle to represent the node’s home

community and the color of the rectangle to show its temporary community. This works

well for a single node at a particular time step. The triangle at the top left corner is used
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for mapping the node to its location in the image of the mouse brain slice. Dragging the

sword pommel to move the SwordPlot to a new location avoids overlapping by others.

Sword Body. The sword body is used to display the raw pixel value represented

by the yellow line during the selected time range. With the pixel values embedded, the

relationships between neuron signals and their community identities/structures can be

easily explored. This has the benefit of providing users with a view to see the correlations

between these two attributes by visualizing the raw data pixel values. The time labels

are drawn on the sword body as well. The time slider is used for zooming in/out on the

SwordPlot, so that the neuroscientists can focus on the time range of interest.

Sword Cross-guard. The sword cross-guard is the bar-chart based representation.

The heights of the bars in both the upper and lower cross-guards are mapped to a

statistic, e.g., node degree in this article. Since the neuroscientists are only interested in

the node degree distributions in time qualitatively, but not the exact values at certain

particular time points, we decided not draw the axes for the cross-guards. As we dis-

cussed in the Brain Network Data and Characteristics section, each individual should

have two identification codes: the home community represented by the color of the up-

per cross-guard and the temporary community represented by the color of the lower

cross-guard. We display the same color above and below if the member stays in its home

community. If the individual is visiting its neighboring community at time t then we

display a different color above (home) and below (temporary). The reason why we use

two types of bar charts to represent the upper and lower cross-guards is to distinguish

the two community identifications in a more obvious way. Missing cross-guards mean
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that the node degree is zero. In other words, the node is not active at the corresponding

time. Clicking on the end point of the thin bar in the lower cross-guard pops up a detail

panel showing some statistical information on the node at the corresponding time step.

The statistical information includes some quantitative data, e.g., the pixel value, node

degree, time point, etc.

Sword Point. To have more SwordPlots displayed and to avoid overlaps of multiple

SwordPlots in the main view, the user is allowed to adjust the size of swords interactively

by dragging the sword point. Dragging the sword point toward to the sword pommel

decreases the size of the SwordPlot, while dragging it away from the sword pommel

increases the size.

Figure 21. Transitions of the individual memberships of a node’s home community (the
lower part) and its temporary community (the upper part). The node changes its home

community identity from blue to red, and then to purple. The node visits the blue
community once when it belongs to the red community, and visits the orange

community once when it belongs to the purple one.
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Figure 21 is a demonstration of the sequence of changes of a node’s individual commu-

nity identifications. The node with its membership in blue stays in the blue community

until the time 319, and then joins the red community with change of its home com-

munity identification as well. However, it comes back to the blue community at time

326 without changing its membership. At time 329, it leaves the red community and

becomes a member of the purple community. In the next time steps, it visits the orange

community and then comes back to its home community.

4.4.2 Image Control Panel

The image of a mouse brain slice shown in Figure 22 is used as a control panel to select

an interesting node. The user clicks on a node (pixel) in the image to draw a SwordPlot

(Task 2) in the main view and add it to the list of selected nodes as well. They click on

the node in the selected list to remove its SwordPlot from the main view. Meanwhile,

the image displays the corresponding locations of the selected nodes, which builds the

connections between time-dependent attributes and the spatial information. In addition,

nodes in the selected communities are also drawn on the image (Figure 22). Playing

animation helps the domain scientists to observe the community structures at different

time steps and to track the evolution of communities. Theoretically, the SwordPlots

for all nodes can be displayed in the main view simultaneously. However, due to the

limitations of the distinguishable colors and human’s working memory capacity, the

number of selected nodes will not exceed a certain value. We discussed this with our

domain experts and decided to use ten as the maximum number.
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Figure 22. The image control panel is used for selecting interesting nodes and
displaying community structures and identities. The recommendation panel includes

the top ten communities, top ten stable nodes and top ten most connected nodes. The
circles with larger sizes indicate that the corresponding communities or nodes are

selected. The selected nodes are also added into the list in the last row.

4.4.3 Recommendation and Filtering

Besides giving the ability for the user to explore some interesting regions randomly, our

visualization provides recommendations as well to make the exploration more efficient.

The three recommendations are calculated based on three characteristics: the community

size, the node stability and the node degree. The community size is based on the total

number of members the community has during the entire time period. The stability is

calculated by two factors: consistency and switchingness. The higher consistency and

lower switchingness the node i has, the more stable it is. The most connected nodes have
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Figure 23. Four filters used to change the ranges of time, node degrees, node
consistency and node switchingness.

high accumulated node degrees during the entire time period T. Again, as we indicated in

the subsection above, we chose to use the top ten recommendations due to the scalability

of the color encoding. We used ten categorical colors for the top ten communities from

the D3 color ordinal scales, and used ColorBrewer (colorbrewer2.org) for the top ten

stable and top ten most connected nodes. The user clicks on the circle buttons of the top

ten communities to draw all of the nodes in the corresponding community. In Figure 22,

the top five communities are selected to display on the image of a mouse brain slice.

However, only the top two are being observed at the current time point. Figure 22

also shows the two most stable nodes with larger blue dots and the two most connected

nodes with larger red dots. Filter sliders (Figure 23) are used to detect interesting

features including time, node degree, node consistency and node switchingness. The

main contribution of the filtering operation is to offer the user a way to explore the

relationships between different attributes. For example, nodes that are located near

the boundary of the activation area may have higher switchingness than nodes in the
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center. Nodes with higher degree have slightly lower consistency compared with nodes

with lower degree.

4.4.4 Space-Attribute Cube

We create a 3D model to represent a network statistic with the spatial reference in the

brain networks. This is similar to but has important differences from the idea of the

Space-Time Cube. According to the technique of the Space-Time Cube, the vertical

dimension represents the positions of an object at different moments in time. In our 3D

model, nodes can be represented in a cube as dots placed vertically according to one

property value of the dynamic networks, such as node degree. We call this 3D model

the Space-Attribute Cube. Color in the Space-Attribute Cube, like the SwordPlot, is

used to represent the community identifications. The Space-Attribute Cube reveals the

distribution of node degrees of all active individuals in space, and how the distribution

is related to the community structure. The left cube in Figure 24 demonstrates such a

case, with the nodes belonging to the same community (red) located in different regions

of the brain (a)-(c) with very different distributions of node degrees. One explanation is

that the red nodes in (a) have strong connections with the nodes at the top of (b) and

(c), but few connections with nodes that are also located in (a).

To overcome the problem of occlusion in 3D representations (perspective projection)

of data, the visualization provides three options for the user to rotate the Space-Attribute

Cube along the X, Y, and Z axes in either the clockwise or the anti-clockwise direction.

To discover how the property measured in the third dimension changes over time, anima-

tion is applied to the Space-Attribute Cube. The animation starts playing on pressing
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Figure 24. Space-Attribute Cubes at two time steps. Each individual node is
represented by a colorful dot. The color indicates the community that the node

belongs to. The X and Y coordinates show the real location of the node in the brain.
The height of the node represents its corresponding node degree.

the play button and pauses on pressing the pause button. Once the animation is paused,

the user can press the left or right arrow key on the keyboard to advance the animation

one frame forward or in reverse. Animation used in the Space-Attribute Cube provides

a spatial form representation for multivariate time-dependent data and a temporal rep-

resentation for multivariate spatial data. Figure 24 presents different distributions of

node degrees at two time points. The left cube at earlier time indicates that the right

side of the brain has stronger connections than the left side, while the right cube at later

time shows the opposite situation.
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4.5 Evaluation

We used the imaging data of 172× 130×T, as described in the Brain Network Data and

Characteristics section, to evaluate the SwordPlots application. Here, T is the number

of frames, which is different (between 1000 and 2000) for different data sets. We build

correlation networks based on these 22,360 pixels per frame captured during T frames,

and then apply the CommDy method, as discussed in the Community Analysis section,

to the time series of these networks.

4.5.1 Case Study I: Coronal Slice Preparation

For the first case study we looked at a coronal slice preparation of a mouse brain. The

data contain mirror image connectivity where the two cerebral hemispheres are con-

nected by a single easily manipulable conduit of information flow: the corpus callosum.

One hemisphere of the brain is stimulated, and the activation of correlated areas in

the contralateral hemisphere is measured. To assess whether the dynamic communities

identified by CommDy correspond to known neuronal networks, after trans-hemispheric

networks are characterized, the corpus callosum is cut using microscissors. We then

optimize the CommDy analytical parameters based on known changes to the network

induced by callosotomy. All data are collected at 70 frames per second using a 2.5X

objective and a Retiga Exi camera with 8× 8 hardware binning and StreamPix software

for image collection.

Figure 25 shows, in an in-vitro preparation, an example of the behaviors of two

nodes at analogous locations across the two hemispheres in (a) the pre-cut and (b) the

post-cut conditions. From the SwordPlots in Figure 25(a), we find that the two nodes
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have similar trends of raw pixel value, similar distributions of node degrees in time, and

the same community identifications (red) during most of the time. This indicates the

similar behaviors of the two nodes across the two hemispheres. From the observation

of the image slice view using animation, we see the partially symmetrical structure of

the red community in both hemispheres where the two nodes are located. We then find

more nodes with such similar patterns in that region using SwordPlots, illustrating the

connection between the left and right sides of the mouse brain. The Space-Attribute

Cube is used to explore the community structure, which reveals some information that

cannot be retrieved from the image slice view. For example, we may not be able to

see any difference between two time steps through the image slice views, but we can

obviously see the variation in node degree using the Space-Attribute Cube.

After the corpus callosum is cut (Figure 25(b)), we can easily see that the activation

in the two hemispheres happens at different times via the SwordPlots, and moreover

that there is no community across the two hemispheres. Since there is a long period of

silence between two activations, animation is not an efficient way to identify when the

activation occurs. However,we can target the interesting time periods directly by using

the SwordPlot view. The views of the Space-Attribute Cube also show an interesting

phenomenon, where a community (purple on the right side of the brain or green on

the left side) has a distinctly different distribution in node degree, which causes the

ring structures shown in the image slice views. One explanation is that nodes in the

outer ring have strong connections with the nodes in the upper right region, but few

connections with each other.
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Figure 25. The behaviors of two nodes in the coronal slices of the mouse brain (a)
before and (b) after the corpus callosum cut are displayed using the SwordPlots, with

the snapshots of 2D and 3D views at two time steps.

4.5.2 Case Study II: Impact of Aging and/or Peripheral Hearing Loss on

AC Activity

For our second case study, we investigated the impact of aging and/or peripheral hearing

loss on auditory cortex (AC) activity. We examined network activity in the AC in

slice preparations (115; 117) taken from young and aged mice. We used the auditory

thalamocortical slice, which contains large areas of the AC. For this study we had two

main hypotheses: 1. Aging is associated with diminished network associations within

the AC.; 2. Changes in network activity with aging are caused, at least in part, by
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peripheral hearing loss. Using the SwordPlots visualization tool, we were able to assess

the likelihood of the validation of these hypotheses.

Figure 26. The behavior of one node in the auditory thalamocortical slices of (a) a
young mouse and (b) an aged mouse is displayed using the SwordPlots, with the

snapshots of 2D and 3D views at two time steps.

In a different animal, using an in-vivo preparation, Figure 26(a) shows the behavior

of a node in the AC in a young mouse. Its SwordPlot indicates its consistency within

the red community during the active period. We can also see an outer ring structure in

this data set. However, the SwordPlot of a node at a similar location in Figure 26(b)

of an aged mouse shows frequent changes in colors within the sword cross-guard area
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as well as inconsistencies between the upper and lower cross-guard colors, indicating a

high switchingness and a low consistency. This demonstrates the instability of the aged

mouse brain.

We also found contrasting community structures in the young and aged mice. In the

young mouse, the red community is mainly in the center of the AC surrounded by the

blue one, while in the aged mouse the red community stays in the left part of the AC

and the green/blue one is located on the right side. The views of the Space-Attribute

Cubes also show that the young mouse has only one peak of the node degrees, located in

the center red community, but the aged mouse has two peaks that are apparent on the

left (the red community) and right sides (the green/blue community). These differences

between the young and aged mice, shown clearly in the SwordPlots application, provide

an initial validation for our hypotheses.

4.5.3 Informal Feedback

To further evaluate our approach, we also interviewed two graduate students who each

have extensive experience in visualizing functional neuroimaging data. The first is a

graduate student with over five years’ experience working with MRI machines in a Speech

and Hearing laboratory at a research university. The second is a graduate student in

computer science who is working with a laboratory in the Department of Psychiatry at

another university to develop techniques to analyze properties of the human connectome.

After a brief introduction to the system and an explanation of its features and primary

visual encodings, we conducted a cognitive walk-through, asking each of them to carry

out tasks using an example data set. During the walk-through we encouraged them to
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ask questions and to give us feedback. We were interested primarily in the qualitative

response of experts who were not familiar with the specific design goals of the technique,

and to see what its utility might be to experts in a different area, but who make use of

similar data.

The feedback was generally positive; they both stated that they liked using the system

and that they found the visualization approach interesting and potentially useful. One

of them said that the SwordPlot representation provides an “easy way” to understand

the “changing of community identifications,” and that it “packages a lot of information

well.” However, they were split on the novelty of SwordPlot’s visual encodings. One

said that he had not seen anything like it, while the other said that “the combination

of timelines is not novel,” but admitted that it did seem like it would “give an intuitive

and effective way” for him to explore his data. One participant mentioned that he

liked the way in which raw data were linked to the community identifications and node

degrees, and noted that it could be useful for revealing potential correlations between

those attributes.

In addition to these general comments, each of the participants provided more de-

tailed feedback about some of our specific design choices. One of the participants wanted

to know why we limited users to the selection of a maximum of ten simultaneous Sword-

Plots. We acknowledged that, due to limits of screen space, there is a trade off between

the ability to show detailed information and displaying more models, which could enable

a user to find similar patterns across multiple nodes. The participant then agreed than

more than five or six would probably provide an overwhelming amount of information
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and would be difficult to perceive. The other participant said that he would rather have

more detailed information provided as he could not imagine the need to ever focus on

comparing more than two nodes at the same time. One of the participants liked the rec-

ommendation operation, as it provides a useful starting point for investigating the data.

He told us that “it would be nice to have the top ten least connected nodes available as

well,” and that he would like to have the ability to choose a node with a specific rank.

The other participant told us that he liked the ability to apply a combination of filters,

which seemed like a helpful way to discover patterns, for example, to see how certain

nodes are sensitive to a certain feature given a fixed range of other features.

Both of the participants indicated that they found the 3D view informative. One of

them told us that it would be “totally useful” to see the coordinated image slice view

and SwordPlots together. Both of the participants opened the 3D view of the Space-

Attribute Cube after they noticed interesting patterns in the image slice view. One told

us that they would like to have the ability to interact further with the 3D view of the

Space-Attribute Cube. He also wanted to know how the Space-Attribute Cube, and our

tool in general, would handle volumetric data rather than image slices. Overall, both of

the experts told us that they saw this as a compelling tool overall, and indicated that

they would be interested in trying it out on their own data sets.

4.6 Discussion

The two case studies indicated that our interactive multiview visualization application

with animation can be of significant help in the exploration of neuron behavior within

dynamic communities of mouse brain networks. While the individual visual encoding is
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not novel, the combination of visual encoding in a tool to integrate spatial and nonspatial

features along with the application of dynamic network analysis to neuroscience research

has not been performed before. Our use of the multiple coordinated views through

interactive filtering and color-coding provided us with new insight into this domain

problem. In addition, it also steered our investigation, and allowed us to identify changes

in analysis parameters that aided our visualization of these data sets.

In terms of limitations, although the stable nodes are disjoint from the most con-

nected nodes, the colors for these two types of nodes toward to the right in the control

panel are not easy to distinguish. Additionally, the select nodes might not be visible if

their colors are very similar to the communities that surround them. Overall, the use of

color in the image control panel needs to be reconsidered.

In conclusion, we presented SwordPlots, an interactive application for visualizing

neuron behavior within dynamic communities of brain networks. The design of the

SwordPlots application coordinates multiple visualization approaches, including the use

of animation to show change over time, the introduction of a novel 3D representation

called the Space-Attribute Cube, and the SwordPlot itself showing details about indi-

vidual neuron behavior. The SwordPlots provides the visual exploration at detailed

neuronal levels while showing the community structures in the brain slice as an overview

of a single brain activation. However, a selection of a subregion in the brain that could

benefit the multi-scale visual exploration is not enabled. Additionally, SwordPlots is

developed for the visual exploration of dynamic brain networks from a single activation,

which is not sufficient for comparing multiple networks as our domain experts run multi-
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ple experiments with different subjects. In the next chapter, I will present a novel visual

representation to build the gap between the exploration at an overview and a detailed

level, and propose a side-by-side view paradigm to compare brain activity networks.
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5.1 Introduction

This chapter presents the continuing work of visualizing dynamic brain networks that

places additional focus on providing a multi-scale comparative visualization, while still

integrating spatial and non-spatial features. Advances in imaging technology allow, at

increasing pace, the comparative investigation of functional connectivity dynamics at

multiple scales, both at the temporal level (time-series, trials) and at the spatial level

(neurons, neurons grouped in pixels, regions of interest). In computational neuroscience

and computational systems biology, each imaging snapshot captures one activation pat-

tern in the temporal behavior of a biological system. The connectivity is then extracted

from these images, in the form of networks with large numbers of nodes (over 20,000).

90
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Next, computational models are employed to calculate the functional network dynamics.

In order to study the mechanisms of disease or aging, the process of imaging and model-

ing is performed repeatedly over multiple subjects, specimens or conditions, leading to a

rich tapestry of spatio-temporal imaging and computing data that need to be analyzed.

Visual analysis of such complex neuroimaging data can help domain experts understand

temporal features along with their spatial references.

In this Chapter, we present the design and implementation of RemBrain, a novel vi-

sualization tool for the comparative analysis and exploration of dynamic brain activation

networks at multiple scales. RemBrain (named after the intrepid Pixar rodent Remy)

is a multi-scale web-based application that supports the tracking of temporal network

behaviors. Responding to the novel data characteristics above, RemBrain integrates

interactive, multi-scale 2D visualizations of imaging data; displays network connectiv-

ity data for each activation snapshot; captures the temporal behavior of a subregion of

nodes using novel encodings; and supports pairwise visual comparison of multiple ac-

tivations. This work, a follow-up to the award-winning Swordplots (14) (published in

JIST), enables the exploration and comparison of different activations at multiple levels

in dynamic biological networks.

5.2 Related Work

5.2.1 Brain Connectivity Visualization

Many techniques exist for visualizing brain connectivity at either macroscopic (region

level) (16; 17; 84; 89; 90) or microscopic (neuron) scale (93; 18; 21; 22; 23). In this work,

we design a neural encoding inspired by the sword-plots of Ma et al. (14). However,



92

to the best of our knowledge, no other visualizations exist for multi-scale biological

connectivity data.

Our data further blends spatial and non-spatial features. Marai (?) identified two

prevalent paradigms for integrating spatial and non-spatial features: overlays and multi-

ple linked views. In neuroscience studies, an overlay approach (16; 118; 119) is commonly

used when the non-spatial feature represents only functional connections. However, as

the non-spatial data becomes more complex (activation levels, connectivity, clusters,

dynamic characteristics, other statistics), the linked-view paradigm (20; 21; 22; 23) be-

comes the default choice. Nowke et al (18) uses a hybrid approach that consists of

both overlays and linked views. We follow a similar hybrid approach to support the

exploration of dynamic biological networks.

5.2.2 Dynamic Network Visualization

In static network visualization, the most common visual representations are node-link

diagrams (120) and matrix-based visualizations (121). Several projects (122; 123) use a

hybrid approach that combines both representations.

Dynamic networks and graphs are usually visualized using either animation or a

timeline-based representation (94). Several projects (97; 98; 96; 124) use animation to

represent networks with temporal components. To display dynamical changes of net-

works into a single static view, Greilich et al (105) placed a sequence of graphs onto a

timeline. Several other projects (106; 107; 108) use timeline-based representations to vi-

sualize the evolution of communities in dynamic networks. Rufiange and McGuffin (125)

presented a hybrid approach for visualizing dynamic networks. In addition to mapping
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the time to the 2D space, Bach et al. (114) developed a Matrix Cube representation

based on the space-time cube metaphor. The Matrix Cube shows the network structure

using the 2D matrix and maps time to a third dimension. However, their technique is

only scalable to networks that consist of a few nodes across short periods.

While, as shown above, a large number of visualization techniques exist for static

brain connectivity, as well as for dynamic non-spatial networks, to the best of our knowl-

edge this novel domain is the first to require visualizing and integrating both types of

data.

5.2.3 Multi-scale and Comparative Visualization

In the visual analysis of neuroscience data, VisNEST (18) and NeuroLines (22) inte-

grate data at macroscopic level with microscopic level. We similarly adopt a multiple

views approach for different levels using both focus+context and details-on-demand. Vi-

sual comparison of brain spatial-nonspatial data is a relatively new research problem in

neuroscience. Only a few tools (8; 126) can be found. Maries et al (8) introduced a com-

parative framework for mining brain geriatric data. Lindemann et al. (126) presented

a comparative visualization system that explicitly encodes changes of brain tumor seg-

mentation volumes in shape and size before and after treatment. Outside the application

domain, Gleicher et al. (10) proposed a general taxonomy that groups visual designs for

comparison into three categories: juxtaposition (side-by-side), superposition (overlay)

and explicit. Because of the complexity of our data, in our approach we use side-by-side

linked views.
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5.3 Data and Task Analysis

5.3.1 Data Analysis and Processing

The input data consists of flavoprotein autofluorescence imaging data collected, in this

case, from mice brain specimens captured in the TIFF format. A pixel contains roughly

100 neurons, and the image acquired at a specific timestep has dimensions of 172× 130,

leading to a file size of 24KB. One activation cycle lasts about 100 timesteps. Figure 27

(a) shows an example of a time series data collected from mouse brain slices. The

imaging data is processed in three steps: 1) infer a network model, 2) perform dynamic

community analysis, and 3) compute community metrics. The first two steps have been

introduced in the last Chapter, so only the computation of community metrics will be

discussed below.

Metrics Computation The dynamic community characteristics are used to gen-

erate metrics that summarize the behavior of active nodes. CommDy quantitatively

describes the characteristics of the inferred networks, at both node and structural level,

based on network analysis theory (127). We use 10 relevant metrics to describe the

interactions between nodes. These metrics include the average time spent by a node in

a community, the number of jumps across communities executed by a node, the frac-

tion of node peers who were its peers in the previous time step and so on. All these

characteristics are normalized to a value within the range of 0 to 1. Table II summarizes

the full list and definition of the node metrics. Based on the results produced from the

current datasets, the number of active nodes varies with different activations of different

subjects from approximately 5,000 to nearly 10,000.
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Figure 27. Data processing. (a) Neuroscientists collect time series of biological imaging
data (in this instance, mouse brain slices). Bright spots in each image indicate

activated (firing) neurons. (b) We use the Pearson correlation method to construct,
from these images, an equivalent time series of correlation networks (top, abstraction).
The correlation networks (bottom, image overlay) correspond to three time steps; blue

dots encode the active nodes and green edges encode the links between correlated
pairs. (c) We apply CommDy to these networks to infer dynamic communities (top,

abstraction). Four communities (blue, green, orange, red) are overlaid on mouse brain
images, for three time steps, in the bottom image.

5.3.2 Task Analysis

Based on several interviews with a domain expert, we identified the following tasks for

the comparative analysis of brain activations, and in particular for understanding how

aging impacts the auditory cortex (AC) of mice:

• Task 1 : Explore the community spatial distributions at multi-scale. Brain imag-

ing data contain thousands of nodes. Neuroscientists need to get an overview of

the entire dataset, but also to observe a subregion or even an individual node in

detail.

• Task 2 : Track temporal changes at multiple levels. Be able to observe the evo-

lution of communities over a user-defined time window, compare the temporal



96

behaviors of nodes in the same subregion, or track the behavior of a particular

node across the entire time period.

• Task 3 : Explore relationships between functional connections and spatial struc-

tures. An interesting and expected finding would be that specific nodes located in

different regions of the brain have similar temporal behaviors.
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Static/Dynamic Node Attributes Attribute Descriptors
Static Spatial Location Coordinates in the grayscale image of a brain slice

Dynamic Signal Value Pixel (node) intensity value: 0 255 (8 bit)
Dynamic Node Degree Number of connections a node has
Dynamic Home community The community a node belongs to
Dynamic Temporary community The community a node currently visits

Static Observed Number of time steps a node is active or observed
(normalized by the entire time steps)

Static Time span Average span of the communities (the last time step minus the first time step of
the community’s existence) with which an individual is affiliated (as a member or absent)

Static Switching Number of community switches made by an individual
(normalized by the number of time steps an individual is observed)

Static Absence Number of absences of an individual from a community
(normalized by the number of time steps an individual is observed)

Static Visiting Number of visits made by an individual to another community
(normalized by the number of time steps an individual is observed)

Static Homing Fraction of individual’s current peers, at each time step,
who were peers in the previous time step

Static Avg group size Average size of group of which an individual is a member
Static Avg community size Average size of community of which an individual is affiliated (as a member or absent)
Static Avg community stay Average number of consecutive time steps an individual stays as a member of

the same community (normalized by the number of time steps an individual is observed)
Static Max community stay Maximum number of consecutive time steps an individual stays as a member of

the same community (normalized by the number of time steps an individual is observed)

TABLE II

DATA DESCRIPTORS FOR DYNAMIC BIONETWORK ANALYSIS.
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• Task 4 : Compare the differences in temporal and spatial behaviors between young

and aged animals at multiple levels.

These tasks map to three groups in the visual data analysis taxonomy (6): Explore:

Task 1, Task 2, Task 3 and Compare: Task 4.

Figure 28. RemBrain implements a visual approach for the analysis of spatiotemporal
brain network data. Two aggregate panels (a) and (b) encode the spatial distribution

of neuron communities in mouse brains, overlaid with the medical imaging data.
Mosaic-Matrix views (top left of panels) encode temporal changes in a selected

subregion. Two timeline views (c) and (d) show the number of active nodes over time;
(c) shows that the activation has 8387 active nodes at timestep 50, and (d) shows the

activation has 6890 active nodes at timestep 48. Two mirror glyphs and Kiviat
diagrams (e) and (f) allow tracking dynamic changes over time at a single node level.

A control panel (g) enables filtering of node communities; colors are mapped to
community IDs.
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5.4 Visual Design

The spatio-temporal datasets and comparison tasks captured above are particularly com-

plex. Furthermore, they feature a mix of spatial and nonspatial data, and the experts

lack familiarity with complex visual encodings. Because of these combined reasons, we

follow a coordinated multi-view top-level design, which has been shown to assist in vi-

sual scaffolding (?). In this design, a set of multiple views at different scales provides

guidance to the domain expert when exploring the data. In addition to the exploration

tasks, pairwise comparison is supported by side-by-side views (Task 4 ).

Figure 28 shows the interface of RemBrain, which consists of four main visual compo-

nents: 1) an overview spatial panel (Figure 28 (a) and (b)) that nests subregion temporal

information through a Mosaic-Matrix encoding; 2) an individual behavior panel (Fig-

ure 28 (e) and (f)) that includes a novel Mirror glyph to display in detail the dynamic

attributes for a particular node, and a Kiviat diagram for the summarized characteris-

tics of the corresponding node; and 3) a timeline representation (Figure 28 (c) and (d))

that controls the spatial panel and the Mosaic-Matrix view. These multi-scale views

are linked through interaction. Two sets of each panel are placed side-by-side for visual

comparison.

The side-by-side comparison design, in conjunction with the multi-scale views, sup-

ports Task 4. The slice-based panel displays the community distribution in space and

thus explicitly supports Task 3. The individual behavior view enables exploration at

the level of individual nodes (Task 2 ). The Mosaic-Matrix enables exploration at the

level of sub-regions (Task 2, Task 1 ). The three views work together to support Task
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1 through Task 3. Below we describe in detail each visual component. The web-based

visualization tool is implemented in JavaScript using the D3 data visualization library.

5.4.1 Aggregate Slice Panel

The slice-based view shows the community distribution map overlaid upon the brain slice

image. In this distribution map, nodes are color-coded by their Home community ID.

To enable multi-scale temporal analysis (Task 2 ), instead of displaying the community

information at a single time point, we aggregate over a user-selected time period and

color the active nodes by their most common community during that time period. We

assign to each of the 10 largest communities a unique color (Figure 28 (g)) from a

qualitative colormap from ColorBrewer2.org. Nodes colored in gray are either inactive

or belong to a community not in the top ten. A control panel filters which communities

are shown. The view is automatically updated according to the selection in the timeline

widget (Figure 28 (c) and (d)).

5.4.2 Individual Panel: Mirror glyphs and Kiviats

The aggregate slice-based view shows the spatial distribution of communities. However,

it is also important to display the temporal distribution of communities, along with other

temporal attributes. To this end, the individual behavior panel combines in a novel de-

sign time-dependent numerical and categorical data. This detail view allows users to

explore in detail the dynamic behavior of individual nodes through a timeline-based

representation. The panel (Figure 28 (e) and (f)) integrates a mirror glyph for analyz-

ing the temporal node data and a Kiviat diagram for visualizing multiple summarized

characteristics.
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5.4.2.1 Mirror Glyph

The mirror glyph which is a simplified version of the SwordPlot supports tracking the

characteristics of a particular node over time (Task 2 ). These dynamic characteristics

include raw signal values, node degrees, and two community identification codes over

time, the Home community and the Temporary community (Table II).

Figure 29. Mirror glyph showing a node that belongs predominantly and consistently
to the green community, as its signal increases over time, without much visiting or
switching. The only temporary visiting event happens at t1, when the node briefly

visits the blue community. Two switching events happen at times t2 and t3, when the
node joins the orange community, followed by the blue, just as the node signal is about

to peak (middle trunk). The node degree (chart height and content) is almost
symmetric: the Temporary community (upper chart) almost mirrors the Home

community (lower chart).
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Each mirror glyph (Figure 29) has three components: middle black trunk, upper

bar chart, and a mirror-like lower bar chart. The height of the upper and lower bar

chart represents the node degree over time, because domain experts indicated the de-

gree evolution over time was the important quality in this context, next to the Home

and Temporary IDs. The upper chart color encodes the Temporary community while

the lower chart color encodes the Home community. The color of bars in the charts

indicates the community ID of the node over time. Mouse interaction further shows the

type of community represented by a bar. While the upper and lower charts are often

almost-symmetric (hence the “mirror” aspect), they can also be asymmetric. Frequent

horizontal color changes in this composite glyph indicate node instability. Similarly, a

vertical asymmetry between the upper and lower charts indicates high instability.

The line plot in the middle black trunk of the mirror glyph encodes the variation in

raw signal intensity over the activation period, from 0 to 100, which is the maximum

number of timesteps in our datasets. The trunk’s gray segment highlights the user-

selected time period. The vertical axis indicates the maximum node degree during the

entire timeline. Figure 29 illustrates how this composite glyph can capture dynamic

node behaviors. The end mirror glyph result captures a high temporal resolution of

the node behavior. The spatial location of the corresponding node is highlighted in the

aggregate slice-base view.

We converged towards this streamlined mirror glyph design through parallel proto-

typing with multiple iterations; some prototypes were completed on paper, and some

in software. Driven by the experts’ preference for clarity over compactness, the glyph
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design converged towards this dual layout, as opposed to stacked graphs or a non-flipped

layout. To this end, we note that the data itself was extremely complex and that detect-

ing brief community visits was relevant to the tasks. Similarly, the raw signal intensity

and its evolution over time in relation to the community distribution and degree were

task-relevant. In this case, the trunk design favored the signal charts that the experts

were familiar with.

Figure 30. Kiviat diagrams for two nodes that reside most time in the green,
respectively blue community. The Kiviat shapes indicate that the green node has

longer activation duration, stays in particular communities for longer periods, and is
more consistent with its Home community. Conversely, the blue node switches its

Home communities and visits other communities more often. Note the
details-on-demand and index indirection dictated by real-estate constraints.

5.4.2.2 Kiviat Diagram

To encapsulate the 10 summarized attributes (e.g., observed, time span, switching, etc.)

shown in Table II, either parallel coordinates or star plots are natural choices. However,
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in the parallel prototyping stage, PCPs were overruled due to low visual literacy among

the domain experts and to their less compact appearance. The experts’ specific goals, in

this case, were detecting significant differences and similarities in the data, to be later

analyzed quantitatively (as opposed to precise visual comparison). In fact, one of our

two experts remarked on the imprecise nature of measurements computed at the single

node scale. Because the experts further favored legibility over precise comparison, we

converged towards a star-based Kiviat diagram encoding (Figure 30), as opposed to a

line-based star plot, or simple dots on axes. Nevertheless, the Kiviat representations can

be optionally superimposed (with transparency) to better support comparison. Each

axis of the Kiviat diagram represents one of the ten node metrics. The most common

community of a node is encoded in the color of the Kiviat diagram.

5.4.3 Mosaic-Matrix View

The aggregate slice-based view shows the community spatial distribution at an overview

level with high spatial resolution, but low temporal resolution. On the other hand,

the individual panel shows the community temporal distribution per node with high

temporal resolution but low spatial resolution. While each of these representations

has strengths, our task analysis indicates that visual exploration at a level with both

reasonable temporal and spatial resolution was important. To support this type of

analysis, we design a Mosaic-Matrix encoding. The encoding captures temporal and

regional changes and integrates them into the community spatial distribution map.

Because nodes are densely located in brain slices, using 1D timeline-based repre-

sentations was not feasible. Instead, we adopt a compact two dimensional layout to
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encode time-dependent behavior. The layout is composed of a set of cells that define a

Mosaic-Matrix. The set corresponds to a node region, and each cell encodes the tempo-

ral behavior of an individual node in that region (Figure 31). Each cell, in its turn, is a

2D dense pixel layout that wraps time into 2D. The sub-cells encode with color the set

of communities that node belongs to during the selected time period. Figure 32 shows

two Mosaic-Matrices for a subregion of 9 nodes across 33 timesteps (left), respectively

64 nodes across 12 timesteps (right). Figure 31 further demonstrates the nesting of com-

munity temporal information across 64 time steps into the brain slice of an aged mouse.

The selected area highlighted in the black circle is a region of 9 nodes. Each of the nine

nodes within the selected region is represented in the Mosaic-Matrix as a cell. The 64

(8 × 8) sub-cells encode temporal behavior, with time increasing from left to right and

top to bottom. Figure 31 shows an experiment that would only be useful to deploy in

cases where there is access to a high-resolution display wall.

However, the integrated temporal features may not be easily observed when display-

ing the entire brain slice. Additionally, zooming into a small region loses the relevant

spatial references. Therefore, we enabled a detailed region view without losing the con-

text of the slice. The resulting Mosaic-Matrix view is composed of several sets of cells.

Figure 32 (a) displays the temporal behavior across 33 time steps, while Figure 32

(b) displays 12 time steps. In Figure 32 (a), the node in the top-left corner of the Mosaic-

Matrix is initially part of the green community, then moves to the orange community,

and finally joins the pink and blue communities in the last two timesteps. Unlike the
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Figure 31. Integration of temporal community characteristics into the brain slice of an
aged mouse, across 64 time steps. It is an experiment that would only be useful to

deploy in cases where there is access to a high-resolution display wall.

traditional timeline-based (one dimension) visualization for time series data, the Mosaic-

Matrix view allows us to effectively nest the temporal features into the spatial structures.

Users can both interactively translate a selection lens in the slice-based view and

drag the zoom size slider in the control panel (Figure 28 (g)) to adjust the region size

(number of nodes) selected. The Mosaic-Matrix can flexibly capture from one node to

100 nodes, as well as from one to 100 time steps, the length of the entire timeline in this

study. Because in this study more than half of the brain slice was inactive at all times,

we overlay the Mosaic-Matrix view on the top-half of the slice, to efficiently use space.
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Figure 32. Two Mosaic-Matrix views representing two regions (at different zoom levels)
across different time periods: (a) a region of 9 nodes across 33 timesteps; (b) a region

of 64 nodes across 12 timesteps. In (a), the node in the top-left corner of the
Mosaic-Matrix is initially part of the green community, then moves to the orange

community, and finally joins the pink and blue communities in the last two timesteps.
In (b), the mosaic captures instability (frequent changes) in the region selected.

In cases where the image activation data may become obscured by the Mosaic-Matrix

view, the Mosaic-Matrix window can be moved by dragging the upper gray bar.

5.4.4 Timeline Widget

The timeline widget enables navigation over time in the slice-based view and mosaic-

matrix view. Using the widget, a user can click and drag to select the time window. To

further help identify the time window during which each slice is most active, the timeline

widget also encodes as a plot the total number of active nodes over time (Figure 28 (c)

and (d)). Two dashed lines mark peak activity — the timestep with the largest number

of active nodes.
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5.4.5 Synchronization and Comparison Support

To support the pairwise comparison of activations (Task 4 ), we adopt a coordinated

side-by-side dual layout (Figure 28 (a)-(f)). This layout integrates multiple views at

different levels: two slice-based views, two timeline views, two Mosaic-Matrix views,

and two individual behavior panels. In our experience, because of the data complexity

and a large number of differences in the datasets that are typically compared, the use

of juxtaposed views effectively reduced visual clutter when compared to superposition.

Moreover, the domain experts valued raw data and strongly objected to the superposi-

tion of brain slices (via registration) from different specimens. Although the Individual

Behavior panel does lend itself to superposition, and we do support Kiviat overlays, the

designers and the domain experts converged to a side-by-side layout for all views, in

order to maintain consistency. As in other studies that involve domain scientists and

require visual scaffolding (128; 8), we found that design clarity and consistency principles

take precedence over expressiveness.

Because domain experts perform the comparison in both the spatial and temporal

domain, we implement two default options for synchronization: a timeline synchroniza-

tion (timeline widget) and a region synchronization (aggregate slice view). However,

when comparing different specimens, the activations and spatial structures may not be

completely aligned. Because of this constraint, we provide an asynchronization option

as well, which allows the domain experts to manually align temporal or spatial features.
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5.5 Evaluation

We evaluated RemBrain through a combination of multiple demonstrations and case

studies (real data, real tasks, real users) with our collaborators: an established neurosci-

entist researcher who specializes in computational biology, neuroimaging and neurobiol-

ogy, and a senior researcher in sensory-motor performance, who has a broad background

in studying the adaptation of motor systems and imaging data from physiological sys-

tems. Both experts have been working together on dynamic brain network analysis

for several years. Throughout the evaluation process, we used a “think-aloud” tech-

nique (129), which asks users to verbalize their thoughts as they interact with the system,

and we collected feedback at the end.

Here we report a case study performed separately by the two scientists, in separate

sessions. In this study, the domain experts seek to understand the impact of aging on

the auditory cortex (AC) in mouse brains. To this end, they had collected imaging data

from a young mouse and an old mouse. Brain slices from each specimen were artificially

stimulated, and the resulting activation levels were imaged as a time series. The case

study and verbiage reported below have been simplified for a lay audience.

5.5.1 Case Study: Aging Analysis in Mouse Brains

The domain experts wished to investigate how aging relates to auditory processing

changes, through the comparison of network activity in the AC from young and aged

mice, at multiple scales (Task 1 through 4 ). Each expert started by loading the dataset

of the first activation of young mouse No.40 (5.5 months) and the dataset of the first

activation of aged mouse No.38 (22 months) in the two side-by-side views.
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Figure 33. Case Study: Aging Analysis. The slice-based views (a) and (b) capture a
difference in the community spatial distributions between young and aged mice. The
Mosaic-Matrix views in (a) and (b) present both the spatial and temporal features of

communities in two similar regions of young and aged mice. The timeline views (c) and
(d) show a higher total number of active nodes for the younger specimen. While the

(a) (d) views compare the two specimens at a high and regional level, the individual
behavior views (e) and (f) allow for comparison at the individual node level, both

spatially and temporally.

Overview spatial, multi-scale in time exploration. The analysis started at

the high overview level of the entire AC. The community distribution differences were

immediately noticed in the slice-based panels (Figure 33 (a) and (b)): over the same

time window, the young mouse AC features an additional community, shown in green.

The young mouse AC (Figure 33 (a)), in particular, featured a ring-type structure of

community distributions. That structure was stable even as the experts translated and
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scaled their time window selection in the widget (Task T2, T4 ). In contrast, the

community distributions in the aged mouse AC (Figure 33 (b)) were less structured. In

fact, the neuroscientist expert noted that no contiguous region in this brain image was

associated with one single community. The second expert noted that in the timeline

views the activations from the two specimens decayed at different rates after reaching

their peak. The timeline also captured a higher total number of active nodes for the

younger specimen, which was expected. The domain experts concluded that the connec-

tivity between neurons diminishes with age, which “probably correlates with a particular

receptor [decay]”.

Regional spatial, multi-scale time exploration. The multi-scale analysis moved

next smoothly to the regional-scale captured by the Mosaic-Matrix views (Task T1, T3,

T4 ). For this analysis, the experts disabled synchronization, and manually selected two

regions (marked by red boxes) in roughly the same area of each AC. The difference in

the dynamic community behavior between the two regions was striking. The cleaner

and predominantly blue Mosaic-Matrix view in Figure 33 (a) captured a homogeneous

dynamic behavior in the young mouse AC region. Most nodes in this brain region spend

their time in only one community, blue. In contrast, the Mosaic Matrix for the aged

brain in Figure 33 (b) indicates significant instability, which revealed the heterogeneity

of the aged mouse AC. Only a few nodes stayed in a single community during the user-

selected time. Furthermore, the aged AC network was significantly more fragmented

over time, especially as the experts enlarged the time window size. The experts moved

their attention repeatedly between the regional scale and the overview scale.
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Individual spatial, multi-scale in time exploration. In the final analysis stage,

the dynamic behavior at the scale of a single node was taken into consideration, in

addition to the previously-examined spatial scales (Task T1, T4 ). In several iterations,

the experts selected specific cells in the Mosaic Matrix, one at a time, and examined

them through the individual panel (Figure 33 (e) and (f)). The nodes examined in this

figure are located in the bottom left corner of the Mosaic-Matrix views. Surprisingly,

both young and old nodes exhibited symmetric behavior with respect to their Home

and Temporary distribution. However, the node degree over time was almost double for

the young neuron, when compared to the old. Furthermore, the mirror glyph encoding

quickly showed, for example, that sample nodes in the young mouse brain featured few

major changes in dynamic communities over the entire time window. In Figure 33 (e),

the selected node switches only twice closed to the start of the window, from green to

blue and from blue to purple. In contrast, the aged mouse node shown in Figure 33 (f)

switches much more frequently at the start of the activation.

The difference noted above was reinforced by the Kiviat diagrams, where the two

Kiviat shapes were notably similar in many respects. In the example shown, both nodes

score along the normalized average time span of communities (axis 1), but only the

aged neuron has a non-zero normalized switching cost (axis 2). Furthermore, the aged

mouse also had a shorter activation time (axis-0), and fewer connections than the young

mouse. At this point, the neuroscientist expressed interest in seeing the raw signal data.

To this end, the experts examined the raw signal plots in the behavior mirror glyphs,
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and discovered that the old mouse rising time is generally slower and that the curve

during the rising time is less smooth for the old mouse.

Case findings. This multi-scale analysis indicated that aging is associated with

a series of changes in node metrics, such as community size and switching cost, and

also with temporal changes in individual behavior, such as dynamic community distri-

bution. These changes are consistent at multiple spatial and temporal scales. Together,

the domain experts hypothesized that those aging-related changes at multiple scales

might be related to changes in intracortical connectivity (Task T4 ). Using the insight

from the multi-scale visual exploration, they are designing methodology to capture and

quantitatively report these correlations.

5.5.2 Domain Expert Feedback

The domain expert feedback included comments such as “very cool, interesting tool”,

“fantastic”, and “useful to generate hypotheses”. Since everything in biology is “so

tied to spatial location”, the experts found that the integration of the spatial layout

and non-spatial network attributes was far more useful than analyses based only on the

nonspatial data. In addition, the Mosaic-Matrix provided the ability to explore temporal

relationships between nodes with close proximity in the same region, and thus preserved

a useful spatial context. While originally unfamiliar to the experts, the mirror glyphs

and Kiviats were later praised for their potential to drive hypotheses at the neuron level,

once crisper node data become available through the next imaging project. Overall, the

experts found that RemBrain augmented their ability to analyze the heterogeneous and

multifaceted datasets common in dynamic bionetwork analysis.
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Compared to prior analyses of the data, which were done directly with data files and

relied on the experts’ mental model of the node location within an image, our visual

approach succeeded in communicating the spatial findings to others. Also, the experts

noted that interactively exploring the imaging data to identify an interesting time step

was far more efficient than manually searching an image from a repository.

5.6 Discussion

Meeting the original goals. The case study and expert feedback demonstrate the

effectiveness of this multi-scale visualization approach to the comparative exploration of

dynamic activation networks across multiple brain imaging datasets at multiple levels.

Experts were able to find new, interesting patterns in datasets they had explored using

different tools before. They both are eager to adopt the tool for research purposes, both

in an exploratory setting and in an explanatory setting (for publication purposes).

The overall design was successful at supporting comparative analysis in a variety of

dataset combinations. We note that few guidelines exist in visual comparison design.

In most instances in our design we favored juxtaposed (side-by-side) layouts, to attain

better clarity and consistency, and to circumvent alignment issues. One exception is the

star panel, where the lack of a physical structure supports superposition. Overall, we

found that a hybrid approach best supported the tasks revealed by the domain analysis.

The experts considered the inclusion of the spatial context a most valuable feature,

and reported the approach was far more useful than analyses based only on the nonspatial

data. The chosen visual encodings showed complementary strengths in supporting multi-

scale spatio-temporal analyses. When coupled with a coordinated multi-view approach,
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these encodings enabled visual analysis across the entire pipeline for dynamic bionetwork

data analysis: raw data, network results (node degree), dynamic community analysis

based on the results of dynamic networks, and summarized node metrics based on the

dynamic community analysis. The experts were able to navigate smoothly between

multiple scales in both space and time.

Novelty. The mirror glyphs and the embedding of temporal features in a spatial con-

text through the Mosaic-Matrix views are novel contributions. The composite mirror

glyphs, in particular, are not restricted to the presentation of dynamic node behavior

in neuroscience. These glyphs can also be applied to general temporal data with mul-

tiple variables that include both numerical (height) and categorical data (color). Such

datasets exist in other domains where symmetric/asymmetric time-dependent behav-

ior is of interest, for instance in the analysis of spectrograph data in astronomy (130),

in the analysis of financial data, or in the analysis of Electronic Health Records. The

Mosaic-Matrix nesting approach may find application in other spatially dense temporal

datasets.

The combination of visual encodings in a tool to handle multivariate data in dynamic

bionetwork analysis and the side-by-side multi-scale design that supports pairwise com-

parison for spatiotemporal data are also novel. The approach has direct application to

the analysis of other spatially-dependent dynamic biological networks, for instance in

computational systems biology.

Design lessons and issues. One of the most important lessons from this work relates

to limitations arising from increasing model scales and complexity. As scientific models
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move from static to dynamic, and single model analysis shifts to the comparison of

multiple models with spatial and nonspatial features, even known integration paradigms

break down with scale: one cannot keep track effectively of tens of coordinated views.

Overlays may similarly fail, and in some instances may not be applicable (in our case,

due to domain restrictions related to alignment and the importance of raw data). In

the approach illustrated here, we have successfully nested the time-driven behavior into

spatial structures and used overlaying and details on demand where possible, to overcome

space limitations. Still, the resulting interface is information-dense; on a large tiled

display, there was still too little space to attach legible Kiviat labels directly to axes. As

the range of data acquisition instruments keeps expanding, these issues will only become

more stringent in the visualization field.

The second important lessons arising from this experience relates to the necessity of

visual scaffolding (?) when dealing with domain experts who are not familiar with so-

phisticated visual encodings. In our design experience, the application of HCI principles

such as clarity and consistency, and the careful consideration of the overall application

gestalt were particularly important. For instance, the final design includes dual views

for all representations, even though we do support superpositions where possible. We

furthermore found success by building upon domain-specific encodings, such as the slice-

based views and the timeline widgets. Using those familiar encodings within a linked

view framework served as a visual scaffold, allowing the domain experts to harness and

expand their previous analysis experience.
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Limitations. In terms of limitations, one of our two domain experts noted that inter-

preting individual node behavior could be too daring given the current imaging done on

the datasets. Nevertheless, he did see the future utility of the behavior glyphs in the

context of their next imaging project, which will capture node identity more crisply.

Another limitation is that matching precisely communities between different experi-

ments (beyond the size proxy for the ten largest communities) is an open research issue,

not just in this work, but in dynamic community analysis in general. This limitation is

mainly because dynamic analysis methods currently do not consider the spatial relation-

ship of nodes in different experiments. In this case, the domain experts are well-aware

of and willing to accept this current limitation.

Last but not least, the pairwise comparison in a side-by-side layout becomes increas-

ingly inefficient as the number of objects grows, especially when the objects have spatial

features. Analysis will devolve to an exhaustive pairwise comparison of all subjects and

memorization of activation patterns. Extending the juxtaposition paradigm of our side-

by-side views into a small multiple layout is feasible only in an environment with large

displays and yet, with the density and complexity of the data, will still quickly become

overwhelming. Thus, effective comparative visual designs must address the challenge

of scalability in terms of the number of items and the complexity of individual items

to be compared at the same time. According to the considerations of comparison (11),

extracting features through dynamic behaviors of brain activity networks and comparing

those networks based on their summarized characteristics at an abstract level would be

a good solution to this limitation. Therefore, we extend the RemBrain application to
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support the visual exploration and comparison of dynamic brain networks at multiple

scales.



CHAPTER 6

REMBRAIN 2.0: MULTI-SCALE VISUAL COMPARISON OF

ENSEMBLE BRAIN ACTIVITY NETWORKS

6.1 Motivation

Network analysis repeatedly performed on different subjects and/or at different con-

ditions forms large datasets for neuroscientists and computational biologists to better

understand the functional connectivity of the brain and the dynamics of such connectiv-

ities. Although many techniques and tools for visualizing brain activity networks exist,

little work focuses on the visual comparative investigation of such networks modeled

from multiple subjects or conditions. Most visual comparative approaches only support

pairwise comparison due to the difficulty in comparing multiple objects, discussed in

the section above. Therefore, we propose a summary+detail visual approach for com-

parative analysis of brain networks at four scales, using visual abstractions to allow the

user to systematically explore similarities and differences in spatial-temporal-functional

behaviors across multiple brain activity networks. We demonstrate this approach in our

prototype web-based visualization tool, RemBrain 2.0 (Figure 34).

In RemBrain 2.0, we implement the summary+detail visual approach by integrating

two complementary high-level summary views with three low-level detailed views. The

summary overviews consist of an interactive principal component analysis (PCA) view

(Figure 34 (a)) and small-multiple kiviat diagrams (Figure 34 (b)). Together, these two

119
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Figure 34. RemBrain 2.0 implements a summary+detail visual approach for the
analysis for comparative analysis of multiple brain networks at four scales: groups of

subjects, individual subjects, activations of a subject, and ROIs of an activation.

views summarize temporal-functional behaviors of brain activations from multiple sub-

jects and support visual comparisons across those activations/subjects at two scales —

groups of subjects and individual subjects. At detailed levels, for specific activations of

the selected subject, the dynamic changes of communities along with their distributions

in the brain slice are presented separately in a dynamic behavior (temporal) view (Fig-

ure 34 (c)) and a slice-based (spatial) view (Figure 34 (d)). A more detailed exploration

on the regions of interest (ROIs) nests the temporal behaviors into user-selected regions

(Figure 34 (e)). These three views support the exploration of spatial-temporal-functional

behaviors at two scales — activations of a subject and smaller ROIs. Overall, these five
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visual components work together to enable the exploration and comparison of multiple

brain activity networks at four levels of analysis.

To demonstrate the effectiveness of this visual approach, we conduct a case study

that seeks to analyze ensemble mouse brain activity networks. Feedback collected from

domain experts during this case study indicates that our summary+detail approach can

help neuroscientists better understand the different spatial-temporal-functional behav-

iors across multiple subjects and explore those differences at multiple scales.

6.2 Related Work

In addition to the related work introduced in Section 5.2, several new works about com-

parative visualizations have been published this year. Yang et al. (131) present a visual

analytics method using the inherent block structure of the human brain to compare hu-

man brain networks from multiple population groups. However, their visual comparison

of multiple subjects is only performed through the pairwise side-by-side comparison.

Similarly, Song et al. (132) use a small multiples design (juxtaposition) to support the

comparison of gaze data from 14 radiologists examining volumetric images. However,

small multiples approach may not work well for a larger dataset. Fujiwara et al. (133)

design a visual analytics system to compare the differences in brain networks between

individual subjects as well as group averages, which is similar to our research. Fijiwara

et al. use multidimensional scaling to show the (dis)similarities between objects in low

dimensional space; similarly, we use principal component analysis for dimensionality re-

duction in RemBrain 2.0. We also follow the Summarize Somehow strategy (11) to build
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abstractions of a large amount of data by measuring and quantifying differences through

computational and statistical analysis.

6.3 Data and Task Analysis

In this extension of RemBrain, we are dealing with a larger, ensemble dataset which

contains 70 activations across five young mice and five aged mice. The initial data anal-

ysis process is exactly the same as the process introduced in Section 5.3.1. Additionally,

we compute the metrics that summarize the behavior of active nodes for each brain

activity network by calculating the mean of all active nodes in that activity network and

the metrics for each subject (mouse) by calculating the mean of all activations for that

subject. The metrics at these two scales will be presented in the summary overviews. In

addition to the tasks discussed in the Task Analysis Section 5.3.2, a major focus of this

extension is to summarize and compare dynamic behaviors of multiple subjects (mice)

or multiple activity networks from the same subjects to find trends and outliers.

6.4 Visual Design

To support the tasks discussed in Section 5.3.2, RemBrain 2.0 reuses effective visual

components from the RemBrain tool, including the slice-based views, timeline widgets,

and Mosaic-Matrix views, while extending their functionality. In addition to showing the

aggregated information in the slice-based view only, we also provide options to display

the community structures at a user-selected time step and play the community evolutions

as a movie. The dynamic behavior view (stacked plots) shown in Figure 34 (c) extends

the time widget control by embedding the nodal community temporal distribution into

the node activity curve. RemBrain 2.0 also uses the Mosaic-Matrix visual encoding to
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allow a user to compare two ROIs shown in Figure 34 (e) within one activity network or

across two networks, whereas RemBrain only supported a single selection per network.

Figure 35. The interactive PCA view supports the selections of attributes to calculate
the PCA results. (a) shows the results from all ten attributes and (b) shows the results

from eight attributes without time.span and observed.

6.4.1 PCA View

To support the task of comparing multiple brain activity networks or subjects, we use a

similar strategy to the Gleicher framework in Summarize Somehow (11) by comparing

them through their summarized characteristics at an abstract level. Those summarized

characteristics that describe the dynamic behaviors of the networks are the network met-

rics which contain ten features described in Table II. Our domain experts have previously

used PCA to understand the relationships between those activity networks/subjects with

those ten attributes. The PCA plot offers the ability to identify characteristics that show

as much variation across activations/subjects as possible at an abstract level. By ex-
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amining the PCA projections on attribute axes, domain experts speculated that not

all attributes contribute a clear separation of aged and young mice. However, common

PCA applications do not allow for the interactive selections of attributes. To afford this

functionality to our users, we implement an interactive PCA view which dynamically

calculates and updates the PCA results according to the new set of attributes. Figure 35

(a) displays the PCA results calculated from all ten attributes and Figure 35 (b) shows

the results based on the attributes excluding time.span and observed.

Figure 36. The PCA view includes two modes (a) By Animal that plots the mean
value of activations grouped by animals and (b) By Run that plots all 70 activations.

Additionally, the interactive PCA view also supports plotting either all 70 activations

(By Run) in Figure 36 (b) or average value of activations grouped by animals (By

Animal) in Figure 36 (a). In the mode of By Animal, the user can further inspect all
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the activations of a particular subject by clicking on the corresponding dot. The PCA

view then will plot all the activations of the selected subject.

Figure 37. Network Metrics Summary views sort animals by (a) the attribute of
time.span and (b) similarities to the mouse Young 40.

6.4.2 Network Metrics Summary View

PCA is an effective method to visually explore the relationships between activations/subjects

with high-dimensional attributes. However, it cannot provide direct comparisons of par-
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ticular attributes across activations/animals. To enable these comparisons, we imple-

ment a Network Metrics Summary view in which each kiviat diagram corresponds to an

activation/subject and each axis of the kiviat diagram represents one of ten attributes

that are used for calculating the PCA. We chose Kiviat diagrams over PCPs or linear bar

charts because the shapes of the kiviat diagrams easily illustrate similarities and differ-

ences between activations/subjects. The kiviat diagrams are colored by the average node

degrees of activations/subjects. The user can also use the RemBrain 2.0 sorting assistant

to sort the kiviat diagrams by a user-selected attribute (Figure 37 (a)), or to select a

kiviat diagram and sort the rest by their similarity to the selected target (Figure 37 (b)).

Overall, the PCA view supports the visual comparisons of multiple subjects/activations

across the selected attributes while the Network Metrics Summary view supports the

visual comparisons of multiple attributes across multiple subjects/activations. Those

two views are linked through several interactions, e.g. mouse over and clicking.

Through the exploration in two summary views, the user may find a particularly

interesting activation and want to explore it in detail. He/she can then load that acti-

vation into the detailed view of Dynamic Community Distributions per Brain Slice by

right-clicking on the activation, either on the PCA plotted dot or the kiviat diagram.

Once the activation is loaded, the user can perform similar operations as what he/she

performed in RemBrain to interactively explore the community distributions in the brain

slice or ROIs and track the evolutions of communities over time.
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6.5 Evaluation

We evaluated RemBrain 2.0 through a combination of multiple demonstrations and a

case study with our collaborators: a senior computer scientist who specializes in de-

veloping discrete modelling and analysis techniques to various areas of computational

biology, a Post-doc researcher specializes in neuroimaging and neurobiology, and our

two initial collaborators whom we have worked with to develop the RemBrain together.

The computer scientist and our two initial collaborators have been working together on

dynamic brain network analysis for several years. After several demonstrations for the

two initial collaborators, we conducted a formal case study with all four collaborators

together during a remote meeting session. All participants have access to the web-based

visualization tool and is able to operate the interface directly. However, to make sure all

participants are looking at the same thing, we had one user share his/her screen with

the group and perform the operations. Throughout the evaluation process, we used the

same “think-aloud” technique that we used for RemBrain and we collected feedback at

the end.

Domain experts provided positive feedback that the proposed visual approach is an

excellent demonstration of the data and tasks by showing the statistics through the PCA

view and summary view. The Post-doc researcher pointed out that, for a large set of

data, our approach offers an easy way to visualize all of the data at once, instead of going

one by one and making pairwise comparisons of activations. Once a scientist notices a

pattern through the summary views, then he/she can investigate that hypothesis through

detailed views. The computer scientist indicated that activations are very consistent for
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an animal by looking at the PCA view, and in which the attribute axes state that

the young mice activations last longer than aged mice. She appreciated the freedom

to manipulate the PCA view interactively and expresses her interest in the application

of this multi-scale comparative visual approach to the analysis of other types of data,

e.g. healthy vs. disease datasets in the study of Alzheimer’s disease. The two initial

collaborators both agreed that RemBrain 2.0 is the most advanced visualization tool

they have used to explore and compare dynamic brain networks.

6.6 Discussion

The summary+detail visual approach proposed in the RemBrain 2.0 supports the ex-

ploration and comparison of multiple brain activity networks at multiple scales. The

development of this approach was guided through past experience, working either with

this biological network problem or through learning about challenges in another biolog-

ical subdomain. Through the process of gradually expanding the applicability of visual

analytics applications to the challenges presented by the spatial-nonspatial, multi-scale,

and multi-run data, I have grown to better understand techniques which allow for a rich

visual analysis of complex biological networks that feature the three main challenges of

spatial-nonspatial integration, multi-scale exploration, and multi-run comparisons.



CHAPTER 7

DISCUSSION AND CONCLUSION

This dissertation characterizes three visual challenges behind analyzing dynamic biolog-

ical networks — spatial-nonspatial visual integration, multi-run visual comparison, and

multi-scale visual exploration — and surveys the state of the art in visual integration

of spatial-nonspatial biological data. The dissertation introduces two particular domain

problems with data and task analysis, proposes a set of visualization techniques and en-

codings, presents five applications to those two biological problems, and evaluates those

visualizations through case studies and usage scenarios.

Specific contributions of this work include:

• a survey of works that integrate spatial and non-spatial data in biology. The

survey presented in this dissertation mainly covers the biological subdomains of

neuroscience, and bioinformatics. The survey found that the linked views used

alone or the hybrid approach, in which one paradigm is linked views, are more

popular in the biological domain.

• an analysis of the domain data and tasks in dynamic biological networks. The

analysis explains the domain problems in detail that includes how to process and

analyze the data and what tasks are required. The analysis may also benefit

researchers who are interested in or currently working on similar problems.

129
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• several innovative visual designs. A set of novel visual representations using a

hybrid paradigm consisting of the linked views, overlays, and nesting approaches,

enables the visual integration of spatial and non-spatial data in dynamic biological

networks.

• a visual approach to compare multiple dynamic biological networks at multiple

scales. The visual approach supports the comparison of multiple objects at an

abstract level through their summarized statistical characteristics and provides

detailed pairwise comparisons based on the user’s demand.

• five visualization applications developed for two domains that feature dynamic

biological networks. These applications developed in collaboration with domain

experts address the challenges in visualizing such problems which contain spatial

and non-spatial visual integration, multi-scale visual exploration, and multi-run

visual comparison.

Regarding limitations to our work, since some visual analytics tools which target

biological problems might not be covered in this survey due to publication outside the

visualization journals, and as more relative visualization applications are developed, an

expanded survey of these applications will affect the current conclusions. Thus, due to

the complexity of the biological data and tasks, linked views alone may not be the most

popular integration paradigm and might be over-performed by the hybrid approach.

Additionally, the taxonomy extracted from the survey that we have been working on is

still not fully ready at this point.
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The visual designs developed for these two specific biological networks might not be

easily generalized to other biological networks. Both PRODIGEN and RemBrain rely on

custom visual representations to help integrate the spatial and non-spatial information.

The enhanced heatmap in PRODIGEN that nests the temporal changes of probabilities

into the landscape is used to study the temporal and spatial distributions of probability.

The mosaic-matrix in RemBrain was designed to nest the temporal behavior of neurons

into a sub-region of the image slice of the brain. Although the visual encodings are

designed for supporting the specific analyses of these biological networks, the principle

behind them — nesting non-spatial features (temporal) into spatial layouts — can be

further generalized to other biological networks, or even other domains. Last, some of

these works, e.g. EnsemblePron — the extension of PRODIGEN, have been mainly

evaluated by myself via usage scenarios.

In terms of future work, the survey in Chapter 2 provides a basis for conducting

a taxonomy to formalize the understanding of how each visual technique is chosen in

specific conditions. A nesting approach, which is adopted in PRODIGEN, RemBrain

and RemBrain 2.0, to integrate dynamic behaviors into spatial data may have a wider

potential use in other biological problems or even a broader domain. Additionally,

RemBrain 2.0, the visualization application in Chapter 6, is not only limited to the study

of comparing the auditory cortex of young mice and aged mice but may be applicable to

the multi-run visual comparison of other types of imaging data with the use of network

analysis model as well. Using the statistical analysis model to extract critical features

as the biological networks get larger and more complex, visualization researchers can
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further expand the multi-scale comparative visual approach, which is proposed from

RemBrain 2.0, to a more generalized approach that supports multiple comparisons of

objects at abstract levels and uses overviews to guide the user to explore and compare

particular object at more detailed levels.

In conclusion, the dissertation proposes a set of visual approaches for the analysis

of ensemble dynamic biological networks. This set of approaches took shape through

the development of multiple prototype visual analytics tools which were aimed to solve

complex problems in multiple biological subdomains. The steering of the approach was

supported through an in-depth understanding of both the encompassing biological do-

mains and problem space, as well through a survey of existing visual approaches helping

to generalize the paradigms used when confronting these problems and the complexity

of their data.
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Appendix A

SUPPLEMENTAL MATERIAL LINKS

The following are the links to videos of four visualization applications:

A video of PRODIGEN in Chapter 3:
https://youtu.be/xUhuoPcqEds

A video of SwordPlots in Chapter 4:
https://drive.google.com/open?id=1lppVJwiIidW5Urp29mlSVlf3jQYwhefH

A video of RemBrain in Chapter 5:
https://drive.google.com/open?id=1ANUD29OUsOcfxYzFC1uCQJRjGfw94Zhs

Two videos of RemBrain 2.0 in Chapter 6:
https://drive.google.com/open?id=1x7HYtg0ikDFqzOIoWMflVuiHmTIdfWzE
https://drive.google.com/open?id=1dKujauhkLbbzf0j6sqYH4Yqnx981cfj3
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Appendix B

PERMISSIONS FOR REUSE

The following are written permission from the publisher or a statement from the

journal’s/publisher’s website outlining their policies.

BMC Bioinformatics

C. Ma, T. Luciani, A. Terebus, J. Liang, and G. E. Marai. PRODIGEN: Visualizing
the Probability Landscape of Stochastic Gene Regulatory Networks in State and Time
Space. BMC Bioinformatics, 18(2): 24, 2017.
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