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SUMMARY

A diagrammatic knot theory is a set of rules for drawing and manipulating knot

diagrams in dimension n. The rules are selected from a universal set that de-

pends on n. Classical knot theory is an example with n = 1; virtual and welded

knot theory are extensions of the classical theory. Analogous theories to these

are also defined for n = 2. In this paper we explore these theories in detail and

relations between them.

Wherever possible, we describe a topological model for each diagrammatic

theory— that is, a class of objects associated to diagrams such that equiva-

lent objects are associated to equivalent diagrams. For example, topological

knots are a model for the classical theory with n=1, and topologically knotted

surfaces serve for the analogous theory in n = 2. Models are also described for

many other diagrammatic theories, with special focus on the virtual and welded

theories in n = 1 and 2.

Kauffman proved that closed curves in thickened stabilized surfaces model vir-

tual knots; in this paper we debut an analogous model for the virtual theory in

n = 2.

Satoh proved that ribbon-knotted toral surfaces model welded knots, and Rourke

reformulated Satoh’s description by adding a fiber-structure to the toral surfaces

and surrounding 4-space. We prove Rourke’s formulation is indeed isotopic

to Satoh’s. We also question the invariance of the fiber-structure in Rourke’s

model, and debut a new diagrammatic theory, “rotational welded theory”, that

avoids this problem. We also debut an analogous theory to this in n = 2 and

define a Rourke-like model for it.

vii



The paper concludes with an overview of diagrammatic theories in arbitrary

dimensions.

viii



0 Introduction

Knot theory is usually presented as a topological theory (concerning isotopy

classes of embeddings), which admits a combinatorial model (knot diagrams

and Reidemeister moves). This organization can be turned around, so that the

combinatorial objects are fundamental and the topological description is merely

a model of the diagrams.

An advantage of this inverted approach is that we may, by altering the rules for

drawing and moving the diagrams, invent new knot theories very different from

the classical theory. One of the first and most important occurrences of this was

the invention of virtual knot theory. In (Kauffman, 1999), Kauffman debuted

the diagrammatic definition of virtual knots and gave them a topologial inter-

pretation as classical knots in thickened stabilized surfaces. That interpretation

was refined in (Kuperberg, 2003). Welded knot theory, another theory defined

in terms of diagrams, was developed by Kauffman based on (Fenn, Rimanyi, &

Rourke, 1997); a topological model appeared in (Satoh, 2000) and was refined

in (Rourke, 2006). Moving up a dimension, virtual surface-knot diagrams first

appeared in (Takeda, 2012) and earlier in talks I gave at the AMS sectional

meeting, U.Kansas, 2012. Blake Winter has suggested other higher-dimensional

diagrammatic knot theories in (Winter, 2015).

In chapter 1 I present a general framework for defining diagrammatic the-
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ories, focusing on dimensions 1 and 2 but hinting at higher dimensions as well,

building on work by Roseman. In chapter 2 I survey seven different diagram-

matic theories in dimension 1, giving topological models for several. Special

attention is paid to welded knot theory. In chapter 3 I describe the surface-

knot analogs for those seven theories, and give topological models for several.

Higher dimensions are briefly surveyed in chapter 4.
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0.1 Main results

1. Theorem (section 2.6.6). Rourke and Satoh’s models for welded knots

are isotopic. (This was stated, but not proven, in (Rourke, 2006).)

2. Rourke’s enhancement of Satoh’s welded-knot invariant seems to cause in-

variance to fail (section 2.6.7). Plausible counterexamples are proposed

without proof. However–

Theorem (section 2.7) Rourke’s construction is an invariant of rota-

tional welded knot theory, which is a refinement of welded knot theory

introduced in this paper.

3. Theorem (section 3.5) Let D,D′ be virtual 2-knot diagrams. Let

S(D), S(D′) be any classical 2-knot diagrams in 3-manifolds derived from

D,D′ via the construction described. If D ∼ D′ (where ∼ is virtual 2-

knot equivalence) then S(D) ∼ S(D′) (where ∼ is equivalence via classical

Roseman moves and stabilization).

4. Theorem (section 3.7) Let D,D′ be rotational welded 2-knot dia-

grams. Let R(D), R(D′) be the fiberwise-embedded 3-manifolds derived

from D,D′ via Rourke’s construction. If D ∼ D′ (where ∼ is rotational

welded 2-knot equivalence) then R(D) ∼ R(D′) (where ∼ is equivalence

via a fiberwise R5 isotopy).

0.2 Other results

Various minor results are scattered throughout this paper, including an enu-

meration of the 66 signed Roseman moves (section 1.2.2), and various endo-

morphisms and epimorphisms of diagrammatic knot theories (see ”relation to

other theories” for each theory in chapters 2 and 3).

3



1 Theoretical framework

Terminology: In this paper, the term “knot” refers generally to either knots

or links. For the purposes of definining knot equivalences, we assume all knot

domains are unoriented with unlabeled components, and the ambient space

around a knot or knot diagram is oriented.

A knot diagram is a smooth generic map f : Xn → Rn+1 with crossing

data at the crossings. A diagrammatic theory consists of a set of knot

diagrams, called the theory’s universe, and a set of moves, which determines

an equivalence relation on the diagrams. The equivalence classes are the theory’s

knot types. We define these concepts in detail.

1.1 1-knot theories

1.1.1 Universes

Let X1 be a circle, or a disjoint union of finitely many circles. Let Y 2 be a

smooth surface (usually R2). A C∞ map f : X → Y is generic if it is an

immersion and is one-to-one except at a discrete set of degree-two transverse

crossings. The map is tame if there are only finitely many crossings. The image

of a generic map is a 4-regular plane graph.

4



Let f0 : X0 → R2 and f1 : X1 → R2 be generic maps. The following three

conditions are equivalent.

• There exists an orientation-preserving homeomorphism ψ : R2 → R2 such

that im(f1) = im(ψ ◦ f0).

• There are homeomorphisms ψ : R2 → R2 and φ : X1 → X0, with ψ

orientation-preserving, satisfying f1 = ψ ◦ f0 ◦ φ.

• The images of f0 and f1 are isomorphic as plane graphs (where the iso-

morphism preserves the orientation of the plane).

If these (equivalent) conditions are met, we say that f0 and f1 are isotopic. This

is an equivalence relation on generic maps X → R2. The third version of the

condition tells us that the isotopy type of a generic map is completely encoded in

its graph structure and may therefore be understood as a combinatorial object.

(In the second version of the condition above, if we takeX0 = X1 and add the

requirement that φ be orientation-preserving or component-preserving, we get

a stronger relation called isotopic respecting orientation or components.

For example, there is only one crossing-free generic map of a circle, up to isotopy,

but there are two such maps up to isotopy respecting orientation. This notion

will not be used in this paper; we will assume henceforth that X is unoriented,

and its components are interchangeable.)

We can impose crossing data at each crossing of a generic map f : X →

R2. This means the crossing is designated either “classical” or “virtual”; at

classical crossing, we designate the two strands “over” and “under”. We signify

this graphically by drawing a “break” in the understand. A virtual crossing is

drawn without a break, but with a small circle. A generic map endowed with

crossing data is called a knot diagram. (For convenience, we will use the term

“diagram” to refer either to the generic map f or its image, together with its
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crossing data.)

The universe of a knot theory is the set of all knot diagrams considered valid

in that theory. (The domains of the diagrams vary over the universe, so some

will have one circle component, others two, etc.) In general, the universe of

an n-knot theory is determined by selecting which singularity types of generic

maps are allowed, and how crossing data may be arranged there. In the case of

1-knot theories, these choices are as follows:

• Are crossings permitted?

• If so, what types of crossing data are accepted— classical, virtual, or both?

Thus, there are four possible universes for 1-knot theories. We call them the

simple, classical, virtual, and mixed universes.

The singularity types of generic maps in dimension n are called features

of n-knot diagrams. Degree-two transverse crossings are the only feature that

occurs in generic maps of curves in the plane. In general for dimension n, the

list of features is more diverse (though always finite). The list must be known

before one can declare the universe for an n-knot theory. In this paper, the lists

of features for n = 1, 2, 3 are described. (The list for n = 0 is empty.) Instruc-

tions for generating this list for higher n can be found in (Roseman, 2000).

Dimension n 0 1 2 3

# of features 0 1 3 5
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1.1.2 Move-sets

A generic map (without crossing data) can be transformed by applying one of

the three unsigned Reidemeister moves to a small disk in the plane containing

part of the image. (The word ‘unsigned’ refers to the absence of crossing data.)

A move is a homotopy of the generic map. If the generic map is known only up

to isotopy, so it is encoded as a plane graph, then the move may be understood

combinatorially as an operation on this graph.

Each unsigned Reidemeister move can be enhanced with crossing data in various

combinations. This gives us the following complete list of possible moves. (Note:

We assume that R2 is oriented, so the left- and right-handed versions of the I-

move and III-move are considered distinct.) The list is organized into three

groups, depending on which of the four universes the moves apply to.

7



A move applied to a diagram can be interpreted as a homotopy {ft : X → R2},

which can be written as a level-preserving map F : X × I → R2 × I. The three

Reidemeister moves are precisely the homotopies whose level-preserving maps

F are generic maps of the surface X× I into 3-space. (Generic maps of surfaces

are discussed in the next section.)
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Furthermore, the crossing data on ft must extend continuously to the crossings

of F (which are curves). For example, the following “false move” is not included

in our list, because it fails this criterion:

A move-set is any subset of the list.

Relative to a given universe, a move is valid if it involves only features

that are allowed in the universe, and crossing data in allowed arrangements.

For example, the classical universe allows classical crossings but forbids virtual

crossings, so only the seven pure-classical moves are valid there, while the other

9



nine moves are invalid. A move-set is valid if it contains only valid moves.

1.1.3 Diagrammatic theories

A diagrammatic 1-knot theory consists of a universe and a valid set of moves.

Any valid subset of the above list of moves can be used. Thus there are

• One simple 1-knot theory

• 27 classical 1-knot theories

• 23 virtual 1-knot theories

• 216 mixed 1-knot theories.

Two diagrams in a given knot theory are called equivalent diagrams if

one can be transformed into the other by applying a sequence of moves from

the theory’s move-set. The equivalence classes are called the knot types of the

theory.

1.1.4 Relations between theories

Given two theories A and B, we say A embeds into B if

• every knot type of A is a subset of a knot type of B, and

• no two knot types of A are in the same knot type of B.

Thus two diagrams in A are equivalent in A if and only if they are equivalent

in B. Theory B may have a larger universe than A.

Given two theories A and B, we say A maps onto B if

• they have the same universe, and

• every knot type of B is the (disjoint) union of knot types of A.

10



Thus if two diagrams are equivalent in A, then they are equivalent in theory B.

Two theories are isomorphic if they have precisely the same knot types.

That is, A both embeds into and maps onto B.

EXAMPLE. Theories A and B, given below, both use the classical uni-

verse but have distinct move-sets. However, the theories are isomorphic. Two

diagrams are equivalent in theory A if and only if they are also equivalent in

theory B.

The sequence of moves used to transform one diagram into another may be

different in A and B:

The 216 definable 1-knot theories can be classified up to isomorphism. This

classification has not yet been investigated.
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1.2 2-knot theories

Terminology. In this writing we use the term 2-knot diagram to refer to an

image of any closed surface (not necessarily connected, not necessarily spheres,

not necessarily orientable) under a generic map (defined below). In the lit-

erature, the term surface knot diagram is sometimes preferred for this notion,

while the term 2-knot diagram refers specifically to an image of S2. That will

not be our usage here.

1.2.1 Universes

Let X be any closed surface, not necessarily connected. A C∞ map f : X → R3

is generic (and tame) if:

• it is an immersion at all but finitely many points of X, called branch

points, where the image locally looks like the cone over a figure-8 (a so-

called “Whitney umbrella”),

• it is one-to-one everywhere except on finitely many immersed curves in X,

where the map behaves locally like the transverse crossing of two or three

coordinate planes in Cartesian R3. These curves are called crossings of f .

They may be immersed circles or immersed open-ended intervals (whose

ends are the aforementioned branch points). There can be only finitely

many triple points.

12



Crossing curves, triple points, and branch points comprise a complete list

of the features— that is, singularity types— of generic maps of surfaces. This

list can be recovered from the unsigned Reidemeister moves of 1-knot theory.

Viewed as level preserving maps, the Reidemeister I-move is a Whitney umbrella

with a branch point; the Reidemeister II-move is a crossing curve; and the

Reidemeister III-move contains a triple point. The complete list of singularity

types in n-knot diagrams can, in general, be recovered from the moves of (n−1)-

knot diagrams, although for n > 2 the correspondence is not one-to-one.

The word crossing is often used to refer to an entire crossing curve— ei-

ther an immersed circle, or an immersed interval running from branch point to

branch point. When a crossing passes through a triple point, it does so in the

same manner as a coordinate axis passes through the intersection of the three

coordinate planes at the origin in Cartesian R3. For example, Boy’s surface

contains only one crossing, a circle with a triple point.

13



The notion of isotopic generic maps X → R3 is analogous to the definition

given for 1-knots. Let f0 and f1 be generic maps X → R3. The following two

conditions are equivalent.

• There exists an orientation-preserving homeomorphism ψ : R3 → R3 such

that im(f1) = im(ψ ◦ f0).

• There are homeomorphisms ψ : R3 → R3 and φ : X → X, with ψ

orientation-preserving, satisfying f1 = ψ ◦ f0 ◦ φ.

If these conditions are met, we say f0 and f1 are isotopic; this defines an

equivalence relation on generic maps X → R3. The relations isotopic respect-

ing orientations or components are also defined similarly as they were for

1-knot diagrams.

In the case of 1-knots, the images of generic maps X1 → R2 are plane

graphs, so the isotopy type of a such a map can be encoded as the isomorphism

type of a plane graph. For 2-knots, however, it is more complicated to give a

combinatorial description. The images of generic maps X2 → R3 are, in a sense,

a higher-dimensional analog of plane graphs, but there are some complications:

The crossing curves may be topologically knotted in R3, as may handles of

the surface. Nonetheless, the essential topological structure of a generic map

14



X2 → R3, taken up to isotopy, contains only a finite amount of data. The

question of how to encode that data will not be considered here.

We can impose crossing data at each crossing curve of a generic map

f : X2 → R3. This means the crossing is designated either “classical” or

“virtual”; at a classical crossing, we designate the two intersecting sheets “over”

and “under” in a continuous manner over the length of the crossing. We signify

this assignment graphically by drawing a “break” in the undersheet. A virtual

crossing is drawn without a break or any other decoration. A generic map

endowed with crossing data is called a 2-knot diagram, and a drawing of its

image, so decorated, is called a broken surface diagram.

The universe of a 2-knot theory is a subset of the set of all diagrams, determined

by the following choices.

• Are crossings permitted?

• If so, what types of crossing data are permitted— classical, virtual, or

both?

15



• Are triple points permitted? If so, what combinations and arrangements

of crossing data are permitted at triple points? There are seven possible

arrangements.

• Are branch points permitted? If so, what types of crossing data are per-

mitted at branch points? There are three ways to decorate a branch point

with crossing data:

Branch points always occur in pairs. If X is orientable, then every left-

handed classical branch point must be paired with a right-handed one,

and vice-versa.

16



There are (1 + 24 + 22 + 210) = 1045 possible universes for 2-knot theories.

These universes fall into four broad categories— simple, classical, virtual,

and mixed— depending on which types of crossing data are allowed.

1.2.2 Move-sets

A generic map (without crossing data) can be transformed by applying one of

the seven unsigned Roseman moves to a small region of its image. (Roseman,

1998) A move can be can be understood as a homotopy of the generic map, or

as an operation on a combinatorial description of the map.
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Each unsigned Roseman move can be enhanced with crossing data. This gives a

much longer list of 66 enhanced moves. The chart gives the number of ways each

unsigned move can be enhanced with crossing data. A list of the 42 tetrahedral

moves is given in the appendix.
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move classical virtual mixed total

I-bubble 1 1 - 2

I-saddle 1 1 - 2

II-bubble 1 1 - 2

II-saddle 1 1 - 2

III 2 1 4 7

branch-pass 4 1 4 9

tetrahedral 4 1 37 42

A move-set is any subset of these 66 moves.

For a given universe, a move is valid if it involves only features that are

allowed in the universe. For example, if virtual branch points are forbidden,

then the virtual I-bubble and I-saddle moves are invalid, as well as three of the

nine types of branch pass. A move-set is valid if it consists only of valid moves.

1.2.3 Diagrammatic theories

A 2-knot theory consists of a universe and a move-set. There are are a large,

but finite, number of such theories. Two diagrams are equivalent in a theory

if one can be transformed into the other via a series of isotopies and moves. The

equivalence classes are called the theory’s knot types.

1.2.4 Relations between theories

The notions of embeds into, maps onto, and is isomorphic to are the same

as they were for 1-knot theories. The problem of classifying 2-knot theories by

isomorphism type has not yet been explored.

20



1.3 3-knot theories

This section briefly summarizes the framework for defining 3-dimensional dia-

grammatic knot theories.

1.3.1 Universes

Let X3 be a closed 3-manifold. A C∞ map f : X3 → R4 is generic if it is one-

to-one and an immersion everywhere, except at singularities of the following five

types, the features of a generic map. (The descriptions that follow refer to the

image of f .)

• Double-crossing surface. This is the intersection of two hyperplanes.

It is an immersed surface, possibly with boundary, self-intersection, and

“Whitney umbrellas”. Three double-crossing surfaces can intersect along a

triple-crossing curve. The boundary components of a double-crossing sur-

face are branch circles. The vertex of a “Whitney umbrella” in a double-

crossing surface is a triple-crossing endpoint.

• Triple-crossing curve. This is an immersed curve, the intersection of

three double-crossing surfaces. (To clarify: Within each of the three hy-

perplanes which meet at this curve, there are two double-crossing surfaces

that intersect transversely.) A triple-crossing curve may be an immersed

circle or an immersed interval. If it is an interval, each endpoint lies on a

branch circle. Triple-crossing curves can have degree-4 intersections, like

the coordinate axes in 4-space.

21



• Quadruple-crossing point. This is an isolated point. It occurs at the

intersection of four triple-crossing curves, and six double-crossing surfaces.

• Branch circle. This is an embedded circle, the boundary of a double-

crossing surface. Branch circles do not touch each other.

• Triple-crossing endpoint. This is an isolated point, the vertex of a

double-crossing surface’s “Whitney umbrella”. It also lies on a branch

circle (the boundary of another double-crossing surface).

22



The above list can be obtained from the Roseman moves for 2-knot diagrams.

Regard each Roseman move as a homotopy acting locally on a diagram X2 →

R3, and represent this homotopy as a level-preserving map F : X2×I → R3×I.

Then (ignoring boundary effects and ignoring the levels) F is a generic map of

a three-manifold into four-space, containing one or more of the 3-knot features

listed above. In fact:

• The II-bubble move and II-saddle move both correspond to a double cross-

ing surface (with two different choices of “height” function added to the

diagram).

• The II-move corresponds to a triple-crossing curve.

• The tetrahedral move corresponds to a quadruple-crossing point.

• The I-bubble move and I-saddle move both correspond to an arc of a

branch circle (with two different choices of “height” function added to the

diagram).

• The branch-pass move corresponds to a triple-crossing endpoint.

We may apply crossing-data to each of the five features in various ways.

Every double-crossing surface is either virtual or classical with designated over-

and under-hypersheet. Virtual and classical crossing data combines in various

spatial arrangements in the other four features. The universe of a 3-knot

theory is set by declaring which arrangements are and are not allowed in the

knot diagrams.

1.3.2 Move-sets

Roseman cataloged the unsigned moves for 3-knot diagrams. There are twelve

of them. The unsigned moves can be further refined by adding crossing-data. A
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move is considered valid relative to a given universe if it involves only features

included in that universe, with only crossing data allowed in that universe. A

set of valid moves forms a move-set for a diagrammatic 3-knot theory. A

move-set determines an equivalence relation on the universe, the knot-types.

Relations of 3-knot theories are the same as defined in the preceding sections.
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2 Examples of 1-knot theories

In this section, we describe some popular diagrammatic 1-knot theories using

the format laid out in section 1.1.

For each theory, we give a topological invariant, that is, an algorithm that

takes as input a knot diagram D from the theory, and outputs an object h(D) of

some kind (for example, a topological embedding). The object h(D) represents

an equivalence class [h(D)] (for example, its isotopy class of embeddings) which

also contains the output object h(D′) for any diagram D′ that is equivalent to

D within the knot theory being considered.

Some topological invariants are complete. This means that the class [h(d)]

does not contain the output object h(D′′) for any diagram D′′ that is not equiv-

alent to D.

2.1 Classical knot theory

The most familiar of all knot theories.

Universe: We allow classical crossings, but forbid virtual crossings.

Move-set: We allow these five moves:

But we forbid the two “delta moves”:

Relation to other theories: Classical knot theory is isomorphic to a number

of other theories because its move-set contains some redundancies— it is un-

necessary to include both the left- and right-handed versions of the I-move or
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III-move, so long as the II-move is included. The following restricted move-set

induces the same equivalence relation on diagrams as the move-set listed above.

In this restricted theory, although the left-handed I-move is not included, it

can be emulated by a combination of the II-move and the right-handed I-move.

Thus the diagram equivalence relations are the same for both move-sets, but the

number of moves required to transform one diagram into another may differ.

Here is another restricted move-set that gives a theory isomorphic to classical

knot theory:

In this theory we have omitted the left-handed III-move, which can be emulated

by a combination of the II-move and the right-handed III-move.

Due to these redundancies, there are nine distinct move-sets which all give the-

ories isomorphic to classical knot theory. These same redundancies will appear

again in delta knot theory, in Kauffman’s virtual knot theory, and in welded
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knot theory.

Classical knot theory embeds in Kauffman’s virtual knot theory and welded

knot theory, but not in delta knot theory.

Topological invariant: To each diagramD (whose domainX is a collection

of circles), we associate a smooth embedding k : X → R3, as follows. Let

f : X → R2 be the generic map underlying D, and let i : R2 → R3 be the

inclusion of the coordinate xy-plane into xyz-space. Now modify the immersion

i ◦ f in a small neighborhood of each under-crossing point in X, by adding

a smooth negative bump to the z-coordinate of the image there. (Think of

this operation as “filling in” the broken arc conventionally drawn in the knot

diagram.) The result is an embedding k whose isotopy type is a complete

invariant of the knot type of D, as proven by Reidemeister.

2.2 Pure-virtual knot theory

Here, all crossing data must be virtual. This theory is “trivial” in the sense that

only one knot type exists for each X— every knot can be unknotted.

Universe: We allow virtual crossings, but forbid classical crossings.

Move-set: We allow all three pure-virtual moves. There are no forbidden

moves.
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Relation to other theories: This theory is unique— any theory using the

purely virtual universe but a different move-set is non-isomorphic to this one. In

fact, the 23 theories using this universe are all distinct, because it is impossible

to emulate any one of the three pure-virtual moves using some combination of

the other two.

Pure-virtual knot theory is related to only one other theory in this chapter:

Rotational pure-virtual knot theory maps onto it.

Topological invariant: In this theory, the knot types are homotopy classes

of smooth maps X → R2. This is because any smooth map X → R2 is homo-

topic to a generic map, and any homotopy can be deformed into one which is a

sequence of unsigned Reidemeister moves. Since R2 is simply connected, there is

only one homotopy class of such maps, so the knot types are determined entirely

by X, which in turn is determined entirely by its number of component circles.

Thus, our “topological” invariant is just an integer, the number of components

of X, and this invariant is complete.

2.3 Rotational pure-virtual knot theory

This is a refinement of pure-virtual knot theory, formed by restricting that

theory’s move-set. The word rotational (coined in [Kauffman, New Ideas] means

that the homotopies underlying virtual moves are regular— at no moment in

time can the map ft contain a point, local (in spacetime) to a virtual crossing,

where the derivative vanishes. The virtual Reidemeister I-move forces such a

singularity. This theory forbids virtual I-moves, hence the name.

Universe: We allow only virtual crossings.
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Move-set: We allow only these two moves:

Relation to other theories: Rotational pure-virtual knot theory is not iso-

morphic to any other theory. It maps onto “ordinary” pure-virtual knot theory.

Topological invariant: The regular homotopy class of a circle immersed in

the plane is determined by the circle’s turning number. Our knot diagrams con-

sist of unoriented immersed circles, so the knot type of a diagram is determined

by the (absolute value of) the turning numbers of its components.

2.4 Delta knot theory

So-called because it includes the two “delta moves” that are forbidden in clas-

sical knot theory. Like pure-virtual knot theory, this theory is “trivial” since

all knots are unknotted (proven by Murakami and Nakanishi (1989)). However,

the two theories are unrelated (neither embeds into, nor maps onto, the other).

Universe: We allow only classical crossings.

Move-set: We allow all seven classical moves. There are no forbidden

moves.

Relation to other theories: As noted above, it is redundant to include both

versions of the I-move or both versions of the III-move when the II-move is

included. Additionally, it is redundant to include both the left- and right-

handed delta moves when the II-move is included:
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There are no other redundancies; any restriction of the move-set besides those

just described results in strictly finer diagram equivalence. Thus there are 27

distinct move-sets that all give theories isomorphic to delta knot theory.

Clearly, classical knot theory maps onto delta knot theory.

Topological invariant: Since this theory, like pure-virtual knot theory, is

trivial, the invariant is, again, just the number of components of X, and this

invariant is complete.

2.5 Kauffman’s virtual knot theory

First defined in (Kauffman, 1999), this is the most-studied extension of classical

knot theory that exists.

Universe: We use the “mixed” universe. All diagrams are allowed. Cross-

ings may be classical or virtual.

Move-set: The following ten moves are allowed:

The following six moves are forbidden:
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Relation to other theories: As previously noted, the inclusion of both clas-

sical I-moves and III-moves is redundant; besides these, there are no other re-

dundancies in the move-set. Classical knot theory embeds into virtual knot the-

ory; this was first shown in (Kauffman, 1999) and (Goussarov, Polyak, & Viro,

2000) for one-component virtual knots, later extended to the general case in

(Kuperberg, 2003). Virtual knot theory maps onto welded knot theory, proven

in (Rourke, 2006).

Topological invariant: The idea is to think of a virtual knot diagram as

a classical diagram drawn on a closed orientable surface. We then define an

equivalence relation on these objects that extends classical move-equivalence

and allows the surface to vary.

Take as input a virtual knot diagram D. Let N(D) be a regular neighbor-

hood of the diagram, that is, a thickened plane graph. At each virtual crossing of

D, double the square-shaped junction of N(D) to create overlapping “bands”.

Call this surface B(D); it has a knot diagram drawn on it with no virtual

crossings. Now embed B(D) into any closed orientable surface (not necessarily

connected). The result, called S(D), is a surface containing a classical knot

diagram. The particular choice of embedding does not matter, because all the

possible choices are equivalent under the following relation.
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Two orientable surfaces with classical knot diagrams drawn on them are equiv-

alent when one can be transformed into the other via a sequence of the following

two operations.

• Classical Reidemeister moves: Take a disk in the surface contain-

ing part of the knot diagram. Modify the disk just as one would mod-

ify portions of a classical knot diagram, ie., by a boundary-fixing self-

homeomorphism of the disk, or by any of the five classical knot moves if

applicable. The result is the same surface, but with a slightly different

knot diagram drawn on it.

• Stabilization: Take a neighborhood of the knot diagram in the surface,

and embed it in another closed orientable surface. The result is a new

surface, but with the same classical knot diagram drawn on it.
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These operations define an equivalence relation on surfaces with classical

diagrams drawn on them. An equivalence class is called a classical knot on a

stabilized surface. It is an invariant of virtual knot type. That is, if D and D′

are equivalent virtual knot diagrams, then S(D) and S(D′) are equivalent under

the above operations. The converse is also true, so the invariance is complete,

as proven by (Kauffman, 1999) and (Carter, Kamada, & Saito, 2002).

Another topological invariant of virtual knots is curves embedded in sta-

bilized thickened surfaces. The definition is the same as the one just given,

except the surfaces are now thickened (product with an interval), the knot dia-

grams are embedded curves, the Reidemeister moves are 3-dimensional isotopies,

and stabilization involves surgery on the thickened surface (so when you take a

neighborhood, you cut through the thickened surface).

The two models correspond in much the same way as diagrammatic classical

knot theory corresponds to its topological invariant, curves embedded in R3.
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2.6 Welded knot theory

Welded knot theory is an interesting coarsening of Kauffman’s virtual knot

theory, formed by including one of that theory’s “forbidden moves”.

Universe: The universe is the same as that for Kauffman’s virtual knot

theory. That is, we allow diagrams with classical or virtual crossings.

Move-set: The following eleven moves are allowed:

The following five moves are forbidden:

Relation to other theories: This move-set contains the same redundancies

noted above, concerning the classical left- and right-handed I-moves and III-

moves.

Obviously, Kauffman’s virtual knot theory maps onto welded knot theory,

since all the Kauffman-virtual moves are included in welded knot theory. Less

obvious is that the theories are not isomorphic. Here are a pair of diagrams

that are welded-equivalent but not Kauffman-virtual-equivalent:
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Classical knot theory embeds into welded knot theory. It is impossible to trans-

form one classical knot diagram into another via welded moves, unless this can

be done solely via classical moves.

There is another diagrammatic knot theory, called underwelded knot the-

ory, which is the same as welded knot theory except that it uses the “under”

forbidden move instead of the “over” forbidden move1:

The operation of mirror imaging a diagram— that is, reversing the roles of

under- and overstrands at every classical crossing— defines a bijection between

the welded and underwelded universes, which carries welded knot types to un-

derwelded knot types and vice-versa. However, underwelded knot theory neither

embeds into nor maps onto welded knot theory. Each theory contains a pair of

equivalent diagrams that are inequivalent in the other:

1Rourke used the word unwelded for the “under” forbidden move. We do not use that
word in this paper; our underwelded move is the same as his unwelded move. Rourke also
described an unwelded knot theory which, unlike underwelded knot theory, allows both
forbidden moves. That theory is much coarser than underwelded knot theory— knot types
are determined by their “linking numbers”; in particular, the only knot type is the unknot
when X is a circle. Unwelded theory will not be discussed further in this paper.
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Topological invariant: Topological interpretations of welded knot theory were

put forward by (Satoh, 2000) and (Rourke, 2006). Satoh’s invariant associates

to any welded knot diagram D a particular surface S(D) embedded in 4-space,

such that welded-equivalent diagrams give rise to isotopically embedded sur-

faces. It is not known whether Satoh’s invariant is complete. Rourke’s invariant

is constructed differently from Satoh’s, but the result R(D) is isotopic to S(D).

(Rourke did not explicitly prove the equivalence; I do in section 2.6.6.) Rourke’s

construction also includes a fiber-structure which Satoh lacks. He claims this

enhancement makes his construction a complete invariant of welded knots, but

I challenge this, and suggest (without proof) that Rourke’s fiber-enhanced con-

struction is not an invariant of welded knots at all.
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2.6.1 Satoh

I now describe the welded-knot invariant due to (Satoh, 2000).

Begin with a welded diagram D in the xy-plane. Give D an orientation,

arbitrarily. (If D has k components, then there are 2k possible orientations.

All of them will result in isotopic tori, so the choice doesn’t matter, and no

generality is lost.) Let S(D) be a union of k embedded tori in xyzw-space;

each torus is a circular tube whose core curve is a component of D (except

near virtual crossings), confined to the w = 0 hyperplane (except near classical

crossings). Crossings are handled as follows.

Virtual:

The handling of a virtual crossing does not depend on the orientation on D.

The image on the right is the w = 0 hyperplane of xyzw-space. Note that the

apparently arbitrary decision to place one tube higher than the other (in the
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z-direction) doesn’t matter— the two possibilities are isotopic in xyzw-space.

Classical: There are two possible conventions for handling classical crossings.

It doesn’t matter which convention is used, so long as it is used exclusively and

consistently at every classical crossing. The two conventions produce isotopically

embedded tori.

Convention I: “Jump-duck”

Convention II: “Duck-jump:”

The handling of classical crossings uses the local orientation of the over-strand

in D. The image on the right is a “broken surface diagram” of S(D). The

drawing “breaks” wherever S(D) “ducks” in the negative w-direction.

2.6.2 Knot orientation and jump/duck convention

Suppose D and D′ are copies of the same knot diagram, but with the opposite

orientations on one or more of their components. Then the toral surfaces S(D)

and S(D′) (both constructed using the same convention, say, convention I)

look alike, except that the “jump/duck” configuration is different wherever the

orientation changed at a classical overcrossing.
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Now suppose D is an oriented diagram, and S(D) and S′(D) are the tori-unions

constructed using conventions I and II, respectively. These two constructions

are alike except that all the jump/duck configurations are reversed.

As it turns out, S(D), S(D′), and S′(D) are all isotopic in 4-space. The isotopies

relating them can be realized using a system called wen calculus. We use

broken-surface diagrams to describe this system pictorally; regarding these as

classical 2-knot diagrams, we can use the classical Roseman moves to prove each

equivalence listed below.

Wen calculus.
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1. The following five pictures are projections of 4-balls with embedded an-

nuli, with the annulus boundary embedded in the ball boundary:

All four are isotopic. (That is, there is a boundary-preserving homeomor-

phism from each ball to any of the others, carrying one annulus to the

other.) The annuli are called wens. They are similar to the “neck” of a

klein bottle: They represent a tube turning inside-out in 4-space.

Each of the four regular projections can be obtained from the branched

projection via a single Roseman move, the II-saddle move:

2. Wens cancel in pairs, or can be generated in pairs. These balls are iso-

topic:
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This is proven via Roseman moves, using the “branched” version of wens

(by rule #1 all the versions of wens are freely interchangeable).

3. Wens can slide along tubes, and have no effect as they pass through the

Satoh-construction of a virtual crossing or classical underpass:

The virtual case is obvious— the required 4D isotopy is just an extension of

the evident 3D isotopy in the picture. The classical case is also obvious—

simply move the wen through 4-space so that it ducks into, then jumps

out of, the cross-tube.
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4. When a wen slides through a classical overpass, however, the jump/duck

arrangement there is reversed:

As the wen passes by, the overstrand turns inside-out, so the jump and

duck swap places.

We apply this calculus to realizing isotopies between S(D), S(D′), and

S′(D).

To convert S(D) to S(D′), apply the following procedure to each tube whose

corresponding component of D had its orientation reversed in D′. First, use

rule 2 to create a pair of wens at some point on the tube, away from crossings.

Next, use rules 3 and 4 to slide one of the wens (it doesn’t matter which one)

along the tube until it has made almost a full circuit. As it travels, it reverses

the jump/duck arrangement at each overcrossing of this component. Last, the

moving wen returns to its sibling and cancels with her by rule 2.

Note that S′(D) is the same as S(D′′), where D′′ is the result of switching the

orientations of every component of D. Thus the above procedure, carried out

on every tube of S(D), produces S′(D).

2.6.3 Invariance

If two diagrams D and D′ are welded-equivalent— that is, D can be transformed

into D′ by applying a series of welded moves— then S(D) is isotopic to S(D′).

42



It will suffice to check this locally for every welded-move. For each move, we

check that there is an isotopy of a 4-ball carrying the tubes constructed from

the “before” position to the “after” position.

For the three pure-virtual moves and the three mixed moves, the required

isotopies of B4 are simply extensions of the obvious isotopies of B3 shown here:

For the five pure-classical moves, the required isotopies involve all four dimen-

sions of B4. The classical II-move and III-move are accomplished as follows:

For both of these moves, the 4D isotopies are easy to see: A section of tubing

simply ducks into a fat tube, then jumps out the other side.

The classical I-move is easiest to visualize using movie moves, or using wen

calculus. Here is what the move is supposed to accomplish:
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Here is a demonstration of the move accomplished using movie moves. Note

that exactly four of the steps are Roseman moves.
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Here is a demonstration of the move using wen calculus:
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Invariance is proved. It is unknown whether Satoh’s invariant is complete.

There may exist two diagrams D and D′ which are not welded-equivalent, but

whose Satoh-tubes S(D) and S(D′) are nonetheless istopic. The isotopy of R4

which carries S(D) to S(D′) would necessarily involve maneuvers different from

those depicted in the above proof, and contain intermediate states of the surface

which do not look like the Satoh-tubes for any diagram. It is unknown if such

an example exists. Here is a plausible example2:

2For illustrative purposes only. The author takes full responsibility if this “example” turns
out to be false.
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2.6.4 Rourke

I now describe the variant of Satoh’s invariant, due to (Rourke, 2006).

Begin with an (unoriented) welded knot diagram D in the xy-plane of xyuv-

space. In the uv plane above each point (x, y) ∈ D, draw a circle. If (x, y)

is a crossing of D, draw two circles, one corresponding to each strand of the

crossing. The circles should vary continuously as the point (x, y) moves along

the strand of D, so that their union is a torus R(D) in xyuv-space. At a virtual

crossing, the two circles should be unnested. At a classical crossing, the circles

should be nested, with the understrand’s circle nested inside the overstrand’s.

The location and size of each uv-circle doesn’t matter, so long as they vary

continuously as we move along the strand of D, since every possible choice
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gives the same torus (up to isotopy of 4-space). Also, if D and D′ are isotopic

diagrams in the plane (ie., they are isomorphic as plane graphs with crossing

data), then of course R(D) and R(D′) are isotopic tori in 4-space (since the

isotopy of the xy-plane can be extended to all of xyuv-space).

2.6.5 y-projection

The above description, though complete, is somewhat difficult to visualize. To

draw a clearer picture of Rourke’s surface, we will arrange the uv-circles so that

the surface projects neatly into 3-space. Without loss of generality, make the

following assumptions.

• The diagram D is vertical (aligned with the y-direction) at only finitely

many points, all of which are local x-extrema (not inflections).

• The v-coordinate of every circle’s center equals the y-coordinate of the

corresponding point in D.

• The u-coordinate of every circle’s center is zero except near virtual cross-

ings.

• The radius of every circle is the same except near classical crossings and

x-extrema of D.

• Near classical crossings, the overstrand’s circles should grow a bit larger.

• Near x-extrema, the cirlces should grow a bit larger y-below the extremum.

With these assumptions, we now project R(D) into the xuv-hyperplane by

collapsing the y-dimension. The result is a broken-surface diagram, where the

“breaks” are determined by the surface’s y-height before projection. Note the

presence of a wen at each x-extrema.
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2.6.6 Equivalence

The visible differences between S(D) and R(D) are the presence of wens in R(D)

and the disagreement of “jump/duck” patterns at some (but maybe not all) of

the classical crossings. We will describe an isotopy of R(D) which eliminates all

the wens and reverses the jump/duck pattern at the “bad” crossings, so that

the isotoped surface matches S(D).

Theorem.

The surfaces S(D) and R(D) are isotopic in 4-space.
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Proof.

Suppose we’ve chosen a particular orientation on D and we’ve chosen to use con-

vention I when constructing S(D). Then D can be divided into “eastbound”

and “westbound” strands, whose termina are the x-extrema. Classical crossings

whose overstrands are eastbound will look the same in R(D) and S(D), be-

cause in R(D) the understrand “jumps” these crossings on the westside (where

its y-height is greater than the overstrand’s) and “ducks” them on the eastside

(where its y-height is lower than the overstrand’s). However, classical crossings

whose overstrands are westbound will look different in R(D) and S(D).

We need an ambient isotopy of R(D) which kills all the wens and reverses the

jump/duck pattern at the classical crossings whose overstrands were westbound.

This can be done by sliding the wens on the east side of the diagram (corre-

sponding to x-maxima of D) westward along the westbound tubes. As they

move across the surface, they pass through the overstrand of each “bad” cross-

ing, once each, and reverse its jump/duck pattern (by rule 4 of wen calculus).

When the wens reach the other side, they each find their sibling-wen and cancel

with it (by rule 2 of wen calculus). The result is a surface identical to S(D).
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2.6.7 Complete invariance?

As a surface in 4-space, Rourke’s construction R(D) is isotopic to Satoh’s con-

struction S(D) and, as noted above, it is unknown whether this surface is a

complete invariant of welded knots. However, Rourke’s construction provides a

fiber-structure on the surface which Satoh’s construction lacks. Rourke claimed

the fibered surface is a complete invariant of welded knots, but I suggest that the

fibered surface is not an invariant of welded knots at all.

The 4-space in which Rourke’s tori are embedded is fibered as R2×R2. The

first factor is the xy-plane (the base space) and the second factor is the uv-

plane (the fiber). This structure restricts to a fibering of each torus component

of R(D), as S1 × S1. The first S1 factor is a component of the diagram D in

the xy-plane (the base space), and the second S1 factor is a circle drawn in the

uv-plane (the fiber).

If there is an isotopy of 4-space which carries R(D) to R(D′), where D and

D′ are not welded-equivalent, then the isotopy cannot respect the fiber-structure

of R4. Any isotopy respecting this structure must preserve the fiber-structure of

R(D), which determines the welded knot type. Therefore, if Rourke’s fibered
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surface were a welded knot invariant, then it would be a complete invariant.

To check whether the fibered surface is a welded knot invariant, we check

each welded Reidemeister move to see whether it translates to a fiberwise isotopy

of R2 × R2. This can be done for each of the eleven moves. The answer is

obviously yes for all the moves except for the virtual-I move, where the answer

is apparently no. If the answer is ‘no’, then Rourke’s fibered toral surface is not

an invariant of welded knots.

Checking invariance follows the same routine for each Reidemeister move, so

I present only a few examples rather than all eleven of them. In every version of

the II-move and III-move, the uv-plane circles move in a smooth and continuous

manner:

In the classical I-move, the concentric circles which share the uv-plane over the

crossing gradually change size until they merge into one.
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In the virtual I-move, these circles are side-by-side rather than nested, and can-

not merge into one.

Therefore, there may be welded-equivalent diagrams D and D′ such that any iso-

topy of R4 relating R(D) to R(D′) fails to be fiberwise. For example, there may

be no fiberwise isotopy relating these two fibered surfaces (their y-projection

is shown here), even though both were derived from the welded unknot. The

question remains open.

In the next section, we eliminate the problematic virtual I-move from the theory

so that Rourke’s construction will definitely be invariant (though it still might

not be a complete invariant).
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2.7 Rotational welded 1-knot theory

This is a refinement of welded knot theory, the result of eliminating the virtual

I-move.

Universe: We allow both classical and virtual crossings.

Move-set: We allow all the welded moves except the virtual I-move, which

is forbidden.

Relation to other theories: Rotational welded knot theory maps onto welded

knot theory. Every welded knot type is the union of rotational welded knot

types. The theories are not isomorphic, however. Here is a pair of diagrams

that are equivalent as welded knots, but are inequivalent as rotational welded

knots.

Rotational pure-virtual knot theory does not embed into rotational welded knot

theory. Here is a pair of diagrams that are inequivalent as rotational pure-virtual

knots, but are equivalent as rotational welded knots.

Invariant: The Satoh invariant defined for welded works just fine for rotational

welded, although now it is definitely not a complete invariant. For example, here
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are two inequivalent rotational welded diagrams with isotopic Satoh tori.

Rourke’s fibered version of Satoh’s surfaces is also an invariant of rotational

welded. It may be stronger than Satoh’s invariant (for example, distinguishing

the previous example), but it is unknown whether it is complete.

Theorem: Rourke’s construction is an invariant of rotational welded knot the-

ory.

Proof: Invariance can be checked for every move, as described in section

2.6.7.
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3 Examples of 2-knot theories

In this section, we describe some popular 2-knot theories using the format laid

out in section 1.2. A topological invariant is given for each theory.

In the literature, the term 2-knot sometimes is used to refer only to the

special case where X is a 2-sphere, and the term surface knot is preferred when

X can be any closed surface. We do not adopt that usage here.

The examples defined below are named after the 1-knot theories from the

preceding chapter. In fact, there is a natural one-to-one mapping J from the

set of 1-knot theories to the set of 2-knot theories. If Th is a 1-knot theory,

then J(Th) is the 2-knot theory whose universe is determined from the move-

set of Th by regarding each permitted Reidemeister move in Th as a permitted

diagrammatic feature in J(Th), as indicated in the figure below. The move-set

of J(Th) is the largest one valid— that is, there are no forbidden moves in

J(Th).

The map J will be considered further in section 4.2.
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3.1 Classical 2-knot theory

The most familiar of all 2-knot theories.

Universe: We allow classical crossings only; virtual crossings are forbidden.

These pure-classical features are allowed:

The only forbidden pure-classical feature is the delta triple point:
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Move-set: There are ten Roseman moves valid in this universe, and all of them

are included in the move-set. These are the pure-classical moves not involving

a delta triple point. Four of these moves are branch-passes; the other six are

all different kinds. (In the illustration, I show only the “before” state of each

move, to save space.)

Relation to other theories: The classical 2-knot theory move-set has redun-

dancies. It is possible to restrict the move-set without affecting the knot types.

For example, if the Roseman I-bubble move were forbidden, the resulting theory

is still isomorphic to classical 2-knot theory as defined here. This is because the

I-bubble move can be emulated by a I-saddle followed by a II-bubble move.
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As another example, if the Roseman I-saddle move were forbidden, it could be

emulated by a II-saddle followed by a I-bubble move:

Classical 2-knot theory may or may not embed into virtual and welded 2-knot

theory (sections 3.5 & 3.6). The affirmative was true for the analogous 1-

dimensional theories, but I don’t know whether it’s true here. Is it possible,

allowing virtual crossings and branches, allowing pure-virtual/mixed/welded

triple points, and allowing all the Roseman moves involving those features, that

a classical 2-knot diagram might be transformed into another from which it is

classically distinct?

Topological invariant: To each diagram D (whose domain X is a closed

surface, not necessarily connected), we associate a smooth embedding k : X →

R4, as follows. Let f : X → R3 be the generic map underlying D, and let

i : R3 → R4 be the inclusion of the coordinate xyz-plane into xyzw-space.

Now modify the immersion i ◦ f in a small regular neighborhood of each under-

crossing curve in X, by adding a smooth negative bump to the w-coordinate of

the image there. (Think of this operation as “filling in” the broken surface drawn

in the knot diagram.) Approaching branch points, make this bump continuously

diminish to nothing. The result is an embedding k whose isotopy type is a

complete invariant of the knot type of D, as proven by Roseman.
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3.2 Pure-virtual 2-knot theory

Here, crossing data must all be virtual.

Universe: We allow virtual crossings only; classical crossings are forbidden.

Virtual branch points are allowed, as are pure-virtual triple points.

Move-set: All seven pure-virtual Roseman moves are allowed.

Relation to other theories: Any theory using the purely virtual universe but

a different move-set is non-isomorphic to this one. In fact, the 27 theories using

this universe are all distinct, because it is impossible to emulate any one of the

seven pure-virtual moves using some combination of the other six.

Pure-virtual 2-knot theory is related to rotational pure-virtual 2-knot theory

(section 3.3); specifically, rotational pure-virtual 2-knot theory maps onto pure-

virtual 2-knot theory.

Topological invariant: Like pure-virtual 1-knot theory, this theory is triv-

ial in the sense that the knot type of a diagram depends only on X. The

homeomorphism type of the domain X is a complete invariant.

3.3 Rotational pure-virtual 2-knot theory

Whereas rotational pure-virtual 1-knot theory was developed by restricting only

the move-set, for rotational pure-virtual 2-knot theory we restrict the universe.

In the context of 2-knots, the term “rotational” means that virtual branch points

are forbidden. This is different from, but analogous to, the usage of “rotational”
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in the context of 1-knots, where it means that the virtual Reidemeister I-move

is forbidden.

Universe: We allow virtual crossings only. Branch points are forbidden.

Triple points are allowed.

Move-set: The move-set consists of the four pure-virtual Roseman moves that

don’t involve branch points.

Relation to other theories: Rotational pure-virtual 2-knot theory maps onto

pure-virtual 2-knot theory.

Topological invariant: Knot types in this theory are regular homotopy

classes of immersions. This is because the four moves are themselves regular

homotopies, and every regular homotopy can be perturbed into a generic form

consisting of a sequence of these four moves.

If we assume X is oriented, and that the universe and move-set have no

additional restrictions based on orientation, then we get oriented rotational

pure-virtual 2-knot theory. This can be used, for example, to evert the 2-

sphere via Roseman moves. In (Carter, 2011), Carter does this via chart moves,

which include the Roseman moves as a subset.

3.4 Delta 2-knot theory

I include this section for completeness, but I do not yet know very much about

it. It might be trivial.
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Universe: We allow classical crossings only. All types of classical branch

point and triple point are allowed, including the delta triple point.

Move-set: All 14 pure-classical Roseman moves are allowed. That includes

the ten moves of classical 2-knot theory (section 3.1), plus these additional four

moves that involve a delta triple point. (Again, I only show the “before” state

of each move in the illustration, to save space.)

Relation to other theories: Clearly, classical 2-knot theory maps onto delta

2-knot theory.

3.5 Virtual 2-knot theory

This is the 2-dimensional analog of Kauffman’s virtual knots.

Universe: We allow both classical and virtual crossings. All types of branch

point are allowed, but only three types of triple point are allowed:

Move-set: There are 23 Roseman moves valid for this universe, and all of

them are included in the move-set. These include the ten moves from classical

2-knot theory, the seven moves from pure-virtual 2-knot theory, and these six

new moves involving both classical and virtual crossings:
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Relation to other theories: Takeda showed that this theory has knot types

which do not contain any pure-classical diagrams. It is not known whether

classical 2-knot theory embeds into virtual 2-knot theory.

Topological invariant: The development of an invariant for virtual 2-knot

theory closely parallels that for virtual 1-knot theory. The idea is to think of

a virtual 2-knot diagram as a classical 2-knot diagram “drawn” on a closed 3-

manifold. We then define an equivalence relation on these objects that extends

classical move-equivalence and allows the 3-manifold to vary.

Take as input a virtual 2-knot diagram D. Let N(D) be a neighborhood of

the diagram, which is a regular neighborhood except at virtual branch points,

in the following sense: N(D) is formed by thickening D everywhere except at

virtual branch points; as you approach virtual branch points, let the thickening

gradually diminish to zero, so that near the virtual branch point N(D) looks

like the cone over a thickened figure-8.
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Along each virtual crossing curve of D, double the square-shaped junction of

N(D) to create overlapping “slabs”. Call this 3-manifold-with-boundary B(D).

It has a purely classical knot diagram in it. (To be precise, B(D) is not tech-

nically a 3-manifold-with-boundary at virtual branch points, since the “slab” is

pinched to zero thickness at these points.)
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Now embed B(D) into any closed orientable 3-manifold (not necessarily con-

nected). The result, called S(D), is a closed 3-manifold containing a classical

2-knot diagram. The particular choice of embedding does not matter, because

all the possible choices are equivalent under the following relation.

Two closed orientable 3-manifolds containing classical 2-knot diagrams are

equivalent when one can be transformed into the other via a sequence of the

following two operations.

• Classical Roseman moves: Take a ball in the 3-manifold containing

part of the knot diagram. Modify the ball just as one would modify

portions of a classical 2-knot diagram, that is, by a boundary-fixing self-

homeomorphism of the ball, or by any of the ten classical 2-knot moves if

applicable. The result is the same 3-manifold, but with a slightly different

2-knot diagram in it.
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• Stabilization: Take a regular neighborhood of the 2-knot diagram in the

3-manifold, and embed it in another closed orientable 3-manifold. The

result is a new 3-manifold, but with the same classical 2-knot diagram in

it.

These operations define an equivalence relation on 3-manifolds with classical

diagrams in them. An equivalence class is called a classical 2-knot in a

stabilized 3-manifold. It is an invariant of virtual 2-knot type.
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Theorem: Let D,D′ be virtual 2-knot diagrams. Let S(D), S(D′) be any

classical 2-knot diagrams in 3-manifolds derived from D,D′ via the construction

described. If D ∼ D′ (where ∼ is virtual 2-knot equivalence) then S(D) ∼ S(D′)

(where ∼ is equivalence via classical Roseman moves and stabilization).

Proof: The argument has the same form as that used for virtual 1-knots.

It suffices to check that each move from the move-set corresponds to an equiva-

lence of 2-knot diagrams in 3-manifolds. For the ten classical Roseman diagram

moves, it is possible to build the construction so that the move takes place in-

side a ball in the 3-manifold. For the 13 remaining moves (which all involve

virtual crossings), we can build the same 3-manifold construction from both the

‘before’ and ‘after’ diagrams.

It is unknown whether the converse is true, that is, whether this invariant is

complete. Do inequivalent virtual 2-knot diagrams ever give rise to equivalent

classical 2-knots in stabilized 3-manifolds? Note that the analogous statement

for virtual 1-knots is known to be true (section 2.5).

Another topological invariant of virtual 2-knots is surfaces embedded in

stabilized thickened 3-manifolds. The definition is the same as the one

just given, except the 3-manifolds are now thickened (product with an interval),

the 2-knot diagrams are replaced by embedded surfaces, the Roseman moves

are relaced by 4-dimensional isotopies, and stabilization involves surgery on the

thickened 3-manifold (so when you take a neighborhood of the knot, you cut

through the thickened 3-manifold).

3.6 Welded 2-knot theory

This section presents the 2-dimensional analog of welded 1-knot theory. It

includes the surface-feature analog of each of the welded 1-knot moves, including
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virtual branch points (analog of the virtual Reidemeister I-move). I do not

present any topological invariant for welded 2-knots. This is in contrast to

welded 1-knots, which had the Satoh toral-surface model (section 2.6.1) as a

(possibly incomplete) invariant. If an analogous model exists for welded 2-

knots, I have not yet found it. Rourke’s model (section 2.6.4) can be applied

to welded 2-knots if the virtual branch point is forbidden; this is the subject of

section 3.7 on rotational welded 2-knot theory.

Universe: We allow both classical and virtual crossings. All three types of

branch point are allowed. Triple points must be one of four types.

Move-set: There are 29 Roseman moves valid for this universe, and all of

them are included in the move-set. These include the 23 moves of virtual 2-

knot theory, plus six new moves involving welded triple points.
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Relation to other theories: Five other theories in this chapter— classical,

pure-virtual, rotational pure-virtual, Kauffman-virtual, and rotational welded—

use universes and move-sets that are proper subsets of welded’s. Which of these

theories embed in welded 2-knot theory? I know the answer for a few of them:

• I don’t know whether classical or virtual embed in welded, but I conjec-

ture they do. (The statements are true for the analogous 1-dimensional

theories.)

• Pure-virtual embeds in welded. This is obvious: There is only one pure-

virtual knot type for each X, and the pure-virtual moves also work as

welded.

• Rotational pure-virtual does not embed in welded. This is because rota-

tional pure-virtual does not embed in pure-virtual.

• Rotational welded does not embed in welded. This is proven in the rota-

tional welded section below.
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There is a theory called underwelded 2-knot theory, which is the same

as welded 2-knot theory except the welded triple point is forbidden and the

underwelded triple point is allowed.

The same alteration is made to the move-set as appropriate (exactly six moves

have to be replaced). The operation of mirror imaging a diagram— that

is, swapping the designations of under- and oversheets along every classical

crossing— defines a bijection between the welded and underwelded universes,

which carries welded 2-knot types to underwelded 2-knot types and vice-versa.

Since each universe contains diagrams that are not present in the other, neither

theory can embed into or map onto the other.

Topological invariant: I do not have a topological invariant for this theory.

I attempted to define a 3-dimensional analog of the Satoh’s toral-surface model

for welded 1-knots (section 2.6.1), but I cannot see how such a model would

handle virtual branch points in a welded 2-knot. The trouble is essentially the

same as Rourke’s failure to remain invariant through a virtual I-move (section

2.6.7).

In the next section, we eliminate virtual branch points. Rourke’s construc-

tion suits the restricted theory just fine.

3.7 Rotational welded 2-knot theory

This is a restriction of welded 2-knot theory, forbidding virtual branch points.

An invariant similar to Rourke’s model for rotational welded 1-knots is possible
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for this theory.

Universe: The universe is the same as that for welded 2-knot theory, except

for the omission of virtual branch points.

Move-set: The move-set for “ordinary” welded 2-knot theory includes four

moves involving virtual branch points. Omitting these four, we are left with 25

moves. These form the move-set of rotational welded 2-knot theory.

Relation to other theories: Does classical 2-knot theory embed into rota-

tional welded 2-knot theory? The answer is yes if classical 2-knot theory embeds

into welded 2-knot theory, but this question is open.

Rotational pure-virtual 2-knot theory embeds in rotational welded 2-knot

theory. If D and D′ are inequivalent as rotational pure-virtual diagrams, then

the added power of the rotational welded moves is still insufficient to transform

D into D′. For example, consider the following pair of diagrams:

72



They are inequivalent as rotational pure-virtual diagrams. In order to trans-

form D to D′ using rotational welded moves, the circular virtual crossing must

somehow be eliminated; the only rotational welded move that can eliminate

a crossing is the II-bubble, which requires that the circular crossing be con-

tractible in the surface X. However, the crossing in D is not contractible in X,

and there is no rotational welded move that changes the homotopy class in X

of a virtual crossing.

Since rotational pure-virtual 2-knot theory embeds in welded but not rota-

tional welded, we conclude that rotational welded does not embed in welded.

The example in the previous paragraph illustrates this.

Topological invariant: The invariant is analogous to Rourke’s model for

welded 1-knots. To each 2-knot diagram D we associate a 3-manifold R(D)

embedded in 5-space, such that equivalent diagrams give rise to isotopically

embedded 3-manifolds.

3.7.1 Rourke

Begin with a rotational welded 2-knot diagram D in the xyz-hyperplane of

xyzuv-space. In the uv-plane above each point (x, y, z) ∈ D, draw a circle. If

(x, y, z) lies on a crossing of D, draw two circles, one corresponding to each

sheet of the crossing. If (x, y, z) is a triple point of D, draw three circles. The

circles drawn in all the copies of the uv-plane should vary continuously as the

point (x, y, z) moves around in D, so that their union is the 3-manifold X × S1
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in xyzuv-space. The rules for drawing the circles are:

The four allowed types of triple point correspond to the four possible arrange-

ments of three circles in the plane:

The uv-planes over a classical crossing approaching a branch point contain a

pair of nested circles, just like any other classical crossing. However, as the
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point (x, y, z) moves along this crossing toward the branch point, the two circles

gradually converge in size until they coincide exactly.

The location and size of each uv-circle doesn’t matter, so long as they vary

continuously as we move around within the surface D (always moving trans-

versely through crossings, of course), since every possible choice gives the same

3-manifold (up to isotopy of 5-space). Also, if D and D′ are isotopic diagrams

in 3-space (ie., some orientation-preserving self-homeomorphism of R3 carries

D to D′), then of course R(D) and R(D′) are isotopic 3-manifolds in 5-space

(since the isotopy of the xyz-hyperplane can be extended to all of xyzuv-space).

3.7.2 Forbidden virtual branch points

The model just described does not extend in any obvious way to welded 2-knot

theory with virtual branch points. Moving along a virtual crossing toward a

virtual branch point, the uv-planes all contain a pair of unnested circles. But at

the branch point itself, there is only one circle. How do the two circles combine
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into one? Various ideas for pulling this off have failed.

For example, I tried (at the suggestion of Eiji Ogasa) adding a distinguished

“point at infinity” to the uv-planes, making them uv-spheres. This distinguished

point would only be used at virtual branch points, in order to ensure that the

concepts of nested and unnested circles is still meaningful. Unfortunately, this is

impossible: Through any point in D over which the distinguished point is used,

there must be (at least) a curve in D over each point of which the distinguished

point is used also.

Other ideas have also failed. I conjecture that the desired extension of the

invariant is impossible.

3.7.3 Invariance

The invariance of the Rourke model for rotational 2-knot theory can be checked

by regarding each move as a homotopy of the generic map f , and then extending

that to a homotopy of the embedding of the 3-manifold in 5-space. This can

be done for each of the 25 moves. The 25 verifications all follow essentially the

same routine; a few are illustrated in the proof below.

Theorem: Let D,D′ be rotational welded 2-knot diagrams. Let R(D), R(D′)
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be the fiberwise-embedded 3-manifolds derived from D,D′ via Rourke’s con-

struction. If D ∼ D′ (where ∼ is rotational welded 2-knot equivalence) then

R(D) ∼ R(D′) (where ∼ is equivalence via a fiberwise R5 isotopy).

Proof: There are 25 signed Roseman moves in the theory. To verify that

a move (interpreted as a generic homotopy) extends to a fiberwise isotopy, we

check that the fiber-circles over each crossing pass continuously and smoothly

through a valid configuration at the “singular” moment of the move. Three

examples are given; the remaining are left as routine exercises.
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4 Higher dimensions

4.1 General recipe for declaring a diagrammatic n-knot

theory

A diagrammatic n-knot theory can be declared by following this recipe.

1. Know the complete list of (unsigned) diagram features for dimension n.

2. Select which of these to include in your theory. (These selections are not

independent. For example, in n = 2, triple points can only be included if

double-curves are included.)

3. For each feature you chose to include, select which assignments of crossing

data will be allowed. (Again, the selections are not independent. For

example, pure virtual triple points can only be included if virtual double-

curves are included.)

4. Know the complete list of (unsigned) diagram moves for dimension n.

Determine which of these are valid (involve only features selected in step

2). Determine all the valid ways of applying crossing data to these moves

(consistent with the choices in step 3).

5. Select which of these moves to include in your theory.

Strictly speaking, steps 1 and 4 are not part of declaring a theory, but

rather prior mathematical knowledge needed to declare a theory. The actual

declaration properly occurs in steps 2, 3, and 5.

Step 1 of this recipe asks that we know the list of diagram features for

dimension n. This is easy if we already know the list of diagram moves for

dimension (n − 1)— simply regard each move as a homotopy, and regard the

corresponding level-preserving map as a piece of n-dimensional diagram. There
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will be some redundancy in this method for n ≥ 3, but the resulting list of

features will be complete.

To restate this more precisely: There exists a map Jn : M(n−1) → Fn, where

M(n−1) is the set of all (unsigned) moves in dimension (n − 1), and Fn is the

set of all (unsigned) diagram features in dimension n. Regard Jn as a “for-

getful” map— it “forgets” that the timeline of a move is anything other than

just another spatial dimension. The map Jn is onto for all n, but it fails to be

one-to-one for n ≥ 3. A similarly-defined map Jn also exists between sets of

moves and features with crossing data (as opposed to unsigned).

The list of diagram features can also be produced directly using a characteriza-

tion of generic maps laid out by (Roseman, 2000). In (Roseman, 2004), Rose-

man also explains how to generate a list of diagrammatic moves for dimension

n, useful for step 4 of the recipe.

4.2 Naming (n+ 1)-knot theories after n-knot theories

In step 5 of the recipe, we may declare that all valid moves are to be included

in the theory. The theory so declared is called move-complete. For example,

of the 1-knot theories described in chapter 2, only “pure-virtual knot theory”

(2.2) and “delta knot theory” (2.4) are move-complete; the five other theories

in that chapter each forbid certain valid moves. All seven of the 2-knot theories

in chapter 3 are move-complete.

Let Ln be the map which assigns to each move-complete (n+1)-knot theory
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A the unique n-knot theory Ln(A) = B whose move-set equals the full preimage

under Jn of A’s permitted diagram features (with crossing data). Note that Ln

is one-to-one.

If the theoryB has a name (for example, “Kauffman’s virtual 1-knot theory”)

then by convention, theory A should be given the same name (“Kauffman’s

virtual 2-knot theory”). This convention was followed for every 2-knot theory

in chapter 3.

In step 5 of the recipe, we may choose a move-set that is the union of full

preimages J−1n+1(x), where x is some diagrammatic feature in dimension n + 1.

The theory so declared is called move-closed. For example, a 1-knot theory

whose move set contains the left-handed Reidemeister III-move, but not the

right-handed III-move, is not move-closed.

The image of Ln is precisely the set of move-closed n-knot theories. For

example, a 1-knot theory with the left-handed, but not right-handed, III-move

does not get to have a 2-knot theory named after it.

4.3 Characterizing smooth generic maps

Roseman’s characterization of of generic maps is an intricate list of geometric

criteria. He presents it as a definition, but it has the appearance of a conse-

quence derived from a simpler definition. I propose the following alternative

definition for generic maps of smooth manifolds of any dimensions. I conjecture

that Roseman’s definition will be shown to follow as a special case (the case of

codimension 1 maps).

Definition. Let X and Y be smooth manifolds (of any dimensions). A

smooth map f : X → Y is generic if for every homotopy {ft}, with f0 = f ,

whose associated level-preserving map F : X × I → Y × I is smooth, there

exists a number T > 0 and isotopies {αt : X → X} and {βt : Y → Y } satisfying
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βt ◦ ft ◦ αt = f for all t < T .

In this definition, we “test” the map f by looking for a small perturbation

{ft} which immediately alters the topology of the image. The isotopy {βt} tries

to “correct” the image of the perturbed map and revert it back to image(f).

The isotopy {αt} then reparametrizes X so that the final map is exactly equal

to f . If there is a perturbation for which these corrections are topologically

impossible, then f is not generic.

For example, if X is a curve and Y is the plane, then a map f will fail this

test if

• the velocity is ever zero,

• there are non-transverse intersections,

• there are intersections of degree ≥ 3.

Each of these non-generic behaviors can be perturbed so that the image imme-

diately changes in an essential, topological way.

The definition only allows “test” perturbations that are smooth, in the strong

sense of F : X × I → Y × I being smooth. This is to prevent false negatives—

if we could use test perturbations that were not smooth in this strong sense,

we might find a way to disrupt the topology of a map which we really want to

call generic. For example, if X is a circle and Y is 3-space, and f is a map

whose image is a geometric circle traversed at unit speed, then f is generic—

there is no way to disrupt the topology of the image via a strongly smooth per-
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turbation. However, there is perturbation {ft}, with ft smooth for each t, but

F : X × I → Y × I not smooth, which changes the topology by growing a knot

from a single point on the circle starting at t = 0, as shown.

In future work, the author will extend this approach to characterizing and

classifying generic moves of generic maps.

4.4 Conclusion

In this paper, we have established a meta-theoretical framework for defining

and classifying diagrammatic knot theories in dimensions 0 through 3; we have

found relations between several such theories in dimensions 1 and 2; we have

developed topological models for virtual and rotational welded 1-knot and 2-

knot theories; and we have laid the groundwork for extending this work into

higher dimensions. Future directions of research include:

• Rigorously prove that Rourke’s model does not work for non-rotational

welded knot theory.

• Define n-dimensional virtual and rotational-welded knot theories.

• Classify all diagrammatic 1-knot and 2-knot theories up to isomorphism.

82



Appendix:

The 42 signed Roseman tetrahedral moves

The Roseman tetrahedral move is the 2-knot diagram move which turns a tetra-

hedron inside-out by passing its four facial planes across a common quadruple

point. There are 36 = 729 ways to apply crossing data along each of the six

edges of a tetrahedron. Up to rotation, this reduces to only 67 ways. This num-

ber is further reduced to 42 ways, by pairing the “before” and “after” pictures

of the Roseman move. (Note that 42 is more than half of 67, since some of the

“before” and “after” states are alike under rotation.)

Theorem. There are 42 different signed Roseman tetrahedral moves. Of these,

4 use only classical crossings, 1 uses only virtual crossings, and 37 use a mixture

of both.

Proof. We systematically list all 67 signed tetrahedra, drawing the edge-lattice

of each tetrahedron seen from birds-eye-view above one of the vertices. (For

simplicity, we omit the continuation of the facial planes.) Virtual crossing edges

are indicated by plain segments; classical crossings are indicated by an arrow,
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so that the “under” sheet is to the left and the “over” sheet to the right, seen

by a little man standing on the outside surface of the tetrahedron and facing

the direction of the arrow.

Triple point types are thus indicated by vertices as follows (seen from outside

the tetrahedron):
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The effect of the Roseman move is to invert a tetrahedron into its dual. In or-

der to pair up “before” and “after” drawings, we combine this inversion with a

rotation so that the “before” and “after” drawings are both viewed from above

the same triple point. The “after” drawing is obtained by taking the “before”

drawing, reflecting it side-to-side, and reversing every arrow. (If the two tetra-

hedra are alike after a 3D rotation, then only one drawing is included. A curved

arrow replaces the “after” drawing.)

For each move, we have indicated a list of the types of triple points involved.

Also indicated is the number of “different-looking” rotations of the signed tetra-

hedron (i.e., the index of the signed tetrahedron’s rotation group as a subgroup

of the unsigned tetatrahedron’s symmetry group). The sum of all these num-

bers is 36 = 729, as expected (remember to double the numbers whenever the

“before” and “after” tetrahedra are distinct).

85



86



87



88



References

Carter, J. (2011). An excursion in diagrammatic algebra. World Scientific.

Carter, J., Kamada, S., & Saito, M. (2002). Stable equivalence of knots on

surfaces and virtual knot cobordisms. Journal of Knot Theory and Its

Ramifications, 11 , 311-322.

Fenn, R., Rimanyi, R., & Rourke, C. (1997). The braid-permutation group.

Topology , 36 , 123-135.

Goussarov, M., Polyak, M., & Viro, O. (2000). Finite-type invariants of classical

and virtual knots. Topology , 39 , 1045-1068.

Kauffman, L. (1999). Virtual knot theory. European Journal of Combinatorics,

20 , 663-690.

Kuperberg, G. (2003). What is a virtual link? Algebraic & Geometric Topology ,

3 , 587-591.

Murakami, H., & Nakanishi, Y. (1989). On a certain move generating link-

homology. Mathematische Annalen, 284 , 75-89.

Roseman, D. (1998). Reidemeister-type moves for surfaces in four-dimensional

space. Banach Center Publications, 42 , 347-380.

Roseman, D. (2000). Projections of codimension two embeddings. In Knots in

hellas ’98. World Scientific.

Roseman, D. (2004). Elementary moves for higher dimensional knots. Funda-

menta Mathematicae, 184 , 291-310.

Rourke, C. (2006). What is a welded link? In Intelligence of low dimensional

topology (p. 263-270). World Scientific.

Satoh, S. (2000). Virtual knot presentation of ribbon torus-knots. J. Knot

Theory Ramifications, 09 , 531-542.

Takeda, Y. (2012). Introduction to virtual surface-knot theory. Journal of Knot

Theory and Its Ramifications, 21 .

89



Winter, B. (2015). Virtual links in arbitrary dimensions. Journal of Knot

Theory and Its Ramifications, 24 .

90



Vita 

 

 

 

NAME 

 Jonathan Schneider 

EDUCATION 

 Ph.D., Mathematics, University of Illinois Chicago, 2016 

M.S., Mathematics, University of Illinois Chicago, 2012 

B.A., Mathematics, Swarthmore College, 2005 

TEACHING 

 

Fall 2015:   Visiting lecturer, University of Illinois Chicago  

Taught Business Calculus 

Fall 2013:  Adjunct faculty, College of Dupage 

Taught Precalculus I, Precalculus II, and Algebra with Applications. 

  Adjunct faculty, Elgin Community College 

Taught Statistics and Quantitative Literacy. 

Summer 2013: Adjunct faculty, College of DuPage 

 Taught Statistics. 

Summer 2012: Adjunct faculty, Moraine Valley Community College

 Taught Statistics. 

Summer 2010 and 2011: Instructor, Universtiy of Illinois Chicago 

Taught Intermediate Algebra (course for incoming freshmen) 

Summer 2008: Teacher, Center For Talented Youth 

Taught Mathematical Modeling (course for gifted 8th graders). 

 

Fall 2006 – Spring 2015: Graduate teaching assistant, UIC  

Taught various math courses a T.A. 

 

 

 

 

 



PRESENTATIONS 

2010-present:  Quantum Topology Seminar 

I regularly give talks on knot theory in this seminar led by 

Professor Louis Kauffman. 

2016:  “From Kauffman’s virtual model to Satoh’s welded model”  

        Talk at Advances in Quantum and Low-Dimensional Topology. 

        Covered joint work with Eiji Ogasa and Louis Kauffman. 

2015:  “Welded knots in dimensions 1 and 2” 

        Talk at the AMS Sectional Meeting, Loyola University. 

        Covered topics related to my graduate dissertation. 

2012:   “Virtual 2-knots” 

Invited talk at the AMS Sectional Meeting, University of 

Kansas. I explained the object of my graduate research. 

2011:  “Flat-folded origami” 

Guest lecture given to a class at the College of DuPage, IL, on 

a basic problem in the mathematics of origami. 

2008:  “A topological model for origami” 

Presentation given to the UIC Undergraduate Math Club, on 

an original model for origami using metric spaces. 

2007:  “Symmetries of knots” 

Talk given at the MAA MathFest in San Jose, CA, on  knots with 

nontrivial 3D symmetry types. 

 

 

 

OTHER PUBLIC APPEARANCE 

2008: Between The Folds (documentary film) 

Credited in the film for giving a short interview on the 

mathematical theory of origami. 


