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SUMMARY 

 

A study on the behavior of dense suspensions of magnetic nanoscale ferroparticles was 

carried out by employing a particulate Brownian dynamics modeling approach with an iterative 

constraint method that ensured that the magnetostatic forms of Maxwell’s equations (i.e. Gauss’s 

Law and Ampère’s Law) were continuously met while the suspension progresses. FORTRAN 

simulations were executed under varying parameter groups to observe a collection of hundreds of 

magnetic particles with fixed orientation dipoles leading up to and at steady-state. These parameter 

groups controlled the forces of particle-particle interactions, shearing, steric repulsion, and 

Brownian fluctuations that individual ferroparticles could experience. Effects from magnetic fields 

and hydrodynamic interactions were also included to induce realistic ferrofluid behavior. 

Testing under uniform magnetic fields with activated constraints exhibited reduced trends 

in the spin viscosity when compared to trials that disregarded the constraint algorithm. Although 

the dispersion activity developed similarly in both cases, the chaining ultimately progressed to a 

lesser extent in the constraint model than in the unconstrained. Consequently, separation due to 

magnetic field gradients occurred at a decreased rate under the constraint method, since 

cooperative magnetophoresis is less effective due to weakened magnetoviscous effects. Thus, 

aggregation and magnetic separation modeling of ferrofluid colloidal suspensions without 

adherence to Maxwell’s equations is inaccurate. 
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1. INTRODUCTION 

1.1  Ferrofluids and the Study of Ferrohydrodynamics 

The study of ferrohydrodynamics (FHD) began in the 1960’s and is concerned with “the 

mechanics of fluid motion influenced by strong forces of magnetic polarization”  

(Rosensweig, 1985), notably in systems without induced electric currents. The novel idea of a 

magnetic fluid arose when scientists of the National Aeronautics and Space Administration were 

attempting to control liquids in space. It was further motivated with the goal of extracting work 

from heat without using mechanical parts. As a result, colloidal magnetic fluids known as 

ferrofluids were developed when they were acknowledged for their vast and revolutionary uses. 

A ferrofluid is a colloidal suspension composed of nanoscale (3-15 nm), ferromagnetic, 

single-domain particles suspended in a continuous medium called the liquid carrier, which is 

oftentimes a petroleum oil or water. Each particle is coated with a dispersant molecular layer that 

prevents undesirable or irreversible clumping, especially when there are no magnetic sources 

present. In constrast to a magnetorheological (MR) fluid, which consists of micron-sized particles 

that only become magnetized in the presence of an applied magnetic field, ferrofluids contain 

particles with permanently-embedded magnetic dipoles at high concentrations. A dipole is 

considered a pair of equal and opposite point poles (typically called the “North” and “South” 

domains) separated by a small distance. For most MR fluids, the magnetostatic repulsion between 

particles is not sufficient enough to overcome van der Waals forces and thus, irreversibly 

aggregate, even in the absence of applied fields. Conversely, because of the dispersant molecular 

layer and Brownian motion, ferrofluids do not unexpectedly clump or settle out, although small 

concentration gradients can result from extended exposure to a magnetic field. Micron-sized 

ferroparticle clusters can be synthesized by compacting numerous ferrofluidic nanoparticles into  
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shells composed of organic (or sometimes inorganic) materials. A typical ferrofluid, which must 

be artificially manufactured, is an opaque solution that contains 105 particles per cubic micrometer. 

Transmission electron microscopy is usually implemented to verify the average particle diameter 

or polydispersity of ferrofluid particulate suspensions. The particles can be composed of iron, 

nickel, cobalt, and many of their alloys. Some rare earth metals and certain intermetallics, such as 

gold-vanadium, are also viable options.  

 

1.2  Ferrofluid Applications 

Because ferrofluids have a unique response to magnetic force fields, they have been 

utilized in a wide range of applications. Most of the attention has been centered around the remote 

positioning and control of ferrofluids using external magnetic fields. A single drop of ferrofluid 

can be used as zero-leakage rotary seals (Schinteie et al., 2013), act as pressure seals and sensors 

(Ravaud et al., 2010), applied as lubricants in bearings (Kumar et al., 1993), piloted in the body to 

bring drugs to a target site (Ganguly et al., 2005; Kim and Dobson, 2009), or serve as a blood 

tracer in noninvasive measurements of the circulatory system (Newbower, 1973). With 

biofunctional coatings, ferrofluidic particles can operate as transport carriers of biomaterials via 

magnetofection (Furlani, 2010). Microfluidic systems manipulate magnetic particles to mobilize 

or impede biomaterials for detection, separation, or mixing with reagents (Nguyen, 2011). Larger 

volumes of ferrofluid are employed in sink-float processes, where industrial scrap metals are 

separated using the high specific gravity imparted to a pool of ferrofluid subjected to an appropriate 

magnetic field.  Ferrofluids can serve as detecting agents when locating magnetic domains in alloys 

or crystals (Lebedev et al., 2002; Raj et al., 1995) or utilized as ink for high-speed, inexpensive, 

silent printers (Tiberto et al., 2013). For gas-fluidized beds, in order to reduce the fluid mechanical 
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instability, ferrofluids are used to prevent the appearance of bubbles and thus, eliminate solids 

back mixing and gas bypassing (Rosenweig, 1995). Research on the beds has led to improved 

catalytic reactors (Lai et al., 2011; Pourjavadi et al., 2012), particulate filtration (Wu et al., 2011; 

Yavuz et al., 2009), and separation processes (Mizuno et al., 2013; Zeng et al., 2013). Other 

applications include function as a contrast medium in diagnostics (Arsalani et al., 2012; 

Rümenapp et al., 2012) or production of magnetically responsive enzyme supports and 

immobilized microorganisms (Chen et al., 2012). Increasing interest in these kinds of applications 

will progress towards many novel usages, especially in vivo. 

 

1.3  Purpose of Simulation 

Computational simulations have been known to model the behavior of ferrofluid systems. 

More specifically, particulate models are known to be effective for portraying mesoscale magnetic 

suspensions undergoing separation, manipulation, and assembly. A comprehensive simulation 

routine is conducted to model ferrofluids under shear flow in uniformly and nonuniformly applied 

magnetic fields based on mesh-free techniques. This procedure is based on a Brownian dynamics 

method and will include a constraint algorithm to ensure application of elementary physics 

principles that govern magnetic fluids. The proposed simulation technique will eventually have a 

much broader application for other means to implement ferrofluids and therefore, will have a much 

wider impact in understanding magnetic fluids. Results from the study will be compared to existing 

relevant data and will allow for a basis of validity and insight into the behavior of subcontinuum 

medium in the realm of FHD. 
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2. LITERATURE REVIEW 

2.1  Fundamentals of Ferrohydrodynamics 

Elementary concepts of FHD have been compiled by Rosensweig (1985). He explains that 

the primary type of ferrohydrodynamical magnetic fluid, termed “colloidal ferrofluid,” can retain 

liquid fluidity in intense applied magnetic fields. A dispersant molecular layer (also known as a 

surfactant) prevents particles from sticking to one other, which can be due to molecular attraction 

between the suspended particles and the dipole-dipole interaction inherent to magnetic material. 

Thermal agitation inhibits settling of the particles and keeps them suspended in the liquid carrier 

via Brownian motion. Furthermore, because colloidal magnetic fluids are composed of solid, 

single-domain particles with no long-range order present amongst particles, they demonstrate a 

behavior known as superparamagnetism. In the absence of an applied magnetic field, 

superparamagnetic materials have an average particle magnetization of zero, whereas in low to 

moderate magnetic fields, the magnetization is much larger when compared to paramagnetism. 

Superparamagnetic materials, despite particle size, have found numerous usages for their 

separation capabilities and reusability in most systems. They provide an advantage when 

considering limitations due to fouling or larger magnetic sorption substances in commercial 

contexts (Yavuz et al., 2006). Within the class of superparamagnetic materials, ferromagnetic 

solids are comprised of domains in which each contains the magnetic moments of individual atoms 

that are oriented in a fixed direction. Ferromagnetic material is broken up into domains so as to 

obtain a minimal field energy state. Single ferrofluid particles tend to exhibit ferromagnetism. 

When ferromagnetic material is magnetized in one direction, the field energy becomes substantial. 

Even so, the domains are not permanent since it requires energy to generate boundaries that 

separate them. In 1928, Werner Heisenberg explained that when the spins on adjacent atoms within  
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domains switch from parallel to antiparallel alignment, there is a corresponding change in the 

electron charge distribution of the atoms that modifies the system’s electrostatic energy. 

Ferromagnetism, in this case, would be when the spin magnetic moments, which contribute to the 

molecular field, are energetically more favorable when situated in a parallel configuration. Other 

magnetic behaviors include antiferromagnetism (occurs when there is no net magnetic moment), 

ferrimagnetism (unequal moments alternate from atom to atom which results in a net moment 

smaller than those in typical ferromagnetic materials), paramagnetism (no long-range ordering in 

the molecular moments), and the weakest type of magnetic behavior known as diamagnetism 

(molecular moments oppose the applied magnetic field). These behaviors are outlined in Table I. 

 

 

 

 

TABLE I 

 

TYPES OF MAGNETISM 

Magnetic Behavior Ordering of Atomic Moments Examples of Material 

Paramagnetism 

 

Al, Mn, O 

Ferromagnetism 
 

Fe, Ni, Co 

Antiferromagnetism 

 

FeO, NiO, FeMn 

Ferrimagnetism 

 

Fe3O4, Fe7S8, MnFe2O4 

Diamagnetism  C, H, N 
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2.2  Magnetism 

Magnetostatic principles that govern ferrofluids can be defined by fundamental magnetic 

properties. Magnetic fields that can be generated by currents are typically denoted as the induction 

field 𝑩. The induction field 𝑩 has units of tesla and is sometimes called the magnetic flux density. 

However, when these fields pass through magnetic materials, ambiguities arise about which 

segment of the induction field results from external influences and which comes from the material 

itself. Thus, the former component of the field due to external influences is embodied by the 

magnetic field 𝑯 and usually possesses units of amperes per meter. It indicates the driving 

magnetic influence from external sources within a material, independent of the material’s magnetic 

response. In a vacuum, the 𝑯-field would represent the force that acts on a north-seeking point 

pole. The latter component of the field is designated by the magnetization 𝑴 and has the same 

units as 𝑯. It is considered the material’s magnetic response and often characterized by a volume 

average of magnetic particle dipoles. The most general law comparing the three field vectors is: 

 𝑩 = 𝜇0(𝑯 + 𝑴) [2.1]  

Here, 𝜇0 is the permeability of free space. Thus, in magnetic materials, 𝑩 is not solely related to 𝑯 

due to the magnetization term 𝑴 and 𝑩 ≠ 𝑯. Another, widespread form of the relationship 

between 𝑩 and 𝑯 is: 

 𝑩 = 𝜇𝑚𝑯 [2.2]  

where 

 𝜇𝑚 = 𝐾𝑚𝜇0 [2.3]  

Here, 𝐾𝑚 is the relative permeability of the material and assesses the ratio of magnetization to the 

applied magnetic field. Magnetic materials with large, positive relative permeabilities have internal 

magnetizations that respond well to an external magnetic field. When the field is in a vacuum or 
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passing through a material that does not react to the 𝑯-field by generating a corresponding 𝑴, 

𝐾𝑚 = 1. Relative permeability is compared to the value of 1 when using the magnetic 

susceptibility: 

 𝜒𝑚 = 𝐾𝑚 − 1 [2.4]  

The magnetic susceptibility is very close to 0 in paramagnetic and diamagnetic materials. 

Moreover, these quantities may be very large in ferromagnetic materials. 

 

2.3  Magnetophoresis and Magnetic Separation 

When nonuniform magnetic fields are applied to magnetic fluids, the magnetic material 

undergoes a migration phenomenon known as magnetophoresis. Magnetophoresis (MP) describes 

the diffusive behavior of magnetic particles when they are manipulated by a magnetic force in the 

presence of locally-applied magnetic field gradients. It is a central mechanism of magnetic 

separation techniques, which are more rapid and effective than filtration or centrifugation methods. 

Gradients are primarily caused by differences in magnetism (often characterized by disparities in 

susceptibilities). Magnetophoresis differs from electrophoresis or dielectrophoresis methods, 

which exploit electric currents to control electrically-conductive materials in suspensions, or 

electromagnetophoresis, a phenomenon that combines both magnetism and electricity with 

migration analysis (Watarai et al., 2004), and should not be confused with negative MP, which 

involves mixtures of nonmagnetic and magnetic particles (Liang and Xuan, 2012). When the 

magnetic field gradient is directed perpendicularly to the flow direction, MP occurs when the 

ferroparticles are driven towards explicit regions for extraction from the liquid carrier. While they 

move, the magnetic particles behave in one of two ways: cooperatively or noncooperatively. 

Cooperative MP occurs when the particle aggregation enhances the magnetic migration while 
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noncooperative MP involves the diffusion of individual particles. For particles in cooperative MP, 

they can be envisioned as inducing a magnetic gradient between themselves and the fluid. As the 

ferroparticles form larger colloids, they become more magnetically responsive and consequently, 

the thicker chains drift faster than thinner aggregates. Therefore, magnetic particle-particle effects 

and hydrodynamic interactions can accelerate the migration of particle chains. Particle dimensions 

are frequently adjusted according to this idea (e.g. decreasing the particle diameter will raise 

available sorptive areas and aggregation). However, doing so is not so simple since changes in 

particle size alter domain-dependency, magnetic susceptibility, paramagnetism, and material cost. 

Magnetic separation processes are becoming the most suitable procedures for extraction 

and purification in complex suspensions. Popular separation applications that employ MP include 

wastewater treatment, magnetic-particle imaging, and pollutant removal via fractionation methods 

or microfluidic devices (Watarai et al., 2004; Yavuz et al., 2009). Although uses in drug delivery 

and protein isolation exist, the efficacy and purity of cell capture, as well as the reusability of 

recovered cells, are limited. Primary concerns with therapeutic treatments include reactive 

constituents (like those that are unfavorably responsive to other cell populations) and unwarranted 

aggregation (which can have negative symptoms that impact biocompatibility) (Furlani, 2010).  

Most magnetic separations can be categorized into two types: high-gradient magnetic 

separation (HGMS) and low-gradient magnetic separation (LGMS). Traditionally, HGMS 

involves flowing a suspension through a column (sometimes containing a packed bed) with 

magnetically-susceptible wires providing strong magnetic gradients generally larger than  

1000 T/m. Other convenient magnetic sources have been composed of rare-earth metals or 

electromagnets. Since the field gradients tend to be high, the separation is quick. Researchers have 

performed magnetic chromatography experiments to successfully correlate particle size with 
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HGMS efficiency (Moeser et al., 2004). However, it has proven difficult to generate accurate 

theoretical models for optimization purposes. Indeed, there will always be unanticipated, 

complicating factors in experimentation (such as polydispersity or changes in viscosity) that affect 

the agreement between theoretical and experimental studies, especially at such strong magnetic 

field gradients (Andreu et al., 2011). Additionally, HGMS of individual ferrofluid nanoparticles 

has not been extensively studied. Alternatively, LGMS allows for more dense suspensions and 

separation is preferably driven by cooperative MP with magnetic gradients in the range of  

1-1000 T/m. This makes it strongly dependent on particle properties. Still, the disadvantage is that 

the process takes relatively longer than HGMS. LGMS research is also not as prominent as that of 

HGMS.  

 

2.4  Magnetostatic Maxwell’s Equations 

The focus of this study is to further develop existing simulations to ensure that certain 

constraints (given by Maxwell’s Equations of magnetostatics) that act on the system are satisfied. 

Most readily this means that the divergence of the induction field must equal zero: 

 ∇ ⋅ 𝑩 = 0 [2.5]  

and the curl of the magnetic field must be zero: 

 ∇ × 𝑯 = 𝟎 [2.6]  

Equation [2.5] is known as Gauss’s Law and equation [2.6] is recognized as Ampère’s Law. 

Gauss’s Law ensures that there are no free magnetic poles while Ampère’s Law establishes that 

the tangential components of the magnetic field are zero, especially when there are no current 

flows. Upon examination of equation [2.1], it quickly leads to the revelation that the divergence of 
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the 𝑴-field and the divergence of the 𝑯-field must be equal and opposite. Consequently,  

equation [2.5] becomes: 

 −∇ ⋅ 𝑯 = ∇ ⋅ 𝑴 [2.7]  

When the 𝑯-field applied is uniform or divergence-free, the equation simplifies further: 

 ∇ ⋅ 𝑴 = 0 [2.8]  

Therefore, in the presence of a uniform or divergence-free magnetic field, only the material 

response 𝑴-field must be solenoidal. 

 

2.5  Ferrofluid Simulations 

The conventional approach to ferrofluid modeling corresponds to a dispersion of magnetic 

particles that is so dilute that the interparticle interactions are weak or the particle contribution to 

the total field that animates all particles is negligible. However, this assumption is inadequate since 

many applications, such as drug delivery, require more concentrated ferromagnetic dispersions. It 

also simplifies detailed descriptions of external conditions by stating that the system was placed at 

a given location in a field 𝑯, rather than declaring that the experiment was performed at a particular 

distance and orientation with respect to a magnet. One of the disadvantages to adopting methods 

with smoothed particle distributions or volume-averaged concentrations is that they neglect 

interparticle exchanges and are consequently ineffective in representing dense particulate 

configurations. This is notably observed when high concentrations of ferroparticles congregate in 

an area of a volume more than another, like during magnetic separation. Research has yet to 

provide comprehensive and quantitative tracking of individual particles in dense suspensions for 

the analysis of behavior in complex geometries and inhomogeneous magnetic fields.  
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 Traditionally, ferrofluids have been treated as continuum systems where the magnetic 

particles are inseparable from the carrier fluid and an additional body force is appended to the 

Navier-Stokes equation to account for the relationship between the applied magnetic field and the 

fluid’s magnetization (Kružík and Prohl, 2006; Shliomis, 1974). There is generally no electric field 

in the fluid but rather a polarization force that affects the bodies of the particles, which requires 

material magnetization in the presence of magnetic field gradients. Rosensweig (1985) proposed 

the “quasi-equilibrium” approach, which assumes that the local magnetization is in persistent 

equilibrium with the local magnetic field via a simply proportional relation. Shliomis (1974) had 

expressed this relationship in terms of the Langevin function and the saturation magnetization of 

the magnetic material 𝑴𝑆. However, since magnetization is not directly related to the magnetic 

field due to properties like magnetic hysteresis, the relationship differs from other models by 

specific confines and accuracy. And though useful in studying various effects, the approximation 

did not account for all FHD behavior, such as the magnetoviscous effect. Magnetoviscous effects 

emerge in the form of an enhanced effective shear viscosity due to excess dissipation when a 

flowing ferrofluid is subjected to a magnetic field (Odenbach, 2002). Furthermore, the  

“quasi-equilibrium” approach did not address the orientation of the microstructure induced by the 

application of external magnetic fields or the details of fluid-particulate-boundary substructure at 

extremely small length scales. Thus, magnetization, often modeled by a relaxation equation that 

assumes noninteracting particles in the absence of flow, has been incorrectly assumed.  

 Ferrofluid studies have adequately recognized the effects of applied magnetic fields on the 

structure and material properties of the ferrofluid. Yet, many simulations have assumed that there 

is no complete interplay between the applied magnetic field and the ferrofluid’s quasistationary 

magnetization. Inhomogeneities in particle concentration also have significant impacts on 
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magnetic force and average particle velocity, strongly suggesting that the diffusive behavior is 

highly-linked to the Maxwell's equations. For recent ferrofluid simulation techniques, the applied 

magnetic fields are assumed to be homogeneous and simply proportional to the corresponding 

local magnetizations (Papadopoulos et al., 2012). However, experimentally-founded magnetic 

fields cannot be described by simple analytical expressions. These concerns are detected in small 

local deviations between experiments and theory (Sinha et al., 2007). As most studies observe a 

linear magnetic response in ferroparticles, they tend to negate how the magnetization of the 

particles has an effect on everything else. Additionally, when a linear relationship relates the 

particle magnetization to the externally-applied magnetic field, the particles are typically 

paramagnetic rather than superparamagnetic. These simplifications may prove appropriate for MR 

fluids but are highly inadequate for ferrofluids because – while the induced magnetic dipole in MR 

fluids is free to orient within the particle and generally stays aligned with the field – the orientation 

of the magnetic moment in ferrofluid particles is altered by any force or interaction that affects the 

particles’ orientation and hence, its embedded dipole. Several effects are known to influence the 

local magnetization. Besides the magnetic interactions between the ferroparticles, others include 

particle tumbling initiated by hydrodynamic effects through the local flow field, orientation 

changes produced by nonisotropic media (e.g., biological tissue, small channels, ferroparticle 

crowding, etc.), and Brownian influences that tend to cause particle orientations to evolve and 

relax towards a uniform distribution. In this study, additional effects on the particles’ orientations 

will be included. 
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3. METHODOLOGY 

3.1  Suspension Rheology 

3.1.1 Fluid Dynamics of the Liquid Carrier 

Brownian motion is the thermal agitation by the random motion of the liquid carrier’s 

molecules that keeps the particles suspended within the solution and is observed in functional 

fluids such as ferrofluids. Ordinary molecular dynamics methods are practical for particles that are 

no larger than the molecules of the surrounding medium. However, ferroparticles (or their potential 

colloid formations) tend to be much larger and thus, require simulations that have a longer 

characteristic Brownian motion time than characteristic molecular motion time. Therefore, the 

liquid carrier is viewed as a continuum. The Brownian dynamics method assumes that the medium 

suspending the ferrofluid particles is incompressible and Newtonian. For this particular type of 

medium, the change of an arbitrarily-sized volume of mass in the fluid can be derived from the 

mass conservation law to express the equation of continuity: 

 𝜕𝜌

𝜕𝑡
+ 𝜌∇ ⋅ 𝒗 = 0 [3.1]  

where 𝜌 is density, 𝑡 is time, and 𝒗 is velocity. If the fluid is incompressible (constant 𝜌), then 

equation [3.1] reduces to: 

 ∇ ⋅ 𝒗 = 0 [3.2]  

From Newton’s second law, which details the conservation of momentum, an equation is derived 

that governs the motion of the fluid: 

 
𝜌

𝐷𝒗

𝐷𝑡
= −∇𝑝 + 휂∇2𝒗 + 𝜌𝒈 [3.3]  

Here, 
𝐷

𝐷𝑡
 is the substantial derivative, 𝑝 is pressure, 휂 is viscosity, and 𝒈 is the gravitational 

acceleration. This expression is known as the Navier-Stokes equation. For colloidal dispersions, 
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the left-hand side of the Navier-Stokes equation, which describes inertia, can typically be ignored. 

In addition, the gravitational term is considered negligible. As a result, equation [3.3] reduces to 

the Stokes equation: 

 ∇𝑝 = 휂∇2𝒗 [3.4]  

The Stokes equation, combined with the continuity equation in equation [3.2] and taken under 

specific conditions, can be used to acquire an expression for the flow field. For example, under 

steady flow, equation [3.3] becomes: 

 0 = ∇2𝒗 [3.5]  

Boundary conditions contingent on geometry are required to determine an expression for 𝒗. Thus, 

equation [3.5] will be resolved in a later section when the relevant information is provided. 

 

3.1.2 Hydrodynamic Interactions 

When observing a system of suspended particles under fluid flow, hydrodynamic 

interactions must be accounted for in their behavior. This is especially valid for dense particulate 

models with aggregation behavior. Hydrodynamic interactions occur when a particle moves about 

and agitates the fluid in the neighborhood of other particles, even when transported by the fluid 

motion. The resultant field of the moving particle is conveyed through the solvent and affects the 

hydrodynamic force, torque, and stresslet of the other particles. 

For a spherical particle, the force by the particle on the fluid is solely dependent on the 

translational velocity, the torque depends just on the angular velocity, and the rate-of-strain tensor 

is reliant only on the stresslet. Furthermore, the fluid velocity is considerably higher than the 

relative velocity between a particle and the fluid (i.e. Reynolds number Re satisfies Re ≪ 1). Thus, 

Stokes equation allows for linear analytical solutions of the flow field. As a result, the relationship 
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between a particle’s velocity 𝒗 and angular velocity 𝝎, the stresslet 𝑺, the force 𝑭 and torque 𝑻 

applied to the fluid by a particle, and the rate-of-strain E is established as: 

 

[
𝒗 − 𝑼
𝝎 − 𝛀
𝑺/휂

] = 𝐌[
𝑭/휂
𝑻/휂
E

] = [
a b̃ g̃

b c h̃
g h k

] [
𝑭/휂
𝑻/휂
E

] [3.6]  

where 𝑼 and 𝛀 are the solvent’s velocity and angular velocity vectors for an applied flow field in 

the absence of particles, respectively. The mobility matrix 𝐌 consists of the second-rank tensors 

a, b, and c, third-rank tensors g and h, and fourth-rank tensor k. Equation [3.6] is conveyed in 

mobility formulation, expressing the velocity, angular velocity, and stresslet of the particle with 

dependence on the force, torque, and rate-of-strain tensor, respectively. The other tensors are 

defined as: 

b̃ = b𝑡 

g̃𝑖𝑗𝑘 = g𝑗𝑘𝑖 

h̃𝑖𝑗𝑘 = h𝑗𝑘𝑖  

where a superscript ‘𝑡’ symbolizes a matrix transpose operation. For the fourth-rank tensor k : 

k𝑖𝑗𝑘𝑙 = k𝑘𝑙𝑖𝑗 

Furthermore, it should be noted that the a and c tensors are symmetric. To evaluate the mobility 

tensors, Kim and Karilla (1991) devised a numerical method to calculate them as a function of 

scalar mobility functions. As an example, the a12 mobility tensor between particle 𝛼 = 1 and 

𝛽 = 2 is expressed as: 

 a12 = 𝑥12
a 𝑑1𝑑2 + 𝑦12

a (I − 𝑑1𝑑2) [3.7]  

in which 𝒅 is the unit directional vector between particles 1 and 2. The 𝑥12
a  and 𝑦12

a  values are the 

scalar mobility functions and depend on the distance between particles. They are typically 
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tabulated. For spheres of identical radii, the general form of the mobility functions and 

corresponding values are provided in Appendix A. 

Expanding equation [3.6] to a two-particle system where the particles are nearly-touching 

yields: 

 

[
 
 
 
 
 
𝒗1 − 𝑼(𝒓1)

𝒗2 − 𝑼(𝒓2)
𝝎1 − 𝛀
𝝎2 − 𝛀
𝑺1/휂
𝑺2/휂 ]

 
 
 
 
 

=

[
 
 
 
 
 
 a11 a12

a21 a22

b̃11 b̃12

b̃21 b̃22

g̃1

g̃2

b11 b12

b21 b22

c11 c12

c21 c22

h̃1

h̃2

g11 g12

g21 g22

h11 h12

h21 h22

k1

k2 ]
 
 
 
 
 
 

[
 
 
 
 
𝑭1/휂
𝑭2/휂
𝑻1/휂
𝑻2/휂

E ]
 
 
 
 

 [3.8]  

Consequently, the expression can be extended further to a system involving three or more particles 

and is demonstrated in the next section. 

 

3.1.3 Additivity of Velocities 

 Two approximation methods have been developed that simulate multibody hydrodynamic 

interactions in a dense colloidal dispersion. Both methods are capable of evaluating essential 

attributes of a ferrofluid, to a reasonable extent. The first, called the approximation of the additivity 

of forces, is more effective with smaller systems that consist of a modest amount of particles (~50 

or less). It is also best applied to accurately model the lubrication effect, which results when 

particles are in extremely close proximity. This generates a substantial hydrodynamic interaction 

between the particles. However, with the second approximation known as the additivity of forces, 

complications arise when calculating the inverse of the resistance matrix. The present study relies, 

instead, on the approximation of the additivity of velocities (Satoh et al., 1998). With this 

approach, no inverse matrix calculation is necessary and larger systems can be simulated as a more 

ideal representation of a dense colloidal dispersion. And since the main focus of the current model 
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is the aggregation behavior in a flow field, the lubrication effect is deemed irrelevant. Therefore, 

to consider multibody hydrodynamic interactions, the approximation of the additivity of velocities 

is employed.  

From equation [3.8], one can observe the velocity of a particle 𝛼 as: 

 
𝒗𝛼 − 𝑼(𝒓𝛼) =

1

휂
(a𝛼𝛼 ⋅ 𝑭𝛼 + a𝛼𝛽 ⋅ 𝑭𝛽 + b̃𝛼𝛼 ⋅ 𝑻𝛼 + b̃𝛼𝛽 ⋅ 𝑻𝛽) + g̃𝛼:E [3.9]  

It is clear that the contributions in the absence of particle 𝛽 can be separated from the sum of the 

ones due to particle 𝛽: 

 

𝒗𝛼 = 𝒗𝛼
∞ + ∑ ∆𝒗𝛼𝛽

𝑁

𝛽=1(≠𝛼)

 [3.10]  

in which 𝑁 is the total number of ferrofluid particles and: 

𝒗𝛼
∞ = 𝑼(𝒓𝛼) +

1

휂
(a𝛼𝛼

∞ ⋅ 𝑭𝛼 + b̃𝛼𝛼
∞ ⋅ 𝑻𝛼) + g̃𝛼

∞:E 

∆𝒗𝛼𝛽 =
1

휂
[(a𝛼𝛼 − a𝛼𝛼

∞ ) ⋅ 𝑭𝛼 + a𝛼𝛽 ⋅ 𝑭𝛽 + (b̃𝛼𝛼 − b̃𝛼𝛼
∞ ) ⋅ 𝑻𝛼 + b̃𝛼𝛽 ⋅ 𝑻𝛽] + (g̃𝛼 − g̃𝛼

∞):E 

The effects supplied from all other particles are added up first. These multibody interactions are 

estimated as the sum of contributions between particle pairs. Then, the “friction” term of  

particle 𝛼 is only considered once and is not included with the other particles. The mobility tensors 

with superscript ‘∞’ are those in which the particles of interest are separated by an infinite distance. 

Triple-body interactions are neglected in this approximation method, as is explained further when 

discussing steric overlap in section 3.1.7. As a result of the preceding operations, a simplistic 

matrix form is developed: 
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[
 
 
 
 
 
 
 
𝒗1 − 𝑼(𝒓1)

𝒗2 − 𝑼(𝒓2)
⋮

𝒗𝑁 − 𝑼(𝒓𝑁)
𝝎1 − 𝛀
𝝎2 − 𝛀

⋮
𝝎𝑁 − 𝛀 ]

 
 
 
 
 
 
 

=
1

휂

[
 
 
 
 
 
 
 
 
a′11 a12 ⋯

a21 a′22 ⋯
⋮ ⋮  

a1𝑁 b̃′11 b̃12

a2𝑁 b̃21 b̃′22

⋮ ⋮ ⋮

⋯ b̃1𝑁

⋯ b̃2𝑁

 ⋮
a𝑁1 a𝑁2 ⋯

b′11 b12 ⋯

b21 b′22 ⋯

a′NN b̃𝑁1 b̃𝑁2

b1𝑁 c′11 c12

b2𝑁 c21 c′22

⋯ b̃′𝑁𝑁

⋯ c1𝑁

⋯ c2𝑁

⋮ ⋮  
b𝑁1 b𝑁2 ⋯

⋮ ⋮ ⋮
b′𝑁𝑁 c𝑁1 c𝑁2

 ⋮
⋯ c′𝑁𝑁 ]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑭1

𝑭2

⋮
𝑭𝑁

𝑻1

𝑻2

⋮
𝑻𝑁]

 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
g̃′1
g̃′2
⋮

g̃′𝑁
h̃′1
h̃′2
⋮

h̃′𝑁]
 
 
 
 
 
 
 
 

:E [3.11]  

The mobility matrix in the first term of the right-hand side with the tensors a′11 to c′𝑁𝑁 is a 

truncated mobility matrix �̂�. The mobility tensors of a′𝛼𝛼 and g̃′𝛼 are interpreted as: 

 

a′𝛼𝛼 = a𝛼𝛼
∞ + ∑ (a𝛼𝛼 − a𝛼𝛼

∞ )

𝑁

𝛽=1(≠𝛼)

        (𝛼 = 1,2,⋯ ,𝑁) [3.12]  

 

g̃′𝛼 = g̃𝛼
∞ + ∑ (g̃𝛼 − g̃𝛼

∞)

𝑁

𝛽=1(≠𝛼)

        (𝛼 = 1,2,⋯ ,𝑁) [3.13]  

where parallel forms of equation [3.12] are observed for the b̃′𝛼𝛼, b′𝛼𝛼, and c′𝛼𝛼 tensors while the 

h̃′𝛼 tensor assumes a similar structure to equation [3.13]. It should be noted that a𝛼𝛼, b̃𝛼𝛼, and g̃𝛼 

rely on the position of particle 𝛽. Furthermore, when the particles are rigid spheres with radius 𝑎, 

the mobility tensors with superscript ‘∞’ are taken as: 

a𝛼𝛼
∞ =

1

6𝜋𝑎
I,    b̃𝛼𝛼

∞ =
1

4𝜋𝑎2
I,    b𝛼𝛼

∞ =
1

4𝜋𝑎2
I,    c𝛼𝛼

∞ =
1

8𝜋𝑎3
I,    g̃𝛼

∞ = 0,    h̃𝛼
∞ = 0 

In the case when the forces and torques are solely dependent on the displacement and rotation 

respectively, the b̃𝛼𝛼
∞  and b𝛼𝛼

∞  tensors are set to zero.  

The mobility matrix �̂� in equation [3.11] contains information about the diffusivities. The 

a and c tensors are associated with the translational and rotational diffusivities, respectively, while 

the b and b̃ tensors handle the combination of the translational and rotational diffusion. Thus, the  
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mobility matrix relates to the diffusion matrix 𝑫 by: 

 
�̂� =

휂

𝑘𝑇
𝑫 =

휂

𝑘𝑇
(𝑫

T �̃�C

𝑫C 𝑫R
) [3.14]  

and accordingly: 

 a =
휂

𝑘𝑇
𝑫T,     c =

휂

𝑘𝑇
𝑫R,     b =

휂

𝑘𝑇
𝑫C,     b̃ =

휂

𝑘𝑇
�̃�C [3.15]  

where 𝑫T is the translational diffusivity tensor, 𝑫R is the rotational diffusivity tensor, 𝑫C is the 

coupled diffusivity tensor, 𝑘 is Boltzmann’s constant, and 𝑇 is the absolute temperature of the 

fluid. Tensors 𝑫C and �̃�C are related by: 

�̃�C = (𝑫C)𝑡 

In the absence of hydrodynamic interactions between particles, the diffusivity tensors would 

simply become: 

𝑫 = 𝐷0𝛿𝑖𝑗I 

where 𝐷0 is the diffusion coefficient at infinite dilution, I is the unit matrix, and 𝛿𝑖𝑗 is the Kronecker 

delta which is defined by: 

𝛿𝑖𝑗 = {
0 if 𝑖 ≠ 𝑗
1 if 𝑖 = 𝑗

 

 

3.1.4 Energies, Forces, and Torques of Interacting Magnetic Particles 

In colloidal suspensions, several forces regulate the dynamics that describe particle 

behavior, especially those not resulting from the surrounding solvent. When considering 

nonhydrodynamic interactions, a ferromagnetic particle induces two energies due to its permanent 

dipole: particle-particle magnetic interaction energy and particle-field interaction energy. The 

former is due to the attractive and repulsive nature between particles while the latter develops from 

a particle’s response to an external magnetic field. A third, known as the steric interaction energy, 
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arises from the presence of the particle’s surfactant monolayer. The energy equations for particle-

particle, particle-field, and steric interactions are given, respectively, as: 

 
𝐸𝛼𝛽

m =
𝜇0

4𝜋
[
𝒎𝛼 ⋅ 𝒎𝛽

𝑟𝛼𝛽
 3 −

3

𝑟𝛼𝛽
 5 (𝒎𝛼 ⋅ 𝒓𝛼𝛽)(𝒎𝛽 ⋅ 𝒓𝛼𝛽)] [3.16]  

 𝐸𝛼
h = −𝜇0(𝒎𝛼 ⋅ 𝑯) [3.17]  

 
𝐸𝛼𝛽

v =
1

2
𝜋𝑑𝑠

 2𝑛𝑠𝑘𝑇 [2 −
𝑠𝛿 + 2

𝑑𝛿
ln (

1 + 𝑑𝛿

1 + 𝑠𝛿 2⁄
) −

𝑠𝛿

𝑑𝛿
] [3.18]  

where 𝒎𝛼 is the magnetic dipole moment of particle 𝛼, 𝒓𝛼𝛽 is the direction vector from particle 𝛼 

to particle 𝛽, 𝑟𝛼𝛽 = |𝒓𝛼𝛽|, 𝑑𝑠 is the particle diameter excluding the steric layer, 𝑛𝑠 is the quantity 

of surfactant elements per unit area on the particle’s surface, and 𝜇0 is the permeability of free 

space. In equation [3.18], 𝑑𝛿 = 2𝛿 𝑑𝑠⁄ , which represents the ratio of the surfactant monolayer 

thickness to the radius of the solid part of the particle, 𝛿 is the thickness of the steric layer, and 

𝑠𝛿 is the ratio of the surface-to-surface separation (excluding surfactant layers) between two 

particles to the diameter of the solid part of a particle, equal to 2(𝑟𝛼𝛽 𝑑𝑠⁄ − 1). From the gradient 

of the energies, the corresponding forces and torques are derived as: 

 
𝑭𝛼𝛽

m = −
3𝜇0𝑚

2

4𝜋𝑟𝛼𝛽
 4 {

−(𝒏𝛼 ⋅ 𝒏𝛽)𝒅𝛼𝛽 + 5(𝒏𝛼 ⋅ 𝒅𝛼𝛽)(𝒏𝛽 ⋅ 𝒅𝛼𝛽)𝒅𝛼𝛽

−[(𝒏𝛽 ⋅ 𝒅𝛼𝛽)𝒏𝛼 + (𝒏𝛼 ⋅ 𝒅𝛼𝛽)𝒏𝛽]
}   [3.19]  

 
𝑻𝛼𝛽

m = −
𝜇0𝑚

2

4𝜋𝑟𝛼𝛽
 3 [𝒏𝛼 × 𝒏𝛽 − 3(𝒏𝛽 ⋅ 𝒅𝛼𝛽)𝒏𝛼 × 𝒅𝛼𝛽] [3.20]  

 𝑭𝛼
h = 𝜇0𝑚𝐻∇(𝒏𝛼 ⋅ 𝒉) [3.21]  

 𝑻𝛼
h = 𝜇0𝑚𝐻𝒏𝛼 × 𝒉 [3.22]  

 
𝑭𝛼𝛽

v =
1

2
𝜋𝑑𝑠

 2𝑛𝑠𝑘𝑇
1

𝛿
𝒅𝛼𝛽 ln (

𝑑

𝑟𝛼𝛽
)        (𝑑𝑠 ≤ 𝑟𝛼𝛽 ≤ 𝑑) [3.23]  
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in which 𝒅𝛼𝛽 denotes the unit direction vector of the interparticle vector 𝒓𝛼𝛽, 𝒏𝛼 represents the 

unit direction vector of the magnetic dipole moment 𝒎𝛼, 𝑚 = |𝒎𝛼|, the unit vector 𝒉 signifies 

that of the magnetic field vector 𝑯, 𝐻 = |𝑯|, and 𝑑(= 2𝑎) is the diameter that includes the steric 

layer thickness. In the above-mentioned equations, 𝑭m and 𝑻m result from magnetic interactions 

of adjacent particle 𝛽 on particle 𝛼, 𝑭h and 𝑻h are due to the sway of an applied magnetic field on 

particle 𝛼, and 𝑭v represents the steric repulsion force of particle 𝛽 on particle 𝛼.  

 

3.1.5 The Langevin Equation 

For simulations of two or more particles spanning large time sets and subject to Brownian 

motion, particle-particle forces, and macroscopic flow activity, numerical integration is typically 

employed. To describe the Brownian motion of a colloidal system of 𝑁 particles with multibody 

hydrodynamic interactions between them, a generalized Langevin equation is considered: 

 
𝑚𝑤

𝑑𝒗𝛼

𝑑𝑡
= 𝑭𝛼

P + 𝑭𝛼
f + 𝑭𝛼

b  [3.24]  

where 𝑚𝑤 is the particle’s mass, 𝑭𝛼
P  is the force of nonhydrodynamic interactions such as those of 

the other particles on the one of interest, 𝑭𝛼
f  is the force of the fluid on particle 𝛼, and 𝑭𝛼

b  is the 

force of the Brownian motion of particle 𝛼. The above Langevin equation describes the 

translational momentum balance of a dense particle dispersion that undergoes interparticle 

hydrodynamic interactions. The force 𝑭𝛼
P  and torque 𝑻𝛼

P  acting on particle 𝛼 are: 

 

𝑭𝛼
P = ∑ (𝑭𝛼𝛽

m + 𝑭𝛼𝛽
v )

𝑁

𝛽=1(≠𝛼)

+ 𝑭𝛼
h  

𝑻𝛼
P = ∑ 𝑻𝛼𝛽

m + 𝑻𝛼
h

𝑁

𝛽=1(≠𝛼)

 

[3.25]  
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where the forces and torques defined in equations [3.19] to [3.23] are administered. For 𝑭𝛼
f , 

equation [3.11] yields: 

 

𝑭𝛼
f = −휂 ∑ �̂�𝛼𝛽

 −1 ⋅ {[𝒗𝛽 − 𝑼(𝒓𝛽)] − g̃′𝛽:E}

𝑁

𝛽=1

 [3.26]  

As for the Brownian motion force, it is characterized with: 

 〈𝑭𝛼
b (𝑡)〉 = 0 , 〈𝑭𝛼

b (𝑡)𝑭𝛽
b(𝑡′)〉 = 2휂𝑘𝑇�̂�𝛼𝛽

 −1𝛿(𝑡 − 𝑡′) [3.27]  

A similar procedure for the torques is employed when regarding the equation of rotational motion.  

Since both the translational and rotational momentums are considered in the Brownian 

dynamics model, the equation of motion can be represented in a generalized matrix form: 

 
[
𝑚𝑤 𝑑𝒗 𝑑𝑡⁄

𝐼 𝑑𝝎 𝑑𝑡⁄
] = [𝑭

P

𝑻P] − 𝑘𝑇 [𝑫
T �̃�C

𝑫C 𝑫R
]
−1

{[𝒗 − 𝑼(𝒓)
𝝎 − 𝛀

] − [
g̃′

h̃′
] :E} + [𝑭

b

𝑻b
] [3.28]  

Here, the relationship in [3.14] is used to convert the mobility matrix and pose the expression in 

terms of the diffusivity tensors. Then, by multiplying both sides with 𝑫 𝑘𝑇⁄ , summing the equation 

with respect to 𝛽, and applying a mathematical manipulation algorithm proposed by Ermak and 

McCammon (1978), equations for the change in translational and rotational displacement can be 

obtained. First, the translational velocity of Brownian ferroparticle 𝛼 at time 𝑡 is derived: 

 

𝒗𝛼(𝑡) = 𝑼(𝒓𝛼) +
1

𝑘𝑇
∑ 𝑫𝛼𝛽

T (𝑡) ⋅ 𝑭𝛽
P(𝑡)

𝑁

𝛽=1

+
1

𝑘𝑇
∑ �̃�𝛼𝛽

C (𝑡) ⋅ 𝑻𝛽
P(𝑡)

𝑁

𝛽=1

+ ∑ g̃𝛼(𝑡): 𝚫∞

𝑁

𝛽=1(≠𝛼)

+ ∑
𝜕

𝜕𝒓𝛽
⋅ 𝑫𝛼𝛽

T (𝑡)

𝑁

𝛽=1

+ ∆𝒗𝛼
B(𝑡) 

[3.29]  

 

where 𝚫∞ is the symmetric part of the rate-of-strain tensor. If the forward finite difference 

approximation to 𝒗𝛼 = 𝑑𝒓𝛼 𝑑𝑡⁄  is utilized, then the change in the translational displacement of 

particle 𝛼 can be expressed as: 
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 𝒓𝛼(𝑡 + ∆𝑡) = 𝒓𝛼(𝑡)

+ {𝑼(𝒓𝛼) +
1

𝑘𝑇
∑ 𝑫𝛼𝛽

T (𝑡) ⋅ 𝑭𝛽
P(𝑡)

𝑁

𝛽=1

+
1

𝑘𝑇
∑ �̃�𝛼𝛽

C (𝑡) ⋅ 𝑻𝛽
P(𝑡)

𝑁

𝛽=1

+ ∑ g̃𝛼(𝑡): 𝚫∞

𝑁

𝛽=1(≠𝛼)

+ ∑
𝜕

𝜕𝒓𝛽
⋅ 𝑫𝛼𝛽

T (𝑡)

𝑁

𝛽=1

}∆𝑡 + ∆𝒓𝛼
B(𝑡) 

[3.30]  

in which the [(𝛁 ⋅ 𝑫T)∆𝑡]-term adjusts for the spatial dependency of the diffusivity by establishing 

a drift velocity that moves the particles in the direction of the region of higher mobility. The 

Brownian motion term ∆𝒓𝛼
B  is characterized by zero mean: 

 〈∆𝒓𝛼
B〉 = 0 [3.31]  

and variance: 

 〈(∆𝒓𝛼
B)(∆𝒓𝛽

B)〉 = 2𝑫𝛼𝛽
T ∆𝑡 [3.32]  

When considering the diffusivity of a single particle, the self-diffusion tensors appear as: 

 
𝑫𝛼𝛼

T =
𝑘𝑇

6𝜋휂𝑎
I,     𝑫𝛼𝛼

R =
𝑘𝑇

8𝜋휂𝑎3
I,     𝑫𝛼𝛼

C =
𝑘𝑇

4𝜋휂𝑎2
I [3.33]  

By substituting 𝑫𝛼𝛼
T  into equation [3.32] and solving ∆𝒓𝛼

B  using a random number vector 𝒓𝑛 that 

is characterized by zero mean and variance equal to 
1

4
, an expression for the Brownian displacement 

term can be derived: 

 

∆𝒓𝛼
B = √

4𝑘𝑇∆𝑡

3𝜋휂𝑎
𝒓𝑛 [3.34]  
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Concerning the rotation, the angular velocity of particle 𝛼 at time 𝑡 is derived: 

 

𝝎𝛼(𝑡) = 𝛀 +
1

𝑘𝑇
∑ 𝑫𝛼𝛽

C (𝑡) ⋅ 𝑭𝛽
P(𝑡)

𝑁

𝛽=1

+
1

𝑘𝑇
∑ 𝑫𝛼𝛽

R (𝑡) ⋅ 𝑻𝛽
P(𝑡)

𝑁

𝛽=1

+ ∑ h̃𝛼(𝑡): 𝚫∞

𝑁

𝛽=1(≠𝛼)

+ ∑
𝜕

𝜕𝒓𝛽
⋅ 𝑫𝛼𝛽

C (𝑡)

𝑁

𝛽=1

+ ∆𝝎𝛼
B(𝑡) 

[3.35]  

 

Similar to the operation for translational velocity, if the forward finite difference approximation to 

𝝎𝛼 = 𝑑𝝋𝛼 𝑑𝑡⁄  is used, then the change in the orientation angle of particle 𝛼 can be expressed as: 

 𝝋𝛼(𝑡 + ∆𝑡) = 𝝋𝛼(𝑡)

+ {𝛀 +
1

𝑘𝑇
∑ 𝑫𝛼𝛽

C (𝑡) ⋅ 𝑭𝛽
P(𝑡)

𝑁

𝛽=1

+
1

𝑘𝑇
∑ 𝑫𝛼𝛽

R (𝑡) ⋅ 𝑻𝛽
P(𝑡)

𝑁

𝛽=1

+ ∑ h̃𝛼(𝑡): 𝚫∞

𝑁

𝛽=1(≠𝛼)

+ ∑
𝜕

𝜕𝒓𝛽
⋅ 𝑫𝛼𝛽

C (𝑡)

𝑁

𝛽=1

}∆𝑡 + ∆𝝋𝛼
B(𝑡) 

[3.36]  

 

This equation can be converted to an expression that describes the change in the dipole  

orientation 𝒏𝛼 by multiplying both sides by [× 𝒏𝛼]. The Brownian motion term ∆𝝋𝛼
B  is 

characterized by zero mean: 

 〈∆𝝋𝛼
B〉 = 0 [3.37]  

and variance: 

 〈(∆𝝋𝛼
B)(∆𝝋𝛽

B)〉 = 2𝑫𝛼𝛽
R ∆𝑡 [3.38]  

By substituting 𝑫𝛼𝛼
R  from equation [3.33] into equation [3.38] and solving ∆𝝋𝛼

B  by exploiting a 

similar procedure used to solve equation [3.34], an expression for the Brownian rotation term is: 

 

∆𝝋𝛼
B = √

𝑘𝑇∆𝑡

𝜋휂𝑎3
𝒓𝑛 [3.39]  

Additionally, the Brownian displacement and rotation are ultimately linked via: 

 〈(∆𝒓𝛼
B)(∆𝝋𝛽

B)〉 = 2�̃�𝛼𝛽
C ∆𝑡 [3.40]  
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Under a simple shear flow:  

 𝑼(𝒓) = 𝛀 × 𝒓 + 𝚫∞ ⋅ 𝒓 [3.41]  

in which a linear flow field exhibits:  

 
𝛀 =

1

2
∇ × 𝒗 = −

�̇�

2
[
0
0
1
] [3.42]  

and the symmetric part of the rate-of-strain tensor is: 

 
𝚫∞ =

1

2
(∇𝒗 × ∇𝒗𝑡) =

�̇�

2
[
0 1 0
1 0 0
0 0 0

] [3.43]  

where �̇� is the shear rate. 

 

3.1.6 Quaternions 

To bypass the inefficient use of Euler angles and the intrinsic singularity at 휃 = 0, Evans 

and Murad (1977) developed a method by means of a set of four parameters used in the equations 

of motion called quaternions: 

 
𝜒 = cos (

휃

2
) ⋅ cos (

𝜓 + 𝜙

2
) 

𝜇 = sin (
휃

2
) ⋅ cos (

𝜓 − 𝜙

2
) 

𝜅 = sin (
휃

2
) ⋅ sin (

𝜓 − 𝜙

2
) 

휁 = cos (
휃

2
) ⋅ sin (

𝜓 + 𝜙

2
) 

[3.44]  

 

where 휃, 𝜓, and 𝜙 are Goldstein Euler angles (Goldstein, 1971). One can see from this equation 

that the quaternions are not independent and rely on the relationship: 

 𝜒2 + 𝜇2 + 𝜅2 + 휁2 = 1 [3.45]  

Evans and Murad (1977) specifically built up this method in carrying out molecular dynamics 

calculations for solving rigid body equations and will be utilized in the ferrofluid model. In order 
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to free the equations of motion from singularities, the quaternions present an orthogonal and 

Euclidean representation of orientation space. This results in a reduction of computation time when 

compared to a conventional Euler angle procedure. The principal velocity vector 𝑽principal is related 

to the lab velocity vector 𝑽lab through: 

 𝑽principal = 𝑨 ⋅ 𝑽lab [3.46]  

where the rotation matrix 𝑨 is given by: 

 

𝑨 = [

𝜇2 − 𝜅2 + 𝜒2 − 휁2 2(휁𝜒 − 𝜅𝜇) 2(𝜇휁 + 𝜅𝜒)

−2(𝜅𝜇 + 휁𝜒) 𝜅2 − 𝜇2 + 𝜒2 − 휁2 2(𝜇𝜒 − 𝜅휁)

2(𝜇휁 − 𝜅𝜒) −2(𝜅휁 + 𝜇𝜒) 휁2 − 𝜅2 + 𝜒2 − 𝜇2

] [3.47]  

The quaternion time derivatives can be calculated by employing an equation that connects the 

principal angular velocity 𝝎𝑝 and quaternions: 

 

[

�̇�
�̇�

휁̇

�̇�

] =
1

2
[

−휁 −𝜒
   𝜒 −휁

   𝜇    𝜅
−𝜅    𝜇

   𝜅    𝜇
−𝜇    𝜅

   𝜒    휁
−휁    𝜒

] [

𝜔𝑝𝑥

𝜔𝑝𝑦

𝜔𝑝𝑧

0

] [3.48]  

where the dot above a quaternion indicates a time-rate and will be designated as the “quaternion 

velocities.” The large matrix on the right-hand side is orthogonal and determining the inverse is 

simple. The quaternion velocities and time-step ∆𝑡 are used to estimate the quaternions at 𝑡 + ∆𝑡 

and subsequently, the Euler angles at 𝑡 + ∆𝑡. Therefore, the equations of motion become 

singularity-free. 
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3.1.7 Steric Overlap and Cutoff Radii 

In terms of the approximations used to simulate the ferrofluid colloidal dispersion, when 

the method of approximation of the additivity of forces is considered, the resistance functions 

become considerably large as the particles approach to nearly-touching, preventing particle 

overlap. Conversely, the near-field mobility functions utilized by the approximation of the 

additivity of velocities do not exhibit this behavior. But because the method is an approximation, 

restrictions may be enforced. Therefore, the ferrofluid particle model has a steric layer rather than 

a solid one. The surfactant layer is a small fraction of the total radius of the solid portion of a 

particle. Mobility functions for this distinct particle have not yet been derived. However, for that 

reason, the mobility functions for a solid particle of diameter 𝑑 are used instead. In order to apply 

this procedure, the hydrodynamic interactions between ferrofluid particles are neglected when the 

steric layers overlap. Since the repulsive influence of the overlap dominates the lubrication effect, 

this assumption does not disrupt the formation or development of aggregate structures. To 

implement this idea, when particles 𝛼 and 𝛽 are far enough away from each other, the introduction 

of a cutoff radius for hydrodynamic interactions 𝑟coff
(hydro)

 prevents unsolicited and inaccurate 

aggregation behavior. This is accomplished by setting a distance where hydrodynamic interactions 

are ignored if the particle-particle distance 𝑟𝛼𝛽 exceeds it. Thus, the hydrodynamic interactions 

between particles 𝛼 and 𝛽 are developed while ignoring the influence of a third particle. 

Specifically, if 𝛼 and 𝛽 are far enough away from each other that a third particle positions itself 

between the two, the effect of particle 𝛽 on particle 𝛼 will be screened by the third, leading to 

unlikely aggregation behavior. A diagram of this is examined in Figure 1. From the illustration, 

particle “1” is able to interact with particle “2”. However, because particle “3” is not within the 

cutoff radius 𝑟coff
(hydro)

 around particle “1,” it is neglected in the hydrodynamics for “1,” especially 
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since it is screened by particle “2”. Additionally, because the model consists of a strongly 

interacting system due to magnetostatic forces, the far-field effect eventually becomes negligible 

as a consequence of the cutoff radius for hydrodynamic interactions. And also, loss of the positive 

definiteness of the mobility matrix is typically caused by a collection of second or third nearest 

particles grouping around a specified particle. Considering the positive definiteness of the mobility 

matrix in the approximation of the additivity of velocities, we can amend any issues that could 

arise by respecting 𝑟coff
(hydro)

 (Satoh et al., 1998). For ferrofluids, electrorheological fluids, or other 

strongly interacting systems, this assumption satisfies the positive definiteness of the mobility 

matrix. 

 

 

 

 

 
 

 

 

  

Figure 1. Cutoff radius for hydrodynamics 𝑟coff
(hydro)

 preventing triple-

particle interplay among three particles. 
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The general cutoff radius 𝑟coff differs from the cutoff radius for hydrodynamic interactions, 

as it represents the distance where particle-particle interactions are neglected. These effects include 

magnetic particle-particle attraction and nonhydrodynamic interactions. Beyond 𝑟coff , interaction 

energies between two particles can be considered insignificant and do not need to be calculated. 

Since there are typically (𝑁 − 1) calculations per particle for a total of 𝑁(𝑁 − 1) computations, 

the cutoff radius for particle-particle interactions drastically reduces the number of neighbors with 

which a particle can interact and thus, lessens the computational time. The reduction, however, is 

not particularly substantial considering that the model checks the distance between every particle 

couple to judge whether or not a pair resides within the range of 𝑟coff . Nevertheless, a “neighbor 

list” algorithm may be added to further reduce the amount of calculations for 𝑟coff .  

In the event that two particles have overlap beyond their steric layers, the spheres are 

adjusted by: 

 
∆𝒓𝛼 =

𝒅𝛼𝛽

2
(

2

1 + 𝑑𝛿
− 𝑟𝛼𝛽) [3.49]  

where ∆𝒓𝛼 is the displacement that corrects the position of particle 𝛼 from particle 𝛽. The resultant 

configuration gives rise to two particles with only overlap of their surfactant layers, as observed 

in Figure 2. And steric repulsion results when surfactant layer overlap occurs, activating  

equation [3.23]. Equation [3.49] is a modified version of one by Heyes and Melrose (1993). They 

viewed a particle as a solid sphere rather than one with a steric layer. The included revision allows 

validation of a steric monolayer around the particles. 
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TABLE II 

 

CUTOFF DISTANCES AND LIMITS OF PARTICLE INTERACTIONS 

Interaction Range Active Effects 

𝑟𝛼𝛽 < 𝑑𝑠 None (due to particle-particle overlap) 

𝑑𝑠 < 𝑟𝛼𝛽 < 𝑑 Steric overlap, magnetostatic effects 

𝑑 < 𝑟𝛼𝛽 < 𝑟coff
(hydro)

 Hydrodynamic interactions, magnetostatic effects 

𝑟coff
(hydro)

< 𝑟𝛼𝛽 < 𝑟coff Magnetostatic effects 

𝑟𝛼𝛽 > 𝑟coff None (beyond nonhydrodynamic interactions) 

𝑑 < 𝑟𝑘𝛼 < ℎ Constraint procedure 

 

 

 

 

 

The preceding limits of particle-particle interactions are summarized in Table II. In the 

table, 𝑟𝑘𝛼 is the distance from 𝑘 (hereafter referred to as a “node”) to particle 𝛼 and ℎ is the cutoff 

radius beyond which particles do not contribute to the local field. 

  

Figure 2. Steric overlap correction of particle 𝛼 from particle 𝛽. 
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3.1.8 Nondimensionalization 

To nondimensionalize the model, scaling parameters for several quantities are employed: 

the radius 𝑎 is for the length, �̇�−1 is for time, �̇�𝑎 is for translational velocity, the shear rate �̇� is for 

the rotational velocity, 휂 is for the viscosity, 6𝜋휂�̇�𝑎2 is for force, 8𝜋휂�̇�𝑎3 is for torque, 𝑘𝑇

6𝜋𝜂𝑎
 is 

for 𝑫T, 𝑘𝑇

8𝜋𝜂𝑎3 is for 𝑫R, 𝑘𝑇

4𝜋𝜂𝑎2 is for 𝑫C, and 2𝑎 is for g. A superscript of ‘∗’ indicates a dimensionless 

variable. By using the scaling parameters, the nondimensionalization of the force and torque 

equations introduced in [3.19] to [3.23] gives: 

 
𝑭𝛼𝛽

m* = −
8𝑅m

𝑟𝛼𝛽
∗ 4 {

−(𝒏𝛼 ⋅ 𝒏𝛽)𝒅𝛼𝛽 + 5(𝒏𝛼 ⋅ 𝒅𝛼𝛽)(𝒏𝛽 ⋅ 𝒅𝛼𝛽)𝒅𝛼𝛽

−[(𝒏𝛽 ⋅ 𝒅𝛼𝛽)𝒏𝛼 + (𝒏𝛼 ⋅ 𝒅𝛼𝛽)𝒏𝛽]
}   [3.50]  

 
𝑻𝛼𝛽

m* = −
2𝑅m

𝑟𝛼𝛽
∗ 3 [𝒏𝛼 × 𝒏𝛽 − 3(𝒏𝛽 ⋅ 𝒅𝛼𝛽)𝒏𝛼 × 𝒅𝛼𝛽] [3.51]  

 
𝑭𝛼

h* =
4

3
𝑅h∇

∗(𝒏𝛼 ⋅ 𝒉) [3.52]  

 𝑻𝛼
h* = 𝑅h𝒏𝛼 × 𝒉 [3.53]  

 
𝑭𝛼𝛽

v* = 𝑅v𝒅𝛼𝛽 ln (
2

𝑟𝛼𝛽
∗ )        (

2

1 + 𝑑𝛿
≤ 𝑟𝛼𝛽

∗ ≤ 2) [3.54]  

The diffusivities become nondimensionalized through their respective scaling factors by: 

 
𝑫T* =

6𝜋휂𝑎

𝑘𝑇
𝑫T,     𝑫R* =

8𝜋휂𝑎3

𝑘𝑇
𝑫R, 

𝑫C* =
4𝜋휂𝑎2

𝑘𝑇
𝑫C,     �̃�C* =

4𝜋휂𝑎2

𝑘𝑇
�̃�C 

[3.55]  

and the third-rank tensors become: 

 
g̃∗ =

g̃

2𝑎
 ,     h̃∗ = h̃ [3.56]  

Nondimensionalizing equations [3.19] to [3.23] by normalizing with the viscous force of the shear 

flow produces dimensionless groups of parameters. These combinations control the effect of steric, 
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magnetic, and Brownian influences. Varying them results in certain emphasized behaviors, which 

are discussed in a later section.  

The scaling parameters allow nondimensionalization of equations [3.30] and [3.36] to 

produce the dimensionless position and angular orientation expressions. The dimensionless 

position is: 

 𝒓𝛼
∗ (𝑡∗ + ∆𝑡∗) = 𝒓𝛼

∗ (𝑡∗)

+ {𝑼∗(𝒓𝛼
∗ ) + ∑ 𝑫𝛼𝛽

T* (𝑡∗) ⋅ 𝑭𝛽
P*(𝑡∗)

𝑁

𝛽=1

+ 2 ∑ �̃�𝛼𝛽
C* (𝑡∗) ⋅ 𝑻𝛽

P*(𝑡∗)

𝑁

𝛽=1

+ 2 ∑ g̃𝛼
∗ (𝑡∗): 𝚫∞*

𝑁

𝛽=1(≠𝛼)

+
1

Pe
∑

𝜕

𝜕𝒓𝛽
∗ ⋅ 𝑫𝛼𝛽

T* (𝑡∗)

𝑁

𝛽=1

}∆𝑡∗ + ∆𝒓𝛼
B*(𝑡∗) 

[3.57]  

 

where Brownian motion is characterized by the properties: 

 〈∆𝒓𝛼
B*〉 = 0 [3.58]  

 
〈(∆𝒓𝛼

B*)(∆𝒓𝛽
B*)〉 =

2

Pe
𝑫𝛼𝛽

T* ∆𝑡∗ [3.59]  

and subsequently, the dimensionless Brownian motion term is: 

 

∆𝒓𝛼
B* = √

8∆𝑡∗

Pe
𝒓𝑛 [3.60]  
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The dimensionless angular orientation equation is: 

 𝝋𝛼
∗ (𝑡∗ + ∆𝑡∗) = 𝝋𝛼

∗ (𝑡∗)

+ {𝛀∗ +
3

2
∑ 𝑫𝛼𝛽

C* (𝑡∗) ⋅ 𝑭𝛽
P*(𝑡∗)

𝑁

𝛽=1

+
1

𝑘𝑇
∑ 𝑫𝛼𝛽

R* (𝑡∗) ⋅ 𝑻𝛽
P*(𝑡∗)

𝑁

𝛽=1

+ ∑ h̃𝛼
∗ (𝑡∗): 𝚫∞*

𝑁

𝛽=1(≠𝛼)

+
3

2Pe
∑

𝜕

𝜕𝒓𝛽
∗ ⋅ 𝑫𝛼𝛽

C* (𝑡∗)

𝑁

𝛽=1

}∆𝑡∗ + ∆𝝋𝛼
B*(𝑡∗) 

[3.61]  

 

where Brownian rotation is characterized by the properties: 

 〈∆𝝋𝛼
B*〉 = 0 [3.62]  

 
〈(∆𝝋𝛼

B*)(∆𝝋𝛽
B*)〉 =

3

2Pe
𝑫𝛼𝛽

R* ∆𝑡∗ [3.63]  

and thus, the dimensionless Brownian rotation term is: 

 

∆𝝋𝛼
B* = √

6∆𝑡∗

Pe
𝒓𝑛 [3.64]  

Moreover the connection between the dimensionless Brownian displacement and rotation is: 

 
〈(∆𝒓𝛼

B*)(∆𝝋𝛽
B*)〉 =

3

Pe
�̃�𝛼𝛽

C* ∆𝑡∗ [3.65]  

The dimensionless forces and torques necessary to solve equations [3.57] and [3.61] are: 

 

𝑭𝛼
P* = ∑ (𝑭𝛼𝛽

m* + 𝑭𝛼𝛽
v* )

𝑁

𝛽=1(≠𝛼)

+ 𝑭𝛼
h* 

𝑻𝛼
P* = ∑ 𝑻𝛼𝛽

m* + 𝑻𝛼
h*

𝑁

𝛽=1(≠𝛼)

 

[3.66]  

in which the individual forces and torques are drawn from equations [3.50] to [3.54].  
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Many dimensionless numbers result from grouping parameters and nondimensionalizing 

the model’s equations. Quantities in equations [3.19] through [3.23] can be combined to form 

dimensionless groups that rely exclusively on the properties of the particles: 

 
𝜆 =

𝜇0𝑚
2

4𝜋𝑑𝑠
3𝑘𝑇

 ,     𝜉 =
𝜇0𝑚𝐻

𝑘𝑇
 ,     𝜆v =

𝜋𝑑𝑠
2𝑛𝑠

2
 [3.67]  

Parameters that arise after nondimensionalization and observed in equations [3.50] to [3.54] are 

dimensionless groups that are defined by: 

 
𝑅m =

𝜇0𝑚
2

64𝜋2휂𝑎6�̇�
 ,     𝑅h =

𝜇0𝑚𝐻

8𝜋휂𝑎3�̇�
 ,     𝑅v =

𝑘𝑇𝜆v

6𝜋휂𝑎2�̇�𝛿
 [3.68]  

Here, 𝑅m depicts the ratio of the characteristic magnetic particle-particle force to the characteristic 

hydrodynamic shear force, 𝑅h represents the proportion of the characteristic particle-field torque 

to the characteristic hydrodynamic shear torque, and 𝑅v signifies the ratio of the characteristic 

steric repulsion force to the characteristic hydrodynamic shear force. One should notice that these 

dimensionless groups are inversely proportional to the shear rate. They will later prove significant 

in managing specific effects on the particles. From the dimensionless Brownian translation and 

rotation in equations [3.57] and [3.61], respectively, the Péclet number appears: 

 
Pe =

6𝜋휂𝑎3�̇�

𝑘𝑇
 [3.69]  

The Péclet number, like the prior three, is a ratio. It embodies the proportion of characteristic 

hydrodynamic shear force to the characteristic Brownian motion force. 

The values in equation [3.67] are combined with the dimensionless groups in  

equation [3.68] to form ratios of dimensionless numbers: 

 𝑅h

𝑅m
=

𝜉(1 + 𝑑𝛿)
3

4𝜆
 ,    

𝑅v

𝑅m
=

𝜆v(1 + 𝑑𝛿)4

3𝜆𝑑𝛿
 ,    

1

𝑅mPe
=

(1 + 𝑑𝛿)
3

3𝜆
 [3.70]  
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It should be noted that from this equation, the ratios of 𝑅h 𝑅m⁄ , 𝑅v 𝑅m⁄ , and 1 𝑅mPe⁄  depend only 

on the properties of the particle and not on those of the flow. In addition, 𝑅h 𝑅m⁄  is the ratio of 

particle-field effects to particle-particle effects, the 𝑅v 𝑅m⁄  ratio compares the steric interactions 

to magnetic particle-particle interactions, and 1 𝑅mPe⁄  characterizes the thermal forces to the 

magnetic particle-particle effects. The assignment of these ratios is significant when preparing to 

execute the simulation. 

 

3.2  Principles of Magnetism 

3.2.1 Maxwell’s Equations 

Steady-state ferrofluids are governed by certain guidelines and must conserve essential 

principles of physics. When electricity (i.e. field, current) is not present, diffusion is described by 

magnetostatics. The present Brownian dynamics system should maintain a free magnetic field 

while remaining current-free throughout the volume. These concepts are embodied by the 

magnetostatic form of the Maxwell’s equations: 

 ∇ ⋅ 𝑴 = −∇ ⋅ 𝑯 [3.71]  

 ∇ × 𝑯 = 𝟎 [3.72]  

where 𝑴 was identified as the volume average of the particle dipoles known as magnetization and 

𝑯 was defined as the magnetic field. Note that the divergence of the system's magnetization will 

be zero if the particle magnetizations are uniform and no internal field variations exist across the 

particle volumes.  
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3.2.2 Magnetization 

To quantify the magnetization at any point in the system, a symmetric, radial weighting 

function 𝑊 is used (Nitsche and Zhang, 2002): 

 
𝑊(𝝂, ℎ) = 1 − 3(

‖𝝂‖

ℎ
)

2

+ 2(
‖𝝂‖

ℎ
)

3

 [3.73]  

Here, ‖𝝂‖ is the norm of the vector 𝝂. The weighting function is used to calculate the magnetization 

via: 

 

𝑴(𝒓) =
1

𝑉
∑𝒏𝛼𝑊(𝝂, ℎ)

𝑁

𝛼

 [3.74]  

where 𝒓 is the position at which the 𝑴 field is being evaluated and 𝑉 is the volume of the 

magnetized source. In this model, 𝝂 is the vector between particle 𝛼 and position 𝒓. 

 

3.2.3 Magnetic Field 

The magnetic field 𝑯 of the ferroparticle system is calculated as: 

 𝑯 = 𝑯0 + �̂� [3.75]  

where 𝑯0 is the external magnetic field in the absence of magnetic material and is assigned in the 

model as: 

 

𝑯0 = {

𝐻𝒆𝑦 , if uniform

𝐻 [(−
𝑟𝑥
𝐶𝐿

+ 𝐶𝑥)𝒆𝑥 + (
𝑟𝑦

𝐶𝐿
+ 𝐶𝑦) 𝒆𝑦] , if nonuniform

 [3.76]  

in which 𝒆𝑥 and 𝒆𝑦 are unit directional vectors, 𝐻 is the magnitude of the magnetic field strength, 

and 𝐶𝐿 , 𝐶𝑥 , and 𝐶𝑦 are constants. In order to adhere to the principle of magnetostatics, the 

magnetic field should be consistent with the form of Maxwell’s equations of a static field in an 

electrically nonconducting carrier liquid. The second term in equation [3.75] is the demagnetizing 
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field �̂�. The external field generated by a spherical particle that is homogeneously magnetized is 

identical to that of a point dipole possessing the same total magnetic moment and originating from 

the sphere’s center. Furthermore, the magnetic field at any arbitrary position can be acquired by 

assuming superposition of the fields. Thus, if particle 𝛼 is within the proper range, the �̂� field will 

be calculated as: 

 

�̂�(𝒓) = ∑
𝑉

4𝜋|𝒓 − 𝒓𝛼|3
[−𝑴 +

3[𝑴 ⋅ (𝒓 − 𝒓𝛼)](𝒓 − 𝒓𝛼)

|𝒓 − 𝒓𝛼|2
]

𝑁

𝛼

 [3.77]  

where 𝒓 is the position at which the �̂� field is being evaluated, 𝒓𝛼 represents the vector to  

particle 𝛼, and 𝑉 is the volume of the magnetic source centered at 𝒓. The magnetization introduced 

in equation [3.74] is utilized. It should be noted that the effect of the �̂� field is dependent on the 

distance to particle 𝛼 from position 𝒓. As observed in equation [3.77], the effect of the field at 𝒓 

drops off as |𝒓 − 𝒓𝛼|−3.  

Ultimately, one can conclude that the ferrofluid particles within the system, when 

manipulated by an applied magnetic source, contribute to the effective magnetic field. Only when 

the particles lose their magnetization and the external magnetic field is absent will 𝑯 = 0. 

Otherwise, the model considers the contributions to 𝑯, even if the magnetic field is uniform 

(𝑯0 = constant). 

 

3.2.4 Uniform Magnetic Fields and Aggregation 

The particle-particle attraction in equation [3.19] drives the formation of chains and the 

aggregation behavior under uniform magnetic fields is engaged. As one can detect upon inspection 

of the first component in equation [3.76], when the externally-applied magnetic field is uniform, 

the gradient of 𝒉 in equation [3.21] is zero and thus, the force due to the applied magnetic field is 
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disregarded in the model. During aggregation, the magnetic energy of ferroparticles achieves a 

peak when their moments are situated parallel to both the magnetic field and the vector connecting 

to another particle. Additionally, magnetoviscous effects are known to intensify with higher 

degrees of particle chaining. In terms of hydrodynamic interactions, however, interplay between 

adjacent chains (i.e. perpendicular attraction) has not proven to be a prevailing factor in ferrofluid 

dynamics (Zubarev, 2013). 

 

3.2.5 Magnetoviscous Effects 

In respect to fluid properties, ferrofluids generally possess non-Newtonian characteristics 

as a result of their colloidal nature. Their aggregates influence the fluid properties because of their 

strict compliance towards the external magnetic field. It is not just affected by the resistance caused 

by rotation of individual ferroparticles. Plus, unlike the viscosity of pure liquids, the viscosity of a 

ferrofluid typically depends on the shear rate (Odenbach, 2002). Therefore, in order to observe the 

effect of aggregates, the significance of the magnetic contributions to the viscosity is explored 

while disregarding the particle stresslet elements. Consequently, the component of the viscosity 

that is due to magnetic and steric interactions is: 

 

휂m∗ =
휂m

휂
= −

6𝜋

𝐿∗3 ∑ ∑ 𝑟𝛼𝛽𝑦
∗ 𝐹𝛼𝛽𝑥

P*

𝑁

𝛽=1
(𝛽>𝛼)

𝑁

𝛼=1

+
4𝜋

𝐿∗3 ∑ 𝑇𝛼𝑧
P*

𝑁

𝛼=1

 [3.78]  

Here, 휂m∗ is referred to as the dimensionless viscosity contribution caused by magnetic effects. 

The expressions in [3.66] are applied for the dimensionless forces and torques. On the right-hand 

side of the above equation, the first term is a result of the magnetic and steric forces amongst the 

particle monolayers while the second term is caused by the torques on the particles, which includes 
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the influence of the applied magnetic field. Thus, in this case, forces and torques are adequate 

when characterizing the impact of the motion of the particle on the fluid. 

 

3.2.6 Nonuniform Magnetic Fields and Magnetophoresis 

When the nonuniform field in equation [3.76] is active, the particles experience the 

magnetophoretic force of equation [3.21]. The magnetic field and its gradient are necessary 

elements required to interpret the primary magnetophoretic driving force. In order to accomplish 

favorable magnetic separation, the magnetic force must overcome thermal fluctuations and the 

magnetic field source must induce large enough magnetizations to prompt sufficient MP. Besides, 

the farther a particle is located from the origin point of the magnetic field, the lower the influence 

of the force and gradient from the magnetic source.  

The constants of 𝐶𝐿 , 𝐶𝑥 , and 𝐶𝑦 in equation [3.76] will be appointed so that the magnetic 

field gradient is intentionally situated to steer the magnetic material towards the upper wall of the 

channel. The nonuniform magnetic field expression in equation [3.76] was devised so as to be 

solenoidal, which will facilitate calculations during the constraint stage of the model. Moreover, 

control of particle diffusion will be promoted by tweaking various parameters. For example, an 

optimal suspension for biomedical applications would have particles that readily conform to the 

magnetic field with minimal agglomeration (and consequent magnetoviscous effects would be 

ineffectual). This would be carried out by implementing low particle-particle interactions and high 

responsiveness to an externally-applied magnetic field gradient, both of which can be calibrated 

in this study.  
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3.3  Magnetic Separation 

3.3.1 Magnetic Separation Modeling 

This research aims to provide important insight into magnetic separation and discover 

practical correlations between physical characteristics and transport behaviors. So as long as the 

magnetophoretic velocity can be reasonably described, dimensionless number analysis can provide 

insight into how physical properties are affected by MP. Dimensionless number analysis provides 

a quick, dependable approach to studying the MP behavior of ferrofluid particles, particularly those 

under LGMS (Lim et al., 2014). Proper control of the dimensionless numbers can reveal 

enlightening connections between fluid flow, Brownian motion, particle-particle interactions, MP, 

and the properties of the nanoparticle (especially its size). 

Since analytical solutions to describing the full kinetics of MP have not yet been well-

established, mesoscale models have been an effective approach to interpreting magnetic 

nanoparticle aggregation and MP (Faraudo et al., 2013). Rather than studying the noncooperative 

behavior of individual particle trajectories, this study focuses on cooperative magnetic particle 

separation. Under specified conditions and parameters (established in a later section), one can 

assume that the magnetophoretic separation is mainly operated by the movement of clusters 

resulting from particle-particle interactions rather than by single components. Thus, cooperative 

particle grouping seems instinctively more reliable for this research because of the dependence on 

aggregating particle trajectory tracking under magnetic and hydrodynamic interactions. The need 

for incorporating means to handle the aggregation behavior and define explicit cooperative 

magnetophoretic effects has been a prominent issue of MP (Miguel and Pastor-Satorras, 1999). 

The present work addresses magnetic separation subjected to an externally-applied 

magnetic field gradient via numerical modeling so as to comprehend the magnetophoretic behavior 
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of particulate ferrofluid suspensions in simple shear flow. The general geometry studied in this 

model can be visualized as the separation region of a microchannel separator, like those of an 

L- or T-shaped design (Wu et al., 2011), or as continuous flow particle sorting separation systems 

(Suwa and Watarai, 2011). For successful magnetic separation, the magnetophoretic force must 

dominate diffusive, drag, gravitational, and inertial forces. To measure the progress and 

effectiveness of magnetic separations, separation efficiencies and separation times are collected. 

 

3.3.2 Separation Efficiency 

Separation (or capture) efficiency Φ quantifies the extent of magnetic particle separation 

(ranging anywhere from 50% up to 100% accumulation in a specific region or location). It 

evaluates the proportion of separated to unseparated constituents until the separation time is 

reached. The ultimate goal of magnetic separation is high (if not complete) separation efficiency. 

With respect to the dimensionless number analysis, a favorable fraction of the suspension within 

a fixed expanse alongside the magnetic source boundary will be monitored under various stimuli, 

which involve varied particle-particle interactions, magnetic field strengths, and various shear 

flowrates. Particles are deemed “captured” when they drift beyond an explicit coordinate or plane. 

Typically, there is an area below this coordinate and far from the wall that is considered as a "wash 

away" region, where particles that are not in the concentrated zone near the wall are overcome 

with shear effects. Since these particles are not within range of magnetic influence to maintain 

their diffusion towards higher magnetism, they are considered “uncapturable” because they did 

not enter the channel inside the bounds of the capture threshold, a domain where particles are 

constantly dominated by forces other than MP. If a capture threshold exists, particle trajectories 

can usually be traced to evaluate separation efficiency, so long as the initial position of entry into 
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the channel is known. For now, however, any particles lost from fluid flow are retained, especially 

with the model’s periodic boundaries and under high magnetic field gradients. And since few 

studies exist that analyze the optimization of intricate microchannel configurations for higher 

separation efficiency, the researchers have designed this model so that the simulation should be 

capable of accommodating inhomogeneities in the magnetic fields or across the suspension. This 

is an aspect that analytical solutions or homogeneous models are unable to accomplish without the 

assistance of piecewise functions or finite element analysis. 

 

3.3.3 Separation Times 

Separation time 𝑡𝑆 measures the elapsed duration needed to attain a desirable degree of 

separation efficiency. It can be contingent on particle size, magnetic properties, applied field 

gradients, or concentration, depending on active suspension behaviors. Ongoing MP research 

calculates the separation time as a power law dependency (usually with particulate concentration) 

or as a direct relation to magnetic susceptibility and particle size (Suwa and Watarai, 2011). 

Because of the complicated reliance on the magnetic behavior, particle properties, and aggregation 

activity, separation trends are sometimes scaled by a common factor that is related to the 

magnetism on the magnetic particles (Schaller et al., 2008). For most commercial ferrofluids, 

separation time drops with increasing particle size or concentration and decreasing separation 

distance between particles. In most cases, if the product between particle size and concentration is 

kept constant, the anticipated separation time can be certainly reached. For this study, the 

separation time 𝑡𝑆 is evaluated at the moment the model reaches full separation efficiency. 

Specifically, time 𝑡 will elapse until the magnetic dispersion concentration at the designated 
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expanse bordering the wall adjacent to the magnetic source has reached a favorable ratio of the 

initial suspension density corresponding to the pertinent separation efficiency Φ.  

 

3.4 System subject to Constraints 

3.4.1 Method of Constraints 

In order to respect the postulates discussed above in equations [3.71] and [3.72], the 

Brownian dynamics system adopts constraints to conserve them. Constraints are occasionally 

applied to particulate simulations in order to satisfy specified conditions. Ottinger (1996) explains 

approaches to applying constraints with stochastic differential equations (SDE), the Fokker-Planck 

equation, and numerical integration schemes. A functional constraint method for molecular 

dynamics was developed by Ryckaert et al. (1977), in which the equations of motion are solved 

simultaneously with the constraint mechanism at every time-step of the integration. The same 

method can be applied to a Brownian dynamics model. Liu (1989) employed a constraint 

procedure to a Brownian dynamics simulation in order to estimate rheological properties of 

Kramers freely-jointed bead-rod polymer chains. The constraints were employed to maintain 

constant lengths and angles. Therefore, while the present ferrofluid develops unconstrained in a 

simple shear flow and applied magnetic field, constraints will restructure the system to satisfy the 

conditions. In other words, the constraint method will “correct” the particles and prevent the model 

from diverging towards unrealistic behavior. Since there are two principles that need to be 

satisfied, a single constraint method such as the one used for polymeric fluids by Liu (1989) would 

be insufficient for this design.  
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The process used to constrain the Brownian dynamics simulation is an iterative scheme 

that utilizes Lagrange multipliers. In this procedure, the system is allowed to take an unconstrained 

time-step. Then, the coordinates of the particles will be modified via: 

 

𝒒𝛼
CON = 𝒒𝛼

UN + ∑𝛾𝑗

𝜕𝜎𝑗

𝜕𝒒𝛼

𝑑′

𝑗=1

 [3.79]  

where 𝒒𝛼
CON and 𝒒𝛼

UN are the constrained and unconstrained generalized coordinates, respectively, 

and 𝑑′ is the number of constraints. The second term on the right-hand side of the above equation 

represents the correction due to the constraint.  

To authorize the correction, the system must first meet the conditions of 𝑑′ holonomic 

constraints defined by: 

 𝜎𝑗({𝒒𝜈}) = 𝑓(𝒒1, 𝒒2, ⋯ , 𝒒𝑁) = 0        (𝑗 = 1,2,⋯ , 𝑑′) [3.80]  

in which 𝒒𝜈 is the coordinate of particle 𝜈 = 1,2, … ,𝑁 and 𝑓 is a constraint function dependent on 

the configuration of the system. To achieve fulfillment of the constraints, an optimized solution of 

equation [3.80] is determined iteratively via scalar Lagrange multipliers: 

 

                                    𝛾𝑗 = ∑[�̃�𝑗𝑙]𝑐′𝜎𝑙

𝑑′

𝑙=1

        (𝑗 = 1,2,⋯ , 𝑑′) [3.81]  

where the 𝑑′ × 𝑑′ matrix �̃�𝑗𝑙 is the inverse of the modified metric matrix �̃�𝑗𝑙 and satisfies:  

 

∑ �̃�𝑗𝑚�̃�𝑚𝑙

𝑑′

𝑚=1

= 𝛿𝑗𝑙 [3.82]  

The modified metric matrix is: 

�̃�𝑗𝑙 = ∑
𝜕𝜎𝑗

𝜕𝒒𝛼
⋅
𝜕𝜎𝑙

𝜕𝒒𝛼

𝑁

𝛼=1
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The brackets [⋯ ]𝑐′ around matrix �̃� in equation [3.81] serve as an evaluation range for position 

from time 𝑡 to time 𝑡 + ∆𝑡, manifested as 𝑐′ ∈ [0,1].  The Lagrange multipliers are computed such 

that at each time-step, the constraints arrive within a suitable, specified tolerance.  

 

3.4.2 Preparing Maxwell’s Equations for the Constraint Algorithm 

The laws discussed in equations [3.71] and [3.72] will function as the constraints and are 

first established by means of integral theorems. The postulate in equation [3.71] is better organized 

using a volume integral: 

 
𝜎𝐺 = ∭(∇ ⋅ 𝑴) 𝑑𝑉

 

𝑉

+ ∭(∇ ⋅ 𝑯)𝑑𝑉

 

𝑉

 [3.83]  

The integrals above suggest that integrating across a volume for an abundant number of 

ferroparticles would be inefficient. Consequently, the above volume integral expression can be 

simplified further using the Gauss-Ostrogradskii Divergence Theorem to eliminate the need to take 

the direct divergence of the fields: 

 
𝜎𝐺 = ∯(𝑴 ⋅ �̂�) 𝑑𝑆

 

𝑆

+ ∯(𝑯 ⋅ �̂�) 𝑑𝑆

 

𝑆

 [3.84]  

where �̂� is the surface normal vector and the volume integral has been reduced to a surface integral. 

In order to numerically calculate the integral, a zero-order approximation of this calculation is 

prepared: 

 𝜎𝐺 = ∑(𝑴𝑘 ⋅ �̂�)∆𝑺𝑘 + (𝑯𝑘 ⋅ �̂�)∆𝑺𝑘

𝑘

 [3.85]  

where 𝑴𝑘 and 𝑯𝑘 are the magnetization field and magnetic field, respectively, centered at 

node 𝑘. If the nodes are placed in a uniform grid on each surface of a local cubic constraint volume, 
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then the differential area ∆𝑺𝑘 will be constant for all 𝑘 nodes and the integration can be rewritten 

as: 

 𝜎𝐺 = ∆𝑺∑𝑴𝑘 ⋅ �̂� + 𝑯𝑘 ⋅ �̂�

𝑘

 [3.86]  

Thus, the constraint in equation [3.71] is assessed on an average basis, as opposed to evaluating it 

at every possible spatial point. Figure 3a depicts a constraint volume for this particular notion. 

 

 

 

 

 

 
 

 

 

 

  

(b) (a) 

𝐶 𝑆 

𝑆 

𝑑𝑨 

𝑑𝒍 

Figure 3. (a) Constraint volume for Gauss’s Law with uniformly distributed nodes on 

the surfaces 𝑆 and (b) constraint surfaces 𝑆 for Ampère’s Law showing linearization 

along 𝐶 (dotted lines).  
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To satisfy the magnetostatic Ampère’s Law in equation [3.72], one can impose the 

constraint by applying a surface integral over it: 

 
𝜎𝐴 = ∬curl(𝑯) ⋅ 𝑑𝑨

 

𝑆

 

= ∬(∇ × 𝑯)𝑑𝑨

 

𝑆

 

[3.87]  

where 𝑑𝑨 is the normal vector to the surface. Application of a surface integral allows for the use 

of Stokes’ Theorem to bypass the prospect of explicitly solving the curl of the 𝑯 field: 

 
𝜎𝐴 = ∮𝑯 ⋅ 𝑑𝒍

 

𝐶

 [3.88]  

where 𝐶 is the curve that is capped by surface 𝑆 and 𝒍 is the position vector function (or the 

parametrization) that defines the path along 𝐶. The normal direction to the surface 𝑆 dictates the 

positive orientation of curve 𝐶, as observed in Figure 3b. Equation [3.88] can be numerically 

calculated by a zero-order approximation: 

 𝜎𝐴 = ∑𝑯𝑘′ ⋅ ∆𝒍

𝑘′

 [3.89]  

where ∆𝒍 is the change in the linearization along 𝐶. At each node 𝑘′ located on the path of 𝒍  

along 𝐶, the effective field 𝑯 in equation [3.88] is evaluated using equation [3.77]. And similar to 

the Gauss’s Law, the constraint in equation [3.72] is estimated on an average basis, rather than for 

every possible spatial point. 

Initial examination of equation [3.81] reveals that each constraint is paired with its own 

Lagrange multiplier that must be iterated upon. Attempting to fulfill the constraints in  

equations [3.86] and [3.89] at a large number of nodes throughout the system’s volume would 

therefore lead to slow computational schedule. In order to alleviate this issue, the constraint is not 
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met explicitly at every point but rather on average within the system, as outlined above. The 

integral theorems and numerical approximations used to simplify the constraints bring about a 

significant decrease in the number of nodes, thus reducing computation time. Furthermore, the 

weighting function allows for a spatially continuous density measurement along the node points. 

Ideally, more nodes could be added, further reducing the size of the “sub-cells,” allowing the 

constraint to be met in smaller and smaller volumes and ultimately leading to a more accurate 

picture of the system’s behavior. However, the model will consider a low number of constraints in 

consideration of computational limits. Moreover, when designating an externally-applied 

magnetic field 𝑯0, any field can be utilized. Still, to simplify the computations, the particular 𝑯0 

field (specified in equation [3.76]) was chosen because the curl and divergence are both zero. 

Therefore, 𝑯0 is neglected in the constraint calculations and equations [3.83] and [3.87] require 

only the divergence and curl of the remaining contributions. 

 

3.4.3 Constraints on the Particle’s Center of Mass and Dipole Orientation 

While the constraint 𝜎𝑗 is progressing towards a reasonable solution via the Lagrange 

multiplier process, the center of mass positions and dipole orientations of the particles are adjusted. 

The constrained center of mass position of particle 𝛼 is: 

 𝒓𝛼
CON(𝑡 + ∆𝑡) = 𝒓𝛼

UN(𝑡 + ∆𝑡) +β∆𝑡𝐷𝑜
𝑡𝑭𝛼

CON,T
 [3.90]  

with 𝒓𝛼
UN as the unconstrained center of mass position of particle 𝛼 introduced in equation [3.30], 

β =
1

𝑘𝑇
 , ∆𝑡 as the time-step, and 𝐷0

𝑡 as the translational diffusion coefficient at infinite dilution. 

Under convergence conditions, the correction term observed in equation [3.79] can pose as a 
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constraint force for the center of mass of particle 𝛼: 

 

𝑭𝛼
CON,T = −∑𝛾𝑗

𝜕𝜎𝑗

𝜕𝒓𝛼

𝑑′

𝑗

 [3.91]  

The appropriate derivatives are required to process this equation and are provided in Appendix B. 

The constrained dipole orientation for particle 𝛼: 

 𝝋𝛼
CON(𝑡 + ∆𝑡) = 𝝋𝛼

UN(𝑡 + ∆𝑡) + β∆𝑡𝐷𝑜
𝑟𝑻𝛼

CON [3.92]  

where 𝝋𝛼
UN is the unconstrained dipole orientation of particle 𝛼 presented in equation [3.36] and 

𝐷0
𝑟 is the rotational diffusion coefficient at infinite dilution. In this case, the correction term of 

equation [3.79] is posed as a constraint torque for the dipole orientation of particle 𝛼: 

 𝑻𝛼
CON = 𝒓𝛼

UN(𝑡) × 𝑭𝛼
CON,R(𝝋𝛼, 𝛾𝑗) [3.93]  

However, rather than applying the orientational constraint force 𝑭𝛼
CON,R

 to the particle’s center of 

mass position, it should be related to the dipole orientation. 𝑭𝛼
CON,R

 can be written: 

 

𝑭𝛼
CON,R = −∑𝛾𝑗

𝜕𝜎𝑗

𝜕𝝋𝛼

𝑑′

𝑗

 [3.94]  

and uses the partial derivative of the constraint with respect to 𝝋𝛼, of which are provided in 

Appendix B. The correction stemming from this does not imply that a constraint force shifts 𝝋𝛼 

to a new spatial position. Instead, 𝑭𝛼
CON,R

 is used in conjunction with 𝑻𝛼
CON to pivot 𝝋𝛼 toward 

satisfaction of the constraint while simultaneously remaining at 𝒓𝛼. Adopting a constraint force to 

spatially reposition 𝝋𝛼 would disagree with the one that controls 𝒓𝛼 since the dipole’s resultant 

Cartesian position would not match the particle’s constrained center of mass location.  

With an outlined constraint procedure, the Maxwell’s equations in [3.71] and [3.72] will 

be satisfied for the ferrofluid system at each time-step. When equations [3.90] and [3.92] are 

inserted into the constraint equations, a set of 𝑑′ nonlinear equations with 𝑑′ unknown Lagrange 
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multipliers is formed. The equations are solved iteratively with initial Lagrange multiplier values 

of 𝛾𝑗 = 0. For every time-step ∆𝑡 that transpires, the iterative constraint method converges when 

the second term of the right-hand sides of equations [3.90] and [3.92] approach zero for all 𝜎𝑗. As 

a consequence, the simulation can advance because the correction term is no longer needed. The 

particle arrangement is then finalized and the system repeats the process at time 𝑡 + ∆𝑡. 
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4. SIMULATION PROCEDURE 

4.1 Particle and System Setup 

In the present model, ferrofluid particles are scrutinized under various conditions, notably 

under a simple planar shear flow. A collection of dipoles is randomly distributed within a 

simulation cube of dimension 𝐿, as portrayed in Figure 4. In this research, the constituents are not 

intended to represent perfectly genuine ferrofluid nanoparticles but to act as tracers that can 

replicate the dynamics of magnetic particles under the specified conditions. The model can be 

viewed as a system of secondary particles, each of which is comprised of many primary ones. Each 

dipole is envisioned as a sphere of radius 𝑎 because of its relatively simple geometry and 

appearance in many colloidal systems. Spheres are known to facilitate complicated numerical 

techniques, even those designed with a uniform steric layer. For a spherical particle housing a fixed 

dipole, the orientation of strongest attraction is when dipoles are parallel, meaning the ends are 

attracted to their corresponding opposites. Thus, perpendicular attraction is dismissed. 
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Each spherical particle must be assessed at a reasonable size that is characteristic of 

ferrofluids. As discussed previously, typical ferrofluid particles measure to within 4 to 9 nm in 

diameter. For a ferrofluidic colloidal dispersion in a simulation cube, the volume fraction of solid 

to fluid component is expressed as: 

 
𝜙 =

𝑁

𝐿3
(
𝜋𝑑3

6
) [4.1]  

Typical ferrofluids are usually produced with a number density of roughly 1023 particles per cubic 

meter, a value of which induces a volume fraction of: 

 
𝜙 = 1023 (

𝜋𝑑3

6
) [4.2]  

y 

x z 

Figure 4. Initial setup of randomly positioned and 

oriented magnetic dipoles. 
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When boundary walls are introduced in the simulation, there is additional fluid present in the 

grooves between the wall particles. The volume fraction must then adjust to account for the 

supplementary fluid: 

 
𝜙 =

𝑁

𝐿3 +
𝑁𝑤

4
(1 −

𝜋

3
)𝑑3

(
𝜋𝑑3

6
) [4.3]  

in which 𝑁𝑤 is the total number of wall particles, derived as: 

 
𝑁𝑤 =

𝐿2

2𝑑2
 [4.4]  

If 𝑁 = 512 and 𝐿 = 40𝑎, then 𝑁𝑤 = 200 and, by using equations [4.2] and [4.3], solving for the 

particle size results in 𝑑 ≈ 8.6 nm, a value of which falls within the aforementioned particle size 

range. Concerning MP, the particle size limit at which Brownian motion will most likely force 

nanoparticles to break away from the influence of magnetic forces has been found to be around 5 

nm (Friedman and Yellen, 2005). This is true for almost all shapes and thus, functions for 

biological elements like red blood cells. 

 

4.2 Wall Boundary Condition Setup 

To simulate a ferrofluid system between parallel plates, wall boundaries must be 

implemented. Two commonly used boundary models are known to imitate a solid boundary: the 

ideal smooth wall model and the particle-wall model. In this study, the particle-wall design is 

valuable for its ability to mimic solid boundary roughness in a simplistic manner, both 

methodically and computationally. Hence, the top and bottom xz-planes (located at 𝑦 = ±20𝑎) 

are composed of wall particles. The wall particles are set in a hexagonal packing arrangement of 

identical circles of radius 𝑎 (when viewed in a two-dimensional plane) and are constrained from 

repositioning relative to one another. The wall particles are arranged in a layer with the same 
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thickness as the ferrofluid particles. When shear flow is active, the particles in the wall layers shift 

according to the shear velocity, set equal to a specified wall velocity. Because of the boundary, the 

ferrofluid particles are contained within the limits of the y-direction but are free to move between 

the parallel plates. The particles are prevented from breaching the wall by introducing the 

algorithm: 

 ∆𝒓𝛼 = 2(2𝒅𝑤𝛼 − 𝒓𝑤𝛼) [4.5]  

where ∆𝒓𝛼 is the displacement that corrects the position of particle 𝛼 from the wall and 𝒅𝑤𝛼 is the 

unit direction vector from wall particle 𝑤 to particle 𝛼. However, since the wall particles are set in 

a hexagonal packing arrangement, a slightly modified strategy is required to account for the spaces 

between them. The modified procedure would shift the particle away from the wall and reflect it 

in the y-direction while its momentum is maintained in the x- and z-directions. Figure 5 

demonstrates the application of the wall boundary. When a particle 𝛼 overlaps the wall, the adapted 

method activates by analyzing the overlap distance 𝑟𝑦,𝑜𝑣𝑒𝑟 of the nearest wall particle. Then, the 

separation is used as the reflective y-direction distance from the wall while maintaining the 

displacements in the other Cartesian directions. The y-component of velocity will also be reversed. 

It will appear as if the particle rebounded off the wall in lieu of overlapping with the wall particles. 

Additionally, when a particle is equally separated between three wall particles, a small bit of space 

allows a portion of the particle to “sink” into the wall without overlapping the wall particles. 

Accordingly, the minimum y-distance from the center of a ferrofluid particle to the center of any 

of the three wall particles is: 

∆𝑟𝑦,𝑚𝑖𝑛 =
2𝑎

3
√6 

Any separation less than this limit indicates overlap of the ferrofluid particle and the wall. This 
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was mentioned to explain the size of the grooves between wall particles and the ambient fluid that 

would occupy them. 

 

 

 

 

 

 
 

 

 

 

 

Conversely, where there is no wall boundary, the system is considered to have a periodic 

boundary. The simulation cube has been defined to have periodic boundaries in the x- and  

z-directions, permitting the particles to diffuse freely in a continuous fluid. The boundaries are 

periodic because the particle concentration at the wall would infinitely increase. The number of 

particles remains constant within the volume in order to simulate a collection process under 

nonuniform fields. 

  

𝑥 

𝑦 

Figure 5. Activation of the boundary wall procedure due to particle intrusion into 

the wall (observed in the xy-plane). 
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4.3 Time-steps 

So that the model remains within sensible limits and to prevent divergence, the maximum 

Brownian displacement was kept significantly lower than the steric layer thickness: 

 

|∆𝒓𝛼
B*|

𝑚𝑎𝑥
= √

8∆𝜏∗

Pe
= 0.2𝑑𝛿  [4.6]  

The characteristic time for the fluid’s molecular motion is much shorter than that for the movement 

of ferrofluid particles. This is because the colloidal particles are much larger than those of the 

solvent. Therefore, the molecular motion of the solvent is viewed as a continuum and the 

contributions due to them are absorbed into the stochastic term of equation [3.24]. Solving for ∆𝜏∗ 

in equation [4.6] leads to an expression for the characteristic time for shear flow: 

 ∆𝜏∗ = 0.005𝑑𝛿
 2Pe [4.7]  

The time-step interval ∆𝑡∗ should be much shorter than ∆𝜏∗, so a condition is instated to verify 

that the lowest value is always designated for the time-step: 

 ∆𝑡∗ = 𝑚𝑖𝑛(0.0001, ∆𝜏∗) [4.8]  

This prerequisite to the model ensures that the solid parts of particles do not overlap each other or 

penetrate the wall. The time-step also considers that the particle travels much less than a fraction 

of a particle radius over one time increment. 
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4.4 Magnetic Field Setup 

The primary magnetic field directionality is chosen to be in the positive y-direction, 

selected specifically to emulate MP (and elicit magnetic separation) in the presence of a 

nonuniform field. And although an x-component exists in the event of a nonuniform field, the  

z-components are absent in the applied magnetic fields of equation [3.76]. For a simplistic, 

uniform, externally-applied magnetic field, a two-dimensional vector field representation is 

rendered in Figure 6a. The particles under the influence of a uniform magnetic field form 

aggregates along the y-direction with dipoles pointing in the primary field direction. Under a 

nonuniform, externally-applied magnetic field, aggregates may form but particles are primarily 

expected to gather at the wall boundaries. To attain a field that would accomplish this, the magnetic 

field constants in equation [3.76] are set to 𝐶𝐿 = 100, 𝐶𝑥 = 0, and 𝐶𝑦 = 0.8. The corresponding 

two-dimensional 𝑯0 field lines are portrayed in Figure 6b. Aminfar et al. (2013) also provide an 

informative representation of the magnetic strength contours of a similar magnetic field. 

Ultimately, asymmetrical particle accumulation will transpire because the field induces a gradient 

that forces the particles to diffuse towards the wall at 𝑦 = +20𝑎. Also, under these conditions, one 

could assume that the proposed system could be viewed as an annulus between two concentric 

rotating cylinders. And so, while a uniform magnetic field leads to data that interprets aggregation 

behavior amongst ferrofluid particles, applications with nonuniformly applied magnetic fields will 

facilitate the ongoing research in magnetophoretic properties of said constituents. 
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4.5 Shear Flow Profile 

For the case of simple shear flow, the following boundary conditions apply with reference 

to the geometry of the model: 

𝑦 = −
𝐿

2
 , 𝑣𝑥 = −𝑉 

𝑦 =
𝐿

2
 , 𝑣𝑥 = 𝑉 

wherein 𝐿 is the length of the simulation box and 𝑉 is a constant velocity. Solving equation [3.5] 

under the above boundary conditions yields an expression for the specific flow field of an ambient 

fluid: 

 
𝑣𝑥 =

2𝑉

𝐿
𝑦 [4.9]  

(b) (a) 

Figure 6. Two-dimensional vector field representations of the (a) uniform and (b) nonuniform 

applied magnetic fields 𝑯0 for this study. 
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A two-dimensional representation of this equation is exhibited in Figure 7c. The flow field is 

governed by the Stokes equations. Analytical solutions of the flow field for Stokes flow have been 

calculated (Bird et al., 2002). 

 

4.6 Application of the Constraint Method 

As long as a time-step ∆𝑡 elapses, the particles are allowed to interact unconstrained with 

each other, respond to the resultant hydrodynamics, undergo Brownian motion, drift with the shear 

flow, and acquiesce to the applied magnetic field. Then the constraint process for the Maxwell’s 

equations is activated following the interactions between particles during ∆𝑡. For the constraint 

method to fulfill the Gauss’s Law constraint 𝜎𝐺,𝑗 for 𝑗 = 1,2, … , 𝑑𝐺
′ , the volume is split into 

𝑑𝐺
′ = 8 equal cubes with dimensions 𝐿c of 20𝑎 × 20𝑎 × 20𝑎, so as to represent local volumes of 

the system. Each surface of a local cube is populated with 16 nodes in a 4-by-4 array with a spacing 

of 5𝑎. This is roughly visualized in Figure 7a. At each node, the weighting function is employed, 

as described in equation [3.73], to calculate the 𝑴 field in equation [3.74] while the 𝑯 field in 

equation [3.75] is processed via equation [3.77] alongside an appropriate 𝑯0. A surface integral is 

then calculated for each of the eight local volumes, which allows the Gauss’s Law to be satisfied 

over eight local constraints. Fortunately, the periodic boundaries in the x- and z-directions reduce 

the total number of surface integral calculations required for the xy- and yz-faces at  𝑧 = ±20𝑎 

and 𝑥 = ±20𝑎, respectively. As for the magnetostatic Ampère’s Law, the constraint 𝜎𝐴,𝑗 for 

𝑗 = 1,2, … , 𝑑𝐴
′  must be met at the boundaries to ensure that the tangential component of magnetic 

field is continuous. At the walls boundaries, the borders surrounding the surfaces are segmented 

into evenly-distanced nodes. In this case, each of the 𝑑𝐴
′ = 2 borders contains 32 nodes, eight per 

side with a spacing of 5𝑎. This constraint design is crudely illustrated in Figure 7b, with the normal 
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direction to the surface dictating the positive direction of the arrows circumnavigating the 

boundary. Equation [3.75] is employed to calculate 𝑯 at each node. Afterwards, a line integral is 

evaluated for each of the two borders, which allows the Ampère’s Law to be satisfied over two 

local constraints. In conclusion, the system employs no more than eight local volume constraints 

and two boundary constraints in consideration of computational limits. Thus, the constraints are 

developed into viable expressions that are computationally efficient for the present study.  

 

 

 

 

 

 

Figure 7. System representation of the (a) local constraint volumes for the Gauss’s Law 

with nodes 𝑘 and (b) local constraint boundary surfaces for the Ampère’s Law with  

nodes 𝑘′. (c) A rough illustration of the Cartesian xy-view of planar shear flow with shear 

rate �̇�. Reprinted from Dubina and Wedgewood (2016), with the permission of AIP 

Publishing. 



61 

 

 

At each time-step, all 𝑑′(= 𝑑𝐺
′ + 𝑑𝐴

′ ) = 10 holonomic constraints must simultaneously 

comply within a specified limit. When the constraint method is activated, the Lagrange  

multipliers 𝛾𝑗, as seen in equation [3.81], are found by means of an iterative procedure. In terms 

of solving for the constraints 𝜎𝑗, equation [3.86] is used for Gauss’s Law 𝜎𝐺,𝑗 while equation [3.89] 

manages Ampère’s Law 𝜎𝐴,𝑗. The modified metric matrix �̃�𝑗𝑙 demonstrates the dependency of the 

constraints on each other and is essential for each iteration. This is because every constraint relies 

on the system’s configuration. The derivatives of equations [3.86] and [3.89], those of which are 

provided in Appendix B, are required to solve for �̃�𝑗𝑙 and process equation [3.79]. Once the 

Lagrange multipliers have converged to a reasonable value, the constraint force 𝑭𝛼
CON and  

torque 𝑻𝛼
CON are determined, which are then used to compute the position 𝒓𝛼

CON and dipolar  

vector 𝝋𝛼
CON of particle 𝛼 within the ferrofluid system. It is then that a revised configuration is 

visualized and the simulation advances to the next time-step. 

 

4.7 System Parameters 

An assemblage of 𝑁 = 512 unit dipoles is randomly arranged within the cubic volume 

characterized by dimensions 𝐿 of 40𝑎 × 40𝑎 × 40𝑎. Since the volume and total particle number 

are dependent on other ferrofluid attributes, they are useful for calculating the ferroparticle 

diameter, volume fraction, or particle density, as long as these properties are within sensible ranges 

that are representative of conventional ferrofluid solutions. For simplicity, the center of the system 

coincides with the origin of a three-dimensional Cartesian coordinate system and has lower and 

upper ranges of −20𝑎 and +20𝑎, respectively. The size of this system depicts a relatively small 

prototype of a ferroparticle dispersion.   
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The model should ultimately provide extensive predictions of the impacts of particle 

kinetics, aggregation, shapes, and properties on valuable aspects of FHD. By controlling the values 

of the dimensionless numbers introduced from equations [3.67] to [3.69], specific effects can be 

monitored. However, before dictating particle-particle magnetic interactions, particle-field 

response, aggregation behavior, Brownian motion influence, and shear flow impact, dimensionless 

numbers must be regulated by virtue of the ratios introduced in equation [3.70]. When the 

simulation is compiled with 𝜆 = (3, 5, 7, 9), the ratios of 𝑅v 𝑅m⁄  and 1 (𝑅mPe)⁄  result in 

(158.67, 95.200, 68.002, 52.891) and (0.244, 0.146, 0.105, 0.0814), respectively. The ratio of 

𝑅h 𝑅m⁄  will be maintained around 3.3, a magnitude that was found to support the assumption of a 

strong magnetic field. The dimensionless property 𝜆 primarily determines the degree to which the 

magnetostatic particle-particle and particle-field interactions overwhelm the Brownian motion 

effects. Most importantly, for 𝜆 = 9, magnetostatic interactions dominate nearly all Brownian 

motion effects, thus enabling chain formation amongst particles and along the y-direction. Hence, 

this property will be analyzed over the others in the present study. Under this constant, 𝜉 = 54.07 

for 𝑅h 𝑅m⁄ = 3.3 and the steric attributes of 𝑑𝛿 and 𝜆v are held constant at 0.3 and 150, 

respectively. The parameters are outlined in Table III below. 
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TABLE III  

 

PARAMETER SETS FOR FERROPARTICLE SIMULATIONSa  

𝜆 𝑅m (𝑅mPe)−1 𝑅v 𝑅m⁄  ∆𝑡∗ (×105)         𝜉 

3 50 0.2441 158.672 3.687 18.025 

5 50 0.1465 95.2033 6.145 30.041 

7 50 0.1046 68.0024 8.603 42.057 

9 1 0.08137 52.8907 10.00 54.074 

9 10 0.08137 52.8907 10.00 54.074 

9 25 0.08137 52.8907 10.00 54.074 

9 50 0.08137 52.8907 10.00 54.074 

9 100 0.08137 52.8907 5.530 54.074 

a Under constants 𝑑𝛿 = 0.3, 𝜆v = 150, and 𝑅h 𝑅m⁄ = 3.3. 

 

 

 

 

 

In regards to the cutoff distances in Table II, they were assigned reasonable values that 

boost the computation speed. The cutoff radius for particle-particle interactions 𝑟coff is set at 16𝑎. 

For the cutoff distance concerning hydrodynamic interactions 𝑟coff
(hydro)

, it is set at 3.8𝑎, which 

prevents triple-particle interplay. The cutoff radius for the constraint method ℎ is simply set to that 

of the cutoff distance for particle-particle interactions. In doing so, the entirety of the system 

volume is incorporated when calculating the constraints.  
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5. RESULTS 

5.1 Constraint Trends and Comparison 

While the simulation advanced by a time-step, the constraints were continually satisfied 

over all runtimes. The particles were impacted by an applied magnetic field, Brownian motions, 

interparticle interactions, and shear flow effects before the constraints were initiated. Then, to 

ensure that the Maxwell’s equations are continuously met, the constraint equations in [3.86] and 

[3.89] were tracked for models with and without an activated constraint method. The two 

simulations were run under a uniform magnetic field with parameters of 𝜆 = 9 and 𝑅m = 50. They 

were also simultaneously executed over 300,000 nondimensional time-steps 𝑁𝑡 (= 𝑡 ∆𝑡⁄ ), which 

was an ample amount of time for an initially randomized ferroparticle system to reach a steady-

state. For 𝑑𝐺
′ = 8 constraints to satisfy Gauss's Law, Figure 8a illustrates the trends between a 

model whose magnetic field is divergence-free to one that is not. The simulation with an activated 

constraint procedure has abided by Gauss's Law and consequently, produces a trend line at zero 

while the other fluctuates uncontrollably. The latter situation would be acceptable for macroscopic 

simulations. However, for time-steps as small as the ones used in this Brownian dynamics study, 

it is unreliable since the fields must be solenoidal at each time-step. A similar situation applies for 

the satisfaction of the magnetostatic Ampère’s Law. For 𝑑𝐴
′ = 2 constraints representing Ampère’s 

Law, Figure 8b compares results with a magnetic field that is curl-free compared to another that is 

not. It is apparent that the fluctuations for Ampère’s Law are less wild than those of Gauss’s Law, 

which may be due to the range of the boundary surfaces as opposed to the reach of the local 

constraint volumes. More importantly, the trends demonstrate a curl-free magnetic field 

throughout the volume. These observations were consistent across all simulations under the 

parameter sets of Table III and nonuniform fields. Thus, the constraint algorithm has provided a 
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means to comply with the governing Maxwell’s equations while the system advances. 

Additionally, the trends lacking the constraint method are comparable to Brownian dynamics 

results by other researchers.  

 

 

  

 

  

(a) 

(b) 

Figure 8. Trend of (a) Gauss’s Law and (b) the magnetostatic Ampère’s 

Law (𝜆 = 9, 𝑅m = 50). Adapted from Dubina and Wedgewood (2016), 

with the permission of AIP Publishing. 
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5.2 Uniform Magnetic Fields 

5.2.1 Steady-state Particle Distributions 

A steady-state representation of the system provides a means of observing the general 

behavior of ferrofluids. A three-dimensional illustration of the particles distributed throughout the 

volume at any given time can roughly illustrate chain formation and particle diffusion. To inspect 

the aggregates further, distinct rectangular prisms of the volume (henceforth identified as “slices”) 

scrutinize particles in a localized volume. To define an xy-slice, for example, only the particles 

that reside between two square xy-planes are considered. In this study, xy-, yz-, and xz-slices 

examined particles within Cartesian spaces enclosed between xy-, yz-, and xz-planes, respectively, 

each of dimensions 40𝑎 × 40𝑎. Specifically, xy-slices were placed at 𝑧 = −2.5𝑎 and 𝑧 = +2.5𝑎, 

yz-slices situated at 𝑥 = −2.5𝑎 and 𝑥 = +2.5𝑎, and xz-slices sited at 𝑦 = −2.5𝑎 and 𝑦 = +2.5𝑎. 

The coordinates were chosen in order to observe particle activity around the center of the system 

volume. Moreover, while the xy- and yz-slices emphasize the chaining that forms along the 

y-direction, the xz-slice inspects any dipoles shifting away from the magnetic field bearing. Thus, 

with the spatial particle distributions and their slices, one can scrutinize the aggregation behavior 

of ferrofluid particles as the model progresses. In addition, note that slices may not display 

complete chains due to adjacent particles that are located just beyond the boundaries of the slice. 

Also, the position vector 𝒓 and coordinates are divided by 𝑎 to generate their respective 

dimensionless forms. As a reminder, the superscript ‘*’ represents the dimensionless form of 

properties. 

After running the Brownian dynamics simulations for 𝑁𝑡 = 300,000 time-steps, spatial 

distributions and planar slices characterize the resultant ferrofluid particle activity. Under values 

of 𝜆 = 9 and 𝑅m = 50, and with an activated constraint algorithm, strong magnetostatic attractions 
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are known to invalidate the Brownian dynamic effects. For the case of a shear fluid flow, 

Figure 9a demonstrates a particle distribution that has reached steady-state. Though the dipoles 

still remain visibly aligned in the magnetic field direction and are hardly skewed by the viscous 

shear torques, the magnetically-attracted particle chains reveal a slight slant due to the shear flow 

profile. When viewing any planar slice of Figure 9a, chains are better perceived. The xy- and 

yz-slices portrayed in Figures 9b and 9c, respectively, verify the general observations previously 

stated of the entire particle distribution. The xy-slice in Figure 9b accentuates the aforementioned 

slanting effect of the viscous shear forces on the particle chains. In Figure 9c, the yz-slice does not 

depict a diagonal lean in the aggregates because the shear flow moves in the x-direction and relies 

solely on the y-position. And finally, the xz-slice in Figure 9d confirms a prevailing magnetic field 

influence since hardly any dipoles shifted away from the y-direction. Thus, the internal structures 

of the chains exhibit typical ferrofluid agglomeration behavior in the presence of shear-flowing 

(or stagnant) ambient fluid.  
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(a) (b) 

(c) (d) 

Figure 9. (a) Spatial particle distribution under a uniform magnetic field (𝜆 = 9, 𝑅m = 50). The 

corresponding (b) xy-, (c) yz-, and (d) xz-slices provide comprehensive views of the strong chaining 

behavior. Strong particle aggregation is observed under these parameters. Reproduced from 

Dubina and Wedgewood (2016), with the permission of AIP Publishing. 
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Under a decreased 𝑅m value, the quotient of magnetostatic effects to viscous shear forces 

is reduced while maintaining the previously-stated ratios of dimensionless numbers. This was 

accomplished by setting the 𝑅m dimensionless number to 1, which corresponds to relatively weak 

magnetostatic interactions. A proportionately lower 𝑅h follows to uphold the constant 𝑅h 𝑅m⁄  ratio. 

The particular value for 𝑅m preserves the dominance of magnetic particle-particle attraction over 

Brownian motion. However, with diminished 𝑅m, the Péclet number becomes 12.29 and the 

viscous shear forces possess a much greater impact on chain evolution. Thus, Figure 10a exhibits 

a nearly complete deficiency of aggregated particle chains present after 𝑁𝑡 = 300,000 time-steps, 

compared to Figure 9a. The magnetic interplay between particles was not capable enough to 

generate consistent agglomeration, even when the applied magnetic field was substantial enough 

to keep the particle dipoles somewhat directed in the primary y-direction. Additionally, the dipoles 

are leaning noticeably away from the magnetic field direction due to the shear flow forces. The 

slices in Figure 10 support these notions. There is considerable inclining of the dipoles in the shear 

flow direction in Figure 10b but none observed by the yz-slice in Figure 10c. Since the external 

magnetic field was still stronger than the Brownian rotation, the dipoles in Figure 10d are not 

directed in the z-direction. Also, though most of the dipoles are obstructed by the particle size in 

the xz-slice, one can notice slight traces of them pointed in the x-direction due to viscous shear. 
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(a) (b) 

(c) (d) 

Figure 10. (a) Spatial particle distribution under a uniform magnetic field (𝜆 = 9, 𝑅m = 1). The 

corresponding (b) xy-, (c) yz-, and (d) xz-slices provide comprehensive views of the strong shearing 

effects and lack of agglomeration. Weak particle aggregation but strong shearing effects are 

observed under these parameters. Reproduced from Dubina and Wedgewood (2016), with the 

permission of AIP Publishing. 
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Under a substantially large 𝑅m value, the impact of the magnetic particle-particle and 

applied field effects increases. In this case, 𝑅m was increased to 100, imposing a rise in the ratio 

of magnetostatic effects to viscous shear forces while preserving the aforementioned ratios of 

dimensionless numbers. Subsequently, an elevated 𝑅h ensues to maintain the fixed 𝑅h 𝑅m⁄  ratio. 

Consequently, chaining activity was expected to flourish under these parameters. As exemplified 

by Figure 11a, the chains appear denser. The particles were also not affected by the viscous shear 

forces, primarily due to the low Péclet value and dominant magnetic particle-field interactions. 

Observing the xy-slice in Figure 11b confirms that the chains were not affected by the shear flow 

and do not tilt like the aggregates in Figure 9b. And because the ambient fluid had hardly any 

bearing on the particles, the yz-slice in Figure 11c exhibits a similar trend to the xy-slice. In terms 

of the xz-slice in Figure 11d, it exhibits no unusual behavior and affirms the prior observations. 

Thus, the applied magnetic field was effective enough to overcome the viscous shear forces and 

induced long particle chain aggregation solely along the y-direction. 
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(a) (b) 

(c) (d) 

Figure 11. (a) Spatial particle distribution under a uniform magnetic field (𝜆 = 9, 𝑅m = 100). The 

corresponding (b) xy-, (c) yz-, and (d) xz-slices provide comprehensive views of the powerful 

chaining behavior. Significantly strong particle aggregation is observed under these parameters. 

Reproduced from Dubina and Wedgewood (2016), with the permission of AIP Publishing. 
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Alternatively, a value of 𝜆 = 3 indicates prevailing Brownian motion. This will alter the 

dimensionless ratios, according to the equations in [3.70]. The thermal energy disbands any 

particle pairs, despite the strong magnetic attractions, and overpowers the viscous shear forces. In 

Figure 12a, after 𝑁𝑡 = 300,000 time-steps, the particles appear sporadically dispersed. However, 

since the uniform external magnetic field primarily affected the torque on the particles, and when 

the 𝑅h value is high enough, the rotational Brownian torque was not enough to overcome it. This 

observation is further verified when the model is supervised under a nonuniform magnetic field or 

low 𝑅h constant. Additionally, the shear torque was not substantial enough to offset the dipoles 

completely, as embodied by a low Péclet number. The planar slices, again, allow a closer look at 

the internal structure. Both Figures 12b and 12c reveal minimal aggregation with dipoles steered 

in the direction of the field. Figure 12d suggests some deviation of the dipole away from the field 

direction when compared to the other parameter sets, though not considerable when claiming 

Brownian rotation responsible. 
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(a) (b) 

(c) (d) 

Figure 12. (a) Spatial particle distribution under a uniform magnetic field (𝜆 = 3, 𝑅m = 50). The 

corresponding (b) xy-, (c) yz-, and (d) xz-slices provide comprehensive views of the prevalent 

Brownian effects and inadequate chaining. Dominating Brownian effects and weak particle 

aggregation are observed under these parameters. Reproduced from Dubina and  

Wedgewood (2016), with the permission of AIP Publishing. 
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Based on the four parameter groups that were tested above and because of Brownian 

motion, the aggregates can be said to have loose internal structures, even when the particles form 

long chains. The Brownian motion, though trivial compared to the magnetostatic effects, is not 

entirely absent in the simulations. These thermal fluctuations tend to moderately disturb the 

orientations of the magnetic moments in the presence of an externally-applied field, which may 

occasionally lead to crooked chaining or interparticle separation. However, this effect is not a 

notable concern because it does not occur enough to separate chains unless the parameters 

designate otherwise. 

 

5.2.2 Pair Correlations 

Although the spatial distribution of the volume appears to demonstrate the aggregation 

behavior of particles under the influence of an external magnetic field, one must closely analyze 

the structure of the chains. A pair correlation function (PCF) provides a method of quantifying the 

chain formation in the models. Peaks on a PCF graph characterize the probability of the number 

of particles adjacent to a particle 𝛼 and the direction they align relative to the applied magnetic 

field. The PCF functions are not dependent on the dipole direction. The algorithm involves 

measuring the angle 휃 and distance 𝑟 from particle 𝛼 to others. The angle 휃 designates the 

deviation from the magnetic field and is measured from the center-to-center vector of a particle 

pair to the primary magnetic field direction 𝑯0. The distance 𝑟 is taken from the center of  

particle 𝛼 to any adjoining particles. A demonstration of this design is rendered in Figure 13. The 

values are added up and plotted in a pair correlation graph. The peaks equate to the probability of 

chain lengths at angles 휃. A peak does not explicitly signify the extent of chain size but rather 

expresses the capacity of other particles within proximity of each ferroparticle.  
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The PCF graph for a run under values of 𝜆 = 9 and 𝑅m = 50 demonstrates substantial 

peaks along 휃 = 5 − 15° and verifies the chaining behavior due to strong magnetic interactions 

between particles and vigorous agglomeration tendencies. A majority of the peaks in Figure 14 

emerge along 휃 ≈ 10° because of the strong influence due to the external magnetic field and 

minimal deviation away from it. The most notable quantities range from 𝑟 = 2 to 𝑟 = 6 since the 

PCF detected long chains of ferrofluid particles. The highest peaks at 𝑟 = 2 demonstrate that most 

of the particles paired well with each other, meaning that the pairing was dominant between 

twosomes. Peaks around 𝑟 = 3 and 𝑟 = 4 suggest long particle chains along the direction of the 

field, observed in Figure 9a. And although most of the peaks materialize along 휃 ≈ 10°, some 

appear at greater angles due to the viscous shear. Almost all of the particle pairs that were perturbed 

by the shear flow measure within 30° from the field direction. For those that were angled beyond 

Figure 13. Visualization of the explanation for 

the pair correlation scheme. 



77 

 

that were found to be in close proximity to each other rather than coupled by magnetic particle-

particle attraction. Therefore, residual quantities may occur beyond 30°.  

 

 

 

 

 

 
 

 

 

 

  

Figure 14. Graph of the pair correlation function (𝜆 = 9, 𝑅m = 50). Large pair 

correlation functions under these parameters indicate a notable extent of particle 

chaining. Reprinted from Dubina and Wedgewood (2016), with the permission 

of AIP Publishing. 
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In regards to a decreased 𝑅m value of 1, the resultant PCF plot in Figure 15 exhibits much 

lower peaks when compared to Figure 14 above. This is due to the viscous shear forces that 

dispersed any particles attempting to form chains. As mentioned before, under these parameters, 

the effects due to shear flow considerably outweighed those from magnetostatic attraction. The 

peaks previously detected at 𝑟 = 2 are hardly noticeable now as a result of significant viscous 

shearing. Peaks also deviate away from 휃 ≈ 10° due to existing chains that separated because of 

the shear flow profile. Thus, the PCF graph for the simulation is practically flat, which reflects the 

analysis stated of Figure 10a. 

 

 

 

 

  

Figure 15. Graph of the pair correlation function (𝜆 = 9, 𝑅m = 1). Sparse traces 

of pair correlation quantities under this parameter set implies effective shearing 

that inhibits magnetic particle interactions. Reprinted from Dubina and 

Wedgewood (2016), with the permission of AIP Publishing. 
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For the run with 𝑅m = 100, the peaks in Figure 16 are much higher than those of 

Figure 14. This emphasizes the high 𝑅h constant (and by virtue, a high 𝑅m number) that enabled a 

stronger external magnetic field which overshadowed viscous shear and Brownian motion. 

Consequently, the likeliness for particle pairing increased. And because the shear flow had less of 

an impact under this parameter set, the aggregates were considerably less angled. In this event, the 

peaks appear around 휃 = 0 − 10°, less than the ones in Figure 14. 

 

 

 

 

 

 
 

  

Figure 16. Graph of the pair correlation function (𝜆 = 9, 𝑅m = 100). High pair 

correlation peaks under these parameters designate exceptional levels of particle 

aggregation. Reprinted from Dubina and Wedgewood (2016), with the 

permission of AIP Publishing. 
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In the case of dominant Brownian motion simulated by a low value of 𝜆, one would expect 

the PCF to generate no visible peaks. The thermal motion hindered any potential agglomeration 

and thus, the PCF should be a flat plane of low probability. Figure 17 characterizes the PCF for a 

run under 𝜆 = 3. As indicated, the deficiency of peaks implies that chaining was not present in the 

system volume at equilibrium. The results are similar to the PCF presented in Figure 15. And, 

analogous to the results of 𝑅m = 1, the most visible remnants of peaks seen in Figure 17 are 

predominantly along 휃 = 0 since the applied magnetic field was not entirely obscured and allowed 

for some residual particle clusters to momentarily surface. 

 

 

 

 

  

Figure 17. Graph of the pair correlation function (𝜆 = 3, 𝑅m = 50). A lack of 

pair correlation measurements with these parameters suggests that the Brownian 

forces overpowered particle chain development. Reprinted from Dubina and 

Wedgewood (2016), with the permission of AIP Publishing. 
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With these PCF graphs, the descriptions inferred of the chaining in the particle distributions 

of the previous section are verified. 

 

5.2.3 Magnetoviscous Effects 

From the models that have replicated exceptional chaining conduct, one can observe how 

the particle chains have affected the local ferrofluid behavior. Since there are distinct chains that 

conform to the applied magnetic field (and viscous shear forces), the dimensionless viscosity, 

introduced in equation [3.78], is employed to evaluate the effects of the aggregates on the non-

Newtonian fluid property. The dimensionless viscosity contribution was time-averaged up to and 

at steady-state for each parameter set and simulation run.  

Several 𝜆 values are observed under a constant 𝑅m to monitor the importance of magnetic 

particle-particle interactions on the magnetoviscosity of the suspension. These trends depict the 

spin viscosities of models both with and without activated constraints and are displayed in 

Figure 18. Error bars around the data points signify the standard deviation. In both constraint 

instances, when decreasing toward 𝜆 = 3, the measured viscosity differences approach zero and 

the variation in the time-averages are minimal, conveying familiar ferromagnetic behavior. The 

data comprised of triangular elements denote the magnetoviscous changes analyzed under 

unconstrained conditions. When the constraint procedure is incorporated, however, the 〈휂m∗〉 trend 

abated. Designated by square symbols, this decline demonstrates that the Maxwell’s equations are 

not entirely satisfied, which verifies that the physics should be meticulously upheld (as verified in 

Figure 8). The comparison to systems lacking activated constraints indicates that the contribution 

to the spin viscosity is comparably lower than other studies suggest.  
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Increasing dimensionless number 𝑅m under a constant 𝜆 varies the significance of the 

shearing and supplies an understanding of how the shear flow manipulates the non-Newtonian 

viscosity development. Figure 19 exhibits three separate trends. Similar to the information in 

Figure 18, when decreasing toward 𝑅m = 1, the measured viscosities converge toward a value of 

zero and discrepancies in the time-averages become trivial. The first set of points marked by 

triangles possesses a deactivated constraint procedure and is akin to existing simulated results 

(Satoh et al., 1998). The square-shaped characters symbolize the second operation in which the 

study’s constraint method was implemented. This outcome reiterates the interpretation expressed 

of Figure 18 when inferring that the Maxwell’s equations need to be appropriately heeded. The 

Figure 18. Spin viscosity dependence on magnetic particle-particle effects (𝑅m = 50). 
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third trend (embodied by hollow circles and accompanied by a gray line in Figure 19) is 

representative of experiments involving a magnetic fluid rheometer designed to discern the 

magnetoviscosity contributions over scenarios of various shear rates and applied magnetic fields 

(Odenbach and Störk, 1998). Evidently, the constrained occurrences coincide quite well with the 

experimental data, corroborating the conclusions stated of the constraint algorithm. The results 

support the observations that, again, the magnetic component of the spin viscosity is not as 

extensive as previously realized and not all effects on the particle dipole are always integrated in 

particulate ferrofluid research.  

 

 

 

 

 

 
 

  

Figure 19. Effect of shear flow on spin viscosity (𝜆 = 9). The gray line corresponds to the 

best-fitting trend line for the data from Odenbach and Störk (1998). 
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5.3 Nonuniform Magnetic Fields 

5.3.1 Steady-state Particle Distributions 

Three-dimensional steady-state representations of the particle distributions not only reveal 

aggregation behavior but can also epitomize the repercussions of MP. However, slices of localized 

volume are unnecessary for this section since the instantaneous snapshots will not contribute any 

pertinent information on the diffusion. Therefore, particle chaining will not be the central focus of 

this section although MP is assumed to be cooperative. 

 A constraint model that has reached steady-state for parameters of 𝜆 = 3 and 𝑅m = 50 is 

displayed in Figure 20. Although MP is visibly effective in transporting the particles towards the 

magnetic source at the top of the channel, it is still inadequate for achieving thorough magnetic 

separation. Even though the dipoles are pointed in the proper field directions (according to 

Figure 8) with no perceivable deviations, other effects are more forceful than particle-field 

interplay. Because of the high 𝑅v 𝑅m⁄  ratio at this distinct value of 𝜆, Brownian motion and steric 

repulsion are identified as the causes. Therefore, MP is limited under these parameters. 
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Figure 20. Spatial particle distribution under a magnetic field gradient 

(𝜆 = 3, 𝑅m = 50). Brownian and steric effects prevent a considerable 

magnitude of particles from approaching the top of the channel. 



86 

 

 When lowering the influence of Brownian motion by increasing the quantity of 𝜆, 

Figure 21 demonstrates that the MP is more successful in magnetic separation. Compared to above, 

particles appear less sporadically-dispersed, dipole directions are more consistent with the 

magnetic field, and a greater density of magnetic constituents is occupying the upper half of the 

channel. Still, even at steady-state, there are noteworthy traces of uncaptured particles remaining 

around 𝑦 = 0. Similar to the conditions under 𝜆 = 3, this model would not be sufficient for 

complete magnetic separation.  

 

 

 

 

 

 
 

 

  

Figure 21. Spatial particle distribution under a magnetic field gradient 

(𝜆 = 5, 𝑅m = 50). Many particles are captured but complete 

separation has not been achieved under these parameters. 
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 Increasing the value of 𝜆 proves more prosperous, as one observes superior separation at 

the top of the channel in Figure 22. In this case, there is minimal particle presence around 𝑦 = 0 

and imperceptible evidence of strong Brownian fluctuation. Furthermore, at 𝜆 = 9, all other 

distributions (i.e. 𝑅m = 1, 10, 25, 100 in Table III) were discovered to be identical to Figure 22 at 

steady-state, so it can be referred to in those instances. This was understandable since the extent 

of steric repulsion and Brownian motion at 𝜆 = 9 were minimized, as perceived. 

 

 

 

 

 

 
 

 

 

 

  

Figure 22. Spatial particle distribution under a magnetic field gradient 

(𝜆 = 9, 𝑅m = 50). Through these parameters, magnetophoresis 

appeared to handily transport the particles with little impedance. 
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5.3.2 Particle Number Densities 

Particle number density (PND) profiles supply a means to observe the progression towards 

steady-state magnetic separation via MP over time. The central objective for these plots requires 

data on the accumulation of particles at the top of the channel. At each y-coordinate, xz-planar 

volumes are allocated to determine the number density 𝜌𝑐 in that particular region. Since, in this 

research, MP largely ensues in the y-direction, any diffusion in the x-direction is neglected for the 

PND profiles. A smoothed, two-dimensional plot is then derived to display the PND from the 

bottom of the channel (𝑦 = −20𝑎) to the top (𝑦 = +20𝑎), where the magnetic source is 

presumably located. This is generated at every increment of 10,000 time-steps until steady-state is 

attained, which allows an additional depth to the graphs that provides further understanding to the 

duration of magnetic separation under specific conditions. 

As one can view in Figure 23, the particle population arises as an evenly-distributed (yet, 

with randomly-oriented dipoles) dispersion across the y-direction at 𝑡 = 0. Then, as the magnetic 

gradient field is administered across the volume for 𝑡 > 0, the particle assembly begins to shift 

toward regions of higher magnetism. With parameters of 𝜆 = 3 and 𝑅m = 50, the applied magnetic 

field and its gradient are not capable enough to impel every particle towards the area of higher 

magnetism at the top of the channel, which was evident in Figure 20. Note that near the bottom of 

the channel, number densities are always nonzero as time elapses beyond steady-state, verifying 

that the Brownian motion and steric repulsion hindered packing of magnetic particles at (and near) 

the maximum height once the concentration reached its limit. 
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Figure 23. Progression of the particle number density profile (𝜆 = 3, 𝑅m = 50). 

Number density remains nonzero across the entire system volume, implying 

partial separation. 
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By amplifying the strength of particle-particle interactions with an augmented value of 𝜆, 

one can observe elevated number densities nearest the magnetic source and a noticeable deficit of 

particle population near the bottom portion of the channel as time elapses and before steady-state 

is achieved. The PND profile in Figure 24 provides a visualization. However, though the number 

densities have shifted upwards, the PND profiles corroborate with the commentary stated of 

Figure 21. The number density around 𝑦 = −5𝑎 never acquires a zero concentration, which 

verifies that this parameter set does not exemplify a suspension that would operate in profitable 

separation applications. 

 

 

 

  

 

 
 

  

Figure 24. Progression of the particle number density profile (𝜆 = 5, 𝑅m = 50). 

At the topmost wall boundary, number density has acquired a steady-state 

quantity surpassing that for 𝜆 = 3.  
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With the greatest value of 𝜆 that this study considers, the PND profiles of Figure 22 are 

visible in Figure 25. Again, there is a distinctly larger number density near the upper half of the 

channel (and minimal concentrations for the bottom half) than the preceding sets of parameters 

produced. Also, the diffusion in the lower bisection insinuates a rapid separation time. Thus, 

efficient magnetic separation has been replicated with the least possible degrees of Brownian 

fluctuations and steric particle effects. 

 

 

  

 

 

 
 

 

  

Figure 25. Progression of the particle number density profile (𝜆 = 9, 𝑅m = 50). 

Along 𝑦∗ = 20, the greatest number density is attained at steady-state due to 

strong magnetophoresis. 
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By reducing 𝑅m to a relatively low quantity, one can produce a model under dominating 

shear flow. Figure 26 characterizes the PND trends for this idea. One should discern that the 

diffusion ensues much slower and arrives at a steady-state level at the top of the channel much 

later than that of Figure 25. The denseness of the profiles alludes to the lengthy duration that the 

parameter sets undergo. But even under the shear flow rate and in combination with the negligible 

Brownian and steric influences, separation is still similar to that when 𝑅m = 50 in Figure 25. Since 

the trends are of similar structure and number densities, one can deduce that the PND curves must 

be similar in shape though separation may develop at differing rates. This conjecture will be 

substantiated in a subsequent section. 

 

 

 

  

 

  

Figure 26. Progression of the particle number density profile (𝜆 = 9, 𝑅m = 10). 

Despite substantial shear flow activity hampering particle diffusion, strong 

magnetophoresis produces effective separation. 
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5.3.3 Separation Efficiency 

To confirm the validity of MP and success of the resultant magnetic separation, separation 

efficiency is continuously tracked while the simulation runs. The separation efficiency monitors 

the upper third of the channel volume and any particles within this designated span contribute to 

the total separation efficiency. Under the current conditions, total separation is accomplished when 

90% of PND is within the stipulated section. Since the particles will migrate towards the top of the 

channel, this ensures a standard of magnetic separation for this model. Also note that separation 

efficiency does not commence at zero because the particles are first arranged as a randomized, 

equally-spaced distribution throughout the entirety of the system volume. Hence, a set fraction 

(about 15 to 20%, depending on the randomization) of the particles will initially be situated in the 

active separation zone at 𝑡 = 0. 

Figure 27 plots the separation efficiencies over time for 𝜆 = 3, 𝜆 = 5, 𝜆 = 7, and 𝜆 = 9, 

each under constant 𝑅m. The trends certainly attain distinct yet unique steady-state levels, which 

correspond to the predetermined extent of separation in this research. Though these results reveal 

that the separation time scarcely differed over varying magnitudes of particle-particle interactions, 

the researchers are confident that the study is absent of any unrelated noncooperative MP effects. 

Conclusively, one can detect that only above a certain value of 𝜆 (in this case, 𝜆 = 7) will 

separation go to completion. 
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Figure 27. Separation efficiency trends for several degrees of particle-particle interaction 

(𝑅m = 50). 
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For constant 𝜆, Figure 28 exhibits the separation efficiencies over time for 𝑅m = 1, 

𝑅m = 25, 𝑅m = 50, and 𝑅m = 100. Effective and complete separation is examined for all four of 

the parameter sets. Examination of the results in Figure 28 reveals that as the shearing rises, the 

slower diffusion becomes and hence, separation time is further delayed. By comparing these 

findings to those of Figure 27, one can surmise that the separation efficiency is dependent on 

Brownian motion and particle-particle interplay rather than shearing effects. Thus, it can be 

understood that in this research, particle-particle interactions manipulate the extent of the 

separation efficiency while shear flowing permits regulation of the separation time. Further 

analysis of the separation times should provide better confirmation of these phenomena.  

 

 

 

 

 

 
 

  

Figure 28. Separation efficiency trends for various intensities of shear flow effect (𝜆 = 9). 
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5.3.4 Separation Times 

By overseeing the separation efficiency to steady-state, the separation time can be derived. 

It is directly estimated by following the change of separation efficiency over time until the rate 

converges towards (and remains) zero. A simple technique that experimentalists tend to employ 

for ascertaining separation time is to meticulously monitor the dense ferrofluidic suspension under 

magnetic separation until a prearranged fraction of its initial opacity is reached. Typically, 

researchers operate setups that magnetically-extract particles from solution while simultaneously 

recording the opacity. The current study implements a similar analysis by conducting the 

procedure in reverse. Figure 29 plots the times that the separation efficiencies in Figure 28 take to 

approach their respective steady-state measures for different 𝑅m values. The separation times from 

the runs with activated constraints (appearing as squares) nearly coincide with findings from 

De Las Cuevas et al. (2007) (expressed as circular outlines) while the unconstrained estimations 

(rendered as triangular characters) diverged from both. The faded line in Figure 29 correlates to a 

power law trend that fits the experimental data in the aforementioned literature. The model in this 

investigation seems fit to determine magnetic separation times under explicit conditions and 

assumptions for research in magnetophoresis of ferrofluidic particles. 
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Figure 29. Dependence of separation time on shear flow effect (𝜆 = 9). The faded line 

indicates the power law trend that fits De Las Cuevas et al. (2007). 
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6. CONCLUSIONS AND FUTURE WORK 

The conducted research described in this thesis represents a significant step forward in the 

simulation of ferromagnetic fluids with magnetostatic properties. The approach is sufficient for 

the integrated flow and field conditions and a pseudo steady-state treatment of the magnetostatic 

forms of Maxwell’s equations has been intentionally satisfied. By observing the movement of 

nanoscale ferrofluid particles over time, one can examine the magnetophoresis, the effect on 

characteristic times, and non-Newtonian fluid properties while satisfying the Maxwell’s equations 

that are constrained by the proposed constraint algorithm. 

Suspensions under uniformly applied magnetic fields explored the aggregation behavior of 

ferromagnetic particles by applying the magnetic field to the particulate system and urging it 

toward a steady-state. Pair correlation graphs supplied representations of particle grouping 

probability and chain compliance with the magnetic field. When not impacted by energetic 

Brownian motion, heavy shearing, or intense steric effects, pair correlation functions exhibited 

substantial spikes in sectors equating to likely chaining activity. This was associated with a 

combination of high 𝜆 and 𝑅m. Time-averaged magnetoviscosity, a non-Newtonian fluid property 

characteristic of ferromagnetic colloidal suspensions, was assessed at steady-state to detect the 

impact that chaining had on the flow behavior. It increased over rising degrees of particle-particle 

interplay, low shear flow, and dwindling Brownian fluctuations. The results were then analyzed 

with experimental data from a published study. The trials with activated constraints were 

interpreted to agree with data from cited literature while the unconstrained runs did not. Then, to 

examine the diffusion behavior of a ferrofluid under magnetic field gradients, a nonuniformly 

applied field was applied to the particle system and allowed to run toward a suitable steady-state. 

This was accomplished by applying the nonuniform external magnetic field to a system setup 
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initially at random. Concentration profiles versus time assisted in determining when steady-state 

separation had occurred. Once the ferrofluid reached a steady-state in which the particles achieved 

a continuous agglomeration rate at the top of the microchannel, separation efficiencies were 

evaluated to assess the extent of magnetic separation. These were then wielded to estimate 

separation times, an aspect of magnetophoresis that is vital toward predicting separation behavior. 

Derived properties and characteristic behaviors (i.e. accumulating concentrations and 

characteristic times of magnetophoretic separation) aided in validating the simulations when 

compared to existing numbers from experiments. The pair correlation graphs remained closely 

similar to those of systems under uniform magnetic fields since the chaining behavior was not 

modified, unlike the particle diffusion. The ensuing results were compared to available data in 

order to justify a model capable of simulating magnetophoresis. The researchers trust that 

the findings accurately predict the behavior of ferrofluids in magnetic separation processes, which 

is an essential operation in the realm of ferromagnetic fluids. And finally, since the task of 

simulating systems of ferrofluid particles under uniformly and nonuniformly applied magnetic 

fields in a volume with shear flow and wall boundaries has been accomplished, the focus can now 

be diverted toward modeling other aspects that arise when utilizing ferrofluids, such as 

polydispersity or multiphase systems. 

The proposed computational methodology should advance engineering fundamentals to 

unlock efficient three-dimensional simulations of ferromagnetic materials in various geometries. 

It should also increasingly exploit coupling between different transport and reactive phenomena 

and the interaction between fluids and any encompassing microfabricated systems. 

The simplifications of the past (particularly lumped parameter representation and separate 

treatment of phenomena) do not apply to increasingly integrated microprocesses, where geometric 
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details, surface properties, and boundary effects assume a dominant and determining 

role. Convoluted channel geometries can now be acknowledged, as blood vessels and other 

biosystems do not exist as flawless ideal cylinders. A byproduct of this effort should be a 

considerable savings in costly experimental trials, as new concepts and optimization variables can 

be first tried and vetted for feasibility and effectiveness on computers. The projected research 

stands poised to contribute fundamentals, simulation, and design capability to the field of 

ferrofluids and magnetostatics. Accurately validated computational simulations 

of microfluidic processes will help accumulate the requisite knowledge base. 
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APPENDICES 

Appendix A 

Mobility Functions 

Here, the mobility functions introduced in Chapter 3 are defined: 

 a𝑖𝑗
(𝛼𝛽)

= 𝑥𝛼𝛽
a 𝑑𝑖𝑑𝑗 + 𝑦𝛼𝛽

a (𝛿𝑖𝑗 − 𝑑𝑖𝑑𝑗) [A.1]  

 b𝑖𝑗
(𝛼𝛽)

= 𝑦𝛼𝛽
b 휀𝑖𝑗𝑘𝑑𝑘 [A.2]  

 c𝑖𝑗
(𝛼𝛽)

= 𝑥𝛼𝛽
c 𝑑𝑖𝑑𝑗 + 𝑦𝛼𝛽

c (𝛿𝑖𝑗 − 𝑑𝑖𝑑𝑗) [A.3]  

 
g𝑖𝑗𝑘

(𝛼𝛽)
= 𝑥𝛼𝛽

g
(𝑑𝑖𝑑𝑗 −

1

3
𝛿𝑖𝑗) 𝑑𝑘 + 𝑦𝛼𝛽

g
(𝑑𝑖𝛿𝑗𝑘 + 𝑑𝑗𝛿𝑖𝑘 − 2𝑑𝑖𝑑𝑗𝑑𝑘) [A.4]  

 h𝑖𝑗𝑘
(𝛼𝛽)

= 𝑦𝛼𝛽
h (휀𝑖𝑘𝑙𝑑𝑙𝑑𝑗 + 휀𝑗𝑘𝑙𝑑𝑙𝑑𝑖) [A.5]  

where 𝑥𝛼𝛽
a , 𝑦𝛼𝛽

a , 𝑦𝛼𝛽
b , 𝑥𝛼𝛽

c , 𝑦𝛼𝛽
c , 𝑥𝛼𝛽

g
, 𝑦𝛼𝛽

g
, and 𝑦𝛼𝛽

h  are scalar mobility functions, 𝒅 is the unit 

direction vector from particle 𝛼 to 𝛽, and the permutation symbol is: 

 

휀𝑖𝑗𝑘 = {

+1     𝑖𝑓 𝑖𝑗𝑘 = 123,231,312
−1     𝑖𝑓 𝑖𝑗𝑘 = 321,132,213
0      𝑖𝑓 𝑖 = 𝑗, 𝑖 = 𝑘, 𝑗 = 𝑘

 [A.6]  

Also, 휀𝑖𝑗𝑘 =
1

2
(𝑖 − 𝑗)(𝑗 − 𝑘)(𝑘 − 𝑖). Values for the scalar mobility functions are tabulated by Kim 

and Karilla (1991). They can also be nondimensionalized. To do so, scaling parameters must be 

used: 6𝜋𝑎 is for the functions of second-rank tensor a, 4𝜋𝑎2 is for those of second-rank tensor b, 

8𝜋𝑎3 is for those of second-rank tensor c, and 2𝑎 is for those of third-rank tensor g. 

The near-field mobility functions are dependent on the dimensionless parameter: 

 
𝜉𝑛 =

2(𝑟 − 𝑎 − 𝑏)

𝑎 + 𝑏
 [A.7]  

while the far-field mobility functions are dependent on: 
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 𝜉𝑓 =
𝑎

2𝑟
 [A.8]  

For particles with uniform radii (𝑎 = 𝑏) and by nondimensionalizing the distances, 𝜉𝑛 = 𝒓∗ − 2 

and 𝜉𝑓 = (2𝒓∗)−1.  
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Appendix B 

Constraint Derivatives 

As seen in equation [3.79], the derivatives of the constraints with respect to position and 

orientation are required. As for the Gauss’s Law constraints, the derivatives of the first term in 

equation [3.86] are as follows:   

 𝜕𝜎𝐺

𝜕𝑟𝛼𝑥
= Δ𝑺∑

6

ℎ2
[𝑛𝑆𝑥 ∑𝑛𝛼𝑥(𝑟𝛼𝑥 − 𝑟𝑘𝑥) (

𝑁𝑘𝛼

ℎ
− 1)

𝛼𝑘

+ 𝑛𝑆𝑦 ∑𝑛𝛼𝑦(𝑟𝛼𝑥 − 𝑟𝑘𝑥) (
𝑁𝑘𝛼

ℎ
− 1)

𝛼

+ 𝑛𝑆𝑧 ∑𝑛𝛼𝑧(𝑟𝛼𝑥 − 𝑟𝑘𝑥) (
𝑁𝑘𝛼

ℎ
− 1)

𝛼

] 

[B.1]  

 

 𝜕𝜎𝐺

𝜕𝑟𝛼𝑦
= Δ𝑺∑

6

ℎ2
[𝑛𝑆𝑥 ∑𝑛𝛼𝑥(𝑟𝛼𝑦 − 𝑟𝑘𝑦) (

𝑁𝑘𝛼

ℎ
− 1)

𝛼𝑘

+ 𝑛𝑆𝑦 ∑𝑛𝛼𝑦(𝑟𝛼𝑦 − 𝑟𝑘𝑦) (
𝑁𝑘𝛼

ℎ
− 1)

𝛼

+ 𝑛𝑆𝑧 ∑𝑛𝛼𝑧(𝑟𝛼𝑦 − 𝑟𝑘𝑦) (
𝑁𝑘𝛼

ℎ
− 1)

𝛼

] 

[B.2]  

 

 𝜕𝜎𝐺

𝜕𝑟𝛼𝑧
= Δ𝑺∑

6

ℎ2
[𝑛𝑆𝑥 ∑𝑛𝛼𝑥(𝑟𝛼𝑧 − 𝑟𝑘𝑧) (

𝑁𝑘𝛼

ℎ
− 1)

𝛼𝑘

+ 𝑛𝑆𝑦 ∑𝑛𝛼𝑦(𝑟𝛼𝑧 − 𝑟𝑘𝑧) (
𝑁𝑘𝛼

ℎ
− 1)

𝛼

+ 𝑛𝑆𝑧 ∑𝑛𝛼𝑧(𝑟𝛼𝑧 − 𝑟𝑘𝑧) (
𝑁𝑘𝛼

ℎ
− 1)

𝛼

] 

[B.3]  

 

 𝜕𝜎𝐺

𝜕𝑛𝛼𝑥
= 𝑛𝑆𝑥Δ𝑺∑∑𝑊𝑘𝛼

𝛼𝑘

 [B.4]  

 

 𝜕𝜎𝐺

𝜕𝑛𝛼𝑦
= 𝑛𝑆𝑦Δ𝑺∑∑𝑊𝑘𝛼

𝛼𝑘

 [B.5]  

 

 𝜕𝜎𝐺

𝜕𝑛𝛼𝑧
= 𝑛𝑆𝑧Δ𝑺∑∑𝑊𝑘𝛼

𝛼𝑘

 [B.6]  
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In the above constraint derivatives, 𝑁𝑘𝛼 represents the norm of the 𝒓𝛼 − 𝒓𝑘 vector, 𝒓𝑘 denotes the 

position vector of node 𝑘, and 𝑊𝑘𝛼 is the weighting function in equation [3.73]. Also, the normal 

vector 𝒏𝑆 will be either -1 or 1, depending on which surface the 𝑘th node is present. As for the 

second term in equation [3.86], the constraint derivatives are as follows: 

 𝜕𝜎𝐺

𝜕𝑟𝛼𝑥
=

1

4𝜋
∑

1

|𝒓𝑙𝛼|5
{𝑛𝑆𝑥 [3[𝒏𝛼 ⋅ 𝒓𝑙𝛼 + 𝑛𝑥𝛼(𝑟𝑥𝛼 − 𝑟𝑥𝑙)]

𝑙

−
15

|𝒓𝑙𝛼|2
(𝒏𝛼 ⋅ 𝒓𝑙𝛼)(𝑟𝑥𝛼 − 𝑟𝑥𝑙)

2 + 3(𝑟𝑥𝛼 − 𝑟𝑥𝑙)𝑛𝑥𝛼]

+ 𝑛𝑆𝑦 [3𝑛𝑥𝛼(𝑟𝑦𝛼 − 𝑟𝑦𝑙)

−
15

|𝒓𝑙𝛼|2
(𝒏𝛼 ⋅ 𝒓𝑙𝛼)(𝑟𝑥𝛼 − 𝑟𝑥𝑙)(𝑟𝑦𝛼 − 𝑟𝑦𝑙)

+ 3(𝑟𝑥𝛼 − 𝑟𝑥𝑙)𝑛𝑦𝛼]

+ 𝑛𝑆𝑧 [3𝑛𝑥𝛼(𝑟𝑧𝛼 − 𝑟𝑧𝑙)

−
15

|𝒓𝑙𝛼|2
(𝒏𝛼 ⋅ 𝒓𝑙𝛼)(𝑟𝑥𝛼 − 𝑟𝑥𝑙)(𝑟𝑧𝛼 − 𝑟𝑧𝑙)

+ 3(𝑟𝑥𝛼 − 𝑟𝑥𝑙)𝑛𝑧𝛼]} 

[B.7]  

 

 𝜕𝜎𝐺

𝜕𝑟𝛼𝑦
=

1

4𝜋
∑

1

|𝒓𝑙𝛼|5
{𝑛𝑆𝑥 [3𝑛𝑦𝛼(𝑟𝑥𝛼 − 𝑟𝑥𝑙)

𝑙

−
15

|𝒓𝑙𝛼|2
(𝒏𝛼 ⋅ 𝒓𝑙𝛼)(𝑟𝑦𝛼 − 𝑟𝑦𝑙)(𝑟𝑥𝛼 − 𝑟𝑥𝑙)

+ 3(𝑟𝑦𝛼 − 𝑟𝑦𝑙)𝑛𝑥𝛼]

+ 𝑛𝑆𝑦 [3[𝒏𝛼 ⋅ 𝒓𝑙𝛼 + 𝑛𝑦𝛼(𝑟𝑦𝛼 − 𝑟𝑦𝑙)]

−
15

|𝒓𝑙𝛼|2
(𝒏𝛼 ⋅ 𝒓𝑙𝛼)(𝑟𝑦𝛼 − 𝑟𝑦𝑙)

2
+ 3(𝑟𝑦𝛼 − 𝑟𝑦𝑙)𝑛𝑦𝛼]

+ 𝑛𝑆𝑧 [3𝑛𝑦𝛼(𝑟𝑧𝛼 − 𝑟𝑧𝑙)

−
15

|𝒓𝑙𝛼|2
(𝒏𝛼 ⋅ 𝒓𝑙𝛼)(𝑟𝑦𝛼 − 𝑟𝑦𝑙)(𝑟𝑧𝛼 − 𝑟𝑧𝑙)

+ 3(𝑟𝑦𝛼 − 𝑟𝑦𝑙)𝑛𝑧𝛼]} 

[B.8]  
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 𝜕𝜎𝐺

𝜕𝑟𝛼𝑧
=

1

4𝜋
∑

1

|𝒓𝑙𝛼|5
{𝑛𝑆𝑥 [3𝑛𝑧𝛼(𝑟𝑥𝛼 − 𝑟𝑥𝑙)

𝑙

−
15

|𝒓𝑙𝛼|2
(𝒏𝛼 ⋅ 𝒓𝑙𝛼)(𝑟𝑧𝛼 − 𝑟𝑧𝑙)(𝑟𝑥𝛼 − 𝑟𝑥𝑙)

+ 3(𝑟𝑧𝛼 − 𝑟𝑧𝑙)𝑛𝑥𝛼]

+ 𝑛𝑆𝑦 [3𝑛𝑧𝛼(𝑟𝑦𝛼 − 𝑟𝑦𝑙)

−
15

|𝒓𝑙𝛼|2
(𝒏𝛼 ⋅ 𝒓𝑙𝛼)(𝑟𝑧𝛼 − 𝑟𝑧𝑙)(𝑟𝑦𝛼 − 𝑟𝑦𝑙)

+ 3(𝑟𝑧𝛼 − 𝑟𝑧𝑙)𝑛𝑦𝛼]

+ 𝑛𝑆𝑧 [3[𝒏𝛼 ⋅ 𝒓𝑙𝛼 + 𝑛𝑧𝛼(𝑟𝑧𝛼 − 𝑟𝑧𝑙)]

−
15

|𝒓𝑙𝛼|2
(𝒏𝛼 ⋅ 𝒓𝑙𝛼)(𝑟𝑧𝛼 − 𝑟𝑧𝑙)

2 + 3(𝑟𝑧𝛼 − 𝑟𝑧𝑙)𝑛𝑧𝛼]} 

[B.9]  

 

 𝜕𝜎𝐺

𝜕𝑛𝛼𝑥
=

1

4𝜋
∑

1

|𝒓𝑙𝛼|3
{
3(𝑟𝑥𝛼 − 𝑟𝑥𝑙)

|𝒓𝑙𝛼|2
[(𝑟𝑥𝛼 − 𝑟𝑥𝑙)𝑛𝑆𝑥 + (𝑟𝑦𝛼 − 𝑟𝑦𝑙)𝑛𝑆𝑦

𝑙

+ (𝑟𝑧𝛼 − 𝑟𝑧𝑙)𝑛𝑆𝑧] − 𝑛𝑆𝑥} 

[B.10]  

 

 𝜕𝜎𝐺

𝜕𝑛𝛼𝑦
=

1

4𝜋
∑

1

|𝒓𝑙𝛼|3
{
3(𝑟𝑦𝛼 − 𝑟𝑦𝑙)

|𝒓𝑙𝛼|2
[(𝑟𝑥𝛼 − 𝑟𝑥𝑙)𝑛𝑆𝑥 + (𝑟𝑦𝛼 − 𝑟𝑦𝑙)𝑛𝑆𝑦

𝑙

+ (𝑟𝑧𝛼 − 𝑟𝑧𝑙)𝑛𝑆𝑧] − 𝑛𝑆𝑦} 

[B.11]  

 

 𝜕𝜎𝐺

𝜕𝑛𝛼𝑧
=

1

4𝜋
∑

1

|𝒓𝑙𝛼|3
{
3(𝑟𝑧𝛼 − 𝑟𝑧𝑙)

|𝒓𝑙𝛼|2
[(𝑟𝑥𝛼 − 𝑟𝑥𝑙)𝑛𝑆𝑥 + (𝑟𝑦𝛼 − 𝑟𝑦𝑙)𝑛𝑆𝑦

𝑙

+ (𝑟𝑧𝛼 − 𝑟𝑧𝑙)𝑛𝑆𝑧] − 𝑛𝑆𝑧} 

[B.12]  

 

In the preceding constraint derivatives, 𝑟𝑙𝛼 is the distance from node 𝑙 to particle 𝛼.  

The derivatives for the Ampère’s Law constraints are as follows: 

 𝜕𝜎𝐴

𝜕𝑟𝛼𝑥
= ∑∑

6

ℎ2

1

|𝒓𝑙𝑘|3
(𝑟𝛼𝑥 − 𝑟𝑘𝑥) (

𝑁𝑘𝛼

ℎ
− 1) [

3(𝒏𝛼 ⋅ 𝒓𝑙𝑘)

|𝒓𝑙𝑘|2
(𝒓𝑙𝑘 ⋅ ∆𝒍)

𝑙𝑘

− (𝒏𝛼 ⋅ ∆𝒍)] 

[B.13]  
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 𝜕𝜎𝐴

𝜕𝑟𝛼𝑦
= ∑∑

6

ℎ2

1

|𝒓𝑙𝑘|3
(𝑟𝛼𝑦 − 𝑟𝑘𝑦) (

𝑁𝑘𝛼

ℎ
− 1) [

3(𝒏𝛼 ⋅ 𝒓𝑙𝑘)

|𝒓𝑙𝑘|2
(𝒓𝑙𝑘 ⋅ ∆𝒍)

𝑙𝑘

− (𝒏𝛼 ⋅ ∆𝒍)] 

[B.14]  

 

 𝜕𝜎𝐴

𝜕𝑟𝛼𝑧
= ∑∑

6

ℎ2

1

|𝒓𝑙𝑘|3
(𝑟𝛼𝑧 − 𝑟𝑘𝑧) (

𝑁𝑘𝛼

ℎ
− 1) [

3(𝒏𝛼 ⋅ 𝒓𝑙𝑘)

|𝒓𝑙𝑘|2
(𝒓𝑙𝑘 ⋅ ∆𝒍)

𝑙𝑘

− (𝒏𝛼 ⋅ ∆𝒍)] 

[B.15]  

 

 𝜕𝜎𝐴

𝜕𝑛𝛼𝑥
= ∑∑

𝑊𝑘𝛼

|𝒓𝑙𝑘|
3
[

3

|𝒓𝑙𝑘|
2
(𝒓𝑙𝑘 ⋅ ∆𝒍)𝑟𝑙𝑘𝑥 − ∆𝑙𝑥]

𝑙𝑘

 [B.16]  

 

 𝜕𝜎𝐴

𝜕𝑛𝛼𝑦
= ∑∑

𝑊𝑘𝛼

|𝒓𝑙𝑘|3
[

3

|𝒓𝑙𝑘|2
(𝒓𝑙𝑘 ⋅ ∆𝒍)𝑟𝑙𝑘𝑦 − ∆𝑙𝑦]

𝑙𝑘

 [B.17]  

 

 𝜕𝜎𝐴

𝜕𝑛𝛼𝑧
= ∑ ∑

𝑊𝑘𝛼

|𝒓𝑙𝑘|3
[

3

|𝒓𝑙𝑘|2
(𝒓𝑙𝑘 ⋅ ∆𝒍)𝑟𝑙𝑘𝑧 − ∆𝑙𝑧]

𝑙𝑘

 [B.18]  

 

In these constraint derivatives, 𝑟𝑙𝑘 is the distance from node 𝑙 to node 𝑘. The node index of 𝑘′ was 

replaced with 𝑙 to avoid confusion with the subscripts. 
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Appendix C 

FORTRAN Code for the Constraint Algorithm 

!############################################################################# 

!Subroutine to satisfy Maxwell’s equations using an iterative constraint method 

SUBROUTINE M_E_CONST(rs_x,rs_y,rs_z,ns_x,ns_y,ns_z,rc_x,rc_y,rc_z, & 

nc_x,nc_y,nc_z,L,tlrc_a,tlrc_b,k,N1,N7,drcn,Nc,Ncs,Ns_int, & 

rcnv_x,rcnv_y,rcnv_z,ncnv_x,ncnv_y,ncnv_z,Nca,Nsl,Ncnl,Ncnl4, & 

rcnl_x,rcnl_y,rcnl_z,ncnl_x,ncnl_y,ncnl_z,w_swtch) 

!Constraint properties for Maxwell’s equations (Gauss’ law) 

      INTEGER :: Nc,Ncs,Ns_int 

      DOUBLE PRECISION, DIMENSION(Ns_int*Ncs*Nc) :: rcnv_x,rcnv_y,rcnv_z 

      DOUBLE PRECISION, DIMENSION(Ns_int*Ncs*Nc) :: ncnv_x,ncnv_y,ncnv_z 

      DOUBLE PRECISION, DIMENSION(Ns_int*Ncs*Nc) :: Mnt,M_x,M_y,M_z 

      DOUBLE PRECISION, DIMENSION(Ns_int*Ncs*Nc) :: Md_x,Md_y,Md_z 

      DOUBLE PRECISION, DIMENSION(Nc*2) :: Mnt_x,Mnt_y,Mnt_z,Hnt_x,Hnt_y,Hnt_z 

!Constraint properties for Maxwell’s equations (Ampere’s law) 

      INTEGER :: Nca,Ncnl,Ncnl4,Nsl 

      DOUBLE PRECISION, DIMENSION(Nca) :: Hdl_x,Hdl_y,Hdl_z  

      DOUBLE PRECISION, DIMENSION(4*Nsl*Nca) :: Hdlt_x,Hdlt_y,Hdlt_z 

      DOUBLE PRECISION, DIMENSION(Ncnl4*Nsl*Nca) :: rcnl_x,rcnl_y,rcnl_z  

      DOUBLE PRECISION, DIMENSION(Ncnl4*Nsl*Nca) :: ncnl_x,ncnl_y,ncnl_z  

      DOUBLE PRECISION, DIMENSION(Ncnl4*Nsl*Nca) :: Mda_x,Mda_y,Mda_z  

!Other Constraint parameters 

      INTEGER :: N1,N7 

      DOUBLE PRECISION, DIMENSION(Nc+Nca) :: sgm,sgm_t,Lmbd,b_arr,x_tmp 

      DOUBLE PRECISION, DIMENSION(0:N1,Nc+Nca) :: drs_x,drs_y,drs_z 

      DOUBLE PRECISION, DIMENSION(0:N1,Nc+Nca) :: dns_x,dns_y,dns_z 

      DOUBLE PRECISION, DIMENSION(0:N1,Nc+Nca) :: drc_x,drc_y,drc_z 

      DOUBLE PRECISION, DIMENSION(0:N1,Nc+Nca) :: dnc_x,dnc_y,dnc_z 

      DOUBLE PRECISION, DIMENSION(Nc+Nca,Nc+Nca+1) :: c_tmp 

      DOUBLE PRECISION, DIMENSION(Nc+Nca,Nc+Nca) :: g_arr,mod_G,mod_Gt 

      DOUBLE PRECISION, DIMENSION(Nc+Nca,Nc+Nca) :: b_arr_tmp,Lmt,U_tmp 

      DOUBLE PRECISION, DIMENSION(0:N7), INTENT(INOUT) :: rs_x,rs_y,rs_z 

      DOUBLE PRECISION, DIMENSION(0:N7), INTENT(INOUT) :: rc_x,rc_y,rc_z 

      DOUBLE PRECISION, DIMENSION(0:N7), INTENT(INOUT) :: ns_x,ns_y,ns_z 

      DOUBLE PRECISION, DIMENSION(0:N7), INTENT(INOUT) :: nc_x,nc_y,nc_z 

      DOUBLE PRECISION, DIMENSION(0:N1) :: Cff,rct_x,rct_y,rct_z,nct_x,nct_y,nct_z 

      DOUBLE PRECISION, DIMENSION(0:N1) :: Tc_x,Tc_y,Tc_z,Fc_x,Fc_y,Fc_z 

      DOUBLE PRECISION, DIMENSION(3) :: h_app 

      DOUBLE PRECISION, PARAMETER :: PI=3.14159265358979323846264D0 

      DOUBLE PRECISION :: CPdma_x,CPdma_y,CPdma_z,CPdmb_x,CPdmb_y,CPdmb_z 

      DOUBLE PRECISION :: L,drcn,W_fnc,Vk,Cw,dx,dy,dz 

      DOUBLE PRECISION :: dtm,nDOTrli,tlrc_a,tlrc_b,N_ki,nrm 

      INTEGER :: Nc_tot,k,sgm_f,sgm_i,w_swtch,itr 
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      INTEGER :: count,f_count,Fc_count,dnc_count,h,i,j,ll,f,g,n,m 

      CHARACTER(LEN=2) :: sgm_c 

!-------------------------------------------------------------------------------------- 

 

      Nc_tot=Nc+Nca 

      sgm_i=130 

      DO i = 1,Nc_tot 

            sgm_f=sgm_i+i*10 

            WRITE(sgm_c,'(i2)') i 

            OPEN (unit=sgm_f,file=’C/Sig'//sgm_c//'_chck.txt',action="write",position="append") 

      END DO 

      OPEN (unit=109,file=’C/Mnt_x.txt',action="write",position="append") 

      OPEN (unit=110,file=’C/Mnt_y.txt',action="write",position="append") 

      OPEN (unit=111,file=’C/Mnt_z.txt',action="write",position="append") 

      OPEN (unit=112,file=’C/Hnt_x.txt',action="write",position="append") 

      OPEN (unit=113,file=’C/Hnt_y.txt',action="write",position="append") 

      OPEN (unit=114,file=’C/Hnt_z.txt',action="write",position="append") 

      OPEN (unit=115,file=’C/Hdl_x.txt',action="write",position="append") 

      OPEN (unit=116,file=’C/Hdl_y.txt',action="write",position="append") 

      OPEN (unit=117,file=’C/Hdl_z.txt',action="write",position="append") 

      OPEN (unit=118,file=’C/Sigs.txt',action="write",position="append") 

      OPEN (unit=119,file='Sgms_alt.txt',action="write",position="append") 

      Vk=(4.0D0/3.0D0)*PI*drcn*drcn*drcn 

      Cw=5.0D0 

      DO i=0,N1-1 

            Cff(i)=1.0D0 

            rct_x(i)=rc_x(i) 

            rct_y(i)=rc_y(i) 

            rct_z(i)=rc_z(i) 

            nct_x(i)=nc_x(i) 

            nct_y(i)=nc_y(i) 

            nct_z(i)=nc_z(i) 

      END DO 

      Fc_count=0 

61  CONTINUE 

      drs_x=0.0D0 

      drs_y=0.0D0 

      drs_z=0.0D0 

      dns_x=0.0D0 

      dns_y=0.0D0 

      dns_z=0.0D0 

      DO f=1,Nc 

            DO j = 1,Ns_int*Ncs 
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                  IF (w_swtch==1 .AND. ABS(rcnv_y(j+(f-1)*Ns_int*Ncs))>=L/2.0D0-0.1D0) THEN 

                        Vk=0.5D0*(4.0D0/3.0D0)*PI*drcn*drcn*drcn 

                  ELSE 

                        Vk=(4.0D0/3.0D0)*PI*drcn*drcn*drcn 

                  END IF 

 

!Constraint derivatives are calculated  

                  DO i = 0,N1-1 

                        dx = rs_x(i) - rcnv_x(j+(f-1)*Ns_int*Ncs) 

                        dy = rs_y(i) - rcnv_y(j+(f-1)*Ns_int*Ncs) 

                        dz = rs_z(i) - rcnv_z(j+(f-1)*Ns_int*Ncs) 

                        CALL PBC_CHCK(dx,dy,dz,L,N_ki,w_swtch) 

                        IF (N_ki <= drcn) THEN 

                              drs_x(i,f) = drs_x(i,f) + Cff(i)*(Cw/Vk)*((ncnv_x(j+(f-1)*Ns_int*Ncs) & 

*6.0D0 / (drcn**3)) * ns_x(i) * dx * (N_ki - drcn)) & 

                                                      + Cff(i)*(Cw/Vk)*((ncnv_y(j+(f-1)*Ns_int*Ncs) & 

*6.0D0 / (drcn**3)) * ns_y(i) * dx * (N_ki - drcn)) & 

                                                      + Cff(i)*(Cw/Vk)*((ncnv_z(j+(f-1)*Ns_int*Ncs) & 

*6.0D0 / (drcn**3)) * ns_z(i) * dx * (N_ki - drcn)) 

                              drs_y(i,f) = drs_y(i,f) + Cff(i)*(Cw/Vk)*((ncnv_x(j+(f-1)*Ns_int*Ncs) & 

*6.0D0 / (drcn**3)) * ns_x(i) * dy * (N_ki - drcn)) & 

                                                      + Cff(i)*(Cw/Vk)*((ncnv_y(j+(f-1)*Ns_int*Ncs) & 

*6.0D0 / (drcn**3)) * ns_y(i) * dy *(N_ki - drcn)) & 

                                                      + Cff(i)*(Cw/Vk)*((ncnv_z(j+(f-1)*Ns_int*Ncs) & 

*6.0D0 / (drcn**3)) * ns_z(i) * dy * (N_ki - drcn)) 

                              drs_z(i,f) = drs_z(i,f) + Cff(i)*(Cw/Vk)*((ncnv_x(j+(f-1)*Ns_int*Ncs) & 

*6.0D0 / (drcn**3)) * ns_x(i) * dz * (N_ki - drcn)) & 

                                                      + Cff(i)*(Cw/Vk)*((ncnv_y(j+(f-1)*Ns_int*Ncs) & 

*6.0D0 / (drcn**3)) * ns_y(i) * dz * (N_ki - drcn)) & 

                                                      + Cff(i)*(Cw/Vk)*((ncnv_z(j+(f-1)*Ns_int*Ncs) & 

*6.0D0 / (drcn**3)) * ns_z(i) * dz * (N_ki - drcn)) 

                              dns_x(i,f) = dns_x(i,f) + Cff(i)*(Cw/Vk) *(ncnv_x(j+(f-1)*Ns_int*Ncs) & 

*W_fnc(N_ki,drcn)) 

                              dns_y(i,f) = dns_y(i,f) + Cff(i)*(Cw/Vk)*(ncnv_y(j+(f-1)*Ns_int*Ncs) & 

*W_fnc(N_ki,drcn)) 

                              dns_z(i,f) = dns_z(i,f) + Cff(i)*(Cw/Vk)*(ncnv_z(j+(f-1)*Ns_int*Ncs) & 

*W_fnc(N_ki,drcn)) 

                              nDOTrli = ns_x(i)*dx+ns_y(i)*dy+ns_z(i)*dz 

                              drs_x(i,f) = drs_x(i,f) & 

+      Cff(i)*(ncnv_x(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0*(nDOTrli & 

            *ns_x(i)*dx)-(15.0D0/N_ki**2)*nDOTrli*dx*dx+3.0D0*dx*ns_x(i)) & 

+      Cff(i)*(ncnv_y(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0 & 

*ns_x(i)*dy-(15.0D0/N_ki**2)*nDOTrli*dx*dy+3.0D0*dx*ns_y(i)) & 

+      Cff(i)*(ncnv_z(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0 & 

*ns_x(i)*dz-(15.0D0/N_ki**2)*nDOTrli*dx*dz+3.0D0*dx*ns_z(i)) 
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                              drs_y(i,f) = drs_y(i,f) & 

+      Cff(i)*(ncnv_x(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0 & 

*ns_y(i)*dx-(15.0D0/N_ki**2)*nDOTrli*dy*dx+3.0D0*dy*ns_x(i)) & 

+      Cff(i)*(ncnv_y(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0*(nDOTrli & 

+ns_y(i)*dy)-(15.0D0/N_ki**2)*nDOTrli*dy*dy+3.0D0*dy*ns_y(i)) & 

+      Cff(i)*(ncnv_z(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0 & 

*ns_y(i)*dz-(15.0D0/N_ki**2)*nDOTrli*dy*dz+3.0D0*dy*ns_z(i)) 

                              drs_z(i,f) = drs_z(i,f) & 

+      Cff(i)*(ncnv_x(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0 & 

*ns_z(i)*dx-(15.0D0/N_ki**2)*nDOTrli*dz*dx+3.0D0*dz*ns_x(i)) & 

+      Cff(i)*(ncnv_y(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0 & 

*ns_z(i)*dy-(15.0D0/N_ki**2)*nDOTrli*dz*dy+3.0D0*dz*ns_y(i)) & 

+      Cff(i)*(ncnv_z(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0*(nDOTrli & 

+ns_z(i)*dz)-(15.0D0/N_ki**2)*nDOTrli*dz*dz+3.0D0*dz*ns_z(i)) 

                              dns_x(i,f) = dns_x(i,f) & 

+      Cff(i)*(ncnv_x(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dx/(N_ki*N_ki)*dx-1.0D0) & 

+      Cff(i)*(ncnv_y(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dx/(N_ki*N_ki)*dy) & 

+      Cff(i)*(ncnv_z(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dx/(N_ki*N_ki)*dz) 

                              dns_y(i,f) = dns_y(i,f) & 

+      Cff(i)*(ncnv_x(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dy/(N_ki*N_ki)*dx) & 

+      Cff(i)*(ncnv_y(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dy/(N_ki*N_ki)*dy-1.0D0) & 

+      Cff(i)*(ncnv_z(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dy/(N_ki*N_ki)*dz) 

                              dns_z(i,f) = dns_z(i,f) & 

+      Cff(i)*(ncnv_x(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dz/(N_ki*N_ki)*dx) & 

+      Cff(i)*(ncnv_y(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dz/(N_ki*N_ki)*dy) & 

+      Cff(i)*(ncnv_z(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dz/(N_ki*N_ki)*dz-1.0D0) 

                        END IF 

                  END DO 

            END DO 

      END DO 

      DO f = Nc+1,Nc_tot  

            DO h = 1,Ncnl4*Nsl 

                  DO i = 0,N1-1 

                        dx = rs_x(i) - rcnl_x(h+(f-Nc-1)*Ncnl4*Nsl) 

                        dy = rs_y(i) - rcnl_y(h+(f-Nc-1)*Ncnl4*Nsl) 

                        dz = rs_z(i) - rcnl_z(h+(f-Nc-1)*Ncnl4*Nsl) 

                        N_ki=SQRT((dx*dx) + (dy*dy) + (dz*dz)) 
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                        IF (N_ki <= drcn) THEN 

                              nDOTrli = ns_x(i)*dx+ns_y(i)*dy+ns_z(i)*dz 

                              drs_x(i,f) = drs_x(i,f) & 

+ Cff(i)*(ncnl_x(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0 *(nDOTrli*ns_x(i) & 

*dx)-(15.0D0/N_ki**2)*nDOTrli*dx*dx+3.0D0*dx*ns_x(i)) & 

+ Cff(i)*(ncnl_y(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*ns_x(i) & 

*dy-(15.0D0/N_ki**2)*nDOTrli*dx*dy+3.0D0*dx*ns_y(i)) & 

+ Cff(i)*(ncnl_z(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*ns_x(i) & 

*dz-(15.0D0/N_ki**2)*nDOTrli*dx*dz+3.0D0*dx*ns_z(i)) 

                              drs_y(i,f) = drs_y(i,f) & 

+ Cff(i)*(ncnl_x(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*ns_y(i) & 

*dx-(15.0D0/N_ki**2)*nDOTrli*dy*dx+3.0D0*dy*ns_x(i)) & 

+ Cff(i)*(ncnl_y(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*(nDOTrli+ns_y(i) & 

*dy)-(15.0D0/N_ki**2)*nDOTrli*dy*dy+3.0D0*dy*ns_y(i)) & 

+ Cff(i)*(ncnl_z(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*ns_y(i) & 

*dz-(15.0D0/N_ki**2)*nDOTrli*dy*dz+3.0D0*dy*ns_z(i)) 

                              drs_z(i,f) = drs_z(i,f) & 

+ Cff(i)*(ncnl_x(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*ns_z(i) & 

*dx-(15.0D0/N_ki**2)*nDOTrli*dz*dx+3.0D0*dz*ns_x(i)) & 

+ Cff(i)*(ncnl_y(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*ns_z(i) & 

*dy-(15.0D0/N_ki**2)*nDOTrli*dz*dy+3.0D0*dz*ns_y(i)) & 

+ Cff(i)*(ncnl_z(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*(nDOTrli+ns_z(i) & 

*dz)-(15.0D0/N_ki**2)*nDOTrli*dz*dz+3.0D0*dz*ns_z(i)) 

                              dns_x(i,f) = dns_x(i,f) & 

+ Cff(i)*(ncnl_x(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dx/(N_ki*N_ki)*dx-1.0D0) & 

+ Cff(i)*(ncnl_y(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dx/(N_ki*N_ki)*dy) & 

+ Cff(i)*(ncnl_z(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dx/(N_ki*N_ki)*dz) 

                              dns_y(i,f) = dns_y(i,f) & 

+ Cff(i)*(ncnl_x(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dy/(N_ki*N_ki)*dx) & 

+ Cff(i)*(ncnl_y(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dy/(N_ki*N_ki)*dy-1.0D0) & 

+ Cff(i)*(ncnl_z(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dy/(N_ki*N_ki)*dz) 

                              dns_z(i,f) = dns_z(i,f) & 

+ Cff(i)*(ncnl_x(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dz/(N_ki*N_ki)*dx) & 

+ Cff(i)*(ncnl_y(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dz/(N_ki*N_ki)*dy) & 

+ Cff(i)*(ncnl_z(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) * (3.0D0 & 

*dz/(N_ki*N_ki)*dz-1.0D0) 

                        END IF 
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                  END DO 

            END DO 

      END DO 

      Lmbd = 0.0D0 

      DO itr=1,100 

            M_x=0.0D0 

            M_y=0.0D0 

            M_z=0.0D0 

            Md_x=0.0D0 

            Md_y=0.0D0 

            Md_z=0.0D0 

            Mda_x=0.0D0 

            Mda_y=0.0D0 

            Mda_z=0.0D0 

 

!Fields at nodes are found by sliding weight function 

            DO j = 1,Ns_int*Ncs*Nc 

                  IF (w_swtch == 1 .AND. ABS(rcnv_y(j)) >= L/2.0D0-0.1D0) THEN 

                        Vk=0.5D0*(4.0D0/3.0D0)*PI*drcn*drcn*drcn 

                  ELSE 

                        Vk=(4.0D0/3.0D0)*PI*drcn*drcn*drcn 

                  END IF 

                  DO i = 0,N1-1 

                        dx = rc_x(i) - rcnv_x(j) 

                        dy = rc_y(i) - rcnv_y(j) 

                        dz = rc_z(i) - rcnv_z(j) 

                        CALL PBC_CHCK(dx,dy,dz,L,N_ki,w_swtch) 

                        IF (N_ki <= drcn) THEN 

                              M_x(j) = M_x(j) + Cff(i)*(Cw/Vk) *nc_x(i) * W_fnc(N_ki,drcn) 

                              M_y(j) = M_y(j) + Cff(i)*(Cw/Vk) *nc_y(i) * W_fnc(N_ki,drcn) 

                              M_z(j) = M_z(j) + Cff(i)*(Cw/Vk) *nc_z(i) * W_fnc(N_ki,drcn) 

                              nDOTrli=nc_x(i)*dx+nc_y(i)*dy+nc_z(i)*dz 

                              Md_x(j) = Md_x(j) + Cff(i)*(1.0D0/(4.0D0*PI*N_ki**3)) & 

                                                            * (3.0D0*nDOTrli*dx/(N_ki*N_ki) - nc_x(i)) 

                              Md_y(j) = Md_y(j) + Cff(i)*(1.0D0/(4.0D0*PI*N_ki**3)) & 

                                                            * (3.0D0*nDOTrli*dy/(N_ki*N_ki) - nc_y(i)) 

                              Md_z(j) = Md_z(j) + Cff(i)*(1.0D0/(4.0D0*PI*N_ki**3)) & 

                                                            * (3.0D0*nDOTrli*dz/(N_ki*N_ki) - nc_z(i)) 

                        END IF 

                  END DO 

            END DO 

            DO h = 1,Ncnl4*Nsl*Nca 

                  DO i = 0,N1-1 

                        dx = rc_x(i) - rcnl_x(h) 

                        dy = rc_y(i) - rcnl_y(h) 

                        dz = rc_z(i) - rcnl_z(h) 
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                        N_ki=SQRT((dx*dx) + (dy*dy) + (dz*dz)) 

                        IF (N_ki <= drcn) THEN 

                              nDOTrli=nc_x(i)*dx+nc_y(i)*dy+nc_z(i)*dz 

                              Mda_x(h)=Mda_x(h) + (1.0D0/(4.0D0*PI*N_ki**3)) & 

                                                            * (3.0D0*nDOTrli*dx/(N_ki*N_ki) - nc_x(i)) 

                              Mda_y(h)=Mda_y(h) + (1.0D0/(4.0D0*PI*N_ki**3)) & 

                                                            * (3.0D0*nDOTrli*dy/(N_ki*N_ki) - nc_y(i)) 

                              Mda_z(h)=Mda_z(h) + (1.0D0/(4.0D0*PI*N_ki**3)) & 

                                                            * (3.0D0*nDOTrli*dz/(N_ki*N_ki) - nc_z(i)) 

                        END IF 

                  END DO 

            END DO 

 

!Maxwell’s equations are calculated 

            Mnt_y=0.0D0 

            Mnt_x=0.0D0 

            Mnt_z=0.0D0 

            Hnt_y=0.0D0  

            Hnt_x=0.0D0 

            Hnt_z=0.0D0 

            DO f=1,Nc 

                  DO m=1,2 

                        DO j=1,Ns_int 

                              Mnt_x(2*f+m-2) = Mnt_x(2*f+m-2) & 

+ ncnv_x(j+(Ncs*(f-1)+m+1)*Ns_int)*M_x(j+(Ncs*(f-1)+m+1)*Ns_int) 

                              Mnt_y(2*f+m-2) = Mnt_y(2*f+m-2) & 

                                    + ncnv_y(j+(Ncs*(f-1)+m-1)*Ns_int)*M_y(j+(Ncs*(f-1)+m-1)*Ns_int) 

                              Hnt_x(2*f+m-2) = Hnt_x(2*f+m-2) & 

                                    + ncnv_x(j+(Ncs*(f-1)+m+1)*Ns_int)*Md_x(j+(Ncs*(f-1)+m+1)*Ns_int) 

                              Hnt_y(2*f+m-2) = Hnt_y(2*f+m-2) & 

                                    + ncnv_y(j+(Ncs*(f-1)+m-1)*Ns_int)*Md_y(j+(Ncs*(f-1)+m-1)*Ns_int) 

                        END DO 

                  END DO 

            END DO 

            DO f=1,Nc*Ncs 

                  DO j=1,Ns_int 

                        Mnt_x(f) = Mnt_x(f) + ncnv_x(j+(f-1)*Ns_int)*M_x(j+(f-1)*Ns_int)  

                        Mnt_y(f) = Mnt_y(f) + ncnv_y(j+(f-1)*Ns_int)*M_y(j+(f-1)*Ns_int) 

                        Hnt_x(f) = Hnt_x(f) + ncnv_x(j+(f-1)*Ns_int)*Md_x(j+(f-1)*Ns_int) 

                        Hnt_y(f) = Hnt_y(f) + ncnv_y(j+(f-1)*Ns_int)*Md_y(j+(f-1)*Ns_int) 

                  END DO 

            END DO 

            DO f=1,Nc 

                  DO m=1,2 
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                        DO j=1,Ns_int 

                              Mnt_z(2*f+m-2) = Mnt_z(2*f+m-2) & 

                                    + ncnv_z(j+(Ncs*(f-1)+m+3)*Ns_int)*M_z(j+(Ncs*(f-1)+m+3)*Ns_int) 

                              Hnt_z(2*f+m-2) = Hnt_z(2*f+m-2) & 

                                    + ncnv_z(j+(Ncs*(f-1)+m+3)*Ns_int)*Md_z(j+(Ncs*(f-1)+m+3)*Ns_int) 

                        END DO 

                  END DO 

            END DO 

            Hdl_x =0.0D0 

            Hdl_y=0.0D0 

            Hdl_z=0.0D0 

            Hdlt_x =0.0D0 

            Hdlt_y =0.0D0 

            Hdlt_z =0.0D0 

            DO g=1,Nca 

                  DO h = (g-1)*Ncnl4*Nsl+1,g*Ncnl4*Nsl 

                        Hdl_x(g)= Hdl_x(g)+ncnl_x(h)*Mda_x(h) 

                        Hdl_y(g)= Hdl_y(g)+ncnl_y(h)*Mda_y(h) 

                        Hdl_z(g)= Hdl_z(g)+ncnl_z(h)*Mda_z(h) 

                  END DO 

            END DO 

            DO g=1,Nca *4 

                  DO h = (g-1)*Ncnl+1,g*Ncnl 

                        Hdlt_x(g)= Hdlt_x(g)+ncnl_x(h)*Mda_x(h) 

                        Hdlt_y(g)= Hdlt_y(g)+ncnl_y(h)*Mda_y(h) 

                        Hdlt_z(g)= Hdlt_z(g)+ncnl_z(h)*Mda_z(h) 

                  END DO 

            END DO 

 

!Iterative constraint scheme is applied via Lagrange multiplier method 

            sgm=0.0D0 

            sgm_t=0.0D0 

            DO f=1,Nc 

                  sgm(f) = sgm(f) + Mnt_x(f*2-1) + Mnt_x(f*2) + Hnt_x(f*2-1) + Hnt_x(f*2) & 

  + Mnt_y(f*2-1) + Mnt_y(f*2) + Hnt_y(f*2-1) + Hnt_y(f*2) & 

                                            + Mnt_z(f*2-1) + Mnt_z(f*2) + Hnt_z(f*2-1) + Hnt_z(f*2) 

            END DO 

            DO g=Nc+1,Nc_tot 

                  sgm(g) = sgm(g) + Hdl_x(g-Nc) + Hdl_y(g-Nc) + Hdl_z(g-Nc) 

                  DO h=1,4 

                        sgm_t(g) = sgm_t(g) + Hdlt_x(h+4*(g-Nc-1)) + Hdlt_y(h+4*(g-Nc-1)) & 

                                                          + Hdlt_z(h+4*(g-Nc-1)) 

                  END DO 

            END DO 

            f_count=Nc_tot 
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            DO f=1,Nc_tot 

                  sgm_f=sgm_i+f*10 

                  IF (ABS(sgm(f)) < tlrc_a) THEN 

                        f_count=f_count-1 

                  END IF 

            END DO 

            IF (f_count == 0) THEN 

                  DO f=1,Nc_tot 

                        sgm_f=sgm_i+f*10 

                        WRITE(sgm_f,37) 'Sig = ',sgm(f),',Lmbd=',Lmbd(f),' @ itr = ',itr,', & 

                                                            time_step(k) = ',k,' *done' 

                  END DO 

                  WRITE(109,’(a11,i6,i5,60(f19.10))’) 'done ',k,itr,Mnt_x 

                  WRITE(110,’(a11,i6,i5,60(f19.10))’) 'done ',k,itr,Mnt_y 

                  WRITE(111,’(a11,i6,i5,60(f19.10))’) 'done ',k,itr,Mnt_z 

                  WRITE(112,’(a11,i6,i5,60(f19.10))’) 'done ',k,itr,Hnt_x 

                  WRITE(113,’(a11,i6,i5,60(f19.10))’) 'done ',k,itr,Hnt_y 

                  WRITE(114,’(a11,i6,i5,60(f19.10))’) 'done ',k,itr,Hnt_z 

                  WRITE(115,’(a11,i6,i5,60(f19.10))’) 'done ',k,itr,Hdl_x 

                  WRITE(116,’(a11,i6,i5,60(f19.10))’) 'done ',k,itr,Hdl_y 

                  WRITE(117,’(a11,i6,i5,60(f19.10))’) 'done ',k,itr,Hdl_z 

                  WRITE(118,’(a11,i6,i5,60(f19.10))’) 'done ',k,itr,sgm 

                  WRITE(119,’(a11,i6,i5,60(f19.10))’) 'done ',k,itr,sgm 

                  GO TO 62 

            END IF 

            drc_x=0.0D0 

            drc_y=0.0D0 

            drc_z=0.0D0 

            dnc_x=0.0D0 

            dnc_y=0.0D0 

            dnc_z=0.0D0 

            DO f=1,Nc 

                  DO j = 1,Ns_int*Ncs 

                        IF (w_swtch == 1 .AND. ABS(rcnv_y(j+(f-1)*Ns_int*Ncs)) & 

>= L/2.0D0-0.1D0) THEN 

                              Vk=0.5D0*(4.0D0/3.0D0)*PI*drcn*drcn*drcn 

                        ELSE 

                              Vk=(4.0D0/3.0D0)*PI*drcn*drcn*drcn 

                        END IF 

                        DO i = 0,N1-1 

                              dx = rc_x(i) - rcnv_x(j+(f-1)*Ns_int*Ncs) 

                              dy = rc_y(i) - rcnv_y(j+(f-1)*Ns_int*Ncs) 

                              dz = rc_z(i) - rcnv_z(j+(f-1)*Ns_int*Ncs) 

                              CALL PBC_CHCK(dx,dy,dz,L,N_ki,w_swtch) 

                              IF (N_ki <= drcn) THEN 
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                                    drc_x(i,f) = drc_x(i,f) & 

+ Cff(i)*(Cw/Vk) *((ncnv_x(j+(f-1)*Ns_int*Ncs)*6.0D0 / (drcn**3)) * nc_x(i) & 

* dx * (N_ki - drcn)) & 

+ Cff(i)*(Cw/Vk)*((ncnv_y(j+(f-1)*Ns_int*Ncs)*6.0D0 / (drcn**3)) * nc_y(i) & 

* dx * (N_ki - drcn)) & 

+ Cff(i)*(Cw/Vk)*((ncnv_z(j+(f-1)*Ns_int*Ncs)*6.0D0 / (drcn**3)) * nc_z(i) & 

* dx * (N_ki - drcn)) 

                                    drc_y(i,f) = drc_y(i,f) & 

+ Cff(i)*(Cw/Vk)*((ncnv_x(j+(f-1)*Ns_int*Ncs)*6.0D0 / (drcn**3)) * nc_x(i) & 

* dy * (N_ki - drcn)) & 

+ Cff(i)*(Cw/Vk)*((ncnv_y(j+(f-1)*Ns_int*Ncs)*6.0D0 / (drcn**3)) * nc_y(i) & 

* dy * (N_ki - drcn)) & 

+ Cff(i)*(Cw/Vk)*((ncnv_z(j+(f-1)*Ns_int*Ncs)*6.0D0 / (drcn**3)) * nc_z(i) & 

* dy * (N_ki - drcn)) 

                                    drc_z(i,f) = drc_z(i,f) & 

+ Cff(i)*(Cw/Vk)*((ncnv_x(j+(f-1)*Ns_int*Ncs)*6.0D0 / (drcn**3)) * nc_x(i) & 

* dz * (N_ki - drcn)) & 

+ Cff(i)*(Cw/Vk)*((ncnv_y(j+(f-1)*Ns_int*Ncs)*6.0D0 / (drcn**3)) * nc_y(i) & 

* dz * (N_ki - drcn)) & 

+ Cff(i)*(Cw/Vk)*((ncnv_z(j+(f-1)*Ns_int*Ncs)*6.0D0 / (drcn**3)) * nc_z(i) & 

* dz * (N_ki - drcn)) 

                                    dnc_x(i,f) = dnc_x(i,f) & 

+ Cff(i)*(Cw/Vk)*(ncnv_x(j+(f-1)*Ns_int*Ncs)*W_fnc(N_ki,drcn)) 

                                    dnc_y(i,f) = dnc_y(i,f) & 

+ Cff(i)*(Cw/Vk)*(ncnv_y(j+(f-1)*Ns_int*Ncs)*W_fnc(N_ki,drcn)) 

                                    dnc_z(i,f) = dnc_z(i,f) & 

+ Cff(i)*(Cw/Vk)*(ncnv_z(j+(f-1)*Ns_int*Ncs)*W_fnc(N_ki,drcn)) 

                                    nDOTrli=nc_x(i)*dx+nc_y(i)*dy+nc_z(i)*dz 

                                    drc_x(i,f) = drc_x(i,f) &  

+ Cff(i)*(ncnv_x(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0*(nDOTrli*nc_x(i) & 

*dx)-(15.0D0/N_ki**2)*nDOTrli*dx*dx+3.0D0*dx*nc_x(i)) & 

+ Cff(i)*(ncnv_y(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0*nc_x(i) & 

*dy-(15.0D0/N_ki**2)*nDOTrli*dx*dy+3.0D0*dx*nc_y(i)) & 

+ Cff(i)*(ncnv_z(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0*nc_x(i) & 

*dz-(15.0D0/N_ki**2)*nDOTrli*dx*dz+3.0D0*dx*nc_z(i)) 

                                    drc_y(i,f) = drc_y(i,f) & 

+ Cff(i)*(ncnv_x(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0*nc_y(i) & 

*dx-(15.0D0/N_ki**2)*nDOTrli*dy*dx+3.0D0*dy*nc_x(i)) & 

+ Cff(i)*(ncnv_y(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0*(nDOTrli+nc_y(i) & 

*dy)-(15.0D0/N_ki**2)*nDOTrli*dy*dy+3.0D0*dy*nc_y(i)) & 

+ Cff(i)*(ncnv_z(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0*nc_y(i) & 

*dz-(15.0D0/N_ki**2)*nDOTrli*dy*dz+3.0D0*dy*nc_z(i)) 
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                                    drc_z(i,f) = drc_z(i,f) & 

+ Cff(i)*(ncnv_x(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0*nc_z(i) & 

*dx-(15.0D0/N_ki**2)*nDOTrli*dz*dx+3.0D0*dz*nc_x(i)) & 

+ Cff(i)*(ncnv_y(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0*nc_z(i) & 

*dy-(15.0D0/N_ki**2)*nDOTrli*dz*dy+3.0D0*dz*nc_y(i)) & 

+ Cff(i)*(ncnv_z(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**5)) * (3.0D0*(nDOTrli+nc_z(i) & 

*dz)-(15.0D0/N_ki**2)*nDOTrli*dz*dz+3.0D0*dz*nc_z(i)) 

                                    dnc_x(i,f) = dnc_x(i,f) & 

+ Cff(i)*(ncnv_x(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dx/(N_ki*N_ki)*dx-1.0D0)  

                                                + Cff(i)*(ncnv_y(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dx/(N_ki*N_ki)*dy) & 

                                                + Cff(i)*(ncnv_z(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dx/(N_ki*N_ki)*dz) 

                                    dnc_y(i,f) = dnc_y(i,f) & 

+ Cff(i)*(ncnv_x(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dy/(N_ki*N_ki)*dx) & 

                                                + Cff(i)*(ncnv_y(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dy/(N_ki*N_ki)*dy-1.0D0) & 

                                                + Cff(i)*(ncnv_z(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dy/(N_ki*N_ki)*dz) 

                                    dnc_z(i,f) = dnc_z(i,f) & 

+ Cff(i)*(ncnv_x(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dz/(N_ki*N_ki)*dx) & 

                                                + Cff(i)*(ncnv_y(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dz/(N_ki*N_ki)*dy) & 

                                                + Cff(i)*(ncnv_z(j+(f-1)*Ns_int*Ncs)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dz/(N_ki*N_ki)*dz-1.0D0) 

                              END IF 

                        END DO 

                  END DO 

            END DO 

            DO f = Nc+1,Nc_tot 

                  DO h = 1,Ncnl4*Nsl 

                        DO i = 0,N1-1 

                              dx = rc_x(i) - rcnl_x(h+(f-Nc-1)*Ncnl4*Nsl) 

                              dy = rc_y(i) - rcnl_y(h+(f-Nc-1)*Ncnl4*Nsl) 

                              dz = rc_z(i) - rcnl_z(h+(f-Nc-1)*Ncnl4*Nsl) 

                              N_ki=SQRT((dx*dx) + (dy*dy) + (dz*dz)) 

                              IF (N_ki <= drcn) THEN                         

                                    nDOTrli = nc_x(i)*dx+nc_y(i)*dy+nc_z(i)*dz 
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                                    drc_x(i,f) = drc_x(i,f) & 

+ Cff(i)*(ncnl_x(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*(nDOTrli*nc_x(i) & 

*dx)-(15.0D0/N_ki**2)*nDOTrli*dx*dx+3.0D0*dx*nc_x(i)) & 

+ Cff(i)*(ncnl_y(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*nc_x(i) & 

*dy-(15.0D0/N_ki**2)*nDOTrli*dx*dy+3.0D0*dx*nc_y(i)) & 

+ Cff(i)*(ncnl_z(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*nc_x(i) & 

*dz-(15.0D0/N_ki**2)*nDOTrli*dx*dz+3.0D0*dx*nc_z(i)) 

                                    drc_y(i,f) = drc_y(i,f) & 

+ Cff(i)*(ncnl_x(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*nc_y(i) & 

*dx-(15.0D0/N_ki**2)*nDOTrli*dy*dx+3.0D0*dy*nc_x(i)) & 

+ Cff(i)*(ncnl_y(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*(nDOTrli+nc_y(i) & 

*dy)-(15.0D0/N_ki**2)*nDOTrli*dy*dy+3.0D0*dy*nc_y(i)) & 

+ Cff(i)*(ncnl_z(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*nc_y(i) & 

*dz-(15.0D0/N_ki**2)*nDOTrli*dy*dz+3.0D0*dy*nc_z(i)) 

                                    drc_z(i,f) = drc_z(i,f) & 

+ Cff(i)*(ncnl_x(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*nc_z(i) & 

*dx-(15.0D0/N_ki**2)*nDOTrli*dz*dx+3.0D0*dz*nc_x(i)) & 

+ Cff(i)*(ncnl_y(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*nc_z(i) & 

*dy-(15.0D0/N_ki**2)*nDOTrli*dz*dy+3.0D0*dz*nc_y(i)) & 

+ Cff(i)*(ncnl_z(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**5)) * (3.0D0*(nDOTrli+nc_z(i) & 

*dz)-(15.0D0/N_ki**2)*nDOTrli*dz*dz+3.0D0*dz*nc_z(i)) 

                                    dnc_x(i,f) = dnc_x(i,f) & 

+ Cff(i)*(ncnl_x(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dx/(N_ki*N_ki)*dx-1.0D0) & 

                                                + Cff(i)*(ncnl_y(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dx/(N_ki*N_ki)*dy) & 

                                                + Cff(i)*(ncnl_z(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dx/(N_ki*N_ki)*dz) 

                                    dnc_y(i,f) = dnc_y(i,f) & 

+ Cff(i)*(ncnl_x(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dy/(N_ki*N_ki)*dx) & 

                                                + Cff(i)*(ncnl_y(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dy/(N_ki*N_ki)*dy-1.0D0) & 

                                                + Cff(i)*(ncnl_z(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dy/(N_ki*N_ki)*dz) 

                                    dnc_z(i,f) = dnc_z(i,f) & 

+ Cff(i)*(ncnl_x(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dz/(N_ki*N_ki)*dx) & 

                                                + Cff(i)*(ncnl_y(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dz/(N_ki*N_ki)*dy) & 

                                                + Cff(i)*(ncnl_z(h+(f-Nc-1)*Ncnl4*Nsl)/(4.0D0*PI*N_ki**3)) & 

* (3.0D0*dz/(N_ki*N_ki)*dz-1.0D0) 

                              END IF 

                        END DO 

                  END DO 

            END DO 
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            Lmbd = 0.0D0 

            mod_G  = 0.0D0 

            DO f=1,Nc_tot 

                  DO g=1,Nc_tot 

                        DO i = 0,N1-1 

                              mod_G(f,g) = mod_G(f,g) & 

+ (drc_x(i,f)*drs_x(i,g) +drc_y(i,f)*drs_y(i,g)+drc_z(i,f)*drs_z(i,g) & 

+ dnc_x(i,f)*dns_x(i,g)+dnc_y(i,f)*dns_y(i,g)+dnc_z(i,f)*dns_z(i,g)) 

                        END DO 

                  END DO 

            END DO 

            mod_Gt=0.0D0 

            b_arr_tmp=0.0D0 

            DO i=1,Nc_tot 

                  b_arr_tmp(i,i)=1.0D0 

                  DO j=1,Nc_tot 

                        mod_Gt(i,j)=mod_G(i,j) 

                  END DO 

            END DO 

            DO j=1,Nc_tot 

                  DO i=1,Nc_tot 

                        b_arr(i)=b_arr_tmp(i,j) 

                  END DO 

                  CALL  RWPVT(Nc_tot,mod_Gt,b_arr,1,x_tmp,dtm,Lmt,U_tmp,c_tmp) 

                  DO i=1,Nc_tot 

                        g_arr(i,j)=x_tmp(i) 

                  END DO 

            END DO 

            IF (MOD(itr,10) == 1) THEN 

                  b_arr_tmp = MATMUL(mod_G,g_arr) 

            END IF 

            DO f=1,Nc_tot 

                  DO g=1,Nc_tot 

                        Lmbd(f) = Lmbd(f) + g_arr(f,g)* sgm(g) 

                  END DO 

            END DO 

            Fc_x=0.0D0 

            Fc_y=0.0D0 

            Fc_z=0.0D0 

            Tc_x=0.0D0 

            Tc_y=0.0D0 

            Tc_z=0.0D0 

            DO i = 0,N1-1 
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                  DO f=1,Nc_tot 

                        Fc_x(i)= Fc_x(i) - Lmbd(f)*drs_x(i,f)       

                        Fc_y(i)= Fc_y(i) - Lmbd(f)*drs_y(i,f) 

                        Fc_z(i)= Fc_z(i) - Lmbd(f)*drs_z(i,f) 

                  END DO 

                  IF (ABS(rc_x(i)+Fc_x(i))*Cff(i) > L .OR. ABS(rc_y(i)+Fc_y(i))*Cff(i) > L/2.0D0 &  

.OR. ABS(rc_z(i)+Fc_z(i))*Cff(i) > L) THEN 

                        Cff(i)=0.0D0 

                        Fc_count=Fc_count+1 

                        IF (Fc_count == 10) THEN 

                              DO g = 0,N1-1 

                                    rc_x(g)=rct_x(g) 

                                    rc_y(g)=rct_y(g) 

                                    rc_z(g)=rct_z(g) 

                                    nc_x(g)=nct_x(g) 

                                    nc_y(g)=nct_y(g) 

                                    nc_z(g)=nct_z(g) 

                              END DO 

                              GO TO 62 

                        END IF 

                        GO TO 61 

                  END IF 

            END DO 

            Fc_x=0.0D0 

            Fc_y=0.0D0 

            Fc_z=0.0D0 

            Tc_x=0.0D0 

            Tc_y=0.0D0 

            Tc_z=0.0D0 

            DO i = 0,N1-1 

                  DO f=1,Nc_tot 

                        Fc_x(i)= Fc_x(i) - Lmbd(f)*drs_x(i,f) 

                        Fc_y(i)= Fc_y(i) - Lmbd(f)*drs_y(i,f) 

                        Fc_z(i)= Fc_z(i) - Lmbd(f)*drs_z(i,f) 

                        Tc_x(i)= Tc_x(i) - Lmbd(f)*dns_x(i,f) 

                        Tc_y(i)= Tc_y(i) - Lmbd(f)*dns_y(i,f) 

                        Tc_z(i)= Tc_z(i) - Lmbd(f)*dns_z(i,f) 

                  END DO 

                  CPdma_x=ns_y(i)*Tc_z(i) - ns_z(i)*Tc_y(i) 

                  CPdma_y=ns_z(i)*Tc_x(i) - ns_x(i)*Tc_z(i) 

                  CPdma_z=ns_x(i)*Tc_y(i) - ns_y(i)*Tc_x(i) 

                  CPdmb_x=CPdma_y*ns_z(i) - CPdma_z*ns_y(i)  

                  CPdmb_y=CPdma_z*ns_x(i) - CPdma_x*ns_z(i)  

                  CPdmb_z=CPdma_x*ns_y(i) - CPdma_y*ns_x(i)  
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                  nc_x(i) = nc_x(i) + CPdmb_x*(3.0D0/4.0D0)*Cff(i) 

                  nc_y(i) = nc_y(i) + CPdmb_y*(3.0D0/4.0D0)*Cff(i) 

                  nc_z(i) = nc_z(i) + CPdmb_z*(3.0D0/4.0D0)*Cff(i) 

                  nrm = SQRT((nc_x(i)*nc_x(i))+(nc_y(i)*nc_y(i))+(nc_z(i)*nc_z(i))) 

                  nc_x(i)=nc_x(i)/nrm 

                  nc_y(i)=nc_y(i)/nrm 

                  nc_z(i)=nc_z(i)/nrm 

                  rc_x(i)=rc_x(i) + Fc_x(i)*Cff(i) 

                  rc_y(i)=rc_y(i) + Fc_y(i)*Cff(i) 

                  rc_z(i)=rc_z(i) + Fc_z(i)*Cff(i) 

                  IF (rc_x(i) > L/2.0D0) THEN  

                        rc_x(i) = rc_x(i) - L 

                  END IF 

                  IF (rc_z(i) > L/2.0D0) THEN  

                        rc_z(i) = rc_z(i) - L 

                  END IF 

                  IF (rc_x(i) < -L/2.0D0) THEN  

                        rc_x(i) = rc_x(i) + L 

                  END IF 

                  IF (rc_z(i) < -L/2.0D0) THEN  

                        rc_z(i) = rc_z(i) + L 

                  END IF 

                  IF (rc_y(i) > L/2.0D0 .AND. w_swtch == 0) THEN  

                        rc_y(i) = rc_y(i) - L 

                  END IF 

                  IF (rc_y(i) < -L/2.0D0 .AND. w_swtch == 0) THEN  

                        rc_y(i) = rc_y(i) + L 

                  END IF 

            END DO 

      END DO 

      dnc_count=0 

      DO f=1,Nc_tot 

            sgm_f=sgm_i+f*10 

            IF (ABS(sgm(f)) < tlrc_b) THEN 

                  WRITE(sgm_f,37) 'Sig = ',sgm(f),',Lmbd=',Lmbd(f),' @ itr = ',itr,', & 

time_step(k) = ',k,' *close' 

            ELSE 

                  WRITE(sgm_f,37) 'Sig = ',sgm(f),',Lmbd=',Lmbd(f),' @ itr = ',itr,', & 

                               time_step(k) = ',k,' *dnc' 

                  dnc_count=dnc_count+1 

            END IF 

      END DO 

      IF (dnc_count > 0) THEN 
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            DO i = 0,N1-1 

                  rc_x(i)=rct_x(i) 

                  rc_y(i)=rct_y(i) 

                  rc_z(i)=rct_z(i) 

                  nc_x(i)=nct_x(i) 

                  nc_y(i)=nct_y(i) 

                  nc_z(i)=nct_z(i) 

            END DO 

      END IF 

      WRITE(109,’(a11,i6,i5,60(f19.10))’) 'n/a_f',k,itr,Mnt_x 

      WRITE(110,’(a11,i6,i5,60(f19.10))’) 'n/a_f',k,itr,Mnt_y 

      WRITE(111,’(a11,i6,i5,60(f19.10))’) 'n/a_f',k,itr,Mnt_z 

      WRITE(112,’(a11,i6,i5,60(f19.10))’) 'n/a_f',k,itr,Hnt_x 

      WRITE(113,’(a11,i6,i5,60(f19.10))’) 'n/a_f',k,itr,Hnt_y 

      WRITE(114,’(a11,i6,i5,60(f19.10))’) 'n/a_f',k,itr,Hnt_z 

      WRITE(115,’(a11,i6,i5,60(f19.10))’) 'n/a_f',k,itr,Hdl_x 

      WRITE(116,’(a11,i6,i5,60(f19.10))’) 'n/a_f',k,itr,Hdl_y 

      WRITE(117,’(a11,i6,i5,60(f19.10))’) 'n/a_f',k,itr,Hdl_z 

      WRITE(118,’(a11,i6,i5,60(f19.10))’) 'n/a_f',k,itr,sgm 

      WRITE(119,’(a11,i6,i5,60(f19.10))’) 'n/a_f',k,itr,sgm 

62  CONTINUE 

      DO i=N1,N7-1-w_swtch*N1*2 

            nc_x(i) = nc_x(i-N1) 

            nc_y(i) = nc_y(i-N1) 

            nc_z(i) = nc_z(i-N1)             

      END DO 

      DO i=0,N1-1 

            rc_x(i+N1)  = rc_x(i)-L 

            rc_x(i+N1*2) = rc_x(i)+L 

            rc_x(i+N1*3) = rc_x(i) 

            rc_x(i+N1*4) = rc_x(i) 

            rc_y(i+N1)  = rc_y(i) 

            rc_y(i+N1*2) = rc_y(i) 

            rc_y(i+N1*3) = rc_y(i) 

            rc_y(i+N1*4) = rc_y(i) 

            rc_z(i+N1)  = rc_z(i) 

            rc_z(i+N1*2) = rc_z(i) 

            rc_z(i+N1*3) = rc_z(i)-L 

            rc_z(i+N1*4) = rc_z(i)+L 

      END DO 

      IF (w_swtch == 0) THEN 
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            DO i=0,N1-1 

                  rc_x(i+N1*5) = rc_x(i) 

                  rc_x(i+N1*6) = rc_x(i) 

                  rc_y(i+N1*5) = rc_y(i)-L 

                  rc_y(i+N1*6) = rc_y(i)+L 

                  rc_z(i+N1*5) = rc_z(i) 

                  rc_z(i+N1*6) = rc_z(i) 

            END DO 

      END IF 

      DO f=1,Nc_tot 

            sgm_f=sgm_i+f*10 

            CLOSE(sgm_f) 

      END DO 

DO f=109,119 

      CLOSE(f) 

END DO 

37  FORMAT(a12,f20.11,a10,e15.7,a8,i3,a17,i5,a13) 

      RETURN 

END SUBROUTINE M_E_CONST 

!############################################################################# 
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