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8.1.1.1 Edelkamp and Schrödl . . . . . . . . . . . . . . . . . . . . . . . . 159
8.1.1.2 Schroedl, Wagstaff, Rogers, Langley and Wilson . . . . . . . . 160
8.1.1.3 Worrall and Nebot . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.1.1.4 Guo, Iwamura and Koga . . . . . . . . . . . . . . . . . . . . . . 160
8.1.1.5 Jang, Kim and Lee . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.1.1.6 Agamennoni, Neito and Nebot . . . . . . . . . . . . . . . . . . . 161
8.1.2 Map Inference Based on Trace Merging . . . . . . . . . . . . . 161
8.1.2.1 Cao and Krumm . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.1.2.2 Niehoefer, Burda, Wietfeld, Bauer and Lueert . . . . . . . . . 162
8.1.3 Map Inference Based on Kernel Density Estimation . . . . . . 163
8.1.3.1 Davies, Beresford and Hopper . . . . . . . . . . . . . . . . . . . 163
8.1.3.2 Chen and Cheng . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.1.3.3 Shi, Shen and Liu . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.1.4 Gray-scale Skeletonization . . . . . . . . . . . . . . . . . . . . . 164
8.1.5 Road Centerline Finding . . . . . . . . . . . . . . . . . . . . . . 165
8.2 Online GPS Tracking . . . . . . . . . . . . . . . . . . . . . . . . 166
8.3 Automatic Transit Tracking, Mapping, and Arrival Time Pre-

diction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.3.1 Arrival Time Prediction . . . . . . . . . . . . . . . . . . . . . . . 168
8.4 Assessing Day Similarity From Location Traces . . . . . . . . . 169
8.5 Copyright Information . . . . . . . . . . . . . . . . . . . . . . . . 170

xi



TABLE OF CONTENTS (Continued)

CHAPTER PAGE

9 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

xii



LIST OF TABLES

TABLE PAGE

I END-TO-END EVALUATION RESULTS. . . . . . . . . . . . . . . . 97

II ROUTE EXTRACTION ERROR PERFORMANCE. . . . . . . . . 113

III NUMBER OF STATISTICALLY SIGNIFICANT WINS AND LOSSES
FOR OUR SIMILARITY ALGORITHMS. . . . . . . . . . . . . . . . 151

IV MAP INFERENCE LITERATURE IN CHRONOLOGICAL ORDER. 158

xiii



LIST OF FIGURES

FIGURE PAGE

1 Map inference using the k-means algorithm. . . . . . . . . . . . . . . . . 8

2 Map inference using trace merging approach. . . . . . . . . . . . . . . . . 10

3 Map inference using kernel density estimation approach. . . . . . . . . . 11

4 Overview of map comparison algorithm. . . . . . . . . . . . . . . . . . . . 14

5 Raw data and map inference results in areas with high and low GPS error. 18

6 Overall results on the full and low-error datasets. . . . . . . . . . . . . . 21

7 Parameter sensitivity testing for the three reference algorithms. . . . . . 24

8 Sample of raw GPS data from 2,300 taxis in Shanghai. . . . . . . . . . . 29

9 Three steps of the trace clustering algorithm TC1. . . . . . . . . . . . . . 33

10 Performance results for all algorithms on the Chicago Shuttle Bus dataset. 39

11 Map inference results in Chicago with 60-second sampling interval. . . . 41

12 F-score for each algorithm on a 6-hour dataset, for varying matching
distance thresholds. All three algorithms level out around 20 meters. . 43

13 Histogram of distance between generated roads and ground truth. . . . 44

14 Precision/recall trade-off as density threshold is varied for KDE, and
support threshold is varied for TC1. . . . . . . . . . . . . . . . . . . . . . 44

15 Precision and recall as the number of hours of Shanghai taxi data is varied. 45

16 Map inference results in Shanghai. . . . . . . . . . . . . . . . . . . . . . . 47

17 Kernel density estimation produces a continuous distribution out of a
noisy set of GPS traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xiv



LIST OF FIGURES (Continued)

FIGURE PAGE

18 Simple binary thresholding does not work well, as no single threshold
achieves both high accuracy and high coverage. . . . . . . . . . . . . . . 54

19 Binary skeletonization vs. gray-scale skeletonization. Gray-scale skele-
tonization produces more edges, but each edge is more accurate, and
annotated by a gray-scale level. . . . . . . . . . . . . . . . . . . . . . . . . 55

20 The 8-neighborhood of pixel P1, used in the process of skeletonization. 56

21 Our trajectory-based pruning process. Using the original traces map-
matched against the initial map removes most spurious edges. . . . . . . 61

22 By collapsing nearby nodes into intersections, the final map topology is
produced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

23 Geometry refinement, separating directions and adding turn lanes. . . . 65

24 7 months of raw traces, displaying both high disparity and high GPS
noise. The dashed square indicates the “hospital area.” . . . . . . . . . . 67

25 GEO F-scores of our method vs. existing methods on the 1-month dataset. 70

26 TOPO F-scores of our method vs. existing methods on the 1-month
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

27 Precision/recall and F-score on 1-month dataset. GEO evaluation metric. 71

28 Precision/recall and F-score on 1-month dataset. TOPO evaluation metric. 71

29 Precision/recall and F-score on 7-month dataset. GEO evaluation metric. 72

30 Illustration of the performance of all algorithms across the entire region
of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

31 Histogram of intervals between ∼1.6 billion location reports from 25
providers, illustrating the periodic nature of contemporary GPS tracking. 77

32 Thrifty tracking system architectural diagram. Adaptive sampling tech-
niques rely on feedback from an extrapolator executing on the device,
mirroring the extrapolation done on the server. . . . . . . . . . . . . . . . 79

xv



LIST OF FIGURES (Continued)

FIGURE PAGE

33 Dmax for eight extrapolators on our OSM dataset, for varying values of
max. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

34 E∆t for eight extrapolators on our OSM dataset, for varying values of ∆t. 84

35 Values of Dmax
t over time for six extrapolators along a particular trace,

for a fixed 25-meter max error threshold. Here we observe that no single
extrapolator consistently outperforms the others. . . . . . . . . . . . . . 87

36 Dmax for eight extrapolators on our OSM dataset, for varying values of
max. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

37 E∆t for eight extrapolators on our OSM dataset, for varying values of ∆t. 91

38 Budget usage with increasing maximum error bound for various delay
bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

39 Mean error with increasing budget for various delay bounds. . . . . . . . 95

40 Architectural overview of the EasyTracker system. Data produced by
in-vehicle devices are passed through batch and online processing, yield-
ing route shapes, stop locations, route classifications, and arrival time
predictions, which are displayed through a user interface. . . . . . . . . . 104

41 High-level overview of the route extraction process, overlaid on the local
road map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

42 A collection of real and spurious routes, and the corresponding propor-
tion of drives they represent over several quantities of data from the UIC
campus shuttles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

43 CDF of distance between generated routes and ground truth, for several
quantities of data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

44 Raw GPS traces from a single route. Traces reveal little about amount
of time spent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

45 Kernel density estimate of raw GPS points. Vehicles spend more time
at the taller peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

46 Detected stop locations after applying threshold and finding the maxima. 115

xvi



LIST OF FIGURES (Continued)

FIGURE PAGE

47 Precision and recall performance of the stop extraction algorithm on six
routes. All stops were identified, but many spurious stops were also
reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

48 Arrival times for the first stop on a route. The horizontal lines indicate
the k-means computed cluster centers at this stop for each daily trip. . 118

49 Arrival times at the last stop on a route. The data is too noisy to use
the same (clustering) approach used in Figure 48. . . . . . . . . . . . . . 119

50 Per stop mean travel times from the first stop on a route, bars show
standard deviation. Travel time variance increases with distance from
the first stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

51 The schedule (horizontal lines) for the last stop based on the first stop
schedule and mean travel times. . . . . . . . . . . . . . . . . . . . . . . . 122

52 Mean wait times for a selected bus route for several training set sizes
and the official CTA schedule. . . . . . . . . . . . . . . . . . . . . . . . . . 123

53 Route-matching Hidden Markov Model. Transitions between routes are
only possible through the unknown state. . . . . . . . . . . . . . . . . . . 125

54 Classification performance of HMM-based vehicle classifier, using one
month of labeled data from the UIC campus shuttles. . . . . . . . . . . . 127

55 CDF of distance traveled before a correct pattern or route classification
was made. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

56 CDF of wait times for 5,000 real-time arrival predictions vs. the CTA
schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

57 Prototype driver interface for optional manual input and communication
with dispatch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

58 Screenshot of current EasyTracker prototype, currently in production
use on the UIC shuttle bus system. . . . . . . . . . . . . . . . . . . . . . . 134

59 A short sequence of GPS points sampled at an interval of 10 seconds. . 140

60 Visualizations of a day for our subjects. . . . . . . . . . . . . . . . . . . . 144

xvii



LIST OF FIGURES (Continued)

FIGURE PAGE

61 The main part of our user study, where we asked subjects to indicate
which pair of days were most similar to each other. . . . . . . . . . . . . 145

62 Accuracy results for our eight similarity algorithms. Error bars show
+/− 1 standard deviation over all 30 test subjects. . . . . . . . . . . . . 150

63 Three clusters shown on a timeline. Each row is one day. The single day
in the top cluster is an outlier. The main central cluster shows 32 work
days, and the bottom cluster shows 19 non-work days. . . . . . . . . . . 153

64 Most of our subjects were happy with the clustering results. . . . . . . . 154

65 Our subjects rated the usefulness of our three different visualizations for
assessing the similarity of days. . . . . . . . . . . . . . . . . . . . . . . . . 155

xviii



LIST OF ABBREVIATIONS

ANOVA Analysis of Variance

CA Constant Acceleration

CD Constant Deceleration

CDF Cumulative Distribution Function

CL Constant Location

CTA Chicago Transit Authority

CV Constant Velocity

DTW Dynamic Time Warping

GPS Global Positioning System

GTFS General Transit Feed Specification

HMM Hidden Markov Model

KDE Kernel Density Estimate

MB Map Based

MM Markov Model

OSM OpenStreetMap

UIC University of Illinois at Chicago

USD United States Dollar

xix



SUMMARY

Thanks to the ubiquity of Global Positioning System (GPS) sensors in a variety of everyday

devices, and the myriad applications for which they are currently used, there is presently a

tremendous amount of location-data being generated and collected concerning users’ mobility

patterns. As a result, we now have an unprecedented opportunity to leverage these rich datasets

to infer a range of useful phenomena, in several different application areas.

One such area concerns the inference of road maps. Here, using opportunistically collected

datasets we can design algorithms to automatically infer entirely new sections of the map,

reducing the need for expensive road surveys. In this thesis we undertake a thorough study of

the current state of the art in map inference algorithms, and identify areas for improvement.

Based on these findings, we investigate algorithms for mitigating the problems presented by

infrequently-sampled data, and develop a new hybrid map inference method for overcoming

existing sensitivities to GPS noise and disparity.

We then change gears, and look at ways to reduce the data uplink usage of online GPS track-

ing systems, while preserving accuracy. With the most commonly used method for reducing

usage in practice being simple uniform periodic sampling, there is ample room for improvement.

Given the rising popularity of tracking applications, improvements here can have real practical

impact. To this end, we develop a system that combines a unified extrapolator which is able to

infer users’ future movements based on their current and historical patterns, with an adaptive

sampler that allows a system operator to specify an error or budget-based performance target

xx



SUMMARY (Continued)

while it intelligently optimizes the other. We evaluate its performance using real-world GPS

traces, and compare it against the current status quo.

Next, we look at inferring the necessary phenomena to create a fully automatic transit track-

ing and arrival time prediction system. Although commercial products exist for this purpose,

their installation, configuration, and maintenance can be cost-prohibitive for small agencies.

Our goal is to enable the same functionality, with smartphones being the only required hard-

ware. By developing the appropriate algorithms, we are able to create an end-to-end system

that automatically infers routes, stops, and schedules, as well as provides real-time arrival time

predictions, and demonstrate its accuracy against real-world data.

Finally, we work to find algorithms for measuring the similarity of a person’s days, based on

location traces recorded by GPS, in a way that approximates human assessments. Having this

capability allows us to provide a useful metric for systems that identify anomalous behavior,

or predict how a day is likely to evolve. By conducting a user-study we are able to identify

suitable algorithms for this task, and evaluate their ability to cluster days.

xxi



CHAPTER 1

INTRODUCTION

Due to the widespread availability of GPS sensors in a variety of everyday devices, as well as

their near-ubiquitous application in modern cellphones and vehicles, the collection of massive

amounts of location-data describing the time and position of individuals’ movement patterns is

becoming increasingly common.

Very often this data collection is entirely intentional, as cellphones and vehicle telemat-

ics systems are commonly co-opted to support GPS tracking applications, including real-time

taxi dispatching, freight logistics, and public transit arrival time predictions. However, a large

amount of data is also being generated and collected as a side-effect of supporting end-user

applications. One of the most prevalent examples of this is crowd-sourced traffic maps, where

applications such as the pervasive “Maps” application automatically upload their current loca-

tion to a central server while they are running, in order to power updates.

Regardless of the purposes for which this data is collected, the end result is that system

operators, application developers, and corporations now have access to large, rich collections

of user mobility data. With that in mind, the overall goal of this work has been to develop

algorithms for application areas that stand to benefit from the rich semantic information that

can be inferred from this high-fidelity data.

One potential use for this wealth of data is to infer and update the geometry and connectivity

of road maps, using what are known as map inference algorithms. These algorithms offer

1
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a tremendous advantage when no existing road map data is present; rather than incur the

expense of a complete road survey, GPS trace-data can be used to infer entirely new sections

of the road map at a fraction of the cost. Road map inference can also be valuable in cases

where a road map is already available. Here, they not only help to increase the accuracy of

drawn road maps, but also help to detect new road construction and dynamically adapt to road

closures—useful features for digital road maps being used for in-car navigation.

In Chapter 2, we provide a survey of the contemporary literature on this subject, and

through a qualitative, quantitative, and comparative evaluation of existing algorithms, identify

ways to improve upon the current state of the art methods.

One weakness with currently available map inference algorithms is their inability to infer

maps from GPS traces that are sparsely sampled (i.e., recorded with low temporal frequency).

This type of data poses a problem, because as the distance between consecutive GPS samples

grows, the likelihood of correctly estimating the path between them rapidly declines. Most

often, a simple straight-line path is assumed. However, this frequently results in paths being

inferred over areas where no road actually exists.

In Chapter 3, we take a look at two different map inference algorithms for dealing with

this problem: one specifically designed for sparse GPS data, and one which is an adaptation

of the best method found in Chapter 2. We assess their trade-offs and effectiveness in both

qualitative and quantitative comparisons, using both an artificially sub-sampled dataset from

Chicago, and a sparsely-sampled dataset collected from thousands of taxis in Shanghai.
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Another identified weakness with current map inference algorithms is their sensitivity to

GPS noise and trace disparity. As is common with opportunistically collected GPS data, there

is often a great disparity in terms of coverage. For example, a freeway may be represented

by thousands of trips, whereas a residential road may only have a handful of observations.

Additionally, while modern GPS receivers typically produce high-quality location estimates,

errors over 100 meters are not uncommon, especially near tall buildings or under dense tree

coverage. Combined, GPS trace disparity and error present a formidable challenge for the

current state of the art in map inference. To address this issue we may tune the parameters

of existing algorithms, choosing to remove spurious roads created by GPS noise, or admit

less-frequently traveled roads, but not both.

In Chapter 4 we present an extensible map inference pipeline, designed to mitigate GPS

error, admit less-frequently traveled roads, and scale to large datasets. We also demonstrate and

compare the performance of our proposed pipeline against existing methods, both qualitatively

and quantitatively, using a real-world dataset that includes both high disparity and noise.

In Chapter 5 we shift away from creating road maps, and instead look at the problem of

minimizing the data uplink usage of online GPS tracking systems, while maintaining accuracy.

Given the increasing popularity of tracking assets and people with GPS, reducing cost is often

an important concern. In a field study of large-scale GPS tracking, we find that uniform periodic

sampling is the overwhelming policy of choice for achieving this goal. One likely reason for this

is that it provides direct control over cost. Unfortunately, however, any savings here necessarily

result in a net loss in terms of tracking accuracy and timeliness.
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Our approach provides a more flexible solution to this problem. First, we develop a unified

extrapolator that is able to infer users’ future movements based on their current and historical

movement patterns. Then, we combine it with an adaptive sampler which allows a system

operator to specify error or budget-based performance targets, while it automatically optimizes

the other. We evaluate our end-to-end system using a large collection of real-world GPS traces,

and compare it against the current status quo.

In Chapter 6 we shift gears again, and investigate how to infer the necessary components for

creating an automatic vehicle tracking and arrival time prediction system for transit agencies.

Creating such a system manually can be a daunting task: commercial systems require tracking

devices to be installed in vehicles, drivers to be trained in their usage, and a great deal of

human processing to create and maintain route maps and schedules in the appropriate format.

For smaller transit agencies, such as school bus operators or campus shuttle services, this can

be a significant barrier to adoption.

In order to facilitate the introduction of transit tracking and arrival time prediction in

smaller transit agencies, we describe a smartphone-based system which we call EasyTracker.

To use EasyTracker, a transit agency must obtain smartphones, install an application, and place

a phone in each transit vehicle. Our goal is to require no other input. This level of automation

is made possible through a set of algorithms that use GPS traces collected from instrumented

transit vehicles to determine routes served, locate stops, and infer schedules. In addition, online

algorithms automatically determine the route served by a given vehicle at a given time, and

predict its arrival time at upcoming stops.
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We evaluate our algorithms on real datasets from two existing transit services, demonstrate

our ability to accurately reconstruct routes, stops, and schedules, and compare our system’s

arrival time prediction performance with the current “state of the art” for smaller transit

operators: the official schedule.

In Chapter 7 we change tack one final time and look at the problem of assessing the similarity

of a person’s days based on their recorded location traces. An accurate similarity measure could

be useful for finding anomalous behavior, for clustering similar days, or for predicting future

travel. While the problem of location trace similarity has been studied extensively in the

literature, those efforts have been primarily focused on machine processing, whereas we are

interested in matching human assessments of similarity. To this end, we conduct a user study

wherein volunteer subjects record their own GPS traces over the course of several weeks, and

then assess their similarity using custom-designed software. We test several different similarity

algorithms in an effort to accurately reproduce our subjects’ assessments, and then apply one

such algorithm to the task of clustering days using location traces.

Finally, in Chapter 8 we close by taking a broad look at the existing academic literature

that is related to the topics covered in this thesis.



CHAPTER 2

INFERRING ROAD MAPS FROM GPS TRACES: SURVEY AND

COMPARATIVE EVALUATION

Road map inference is the process of automatically producing a directed and annotated

road map from GPS traces, typically collected opportunistically from vehicles that are already

traveling the roads for some other purpose. Map inference can be used to rapidly map unknown

or constantly changing territory, to update and improve upon existing road maps, or to quickly

adapt to detours and new construction. Moreover, it can also be used to produce custom maps

for certain classes of travelers, including pedestrians, bicyclists, transit riders (6), truckers, or

tourists, by feeding in data from different sources.

The past decade has witnessed considerable interest in this problem, with a variety of

innovative solutions being presented in the open literature. Unfortunately, an almost-exclusive

focus on qualitative evaluation, and a lack of comparative evaluation, has made it difficult to

understand the relative merits of the various proposed methods. Virtually every published

paper on the topic relies on visual inspection of the results, manually comparing inferred maps

against existing maps or satellite imagery. Furthermore, comparisons against existing work are

more or less absent, with only one paper out of eleven we surveyed providing any comparison

against prior work (see Chapter 8 for more details).

We conjecture that the lack of quantitative, comparative evaluation of map inference al-

gorithms is due to three missing elements: (i) sufficiently expressive and robust methods of

6
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quantitatively evaluating the accuracy of inferred maps, (ii) publicly available implementations

of proposed map inference methods, and (iii) common sets of publicly available GPS traces and

ground truth maps for use in evaluations.

In order to address the problems identified above, and provide a better understanding of

the strengths and weaknesses of existing algorithms, in this chapter we: (i) provide an overview

of the current literature on map inference, (ii) describe the first quantitative evaluation method

for map inference algorithms, and (iii) provide a qualitative, quantitative, and comparative

evaluation of three reference algorithms. Additionally, we make available open-source imple-

mentations of the three reference algorithms, and a 118-hour trace dataset and ground truth

map for unrestricted use by the map inference community on our website (8).

2.1 Background

The base-line requirement for a map inference algorithm is to automatically turn raw GPS

traces into a directed and annotated graph representing the connectivity and geometry of the

underlying road network. Beyond such basic map inference, various additional objectives have

been proposed, such as detecting (9) and extracting (10) detailed intersection geometries, the

number and centerlines of lanes (10; 11), and speed limits and road types (12). In this thesis,

we focus primarily on basic map inference, and only briefly mention these other aspects.

2.1.1 Operational Overview

The map inference process is typically preceded by a filtering step, where GPS traces are

checked for any irregularities with regard to expected distance between points, speed traveled,

acceleration, and abrupt direction change. Any point along a trace that fails to satisfy these
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(a) Raw GPS traces.

d 

(b) Initial cluster seeds.

(c) Updated means with headings. (d) Final map after linking means.

Figure 1. Map inference using the k-means algorithm.

criteria is removed, with an interpolated point being inserted in its place. After filtering, the

approaches described in the literature can be categorized by their algorithmic foundations into

three categories: the k-means algorithm (13), trace merging, or kernel density estimation (KDE)

(14). Below, we introduce the three categories of map inference algorithms in more detail.

2.1.2 Map Inference Based on the k-means Algorithm

The k-means approach was originally described by Edelkamp and Schrödl (15), and is

arguably the most popular map inference technique in the current literature (10; 16; 17; 18; 19).

The basic operation of this algorithm is illustrated in Figure 1, and it begins by taking the

set of raw GPS traces (Figure 1(a)) and distributing a series of “cluster seeds” along their

lengths, with the constraint that every trace point must be located within a fixed distance d
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and bearing difference δ of a cluster seed (Figure 1(b)). This results in a sparse representation

of the underlying traces based on the collection of seeds. Using the cluster seeds as an initial

approximation, minor variations on the k-means algorithm are then used to find seed locations

and headings that best describe the raw traces (Figure 1(c)). Once the final seed locations

are determined, they are then linked to form road segments based on the pattern of raw traces

passing between them (Figure 1(d)). These segments then represent the map inferred using this

technique. We provide a qualitative and quantitative evaluation of the basic k-means algorithm

in Section 2.3 and 2.4.

2.1.3 Map Inference Based on Trace Merging

The trace merging approach was simultaneously introduced by Cao and Krumm (20) and

Niehoefer, Burda, Wietfeld, Bauer and Lueert (12), and its basic operation is illustrated in

Figure 2. The process begins with the set of raw GPS traces and an empty map (Figure 2(a)).

It then iterates through each recorded trace adding unit weight edges (corresponding to pairs

of GPS samples) to the map (Figure 2(b)), unless an existing edge is sufficiently similar in

location and heading. Should such an edge already exist, its weight is instead incremented

(Figure 2(c)). As a final refinement step, in post-processing any map edges with weight below

a specified threshold are removed, such as those marked with an “X” in Figure 2(d). Those

edges that remain form the map inferred using this technique.

In addition to the basic operation described above, the method proposed by Cao and Krumm

in (20) precedes the standard trace merging method with a “clarification” step. This is a type

of particle simulation (21), where a strong, but short-range attractive force is applied to pull
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(a) Raw GPS traces. (b) Adding new edges to the map.

+1
+1

+1

(c) Incrementing weight of matching edges.

3 1 1X X
3

3
2

2

2

(d) Final map after post-processing.

Figure 2. Map inference using trace merging approach.

together nearby traces that originate from the same road, reducing the effects of GPS noise,

and forming tight bands along the road centerlines. We provide a qualitative and quantitative

evaluation of this trace merging algorithm in Section 2.3 and 2.4.

2.1.4 Map Inference Based on Kernel Density Estimation

The kernel density estimation approach was first described by Davies, Beresford and Hopper

(22), and has since formed the basis for several derivative map inference techniques (23; 24; 25).

The basic operation of this algorithm is illustrated in Figure 3, and it begins by splitting the

geographic area covered by the raw GPS traces into a two-dimensional grid of cells. Iterat-

ing over each of the raw GPS points or edges, a two-dimensional histogram is then produced,
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(a) 2-dimensional histogram of raw
GPS traces.

(b) Initial density estimate.

(c) Thresholded density estimate. (d) Road centerlines are computed.

Figure 3. Map inference using kernel density estimation approach.

representing the number of points or edges that fall in each grid cell (Figure 3(a)). This his-

togram is then convolved with a Gaussian smoothing function (26), to produce an approximate

density estimate of the underlying data (Figure 3(b)). This is an approximation due to the

discretization created by the use of grid cells, where the accuracy of the approximation is in-

versely proportional to the grid size. The density estimate is then passed through a threshold

function to produce a binary image of the underlying road outlines (Figure 3(c)), and finally

the centerline between the road outlines is extracted (Figure 3(d)). The resulting centerlines

represent the map inferred using this technique.
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Beyond the basic operation described above, the technique proposed by Davies et al. in

(22) accounts for the edges between GPS points in the histogram, by an amount proportional

to the edge-length passing through each grid cell. Moreover, they utilize a novel method for

extracting road centerlines based on Voronoi tessellation (27), and they also produce KDEs of

traces in each of the 8 cardinal and ordinal directions, using the information to annotate each

road segment with its allowed directions of travel. We provide a qualitative and quantitative

evaluation of this KDE-based algorithm in Section 2.3 and 2.4.

2.2 Robust Quantitative Evaluation of Inferred Maps

In this section, we describe a method for evaluating the accuracy of a map, with respect to

a second “ground truth” map. This is a necessary requirement for a quantitative, comparative

evaluation of competing map inference algorithms.

The accuracy of an inferred map depends on two primary aspects of the map: geometry

and topology. Here, the geometry of the map describes the geographic location of roads, while

the topology describes the interconnections between roads.

A large body of work on graph similarity looks at the problem of comparing graphs (28).

This includes exact methods testing for graph isomorphism (29), and inexact methods mea-

suring graph edit distance (30). However, the problem of measuring graph similarity is funda-

mentally different from that of measuring map similarity: crucially, graphs and their nodes and

edges lack any notion of geographic location. Thus, while graph similarity algorithms are able

to measure the degree of topological similarity, their nodes and edges can be freely transposed
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in order to find the closest match. In a map however, the geographic location of nodes and

edges must be taken into account, in addition to their topological relationships.

To simultaneously measure the geometric and topological similarity of maps, we propose a

method based on the following idea: starting from a random street location, explore each map

outward within a maximum radius. This produces two sets of locations, which are essentially

spatial samples of a local map neighborhood. By comparing the two sets of samples, and

repeatedly sampling the maps in this fashion, we obtain a robust measure of the difference

between the two maps. If one of the maps is the ground truth, this difference represents the

accuracy of the other.

The operation of our map comparison algorithm is depicted in Figure 4. First, we select a

start location uniformly at random from the ground truth map. This point is marked with an

“X” in Figure 4(a). From the start location, we follow all road segments within a small matching

distance d, dropping virtual “holes” at fixed intervals until a maximum radius r from the start

location is reached, or a previously followed segment is encountered. When an intersection is

encountered, we follow all connecting road segments that lead away from the original location,

as turn restrictions and one-way streets allow. Restricting the process to segments leading away

from the origin elegantly de-emphasizes unlikely driving patterns such as u-turns, and improves

the robustness of the map comparison operation. We then repeat this process starting from

the closest point on the inferred map, marked with an “X” in Figure 4(b). Following the same

procedure, we drop virtual “marbles” at fixed intervals out to a radius r.
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X

(a) Holes are dropped at fixed intervals
along edges of the ground truth map.

X

(b) Marbles are dropped at fixed inter-
vals along edges of the inferred map.

(c) Marbles from the inferred map fill
holes where the maps overlap.

Figure 4. Overview of map comparison algorithm.



15

Intuitively, if a marble lands close to a hole, it falls in. This represents our matching

process. As illustrated in Figure 4(c), marbles that are too far from a hole remain where

they landed, and holes with no marbles nearby remain empty. In the figure, holes that are

filled correspond to “matched locations,” where the geometry and topology of the two maps

overlap. Unmatched marbles correspond to spurious parts of the inferred map, and holes that

remain empty correspond to parts of the ground truth map that are missing in the inferred

map. Counting the number of unmatched marbles and empty holes, we quantify the accuracy

of the inferred map with respect to the ground truth according to two metrics: the proportion

of spurious marbles,

spurious =
spurious marbles

spurious marbles+matched marbles
,

and the proportion of missing locations (empty holes),

missing =
empty holes

empty holes+matched holes
.

To produce a combined performance measure from these two values, we compute their

harmonic mean using the well-known F-score (31),

F = 2 · precision · recall
precision+ recall

= 2 · (1− spurious)(1−missing)

(1− spurious) + (1−missing)
,

where the higher the F-score, the closer the match.
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Sampling the maps locally is an important aspect of our approach as it provides us the

ability to capture the connectivity of the maps at a very fine-grained level (i.e., as they would

be traveled), therefore allowing us to measure topological similarity. Conversely, one could

imagine taking a global approach to this problem where we simply cover every edge in the

ground truth map with holes, and every edge in the inferred map with marbles, yielding a

single pair of sets to match. While such a process would capture the geometric similarity

between maps, it would fail to capture local topological similarity, a crucial aspect of overall

map similarity. Repeated local sampling at randomly chosen locations yields an accurate view

of local geometry and topology throughout the map.

2.2.1 Constructing the Ground Truth

In order to measure the accuracy of the inferred map, we need an accurate ground truth map

for comparison. We base our ground truth map on the OpenStreetMap (OSM) (32) database.

However, because this map contains many road segments that were never traversed by the

vehicles in our dataset, we restrict our ground truth map to those street segments that were

visited at least once. This reduced ground truth map reflects the most accurate road topology

that can be inferred by the available traces.

2.3 Qualitative Evaluation

In this section, we qualitatively evaluate the road maps generated by three representative

algorithms, one from each of the three classes described in Section 2.1. To make this comparison,

we first re-implemented the algorithms as described in their respective papers. For k-means

we use the algorithm by Edelkamp and Schrödl (“Edelkamp”) (15), for trace merging we use
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the algorithm by Cao and Krumm (“Cao”) (20), and for KDE-based map inference we use the

algorithm by Davies et al. (“Davies”) (22).

2.3.1 Evaluation Data

For trace data, we use 118 hours of GPS traces from the University of Illinois at Chicago

(UIC) campus shuttles. In addition to traveling around campus, these vehicles pass through

two different areas containing relatively tall buildings and significant GPS error. Figure 5(a)

provides an example of the distribution of traces and GPS error found in our dataset in one of

these high-error areas. In our evaluation, we study both the entire dataset and a subset of the

data drawn from an area of low-rise buildings where there is very little GPS error (see sample in

Figure 5(b)). Because GPS error can be a problem for map inference algorithms, partitioning

our data this way allows us to test and compare their performance on both a realistic, and

somewhat idealized dataset. The road maps inferred by each algorithm are depicted in Figures

5(c)–(h), and described below.

2.3.2 Davies et al.

Visually, this algorithm produces superior maps in areas with high GPS error. Because this

method avoids treating GPS traces individually, and instead uses them in aggregate to find the

road boundaries, it is able to create one road from a large collection of relatively diverse traces.

We can see this aspect of the algorithm illustrated in the difficult high-error case in Figure 5(c),

where it accurately extracts the road topology without adding any extraneous edges. In the

low-error case in Figure 5(d), the result is largely the same. However, we must note the absence

of the less-traveled road segment on the right-hand side. This illustrates the fundamental trade-
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(a) Raw data, high-error sample. (b) Raw data, low-error sample.

(c) Davies, high-error sample. (d) Davies, low-error sample.

(e) Cao, high-error sample. (f) Cao, low-error sample.

(g) Edelkamp, high-error sample. (h) Edelkamp, low-error sample.

Figure 5. Raw data and map inference results in areas with high and low GPS error.
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off with this algorithm: any given threshold value must compromise between introducing noise

in high-density areas, and losing infrequently traveled edges in low-density areas.

2.3.3 Cao and Krumm

The clarification pre-processing step performed in this algorithm helps reduce GPS noise

prior to map inference, and in noise-free areas results in cleanly inferred maps as demonstrated

in Figure 5(f). However, clarification has its limitations in areas with high GPS error, where

spatially dispersed traces are unable to become tightly banded. As a result, when the trace

merging method is applied to the clarified data, residual noise results in the spurious roads seen

in Figure 5(e). Although this algorithm attempts to prune spurious roads after map inference,

its efforts are largely futile in areas of high GPS noise where edge volume is widely distributed.

2.3.4 Edelkamp and Schrödl

This algorithm creates road segments by linking clusters based on the underlying trace

data, and works well in areas with low GPS noise as we can see in Figure 5(h). However, this

cluster-linking method is easily led astray by GPS noise and results in several spurious roads

being produced, as illustrated in Figure 5(g). Because this algorithm does not attempt to prune

spurious roads after inference, all of these roads remain in the final map. Worth noting here is

that our implementation does not include intersection refinement and lane-finding. While these

additional steps would have likely improved its results on the low-error dataset, they would

have had little or no effect on the high-error dataset.
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2.4 Quantitative Evaluation

In this section, we use the map comparison method described in Section 2.2 to quantitatively

evaluate the three representative algorithms described in Section 2.3. We also discuss parameter

sensitivity and implementation details below.

2.4.1 Main Quantitative Results

Figures 6(a) and 6(b) illustrate our main results, showing the performance of the three

algorithms for a varying “matching threshold.” The matching threshold is the allowable distance

between a marble and hole before it falls in. Detailed discussion of these results follows.

In Figure 6(a) we can see the performance of the three algorithms as tested on the full

dataset. For small matching thresholds, the fine-grained spatial accuracy of the algorithms is

significant, with both Davies and Cao underperforming Edelkamp at the 5-meter threshold.

For Davies, this is explained by the fact that it generates a single bi-directional centerline,

whereas the others produce one edge in each direction. On a wide road, the distance between

the centerline and the center of the road in one direction may well exceed 5 meters. A similar

problem is exhibited by Cao, where lanes in opposite directions are artificially spread apart to

improve legibility. This introduces a slight error, which shows up as poor matching performance

for a 5-meter threshold.

On the low-error dataset, all of the algorithms unsurprisingly achieve a higher F-score (see

Figure 6(b)). However, while Davies continues to outperform both Cao and Edelkamp at 15-

and 25-meter matching thresholds, the prevalence of wide, median-separated two-way roads in

this dataset allows Edelkamp to outperform Davies at 5- and 10-meter matching thresholds.
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(f) Davies map-matched algorithm, low-error dataset.

Figure 6. Overall results on the full and low-error datasets.
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2.4.1.1 Addressing Directionality Finding in Davies

In contrast with the other two approaches, Davies generates a single centerline for each

street, with a directionality annotation. The authors in (22) use a technique that measures the

direction of travel through each grid cell (as mentioned in Section 2.1.4) to extract the allowed

directions of travel. However, in our testing this method did not fare well: many streets that are

bi-directional in the ground truth, were not represented as such in the inferred map. To correct

for this problem we experimented with two different modifications to the Davies algorithm.

First, we simply discarded the directionality-finding component of the Davies algorithm,

making every road bi-directional. While this now allowed for bi-directional roads whose direc-

tionality was incorrectly inferred to be correctly represented, it also introduced the problem of

incorrectly representing one-way streets as bi-directional. On the full dataset, which consists

of a large number of one-way and bi-directional streets, this tradeoff resulted in no net perfor-

mance gain, as can be seen in Figure 6(c). In our low-error dataset however, which consists

predominantly of bi-directional roads, we can see that the bi-directional Davies implementation

achieved a notable performance gain (see Figure 6(d)).

As an alternative to the directionality-finding technique in (22), we map-matched our GPS

traces onto the inferred bi-directional map described above, using Viterbi map-matching (33).

We then used the resulting sequences of road segments to infer road directionality. The rel-

ative performance of the three techniques is shown in Figures 6(c) and 6(d). Here, the line

designated “Davies” is identical to the one in Figures 6(a) and 6(b). Building on an already
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strong performance, this map-matching technique gives the KDE-based algorithm by Davies a

significant advantage over the alternative approaches.

2.4.1.2 Remaining Challenges

Even with our map-matching improvements to the Davies algorithm, some challenges re-

main. Primarily, the choice of a density threshold for Davies is made globally across the entire

map. If the chosen threshold value is too low, excess noise is added to the map in the form

of spurious roads. If the value is too high, portions of the map with relatively low density are

treated as spurious and removed, resulting in missing roads. This behavior is illustrated in

Figures 6(e) and 6(f). Here, we can see that the F-score is largely constant over a wide range

of density threshold values. However, by studying the components that make up the F-score

(i.e., missing and spurious), the trade-off is clearly seen. As the density threshold increases,

the proportion of spurious edges decreases (i.e., precision increases), while the proportion of

missing edges increases (i.e., recall decreases) as low density roads are pruned from the map.

We believe this insight is the key to further improvements to the KDE-based method—only

marginal improvements will be made as long as the constant threshold used in the current

algorithm remains.

2.4.2 Parameter Sensitivity and Implementation Details

Each of the algorithms described above includes several tuning parameters. We conducted a

sensitivity analysis in order to determine which of those most significantly impact performance,

by fixing the values of one parameter and allowing all others to vary. Some of the results of

this analysis are discussed below.
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Figure 7. Parameter sensitivity testing for the three reference algorithms.



25

2.4.2.1 Davies et al.

Our implementation of this algorithm closely follows the description in (22), with the ad-

ditional modifications discussed in Section 2.4.1.1. The parameters for this algorithm are: cell

size, density threshold, kernel bandwidth, and number of traces used to infer the map. Figures

7(a) and 7(b) illustrate this algorithm’s sensitivity to cell size and density threshold. In Figure

7(a) we see that a smaller cell size will always produce a better result with a fixed bandwidth

kernel, as this simply improves granularity. We can see in Figure 7(b) that the density threshold

is not a particularly sensitive parameter over a wide range of values, and this is directly related

to the trade-off between missing and spurious roads, as discussed in Section 2.4.1.2. However,

once the threshold reaches a value that is too high, no roads remain in the map and F-score

reaches zero.

2.4.2.2 Cao and Krumm

Our implementation of this algorithm follows the description in (20) closely, with map

inference being preceded by clarification. The parameters for this algorithm are: edge volume

threshold, location distance threshold, location bearing difference threshold, and number of

traces used to infer the map. Figures 7(c) and 7(d) illustrate this algorithm’s sensitivity to

edge volume threshold and the number of traces used to infer the map. In Figure 7(c) we see

that increasing the edge volume threshold (used for pruning spurious edges from the inferred

map) increases map accuracy, as spurious edges are removed. However, we also see that if

we prune too aggressively legitimate roads may end up being incorrectly removed, decreasing

accuracy. We can see in Figure 7(d) that performance decreases with the number of traces
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used to infer the map, a result of the increased noise that comes with a larger dataset, and this

algorithm’s inability to overcome that error.

2.4.2.3 Edelkamp and Schrödl

Our implementation of this algorithm follows the description in (15), with the exception

that no intersection refinement or lane-finding is done. The parameters for this algorithm are:

cluster seed interval, intra-cluster bearing difference threshold, intra-cluster distance threshold,

and number of traces used to infer the map. Figures 7(e) and 7(f) illustrate this algorithm’s

sensitivity to intra-cluster distance threshold and the number of traces used to infer the map.

In Figure 7(e) we see that performance improves with increasing intra-cluster distance, as this

increases the clusters’ resistance to noise in the GPS traces. We can see in Figure 7(f) that

performance decreases with the number of traces used to infer the map, as similar to Cao, the

larger dataset includes more noise which this algorithm is unable to overcome.

2.4.3 Algorithm Runtime

The runtime of these algorithms vary dramatically, due to differences in algorithmic com-

plexity. In particular, Cao suffers in dense neighborhoods where it exhibits quadratic complex-

ity. On a subset of 100 traces, Cao finished in 2.5 hours, Edelkamp in 73 seconds, and Davies in

8 seconds. Our map-matched version of Davies finished in 106 seconds. On the full set of 899

traces, Cao required 2.5 days, Edelkamp 15 minutes, and Davies 25 seconds. The map-matched

version of Davies finished in 14 minutes.
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2.5 Conclusion

Robust quantitative evaluation methods, and rigorous comparison against prior work are

important tools for furthering any field of scientific inquiry. Using the new tools presented

here, we compared three algorithms from the literature. Overall, the algorithm by Davies et. al

(22) was found to significantly outperform the others under a variety of conditions. Using our

quantitative evaluation method, we were able to identify opportunities for further improvement

to this algorithm. Some of these were implemented and evaluated here yielding a further,

significant performance improvement.

In Chapter 4 we will leverage these lessons to build a new map inference algorithm that is

resistant to both noise and disparity in GPS data. First, however, in Chapter 3 we will look at

extending Davies et al.’s algorithm to the problem of inferring road maps from GPS trace data

that is sampled infrequently (or, “sparsely”). This is a phenomenon we did not encounter with

our UIC shuttle dataset, and as we will see, it is one that poses significant additional challenges.

2.6 Copyright Information

The material in this chapter originally appeared in the following publication: Biagioni,

J. and Eriksson, J.: Inferring Road Maps from Global Positioning System Traces: Survey

and Comparative Evaluation. Transportation Research Record: Journal of the Transportation

Research Board, No. 2291, pages 61–71, Washington, D.C., 2012. Reprinted by permission of

the Transportation Research Board.



CHAPTER 3

INFERRING ROAD MAPS IN THE FACE OF DATA SPARSITY

With the ever-increasing use of GPS-enabled smartphones and telematics systems, vehicles

equipped with these devices now cover road networks around the globe. Fortunately, GPS traces

are often readily available from these vehicles. For example, taxi dispatching that utilizes GPS

technology has been around for more than a decade (34), and real-time taxi traces are available

in several major cities (35; 36; 37; 38), enabling an unprecedented opportunity to infer maps

for many major population centers.

However, the nature of these GPS traces differs significantly from those used in the literature.

Most importantly, due to bandwidth and storage cost concerns, sampling rates much lower than

1 Hz are common (39; 38). Although the much larger volume of data may well compensate for

this limitation, none of the algorithms referenced in Chapter 2 are designed for this type of sparse

sampling. For example, a key design tradeoff in map inference algorithms is whether to use

GPS samples alone (15; 10; 16; 23; 24; 19) or the segments that connect consecutive samples

(22; 12; 20). Using individual samples alone, sparsely sampled roads may be fragmented or

missed entirely. Using segments, we may recover sparsely sampled roads, but we may also

recover segments that pass over areas where no road actually exists. For example, two samples

taken on either side of a right-angle turn may suggest a non-existent diagonal street.

Figure 8 illustrates this tradeoff with sparse taxi data from Shanghai (40). Here, there are

2,300 taxis reporting their locations, with a sampling rate of 16 seconds when vacant, and 61

28
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Figure 8. Sample of raw GPS data from 2,300 taxis in Shanghai.

seconds when occupied (38). We draw each sample as a black dot, and connect consecutive

samples by line segments. As we can see, most dots and lines are well-aligned with roads.

The thick horizontal curve in the center corresponds to an elevated freeway, where its greater

thickness can be attributed to several factors, including road width, number of samples, and

the lines connecting these samples incorrectly widening the curve inward. This “widening”

problem is clearly seen in the highlighted area “1” in Figure 8. Area “2” in Figure 8 illustrates

the problem with having an uneven distribution of samples. Inside the area there are two local

roads that intersect orthogonally, which are covered by samples with a density much lower than
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major roads, almost on par with noise density. In this case, we cannot visually detect such

roads without connecting consecutive samples or obtaining substantially more data.

In light of these issues, in this chapter we investigate two techniques for inferring maps from

sparse data: (i) a sparse-data adaptation of the KDE algorithm by Davies et al. (22), and

(ii) a trace clustering algorithm specifically designed for sparse data by Liu et al. (41). For

completeness, we also examine Edelkamp and Schrödl’s k-means algorithm (15), and provide a

qualitative and quantitative comparison of these techniques on two sparsely sampled datasets.

3.1 Map Inference Using Sparse Data

For sparse GPS traces, the straight line between successive samples does not necessarily

correspond to the actual road driven. Consider a car turning a corner: with one sample well

before the turn, and one sample well after the turn, the straight line between samples would be

likely to cut straight through a building. There is a natural precision/recall tradeoff between

using the sample locations alone vs. also using the line segments of the trace paths: if an

algorithm uses the samples alone, it risks having lower recall for roads less traveled. For

example, consider area “2” labeled in Figure 8. Such a road may be better detected by an

algorithm that takes into account the line segment between samples. However, due to turns

and curvy roads, this is likely to result in lower precision, as illustrated by area “1” of Figure 8.

In this section, we describe two map inference methods for sparse trace data. One is a

modification to the existing KDE algorithm by Davies et al. (22), and the other is a trace

clustering algorithm by Liu et al. (41), designed specifically for sparse data.
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3.1.1 Kernel Density Estimation

We implement two variants of the KDE map inference algorithm from (22): point-based

KDE and segment-based KDE. In both cases, the map is represented by a fine grid of cells.

A two-dimensional histogram is produced by counting, in the case of point-based KDE, how

many samples are within each cell, or in the case of line-based KDE, how many segments

pass through each cell. Here, the line-based KDE is the original method as proposed in (22),

and the point-based method is our modified version targeted at sparse data. As described in

Section 2.1.4, this histogram is then convolved with a Gaussian smoothing function to produce

a density estimate, which is thresholded, and then the road centerlines are extracted using

Voronoi tessellation (27).

Besides the choice of using either points or line segments, the fundamental control parameter

for the KDE algorithm is the density threshold used to find the road outlines. As discussed

in Section 2.4.1.2, a high threshold may miss roads with few samples, and a low threshold

may produce spurious roads due to noise. This problem is prominent with the taxi data,

illustrated by Figure 8. We evaluate these design choices in detail in Section 3.3. To ensure

portability of thresholds between datasets, in this chapter we express thresholds in terms of

density percentiles, rather than absolute values. For example, grid cells with a density above

the 80th percentile may be considered roads, independent of the size of the map, or number of

sample points.
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3.1.2 Trace Clustering Algorithm

To explore the use of line segments for inferring maps from sparse GPS traces, Liu et al.

(41) designed a trace clustering algorithm named “TC1” (41). Its operation proceeds in four

main steps, detailed below.

1. Segment Selection. As a first step, this algorithm selects a subset of trace segments

from the raw GPS data that are likely to fall on an actual road, as opposed to across a

building. These are selected using a simple heuristic: for a given pair of GPS samples

(a, b), if a has roughly the same bearing as b then the vehicle likely followed a straight

path from a to b, and is therefore selected. Figure 9(a) demonstrates the effect of segment

selection on the dataset illustrated in Figure 8.

2. Clustering. After segment selection, the remaining segments are clustered using a

method based on single-linkage clustering (42). Initially, each segment represents its

own cluster, and clusters are iteratively merged that are similar in both orientation and

geographic distance. The segments of Figure 9(a) have been clustered (represented by

color) in Figure 9(b), and replaced by their end-points. After this step, segments are no

longer used, and therefore we display each cluster by samples alone.

3. Y-split separation. The clustering in Step 2 performs well for orthogonal roads, but for

roads that have Y-splits of a sufficiently narrow angle, multiple roads can become merged

into one cluster. To separate these Y-splits, the major axis of each cluster is traversed,

building a polyline incrementally with nodes at least 100 meters apart, selected so that

pairs of adjacent segments do not turn excessively. The result of this process can be seen
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(a) Trace segment selection.

(b) Clustering.

(c) Y-split separation.

Figure 9. Three steps of the trace clustering algorithm TC1.
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in Figure 9(c), where the large blue cluster that covers the horizontal freeway in Figure

9(b) is now separated into several sub-clusters representing distinct roads, as shown by

their different colors.

4. Centerline fitting. Lastly, the centerline of each road is computed using B-spline fitting

(10), resulting in road centerlines that curve naturally to fit the actual GPS trace points,

which we display later in Figure 16(c). Similar to the density threshold used by the

KDE algorithms, here a global threshold determines the minimum support needed to fit

a cluster, called the “support threshold” hereafter.

3.1.3 Other Map Inference Algorithms

Map inference algorithms designed for high-density, high-accuracy data, typically work

poorly on low-density or low-accuracy data. For example, Edelkamp and Schrödl’s k-means

(15), and Cao and Krumm’s trace merging (20) algorithm implementations in Chapter 2 produce

numerous spurious roads when applied to high-error samples obtained near high-rise buildings.

These algorithms perform even worse when both error and sampling interval are high. For

example, we applied Edelkamp and Schrödl’s k-means algorithm (15) to our Shanghai taxi data

set. While the clustering step is able to locate many clusters near road centers after several

iterations, the topology discovery step produces an almost completely connected graph among

all cluster centers. This is because a vehicle may travel through multiple clusters between two

sparse samples, and the algorithm simply connects the two end-points. Finding the correct

sequence of clusters it passes through is non-trivial.
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3.2 Evaluation Framework

To evaluate the quality of the results from our map inference algorithms, we measure their

performance both qualitatively and quantitatively, using manually verified portions of Open-

StreetMap (32) as our ground truth data. Unfortunately, because the TC1 algorithm (41) is

only capable of inferring the geometry of a map (and not its topology), in order to measure

quantitative performance we must resort to a purely geometric evaluation.

As was the case with our evaluation technique presented in Section 2.2, here we perform

our geometric-only quantitative evaluation by measuring the precision and recall of the inferred

road map M with respect to a ground truth map Truth. To do this we determine the “true

positive length,” tp = M
⋂
Truth, as a measure of common road length which we define shortly.

Then we compute,

precision =
tp

||M ||
, recall =

tp

||Truth||

where || · || measures the total length of the roads in the set. We then combine these two

measurements into a single performance value by computing their F-score (31).

To compute the intersection M
⋂
Truth, we start by traversing each ground truth road

segment t ∈ Truth and take samples at 1-meter intervals. We then calculate how many of those

samples fall within a perpendicular distance threshold m of a (nearest) segment t′ ∈ M , such

that the orientation difference between t and t′ does not exceed 60◦. The angle restriction avoids

matching portions of roads that cross at intersections, but allows for substantial misalignment

of the inferred road.
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In order to additionally measure the typical road centerline offsets from the ground truth,

we separately compute a histogram of perpendicular road distances of each 1-meter sample

from each segment t′ ∈ M to the nearest road segment t ∈ Truth. For an inferred map with

accurate centerline positions, we should obtain a sharp histogram within a small distance from

the centerline.

3.3 Experimental Results

In this section we perform a qualitative and quantitative evaluation of both KDE variants

and the TC1 algorithm, on two separate datasets described below.

3.3.1 Datasets and Ground Truth Map

For our evaluation we use two different datasets: 118 hours of traces from the UIC campus

shuttles in Chicago (as in Chapter 2), and one month of traces from 2,300 taxis in Shanghai (40).

The Chicago data is sampled at 1 Hz, using commodity, low-cost SiRF-3 GPS receivers installed

in 13 vehicles. Spatial resolution of this data is 0.000001 degrees latitude and longitude (less

than 0.1 meters), offset by GPS noise with a standard deviation of 3.3 meters. Additionally, as

discussed in Section 2.3.1, certain portions of the Chicago data contain significant noise (tens

of meters) due to nearby high-rise buildings. This dataset represents the best quality data

one might expect to receive from passive data collection using non-survey grade equipment.

However, the coverage of this dataset is limited, due to the small number of vehicles and their

regular driving patterns.

The Shanghai data was collected by 2,300 taxis, providing excellent coverage of freeways and

arterials. However, compared to our Chicago data, the quality of the recorded traces is decidedly
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less stellar. The taxis report their location at various intervals, the most common being 16

seconds (when vacant) and 61 seconds (when occupied). These longer sampling intervals are

quite common among the taxi dispatching systems we are aware of (35; 39; 36; 37). In addition

to this, the spatial resolution of these traces varies between 0.0001 and 0.0002 degrees latitude

and longitude, or about 10–20 meters, and bearing is reported at a resolution of 45 degrees (38).

We speculate that the taxis were using an early generation of GPS devices, resulting in these

poor specifications. The test-area for our Shanghai dataset is shown in Figure 8.

For our ground truth, we select portions of OpenStreetMap (OSM) data that we have

manually verified. Curiously, judging by our raw GPS traces, the OSM map in the Shanghai

region suffers from a bias to the northeast, which is visible in Figure 8 when viewed at high

magnification. We observe that most roads in Shanghai agree with the aerial images and were

likely created by manually tracing the shape of the roads on the satellite imagery. This suggests

that the aerial images are misaligned (see (38) for more detail). Based on a visual comparison

with the locations reported by the taxi fleet, we shift the ground truth map 15 meters to the

east and 12 meters to the north for a more faithful evaluation.

As discussed in Section 3.1, we need to determine the density threshold for our KDE algo-

rithms and the support threshold for TC1. In addition to these map inference control parame-

ters, we also need to pick a matching distance threshold for our evaluation (i.e., the maximum

distance between inferred and ground truth roads that we consider as a match). Since our

Chicago dataset is relatively small in terms of the number of traces and area covered, we do not

separate training and testing data for parameter tuning. Instead, we set the matching distance
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threshold to 20 meters, based on typical GPS error ranges and road widths (38), and manually

select the optimal density and support thresholds for our experiments. We use this dataset

primarily to evaluate the accuracy of our algorithms under different temporal resolutions.

On the other hand, our Shanghai dataset covers the entire metropolis for one month. Here,

we first examine each algorithm threshold separately to understand its effect. Then we use data

from a different area in Shanghai for training, and apply the tuned parameters to our test set for

a fair comparison of all algorithms. The Shanghai GPS data and its road network are decidedly

more diverse than our Chicago dataset. For example, while the Chicago dataset covers only

straight roads aligned to the four cardinal directions, the Shanghai dataset covers curved roads,

Y-splits, five-way intersections, and several different road types. Ultimately, “stress testing”

using the Shanghai data will exhibit many important issues for map inference using sparse data.

3.3.2 Chicago Shuttle Bus Dataset Results

The Chicago dataset in its original form has high resolution in both the spatial and temporal

dimensions. To better understand how temporal resolution impacts map inference, we vary the

temporal resolution of this data via sub-sampling. Figure 10(a) shows the F-score of each

algorithm at sampling intervals of 1, 2, 4, ..., 256 seconds.

As the sampling interval increases, performance of the KDE-based methods gradually de-

creases, with the line-based method (“KDE lines”) dropping off considerably when sampled

at 32 second intervals and beyond. Intuitively, for larger intervals, the line-based method is

likely to produce many diagonal segments, cutting across buildings instead of following the

roads. This intuition is corroborated by Figure 10(b), where the precision of the line-based



39

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  64  128  256

F-
sc

or
e

Sampling Interval (seconds)

TC1
KDE points

KDE lines
Edelkamp

(a) F-score for varying sampling interval.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  64  128  256

Pr
ec

isi
on

Sampling Interval (seconds)

TC1
KDE points

KDE lines
Edelkamp

(b) Precision for varying sampling interval.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  64  128  256

R
ec

al
l

Sampling Interval (seconds)

TC1
KDE points

KDE lines
Edelkamp

(c) Recall for varying sampling interval.

Figure 10. Performance results for all algorithms on the Chicago Shuttle Bus dataset.
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KDE method drops off quickly at 32 seconds or more, while recall decays more slowly, as seen

in Figure 10(c).

The point-based KDE variant (“KDE points”) shows somewhat increased tolerance for

temporal sparsity, with its F-score being largely maintained up to the 64 second interval. Beyond

64 seconds, the decreased density fails to fully cover the roads, resulting in a map with poor

recall. However, for the roads it does infer, their precision remains high up until 256 seconds,

where no roads were found at all. Overall, both KDE methods suffer from relatively low recall,

as a large section of the ground truth map is very lightly traveled compared to the rest of the

map, which the global density threshold discards as noise.

The TC1 algorithm offered the best overall performance across the range of sampling in-

tervals, with both high recall and precision. However, interestingly, TC1’s performance does

not consistently improve with higher sampling rates. Anecdotally, we found that dense data

at intersections sometimes linked two perpendicular roads into one cluster, with the resulting

centerline matching neither road.

Edelkamp and Schrödl’s k-means algorithm (15) (“Edelkamp”) produced poor results over-

all. We believe that this class of algorithm is unsuitable for sparse data, due to its strong

tendency to produce spurious segments as data sparsity increases. This is evidenced by the

very low precision scores achieved by this algorithm in Figure 10(b). Due to its poor perfor-

mance in this initial evaluation, we omit Edelkamp from any further comparisons.

Figure 11 shows the road maps inferred by all of our algorithms at a 60-second sampling

interval. In Figure 11(a) we can see that the line-based KDE method suffers from a large number
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(a) Line-based KDE, low threshold. (b) Line-based KDE, high threshold.

(c) Point-based KDE, low threshold. (d) TC1.

Figure 11. Map inference results in Chicago with 60-second sampling interval.
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of spurious edges, as corners are pulled inward along shuttle routes. While a higher density

threshold mitigates this problem (see Figure 11(b)), it results in reduced coverage instead.

In Figure 11(c) we see that the point-based KDE method does not suffer from the “corner

problem” and produces a high-precision map. However, because it is unable to infer roads that

are not entirely covered by samples, many ground truth segments are missing. Overall, since

the point-based KDE method is less prone to producing spurious density, it tends to produce

better results with a low density threshold. Finally, in Figure 11(d) we see that TC1 has good

coverage, producing centerlines that match the road shape well as a result of spline fitting.

Qualitatively, we observe a large number of small gaps where road segments meet—an artifact

of this algorithm deliberately discarding turns. However, this does not impact precision and

recall, and simply connecting nearby segments may resolve this issue.

3.3.3 Shanghai Taxi Dataset Results

The Shanghai dataset presents a much larger and more complex problem than the Chicago

dataset. Here, we first study how the matching distance threshold affects the evaluation results.

Recall that the Shanghai dataset represents locations in 0.0001–0.0002 increments of latitude

and longitude, resulting in 10–20 meter spatial resolution.

Figure 12 shows, for each algorithm, how the F-score varies with the matching distance

threshold. These results are based on a 6-hour dataset from the area shown in Figure 8, and

we manually select the density thresholds for KDE methods and the support threshold for TC1

that produce the highest scores. A larger matching distance naturally increases the number of



43

 0.1

 0.3

 0.5

 0.7

 0.9

 10  20  30  40  50

F-
Sc

or
e

Matching Distance Threshold (meters)

TC1
KDE points

KDE lines

Figure 12. F-score for each algorithm on a 6-hour dataset, for varying matching distance
thresholds. All three algorithms level out around 20 meters.

matched roads, allowing both precision and recall to monotonically increase. However, we note

that the increase levels off near the 20 meter threshold used previously in this chapter.

Based on the same dataset and algorithm parameters, Figure 13 shows the distribution of

distances between the inferred roads and the ground truth map for all three algorithms. Again,

few inferred roads fall outside our default 20 meter matching distance threshold. However, there

is a relatively heavy tail of distances over 60 meters, suggesting room for further improvement.

Figure 14 illustrates the trade-off in selecting the density threshold for KDE and the support

threshold for TC1, using the same 6-hour dataset. As F-score is the harmonic mean of precision

and recall, the best F-score is attained towards the top right corner, and the isoclines in the

background connect precision-recall points with equal F-score.
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Figure 15. Precision and recall as the number of hours of Shanghai taxi data is varied.

For the KDE methods we see that increasing the threshold reduces the number of spurious

roads (increasing precision), but also discards roads less frequently traveled (reducing recall).

Perhaps counterintuitively, the line-based KDE method is unable to match the recall perfor-

mance of its point-based variant despite drawing the full line between each pair of points. This

apparent contradiction is explained by the centerline-finding step in the KDE algorithm: with a

low threshold, the line-based KDE method will produce large areas of solid “road surface,” for

which the centerline-finding method then produces a single road, significantly limiting recall for

this algorithm. A lower support threshold increases the recall of TC1, but it is less correlated

with precision. The pruning step of TC1 removes most of the noise, and the clusters obtained

afterwards are generally accurate.
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Next we study how each algorithm performs as we vary the amount of input data. We

select a different training area of similar size in Shanghai for parameter tuning, and find the

density thresholds for our KDE methods and the support threshold for TC1 that produce the

best F-scores. For TC1, the same threshold is then used for the test area depicted in Figure 8.

For our KDE methods, the density percentile of the threshold is preserved, rather than the

absolute value. Figure 15 shows the precision, recall, and F-score results as we vary the input

data from one hour to one month.

As one might expect, recall initially increases rapidly as trace coverage improves. However,

increasing the amount of data has relatively little effect on precision. This is because we

train the algorithms separately for each data size, which automatically adjusts the thresholds

to compensate for the extra data. Overall, any performance improvement starts to level off

around one week of data (for the point-based KDE method), and 24 hours (for TC1). For

TC1, this can be explained by the use of single-linkage clustering: additional data increases

the diversity of points, which raises the probability of nearby clusters merging incorrectly. We

did not run TC1 for datasets larger than two days due to its high runtime complexity. For the

point-based KDE method, over-fitting to training data appears to be one culprit: for the larger

datasets, a lower threshold than that produced in training results in a considerably better map

for the test area. This suggests that there is room for improvement in the way the point-based

algorithm is trained. Overall, we find that the point-based KDE method and TC1 exhibit

similar numerical performance, with the line-based KDE algorithm falling far behind.
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(a) Line-based KDE (1 month). (b) Point-based KDE (2 weeks).

(c) TC1 (8 hours).

Figure 16. Map inference results in Shanghai.
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Finally, Figure 16 shows the inferred maps from all three algorithms, using the bounding

box from Figure 8. This yields some valuable qualitative insight into the relative performance

of the three algorithms. The line-based KDE method chooses a high threshold out of necessity,

in order to distinguish between roads. This, in turn, reduces recall leading to a clean, but

sparse-looking map (Figure 16(a)). The point-based KDE method produces what appears

to be a very accurate map, with very few spurious road segments (Figure 16(b)). This is

somewhat surprising, given the merely 90% precision reported in Figure 15. However, upon

closer inspection, the point-based KDE map exhibits road jaggedness (an artifact of the KDE

centerline-extraction method) in several places, significantly increasing total road length, thus

reducing precision according to the definition in Section 3.2. The TC1 map (Figure 16(c)) shows

very good coverage, but its precision is hampered by a number of spurious road segments. This

map also exhibits the disconnected road segments discussed in Section 3.3.2.

3.4 Conclusion

In this chapter, we have highlighted the problem of inferring road maps from sparsely

sampled GPS trace data, which will increasingly become available as a byproduct of other

processes. Given the continuing desire to minimize communication costs and the very large

install base of sparsely recording GPS tracking systems, we hold that there will be an ongoing

need for inference algorithms that can deal with sparse data. Such robust algorithms may

succeed partly by the large volume of data available in this form. While this chapter has assessed

existing algorithms, the results show there is ample space for ongoing algorithms research.
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CHAPTER 4

INFERRING ROAD MAPS THROUGH GPS NOISE AND DATA

DISPARITY

Inferred maps today do not offer the quality we expect of real maps. The existing state of

the art in map inference (20; 15; 22) is highly sensitive to disparities in the number of trips

made on different roads and to the high levels of GPS noise often encountered in urban areas,

typically resulting in maps with either poor coverage or a multitude of spurious and misaligned

roads. In Chapter 2 we compared the performance of several existing map inference algorithms

on a dataset with significant noise and disparity. While each algorithm showed some strengths,

the primary conclusion drawn was that all left significant room for improvement.

In this chapter, we propose a hybrid map inference method that combines the best aspects

of these existing algorithms with several new innovations to produce the most accurate map

inference method to date. Specifically, we: (i) develop an extensible, hybrid map inference

pipeline with high tolerance to disparities in coverage and GPS noise, (ii) describe a gray-scale

skeletonization algorithm for extracting map centerlines from a density estimate, (iii) present

a trajectory-based topology refinement technique for edge pruning and intersection merging,

(iv) demonstrate a trajectory-based geometric refinement technique for estimating intersection

geometries, and (v) conduct a comparative evaluation of the proposed pipeline against several

existing map inference techniques from the literature.

50
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4.1 A Hybrid Map Inference Pipeline

In this section, we present a scalable, extensible map inference pipeline, and motivate its

design. In addition to creating a high-performance map inference engine, we aim to provide

a reusable framework within which improvements to individual components may be made and

evaluated by the community. To this end, the source code of our map inference engine, together

with example trace data and ground truth maps, are made available on our website (8).

The list below gives a general overview of our pipeline, where each step builds upon the

output of the one before it. In this chapter, we propose an effective method for each step in

turn, but expect future research to offer further improvements for each of the various steps.

1. Density Estimation. The full set of GPS traces is passed through a kernel density

estimator, producing a single density estimate for the area of interest.

2. Initial Map Generation. Road centerlines are extracted using our new gray-scale

skeletonization algorithm.

3. Trace Map-Matching. Viterbi map-matching (33; 43) is used to associate each GPS

sample in the original traces with an edge in the initial map, weighted by the mean density

beneath each edge.

4. Topology Refinement. The map-matched traces are studied to remove low-confidence

edges, merge redundant nodes, and infer allowable edge transitions.
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5. Geometry Refinement. Intersections and road segments are aligned, turn lanes are

extracted, transforming our topologically-accurate road map into a more geometrically-

accurate finished map.

In a major departure from prior work, we combine initial density processing as in (22;

25; 23; 24) with subsequent trajectory processing (20; 15; 16; 17; 18; 19; 12). As shown in

Chapter 2, density processing holds a significant advantage over trajectory processing in terms

of robustness to noise and computational complexity, both important considerations as we

grow the amount of trace data used. Density estimation’s ability to very efficiently consider

all traces simultaneously allows us to find an optimal road skeleton, rather than resorting to

greedy approximations.

Existing density-based approaches are highly sensitive to density disparities between roads—

we address this in Section 4.3. More critically, density-based approaches are poorly suited to

detecting turn restrictions and grade-separated roadways, as they discard the relationships

between points. By preserving these relationships, trajectory-based techniques are better able

to perform fine-grained trajectory analysis such as lane detection (15; 10; 11), allowable turn

detection (10), and spline fitting of road curvatures (15; 10; 16; 19). However, the prohibitive

complexity of computing globally optimal solutions based on trajectories has led to a variety

of greedy solutions in the literature. None of these are robust to noisy GPS data, resulting in

poor map quality (2).

By map-matching the original traces to a density-based map in Step 3, we recover the

relationships between successive samples without the noise sensitivity and scalability problems
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(a) Binary mask of original traces. Coverage density
varies by three orders of magnitude, including very sig-
nificant noise in some areas.

(b) Kernel density estimate. Darker regions correspond
to frequently traveled road segments. Some roads are
very faint.

Figure 17. Kernel density estimation produces a continuous distribution out of a noisy set of
GPS traces.

associated with trajectory-based map inference algorithms. One may interpret map-matching

noisy traces to a noise-resilient scaffold as a replacement for the clustering or merging step in

existing trajectory-based methods. After matching, we may safely assume that every point

matched to an edge is a (potentially noisy) sample from a single road. On rarely traveled roads,

however, the noise problem persists: determining whether an underlying road is accurately

represented by a single, potentially noisy trace, is an open problem. We now discuss each step

in more detail.

4.2 Density Estimation

In the first stage of the pipeline, the full set of GPS traces is condensed into a single two-

dimensional density estimate using the KDE algorithm described in Section 2.1.4.
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(a) Binary map image derived by applying a high
threshold to the KDE.

(b) Binary map image derived by applying a low thresh-
old to the KDE.

Figure 18. Simple binary thresholding does not work well, as no single threshold achieves
both high accuracy and high coverage.

Figure 17(a) shows a sample of raw GPS traces, with its corresponding kernel density

estimate shown in Figure 17(b). The density estimate shows clear and smooth peaks along

the most heavily traveled roads in our dataset. In the next section, we extract an initial road

network based on the density estimate computed here.

4.3 Gray-scale Skeletonization for Road Centerline Finding

As shown in Figure 18(a) a simple binary threshold may be used to produce a binary mask

of the most popular roads. However, as seen in Figure 18(b), simply lowering the threshold

to include less popular roads also admits a great deal of GPS noise in some areas, creating a

difficult dilemma.

The canonical skeletonization algorithm, due to Zhang and Suen (44), produces a character-

istic skeleton from a binary image, as illustrated in Figure 19(a). As mentioned above however,
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(a) Skeleton from binary image. (b) Gray-scale skeleton from KDE.

Figure 19. Binary skeletonization vs. gray-scale skeletonization. Gray-scale skeletonization
produces more edges, but each edge is more accurate, and annotated by a gray-scale level.

no single threshold can produce a binary image that is both inclusive and accurate in the pres-

ence of density discrepancies and GPS noise. Below, we extend the original skeletonization

technique to multi-intensity (gray-scale) images, so that we may produce a skeleton without

the use of a binary threshold, resulting in the gray-scale skeleton seen in Figure 19(b).

At a high level, our algorithm repeatedly performs the binary skeletonization operation,

once per integer density level, starting with the maximum density. At each level, new parts are

potentially added to the skeleton, but none are ever removed. This process accurately captures

the centerlines of high-density ridges, and at the same time it is able to produce centerlines

for roads that were only driven once. More formally, the gray-scale skeletonization algorithm

proceeds as follows.
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Figure 20. The 8-neighborhood of pixel P1, used in the process of skeletonization.

4.3.1 Algorithm Description

Let D(x, y) be the density at location x, y. For each density level l ∈ lmax . . . 1, let Tl be a

binary (thresholded) image, such that Tl(x, y) = 1 iff D(x, y) ≥ l. Our algorithm recursively

produces a skeleton image Sl for level l, such that Sl = skeletonize(Tl + Sl+1), where Slmax =

skeletonize(Tlmax). Thus, the skeleton pixels at the end of the process have values in the range

lmax . . . 1 depending on the level at which they were introduced.

The procedure skeletonize repeatedly “thins” the image until it converges. Each thinning

step consists of applying several local conditions to any pixel of value 1 (unit pixels) in the

image, to decide whether to set the pixel to zero. Here, we use the notation from (44), partially

illustrated in Figure 20. For every pixel P1 = 1, the decision to keep it or set P1 := 0 is made

based on the values of the neighboring pixels P2 through P9. Each major thinning iteration

consists of two sub-iterations. In the first sub-iteration, P1 := 0 iff all of the following conditions

are satisfied:
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B(P1) ≥ 2 (a)

B(P1) ≤ 6 (b)

A(P1) = 1 (c)

P2 · P4 · P6 6= 1 (d)

P4 · P6 · P8 6= 1, (e)

where A(P1) is the number of (0,≥ 1)-pairs in the ordered set P2, P3, . . . , P9, P2, and B(P1) is

the number of non-zero neighbors of P1. In the second sub-iteration, Conditions (d’) and (e’)

are substituted for Conditions (d) and (e):

P2 · P4 · P8 6= 1 (d’)

P2 · P6 · P8 6= 1. (e’)

Upon convergence, any remaining unit pixels that satisfy the following rule are set to zero:

B(P1) ≥ 7 (f)

4.3.2 Algorithm Intuition

By proceeding level by density level, and preserving any skeleton pixels from higher levels as

we progress toward lower densities, we ensure that high-density pixels are accurately represented

in the final skeleton. We now briefly summarize the purpose of each of the conditions above.
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Conditions (a)–(e’) closely resemble those in (44), adjusted to accept values other than

{0, 1}. Specifically, Condition (a) preserves unit pixels at the end-points of lines. Condition (b)

forces thinning to progress inward from the edges of contiguous unit pixel areas, consistent with

the thinning concept. Condition (c) preserves any unit pixel that is the sole bridge between

two or more non-zero pixels. Here, two or more (0,≥ 1)-pairs split the 8-neighborhood into

disjoint sets, connected only through P1. Finally, alternating between Conditions (d)–(e) and

(d’)–(e’) enforces a degree of synchronization in this otherwise highly parallelizable algorithm.

This is to avoid a race condition which may thin two-pixel wide lines in a single step, rather

than thinning these to a one-pixel wide line.

In the final step, applying Condition (f) to the image after convergence is necessary to

counter a phenomenon that occurs only in gray-scale skeletonization. Occasionally, an area

surrounded by high-density ridges may be entirely filled with cells of non-zero density. Using

binary skeletonization, the high density ridges would first be flattened to level 1, and the image

thinned until a single line remained through the middle of the low-density area. In gray-scale

skeletonization however, the high-density ridges appear early in the process, and cannot be

thinned away later. Due to Condition (b), these ridges then prevent pixels in the surrounded

low-density area from being removed. Condition (f) returns the image to its desired skeleton

shape by hollowing out any such surrounded areas in a single step.

4.3.3 Performance Optimizations

Both the density estimation and skeletonization techniques described are highly paralleliz-

able algorithms that are well suited for GPU or MapReduce implementations. However, as
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described, the gray-scale skeletonization algorithm runs one binary skeletonization per level.

For maps with very high densities, this may grow to an unmanageable number of iterations,

even on GPU hardware. In practice, we have found that restricting the levels to powers of two

produces largely identical initial maps, with an exponential improvement in execution time.

4.3.4 Edge Extraction from Skeleton Image

Given a skeleton image, our goal is to produce an initial road map consisting of nodes and

edges. We use the “combustion” technique described in (24) to associate each pixel with an

edge, and the Douglas-Peucker algorithm (45) to produce the edges that make up the shape of

each road segment.

4.4 Density-Aware Map-Matching

We now match our original traces to a contiguous sequence of edges from the initial map

produced by the skeletonization algorithm above. This accomplishes two things. First, it sets

an upper bound on the number of nodes and edges. Later steps may prune and shift nodes

and edges, but may not add to the topology. This avoids the tendency of trajectory-based

techniques to produce spurious edges. Second, by assigning each point to an edge, it reduces

the computational complexity and improves the parallelism of downstream methods that can

now operate on each edge independently.

Our map-matching technique uses Viterbi’s algorithm, and is based on (33). Relative to

(33), we make the following modifications. To enforce a speed limit, every edge is represented by

several consecutive fixed-length states, each of which must be traversed before transitioning to

a new edge. This replaces the speed limit heuristic in (33). Moreover, transition probabilities,
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which were uniform in (33), are instead assigned values proportional to the edge weight, com-

puted as the mean density level of the pixels that make up the gray-scale skeleton. Weighting

transitions based on edge weight encourages the matcher to use popular roads when the trace

allows it, effectively reducing the number of traces that traverse spurious roads.

4.5 Topology Refinement

In the topology refinement step, the initial map produced through density processing is

updated based on the map-matched traces. Edges with zero or one traversals are discarded,

pairs of intersections are merged when trace evidence supports it, and statistics are produced

to determine the allowable transitions between edges. In the sub-sections below, we describe

each step in more detail.

4.5.1 Pruning Spurious Edges

Through edge pruning, edges that see less than two well-matched traversals are removed.

More formally, for each map-matched trace t and edge e, we compute nte, the number of traver-

sals of e such that RMSD(τ, e) < RMSDmax, where τ is a traversal of e and

RMSD(τ, e) =

√
1

|τ |
∑
p∈τ

dist(p, e)2

Here p ∈ τ are GPS points, and dist is the distance between p and the nearest point on e.

We only consider traversals with RMSD(τ, e) < RMSDmax good matches; these are used as

evidence of a road segment’s existence.
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(a) Map before pruning. (b) Map after first round of pruning.

Figure 21. Our trajectory-based pruning process. Using the original traces map-matched
against the initial map removes most spurious edges.

Aggregating nte across all traces, we have ne =
∑

t n
t
e, the number of well-matched traversals

for each edge. Intuitively, any edge with ne = 0 is unlikely to represent an actual road. Such

an edge may, for example, have been created by a noisy GPS trace, which was later matched

to a more popular nearby road by our weighted map-matching technique in Section 4.4.

We argue that the same is true for edges with ne = 1. With a single traversal, the trace will

naturally fit the map edge perfectly. After all, the edge was most likely drawn based on that

single trace. Thus, the RMSD(τ, e) is pointless when ne = 1. For this reason, we require two

traces to support the existence of any given road segment.

Figure 21 shows our map before (a) and after (b) this pruning process, clearly illustrating

the effectiveness of this technique in reducing the number of spurious road segments.
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(a) Intersection before collapsing nodes. (b) Intersection after collapsing nodes.

Figure 22. By collapsing nearby nodes into intersections, the final map topology is produced.

4.5.2 Collapsing Nodes into Intersections

While the gray-scale skeletonization algorithm in Section 4.3 produces an accurate road

skeleton for a given density estimate, the generated topology does not necessarily correspond

well to typical road designs. One common case of this, caused by an uneven density distribu-

tion in the intersection, is illustrated in Figure 22(a). Here, a single four-way intersection is

represented as two adjacent three-way intersections.

To address this common problem, we first sort all pairs of adjacent intersection nodes in

order of increasing distance. We then consider collapsing each pair in order, replacing the pair’s

two m,n-degree intersections with a single (up to) m+ n− 2-degree intersection at their mean

location. If this refinement does not reduce the total number of well matched traces, it is made

permanent. Figure 22(b) shows the result after collapsing. This process effectively transforms

the map into a topologically accurate representation of the underlying road network.
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4.5.3 Map-Matching Do-Over

After completing the pruning and collapsing steps above, all traces are map-matched once

more, this time using the actual number of traversals rather than edge densities to compute

transition probabilities. Any traces initially matched to now-deleted edges are re-matched to

a more likely route, and edge pruning is performed once more. Here, the first pruning round

breaks a number of spurious cycles, and the second round removes the remaining spurs after

map-matching re-routes traces to more probable routes. The final result from this step is shown

in Figure 30(d).

4.5.4 Detecting Allowable Edge Transitions

Finally, for each trace we compute a list of all adjacent pairs of distinct edges e : d, in order.

We then compute the number of occurrences of each pair, count(e : d) across all traces. To

enforce allowable edge transitions we use a strict interpretation of this data: a transition from

edge e to edge d is allowed iff count(e : d) > 0.

4.6 Geometry Refinement

In the geometry refinement step, the map is updated to model intersections in more detail,

and to improve the alignment of the inferred map using its original traces. Here, the segment-

level topology does not change—segments may shift, but they are not added or deleted. One

minor exception to this are turn-lanes, which do contribute additional detail to the topology of

an intersection, but do not add new road segments.
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4.6.1 k-means Refinement

Our goal here is to simultaneously refine the entire map, including intersections, rather

than refine each segment piecemeal. We propose a geometry refinement technique based on the

k-means algorithm. The input to the k-means algorithm is the k initial means and a set of

sample points to be clustered. We adapt k-means to the geometry refinement problem by: (i)

creating an initial estimate based on the input map, and (ii) restricting clustering eligibility—

which sample points may be assigned to what means, based on the map-matching results from

Section 4.4.

4.6.1.1 Initialization

Key to a successful application of the k-means algorithm is a good initial estimate. Since

the goal here is to refine an existing map, we base our estimate on this map. We produce two

classes of means: intersection means and segment means. For each intersection and end-point

(i.e., dead-end) in the input map, we add one intersection mean to our initial estimate. Each

intersection mean is associated with all segments incident on the intersection. For each road

segment in the input map, treating each direction separately, we produce d Lm−2e means, where

L is the length of the segment, and m is the maximum distance between means. The first and

last points of the segment are excluded, as these are already represented by the intersection

means. The rest are uniformly distributed along the length of the segment. These means are

associated only with the segment from which they originated.
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(a) Same intersection with directional street segments. (b) Same intersection with turn-lanes added.

Figure 23. Geometry refinement, separating directions and adding turn lanes.

4.6.1.2 Assignment

Each GPS sample is then assigned to its nearest eligible mean. The set of eligible means

include those from the segment that the sample was matched to, as well as the intersections

or end-points that delimit the segment at each end. Note that intersection means are eligible

for GPS sample assignment from all segments incident on that intersection. This optimizes

intersection alignment, taking all neighboring segments into account. Simultaneously, segment-

based means automatically find the shape of each road segment.

4.6.1.3 Update

In the update step, each mean is moved to reflect its new sample membership. The typical

update function simply takes the mean location of all member samples as the new mean location.

This can be further refined by first removing points that lie too far from the mean (outliers),

and by taking into account the location of neighboring means.
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This produces a map with correct lane separation, but with intersections still represented

as points in the map topology. Where bi-directional segments exist, this leads to an hourglass-

shaped intersection geometry (see Figure 23(a)). To produce a correct intersection geometry,

we need to estimate each segment transition separately.

4.6.2 Estimating Transition Trajectories

As a näıve solution, simply replacing the intersection node with direct edges between seg-

ments produces a significantly improved map; the hour-glass shape is removed, while the topol-

ogy is preserved. This approach however, does not accurately capture the individual shape of

each lane, often leading to crooked-looking intersections. Below, we describe a solution that

separately estimates the transition between each pair of segments, producing a complex, but

accurate, intersection geometry.

For each pair of road segments, taken as a single “transition,” we prepare a separate set of

means according to the initialization method described above. We then perform k-means clus-

tering again, this time using the transition means. Here, a given mean is eligible for assignment

only if the current sample came from a matching transition. The generated transition segments

and the original street segments are then merged, using a simple constant set-back from the

intersection as the merge-point. Figure 23(b) shows the final result, after adding turn-lanes.

Note how the location of the intersection is initially offset to the south-west in Figure 23(a).

This intersection is highly asymmetric in density, with a large majority of traces in the south-

west corner. Density-based processing finds this peak, and places the intersection here. After

breaking out the turn-lanes however, this density asymmetry no longer has an effect as each
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Figure 24. 7 months of raw traces, displaying both high disparity and high GPS noise. The
dashed square indicates the “hospital area.”

turn-lane has an independent set of traces matched to it. This example emphasizes the power

of combining density- and trajectory-based processing for map inference.

4.7 Evaluation

In this section, we perform a quantitative and qualitative evaluation of our hybrid map

inference pipeline. Where possible, we compare our results to those of the map inference

algorithms evaluated in Chapter 2, demonstrating dramatically improved performance both

quantitatively and qualitatively.
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4.7.1 Dataset

For our evaluation, we use up to 7 months of data collected from the UIC shuttle buses. A

mask of the full set of traces is shown in Figure 24. As we discussed in Section 2.3.1, the area

served contains a mix of low-rise residential buildings and high-rise office and hospital towers.

The dashed square highlights the problematic high-error “hospital area,” where urban canyons

result in poor GPS reception, with some traces showing consistent errors well over 100 meters.

4.7.2 Other Algorithms

In addition to our proposed map inference pipeline, we evaluate three existing algorithms

for comparison purposes: the KDE-based method by Davies et. al (22) (“Davies”), the k-means

approach by Edelkamp and Schrödl (15) (“Edelkamp”) and the trace-merging technique by Cao

and Krumm (20) (“Cao”). For this comparison, we limit our data to a 1-month subset for two

reasons, previously discussed in Chapter 2. First, and most importantly, the inherent scalability

problem of Cao makes it infeasible to evaluate this algorithm with a larger dataset. Second,

due to noise sensitivity, the performance of Edelkamp declines as the amount of data exceeds

the 1-month mark.

4.7.3 Evaluation Methodology

The purpose of our evaluation is to determine the accuracy with which each map inference

algorithm represents the underlying road network. As in previous chapters, for our ground

truth we use a manually-verified section of OpenStreetMap (32) covering our region of interest.

We use two different evaluation methods from previous chapters to compare our inferred

maps to the ground truth. The first method (GEO) is taken from Chapter 3, and evaluates



69

map geometry only. Here, the connectivity of the map is ignored entirely, but every segment

of both maps is taken into account. The second method (TOPO) is taken from Chapter 2,

with one modification. This sampling-based method evaluates the topology of the map as well

as the geometry. We modify the method to ignore parts of the map where no correspondence

could be found between the inferred and ground truth maps. Thus GEO partially evaluates

the entire map, whereas TOPO fully evaluates those parts where the maps overlap. As before,

we use F-score, the geometric mean of precision and recall, as our primary evaluation metric.

For the results below, we use the topology refinement output only. While geometry refine-

ment produces a more descriptive map, our ground truth does not contain this level of detail,

making it infeasible to quantitatively evaluate the performance of the geometry refinement step.

Visual samples of the geometry refinement output are provided in Figures 23(a) and 23(b).

4.7.4 Results

Our overall results are shown in Figure 25 and Figure 26, and as we can see, our new hybrid

method offers a significant improvement over the previous state of the art in both GEO and

TOPO evaluations. Despite its encouraging performance, Figure 27 and Figure 28 offer insight

into the limitations of our proposed pipeline. While precision falls in the 0.9–1.0 range for

matching thresholds of 15 meters and above, recall falls below 0.8 for both GEO and TOPO

evaluations. Visually inspecting the generated maps, the explanation behind this is clear: many

roads in the ground truth were traversed only once, and in the current topology refinement step,

roads with a single traversal are pruned. Future work will need to address this problem, in order

to improve performance further.
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Figure 25. GEO F-scores of our method vs. existing methods on the 1-month dataset.
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Figure 26. TOPO F-scores of our method vs. existing methods on the 1-month dataset.
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Figure 27. Precision/recall and F-score on 1-month dataset. GEO evaluation metric.
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Figure 28. Precision/recall and F-score on 1-month dataset. TOPO evaluation metric.
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Figure 29. Precision/recall and F-score on 7-month dataset. GEO evaluation metric.

Finally, Figure 29 shows the GEO performance on 7 months of data. The slightly sharper

bend of the curve suggests that additional data was helpful in producing more accurate center-

lines. However, when using a higher matching threshold, performance is essentially unchanged.

In this case, additional data simultaneously improves the map quality and introduces addi-

tional ground truth edges. With more evenly distributed data, we expect to see a monotonic

performance increase with larger data sets.

Figures 30(a)–30(d) visually illustrate the performance of each algorithm across the entire

region of interest. Our proposed method produces a significantly more complete map, with

very few spurious edges. Focusing our attention on the “hospital area” which has high density,
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(a) Full map generated using Cao method with 1 month
of raw data, overlaid on a map.

(b) Full map generated using Davies method with 1
month of raw data, overlaid on a map.

(c) Full map generated using Edelkamp method with 1
month of raw data, overlaid on a map.

(d) Full map generated using our hybrid method with 1
month of raw data, overlaid on a map.

Figure 30. Illustration of the performance of all algorithms across the entire region of interest.



74

disparity, and GPS error, we also see that our method produces a considerably higher quality

map, with better coverage and improved alignment.

4.8 Conclusion

In this chapter we have presented a hybrid map inference pipeline, which significantly ad-

vances the state of the art when considering noisy and disparate datasets. Key to our work is

the combination of initial density processing, with its ability to consider all traces in aggregate,

followed by trajectory processing, with its capacity for capturing topological and geometric

details. While the results on this dataset are very good, more work remains to validate our

approach on different datasets, and tune each step for optimal performance.

4.9 Copyright Information

The material in this chapter originally appeared in the following publication: Biagioni, J.

and Eriksson, J.: Map Inference in the Face of Noise and Disparity. In Proceedings of the 20th

ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,

pages 79–88. c© 2012 Association for Computing Machinery, Inc. Reprinted by permission.

http://doi.acm.org/10.1145/2424321.2424333.



CHAPTER 5

ONLINE GPS TRACKING WITH LOW DATA UPLINK USAGE

Tracking assets and people using the global positioning system is becoming increasingly

popular. Applications of GPS tracking are widespread, including anti-theft lowjack devices,

freight logistics and public transit arrival time prediction. A less obvious, but perhaps even more

pervasive application of GPS tracking is crowd-sourced traffic maps: many popular smartphone

applications, such as the ubiquitous “Maps” application, automatically upload the locations of

smartphones to a central server when they are running.

The energy consumption of GPS devices, and methods of reducing the same, has been the

subject of intense scrutiny in the past several years (46; 47; 48; 49; 33; 50). In GPS tracking

applications, however, energy is arguably a secondary concern: in many applications of GPS

tracking, energy is either abundant, as in most vehicular applications, or already expended, as

in the crowd-sourced traffic maps example above. For this reason, our focus is on the uplink.

The data usage requirements of a GPS tracking system are arguably modest: a bare-bones

differential update could be represented using just a few bytes. At the typical 1 Hz update

frequency of an off-the-shelf GPS receiver, this would seem a negligible amount. However,

during testing of a simple GPS tracking application, that application alone came very close to

exceeding our 250 MB/month limit. Here, we examine how to reduce this data usage while

preserving tracking performance.

75
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In an online GPS tracking system, a fundamental trade-off exists between accuracy, the

average error between the actual location and the reported location; and uplink cost, the average

amount of “data usage” charged per second of tracking. For example, we may achieve accuracy

close to the capability of the GPS receiver itself, but only at significant uplink cost, or we

may achieve virtually zero uplink cost, but only with tracking accuracy on the order of several

kilometers. In this chapter we propose an end-to-end “thrifty tracking” system that adaptively

makes the trade-off between these performance parameters.

To realize this system, we: (i) design a unified extrapolation method that infers future

movements based on current and historical conditions, and (ii) develop an adaptive sampling

framework that allows the user to specify a performance target for error or budget (along

with an adjustable delay parameter), while it optimizes the other. Additionally, we present

a characterization of current tracking behavior based on large-scale GPS probe data, and an

end-to-end evaluation of the above methods on real-world GPS traces.

5.1 Principles and Practice

GPS tracking comes in two basic flavors—offline and online. Offline tracking simply records

the trajectory for subsequent, typically manual retrieval, while online tracking continuously

transmits location reports over a wireless link to a central, Internet-based receiver.

In addition to a wide variety of first-class applications, GPS tracking also occurs as a side-

effect of other applications, most commonly in GPS-enabled smartphone applications. Here,

a GPS-enabled application continuously transmits the location of the user to the application
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Figure 31. Histogram of intervals between ∼1.6 billion location reports from 25 providers,
illustrating the periodic nature of contemporary GPS tracking.

provider or network operator, for inferring traffic information, fine-tuning cellular-network de-

signs, and other tasks that require large amounts of GPS trace data.

5.1.1 Field Study of Large-Scale GPS Tracking

To gain a better understanding of typical online GPS tracking behavior we studied a dataset

consisting of 1.6 billion GPS points, collected by 25 different data providers from 2010–2012. For

privacy reasons, individual traces were split into short, de-identified and disconnected “probes”

consisting of a smaller number of GPS points, before we received them. Despite this, we can

gain an accurate statistical picture by studying the sampling behavior exhibited within each

individual probe. Figure 31 shows a histogram of time intervals between samples, across all

probes, and a clear pattern of periodic reporting emerges with tell-tale peaks at periods 1, 5,
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15, 30, 60, 90, 120, 180, 240 and 300 seconds. After removing these clearly periodic samples,

only 11.4% remain.

To better understand the origin of these remaining samples, we manually inspected several

dozen representative traces from the four data producers with the largest fraction of non-

periodic transmissions. One appeared to be a logistics company, with frequent visits to loading

docks, and a target period of 300 seconds. Here, a majority of non-periodic transmissions

coincided with likely stops and CAN-bus events such as ignition on/off events. Note that a

trace with a period P , mixed with intermittent additional reports with a mean interval at or

below P , will appear non-periodic in Figure 31. For example, samples at 0, 60, and 120 seconds

have strict 60-second inter-sample spacings, but adding intermittent samples at 17 and 99

seconds produces inter-sample spacings at 17, 43, 39, and 21 seconds, a seemingly non-periodic

sequence. For some data providers this was a frequent occurrence. Thus, the 11.4% reported

above is an over-estimate of the proportion of non-periodic transmissions.

Similar behaviors were observed for other data providers, and throughout we were unable

to find any evidence of spatial sampling (i.e., every so many meters), speed or bearing change-

based sampling, or even policies as simple as not transmitting when stationary: all providers

show several back-to-back transmissions with identical locations. Thus, both anecdotally and

quantitatively speaking, we believe there is ample room for improvement to the status quo in

online GPS tracking. Related work from the academic literature is reviewed in Chapter 8.



79

(a) actual location over time, GPS reports

annotator sampler & 
compressor

feedback 
extrapolator

server-side 
extrapolator & 
decompressor 

noise filter

device-side sampling server-side finish

same code

(c) reduced-rate, 
    annotated trace 

(b) clean trace with 
    added annotations

(d) continuous location trace 
    after extrapolation

wireless
transfer

Figure 32. Thrifty tracking system architectural diagram. Adaptive sampling techniques rely
on feedback from an extrapolator executing on the device, mirroring the extrapolation done

on the server.

5.2 Thrifty Tracking Overview

Figure 32 illustrates our general thrifty tracking architecture which accommodates all known,

and a variety of new tracking methods. Starting in the top-left of the figure, a GPS receiver

samples the (continuous) device location, often with a frequency of 1 Hz or higher. If a GPS

energy conservation mechanism is in use, this is done before the thrifty tracking system receives

the GPS samples.

The incoming raw GPS trace (a) is first passed through a filter to remove any obvious

outliers (based on impossible velocities), and then decorated by an annotator with additional

information not provided by the GPS receiver (e.g., heading and acceleration). The decorated
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GPS trace (b) is then passed to a sampler that unilaterally decides whether to forward a given

trace point, with any necessary annotations, over the wide-area link based on the configured

error or budget target (see below). The resulting sampled trace (c) is then fed to two identical

extrapolators: one running on the remote server, and one running on the mobile device. On the

server side, the extrapolator output (d) is made available for use by the trace consumer. On

the client side, an identical extrapolator produces a continuous location estimate for local use.

By comparing the output of the local extrapolator against the incoming raw GPS location, an

error-aware sampler can then make its forwarding decision based on the difference between the

current estimate and the measured location.

Our evaluation of this system is based on data retrieved from the OpenStreetMap (OSM)

(32) website, but originally donated by volunteers from Moscow, Russia, and its outlying areas.

In total, our evaluation spans over 5,000 individuals, 12.4 million GPS locations, and almost

3,500 hours of recorded traces.

5.3 GPS Trace Extrapolation

By inferring the future location of a device, or extrapolating its location trace, improve-

ments can be made to both the timeliness and accuracy of tracking. The most basic free-space

extrapolation method (“Constant Location” (CL)) predicts that the future location, for all

times in the future, will be the same as the most recently reported location. By applying this

extrapolation method, we improve the timeliness of our tracking: we are now able to provide

an immediate estimate, at any point in time. However, this gain in timeliness is matched by a
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loss in accuracy: for a moving device, predictions made by this extrapolator grow increasingly

inaccurate with the time since the last update.

In this section, we explore how more sophisticated extrapolation methods described in prior

work such as (51; 52; 53; 54) can be used to improve accuracy. Specifically, we evaluate the

following three free-space techniques: Constant Velocity (CV), which produces a straight-line

path from the most recent location, at the velocity from the most recent report, and Constant

Acceleration (CA), which is based on CV but also includes estimated acceleration. We also

introduce a minor variation, named Constant Deceleration (CD) which performs the same

function as CA when acceleration is less than zero, otherwise it performs the same function

at CV. Finally, we evaluate the use of advanced map-based extrapolators, described below.

In Section 5.3.3, we propose a unified extrapolation technique that combines these free-space

and map-based methods using a machine learning approach, to further improve extrapolation

performance and therefore tracking efficiency.

5.3.1 Map-Based Extrapolation

If movements are restricted to a known map, or if past movement history is available, this

information may be used to improve extrapolation performance over the free-space methods

above. Map-based techniques naturally rely on online map-matching. For this, we use a Viterbi

map-matcher similar to those described in (43; 33). These techniques are both batch-oriented,

and output the maximum probability path at the end of trace processing. To make Viterbi

map-matching work for online purposes, we instead use the maximum probability edge at each

time step, at the cost of producing less accurate results.
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Our map-based extrapolator operates by traveling along the current road until an intersec-

tion is reached. Once at the intersection, it may either stop there (MB0), continue straight

through the intersection if possible (MB1), or decide how and whether to turn based on past

movement history (MM0/MM1).

5.3.1.1 Trace-Driven Turn Prediction

If historical traces are available, these may be used to learn the most likely choice at each

decision point as shown in (55). This can be thought of as an nth-order Markov model, where

street segments are represented by states, and turns by transition probabilities. During ex-

trapolation, when encountering an intersection the turn with the highest probability indicated

by the model is taken and extrapolation continues along the new subsequent street. If the

model contains no applicable information for a given intersection, we have a choice of either

stopping at the intersection (MM0), or continuing straight through (MM1). For our evaluation

we elected to use a 10th-order Markov model, based on the good performance shown on this

task in (55). We use separate sets of past traces to train and test the model.

5.3.2 Individual Extrapolator Performance

Given the variability of GPS traces, it is unclear which of these extrapolators most accurately

predicts future movements for an arbitrary trace. To evaluate the extrapolators described above,

we compare their predicted locations to the measured locations throughout the OSM dataset

described in Section 5.2. More specifically, for each trace L, and for each time i of the trace,

we compute the distance δi(j) = |L̂ij − Lj |, between the extrapolated locations L̂ij , and the

corresponding actual locations Lj , ∀j > i. For each time i, we then produce two numbers:
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Dmax
i , the number of seconds that elapse before δi(j) > max, where max is a maximum

tolerable distance error threshold, and

E∆t
i = max({δi(j) : j = i+ 1, ..., i+ ∆t})

the maximum error incurred over an interval of ∆t seconds following the location update. For

each extrapolator we then report its mean duration

Dmax =
1

|L|

|L|∑
i=0

Dmax
i

over all traces, which indicates how long an extrapolator “lasts” given a maximum error thresh-

old, and its mean maximum error

E∆t =
1

|L|

|L|∑
i=0

E∆t
i

over all traces, which describes how well it performs over a fixed time interval.

Figure 33 and Figure 34 show the value of Dmax and E∆t for eight extrapolators on our OSM

dataset, for varying values of max and ∆t. Overall we observe that the free-space extrapolation

methods outperform their map-based counterparts when the values of max and ∆t are low.

However, as we increase max and ∆t the map-based methods eventually reach performance

parity, and then outperform the free-space methods by an increasingly large margin.
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Figure 33. Dmax for eight extrapolators on our OSM dataset, for varying values of max.
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Within the collection of free-space extrapolators we find that CD performs best in all cases,

followed closely by CV, then CA, and lastly CL. The superior performance of CD can be

attributed to its harnessing the best aspects of CV and CA, while not inheriting their limitations.

In almost all cases CD performs identically to CV, by assuming the subject continues moving

in a constant direction at a constant velocity. However, in those cases where deceleration is

detected, CD assumes the subject is coming to a stop and gradually reduces velocity to zero.

CD’s ability to replicate this real-world phenomenon is key to its performance advantage. CV

follows closely behind CD in performance, limited only by its inability to reduce an extrapolated

subject’s velocity. CA follows further behind, as its tendency to continuously increase velocity

when acceleration is detected (up to 60 mph) is largely inconsistent with reality. Finally, the

universally poor performance of CL is a direct result of our OSM data consisting of traces where

the subject is often moving. Because CL is only able to predict its current location for all times

in the future, this results in quickly growing extrapolation errors.

Within the collection of map-based methods we find that trace-driven turn prediction

(MM0/MM1) performs better than un-trained techniques (MB0/MB1). This finding is a direct

result of trace-driven turn prediction leveraging past behavior to predict the future. Because it

doesn’t have to stop at intersections, it is able to extrapolate further into the future than MB0,

and since it has knowledge of past turns at intersections, it has a better idea of which direction

to follow than MB1. We also observe that given the option of either stopping or continuing

straight through an intersection, in both the trained (MM0/MM1) and un-trained (MB0/MB1)

cases, continuing straight through always results in better extrapolation performance. This is a
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largely intuitive result, as people traveling along roads tend to proceed straight through inter-

sections far more often than they turn (approximately 90% of the time in our dataset), making

an extrapolation of “straight-ahead” a reasonable prediction in the absence of any additional

information. Because MB1 and MM1 consistently outperform MB0 and MM0 (respectively),

we only present results from MB1 and MM1 going forward.

5.3.2.1 Overall Performance Analysis

Our finding that map-based extrapolation methods fail to work well at low error-thresholds

is seemingly counterintuitive, as they have far more information with which to predict the path

of future travel. However, there are at least two factors that limit their accuracy in situations

where strict error tolerance is desired: road position and GPS error.

Because digital maps are a simplification of reality, often representing multi-lane roads by

simple bidirectional paths, they are unable to represent the position of a subject in a way that

accurately reflects their real-world location. Instead, they have to “snap” the subject to their

closest likely road position, often introducing one or two lane-widths of error before extrapola-

tion along the map even begins. Moreover, because the extrapolator is tasked with replicating

our real-world location traces, its performance suffers further as a result of the measurement

error in our recorded locations. Commodity GPS receivers typically report locations with 5–10

meters of error under ideal conditions, and in the presence of tall buildings, loss of signal and

multi-path effects occasionally produce errors in excess of 100 meters. Because these errors are

a phenomenon our map-based extrapolators are unable to predict and reproduce, when they

occur in our traces and deviate from the road, they will be reported as extrapolation errors.
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Figure 35. Values of Dmax
t over time for six extrapolators along a particular trace, for a fixed

25-meter max error threshold. Here we observe that no single extrapolator consistently
outperforms the others.

From this we conclude that free-space extrapolation techniques thrive in low error-bound

conditions because they begin their extrapolation from the measured GPS location directly, and

proceed without their predicted path having to follow an inflexible model. It is worth noting

here that while the vehicle may well be located on the street, much as a map-based extrapolator

would suggest, our evaluation is based on reproducing the original GPS trace, not estimating

the “true location” of the vehicle.

5.3.3 Unified Extrapolation

We must bear in mind that the values we are seeing in Figure 33 and Figure 34 are means

(i.e., Dmax and E∆t), and that the best method for extrapolation can vary between samples
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based on the current position of the vehicle and the short-term history of previous travel. This

behavior is clearly illustrated in Figure 35, where we’ve plotted the raw Dmax
t values for a

fixed (25-meter) error threshold over time (along a particular trace). We can see that while

certain extrapolators work well under particular conditions, no single extrapolator offers the

best performance in all circumstances. To address this, we propose a unified extrapolator which

automatically selects the best extrapolation method for the current circumstances.

5.3.3.1 Machine Learning Approach

The goal of the unified extrapolator is to select the best extrapolation method at any given

time. Since it cannot know what will happen in the future, this is a challenging task with

no guaranteed results. We cast this as a classification problem, relying on past experience to

train a classifier: supervised learning applies here as the recorded history reveals exactly which

extrapolator works best.

Given that CD and MM1 are the best performing extrapolators on our OSM dataset for low

and high (respectively) error and duration thresholds, our first approach was to build a simple

two-class decision tree that selected either the CD or MM1 extrapolator. While this classifier

performed well in practice on our OSM dataset, we found that it did not generalize well to

other trace datasets, where other extrapolators outperform CD and MM1 over the same range

of error and duration thresholds.

Therefore, in order to make our classifier more general-purpose we adopted a multi-stage

classification approach. Our experiments with the simple CD/MM1 classifier taught us an

important lesson: making a classification decision between the free-space and map-based ex-
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trapolators is very practically useful, as there is a distinct cross-over point along the threshold

ranges where the performance advantage between these two classes of methods is exchanged.

With this in mind, we constructed the first stage of our multi-stage classifier as a decision tree

trained to select between the free-space and map-based extrapolators. Then, to ensure the

generality of our approach, we separately trained two additional decision trees: one to select

amongst the free-space extrapolators, and one to select amongst the map-based extrapolators.

Putting it all together, our multi-stage classifier operates as follows: input samples are first

presented to our first-stage decision tree in order to determine the appropriate free-space/map-

based extrapolator class. Then, based on that decision they are either passed to the second-stage

free-space extrapolator decision tree, or second-stage map-based extrapolator decision tree, in

order to determine the specific extrapolation method to use. For all of our decision trees we

used the implementation provided by the Scikit-learn (56) machine learning library.

We train all of our decision trees using the following set of features, drawn from a 60-second

sliding window of locations immediately preceding the current sample: distance between the

current sample and its map-matched edge, previous samples’ mean speed, difference between

the current sample’s speed and previous samples’ mean speed, difference between the current

sample’s acceleration and previous samples’ mean acceleration, current sample’s distance to

the previous samples’ mean location, and the current sample’s distance to the immediately

preceding sample. These features were identified among a larger collection using a Tree-based

estimator (57) to compute their classification importance, and determined to be significant

factors in selecting the best extrapolation method.
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Figure 36. Dmax for eight extrapolators on our OSM dataset, for varying values of max.

5.3.3.2 Unified Extrapolator Performance Evaluation

To determine a loose upper bound on the performance of our unified extrapolator, we use

an “Oracle” extrapolator that looks into the future to select the extrapolation method that will

work best among all possible options. The performance of the Oracle extrapolator is shown

as the column labeled “OR” in Figure 36 and Figure 37. In the worst case we can see that

the Oracle’s performance matches that of the single-best extrapolation method, and in the best

case far exceeds the performance of any alternative, suggesting that dynamically selecting which

extrapolator to use can potentially result in significant performance gains.

As Figure 36 and Figure 37 show, the Unified extrapolator (column labeled “UN”) meets the

performance of the best individual extrapolator for any given value of max or ∆t, and in some
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Figure 37. E∆t for eight extrapolators on our OSM dataset, for varying values of ∆t.

ranges exceeds the performance of all individual extrapolators by adaptively selecting the best

method to use at any particular moment in time. Generally speaking, the Unified extrapolator

performs robustly across the full range of max and ∆t values, achieving our goal of creating a

single extrapolation method that flexibly adapts to its circumstances. The remaining disparity

between the UN and OR columns suggest there may still be room for improvement in adaptively

selecting the best extrapolation method, but this is a challenge we leave for future work.

5.4 Adaptive Sampling

Online tracking systems trade off two performance attributes: accuracy and cost. While

periodic sampling provides highly predictable cost, it also provides very loose guarantees on

accuracy. Alternatively, sampling at a fixed distance interval provides a strict error bound, but
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very loose constraints on cost. As shown in Section 5.1, uniform periodic sampling is the policy

of choice in today’s tracking systems. It gives the user direct control over cost—a likely expla-

nation for its popularity, but sacrifices timeliness and accuracy. Introducing the extrapolation

methods from Section 5.3 can significantly improve accuracy and timeliness, as they provide an

instantaneous location estimate at any point in time. However, further improvements can be

achieved by replacing uniform periodic sampling with adaptive sampling techniques.

5.4.1 Feedback, Delay, and GPS Compression

Replicating the extrapolation process performed at the receiver by the sender enables it to

directly observe any incurred error. This allows the sender to choose the samples it transmits

to maximize the accuracy gained from each transmission. For maximum timeliness, a sampler

must decide whether or not to transmit each sample as soon as it arrives, allowing relatively

little room for maximizing sampling efficiency. However, if the user is willing to tolerate a

fixed delay in reporting, significant gains can be made by choosing when to transmit a sample.

Adding a delay window also provides an opportunity for GPS trace compression, which can

yield further data usage savings.

Two types of GPS trace compression are required for our samplers: error-bound and size-

bound. For error-bound compression we use the algorithm proposed by Meratnia and Rolf (58).

Our size-bound GPS compressor uses the same approach, but stops when a maximum sample

count has been reached.
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5.4.2 Sampling with Configured Error and Delay

With an error bound and fixed delay configured by the user, the task of the sampler is

to minimize cost while enforcing the error bound. For each incoming location from the GPS

receiver, the sampler measures the distance between the extrapolated trace and the current

location. If the distance exceeds the error bound, this sample must be transmitted. If zero

delay is configured, the sample is transmitted immediately, updating the server and restarting

the extrapolation.

With a non-zero delay of T seconds, the sample (and the surrounding window of samples)

may be transmitted at any time between the present and T seconds into the future. The

optimal time to transmit is when the resulting error is minimized. Since future errors are

unknown, we need to estimate the future extrapolation error. For this, we maintain statistics

on the extrapolator’s past performance: its expected error over a given time interval, and the

expected duration it stays below some maximum error. Then, at a given time-step we can decide

whether to transmit the current window containing the oldest sample or defer transmitting in

the hopes of finding larger errors (to be corrected) in the future. Therefore, the current window

is only sent if it has a greater mean error than the expected mean error of all other candidate

transmission windows.

Figure 38 shows budget usage as the error threshold is varied, for different delays. These

results are based on a constant-location extrapolator, to highlight the behavior of the sampler in

isolation (see Section 5.5 for our combined adaptive sampler/unified extrapolator evaluation).

Here, we compare our sampler with a basic error-bound straw man solution. This solution
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Figure 38. Budget usage with increasing maximum error bound for various delay bounds.

transmits a single sample with a fixed distance interval equal to the error threshold, thus

guaranteeing the error never goes above threshold. While the straw man provides a guaranteed

error bound, it does so at high cost. Our sampler outperforms the straw man by a considerable

margin, even with zero delay configured, demonstrating that while compression is important,

adaptive sampling offers a substantial advantage on its own. Furthermore, as one might expect,

as error-tolerance increases the cost decreases.

5.4.3 Sampling with Configured Budget and Delay

With a target budget and delay configured by the user, the sampler minimizes error while

meeting the budget and delay targets. Intuitively, the larger the budget and the larger the

delay, the smaller the error. When sampling on a budget we must first have enough savings
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to make a minimum-size transmission. Then, to decide when to transmit, we compare the

errors produced by extrapolation and the errors produced by compressed transmission using our

current savings, and transmit if the improvement exceeds the expected GPS error. Intuitively,

if the improvement does not exceed the expected GPS error, it is not worth spending our

hard-earned bytes transmitting this window.

Figure 39 shows the mean error incurred vs. specified budget, for several specified delays.

Here, the straw man solution transmits a single sample whenever it has the savings. This

figure shows that our sampler reduces error quickly when given more budget, validating the

effectiveness of our technique. Moreover, as we increase the delay, mean error is reduced as

our sampler is able to select more appropriate windows to transmit. Interestingly, the straw
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man matches our sampler’s performance when we have zero delay. This is because compressing

a single sample always yields a perfect result, causing the sampler to transmit whenever the

extrapolator error exceeds GPS error.

5.5 End-to-end Evaluation

In this section, we look at the overall performance of our system with the unified extrapolator

and adaptive sampler coupled together into an end-to-end system. In our study of typical GPS

tracking behavior discussed in Section 5.1, we identified a clear pattern of periodic reporting

among tracked individuals, with substantial peaks at 15 and 90 seconds covering almost half

of the 1.6 billion recorded samples. In this evaluation we will use these two periods to guide

our analysis by characterizing them as two common types of system operator: one whose chief

concern is tracking accuracy, and the other whose chief concern is tracking cost.

5.5.1 Tracking for Accuracy

For our accuracy-concerned system operator we adopt the 15-second sampling interval,

where each of the individuals being tracked will send 5760 samples per day. According to our

experiments with the AT&T wireless network, if we assume the operator uses UDP as their

transmission protocol each sample will cost 84 bytes to transmit. This will result in a data

usage budget of 5.6 bytes/second, and mean tracking error of 110 meters.

As shown in Table I, using our system this operator can reduce their data usage to 0.85

bytes/second while maintaining the same mean error (“w/o delay” column). Moreover, if they

are willing to accept a 7.5 second delay in transmissions (1/2 the sampling interval), they can

further reduce their data usage to 0.75 bytes/second (“w/delay” column). We argue that a
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Optimization Criteria Fixed interval Thrifty w/o delay Thrifty w/delay

Data usage (bytes/second) 5.6 0.85 0.75

Mean error (meters) 750 175 35

TABLE I

END-TO-END EVALUATION RESULTS.

delay of 1/2 the sampling interval is a reasonable value, as this is equal to the mean delay of

fixed interval sampling. Overall, using our system this operator can see a reduction in their

data usage of 85% with no additional delay, and if they are willing to accept a 7.5 second delay,

they can realize a further 12% reduction in data usage (for a total reduction of 87%).

5.5.2 Tracking for Cost

For our cost-concerned system operator we adopt the 90-second sampling interval, where

each of the individuals being tracked will send 960 samples per day. This will result in a budget

of 0.93 bytes/second (using UDP), and mean tracking error of 750 meters.

As shown in Table I, using our system this operator can reduce their mean error to 175 meters

while maintaining the same budget (w/o delay), or 35 meters (w/delay) if they are willing to

accept a 45 second delay in transmissions (again, 1/2 the sampling interval). Therefore, using

our system this operator can see an improvement in their tracking accuracy of 77% with no

additional delay, and if they are willing to allow a 45 second delay they can realize a further

80% improvement in accuracy (for a total improvement of 95%).

Overall, we can see that our system is capable of substantial reductions in data usage and

error based on the needs of the provider. Crucially, this benefit is afforded by simply providing



98

a target accuracy or budget-bound, and the system is able to adaptively reduce cost with no

further intervention.

5.6 Conclusion

Given the rising popularity of GPS tracking applications, reducing their data usage re-

quirements is a pressing need. To this end, we designed a unified extrapolator that provides

a single method for accurately inferring an object’s future location, by using machine learning

to harness the capabilities of several free-space and map-based extrapolation techniques. We

also developed an adaptive sampler, that allows a system operator to specify a performance

target for error or budget (along with an adjustable delay parameter), while it automatically

optimizes the other. We then combined these two components into a unified thrifty tracking

system, which in our experiments was shown to outperform the status quo by up to 20× while

providing improved guarantees and flexibility.



CHAPTER 6

AUTOMATIC TRANSIT TRACKING, MAPPING, AND ARRIVAL

TIME PREDICTION USING SMARTPHONES

Transit information has come a long way from the printed paper schedules of decades past.

Today, virtually every transit agency in the developed world, regardless of size, makes their

schedule available on the web in one form or another. However, for smaller operations, this is

often where it ends. More advanced services, such as integration with Google Maps, automatic

transit directions, or real-time tracking and arrival time prediction, are typically reserved for

large transit agencies who have the necessary expertise in-house or can afford to have it done

for them.

Through these advanced services, transit agencies can dramatically improve the transit user

experience. Real-time tracking and arrival time prediction are particularly powerful: transit

riders who would otherwise be enduring a potentially frustrating wait can now adjust their travel

plans to minimize waiting time. Even where buses typically run on time, real-time tracking can

improve rider confidence in the transit service, allowing users to schedule closer connections

with less built-in margin of error.

For these reasons, real-time transit tracking is a highly desired feature among transit riders.

That said, the implementation of a full transit tracking system, including complete and accurate

digital route maps, in-vehicle tracking devices, an online tracking website, up-to-date schedules,

and accurate arrival time predictions, can be a daunting and costly process for smaller transit

99
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operators. While commercial providers exist, with NextBus (59) and Clever Devices (60) being

the two main vendors, use of these services incurs substantial initial and recurring fees.

Our goal is to reduce the cost and complexity of offering these services by creating Easy-

Tracker, an automatic system for transit tracking, mapping, and arrival time prediction. The

system consists of four main components: (i) an off-the-shelf smartphone, installed in each

bus or carried by each driver, functioning as an automatic vehicle location system or tracking

device, (ii) batch processing on a back-end server which turns stored vehicle trajectories into

route maps, schedules, and prediction parameters, (iii) online processing on a back-end server

which uses the real-time location of a vehicle to produce arrival time predictions, and (iv) an

interface that allows a user to access current vehicle locations and predicted arrival times.

Using EasyTracker, a transit agency can implement a sophisticated bus-tracking and arrival

time prediction system by simply purchasing a number of smartphones and downloading the

bus-tracking application to each phone. EasyTracker has considerable advantages over the

current state of the art. First, the use of standard smartphone hardware reduces both the one-

time and recurring costs involved in establishing a real-time transit tracking system. Second,

since the system automates the process of route map and schedule creation, cost and required

user input are dramatically reduced. Third, due to its automated nature, our system is able

to adjust the published routes and schedules in response to road construction or predictable

congestion events.

To realize this system, in this chapter we: (i) develop an algorithm for inferring the set

of serviced routes from a collection of unlabeled GPS traces, requiring no driver interaction
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or other user input, (ii) design an algorithm for inferring the locations of transit stops along

these routes, and (iii) provide a means of automatically inferring an estimate of the route

schedule, describing hours of operation and intended arrival times for arrival time prediction.

Additionally, we present a thorough evaluation of our system using eleven months of data across

seven routes from two transit agencies.

6.1 Background and Motivation

The minimum requirement for a real-time transit tracking system is an in-vehicle device

(sometimes referred to as an “automatic vehicle locator”) and a back-office component. The

in-vehicle device determines the vehicle’s current location using GPS and communicates this

via a wireless link (typically cellular service) to the back-office. The back-office component is

a central server that processes the incoming time-ordered sequences of locations and typically

provides a live tracking website for the public as well as status monitoring for dispatch purposes.

This type of vehicle tracking, which simply reports the locations of all active vehicles,

is widely available today. While this is a useful service, its utility for transit applications is

somewhat diminished by a lack of sufficient navigation metadata: what route is each bus driving,

and at what time will it arrive at my stop? State of the art systems provide this metadata by

means of an in-vehicle device which accepts driver input, such as the current route, as well as

by estimating arrival times based on current vehicle location, past travel times, and the official

route schedule.

In order to make arrival time predictions, these navigation-enabled systems require the

following additional information:
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1. A route shape file containing the road segments traversed by each route, for matching a

vehicle’s current GPS location to a location along the route.

2. A list of stops for each route in traversal order, for producing trip directions.

3. The planned schedule for each route and stop, to handle corner-cases such as the first and

last trip of the day.

4. The route driven by each active vehicle at all times, in order to know where each vehicle

is going next.

Manually collecting this information can be a time-consuming and complex task. We have

first-hand experience working with four different transit agencies, which serve between 1,000

and 500,000 trips per day. Anecdotally, one such agency, despite an annual budget of $250

million USD, lacks the resources to produce route shape files for their existing bus routes. As a

consequence, their routes do not appear in Google Maps (61) and other trip planning services.

6.1.1 Back-end Processing

What primarily sets EasyTracker apart from the current state of the art is the aim to

require no manual input. Using EasyTracker, items 1–3 (above) are automatically derived

from recorded GPS traces. This not only reduces the amount of manual labor required, but

also enables agencies that lack the necessary technical expertise in-house to set up a transit

tracking system without seeking external assistance. Item 4, the current route of a vehicle, is

automatically determined based on its recent movements and the known route map (item 1).

This automatic classification allows drivers to focus on safety, and avoids the need for additional

driver training.
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6.1.2 In-vehicle Device

For our purposes, the type of in-vehicle device used is of relatively lesser significance: the

quality of GPS coordinates provided by a smartphone GPS unit are not dramatically different

from those provided by a dedicated vehicle tracking device. However, the initial and recurring

costs can differ dramatically, given the benefits of mass-production of smartphones. In urban

environments, where vehicles often travel in the GPS shadow of tall buildings, a sophisticated

vehicle tracking device may use inertial navigation to augment the outage-prone GPS sensor.

While inertial navigation itself is outside the scope of this thesis, modern smartphones are

equipped with several suitable sensors (accelerometer, gyroscope, electronic compass, cellular

and WiFi radio) which may be leveraged to improve GPS accuracy in challenging environments.

Any technique that improves GPS localization will only improve the performance of this system.

6.2 System Architecture and Overview

We call our system EasyTracker, for the ease with which it allows transit agencies to add

transit tracking to their list of services. As illustrated in Figure 40, the EasyTracker architecture

consists of a data collection unit in each vehicle, a number of algorithms for online and batch

data processing, and one or more user interfaces for the transit user. The primary function of

the in-vehicle device is to periodically transmit its GPS coordinates to a central location server,

using a cellular uplink. The in-vehicle device can either be permanently installed in the vehicle,

or may be carried by the driver. The central location server receives location updates from all

in-vehicle devices.
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Figure 40. Architectural overview of the EasyTracker system. Data produced by in-vehicle
devices are passed through batch and online processing, yielding route shapes, stop locations,
route classifications, and arrival time predictions, which are displayed through a user interface.

The received records are then put through batch and online processing. In batch processing,

a large set of recorded GPS traces are processed to produce route shapes, stop locations, and

schedules. Online processing matches vehicles to routes, and performs arrival time prediction.

6.2.1 Batch Processing

Our route extraction algorithm is based purely on GPS traces, and does not make use of an

existing road map. This design is based on three observations:

1. A sufficiently accurate digital road map may not be freely available for the area of interest.

2. Since routes do not necessarily follow public roadways, a road map may be misleading.

3. Our route extraction algorithm performs more reliably when using an automatically in-

ferred road map.



105

Given the route shapes, the recorded traces are separated based on the shape they follow.

Each set is then fed to our stop extraction algorithm, which produces a set of bus stops based

on the vehicles’ movements along the shape.

Given the stop locations, we then determine the raw arrival times: the approximate time

each vehicle arrived at (or passed by) each stop along the route. These are processed by our

schedule extraction algorithm to estimate the planned schedule of the route.

6.2.2 Online Processing

Automatic route classification classifies vehicles as “in-service,” serving a particular route

as determined by the route shapes, or “out-of-service” if the recent location trace does not

match up with a known route. Once a vehicle is deemed “in-service,” arrival time predictions

are made using the recent location trace of the vehicle and the relevant route schedule.

6.2.3 Prototype User Interface

Shown in the bottom-left corner of Figure 40 is a cropped image from a prototype system,

currently in use by UIC’s campus shuttle service. Vehicles are matched to routes by their color,

and clicking on a shuttle stop or vehicle brings up their arrival time predictions. Given route

shapes, stop locations and predicted arrival times, a number of variations on this interface are

easily constructed.

6.2.4 GPS Traces and Ground Truth Data

The majority of our evaluation is based on recorded GPS traces from UIC’s campus shuttle

service, as well as captured data from the publicly available Chicago Transit Authority (CTA)

real-time bus tracker feed (62).
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For the campus shuttle, we use seven months of GPS traces recorded from thirteen buses,

operating four routes (six including minor variations). Campus shuttle GPS traces have the

following characteristics:

• They are labeled only with a vehicle ID number—these numbers do not correspond to

routes, as every vehicle can be serving any route at any given time.

• Locations are recorded once every second any time the ignition is on.

• The shuttles frequently take trips to locations off of the official routes, for mechanical

service, outreach operations, or chartered University outings.

We also manually collected the ground truth location of each campus shuttle stop, and the

exact route followed by the campus shuttles to serve as ground truth for route extraction.

For the CTA data, we use 100 days of traces from a single route. Since the CTA bus tracker

system only provides bus locations once every sixty seconds, we interpolate these traces down

to one second intervals to allow for uniform processing. For the CTA, their official General

Transit Feed Specification (GTFS) (63) feed, which serves as our ground truth, specifies both

stop locations and route shapes.

6.3 Route Extraction

Route extraction is the process of turning unlabeled GPS traces into the set of route shapes

followed by instrumented transit vehicles. These route shapes can then be used to label real-

time GPS traces and classify transit vehicles as belonging to a particular route. Additionally,

route-labeled traces are used to perform stop extraction, and the route shapes themselves may

be used in drawing a user interface.
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Since many transit vehicles travel on public roads, it may seem natural to base a route

extraction algorithm on an existing road map. While this is a reasonable initial approach, it

comes with two main drawbacks:

1. A completely accurate road map may not be freely available for the service area. While

a free map such as OpenStreetMap (32) may visually appear accurate, errors in turn

restrictions and connectivity are (anecdotally) common. This can result in significant

errors in the routes produced.

2. Because transit vehicles may use limited-access service roads, or exclusive right-of-way

transit lanes, we cannot rely on existing digital road maps to supply us with the unique

road features that may be used by transit vehicles.

As an alternative, we evaluate the use of a KDE-based map inference algorithm to generate

our own model of the road network from the GPS traces produced by our vehicles. This

approach allows new road segments to be added on-demand: as soon as GPS trace data is

available from transit vehicles, the portion of the road network that is newly utilized may be

added to the map.

Figure 41 illustrates the complete automated route extraction process at a high level. Start-

ing with an input of raw GPS traces (Figure 41(a)), a kernel density estimate of the full set of

traces is computed (Figure 41(b)), and then the road map is constructed (Figure 41(c)).

The inferred road map is used to map-match the raw GPS traces, turning each trace into a

series of discrete road segments. These road segment series are then analyzed to find frequently
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(a) Raw GPS traces drawn as a separate thin black lines.

(b) Kernel density estimate as a gray-scale overlay.

(c) Road map inferred from all traces.

(d) Single extracted route, out of several.

Figure 41. High-level overview of the route extraction process, overlaid on the local road map.
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repeated sequences, which are output as the set of official transit routes. Figure 41(d) illustrates

one of several extracted routes. Below, we describe the route extraction process in more detail.

6.3.1 Raw Data Pre-Processing

The first step in our process is to clean up and organize the raw data. Each GPS location

along a trace is accompanied by a MAC address (identifying the vehicle) and a timestamp. Each

trace is broken up into several drives, separated by long (10 minute) intervals without location

reports. Such intervals typically indicate a parked vehicle, making them a natural delimiter.

Depending on the frequency with which the in-vehicle device is configured to record location

data, we may collect a large amount of location points that are very close to each other, when

a vehicle is stopped or moving slowly. For the purpose of route extraction we prefer a sparse

representation of the traveled path, as extra points along an edge afford us no advantage.

Therefore, we thin each trace to produce a linear density of locations in each direction of one

point every 20 meters. This value was selected empirically, to balance between sufficient data

density and reasonable runtime.

6.3.2 Route Extraction

To identify the routes followed by our transit vehicles, we first map-match our drives onto

the edges of our inferred road map. This is done using the Viterbi algorithm, as described

in (33; 43). The output of the Viterbi algorithm provides us with the maximum-probability

sequence of edges traversed. This sequence of edges is then processed further to identify our

set of routes.



110

We iterate through the edge-sequences sequentially until a repeated series of edges of a

minimum sum length (we use a distance of 100 meters, or half a block) is encountered, taking

direction of traversal into account. Note that we detect a series of edges with a minimum sum

length, rather than a single repeated edge. This helps avoid problems where repeated traversals

of the same intersection or circulation point may otherwise trigger the repetition detector.

The detected repetition conceptually completes a circuit in our graph, and the resulting

subset of edges is considered a “route candidate.” The route candidate is then stored, and pro-

cessing continues from the first repeated edge onwards through the rest of the edge-sequence

data. Once this process is complete, we have produced a collection of edge-sequences represent-

ing all of our route candidates. Note that we assume each route is cyclical (i.e., it eventually

repeats). If a transit system were to contain non-cyclical routes, a different heuristic would be

required for detecting and separating route candidates.

In order to identify the true routes from among all of the possible candidates, we count

the number of instances of each route candidate. Figure 42 shows the traversal count for

each identified route (normalized by the total number of drives, for readability), using several

quantities of UIC shuttle data. Starting with the route with the highest count, we incrementally

add routes to the set of official routes in decreasing count-order. For each added route, we use

Welch’s t-test (64), to compute a p-value describing the statistical difference between the current

set of official routes and the set of remaining candidate routes. The location where the p-value

is lowest delimits the set of official routes, completing the route extraction process.
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Figure 42. A collection of real and spurious routes, and the corresponding proportion of drives
they represent over several quantities of data from the UIC campus shuttles.

In Figure 42, the six routes on the left with the highest counts were manually verified to

coincide with the actual campus shuttle routes, whereas the four routes on the right are the four

spurious routes with the highest counts, with many more left out. Spurious routes represent

either noise in the underlying trips, or GPS noise. Trip noise may be one-off charter trips, and

trips to and from the bus depot that do not represent actual campus shuttle routes. GPS noise

on the other hand can produce spurious edges during a normal trip, resulting in a unique route.

6.3.3 Route Extraction Performance

To evaluate the accuracy of our route extraction algorithm we compare our set of extracted

routes against the ground truth routes provided to us by the campus shuttle team, which are

based on OpenStreetMap (32). The comparison is performed as follows: along the length of the
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extracted route, select locations at 1-meter intervals. For each location, measure the distance

to the closest ground truth edge.

Figure 43 shows the Cumulative Distribution Function (CDF) of the resulting distances for

all routes, over several quantities of data. For all quantities, the 90th percentile is below eight

meters. The ground truth is based on a route map which describes a four-lane road using a

single centerline. Considering that the average lane width in the United States is approximately

3.35 meters (11 feet), an error below eight meters falls within the boundaries of a typical road.

Hence, a difference of eight meters is not unreasonable for a bus route, which tends to stay on

the right-hand side of the road.
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Quantity of data Mean error Median error Max error

1 week 3.7 m 3.0 m 21.3 m

2 weeks 3.8 m 3.2 m 22.8 m

1 month 3.1 m 2.7 m 17.8 m

7 months 3.2 m 2.4 m 20.6 m

TABLE II

ROUTE EXTRACTION ERROR PERFORMANCE.

However, for a small number of locations, we observe significantly larger errors. In Table II,

we see that there exist errors in excess of 17 meters for all quantities of data. Through manual

inspection, we found that these errors arise in the high-error “hospital area” of campus, de-

scribed in Section 2.3.1 and Section 4.7. In this area the extracted roads are significantly offset

from those in the ground truth, explaining the problem. The largest error observed across all

quantities of data was 22.8 meters, or about one-tenth of a standard Chicago city block.

6.4 Stop Extraction

Stop extraction is the process of turning a set of raw GPS traces belonging to a given route,

into a small set of coordinates indicating the locations of transit stops. The generated locations

are used for producing arrival times for schedule extraction and arrival time prediction, and for

drawing stop locations on a route map.

For schedule extraction and arrival time prediction, perfect accuracy of stop extraction is

not required as long as most actual stops are represented. However, any omissions will result in

the inability to predict arrival times for that stop. Furthermore, inaccuracies in stop locations
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Figure 44. Raw GPS traces from a single route. Traces reveal little about amount of time
spent.

when drawing the map can lead to missed buses and upset users. Therefore, our goal is to find

as many actual stops as possible, while minimizing the number of spurious stops reported.

This is a challenging problem, as the movement pattern of a bus at a true bus stop is

deceivingly similar to the behavior at traffic signals and stop signs. Moreover, error in GPS

location introduces noise in the traces which complicates the identification of stopping events.

Raw GPS traces along an example route are depicted in Figure 44. Intuitively, buses

spend more time at bus stops than in other locations. An estimate of the proportion of time

spent in any location along the route is produced using kernel density estimation (14). This

is accomplished by first map-matching the route-specific GPS traces to the route shape, and

then producing a density estimate based on the distance along the route for each GPS location.

Figure 45 shows the computed density estimate along the example route, where the taller peaks

in the figure indicate regions with a higher density of GPS points—these are the locations where

the bus spent the greatest amount of time.
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Figure 45. Kernel density estimate of raw GPS points. Vehicles spend more time at the taller
peaks.

Figure 46. Detected stop locations after applying threshold and finding the maxima.
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Figure 47. Precision and recall performance of the stop extraction algorithm on six routes. All
stops were identified, but many spurious stops were also reported.

In order to identify stop locations, the density estimate is first passed through a threshold

function. The threshold value used here is the median value of the density estimate. We reason

that the median value represents the density from typical driving along the route without

stopping, and therefore stops will not be found in regions with density less than or equal to the

median. After thresholding, we locate the remaining maxima in the density estimate, and use

their locations as stop locations. Figure 46 shows the detected stops along our example route.

6.4.1 Stop Extraction Performance

To evaluate the performance of the stop extraction algorithm, data from six different campus

shuttle bus routes over seven months was used. Stops generated by our algorithm were compared

against the set of ground truth bus stop locations for each route, and were determined to be



117

accurate representations of their ground truth counterparts if they were less than half a block

(100 meters) away. Figure 47 illustrates the performance of the stop extraction algorithm

in terms of precision and recall. Weekday, weekend, and an express route were all included,

exhibiting different stopping behavior characteristics. The precision metric captures the fraction

of correctly detected stops with respect to the total number of detected bus stops. On the other

hand, the recall metric describes the fraction of correctly detected stops with respect to the

total number of ground truth bus stops. As can be seen in the graph, the stop extraction

algorithm achieves 100% recall, with around 50% precision across the six routes.

While a higher precision metric is desirable, it is difficult to achieve due to the strong

similarity of bus stopping behavior at bus and non-bus stop locations. Intersections, traffic

signals, traffic congestion, and stop signs can easily be confused with true bus stops. We

investigated several methods based on both stop time and spatial distributions. Unfortunately,

any performance improvements on training data came at the cost of over-training to specific

cases. Thus, while our goal is to create a fully automatic system, and while the system does

a great deal to whittle down the number of possible stop locations, it does to some extent fall

short in the case of stop extraction. In Section 6.7, we discuss means by which these weaknesses

can be addressed through manual intervention.

6.5 Schedule Extraction

Schedule extraction is the process of turning raw arrival times at stops along a given route

into a service schedule for each stop. While the final derived schedule may be displayed to

end users, its primary purpose is to support the internal arrival time prediction system (see
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Figure 48. Arrival times for the first stop on a route. The horizontal lines indicate the
k-means computed cluster centers at this stop for each daily trip.

Section 6.6). The schedule provides a fall-back alternative for predictions far into the future,

at the beginning or end of the day, or when vehicle tracking data is unavailable or unusable.

Automating the schedule extraction process helps to reduce deployment overhead and may in

some cases be helpful if the transit agency lacks a formal schedule. Additionally, using an

extracted schedule from GPS trace data can correct inaccuracies in the pre-existing schedule

or detect undocumented changes in behavior.

Figure 48 and Figure 49 provide a graphical illustration of the challenges involved in deriving

a static schedule from recorded arrival time data. In Figure 48, dots mark arrival times at the

first stop of CTA route #157 in the interval 12:30–3:30pm over a span of 100 days (no service

on weekends). Here, the underlying schedule is evident from the horizontal bands of arrivals
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Figure 49. Arrival times at the last stop on a route. The data is too noisy to use the same
(clustering) approach used in Figure 48.

at approximately the same time every day. The lines indicate the result of k-means clustering

(65) these raw arrival times (discussed below), producing a high-quality schedule estimate. In

contrast with the first stop, Figure 49 shows arrival times at the last stop on the route. Here,

while some banding is evident, a schedule is very difficult to discern, and is beyond straight-

forward clustering.

Figure 50 further illustrates this difference in regularity: while travel-time uncertainty is

present throughout the route, variance gradually builds as the bus travels away from the first

stop, resulting in the disorganized arrival times shown in Figure 49. This invariably means that

any schedule at the end of a route is going to be somewhat unreliable. For the route shown in

Figure 50 the standard deviation at the last stop is roughly 10× greater than at the first stop.



120

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60

Ti
m

e 
fro

m
 F

irs
t S

to
p 

(m
in

ut
es

)

Stop #

mean travel times from first stop

Figure 50. Per stop mean travel times from the first stop on a route, bars show standard
deviation. Travel time variance increases with distance from the first stop.

Due to the high variance at later stops, we cannot rely on k-means clustering alone in order

to produce an accurate schedule for every stop along the route. Below, we define the problem

formally, and present our solution. In short, we use k-means clustering on data from the first

stop to determine its schedule, and compute downstream schedules from a combination of the

first-stop schedule and the estimated travel time from the first stop at a given time of day.

6.5.1 Problem Description

The input to the schedule extraction algorithm is a set of stops S = {s1, ..., s|S|} and a set

of trips TD = {TD1 , TD2 , ..., TD|TD|} on day D along a route, where each trip TDi contains a series

of arrival times, one per stop along the route TDi = {ai1, ai2, ..., ai|S|}. When considering only a

single trip, we simplify our notation for arrival times to as where s is the stop.
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The schedule extraction problem is given T, produce a set of schedule times KD′
s =

{ks1, ks2, ..., ks|TD′ |}, where ksi is the ith scheduled arrival time at stop s, and D′ is either the

day of the week, or a member of the set {weekday, weekend}. For example, Figure 48 plots ai1

(the arrival time points) for a range of i over all D, and k1
i (the horizontal lines) for the same

range of i.

6.5.2 Estimating the First-Stop Schedule

As mentioned above, we produce only the first-stop schedule K1 from the raw arrivals

TD1 . Schedules K2...K|S| are derived from K1 and the mean trip times for the time of day, as

described in the next sub-section.

To extract the intended first stop arrival times, we use k-means clustering over all arrival

times ai1 in all trips Ti. We choose our value for k to be median(|TD|), the median number

of trips observed on this route per day. The choice of initial values has a significant effect on

k-means performance. After experimenting with several initialization methods from (66), we

settled on the max-min approach described in (67). This approach initializes k seeds incre-

mentally, choosing the next seed from ais which is furthest away from the current collection of

seeds. After we compute the k-means clusters, we have an accurate estimate of K1, as shown

in Figure 48.

6.5.3 Deriving Downstream Schedules

For two stops i, j and trip t, we define:

travel time(i, j, t) =
1

|D|
∑
D

atj − ati, (6.1)
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Figure 51. The schedule (horizontal lines) for the last stop based on the first stop schedule
and mean travel times.

the mean arrival time difference for trip t between stops i, j over all days in D. Given the

schedule for the first stop, K1, we can then compute the schedule for a later stop s as Ks =

{ks1, ..., ks|TD|} where:

kst = k1
t + travel time(1, s, t) (6.2)

As illustrated in Figure 50, the travel time variance increases as the bus travels further along the

route, meaning the schedule will be increasingly inaccurate. Unfortunately, this is the nature of

bus travel during traffic congestion—our goal is simply to produce the best schedule estimate.

Figure 51 illustrates an example output from the solution described above. Here, the black

lines represent the schedule estimate computed from the first-stop departure schedule and the
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Figure 52. Mean wait times for a selected bus route for several training set sizes and the
official CTA schedule.

mean travel times from the first stop. The resulting schedule shows reasonable arrival time

intervals and a good fit with the raw data.

6.5.4 Extracted Schedule Accuracy

We evaluate the extracted schedule using actual CTA bus arrival time traces. For this

evaluation, we repeatedly choose a random bus stop and time, and use our extracted schedule

for that stop to predict when the next bus is due to arrive. To simulate the experience of

a typical bus rider, we “arrive” at the bus stop 2 minutes before the scheduled arrival time

(building in a small margin of error), and then wait until the next bus actually arrives, based

on our recorded bus arrival time traces.
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We refer to this as the wait time—if a passenger arrived at the stop based on the schedule,

this is how long they would have actually been waiting for the bus to arrive. To see how the

size of our training set impacts performance, we evaluated schedules generated from one week,

two weeks and one month of data. For a given route, we performed this test 5,000 times and

recorded the mean wait time for each schedule. As shown in Figure 52, the extracted schedule

actually outperforms the official CTA schedule, potentially saving travelers an average of over

30 seconds. However, note the absolute values on the y-axis: even our most accurate schedule,

based on one month’s worth of data, does a terrible job at accurately predicting arrival times.

Using the schedule for guidance, the mean time spent waiting for a bus is over 8 minutes.

Given the inadequacy of static schedules in predicting bus arrival times, real-time transit

tracking and arrival time prediction is clearly called for. In Section 6.6.2, we evaluate the

accuracy of a real-time arrival time predictor, and compare this to using the static schedule.

6.6 Online Processing

The online processing components combine the routes, stops, and schedules produced in

batch processing, with the recent GPS trace of a vehicle to: (i) determine if the vehicle is in

service (and if so, on which route), and (ii) estimate the arrival time of the vehicle at subsequent

stops. Below, we describe how this is accomplished.

6.6.1 Route Classification

Given a sequence of GPS points G = {g1, ..., gt−1, gt} recorded up until time t, and a set

of candidate service routes R, our goal is to determine whether the vehicle is currently driving
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"Unknown" state

Figure 53. Route-matching Hidden Markov Model. Transitions between routes are only
possible through the unknown state.

route r ∈ R. Assuming a vehicle serves at most one route in each uninterrupted drive, this can

be determined by computing, for each route r,

dist =
1

|G|

|G|∑
i=1

dist(gi, r),

where dist(gi, r) is the minimum distance between point gi and any segment of route r. To

reflect a more realistic usage model, we need to relax these assumptions as follows:

• Vehicles may serve multiple routes in a single drive.

• Vehicles may change between in-service and out-of-service within a single drive.

• Vehicles may occasionally detour around closed roads or accident sites.

Thus, rather than make a single decision for an entire drive, we need to determine the status

of each vehicle in an online fashion, as new GPS points arrive. To do this, we make use of Hidden

Markov Model (HMM) map-matching (43; 33), with a map constructed from the known routes,
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as illustrated in Figure 53. Here, the segments of each route are added as separate states,

creating overlapping road segments where routes coincide, with no direct transitions between

them. Transition and emission probabilities are left unmodified, except for the introduction

of a single “unknown” state, representing out-of-service driving and detours, and serving as

a place-holder for transitions between routes. Transitions are possible from each state to the

unknown state, and from the unknown state to every other state, though the probability is a

small non-zero constant. The emission probability of the unknown state is a small non-zero

constant as well.

We use the Viterbi algorithm to decode the most probable sequence of states. As a conse-

quence, once a vehicle is classified as belonging to a given route, it will remain in that state as

long as it follows the route somewhat closely, independent of overlaps with other routes. Once

it diverges significantly, it will either transition to the unknown state and stay there (if it is

now out of service), or transition to the unknown state and then to another route (if it is now

serving a different route).

We evaluate our HMM-based vehicle classifier on one month of labeled GPS trace data from

the UIC campus shuttles. Specifically, we first split the labeled trace data into individual drives

of each route. Then, for each drive we select a random starting point and run through the trace,

measuring the distance traveled until a route classification is made. If we travel more than seven

kilometers without making a route classification, we treat the route as “unclassified.”

Out of our six routes, two are extended versions of two others. The existence of several

different patterns belonging to a common route is a regular occurrence in transit networks.
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Figure 54. Classification performance of HMM-based vehicle classifier, using one month of
labeled data from the UIC campus shuttles.

Typically, the variation served by a given vehicle depends on the time of the day, or the day

of the week, which means they can be distinguished based on time, in combination with the

spatial matching discussed here. To give an accurate picture of the route matching algorithm’s

performance in the face of such variations, we evaluate the accuracy of both unique pattern

determination as well as aggregate route determination for these routes. To make the route or

pattern classification decision, we analyze the Viterbi state probabilities with every new GPS

point. When the most probable route/pattern is 10× greater than the next most probable

route/pattern, the algorithm makes its determination.
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Figure 55. CDF of distance traveled before a correct pattern or route classification was made.

Figure 54 shows the overall performance of our HMM-based vehicle classifier for route and

pattern determination. We see see that 97% and 96% of the time we are able to correctly

classify the route and pattern, respectively. We can also see that 1% of patterns and 0% of

routes are incorrectly classified, while 3% of patterns and routes remain unclassified after seven

kilometers of driving.

From this, we can see that the algorithm is, with high probability, eventually able to ac-

curately determine the route and pattern driven. But how long does it take to make this

determination? Figure 55 is a CDF of the distance traveled before a decision was made. As

expected, routes are classified more quickly than patterns, as no pattern classification can be

made without taking time into account, until the patterns for a given route diverge. In 75%
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of cases, 500 meters of travel is sufficient to distinguish the route traveled. For routes with

patterns that largely overlap (as is the case here), or for routes that overlap substantially, the

distance that needs to be traveled can be significantly longer. Overall, the performance of

route classification depends heavily on the amount of overlap present in the transit network in

question, as well as the typical driving patterns of transit vehicles. Once a decision is made, it

will remain until the vehicle leaves the route. Hence, the initial classification delay is incurred

only at the beginning of each shift.

6.6.2 Arrival Time Prediction

Arrival time prediction continuously estimates the next arrival time of a vehicle serving

route r at stop si given a schedule estimate and (when available) the current location of vehicles

currently serving the route. Typical circumstances under which the current vehicle location may

be unavailable or insufficient include:

• The first trip of the day, before any vehicle has started serving the route.

• The first several stops of the route, when the next vehicle has not departed the first stop.

• The last trip of the day. Here, a schedule is needed to predict that the vehicle will

subsequently be taken out of service.

We assume that every vehicle serving the route is equipped with a working in-vehicle device,

and is reporting its location periodically. If no vehicle is present on the route preceding si, we

estimate the arrival time based on the next departure from the first stop s1 according to the

extracted schedule, plus travel time(s1, si, t), computed as described in Section 6.5. Conversely,
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Figure 56. CDF of wait times for 5,000 real-time arrival predictions vs. the CTA schedule.

if a vehicle is present, then the time until its arrival at si is estimated based on the mean pairwise

travel time between its current location and si, computed as:

(1− γ) travel time(sprev, si, t) + γ travel time(sprev+1, si, t), (6.3)

where sprev is the most recently served stop, γ is the fraction of the distance between sprev and

sprev+1 already traversed, and t is the current trip.

To evaluate the performance of our arrival time predictor, we perform the same experiment

described for the extracted schedule. However, instead of consulting the schedule, we use

the arrival time predictor, based on the location of the next bus that will arrive at the stop.

Figure 56 clearly illustrates the benefit of incorporating real-time tracking when predicting bus
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arrival times. Wait times are significantly reduced by the use of real-time data, bringing the

median wait down from over 8 minutes to just 1 minute.

The reason behind this dramatic improvement can be seen in Figure 50. The route used

for this evaluation has a mean service interval of approximately 15 minutes. Without real-time

tracking, each vehicle spends the majority of its time in the latter parts of the route, where

variance is high. With real-time tracking and a 15-minute service interval however, the bus is

on average 7.5 minutes away from the stop in question. Assuming the travel time variance is

loosely a function of travel time, it is easy to see from Figure 50 that the expected variance

(at 7.5 minutes out) is very small. Hence, no matter where the bus is when we consult the

predictor, we are likely to get an accurate prediction.

6.7 From Paper Product to Production System

In this section, we briefly discuss additional steps required to take the proposed system from

its current form to production use. We also briefly mention additional features that may be

incorporated to further improve the rider experience.

The system described thus far takes no manual input: routes, stop locations, schedules,

vehicle classification, and arrival time predictions are all based purely on unlabeled GPS traces.

As we have shown, our system is able to (with the exception of stop locations and occasional

slow vehicle classifications) produce results similar to or better than data entered by hand.

However, EasyTracker cannot produce the kind of transit tracking system users have come to

expect without a bit of manual input. In addition to spurious stop locations, and the occasional
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slow route classification, the system lacks several kinds of annotations, such as stop and route

labels, that transit riders would typically expect to see.

From a technical point of view, the stop extraction algorithm tends to produce spurious stop

locations at a number of traffic lights and stop signs, and the vehicle classification algorithm

is sometimes unable to distinguish between similar routes. These errors need to be corrected,

either by additional sensor modalities, or by human intervention.

Below, we discuss two optional system components: an administrative web interface and

a driver interface, that provide means of integrating a small amount of manual input into the

system to significantly improve the user experience.

6.7.1 Optional Management Interface

We propose to complement the automatic system with an optional web-based management

interface. The purpose of this interface is to allow a dispatcher (or other office personnel) to

enter additional, static annotations to the system which cannot be automatically derived from

GPS traces:

• Route labels, such as “Lakeshore Drive” or “Route #60”.

• Stop labels, such as “City Hall,” or “Roosevelt/Halsted.” Reasonable stop labels can be

inferred from a road map, but these may not correspond to the labels on stop signs or in

paper schedules.

• Accessibility information, such as “elevator available” or “has bike rack.”
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Figure 57. Prototype driver interface for optional manual input and communication with
dispatch.

Through the management interface, the transit operator is presented with the tools to

correct mistakes, add route and stop labels, and other relevant annotations. In addition, the

management interface may allow an operator that is aware of impending route or schedule

changes to proactively “reset” selected routes, to avoid inertia in the acquisition of updated

routes and schedules.

6.7.2 Optional Driver Interface

In addition to the static annotations that may be entered through the administrative web

interface, drivers may optionally be trained to provide additional information through an in-
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Figure 58. Screenshot of current EasyTracker prototype, currently in production use on the
UIC shuttle bus system.

terface on the in-vehicle device. Figure 57 illustrates an envisioned driver interface. Here, the

driver may manually override the automatic route classification in case of a misclassification.

Other data that the driver may be asked to provide includes passenger occupancy, availability

of seats, room for wheelchairs/strollers, and bike rack occupancy.

To further improve the passenger experience, the smartphone may be connected to the

vehicle speaker system to provide voice prompts to passengers, notifying them of the next stop.

Finally, the smartphone interface may be used as a means for central dispatch to communicate

with the driver in the form of text prompts when the vehicle is not moving.
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6.7.3 Current Prototype System

Parts of EasyTracker are currently in use on the UIC campus shuttle system. Figure 58

is a screenshot of the web interface we provide to campus shuttle riders today. In the current

prototype, vehicles are automatically classified as belonging to a red, blue, purple, or yellow

route using the algorithm in Section 6.6.1 and arrival times are predicted using the method in

Section 6.6.2. Routes, stop locations, and schedules from Section 6.3–Section 6.5 were manually

corrected to remove any mistakes.

6.8 Conclusion

In this chapter we have presented EasyTracker, an automatic system for low-cost, real-time

transit tracking, mapping and arrival time prediction. Based on our experience with building a

campus shuttle tracking system for UIC, we have discovered how labor intensive the collection

of this data can be. To address this problem, we have demonstrated how high-value data such as

routes, stops, and transit schedules, can be inferred automatically from simple GPS traces. Our

system produces high-fidelity route maps, extracts transit stop locations, and constructs transit

schedules that consistently out-perform the official schedules produced by the Chicago Transit

Authority. Last but not least, EasyTracker provides accurate transit tracking and real-time

arrival time predictions, all without manual intervention.
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CHAPTER 7

ASSESSING DAY SIMILARITY FROM LOCATION TRACES

Both consumers and corporations recognize the value of location traces for understanding

people’s daily habits and anticipating occasional needs. These traces can help in understanding

our daily activities; in particular, we can use location traces to find anomalous days and to

cluster similar days, leading to a better understanding of daily routines. Both of these tasks

require a way to compare days to one another.

In this chapter we develop and test algorithms to measure the similarity of days represented

by location traces, tested against similarity assessments from real users. With a reliable way

to measure similarity we can find days that stand out from the rest as anomalies, which may

indicate confusion (an important phenomenon to detect among populations of users with cog-

nitive impairments (68)) or a change of habits. We can also make sensible clusters of days that

belong together to assess variety and make predictions about how a day will evolve, providing

useful basic knowledge for adaptive systems to leverage.

While a variety of sensors could be used to characterize a day, such as activity measured on

a person’s mobile phone, desktop computer, vehicle, social networking sites, biometric sensors,

etc., here we use location traces, measured with GPS. One advantage of this is that location is

a constantly existent state (if not always measurable) as opposed to event-based activities, such

as texting events, that only happen occasionally. Location is also dynamic for most people and

137
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easy to measure outdoors with GPS. These characteristics make location a convenient variable

to use for measuring the similarity between a person’s days.

Existing similarity techniques (see Chapter 8 for more details) depend on learning a model

of normal behavior from observation, which means they must be trained anew for new subjects.

One of our goals is to find a single similarity measure that works well for multiple people, without

requiring any training. In addition, previous techniques detect dissimilar behavior based on an

algorithm or threshold designed by the researcher. Instead, another of our goals is to find a

similarity measure that approximates what a human subject would say about their own data.

Achieving these goals will allow us to provide future systems with a way to accurately reproduce

human assessments of day similarity that works well for the general population, and requires

no training time; perhaps helping to mitigate the cold-start problem in relevant applications.

To achieve this goal, we: (i) gather an average of 46 days of GPS traces from 30 volunteer

subjects, (ii) conduct a user study, wherein our 30 volunteer subjects are randomly shown pairs

of pairs of their days and asked to assess their similarity using custom-designed software, (iii)

implement and evaluate eight different similarity algorithms in an effort to accurately reproduce

our subjects’ assessments, (iv) perform statistical analyses to find those algorithms that best

reproduce the assessments from our subjects, and (v) apply one of our similarity algorithms to

the task of clustering days using location traces.
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7.1 GPS Data and Preprocessing

In order to perform our experiments for assessing day similarity based on location traces,

we gathered GPS data from the vehicles of volunteers. This section describes our data logging

and preprocessing for the experiment described in Section 7.2.

7.1.1 GPS Data from Volunteers

We logged GPS data from 30 volunteers (8 female). Each volunteer borrowed a RoyalTek

RBT-2300 GPS logger and placed it in their main vehicle, powered by the cigarette lighter. All

of our subjects were employees of Microsoft Corporation in Redmond, WA, USA, and most were

compensated with a $30 USD cafeteria spending card. A few subjects agreed to participate

without any compensation. Our goal was to collect at least six weeks of data from each subject.

In the end we obtained GPS data for an average of 46 days from each subject, varying from 20

to 60 days, where the majority of the recorded drives consisted of simple weekday home/work

commute trips and weekend drives in the local community; a dataset we believe generalizes well

to the larger population of people with regular work routines. Each subject was in possession

of the GPS logger for at least six weeks, but some did not drive every day. In order to reach 30

subjects, we started logging with 39 subjects, but later found that 9 did not provide suitable

data due to mysterious stoppages in logging, a late refusal to log, frequent sharing of their

vehicle (which violated our survey criteria), and two unexpected departures. We also ignored

two subjects who had only 14 and 18 days of logging.

The loggers were set to record a time-stamped coordinate pair every 10 seconds. Figure 59

shows a short sequence of GPS points from one of our subjects with 10-second sampling. Since
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Figure 59. A short sequence of GPS points sampled at an interval of 10 seconds.

we ran our loggers without their rechargeable batteries, they logged only when the vehicle’s

cigarette lighter was powered. For some vehicles, this happens only when the vehicle is turned

on, and for others the cigarette lighter is powered continuously. In our preprocessing phase,

detailed below, we filled in gaps corresponding to these and other limitations of the recorded

GPS stream.

7.1.2 GPS Data Preprocessing

In order to attach some semantic information to the raw GPS data, our first preprocessing

step was to automatically detect the time and location of all stops in the raw traces. For

our purposes, a stop is defined as any location in the GPS data where we detect that the
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subject/vehicle remained within a 300-meter (radius) circular region for five or more minutes.

These parameters were chosen based on a training dataset, whose subjects were not included

in our final evaluation.

In order to produce an initial set of candidate stops, we first made a linear time-ordered

pass through the GPS trace data and marked those locations that met our stop criterion,

defined above. Because a stop location that was visited more than once during the course of

the recorded GPS trace would have more than one stop representation in our data, we then

collapsed those redundant representations into one final stop. Doing so allowed us to associate

a set of aggregate knowledge with the actual stop location. For example, consider the case of

a subject’s work location; over the course of a typical work week their trace data will initially

represent “work” with five separate stop representations (one for each day). By collapsing

these five representations into one, we obtain one stop location that represents the aggregate

knowledge of the original five (i.e., days of the week the location was visited, times the subject

arrived/departed, etc.), which is significantly more useful than five disparate time/location

observations. In order to collapse the stops, we applied agglomerative clustering (26) to the

candidate stops using the same 300-meter threshold (as above) as the criterion for merging.

Once we determined the final set of stops, we then leveraged the aggregate information

contained therein to apply semantic labels to certain stops. Specifically, we used data from the

American Time Use Survey (69) to classify the most-likely pair of stops as either Home or Work

locations. Since our final stops contained knowledge of the days and times of arrival/departure,

length of stay, and frequency of visits, we built and trained a classifier to perform probabilistic
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Home/Work labeling based entirely on these criteria. Since Home/Work stops occur very

frequently in many subjects’ GPS datasets, it was important to be able to distinguish them

for our subjects’ later assessment of their data. Specifically, having these labels helped our

subjects orient themselves quickly and easily to the type of days they were observing (e.g.,

weekday/weekend), and distinguish between regular and anomalous days more easily.

Finally, as one last preprocessing step, we created a “symbolized stop representation” of

each day of data from the raw GPS traces (where a day is defined from 4:00am–3:59am).

Specifically, for each location in the raw GPS data, we replaced its coordinate pair with its

associated “Stop ID” (a unique identifier associated with each stop), and interpolated in time

for those vehicles that logged only when they were turned on. If a given coordinate pair was

not associated with (i.e., located at) a stop location, it was replaced with a “From Stop ID–To

Stop ID” pair, denoting travel between stops. Simplifying the raw trace data into a series of

symbols denoting time spent at (and traveling between) stops not only provides us with a more

compact representation of the trace data, but also a more abstract representation for use with

evaluation algorithms that aren’t geographically-aware (see Section 7.3).

7.2 Human Assessment of Day Similarity

Our goal is to find an algorithm that can assess the similarity of days in a way that matches

human assessment. Toward this end, each of our 30 subjects was invited to run a custom

program that displayed, and asked them to make similarity assessments on their own recently

recorded data. The program started by displaying a calendar indicating the days for which we
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had GPS data available for the subject. For a selected day, the program showed that day’s

location traces in three different ways:

1. Map. An interactive map, shown in Figure 60(a), displayed the stops we found (as

described in Section 7.1.2), each with its unique ID number. It also showed the GPS

traces between the stops. This visualization emphasized the spatial layout of the day’s

trips and stops.

2. Graph. An interactive graph, as in Figure 60(b), showed the subject’s stops as nodes and

their trips as edges. Thicker edges indicated more trips between their connected stops.

The Home and Work stops were labeled if we found them, otherwise stops were labeled

with only their unique ID number that matched the numbers on the map. Clicking on a

node or edge in the graph highlighted the corresponding stop or GPS trace on the map,

making for convenient exploration. This visualization emphasized the number of stops

and the transitions between them.

3. Timeline. A timeline, as in Figure 60(c), displayed each stop in a different color block,

laid out along a horizontal timeline. The time periods denoting trips between stops were

colored black. This visualization gave a temporal view of the day that was lacking in the

other two.

After starting the program, we asked each of our subjects to familiarize themselves with

the visualizations by picking a day and briefly describing it to us using the visualizations. The

main part of our user study came next: each subject was asked to assess the relative similarity
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(a) An interactive map for viewing a day’s
GPS data.

(b) A graph view of a day’s GPS data, showing
stops and the trips between them.

(c) Timeline view of a day, showing stops as blocks of color and trips between stops as narrower
bands of black.

Figure 60. Visualizations of a day for our subjects.
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Figure 61. The main part of our user study, where we asked subjects to indicate which pair of
days were most similar to each other.

of pairs of pairs of their days. That is, each subject was shown four randomly selected days

simultaneously, using the visualizations described above, and as shown in Figure 61. We then

asked the subject to indicate which of the two pairs was most similar. For instance, if the two

pairs of days were A and B, and C and D, we asked the subject to indicate if A and B were

more similar to each other than C and D, or vice-versa. We chose this simple assessment after

first piloting a different survey that asked subjects to give a numerical similarity rating to a

pair of days. This proved too difficult, so we reverted to this simpler question about the relative

similarity of pairs of days. The example shown in Figure 61 is a good representation of the
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complexity of the typical comparison problem presented to our subjects; with an average of five

stops per day, the left-most pair of days represents a simpler case, and the right-most pair a

more complex case. Each subject rated 30 pairs of pairs, which took approximately 30 minutes

in total for each subject.

7.3 Algorithms for Assessing Day Similarity

To find an algorithm that computes a numerical similarity (or, “distance”) score between

pairs of days that matches the similarity rankings of our subjects, we implemented and evaluated

four trajectory similarity algorithms in both standard and modified forms. The standard form

of each algorithm is that given by its original definition, described in the following sub-sections.

The modified form of each algorithm consists of its original definition being adapted to use

Dynamic Time Warping (DTW) (70), a technique which allows us to relax the assumption that

activities between pairs of days be aligned in time. For example, consider two days A and

B consisting of the same simple “Home → Work → Home” activity pattern. On Day A, the

subject leaves home at 8:30am, arrives at work at 9am, departs work at 6pm, and returns home

at 6:30pm. On Day B, the subject leaves home at 8am, arrives at work at 8:30am, departs work

at 5:30pm, and returns home at 6pm. Since days A and B both consist of a 9-hour work-day

with a 30-minute commute from/to home, subjectively speaking they are virtually identical.

However, because of the 30-minute time-shift between them, they will necessarily incur a penalty

from any objective similarity measure. Therefore, our motivation behind evaluating a DTW-

modified version of each algorithm was to establish whether our subjects ignore these shifts
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in time, and if so, to more accurately capture and reproduce the subjective nature of their

evaluations. Below, we describe the four standard trajectory similarity algorithms.

7.3.1 Edit Distance

Edit distance measures the number of “edit” operations needed to transform one string of

symbols into another. In our case, this algorithm operates on the symbolized stop representation

of our trace data (as discussed in Section 7.1.2), and therefore the “symbols” referred to here

correspond to Stop IDs and From Stop ID–To Stop ID pairs.

Valid edit operations include: insertion, deletion, and substitution. In our evaluation, we

used the canonical Levenshtein (71) implementation of this algorithm, where a unit cost is

assigned to each of these operations. The performance of this similarity metric, in both its

standard (denoted “without Dynamic Time Warping”) and modified (denoted “with Dynamic

Time Warping”) form can be seen in Figure 62.

7.3.2 Distance Sensitive Edit Distance

The standard edit distance algorithm (described above) operates entirely on the symbolized

stop representation of a given day, without taking into consideration the stops’ geographic

locations. In order to account for the geographic location of stops we modified the standard

Levenshtein algorithm (71) to use great-circle distance, measured using the Haversine formula

(72), as its cost function for each of the edit operations. This means, for example, that the cost

of performing the substitution operation for two Stops #60 and #157 is no longer 1, but rather

the distance in meters between Stops #60 and #157 according to their coordinate locations.

The performance of this similarity metric can be seen in Figure 62.
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7.3.3 Stop Type Distance

The symbolized stop representation of a subject’s days requires an exact correspondence

between IDs to be considered a match. Because this definition can be overly restrictive, we

generalized the representation of each stop by classifying its location type. In order to perform

this classification, we provided the coordinates of each stop to Bing Local Search, which returned

a list of categorized businesses and their distances from our stop within a radius of 250 meters.

Example business types include “Restaurant,” “Grocery and Food Stores,” and “Banks and

Credit Unions,” among many others. Using this data we then built a location-type probability

distribution for each stop, based on the proportion of returned business types and weighted by

their distance from the original stop location.

Replacing each Stop ID with its corresponding location-type probability distribution, we

then computed the distance between days as the sum of the KL-divergence (73) scores be-

tween their probability distributions. The performance of this similarity metric can be seen in

Figure 62.

7.3.4 Sum of Pairs Distance

This metric (74) computes the distance between days based on their raw location traces,

rather than the symbolized stop representations used above. As a result, this metric does not

take into account any of the related semantic information.

Sum of pairs distance measures the sum of the great-circle distances between every pair of

trace locations. Since this metric requires that the traces for days A and B be of equal length,
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we first perform simple linear interpolation and then compute their distance. The performance

of this similarity metric can be seen in Figure 62.

7.4 Results

We evaluated our similarity algorithms both on the task of matching our subjects’ similarity

assessments, and on a clustering task.

7.4.1 Matching Subjects’ Similarity Assessments

We ran our eight similarity algorithms on the data from our 30 subjects. Recall that each

subject was shown 30 sets of 4 days each. Each set of four days was split into two pairs,

and the subject chose which pair was most similar. We gave these same sets of days to our

similarity algorithms and recorded their assessment of which days were most similar. The

accuracy results we report show the proportion of human decisions our algorithms were able to

correctly reproduce.

The accuracy results are shown in Figure 62. Ignoring statistical significance, the best

performing algorithm was Sum of Pairs Distance w/DTW, with a mean accuracy of 75.5%

(SD=10.4%). This algorithm looks at the great circle distance between points in the two

location traces, with local adjustments for time shifts. In second place was Distance Sensitive

Edit Distance w/DTW with an overall mean accuracy of 74.2% (SD=9.3%). The fact that our

two best-performing algorithms both base their distance metric on actual geographic distance

is telling; clearly our subjects associate day similarity with geographic proximity.

Since we computed the accuracy for each subject, this provided 30 sample accuracies for

each algorithm, allowing for a statistical analysis. We began with a one-way, repeated-measures
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Figure 62. Accuracy results for our eight similarity algorithms. Error bars show +/− 1
standard deviation over all 30 test subjects.

Analysis of Variance (ANOVA) test, which resulted in F (7, 29) = 11.22, p = 5.45× 10−12. This

is evidence that the choice of algorithm has a statistically significant effect on accuracy. We next

performed one-tailed, paired-sample t-tests of the means between each pair of algorithms, with

a Holm-Bonferroni (75) correction to account for the multiple t-tests. Of the 28 possible pairs

of algorithms, 16 pairs had statistically significant mean accuracy differences at the α = 0.05

level. Table III tallies the wins and losses of each algorithm. The algorithm with the best

performance record is Distance Sensitive Edit Distance w/DTW, with five wins and no losses.

The next best algorithm is Sum of Pairs Distance w/DTW, with four wins and no losses. There

was no statistically significant difference in performance between these two algorithms. Of

these two, Sum of Pairs Distance w/DTW is easier to implement, since it does not require
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Algorithm Wins Losses

Edit Distance w/o DTW 0 3

Edit Distance w/DTW 0 1

Distance Sensitive Edit Distance w/o DTW 2 2

Distance Sensitive Edit Distance w/DTW 5 0

Stops Categories Distance w/o DTW 0 4

Stops Categories Distance w/DTW 0 4

Sum of Pairs Distance w/o DTW 3 0

Sum of Pairs Distance w/DTW 4 0

TABLE III

NUMBER OF STATISTICALLY SIGNIFICANT WINS AND LOSSES FOR OUR
SIMILARITY ALGORITHMS.

the identification of stops in the location traces. While the two best-performing algorithms

both used DTW, it produced a statistically significant performance improvement for only the

Distance Sensitive Edit Distance algorithm, over its non-DTW counterpart.

Overall, for accuracy and ease of implementation, we are inclined to recommend Sum of

Pairs Distance w/DTW as the best algorithm we tested for assessing the similarity of days.

7.4.2 Application to Clustering

One application of our similarity measure is clustering, where we can find groups of similar

days. We tested this by having our 30 subjects assess clusterings of their own days. We clustered

days with a spectral clustering algorithm (76), using the Edit Distance w/o DTW algorithm

as our distance metric. Edit Distance w/o DTW had a mean accuracy of 66.2% (SD=12.5%),

slightly lower than the best accuracy of 75.5% for Sum of Pairs Distance w/DTW. We used
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Edit Distance w/o DTW for our survey, because at the time we conducted our study we hadn’t

yet been able to test for the best performing algorithm.

For the clustering portion of the survey, we asked each subject to increment through the

number of clusters, k, starting at two. For each k, the program displayed the clustered days

in groups using the same visualizations described in Section 7.2. An example of a timeline

showing three clusters is depicted in Figure 63, where the day-groupings are indicated by the

colored labels on the left-hand side of each row.

Each subject was asked to pick the best k and then to rate the clustering on a Likert

scale by indicating their level of agreement with the statement, “My days have been accurately

separated into sensible groups.” The results of this question are shown in Figure 64, where we

see that 20 out of 30 subjects answered either “Agree” or “Strongly agree,” indicating that the

clustering was generally successful. This, in turn, further supports the assertion that our Edit

Distance w/o DTW similarity algorithm comes close to matching human similarity assessments.

We would expect Sum of Pairs Distance w/DTW to work even better, since it was the most

accurate algorithm based on our analysis in Section 7.4.1.

7.4.3 Visualization Usefulness

Finally, as part of our survey, we asked each subject about the usefulness of our three

visualizations for assessing the similarity of days. The three visualizations were the map, the

graph, and the timeline (depicted in Figure 60). After each subject assessed 30 pairs of paired

days, we asked them to rate the usefulness of each visualization on a Likert scale with the
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Figure 63. Three clusters shown on a timeline. Each row is one day. The single day in the top
cluster is an outlier. The main central cluster shows 32 work days, and the bottom cluster

shows 19 non-work days.
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Figure 64. Most of our subjects were happy with the clustering results.

assertion, “The <visualization> was a useful way to assess the similarity of pairs of days,”

where <visualization> was “map,” “graph,” or “timeline.”

Figure 65 shows the numerical results. To detect any statistically significant difference in re-

sponses, we performed a one-way, repeated-measures ANOVA test. We found F (2, 29) = 21.58,

p = 9.86 × 10−8, indicating there is a statistically significant difference of opinion among the

three different visualizations. Furthermore, one-tailed, paired-sample t-tests of the means, with

a Holm-Bonferroni (75) correction at the α = 0.05 level, showed that the map was considered

significantly more useful than both the graph and timeline, and the graph was significantly

more useful than the timeline.



155

 0

 1

 2

 3

 4

 5

Map Graph Timeline

M
ea

n 
Li

ke
rt 

R
at

in
g 

(5
 is

 b
es

t)

Visualization Type

Figure 65. Our subjects rated the usefulness of our three different visualizations for assessing
the similarity of days.

We can relate these preference results to the relative accuracies of our similarity measures:

both Sum of Pairs Distance and Distance Sensitive Edit Distance are highly geographic in

nature, a quality that is emphasized in the map visualization. However, we must also note

that the rating of a visualization is necessarily influenced by its layout, colors, and other design

elements, in addition to the data it shows; qualities we did not assess in our evaluation.

7.5 Conclusion

Based on a survey of 30 subjects, we evaluated the accuracy of 8 different similarity algo-

rithms on their location traces. We found that two algorithms, Sum of Pairs Distance w/DTW

and Distance Sensitive Edit Distance w/DTW, worked best at matching human assessments of
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day similarity. We also showed that one of our similarity algorithms worked well for clustering

days of location traces, based on an evaluation from our subjects.

In addition to clustering, these similarity algorithms can potentially be used to find anoma-

lies and help predict behavior. None of our algorithms depend on training, so they are generic

across all users, and therefore relatively easy to use.

We envision future work in this area may explore other similarity algorithms as well as

experiments to detect anomalies. We would expect anomaly detection to work well because of

the good performance shown here by our algorithms at reproducing human assessments of the

similarity of days.

7.6 Copyright Information

The material in this chapter is reprinted with kind permission from Springer Science+Busine-

ss Media: User Modeling, Adaptation, and Personalization. Lecture Notes in Computer Sci-

ence. “Days of Our Lives: Assessing Day Similarity from Location Traces.” Volume 7899. 2013.

Pages 89–101. James Biagioni and John Krumm. Figures 1–7. Copyright c© Springer-Verlag

Berlin Heidelberg 2013.



CHAPTER 8

RELATED WORK

In this chapter, we review the existing academic literature that pertains to each of the topics

presented in this thesis: (i) inferring road maps from GPS traces, (ii) online GPS tracking,

(iii) automatic transit tracking, mapping, and arrival time prediction, and (iv) assessing day

similarity from location traces.

8.1 Inferring Road Maps from GPS Traces

As discussed in Chapter 2, there has been considerable interest in the problem of inferring

road maps from GPS traces over the past decade, with many innovative solutions being pre-

sented. Those papers that exist in the open literature are summarized in Table IV. Out of

the 11 papers, 6 report k-means based methods, 2 report trace merging methods, and 3 report

KDE methods.

As noted in the “Evaluation Method” column, the literature has thus far almost exclusively

relied on a qualitative method (“eyeballing”) for evaluating performance. Typically, a sample

of the generated road geometry is overlaid on a map or satellite image, from which conclusions

are drawn manually. In the cases where any type of numerical accuracy result is reported

(15; 10; 17; 12), no comparison is made to related work. In cases where a comparison is made

against related work (19), only a qualitative comparison is offered, with no numbers reported.
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Below we briefly reintroduce the three categories of map inference algorithms, and discuss

the variations on each offered in the literature.

8.1.1 Map Inference Based on the k-means Algorithm

The k-means based approach begins by distributing a series of “cluster seeds” at locations

drawn from the set of trace data, with the constraint that every trace point must be within

a fixed distance d and bearing difference δ of a cluster seed. Using the cluster seeds as initial

estimates, minor variations on the k-means algorithm are then used to find seed locations

and headings that best describe the raw traces. Once the seed locations are settled, they are

linked to form road segments, based on the pattern of raw traces passing between them. These

segments then represent the map inferred using this technique.

8.1.1.1 Edelkamp and Schrödl (15)

In addition to being the original k-means based method, this paper further refines the road

network model by fine-tuning the location of intersections, representing the road centerline by

a smooth curve rather than a series of straight lines, and performing lane finding. To refine

the location of intersections, clusters located at the end-points of contiguous road segments are

incrementally advanced towards identified “merge-zones,” until they are determined to overlap.

The road centerline is refined by performing spline-fitting (78) through the series of clusters

located along contiguous road segments, and lane finding is then performed by clustering the

raw traces based on their respective distance-offset from the road centerline. This work was

evaluated by comparing the number of lanes detected, and the lane position error against a

ground truth map generated by the authors, using survey-grade differential GPS equipment.
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8.1.1.2 Schroedl, Wagstaff, Rogers, Langley and Wilson (10)

Based on Edelkamp and Schrödl (15), this paper describes a process for additionally refining

the intersection geometry. Specifically, instead of treating intersections as simple point features,

they model the individual lanes involved and the transitions and turn restrictions between them.

This is accomplished by first identifying the location of intersections and determining their

bounding boxes. Traces that pass through an intersection’s bounding box are then grouped

by their entry and exit points, and spline-fitting is applied to each group to produce the final

turn-lane geometry of the intersection. This work was evaluated by visually comparing the

generated intersection geometries against a ground truth map provided by NAVTEQ (79).

8.1.1.3 Worrall and Nebot (16)

The aim of this paper is to infer a compressed road map, represented as a set of lines and arcs.

In order to create this representation, the authors first use a method based on Edelkamp and

Schrödl (15) to infer the set of road clusters, and then segment them into regions of “constant

curvature.” The best line or arc is then fitted to each segment. Standard regression analysis

(80) is used for regions representing straight lines, and non-linear least-squares fitting (80) is

used for regions representing arcs. This work was evaluated by measuring the error between

the compressed map representation and a cluster-based (15; 10) alternative.

8.1.1.4 Guo, Iwamura and Koga (17)

Similar to the goal of Worrall and Nebot (16), the aim of this paper is to generate a set of

spline curves representing the road network. To accomplish this, least squares approximation

is first used to derive a set of “feature points” (akin to cluster seeds in (15)) from the raw



161

trace data. Spline curves are then fit to these points and used to represent the centerline of

the road. This work was evaluated by studying the stability of the inferred map with respect

to the amount of trace data used. No comparison against a ground truth map or competing

methods was made.

8.1.1.5 Jang, Kim and Lee (18)

This paper proposes a heuristic performance optimization for the method described by

Edelkamp and Schrödl (15), by first splitting the geographical space covered by the trace data

into minimum bounding rectangles. This work was evaluated by visually comparing the inferred

map against a ground truth map provided by Korean web portal Naver (77).

8.1.1.6 Agamennoni, Neito and Nebot (19)

The approach taken in this paper is similar to Schroedl et al. (10), except the focus is to

extract “principal road paths,” which are curves as defined in (81). This work was evaluated by

visually comparing the inferred map against its underlying trace data. In an extended technical

report of this work (82), the authors perform a visual comparison against the k-means approach

described by Schroedl et al. (10), and the kernel density estimation method provided by Davies

et al. (22). A limited quantitative evaluation of this method is also presented in (82), using a

GPS trace dataset collected by the authors.

8.1.2 Map Inference Based on Trace Merging

Trace merging methods begin by iterating through each recorded GPS trace, adding edges

from the raw trace data to the map unless an edge sufficiently similar in location and bearing

already exists. Should such an edge already exist, its “weight” is instead incremented, and in
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post-processing any edges with weight below a threshold are removed. Those edges that remain

form the map inferred using this technique.

8.1.2.1 Cao and Krumm (20)

The method proposed in this paper precedes the standard trace merging approach with a

“clarification” step. The clarification step is a type of particle simulation (21), where a strong,

but short-range attractive force is applied to pull together nearby traces, and a weaker, but long-

range retractive force is used to keep traces from straying too far from their original location.

This reduces the effects of GPS noise by pulling together traces that originate from the same

road, forming tight bands along the road centerlines. The clarification process also separates

lanes of traffic traveling in opposite directions, by repelling traces moving in opposite directions

rather than attracting them. This work was evaluated by visually comparing the inferred map

against satellite imagery from Bing Maps, and also by visually comparing shortest-path routes

from the inferred map against those generated by Bing Maps.

8.1.2.2 Niehoefer, Burda, Wietfeld, Bauer and Lueert (12)

This paper modifies the standard trace merging method by adjusting the position of existing

road segments when merging a new trace segment into the already-existing map. This technique

allows the location of road segments in the base map to be steadily refined as more traces are

added, in a similar spirit to the “clarification” pre-processing step used by Cao and Krumm (20).

This paper also describes techniques for automatically classifying road types, such as highways,

streets or walkways, as well as entry and exit ramps, bridges, and tunnels. A qualitative

evaluation of this work was conducted by visually comparing the inferred map against the
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same region depicted in Google Maps. A quantitative evaluation was also performed against a

“reference map” inferred using all available traces, whereby the relative position error of a road

segment is shown to rapidly decrease with increasing amounts of data.

8.1.3 Map Inference Based on Kernel Density Estimation

Map inference methods based on kernel density estimation begin by computing a two-

dimensional histogram of trace points or edges over the area of interest. They then convolve

the histogram with a Gaussian smoothing function (26) to compute an approximate kernel

density estimate, which is thresholded to produce a binary image of the road outlines. Finally,

they apply a variety of methods to produce road centerlines from this binary image, and the

resulting centerlines represent the map inferred using this technique.

8.1.3.1 Davies, Beresford and Hopper (22)

In the approach proposed in this paper, not only are the individual GPS samples quantified

in the histogram, but also the lines between them. Specifically, they are accounted for in

each grid cell they pass through by an amount proportional to the length of line that passes

through each cell, akin to the anti-aliasing (83) method common in computer graphics. After

thresholding the density estimate, the outlines of the produced road “bitmap” are extracted

using a contour follower (84). To find the centerlines of these outlines, which are likely to

coincide with the centerlines of the underlying roads, the Voronoi graph (27) of points evenly

spaced along the contours is produced, followed by the removal of edges that fall outside the

contour, or that are of insufficient length. Finally, separately produced KDEs of traces in each

of the 8 cardinal and ordinal directions are used to annotate each road segment with its allowed
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directions of travel. This work was evaluated by visually comparing the inferred map against

that of a UK Ordnance Survey.

8.1.3.2 Chen and Cheng (23)

The method described in this paper starts by producing a point-based density estimate,

and then extracts the road map from the bitmap image produced after thresholding, using

image-processing techniques. Specifically, they use morphological “dilation” and “closing” to

produce a smooth and contiguous image of the road boundaries. Then, a “thinning” operation

deletes all pixels on the boundaries of the pattern until only a skeleton remains along the

road centerlines, which is then converted into road segments. This technique was evaluated by

visually comparing the inferred map against the same region depicted in Google Earth.

8.1.3.3 Shi, Shen and Liu (24)

The approach taken in this paper is very similar to that of Chen and Cheng (23), wherein

image-processing techniques are used to extract a “thinned” road network skeleton. However,

the authors of this paper also introduce a novel algorithm known as “combustion” for robustly

extracting the road network from a pixelated skeleton. This technique was evaluated by visually

comparing the inferred map against satellite imagery from Google Earth.

8.1.4 Gray-scale Skeletonization

Related to our gray-scale skeletonization algorithm in Section 4.3, there is existing work by

Li, Bai and Liu (85), and Yim, Choyke and Summers (86). Li et al. (85) look at the problem

of skeletonizing gray-scale images that lack a contiguous contour. Starting from the boundary

segments of the gray-scale image, their algorithm develops a so-called “strength map” from
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which they are able to extract the skeleton. Yim et al. (86) look at the skeletonization of

gray-scale images from magnetic resonance angiography, as a means to identify the paths of

small vessels and their tree structures. The technique employed in this work starts by modeling

the image as a directed acyclic graph, and then applies selection and pruning methods to isolate

the most salient features in order to extract a final skeleton.

8.1.5 Road Centerline Finding

Related to our centerline finding approach (using gray-scale skeletonization in Section 4.3),

prior work on KDE algorithms have employed a variety of novel techniques. In Davies et al.

(22), a form of Voronoi tessellation is used within the boundaries of the binary road network.

By pruning away short “dead-end” segments, they are able to recover a contiguous spline along

the approximate road centerline. In Chen and Cheng (23), morphological “dilation” followed

by “closing” operations are used to fill gaps in the binary road network representation, and

then morphological “thinning” is used to extract the centerline of the resulting shape.

Finally, the watershed transform (87) can also be used to extract road centerlines. However,

this transform suffers from two major weaknesses that make it unsuitable for our purposes.

First, it depends on a method for identifying a set of local minima from which to initiate the

flooding process, and reliably choosing minima that produce a good set of ridges is non-trivial.

Second, the watershed transform is fundamentally unable to detect dead-end roads, since these

cannot form a separate flooding basin.
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8.2 Online GPS Tracking

In Chapter 5 we present a system for online GPS tracking that seeks to reduce data uplink

usage while preserving tracking performance. This is an active area of research, with a substan-

tial publication record over the past two decades, on topics including: (i) energy conservation,

(ii) GPS trace compression, and (iii) moving objects databases.

Due to the high power consumption of GPS receivers and their popular use in mobile,

energy-limited devices, many researchers have focused on improving the energy efficiency of

GPS tracking (46; 88; 89; 47; 48; 49; 33; 50). By contrast, in our work we assume that power is

plentiful, or that the GPS is already active for a primary application. GPS trace compression

(45; 90; 91; 58; 92; 93; 88; 94) is an often-used approach for producing a compact represen-

tation of a trace, however, while these techniques can be helpful in reducing the size of each

transmission, they cannot reduce the number of transmissions without sacrificing timeliness.

Although we do make use of existing GPS compression techniques, the focus of our work

is online tracking, where forwarding decisions are made as GPS points become available. The

seminal work in this area was published by Wolfson and Sistla et al. (95; 51; 96; 52), where

they present methods for updating databases that track moving objects. Most similar to our

work is (52), where they propose update policies based on dead-reckoning, wherein the moving

object and database maintain a synchronized notion of the object’s position between updates,

and update the object’s database position only when the distance between the object’s actual

and expected location deviate by too large of a margin. Our work builds upon theirs in two

ways: (i) whereas their system requires knowledge of the object’s expected path of travel in
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order to perform extrapolation, our system does not impose any such requirement, instead

extrapolating the object’s future path of travel using techniques that only rely on its history

of previous locations, and (ii) while their system permits tuning of the update cost coefficients

(used to control the trade-off between factors in optimizing performance), our system permits

direct control over the costs themselves, giving users the ability to set hard limits on their range

of values, and enabling concrete performance guarantees.

Work by Čivilis and Jensen et al. (97; 53; 54) builds directly on the efforts of Wolfson

and Sistla et al., and develops an architecture that lays the foundation for our work by adding

support for several alternate extrapolation techniques. Our work extends upon theirs in two

specific ways: (i) whereas their system requires the manual selection of one particular extrap-

olation method, our system provides a unified extrapolator that automatically selects the best

method for the current conditions, and (ii) while their system controls the transmission of lo-

cation updates through the specification of a maximum error-threshold, our system permits

specifying either an error- or budget-threshold, while it automatically optimizes the other.

Existing work by Lange et al. (98; 99; 100) looks at the problem of online trajectory

reduction. Here, the objective is to store an approximation of a moving object’s trajectory with

the fewest possible vertices, while simultaneously ensuring it doesn’t deviate from the actual

trajectory by more than some specified accuracy bound. While this work bears some similarity

to ours, it differs in two ways: (i) the authors’ primary concern is storing a compact and accurate

trajectory in real-time, with object tracking being only a secondary concern, whereas we’re

primarily concerned with object tracking, with accurate trajectory representation and storage
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being only an incidental concern, and (ii) the technique their system uses for extrapolation is

limited to simple linear dead-reckoning, whereas we provide myriad alternatives through the

use of our unified extrapolator.

8.3 Automatic Transit Tracking, Mapping, and Arrival Time Prediction

While transit tracking is already a popular service offered by commercial providers, the

EasyTracker system presented in Chapter 6 is to our knowledge the first to automate the entire

process, from raw GPS traces to a complete transit tracking and arrival time prediction system.

In (101) and (102), a system for cooperative transit tracking is described. Here, it is

assumed that the routes and schedules are known, but that the transit agency is not willing

to install tracking devices. Instead, users cooperatively track transit vehicles through software

that automatically reports their location when they are riding in a bus or train.

TransitGenie (103) is a transit navigation service for smartphones that computes route

recommendations based on real-time transit information, as opposed to static schedules. Tran-

sitGenie is complementary to EasyTracker, in that it makes use of the tracking information

produced by the service to provide travel advice to end-users.

8.3.1 Arrival Time Prediction

In Section 6.6.2 we present a very simple arrival time prediction system that relies on

the schedule and mean trip times computed in Section 6.5.3. While this technique produces

satisfactory results, more sophisticated bus arrival time prediction methods can be found in

(104; 105) and (106).
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8.4 Assessing Day Similarity From Location Traces

In Chapter 7 we develop and test algorithms for assessing the similarity of a person’s days

based on location traces recorded from GPS sensors. While the GIS community has looked

extensively at location trace similarity (e.g., Deng, Xie, Zheng and Zhou (107)), these efforts

are aimed primarily at machine processing. In this thesis we are interested in matching human

assessments of similarity, which appears more commonly in research for anomaly detection. In

(108) Ma detects anomalies from GPS traces by first representing a normal trace as a sequence

of rectangles on the ground. An anomaly is declared if a new trace’s rectangles are sufficiently

different from those of the normal trace. Here the similarity measure is explicit in that it

depends on a quantity measuring the geographic difference between the normal trip and the

query trip. It also ignores time. In (68) Patterson et al. detect anomalous behavior based

on GPS tracking. They train a dynamic, probabilistic model from a person’s historical GPS

traces. If the uncertainty of the trained model exceeds the uncertainty of a general prior model of

human motion, then the system declares an anomaly. This is an example of an implicit similarity

measure. Both (108) and (68) are aimed at detecting anomalies in the lives of the cognitively

impaired. The system of Giroux, Bauchet, Pigot, Lussier-Desrochers and Lachappelle (109) has

the same goal, only they use sensors in a home to detect anomalies in predefined daily routines,

like making coffee. An anomaly is declared if the normal sequence of events is violated or if

the timing of the sequence is sufficiently different from normal. Researchers have also detected

anomalies in video, such as Xiang and Gong (110), whose system automatically builds models

of normality from training video.
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All of these approaches differ from ours in that they must be trained anew on a per-subject

basis, whereas we find a single measure that doesn’t require any training and generalizes well to

multiple people. Moreover, we find a measure that approximates a human subject’s assessment

of their own data, without making any a priori assumptions.
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CHAPTER 9

CONCLUSION

In this thesis we have developed algorithms for application areas that stand to benefit from

the inference of semantic information from user mobility data. Specifically, we have: (i) devel-

oped a robust quantitative evaluation method for map inference algorithms, (ii) investigated

and evaluated two techniques for inferring road maps from sparsely sampled GPS traces, (iii)

presented a hybrid map inference pipeline that combines the best aspects of existing algorithms

with several new innovations in order to provide the most accurate method to date, (iv) de-

veloped an online GPS tracking system that reduces data uplink usage and provides improved

guarantees and flexibility to system operators, (v) presented a system for automatic transit

tracking and arrival time prediction for small transit agencies that requires minimal equipment

and labor cost, and (vi) identified two algorithms that closely approximate human evaluations

in assessing the similarity of people’s days.

As the ubiquity of GPS sensors continues to expand into more and more everyday devices,

it is our hope that the work presented here will provide both the inspiration, and technical

basis for future developments in inferring semantic information from their generated data.
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