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SUMMARY

This study investigates computational methods for the construction and enumeration of
Turyn Type sequences, which can be used to construct T-Sequences and Hadamard matrices.
Extending and optimizing an approach originally introduced by Hadi Kharaghani, we have
performed the most comprehensive search for Turyn Type sequences to date. We have checked
the enumeration of Turyn Type sequences recently reported by Best et al [3] and found it to be

correct for lengths up to 30, but identified 66 additional sequences that were missed for length
32. We then randomly selected and evaluated approximately % of the search space to estimate

the total number of Turyn Type sequences of lengths 34 and 36. In order to identify longer
sequences, the search algorithm was further optimized by restricting the values of some
parameters. This approach allowed the identification of 119 new Turyn Type sequences of
lengths 34 and 101 new Turyn Type Sequences of length 36. We verified that each sequence
leads to a unique Hadamard matrix. This calculation has allowed the identification of 101 new
Hadamard matrices of order 428; only one had been identified prior to this analysis. We have
also found 10 Turyn Type sequences of length 38. This directly leads to 10 of the 11 known T-
sequences of length 113, with the other being discovered by Best et al [3]. Finally, we
discovered the first three Turyn Type sequences of length 40 which are the longest known Turyn

Type sequences.



CHAPTER 1

INTRODUCTION

1.1 Basic Definitions

A Hadamard matrix H is an n x n matrix of 1s and -1s such that HHT = nl or
equivalently an n x n matrix of 1s and -1s with every two rows orthogonal and every two
columns orthogonal. All Hadamard matrices except the trivial ones with orders 1 and 2 must
have an order which is a multiple of 4. The French mathematician Jacques Hadamard
conjectured in 1893 that a Hadamard matrix exists for every order which is a multiple of 4. The
Hadamard Conjecture has been proven for all orders less than 668, but remains an open question
to this day [6]. Two Hadamard matrices are considered equivalent if one can be obtained from
the other by a combination of permutations and negations of its rows and columns. We call these
Hadamard operations. The number of distinct inequivalent Hadamard matrices is only known

for orders 32 and below [19].

1.2 Progress on the Hadamard Conjecture

James Joseph Sylvester [27] first discovered these matrices in 1867. Sylvester
discovered a simple easy way to construct a Hadamard matrix for every order which is a power
of 2. French mathematician Jacques Hadamard [11] discovered matrices of order 12 and 20 in

1893.

Raymond Paley [25] made the first major discovery in 1933. He constructed Hadamard

matrices for all orders of the form ¢ +1 where ¢ = 3(mod 4) is a prime power and of the form

2(g+1) where g = 1(mod 4) is a prime power. With this construction, a Hadamard of every



multiple of 4 order up to 100 except 92 can be constructed [29]. However, since primes get less
common this construction works for smaller and smaller percentages of numbers as the orders
get larger. John Williamson [31] made the next major breakthrough in 1944. He found a way to
construct Hadamards by putting together a 4 x 4 array of circulant matrices. He discovered a
number of new matrices using this method. Leonard Baumert, Solomon Golomb and Marshall
Hall finally discovered the first known order 92 Hadamard matrix in 1961 [1]. Numerous other
orders have since been discovered with this method, often with the aid of computers. Baumert
and Hall generalized this method in 1965 to 4t X 4t arrays [2]. Goethals and Seidel discovered
another construction around the late 1960s [10]. The Goethals-Seidel method in conjunction
with computer technology has been used in many of the more recent discoveries, including those

discovered here.

A Hadamard matrix of every order which is a multiple of 4 less than 428 except for 268
was known at the beginning of 1985. That year, Kazue Sawade [26] found, using the Goethals-
Seidel method and a computer search, the first Hadamard of order 268. Masahiko Miyamoto
[24] proved in 1991 that if you have a Hadamard of order g — 1 where q is the power of an odd
prime, then there exists a Hadamard of order 4q. It was not until 2004 when a computer search
by Hadi Kharaghani and Behruz Tayfeh-Rezaie yielded the first known Hadamard of order 428
[17]. This discovery was made by finding the first Turyn Type sequences of length 36. With the
above methods and some variations on them, this left 668, 716, 764 and 892 as the only orders
under 1000 for which there was no known Hadamard matrix [6]. In 2007, Dragomir Djokovic
discovered the first known Hadamard of order 764 using a method called symmetric difference
sets [6]. A complete list of how to construct a Hadamard matrix for any known order up to 1000

is in the appendix.



1.3 Progress on Hadamard Enumeration

A much more difficult problem is to count the number of inequivalent Hadamard
matrices up to equivalence for each order. There are (2"n!)? ways to permute and negate the
rows and columns of a Hadamard matrix. This number is huge for n = 16 and consequently

being able to tell when two Hardmard matrices are equivalent can be very difficult.

It has long been known that the Hadamard matrices of orders 1, 2, 4, 8 and 12 are unique.
Marshall Hall discovered that there were exactly 5 of order 16 in 1961 [12] and there are exactly
3 unique Hadamards of order 20 in 1965 [13]. Ito and Leon [16] discovered that there were
exactly 60 of order 24 in the late 1980s and Kimura [20] counted the 487 Hadamards of order 28
in 1994. Kharaghani and Tayfeh-Rezaie [18,19] have found that there are exactly 13,710,027

Hadamard matrices of order 32 in 2012.
TABLE |

NUMBER OF INEQUIVALENT HADAMARDS FOR EACH ORDER

Order | Number
1 1
2 1
4 1
8 1

12 1
16 5
20 3
24 60
28 487
32 | 13710027




1.4 Turyn Type Sequences

The main topic of this paper is Turyn Type sequences, which are sets of four sequences
of lengths n,n,n,n — 1, where n is even and often denoted by TT (n). They lead directly to T-
sequences of order 3n — 1 and to Hadamard matrices of order 12n — 4. These sequences were
first discovered by Richard Turyn in 1974 [28] and he discovered them for n = 2,4, 6,8. In
1994, examples were found for all orders up to n = 24 [22] and further extended up to n = 34 in
2001 [21]. Several years later, Kharaghani and Tayfeh-Reazie found the first example for
n = 36 which directly led to the first known Hadamard matrix of order 428. In 2012 Best et. al
[3] found an example for n = 38. We have independently found 10 additional examples for
n = 38 and also the first three examples for n = 40. The details of these results will be

presented in chapters 3-5.

If a TT (n) can be found for n = 56 and n = 60, it would lead to the first Hadamard

matrices of orders 668 and 716, respectively.



CHAPTER 2

HADAMARD MATRIX CONSTRUCTION METHODS

2.1 Sylvester and Kronecker Product Constructions

Sylvester showed in 1867 that if H is a Hadamard matrix of order n then the matrix

below is a Hadamard matrix of order 2n [27].
[ -l
H -—-H
This can be repeated to construct a Hadamard matrix of order 2™ for any positive integer n.

If a Hadamard matrix A of order m and a Hadamard matrix B of order n are Hadamard matrices,

then their Kronecker or tensor product gives a Hadamard matrix of order mn.

a1 B a,B ... a,B
AQB = a2:1B aZ:ZB azTB
amB amB ... ammB

2.2 Paley Construction

There are two infinite classes of Hadamard matrices of Paley type [29]. A type | Paley
can be constructed for any order g + 1 where g = 3(mod 4) is a prime power and a type Il

Paley can be constructed for any order 2(q + 1) where g = 1(mmod 4) is a prime power.

We define a conference matrix C to be an n x n matrix of 1s and -1s except 0s along the

main diagonal such that CCT = (n — 1I,,.

We can construct such an antisymmetric conference matrix C of any order n of the form

q + 1 where g = 3(mod 4) is a prime power as follows. We create a g X q matrix with rows



and columns numbered from 0 to g — 1. We put Os along the main diagonal, 1s in the (i, j)
entries with i # j where i — j is a perfect square in the field F;, and -1s everywhere else. We
then append a row of 1s on the top, a row of -1s on the left and a 0 in the upper left corner. This

gives a conference matrix which is antisymmetric. A Hadamard matrix of order n is
H=I+C

We can construct such a symmetric conference matrix C of any order n of the form
2(q + 1) where g = 1(mod 4) is a prime power as follows. We create a g x q matrix with rows
and columns numbered from 0 to ¢ — 1. We put Os along the main diagonal, 1s in the (i, j)
entries with i # j where i — j is a perfect square in the field F;, and -1s everywhere else. We
then append a row of 1s on the top, a row of 1s on the left and a O in the upper left corner. This

gives a conference matrix which is symmetric. A Hadamard matrix of order n is

I+C —-I+C

H:[—I+C _I-¢C

2.3 Williamson Construction

If we have four symmetric commutative matrices A, B, C, D with entries 1 and -1 of order

n with n odd with the below condition, then we can form a Hadamard matrix H of order 4n [29].

A%+ B% + C%*+ D? = 4nl,

A B C D
_|-B A -D ¢
H= -C D A -B
-D -C B A

If a Williamson matrix existed for all odd n, it would prove the Hadamard conjecture.

However, it was shown that there exist no Williamson matrices for orders 35, 47, 53 and 59 [14].



Baumert and Hall [2] discovered a way to generalize the Williamson construction by
replacing the 4 x4 matrix used in the Williamson construction with a 4t x 4t matrix called a

Baumert Hall array. The below condition must be met.
t(A%? + B> + C? + D?) = 4nl,

An example of a 12x12 Baumert Hall array is given below [15].

r A A A B —-B ¢ —-C —-D B C —-D —Dq
A -A B -A -B -D D -C -B -D —-C —C
A —-B -A A -D D -B B —-C -D c —-C
B A —-A -A D D D C ¢ -B -B —C
B -D D D A A A c —-C B —C B

H= B ¢ -D D A A c —-A -D C B -B
D —-C B -B A —-C -A A B C D -D
-C -D —-C -D C A —-A —-A -D B —-B -B
D ¢ -B -B -B C c -D A A A D

—-D B C C C B B —-D A -A D -A

¢ -B —-C C D -B -D -B A -D -A A
-C -D -D ¢ —-C -B B B D A —-A -A

2.4 Goethals-Seidel Construction

Goethals and Seidel discovered a construction similar to, but more sophisticated than the

Williamson in 1967 [10].

A set of four g x g circulant 0, &1 matrices Ty, T,, T5, T, With T, T] + T,TT + T;TT +
T,TI = ql, are called T-matrices. Let Wy, W,, W3, W, be a set of four r x r Williamson

matrices and S be a back circulant g X g matrix with 0s except 1s along the back diagonal. We

build a Hadamard matrix of order 4qr.
R =S®I,

Al = T1®W1 + T2®W2 + T3®W3 + T4®W4



A, = —T,@W, + T,®@W, + T:QW, — T,®@W;
A3 = _T1®W3 - T2®W4 + T3®W1 + T4_®W2
A, = —T,®@W, + T,@W; — T;QW, + T,®QW,
Aq AR AzR A4R
[—A3R —ALR A, AR

If a Goethals-Seidel construction existed for all odd n, it would prove the Hadamard
conjecture. In Best et al. [3] and here, we have found the first T-Matrices of order 113. The

smallest order for which none are known is 131 [4].

2.5 Symmetric Difference Sets Construction

Djokovic [6, 7, 8] has used a symmetric difference set construction to come up with
many new orders of Hadamard matrices in recent years. We construct a matrix of order 4n, by

first finding a cyclic group of order n — 1. Call the cyclic group H. We find a subgroup of some
prime order, p. We create the ¢ = "7_1 cosets of this group. We number the cosets

XK, Kqy ven, X g

We next define four index sets J;,/,, /3, /4. We create these sets where each contains
some subset of the numbers between 0 and ¢ — 1. Each number in these index sets corresponds
to a coset of our group. We have a search space of size 2*¢ to find suitable index sets. We now
form 4 sets S;,S,, S5, S, which are the union of members from the index sets defined by

Sl' = Ul'Ejk Ocl',k = 1,2,3,4.



We next define the sets a4, a,, as, a, to be n element sets with all members 1 and -1. For
ay let the ith element be 1 if i € S;, and -1 otherwise. Let each of these sets form the top row of
an nxn circulant matrix. We also denote these 4 matrices A,, A,, A3, A,. If these matrices
satisfy Y#_, Ay AY = 4nl,, we can build a Hadamard matrix of order 4n. We do this by plugging
the matrices A4, A,, A3, A, into the Goethals-Seidel array of section 2.4. The result is a

Hadamard matrix of order 4n.

2.6 Miyamoto Construction

Let g = 1(mod 4) and suppose we have a Hadamard matrix K of order q—1. Then
there is a Hadamard matrix H of order 4q [24]. Let K be the Hadamard of order g —1 where

g the power of an odd prime. We break K up into 4 equal parts as shown below.

We construct a conference matrix of order g +1 as in the Paley Il construction. D is

symmetric in this construction. Note that e represents a row of 1s and e” represents a column of

1s.

-1 3

eT D

We can permute rows and columns to get the below symmetric matrix. Since the matrix is
symmetric, C;, C, are also symmetric.

0 1 e e
1 0 e —e

E=ler ot _¢, ¢
T T



10

We next create the following matrices, which we then break into 16 equal parts each.

c, ¢, 0 0
cr ¢, 0 0

v=luyl=1"" 0 ¢ o
0o 0 —cI ¢
I 0 K K
O I K3 _K4|
v=[vyl= —KI' —K] 1 OJ
-KI  KI 0 I
1 1 1 -1
Tij = Uij® 1 1] + Vij® [_1 1]

Finally, we construct a Hadamard matrix of order 4q.

1 -—e 1 e 1 e 1 el

—el T, el T, el T3 el Ty

-1 -—e 1 —e 1 e -1 -—e
|-e" Ty —eT T,y el T3 —eT Ty
H = -1 —e -1 =-—e 1 —e 1 e
—el T3, —el T3 —el Ty el Ty

-1 —e 1 e -1 -—e 1 -—e

—eT T,y eT T,, —el T3 —el Tyl

2.7 Hadamard Profiles

One method that is commonly used to tell that two Hadamard matrices are inequivalent is

a k-profile where k is a multiple of 4 [5]. The method for computing a 4-profile is below.

Larger profiles can be computed analogously.

Let () be the number of 4-sets {i, j, k, [} such that P;j,, = t, where
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Piji =

z hia hja hka hla
a

We note 0 < t < n. Hadamard operations preserve the values for (t). Thus two Hadamard

matrices must be inequivalent if (t) is different for any values of t.

2.8 Symmetric Hamming Distance Distribution

The Symmetric Hamming distance distribution [30] is more efficient than the profile

method for differentiating Hadamard matrices. We now summarize the algorithm.

We have an nxn matrix. We begin with k = 3 and repeat until k = % if necessary. If k

gets to be too large, this algorithm becomes extremely inefficient, thus it is only good for telling

us that two Hadamard matrices are different.

1)

2)

3)

4)

5)

Let H be a Hadamard matrix of order n.
Take each of the (Z) different k-column subsets of the sets of all columns to form n X k
submatrices of H.

For each of the (g) pairs of rows of the submatrix, we define the Hamming distance of

the rows to be the number of places in which the rows differ.

Create the symmetric Hamming distance distribution polynomial based on these
Hamming distances where a; is the frequency of a Hamming distance of i among the (YZL)
pairs. We define the Symmetric Hamming polynomial as SW, (x) = Y.:=k q; xmin(k=D),

We have a set of (Z) polynomials for the Hadamard matrix. This set of polynomials

does not change when we do Hadamard operations to the matrix.
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We take two Hadamard matrices and start with k = 3. If there is any difference in the set of

Symmetric Hamming polynomials, they must be different. Otherwise, we’re not sure and we
increment k and repeat. If we getto k = %and the polynomials are the same, the Hadamards are

equivalent. In practice, this can be an efficient way to tell when Hadamards are inequivalent.
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CHAPTER 3
TURYN TYPE SEQUENCES
3.1 Definitions

We begin by presenting some useful definitions. Let A = (aq,a4, ...,a,_1) bea

sequence of length n. We define the nonperiodic autocorrelation function N4 as
n—-1-s
Ny(s) = Z aia;iys for 0 <s<n-—1,Ny(s) =0 fors =n.
i=0

The Hall polynomial for sequence A is defined as

-1

ha(t) = a;tt

S

,~
1l
o

We define the nonnegative real value function f, as
n-1
NL . .
£20) = [ha(@®)[* = No@©) +2 ) Na()) cos(j6).
j=1

Four (—1,1) sequences X, Y, Z, W of lengths n,n,n,n — 1 are of Turyn Type if
(Ny 4+ Ny + 2N, 4+ 2Ny,)(s) = 0 for s > 1.
We denote these as TT (n).
We define x, y, z, w as the sum of the elements in X, Y, Z, W respectively.
Define X, Y., Z,., W, be the X, Y, Z, W sequences written in reverse order.

For sequences A, B define A > B if for the smallest i where a; # b;, a; > b;.
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Four (=1, 1) sequences A4, B, C, D of lengths n + p,n + p, n, n are called base sequences if
(Ny+ Ng+ N+ Np)(s) =0 fors = 1.
We denote these BS(n + p, n).

Four (0,—1, 1) sequences T1, T2, T3, T4 each of lengths n are called T-sequences if there is

exactly one nonzero entry in each position of the sequences and
(NTl + NTZ + NT3 + NT4,)(S) = OfOT S 2 1.
We denote these T (n).

Let X,Y,Z, W be Turyn Type sequences of lengths n,n,n,n — 1. Turyn discovered in

1974 [28]that A = (Z,W),B = (Z,—W),C = X, D =Y are base sequences of lengths 2n —

1,2n — 1,n,n and that the sequences T1 = (5 (4 + B), On),TZ = (% (A—B), on) T3 =

(02,1_1,%(6 + D)) ,T4 = (02,1_1,% (c - D)) are T-sequences of order 3n — 1. We now create

four circulant matrices from our T-sequences and denote them Ty, T,, T5, T,. These are T-
matrices as defined in section 2.4. We plug these into the Goethals-Seidel construction with

W, = W, = W; = W, = [1] to create a Hadamard matrix of order 4(3n — 1) = 12n — 4.

A TT(n) can be written in a more compact format as a hexadecimal number of length n.

1-w;

Let Hy = 4(1 — X) +2(1 = Y)) + (1 - Z)) +

,i€{0,1,2,..,n—2}and H,_; =

1-Zn—1q

2(1 = Xpog) + (1 = Yyy) + 2

. A simple example for n = 10 follows.
A TT(10) is now given.

X +——++—++-
Y A-tt—t—++-



Z +++ttt-——+
W ++—+—+++-

The hex form for the TT(10) is 049850E236.

Which in turn gives a BS(19, 10).

tHtttt—— =ttt 4
tHtt ottt ———+
e e o
tott—t—tt—

o QoW

Finally we get a T(29).

T1
T2
T3
T4

++++++---+0000000000000000000
00000000004++-+-+++-0000000000
0000000000000000000+0000+=++-
00000000000000000000+--+00000

15

This T(29) plugged into the Goethals-Seidel construction gives a Hadamard matrix of order 116.

3.2 Properties of Turyn Type Sequences

following four operations will preserve a Turyn Type sequence.

For a TT (n) we have the two important identities

Assume we have a Turyn Type sequence consisting of X,Y, Z, W. We observe that the

1) Negate anyof X,Y,Z, W.
2) Reverseanyof X,Y,Z, W.

3) Swap X andY.

4) Negate each element with odd indices of all of X, Y, Z, W.
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x2+y%+2z24+2w? =6n-2
(fx + fy +2fz + 2fy)(0) = 6n — 2
Since fx(6) = 0 and f,(6) = 0 we have fx(0) + fy(0) < 3n— 1.
Turyn’s Theorem [28] states that if n iseven x;x,_1_; + ViVp_1-; = 0,i = 1,2,...,n — 2.

When we create a Turyn Type sequence, we can use the above properties to putitin a
normalized form. We let x, = y, = z, = w, = 1 by property 1. We simply negate any of the
four sequences which begins with —1. We can let x,, = y,, = —1 and z,, = 1 by property 4 and
that fact that (N + Ny, + 2N, + 2N,,)(n — 1) = 0. We can further let x; = x,_, = 1 by a
combination of properties 1, 3 and Turyn’s theorem. Also, as a consequence of this theorem,

exactly one of y; y,_, = —1.
A normalized TT (n) satisfies the following four relations.

1) xo=y9=2zp=wp =1
2) xpo1=Yn-1=-1 2,1 =1
) X=X, Y=>4Y, Z>+Z, W = tW,

4) xy =xp_2=1Ly1yn>=-1

We only need to construct a TT(n) in normalized form, since we can always use some
combination of the four operations above to put them in normalized form. If two TT(n) can be
put into the same normalized form, they are considered equivalent. The number of TT (n) for a

particular order is the number of distinct normalized forms for that order.

We note that n must be even. If n were odd, (Ny + Ny + 2N, + 2Ny,)(1) = 2 (mod 4)

which means we do not have a TT (n).
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3.3 Algorithm for Constructing Turyn Type Sequences

We now give an efficient algorithm to construct Turyn Type sequences. We want to
construct X, Y, Z, W in normalized form. The algorithm can be broken into six steps and is an

improved version of the approach used by Kharaghani [17].

STEP 1 - Find all possibilities for the first and last elements of X,Y,Z, W.

We begin by finding all the possibilities for the first and last 6 elements of X,Y, Z, and the
first 6 and last 5 elements of W. Note that the lengths of X, Y, Z are n and the length of W is

n — 1. Call these strings X*, Y™, Z*, W™ as shown below.
X = (X0, s X5)%, o) %, Xy v s Xp—1)
Y* = (X0, s X50%, o %, Yy oo Y1)
Z" = (Xgy wer X5)¥, oo ¥, Znn_gy oo r Zp—1)

W™ = (Xq, ey X5,%, -« %, Wy, vy Wp_2)

Since X, Y, Z, W will be in normalized form, we can let x, = yo =z = wy = 1, x,_1 =
-1, y,.1=-1,2z,=1,x; =x,_, =1. Also, by Turyn’s theorem we have y;y,,_, = —1. We
also use the facts that > +X,, Y > +V,,Z > +Z,,W > +W,. The conditions (Nx + N, +

2N, + 2N,,)(s) = 0 for s = n — 6 must also be satisfied.



18

There are 1911620 such possibilities for X*,Y*, Z*, W* that meet the above requirements.
We experimented with using more or less than the first and last 6, but it smaller values slowed

the program down and larger values used much more memory and did not speed up the program.

Let an (x,y,z, w) quadruple be a solution in integers of x? + y% + 2z2 + 2w? = 6n — 2.
Let a (¢, w) pair correspond to all quadruples such that z = +¢ and w = +w. For example, if
n = 24, the possible (¢, w) pairs are (6,5), (6,3), (6,1),(2,7),(2,3). When we run the
program, we enter the value for n followed by the (¢, w) pair. If we enter n = 24 and ({, w) =
(2,7), the program will find the TT(24) with z = +2 and w = +7. Based on the ({, w) we
have chosen, we compute all possible values for (x, y). In this case they will be (x,y) =
(0,£6), (£6,0). If we want to find all TT(24) we would need to run the program five times,

one for each (¢, w) pair.
STEP 2 — Find the possible strings for Z
We find all +1 strings Z of length n which satisfy the following.

1) Sum of the elements of Z is +z
2) f,(6)<3n—-1,0¢ 1"7’; 1<k <100, keZ
3) zp=1,z,_,=1
4) 7 >17,
STEP 3 — Find the possible strings for W

We find all 1 strings W of length n — 1 which satisfy the following.

1) Sum of the elements of W is +w

2) fw(@® <3n-1,0 e%,l < k < 100, keZ
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3) W0=1
8 fwy =1, W=W.. fw,,=-1,W=—W.

STEP 4 — Find the possible Z, W pairs.

Find the set of possible Z, W pairs is limited by the following restrictions.

1) f2(6) + fw(6) <3n—1,0 € =0, 1 < k < 100, keZ.

2) Z,W match one of the Z*, W™ pairs.

We temporarily store for each Z string found the integer part of £,(8),0 € % 1<k <100,

keZ and for each W string found the integer part of f,,(0),6 € % 1 <k <100, keZ. This

both saves memory and more importantly speeds up computation enormously when computing
the Z, W pairs. The reason for this is that it takes many trillions of additions, and adding one or

two byte integers is much faster than floating point additions.
STEP 5 — Find the first and last 6 elements of X,Y

For each Z, W pair that we have found, we now find all the possibilities for the first and
last 6 elements of X, Y by comparing the looking at the X*,Y*, Z*, W™ found previously. We take

each possibility for the elements of X, Y. One example for n = 36 is below.

0-5 6-29 30+

X | +++++- —++++-
Y| ++-——+ —+t+-——
7| HH+—+— |ttt ottt ——— | =41
W[ +t+++— | ——Ft———t———t——F———t—t+—+ | +—F——

STEP 6 — Complete sequences X, Y.
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We next build the rest of X, Y from the outside in using the following process.
We begin with i = 6.
Let x;, x,,_1—;, ¥; €ach be £1. We go through all 8 possibilities.
Use Tuyrn’s Theorem to find y,,_;_; for each of the above possibilities.
We now check two things.

1) (N + N, + 2N, + 2N, )(n—i—1) = 0.
2) ltis possible to get to an (x, y) pairs which satisfies x? + y2 + 2z2 + 2w? =

6n — 2.
If both of these are true and i < g — 1, increase i by 1 and repeat. If we have gone
through all 8 possibilities for x;, x,,_1_;, v; we backtrack and decrement i.
If the above two conditions are met and i = % — 1 we’ve completed X, Y. We now check that

(NX + N, + 2N, + ZNW)(s) =0,1<s< % If itis, we have a TT(n). There is a slight

possibility that we end up with Y < —Y,.. If this is the case, we simply throw it out since it is not

in standard form.

3.4 Computational Optimization

Several techniques have greatly improved the performance of the algorithm that we
explain below. The algorithm was programmed in Microsoft Visual C++ and run on an Intel i7
3930K running at 3.2 GHz with 6 CPUs was used for the computations. All running times used

in this paper are in are expressed in CPU hours. The approximate running time for enumerating

n
TT(n) is 102~ *? processor hours, so it takes exponential time. This made a full enumeration in a
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reasonable amount of time feasible for all lengths up to n = 32. In chapter 4 we discuss the

details of the enumerations and in chapter 5 we explain how it was used to find examples of

TT(n) up to n = 40. We list some of those techniques here.

1)

2)

3)

We create huge arrays to store the values of f,(8) and f,,,(6). These values are
computed as 8 byte double precision numbers. However, storing them as 1 or 2 byte
integers was found to be very helpful. Not only do they require less memory, but STEP 4
of the algorithm requires an immense number of additions. Addition of integers is
significantly quicker than addition of double floating point numbers. For enumerating all
of TT(n) we store them as 2 byte integers as |256f,(8)] and |256f,,(6)]. We lose a

small amount of precision and have potential roundoff errors so we check for f;(8) <

3n—1+ 2—;6 and fiy(0) <3n—1+ ﬁ On the other hand, when we are just looking

for one TT(n) for a particular order, we store them as 1 byte integers as | f(6)] and
Lfw(6)]. Since we are only searching part of the search space, we can afford to lose a bit
more precision. Also, adding 1 byte integers is even quicker than adding 2 byte integers.
We store as much data as possible in arrays to improve efficiency. We needed to
compute cosine of a function trillions of times, but the function could have at most
10,000 different values, so we stored these 10,000 values in an array. We cycle through
eight different values in order for each of three variables x;, x,,_,_;,y; in STEP 6. We
created an array which stored the difference between the kth value and the k+1% value,
which saved a significant number of clock cycles.

When first running the program, we input a (¢, w) pair rather than values for (x, y, z, w).
This allows us to look at multiple (x, y, z, w) quadruples in a single run of the program.

We note that for a (¢, w) pair z? + w? is constant. This implies that x2 + y? is also a



4)

5)

6)
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constant. We find all possible (x, y) solutions. We then create a 2x2 array in which the
entries are the distance to the nearest (x, y) solution. The (x,, y,) element of the array is
max(|x; — x|, |y; — y|) where the (x, y) value is chosen to minimize this quantity. This
array is used extensively in STEP 6 of our algorithm. As an example, suppose the (x,y)
solutions are (6,0), (—6,0), (0,6), (0, —6). Further suppose that our current partial sums
for X and Y are 14 and -4 and we still have 6 entries left to fill. The (14, —4) element in
our array is 8 since the nearest solution to (14, —4) is (6,0). Since 8 > 6 there is no way
that we can form a TT (n) regardless of how the remainder of X, Y are filled in. We note
this and backtrack immediately.

Throughout the program we have used 100 equally spaced values for the variable 6.
Specifically, 6 € 1’% 1 < k < 100, keZ. If we increase the number of equally spaced 6

values, we have fewer Z strings and W strings and Z, W pairs, which results in a quicker
execution of STEP 6. However, STEPS 3, 4 and 5 generally run slower since there are
more strings to check. A value around 100 generally minimized the total running time.
When enumerating the number of TT (n) for orders above n = 32 it would be wise to
take some time to optimize this number further for each (¢, w) pair.

As critical as what to include in the algorithm is what not to include. Every operation
utilizes processor cycles. For example computing fx(6), fy(6) and using that
information slowed down the algorithm so we did not compute them.

We checked equivalence of Hadamard matrices of orders 404, 428, 452 and 476 in

chapter 5. We attempted to use 4-profiles which is a relatively simple computation. The

n

number of operations needed to compute 4-profiles for a Hadamard matrix is n( 4

) which

is of the order of n>. This was feasible and took around 10 minutes per Hadamard
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matrix. Fortunately, they all turned out to be inequivalent. Had any two 4-profiles been
equivalent, the test would have been inconclusive for those matrices and we would have
had to use another method. 8-profiles are not feasible for orders this high. Computing
symmetric hamming distribution polynomials is significantly more complex than using

profiles, but would have been feasible for lower values of k.
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CHAPTER 4

ENUMERATING TURYN TYPE SEQUENCES

4.1 Count of Turyn Type Sequences of Lengths up to 32

Best et. al [3] have enumerated all TT'(n) up to n = 32. The results that obtained were
identical for all n up to 30. However, for n = 32 we found 66 additional classes in addition to
the 6226 found in [3] for a total of 6292. 6226 of the 6292 sequences we found were identical to
the 6226 found in [3], but the other 66 were inequivalent. We verified this inequivalence, taking
each one of their sequences and converting it from the format they used to the format used here

by the use of the four operations.

The running time to count all TT (n) classes increases by approximately an order of
magnitude for each increase in n by 2. There are typically more ({, w) pairs for lengths in which
n = 2 (mod 4) than lengths n= 0 (mod 4), which is reflected in the running times. The run
time for n = 32 was approximately 8200 hours, which is an improvement from the
approximately 50000 hours reported by Best et al [3]. The approximate running time and the

number of (¢, w) pairs is also shown in the table.



TABLE Il

TURYN TYPE SEQUENCES OF LENGTHS UP TO 32

Length | Number | Hours | ({, w)
2 1 2
4 1 2
6 4 4
8 6 2

10 43 5
12 127 5
14 186 7
16 739 4
18 675 7
20 913 6
22 3105 10
24 3523 1 5
26 3753 9 10
28 4161 80 9
30 4500 | 1100 12
32 6292 | 8200 7

The computing time consistently increases by approximately one order of magnitude.
The number of TT (n) never decreases, except slightly between TT(16) and TT(18). The 66

additional classes of TT(32) not found in [3] are shown in table I11.



TABLE Il

NEW TURYN TYPE SEQUENCES OF LENGTH 32

Num

Hex

O J oy U WDN

DS W W WwWwwwwwww NN PP R R R
O WO JO ULk WNDEP OWOWOJIOU P WNE O OWOWWJoYU »whNEHE O

070825988484FB35F816EECCIEF4E926
070F9C19C715CE204559F6D73A93B526
079E1024357445F1953CCCOBF8B75326
0O1CBFEAO6764660E493CD23C4EA93966
0781429C8F4EACB8FBD5C626C9282B326
07CE99S9D2ES50FB3BEAACEB852C1AB26
0780450A707CA63344ECI9CA2093D9D26
074012D49D7D9314359EAES5209877326
00CO0856A7DADESS36FC48FBCDD1IES8B66
018B4C5146BD6DFD567C7C024DB33166
07CBB5263D0OE8S809803808AB6D5D01B26
01857332AED3023C66A4B7A17790F166
O00OFOOAB45A1D3571F49803E3155A666
0741AESEA4FAADOC485CF621BD80B326
078A8421730486D6041EC99D6A3EE326
078B637373C09A115802B9A04F50D326
0781184CAE2644A4D13EC8719E356D26
061D23C39FB3EOC16666AES508BA46B26
0742C273173BACO95EFIC3B359EL5T7A326
078BASFET7029AA2638EE085C57EC3326
07880F30BFF5B87DI9DDCE6ALIS45ADD26
07008970CA53D81047F6630B51F39926
06AF55ES0A85813B0B6E22DAFA21B326
0182659FA2C670B433733741ACF2A166
07819679BA0ODBC3376ACTBFFDD11AD26
OOEODF004188B658DEFCE263A958B966
0781lEES69662BEC2A44C6333D388B326
079E0621655F588F7/EFETF3254EB5326
078077B6A224EB9431FB3A9D1221AD26
01582E57FF15COD7F5392A7BOCT8F166
079E8ES1D4A5S5FFBCS5E9B212A53BD9326
019436CO9F395001AD4A6328617273166
075E87ADFC61BFB731B15E66702D9326
07863D1ICF5C59939F4123AE49B753326
078EE9SOEDE4EC0426B609798C1AB326
018BF18480B1D7317437829FEC79D166
07839680316ED6AET73159E759F336326
078005F6DD0OSBDDEASB2399B14E9AD26
06A155DA8BBEAGFE82BCFI93E30921B326
07014EB857F5E8843DFA373D135DB526

26



TABLE Il (continued)

NEW TURYN TYPE SEQUENCES OF LENGTH 32

Num

Hex

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

078EAOFO8AC81D4F5EARO062F7B4ACB326
079EFE363DCES19BD19C4A9B25B59326
00006341D714A3882F9F0A25B172A566
0084B80AET7057CEB254207C7DSCD1E66
07C1991F998744317B2CDEDEBBOC5B26
0742AEE60AQF04F735C8A4FB16B29326
070085B4CODEAF15DB92AA8BCC3E9926
079C240E74018D09D47D7TA22541A7326
0758F643E090D1590C6B904A420B3326
01815A79083C475C40334A263DF1B166
0788A0A585F9CE3E88953B3011B2DD26
07181BEA8918CE1EBBBA34FF09CBD526
0199C2AE48206C8F5C705A3C816B3166
0782BFFEO099CCE573DB693FB57AD6326
01983F185C7897CD98211EA2EB793166
078E34144546B7FAF62E12DF2AC57326
078E10981CEASEB9D15E17992285B326
004BDFF151AB365F72F5EF8D69A51366
070198865F7232C9F695BF5D131EB526
0704BCCFC82A9CET719A2E6F664AD3926
078E3016DDBD1ED53BB99246D7457326
078B6BF222635192B24C4E7847E0D326
074BCE38AT742A156DF7E5D1D26773326
0143212A7TFB45B55EEF23F4C2AT747166
078B952DC402D0AA0095471BB81E3326
07084CAEA47BFO06A1C6BE2D04C7DD926

4.2 Estimate of the Count of Turyn Type Sequences of Lengths 34 and 36

For n = 34 and higher, the running time that the algorithm would require to enumerate

27

the number of TT (n) is not feasible. We are, however, able to compute a rough estimate of the

number of TT(34) and TT(36) by using the algorithm as follows.

We take the list of Z strings found in STEP 2 of the algorithm. We divide them up into

32 groups by taking the indices of the list modulo 32. We follow the same procedure for the list
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of W strings. We then create a random list of ordered pairs of integers between 0 and 31. The
first ordered pair came out to be (18, 24) so we used group 18 of the Z strings and group 24 of
the W strings. This reduces the search space by a factor of 1024. We then repeat for other
ordered pairs. We chose to divide them into 32 groups because each group was likely to have
several matrices, assuming the numbers of TT(34) and TT(36) are similar to those of slightly
smaller lengths. Also, dividing them up into 32 groups makes the running time for each

reasonable. There are 12 (, w) pairs for n = 34 and 10 (, w) pairs for n = 36. Forn = 34

and n = 36 we did 16 runs per ({, w) pair which is 61—4 of the total search space.

For n = 34, the program found 6, 5, 7, 3,4, 4,4,4,9,4,4, 1,6, 6, 5, 7 sequences for the
16 ordered pairs or a total of 79. This leads to an estimated total count of 79 * 64 = 5056 for
TT(34). Each ordered pair took about 120 CPU hours. The total running time for the 16
ordered pairs took about 1920 hours, so it took about 24 CPU hours on average to find each

TT(34).

For n = 36, the program found 2, 3,4, 7,6, 5, 4, 3, 2, 3,0, 6, 2,5, 2, 4 sequences for the
16 ordered pairs or a total of 58. This suggests the total count of TT(36) is approximately
58 x 64 = 3712. Each ordered took about 800 CPU hours. The total running time for the 16
ordered pairs took about 12800 hours, so it took about 220 CPU hours on average to find each

TT(36).

We ran the same tests for lengths between 24 and 32 and since we know the actual
number, we are able to compute the error percentage. These results in table IV show our

estimates for n = 34 and n = 36 are likely to not be too far off.



TABLE IV

ESTIMATES FOR THE NUMBER OF SEQUENCES

Length | Estimate | Actual | Error
24 4544 | 3523 | 29%
26 3008 | 3753 | -20%
28 4608 | 4161 | 11%
30 4992 | 4500 | 11%
32 5760 | 6292 | -8%
34 5056
36 3712
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CHAPTER 5
LONGER LENGTH TURYN TYPE SEQUENCES
5.1 Methods

There were very few known Turyn Type sequences with lengths above 32 before 2012.
The search spaces increase exponentially in size for lengths of 34 and above. Based on our
results from section 4.2, it would take about 120000 CPU hours to go through the entire search
space for n = 34 and 800000 CPU hours for n = 36, so we need a better way to find TT (n) for
n = 34. We won’t be able to enumerate all of them, but will be able to find some for lengths up

ton = 36.

We know that f;(6) + fi,(6) < 3n — 1. The program we used here is identical to the
one used to count the TT (n) for n < 32 except that we must enter three more numbers to further
restrict f(0), fw (8), fz(0) + fy(8) which allows us to shrink the search space to more
manageable sizes. The idea is to decrease the running time faster than decreasing the number of
Hadamard matrices found to minimize the time per Hadamard matrix found. The trick here is
finding appropriate restrictions on these values. We made a good prediction by observing

patterns from lengths 32 and below.
We found the least values of m for which the below restrictions yield 1, 10, 100 TT (n)

for orders 24, 26, 28, 30 and 32. These are shown in table V.

f2(0) <m, fi, () <m, |fz(0)] + |fw(0)] <3n—4,6 € 1k()_n()’ 1 <k<100,keZ
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TABLE V

LEAST VALUES OF M NEEDED FOR 1, 10, 100 TURYN TYPE SEQUENCES

Length | 1 TT(n) | 10 TT(n) | 100 TT(n)
24 46 49 53
26 51 56 60
28 58 61 64
30 60 64 69
32 66 70 73

Keeping | fz(0)] + | fy(6)] no more than 3n — 4 lowered the running time while
minimally decreasing the number of TT (n). The m values increase by approximately 5 each
time n increases by 2. We used this as an approximate guide for choosing restrictions for the

orders above 32.

5.2 New Turyn Type Sequences for Length 34

For n = 34 we can use the fact that f,(6) + fi,,(6) < 101. If we do not need to find
every TT(34), we can restrict the search space further. Since we know
fx(8), fy(0), f(6), fw(8) = 0 and f,(6) + fi, (8) < 101 we try further restricting
f2(0), fw(6). We want to minimize the time it takes to find each TT(34). The below restriction

was based on section 5.1 and some trial and error.

f2(8) <80, f,(6) <80, [f7(0)] + |fw(0)] <98,6 € f()—no, 1<k <100, keZ

We found 119 new inequivalent Turyn Type sequences in 738 CPU hours or about one every 6
hours. The average time to find a TT (34) is reduced from 24 to 6 hours or by a factor of

approximately four.
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These sequences give 119 new T'(101) and Hadamard matrices of order 404. The computed 4-
profile on each of these matrices was different, so that the Hadamard matrices are all

inequivalent.



TABLE VI

NEW TURYN TYPE SEQUENCES OF LENGTH 34

Z
c
3
o
@

Hex Format

O J oy Ul WDN

DS W W WWwWwWwwwww NN R R R R R R
O OO IO UL WNREOOWOWJIOOU P WNE O ©OOWwJoy U xwhN Bk O

048182ABBA195ABESOAEIF3522125F8136
O0OFOE331A2A3989D5E30BD938A%669A66
O0OOOEC6139EF03A017A1B6S8CTADAAAASG
0000F072C2C373B02B4ESC8BY9AA255AA56
008F8691C27D5SF440AF2A26354A1234366
0002BEA4373C3A542B212458C5F09F4666
05B28DA2B5D1880FD7BB31BBD261A16C36
00A2E999A3233EAD61AD4A84B210C79C66
060ASET78CCC6EQ5D726376D49BC17ECB26
06FD94CA9E263A13F86A2409430A109B26
008CC4638E69F34542FD8TE252521AA366
015187B0436A69DBAD3B3D31BC4ED3B166
0041A038A6EB7ASA6CO0FE3610F98CA356
04D9FFO066CEAAFOF1A45B028A128942A36
0405F71B3EEB1669C7/FFC7155BCBC53836
0011F33FB5996B5A60FFD2C3D27988BA56
049751CD3B79B62D399B21ECE987631236
O0OOAOCCBSEDOAGGEIFTCE2C59EOBAT72966
0493BO9FF5776B4A7T51F2CDDCE3952DAC36
049BB6121E8ED9284034C74E756AC22236
00B8BABE698CAL150617D9E606CT72C3630366
05E845FE701EB6AO70A2EE899094230A36
O0OF882A8D14E65F8ALICA4ACFA3AT22923966
00B40FB8EG6AC637FC460BOA2251C56D256
052A23A968467163348F700CCFCE883436
0789F18B37C988BCF86FF33B15EE553D26
061A1246707F0EA3D46268809CDDAALT26
070E74F199819EE117784D7F336923B526
06A0B0S27998C260245186CE3CTFACB326
05BA4E68F2304342167C805449FD712236
000004B4B78680EF63A49DE31DC2369A66
01947FCO2F8FCT7A3B27115A075BB9F3166
008CAABF244B56F61A2A1IEFOE9BD12AES6
041B989DC5B3AB176F15D2AC369FED3836
0097268DCB522FF8CAC868AF2AT721AC356
000A3AICE950CTDEE456C9603875F62A66
OOB5C363FFEDD5176DDOFA878A539AD166
074031C3055B996AAF3F3D1ICD6B9497326
06B82D460EAG64DFDC8AS7CO078FEBBE326
0181COS5FFF899A3EC879E3D2A953B97166

33



TABLE VI (continued)

NEW TURYN TYPE SEQUENCES OF LENGTH 34

Number

Hex Format

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

00808D77C8C315A2B0B0296507306F8E66
00889E9824BEF8A4EBO3F49134C3AE2D56
040C92611FF2EC63EB/C68574672AC7836
04131891A550B357A0EE9D41EFA335B436
OOOBD1D667F66FO0AE416AF261CCT74B2966
04566988520501A75F1ESAOAACOFF02236
OOOB6A3A8TA2F64BB10E359CEC26121656
OOF000421F4A86D2346B123D994D6AAA56
OOFOA1F2C6BAB1722A638CCDDB68BCIA6GE
04AFDDOS3FESBEEG66E388ED867C696B036
052EC426796D819DC67C8COEFCFBOAG836
052B7023F00D8D33E545428A94A882E436
079488AD183220B2F64184A42651EDD326
06028FCD8S8EE105F6D815C447A278635726
06E8806077802DB96321459E1E63AE3B26
0670FC71E80C18220689085B355E6A9326
O00C8CE37A9E3ED2ACB69B4E234651BA66
050DD6DF5391F44E90B239B243B7D58A36
0004A626E5897F6D827C6F13EADA2C3966
041FDD699D475CE1IFAB6BO3F9D1166B836
049E7C5F349FDFT75E82365BC199152A136
OO0OEF3D5C52CCO009CALIAG6ASA39EABTSA66
00063F46B654AC2ACBDASCEF30F1DAB2AGE
OOBF10E98C6C2AE65F05E87272F8BAA256
04A2816AB6FAF4108E44E5DA1I00D7DAO36
057A06DOECED4B27AFD40DABB4AA282236
00620269DAFET7209AC2951A4C5CF48B166
04E36D458046941B2A3BCECES9D228F8836
00A729091BC8EAT2ETAEESFA3824E9D266
046224E2A37ACDOD7FA86B038D78EA5036
0780DF4AFDD30C8660109447AA02ATAD26
0698A9D084561043FB6248D2CEAGFOLF26
0700E4COC13BD04871CEAGF66956E9A926
06096F5C2866EE524D9CAS5332AA1B0OEB26
070DE67DE3395BC9B3EBDC146891D57926
079E51DD5358BFBF8C814F21A19A6F5326
075F8748DCABSBD914241FF197F3E19326
07064B942386FD9D427EAA2EBACOCF2926
0613B40EDF5D7BB5BEFCIC817A95D18726
078A2FBC34084A644CC1DFF80B6D68D326

34



TABLE VI (continued)

NEW TURYN TYPE SEQUENCES OF LENGTH 34

Number

Hex Format

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

0001078BF22865317245E1D86B1C1BA956
01810E2DD5D5F20753E748F6C447B4B166
045152A593858C44AEF18123B0F3429236
002314AA96375D3938D66329F32F24B866
00041702AA1144FEC4ABA3CB611A525DA56
041A9BB7721A221E6C6AB50AADC302F436
04866B3ECA37545160AD2018D4B8031C36
05321269737ACTB86EE20803BDE1646836
069080CCACFF3EC451F4BAS49F655E8F26
069BB54DD38317B82720F8AEB763310F26
06A94C840141F120BEB594738A00BCF326
008848B7606ADB649ECFCBODS3D0ODEZ2ES6
00041FBCB36ED693F85D076D5C715A3956
0040F1399DDE35ECS5DA5376781F6949366
001C3F28COEF0414ACC62B57A9DB89AY66
00912E27DCC86A07060BCE398BF8949E56
0O01BOCI1FO995AT70FF65A1133F95A86E556
040FB74DC585CE10E98A74EEE6831DA8B36
O5ACD3CO58DCIO9T7CFF6OA4C2A6C19964A236
00B4D751558E1ADDY9E87ES413FA317E256
0532E1899660A327BEF69ET7102ECA46836
04ABBF31AABRE8563417EEOACEOB68EDO36
06888D8AY4ES5A66FC4ABD1036DFD04C3F26
069C197DAB3ACS5CCD468C609EF6005AF26
078027F9CT7A9BBD66EOSCCF2E6EA34AD26
079EO02FE6D159C8EO0890A2C85E49AB5326
07C2CFEE3DEO9C89F244C3A084459758B26
00040D835ED78C4FF492613B4F4D663956
000000OFF8073435B1A2COF834D56A96956
0081C65346974440FBADCEF03D53D94366
0448C6B6F74DE117C5178691D8FEQ051236
00857458544CB2387FE9604FD1DE3D2356
00853DCA651E118CCABF8BAB12D87B2D56
0000F007BC34B82F63451D19AE19956A56
052A986373790081CO9A1481D7C4F12E436
00724AF555DF2B11C565C54A1C0OBCFEF9266
0063EE647251C5BE175EF872ACF3B5B266
0783C2FT74550CA7BA2332BAD32E49B5326
06E023998752B614370502BFEFE29B6B26
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5.3 New Turyn Type Sequences for Length 36

For n = 36 we can use the fact that f,(6) + fi,,(6) < 107. If we do not need to find
every TT(36), we can restrict the search space further. Since we know
fx(0), fy(8), fz(8), fw(8) = 0 and f,(6) + fi, (8) < 107 we try further restricting
f2(6), fu(6). We want to minimize the time it takes to find each TT(36). The below restriction

was based on section 5.1 and some trial and error.

f2(0) <84, f,(0) < 84,|f,(0)] + |fw(6)] <104,0 € 1ko—no, 1<k <100,keZ

We found 101 new inequivalent Turyn Type sequences in 3600 CPU hours or about one every
36 hours. The average time to find a TT(36) is reduced from 220 to 36 hours, or a factor of
approximately six. These sequences give 101 new T(107) and Hadamard matrices of order 428.
We computed 4-profiles on each one and on the one found in [17]. They were all different, so
the Hadamard matrices are all inequivalent. Thus we have over 100 new different Hadamards of

order 428.



TABLE VII

NEW TURYN TYPE SEQUENCES OF LENGTH 36

Z
c
3
o
@

Hex Format

O J oy Ul WDN

DS W W WWwWwWwwwww NN R R R R R R
O OO IO UL WNREPEOOWOJIOOU P WNE O ©OOWw-Joy U b wh Bk O

00977032312F05C79E4DO07FAST74644AE2356
044462FB76EASC37870134A1340DF6902136
0700AS9C5AESD736BDBCBF39C81823BF29926
00E778575CC16201A09E8A4256B2C3133A66
04F71F790EB35336ED9714515E462D683836
06FI9FC6C8AA4ACB8A6D389E3F431C09DAB2B26
0008037BBCO257C5215A0BCESAACEF2683A66
00002BA231EE941A852D1ADCB664B1F46A66
OOAEAO4F61A8584E615F8CF3FET7242507166
000857A880FE34F181B0A7267462DEC23966
O0AAQOEF50E306C0OBOAO9165E994527BTE266
048A7TAD26AT77229009FA8BE8SBCC11B4EE1C36
0568FACFO09E1591A7204C28A3A467F42236
05722A51041682F6B1BED643C8CABC288236
O0CB84EF502E4FF26919E1A4AFAAB8F8921B66
008DC22CF00696B5A6EDDFDIC6AT768BAADGE
0O00F7F457529E34FFEB47D95F81321719A66
04EOA7B516CDCCD6ABCF0487BAF4E3F26836
078808644FA1956E753C6E10615EF2EAED26
00B4546D853DF266605EC375A5C3BFCDD166
00819BO60OBS8ESE3DF91987B29DEAD4328366
045BB656FF55100DF4D66486CET79C3C3C236
00C7B2154445385982A0E3CA3D132B430B66
0486323476B8A94594FFD13201F01B5A0136
070562C8047D92A9%08183E53623B358C3926
0491940F7159A333A4124793C38CAAC35236
0004BF94B8958668E816F3031C2131613666
04110CE70D3ECEESF70B15668B47D5757836
00464B53ECO9D707D541F617D4D6AB2E12356
O0OEAFEBS59D59DAS8FD56CE35DEB2CD643966
040D9D136A5A029D2ACBAC4A5EEOE45A2B836
01510BFO1F9308F7/E7D7D52B8F884AF9B166
00018A65CTE2665298E24F0179F8C3EC9566
048C46A205B8C5983807F2F4E12BAF0C6136
008876AA0ES5227070F7/BCB386E84E3D11E6G6
04982EEEE274D63A95C2C429D1645A58E136
04168D75F00FAES8EO026A9C809A792E6DD836
0O00A724CCF32E60E281B9415649B4F83C966
000A62F8DDCE93ACEBET709EB25766FALE2966
OOBS5DEFD3F06AC01AES2484D38846665E166
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TABLE VII (continued)

NEW TURYN TYPE SEQUENCES OF LENGTH 36

Number

Hex Format

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

05BE8199415473578D63E3AD316DDFI90A236
OOE3F5DDBE4ED707652315C97DB385389966
05F66976BCAA258C907E52C8D1502C020A36
007BB3C62190C9D0D2B47AC48E660A90EL166
0013DCDCDB8161AE3D79627D93197AB96A56
05603E6AE40418B854CCFOE71BOAD3788236
061ADS51ID3F791BFEC2657BF4AFE49782B1726
078E8BES8FD062017E6C4364628943B33AD26
0697227F3E98ACBT795CEE2402CA98E780F26
00C847DA4AT43BOGAAF2ETDODEOFE6C12B66
049BDF4F5B166AFCE73797EDFAIDO0AT1236
00A41D73C2B298F49ACFEBDO43A660AAF266
O0OBEACCT7D60700A6693F2EA62B18345E9166
04C894699F576650928E52F000A3EOFEOA36
04116ADA22D565615BECACF2E6B8C6227836
0004F6ED48CALES85C2B4137C342EBA063956
O009FEECOEAB3B45B82E2C2BOES2AT746DA5S6
048FABCDEG66EFA46DF95220652CT7A83E8136
OOABA4AQSC8FT791C5E40443CBD6OET72E1D266
00B7FBF8CDO97C81CFBA91IB3C5A717071166
OOBFFEF785A5D57119930A4F14F2C316A9166
0508D52FC24D84C6C8FBD7138D6B65D42636
00143A65ED542060DC58AE5823B513CB1966
00606FA4B353B3466712FF608F8F0DA3AZ56
O0OEBB4EC342BFD7767DDFOSAD4AFTAT32DA66
048D1589F789CCCT72AE81A653CDACFES6136
00C88452DDEFES5482DA93F0A45BBACEF1ICB56
0491D15F68653046125412BBOCDESFA99236
0408F71ATE42F3676932FD69516226DAE836
05A4E7C7957E9B2297ED49F36ECEEBE42236
075E9E13A011DF41543C80998BAES85639326
07CATB4571E24B5697FF222EAT60CC211B26
048840E053B8CD1A307725942DAF99823C36
00054AE54C801F5727E51F4680B3C93C3966
00710748C5EA995040A182EF24353DES7256
00B8D67B74E6256B4B3F11352B3EE1C93266
00A97FS0ES6B326753431E462EEQA38F2256
00A7802B59D014C471B3DI9F8AB13C96C3166
0619BF7BO9C6097EE46305A0E5343E2722B26
06799BOE7CC8F944A40E1EC5355D450FE326
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TABLE VII (continued)

NEW TURYN TYPE SEQUENCES OF LENGTH 36

Number Hex Format
81 | 008C94F489CT798F76E8F15CFE8D2CA329356
82 | 04500035AC51CD6AT70AOEE4B9153E9876136
83| 040087BA0C1EC55021775D257A4AEDICB436
84 | 0O08DASACIOFF3AEB8C1C87436C4B5CT7D1ICA356
85 | 0O000OB1A70A872D513D96BF98D2C61DA29556
86| 044A72172F4A0D45ADTE2E9B32ABEF4730236
87| 0522196F4D81110C58F0B577BF406CF74836
88 | 0691CEDFEAB63EFC11777B94F2E5765A8F26
89| 008899B4086A6C0O0F381778BD01ESE213CD66
90| 00854794C158373DB4F159E6C2A93DE11366
91 | 0505E06C51848F445BE1337E208CBCB50A36
92 | 00B4F4004886B5C337E788EDICDEG6SESD166
93 | 052A3B12CD02C4DF46E08625459987D61836
94 | 008889506EF2082B74ED18FA94B053C31E56
95 | 05011285B45DF54606DA2F1B50DEF3998636
960 | 04A262DC48D17686D6FA11E3451059AC9036
97 | 04FB2A8C8ET7225B29B1ET72E763BC6038D836
98 | 06BODABAL1365C674772CFFFAECO0AICL1T7/BE26
99 | OOOOF4ADEFCE908E8D538D83749B9C36A656

100 | OOOEAEO7EBFC70BE6B2CB1B384F5CBBDAGGG
101 | 06B17BB39738AESFF6366181D6C392CDA326

5.4 New Turyn Type Sequences for Length 38

For n = 38 we can use the fact that f,(6) + f,,,(6) < 113, but the search space is so

large it might take close to 10 million CPU hours. If we let

£,(0) < 86, f,y(0) < 86,1f,(0)] + |fw(6)] < 110,6 € 1"”0—”0, 1<k <100, keZ

the size of the search space becomes manageable. The result was 10 new inequivalent Turyn

Type sequences, different from the one found by Best et al [3]. The running time was roughly

39
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7500 CPU hours, so it took approximately 750 CPU hours for each TT(38). One of them is

below.

X = ++=F—t+—tt—ttt———F =ttt —F ===+
Y = +-+++—F-F————+++ -+ -+ ———+-
Z = +—++++++++-—F -+t
W = +++++++t—Ft—tt——Ft++————F+++———+——++-—+

These sequences give ten new T (113) and Hadamard matrices of order 452. Each of these ten
Hadamard matrices are inequivalent since their 4-profiles are all different. The hex form of all

ten is in the below table.

TABLE VIlI

NEW TURYN TYPE SEQUENCES OF LENGTH 38

Number Hex Format X Y| zZ|w
1| 05BA09540B012AAE4E6E4293DB86283DESC236 0 8 09
2 | 05AC53E58504D13768AF13D674D4EEE4616236 10| -10 213
31078758B46714EE174C1AA2D49604E2E3333326 12 0(-41]5
4 | 049AEAQ4DF8CT763F1FAO96AGEFADAB39CADC36 | —12 0|-4|5
5| 0000F72B242BAC276991F3DAA31629E9CALSAG6 2 10| -6 5
6|10182774DD71862957840D10DA126C6AEE16166 10 -2 6|5
7100840456979017218EFB814934AE11E3E6C356 8 4 813
81049105089DA64A8423BRF45D0230FA318F4BC36 4 8 8|3
9| 00032F0723765FCA3E15A728B3DCB9266A8656 8 41-813

10| 0680840C14F643B8E2DBY970C4E19FABS0C5F26 0 0 817

5.5 New Turyn Type Sequences for Length 40

For n = 40 we can use the fact that f;(6) + f,,(0) < 119, but the search space is so

large it might take close to 100 million CPU hours. If we let

£,(0) <92, £,/ (8) < 92,1£,(0)] + Ifw(6)] < 116,06 € 1"0—”0, 1<k <100, keZ
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and further restrict (¢, w) pairs to (6,9), (6,7), (10, 3) the search space becomes more
manageable. The result of this search was the identification of the first three known Turyn Type
sequences of length 40. The running time was roughly 36000 CPU hours, so the approximate

time to find each TT (40) was about 12000 CPU hours. One is given below.

X = 4ttt——ttttt—t—t—t—t————tt——tt—t—————— +4-
Y = +—++—-+-————- e e e LA K
7 o= d—t——t—tt—tt———ttt——tt o=ttt —t———+
W = +++—+——++————+—F++—F++——F—++++++—++—+—+

These sequences give three new T(119) and Hadamard matrices of order 476. Each of these
three Hadamard matrices are inequivalent since their 4-profiles are all different. The hex form of

all three is in the table below.
TABLE IX

NEW TURYN TYPE SEQUENCES OF LENGTH 40

Number Hex | x| vy Z| w
1| 0603E974475D3A384C3AC8B309C44C2CDCESAT26 | 0| -2 6 9
2 | 00121C3005EC11EF8F8CAD4CS5BOB87354AA06A956 | -2 4110 3
31070680B1858C9566513C856EFFDOBE11519F2926 | 4| 2|10 | -3

5.6 Future Work

It could be conjectured that there is a TT (n) for every even integer. So far, every TT(n)
known has been either found by hand or more recently by long computer searches. No one has
yet been able to find any patterns to compute a TT (k) from a TT (n) with k > n, if they exist.
The count of TT(36) is likely less than the count of TT(34) which in turn is likely less than the

count of TT'(32). The count of TT (n) has generally increased up to TT(32) and represents a
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reversal of the trend. The time required to find a TT (n) using the further restrictions on
f2(6), f (6), jumped considerably between 36 and 38 and between 38 and 40 as shown in the
table below. This suggests the possibility that the count of TT (n) may continue to decrease for

n = 38 and n = 40, though the sample size is small.

TABLE X

TIME TO COMPUTE EACH SEQUENCE USING EFFICIENT ALGORITHM

Length | Hours
34 6
36 36
38 750
40 | 12000

Finding a TT (44) would lead to the first T(131) which is currently the lowest order for
which no T-sequences are known. Finding a TT(56) and a TT(60), which would give
Hadamard matrices of the lowest two unknown orders, 668 and 716, would be difficult without

significant improvements to the search algorithm.
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APPENDIX

CHART OF HADAMARD MATRICES

We’ve created a chart of how to construct a Hadamard matrix for every known order up to 1000.

Some of these constructions use new T-matrices found in this paper.

The Paley and Kronecker constructions are used in expressions involving only numbers and
symbols. Paley I is used when the prime or power of a prime is 3 (mod 4) and Paley Il is used

when the prime or power of a prime is 1 (mod 4).

Wxx means use the set of Williamson matrices of order xx.

Txx means use the set of T-matrices of order xx.

Axx means use the set of A-matrices of order xx.

M[p-1] means use the Miyamoto construction of order p-1 to create a Hadamard of order 4p

where p is the power of an odd prime.

No Hadamard matrices are currently known for orders 668, 716 and 892.



Hadamard Matrices of Orders to 400
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Order | Constr Order | Constr Order | Constr Order | Constr
4 2° 104 |103+1 204 |2(101+1) | |304 |[2(151+1)
8 2° 108 |107+1 208 |2(103+1) | |308 |307+1
12 11+1 112 | 2°(3%+1) | |212 |211+1 312 |311+1
16 |2° 116 | W29 216 |2(107+1) | |316 |2(157+1)
20 | 19+1 120 | 2(59+1) | |220 [2(109+1)| [320 |2%79+1)
24 [ 23+1 124 | 2(61+1) | | 224 |[223+1 324 | T3W27
28 [ 3%+1 128 |2’ 228 | 227+1 328 | 2(163+1)
32 |2 132 | 131+1 232 | W29g2 332 |331+1
36 |2(17+1)| | 136 |2(67+1) | [236 |T59 336 | 2(167+1)
40 [ 2(19+1)| | 140 |139+1 240 |239+1 340 | 2(13%+1)
44 | 43+1 144 | 2(71+1) | | 244 |3+1 344 | 7°+1

48 | 47+1 148 | 2(73+1) | | 248 |[2%(61+1) | [ 348 |347+1
52 |2(5°+1) | [ 152 |151+1 252 | 251+1 352 | 2%(43+1)
56 |2(3°+1) | [156 |[T13wW3 | [256 |[2° 356 | M[2(43+1)]
60 | 59+1 160 |2(79+1) | | 260 |T65 360 |359+1
64 |2° 164 | 163+1 264 | 263+1 364 | 2(181+1)
68 | 67+1 168 | 167+1 268 | A67 368 |367+1
72 | 71+1 172 | W43 272 | 271+1 372 | T3w3l1
76 | 2(37+1)| | 176 |2°(43+1)| |276 |2(137+1)| |376 |T47s2
80 | 79+1 180 |179+1 280 |[2(139+1) | |380 |379+1
84 |83+l 184 |W23e2 | | 284 |283+1 384 |383+1
88 [2(43+1)| | 188 |T47 288 | 2%(71+1) | |388 |2(193+1)
92 | w23 192 | 191+1 292 | A73 392 | 2%(97+1)
96 | 2(47+1)| [196 |2(97+1) | |296 |2%(73+1) | [396 |2(197+1)
100 | 2(7°+1) | | 200 [199+1 300 |2(149+1) | | 400 |2(199+1)




Hadamard Matrices of Orders 404 through 700

Order | Constr Order | Constr Order | Constr
404 | T101 504 |503+1 604 | Al151
408 |2%(101+1) | |508 |A127 608 |607+1
412 | A103 512 | 2° 612 | T17W9
416 |2%(103+1) | | 516 |2(257+1) 616 | 2(307+1)
420 |419+1 520 | T6502 620 | 619+1
424 |2(211+1) | |524 |523+1 624 | 2(311+1)
428 | T107 528 | 2(263+1) 628 | 2(313+1)
432 | 431+1 532 | T7W19 632 |631+1
436 | M[107+1] | | 536 |A67%2 636 | 2(317+1)
440 | 439+1 540 | 2(269+1) 640 | 2°(79+1)
444 | 443+1 544 | 2(271+1) 644 | 643+1
448 |2(223+1) | |548 |547+1 648 | 647+1
452 | T113 552 | 2%(137+1) 652 | A163
456 | 2(227+1) | | 556 |2(277+1) 656 | 2°(163+1)
460 |2(229+1) | [560 |2%(139+1) 660 | 659+1
464 | 463+1 564 | 563+1 664 | 2(331+1)
468 | 467+1 568 | 2(283+1) 668

472 | T59¢2 572 | 571+1 672 | 2°(167+1)
476 | T119 576 | 2%(71+1) 676 | 2(337+1)
480 | 479+1 580 | 2(17°+1) 680 | 2°(13°+1)
484 | 2(241+1) | | 584 |A7302 684 |683+1
488 | 487+1 588 |587+1 688 | 2(7°+1)
492 | 491+1 592 | 23(73+1) 692 | 691+1
496 | 2°%(61+1) 506 | M[2(73+1)]| | 696 |2(347+1)
500 |499+1 600 |599+1 700 | 2(349+1)
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Hadamard Matrices of Orders 704 to 1000

Order | Constr Order | Constr Order | Constr
704 | 2°(43+1) 804 | 2(401+1) 904 |[T113e2
708 | 2(353+1) 808 |T101®2 908 |907+1
712 | M[2(43+1)]e2 | | 812 |811+1 912 [911+1
716 816 | 2°(101+1) 916 | 2(457+1)
720 | 719+1 820 | 2(409+1) 920 |919+1
724 | 2(19°+1) 824 |823+1 924 | 2(461+1)
728 | 727+1 828 |827+1 928 | 2(463+1)
732 | T3W61 832 | 2°(103+1) 932 | M[W29s2]
736 | 2(367+1) 836 | T19w11 936 | 2(467+1)
740 | 739+1 840 |839+1 940 | T47WS5
744 | 743+1 844 | 2(421+1) 944 | T59¢2°
748 | 2(373+1) 848 | 2%(211+1) 948 | 947+1
752 | 751+1 852 | T71W3 952 [ T119¢2
756 | TTW27 856 | T107%2 956 | A239
760 | 2(379+1) 860 |859+1 960 | 2(479+1)
764 | A191 864 |863+1 964 | M[239+1]
768 | 2(383+1) 868 | 2(433+1) 968 | 967+1
772 | M[191+1] 872 |M[107+1] 2| | 972 |971+1
776 | 2°(193+1) 876 | T73W3 976 | 2(487+1)
780 | 2(389+1) 880 | 2(439+1) 980 | T35W7
784 | 2%(97+1) 884 |883+1 984 | 983+1
788 | 787+1 888 |887+1 988 | T13W19
792 | 2%(197+1) 892 992 [991+1
796 | 2(397+1) 896 |2%(223+1) 996 | T83W3
800 |2%(199+1) 900 | 2(449+1) 1000 | 2(499+1)
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