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SUMMARY

When a group of people decides to move somewhere together, who is the initiator who

starts moving and everyone follows? Do the group members follow friends around them or do

they prefer to follow specific individuals? These questions are about leadership. Leadership

plays a key role in social animals’, including humans’, decision-making and coalescence in

coordinated activities such as hunting, migration, sport, diplomatic negotiation, etc. In these

coordinated activities, leadership is a process which organizes interactions among members

to make a group achieve collective goals. Understanding initiation of coordinated activities

allows scientists to gain more insight into social species’ behaviors. However, by using only

the data on time series of activities, inferring leadership, as manifested by the initiation of

coordinated activities, faces many challenging issues. First, there is no fundamental concept to

describe these activities computationally. Second, coordinated activities are dynamic. Third,

several different coordinated activities may occur simultaneously among subgroups. To fill these

remaining gaps in leadership inference, we formalize several computational leadership problems

and propose methodologies to solve them.

First, we formalize the Coordination Initiator Inference Problem and proposed a

simple yet powerful framework, FLICA, for extracting periods of coordinated activity and deter-

mining individuals who initiated this coordination, based solely on the activity of individuals

within a group during those periods. Second, we extend a concept of coordinated activities

to allow them to overlap as multiple coordinated factions. We formalize Faction Initiator

xx



SUMMARY (Continued)

Inference Problem and proposed a leadership inference framework as a solution of this

problem. The framework makes no assumptions about the characteristics of a leader or the

parameters. Third, we present a computational method to characterize and classify the traits

of leaders in movement initiation. We propose a framework for ranking leaders according to

their position, velocity, and heading relative to the group and perform hypothesis testing of

correlations between target features and leadership ranking. Fourth, we propose a methodol-

ogy to infer mechanism of coordinated activity. Given a time series that include coordinated

movement and a set of candidate strategies as inputs, we provide the methodology to infer

the set of strategies that each individual uses to achieve movement coordination at the group

level. Lastly, we focus on mining and modeling frequent patterns of leadership dynamics. We

formalize a new computational problem, Mining Patterns of Leadership Dynamics, as

well as propose a framework as a solution of this problem. Our framework can be used to

address several questions regarding leadership dynamics of group movement.

We evaluate and demonstrate the performance of the proposed frameworks in both simulated

and real-world datasets, such as baboon trajectories, time series of fish movement as well as time

series of closing price of stock market. The frameworks perform better than non-trivial baselines

in both simulated and real-world datasets. Our problem formalization and frameworks enable

opportunities for scientists to analyze coordinated activities and generate scientific hypotheses

about collective behaviors that can be tested statistically and in the field.

xxi



CHAPTER 1

INTRODUCTION

Which zebra initiated the flight from a lion? Whom does the elephant herd follow to water?

Who is the trend-setter whose opinion many follow at the moment? (And is it the same

person whether it’s the opinion about the future of AI or the hottest lunch spot?) In all these

scenarios, the leader might not be the one who is speaking the loudest or positioned at the

front of the group after the group has already agreed to follow [8,9]. Thus, in order to identify

those leaders or trend-setters, we must also determine the moment of the group’s decision to

follow as well as the dynamics of group coordination. In this work, we present theoretical

properties, methodologies, and methods to analyze leadership of coordination based on time

series data. Our work generalizes the concept of leadership as an initiation process, which can

be applied to any domain including ecology, social science, economics, AI, etc. We demonstrate

the applications of our proposed frameworks in simulation, animal datasets, as well as a stock

market closing price dataset. In addition, our problem formalization and frameworks enable

opportunities for scientists to analyze coordinated activities and generate scientific hypotheses

about collective behaviors that can be tested statistically and in the field.

1.1 Motivation

When problems cannot be solved by a single individual, group members have to form co-

ordination. One of methods that makes a group to coordinate with each other is through

1
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‘leadership’. Leadership is a process of specific individuals (leaders) affecting group’s actions

and decisions in order to make a group coordinate to achieve collective goals [10,11].

Leadership plays a key role in solving collective-action problems (e.g. social conflicts, mi-

gration, hunting, territorial defense) across social species [11], organizing the collective (i.e.

group) behaviors of social organisms ranging from humans [8] to hymenoptera [12]. It poten-

tiates complex patterns of cooperation and conflict (e.g., lions [13], hyaenas [14], meerkat [15],

chimpanzees [16], humans [17]), organizes group movements (fish [18], humans [8]), and may

prevent free-riding [19]. In the context of coordination, which is defined as an emergence of

collective actions to achieve the collective goals [20], leadership mainly contributes by fostering

collective behaviors in social species ranging from humans [8, 10,11] to fish [21].

The availability of data from physical proximity sensors, GPS, and the web open up the

possibility of measuring leadership as the process of initiation in online activities, face-to-

face human interactions, animal populations, and aggregate social processes such as economic

activities. However, these new types of data have unique characteristics and require new types

of computational techniques to analyze them.

1.2 Related work

Coordinating patterns of individual activity is a challenge that all social organisms face.

In the context of group behavior and decision-making in biology and sociology, leaders are

individuals who successfully induce a group of others to follow them to a common goal, state,

or behavior [18, 22–24]. Biological studies showed that leaders may be context-specific [18, 25]
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and the important initiators of particular group activities are not necessarily the individuals

found at the top of their group’s social dominance hierarchy [7, 26].

Substantial interest currently exists in identifying leaders and determining how they in-

fluence the behavior of others in their social environment. Previous work in several domains

defined leadership according to physical characteristics (e.g., size, sex [22]), positions in physi-

cal movement in public spaces [27], location-based social networks [28], rule-based models [25],

physical trajectory, and association patterns [29,30].

Computationally, the majority of previous works use a global notion of leadership and creates

a global, static leadership ranking over the entirety of the input data [31, 32]. Other domain-

specific methods infer leadership from implicit pairwise dyadic dominance or leader-follower

interactions [28, 30, 33]. Some methods define an explicit network over the dyadic interactions

or use a known network topology [34] and use network measures, such as PageRank and HITS,

or cascade size to identify leaders [32]. In this work, we focus on leadership in the aspect of

computation.

1.2.1 Computational leadership categories

Among the computational approaches, leadership frameworks can be separated into two

main types: movement leadership and Influence Maximization.

1.2.1.1 Movement leadership

The early pioneer work on trajectories leadership was done by Andersson et al. [30], which

defines leadership based on the flock patterns in [35]. Leaders have to satisfy three conditions.

First, a leader has to have enough followers. Second, a leader must continuously lead its
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followers long enough. Third, a leader never follows others during the leading time. Therefore,

there is only a sole leader for each specific period of time. According to Kjargaard et al. [33],

this framework can easily fail in the case of noise. Moreover, it cannot detect a leader when

a group of people walks through a crowd, since there might be other people who are in front

of the group’s leader. Hence, it is not a realistic framework, since a leadership model should

consider not just only positions of individuals.

The frameworks by Kjargaard et al. [33] and Solera et al. [27] are developed based on the

work by Andersson et al. [30]. The difference between them is that [27, 33] use a following

network to analyze leadership instead of using a flock pattern. The benefit of using a following

network is that the frameworks in [27, 33] can provide a leadership ranking of individuals and

can consider the group hierarchy of following instead of reporting only who is a leader, as in [30].

1.2.1.2 Influence maximization

Leadership has also been studied in explicit social network settings. From a social network

perspective, leaders can be characterized as influential individuals who have many followers

that imitate the leader’s actions [31], and, thus, successfully take a group from one behavioral

state to another. Much of the computational work has focused on the problem of influence

maximization (IM)–i.e. how individuals are able to maximize their impact on the behavior of

the group as a whole by iteratively affecting local network neighborhoods [36,37]. This approach

assumes that the network structure is known.

The work by Goyal et al. (2008) [31] deals with the social network in the same way as [37].

However, instead of solving the Influence Maximization problem, the framework by Goyal et
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al. (2008) uses influence relationship to determine a set of leaders. Even though the frame-

works from [31] and [30] deal with different data, they share the same concept of leadership; a

leader [30] or genuine leader [31] is an individual who has sufficiently many followers and never

follows others.

1.2.2 Coordination mechanisms inference from time series

Figure 1. An example of GPS-collar trajectories of Olive baboons living in Mpala Research

Centre, Kenya [6, 7]. In this event, the troop is forming coordinated movement.
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Coordination is a form of group behavior aimed to make the group achieve a collective

goal [20,38,39]. During the decision making process, a collective goal is to reach a group’s con-

sensus, which is defined as the state when all individuals share a common agreement [40]. One of

the mechanisms by which a group can achieve a collective goal is leadership, which is a process

of pattern initiation by specific individuals, leaders, then followed by the rest [1]. In behavioral

studies, coordination problems, such as group decision making, coordinated movement, group

hunting, social conflicts, and territorial defense, can be solved by leadership [8, 11, 21, 41–43].

However, leaders might not be explicit or global to a group, yet the group can still create

coordinated movement via a local strategy (e.g. individuals follow their neighbors) [8, 41,44].

In cooperative control of multi-agent systems, the field focuses on how to design a local

strategy for each agent so that the group can achieve collective goals [40, 45]. Agents can

communicate only with their neighbors via a communication network, which is defined by

any neighborhood concept in some space [45]. There is a large body of work in multi-agent

systems that proposes local synchronization strategies [40, 45]. In behavioral studies, the work

in [8,46] tries to model the coordination process via a concept of information spreading. A small

number of informed agents can spread information through a large number of uninformed agents,

which results in the group’s consensus and coordinated movement. The work by Chazelle [47]

introduces a model, namely a reversible agreement system, that guarantees convergence of the

group state, with or without leaders. In online social networks, there is also the “Diffusion

Model” [36,37,48] that models an information spreading process among individuals that results

in the entire network reaching a common state.
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However, in this work, we focus on the inverse question of inferring the local strategies

collective individuals use to achieve a state of coordination. There are only a few studies that

address this question. The works by Farine et al. [49, 50] found that wild baboons can achieve

the state of coordinated movement within a group by following their neighbors or long-term

associates, depending on the time scale of the coordination process. There are several studies

that look at the collective behavior of fish. For example, the work in [51] models and infers

the rules of movement coordination of fish, which is affected by the group size; Herbert-Read

et al. [52] report that the rules of movement coordination of fish mainly depend on attraction

forces of the group; and Katz et al. [53] show that fish tend to imitate the direction of neighbors

ahead. The work in [54, 55] proposed model selection methods to infer the behavior model of

animals, but the method cannot be used to find models that guarantee coordination. Note that

we use the words ‘model’, ‘mechanism’, and ‘strategy’ interchangeably.

1.2.3 Mining and modeling frequent patterns of leadership dynamics

Leadership is an essential part of collective decision and organization in social animals,

including humans. In nature, leadership is dynamic and varies with context or temporal fac-

tors. Understanding dynamics of leadership, such as how leaders change, emerge, or converge,

allows scientists to gain more insight into group decision-making and collective behavior in gen-

eral. However, given only data of individual activities, it is challenging to infer these dynamic

leadership events.
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For example, suppose i and j lead separate sub-groups, how often do the two groups merge

to a larger group lead by k? How likely is it that the group lead by i will split into more than

three sub-groups?

There are many works focusing on inferring dynamics of groups or clusters [56,57]. However,

mining frequent patterns of leadership dynamics requires an approach to identify both groups

and leaders of those groups that change over time. Moreover, since the groups following a

leader during coordination have a special structure of following relations among members, the

standard clustering methods cannot be used in this case.

1.2.4 Limitations of current methods

In this work, we consider leaders as initiators who initiate patterns of action and everyone

within a group follows. In reality, first, there are multiple coordinated activities happening

within a single set of time series. Second, for each coordination, there might be multiple sub-

coordination events as well as multiple initiators appearing simultaneously. Given only time

series and no further information, the problem of leadership inference is far from trivial. Below

is the list of issues that existing methods cannot solve.

• Coordination Model: In movement leadership, existing works mainly focus on identifying

leaders with some set of rules or assumptions, but there is no work considering the leadership

model inference based on time series.

In Influence Maximization, the majority of papers focus on Linear Threshold and Independent

Cascade models as main coordination mechanisms. However, there are other models that can
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be represented as a coordination mechanism, such as Dictatorship and Hierarchy models, as

well as non-network based models. Given time series of group activities as an input, there is

no existing methodology to infer leadership mechanism behind group’s activity.

• Coordinated Activity: In movement leadership, flock patterns are used to detect group

movement. However, since a flock pattern is defined based on a simple set of rules, it cannot

be used to detect dynamics of coordinated activity that break its simple rules. For example,

a group of individuals might have coordinated movement with arbitrary shape and radius,

but a flock pattern can detect only group movement pattern that have a fixed radius with

an eclipse-like shape. Generally, coordinated movement can be non-linear in directions and

positions of movement. Since a flock-based model has assumptions about a shape of group

movement and a positions of leader, who must always be at the front of the group, therefore

the model cannot detect any complicated coordinated movement in general.

Influence Maximization focuses on only one kind of state changing, which is an information

spreading event. In a coordinated activity, any state that the group coalesces to, a posteriori,

is a coordinated state, and it may change from one time to another. Coordinated activity

can represent multiple types of coalesced states over multiple time points. For example, a

coordinated movement of animals to a feeding site is considered to be a coordinated activity

for that group, but so is sudden jumping up and down in agitation, or all looking in the same

direction, or all falling sick. And the coordinated movement can be different and look different
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in the morning versus in the evening. There is also no computational method that can be

used to infer coordinated activities and their initiators from time series of group activities.

• Coordination Based on Context: In movement context, a flock pattern is used to identify

coordinated movement pattern with a set of simple conditions, however, by using only time

series and no future information, a flock-like model also fails to detect multiple coordinated

movement that have different initiators who are not always in the front. Moreover, coordi-

nated movements that exist in time series may not satisfy any simple conditions of a flock

pattern, hence a flock-like framework might be unable to detect any coordinated movement

at all.

In social network context, the Influence Maximization assumes that there is only one co-

ordination event of information spreading. However, in reality, information spreading or

coordination events can occur many times. For instance, within a day, a group of animals

can have many coordinated movement events to many places.

In summary, there is a clear gap between the biosociological definitions of leadership in

group decision-making and the existing computational approaches. Currently, there are no

computational approaches that (1) view leaders as initiators of group behavior change, which

can (2) identify the timing of the process of the change initiation and the group’s decision-

making in (3) arbitrary contexts, under (4) a variety of leadership models, (5) identifying traits

of leaders, as well as (6) mining and modeling frequent patterns of leadership dynamics.
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1.3 Our proposed solutions

In the first part of this work, we present the new computational problem of inferring leader

identity in the context of successful initiation of coordinated activities among groups of individ-

uals or other entities (Section 2.1 and 3.1), as well as proposes the first automated method for

unsupervised leader identification (Chapter 5). The method uses only time series activity data

of entities, with no additional information. The proposed approach automatically determines

(1) the time interval of group coordination, (2) the time when the (possibly implicit) decision

for that coordinated activity was made, (3) the identity of the coordination initiator, and (4)

the mechanism by which the group came to follow the initiator by classification methodology.

In the second part of this work, we extend the concept of coordinated activity from the first

part to multiple coordinated activities which can occur simultaneously (Section 2.2 and 3.3) as

well as propose the framework to analyze these complicated coordinated activities (Chapter 6).

The new proposed method can determine (1) the time interval of multiple subgroup coordination

events, (2) the identity of these coordination initiators, and (3) the dynamics of coordination

events (group merging or splitting).

In the third part of this work (Chapter 7), we propose the concepts of traits of leaders in

time series as well as provided a framework to infer traits of leaders of coordinated movement.

In the fourth part of this work, (Section 2.4, Section 3.5, and Chapter 8) we propose the new

concept of inference of coordination mechanism that considers a convergence property of models

and other properties since the mechanism inference by the existing classification methodology

has many limitations to capture the characteristics of leadership model. For example, by
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representing leadership mechanisms as features for classification, we cannot consider whether

leadership models possess a convergence property that creates coordination. The proposed

framework is able to infer the set of strategies that each individual uses to achieve coordination

at the group level.

Lastly, in Chapter 9, we proposed a framework that is capable of mining and modeling

frequent patterns of leadership dynamics from multiple subgroup coordination events.



CHAPTER 2

PRELIMINARIES

In this dissertation, it consists of the works from five previous works: the work in [1–3] (Sec-

tion 2.1 and Chapter 5), [4] (Section 2.2 and Chapter 6), [5] (Section 2.3 and Chapter 7), Chap-

ter 8 (Section 2.4), and [58] (Section 2.5 and Chapter 9). First, in FLICA framework [1–3], we

established fundamental concepts regarding leadership of coordination and decision-making in-

tervals inference as well as leadership model selection classification method. Second, in mFLICA

framework [4], we extended the concept of leadership from a single group of coordination in

FLICA to the concept of multiple factions in [4] that allows the sub-coordinated activities

happen simultaneously. We also proposed time window inference in [4] based on the concept of

coordination measure. Third, in [5], we proposed the concepts of traits of leaders in time series

as well as provided a framework to infer traits of leaders. Fourth, we proposed the coordination

mechanism inference concept and a framework to infer an underlying model of collective be-

haviors of each individual. Finally, we proposed a framework for mining and modeling frequent

patterns of leadership dynamics from multiple subgroup coordination events inferred by the

mFLICA framework [4].

2.1 Coordination event detection and initiator identification in time series

13
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Coordination Initiator Inference Problem: An agreement of a group to follow a

common purpose is manifested by its coalescence into a coordinated behavior. The process of

initiating this behavior and the period of decision-making by the group members necessarily

precedes the coordinated behavior. Given time series of group members’ behavior,

the goal is to find these periods of decision-making and identify the initiating

individual, if one exists.

The first part of my contribution, which comes from the work in [1, 2], is establishing and

formalizing the new computational problem of coordination initiation inference. We

call it the Coordination Initiator Inference Problem. The formulation is a generaliza-

tion of many related leadership and initiation inference computational problems. We explicitly

relate existing leadership and influence propagation problems as special cases of our formula-

tion. The new formulation uses only the time series of individual behavior as input, with no

assumption of additional information such as demography, prior history, dominance hierarchy,

or a network structure. The problem formulation aims to identify different local instances of

behavior initiation, allows the identity of the initiator to be instance-specific, and makes no

assumption on the leadership or behavioral model.

Our additional contribution is in proposing a computational solution framework to this

new Coordination Initiator Inference Problem. We propose a general, scientifically

grounded, unsupervised, and extendable framework with few assumptions for identifying indi-
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viduals who lead a group to a state of coordinated activity (or, more generally, an entity that

induces group coalescence). Our framework is capable of:

• Detecting coordinated activity events: discovering coordination intervals and decision-

making periods leading to that coordination;

• Identifying initiators: identifying the initiators of this coordinated behavior, that is, the

individuals who succeeded in leading the group to coordination, specifically locally to each

coordination instance; and

• Classifying the group coordination model: characterizing the type of the group’s

transition behavior to coordination according to interpretable, dynamic models.

We demonstrate the framework’s ability to analyze leadership in coordinated activity on

synthetic and real datasets over several domains. We compare our framework with state-of-the-

art methods for leadership identification for the special cases of our problem where such methods

are applicable. For many instances of our new problem, there are no existing methods. We

demonstrate that existing solutions fail and do not extend to these instances. We use synthetic

simulated data to validate each aspect of the framework. We analyze two biological datasets

– GPS tracks of a baboon troop and video-tracking of fish schools, – as well as stock market

closing price data of the NASDAQ index. The results are consistent with ground-truthed

biological data. Moreover, the framework finds many known events in financial data, which are

not otherwise reflected in the aggregate NASDAQ index. Our approach is easily generalizable

to any coordinated activity in time series data of interacting entities.
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2.1.1 Influence maximization vs. coordination initiator inference problem

The Influence Maximization problem is closely related to Coordination Initiator In-

ference Problem. In fact, successful Influence Maximization, where a large fraction of the

population is influenced, is a special case of Coordination Initiator Inference Problem.

When the influence is spread to a majority of the population, that population is now in a coordi-

nated state, with the decision period starting at the initiation of the influence and the initiators

being that source of influence. However, Coordination Initiator Inference Problem

goes beyond Influence Maximization in every aspect of the framework and can capture differ-

ent models of decision-making, coordinated activity, as well as repeated and context-specific

dynamics of coordination.

• Coordination Model: Our new problem formulation, Coordination Initiator Infer-

ence Problem, generalizes to all types of models that can be represented as a coordination

mechanism. To recognize difference types of coordination mechanisms, we also provide the

model classification approach to classify these coordination models based on some proposed

features.

• Coordinated Activity: In Coordination Initiator Inference Problem, the problem

focuses on not only which individuals initiate coordinated activities, but also when coordi-

nated activities occur, without the explicit prescription of the type of coordinated activity. To

analyze coordinated activities in time series, we provide a framework to detect coordination

intervals as well as initiators of these coordination events.
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• Coordination Based on Context: The original Influence Maximization assumes that

there is only one coordination event of information spreading. However, in reality, information

spreading or coordination events can occur many times. For instance, within a day, a group

of animals can have many coordinated movement events to many places. Our work here aims

to infer the multiple coordination events, which might have different initiators.

2.2 Inferring leadership dynamics of complex movement from time series

Faction Initiator Inference Problem: To reach collective goals, group’s members

must coordinate with each other. Multiple factions within a big group may exist solving

their sub-tasks in helping the entire group achieve the collective goals. Given time series

of individual activities, our goal is to identify periods of coordination and the

subsequent coordinated activity, find factions of coordination if more than one

exist, as well as identify leaders of each faction

In the context of coordination leadership, the approach of leadership inference in [1] provides

a solution for identifying coordination events, the initiators of these events, as well as proposes

an approach for the classification of the types of leadership models acting on a group. However,

the framework in [1] cannot be used to infer multiple coordinated activities which can occur

simultaneously because the notion of multiple factions is not employed by the framework. Our

main purpose is to close this gap in the study of leadership of coordination.

First, we introduce the novel computational problem of leadership identification in multiple

coordinated activities, namely Faction Initiator Inference Problem. We formalize the
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problem and analyze its theoretical properties and implications. Second, we propose a high-

performance framework for Faction Initiator Inference Problem by combining several

existing methods in a principled and novel manner. Our framework is capable of:

• Detecting intervals of multiple coordination: inferring intervals when different coor-

dinated activity in multiple groups may appear simultaneously;

• Identifying leaders: identifying the initiators of these coordinated activities, the individual

who initiates each coordination and the group that follows; and

• Discovering the events of merging and splitting of coordination: identifying the

time when a coordinated group is separated into smaller sub-groups or merged with another

coordinated group.

We demonstrate the ability of the framework to infer leadership in multiple coordinated

groups on both simulated and biological datasets. Since we propose the new problem and

framework and no other approaches exist, we compare our framework against a non-trivial

baseline, which is the modification of the closest existing approach in leadership inference. Our

approach is flexibly generalizable to any multiple coordinated activities from any time series

data.

2.3 Identifying traits of leaders in movement initiation

In this work in [5], we propose an explicit framework for testing hypotheses about the

behavioral traits of leaders by combining leader identification approaches with leadership char-

acterization. We first identify leaders and then evaluate behavioral traits that purportedly

characterize a leader. In the context of movement initiation, we focus on three behavioral traits
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commonly assumed to be associated with leadership of group movements: 1) being at the front

of the group [30], 2) being the first to start moving [41], and 3) being the first to move in the

new direction [59]. The framework is general enough to incorporate any set of traits as the set

of hypotheses of leader characterization.

Leader Traits Characterization Problem: Given a time series of individual

activities and target traits, the goal is to find a set of leaders during decision-

making periods and a set of traits that best characterize these leaders.

We propose a two step approach for the Leader Traits Characterization Problem:

1. We find instances of leadership and identify leaders, using an agnostic and assumption

free leadership inference framework FLICA [1];

2. We evaluate traits of interest for all identified leaders and perform hypothesis testing to

infer which traits are significant.

We demonstrate our approach using a publicly available position tracking data set from a troop

of wild olive baboons (Papio anubis) from Mpala Research Centre, Kenya [6, 7]. Our results

show that, in baboons, movement initiators are not the first to move but, instead, are the first

to explore new areas, and that the group quickly aligns itself with the direction of the leader’s

movement.
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2.4 Coordination mechanisms inference from time series

Coordination Strategy Inference Problem: To reach a group consensus, individ-

uals have to coordinate with others. There are many strategies each individual can use

to achieve coordination at the group level. Given time series of individual activities

and a set of candidate strategies, the goal is to find the set of original strategies

individuals used that lead to the group consensus.

The work in [1–3] (Section 2.1) provided a framework, FLICA, for leadership inference

and model classification in time series data. FLICA considers the shape of time series to infer

pairwise relationship who follows whom (instead of considering only directions or positions of

individuals). Hence, FLICA subsumes all previous methods [3] including FLOCK patterns

leadership [30, 60], time-lag following leadership [33], etc. FLICA can infer an underlying

possible group model that generated coordination via a classification method. However, FLICA

cannot be used to infer individual-level strategies that collectively combine to coordinated

movement at the group level. In fact, each individual within a group can use a different

strategy to achieve collective coordination (Proposition 8.2.2).

In order to fill the gap in the literature, we formalize Coordination Strategy Inference

Problem, analyze theoretical properties of a strategy that guarantees coordination, propose

hierarchical and non-hierarchical strategies that guarantee coordination, as well as propose a

computational framework to infer, from time-series data, individual-level coordination strate-

gies.
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Given a set of candidate strategies and time series of coordinated movement, our framework

is capable of:

• Inferring the latent strategies: inferring the best fit set of mixed or pure strategy for

agents that provide the lowest loss value for the task of predicting the direction of movement;

and

• Movement prediction: predicting the direction of the next move of each agent when the

optimal strategy is unknown, using the set of the inferred latent strategies.

We evaluate and demonstrate the performance of our framework on simulated datasets

as well as real-world datasets of animal movement. On simulated data, the task is to infer

the correct latent coordination model that was used to generate the simulated time series of

coordinated movement. We use the baboon dataset to predict the next movement to find which

strategies each baboon likely used to coordinate its movement. Lastly, in fish datasets, we

show how to apply the framework to do the model selection to address a hypothesis about the

original model that the fish use to achieve coordinated movement.

2.5 Mining and modeling complex leadership dynamics of movement data

In this work [58], we formalize the problem of Mining Patterns of Leadership Dy-

namics, as well as propose a framework, which is the extension of mFLICA [4], as a solution

to this problem. We adapt the traditional framework of frequent pattern mining [61–63] and

the Hidden Markov Model (HMM) approach [64] to model the dynamics of frequent patterns

of leadership. Our framework is capable of:
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Mining Patterns of Leadership Dynamics: Given time series of individual activ-

ities, the goal is to mine and model frequent patterns of leadership dynamics, including

emergence of multiple leaders, convergence of multiple leaders to a single one, or change of

a leader.

• Mining and modeling frequent patterns of leadership dynamics : inferring the tran-

sition diagram of frequent dynamics of complex leadership events, such as “a single group

lead by k splits into two groups lead by i and j”. In addition, we infer the probabilities of

the transitions between such two events in the diagram.

• Evaluating the significance of leadership-event order: we propose a null model of the

dynamics of leadership events and perform hypothesis testing to compare frequent-pattern

model of leadership dynamics inferred from the given input to our proposed null model.

• Mining sequence patterns of leadership dynamics: finding support values for the

leadership-dynamics sequences from time series of movement data.

• Evaluating the significance of frequencies of leadership event sequences: we propose

a null model of the sequences of leadership events and perform hypothesis testing to compare

the support distribution of leadership event sequences inferred from the given input to our

proposed null model.

We evaluate our framework performance by using several simulated datasets, as well as

using the real-world dataset of baboon movement to demonstrate the application of our frame-

work. There are no existing methods to address this problem, thus, we modify and extend
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the existing leadership inference framework to provide a non-trivial baseline. Our framework

performs better than this baseline in all datasets. Moreover, we also propose a method to per-

form statistical significance tests, comparing inferred frequent patterns of leadership dynamics

with our proposed null hypotheses. Our framework opens the opportunities for scientists to

generate scientific hypotheses that can be tested statistically regarding dynamics of leadership

in movement data.



CHAPTER 3

PROBLEM FORMALIZATION AND ANALYSIS

3.1 Single coordination event without noise

Given a collection of time series, we want to find initiators of highly coordinated patterns.

To formally state the Coordination Initiator Inference Problem, we need to formalize

notions of “coordination” and “initiation.”

Figure 2. (Left) The example of time series U follows Q. (Right) the following network w.r.t.

U follows Q relation.

First, we define an intuitive notion of a following relation, as “two individuals per-

forming the same sequence of actions (or generating time series values) with some fixed delay

24
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(Figure 2).” In this work, given a m-dimensional time series U , we use U(t) to refer to an

element of the time series U at time t and, for a given ∆ ∈ Z+ ∪ {0}, U∆ as a time-shifted

version of U where, U(t) = U∆(t+ ∆). Formally:

Definition 1 (following relation) Let U and W be m-dimensional, arbitrary-length time

series. If for all t ∈ N, there is a fixed time delay ∆ ∈ Z+ ∪ {0} such that W (t) = U(t + ∆),

then U follows W denoted as W � U . We denote W ≺ U if ∆ > 0.

Lemma 3.1.1 Let U and W be time series such that W � U and U �W , then U and W are

equivalent time series denoted U ≡W .

Proof There are two cases when both W � U and U �W . First, W = U and U = W (that is,

∆ = 0 in both following relations). Clearly, W ≡ U . Second, W ≺ U with ∆w > 0 and U ≺W

with ∆u > 0. Then, by definition, W (t) = U(t + ∆w) and U(t) = W (t + ∆u). Therefore,

W (t) = W (t + ∆w + ∆u). Thus, if W � U and U � W then W � W (and similarly U � U).

Thus, the two time series are identical periodic with a different starting point and therefore

equivalent.

In periodic time series, such as a sine wave, we use Lemma 3.1.1. If we have two sine waves

that have the same frequency but different phase, then we consider them as a pair of time series

that follow each other, from which it can be concluded that they are equivalent. For instance,

in Figure 3, U and W are two sine waves, which have the same frequency but different phase.

Because U ≺W with time delay ∆U≺W > 0 and W ≺ U with ∆W≺U > 0 , by the second case

in Lemma 3.1.1 above, U ≡W .
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Figure 3. U and W are sine waves that have the same frequency but different phase. U

follows W with time delay ∆W≺U and W follows U with time delay ∆U≺W .

Lemma 3.1.2 The following relation is a partial order over time series [65].

Proof Antisymmetry: if W � U and U �W , then W ≡ U by Lemma 3.1.1. The following

relation is also trivially reflexive and transitive, which, by definition is a partial order.

Next, coordination, or intuitively “all individuals performing the same sequence of ac-

tions, at possibly varying delays (Figure 4),” is formally defined as:

Definition 2 (Coordination) Given a set of m-dimensional time series U = {U1, . . . , Un}.

The set U is coordinated at time t if for every
(
n
2

)
pairs Ui, Uj ∈ U , either Ui ≺ Uj or Uj ≺

Ui. The coordination interval is the maximal contiguous time interval [t1, t2] such that U is

coordinated for every t ∈ [t1, t2].

Finally, the initiator is intuitively “an individual who first performs a sequence of actions,

and all other individuals follow,” formally defined as:
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Figure 4. (Left) the example of coordination interval in time series where Q ≺ U ≺ V ≺W .

(Right) the following network w.r.t. these following relations. In this example, Q is an

initiator.

Definition 3 (Initiator) Let U = {U1, . . . , Un} be a coordinated set of m-dimensional time

series within some coordination interval [t1, t2]. Then the time series L ∈ U is the initiator

time series for the coordination interval if for each time series U ∈ U \ {L}, L ≺ U .

In Figure 4, Q is an initiator of coordination. The coordination interval starts at the

beginning of W . We are now ready to precisely state the problem of identifying the individual

who initiates a coordinated behavior:

3.2 Useful observations

Let U be a coordinated set of time series and L ∈ U be the initiator. Since U is a partial

order set and ∀Ui ∈ U , L ≺ Ui, then, by definition, L is the minimal element. Moreover, U is

a linear order set since for every pair Ui, Uj ∈ U , either Ui ≺ Uj or Uj ≺ Ui.
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Problem 1: Coordination Initiator Inference Problem

Input : Set U = {U1, U2, . . . , Un} of time series.

Output: A coordination interval [t1, t2] and the initiator time series L ∈ U that initiated

the coordination.

Definition 4 (Following network) Let U = {U1, . . . , Un} be a set of time series. The

following network G = (V,E) is defined as a directed graph where the set of nodes V has a one-

to-one correspondence to the set of time series U , and each edge in E represents a following

relation between two time series: ∀Ui, Uj ∈ U the edge ei,j ∈ E if Uj ≺ Ui.

Recall that PageRank [66] score, πi, of a node i in a network G is defined as follows:

πi = d
∑
k∈N ini

ek,iπk/|N out
k |+ (1− d) (3.1)

Where πi ∈ [0, 1], d ∈ (0, 1] is a constant number, ek,i ∈ {0, 1} is one if ek,i ∈ E, N in
i is a

set of neighbor nodes of i such that k ∈ N in
i if ek,i ∈ E, and N out

i is a set of outgoing neighbor

nodes of i such that k ∈ N out
i if ei,k ∈ E.

Lemma 3.2.1 Let G = (V,E) be a following network of time series set U = {U1, . . . , Un}. If

Ui � Uj then πi ≥ πj.

Proof By transitivity, if Uj follows Ui then the followers of Uj are also the followers of

Ui. Thus, since ∀k ∈ Nj , Uj � Uk and Ui � Uj , then N in
j ⊆ N in

i . Hence, πi − πj =

d
∑

k∈N ini \N inj
ek,iπk/|N out

k | ≥ 0.
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As a corollary of Lemma 3.2.1, since all the time series follow the initiator L within the coor-

dination interval [t1, t2], then L has the highest PageRank score in U during that coordination

period. Moreover, Lemma 3.2.1 allows us to infer the order of following among the time series

within the coordination period, as defined by the PageRank values.

3.2.1 Following relation with noise

Figure 5. (Top-left) A time series Q, (bottom-left) a time series U , and (top-right) a time

series V . In this example, U partially follows Q, V partially follows U but V does not follow

Q. The following network of these time series is at the bottom-right of the figure.)
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In real situations, Definition 1 requires the exact match, which rarely happens. Therefore,

we provide relaxation of following relation to deal with noise in realistic situations below.

Definition 5 (σ-following relation) Let U be a set of time series, sim : U × U → [0, 1] be a

time series similarity function, and σ ∈ [0, 1] be a similarity threshold. For any P,Q ∈ U , we

say that Q σ-follows P , denoted as P �σ Q, if Q and P are sufficiently similar within some

time shift ∆:

max
∆

(sim(P,Q∆)) ≥ σ and min(argmax
∆

sim(P,Q∆) ≥ 0) 6= ∅

If either ∆tmax = 0 or Ui ≺σ Uj and Uj ≺σ Ui, then Ui ≡σ Uj.

The difference between a following relation in Def 1 and Def 5 is that the notion of σ-

following relation lacks the transitivity property1. Figure 5 shows the example of three time

series and their σ-following relation with some unknown σ > 0.5. In this example, Q is similar

to U and U is similar to V greater than 0.5. However, Q and V are not similar at all. Therefore,

the σ following relation does not possess the transitivity property.

Next, we can define a notion of coordination by using σ-following relation as follows.

1This is similar to non-transitive dice: https://en.wikipedia.org/wiki/Nontransitive_dice

https://en.wikipedia.org/wiki/Nontransitive_dice
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Definition 6 (σ-Coordinated set) Given a set of m-dimensional time series U = {U1, . . . , Un}

and a similarity threshold σ ∈ (0, 1]. The set U is σ-coordinated at time t if for every
(
n
2

)
pairs

Ui, Uj ∈ U , either Ui ≺σ Uj or Uj ≺σ Ui.

Definition 7 (σ-Coordination interval) The σ-coordination interval is the maximal con-

tiguous time interval [t1, t2] such that U is coordinated for every t ∈ [t1, t2].

Even though an initiator of σ-Coordination interval is not a minimum element anymore due

to σ-following relation does not possess transitivity property, an initiator suppose to have a

highest number of followers. Hence, PageRank is still an appropriate measure for finding an

initiator.

3.3 Multiple coordination events without noise

We now extend these concepts to the case of multiple coordinated subgroups.

Definition 8 (Faction) Given a set of time series U , a subset F ⊆ U at time t is maximally

coordinated, if F is coordinated and there is no other coordinated set F ′ ⊆ U where F ⊂ F ′.

We call such maximally coordinated F a faction at time t.

Definition 9 (Faction interval) The coordination interval of a faction F or a faction in-

terval is the maximal consecutive time interval [t1, t2] such that F is coordinated for every

t ∈ [t1, t2].

Faction is a structurally maximal subset and its interval is a temporally maximal subset.

Lemma 3.3.1 A time series W is a member of a faction F if and only if it has an edge to F ’s

initiator L.
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Proof Let a time series W ∈ F . Since ∀U ∈ F \ {L}, L ≺ W . By definition, there is an edge

from W to L.

Let L ≺ W . If W is not in F , then we can add W to F , which will remain a coordinated

set but will now violate the maximality of F . Thus, W ∈ F .

According to Lemma 3.3.1, a faction F is a set of nodes within G such that all nodes within

F have a directed edge to L. Note that L always has the out-degree of zero and in-degree

of |F | − 1 within a coordination interval. We are now ready to formally state the Faction

Initiator Inference Problem at Problem 2.

Problem 2: Faction Initiator Inference Problem

Input : Set U = {U1, . . . , Un} of m-dimensional time series

Output: A set of factions F = {F1, . . . , Fk}, a set of coordinated intervals

T = {[t11, t12], ..., [tk1, t
k
2]}, and the set of initiator time series L = {L1, ...Lk}

where Li initiated the coordination interval [ti1, t
i
2] of the faction Fi
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3.4 Multiple coordination events with noise

In the previous section, we stated the definitions and properties of the problem of identifying

multiple faction initiators in the ideal setting. In this section, we provide the relaxation and

the analysis of the problem in the presence of noise.

Definition 10 (σ-faction) Let U be a set of time series. A σ-faction F ⊆ U is a maximal set

such that F is σ-coordinated, and there is no other σ-coordinated set F ′ ⊆ U where F ⊂ F ′.

Definition 11 (Relaxed faction interval) Let U be a set of time series, the time interval

[t1, t2] is a faction interval of initiator L if for all t ∈ [t1, t2], there exists a faction Ft such that

Ft has L as its initiator and |Ft| > 1.

3.4.1 Coordination measure

Given a set of time series U , a set of clusters C = {H1, . . . ,Hn} such that
⋃
kHk = U , we

define a cluster membership indicator δi,j = 1 if time series Ui and Uj belong to the similar

cluster, otherwise it is zero. The average coordination measure Ψ of a set of clusters C is

defined as follows:

Ψ(C) =

∑
Ui,Uj∈U ,Ui 6=Uj

simmax(Ui, Uj)δi,j∑
Ui,Uj∈U ,Ui 6=Uj

δi,j
. (3.2)

Note that Ψ ∈ [0, 1]. If Ψ is close to 1, then all time series within the same cluster are highly

similar, with some time delay. This implies a high degree of coordination within each cluster

in this case. On the contrary, Ψ ≈ 0 implies no coordination, on average.
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Theorem 3.4.1 Given a set of time series U containing a set of σ-faction F = {F1, . . . , Fn}

where
⋃
Fi∈F Fi = U , then, for all possible sets of clusters, F maximizes the average coordination

measure Ψ.

Proof Reminding that for all pairs Ui, Uj within any similar faction F , simmax(Ui, Uj) ≥ σ.

Hence, Ψ(F) ≥ σ.

Case 1: let H,J ∈ F , if we modify F by exchanging any time series UH ∈ H with UJ ∈ J

and call it C, then we have:

Ψ(F)−Ψ(C) =
S + S′∑

Ui,Uj∈U ,Ui 6=Uj δi,j
.

S =
∑

Ui∈H\{UH}

(
simmax(Ui, UH)− simmax(Ui, UJ)

)
S′ =

∑
Ui∈J\{UJ}

(
simmax(Ui, UJ)− simmax(Ui, UH)

)

For any Ui ∈ H, simmax(Ui, UH) ≥ σ since UH ∈ H. In contrast, because UJ /∈ H,

then simmax(Ui, UJ) < σ, which implies S > 0. S′ > 0 for a similar reason. Therefore,

Ψ(F)−Ψ(C) > 0.
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Case 2: if we create C from F by spiting a cluster H ∈ F to be H1 ⊂ H and H2 = H \H1,

then we have:

Ψ(F)−Ψ(C) =

∑
Ui∈H1,Uj∈H2

simmax(Ui, Uj)

|H1||H2|
≥ σ.

Case 3: we create C from F by merging any cluster H ∈ F with any J ∈ F such that H 6= J

to be H ′. So, let

Ψ(F) =
XF
SF
≥ σ,

then

Ψ(C) =
XF +

∑
Ui∈H,Uj∈J simmax(Ui, Uj)

SF + |H||J |
.

By merging H and J , we introduce pairs of time series across H and J to Equation Equa-

tion 3.2 such that simmax(Ui, Uj) < σ since these pairs are not belong to the same faction.

These pairs decrease the average of XF , which implies Ψ(F) > Ψ(C).

Since we shown that no matter how we edit F , the average coordination measure Ψ cannot

increase, therefore, F maximizes the average coordination measure.

3.5 Coordination mechanism inference

We use the following notation throughout this section and Chapter ??:

• N = {1, . . . , n} is a set of agents.

• I ⊆ N is a set of informed agents.
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• Si(t) is a state value of agent i at time t, where Si(t) ∈ Rd.

• St = {Si(t)} is a set of individual states at at time t.

• Si = (Si(0), . . . , Si(T )) is state time series of agent i.

• Sw = (Sw(0), . . . , Sw(T )) is a target path where Sw(t) ∈ Rd is a target state at time t.

• H = {hi} is a set of strategy functions that agents use to update their current state where

hi : Rd → Rd.

• S = {Si} is a set of state time series generated by agents using some set of strategy functions

F ⊆ H.

• σ ∈ [0, 1] is a noise-tolerance threshold.

Given a set of n agents N with a set of their initial states S0 = {Si(0)}, these n agents

generate a set of state time series S = {Si}, where Si = (Si(0), . . . , Si(T )) is the state time

series of agent i ∈ N . For each time step t, each agent i updates its state via a strategy function

hi ∈ H: Si(t) = hi(Si(t− 1)). However, an informed agent j ∈ I always has its state the same

as a target path Sw: Sj(t) = Sw(t).

Definition 12 (Coordination event) Let Q = {Q1, . . . , Qn} be a set of time series. If there

exists any σ-coordination interval (Def. 7) in Q, then Q is a coordination event.

Definition 13 (Coordination strategy) Let F ⊆ H be a set of strategy functions that the

agents use to generate a set of state time series S = {Si}. Each agent i ∈ N uses a function

fi ∈ F to update its state for each time step. F is a set of coordination strategies of S if S is

a coordination event.



37

Note that if all agents follow the target path Sw, then an informed agent is an initiator of

coordination.

3.5.1 Problem formalization

Suppose there is a set of state time series S = {Sk} that was generated by an unknown

set of latent coordination strategies F ⊆ H w.r.t. some unknown σ. The only available inputs

are S and the entire set H. The goal is to find F . The real identity of the target path Sw

is unknown, but it is known that Sw ∈ S. Before formalizing the problem, we define the risk

function to measure the fitness of any hk ∈ H that might be in F , for any agent i:

risk(Si, hk) =
1

T

T∑
t=1

loss(Si(t), hk(Si(t− 1))), (3.3)

where loss : Rd×Rd → R is a loss function and hk(Si(t−1)) returns a predicted state Ŝi(t).

Now, we are ready to formalize Coordination Strategy Inference Problem.

Problem 3: Coordination Strategy Inference Problem

Input : A set of state time series S = {Si} generated by multiple agents, where S is a

coordination event; a set of strategy functions H = {hk}; and a loss function

loss : Rd × Rd → R.

Output: A set of minimum risk strategies F∗ = {f∗i } where, for each agent i,

f∗i = argminhk∈H risk(Si, hk).
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3.6 Mining patterns of leadership dynamics

Let U be a set of time series, We create a dynamic following network G = 〈Gt〉 by considering

each temporal sub-interval t of U of length ω (time window parameter) and creating a following

network Gt of that interval. We then define the notion of the time series of leaders of a dynamic

following network below.

Definition 14 (Time series of leaders) Let U be a set of time series. L is a time series of

leaders where L(t) is a set of faction initiators at time t in Gt.

We can use mFLICA framework [4] to extract a time series of leaders from time series of

movement. Next, we define the support of a leader set S. Let T be the length of the time

series of leaders and 1x be an indicator function, which is 1 if the statement x is true, and 0

otherwise.

suppL(S) =

∑T
t=1 1S=L(t)

T
. (3.4)

suppL(S) indicates the support of having a particular set of initiators S lead multiple groups

concurrently. For example, if suppL({L1, L2}) = 0.5 it means that half the time the leaders are

exactly {L1, L2}, leading their factions concurrently.

Definition 15 (Frequent-leader set) Let L be a time series of leaders, S be a set of faction

initiators, and φ ∈ [0, 1] be a support threshold. S is a frequent-leader set of L if suppL(S) ≥ φ.
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Definition 16 (Transition probability of leader sets) Let L be a time series of leaders,

and Si, Sj be sets of faction initiators. A transition probability of leader sets λSi,Sj is a proba-

bility that L(t− 1) = Si and L(t) = Sj.

Now, we are ready to formally state the the problem of Mining Patterns of Leadership

Dynamics.

Problem 4: Mining Patterns of Leadership Dynamics

Input : A set U = {U1, . . . , Un} of m-dimensional time series and a support threshold

φ.

Output: A set of frequent-leader sets SL and a transition probability set P = {λSi,Sj}

where Si, Sj ∈ SL.

In this work, we choose to represent a set of frequent-leader sets as a diagram of leadership

dynamics below.

Definition 17 (A diagram of leadership dynamics) Let L be a time series of leaders, φ ∈

[0, 1] be a support threshold, and SL be set of frequent-leader sets. A digraph T = (VT , ET ) is

a diagram of leadership dynamics such that the nodes VT represent frequent-leader sets SL and

(vi, vj) ∈ ET if λSi,Sj > 0.



CHAPTER 4

LEADERSHIP MODELS AND DATASETS

In this chapter, we provide the details of leadership models in simulated datasets that we

use to evaluate our framework performance as well as the details of three real-world datasets:

trajectories of baboons, trajectories of schools of fish, and time series of stock closing-price from

NASDAQ.

4.1 Simulation of leadership models

4.1.1 Dictatorship model (DM)

In this model, we fix a single initiator who initiates movement from initial positions of

the population. At the start of the pre-coordination interval, the initiator moves in a fixed

direction and acceleration. Other individuals wait for a randomly sampled lag, before following

the initiator at a fixed acceleration (with sampled noise in the heading). After a fixed duration

of coordinated movement over the entire population, individuals decelerate at random, until

stopping. Figure 6 (left) shows the example of DM. The Switching Dictatorship model (DM-S)

selects two fixed individuals over each trial: a single individual as an initiator during pre-

coordination, and another single individual as ‘initiator’ during coordination. Figure 7 shows

an example of following-network-density time series of DM-S.

40
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Figure 6. Examples of individual movements from Dictatorship and Hierarchical model.

Nodes represent individual positions and arrows represent directions of individual’s

movement. (Left) in Dictatorship model, everyone follows a leader L, while there is a

hierarchy to follow for each individuals in Hierarchical model (right).

4.1.2 Hierarchical model (HM)

This model is a variation of DM, where we fix a number of individuals (n=4) to follow

the previous individual in the sequence, after a sampled lag. The remainder of individuals

in the population follow exactly one of these high-ranking individuals, allocated in decreasing

proportion per rank. Figure 6 (right) shows the example of HM. The Switching Hierarchical

model (HM-S), similarly to DM-S, selects unique pairs of individuals for each hierarchy level,

switching after the pre-coordination interval as in DM-S.
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Figure 7. An example of following-network-density time series of Switching Dictatorship

model . There are two coordination events where individual A leads a group in both

pre-coordination intervals while B leads a group during coordination intervals.

4.1.3 Event-based model (EM)

This model is a variation of the Dictatorship model where each coordination event has a

different, unique initiator. For example, in one of our applications, a troop of baboons may

follow an initiator to a food source in the morning, and follow a different initiator in the evening

to the sleeping site. No existing methods can infer these two situations except our framework.

Figure 8 shows an example of following-network-density time series of EM.

4.1.4 Initiator model (INIT-k)

In this model, we fix k initiators who initiate movement from random initial positions of

the population. At the start of the pre-coordination interval, all initiators move on a single

target. Non-initiators move in randomly sampled directions with a fix velocity, then follow
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Figure 8. An example of following-network-density time series of Event-based model. There

are two coordination events where individual A leads a group in the first coordination event

while B leads a group during the second coordination event.

their initiators after a random time lag. After the pre-coordination period, all individuals move

toward a single target, without following their initiators. The example of INIT-k model is at

Figure 9. We run simulations for INIT-1 and INIT-4 initiator models.

4.1.5 Crowd model (CM)

This model [25] is a collective movement model where k (=4) informed individuals move

toward a target, and the remaining (=16) uninformed individuals move in a linear combination

of a direction toward the group’s centroid, and the average direction of the group. The example

of CM is at Figure 10.
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Figure 9. Examples of individual movements from Initiator model. Nodes represent individual

positions and arrows represent directions of individual’s movement. (Left) during a

pre-coordination interval, everyone follows a leader L, while, during a coordination interval,

everyone knows the direction and moves to the destination directly without following a leader

(right).

4.1.6 Linear Threshold model (LT)

This model [36] initiates individual movement by propagation of a linear threshold process

on the dynamic network, defined by the k-nearest neighbors at the current time-step. The

model is parameterized by ρ, the proportion of these k neighbors required to be infected in

order to initiate movement. Once activated, the individual follows a single initiator. The

initial probability of activation for each individual is 0.5. We explore the parameter space on

combinations of: k ∈ {3, 5, 10} and ρ ∈ {0.25, 0.50, 0.75}. The example of LT is at Figure 11.
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Figure 10. Examples of individual movements from Crowd model. Nodes represent individual

positions and arrows represent directions of individual’s movement. (Left) at time t, everyone

follows some directions except informed individuals (T nodes) which moves directly to a

target. Then, at time t+ l (right), the group’s direction, which is the average of individual’s

directions, gradually changes toward the target.

4.1.7 Independent Cascade model (IC)

This model [36] is another propagation process similar to LT. At each time step, each active

individual moves toward the initiator and independently attempts to activate its k-nearest

neighbors with the probability of ρ. If the individual fails to activate a neighbor, it cannot

attempt to activate the same neighbor again. We explore the same sample parameter space as

in the LT model.
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Figure 11. Examples of individual movements from Linear Threshold model. Nodes represent

individual positions and arrows represent directions of individual’s movement. (Left) at time

t, only active individuals (orange color) move toward an initiator L. Suppose k = 3 and

ρ = 0.50, at time t, an inactive individual A has two active individuals F1, F2 and L as its

neighbors. Since 66% of A’s neighbors are activated, then, at time t+ 1 (right), A is active

and start moving toward L.

4.1.8 Random model

In this model, there is no ‘following’ relations. At the start of the pre-coordination interval,

all individuals start moving to a fixed direction, independently of others in the population. We

expect the relative positions of individuals to yield some following relations only by chance.
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4.2 Real-world datasets

4.2.1 Baboon trajectories

High-resolution GPS collars track 26 individuals of a troop of olive baboons (Papio anubis)

living in the wild in Mpala Research Centre, Kenya [6, 7]. The data consists of latitude-

longitude location pairs for each individual at one observation per second. We analyze a subset

of 16 individuals whose collars remained functional for a ten day period (419,095 time steps).

In addition, in the first two days of baboon tracking, there are four group activities labeling by

experts: sleeping, hanging out, coordinated progression, and coordinated non-progression [67].

We show later that by using only following network density as a feature to perform activity

classification, we can get high accurate results of activity prediction.

4.2.2 Fish schools trajectories

The movement of a fish school of golden shiners (Notemigonus crysoleucas) are recorded

by video in order to study information propagation over the visual fields of fish [46]. Each

population contains 70 fish, with 10 trained, labeled fish who are able to lead the school to

feeding sites over 24 separate coordination events. The task is to correctly identify trained fish

by initiator ranking.

4.2.3 Stock closing-price time series

We collected daily closing price data for stocks listed in NASDAQ, using Yahoo! Finance.1

These time series are from January 2000 to January 2016 (4169 time-steps). We remove symbols

1http://finance.yahoo.com/
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with a large amount of missing data, leaving a total of 1443 symbols in our dataset. Our analysis

focuses on discovering large, known events and crises in an unsupervised way, and to explore

initiators and sectors involved in these coordination events.



CHAPTER 5

FLICA: A FRAMEWORK FOR LEADER IDENTIFICATION IN

COORDINATED ACTIVITY

Coordination Initiator Inference Problem: An agreement of a group to follow a

common purpose is manifested by its coalescence into a coordinated behavior. The process of

initiating this behavior and the period of decision-making by the group members necessarily

precedes the coordinated behavior. Given time series of group members’ behavior,

the goal is to find these periods of decision-making and identify the initiating

individual, if one exists.

5.1 Introduction

In this chapter, we present a Framework for Leader Identification in Coordinated Activity

(FLICA) as the solution for the Coordination Initiator Inference Problem. On real

data, the formalization in Chapter 3 is very restrictive, so we relax the exact following

relation, and full coordination to identify ‘following’ and partial ‘coordination’ in real

This chapter has been previously published in Chainarong Amornbunchornvej, Ivan Brugere, Ariana
Strandburg-Peshkin, Damien R. Farine, Margaret C.Crofoot, and Tanya Y. Berger-Wolf. 2018. Coordi-
nation Event Detection and Initiator Identification in Time Series Data. ACM Trans. Knowl. Discov.
Data.12, 5, Article 53 (June 2018) https://doi.org/10.1145/3201406 See Appendix A for the copyright
permission document from the publisher.
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applications. Furthermore, multiple coordination events often exist within a set of real time

series data. Constructing a single aggregated network would not capture the dynamics of these

events. Therefore, FLICA uses a dynamic network approach.

Figure 12. A high-level overview of FLICA framework

Figure 12 shows the framework overview. At each time step, we infer following relations to

construct a sequence of following networks. We then use network density to detect intervals

of coordination, and the time series of PageRank values to identify the initiators of these

coordination intervals.

5.1.1 A working example

Figure 13 presents a key example and a brief introduction to our framework, on real GPS

trajectory data of olive baboons (Papio anubis). Figure 13(b) and Figure 13(c) show the lead-

ership of movement of the group by baboon ID3 (Black). Figure 13(d) shows the ‘following’



51

(b) t=50 (c) t=100 (d) t=250

Figure 13. PageRank (top) and density (middle) of the ‘following’ network over time for an

event of baboons’ movement which initiates by ID3. (Bottom) The locations of individuals

over three different time steps (t = 50, 100, 250), with the ‘following’ network, and PageRank

indicated by node size.
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network in the coordination interval. Individual ID3 has the largest PageRank in the first

two snapshots but the PageRank of individual ID1 (Blue) surpasses ID3 when the network is

‘coordinated’ (e.g. moving together). If we measure the initiator ranking after the network

has coalesced, then we miss that ID3 initiated coordination and ‘built’ the network in the pre-

coordination interval (to the left of the first dotted red line).

We now present each step of the computational framework of FLICA. We will discuss

the following relation inference in Section 5.2.1, the construction of the following network in

Section 5.2.2, identification of the coordination interval and the preceding decision-making

period in Section 5.2.3, the identification of the initiator in Section 5.2.4 and the details of

model and parameter choices at each step.

5.2 Methods

5.2.1 Following relation inference

Given a pair of time series U,Q, our task here is to find a following relation between U

and Q. However, we relax a notion of following relation in Def. 1 to allow some degree of

distortion between two time series that follows each other. A measures we need should satisfy

two properties. First, a measure must be able to identify common pattern between U and

Q. A common pattern might not happens in Q the same time as U and the common pattern

might have some degree of distortion. Second, a measure must be able to infer a time delay

between common patterns in U and Q. With these properties, for a (U,Q) pair of time series,

we use Dynamic Time Warping (DTW) [68] to measure whether U follows Q. DTW is shown
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Figure 14. (Left) Toy time series showing U following Q with a time delay ∆ = 3. (Right) the

optimal warping path (yellow boxes) on the DTW dynamic programming matrix, shifting U

backward in time onto Q.

to perform better than several other methods in inferring following relation in time series [33]

and it is tolerant to noise [69]. Figure 14 (Left) shows two time series, where time-shifting

Q ahead in time produces a better match to U , illustrated in the warping path in Figure 14

(Right). Let PU,Q be a sequence of index pairs (i, j) which comprise the DTW optimal warping

path of (U,Q). We compute the mean of the signed index difference over this sequence of index

pairs:

s(PU,Q) =

∑
(i,j)∈PU,Q sign(j − i)

|PU,Q|
(5.1)
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This function measures the extent of warping between two time series. If time series cannot be

shifted one-onto-the-other with a consistent positive or negative sign, |s(PU,Q)| ≈ 0, then there

is no following relation between U and Q. When s(PU,Q) is positive, Q follows U , otherwise, U

follows Q. In Figure 14, s(PU,Q) ≈ −3.

5.2.2 Dynamic following network inference

As shown in Section 5.1.1, a coordinated activity is dynamic in the aspect of who leads a

group at each time step. Using only summary statistics of static following network to represent

the entire coordinated activity cannot capture dynamics of coordinated activity. Therefore, we

deploy a dynamic network procedure to analyze coordinated activities in time series, which is

a common technique to deal with dynamics of data [70].

In our setting, the set of n m-multidimensional time series D (e.g., a matrix of size [n ×

m× t∗]), a window size parameter ω, and a window shift parameter δ (default is 0.1ω) are the

inputs for our framework.

Let the ith time interval be given by: w(i) = [(i− 1)× δ, (i− 1)× δ+ω]. For each w(i), we

extract a set of sub time series Qi from D. The Qi is the [n×m×ω] dimensional matrix of the

time series set. Then we construct a following network G = (V,E) as defined in Def. 4. The

nodes represent the time series from Qi and E is a set of edges between time series nodes such

that if U,W ∈ Qi and U follows W according to Eq. Equation 9.1, then eU,W ∈ E with the

edge weight |s(PU,W )|. We calculate a following network for each w(i) to construct a dynamic

following network G∗ = (V,E∗). The pseudo code is given in Procedure 5.
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Procedure 5: CreateDyFollowingNetwork

input : A set of time series D, a time window ω, and a window shift δ

output: An n× n× t∗ adjacency matrix E∗.

K ← (t∗ − ω)/δ ;

for i← 1 to K do

/* current time interval */

w(i) = [(i− 1)× δ, (i− 1)× δ + ω] ;

/* SubTimeSeries(D, w(i)) returns all sub time series in D within the

interval w(i) */

Qi ←SubTimeSeries(D, w(i));

E ←CreateFollowingNetwork(Qi) ;

/* Set all edges within the time interval [(i− 1)× δ, i× δ] to be similar */

E∗t∈[(i−1)×δ,i×δ] ← E ;

end

Q ←SubTimeSeries(D, [K × δ, t∗]);

E ←CreateFollowingNetwork(Q) ;

E∗t∈[K×δ,t∗] ← E ;

5.2.3 Coordination intervals detection

Network density of the following network serves as the measure of the extent of coordination

over all time series pairs (by Def. 2, during the coordination interval every pair has a following

relation.) We can use this observation to identify times of approximate coordination.
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Figure 15. A coordination event is a pair of intervals. We define the pre-coordination interval

and coordination interval using threshold λ on the network density time series.

Given a time series of network densities, denoted by d, over a dynamic following network

G∗, and a density threshold parameter λ, the time interval [ti, tj ] is a λ-coordination interval if

d(t) > λ for all t ∈ [ti, tj ]. The pre-coordination interval of coordination [ti, tj ] is the interval

[tk, ti−1], where the discrete derivative d(t)−d(t−1) ≥ 0 for all t ∈ [tk, ti−1]. Together, these

intervals are one coordination event, represented by the 3-tuple of time indices I = (tk, ti, tj).

The collection of coordination events is a set C = {Il}. All complete event intervals [tk, tj ] are

mutually disjoint in C, and |C| denotes the total number of 3-tuples. Figure 15 illustrates the

definition of a coordination event as a pair of time intervals. To reduce the number of intervals

generated near the threshold λ, we apply a greedy merging of nearby coordination intervals

(taking the range from the window size ω).
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5.2.4 Ranking comparison

On each coordination event I = (tk, ti, tj), let RI be some ranking of individuals within

the pre-coordination interval [tk, ti − 1]. We focus on ranking within pre-coordination because

this is the interval where coordination is initiated. The global rank order of pre-coordination,

denoted by R̂, is the average of all RI where I ∈ C.

We measure initiator ranking according to three different methods: PageRank [66], ve-

locity convex hull (VCH), and position convex hull (PCH). Recall, that by Lemma 3.2.1, if U

follows V , then the PageRank of U is less than that of V . Thus, the initiator is expected to

have the highest PageRank. VCH measures how often an individual moves faster than others.

It represents a model of leadership for movement. This model can be found in many social

species [8, 23]. PCH measures how often an individual moves to an area before others. For

example, in a flock model [30], a leader is positioned at the front of the group’s trajectory.

5.2.4.1 PageRank

PageRank is a standard method for measuring the importance of a node recursively by the

importance of the nodes linking to it. In a directed network where a link represents a following

relations between nodes, PageRank measures ‘following’ paths passing through a particular

node. Thus, it fits well with our definition of leadership.

PageRank returns a weight vector of length n, with a sum of 1. For each time step t,

we calculate PageRank for each static graph Gt within a dynamic following network G∗ =

(V,E∗). Let R = (Rpr(1), . . . , Rpr(t
∗)) be a sequence of n-length PageRank Order vectors

where Rpr(t) = argsort(PageRank(Gt)) such that R(i)pr(t) represents the rank of individual i
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and R(i)pr(t) < R(j)pr(t) if the PageRank value in Eq. Equation 3.1 of i is greater than the

value of j ( πi > πj .) The leader L at time t is the individual who has the highest value of

PageRank πL or R(L)pr(t) = 1 . Note that argsort(∗) returns the index list of sorted values

w.r.t. descending order.

5.2.4.2 Velocity Convex Hull

In the next two sections, the s-energy work by Chazelle [47] motivates the use of the convex

hull as the measure of the level of initiation of a state change for the group. Chazelle showed

that if every agent in a group remains within the convex hull of its neighbors (even if the

neighbors change) at each time step, then the system converges to an equilibrium. Thus, to

change the steady state, somebody needs to break out of the convex hull of their neighbors. In

the initial state, all individuals states such as velocity or position are inside the group’s convex

hulls of that state. Then after the group decides to change its state, some individuals must

step outside the group convex hull to make the change. Hence, by using convex hull analysis,

we can measure whether the initiators are also state changers. Specifically, we use convex hull

(of position and velocity) analysis to characterize leadership models.

The velocity convex hull measures the frequency with which the discrete time series deriva-

tive (dQ/dt) associated with a node i is outside the bounds of the population’s discrete deriva-

tive distribution (including node i) in the previous time step. In aggregate, a high rank of this

measure indicates which node first ‘moves’ in the group.



59

The convex hull can be computed on arbitrary m dimensions of a multidimensional time

series, or their derivatives, jointly or independently. The convex hull function CH(∗) returns an

m-dimensional surface represented as lines between points in the input data, which encompass

all other points.

Let V be a [n × t − 1]-sized matrix measuring individual velocity over time, on time series

dataset D, which is a [n×m× t∗]-sized matrix. Di,k(t) represents a data point of kth dimension

of time series i at time t. We refer to Di,∗(t) as a m-dimensional data point of time series i at

time t1. For an individual i at time-step t, we define the following indicator function:

VCH(V, i, t) =



1, Vi(t) > max(V∗(t− 1))

−1, Vi(t) < min(V∗(t− 1))

0, otherwise

(5.2)

For time step j we output an n-length rank order vector asRv(t) = argsort((VCH(V, i, t))i=1...n).

5.2.4.3 Position Convex Hull

The position convex hull is analogous to velocity, except that our indicator function measures

an individual’s position relative to the convex hull containing the population at the previous

time step. Rather than look at velocity of initiation, this measure captures an individual’s

frequency of moving outside the geometric boundaries of the group in the time series space,

and close to the average heading of the group (e.g. in ‘front’ of the group).

1 We use ‘*’ subscript notation in matrices to indicate slicing in the dimension(s).
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We compute the convex hull function on time-step t, H(t) = CH(D∗,∗(t)), and also introduce

the heading vector of individual i: ~vi(t) = (Di,∗(t − 1), Di,∗(t)), and the population heading

vector: ~v(t) = (1/n)
∑

i=1..n ~vi(t). We define the function IN(A, B) to denote standard ‘B

contains A’ spatial queries between two geometry objects, and ](~v1, ~v2) to measure the angle

between two vectors ~v1 and ~v2.

Using these definitions, we define the position convex hull indicator function for individual

i at time t:

PCH(D, i, t) =



1, ¬IN(Di,∗(t), Ht−1),](~vi(t), ~v(t)) ≤ 90◦

−1, ¬IN(Di,∗(t), Ht−1),](~vi(t), ~v(t)) > 90◦

0, otherwise

(5.3)

For time step t we output an n-length rank order vector asRp(t) = argsort((PCH(D, i, t))i=1...n).

5.2.5 Leadership model features

Let the global rank ordering of pre-coordination for PageRank be denoted by R̂pr, for VCH

by R̂v, and for PCH by R̂p. To measure global leadership of pre-coordination in our framework,

we order individual nodes i based on initiation support with respect to one of these ranking

methods, R∗,I , over all coordination events I ∈ C. For example, Rpr,I is PageRank-rank-

ordered list at the coordination event I. If an individual i is at 1st rank at I, then (i, 1) ∈ Rpr,I ;
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i is an initiator. The initiation support for a node i is the fraction of coordination events at

which it was ranked 1 (by a ranking measure R∗):

sup∗(i) =
|{∀I ∈ C (i, 1) ∈ R∗,I}|

|C|
(5.4)

We use the Kendall rank correlation coefficient τ() [71] to compare event-local and global

rank-orders. To compare global and local rank orders, we use the mean Kendall rank correlation

over all coordination events against the global by Eq. Equation 5.5. For example, corrv compares

local and global velocity-convex-hull-rank orders.

corr∗ =

∑
I∈C τ(R̂∗, R∗,I)

|C|
(5.5)

Similarly, we compute the mean Kendall correlation between local rankings associated with

different measures (e.g. VCH, PCH) by Eq. Equation 5.6.

corr∗,∗ =

∑
I∈C τ(R∗,I , R∗,I)

|C|
(5.6)

corr∗ formalizes our intuition that leaders consistently move outside of the spatial extent

(corrp), or the distribution of velocity over the population (corrv). By comparing the global vs.

local correlation in rank ordering, we measure the stability of the global ranking is over time.

corr∗,∗ measures the relationship between higher-order graph structure and simple time series

features. Using this measure, we can gain a better understanding of the high-level aspects of
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(a) Pattern order alignment (b) Global shift alignment

Figure 16. Dynamic Time Warping global vs. local example

initiating coordination. For example, we see whether changing velocity (corrv,pr), or position

(corrp,pr) within the group is correlated with network rank position.

5.2.6 Local vs. Global Matching

Our proposed framework uses local alignment on time series subsequences, rather than global

alignment on the full time series. Figure 16 presents a motivation for this choice. Suppose

we intend to match sparse ‘following’ events represented as the pair of spikes with relatively

low magnitude at the end of the red and blue time series. In Figure 16(a), the time series is

shifted to match one of the two patterns, depending on the cost. This forces a mismatch of the

‘following’ event. Similarly, Figure 16(b) has a low cost matching by shifting the entire time

series at a constant rate. By matching only local subsequences, we can recover both of these

‘following’ events.
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5.3 Experimental setup

We evaluate our framework on eight synthetic movement trajectory models in Section 4.

We also use three real datasets in Section 4.2 to demonstrate the utilities of our framework.

5.3.1 Synthetic trajectory simulation

For each of the above models, we generate a trial of synthetic data consisting of 20 individ-

uals, and 20 separate coordination events, for a total of 12,000 time-steps. Each coordination

event has pre-coordination and coordination intervals of 200 time-steps each. Following the

coordination interval is another 200 time steps of a post-coordination before repeating. We

generate 100 trials for each of models. In total, we have 2,700 simulation datasets.

5.3.2 Evaluation

For synthetic datasets, we use three evaluation approaches:

• Global leadership: For each method, we extract network and/or rank statistics over the

entire time series, and report only a single aggregate initiator ranking. We compare the

known ground truth ranking (used to generate the data) against the ranking of each method,

reporting precision. We measure precision of identifying the true initiator, on DM, LT, IC,

and INIT-1 models. For the HM model, we compare the exact top-4 ranking against the

ground truth (order matters); The evaluation is the same for CM and INIT-4 models, except

the exact top-4 ranking constraint is relaxed (i.e. we compare top-4 sets).

• Local leadership: For evaluation data in this case, we use the ground truth ranking for each

local coordination event, and the time intervals of each event. We report average precision over

each discovered pre-coordination interval. We evaluate the EM model using this approach.
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We report only the FLICA result, since it is the only method capable of producing local

ranking.

• Initiator leadership: For each coordination event, we measure the initiator of coordination

event before coordination occurs (e.g. in the pre-coordination interval). This individual may

not be highly ranked after coordination (see: Figure 13). We report the precision of global

leadership considering only the pre-coordination intervals. Since only FLICA identifies pre-

coordination intervals, we compare against other methods’ global leadership. This evaluation

demonstrates that global leadership is distinct from coordination initiation. We evaluate

DM-S and HM-S models using this approach.

5.3.3 Compared leadership methods

We demonstrate the performance of our framework by comparing with previous works on

influence and leadership [30,33,36] as well as creating the Granger-Causality framework based

on the work by Liu et al. [72] to illustrate the potential of using Granger Causality to infer

leaders in time series. These methods can infer only global initiator ranking, while our proposed

framework (FLICA) can detect individual coordination events, handles switching initiator, and

performs leadership model classification. Therefore, we use the global leadership identification

task to compare FLICA’s performance with the prior works. We report the best results under

varying parameters for competing frameworks. The time complexity of each method is shown

in Table Table I.

First, the FLOCK model [30] identifies leaders who move toward the norm direction vector

of the group and also in the front of the group. Second, LPD [33] creates an aggregate ‘following’
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TABLE I

Time complexities of leadership inference methods where n is a number of time series, ω is a

time window, and t∗ is a length of time series.

Method Input Time complexity

FLICA Time series O(n2 × t∗ × ω)

FLOCK [30] Trajectory O(n2 × t∗)

LPD [33] Time series O(n2 × t∗ × ω3)

IM [36] Network O(n2 × t∗)

Copula-Granger [72] Time series O(n× (ω × t∗)2)

network from time-lag features. A node is scored by breadth-first traversal on reversed ‘follow-

ing’ edges. Visited neighbors’ contribution is inverse-proportional to the geodesic distance. For

the purposes of our simulation, we use sliding Euclidean distance alignment (e.g. analogous to

cross-correlation) because LPD does not scale to the size of our simulations under DTW (see

Table Table I). Finally, for influence maximization (IM), we use the independent cascade model

for the 1-seed selection problem [36], on the network derived from [30]. The network describes

the probability of any individual A sharing the same direction as B, and in the front of B.
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For the Granger Causality method, we used the Copula-Granger approach that can be found

in [72] to infer a causal network. Then, we convert the causal network to be a following network

by designating X follows Y if the weight of Y Granger causes X is larger than the weight of X

Granger causes Y .

To make leadership comparison possible, we report the global leadership rank ordered list

for each method as follows. First, we create rank order lists for FLICA under PageRank. The

FLOCK model, however, does not have the explicit ranking score, so we rank individuals based

on decreasing time duration of leadership. Third, LPD assigns individuals with higher scores

a higher rank. Finally, since IM uses the probabilistic network of influence, we construct the

realization of this influence network. A node influences any node to which it has a directed path

in the realized network. We rank individuals based on the expectation of nodes influenced by

that node over 1000 realized networks. Lastly, for the Copula-Granger leadership framework,

we use PageRank to evaluate the leadership ranking on the following network we created from

the causal network.

5.3.4 Sensitivity analysis

Typically, real-world datasets are noisy. The high degree of noise can affect results of

leadership inference. However, the effects of noise on leadership inference is unclear. Moreover,

in our leadership framework, the main parameter is the time window ω. Using the wrong value

of time window may affect the results as well. Hence, in this section, we consider the approach

to measure the robustness of our framework.



67

Figure 17. An example of time series of following-network density. There are three

coordination events where individual A leads a group in first half of all coordination events

while B leads a group after A for first and second coordination events. The third coordination

event has C leads the second half of the event.

5.3.4.1 Support of faction leading

To measure the accuracy of initiator inference, we use a support value of being a leader

of factions for each individual. A faction interval of L is defined as a sub-coordinated interval

within a coordination event such that L leads a group. Given F = {IL} is a set of faction

intervals where IL is a faction interval lead by L (The consecutive time interval that L leads

the group) and a time window ω, a coordination event Ek is defined to be a combined interval

of consecutive faction intervals. Specifically, if a faction interval Ii finishes at time t′i while Ij

starts at time tj ≤ t′i + ω, then both Ii and Ij factions are in the same coordination event.



68

Definition 18 (Coordination event) Let F = {I} be a set of faction intervals and ω be a

time window. A coordination event Ek = [t1, t2] is a combined interval of consecutive faction

intervals from F . Any faction interval Ii = [ti, t
′
i] that occurs before another faction Ij = [tj , t

′
j ]

are in the same coordination event if t′i < tj ≤ t′i + ω.

Given E = {Ek} is a set of coordination events and FL = {Ii} is a set of faction intervals

lead by L, the support value of an individual L leading factions is defined as follows.

sup(L) =
|{E|E ∈ E , ∃I ∈ FL, I ⊆ E}|

|E|
(5.7)

The support value, sup(L), tells us the level of consistency that L happens to initiate its

faction for any coordination event. If sup(L) ≈ 1, then it means L always initiates factions

when coordination events occur. In contrast, if sup(L) ≈ 0, then there is a low chance that L

initiates any faction.

Moreover, we can calculate a confident value of having A’s and B’s factions in the same

coordination event given that A’s faction occurs at the event as follows.

Conf(B|A) =
|{E|E ∈ E ,∃Ii ∈ FA,∃Ij ∈ FB, Ii, Ij ⊆ E}|

|{E|E ∈ E ,∃I ∈ FA, I ⊆ E}|
(5.8)

Figure 17 shows the toy example of coordination events in the form of density time series

of following network. E = {[t1, t3], [t4, t6], [t7, t9]} is a set of coordination events. A set of

faction intervals lead by A is FA = {[t1, t2], [t4, t5], [t7, t8]}, a set of faction intervals lead by

B is FB = {(t2, t3], (t5, t6]}, and a set of faction intervals lead by C is FC = {(t8, t9]}. The
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support values of A,B and C are sup(A) = 1, sup(B) = 2/3, and sup(C) = 1/3 respectively.

The confident values of having B’s faction within a coordination event that has A’s faction is

Conf(B|A) = 2/3. But Conf(A|B) = 1 and Conf(A|C) = 1.

5.3.4.2 Simulation and accuracy measure

• Initiator inference: To measure the performance of framework vs. noise w.r.t. the initia-

tor inference task, we use simulation datasets of movement time series within 2-dimensional

space. A simulation dataset contains trajectories of individuals that have multiple coordina-

tion events (e.g. Figure 17). Each type of simulation dataset contains different type and

level of noises. The task is to predict a support of each initiators as well as confident val-

ues. The performance of framework is determined based on the error between ground truth

and predicted values of support and confident measures. If the framework performs well, the

predicted support and confident value of initiators should be close to the ground truth.

• Coordination interval inference: To measure the performance of framework vs. noise

w.r.t. the coordination interval inference task, we use simulation datasets of movement time

series within 2-dimensional space. we compared the predicted faction intervals of each initia-

tors to the ground truth directly. The result of comparison are reported in the form of true

positive, false positive, and false negative values. True positive will be counted at time step

t when a predicted and ground truth faction interval of initiator L occurs at time t. False

positive will be counted when the framework predicts that a time step t is within L’s faction

but it is not. False negative will be counted when the framework predicts that a time step t

is not within L’s faction but it is.
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5.3.4.3 Position and Direction noises

To measure the robustness of framework w.r.t. two tasks above, we consider two types of

noises: position noise and direction noise. For a direction noise, instead of moving to a target

direction at degree D compared to X-axis, an individual moves toward a direction D+ a. The

direction noise a is drawn randomly from a normal distribution with zero mean and γ standard

deviation. For position noise, suppose (x, y) is the next position that an individual should

move to, with position noise, the actual position that the individual moves is (x + b1, y + b2).

The position noise b1, b2 are drawn randomly from a normal distribution with zero mean and

β standard deviation.

5.3.4.4 Time window sensitivity

A time window parameter ω is the main parameter of our leadership framework. we report

the performance of framework when the time window is vary from the optimal time window.

If the framework is robust, then it should perform well even when the time window value is set

significantly different from the optimal value.

5.4 Results

5.4.1 Identifying leaders

In each simulation, we have the label of the true initiator(s). For each of the simulation

trials, our method identifies the ‘initiator’ and ‘rank ordered lists’ (see Section 5.3.2). We set a

window size ω by the TWIN heuristic [73] on the network density, window shift size δ = 0.1ω,

and the λ threshold at the mean of the network density time series d(t).



71

Table II reports precision on PageRank rank ordered lists over all synthetic model simula-

tions. We compare against previous works–FLOCK [30], IM [36], LPD [33], and Copula-Granger

Causality Inference models [72]–which produce a single ranking over the entire trial.

The white rows in Table II report precision of leadership identification for a fixed initia-

tor across all coordination events (global leadership). Gray rows report precision of initiator

leadership where leaders change between pre-coordination and coordination intervals in the

event (DM-S, HM-S), or precision of local leadership where the initiator changes per coordina-

tion event (EM). The rows labeled ‘Top-4’ report precision in identifying any of the multiple

unordered initiators (CM, INIT-4) or precision for the correct hierarchical order (HM, HM-S).

On the white rows, FLICA is robust across all simulation models, while FLOCK, IM, and

LPD perform well other than on INIT-4 simulations (e.g. with multiple initiators). However, in

gray rows (“initiator switching”) previous methods fail almost completely since they are unable

to detect leadership prior to coordination. When the coordination state is more prevalent than

the pre-coordination decision-point, ranking will favor an individual who happens to lead the

dynamics in the coordination state (but may not have initiated the state). For Copula-Granger

framework, it can infer correct initiators with high accuracy in Dictatorship model, while it

fails for the most of models except INIT-4. This indicates that the Copula-Granger approach

has a potential to infer leaders even though it is not designed to perform leadership inference.

The row reporting EM results is a special case of precision. Because we know each coor-

dination event has a unique initiator, ranking individuals across all coordination events will
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fail. Instead, we report precision in identifying the initiator of each coordination event. Since

previous work generates only aggregate rankings, precision for these methods are not reported.

5.4.2 Case study: trained initiators in fish schools

We identify the top-k global initiators of the fish school trajectory dataset (see Section 4.2.2),

where we have the labels of ‘trained’ individuals expected to lead the school to feeding sites.

Table III reports precision of identifying trained fish as initiators over 24 trials. The Initiator

column is precision of predicting a trained fish as a global initiator. The Top-4 rank column

is precision of identifying trained fish as the top-4 ranking individuals. Similar to the simula-

tion models, FLICA performs best overall, again suggesting that dynamic following network

representation captures ‘following’ better than other features.

5.4.3 Case study: finding “initiators” of stock market events

We apply our leadership framework to stock market closing price data of the NASDAQ index

(see Section 4.2.3). An ‘initiator’ in this context measures the extent that a stock increases or

decreases in value before a large group of other stocks (e.g. a coordinated group). We apply

the framework without any special consideration to the domain, only to qualitatively validate

that we can discover known, large events.

Figure 18 shows the network density of the inferred ‘following’ network over time, where we

discover coordination events with λ threshold at the 75th percentile of the network density time

series. Pre-coordination and coordination intervals are shown in red and green, respectively. We

find significant economic events such as the 2000 tech collapse, and 9/11. More interestingly, we

discover known events which are reflected in the network density signal but not the NASDAQ
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TABLE II

Precision of leadership identification on simulation models. (* indicates the std ≥ 0.1).

Models/Methods FLICA FLOCK IM LPD Copula-Granger

DM 1 1 1 1 0.97*

HM (Top-4) 1 0.25 1 1 0.55*

LT 0.99 0.98* 0.99* 0.93* 0.07*

IC 1 1 1 0.99 0.45*

CM (Top-4) 1 1 1 0.99 0.69*

INIT-1 1 1 1 1 0.24*

INIT-4 (Top-4) 0.74* 0.35* 0.51* 0.21* 0.91*

DM-S 1 0 0.02* 0.25* 0.37*

HM-S (Top-4) 1 0 0.5 0.51 0.31*

EM 0.92 - - - -

Random 0.01 0 0.01 0.17* 0.02*
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TABLE III

Initiator identification precision in fish (* indicates the std ≥ 0.1).

Ranking Initiator Top-4 rank

FLICA 0.83* 0.61*

FLOCK [30] 0.0 0.0

IM [36] 0.0 0.02

LPD [33] 0.17* 0.18*

Copula-Granger [72] 0.13* 0.10*

index. For example, we discover a technical econometric event, where the “TED Spread” (a

surrogate of national credit risk) begins fluctuating in July 2007, and a small market failure

in August 2011. Matching our intuition, the top-ranked companies in the coordination event

associated with the year 2000 collapse are primarily in IT and semiconductors, including eBay

and SanDisk in the top 10.

For the sanity check, we provided the results of the comparison between the following

network density of NASDAQ stock market and a random walk one in Figure 19. We generated

random-walk time series from the original NASDAQ closing price time series. Both original

and random-walk versions shared the same distribution of difference between time steps, length,

and the number of time series.
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Figure 18. (Top) NASDAQ ‘following’ network density and (Bottom) NASDAQ index value.

Pre-coordination and coordination intervals are shown in red and green, respectively. The

framework detects many known events in financial data (labeled above). Many of these events

are not reflected in the NASDAQ index.

For each time series of closing price X, we inferred the distribution DX of the differences

between the time steps. We created random-walk time series X̂ that starts as the same price as
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Figure 19. Comparison between time series of network density that generated from NASDAQ

time series and from random walk time series.

the original time series, then we updated the next value of X̂ by normally sampling a different

value from DX . Hence, both X and X̂ share the same DX .

We found that our following network density of NASDAQ is different from the random-

walk one (Figure 19). Moreover, random-walk network density does not have any coordination

events. This indicates that our network density can tell the difference between random-walk

time series and the actual dataset that contains coordination events.

5.4.4 Case study: baboon activity classification by following network density

In this section, we demonstrate that our coordination events, which defined by following net-

work density time series, corresponding to coordinated progression activity labeled by experts

in baboon dataset (see Section 4.2.1).
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Figure 20. Baboon activities from first two days of tracking vs. following network density

For each time step, a group of baboon has an activity label as either sleeping, hanging out,

coordinated progression, or coordinated non-progression. The group of baboons is considered

to have a sleeping label when they are at their home tree to sleep. Hanging out activity

happens when baboons stay around the same place without moving far away from the group.

Coordinated progression is when a group of baboons having a strong coordinated movement to

somewhere. Lastly, in coordinated non-progression, a group has a weaker coordinated movement

than coordinated progression.

Figure 20 shows the distribution of network density for each activity. Sleeping and hanging

out activities have low values of network density, which implies that the group rarely has

following relations. On the contrary, coordinated progression and coordinated non-progression

have high values of network density on average, which is similar to our coordination intervals.
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This result illustrates that a following network density is informative with respect to the task

of activity classification.

In the dataset, there are two days of baboon activity labels. We used the first day data to

train a classifier to predict the second day activities as well as using the second day to train

a classifier to predict the first day activities. We used Linear discriminant analysis (LDA)

as our classifier and used only network density as a feature. We compared our result with

Adversarial Sequence Tagging (AST) [67], with is the state-of-the-art method that performed

activity labeling classification in the same dataset. Our aim is to show that a following network

density is informative enough to make a simple classifier performs better than the state-of-the-

art classifier method that used 24 features in the group activity classification task.

TABLE IV

Activities classification prediction accuracy in first two days of baboon data.

Method Baboon Day 1 Baboon Day 2

Linear discriminant analysis (LDA) + following network density 87.20% 70.82%

Adversarial Sequence Tagging (AST) [67] + 24 features 77.30% 69.22%
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The classification result is shown in Table IV. The accuracy results were calculated by the

complement of hamming loss the same as [67]. By using only following network density as a

feature, our simple classifier performs better than AST in both days.

5.4.5 Leadership model classification

Figure 21. Comparison of feature spaces of leadership model classifications on simulations and

real data
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Recall, that we proposed several initiator rankings and ranking correlations (Section 5.2.5).

Here, we do leadership model classification on each simulation trial using the proposed features

derived from the rank correlations: corrp, corrv, corrp,pr, corrv,pr and suppr. A classifier takes

these features and produces a leadership model label, one per trial of the simulation model in

the evaluation hold-out. We use 10-fold cross validation on Random Forests [74] over the 2700

total trials and report mean precision and recall across folds. Table V reports the classification

results for each simulation model. We combine some models into a shared label because they

share similar characteristics when we project them into our feature spaces. For example, DM,

and DM-S models always have high corrv but low corrp.

Figure 21 visualizes sub-spaces of the full feature-space. Figure 21 (Top) shows the max-

imum support (suppr) over all individuals for this trial vs. the corrv (the rank correlation

between global and local VCH ranking) and corrp. The suppr axis (x-axis) describes how ‘dic-

tatorial’ (e.g. consistent) the leadership is across coordination events. DM therefore has high

support, while EM (distinct leaders per coordination event) has low suppr. The corrv and

corrp axes describe consistency between local and global convex hull rankings. HM has high

velocity ranking because leaders accelerate in a consistent sequence, yielding consistent indi-

viduals movement outside of the VCH in the previous time step. The random model produces

high corrp because relative positions within the group are somewhat consistent. Therefore, a

consistent set of individuals expand the PCH from the previous time step.

Figure 21 (Bottom-Right) reports the mean rank correlation between PageRank rank or-

dering, against PCH and VCH ranking in each coordination event. At the origin (0, 0), ranking
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from the inferred ‘following’ network is uncorrelated with time series feature rankings in posi-

tion or velocity. Following our intuition, the Random simulation has the lowest cross-domain

feature correlation, while DM and HM have highest correlation between these domains. As the

simplest simulations, DM and HM both dictate that leaders will have regular position (e.g. the

front of the group), or velocity (accelerating in sequence before others). Simulations such as

CM, LT, IC have indirect relationships between relative position and velocity vs. the following

network ranking.

5.4.5.1 Baboon leadership model characterization

A key aspect of our simulation modeling is that we can characterize real datasets according to

how they map into these feature-spaces, compared to synthetic models. We compute each rank

correlations over high-confidence baboon events, labeled “Baboon” in Figure 21, thresholded

at the 99th percentile of density. We observe that within different sub-spaces, the baboon

ranking is similar to Random or Linear Threshold, and has low maximum support for global

vs. local rank correlation features (e.g. corrp). We see this rank correlation between both cross-

domain axes (Figure 21 (Bottom-Right)). This suggests that in aggregate, baboon leadership

is heterogeneous and context-driven, though overall closer to the Linear Threshold influence

model (as biologically expected). This analysis provides a strategy for hypothesis testing and

generation on contrasting time-scales and sub-spaces.

5.4.6 Following network density perturbation in baboon and fish data

In this section, we provided the results of the network density changes when individuals are

removed from the datasets, either the high-rank ones or (uniformly) at random.
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TABLE V

Random forest classification of synthetic leadership models using proposed features

Model Precision Recall F1-score

DM, DM-S 0.86 0.80 0.81

HM, HM-S 0.69 0.98 0.80

LT, IC, INIT-k 0.99 0.97 0.98

CM 0.75 0.94 0.80

EM 1 0.54 0.64

Random 0.98 0.95 0.97

In the baboon dataset, we used leadership ranking during pre-coordination intervals to

choose the top-k rank individuals. In the fish datasets, we used leadership ranking to choose

top-k ranked individuals, which are also informed fish. For the randomly chosen individuals,

we uniformly and randomly chose k individuals from the population. We repeated the random

choice process 100 times and report the average of these results.

Table VI shows the average difference of the network density before and after removing k

individuals from the baboon dataset. In the ’High-Rank’ row, the network density decreases

with the removal of high-ranked individuals. In contrast, in the ’Random’ row, the network

density is largely unaffected by the uniformly random removal of the individuals.
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TABLE VI

The average difference of network density between before and after removing k individuals on

the baboon dataset. We compare the case of removing high-rank individuals vs. random

individuals. An element in the table represents the difference between the original network

density and the network density after removing k individuals.

Number of Individuals being removed from 16 individuals (#k)

#1 #2 #3 #4

High-Rank −5.45× 10−03 −7.37× 10−03 −9.65× 10−03 −10.14× 10−03

Random 0.057× 10−03 −0.004× 10−03 −0.504× 10−03 0.002× 10−03

In the fish data, Table VII shows the results of the network density difference after removing

k individuals. In the ’High-Rank’ row, the network density decreases with the removal of high-

ranked individuals, albeit less so than in the baboon dataset. In the random case, the network

density is still largely unaffected by the uniformly random removal of the individuals.

The results above show that by removing high-rank individuals in both baboon and fish

datasets, the network density decreases significantly compared to randomly removed individuals.

Moreover, we found that removing high-rank individuals in the baboon dataset resulted in a

larger decrease of the network density than in the fish datasets. This suggests that baboons

have a stronger following hierarchy than schools of fish.
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TABLE VII

The average difference of the network density between before and after removing k individuals

from the fish data. We compare the case of removing high-rank individuals vs. random

individuals. An element in the table represents the difference between the original network

density and the network density after removing k individuals.

Number of Individuals being removed from 70 individuals (#k)

#2 #4 #6 #8

High-Rank −20.26× 10−04 −3.96× 10−04 −2.45× 10−04 −8.44× 10−04

Random −0.55× 10−04 −0.04× 10−04 −3.90× 10−04 −3.88× 10−04

5.4.7 Sensitivity analysis

We conducted the sensitivity analysis based on Section 5.3.4 to demonstrate the robustness

of our framework. We used simulation datasets that have the time delay for following relations

less than 30 time steps. Hence, the optimal time window ω is 30 time steps. In the initiator

inference, the results of loss values of the initiator-support prediction are shown in Figure 22.

Each cell in these three sub figures represents a loss value which is the difference between the

ground-truth and the predicted value of the initiator support (Eq. Equation 5.7). In general,

unsurprisingly, the loss value increases with noise.
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Figure 22. Loss values of prediction of the initiator support for different levels of noise and

time window sizes. A lower value implies a better prediction result.

Figure 22 (below) illustrates that both the position and direction noise affect the prediction

performance. In top-left and top-right plots, they show that when we set the time window below

the optimal value (ω < 30), the loss of support inference is significantly higher than setting

the time window above the optimal time window. This suggest us to try to guess the possibly
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maximum time delay in datasets and avoid setting the time window parameter below this value

if the ground truth regarding time delay is not available.

Figure 23. Loss values of prediction of the initiator confidence for different levels of noise and

time window sizes. A lower value implies a better prediction result.
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Figure 23 shows the loss values of the initiator-confidence prediction. Each value in these

three sub figures represents a loss value, which is a difference between the ground-truth and

the predicted confidence values. Similar to the support result, higher levels of noise results in

higher loss values. Similarly, setting the time window below the optimal value also severely

affects the framework performance in confidence prediction.

Figure 24. F1 scores of coordination inference for different levels of noise and time window

sizes. A higher value implies a better prediction result.
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In the coordination inference task, Figure 24 shows the F1 scores of the coordination infer-

ence for different levels of noise and time window sizes. Each value in these three sub figures

represents the F1 score of the prediction. Similar to the previous results in the initiator infer-

ence, higher levels of noise reduce prediction performance. Setting the time window below the

optimal value also decreases the prediction performance severely.

In conclusion, when we increase the amount of noise in the datasets, the framework per-

formance decreases. Moreover, we found that if we set the time window parameter below the

optimal, it severely affects the framework performance in both initiator and coordination infer-

ence tasks. In contrast, when we set the time window above the optimal value, the framework

performance drops only slightly. The optimal time window is, then, a value above the possible

highest time delay that two individuals can follow each other in the dataset. This suggests that

the users of our framework should try to come with an educated guess of the possible values

of time delays that are relevant for the application context and set the time window parameter

accordingly.

5.5 Discussion

We narrow the gap between the biosociological view of leadership in group decision-making

and the computational approaches to leadership inference. The work presented in this paper

formalizes a new computational problem, namely Coordination Initiator Inference

Problem, and proposes the concrete, simple yet powerful, unsupervised general framework as

a solution. The framework is capable of (1) identifying events of coordinated group behavior,

(2) identifying leaders as initiators of these events, and (3) classifying the type of leadership
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process at play. We validate the accuracy of our framework in performing all three of these

tasks using 2,700 simulated datasets. Since there are no methods for local leadership inference

and leadership model classification, we compared our framework with the state-of-art methods

for global leadership identification. Our method performance is consistently competitive and

its abilities go beyond other approaches in all datasets. We further show that the framework

can provide insights on real-world data, including data on collective animal movement and the

economy. The methodology presented here is general and applicable to a wide variety of domains

where coordination across many individuals or entities is observed. Moreover, our framework

is highly flexible, and can easily be extended to incorporate other models of leadership or other

features used in model classification, depending on the details of the system being analyzed.

For reproducibility, we provide our code and simulation datasets at [75]. In the next chapter,

we will extend the FLICA framework to cover the case of multiple coordinated groups that

occur concurrently. The new proposed framework can be used to infer these concurrent groups

from time series.



CHAPTER 6

MFLICA: A FRAMEWORK FOR MULTIPLE-FACTIONS LEADER

IDENTIFICATION IN COORDINATED ACTIVITY

6.1 Introduction

Faction Initiator Inference Problem: To reach collective goals, group’s members

must coordinate with each other. Multiple factions within a big group may exist solving

their sub-tasks in helping the entire group achieve the collective goals. Given time series

of individual activities, our goal is to identify periods of coordination and the

subsequent coordinated activity, find factions of coordination if more than one

exist, as well as identify leaders of each faction

In this chapter, we present a framework for multiple-factions leader identification in co-

ordinated activity (mFLICA), which is the extention framework of FLICA from the previous

chapter. The steps of dynamic following network inference are the same as FLICA. In addition

to FLICA, mFLICA has two more steps to infer factions and an appropriate time window.

This chapter has been previously published in Chainarong Amornbunchornvej and Tanya Y. Berger-
Wolf. 2018. Framework for Inferring Leadership Dynamics of Complex Movement from Time Se-
ries. In Proceedings of the 2018 SIAM International Conference on Data Mining (SDM), pp. 549-557.
https://doi.org/10.1137/1.9781611975321.62 See Appendix A for the copyright permission document
from the publisher.
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Figure 25. A high-level overview of mFLICA framework

We propose the following framework to solve Faction Initiator Inference Problem.

The framework is designed to infer a set of factions, faction intervals, and their initiators from

time series. Figure 25 depicts the overview of our framework.

In our setting, we have a set of n m-dimensional time series U and a time window ω as

inputs of our framework. The time series U ∈ U can be in any domain (e.g. position, stock

market closing price, or actions in social media). The size of U is [n×m×t∗] where t∗ is a length

of time series within U . Then, our framework proceeds in the following steps. The first step

is to measure following relations (see Section 5.2.1) among time series. Then, the framework

constructs a dynamic following network based on these following relations (see Section 5.2.2).

Afterward, the framework uses the dynamic following network to detect factions and their

initiators based on the network structure (see Section 6.2.1). For each faction, we rank time

series based on the network structure of faction’s members by PageRank (see Section 6.2.3).

Finally, we report time series of faction assignment as well as faction’s rank ordered lists.
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Moreover, without prior knowledge of a time window ω, we propose a method to infer an

appropriate time window ω∗ from U in Section 6.2.2.

6.2 Methods

6.2.1 Factions detection and coordination intervals.

For each following network G = (V,E), factions are network components such that all

member nodes directly connect to their initiator (Lemma 3.3.1). We infer factions based on

Definition 10 and the coordination intervals of factions are discovered based on Definition 11.

According to Lemma 3.3.1, initiator nodes have outgoing-degree zero, and all nodes within

the similar faction directly connect to their initiator. However, due to the introduction of the

time window ω, some nodes might not have direct edges to the initiators. Therefore, we relax

the constraint of faction membership to make all nodes which have any directed path to an

initiator to be members of the initiator’s faction.

Since a faction is a directed connected component where all nodes are reachable from the

initiator by inverse paths, we use Breadth-First Search (BFS) to identify all reachable nodes

from each initiator node in the following network in order to find members of each faction. The

pseudo code of this step is in the supplementary material.

A useful statistic about factions (used later) is the faction size ratio. Let Gl = (Fl, El) be

an induced subgraph of G defined by faction Fl, then the faction size ratio of Fl is defined as

follows:

fs(Fl) =
|El|(|V |

2

) . (6.1)
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6.2.2 Time window inference.

In reality, some following relations might not be cause by explicit initiators since they either

happen by chance or are due to other factors which are not related to the influence of leaders.

For instance, if a follower is unable to observe a leader’s pattern, then the follower cannot be

influenced by the leader. Different types of time series have different limitation of ‘observation

memory’, which is the limitation of time delay ∆ such that a follower can truly observe and

imitate its leader’s actions or can get commands from a leader.

Hence, to represent the concept of observation memory limitation, we set the time window

ω to limit the length of the time delay ∆ that can measure following relations. Moreover, ω

helps us prevent the comparison of time series between different coordination events.

Nevertheless, if we set ω too small, we miss inferring some following relations that have

∆ > ω. On the contrary, long-length ω causes false positive matching between repeated patterns

of different coordination intervals. Therefore, a proper ω∗ should be able to infer a higher

number of true following relations than any ω. Even if some random following relations might

appear when we choose ω instead of ω∗, this is not an issue. Since these random following

relations appear by chance and with lower probability, they have a relatively small effect on the

number of following relations.

In our framework, without the knowledge of ω, we use ω that maximizes the average co-

ordination measure Ψ (Equation 3.2). Given a dynamic following network based on the time

window ω, for each time step t, we calculate Ψt by designating each faction to be a cluster and

creating the last cluster for all time series, which are not in any faction. Then, Ψ̂ω is computed
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from the median of {Ψ1, ...,Ψt∗}. Ψ̂ω is used to be a representative coordination measure value

of ω. Hence, the optimal ω∗ is computed as follows:

ω∗ = argmax
ω

(Ψ̂ω). (6.2)

6.2.3 Leadership comparison.

There are several methods that are widely used for ranking important nodes within the

graph. One of the well-known methods that consider the higher-order relation within a graph

is PageRank [66]. In our approach, we deploy PageRank (Equation 3.1) on the following network

to rank individuals within each faction and report the rank ordered lists for each time step.

Even though PageRank scores are computed from the entire network, we compare individuals’

ranking score only within the same faction and create a rank order list for each faction.

6.3 Evaluation Datasets

6.3.1 Leadership models.

The evaluation of the framework is conducted based on four models of coordination mech-

anisms: Dictatorship model (DM) (Section 4.1.1), Hierarchical model (HM) (Section 4.1.2),

Independent Cascade model (IC) (Section 4.1.7), and Crowd model (CM) (Section 4.1.5).

6.3.2 Synthetic trajectory simulation.

We generate time series datasets based on the models described above. For each dataset,

it consists of 30 individuals’ time series of X,Y coordinates. Each time series has a length of

4,000 time steps. A coordination event consists of multiple faction intervals, described below.
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We have five coordination events for each dataset. For each model above, the coordination

event can be divided into two types.

Figure 26. Linear (above) and Splitting/Merging (below) coordination event. Each block

represents a faction such that the first element is the leader ID and the second element is the

member IDs set. The time interval each faction appears is at the last line.

6.3.2.1 Linear coordination event.

There are four factions for each coordination event. The first faction has ID(1) as a leader

and others are followers. This faction lasts for 200 time-steps. The next faction is lead by ID(2)

and its coordination interval is [201, 400]. The third faction appears within [401, 600] interval

and it has ID(3) as a leader. In the last faction, ID(4) leads the group to stop moving and
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the group completely stops moving around time step t = 700. Everyone stops moving within

[700, 800], then the group proceeds to the next coordination event again.

6.3.2.2 Splitting/Merging coordination event.

In this type of coordination event, splitting and merging of factions happens. Within the

[1, 200] interval, ID(1) leads a single faction with its direction vector. Then, at t = 201, the

group is split into three factions and they appear within [201, 400] interval. The first faction

is lead by ID(2) and about a third of the previous faction members are followers (Figure 26

below). The ID(2) has its own direction vector. ID(3) leads the second faction with another one

third members from the previous faction. ID(3) has a different direction from ID(2). Lastly,

ID(4) leads the rest of the individuals. ID(4) also has its own direction, which is different from

ID(2)’s and ID(3)’s.

At t = 401, the factions lead by ID(2) and ID(4) are merged into the faction of ID(3);

ID(2) and ID(4) follow the ID(3)’s direction. At the [401, 600] interval, ID(3) leads all the

individuals. Finally, ID(4) leads the faction to stop moving between t = 601 and t = 700. The

group completely stops at the [701, 800] interval. Note that leaders in each faction are informed

individuals in the Crowd Model. Instead of having only one leader for each faction, we have

three informed individuals in the Crowd Model.

For each leadership model and its coordination event type, we generated 100 datasets. In

total, each model has 200 datasets except IC, for which we explore all nine possible combinations

of parameters. In total, we have 1,800 datasets for the IC model.
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6.3.3 Biological datasets

6.3.3.1 Baboon trajectories.

The data consists of time series of latitude-longitude location pairs for each baboon every

second. 16 individuals whose collars remained functional throughout the time are analyzed for

a case study of a merging coordination event. See Section 4.2.1 for more information.

6.3.3.2 Fish schools trajectories.

The fish dataset is a set of time series of fish positions from a video record of a school of

golden shiners (Notemigonus crysoleucas). See Section 4.2.2 for more information.

6.4 Evaluation criteria

For each simulation dataset, we have the ground truth of an individual’s membership in a

faction and the identity of the faction’s leader. We compared the inference result from each

method against the known ground truth to evaluate the method’s performance.

6.4.1 Individual assignment.

For all models, for each time step, the accuracy of the individual assignment is the number

of inferred individuals’ factions that agree with the ground truth, divided by the total number

of individuals. Note that, in the Crowd Model, each faction F has a set of informed individuals

and individuals belong to F if they follow any informed individual in F .

6.4.2 Leadership prediction.

For all models except the Crowd Model, the true positive TP is the number of inferred

leaders who are indeed the ground truth leaders. The false positive FP is the number of
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inferred leaders who are not the actual leaders. The false negative FN is the number of actual

leaders who are inferred to be non-leaders. In the Crowd Model, TP is the number of inferred

leaders who are informed individuals from the right faction. FP is the number of leaders who

are uninformed individuals. FN is the number of ground truth factions such that all informed

members are non-leaders. We calculated F1-Score to estimate the performance of the leadership

prediction for each framework.

6.4.3 mFLICA Time complexity

Let n be a number of time series, ω be a time window, δ be a shifting factor (we use

δ = 0.1ω), and t∗ be a total length of time series. By deploying DTW Sakoe Chiba band

technique [76] setting δ as a band limitation, the time complexity of computing a following

network is O(n2×ω×δ). Since we need warping paths, not a distance, the upper/lower bounds

tricks which are used to speed up DTW found in the time series literature cannot be applied

here. The number of following networks we need to compute is t∗

δ . In total, the time complexity

of our framework is O(n2 × ω × t∗). Additionally, we might explore k candidates of ω in order

to find the optimal ω. Since k is a constant, the asymptotic time complexity of our framework

also remains the same. This expensive cost is unavoidable and it makes our framework hard to

be a scalable framework.

6.5 Results

6.5.1 Leadership Identification.

For each simulation model in Section 6.3.1, we evaluated results from all datasets using the

criteria in Section 9.4. We set ω time window by the method from Section 6.2.2 and set time
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TABLE VIII

Factions and Leaders identification on simulation models

Leadership F1-score Assignment Acc.

Dataset mFLICA FLOCK mFLICA FLOCK

DM-L 0.94 0.92 0.89 0.86

DM-MS 0.94 0.91 0.86 0.84

HM-L 0.94 0.91 0.94 0.86

HM-MS 0.95 0.90 0.86 0.81

IC-L 0.91 0.86 0.86 0.80

IC-MS 0.89 0.85 0.79 0.79

CM-L 0.82 0.64 0.83 0.64

CM-MS 0.75 0.67 0.64 0.55
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TABLE IX

Rank orders median accuracy within factions

Top3 Rank Order Accuracy

Dataset mFLICA FLOCK

HM-L 0.75 0.78

HM-MS 0.72 0.76

shift δ = 0.1ω. The results of faction assignments and leaders identification are in Table VIII.

Each row with the label ‘-L’ is a model with Linear coordination event type (Section 6.3.2.1)

and ‘-MS’ represents a model with Splitting/Merging coordination event type (Section 6.3.2.2).

The 2nd and 3rd columns represent the results of leadership prediction F1-Scores of mFLICA

(our proposed framework) and the modified FLOCK framework [30,77], and the values in these

columns are calculated from the median of all datasets from a given leadership model. The 4nd

and 5rd columns represent individual assignment accuracy results. We took the median of all

given-model datasets to represent each model accuracy. Unsurprisingly, mFLICA beat FLOCK

in all models. The result implies that the simple framework like FLOCK has a limitation when

it needs to deal with complicated noisy leadership models.
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TABLE X

A school of fish inference median accuracy over 24 trails

Trained fish Trained fish

Method factions leaders

mFLICA 0.90 0.88

FLOCK 0.37 0.27

In hierarchical models, we reported the result of top 3 rank order inference accuracy within

each faction in Table IX. The table rows represent leadership model datasets. The columns

are accuracy, which determined by the percentage of top-3 individuals from the ground truth

appear in the list of top-3 inferred list. Even though mFLICA has a competitive results, the

FLOCK framework performs better, which makes sense since the hierarchical model has a linear

hierarchy structure and the leader is always in the front of the group’s direction, which matches

the fundamental assumption of FLOCK.

6.5.2 Case study: trained leaders in fish schools.

We considered any fish within the faction of a trained fish to be following the trained fish.

Among 24 trails of fish movement, the medians of inference accuracy of a fish following the

trained fish are in column 2 in Table X. We also measured the accuracy of inferred initiators

being the trained fish in each trial (column 3 in Table X). According to the results in Table X,
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mFLICA performs significantly better than FLOCK in both aspects. This is because the fish

datasets are tremendously noisy, and the DTW in mFLICA is more robust to the noise than

the simple FLOCK model [33].

6.5.3 Case study: detecting the group merging event of baboons.

We used a baboon dataset (see Section 4.2.1) to demonstrate an example application of our

framework to find transitions of coordinated events in real datasets. We focused on the dataset

during the period when the merging of two groups happens on Aug 3, 2012, 08:49:01 AM. The

length of the trajectories is 500 seconds. Figure 27 illustrates the result when the merging

happens. Before time t = 300, a faction lead by ID(3) (black node) starts moving in the same

direction as the faction lead by ID(18) (purple node). The process is measured by the Faction

size ratios (Equation 6.1) of both factions, which increase over time. After t = 300, ID(3) faction

is merging with ID(18)’s faction to become a single faction at t = 400. After merging, because

the faction of ID(18) gains more members, its Faction size ratio (Equation 6.1) increases. Hence,

by observing Faction size ratios lead by each individual, we can find merging events (or spiting

events).

6.5.4 Centrality measures in multi-faction datasets

In this section, we explore the use of centrality measures to infer faction initiators. We used

200 simulated datasets from the dictatorship model to conduct the analysis. For each dataset,

we created a global static following network and used centrality measures on this network. In

each dataset, we have 30 individuals and four of them are initiators.
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(b) t = 300 (c) t = 350 (d) t = 400

Figure 27. The merging coordination event. (Top) Faction size ratios (Equation 6.1) of ID(3)

and ID(18) factions. (Bottom) The GPS locations of individuals in the map over three

different time steps (t = 300, 350, 400), with the ‘following’ network, and PageRank indicated

by node size. ID(3) is black and ID(18) is purple. The red edges have higher edge weights

than the light edges.
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TABLE XI

Jaccard similarity between top-4 ranking individuals from centrality measures and the ground

truth set of four initiators in dictatorship model from 200 datasets.

Centrality methods

Event types PageRank IN-Degree Closeness

Linear 0.85 0.84 0.54

Merge/split 0.64 0.67 0.53

The Jaccard similarity result between the top-4 ranking individuals from the centrality

measures and the ground truth set of four initiators is in Table XI. PageRank and IN-Degree

centrality perform well in dataset containing the simple linear coordination events while close-

ness centrality performs the worst. This is because initiators in this setting are supposed to have

a higher number of followers than non-initiator individuals, which implies the higher ranking

w.r.t. PageRank and In-Degree centrality. In contrast, initiators are not necessary close to their

followers in the network, which made closeness centrality perform poorly. For the datasets that

contain merge/split-coordination events, since there is a complicated dynamics of interactions

among the factions, the simple centrality measures fail to capture the true initiators altogether.

Table XII illustrates the result of supports of four initiators being in the list of individuals

ranked top-4 by the centrality measures in linear-coordination datasets. Similarly, PageRank
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TABLE XII

Support of four initiators being in the list of top-4 ranking individuals from centrality

measures in 100 datasets containing linear coordination events.

Centrality methods

Initiator’s ID PageRank IN-Degree Closeness

ID1 1 1 0.92

ID2 1 1 0.66

ID3 1 1 0.36

ID4 0.39 0.37 0.20

and In-Degree centrality perform well, while closeness centrality perform poorly. For the

merge/split-coordination datasets, Table XIII shows that all centrality measures perform poorly

to infer ID2 and ID4 initiators while they perform well to include ID1 and ID3 in their top-4

ranking lists. This is because ID1 and ID3 spent significantly more time leading their factions

than ID2 and ID4.

In conclusion, these results emphasize the need of a dynamic following network approach to

deal with the complicated problem of inferring the initiator of a faction.
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6.6 Discussion

In mFLICA work, we formalized the Faction Initiator Inference Problem and pro-

vided an end-to-end general, unsupervised framework as the novel solution that can be used to

study a wide range of coordinated activities. The framework is competitive against a non-trivial

baseline method in both simulated and real-world datasets. Moreover, we demonstrated that

the framework can be used to identify merging events as well as factions and initiators at each

time step in biological datasets. This example implies that our framework opens opportunities

for scientists to ask questions about coordinated activities and is able to create scientific hy-

potheses and test them. Our framework is powerful and almost parameter free (we need only

TABLE XIII

Support of four initiators being in the list of top-4 ranking individuals from centrality

measures in 100 datasets containing merging/splitting coordination events.

Centrality methods

Initiator’s ID PageRank IN-Degree Closeness

ID1 1 1 1

ID2 0.29 0.47 0.20

ID3 1 1 0.83

ID4 0.28 0.19 0.08
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a similarity threshold σ and time shift δ parameter). The scalability bottleneck is the DTW

method used to compare time series. The existing DTW lower/upper bound techniques cannot

be applied directly in our case since they only compute the distance between time series and

not the actual wrapping path needed in our framework. With simpler and faster similarity

computation, our framework can become highly computationally scalable. In the future, such

more scalable approaches should be investigated. Another future work we plan to explore is the

causality inference, which is closely related to leadership inference in the sense that initiators

cause their followers’ actions. We are planning to report the Granger causality results for lead-

ership inference in our next paper. The code, datasets, and supplementary files that we used

in this paper can be found at [78]. In the next chapter, we will extend the FLICA framework

to make it to be able to infer traits of leaders from the concept of convex hulls in movement

features.



CHAPTER 7

TRAITS OF LEADERS FRAMEWORK

7.1 The Proposed Approach

As stated earlier, there are many aspects of leader identity that may be used as the defining

traits of the leader: the individual may be the oldest, biggest, wisest, or loudest. However, here

we focus on the behavioral aspects of successful leadership, particularly in movement initiation.

Are the leaders the ones who move first, move in the new direction, stay at the front, etc.?

These are aspects of leadership behavior that also inferrable from the spatio-temporal time

series data directly. We use the notion of a convex hull of the variable of interest for the the

group versus an individual, particularly the leader individual.

7.1.1 Bidirectional agreement in multi-agent systems

The use of convex hull to analyze traits of a leader in this paper is motivated by the work

on bidirectional agreement dynamics in multi-agent systems by Chazelle [47]. Chazelle showed

that in a multi-agent system, the states of all individuals converge to a group consensus if each

individual changes its state for each time step under what he calls the “Bidirectional Agreement

This chapter has been previously published in Chainarong Amornbunchornvej, Margaret C.Crofoot,
and Tanya Y. Berger-Wolf. 2017. Identifying Traits of Leaders in Movement Initiation. In Proceedings
of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
2017 (ASONAM), pp. 660-667. https://doi.org/10.1145/3110025.3110088. See Appendix A for the
copyright permission document from the publisher.
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condition”. The Bidirectional Agreement condition constrains an individual’s choice of the state

at each time step within the convex hull of the states of its neighbors (in the arbitrary agent

network) in the previous time step. Thus, to break the group consensus state some individual

must break the convex hull condition at some time point. In the collective movement context, a

state of an individual at time t can be the individual’s position, direction of movement, velocity,

or acceleration.

Initially, all individuals’ state are within the convex hull of the group’s state. However,

when the group initiates movement, the group changes its state from the initial state to un-

stable state. Leaders who initiate movement must break the convex hull of the group state

to change the state of the group from one state to another state. After movement initiation,

under “Bidirectional Agreement condition”, the group converges to a stable state and everyone

stays within the convex hull of the group’s state again unless the convex hull is breached. In

other words, we hypothesize that leaders are the state changers who start breaking the convex

hull before others, and we test that hypothesis. For example, suppose we define a state as a

position of each individual. Initially, by definition, all individuals are within the convex hull of

an individual’s positions. When leaders initiate movement by leading at the front, they must

step outside the convex hull of group’s positions.

We can define individual states to be any variable directly derivable from the time series

data, including individual positions, velocities, or directions. However, the question is which of

these variables’ convex hull of the group state that leaders actually break when they initiate
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movement that everyone follows. In this paper, we consider the states that leaders changes

as behavior traits of leaders and we aim to infer these traits from time series data of group

movement.

7.1.2 Bidirectional Agreement condition

First, we start with the one-dimensional states of Bidirectional Agreement condition. At

any time t, suppose St = {s1(t), . . . , sn(t)} is a set of individual states at current time where

si(t) ∈ R is a one-dimensional state of individual i at time t, mi(t) is a point in St that is closest

to si(t) but has a value at most si(t), Mi(t) is a point in St that is closest to si(t) but has a

value at least si(t) and a constant ρ ∈ (0, 1/2]. The work by Chazelle [47] defines a Bidirectional

Agreement condition as follows:

(1− ρ)mi(t) + ρMi(t) ≤ si(t+ 1) ≤ ρmi(t) + (1− ρ)Mi(t). (7.1)

The interpretation is that if all individuals change their state within the bound of their

neighbor’s states, the group will converge to a collective state, which is a stable state. In high-

dimensional states, the Bidirectional Agreement condition still requires individuals to change

their state from time to time within the bound of their neighbor’s states, which is a convex

hull of neighbor’s states to make the group converge to a stable state. In other words, if all

individual states always stay within their neighbor-state convex hull, then the group converges

to a single point of collective state and stay there forever.
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Figure 28. An example of state changing situation in the two-dimensional space. The green

nodes are states of individuals at time t− 1 and the green polygon is a neighbor-state convex

hull of individual U . If U changes its state under the Bidirectional Agreement Condition, then

the next state of U is always in the convex hull (orange). On the contrary, if U steps outside

the convex hull (red) to make a group changes its state, then it breaks the Bidirectional

Agreement Condition.

7.1.3 Leaders as state changers

When leaders initiate a group movement, if leaders are state changers, then leaders are

necessary to be the first who break the Bidirectional Agreement Condition or step outside

group’s state convex hull. Figure 28 shows an example of state changing situation in two-

dimensional state. Suppose U is a state changer and a leader, while U initiates movement, U
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steps outside the group’s state convex hull, which means U breaks the Bidirectional Agreement

Condition. In this paper, we infer whether leaders who initiate movement are state changers

by observing the association between the time that individuals break the convex hull of states

(velocity, position, and direction) compared to individual leadership ranking.

7.1.4 Approach overview

Figure 29. High-level overview of trait leadership scheme using FLICA ( [1, Figure 1] used

and modified with permission). An arrow between elements represents a relationship that an

element at the rear of the arrow is the input of an element at the head of the arrow. For

example, rank correlations are calculated by taking leadership ranking and convex hull

ranking as inputs.

The high-level overview of the proposed leadership trait characterization scheme using

FLICA framework [1] is shown in Figure 29. Given a time series of GPS positions of baboons,



113

we use FLICA to report a dynamic following network, leadership ranking, and decision-making

intervals. Then, in this work, we propose measures of velocity, position, and direction convex

hull containment as traits of leadership and conduct the experiments to find any significant

positive/negative correlations between leadership ranking and those measures.

Let D = {Q1, . . . ,Qn} be a set of time series of positions where D consist of n time series

where each Qi ∈ D has length T (the number of time steps) and each Qi(t) is a position

coordinate of the individual i at time t.

7.1.5 Leadership trait characterization scheme

7.1.5.1 The quantification of the traits of interests.

We focus on three common characterizations of a leader: being the first to move, being at

the front of a group, and being the first to move in the new direction. We use the notion of the

convex hull to measure the similarity of the trait value for an individual versus the group as a

whole.

First, to measure the notion of being the first to move, we need to consider the velocity of

all individuals at the previous time step. If any individual moves before others, its velocity is

higher than others’ velocity at the previous time step. That is, it is higher than the maximum

previous velocity of any individual, or, to put it in other words, it is outside of the convex

hull of the velocities in the previous time step in the positive direction (since velocity is a

one-dimensional measure).

Second, to measure the notion of being at the front of the group, we need to consider both

direction of individuals and their positions. If any individual moves toward the front of the
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group, then its direction of movement is the same as the group’s direction but its position is

outside the group’s area of the previous time step. That is, the coordinates of the individual

at the front of the group are outside of the convex hull of the coordinates of the individuals in

the previous time step but aligned with the direction vector of the group.

Third, to measure the notion of being the first to move in the new direction, we need to

consider direction vectors of all the individuals. If any individual moves in the new direction,

which is not the same as the group’s direction, then the angle between its current direction

vector and the group’s direction vector at the previous time step must be high. That is, the

current (angle of the) direction vector of the individual is outside the convex hull of the direction

vectors of the individuals in the previous time step.

7.1.5.2 Convex hull ranking measures.

For each of the three measures we construct the convex hull in each time step and rank the

individuals by the frequency with which their value in the current step is outside the convex

hull of the values of all the individuals in the previous step for the same measure.

The velocity convex hull ranking score (VCH) (see Section 5.2.4.2) measures the frequency

with which the discrete time series derivative (dQi/dt) associated with an individual i is outside

the bounds of the population’s (including i) discrete derivative interval in the previous time

step. The highest rank of this measure indicates an individual who is the first to move in the

group. Let n× T matrix VCH be a velocity convex hull score matrix where VCH(Qi, t) = 1 if

a time series Qi at time t has its velocity greater than a maximum velocity of the entire group

at time t − 1 and VCH(Qi, t) = −1 if Qi has its velocity less than a minimum velocity of the
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Figure 30. An example of position convex hull. Each point represents an individual and the

polygon represents a convex hull boundary at time t− 1. In this example, Q steps outside the

convex hull at time t toward the group direction, while U steps outside the convex hull in the

opposite direction. In this case, Q gets a score +1 and U gets a score -1 for time step t. If an

individual is still in the convex hull, it gets zero score.

entire group at time t− 1, and otherwise VCH(Qi, t) = 0.

The position convex hull ranking score (PCH) (see Section 5.2.4.3) measures the frequency

with which a position and direction associated with an individual i is outside the bounds of

the population’s position convex hull in the previous time step. A high rank of this measure

indicates which individual first explores a new area before others. Let n × T matrix PCH
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be a position convex hull score matrix where PCH(Qi, t) = 1 if a time series Qi at time t

has its direction toward the group’s direction and i’s position at time t is outside the group’s

position convex hull at time t− 1 (see Figure 30). In contrast, if Qi is outside the convex hull

but moving in the opposite way of group direction, then PCH(Qi, t) = −1 (see Figure 30),

otherwise PCH(Qi, t) = 0. We consider that i is moving toward the group direction if the

angle between i’s direction vector and group’s direction vector is between -90 and 90 degrees.

Otherwise, we consider that i is moving in the opposite direction from its group movement.

The direction convex hull ranking score (DCH) measures the frequency with which the

angle between individual’s direction vector and group’s direction vector is outside the bound

of the set of angles between each individual and the group’s direction vector in the previ-

ous time step. A high rank of this measure indicates an individual that frequently deviates

from the group’s direction of travel. Let n × T matrix DCH be a direction convex hull score

matrix where DCH(Qi, t) = 1 if a time series Qi at time t has its individual-group direction

angle greater than a maximum individual-group direction angle of the entire group at time

t− 1, and DCH(Qi, t) = −1 if i has its individual-group direction angle lower than a minimum

individual-group direction angle of the entire group at time t−1, and otherwise DCH(Qi, t) = 0.

7.1.5.3 Rank correlation.

We deploy the Kendall rank correlation coefficient τ(x, y) [71] to infer correlation between

PageRank leadership ranking (see Section 5.2.4) and the convex hull ranking.
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Further, for any given threshold λ used to determine coordination events, we focus on only

decision-making intervals to measure the rank correlations. We define two levels of analysis:

time-point level and interval level. First, for a time-point-level correlation, we compute

a rank correlation for each time t within any decision-making interval as follows.

LetRPR,t = argsort(PR(:, t)) be a PageRank rank ordered list at time t such thatR(Qi)PR,t =

q if an individual i is at qth rank at time t; R(Qi)PR,t = 1 if i is a leader at time t. Note that we

always use argsort to represent the descending sort-order for the entire paper since the higher

score implies the better rank.

RVCH(t) = argsort(VCH(:, t)), RPCH(t) = argsort(PCH(:, t)), andRDCH(t) = argsort(DCH(:

, t)) are velocity, position, and direction convex hull rank order lists, respectively. A rank

correlation between PageRank and VCH is τ(RPR(t), RVCH(t)). A rank correlation between

PageRank and PCH is τ(RPR(t), RPCH(t)). And a rank correlation between PageRank and

DCH is τ(RPR(t), RDCH(t)). We define a set of time-point PageRank-VCH correlations as

follows.

ΦPR,VCH = {τ(RPR(t1), RVCH(t1)), τ(RPR(t2), RVCH(t2)), . . . } (7.2)

Where ti is a time point within any decision-making interval. Similarly, we can also define

a set of time-point PageRank-PCH correlations and PageRank-DCH correlations in the similar

way.

ΦPR,PCH = {τ(RPR(t1), RPCH(t1)), τ(RPR(t2), RPCH(t2)), . . . } (7.3)
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ΦPR,DCH = {τ(RPR(t1), RDCH(t1)), τ(RPR(t2), RDCH(t2)), . . . } (7.4)

Second, for an interval-level rank correlation, we compute the representative correlation

of the entire decision-making interval for each coordination event. Let I = (i, j, l) be any

coordination event, we define R̃PR,I = argsort(
∑

t∈[i,j]RPR(t)) as a PageRank rank ordered list

during decision-making interval of coordination event I. R̃VCH,I = argsort(
∑

t∈[i,j]RVCH(t)),

R̃PCH,I = argsort(
∑

t∈[i,j]RPCH(t)), and R̃DCH,I = argsort(
∑

t∈[i,j]RDCH(t)) are defined to be

VCH, PCH, and DCH rank ordered lists of I, respectively. The PageRank-VCH rank correlation

at decision-making interval of I is τ(R̃PR,I , R̃VCH,I), the PageRank-PCH rank correlation is

τ(R̃PR,I , R̃PCH,I), and the PageRank-DCH rank correlation is τ(R̃PR,I , R̃DCH,I). We define a

set of interval PageRank-VCH correlations as follows.

Φ̃PR,VCH = {τ(R̃PR,I1 , R̃VCH,I1), τ(R̃PR,I2 , R̃VCH,I2), . . . } (7.5)

Where Ii is an ith coordination event. We can also define PageRank-PCH correlations and

PageRank-DCH correlations in the similar way.

Φ̃PR,PCH = {τ(R̃PR,I1 , R̃PCH,I1), τ(R̃PR,I2 , R̃PCH,I2), . . . } (7.6)

Φ̃PR,DCH = {τ(R̃PR,I1 , R̃DCH,I1), τ(R̃PR,I2 , R̃DCH,I2), . . . } (7.7)
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7.1.5.4 Leadership model classification using trait rank correlation

For model classification, we use three interval-level rank correlations from Section 7.1.5.3

as features to train a classifier. For each dataset, our framework provides a vector of fea-

tures ~v = (τ(R̃PR, R̃VCH), τ(R̃PR, R̃PCH), τ(R̃PR, R̃DCH)), which represents trait characteristic

of leadership model. We use Multiclass support vector machine (SVM) as our main classifier.

7.2 Experimental setup

7.2.1 Trait of leadership model

In this section, we provide three different models of traits leadership. We use these models

to demonstrate that our rank correlations in Section 7.1.5.3 can be used as features to classify

these models, which have different traits of leadership. All these models are in two-dimensional

space. Initially, there are 20 individuals within a unit cycle. Positions of individuals are

uniformly distributed within this unit cycle. Then the group moves toward a collective target.

7.2.1.1 Moving First model.

In this model, high rank individuals moves earlier than low-rank individuals. A leader moves

toward target trajectory and everyone follows its hierarchy. We have ID(1) as a leader. ID(k)

move first , then it is followed by ID(k + 1) with a constant time delay. The acceleration of

movement for all individuals is constant. We aim to use this model as a representative model

that high-rank individuals always move earlier than low-rank individuals. For this model, we

set the initial velocity at 1 unit/time step and acceleration at 0.001 unit/time step2.
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7.2.1.2 Moving Front model.

This model also has an ordered hierarchy of following the same as the previous model.

Nevertheless, there is no order of movement initiation. In other words, all individuals have

uniformly time delay before they start moving. The group moves along a target trajectory

with a constant velocity and a leader is always in the front of the group following by high-rank

individuals. Lower-rank individuals follow higher-rank individuals. We aim to use this model

as a representative model that high-rank individuals always explore new areas before low-rank

individuals. For this model, we set the initial velocity at 1 unit/time step and acceleration at

zero unit/time step2.

7.2.1.3 Reversible Agreement model.

Compared to previous models, this model has no leader and any following hierarchy. All

individuals move toward the average of group’s direction with a constant velocity. This model

is one of Bidirectional agreement systems that have convergence property [47]. In our case,

all individual’s directions converges to an average group direction, which implies the existence

of coordinated movement of the group. We aim to use this model as a representative model

that the group has coordinated movement without leadership hierarchy. We expect that any

leadership model classification should be able to at least distinguish between leadership models

and this non-leadership model. For this model, we set the initial velocity at 1 unit/time step

and acceleration at zero unit/time step2.
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7.2.2 Datasets

7.2.2.1 Simulated datasets.

We create simulation datasets with the difference level of noises. We have two types of

noise here: direction noise and position noise. For direction noise, instead of moving to a

target direction at degree D, an individual moves toward direction D + a. The direction

noise a is drawn randomly from normal distribution with zero mean and γ standard deviation

where γ ∈ {0, 1, 10, 30, 60}. For position noise, suppose (x, y) is the next position that an

individual should move to, with position noises, the actual position that the individual moves

is (x + b1, y + b2). The position noises b1, b2 are drawn randomly from a normal distribution

with zero mean and β standard deviation where β ∈ {0.0001, 0.001, 0.01, 0.1, 1}.

For each noise setting (γ, β), we create 100 for each trait of leadership model. Each dataset

contains 20 time series of individuals, which have the length as 300 time steps. In total, since

we have three leadership models and 25 possible different (γ, β), we have 7,500 datasets.

7.2.2.2 Simulation datasets for degree of hierarchy structure analysis

We use simulated datasets that can be found in [1]. There are three leadership models we

use in this paper: dictatorship, hierarchical model, and random model. Each model consists of

100 datasets. Each datatset has 2-dimensional time series of 20 individuals. Each time series

has its length at 12000 time steps. There are 20 coordination events within each dataset.

Initially, all individuals are at their starting point. In dictatorship model (DM), a leader

moves first, then everyone else follows its leader with some time delay. In hierarchical model

(HM), there are four high-rank individuals, ID1, ID2, ID3, and ID4. Other none-high-rank
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individuals get assigned their leaders to be one of high-rank individuals. ID1 is a global leader

of all high-rank individuals that always moves first. ID2 and ID3 follow ID1 with some time

delay. Then ID4 follows ID1. Lastly, the followers of ID1, ID2, ID3, and ID4 follow their

leaders.

For the random model, all individuals move together toward a target direction. However,

these individuals never follow any specific individuals. Hence, there are coordination events in

this model but there are no leaders.

7.2.2.3 Baboon trajectories.

The data consists of time series of latitude-longitude location pairs for each baboon every

second. 16 individuals whose collars remained functional throughout the time are analyzed for

a case study of a merging coordination event. See Section 4.2.1 for more information.

7.2.2.4 Fish schools trajectories.

The fish dataset is a set of time series of fish positions from a video record of a school of

golden shiners (Notemigonus crysoleucas). See Section 4.2.2 for more information.

7.2.3 Sensitivity analysis in model classification

We separate simulation dataset into the groups based on the value of noise setting (γ, β).

For each group, it consists of 100 datasets of Moving First model, 100 datasets of Moving Front

model, and 100 datasets of Reversible Agreement model. We report 10-fold Cross validation

of model classification for each group of datasets having the same noise level (γ, β). We also

report the rank correlation between the ground-truth leadership rank vs. inferred leadership
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TABLE XIV. Description of hypothesis tests used in this paper. A significant level has been

set at α = 0.001 for all experiments.

Method Null hypothesis H0

t-test
A sample has a normal distribution

with zero mean and unknown variance.

Sign test A sample has a distribution with zero median.

Zero

mean/median

test Wilcoxon signed rank test A sample has a symmetric distribution around zero median.

Kolmogorov-Smirnov test A sample comes from a normal distribution.

Chi-square

goodness-of-fit test

A sample comes from a normal distribution

with a mean and variance estimated from a sample itself.

Jarque-Bera test
A sample comes from a normal distribution

with an unknown mean and variance.

Normality

test

Anderson-Darling test A sample comes from a normal distribution.

rank from our framework to measure the ability of leadership inference within difference level

of noises.

7.2.4 Hypotheses tests

In this section, we aim to design a hypothesis testing scheme to address three hypothe-

ses: (1) individuals who act as leaders (identified by FLICA) are individuals who move first,

initiating their movements before others in their group in the decision-making period prior to

coordinated movement, (2) individuals who act as leaders are individuals who always explore
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a new area before others prior to a coordinated movement, and (3) individuals who act as

leaders are individuals who always align with the group direction. We define leaders as indi-

viduals who possess a highly ranked position in a PageRank rank ordered list. The hypothesis

testing methods we used can be categorized into two categories: zero mean/median test and

normality test. For the zero mean/median test, we aim to test whether a positive/negative

correlation exists between PageRank and convex hull ranking in both time-point and interval

levels. For normality tests, we aimed to determine whether correlation samples come from a

normal distribution. If not, the interpretation of tests which assume normally distributed data,

e.g., t-test, should be considered carefully. The full list of hypothesis testing methods we used

is in Table XXVI. We set significant level at α = 0.001 for all tests.

7.2.5 Parameter setting

For simulation dataset, we set the time window ω = 60 and δ = 6, which is the optimal

setting since the simulation dataset has time delay less than 5 time steps by design. For

the analysis in baboon dataset, we set the time window ω = 240 and δ = 24. For the fish

dataset, the time window ω = 285 and δ = 28. Both parameter settings of baboon and fish

datasets are set based on the fact that these setting can infer the highest number of following

relations per following group on average. The time sliding window parameter δ serves to trade

off computation versus the sampling rate of the time series process. The FLICA has time

complexity O(n2 × t × ω). The network density decision-making threshold λ was set at 25th

50th, 75th, and 99th percentile of network density values for the baboon dataset to detect
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decision-making intervals. For the simulation and fish datasets, we already have the decision-

making intervals so we do not need to set λ.

7.3 Results

7.3.1 Traits of leader classification: sensitivity analysis

Figure 31 shows the result of sensitivity analysis in the model classification. Loss values of

10-fold cross validation are in the top of figure. A loss value is a percentage of datasets that

the classifier predicted them into wrong classes. Figure 31 (top) shows that when the level of

noises increase, classifier produces more errors. According to the cross validation result, our

framework can distinguish between leadership models (Moving first and Moving front models)

and non-leadership model (Reversible Agreement Model). Additionally, the result suggests that

position noise affected the classification result than direction noise. When the position noise

level reach at 1, which is the diameter of group movement, the leadership rank is less consistent

with the ground-truth rank (Figure 31 bottom). This indicates that both leadership ranking

and traits of leadership inference are hard to perform under high-level of position noise. In

general, this result shows that our framework performs accurately even if an input data is noisy

until a certain degree of noises.

7.3.2 Traits identification of baboons movement

The distributions of rank correlations inferred from the baboon dataset are in Figure 32. At

the time-point level, the distribution of PageRank and velocity convex hull (PR-VCH) correla-

tion ΦPR,VCH is at the top-left of the figure, the distribution of PageRank and position convex

hull (PR-PCH) correlation ΦPR,PCH is at the top-middle and the distribution of PageRank and
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TABLE XV

PR-VCH, PR-PCH, and PR-DCH rank correlations from the baboon dataset under different

thresholds.

Time-point level Interval level

Percentile Mean STD. Mean STD.

25th 0.03 0.20 -0.09 0.18

50th 0.03 0.19 -0.07 0.18

75th 0.03 0.19 -0.06 0.19

PR-VCH

Corr.

99th 0.03 0.19 -0.07 0.21

25th 0.00 0.23 0.09 0.20

50th 0.01 0.25 0.12 0.21

75th 0.06 0.27 0.18 0.22

PR-PCH

Corr.
99th 0.15 0.30 0.32 0.22

25th -0.0082 0.1739 0.03 0.22

50th -0.0098 0.1745 -0.01 0.23

75th -0.0251 0.1818 -0.09 0.25

PR-DCH

Corr.

99th -0.0552 0.1827 -0.24 0.24
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Figure 31. Sensitivity analysis in model classification task from simulation datasets with

different noise levels. (Top) 10-fold cross validation loss values. Each element in the table

represents the loss value of each each noise setting (γ, β). (Buttom) Rank Correlation between

actual leadership ranking vs. predicted ranking from moving first and moving front models.

direction convex hull (PR-DCH) ΦPR,DCH is at the top-right of the figure. For the interval-

level correlations, the distribution Φ̃PR,VCH is at the bottom-left, the distribution Φ̃PR,PCH is

at the the bottom-middle, and the distribution Φ̃PR,DCH is at the the bottom-right. Table XV

illustrates the means and standard deviations of these correlation distributions.
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PageRank vs. PCH Rank Correlation in the interval level

Figure 32. Comparison of PR-VCH, PR-PCH, and PR-DCH rank correlations under different

thresholds. For PR-VCH correlation, the results in both time-points level (Top-left) and

interval level (Bottom-left) show that there are no strong correlations between leadership and

VCH ranking. In contrast, leadership and PCH rankings have positive correlations in both

time-points level (Top-middle) and interval level (bottom-middle), as well as PR-DCH

correlation has a negative correlation at the interval level (bottom-right).

Figure 32 and Table XV suggest that there is no correlation between PageRank and ve-

locity convex hull ranking at both the time-point level (Figure 32’s top-left) and the interval
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TABLE XVI

Hypothesis test results of PR-PCH and PR-DCH correlation. The zero value implies that a

test fails to reject H0 while one implies a test sucessfully rejects H0 with α = 0.001.
PR-PCH Corr. at

a time-point level

PR-PCH Corr. at

an interval level

PR-DCH Corr. at

an interval level

Tests/λ THS 25th 50th 75th 99th 25th 50th 75th 99th 25th 50th 75th 99th

ttest 0 1 1 1 1 1 1 1 0 0 1 1

Sign test 0 1 1 1 1 1 1 1 0 0 1 1

Zero

mean/median

test Wilcoxon test 0 1 1 1 1 1 1 1 0 0 1 1

KS test 1 1 1 1 1 1 1 1 1 1 1 1

Chi-square test 1 1 1 1 0 0 0 0 0 0 0 0

Jarque-Bera test 1 1 1 1 0 0 0 0 0 0 0 0

Normality

test

Anderson-Darling test 1 1 1 1 0 0 0 0 0 0 0 0

level (Figure 32’s bottom-left). In contrast, positive correlations exist between PageRank and

position convex hull in both levels (Figure 32, top and bottom middle). Moreover, negative

correlations exist between PageRank and direction convex hull in interval level (Figure 32, bot-

tom right). When we set a higher percentile threshold, we get stronger coordination events;

a stronger coordination event has a higher number of following relations. Both Figure 32 and

Table XV illustrate that the rank correlations between PageRank and position convex hull

ranking are higher, while the rank correlations between PageRank and direction convex hull

ranking are lower when we set a stronger threshold. However, there is not a large difference in

the correlations of PageRank and velocity convex hull when we varied the threshold value.
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Based on this result, due to weak correlations of PR-VCH in both time-point and interval

levels and PR-DCH in the time-point level, we decided to conduct the hypothesis tests only in

the PR-PCH rank correlation samples in both levels while conducting the hypothesis tests for

PR-DCH in the interval level.

The result of these hypotheses tests are shown at Table XVI. In the aspect of normality

test results, correlations at time-point level of PCH are less normal compared to the PCH’s

and DCH’s correlations at the interval level. This implies that the result of t-test at the PCH’s

time-point level should be interpreted carefully.

In the aspect of zero/mean median hypothesis test, with the significant level at α = 0.001,

PageRank and position convex hull ranking have positive correlations far from zero. This

implies that individuals who act as leaders tend to explore new areas before other individuals

during decision-making intervals.

In contrast, PageRank and direction convex hull ranking has negative correlations far from

zero at the 75th and 99th percentile thresholds. This implies that individuals who act as lead-

ers tend to align with the group’s direction (or, more intuitively, the group is aligned with the

leader’s direction) while non-leaders frequently attempt to change the direction but nobody

follows. In other words, high-rank individuals control the group direction and this is why they

are almost always inside the direction convex hull. When high-rank individuals move in any

given direction, the group follows almost immediately and this makes the group’s direction the

same as the leading individuals’ direction.
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TABLE XVII

Normal confidence intervals of PR-PCH and PR-DCH correlations from the baboon dataset

at the interval level with α = 0.001

Normal Confidence Interval

Mean µ STD.

Percentile

Threshold

Lower

bound

Upper

bound

Lower

bound

Upper

bound

25th 0.06 0.13 0.18 0.23

50th 0.08 0.16 0.18 0.23

75th 0.13 0.23 0.19 0.25
PR-PCH

99th 0.19 0.44 0.16 0.35

25th -0.01 0.07 0.20 0.25

50th -0.05 0.03 0.21 0.27

75th -0.14 -0.04 0.21 0.29
PR-DCH

99th -0.38 -0.11 0.17 0.37
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Finally, for interval-level correlations of PR-PCH and PR-DCH ranking, we reported the

normal confidence intervals at Table XVII. We only reported the confidence intervals of interval-

level correlations because of the normality test results; time-point level of PR-PCH correlation

distributions seem not to be normal (see Table XVI) while the rest of the cases are normal. All

normal confidence intervals of PR-PCH correlation distributions have their lower bound greater

than zero, while the upper bounds of PR-DCH correlation at the 75th and 99th percentile

thresholds are below zero. This supports the hypotheses that there exist a positive correlation

between PageRank and PCH ranking and a negative correlation between PageRank and DCH

at the interval level.

7.3.3 Traits identification of fish movement

The distributions of rank correlations inferred from the fish dataset are in Figure 33. At

the time-point level, the distribution of ΦPR,VCH, ΦPR,PCH, and ΦPR,DCH are at the left of the

figure, while the right of the figure contains rank correlations at the interval level. Table XVIII

illustrates the means and standard deviations of these correlation distributions.

At the time-point level, Figure 33 and Table XVIII suggest that there is no correlation

between PageRank vs. VCH ranking and PageRank vs. DCH ranking, while we have positive

rank correlations of PageRank vs. PCH on average. At the interval level, Φ̃PR,VCH and Φ̃PR,PCH

have positive values on average, while Φ̃PR,DCH has negative values on average.

Based on this result, due to the weak correlations of PR-VCH and PR-DCH in a time-point

level, we decided to conduct the hypothesis tests only in the PR-PCH rank correlation samples
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Figure 33. Comparison of PR-VCH, PR-PCH, and PR-DCH rank correlations in both

time-point and interval levels from the fish movement dataset. In the time-point level (left),

the result shows that leadership vs. VCH, and leadership vs. PCH rankings have positive

correlations, while leadership and DCH has negative correlation. In the interval level (right),

leadership vs. VCH and leadership vs. PCH rankings have stronger positive correlations than

time-point level, while leadership and DCH also has stronger negative correlation.

in both levels while conducting the hypothesis tests for PR-VCH and PR-DCH in the interval

level.

The result of hypotheses tests from the fish dataset are shown at Table XIX. In the aspect

of normality test results, correlations at time-point level of PCH are less normal compared to

the VCH’s, PCH’s and DCH’s correlations at the interval level. This implies that the result of

t-test at the PCH’s time-point level should be interpreted carefully.
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TABLE XVIII

PR-VCH, PR-PCH, and PR-DCH rank correlations from the fish dataset.

Time-point level Interval level

Mean Std. Mean Std.

PR-VCH Corr. 0.05 0.12 0.32 0.16

PR-PCH Corr. 0.26 0.12 0.47 0.09

PR-DCH Corr. -0.05 0.08 -0.43 0.12

In the aspect of zero/mean median hypothesis test, with the significant level at α = 0.001,

both PageRank vs. velocity convex hull ranking and PageRank vs. position convex hull ranking

have positive correlations far from zero on average. The result demonstrates that individuals

who act as trained fish tend to move earlier and explore new areas before other individuals

during coordination events. On the contrary, PageRank vs. Direction convex hull ranking

has negative correlations far from zero on average. The result implies that when trained fish

moves in any given direction, the group follows almost immediately and this makes the group’s

direction the same as a trained fish’s direction.

We also reported the normal confidence intervals at Table XX. We only reported the con-

fidence intervals of interval-level correlations because of the normality test results; time-point
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TABLE XIX

Hypothesis test results of PR-VCH, PR-PCH, and PR-DCH correlations in time-point level

and interval level from the fish movement dataset. The zero value implies that a test fails to

reject H0 while one implies a test successfully rejects H0 with α = 0.001.

Time-point level Interval level

PR-PCH PR-VCH PR-PCH PR-DCH

Corr. Corr. Corr. Corr.

ttest 1 1 1 1

Sign test 1 1 1 1

Zero

mean/median

test Wilcoxon signed rank test 1 1 1 1

Kolmogorov-Smirnov test 1 1 1 1

Chi-square goodness-of-fit test 1 0 0 0

Jarque-Bera test 1 0 0 0

Normality

test

Anderson-Darling test 1 0 0 0

level of PR-PCH correlation distributions seem not to be normal (see Table XIX) while the rest

of the cases are normal.

According to Table XX, the normal confidence intervals of PR-VCH and PR-PCH correla-

tion distributions have their lower bound greater than zero, while the upper bound of PR-DCH

correlation at is below zero. This supports the hypotheses that there exist a positive correlation

between PageRank and VCH ranking as well as PageRank and PCH ranking, while there is a

negative correlation between PageRank and DCH at the interval level.
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TABLE XX

Normal confidence intervals of PR-VCH, PR-PCH. and PR-DCH correlations from the fish

dataset at the interval level with α = 0.001

Normal Confidence Interval

Mean µ STD.

Lower

bound

Upper

bound

Lower

bound

Upper

bound

PR-VCH 0.20 0.45 0.11 0.30

PR-PCH 0.41 0.54 0.06 0.16

PR-DCH -0.52 -0.34 0.08 0.21

7.3.4 Traits of leaders as measure of degree of hierarchy structure

Another application of trait-rank correlations we proposed here is to use these correlations

to measure the degree of hierarchy structure in the datasets. The hierarchy structure here is

the order of early movement. If the datasets contain a high degree of order of movement, then

some specific individuals (e.g. high-rank individuals) always move before other individuals. In

contrast, if datasets contains no order of movement, then there is no specific order of individuals

who move before others. Figure 34 illustrates the distributions of PR-VCH rank correlations

of datasets (Section 7.2.2.2) from three leadership models. As we expected, since hierarchical
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Figure 34. The distributions of PR-VCH rank correlations of datasets from three leadership

models. The higher rank correlation implies the higher degree of hierarchy structure of early

movement order in the model.

model has a higher degree of structure than the dictatorship model, hence, it has the highest

value of PR-VCH rank correlations. The dictatorship model has the second highest value of

PR-VCH rank correlations since there is a weak order of early movement; a leader always moves

first. Lastly, the random model has the PR-VCH rank correlations around zero since it has no

order of early movement.
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In conclusion, the result implies that the higher rank correlation implies the higher degree

of hierarchy structure of early movement order in the model.

Table XXI shows the mean and standard deviation of PR-VCH rank correlations from both

simulated and biological datasets. The result shows that baboon datasets have PR-VCH rank

correlations nearly zero in all threshold of coordination events, while fish datasets have PR-VCH

rank correlations nearly the Hierarchical model. This implies that baboons have no hierarchy

of early movement while schools of fish have pretty high degree of movement order.

7.4 Conclusions

In this chapter, we proposed a framework for testing the correspondence between behav-

ioral traits and leader individuals in the context of movement initiation. We focused on three

hypotheses. First, individuals who act as leaders tend to move before others in their group in

the period preceding coordinated movement. Second, individuals who act as leaders tend to

move into new areas before others prior to a coordinated movement. Third, individuals who

act as leaders tend to set the group’s direction of travel. We constructed a dynamic following

network and used the simple notion of convex hull as the measure of degree of difference of

the velocity, position, and direction of an individual from its group. We use proposed traits of

leaders for model classification. We evaluated the classification task on simulated movement

data. We tested our proposed approach in baboon movement and fish movement datasets using

the time-series leadership inference framework, FLICA.

We found that during baboon decision-making intervals before a period of coordinated troop

movement, there was a positive correlation between an individual’s leadership ranking and the
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TABLE XXI

The means and standard deviations of PR-VCH rank correlations from both simulated and

biological datasets.

Datasets Mean STD.

Hierarchical model 0.35 0.03

Dictatorship model 0.26 0.03

Random 0.04 0.05

Baboon (25th-THS) -0.09 0.18

Baboon, (50th-THS) -0.07 0.18

Baboon (75th-THS) -0.06 0.19

Baboon (99th-THS) -0.07 0.21

Fish 0.32 0.16
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frequency with which an individual decided to step outside the group to explore a new area.

Moreover, there was a negative correlation between leadership ranking and the frequency which

individuals misaligned with the group’s direction. We drew this conclusion from the hypothesis

testing of the distribution of correlations between leadership ranking and convex hull measures,

constructed by the proposed framework. However, there was no strong correlation between the

frequency of early movement and leadership ranking.

In the fish dataset, we found that there were a positive correlation between the leadership

ranking and the order of movement ranking, as well as leadership vs. order of exploring new

areas ranking. On the contrary, on average, there was a negative correlation between the

leadership ranking and the frequency which individuals misaligned with the group’s direction.

These results suggest that trained fish seems to move earlier than others fish to the new area

and the untrained fish align with trained fish quickly.

Our work establishes a general framework to draw conclusions about leadership character-

istics of individuals initiating movement and to test long standing common assumptions about

the behavioral traits the leaders possess. Our framework is sufficiently general to be applied

to any movement dataset and any set of traits directly computable from the data. In the next

chapter, we will introduce the proposed framework that can be used to infer a coordination

strategy of each individual that can make the entire group achieve coordination.



CHAPTER 8

INFERRING COORDINATION MECHANISMS FROM TIME SERIES

OF MOVEMENT DATA

8.1 Introduction

Coordination Strategy Inference Problem: To reach a group consensus, individ-

uals have to coordinate with others. There are many strategies each individual can use

to achieve coordination at the group level. Given time series of individual activities

and a set of candidate strategies, the goal is to find the set of original strategies

individuals used that lead to the group consensus.

How do groups of individuals achieve consensus in movement decisions? Do people follow

their friends or the one predetermined leader? Do baboons have a hierarchy which determines

the order of movement? Is the path of a fish determined by its nearest neighbors? To address

these questions computationally, in Section 3.5, we formalized Coordination Strategy In-

ference Problem. In this setting, a group of multiple individuals moves in a coordinated

manner towards a target path. Each individual uses a specific strategy to follow others (e.g.

nearest neighbors, pre-defined leaders, preferred friends). In this chapter, we propose two

coordination strategies: hierarchy (e.g. pre-defined leaders) and non-hierarchy (e.g. nearest

neighbors) models (Section 8.2). In Section 8.3, we analyze a convergence property of these

141
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strategies and other properties. Given a time series that include coordinated movement and a

set of candidate strategies as inputs, we provide (the first, to the best of our knowledge) method-

ology to infer the set of strategies that each individual uses to achieve movement coordination

at the group level. We evaluate and demonstrate the performance of the proposed framework

by predicting the direction of movement of an individual in a group in both simulated datasets

as well as two real-world datasets: a school of fish and a troop of baboons (Section 8.4). The

results in Section 8.5 show that our approach is highly accurate in inferring the correct strategy

in simulated datasets even in complicated mixed strategy setting. Animal data experiments

show that fish, unsurprisingly, follow their neighbors, while baboons have a preference to follow

specific individuals. Our methodology easily generalizes to arbitrary time series data, beyond

movement data.

In the next section, we introduce a concept of convergence in multi-agent systems and the

relationship between convergence and coordination strategy.

8.2 Models and properties

As a reminder, we use the following notation throughout Chapter ??:

• N = {1, . . . , n} is a set of agents.

• I ⊆ N is a set of informed agents.

• Si(t) is a state value of agent i at time t, where Si(t) ∈ Rd.

• St = {Si(t)} is a set of individual states at at time t.

• Si = (Si(0), . . . , Si(T )) is state time series of agent i.

• Sw = (Sw(0), . . . , Sw(T )) is a target path where Sw(t) ∈ Rd is a target state at time t.
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• H = {hi} is a set of strategy functions that agents use to update their current state where

hi : Rd → Rd.

• S = {Si} is a set of state time series generated by agents using some set of strategy functions

F ⊆ H.

• σ ∈ [0, 1] is a noise-tolerance threshold.

For the convergence of multi-agent systems, we adopt a notion of ε-convergence from [47].

Definition 19 (ε-convergence) Given S0 = {S1(0), . . . , Sn(0)}, a system, which is a set of

strategy functions, is said to ε-converge if, for 0 < ε ≤ 1/2, there exists a time constant tc > 0

such that for all t > tc, a set of n agent’s states St = {S1(t), . . . , Sn(t)} can be partitioned into

disjoint subsets, where the maximum distance between any pair of agents’ states Si(t), Sj(t)

from the same subset is less than or equal ε.

Definition 20 (ε-convergence of time series) Given two time series S1, S2, we say that S1

ε-converges toward S2 at time t if, for all time t′ ≥ t, the distance between S1(t′) and S2(t′) is

less than or equal ε, where 0 < ε ≤ 1/2.

Now, we can state the relationship between ε-convergence and coordination strategy.

Proposition 8.2.1 If all time series generated by a set of strategy functions F ⊆ H ε-converge

toward a target path Sw, then F is a set of coordination strategies, where σ = 1− ε.

Proof Suppose all time series generated by a set of strategy functions F ⊆ H ε-converge toward

a target path Sw. At the converging time t ∈ [t1, . . . ] every agent’s state is within its group

convex hull centered at Sw(t) that has the diameter at most ε. For some time t2 ≥ t1, every
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time series has a distance between each other at most ε. By setting σ = 1 − ε, this implies

that every time series σ-follows time series Sw. By assigning all agents that have the state

time series the same as Sw to be informed agents, since others follow Sw with some time delay,

therefore, we have the 1− ε-coordination interval [t2, . . . ] and all informed agents are initiators.

Proposition 8.2.2 Let H = {hk} be a set of pure strategy functions. If all agents use any

hi ∈ H as a pure strategy function and their state time series ε-converge toward a target path

Sw, then a mixed strategy function f ′, created by a linear combination of functions in H,

generates a time series that ε-converges toward Sw.

Proof Suppose all functions in H generate state time series that ε-converge toward Sw. At the

equilibrium time t, when all strategies converge, any strategy in H that agent i uses ensures

that i’s state Si(t) is in the convex hull of states centered at Sw(t) and has a diameter at most

ε, since a linear combination of values within a convex hull is still in a convex hull. Therefore, a

mixed strategy function f ′ that is created by a linear combination of functions in H generates

a time series that ε-converges toward Sw.

8.2.1 Convergence models

8.2.1.1 Hierarchical Model Dynamic System (HM)

Let L be an informed agent. Let a directed acyclic graph (DAG) G = (V, E) be graph, where

V is a set of agent nodes and E is a set of probabilistic edges, so that if pi,j is a probability

that i follows j, then (i, j) ∈ E has the weight pi,j . We call G = (V, E) a probabilistic following

network.
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Figure 35. An example of communication networks G(t) = (V, E(t)) between t = 0 and t = 3

(above). These networks are the realization of the probabilistic following network G = (V, E)

(below). The arrows represent the directed edges while the dashed lines are empty edges.

When the time step increases, the informed agent L can increasingly spread its state (orange

node) to more follower nodes (blue nodes).

In this model, G is connected and every node has a path to a leader node L. For every

time step t ≥ 0, the system generates a communication network G(t) = (V, E(t)), which is

a realization of G. The example of the process of generation of a communication network is

shown in Figure 35.
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Let S0 = {S1(0), . . . , Sn(0)} be a set of agent’s initial states, N t
i = {j|(i, j) ∈ E(t)} ∪ {i}

be a set of neighbors of i in G(t) that i follows, and Sw be a target path. At any time t, the

informed agent L updates its state to be Sw(t). For any other uninformed agent i, it updates the

state Si(t) according to the aggregation of its neighbors’ states. Formally, we have a strategy

function for this model as follows:

fHM(St−1, i) =


Sw(t), if i = L

1
|N ti |

∑
j∈N ti

Sj(t− 1), otherwise.

(8.1)

Agents use the above strategy function to update the state Si(t) = fHM(St−1, i) in this

model. In cooperative control literature, the Equation 8.1 is called a local voting protocol [45].

A system is known to converge if each communication network G(t) stays the same all the time

and has a spanning tree that has a leader node L as the root [45]. This is why G must be

connected in order to make a system converge.

Theorem 8.2.3 Let S0 = {S1(0), . . . , Sn(0)} be a set of agents’ initial states. If all agents

use HM strategy (Equation 8.1) to update their states, then all agents’ state time series ε-

converge toward a target state Sw(t) with the expectation of the convergence time at most

tc = n · maxi(log2(DIST(Si(0),Sw(0))
ε )/p∗) time steps if Sw(t) = Sw(0) for all t > 0 and p∗ =

mink,l∈N ,pk,l>0 pk,l.

Proof In the first time step, S0 = {S1(0), . . . , Sn(0)} forms a convex hull and Sw(0) is inside

this convex hull because Sw(0) ∈ S0. For any agent i ∈ N t
L, according to Equation 8.1,

the distance DIST(SL(t), Si(t)) reduces by half whenever the link (i, L) ∈ E(t). Let Ti ∼
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Binomial(ti, pL,i) be a random variable of the number of steps it takes until the appearance of

a link (i, L) such that DIST(SL(t), Si(t)) = ε, using ti trials. We can find the expectation of

the time E(Ti), i.e., the expected number of trials t̂i until DIST(SL(t), Si(t)) = ε.

From Equation 8.1,

ε =
DIST(Si(0), Sw(0))

2Ti
.

Then, by definition of the Binomial expectation,

E(Ti) = t̂i × pi,L = log2

(
DIST(Si(0), Sw(0))

ε

)
.

Therefore,

t̂i =
1

pi,L
log2

(
DIST(Si(0), Sw(0))

ε

)
.

In general, we can have an upper bound tc ≥ t̂i of the expectation of the convergence time as

follows:

tc = n ·max
i

{
1

p∗
log2

(
DIST(Si(0), Sw(0))

ε

)}
,

where

p∗ = min
k,l∈N ,pk,l>0

pk,l.

According to Theorem 8.2.3 and Proposition 8.2.1, if the target path Sw has its target state

Sw(t) as a fixed point: Sw(t) = Sw(0) for all t > 0, then the set of strategy functions F that

contains only HM strategy functions is a set of coordination strategies. In other words, if all

agents use fHM to update their states, then their states converge to a target path. Therefore,
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a coordination interval exists in their state time series. In contrast, if a target state Sw(t) can

be changed, the the group still follows the path Sw, because only L influences the group and

L’s state path is Sw. However, the convergence might not exist if the difference between two

consecutive time steps within the target path is always greater than the group convergent rate.

8.2.1.2 Local Reversible Agreement system (LRA)

Let P 0 = {P1(0), . . . , Pn(0)} be a set of physical points, S0 be a set of initial states, Sw

be a target path, L be an informed agent who updates its state in correspondence to Sw,

and g(P t, St, i) be a projection function that agents use to update their physical points. If a

state point is a velocity vector, then the projection function is simply the current position plus

the velocity vector. First, for t > 0, we update the physical point Pi(t) = g(P t−1, St−1, i).

Second, we create a set of Delaunay triangulations from P t to create a communication network

G(t) = (V, E(t)). If Pi(t) and Pj(t) form the same triangle within the physical space, then

(i, j) ∈ E(t). Third, we update a state of each agent based on the structure ofG(t). The example

of how to find the neighbors of each individual in LRA is in Figure 36, which defines physical

points as positions of individuals and states as movement directions. Given δ(Pi(t), Pj(t)) = 1

if Pi(t), Pj(t) form the same triangulation (note that δ(Pi(t), Pi(t)) = 1), otherwise it is zero,

we have a strategy function for LRA as follows.

fLRA(P t, St−1, i) =


Sw(t), if i = L∑

j Sj(t−1)·δ(Pi(t),Pj(t))∑
j δ(Pi(t),Pj(t))

, otherwise

(8.2)
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Figure 36. An example of physical points as positions and state points as directions. In

position space (above), the individual i (red node) has all gray nodes as its neighbors in LRA

since they are neighbors in Delaunay triangulation. In the direction space (below), i updates

its next direction to be A rather than B since B is outside the i’s neighbor convex hull.
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The difference between fHM (Equation 8.1) and fLRA (Equation 8.2) is that fHM infers the

next state based on a fixed structure of a probabilistic following network G, independently from

the physical space P t, whereas fLRA predicts the next state based on the physical space P t.

In other words,, fLRA represents an assumption that an agent follows a fixed set of specific

individuals w.r.t. the preference graph G regardless of their relative physical position, while

fLRA represents an assumption that an agent follows anyone who happens to be around without

any preference to follow specific individuals. The next theorem shows that the Local Reversible

Agreement is ε-convergent.

Theorem 8.2.4 (Chazelle 2011 [47]) For any 0 < ε ≤ ρ/n, an n-agent reversible agreement

system is ε-converged in time O(1
ρ · n

2log2(1
ε )).

According to the work by Chazelle [47], LRA is still converged even if one of the agents does

not update. In our case, if Sw(t) is the same for every time step, then the fixed agent is L who

always has SL(t) = Sw(0).

Corollary 8.2.5 the n-agent LRA that has G(t) being created from Delaunay triangulation

sets converges to a single point.

Proof The graph G(t) that is built from Delaunay triangulation is always connected. For each

time step, each agent converges to the center of the neighbors’ convex hull. Since everyone is

connected and the system is ε-converge, by transitivity, the entire group converges to the single

point.
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In fact, if the fixed point is Sw(0), then, at the equilibrium point, all states form a convex hull

around Sw(0) with the diameter at most ε [47]. In contrast, if Sw(t) is not always the same,

then the group moves following Sw(t) with some time delay. The Corollary 8.2.5 tells us that

if we follow our physical neighbors (e.g. directions) and everyone does the same thing, the

entire group will reach the same consensus (moving to the same direction). In general, if G(t)

is strongly connected, everyone follows neighbors in G(t), and there is one individual L who

never follows anyone, then the group converges to L’s state. Additionally, Corollary 8.2.5 is

always true in any metric space where a Delaunay triangulation exists.

According to Corollary 8.2.5 and Proposition 8.2.1, if a target state never changes: Sw(t) =

Sw(0) for all t > 0, then the set of strategy functions F that contains only LRA strategy

functions is a set of coordination strategies.

8.2.1.3 Discussion

According to Theorem 8.2.3, Corollary 8.2.5, Proposition 8.2.1, and Proposition 8.2.2, if the

data has coordination behaviors, then either HM, LRA, or a mix of those strategies may be

the cause of the coordination. However, the question still remains regarding how to infer which

strategy is the cause of the coordination. In the next section, we propose a solution to address

this question.
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Figure 37. An overview of the proposed framework. Given a set of time series as inputs, first,

the framework detects coordination intervals. Second, the framework infers the optimal

strategy from a set of candidate strategies. In the model fitting step, the framework evaluates

the performance of each pure and mixed strategy on the task of individual-level direction

prediction using training datasets, then it gives the support weight to each strategy w.r.t.

some minimum weight threshold ~κ. The threshold ~κ represents the weight bias toward specific

strategies. In the model selection step, the framework selects the best strategy that performed

well in validation datasets from a set of various strategies that have been trained by different

~κ. Finally, the framework reports the optimal support weight of each strategy for each

individual. If the weight wi of strategy fi is high, then i might use fi strategy to coordinate

with the group. For simplicity of the exposition, in this paper, we deploy three candidate

strategies: 1) an individual moves following specific individuals (HM), 2) an individual moves

following its physical neighbors (LRA), and 3) an individual moves toward the same direction

as in its previous time steps (Auto Regressive). However, other candidate strategies are also

admissible.
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8.3 Method

We are now ready to formally state our approach of inferring movement coordination strate-

gies of agents represented by a collection of time series.

8.3.1 Setting

Figure 38. An example of movement strategy inference for i. Given the information on

positions and directions of individuals in the past (blue and green nodes), we want to infer the

i’s strategy of movement that can be whether that i’s next direction follows its neighbors (A

node), or follows specific individuals (B node), or neither (C node).
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We define a movement direction as a state, but the approach generalizes to arbitrary defi-

nitions of states. Hence, Sk is a set of time series of direction. We are assume the following are

given as inputs: a set of possible strategy functions H, a collection of position-time-series sets

P = {Pk} and a collection of direction-time-series sets S = {Sk}, where Pk = {P1, . . . , Pn} and

Sk = {S1, . . . , Sn}. A pair of Pk,Sk represents kth coordination event that was generated by

n agents moving in two-dimensional position space. Each Sk contains a coordination interval.

The goal to to infer the set of strategy functions F ⊆ H that generated Sk. The overview of

our framework is in Figure 37.

We use direction, rather than position, to define the state of an individual and the proxy for

collective coordination. The main reason is that directional coordination is common in biology.

For example, in [53], the authors report that a fish tends to imitate the direction of neighbors

ahead to form collective movement, and other examples abound. Secondly, synchronization to

the same direction implies a collective movement while synchronization to the same position

implies staying in the same position without movement. In this paper, we focus on coordination

of movement, therefore, we cannot use positions as states to infer strategies of movement. The

final reason for defining states as directions is to use a dimension independent of the positions,

which we use to define states of individual strategies. We need to differentiate between the

strategy that an individual follows specific individuals’ direction regardless of their physical

neighbors’ choices of direction versus the strategy that an individual follows their physical

neighbors’ direction without any preference to follow specific individuals.
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For simplicity of the exposition we deploy three strategy functions for our framework: HM,

LRA, and Auto regressive model (AR). Again, other candidate strategies are admissible. How-

ever, these three strategies are canonical exemplars since they allow to differentiate whether

the strategy functions that generated a time series of directions of each agent is more hierar-

chical (HM), or it is more dependent on the physically proximity neighbors (LRA), or it is just

a simple function of the agent’s past history, independent of its neighbors. The example of

movement strategy inference is in Figure 38.

We separate P and S to be a training part, (Ptrain ⊂ P, Strain ⊂ S), to perform a model

fitting, and a validation part, (Pval = P−Ptrain, Sval = S−Strain) , to perform a model selection.

In the case that the input is only a single physical time series P, we use FLICA framework [1]

to find coordination events and treat each event as a single Pk. Hence, we have P containing

multiple coordination events from P. Then, we create a set of direction-time-series sets S from

P.

8.3.2 Model fitting

We concatenate all time series in Ptrain to be a single time series Ptrain and also concatenate

Strain to be Strain. Then we use Ptrain, Strain to perform model fitting.

Before proceeding with the model fitting, the HM strategy function requires a probabilistic

following network G = (V, E). We infer G from S by using FLICA [1] to create a dynamic

following network of Strain. In this paper, the time window threshold of FLICA has been set at

ω = 60 time steps. In the next step, we find a global-leadership ranking, then we aggregate and

normalize this dynamic network to be a DAG probabilistic network, such that the high-rank
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agents do not have a probabilistic following edge to low-rank agents in G. After we have G, we

calculate f ′HM as follows:

f ′HM(St−1, i) =
Si(t− 1) +

∑
(i,k)∈E pi,k · Sk(t− 1)

1 +
∑

(i,k)∈E pi,k
, (8.3)

where pi,k ∈ [0, 1] is a probabilistic weight of edge (i, k) ∈ E .

For the LRA strategy function, we use the same function as in Equation 8.2. Lastly, we

apply auto regressive model to fit on S to represent fAR. The fAR predicts the next state of

agent w.r.t. the average of the states from previous t′ steps in S. In this paper, we set t′ = 5.

As mentioned before, we focus on three strategy functions: fHM (Equation 8.3), fLRA

(Equation 8.2), and fAR. We can view them as a mixed strategy, given a weight vector ~w =

[w1, w2, w3]T.

fmix(a, ~w) = w1f
′
HM(a) + w2fLRA(a) + w3fAR(a) (8.4)

Here a = (P t, St−1, i), w1 is a support of HM, w2 is a support of LRA, w3 is a support of a

linear regression model, and w1, w2, w3 ∈ [0, 1].

We us the sum square error (SSE) as our loss function. Our main goal is to find ~w∗ that

minimizes risk(P,S, ~w∗, i) below:

risk(P,S, ~w, i) =
T∑
t=1

(D(t))T · (D(t)), (8.5)
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where D(t) = |fmix(P t, St−1, i, ~w)−Si(t)| is a difference between predicted and actual direction

in which agent i moved at time t.

For each agent i, given Ptrain,Strain and a threshold vector ~κ = [k1, k2, k3]T, we can find the

optimal support vector ~w∗ as the following optimization problem:

minimize
~w

risk(Ptrain,Strain, ~w, i)

subject to wi ≥ κi, wi ∈ ~w, κi ∈ ~κ.∑
i

wi = 1

wi, κi ∈ [0, 1].

(8.6)

We use the Interior point algorithm [79], which is a large-scale algorithm, to solve the

optimization Problem in Equation 8.6, which can be consider as a constrained linear least-

squares problem. A threshold ~κ represents a model bias toward specific strategies. For example,

if we have prior information that, with high probability, an agent i uses LRA strategy function,

then we can set κ2 = 0.5 to enforce the optimizer to vary the support w2 within [0.5, 1] interval

instead of the [0, 1] interval. The benefit of having ~κ is to prevent overfitting. For any agent

i, suppose ~w∗i,k is the optimal solution of the optimization problem in Equation 8.6 w.r.t. ~κk,

then we call (~w∗i,k, ~κk) a model.

8.3.3 Model selection

First, we vary ~κk and find a model (~w∗i,k, ~κk) for each agent i from Ptrain, Strain. As the

result, we have a set of models Φi = {(~w∗i,k, ~κi,k)} that is now used to perform model selection

for an agent i.



158

We concatenate all time series in Pval to be a single time series Pval and also concatenate Sval

to be Sval. Finally, for each agent i, we find the optimal support vector ~w∗i using the equation

below:

~w∗i = argmin
(~w∗i,k,~κk)∈Φi

risk(Pval,Sval, ~w
∗
k, i). (8.7)

After we get the support vector ~w∗i = [w∗i,1, w
∗
i,2, w

∗
i,3]T, if w∗i,1 is the highest support in ~w∗i ,

then we say that agent i uses the HM strategy function to coordinate with its group. If w∗i,2

has the highest support, then we say that i follows its physical neighbors to coordinate with

the group. If w∗i,3 has the highest support, then i just follows its own linear path independently,

and if i’s path is the target path Sw then i is an informed agent. Lastly, if at least two of w∗i,1,

w∗i,2, w∗i,3 show significantly high weights, then we conclude that i uses a mixed strategy.

8.4 Experimental setup

We test our approach both on simulated adn on biological data.

8.4.1 Simulations

First we validate our Coordination Strategy Inference Problem framework on sim-

ulated datasets. We generated a set of time series of 2-dimensional positions P by four different

sets of strategy functions: HHM,HLRA,HHM&LRA, andHMIX. We define a set of state-time-series

S = {Si} as a set of time series of directional degrees of P = {Pi}, where Pi = (Pi(0), . . . , Pi(T ))

is a time series of positions of an agent i; Si = (Si(0), . . . , Si(T )) is time series of directional

degrees of an agent i derived from a position time series Pi; Si(t) ∈ (−180, 180] is a degree
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angle between a direction vector ~vi(t) = Pi(t) − Pi(t − 1) and x-axis direction vector [1, 0]T.

Note that we need to be careful also of the distance between any Si(t) and Sj(t) since −179◦

and 180◦ has a degree difference of only 1◦ degree but certainly have different implications for

coordination.

DISTdir(Si(t), Sj(t)) =


|Si(t)− Sj(t)|, if |Si(t)− Sj(t)| ≤ 180

360− |Si(t)− Sj(t)|, otherwise

(8.8)

Where DISTdir(Si(t), Sj(t)) ∈ [0, 180].

We have only P as an input for our framework since we can create S from P. In all following

simulated datasets, there are 20 agents and ID(1) is the informed agent. ID(1) creates the

target path by uniformly and randomly choosing a fixed direction Sw(0) as the initial state,

then continuing to move in the direction of Sw(0) until the end of coordination.

8.4.1.1 Hierarchical Model Dynamic System

In this system, we used a set of strategy function HHM = {fi} to generate PHM where all

fi is fHM (Equation 8.1). The parameter in this model is the following probability ρ ∈ [0, 1].

We set the probability weight of all edges in a probabilistic following network G equal to ρ.

The communication network G(t) generated by G is used to update the directional state Si(t)

by the strategy function f ′HM. All 19 agents always follow only ID(1) with the probability ρ.

In other words, all nodes have edges to ID(1) with the weight ρ in G. For each coordination

event, it lasts 400 time steps. So, PHM = {P1, . . . , P20} s.t. Pi = (Pi(0), . . . , Pi(400)). We vary
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ρ ∈ {0.25, 0.50, 0.75, 1.00}. For each ρ, we generated 100 coordination events. In total, we have

400 datasets for this system.

8.4.1.2 Local Reversible agreement system

We created other 100 datasets of LRA system. We used a set of strategy function HLRA =

{fi} to generate PLRA where all fi is fLRA (Equation 8.2). For each dataset, it contains a set of

time series of positions from 20 agents, PLRA = {P1, . . . , P20}, where Pi = (Pi(0), . . . , Pi(400)).

All agents updates their state Si(t) corresponding to their local neighbors’ states using a strategy

function fLRA.

8.4.1.3 Hierarchical and Local Reversible agreement system

We created other 100 datasets of HM & LRA coordination events by HHM&LRA. We use

this simulation to represents the group that has a coordination interval even if some agents

use the HM strategy function but others use the LRA strategy function. For each dataset,

it contains a set of position time series from 20 agents, PHM & LRA = {P1, . . . , P20}, where

Pi = (Pi(0), . . . , Pi(400)). The ID(1) is the informed agent. Agents who possess ID(2-10) use

fHM with ρ = 1.00. The rest of ID(11-20) agents uses fLRA.

8.4.1.4 Mixed strategy system

Lastly, we created other 100 datasets of mixed strategy of coordination events. For each

dataset, it contains a set of 20-agent position time series PMIX = {P1, . . . , P20} where Pi =

(Pi(0), . . . , Pi(400)) is time series of positions of agent i. The ID(1) is the informed agent.

Other agents updates their state Si(t) corresponding to either fHM with probability 0.5 or fLRA

with probability 0.5.
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8.4.1.5 Evaluation

For each model, we performed 10-fold cross validation to evaluate the performance. For each

round of cross validation, we have 100 datasets that can be separated into 45 training datasets,

45 validation datasets, and 10 testing datasets. We concatenated all time series in Ptest to be a

single time series Ptest and also concatenate Stest to be Stest. Then we use Ptest,Stest to evaluate

the direction prediction performance. We compare four strategy functions: fHM, fLRA, fAR,

and fOPT, which is our framework optimal strategy function derived from Equation 8.4 and

Equation 8.7. We use the risk function that has Equation 8.8 as a loss function to evaluate the

model performance.

risk(P,S, f, i) =
1

T

T∑
t=1

DISTdir(Si(t), f(St−1, P t, i)) (8.9)

For each agent i, the best fitting model is the model that minimizes the risk function

risk(Ptest,Stest, f, i) in Equation 8.9.

f∗i = argmin
f∈{fHM,fLRA,fAR,fOPT}

risk(Ptest,Stest, f, i) (8.10)

For each strategy function f , we report the distribution of loss values of direction prediction

from all agents in each time step as well as the group’s average optimal support ~w∗i from

Equation 8.7. If the framework performs well, then it should give the highest support for the

model that was used to generate the dataset.
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8.4.2 Baboon behavioral experiment

The dataset is the recording of GPS collars of olive baboons (Papio anubis) troop in the wild

in Mpala Research Centre, Kenya [6, 7] (see Section 4.2.1). We extracted coordination events

by FLICA varying the network density threshold at 25th, 50th, 75th, and 99th percentile and

the time window at 240 time steps to infer coordination events and 60 time steps to infer a

dynamic following network. We used the 10-fold cross validation to report the results. For

each round of cross validation, it has 45% of training, 45% of validation, and 10% of testing

coordination events. For the rest of the evaluation steps, we evaluated and report the results

the same way as described in Evaluation Section.

8.4.3 Fish behavioral experiment

We used the time series of golden shiners (Notemigonus crysoleucas) fish positions from [46]

(see Section 4.2.2). The dataset was initially created to study information propagation via the

fish visual fields [46].

In total, there were 24 trails of fish position time series P = {P1, . . . ,P24} in 2-dimensional

space. For each Pk, it consists of 70 fish, with 10 trained fish who are considered to be informed

agents in our setting. On average, the time series in Pk has its length around 600 time steps.

The trained fish moved toward the feeding site (the target path) and the group follows them.

Due to the lack of information of identity for each individual in the different trails, we cannot

train our framework in this dataset. Hence, we use fish data to demonstrate how to apply our

framework to compare performance of each candidate strategy on direction prediction.
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We compared the Informed strategy function fTF against fLRA in Equation 8.2. For each

time step, fTF updates Si(t) for any agent i from the average of Sj(t) where j is a trained fish.

We use the risk function in Equation 8.9 to compare the performance among these strategy

functions. For each strategy function f , we report the distribution of all agents’ direction

prediction error in each time step from DISTdir(Si(t), f(St−1, P t, i).

8.4.4 Comparison with the state of the art method

Our method is the first approach to infer individual-level strategies that lead to group-level

coordination. Thus, we compare our framework with the-state-of-the-art method, FLICA [3],

for the task of leadership model classification. Since FLICA cannot infer the individual-level

strategy, we evaluate both frameworks at the group-level classification task. We use simulated

datasets from Section 8.4.1. Each set of time series has its label from one of the four models:

HM, LRA, HM & LRA, and Mix strategy model. FLICA maps each set of time series to

the leadership ranking and convex hull features. In our framework, we use the median of ~w∗i

(Equation 8.7) to represent the feature vector of each dataset. We use 10-fold cross validation

on Random Forests [74] to report the evaluation results for both frameworks.

8.5 Results

We now report the results of our experiments.

8.5.1 Simulations

The results of inferring the coordination strategy in simulated datasets are shown in Ta-

ble XXII. A row represents the results from datasets generated by a specific model. A column

represents a strategy prediction error measured in degree units [0◦, 180◦]. OPT is the optimal
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TABLE XXII

The result of predicting the direction of movement via 10-fold cross validation. We compared

the result of our framework (OPT) against the base-line pure strategies: HM, LRA, and AR

(auto regressive strategy). (*indicates the STD ≥ 20◦)

Average degree prediction error

[0◦, 180◦]

Datasets\Strategies OPT HM LRA AR

HM 12.40 12.98 20.49 30.21*

LRA 7.77* 16.93* 7.76* 13.78*

HM & LRA 4.42 13.39* 13.59 23.87*

Mixed Str. 29.33* 30.53* 31.69* 46.28*

Random 89.74* 90.11* 89.70* 90.21*

Baboon 53.16* 53.16* 72.36* 85.84*

strategy function trained by our framework. HM is Equation 8.3. LRA is Equation 8.2. AR is

the auto regressive strategy function that chooses the current direction t based on the previous

five time steps from the same agent. We use AR as the baseline. In all datasets, our framework

(OPT column) has the smallest error among all other strategies. For the first two rows of HM

and LRA datasets, OPT has almost the same performance as the strategies used to generate
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the data (HM row/column and LRA row/column). For HM & LRA datasets in the third row,

each individual might use either HM or LRA strategy. Hence, using the homogeneous strategy

to predict directions for all agents results in larger error (HM and LRA column). On the con-

trary, our framework can detect which individual uses which strategy. Hence, OPT performed

better than all pure strategies. Similarly, for the mixed strategy datasets (Mixed Str. row),

each individual might use either HM or LRA as its strategy with the probability 0.5. Since

our framework can infer mixed strategies, it performed better than using any pure strategy.

Lastly, we reported the results of the direction prediction from the 100 datasets of time series

generated from n agents moving uniformly and randomly in any direction (Random row). The

result shows that all strategies included in our framework produced the same bad result with

the loss value at 90◦ degree. This shows that our framework does not find an artifact model

where none exists.

Table XXIII shows the support vectors for each strategy corresponding to the datasets in

Table XXII in the OPT column. For each element in the table, the first number is the predicted

support from our framework and the second is the actual support that we used to create the

datasets. For example, in the first element of HM row, 0.85/1.00 means we used HM strategy

to create HM datasets and the framework inferred the HM support in these datasets as 0.85.

Overall, our framework correctly inferred the support vectors of all non-random datasets, while

avoiding overfitting.
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TABLE XXIII

The average optimal support vector ~w of all agents from 10-fold cross validation, inferred by

our framework from simulated and the Baboon datasets.

Average Support ~w (predict/actual)

Datasets w1:HM w2:LRA w3:AR

HM 0.85/1.00 0.12/0.00 0.03/0.00

LRA 0.02/0.00 0.98/1.00 0.00/0.00

HM & LRA

(HM part)

1.00/1.00 0.00/0.00 0.00/0.00

HM & LRA

(LRA part)

0.00/0.00 1.00/1.00 0.00/0.00

Mixed Strategy 0.48/0.50 0.48/0.50 0.04/0.00

Random 0.09/0.00 0.86/0.00 0.05/0.00

Baboon 1.00/NA 0.00/NA 0.00/NA

8.5.2 Baboon behavioral experiment

We varied the threshold of the following network density to infer coordination events in

the baboon dataset. We report the average result from all the thresholds. The last row of
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Table XXII shows the result of the direction prediction of baboons, using different coordination

strategies. The OPT coordination strategy, as derived by our framework, is in the last row in

Table XXIII. According to the result, OPT used HM as the pure strategy. The errors of HM

and OPT strategies indicate that baboons have a strong preference to follow a pre-determined

individual or a set of individuals, rather than their neighbors in the position space. This is

consistent with the biological understanding of the baboon social behavior.

8.5.3 Fish behavioral experiment

TABLE XXIV

Comparison between LRA and Informed strategies to predict movement directions of 24 trails

of fish.

Error of degree prediction [0◦, 180◦]

Strategies Mean STD

LRA 41.51 45.11

Informed Strategy 54.46 47.68

The results of the direction prediction in fish dataset, for LRA and Informed strategies,

are in Table XXIV. The LRA performed better than the Informed strategy, indicating that fish



168

TABLE XXV

The results of model classification of FLICA and the proposed framework via 10-fold cross

validation. We use Random Forest as the main classifier for both frameworks.

FLICA Proposed framework

Classes Prec. Rec. F1 Prec. Rec. F1

HM 1 0.75 0.86 1 1 1

LRA 0.8 1 0.89 1 1 1

HM & LRA 0.94 1 0.97 0.98 1 0.99

Mixed Str. 0.90 0.94 0.92 1 0.98 0.99

Random 1 0.9 0.95 1 1 1

follow their immediate neighbors in space. This result is supported by the work in [46], showing

that fish do not directly know who leads the group but follow their neighbors.

8.5.4 Comparison with the state of the art method

The result of model classification using FLICA as well as the proposed framework is in

Table Table XXV. In all datasets, the proposed framework performed better than FLICA.

This indicates that the group-level features that FLICA provides for classification are not

sufficiently informative to be used to categorize complicated datasets where individuals may

use a heterogeneous set of strategies (e.g. HM & LRA).
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8.6 Conclusions

In this work, we formalized a new computational problem, Coordination Strategy In-

ference Problem. Given a set of candidate strategies and a set of time series of coordinated

movement as inputs, our goal is to infer the original strategy that each individual used to achieve

the group coordination. We showed that a strategy that has the convergence property can guar-

antee that the group reaches coordination. We provide the first methodology (to the best of

our knowledge) to infer the set of strategies that each individual uses to achieve movement

coordination at the group level. We evaluated and demonstrated our framework performance

in simulated datasets as well as two biological datasets: baboon and fish. Our framework was

able to infer the original set of strategy functions that generated each simulated dataset. The

results show that our approach is highly accurate in inferring the correct strategy in simulated

datasets even in complicated mixed strategy settings. Moreover, our framework performed clas-

sification of group-level coordination models from time series better than FLICA framework,

which is the-state-of-the-art approach for the task. Animal data experiments show that fishes,

unsurprisingly, follow their neighbors, while baboons have a preference to follow specific in-

dividuals. Although we used the specific setting of focusing on the direction of movement as

the definition of an agent’s state and used three exemplar candidate strategy, our methodology

easily generalizes to arbitrary time series data, beyond movement data, and other candidate

strategies. While for the fairness of comparison with the biological datasets we used simulated

data of 20 individuals, it is clear that there are no inherent limitations in the approach to scale

to much larger datasets. The only barrier is the availability of data. The code and datasets
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that we used in this work can be found at [80]. In the next chapter, we will introduce the pro-

posed framework, which is the extension of mFLICA framework in Chapter 6. The proposed

framework can be used to infer leadership dynamics from time series data.



CHAPTER 9

MINING AND MODELING COMPLEX LEADERSHIP DYNAMICS OF

MOVEMENT DATA

9.1 Introduction

Mining Patterns of Leadership Dynamics: Given time series of individual activ-

ities, the goal is to mine and model frequent patterns of leadership dynamics, including

emergence of multiple leaders, convergence of multiple leaders to a single one, or change of

a leader.

Leadership is an essential part of collective decision and organization in social animals, in-

cluding humans. In nature, leadership is dynamic and varies with context or temporal factors.

Understanding dynamics of leadership, such as how leaders change, emerge, or converge, allows

scientists to gain more insight into group decision-making and collective behavior in general.

However, given only data of individual activities, it is challenging to infer these dynamic lead-

ership events. In this work, we focus on mining and modeling frequent patterns of leadership

dynamics. In Chapter 3, we formalized a new computational problem, Mining Patterns of

Leadership Dynamics. In this chapter, we propose a framework as a solution of this prob-

lem. Our framework can be used to address several questions regarding leadership dynamics of

group movement. We use the leadership inference framework, mFLICA, to infer the time series

171
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of leaders from movement datasets, then propose the approach to mine and model frequent

patterns of leadership dynamics.

We evaluate our framework performance by using several simulated datasets, as well as

using the real-world dataset of baboon movement to demonstrate the application of our frame-

work. There are no existing methods to address this problem, thus, we modify and extend

the existing leadership inference framework to provide a non-trivial baseline. Our framework

performs better than this baseline in all datasets. Moreover, we also propose a method to per-

form statistical significance tests, comparing inferred frequent patterns of leadership dynamics

with our proposed null hypotheses. Our framework opens the opportunities for scientists to

generate scientific hypotheses that can be tested statistically regarding dynamics of leadership

in movement data.

9.2 Methods

To solve Problem 4, Mining Patterns of Leadership Dynamics, we propose the

framework consisting of four parts (Figure 39.) Given a set of time series of movement

U = {U1, . . . , Un}, where Ui ∈ U is a two-dimensional time series of length T , first, we in-

fer a dynamic following network and time series of leaders L using mFLICA framework [4]

(Chapter 6 or Section 2.2). Second, we infer a diagram of leadership dynamics T from L in

Section 9.2.2. Third, we detect the sequence patterns on L in Section 9.2.3. Finally, we deploy

hypothesis tests to evaluate significance of leadership dynamics compared to our proposed null

models in Section 9.2.4.
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Figure 39. A high-level overview of the proposed framework.

9.2.1 Recap of mFLICA

In this section, we provide the brief details of mFLICA (see Chapter 6 for more details)

as a reminder. Given a pair of time series U and Q, mFLICA uses Dynamic Time Warping

(DTW) [76] to infer a following relation. Suppose PU,Q is an optimal warping path from DTW

dynamic programming matrix, where (i, j) ∈ PU,Q implies U(i) matched with Q(j) in the

matrix. Intuitively, if U is followed by Q with the time delay ∆i,j , then j − i = ∆i,j . Hence,

we can compute the following relation by the equation below.

f(PU,Q) =

∑
(i,j)∈PU,Q sign(j − i)

|PU,Q|
. (9.1)
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Suppose we have a similarity threshold σ, there we say there is a following relation if

|f(PU,Q)| ≥ σ, where Q follows U if f(PU,Q) ≥ σ and U follows Q if f(PU,Q) ≤ −σ. We set

σ = 0.5 as a default.

Next, given a time window ω and a sliding window parameter δ = 0.1ω, we have the ith

time window interval w(i) = [(i− 1)× δ, (i− 1)× δ + ω]. mFLICA creates a following network

for each set of time series within interval w(i) of U . An edge of a following network is inferred

by Equation 9.1 with the weight |f(PU,Q)|. Hence, after every interval w(i) has its following

network, we have a dynamic following network G = 〈Gt〉 of U .

Lastly, for each time step t, mFLICA uses Breadth First Search (BFS) to infer factions and

initiators within a following network Gt. The faction initiators are nodes with out-degree zero

and in-degree non-zero. By applying BFS to dynamic following network G, we have the time

series of leaders L = (L(1), . . . ,L(T )) as the output of this step.

9.2.2 Inferring transition diagram of leadership dynamics

We use Hidden Markov Model (HMM) [64] to model a diagram of leadership dynamics

T = (VT , ET ) in Def. 17 and use Baum–Welch algorithm [81] to infer the maximum likelihood

estimates of parameters of HMM from the time series of leader L. In this setting, we have a

set of frequent-leader sets SL as a set of states in HMM with the support threshold φ = 0.01.

In HMM, the stochastic transition matrix A, which has its size |SL| × |SL|, describes estimated

probabilities that a group changes its current set of leaders to another set of leaders (e.g. group

merging or splitting.) However, since we are interested only in the events of state changes, we
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ignore the self-transition probability and normalize A to be A∗ (Equation 9.2), which is the

adjacency matrix of T .

Given a time series of leaders L, we can easily infer a set of leader sets SL. Then, let SHMM

be a set of states in HMM where SHMM and SL are in one-to-one correspondence. We represent

each state in SHMM as a number in [1, |SHMM|], then we create LHMM by replacing each element

in L with the number of corresponding state in SHMM. For example, in Figure 40 (Dynamic

Type 1), we have a set of leader sets SL and SHMM, where {ID1}, {ID2, ID3, ID4}, {ID3}, and

{ID4}, in SL have corresponding elements in SHMM as 1, 2, 3 and 4, respectively.

Initially, we set a stochastic transition matrix A = {ai,j} (i, j are the states) and the initial

state distribution πi uniformly. We have the set of observation values Y = {1, . . . , |SHMM|}.

In this setting, there is no hidden state since an observation value is an identity of a state.

However, in HMM, at any state i, there is a required probability bi,j of observing value j at the

state i (typically represented by a matrix B = {bi,j}.) Here, the probability bi,j = 1 if i = j

and zero otherwise.

We use Baum–Welch algorithm [81] to infer A = {ai,j}, then we normalize A to create

A∗ = {a∗i,j} by the equation below.

a∗i,j =


0, i = j

ai,j∑|SHMM|
k=1,k 6=j ai,k

, Otherwise.

(9.2)
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9.2.3 Mining sequence patterns of leadership dynamics

After having a diagram of leadership dynamics T = (VT , ET ), for each pair of nodes (i, j) ∈

VT , we find a sequence pattern, which is a path Pi,j = (v(1) = i, . . . , v(k) = j), where for all

u ∈ VT , a∗v(t−1),v(t) > a∗v(t−1),u.

Pi,j is an order sequence that the previous state v(t− 1) ∈ Pi,j has the highest probability

to change to the next consecutive state v(t) ∈ Pi,j , given a starting point at i and the final

state at j.

Given A∗ = {a∗i,j} as an adjacency matrix of T , we convert A∗ to be A′ = {a′i,j} where

a′i,j = 1
a∗i,j

. Then, we use the standard Dijkstra’s algorithm to find the shortest path between

every two nodes in A′. Hence, Pi,j is the shortest path between i and j in A′1. Let ν be a number

of times that the full sequence of Pi,j occurs in L and N be a number of times that leadership

state change happens in L (e.g., two sub-groups merged together, changing the leader), we can

find the support of Pi,j in the time series of leader L by the equation below:

supppath(L, Pi,j) =
ν × (|Pi,j | − 1)

N
. (9.3)

Specifically, ν is a number of times that all pairs of nodes v(t − 1), v(t) ∈ Pi,j s.t. v(t − 1)

appear before v(t) in Pi,j also appear in L.
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TABLE XXVI

Details of non-parametric tests used in this paper. A significant level has been set at α = 0.01

for all experiments.

Method Null hypothesis H0

Kolmogorov-Smirnov test [82] Two samples are from

Wilcoxon Rank Sum Test [83] the same distribution

Kruskal-Wallis Test [84]

9.2.4 Hypothesis testing

9.2.4.1 Evaluating the significance of leadership-event order

Given a time series of leaders L and a diagram of leadership dynamics T inferred from L,

we perform a random permutation of elements in L to create Lrand, then we infer a diagram

of leadership dynamics Trand from Lrand by the method described by the previous section.

Afterwards, we test the similarity of the edge-weight distributions of T and Trand. We deploy

three non-parametric methods, shown in Table XXVI, to perform the tests. If all three methods

successfully the corresponding reject the null hypothesis with α = 0.01, then we conclude that

1Note, this can be done since the probability condition is independent of each pair and not cumulative
over the path
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the edge-weight distribution of T is significantly different from Trand’s although the support

value of each node in both graphs are the same.

9.2.4.2 Evaluating the significance of frequencies of leadership-event sequences

After finding all the sequences for every pair of nodes in Section 9.2.3, we compute the

support supppath(L, Pi,j) of each sequence Pi,j . This gives the sequence-support distribution of

T . Next, we rewire T to be Trand by uniformly and randomly changing the end points of each

edge in T , then we calculate the sequence-support distribution of Trand (Equation 9.3.) Lastly,

we test whether T and Trand sequence-support distributions are different the same way as in

the previous section.

We repeat both types of significance tests 100 times and report the percentage of times that

the tests successfully reject H0 for each dataset.

9.2.5 Time and space complexity

The time complexity of mFLICA is O(n2 × ω × T ), where n is a number of time series,

T is a length of time series, and ω is a time window parameter. The time complexity of

Baum−Welch algorithm to infer a diagram of leadership dynamics is O(m2 × T ) where m is

the number of frequent-leader sets. Typically, m < n since there are fewer frequent-leader sets

than individuals. Hence, our framework’s overall time complexity is O(n2 × ω × T ). For the

space complexity, the part that requires space the most in our framework is the space for the

dynamic following network that costs O(n2 × T ).
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Figure 40. Splitting/Merging (above) and Linear (below) coordination event. Each node

represents the ID of leader of each sub-group at the particular time and each edge represents

the change of group’s leaders.

9.3 Evaluation Datasets

We evaluate our method on synthetic datasets generated using a variety of leadership models

with a variety of patterns of leadership dynamics. We directly use all datasets from mFLICA

work in Chapter 6 (see Section 6.3.2). Nevertheless, we recap the types of coordination dynamics

here below.
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9.3.1 Type 1 Dynamics: Splitting/Merging coordination event

In this type of coordination event (Figure 40 above), ID1 leads the entire group for 200 time

steps. Then, the group splits into three equal size sub-groups lead by ID2, ID3, and ID4, for

the duration of 200 time steps. Afterwards, all sub-groups are merged into a single group again

lead by ID3 for another 200 time steps. Finally, ID4 leads the entire group for the last 200 time

steps.

9.3.2 Type 2 Dynamics: Linear coordination event

In this type of coordination event (Figure 40 below), ID1 leads first, then ID2 leads, ID3

leads after ID2, and ID4 leads after ID3. Each leader leads the group for 200 time steps.

9.4 Evaluation criteria

In simulated datasets, we compare the inferred adjacency matrix A = {ai,j} of a digraph

of leadership dynamics T = (VT , ET ) against the ground truth matrix A∗ = {a∗i,j}. For

the Splitting/Merging coordination event, the ground-truth set of frequent-leader sets is S∗L =

{{ID1}, {ID2, ID3, ID4}, {ID3}, {ID4}}. All elements in A∗ are zero except a∗{ID1},{ID2,ID3,ID4} =

1, a∗{ID2,ID3,ID4},{ID3} = 1, a∗{ID3},{ID4} = 1, and a∗{ID4},{ID1} = 1. For the Linear coordination

event, S∗L = {{ID1}, {ID2}, {ID3}, {ID4}} and all elements in A∗ are zero except a∗{ID1},{ID2} =

1, a∗{ID2},{ID3} = 1, a∗{ID3},{ID4} = 1, and a∗{ID4},{ID1} = 1.
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Let SL and S∗L be the predicted and the ground truth sets of frequent-leader sets, respec-

tively. The loss function of A and A∗ is below:

loss(A,A∗) =∑
i,j∈S∗L∩SL

|ai,j − a∗i,j |+ FP(A,A∗) + FN(A,A∗)

nA∗

(9.4)

FP(A,A∗) =
∑

i,j∈SL\S∗L

|ai,j | (9.5)

FN(A,A∗) =
∑

i,j∈S∗L\SL

|a∗i,j | (9.6)

Where nA∗ is the number of elements within A∗. The first term in Equation 9.4 represents

the L1-norm difference between each element in A and A∗ (probabilities) when the predicted

states are the same as the ground truth. The second term represents the false positive case

when the framework predicts the states that do not exist in the ground truth. The last term

represents the false negative case when the framework misses prediction of a state that exists

in the ground truth.

9.5 Results

We set the time window parameter ω using the inference method in [4]. Figure 41 and

Figure 42 show the examples of inferred diagrams of leadership dynamics by our framework

from Type-1-HM (Hierarchical model with Splitting/Merging coordination events) and Type-

2-HM (Hierarchical model with Linear coordination events) datasets respectively. In Figure 41,

comparing the inferred diagram with the ground truth, only nodes {2, 4} and {2, 3} are false

positive nodes.
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This implies that despite the complex dynamics of leadership in Type-1-Dynamics case,

our framework was still able to retrieve the diagram of leadership dynamics accurately. For the

Type-2-HM dataset, which is less complex than Type1-HM case, Figure 42 shows that there are

no false positive nodes in the inferred diagram. Moreover, in both Type-1-HM and Type-2-HM

cases, the support of each node should be 0.25, and our framework can infer the support for

each node closely to 0.25.

Figure 41. The example of the inferred diagram of leadership dynamics by our framework

from a Type-1-HM dataset. Comparing the inferred diagram with the ground truth, only

nodes {2, 4} and {2, 3} are false positive nodes. The support of {1}, {2, 3, 4}, {3} and {4}

should be 0.25, and our framework can infer the support for each node closely to 0.25.
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Figure 42. The example of the inferred diagram of leadership dynamics by our framework

from a Type-2-HM dataset. Comparing the inferred diagram with the ground truth, there are

no false positive nodes. The support of {1}, {2}, {3} and {4} should be 0.25, and our

framework can infer the support for each node closely to 0.25

Regarding the mining sequence patterns of leadership dynamics described in Section 9.2.3,

Table XXVII shows an example of max-support sequences of leadership dynamics that our

framework reported from HM datasets. In both dynamics types, the sequences are consistent

with the ground truth in Figure 40.

Next, we compared our framework, which uses the following networks concept [4], to the

method based on direction networks proposed in FLOCK method [30] to infer a diagram of

leadership dynamics. In direction networks, at any time t, if i is moving toward the same



184

TABLE XXVII

The example of sequences of leadership dynamics that have the highest support from HM

datasets.

Datasets Sequences supppath(L, Pi,j)

Type-1-HM {2,3,4},{3},{4},{1} 0.71

Type-2-HM {1},{2},{3},{4} 0.95

direction as j but j is at the front of i, then i follows j. The median of all loss distributions

in both Type-1 and Type-2 dynamics datasets are reported in Table XXVIII. The first row of

Table XXVIII shows the distribution of loss values (Equation 9.4) in type-1-dynamics datasets.

The direction network approach was reasonably competitive for the type 1 dynamics. We

were able to use the direction networks to infer the states with splits and merges but the

change of leadership was often missed by this underlying method. Not surprisingly, then, the

direction network-based method performed significantly worse than the following network-based

approach for the type-2-dynamics. Qualitatively, and as a distribution of the loss values overall,

the following networks as the basis for the diagram inference performed better than the direction

networks in our framework. In the second row of Table XXVIII, the following networks also

performed better than direction networks in Type-2-dynamics datasets.
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TABLE XXVIII

The median of loss values in the prediction task of diagrams of leadership dynamics.

Dyn.

Type

Type 1 Type 2

Model HM DM IC HM DM IC

Following

Network

0.13 0.19 0.24 0 0.03 0.08

Direction

Network

0.19 0.19 0.25 0.19 0.19 0.25

In Table XXIX, we reported the hypothesis testing results of the significance of leadership-

event order (Section 9.2.4.1). With respect to the type of the leadership model, for the HM,

which is a well-structure model, the inferred diagrams are more significantly different from the

null-model diagram than for the other leadership models. With respect to the types of the

dynamics, in the complex type-1-dynamics datasets our framework inferred diagrams that are

more significantly different from the null model. Lastly, the following networks were able to

infer diagrams that are more different from the null model than the direction networks.

For hypothesis testing of the significance of frequencies of leadership-event sequences (Sec-

tion 9.2.4.2), the result is shown in Table XXX. Similar to the the edge-weight distribution



186

TABLE XXIX

Hypothesis testing results of the significance of leadership-event order in Section 9.2.4.1. We

reject H0 at α = 0.01. Each element in the table represents the percentage of the times when

the tests successfully reject H0.

Dyn.

Type

Type 1 Type 2

Model HM DM IC HM DM IC

Following

Network

0.99 0.55 0.38 0.86 0.08 0.20

Direction

Network

0.00 0.00 0.06 0.00 0.00 0.06
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TABLE XXX

Hypothesis testing results of the significance of frequencies of leadership-event sequences in

Section 9.2.4.2. We reject H0 at α = 0.01. Each element in the table represents the

percentage of the case when the test successfully rejects H0.

Dyn.

Type

Type 1 Type 2

Model HM DM IC HM DM IC

Following

Network

0.95 0.35 0.23 0.94 0.84 0.66

Direction

Network

0.07 0.08 0.20 0.07 0.07 0.20

testing, the support distributions of the well-structure model, HM, are significantly different

from the support distribution of the null model. The following networks also can be used to

infer diagrams that are different from the rewiring diagrams than the direction networks based

approach. However, in the simple type-2-dynamics datasets, our framework was able to infer

diagrams that are more different from the null model compared to the complex type-1-dynamics

case.
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For the baboon dataset, we reported the information that we can retrieve from the dataset

using our framework as a case study. Figure 43 shows the inferred diagram of leadership

dynamics from our framework. Each row represents the node of leader sets of previous state

and each column represents the next state. Each row label consists of baboon gender: ‘M’ or

‘F’, a set of frequent-leader IDs, and the support value of frequent-leader set. For example, in

row 3 and column 2, the event that two female baboons F18 and F22 are leading their separate

sub-groups concurrently can happen with the support 0.1 (out of all the coordination times).

These two sub-groups have a chance to be merged together to a larger group lead by F18 with

the probability 0.29. In 4th column ({F9}), we found that no matter what the previous sub-

groups are, there is a high chance that the next group will be lead solely by the female baboon

F9. In 4th row, F9 has the highest support (0.19), which means F9 (who happens to be the

dominant female) often leads the troop, with the next highest support of 0.11 for the male

baboon M3 (5th column, the alpha male). Lastly, at row 5 and column 4, if M3 and F9 are

leading their separate sub-groups, then the two groups will be merged to a larger group lead

by F9 with probability 0.63.

The hypothesis testing of the edge-weight distribution shows that the baboon’s diagram is

significantly different from the null model, with 100% of the time the tests successfully reject-

ing H0. However, for the hypothesis testing of sequence-support distributions, the baboons’

sequences of leadership dynamics are not significantly different from the rewired diagram. Only

5% of the times the tests successfully reject H0. This indicates that while individual leaders

identity is non-random and pairwise leadership transition patterns are significant, there are no
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TABLE XXXI

Baboons’ sequences of leadership dynamics that have the top-4 highest support

Baboon Sequences supppath(L, Pi,j)

Seq. 1 {M11},{F9},{M3} 0.0354

Seq. 2 {M18},{F9},{M3} 0.0354

Seq. 3 {M18},{F9},{M22} 0.0354

Seq. 4 {M4},{F9},{M2} 0.0354

leadership sequences that often appear significantly within the baboon dataset. Nevertheless,

Table XXXI shows baboons’ sequences of leadership dynamics that have the top-4 highest sup-

port. This result is the evidence that F9 is an important individual who frequently leads the

group.

These results show that our framework provides the opportunity for scientists to gain more

insight into their datasets in order to generate scientific hypotheses, which might lead to impor-

tant scientific discoveries (in this case, about the collective behavior and leadership dynamics

of social animals).
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State Machine of Leadership Dynamic of Baboons
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Figure 43. The inferred diagram of leadership dynamics of the baboon dataset from our

framework. Each row represents the node of leader sets of previous state and each column

represents the next state. Each row label consists of baboon gender: ‘M’ or ‘F’, a set of

frequent-leader IDs, and the support value of frequent-leader set. For example, in row 3 and

column 2, the event that two female baboons F18 and F22 are leading their separate

sub-groups concurrently can happen with the support 0.1 (out of all the coordination times).

These two sub-groups have a chance to be merged together to a larger group lead by F18 with

the probability 0.29.
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9.6 Conclusion

In chapter, we proposed a new approach to analyze time series of group movement data. We

formalized a new computational problem, Mining Patterns of Leadership Dynamics, as

well as proposed a framework as a solution of this problem. Our framework can be used to ad-

dress several questions regarding leadership dynamics of group movement, such as ‘what is the

probability of having two sub-groups lead by i and j being merged together to be a larger group

lead by k later?’, ‘what is the frequency of having i and k co-leading their sub-groups concur-

rently?’, etc. We used the leadership inference framework, mFLICA [4], to infer the time series

of leaders from movement datasets, then proposed an approach to mine and model frequent

patterns of leadership dynamics using Hidden Markov Model. We evaluated our framework

performance by using several simulated datasets that cover various types of leadership dynam-

ics, as well as using the real-world dataset of baboon movement to demonstrate the application

of our framework. There are no existing methods to address this problem, thus, we modified

and extended the existing leadership inference framework to provide a non-trivial baseline. Our

framework performed better than this baseline in all datasets. Moreover, we also proposed a

method to perform statistical significance tests, comparing inferred diagram of leadership dy-

namics with our proposed null hypotheses to evaluate the significance of leadership-event order

and frequencies of leadership-event sequences. Our framework opens the opportunities for sci-

entists to generate scientific hypotheses that can be tested statistically regarding dynamics of

leadership in movement data.



CHAPTER 10

CONCLUSION

10.1 Summary of contributions

This dissertation formalized concepts and problems of computational leadership inference

in several aspects, as well as proposed computational frameworks to solve these problems.

In the first part, we explicitly formalized the definition of computational leaders as the

“individuals who initiate collective patterns that everyone follows”. We started with the for-

malization of a following relation among time series, which can be described intuitively as “two

individuals performing the same sequence of actions (or generating time series values) with

some fixed delay”. We defined a following network with nodes representing time series and

edges representing following relations between time series. Then, we formalized the concept

of coordination as the time when “all individuals performing the same sequence of actions, at

possibly varying delays”. Afterwards, we defined an initiator or a leader as “an individual who

first performs a sequence of actions, and all other individuals follow”. After we had all the es-

sential concepts, then we formalized Coordination Initiator Inference Problem, which

is a problem of finding an initiator of coordination among time series. We proposed a frame-

work, FLICA, to solve Coordination Initiator Inference Problem. FLICA performed

well in both simulation and real-world datasets compared with the state-of-the-art approaches

in the global leadership inference task, which has only one leader per dataset. Moreover, FLICA

192
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also can handle several novel leadership-inference tasks that no existing methods can deal with,

such as the local leadership inference (there is a different leader for a different coordination

event), initiator of pre-coordination inference (there are different leaders at pre-coordination

vs. coordination intervals), and leadership model selection.

In the second part, we extended the concept of coordinated activity from the first part to

multiple coordinated activities which can occur simultaneously as well as proposed the frame-

work, mFLICA, to analyze these complicated coordinated activities. We formalized the concept

of a faction that is an induced subgraph of a following network such that a set of time series

representing this subgraph is coordinated, and no another larger-coordinated subgraph that

is a super set of this subgraph, which is a maximal coordinated subgraph. The concept of

factions allows a set of time series to have multiple coordinated groups and faction initiators

concurrently. We formalized Faction Initiator Inference Problem as a problem of finding

factions and faction initiators from a given set of time series, as well as proposed mFLICA to

solve this problem. While the previous work, FLICA, can detect only one coordination event

and one initiator per time interval, mFLICA can detect more complicated leadership dynamics.

We developed mFLICA based on the concept of factions that allows the framework to detect

leader changing, group merging, and group splitting from time series. mFLICA performed

well compared to our baseline in both simulated and fish datasets. We also demonstrated that

mFLICA can detect the merging event of two subgroups in the baboon dataset.

In the third part, we proposed the concept of traits of leaders in time series based on

the notion of convex hulls of movement features – velocity, position, and direction convex
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hulls – to describe behavior traits of initiators. Specifically, if initiators always move first

then others follow, then the initiators must step outside the group velocity convex hull from

the previous time step frequently. If initiators always explore new area before others, then

the initiators must step outside the previous group position convex hull frequently. Lastly, if

everyone in the group always aligns its direction with initiators, then everyone else must step

outside the previous group direction convex hull frequently but the initiators rarely step outside

the direction convex hull. We provided a framework to infer traits of leaders of coordinated

movement. The framework can infer ranking correlations of leadership ranking vs. convex

hull ranking and can test the statistically significance of these behavior traits of initiators.

We used baboon and fish datasets to demonstrate the ability of our framework. We found that

baboon initiators do not move first, but typically explore new areas before others and the group

aligns its direction with initiators. Fish initiators possess the same movement traits as baboon

initiators’ except that fish initiators also move before others.

In the fourth part, we proposed the new concept of inference of a coordination mechanism.

We formalized a group coordinated activity as a process in which each individual uses some

strategy to update its state to coordinate with the group. We defined a set of strategies that

individuals may use to coordinated with the group as a set of Coordination strategies. We

formalized Coordination Strategy Inference Problem as a problem of finding a set

of coordination strategies that lead a group to coordinate its activity, given a set of possible

strategies and a set of individual time series that has coordination. We proved that if every

individual uses a strategy that guarantees to have a convergence, then the group will finally
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reach coordination. We also proved that as long as all individuals in the group use any con-

vergent strategy, then the group still reaches coordination even if some individuals use mixed

convergent strategies. We proposed two convergent strategies: Hierarchical Model (HM) and

Local Reversible Agreement System (LRA). For simplicity, we demonstrated our analysis in

the movement context but our concept formalization can be applied in any context. In HM, an

individual moves following a specific individual but there is one individual who moves toward a

target state, whom everyone either directly or indirectly follows. In LRA, an individual moves

following its physical neighbors but there is one individual who moves toward a target state.

We proposed a framework to solve Coordination Strategy Inference Problem. In our

setting, we have HM, LRA, and Auto Regressive (an individual moves toward the same direc-

tion as in its previous time steps) as our candidate strategies. We demonstrated our framework

performance using simulated and animal datasets. Our framework performed well compared

to our baseline. Moreover, our framework performed classification of group-level coordination

models from time series better than FLICA framework, which is the-state-of-the-art approach

for the task. Animal data experiments show that fish, unsurprisingly, follow their neighbors,

while baboons have a preference to follow specific individuals (although that may depend on

the time scale of analysis).

In the fifth part, we formalized the concept of a frequent-leader set. The frequent-leader

set is a set of faction initiators that concurrently appear together frequently w.r.t. the sup-

port threshold. We defined a transition probability of leader sets as a probability that one

frequent-leader set will transition to another frequent-leader set. Then we formalized Mining
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Patterns of Leadership Dynamics as a problem of finding a set of frequent-leader sets

and their transition probabilities, given a set of time series and a support threshold. We then

modeled leadership dynamics of time series as a diagram of leadership dynamics that has a set

of nodes representing a set of frequent-leader sets and a set of edges representing transition

probabilities of these nodes. We proposed a framework to solve Mining Patterns of Lead-

ership Dynamics. The framework adapts mFLICA and HMM as core components to infer a

diagram of leadership dynamics from time series of movement data. The framework preformed

well in simulated datasets compared to our non-trivial baseline. Moreover, we also proposed a

method to perform statistical significance tests, comparing inferred diagram of leadership dy-

namics with our proposed null hypotheses to evaluate the significance of leadership-event order

and frequencies of leadership-event sequences. We also demonstrated that our framework can

report interesting patterns in the baboon dataset.

10.2 Assumptions and limitations of our formalization

First, a following relation that we defined here is only one of the possible definitions of a

following relation in general. We defined a following relation as one of a pattern imitation, with

a fixed time delay, between individuals. However, in real situations, a leader might influence

followers to act differently or the followers might imitate their leader’s actions with arbitrary

and unfixed time delays.

Second, the concept of coordinated activity we defined also relies on the assumption that

all possible pairs of individuals must follow the same collective pattern. However, our concept



197

of coordination does not cover the case when different individuals have been assigned to act

differently to make the entire group reach collective goals.

Third, in this work, we mainly considered only time series of real values as inputs. That is,

we never consider the time series of categorical values (e.g. walking, standing, running) in our

analysis here.

Fourth, the concept of factions we defined has an assumption that all factions have disjoint

members in the non-noise version of faction formalization. In contrast, different factions can

have overlapping membership in the present of noise.

Lastly, in the work of inference of a coordination mechanism, we have a Markovian assump-

tion that individuals update their states at time t based on their particular strategy that takes

the parameters as the previous group states at time t − 1. However, some individuals might

update their states from the previous group states at some arbitrary time in the past.

10.3 Future directions

While we addressed several challenges in leadership inference from time series, there are still

many directions that we can explore.

First, our computational leadership formalization as a process of pattern initiation is only

one of the several possible definitions of leadership in general. As already mentioned, our

leadership formalization can be used to describe only the case when followers imitate leaders’

actions. To measure whether initiators truly cause the followers’ actions, we should also explore

other types of leadership definitions as well as concepts of causality inference from time series.
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Second, we use only DTW as our main following relation measure that can find the lag

patterns between time series. Nevertheless, different fields of study might have more specialized

who-follows-whom measures. The question still remains regarding what measure is appropriate

for the specific types of leadership systems.

Third, scalability is still an issue in our frameworks due to the time complexity of DTW. The

alternative measures that can approximately measure following relations between time series

should be explored.

Finally, all the work in this thesis is about how to infer leadership from time series but the

question of why coordination exists in both natural and man-made systems still has an unclear

answer. One of the possible ways to address this question is to use the game-theoretic approach

to model leadership of coordination. If we can find that, under some assumptions, individuals

gain more benefit to cooperate with others rather than solving tasks alone under leadership

scenario, then we can use these assumptions to infer more properties of leadership from data

and use them to answer scientific questions in both natural and man-made systems.
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