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SUMMARY

The aim of this thesis is to find an optimal power allocation strategy for the transmitting

nodes in a network scenario which comprises two sources, a single relay and a single destination.

The main problem which is present in such network configurations is the self-interference

phenomenon created by the relay, which attempts to transmit and receive at the same time on

the same frequency band. Finding the correct power level (both at sources and relay) which

allows the overall rate maximization is a theme of great interest, since many wireless applications

present this problem and the use of relays is expected to increase in the near future. The strategy

found in this work contemplates the use of Half-Duplex or Full-Duplex transmission modes at

the relay. Moreover it is proved that such strategy has interesting performances with respect to

other solutions provided in similar scenarios, but which require more precise information about

the relay to be known at the sources.

The novelty introduced here is the presence of multiple sources, which raises issues of fairness.

The fairness concern is addressed and integrated into the system model provided. All these

topics are mathematically described and solved, and the theoretical part is supported with

numerical results which confirm the validity of the provided model.

ix



CHAPTER 1

INTRODUCTION

Communications channels which include relays are becoming increasingly important in

the wireless field. They may find applications in the next generation mobile communication

standards like 5G: a relay can extend the coverage of an antenna by repeating its signal in

areas in which holes are present, so where the conformation of the territory makes the signal

weak or inexistent, as well as making stronger the connection for users who are positioned far

way from the base station of a particular cell. Placing a relay instead of an antenna is less

expensive and furthermore it does not modify the cell grid of an area. Another application can

be V2I communications, where vehicles can communicate directly with each others but they

can also rely on roadside units (RSUs) which act exactly as a relay. In addition the RSUs can

add useful information to the original transmitted signal, so this type of relay needs to mod-

ify the received signal. All these examples fall in the area of multi-hop multi-user communications.

Such an importance placed the relay at the center of many studies. There are different

cooperative schemes for a relay, which make them more suitable for different environments. Here

they are listed in order of increasing complexity:

• Amplify-and-Forward (AF): the relay acts as a simple repeater, so it takes the incoming

signal and transmits it towards the destination. A drawback for this forwarding technique

1
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is that it amplifies everything that it receives, so when there is a lot of noise added to the

useful information, the noise is amplified too. This may not be the best solution for too

much noisy channels, and even when the noise level is low, a decode-and-forward (DF)

relaying technique is preferred in terms of performance.

• Compress-and-Forward (CF): also known as Estimate-and-Forward or Quantize-and-

Forward. The received signal is estimated without being decoded, then the estimate

is compressed (through quantization) and forwarded to the destination. There is more

complexity inside a relay of this type than for AF, since some signal processing is performed.

The estimation of the incoming signal is more accurate when the channel conditions are

good, hence there is high SNR. In the high SNR region the CF relay tends to behave as a

DF relay, while in the low SNR region the performances are comparable to an AF relay.

• Decode-and-Forward (DF): this cooperative scheme is the most complex one. The relay

decodes the signal received, applying signal processing tools to recover information, hence

it more robust to noise, since the relay acts as an intermediate destination which makes

decisions on the received bits. After having decoded the signal that comes from the

source, the relay re-encodes the information and it sends that to the destination. The

destination then decodes the received signal. The decision made at the relay is critical,

since it determines the performances of the overall link. As in the case of the other relaying

strategies, the quality of the channel greatly impacts the outcomes of the transmission.

There are some ”hybrid” relays which adapt themselves to channel conditions and change

accordingly their cooperative scheme, but of course they are more complex. There are also
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Figure 1: Examples of relay applications

examples in which a combination of modalities is used, as in [11], where CF and DF are mixed

and they turn out to be efficient in a particular type of network.

By allowing those intermediate transmitters to manipulate in some way the signal, security

issues may arise, since the link between source and destination is split into several links and

information is ”seen” by relays which try to decode data or the signal is simply eavesdropped

by other relays. Some of this problems are addressed and analyzed in [6, 10].

Besides the employed forwarding techniques, a relay can also work in three different transmission

modes:

• Half-Duplex (HD): the relay either transmits or receives, but it cannot perform both the

operations at the same time. It is the simpler case to treat, since the relay cannot create

interference with itself.

• Full-Duplex (FD): the relay can transmit and receive at the same time, in the same

frequency band. FD relays are more complex than HD relays since their transmitted signal
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may interfere with the received one, creating the so called self-interference phenomenon.

This case is the one of interest in this work since it is the key concept around which this

thesis revolves.

• X-Duplex (XD): simply it is a combination of the two previously described modes, in which

the relay is able to work in both FD and HF modes based on the needs of the transmission

or the networks status. Actually this is the kind of relay considered in this thesis, since

it offers more flexibility inside a network such as the ones illustrated as examples in the

beginning of the introduction.

Having assumed an additive white Gaussian noise model for the channel, a lot of work has

been developed towards finding optimal transmission strategies and bounds with those three

cooperative schemes. In particular the HD transmission mode has been studied a lot because of its

minor complexity, since by definition does not have the problem of the self-interference [3,5,19–21].

Considering the FD case, a number of variants have been studied. The simplest case is the one

in which self-interference is neglected, as in [4], that derived the capacity of the FD channel

in such conditions. Instead, when self-interference is taken into account, the problem is way

more complex and needs proper models. Self-interference is of great interest nowadays, since the

technology now allows powerful methods to suppress it without compromising the integrity of

the useful information [9, 15]. The signal emitted from the relay loops back to its input, and it

is modeled as a Gaussian additive noise which has a variance proportional to the instantaneous

transmit power of the relay [12]. In particular, in [14] the aim is to maximize the instantaneous

and average spectral efficiency of a two-hop network, where the relay can dynamically and
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optimally change its transmission mode (HD or FD) with both the AF and DF relaying protocols.

That means that the relay switches mode by observing the channel conditions, and it selects

HD mode to improve the quality of the transmission by removing self-interference. In [7] a

relay with multiple transmitting antennas and a single receiving one is considered, working

with AF cooperative scheme. When the relay is subject to constraints on average transmit

power, it is found that this configuration outperforms the HD-AF relay in terms of end-to-end

signal-to-interference-plus-noise ratio (SINR). In [1], Gaussian inputs are assumed and then

achievable rate and bound are derived for both CF and DF relaying protocols. In [12] the case

of a two-hop X-duplex channel was analyzed in detail, and a complete description of optimal

power allocation strategies was given. That scenario was comparable to the one investigated

in [22], where the residual self-interference was modeled as a Gaussian random variable with a

variance directly proportional the to amplitude of the transmitted symbol at the relay. The

constraints imposed in [22] are the limitations of the average transmit power at source and relay

up to certain maximum values. The results of this work is that for what concerns the source,

the optimal conditional probability distribution of the source input, given the relay input, is

Gaussian, while for the relay the input can be either finite (described by delta functions) or

Gaussian, where the latter case occurs only when the relay-destination link is the bottleneck

link. Those distribution allow the system to achieve capacity, assuming that the source knows

exactly at each instant which symbol the relay is transmitting. To this purpose a buffer can be

used, which maintains synchronization between source and relay by holding the data decoded

by the relay. This data is re-encoded by the relay in the next available channel use, and if the
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source has the same encoder, it can predict which symbol will be transmitted by the relay.

The novelty of the scheme proposed in [12] consider a more practical case in which there is no total

awareness at the source of the symbols transmitted at the relay. In fact, a DF network operating

in X-Duplex mode is considered, with a residual self-interference with variance dependent on

the relay transmit power. Now the source is only aware of the transmit power distribution

adopted by the relay in a precise time frame [12]. This solution is more practical and useful in

those scenarios in which the physical-layer or the link-layer are modified by the relay in order to

add some information or encryption. The relay still decodes data from the source and forwards

it to the destination, but the synchronicity between source and relay cannot be maintained.

Since the source knows the power distribution at the relay, the relay operational mode can be

controlled and switched by simply setting the correct power level at the source. A Gaussian

input distribution is assumed at both source and relay, with a defined maximum variance. An

optimization problem is formulated for this scenario, and it aims to maximize the achievable

data rate. The system has different solutions based on the operational region in which the relay

works, and those regions are delimited by power thresholds. The main result is that the optimal

probability density function of the relay transmit power is discrete, composed of either one or

two delta functions [12]. Those delta functions give all the necessary information to the system

to set the correct power level at source and relay, and also the duration of such setting. A delta

function consists of two parameters: the coefficient and the position in which it is centered. That

is very few data to exchange between nodes. The resulting optimal communication strategy

consists of time frames in which the relay works in FD or HD for a given fraction of time. The
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obtained performance closely approaches that of communication strategies which assume perfect

knowledge at the source of the relay transmitted symbols.

What this thesis aims to do is to extend and generalize the work developed in [12]. In fact

it adapts such analysis to the case of multiple sources, which is a more realistic scenario.

Considering multiple sources means that the synchronicity between sources and relay cannot be

maintained, even without considering transformations applied to the data by the relay, of which

the source is not aware. In fact the relay receives information from a set of sources and then such

information is re-transmitted taking into consideration data priority, First-Come-First-Served

policy or any other scheduling policy. Each source is not aware of the data transmitted by the

other sources, so it cannot predict which symbol will be transmitted by the relay in a certain

time slot. For such reason it is proposed a strategy in which only the power allocation policy

at the relay is known at the sources. The work focuses on the particular case of two sources,

but the results can be extended to n sources with more complex mathematical models. The

system model and the optimization problem are formulated in Chapter 2. The power allocation

strategy found in Chapter 3 is completely similar to the one in [12], in fact it is described by

a discrete pdf, which means FD/HD operational modes allocated during precise time frames.

In Chapter 4 a new parameter is introduced, since it is related to multiple sources scenarios.

Such parameter describes fairness among sources, which is a very important issue: there may be

scenarios in which some user must have priority on others, for QoS reasons, and others in which

there must be total equity. In Chapter 5, the network model described in Chapter 2 (in the

particular case of two sources) is simulated with Matlab, and various plots and performances
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are shown in order to validate the mathematical results found in Chapters 3 and 4.

To summarize, the thesis is divided into two main parts: the first part, in which the model is

presented and an optimal mathematical solution is provided, and the second part, in which

simulation of the model assumed are implemented in order to provide graphs and numerical

results.



CHAPTER 2

OVERVIEW AND METHODOLOGY

2.1 System Model

This model analyzes a more complex scenario with respect to the case described in [12]. We

consider a network scenario with 3 different type of nodes: source nodes si, relay node r and

destination node d. The communication channel connecting the source to the destination can be

divided in two parts: the first hop is the channel which connects source(s) and relay, while the

second hop is the one connecting relay and destination. This network model is of paramount

importance in real world applications, since a relay can receive information by multiple users

who want to reach the same destination.

The existence of the relay is of primary importance, since there is no direct link between the

sources and the destination, so they must rely on it to establish communication.

All the channels, both the ones from the different sources to the relay and the one from the

relay to the destination, are independent, memoryless block fading channels, and all of them

are considered to be subject to additive Gaussian noise. We consider a generic set of channels,

where each channel from the source si to the relay r has channel gain hi, while the channel from

r to d has gain h0.

9
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Figure 2: System model overview

Sources and relay work on a frame-by-frame basis of length T, during which the channel gains

are assumed to be constant. The relay has three operational modes:

• HD-RX mode: while the sources transmit, the relay receives only.

• HD-TX mode: the relay transmits towards the destination, while the source is silent.

• FD mode: the sources transmit, while the relay transmits and receives at the same time

The most interesting case actually is the last one, since when the relay is transmitting it

creates self-interference which is summed to the signal received from the multiple sources. Those

signals can be formalized as follows: the signal received by the relay from the sources is denoted

by y and is given by
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y =

n∑
i=1

√
Pihixi + ν + nr (2.1)

while similarly the signal received by the destination node is

z =
√
ph0x0 + nd (2.2)

where

• hi is the channel gain of the source i-relay link, while h0 is the channel gain of the

relay-destination link. As previously stated, the nodes in the system communicate on a

per-frame basis, which lasts a specific time T , where T is chosen sufficiently small in order

to guarantee static channel conditions.

• xi and x0 are respectively the symbols transmitted by the source i and the relay. The

symbols transmitted at both sources and relay are assumed to be Gaussian distributed,

with zero mean and unit variance, which means that E[|xi|2] ≤ 1 and E[|x0|2] ≤ 1. pi is

defined as the transmit power at the source i, while p is the relay transmit power. From

that, it derives the instantaneous power of the sources, pi|xi|2, and the instantaneous

power of the relay, p|x0|2. We assume pi and p to have support in the ranges [0, pmaxi ]

and [0, pmax], respectively. The transmit power is assumed to be independent of the

transmitted symbol, for all the transmitting nodes in the system.

• nr and nd represent a Gaussian noise with zero mean and variance N0
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• ν is the instantaneous residual self-interference at the relay. Typically ν is modeled as

a Gaussian noise with variance proportional to the instantaneous power of the relay p.

So ν =
√
βp · G, where β is the self-interference attenuation factor at the relay and

G ∼ N (0, 1). This interference model is linear and it is the worst case one, and it is the

same assumed also in [1,17,18,22]. The self-interference is called residual because it is the

one which still persists after digital and analog suppression.

We define f(p), as the probability density function which represents the power allocation

distribution at the relay. While pi(p) represents the power allocation distribution at the source

i, but as it was previously stated, it is directly linked to power set at the relay. We define the

average transmit power both at the sources and at the relay, constraining them to some target

values:

p̄ = EpEx0 [p|x0|2] = Ep[p] =

∫ pmax

0
pf(p)dp (2.3)

p̄i = EpExi [pi|xi|2] = Ep[pi] =

∫ pmax

0
pi(p)f(p)dp (2.4)

where E[·] is the average operator. As anticipated before, the power level at the relay is limited

to a maximum value. The above expressions have been derived assuming that the transmit

power and the transmitted symbol are independent and that the variance of the transmitted

symbol is unitary.

Such system model is the generalization of the single user case provided in [12].
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2.2 Bounds for capacity region

The model described in the previous section is also called MARC (Multiple-Access Relay

Channel) and it is described in [16]. In [16] some capacity bounds are given for such network

model. We will use those bounds as a starting point. Over those bounds some ulterior

assumptions will be made, which are present in our model, as it will be developed later on. In

order to do that, it is useful to define a system model equivalent from the one of the previous

section, but described from an information theory point of view. We will identify the relay with

the number 0, while the sources are associated to numbers 1, 2, ...,K. Time is defined by t ∈ [n],

which are the channel uses.

For a complex-valued two-hop degraded AWGN MARC we have:

• Wk ∈ 2nRk , ∀k ∈ [K] is the message set, uniform and independent across users

• Xk,t = enck,t(Wk), ∀k ∈ [K] is the encoder belonging to source k. Each encoder is subject

to a power constraint given by 1
n

∑
t∈[n]

|Xk,t(Wk)|2 ≤ 1, ∀k ∈ [K]. This constraint is

equivalent to the one in Equation 2.4.

• Yt =
√
|X0,t(Y t−1)|2ν +

∑
k∈[K]

hkXk,t(Wk) +N1,t is the output at the relay, where the first

term is the self-interference while the second one is the useful information received by

the sources, weighted by the channel gain (which is different for each source-relay link).

The last term is the noise present on the first hop. Also the relay encoder is subject to

the power constraint 1
n

∑
t∈[n]

|Xk,t(Wk)|2 ≤ 1. This constraint is equivalent to the one in

Equation 2.3. ν is the self-interference which was already defined before.
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• Zt = h0X0,t(Y
t−1) +N2,t is the output at the destination. The first term represents the

information transmitted by the relay weighted by the channel gain of the channel between

relay and destination, while the second term is the noise level on the second hop.

• (Ŵ1, ..., ŴK) = dec(Zn) is the joint decoder at the destination.

• C = ConvHull
{

(ρ11, ..., ρ1K) : lim
n→∞

P
[
∪k∈[K]{Ŵk 6= Wk} = 0

]}
is the capacity region

(set of rate-tuples), assuming Ni ∼ (0, σ2
i ) and static channel gains. Rate ρ1i is the rate

between source i and the relay.

Furthermore we assumed a degraded channel, which can be modeled as a Markov chain in which

each state information knowledge is based only on the information coming from the previous

state. In fact

fY,Z|X0,X1,...,XK (y, z|x0, x1, .., xK) =
1

π(σ2
1 + β|x0|2)

e
−
|y−

∑
k∈[K] hkxk|

2

σ2
1+β|x0|2

1

π(β)
e
− |z−h0x0|

2

σ2
2

⇐⇒ fY |X0,X1,...,XKfZ|X0,Y (2.5)

2.2.1 Single user case

It is useful to derive capacity and related bound for the single user case, because it is more

immediate and allows a better understanding when it comes to the multi user case. Since the

relay channel with a single source (K = 1) belongs to the class of degraded memoryless channels,

according to [12,22], we have that
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C(β) = sup
PX1,X0

min(I(X1;Y |X0), I(X0;Z)) (2.6)

= sup
PX0

,0≤p1(·):E[p1(X0)]≤1
min

(
EX0

[
log

(
1 +

|h1|p1(X0)

σ2
1 + β|X0|2

)]
, I(X0;Z)

)
(2.7)

= sup
PX0

min

(
EX0

[
log+

(
η

|h1|2

σ2
1 + β|X0|2

)]
, I(X0;Z)

)
(2.8)

The capacity is given by the superior of the minimum between the mutual information on the

first hop given what the relay transmits (there is knowledge of the symbols transmitted by the

relay at the source) and the mutual information on the second hop. PX0 is the power distribution

at the relay, while PX1 is the one at the source. p1(·) and p0(·) are the transmission power at

the single source and the transmission power at the relay respectively. Using Shannon capacity

formula we obtain Equation 2.7, under the constraint of the average power and also considering

power values greater or equal than zero (practical values in real applications). Equation 2.8

comes from the Lagrange optimization method, necessary to solve the problem. The solution

coming from the Lagrangian gives an expression for the power used by the source to transmit,

knowing the relay transmitted symbol X0

p1(X0) =

[
η − σ2

1 + β|X0|2

|h1|2

]+

: EX0

[[
η − σ2

1 + β|X0|2

|h1|2

]+
]
≤ 1 (2.9)
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Such system is capacity achieving. Capacity can be upper bounded when we consider the ideal

case in which there is no self-interference. In fact

C(β) = sup
PX0

,0≤p1(·):E[p1(X0)]≤1
min

(
EX0

[
log

(
1 +
|h1|2p1(X0)

σ2
1 + β|X0|2

)]
, I(X0;Z)

)
(2.10)

≤ sup
PX0

,0≤p1(·):E[p1(X0)]≤1
min

(
EX0

[
log

(
1 +
|h1|2p1(X0)

σ2
1 + 0

)]
, I(X0;Z)

)
(2.11)

≤ sup
PX0

,0≤p1(·):E[p1(X0)]≤1
min

(
log

(
1 +
|h1|2E[p1(X0)]

σ2
1 + 0

)
, I(X0;Z)

)
(2.12)

= sup
PX0

min

(
log

(
1 +
|h1|2

σ2
1

)
, I(X0;Z)

)
(2.13)

≤ min

(
log

(
1 +
|h1|2

σ2
1

)
, log

(
1 +
|h0|2

σ2
2

))
= C(0) (2.14)

As it was anticipated in the introduction, we consider a practical case in which the symbols

transmitted by the relay are not known at the sources. Gaussian inputs are assumed, as it was

done in the system model chapter. Furthermore it is introduced a time sharing random variable

Q, which is an auxiliary variable and it is not part of the channel variables. In our specific

case Q = p, the transmit power level at the relay. For this reason, from now on p0(p) = p. In

addition we have conditionally independent gaussian inputs, thus

PX1,X0,p = PpPX0|pPX1|p = Pp · N (X0; 0, p) · N (X1; 0, p1(p))

⇐⇒ Xj =
√
pj(p)Gj : Gj ∼ N (0, 1) iid, 0 ≤ pj(·) : Ep[pj(p)] ≤ 1 (2.15)
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Such assumptions allows us to write a lower bound for capacity, which is

C = sup
PX1,X0p

min(I(X1;Y |X0, p), I(X0;Z|p)) (2.16)

≥ sup
Pp,0≤pj(·):E[pj(p)]≤1,j∈[0:1]

min

(
Ep,G0

[
log

(
1 +

|h1|2p1(p)

σ2
1 + βp|G0|2

)]
, (2.17)

Ep
[
log

(
1 +
|h0|2p
σ2

2

)])
≥ sup

Pp,0≤pj(·):E[pj(p)]≤1,j∈[0:1]
min

(
Ep
[
log

(
1 +

|h1|2p1(p)

σ2
1 + βpE[|G0|2]

)]
, (2.18)

Ep
[
log

(
1 +
|h0|2p
σ2

2

)])
= sup

Pp,0≤p0(·):E[p]≤1
min

(
Ep
[
log+

(
η
|h1|2p1(p)

σ2
1 + βp

)]
,Ep

[
log

(
1 +
|h0|2p
σ2

2

)])
(2.19)

Equation 2.17 is obtained assuming Gaussian inputs and their related properties. We can further

lower bound with Jensen’s inequality, which allows to take inside the first term the average

operator regarding G0, and this is done in Equation 2.18. In the end the problem can be solved

again trough Lagrange method, which is formulated in Equation 2.19. The solution is given for

p1(p) =

[
η − σ2

1 + βp

|h1|2

]+

: Ep

[[
η − σ2

1 + βp

|h1|2

]+
]
≤ 1 (2.20)

Such solution corresponds to a classical waterfilling policy. We can notice how the solution for

the power allocation at the source does not depend anymore on the symbol transmitted at the

relay, which is not known, but it depends on the new variable p. Furthermore the solution for

the power distribution of the source in [12] is coincident with the derivation just provided.
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2.2.2 MARC capacity bounds

Now we can extend the reasoning done for the single user case to a multiple user environment.

Let P(out) be the set of input distribution (as in [16]) of the form

P(out) :=

PX0,X1,...,XK ,p = Pp ·
∏
k∈[K]

PXk|p · PX0|X1,...,XK ,p, |p| ≤ 2(2K − 1)

 (2.21)

From this input distribution we can derive an outer bound for capacity, since it is assumed

that sources know exactly what relay is transmitting. We already discussed how in a multiple

sources scenario such assumption is not realistic, since it is necessary to have all the transmitters

synchronized and aware of the scheduling applied at the relay. An outer bound comes from

Theorem 1 in [16], which uses cut-sets. From that we have

C ⊆ ∪P(out)



ρS ≤ I(X0, XS ;Z|p,XSc),

ρS ≤ I(XS ;Z, Y |p,XSc , X0),

∀S ⊆ [K]

(2.22)

= ∪P(out)



ρS ≤ I(X0;Z|p,XSc),

ρS ≤ I(XS ;Y |p,XSc , X0),

∀S ⊆ [K]

(2.23)
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ρS represent the union of the rate-tuple of the sources belonging to S ⊆ [K], a subset of active

sources. The first inequality is related to the second hop, while the second inequality is related

to the first hop. XSc is the complementary set of XS in S. This passage from Equation 2.22 to

Equation 2.23 is done keeping in mind that we are considering a degraded channel, so in the

first inequality the dependency on XS disappears, as well as Z in the second inequality.

An inner bound on the capacity can be found too. Now we do not assume anymore that sources

know what relay is transmitting. To this end we define again a set of input distribution, which

comes from the DF region described by equation 8 in [16]:

P inDF =

{
PX0,X1,...,XK ,V1,...,VK ,p = Pp ·

∏
k∈[K]

PVk|pPXk|p,Vk · PX0|p,V1,...,VK

}
; (2.24)

In this first set it appears the auxiliary random variable Vi, which allows cooperation between

the i− th source and the relay. In our system model we do not have such variables, so we need

to eliminate them.

P inDFnoV =

{
PX0,X1,...,XK ,p = Pp ·

∏
k∈[K]

PXk|p · PX0|p

}
; (2.25)

P inDFnoV Gauss =

{
PX0,X1,...,XK ,p = Pp ·

∏
k∈[K]

N (Xk; 0, pk(p)) · N (X0; 0, p), (2.26)

0 ≤ pi(·) : E[pi(·)] ≤ 1, i ∈ [0 : K]

}
;

In the last step we assumed again to use Gaussian inputs. Then we have
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C ⊇ ∪P(inDF )



ρS ≤ I(X0, XS ;Z|p,XSc , VSc),

ρS ≤ I(XS ;Z, Y |p,XSc , V[K], X0),

∀S ⊆ [K]

(2.27)

= ∪P(inDF )



ρS ≤ I(X0;Z|p,XSc , VSc),

ρS ≤ I(XS ;Y |p,XSc , V[K], X0),

∀S ⊆ [K]

(2.28)

⊇ ∪P(inDFnoV )



ρS ≤ I(X0;Z|p,XSc),

ρS ≤ I(XS ;Y |p,XSc , X0),

∀S ⊆ [K]

(2.29)

⊇ ∪P(inDFnoV Gauss)



ρS ≤ Ep
[
log
(

1 + |h0|2p
σ2

2

)]
,

ρS ≤ Ep,X0

[
log
(

1 +
∑
k∈S |hk|2pk(p)

σ2
1+β|X0|2

)]
,

∀S ⊆ [K]

(2.30)

⊇ ∪P(inDFnoV Gauss)



ρS ≤ Ep
[
log
(

1 + |h0|2p
σ2

2

)]
,

ρS ≤ Ep
[
log
(

1 +
∑
k∈S |hk|2pk(p)

σ2
1+βp

)]
,

∀S ⊆ [K]

(2.31)
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Equation 2.27 is obtained assuming P inDF distribution. Equation 2.28 comes from considering

a degraded channel again, so the mutual information on the first hop is measured between

XS and Y (second inequality) and the one on the second hop is measured between X0 and

Z (first inequality). Equation 2.29 eliminates the presence of the auxiliary variables V , while

Equation 2.30 comes from the Gaussian inputs assumption. Ultimately Equation 2.31 is obtained

through Jensen’s inequality, which allows to state EX0|Q[|X0|2] = p0(p) = p. The inequalities in

Equation 2.31 are a generalization of the single user case. In order to obtain the single user

case, so K = 1, we must consider equation Equation 2.28 and substitute V1 = X0. In fact when

there is a single source, there is knowledge at each instant of the transmitted symbol at the

relay, so we can consider as the unique auxiliary variable the transmitted symbol itself.

2.3 Maximum achievable rate on first hop

In the previous section we found bounds for the capacity of our MARC model. From

Equation 2.31 it is possible to understand that the rate over the network is the minimum

between the rate on the first hop and the rate on the second hop. The rates are upper bounded

by the capacity values on the related links, which are averaged over p. We are going to write

explicitly such expected values in Equation 2.31, but first we introduce some terminology related

to rates, which is used throughout the thesis. We start by defining the instantaneous rates, with

relay and sources power fixed, can be defined:

ρ1i ≤ C1i = log

(
1 +

pi(p)|hi|2

N0 + βp

)
(2.32)
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is the instantaneous rate between source i and relay, as if no other sources were present. Instead

ρ2 = log

(
1 +

p|h0|2

N0

)
(2.33)

is the instantaneous rate on the relay-destination link. It is also necessary to define the total

instantaneous rate from the sources to the relay, which is:

ρ1 ≤ C1 = log

(
1 +

∑n
i=1 |hi|2pi(p)
N0 + βp

)
(2.34)

What is interesting for us is to find the achievable rate region on the first hop (which is the

critical part in the system), which comprehends all the possible rate combinations for a given

set of sources. This region is expected to be a n-dimensional convex polytope, defined by a set

of 2n − 1 equations. To prove that we start by considering n sources:

• S ⊆ N : S could be any subset of N , which is the set that comprehends all the n sources.

It is realistic to assume that there may be some sources which are active and some others

which are not.

• S 6= ∅ : it is the case in which all the sources are inactive, which is excluded since it is

useless.

• ρS =
∑
i∈S

ρ1i : ρS is the sum of the instantaneous rates coming from each source belonging

to S. Each rate is computed by ignoring the presence of the other sources belonging to

the subset, as if the considered source and the relay are not aware of the other ones.
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• CS = log
(

1 +
∑
i∈S |hi|2pi
N0+βp

)
: CS is the capacity of the subset S

The following condition then must be satisfied:

∀S ⊆ N , S 6= ∅ =⇒ ρS ≤ CS (2.35)

Such condition guarantees that, considering any possible subset of N (excluding the empty

set), the sum of the rates coming from each source separately never overcomes the capacity of

the whole subset. Since that condition must be satisfied for any possible combination of the

n sources, except one, a set of 2n − 1 constraints on the rate is created. Such set completely

describes the convex polytope, which allows to understand the possible performances of the

system.

Such set of constraints shapes the convex polytope represented in Figure 3. A couple (ρ11, ρ12)

defines a point in the achievable rate region. Working on any red line means that the sum of the

two rates remains constant. The aim is to reach the dominant face of the region (blue edge).

From now on, it is useful to define the average rates, which are average over the relay

transmit power p. The average rate for a single source is given by

R1i(f, pi) ≤
∫ pmax

0
f(p)ρ1i dp =

∫ pmax

0
f(p) log

(
1 +

pi(p)|hi|2

N0 + βp

)
dp (2.36)
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Figure 3: Multiuser channel achievable rate region (first hop)

while the average rate on the relay-destination link is

R2(f) =

∫ pmax

0
f(p)ρ2 dp =

∫ pmax

0
f(p) log

(
1 +

p|h0|2

N0

)
dp. (2.37)

RS , which appears in Equation 2.31, is defined as

RS(f, pi ∀i ∈ S) ≤
∫ pmax

0
f(p) log

(
1 +

∑
i∈S |hi|2pi(p)
N0 + βp

)
dp (2.38)
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We are interested in the particular case in which all the sources are active and want to transmit,

so we have that S = N . Consequently the total average rate from the sources to the relay is:

R1(f, p1, ..., pn) ≤
∫ pmax

0
f(p)ρ1 dp =

∫ pmax

0
f(p) log

(
1 +

∑n
i=1 |hi|2pi(p)
N0 + βp

)
dp (2.39)



CHAPTER 3

OPTIMAL POWER ALLOCATION AT THE SOURCES AND AT THE

RELAY

3.1 Problem Formulation

The aim of this thesis is to find the optimal power allocation, both at the multiple sources

and at the relay, which ensures the highest achievable rate from the sources to the destination

node. Because of the self-interference that occurs at the relay, the rates over the sources-relay

links depend on the relay transmit power. The overall rate is the minimum between the rate on

the relay-destination link and the sum rate achieved over the sources-relay links. In particular

we are going to focus on the multiuser case which has two sources.

The maximum achievable rate is then defined as follows:

R , max
f(·),p1(·),p2(·)

min{R1(f, p1, p2), R2(f)} (3.1)

= max
f(·)

min

{
max

p1(·),p2(·)
R1(f, p1, p2), R2(f)

}
(3.2)

where the last equality comes from the fact that only R1 depends on p1 and p2.

In order to solve this problem it is necessary to maximize R with respect to p1 and p2 in the

first place, and then maximize it over f(·). In order to find the power allocation policies in the

achievable region in Equation 2.31, we need to divide the optimization into two separated steps.

26
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3.2 Optimal power allocation at the sources

The first step is to maximize the rate over the power allocation at the two sources, according

to Equation 3.2. The maximization over f(·) will be done later on, so we start by maximizing

over p1 and p2, considering f(·) as given.

A similar problem was analyzed in [8], where a multiuser channel is considered. Such channel

corresponds exactly to the first hop of our system model. However there are some differences

which lead to a different solution. In [8] the channel conditions are constantly measured in

order to obtain a precise SNR for each channel. The channel with the best SNR has the right

to transmit until another channel becomes the best one. If the received power from a source

is below a certain threshold, then such source cannot transmit (it may be that all the sources

cannot transmit). The adopted policy can be interpreted as water-filling, since more power is

allocated for the channels with good conditions.

In our system model we have static channel gains, so they do not change over time. The channel

conditions vary over time because of the different power level at the relay, which entails different

amounts of self-interference. Such variation is ”proportional” for all the channels, since they all

will be affected by the relay transmission. This is the main difference from [8], even tough the

scenario is very similar. In fact in [8] the Lagrange method allows to find the set of inequalities

described by Equation 9 inside such paper. The fact that the channel gain are random variables

guarantees that the average power constraints are met over time (that means that all the sources

except one can remain silent), while in our case the channel gains are static but what changes is

the power level at the relay, which affects all the channels in the same way. Such proportionality
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can be eliminated trough Lagrange derivation, and the only way to met the average power

constraints is to allow all the sources to transmit at the same time. All of this can be observed

in the Lagrange derivation, which is provided in the following.

Then the maximization problem w.r.t. p1 and p2 can be formulated as follows:

P0 : R1(f) = max
p1(·),p2(·)

R1(f, p1, p2) s.t.

(a)

∫ pmax

0
p1(p)f(p)dp = P̄1; (b) 0 ≤ p1(p) ≤ pmax1

(c)

∫ pmax

0
p2(p)f(p)dp = P̄2; (d) 0 ≤ p2(p) ≤ pmax2

recalling that R1(f, p1, p2) =
∫ pmax

0 f(p) log
(
1 + |h1|2p1+|h2|2p2

N0+βp

)
dp. The constraints imposed

by (a), (b), (c) and (d) are the same ones that we imposed in the system model section. We

reported them here to stress their importance.

Since the solution of this problem is not trivial, we apply the Lagrange multipliers technique. Since

the optimization problem contains inequality constraints we also impose the KKT conditions [2].

The KKT approach is a generalization of the Lagrange’s one, since it allows also inequality

constraints. The procedure is explained in detail in appendix A.

As said previously, it is better to focus on the sum of the powers. Recalling from the Appendix

A the definition

Ps(p) , |h1|2p1(p) + |h2|2p2(p) (3.3)
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in the end we have

Ps(p) =
|h1|2

λ1
− (N0 + βp) (3.4)

with Ps(p) ≥ 0 and Ps(p) ≤ |h1|2pmax1 + |h2|2pmax2 , Pmaxs . λ1 is the Lagrange multiplier

defined in A.

The solution for Ps(p) is:

Ps(p) = min

{[
|h1|2

λ1
− (N0 + βp)

]+

, |h1|2pmax1 + |h2|2pmax2

}
(3.5)

= βmin

{[
|h1|2

βλ1
− N0

β
− p
]+

,
Pmaxs

β

}
(3.6)

= βmin{[ω − p]+,Pmaxs } (3.7)

where the operator [·]+ , max{0, ·}. Furthermore some new parameters are defined:

Pmaxs ,
Pmaxs

β
(3.8)

is the maximum power sum weighted by 1
β and

ω ,
|h1|2

βλ1
− N0

β
(3.9)

is the a function of the Lagrange multiplier λ1. If f(·) is given, and that is the assumption we

made in this first part, the optimal value of ω can be found by substituting Equation 3.7 into

P0-(a).
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Figure 4: Transmission power sum of the sources: ω ≥ Pmaxs (left) and ω < Pmaxs (right)

The two case are illustrated in Figure 4. Having fixed ω, for an increasing relay transmit

power the power at the sources is lowered since the self-interference at the relay is higher and

higher. After the critical point ω = p the self-interference is too high and the most convenient

thing to do for the sources it to not transmit at all. For simplicity, pmax1 and pmax2 are assumed

as very large values, such that Equation 3.7 can be reduced to

Ps(p) = β[ω − p]+ (3.10)

Such assumption has practical relevance when the sources don’t have strict limits on transmit

power, so when they are macro-cell Base Station (BS) for example.

Since a parameter of fundamental interest is the average rate, by substituting the optimal

solution in the expression of the average rate R1(f, p1, p2) (which comes from Equation 3.2) the

dependency on ω is highlighted:



31

R1(f) =

∫ pmax

0
f(p) log

(
1 +

β[ω − p]+

N0 + βp

)
=

∫ pmax

0
f(p) log

(
1 +

β0[ω − p]+

1 + β0p

)
(3.11)

where β0 , β
N0

.

Furthermore also the average sum power is of interest for us, and the dependency on ω can

be found by substituting Ps(p) in P0-(a) (or P0-(b), it is the same)

∫ pmax

0
f(p)

β[ω − p]+ − |h2|2p2(p)

|h1|2
dp = P̄1 (3.12)

the fraction is then divided into two terms

∫ pmax

0
f(p)β[ω − p]+dp−

∫ pmax

0
f(p)|h2|2p2(p)dp = |h1|2P̄1 (3.13)

and on the second term constraint (c) is used

∫ pmax

0
f(p)β[ω − p]+dp− |h2|2P̄2 = |h1|2P̄1 (3.14)

and finally with simple math operations

∫ pmax

0
f(p)[ω − p]+dp =

|h1|2P̄1 + |h2|2P̄2

β
, P̄s (3.15)
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After the maximization of the rate R1 w.r.t. p1 and p2 we need to optimize the rate w.r.t.

f(·). To this end we rewrite the maximization problem P0 as:

P1 : R = max
f(·)

min{R1(f), R2(f)} s.t.

(a) R1(f) =

∫ pmax

0
f(p) log

(
1 +

β0[ω − p]+

1 + β0p

)
dp

(b) R2(f) =

∫ pmax

0
f(p) log(1 + vp)dp

(c)

∫ pmax

0
f(p)[ω − p]+dp = P̄s

(d)

∫ pmax

0
f(p)dp = 1;

∫ pmax

0
pf(p)dp = p̄; 0 ≤ p ≤ pmax

where v , |h2|2
N0

. The constraints of the problem are:

• (a) is the average rate on the first part of the communication link, therefore between the

sources and the relay, which was derived in Equation 3.11.

• (b) is the average rate on the second part of the communication link, therefore between

the relay and the destination.

• (c) represents the constraint on the average power of the sources, which was found in

Equation 3.15.

• (d) simply defines f(·) as a distribution with mean value p̄ and support in [0, pmax].
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ω is the free parameter in the problem, but also f(·) need to be chosen in an optimal way.

Due to the presence of the non linear operator [·]+ in (a) and (c) we have to consider two

separate cases:

(i) The easier case is for ω ≥ pmax, because it allows to get rid of the [·]+ operator, since its

argument is always greater than (or equal to) zero. In fact, according to Figure 5, the non

linearity of the function is avoided, letting the problem to be easier.

(ii) When ω < pmax the situation is more complex, from a mathematical point of view, and

some additional assumptions must be done. In this thesis such particular case is not

treated, but it can be analyzed in future work.

The two previously mentioned cases are illustrated in Figure 5. As it is shown, for

Figure 5: Transmission power sum of the sources: ω ≥ pmax (left) and ω < pmax (right)

ω ≥ pmax the function which describes the sources power is linear and easy to deal with, while
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in the other case the discontinuity is still present and a different approach is required to deal

with that.

3.3 Optimal power allocation at the relay when ω ≥ pmax

As it was said in the previous section, by assuming ω ≥ pmax we can remove the non-linear

[·]+ operator from Equation 3.10. First of all, by using the definitions provided in P1-(d) and

plugging them into P1-(c), ω can be written as:

∫ pmax

0
ωf(p)dp−

∫ pmax

0
pf(p)dp = P̄s (3.16)

then by using the constraints coming from (d)

ω − p̄ = P̄s (3.17)

and finally

ω = P̄s + p̄ (3.18)

By substituting this value for ω in Equation 3.11 we obtain a new expression for the rate:

R1(f) =

∫ pmax

0
f(p) log

(
1 + β0p+ β0(ω − p)

1 + β0p

)
dp (3.19)

=

∫ pmax

0
log(1 + β0(P̄s + p̄))f(p)dp−

∫ pmax

0
f(p) log(1 + β0p)dp (3.20)

= log(1 + β0(P̄s + p̄))−
∫ pmax

0
f(p) log(1 + β0p)dp (3.21)
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Moreover an equivalent way to write the condition ω ≥ pmax is P̄s ≥ pmax − p̄ , P0, which

comes from Equation 3.18. This is an important definition, since it defines a power threshold.

The next step is to lower and upper bound the two rates R1(f) and R2(f), , whose expressions

are given by Equation 3.21 and P1-(b), so that three different regions of operability will be

found.

3.3.1 Bounding the rates

To find the bounds the following lemma is used, which is exactly the same lemma used

in [12]:

Lemma 4.1. Let φ(p) be a continuous concave function and f(p) be a probability distribution,

both with support in [a, b]. Let
∫ b
a pf(p)dp = m. Then,

b−m
b− a

φ(a) +

(
1− b−m

b− a

)
φ(b) ≤

∫ b

a
f(p)φ(p)dp ≤ φ(m) (3.22)

The lower bound holds with equality when f(p) = b−m
b−a δ(p−m) +

(
1− b−m

b−a

)
δ(p− b), while the

upper bound holds with equality when f(p) = δ(p−m), where δ(·) is the Dirac delta.

The proof of this lemma is reported in Appendix B.
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By observing that f(p) is a distribution with mean p̄ and that in general a function of the

type log(1 + cp), with c > 0 is concave, the following bounds can be found. At first the lower

bound is applied to Equation 3.21 and P1-(b):

R1 ≤ log(1 + β0(P̄s + p̄))− p̄

pmax
log(1 + β0p

max) , rmax1 (3.23)

R2 ≥
p̄

pmax
log(1 + vpmax) , rmin2 (3.24)

Both Equation 3.23 and Equation 3.24 hold with equality when

f(p) =

(
1− p̄

pmax

)
δ(p) +

p̄

pmax
δ(p− pmax). (3.25)

In a similar way, by using the upper bound on the two rates we obtain:

R1 ≥ log(1 + β0(P̄s + p̄))− log(1 + β0p̄) , rmin1 (3.26)

R2 ≤ log(1 + vp̄) , rmax2 (3.27)

with the equality that holds when

f(p) = δ(p− p̄). (3.28)
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3.3.2 P1 solution

The four bounds of the rates which were obtained in the previous section allow a subdivision

of the problem P1 into three distinct working regions.

1) rmin2 ≥ rmax1 : in this case R = rmax1 . The optimal relay power distribution is the one found

in Equation 3.25, so

f?(p) =

(
1− p̄

pmax

)
δ(p) +

p̄

pmax
δ(p− pmax). (3.29)

Furthermore, from the inequality rmin2 ≥ rmax1 , the power threshold which defines this region

can be found, along with the average rate value

rmin2 ≥ rmax1

by substituting Equation 3.24 and Equation 3.23 in the inequality

p̄

pmax
log(1 + vpmax) ≥ log(1 + β0(P̄s + p̄))− p̄

pmax
log(1 + β0p

max)

and by solving it for P̄s

P̄s ≤ P1 ,
1

β0
[(1 + β0p

max)(1 + vpmax)]
p̄

pmax − 1− β0p̄

β0
(3.30)
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So R is equal to Equation 3.23:

R = log(1 + β0(P̄s + p̄))− p̄

pmax
log(1 + β0p

max) (3.31)

2) rmin1 ≥ rmax2 : now R = rmax2 . The optimal relay power distribution comes from Equation 3.28

and it is

f?(p) = δ(p− p̄). (3.32)

Similarly to case 1), from the condition that defines this case is obtained

rmin1 ≥ rmax2

by substituting Equation 3.26 and Equation 3.27 in the inequality

log(1 + β0(P̄s + p̄))− log(1 + β0p̄) ≥ log(1 + vp̄) , rmax2

and by solving for P̄s

P̄s ≥ P2 , p̄v
1 + β0p̄

β0
(3.33)

along with the rate, which is equal to Equation 3.27

R = log(1 + p̄v). (3.34)
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3) If the two previous conditions do not hold, we need to solve the problem by setting R =

R1 = R2. This problem is more difficult to solve. Its solution provides the expression for the

rates in the range P1 ≤ P̄s ≤ P2. We therefore rewrite P1 as:

P2 : R = max
f(·)

R1(f) = log(1 + β0(P̄s + p̄))−min
f(·)

∫ pmax

0
f(p) log(1 + β0p)dp s.t.

(a) R2(f) = R1(f) =

∫ pmax

0
f(p) log(1 + vp)dp

(b)

∫ pmax

0
f(p)dp = 1;

∫ pmax

0
pf(p)dp = p̄; 0 ≤ p ≤ pmax

Constraint (a) can be rewritten as

∫ pmax

0
f(p) log[(1 + β0p)(1 + pv)]dp = log(1 + β0(P̄s + p̄)) (3.35)

In order to find an optimal solution to this problem it is necessary to apply the following

theorem, which again is the same used in [12].
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Theorem 4.1. Consider the following constrained minimization problem:

R = min
f(·)

∫ b

a
f(p)φ(p)dp s.t. (3.36)

(a)

∫ b

a
f(p)ψ(p)dp = c

(b)

∫ b

a
pf(p)dp = m

(c)

∫ b

a
f(p)dp = 1

(d) f(p) ≥ 0, ∀p ∈ [a, b]

where φ(p) = log(1 + γ1p), η(p) = log(1 + γ2p), ψ(p) = φ(p) + η(p) and f(p) is a probability

distribution with support in [a, b], a > 0. Moreover, γ1 > 0, γ2 > 0, m ∈ [a, b] and c are

constant parameters. Then, the minimizer has the following expression

f?(p) =


pB−m
pB−a δ(p− a) + m−a

pB−aδ(p− pB) if γ1 > γ2

b−m
b−pA δ(p− pA) + m−pA

b−pA δ(p− b) if γ1 ≤ γ2

(3.37)

where pA ∈ [a,m] and pB ∈ [m, b] are obtained by replacing Equation 3.37 in Equation 3.36-

(a).

The proof of the theorem is given in C. By using Theorem 4.1 in the specific case of P2,

the condition γ1 ≤ γ2 becomes v ≥ β0, which leads to the optimal power distribution at the

relay:

f?(p) =
pmax − p̄
pmax − pA

δ(p− pA) +
p̄− pA

pmax − pA
δ(p− pmax) (3.38)
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where pA is a value of p which can be obtained by replacing f?(p) defined in Equation 3.37

into P2-(a), which means solving the following equation for pA

[
(1 + β0pA)(1 + pAv)

(1 + β0pmax)(1 + pmaxv)

] pmax−p̄
pmax−pA

=
1 + β0(P̄s + p̄)

(1 + β0pmax)(1 + pmaxv)
. (3.39)

Similarly, when v < β0:

f?(p) =
pB − p̄
pB

δ(p) +
p̄

pB
δ(p− pB) (3.40)

and by applying the same substitution done before, the following equation must be solved to

find pB

[(1 + β0pB)(1 + pBv)]
p̄
pB = 1 + β0(P̄s + p̄). (3.41)

The most important deduction that can be done from these results is that the optimal power

allocation at the relay f?(p) is discrete. This means that a time division strategy can be adopted:

in fact f?(p) is always made of one or two delta functions. In particular, the value in which the

delta function is centered defines the power level of the relay, while the coefficient establish the

duration of the transmission with such power level. In the case of two probability masses, the

transmission time is divided into two phases whose time fractions are given by the coefficient of

the deltas. A graphical representation is given in Figure 6.

Once the relay power allocation is chosen, the correspondent f?(p) is placed into Equa-

tion 3.15, to obtain the sources optimal power level. Thus, the relay needs to communicate to

the sources only those few parameters which define the delta functions, making it easy from
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Figure 6: Optimal communication strategy. The time frame is divided into two phases (A
and B), with the associated parameters: pA and pB define the relay transmit power of the
corresponding phase, while tA and tB the duration of the phase

a practical implementation point of view: such quantities will be sent to sources through a

very small overhead (of course it is fundamental the synchronization at the frame level between

sources and relay). Furthermore, we observe that the expressions for f(·) only depend on the

channel gain h0, while the power allocation at the sources depends exclusively on the channel

gains h1 and h2.

In Table I all the results are collected for the case P̄s ≥ P0 according to the regions defined

by the power thresholds, and they can be summarized as follows:

• for P̄s ≤ P1 the communication strategy adopted at the relay is FD during phase A, while

HD-RX in phase B. That means that in phase A both sources and relay are transmitting,

while in phase B the relay receives only.
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• when P1 < P̄s < P2 two case must be distinguished. If v ≥ β0, then the relay works in

FD in both the two phases, although with different paramters. If v < β0 the relay works

in FD during phase A, but in HD-RX during phase B.

• for P̄s ≥ P2 the relay works in FD mode all time, maintaining the same parameters for the

whole duration of the transmission time allocated. In particular both sources and relay

transmit at their average power level.

TABLE I: OPTIMAL POWER ALLOCATION FOR P̄s ≥ P0.

v ≥ β0 Phase A Phase B

tA PA pA tB PB pB

P̄s ∈ [P0,P1] p̄
pmax β(P̄s + p̄− pmax) pmax 1− p̄

pmax β(P̄s + p̄) 0

P̄s ∈ (P1,P2) p̄−pA
pmax−pA β(P̄s + p̄− pmax) pmax pmax−p̄

pmax−pA β(P̄s + p̄− pA) pA

P̄s ∈ [P2,∞) − − − 1 βP̄s p̄

v < β0 Phase A Phase B

tA PA pA tB PB pB

P̄s ∈ [P0,P1] p̄
pmax β(P̄s + p̄− pmax) pmax 1− p̄

pmax β(P̄s + p̄) 0

P̄s ∈ (P1,P2) p̄
pB

β(P̄s + p̄− pB) pB 1− p̄
pB

β(P̄s + p̄) 0

P̄s ∈ [P2,∞) 1 βP̄s p̄ − − −
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TABLE II: OPTIMAL RATE FOR P̄s ≥ P0.

Rate R

P̄s ∈ [P0,P1] log(1 + β0(P̄s + p̄))− p̄
pmax log(1 + β0p

max)

P̄s ∈ (P1,P2); v ≥ β0 log(1 + β0(P̄s + p̄))− pmax−p̄
pmax−pA log(1 + β0pA)+

− p̄−pA
pmax−pA log(1 + β0p

max)

P̄s ∈ (P1,P2); v < β0 log(1 + β0(P̄s + p̄))− p̄
pB

log(1 + β0pB)

P̄s ∈ [P2,∞); v < β0 log(1 + p̄v)



CHAPTER 4

FAIRNESS AMONG SOURCES

An aspect which has not been discussed yet is fairness among sources. It is important inside

a network to control the relations between sources, giving a sort of priority to them. There

may be scenarios in which some sources should transmit at their maximum rate, and we are

not interested in maximizing the rate sum. To this end different operability regions will be

highlighted in the achievable rate polytope from Figure 3. Moreover, as we will discuss later

in this Chapter, total fairness among sources does not imply optimality, and we will propose

an approach to insert such α parameter in our already existing system model. In the end the

optimal power allocation, both at sources and relay, will be of the same form found in Chapter

3, but some extra constraints related to α may restrict the acceptability of such solutions.

4.1 General considerations

In our considered network mode, fairness can be set by introducing a parameter,α, which

binds the instantaneous rates as follows

ρ11 =
1

α
ρ12 (4.1)

The relation can be visualized as a straight line of slope α, which passes through the origin of

the Cartesian plane.

45
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Some values of α bound specific regions in the convex polytope in Figure 3. Such regions are

highlighted in Figure 7.

Figure 7: Working regions defined by α

The three regions are (if we consider only the possible values inside the polytope):

• A1 is the yellowish region: its upper green edge represents the set of points in which S2

works at its maximum rate C12 while S1 works at a rate value ρ11 < C1 − C12. Hence S1

is penalized with respect to S2.

• A2 is the reddish region. Along its red edge the sum rate is maximized. In general here

sources do not work at their maximum rate, except when the extremes of this region are

considered.
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• A3 is the blueish region. Only along its green edge S1 works at its maximum rate C11

while S2 works at a rate value ρ12 < C1 − C11. Hence here S2 is penalized with respect to

S1.

Observe that α = 1 imply perfect fairness among the two sources. The line ρ12 = ρ11,

however can belong to any of the three regions A1, A2 and A3, whose shape depend on the

system parameters. Such dependency is related in particular to the channel gains. The next

step is to find the corresponding range of values of α for each region, once the remaining system

parameters are fixed. It is expected that for α that tends to 0 also R12 tends to zero and

R11 = C11, while for α going to ∞, R11 goes to 0 and R12 = C12. Starting with region A1, the

following system of equations must be introduced:



ρ11 = 1
αρ12

ρ12 = C12

ρ11 + ρ12 = C1

(4.2)

recalling that C11 = log
(

1 + |h1|2p1

N0+βp

)
, C12 = log

(
1 + |h2|2p2

N0+βp

)
and C1 = log

(
1 + |h1|2p1+|h2|2p2

N0+βp

)
.

This system is necessary to find the slope α of the straight line which passes through the

boundary point between A1 and A2. The other boundary value of α for A1 is trivial and it is

∞. The solution of Equation 4.2 is
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α1 =
C12

C1 − C12
=

log
(

1 + |h2|2p2(p)
N0+βp

)
log

(
1+
|h1|2p1(p)+|h2|2p2(p)

N0+βp

1+
|h2|2p2(p)
N0+βp

) =
log
(

1 + |h2|2p2(p)
N0+βp

)
log
(

1 + |h1|2p1(p)
|h2|2p2(p)+N0+βp

) (4.3)

A similar reasoning can be done for A3, which has a trivial bound for α that is 0 and the other

one can be found by solving the following system:



ρ12 = αρ11

ρ11 = C11

ρ11 + ρ12 = C1

(4.4)

which has solution

α2 =
C1 − C11

C11
=

log

(
1+
|h1|

2p1(p)+|h2|
2p2(p)

N0+βp

1+
|h1|2p1(p)
N0+βp

)
log
(

1 + |h1|2p1(p)
N0+βp

) =
log
(

1 + |h2|2p2(p)
|h1|2p1(p)+N0+βp

)
log
(

1 + |h1|2p1(p)
N0+βp

) (4.5)

In the end the three regions are associated with the following values of α:

• A1 ⇒ α1 < α <∞

• A2 ⇒ α2 ≤ α ≤ α1

• A3 ⇒ 0 < α < α2

where α1 and α2 are defined respectively in Equation 4.3 and in Equation 4.5

Now, if α is chosen so that it belongs to region A1 for example, it is possible to notice how the
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rate of the source S1 is significantly lower than its maximum. That means that much of the

power transmitted by source S1, p1(p), is wasted. In order to avoid this energy waste, the source

powers should be adjusted and optimized depending on the choice of the parameter α.

4.2 Bounds on source power

A better approach to find an optimal solution is to fix the α coefficient, and consequently the

related straight line, which defines the desired fairness conditions. Then the polytope previously

described can be reshaped in order to let the straight line fall into the region A2, where the sum

of the rates is constant (Figure 8). In such conditions the rate achieved on the sources-relay link

is described by:

ρ1(p1, p2, p) = log

(
1 +

p1(p)|h1|2 + p2(p)|h2|2

N0 + βp

)
(4.6)

while the average rate is given by R1(f, p1, p2) =
∫ pmax

0 ρ1(p1, p2, p) dp. We also recall that the

source transmit power should satisfy the constraints

∫ pmax

0
f(p)pi(p)dp = P̄i (4.7)

To solve the problem of maximization of R1 the following variable is defined

Ps(p) = p1(p)|h1|2 + p2(p)|h2|2 (4.8)

so that the maximization problem becomes



50

P2: R1(f) = max
p1,Ps

∫ pmax

0
f(p) log

(
1 +

Ps(p)

N0 + βp

)
dp s.t. (4.9)

(a)

∫ pmax

0
f(p)Ps(p)dp =

∫ pmax

0
f(p)|h1|2p1(p) +

∫ pmax

0
f(p)|h2|2p2(p) = P̄s (4.10)

(b)

∫ pmax

0
f(p)p1(p)dp = P̄1 (4.11)

(4.12)

where P̄s = P̄1|h1|2 + P̄2|h2|2. The constraint (a) is simply the extension of the average

power constraints on single sources to their power sum. The maximization problem is solved in

a totally equivalent way as it was done in the previous section, by following the procedure in

appendix A. Now the Lagrangian depends only on a single variable and has the form

L(Ps) = f(p) log

(
1 +

Ps(p)

N0 + βp

)
− µf(p)Ps(p) (4.13)

and can be solved for P with the equation ∂L(Ps)
∂Ps

= 0. The solution obtained is

Ps(p) =
1

µ
−N0 − βp (4.14)

Considering that P ≥ 0, similarly to subsection 3.2, the final solution is:

Ps(p) =

[
1

µ
−N0 − βp

]+

= β[ω − p]+ (4.15)
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where ω = 1
µβ −

N0
β , i.e., 1

µ = N0 + βω. Again there are two cases to consider: ω ≥ pmax and

ω < pmax. Since the former case avoids the non linearity part of the function, it is simpler to

treat. The behavior of Ps(p) is the same as that reported in Figure 5 .

4.2.1 ω ≥ pmax

In this case it it possible to get rid of the operator [·]+, since the working power region of

the relay belongs to the linear part of the function Ps(p). Then we have

Ps(p) = β(ω − p) (4.16)

and

R1(f) = log(N0 + βω)−min
p1

∫ pmax

0
f(p) log(N0 + βp)dp (4.17)

is obtained by substituting Equation 4.16 into the expression of R1. By substituting Equation 4.16

into Equation 4.10, the average power constraint becomes

∫ pmax

0
f(p)P (p)dp =

∫ pmax

0
f(p)β(ω − p)dp = β(ω − p̄) = P̄s (4.18)

which provides

ω =
P̄s
β

+ p̄ (4.19)

We now need to impose constraints on p1 and p2. It is important to remember that we

always work on the dominant face of the achievable rate region (for the first hop) where the sum

rate is maximized, in order to avoid energy waste. In this region the total rate is maximized. As
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it is shown if Figure 8, a certain α = c is chosen. Such slope α does not allow the corresponding

straight line to fall inside the optimality region. Instead of changing α, the region is reshaped,

and that can be done differently, based on the availability of network resources.

Figure 8: Region reshape once α is fixed.

Given Ps(p), let ρi(p) the rate achieved by source i. By working on the dominant face of the

achievable rate region it is needed to impose ρ1(p) + ρ2(p) = ρs(p) where

ρs(p) = log

(
1 +

Ps(p)

N0 + βp

)
= log

(
N0 + βω

N0 + βp

)
(4.20)
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Moreover since it was imposed ρ2(p) = αρ1(p) (fairness condition) it follows that

ρ1(p) =
1

1 + α
ρs(p) (4.21)

ρ2(p) =
α

1 + α
ρs(p) (4.22)

Now, since ρi(p) ≤ log(1 + Ti) (maximum achievable rate for the source Si), where Ti = pi|hi|2
N0+βp ,

we need to satisfy

log(1 + T1) ≥ 1

1 + α
ρs(p); (4.23)

log(1 + T2) ≥ α

1 + α
ρs(p). (4.24)

i.e.,

T1 ≥
(
N0 + βω

N0 + βp

) 1
1+α

− 1 (4.25)

T2 ≥
(
N0 + βω

N0 + βp

) α
1+α

− 1 (4.26)

By adding T1 to the second inequality we obtain

T1 + T2 ≥
(
N0 + βω

N0 + βp

) α
1+α

− 1 + T1 (4.27)
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which can be rewritten as

1 + T1 + T2 −
(
N0 + βω

N0 + βp

) α
1+α

≥ T1 (4.28)

Since 1 + T1 + T2 = 1 + Ps(p)
N0+βp = N0+βω

N0+βp it follows

T1 ≤
N0 + βω

N0 + βp
−
(
N0 + βω

N0 + βp

) α
1+α

(4.29)

In conclusion Equation 4.25 and Equation 4.26 can be rewritten as

(
N0 + βω

N0 + βp

) 1
1+α

− 1 ≤ T1 ≤
N0 + βω

N0 + βp
−
(
N0 + βω

N0 + βp

) α
1+α

(4.30)

By recalling that T1 = p1(p)|h2|2
N0+βp , the inequality in Equation 4.30 can be expressed as

[(
N0 + βω

N0 + βp

) 1
1+α

− 1

]
(N0 + βp) ≤ p1(p)|h1|2 ≤ N0 + βω − (N0 + βp)

(
N0 + βω

N0 + βp

) α
1+α

(4.31)

or

(N0 + βω)
1

1+α (N0 + βp)
α

1+α − (N0 + βp) ≤ p1(p)|h1|2 ≤ N0 + βω − (N0 + βω)
α

1+α (N0 + βp)
1

1+α

(4.32)

For simplicity we define

L(p) = (N0 + βω)
1

1+α (N0 + βp)
α

1+α − (N0 + βp) (4.33)
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and

U(p) = N0 + βω − (N0 + βω)
α

1+α (N0 + βp)
1

1+α . (4.34)

From Equation 4.32 we obtain

L(p) ≤ p1(p)|h1|2 ≤ U(p) (4.35)

Figure 9: Lower and upper bound for p1(p)
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Those bounds are represented in Figure 9, in particular for ω = 6 and α = 1. Any value

of p1 selected between the lower bound and the upper bound assures the rate maximization

with the specific ratio imposed by α. Depending on the system parameters, there may not

be a solutions in some cases, and this happens when the required power falls outside of the

bounds. In such cases the fairness constraints cannot be satisfied. Subsequently a procedure

completely analogue to what has been developed in Subsections 3.3.1 and 3.3.2 now is applied.

As it happened in Chapter 3, different solutions are found depending on which average source

power level is applied. As in Subsection 3.3.2, there are three working regions and as many

related solutions. Regarding the first two cases, which are the easier ones in mathematical terms,

they solutions remain the same: the first one is a discrete probability density function made

of two delta functions, one centered in p = 0 and the other one in p = pmax. The second one

is again a discrete pdf, but with a single delta function centered in p = p̄. The third case, the

most complex one, again maintains pretty much the same form, with some minor changes in the

formulation of the problem that needs to be maximized (actually it is minimized for the minus

in front of the objective function). Now the problem is:
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P3 : R = max
f(·)

R1(f) = log(N0 + βω)−min
f(·)

∫ pmax

0
f(p) log(N0 + βp)dp s.t.

(a) R2(f) = R1(f) =

∫ pmax

0
f(p)[ρ1(p)− ρ2(p)]dp

(b)

∫ pmax

0
f(p)dp = 1;

∫ pmax

0
pf(p)dp = p̄; 0 ≤ p ≤ pmax

(c)

∫ pmax

0
f(p)p1(p)dp = P̄1; L(p) ≤ p1(p)|h1|2 ≤ U(p)

This new problem has one more constraint w.r.t. P2 formulated in Subsection 3.3.2 Moreover

it contains the inequality L(p) ≤ p1(p)|h1|2 ≤ U(p) which imposes the fairness condition. Such

similarity in the formulation of the problem hint that the maximizer f? is composed of two delta

functions whose positions, p1 and p2, are in the range [0, pmax]. Each delta function carries two

degrees of freedom (i.e., position and weight) which are determined by the constraints. Besides

this fact, the procedure for solving P3 follows that outlined in Appendix C.



CHAPTER 5

NUMERICAL RESULTS

In this final chapter, numerical evaluations are provided to support the theory developed in

the previous chapters.

One of the parameters of much interest is the rate of course. We want to compare our rate

performances with other systems which make different hypotheses on the behavior of the relay,

as it was done in [12]. Here they are listed:

• Ideal Full-Duplex: this is the case in which the network always work in FD mode and

the relay does not suffer from self-interference. This is only ideal because self-interference

cannot be eliminated completely, even with the finest techniques, and for that reason it is

considered as an upper-bound to all the other methods. Any other transmission mode

adopted could not do better than this.

RFD-Ideal = min

{
log

(
1 +

P̄s
N0

)
, log

(
1 +

p̄|h0|2

N0

)}
(5.1)

• Full-Duplex with the knowledge of instantaneous power (IP) of the relay at the source:

Sources always transmit at their average power sum P̄s and also the relay always transmits

at its average power p̄. HD is not contemplated in this model, provided in [22]. The main

difference with the model proposed in this thesis, to stress it again, is that in our case the

58
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source is only aware of the average power of the relay, and also HD mode is used in some

cases.

RFD-IP = min


∫ +∞

−∞
log

(
1 +

P̄s
N0 + βx2

)
e
−x

2

2p̄

√
2πp̄

dx, log

(
1 +

p̄|h0|2

N0

) (5.2)

• Half-Duplex: the relay either transmits or receives, so this is the worst case considered.

This model was also used as comparison in [22] and the transmission is divided into two

time fractions, t and 1− t.

RHD = max
p̄

pmax
≤t≤1

min

{
(1− t) log

(
1 +

P̄s
(1− t)N0

)
, t log

(
1 +

p̄|h0|2

tN0

)}
(5.3)

It must be a lower bound with respect to the system we provide, since in the worst case

the X-Duplex solution works in HD.

The scenario that is taken into consideration is analogous to the one assumed in [12]. To

evaluate the goodness of all the considerations done previously, we try to obtain the same results

found in [12], even if now two sources are assumed instead of one.



60

Figure 10: Geometry of the network.

The parameters for the basic scenario, which were used also in [12], are:

• d = 500 m is the distance which separates both sources from the relay, and also the relay

and the destination node.

• fc = 2.4 GHz is the carrier frequency at which the signal is transmitted.

• |h0|2 =
(

c
4πfc

)2
d−γ is the general formula for the gain associated to a channel, where

γ is set to 3. To obtain the same channel conditions that were present in [12], we set

|h1|2 = |h2|2 = |h0|2
2 .

• N0 = −151 dBW is the noise power, which is assumed to be the same for all receivers in

the network. The signal bandwidth is B = 200 kHz and the power spectral density is 204

dBW/Hz.
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• the relay parameters are: p̄ = −10 dBW and pmax = −7 dBW, with the self-interference

attenuation factor β = −135 dB.

• the average power at the sources is assumed equal, so P̄1 = P̄2. To obtain the power

thresholds defined in Subsection 3.3.2 it is necessary to remember that Ps = Ps(p)
β −→

p1(p) = p2(p) = Ps β
|h1|2+|h2|2 . Since we are considering Ps(p) (made of p1 and p2) and not

Ps, it is necessary to scale all the power values related to Ps by β
|h1|2+|h2|2 . In particular

the thresholds values becomes coincident with the ones of [12], which are: P0 = −24 dBW,

P1 = −14.23 dBW and P2 = −3.04 dBW.

• the average power at the sources is assumed equal, so P̄1 = P̄2.

Since v = |h0|2
N0
≈ 30 dB and β0 = β

N0
≈ 16 dB, the case v > β0 must be considered. Furthermore,

since only the situation ω ≥ pmax was analyzed in this thesis, the sources power sum used in all

the simulations is always P̄s ≥ P0.

The rate performances are provided in Figure 11, assuming α = 1. First of all it is possible

to notice how the curve has a different trend inside the three different power regions, which

are [P0,P1], (P1,P2] and (P2,∞). This is what we expect since for each region the maximizer

f? assumes a different form, as indicated in Table I. Furthermore, all the rates obtained are

identical to the ones that were illustrated in [12]: this is important since it means that even if

there are two sources present in the network, the total rate is still maximized and there are no

losses regarding the performances. As it was predicted, the ideal FD curve is an upper-bound

for all the rates, while the HD curve is a lower-bound. In fact, for very low power levels, our

system coincides to the HD one. The system which is aware of the instantaneous power, FD-IP,
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outperforms the X-Duplex configuration only for power levels greater than p̄ = −10 dBW, and

the gain in performances is not so relevant. Again this is very important, because our proposed

solution has outstanding performances for low powers, compared to the other solutions, and for

higher power levels it is still a great competitor. In fact the minimal loss in rate performance

is balanced by the fact that only the average power of the relay is known at sources, and that

requires way less complex transmission mechanisms which are translated in lower costs.
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Figure 11: Rate performances with different transmission systems

Similarly Figure 12 shows the optimal powers at sources and relay for the two phases

highlighted in Table I, which come along with the rates depicted in Figure 11. In particular

here it is plotted the sum of the transmit powers of the two sources. The obtained results are

in agreement with the ones found in [12], which confirms one more time the validity of the

proposed system for multiple sources.
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Figure 12: Optimal source and relay transmit powers for phase A (solid lines) and phase B

(dashed lines)

Figure 13: Phase durations
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In fact, the total power coming from the sources should not overcome the optimal power

in the case of a single source, with the system settings that were imposed previously. All this

curves are illustrated in Figure 12. Similarly also the phase durations are shown in Figure 13.

By observing those two graphs, it is possible to observe that for P0 ≤ P̄s ≤ P1 the time

fraction associated to both phases is equal, while the two sources transmit in all the phases,

with the respective powers.

The relay instead transmits only during phase A. When P1 < P̄s ≤ P2, the relay works in

FD in both phases, while the sources transmit with a power level which becomes more and more

coincident for both the phases. The phase durations start to diverge, one goes to 0 and the

other one goes to 1. In fact, when P̄s > P2, there is a single phase of duration 1, in which the

relay and the sources transmit at their average values.

Now that we have verified that the system works correctly, by doing the comparison with the

single source case provided in [12], we can introduce variations on the fairness coefficient.

By varying the fairness coefficient α we change the proportionality between the rates of the two

sources, letting one of the two being favored. In Figure 14 it is possible to observe how different

αs affect the rate curves.

α = 1 and α = 0.5 provide the same rate curve, which is the maximum obtainable rate

curve. That means that the average power level provided by the sources is always sufficient

to guarantee such rate relationship. In the other cases in Figure 14 in which α is smaller or

greater than the previous values, it is possible to notice how the rate is zero up to a certain

power value, and then it reaches the maximum possible rate (the curve for α = 1): that means
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Figure 14: Rate performances with different fairness coefficients

that the lower average power values are not sufficient to ensure the condition defined by α, but

when the power level is high enough, the total rate is maximized with such relationship between

the two sources. That happens always assuming P̄1 = P̄2. For example for α = 0.3 the threshold

value is P̄1 ≈ −13.5 dB, for α = 3 it is P̄1 ≈ −16 dB and for α = 4 it is P̄1 ≈ −9 dB. A more

detailed explanation of the phenomena is given in Figure 15. By converting the α values to the

corresponding angles with the arc tangent function, we have on the X axis angle values that go
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from 0 to π
2 , while on the Y axis the minimum power level required for the corresponding α.

When the angle tends to 0, so α→ 0, the required power values tends to ∞, as it was already

discussed when the fairness coefficient was introduced. Similarly, that happens also when the

angle approaches π
2 , so when α→∞. Intuitively, the graph is symmetric around α = 1, which

corresponds to the angle π
4 . In fact the relationship defined by α is simply inverted if the angle

is x or π
2 − x.

Figure 15: Minimum required power P̄1 as a function of α
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In Figure 16, for different fixed average power values, it is shown the range of alphas for

which the system has a solution. As expected, by increasing the average power level the rate

becomes higher and also the range of supported αs in wider. In our results, when the network

cannot support the desired fairness conditions we set to 0 the achievable rate (R = 0). Viceversa,

if there is availability of power, the power level can be increased in order to obtain the wanted

proportionality between sources.

Figure 16: Range of αs for a fixed P̄1 = P̄2
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It is also interesting to observe how performances change as the channel gains vary. To this

end we considered random channel gains on the source(i)-relay links and on the relay-destination

link. All the other parameters used before remain the same (including α = 1), while the channel

gains are Gaussian random variables of the form |ĥ11|2 = |ĥ12|2 = |h1|2
2 · |η|2, where η is a

Gaussian random complex number with 0 mean and unit variance. In Figure 17 are provided

three different plots for three different channel configurations, where the dashed lines are the

thresholds, the solid lines are the achieved rates and the dashed-dotted lines are the upper

bound rates coming from the ideal FD. Here are the channel configurations listed:

• Red: |h1|2 = 4.1665e−13, |h2|2 = 1.6733e−13 and |h0|2 = 1.9251e−12.

• Green: |h1|2 = 4.3169e−14, |h2|2 = 3.47623e−13 and |h0|2 = 7.3278e−13.

• Blue: |h1|2 = 2.8627−13, |h2|2 = 7.4921e−14 and |h0|2 = 4.9413e−13.

All the plotted rates depends on the channel gain in some way: in fact the thresholds

and the achievable rate have different values based on the channel configuration. The red one

allows the highest rate among the three, and it assures the equity among sources for all power

levels. The green and blue configurations have lower rates and also cannot always guarantee

the condition α = 1. That happens because the achievable rates on each link are a function

of the corresponding channel gain. In fact different channel gains define a particular network

configuration, which has its own peculiar achievable rate region (convex-polytope): that happens

because the achievable rate region depends on the instantaneous rates of the sources, which are

a function of the channel gains. Changing the channel gain is also a synonym of changing the

distance between nodes in the network. In Figure 18 the source nodes are placed with increasing
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Figure 17: Rates and thresholds for different channel parameters

equal distance from the relay. The plots are done for different fixed average power values at

the sources. By increasing that power, the system transmits at its maximum rate for longer

distances, and from a certain critical distance value the rate starts to decrease exponentially.

The dashed part of the curve represents the rate value for ω < pmax, or equivalently P̄s < P0.

This particular case has not been analyzed in this thesis, but intuitively the rate continues to
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decrease until at some point it becomes null, since the nodes are too much distant to sense each

others.

Figure 18: Rate values for increasing distance between sources and relay

Finally, we let the channel gains be random (both the ones belonging to the source-relay links

and the one belonging to the relay-destination link, which follow respectively the relationships
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|ĥ11|2 = |ĥ12|2 = |h1|2
2 · |η|2 and |ĥ2|2 = |h1|2 · |η|2, with η defined previously) for different

average power levels at the sources (always assuming P̄1 = P̄2), the result is the one depicted in

Figure 19. It is assumed α = 1. The aim is to obtain an average behavior of the network. By

increasing the average power at sources the rate, with various different channel configurations,

increases, until a certain threshold.

Figure 19: Rate value averaged on N = 1000 random realizations of the channels
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From the point the curve stops increasing and assumes values in a sort of flat region. The

behavior of this quite smooth curve is totally similar to the behavior of any curve with fixed

channel parameters. By increasing the number of iterations N the resulting curve would be

smoother.

5.1 Conclusion

To conclude this numerical part, in which all the mathematical derivations developed in

the first part of the thesis, it is possible to observe that the X-Duplex system proposed and

discussed is a very good competitor with respect to all the other solutions provided in the papers

which treat similar scenarios. The rates achieved are quite outstanding and inferior to the rate

achieved when the instantaneous power of the relay is known at the sources only for high power

levels, and moreover that difference can be justified by the lower complexity required for our

system, in which only the average power of the relay is known at the sources. Furthermore

it has been proved that the system can be adapted to a multiple sources scenario, in which

the performances are not affected negatively but reach the same values obtained in the much

simpler scenario. Also the fairness concern has been deeply analyzed and the results shown

allow to understand how the power provided at the source has a primary role in guaranteeing

the condition imposed by the fairness coefficient α.

Some work can still be done: for example the part regarding ω < pmax has not been developed,

and by doing that the behavior of the system for any power would be known.
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Appendix A

OPTIMIZATION OF THE SOURCE TRANSMIT POWER

First of all we recall that the problem we want to solve is

P0 : R1(f) = max
p1(·),p2(·)

R1(f, p1, p2) s.t.

(a)

∫ pmax

0
p1(p)f(p)dp = P̄1; (b) 0 ≤ p1(p) ≤ pmax1

(c)

∫ pmax

0
p2(p)f(p)dp = P̄2; (d) 0 ≤ p2(p) ≤ pmax2

The Lagrangian is defined as:

L(p1, p2) = f(p) log

(
1 +
|h1|2p1 + |h2|2p2

N0 + βp

)
− λ1(f(p)p1(p)− P̄1)− λ2(f(p)p2(p)− P̄2)−

− µ1(p)(p1(p)− pmax1 ) + µ2(p)p1(p)− µ3(p)(p2(p)− pmax2 ) + µ4(p)p2(p) (A.1)

where µ1(p), µ2(p), µ3(p), µ4(p) ≥ 0 and λ1, λ2 are all KKT multipliers.

The KKT conditions comes from the partial derivatives of the Lagrangian with respect to

p1 and p2 which are set equal to zero:

1.
|h1|2

N0 + βp
· f(p)

1 + |h1|2p1(p)+|h2|2p2(p)
N0+βp

− λ1f(p)− µ1(p) + µ2(p) = 0 (A.2)
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Appendix A (continued)

2.
|h2|2

N0 + βp
· f(p)

1 + |h1|2p1(p)+|h2|2p2(p)
N0+βp

− λ2f(p)− µ3(p) + µ4(p) = 0 (A.3)

while the slackness conditions are:

3. µ1(p)(p1(p)− pmax1 ) = 0

4. µ3(p)(p2(p)− pmax2 ) = 0

5. µ2(p)p1(p) = 0

6. µ4(p)p2(p) = 0

along with the already existing conditions imposed by (a), (b), (c) and (d).

By looking at the conditions 5 and 6, it is obvious to require p1(p) and p2(p) greater than zero,

otherwise the source will be inactive. As a consequence µ2(p) and µ4(p) must be equal to zero.

Having said that, we define

Ps(p) , p1(p)|h1|2 + p2(p)|h2|2 (A.4)

so that Equation A.2 and Equation A.3 reduce to:

f(p) ·
[

1

N0 + βp+ Ps(p)
− λ1

|h1|2

]
= 0 (A.5)

f(p) ·
[

1

N0 + βp+ Ps(p)
− λ2

|h2|2

]
= 0 (A.6)



77

Appendix A (continued)

Since f(p) 6= 0 is given and the first term inside the brackets is equal for both equations, the

solution is:

λ1

|h1|2
=

λ2

|h2|2
=

1

N0 + βp+ Ps(p)
(A.7)

From Equation A.7 there is a dependency between the two multipliers, so in the end is

possible to use only one multiplier. Ultimately, the solution is

Ps(p) =
|h1|2

λ1
− (N0 + βp) (A.8)

which is also the optimal sum-power allocation at the sources.
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Appendix B

PROOF OF LEMMA 4.1

The upper bound ∫ b

a
f(p)φ(p)dp ≤ φ(m)

comes from Jensen’s inequality and it is the easiest to prove. In fact from the definition of the

Dirac delta function and from its property of translation, the equality holds when

f(p) = δ(p−m). (B.1)

For the lower bound, since the function φ(p) is concave in p ∈ [a, b], also it is greater than the

straight line that connects the points φ(a) and φ(b), which has equation φ(b)−φ(a)
b−a (p− a) + φ(a).

Therefore we have

∫ b

a
f(p)φ(p)dp ≥

∫ b

a
f(p)

[
φ(b)− φ(a)

b− a
(p− a) + φ(a)

]
dp = φ(a)

(
b−m
b− a

)
+ φ(b)

(
m− a
b− a

)
=
b−m
b− a

φ(a) +

(
1− b−m

b− a

)
φ(b)

and here the equality holds, for the same aforementioned reasons, when

f(p) =
b−m
b− a

δ(p− a) +

(
1− b−m

b− a

)
δ(p− b). (B.2)
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Appendix C

DISCRETE PROBABILITY DENSITY FUNCTION

This appendix follows a complete analogous procedure as in Appendix D of [12]. The

minimization problem in Equation 3.36 can be solved by applying the Euler-Lagrange formula.

This allows to get rid of the integral functions, so the Lagrangian is defined as follows

L(f(p)) = f(p)φ(p) + λ1(f(p)ψ(p)− c) + λ2(p(f(p)−m) + λ3(f(p)− 1)− µ(p)f(p) (C.1)

where the first term is the functional to be minimized. The second, the third and the fourth terms

comes from the constraints imposed by (a), (b) and (c), which are associated with the Lagrange

multipliers λ1, λ2 and λ3 respectively. The last term comes from the inequality of the constraint

(d), and for the presence of this inequality the KKT conditions are used. µ(p) ≥ 0 is the KKT

multiplier associated to the condition (d). Such condition can be rewritten as −f(p) ≤ 0, that

is the standard form for a minimization problem. The KKT condition consequently is

∂L
∂f

= φ(p) + λ1ψ(p) + λ2p+ λ3 − µ(p) = 0 (C.2)

⇒ µ(p) = φ(p) + λ1ψ(p) + λ2p+ λ3 (C.3)

along with the conditions imposed by (a), (b), (c), (d), µ(p) ≥ 0 and the slackness condition

µ(p)f(p) = 0.
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Appendix C (continued)

The function defined in Equation C.3 identifies a family of continuous functions, described by

the parameters λ1, λ2 and λ3. It is required by the conditions imposed previously that µ(p) ≥ 0,

∀p ∈ [a, b], but also that µ(p)f(p) = 0. Three possible behaviors for µ(p) can be considered:

• µ(p) > 0, ∀p ∈ [a, b], so, in order to comply to the slackness condition, f(p) must be equal

to 0 (∀p ∈ [a, b]), which is a solution of no interest, because it means that the relay is

always silent hence the rate R is 0.

• µ(p) = 0, ∀p ∈ [a, b]. However this is impossible since µ(p) contains non-constant terms

such as φ(p) and ψ(p). This does not allow to find a non-zero measure subset of [a, b] for

which µ(p) = 0.

• µ(p) is strictly positive in [a, b] (and f(p) is 0 consequently), except for a a discrete set of

points pi ∈ [a, b], for which µ(pi) = 0 and f(p) > 0.

This is the only feasible option. It indicates that the maximizer f(·) is a discrete distribution:

in particular it is composed of a set of probability masses located at pi with magnitude πi. In

order to find the number of probability masses, the first derivative of µ(p) should be analyzed

µ′(p) =
k1p

2 + k2p+ k3

(1 + γ1p)(1 + γ2p)
(C.4)

where k1, k2 and k3 depend on λ1, λ2, λ3, γ1 and γ2. Since the numerator in Equation C.4 is a

polynomial in p of degree two, it means that it can have up to two distinct solutions for p in

[a, b], which are local minima or maxima of the function µ(p). If the minimizer of Equation 3.36

is called f?(p), then multiple cases are contemplated, by using Fermat and Weierstrass theorems:
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Appendix C (continued)

1. The function has only one solution pA ∈ [a, b], which is not a local minimum or maximum.

The pA must be equal to a or b. Therefore the single probability mass has the form

f?(p) = π1δ(p− a) (or, f?(p) = π1δ(p− b)). That cannot be the solution because it has

only one degree of freedom, π1, which is not sufficient to satisfy the constraints (a), (b)

and (c) at the same time.

2. µ(p) has again a single solution pA ∈ [a, b], which now is a local minimum, so the minimizer

would be f?(p) = π1δ(p− pA). pA and π1 establish two degrees of freedom which again

are not enough to satisfy the constraints imposed by (a), (b) and (c) all together.

3. µ(p) has two solutions, pA and pB ∈ [a, b], and none of them is a local minimum. That

means that pA is located in a and pB is located in b, so that the minimizer becomes

f?(p) = π1δ(p− a) + π2δ(p− b). The degrees of freedom are again two, π1 and π2, and for

the same reason given in point 2, this solution is not acceptable.

4. The last case is when µ(p) has two solutions, pA and pB ∈ [a, b], and one of them is a local

minimum. The expression of the minimizer can be two: f?(p) = π1δ(p− a) + π2δ(p− pB)

or f?(p) = π1δ(p− pA) + π2δ(p− b). Both the expressions are characterized by a triplet of

degrees of freedom ({π1, π2, pA} and {π1, π2, pB} respectively) which are sufficient to meet

the constraints imposed by (a), (b) and (c).

The minimizer expression is given in point 4 of the list, but actually they are two, so which

must be chosen in Equation 3.37 is decided by the constant parameters γ1 and γ2. To show the
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Appendix C (continued)

dependency on those two parameters, the minimizer formula can be generalized into a family of

distributions of the type

f?(p, x, y) = π(x, y)δ(p− x) + [1− π(x, y)]δ(p− y) (C.5)

where π(x, y) = y−m
y−x > 0, with m ≤ y ≤ b and a ≤ x ≤ m. The two expressions in Equation 3.37

are given by f?(p, a, pB) and f?(p, pA, b) respectively. Using this definition in Equation 3.36-(a),

the constraint can be rewritten as

F (x, y) =

∫ b

a
f?(p, x, y)ψ(p)dp = π(x, y)ψ(x) + [1− π(x, y)]ψ(y) = c (C.6)

and similarly the cost function becomes

G(x, y) =

∫ b

a
f?(p, x, y)φ(p)dp = π(x, y)φ(x) + [1− π(x, y)]φ(y). (C.7)

Since it must hold that ψ(p) = φ(p) + η(p), it must also hold F (x, y) = G(x, y) +H(x, y), so it

is necessary to define

H(x, y) = π(x, y)η(x) + [1− π(x, y)]η(y) (C.8)

Now some observations can be done:

• F and G are increasing functions of x and decreasing functions of y [13].
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Appendix C (continued)

• F (x, y) = c is the implicit equation of a curve, which will be called from now on yc(x),

with a ≤ x ≤ pA and pB ≤ y ≤ b. Having defined Fx = ∂F
∂x and Fy = ∂F

∂y , the derivative

of the function yc(x) is y′c(x) = dyc(x)
dx = −Fx

Fy
. Using the just given definitions it can be

stated that y′c(x) > 0. By applying a similar reasoning to the function G(x, y) = t, which

again is the implicit equation of yt(x), it can be demonstrated that y′t is positive too.

• If the constant c is fixed, then it exist a value of t such that the two curves yc(x) and yt(x)

meet in a common point (x∗, y∗).

The goal is to find the shared point P which gives the minimizer of the cost function. First of all,

a general point P is considered, excluding the extremal points, so P 6= (a, pB) and P 6= (pA, b).

Then two cases can be distinguished:

• If y′c(x) > y′t(x) in P , it means that t is not the global minimum of the cost function in

Equation 3.36. Then it must exists a value ε > 0 for which the intersection of the two

curves yc(x) and yt−ε(x) happens at P ′ = (x∗ + ∆x, y∗ + ∆y), and in such point the cost

function G(x∗ + ∆x, y∗ + ∆y) = t− ε it is lower then in P . This is true for all the points

P = (x∗, y∗), so in the end the minimizer is found exactly in the extreme point which was

excluded before, giving as a minimizer f?(p, pA, b) with a minimum G(pA, b).

• With a totally equivalent reasoning, in the case in which y′c(x) < y′t(x) at P , the minimizer

is found in the other extremal point and it is f?(p, a, pB) with the minimum G(a, pB).

The problem now is to understand which minimizer must be chosen among the two. There are

some parameters which discriminate the choice, in particular they are γ1 and γ2. In order to do
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a comparison between the two derivatives y′c(x) and y′t(x), the definitions of F , G and H must

be used. In fact y′c(x) = −Fx
Fy

= −Gx+Hx
Gy+Hy

and y′t(x) = −Gx
Gy

where the partial derivatives of G

and H are introduced, according to the notation used for F . The expressions of Gx, Gy, Hx

and Hy can be easily derived also by observing that ∂π
∂x = πx = π

y−x and ∂π
∂y = πy = 1−π

y−x .

In the case y′c(x) ≥ y′t(x), the expression becomes

−Gx +Hx

Gy +Hy
≥ −Gx

Gy
=⇒ −Gx

Gy
≤ −Hx

Hy
(C.9)

Now it can be observed that φ(p) and η(p) are the same function of the type log(1 + γp), the

former with γ = γ1 and the latter with γ = γ2. Since G depends on φ(p) and H depends on

η(p), it means that −Gx
Gy

= ζ(γ1) and −Hx
Hy

= ζ(γ2), where ζ is a function which depends on

the parameter inside the brackets. An important property of the function ζ(γ) is that it is

an increasing function of γ. In fact, by imposing ζ ′(γ) ≥ 0 and after doing some calculations

and simplifications, it comes out that log
(

1+γy
1+γx

)
(2 + γy + γx) ≥ 2γ(y − x). The right hand

side of the previous inequality is a positive function, linear with γ (γ ≥ 0). The left hand side

instead is a convex positive function, tangent to the right hand side when γ = 0. That proofs

the increasing behavior of ζ with γ. Therefore if γ1 ≤ γ2, then −Gx
Gy
≤ −Hx

Hy
and consequently

yc(x) ≤ yt(x). Viceversa, if γ1 > γ2, then yc(x) < yt(x).
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